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ABSTRACT

Learning how to navigate a real space using haptic virtual environments can be
challenging. One major issue is the inefficient rate of exploration due to the single point
interface of haptic devices. The use of haptic fields such as repulsive and attractive
force fields was studied to determine their ability to enable global sensing to improve
haptic navigation.

Repulsive Force Fields for Global Haptic Sensing
Repulsive force fields were designed to help users understand their

environments more quickly through global sensing. Two experiments were conducted
using repulsive force fields to provide information about indoor and outdoor spaces. In
both experiments, repulsive force fields were found to be usable but not more effective
in teaching the user about the environment than no force field.

Attractive Force Fields for Global Haptic Sensing Applied to Route Guidance
Attractive force fields were studied in the context of providing route guidance.

Several haptic guides were designed and evaluated in a developmental experiment.
The most promising haptic guide was selected and compared to conventional
alternatives (using no guide and an audio guide) in a main experiment to determine its
ability to effectively aid route learning. The haptic guide fared poorly in the initial main
experiment and was re-designed. Following this, a final main experiment was conducted
with ten subjects. The results suggest that the haptic guide is, in fact, an effective tool
for route learning.
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1 INTRODUCTION

The over-encompassing goal of our research and BlindAid is to give blind people

tools to build cognitive maps of unknown spaces to support independent travel. BlindAid

is a haptic-aural virtual environment (VE) system that enables blind people to learn

about new environments through touch and sound. Haptics refers to the study of

sensing and manipulation through touch. BlindAid uses a state-of-the-art haptic device

called the Phantom (Sensable). The Phantom is a desktop device that allows for virtual

exploration through a stylus; this mode of exploration can be compared to exploring the

world with the tip of a miniature white cane. Unfortunately, learning spaces through a

single-point interface can be challenging. The goal of this thesis was to develop tools to

improve haptic exploration of virtual spaces. The development process included

proposing various concepts, using design criteria to narrow down the ideas, building

program code for the most promising concepts using C++, and performing experiments

with human subjects to test usability.

1.1 MOTIVATION FOR BLINDAID

The ability to travel freely is a critical component of personal independence

(Passini, Dupre, & Langlois, 1986). This ability is significantly compromised without

vision. However, tools and strategies have been developed over the years to

compensate and provide spatial information through other means. Some commonly

used tools for obstacle detection and navigation include white canes, dog guides, and

GPS (Global Positioning System) devices. However, these tools are intended for in-situ

travel, or during motion. Navigation has two major components: in-situ travel and

planning. Planning which includes building cognitive maps and learning routes, is

especially important without sight. Up until recently, written and verbal descriptions

(Golledge, Klatsky, & Loomis, 1996) and tactile maps which are difficult to come by,

were the only planning tools available to blind people (Wang, Li, Hedgpeth, & Haven,

2009). However, haptics, a relatively new area of research has introduced a new

solution, haptic virtual environment systems such as BlindAid. Studies have shown that

spatial information from a virtual environment is transferable to a real environment
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(Klatzky, Loomis, Beall, Chance, & Golledge, 1998; Lahav, Schloerb, Kumar, &

Srinivasan, 2008; Peruch, Vercher, & Gauthier, 1995; Picard & Pry, 2009; Schmelter,

Jansen-Osmann, & Heil, 2008).

1.2 MOTIVATION

Learning about an environment using a haptic map implemented by BlindAid can

be more difficult than learning about a space using a visual map, because the eye can

process spatial data at a much faster rate than the finger. While a sighted person can

often look at a map and within seconds, understand the information being conveyed; a

blind person using a single-point haptic device, might need minutes to learn the same

space. This highlights the fact that vision is a global sense, allowing a person to learn in

parallel, while state-of-the-art haptics is serial. Hence, there is a need to improve

BlindAid to educate users about spaces more efficiently by making haptic learning more

global.

1.3 OVERVIEW

This thesis focuses on making haptic sensing with the Phantom more global to

improve BlindAid. Like vision, audio is a global sense, and while we could have

explored combinations of haptics and audio to improve BlindAid, we chose to focus on

haptics to avoid overloading the audio channels. Although overloading audio in a virtual

system is very tempting, prior work on audio VEs suggest that conveying too much

information through audio can be detrimental to learning. Furthermore, haptics is the

primary mode in which users interact with the VE.

Global sensing for haptics can be implemented by creating haptic fields around

objects in the environment so that the Phantom can detect them at a distance. The idea

of using haptic fields to enable global haptic sensing grew out of a preliminary

experiment. In that experiment, the subject attempted to use BlindAid to learn about a

VE representing a 3D cityscape with streets and buildings. The subject suggested that it

might be helpful if he could feel the locations of the buildings as he passed them while

following the street. There are a number of ways to create haptic fields using repulsive

8



forces, attractive forces, and alternating forces. Repulsive and attractive forces can vary

in different ways with respect to distance - linearly and non-linearly. Alternating forces

can be dynamic, varying in time to produce a buzzing effect, or static, varying in space

to create a texture which can differ in amplitude, period, and shape of waveform.

Repulsive Force Fields for Global Haptic Sensing

We decided to begin with a repulsive force field. This was a simple idea that we

believed could be helpful and had received little attention from the research community.

The goal was to investigate using repulsive force fields to enable global sensing to help

users learn about the environment more quickly. We experimented with using repulsive

force fields to provide information about indoor and outdoor spaces. Preliminary tests

indicated that repulsive force fields, while not a hindrance to exploration, were not more

effective in teaching the user about the environment than no force field.

Attractive Force Fields for Global Haptic Sensing Applied to Route Guidance

We then

decided to explore attractive forces. However, during our research, we came up with the

idea to apply attractive forces to the problem of developing a haptic guide. There is a

fundamental issue with using haptics to teach routes. Simply leading a person by hand

(passive exploration) does not facilitate proper route learning (Lecuyer et al., 2003;

Farrell et al., 2003). Thus, we focused on using an attractive force field for global

sensing, allowing users to simultaneously sense the route, while exploring surrounding

objects, and applied this to developing a haptic guide. In order to facilitate active

exploration, we designed a guide that tethered users to a route to encourage navigation

in the correct direction, while still allowing for the exploration of the neighboring areas.

We tested a few different renditions of the haptic guide to determine whether haptics

could be used for route learning. The final concept for the guide provided directions (on

command) by nudging the user in the correct direction and used textures to indicate off-

route areas. Ultimately, the results suggested that a haptic guide could be an effective

tool for route learning.
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2 BACKGROUND

2.1 NEEDS OF PEOPLE WHO ARE BLIND

While sighted people use their eyes to gather most of the information needed to

navigate, people with visual impairments are faced with significant difficulties when

exploring new spaces. Passini, Dupre, & Langlois (1986) postulated that the ability to

travel freely is critical to one's personal independence and integration into society.

Hence, research on blindness has focused considerable energy on finding methods to

improve independent navigation (Espinosa & Ochaita, 1998).

Blindness, "defined as visual acuity of less than 20/400 (6/120), or corresponding

visual field loss to less than 10 degrees," ("Blindness", n.d., para. 3) and a lack of

mobility have been found to have a negative impact on different aspects of health. With

regards to physical health, blindness is not only associated with lower levels of fitness in

children, but also delays in the development of motor skills (O'Connell, Lieberman, &

Petersen, 2006). One study concluded that "individuals who are visually impaired have

an increased risk of chronic health problems and difficulty with functional mobility tasks

that require strength and speed" (Ray, Horvat, Williams, & Blasch, 2007, p. 112).

Furthermore, a lack of independence and social isolation from late-onset blindness may

be associated with depression (O'Donnell, 2005). These studies stress the importance

of personal independence, mobility, and their impact on quality of life.

2.2 TOOLS FOR BLIND NAVIGATION

The most commonly used orientation and mobility tool is the white cane. A

smaller percentage of people use guide dogs and GPS devices. There are

approximately 130,000 white cane users (Russell, Hendershot, LeClere, Howie, &

Adler, 1997) and 7,000 dog guide users in the United States (Journal of Visual

Impairment & Blindness, 1995). Research and development of mobility tools for people

who are blind typically fall into one of two categories: obstacle detection and navigation.
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2.2.1 OBSTACLE DETECTION

Obstacle detection tools include the white cane, haptic or audio-enabled
"augmented" white canes, guide dogs, and portable obstacle detectors ("Blindness",
n.d.). Handheld obstacle detectors typically consist of acoustic or optic sensors that

detect objects and convey information to the user through touch (e.g., vibration) or

sound. Similar technologies have been adapted for the white cane; "augmented" white

canes are designed to detect obstacles and drops offs in the environment, and

communicate through audio signals, vibrations, and/or physical forces (Borenstein, n.d.;

Gallo et al., 2010; Julius, 2010; Yu, Yoon & Jeong, 2009). Mobile phones, wearable

devices and robots have also been adapted to function as obstacle detectors

(Abdulrasool & Sabra, 2011; Akhter, Mirsalahuddin, Marquina, Islam, & Sareen, 2011,
Pradeep, Medioni, & Weiland, 2010, Shoval, Ulrich, & Borenstein, 2003).

2.2.2 NAVIGATION

Navigational tools can be divided into two categories: in-situ tools (used during

travel) and planning tools. Electronic mobility aids (EMA) like GPS devices fall under the
in-situ tools category; virtual haptic systems like BlindAid and tactile maps are

considered planning tools, although tactile maps can also be mobile.

In-situ Tools

Electronic mobility aids can provide information about the user's current position

and instructions on how to get to a target destination (Havik, Steyvers, van der Velde,
Pinkster, & Kooijman, 2010). Some of the benefits of using an EMA include "improved

wayfinding performance; the detection of obstacles, objects, landmarks, and travel path

alignment; and feelings of safer, more comfortable, and less stressful travel

accompanied by a higher quality and increased frequency of travel" (Roentgen,

Gelderblom, Soede, & de Witte, 2009, p. 751). However, EMAs often result in slower

than desired travel speeds and suffer from high rates of discontinued use (Roentgen et

al., 2009).

As with obstacle detection, mobile devices such as PDAs and cell phones, and

wearable devices such as vests and belts have been adapted for blind navigation

(Loomis, Marston, Golledge & Klatsky, 2005; Ross & Blasch, 2000; Heuten, Henze,
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Boll, & Pielot, 2008; S nchez, 2009; Seenz and Senchez, 2010). Another type of in-situ

navigation aid modifies the environment to include location identifiers. Systems have

used infrared transmitters, RFID (radio-frequency identification) tags, and audio

beacons in public spaces to provide information about locations or objects (Blenkhorn &

Evans, 1997; D'Atri et al., 2007; Landau, Wiener, Naghshineh, & Giusti, 2005; Loomis,

Golledge, Klatzky, & Marston, 2007; Na, 2006; Shiizu, Hirahara, Yanashima, &

Magatani, 2007).

Planning Tools

The traditional alternative to planning aids now being developed is to "make use of

sighted assistance to describe an environment prior to visiting it, and thereby memorize

a mental model to assist them when they are there on their own" (White, Fitzpatrick, &

McAllister, 2008, p. 5). Planning navigation aids supply the information a person needs

to create such a mental model, making them valuable for independent navigation.

Tactile maps are among the most basic planning aids. Multiple studies have

demonstrated the effectiveness of tactile maps for navigation (Papadopoulos, 2004;

Picard & Pry, 2009). Ungar (2000) reported two important benefits of tactile maps: in the

short-term, being introduced to a space and in the long-term, improving the user's

"abstract level spatial thought [by providing experience with] relating a map to the

environment it represents" (p. 10). However, there are limitations; tactile maps are not

widely available due to production costs, and struggle with information density - the

level of detail of a given tactile map is fixed.

Virtual environment (VE) systems have demonstrated potential as planning tools.

VEs, also known as "virtual reality," are computer-simulated environments that can

model real world spaces. A major advantage of virtual environment systems, especially

in comparison to tactile maps, is the ease with which maps can be reproduced and

transmitted. Virtual maps can also display different amounts of detail and information

depending on zoom levels, and can relay this information dynamically. VEs are

interactive: users can "explore environment[s] actively and control what they

experience" (Schmelter, Jansen-Osmann, & Heil, 2009, p. 4). In addition to serving as a

general aid for experienced visually impaired travelers, haptic VE technology may be

used to support an Orientation and Mobility (O&M) curriculum. Haptic technologies such
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as BlindAid can help visually impaired students learn about new spaces without the aid

of an instructor. This type of tool can be very valuable since instructor time is often a

limiting factor. Additionally, users can interact and collect spatial information without

constraints on exploration time and space, and physical effort needed. Virtual

environments can also be used for O&M diagnostic tools since they can provide efficient

ways to monitor and record behavioral responses and navigation strategies of users.

A number of researchers have studied the efficacy of audio-only feedback in a

virtual environment. Such systems have utilized non-speech and speech sounds to

educate the user about map objects and routes (Giudice, Bakdash, Legge, & Roy,
2010; Heuten, Henze, & Boll, 2007; Senchez, Tadres, Pascual-Leone, & Merabet, 2009;

Seki & Sato, 2011). However, the audio channels can quickly become overloaded and

audio alone may not be as effective as audio and haptics together; thus systems that

have both haptic and audio capabilities have received more attention.

2.3 HAPTIC-AURAL VIRTUAL NAVIGATION PLANNING SYSTEMS

Haptic-aural virtual navigation systems allow users to explore a virtual space that

may model a real space, through sound and haptic stimuli, using a device like the

Phantom. Researchers have conducted feasibility studies of haptic-aural navigation

systems with favorable results. One such system, developed by Feintuch, Haj, & Weiss

(2006), utilizes an off-the-shelf haptic joystick and provided information about objects in

2D space via vibrations and sounds. Initial tests with blind children found that subjects

were able to translate map information gathered virtually to the navigation of real

spaces. Kostopoulos, Moustakas, Tzovaras, & Nikolakis (2007) designed a method for

map image analysis that could create virtual haptic-aural maps from existing map data.

The system deciphered street names and conveyed location information relative to

streets and intersections through audio. Kaklanis, Votis, Moschonas, & Tzovaras (2011)

took virtual mapping one step further and created HaptiRiaMaps. HaptiRiaMaps is a

free web-based map application that allows users to build virtual haptic-aural maps from

OpenStreetMaps. In both studies, preliminary tests with blind subjects were promising.

A couple of systems have attempted to work in three-dimension. The HOMERE

system, developed by Lecuyer et al. (2003), is comprised of a virtual white cane for
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haptic interactions, a virtual sun to sense cardinal direction, and spatialized ambient and

event-related environmental sounds. Hara et al. (2010) explored the use of life-size

virtual environments. The system consists of a white cane that can interact with virtual

components and relay information audibly and tactually, an optical tracking system, and

a computer to create the virtual environments. While both systems were relatively well-

received, the space requirements for such devices significantly limit usability. These

prior studies are important for validating the use of virtual haptic-aural maps for blind

navigation, and providing insight into useful system features (many of these features are

described below).

While we were unable to find any prior work related to the use of force fields to

enable global haptic sensing, a few studies did explore the use of haptic guide agents.

Of note are two systems, HOMERE and the Haptic Walk-Guide simulator (HAWG). Both

systems use active guide agents which force the user to become passive in route

learning. HOMERE's guide agent moves the user at a constant speed through the route

from start to finish, while HAWG uses a teacher-student feature. This feature enables

one haptic device to be passively led by another within the same virtual environment.

The primary result of these two studies and a study on route learning via virtual

environments by Farrell et al. (2003) suggests that the mode in which the space is

learned is important. HOMERE users expressed a clear preference for navigation that

was active and variable in route and speed, rather than passive. Farrell et al. found that

active exploration resulted in more accurate cognitive maps than passive exploration.

Preliminary studies illustrate some of the challenges faced by guide agents but have yet

to present a good solution.

2.4 BLINDAID

BlindAid is comprised of many of the most promising tools explored, as well as a

number of new ideas that have not been explored. The system allows for exploration of

a virtual 3D space with spatialized sounds and contains virtual objects with varying

haptic properties and surface textures (Schloerb, Lahav, Desloge, & Srinivasan, 2010).

BlindAid uses headphones to convey audio and the Sensable Phantom for haptics.

Users can explore the virtual space by manipulating the Phantom's stylus; the stylus
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maps to a virtual object that represents the user's position in the VE called the proxy. It

also incorporates other features such as haptic zooming, restarting (returns the proxy to

the start position) and recording of traveled paths for instructor analysis or research

purposes. The use of sounds, haptic sensations, and zooming is important in helping

users learn about virtual spaces quickly. Adding tools for global sensing and route

guidance may provide even more assistance in this endeavor.

Features of BlindAid

Some of the main features that have been developed and included in the

BlindAid system include:

Audio

- Spatialized sound gives information that allows the user to directly perceive the

distance and direction of sound sources in the VE. Note, directional information is

effectively limited to azimuth with the current system and it is difficult for the user

to differentiate between sounds ahead or behind.

- Contact sounds provide information about the type of object touched by using

different identifiable short sounds (brief so as not to slow exploration).

- Identification sounds give more detail about an object than a contact sound.

Identification sounds, which are also called long sounds, are typically verbal

descriptions that can be played on command when touching an object.
- Background sounds are similar to ambient noise and can give information about

a location and the boundaries of that location.

- Landmarks are useful in route planning as they can serve as audio beacons.

Landmarks are important in blind navigation so the ability to create and access

landmarks in a virtual environment is essential. The audio files associated with

landmarks are played using spatialized sound. This means the user hears the

sound as if he/she is facing forward in the VE and the sound source is at the

relative distance and direction specified.

Haptics

BlindAid uses a number of different haptic objects that can vary in color and

sound. Some objects such as walls, public doors, ground textures, and rectangle

objects can vary in haptic properties and texture as well. Haptic properties include
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stiffness, damping, static friction, and dynamic friction as described in the OpenHaptics

Toolkit API Reference Manual (Sensable Technologies, 2008). The OpenHaptics API is

a C++ library that gives access to and control of the Phantom. In BlindAid, texture is

achieved by applying a force tangential to the normal force of the user's hand. The

texture simulates a series of individual ridges that can be varied by type (saw tooth,

sinusoidal), amplitude (height), period (length), and other parameters (see Schloerb,

Lahav, Desloge, & Srinivasan, 2010)). Haptic objects include:

- Walls are solid surfaces that are defined by two end points in the horizontal plane

and extend vertically from floor to ceiling. Walls have contact and long sounds.

- Public Doors are penetrable surfaces that are defined by two end points and

extend from floor to ceiling like walls. Public doors feel solid like walls until a

certain threshold force is applied, at which point, the proxy passes through to the

other side. The "pop-through" force is adjustable. Public doors have contact and

long sounds.

- Areas are polygonal horizontal regions in the VE, extending from floor to ceiling

that play background sounds when the proxy is within their boundaries. Areas

can be used to represent indoor and outdoor spaces such as restaurants and

parks.

- Ground Textures are polygonal floor objects that simulate textures on the floor.

- Rectangle Objects are 3D rectangular prisms that are defined by two front end

points in the horizontal plane, the horizontal depth and vertical height, and the

vertical coordinate of the bottom. Rectangle objects can be defined to have any

height and vertical location, as opposed to walls which extend from floor to

ceiling.
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3 GENERAL METHODS

Five experiments were conducted over the course of this thesis. The

experimental procedures share a number of commonalities that are explained in this

section.

All experiments were conducted using version v1.50 of BlindAid with the addition

of features under test. v1.50 was adapted from an earlier version, v1.02, by upgrading

the program to run under Win 7 x64, and developed using Visual Studio 2010. In

addition, all experiments utilized a Desktop Phantom', which has a physical workspace

of 160 W x 120 H x 120 D mm, corresponding to the region of the VE that the user

explores (virtual workspace). The graphical displays shown in the map layout figures

that follow correspond to the horizontal plane of the virtual workspace (top down view),

such that the VE boundaries correspond to the physical W & H dimensions. The VE is

measured in meters; this affects the audio since the volume and orientation of

spatialized sounds are calculated based on these units (Schloerb, Lahav, Desloge, &

Srinivasan, 2010). All of the maps used for experimentation in this thesis fit in the virtual

workspace and the zoom feature was not used.

The total force applied by the Phantom was capped at 0.875 N, the maximum

allowable continuous force divided by a safety factor of two. During initial tests, we

discovered that the Phantom would shut down after just ten minutes of use. The

problem appeared to be due to software designed to protect the device from

overheating. To remedy the issue, we limited the continuous force by a safety factor of

two. This extended the time before the device shut down to one to two hours. Finally, to

accommodate test sessions that could last up to two hours, we swapped in a second

Phantom when the first one showed signs of shutting down.

Each experiment is comprised of tasks performed in training and test settings for

all conditions. All of the experimental tasks were 2D (e.g., involved a map layout that

was effectively only in the horizontal plane) except for the second repulsive force field

experiment. The order of trial conditions and maps were randomized in the experiment

1 The original manufacturer of the Phantom, SensAble Technologies, Inc., was recently bought by
Geomagic, 3D Systems Corp., and is now the Sensable Group at Geomagic. The "Desktop Phantom" has
also been renamed "Phantom Touch X."
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using a pseudo-random algorithm based on the rand function in Excel. The algorithm

assigned each condition (or map) a value between 0 and 1 and then sorted these

assigned values in ascending order to determine the condition (or map) order. In the

training trials, the subjects were asked to explore a virtual map until they had an

accurate understanding of the space as need for the particular test. Then, the subjects

were tested on their knowledge of the space by performing identification tasks in which

they were asked to illustrate (draw or build a physical model) or verbally identify the

locations of certain objects in the VE. Alternatively or in addition, the subjects were

asked to perform navigation tasks (finding their way along a specified path).

When the subject first began, the keyboard and Phantom was positioned to

accommodate his/her dominant hand and overall comfort. The subject was then given a

brief verbal introduction to BlindAid, the Phantom and the details of the experiment

including the purpose, the design of the task (i.e. instructions), the commonalities of the

test maps (i.e. controlled variables), and any other considerations for the test (i.e.

aspects of the map to remember). In addition, subjects were introduced to using the

Phantom and some basic features of BlindAid via a simplified map. In some

experiments, the subject was introduced to additional tools needed for the task such as

a physical modeling kit.

Before each training or test trial, the experimenter identified the condition to be

used (e.g., force field or no force field) and gave the subject the option to hear the

instructions again. For the trainings, subjects were encouraged to take their time

learning to use BlindAid and exploring the map layouts. For the tests, subjects were

encouraged to complete them as quickly and accurately as possible. Once the

instructions were administered, the subject was blindfolded and given the BlindAid

headphones to wear.

Subject explorations of the virtual maps were recorded and saved as data files

that could be replayed by the BlindAid program for later analysis. Identification tasks

that did not use BlindAid (e.g., the modeling task and drawing task) were photographed

for the data record. Also, the times to complete the exploration, navigation, and/or

identification segments of the test were recorded. Once the subject had completed the

entire experiment, he/she was asked a set of questions to better understand his/her
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preferences for the conditions tested. The data is presented in graphical form in the

results sections; in all graphs, a lower value corresponds to better rank/performance.

The experimental procedure was approved by the MIT Committee on the Use of

Humans as Experimental Subjects (COUHES).

3.1 SUBJECT SELECTION

The subjects used in this thesis were blindfolded sighted subjects that ranged in

age between 23 and 33. Blindfolded sighted subjects are believed to be sufficient for the

preliminary experiments described in this thesis because these tests are intended to

guide the technical development of the system. Future tests aimed at evaluating the

usability of the system will be conducted with blind subjects from the ultimate user

population.
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4 REPULSIVE FORCE FIELDS FOR GLOBAL HAPTIC SENSING

We designed and implemented a repulsive force field to emanate from BlindAid

wall objects (see Section 2.4) and conducted two developmental experiments to

evaluate the effectiveness of this feature in enabling global sensing. Experiment #1

tested the repulsive force field in an enclosed space and Experiment #2 was modeled

after the original cityscape VE referred to in Section 1.3.

4.1 DESIGN

The process of implementing force fields in the BlindAid software began with

brainstorming strategies to identify a suitable approach. Ideas included making the

repulsive force a material property of the virtual object using an OpenHaptics

parameter, HLEFFECTSPRING, and flipping the direction of the force produced. We

also considered using the HLCONSTRAINT parameter that specifies an attractive

force to points, lines and planes. Descriptions of HLEFFECTSPRING and

HLCONSTRAINT can be found in Addendum B-1 3 and B-1 2, respectively, of the

OpenHaptics Toolkit API Reference Manual (Sensable Technologies, 2008).

A third, more complicated approach was to do the low-level calculation of the

combined forces acting on the proxy based on the distance and direction from each

object. Unfortunately, the OpenHaptics library did not allow us to adapt

HLEFFECTSPRING or HLCONSTRAINT to be used in the desired manner.

Thus, we chose to develop the third idea, employing an algorithm that loops

through a set of virtual objects and calculates the component force for each. We started

with a sample OpenHaptics program that modeled an attractive force between two

particles; when we flipped the sign of the force, we were able to create a repulsive

force. We then incorporated the repulsive force code into BlindAid through a class

called vmap forcefield. This class was modeled after an existing BlindAid class

(vmaptexture) that produced textures because that class generates forces associated

with the surfaces of BlindAid objects as desired for the vmap forcefield class.

The repulsive force field feature went through a number of iterations to address

different design considerations. These considerations included determining the strength
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and variability of the force, and deciding from which objects the force should emanate.

In the case of wall objects, the algorithm needed to determine whether the proxy was in

front of the wall since walls are one-sided, and if the proxy was within a pre-determined

distance from the wall. Additionally, it needed to calculate the force associated with wall

comers correctly.

4.2 IMPLEMENTATION

The force field feature produces a repulsive force from designated objects. In this

implementation, the repulsive force fields are limited to walls and 2D (independent of

the vertical axis), so force calculations are only concerned with the horizontal plane. The

force (spring) constant and the radius of influence (the distance from which the force

field can be felt) can be varied depending on the environment. Additionally, the

repulsive force can be toggled on and off, and the radius of influence can be adjusted

manually during navigation in the VE.

Figure 1 illustrates the force vectors at different points along a grid in a simple

map of rooms and hallways. The length of each vector represents the magnitude of the

repulsive force one would feel at that specific point on the map in the given direction.

The repulsive force field algorithm is part of the haptic loop which runs at 1000 Hz. This

is necessary because the calculation is highly dependent on the real-time location of the

proxy (user's position).

ut I. IIo v t
t t

.._..JJtt t ?\
Figure 1. Illustration of force vectors in an example map
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BlindAid maps are created by specifying the features of the VE in a text file called

a vmap that may be read by the program. For example, a wall is specified in the vmap

by its end coordinates, short and long sound files, minimum zoom level, color, and

haptic properties. Each time the force field algorithm iterates, it searches through each

wall contained in the map and returns the closest point on the wall to the proxy; this

point is referred to as the "force point." This is either the perpendicular point on the wall

if the proxy lies in front (or back) of it, or one of the end points. The program then

determines if the distance between the force point and the proxy is within the radius of

influence. If the force point is within range, a repulsive force that is dependent on

distance is calculated. The following two sections present a general description of the

algorithm. The actual program code is presented in Appendix A.

4.2.1 REPULSIVE FORCE ALGORITHM

The repulsive force is calculated based on the distance the proxy is away from

the force point. It is greatest when the proxy is touching the object and decreases

linearly as the proxy moves away. The repulsive force is zero outside of the radius of

influence. If the calculated repulsive force is larger than the maximum force of the

Phantom divided by a safety factor (in this application, we used a safety factor of 2), the

force is capped at this safety value. The walls may be considered as line segments in

the horizontal plane due to the 2D nature of the algorithm.

4.2.2 FORCE POINT ALGORITHM

The force point, the point from which the repulsive force is calculated, is either

the point perpendicular to the proxy on the wall or one of the end points. These are the

steps used to calculate this point for each wall:

1. Find the point at the intersection of an infinite line containing the wall segment and

the perpendicular line which passes through the proxy. Check if this point lies on the

wall segment or if it is outside of the two endpoints. If it does not lie on the wall, a "no

value" coordinate (-1000000, -1000000, -1000000) is provided such that the

program knows that a perpendicular point does not exist.

2. If there is a perpendicular point, check if it lies in front of the wall. Walls are only

solid on the front side so it is important to keep the repulsive force restricted to this
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side. If it is, set the force point to this point and skip the remaining steps, otherwise

move to Step 3.

3. If there is either no perpendicular point or the proxy is not in front of the wall, find the

end point on the wall that is closest to the proxy and the angle between the proxy

and the wall. Each end point of a wall touches the end point of another wall so walls

always meet at corners (see point B in Figure 2). If the angle between the proxy and

the wall is smaller than half of the total corner angle, set the closest corner point as

the "force point"; else, this wall does not contribute a "force point." To explain this

further: when two walls meet at a corner, only one wall can be responsible for

contributing the force point. Otherwise, the force calculated from this corner point will

be doubled. Thus each wall has a certain angle range in which its corner point is

valid (see Figure 2).
PROXY

0

WALL 1

A B

Figure 2. Illustration of how to determine which wall contributes the corner point (B). The
figure shows that the angle from the proxy to WALL 1 (ABProxy) is less than half the

total angle subtended by the two walls (yellow line) so the endpoint of WALL I
contributes the force.

4.3 EXPERIMENT #1: FORCE FIELDS IN ENCLOSED SPACES

The goal of this experiment was to determine if repulsive force fields could be

used to help learn about indoor spaces. In this experiment, subjects attempted to learn

a floor plan of three rooms interconnected by three hallways. Then subjects were asked

to build a physical model representing the space to evaluate their understanding of the

layout (identification task).
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4.3.1 METHODS

Subjects

Subjects ranged from 23 to 33 years of age. Three subjects were male, one

subject was female. Three subjects were right-handed, one subject was left-handed. All

had normal or corrected normal vision, hearing, and sense of touch. Table 1 provides a

summary of the tested subjects.

S M 23 5 13 Ste t H RiHt No norma

1 M 23 51811 135 Student Right Normal Normal Normal

2 M 33 51711 134 Student Right Glasses Normal Normal

3 F 24 5'6" 126 Design engineer Right Normal Normal Normal

4 M 27 6'0" 190 Student Left Normal Normal Normal

Table 1. Repulsive force field experiment #1 subjects

Arrangement

Four different layouts of similar complexities were used in the experiment (Figure

3). The x and y dimensions of the virtual workspace shown in the figure are 21.3 m by

16.0 m, where x is horizontal on the page and y is vertical on the page. In order to

maintain a comparable level of complexity, the VE layouts consisted of alternating the

same set of basic components (e.g., rooms and hallways) and relations (e.g., hallway to

room, hallway to hallway).

l Eon FM -m "Map

Map I

Fe Ev Teo -~e HOP

Map 2
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Map 3 Map 4

Figure 3. Repulsive force field experiment #1 map layouts

Each map had three square rooms of varying sizes (small, medium, large) with

each size represented once. Note that the corresponding virtual dimensions of the

rooms were 2.1 m, 3.8 m, 5.7 m, respectively. Rooms were connected by three

rectangular hallways of three potential widths (thin, medium, wide: 0.85 m, 1.7 m, 2.5 m)

and three potential lengths (short, middle, long: 4.2 m, 6.1 m, 8.5 m), with each potential

width and length represented once. For example, one map could contain a long thin

hallway, a short wide hallway, and a middle medium hallway, but another map might

consist of a middle thin hallway, a short medium hallway, and a long wide hallway.

There was at least one horizontal hallway and one vertical hallway (hallway orientation).

Each hallway intersected at least one other hallway and one hallway always ended in a

dead-end (hallway parameters). Each room connected to a hallway but no more than

two rooms were connected to the same hallway; one room connected to the left side of

a hallway, another room connected to the right side of a hallway and the third room

connected to the end of a hallway (hallway-to-room parameters). Additionally, the total

distance between rooms - the sum of the distances from Room 1 to Room 2, Room 2 to

Room 3, and Room 3 to Room 1 - was equal across all four layouts. Finally, the force

field distance was optimized such that the proxy was constrained to the center line of

the thinnest hallway but allowed to be move side-to-side with ease in the widest

hallway. Subjects were not given the ability to adjust the force constant or radius of

influence.
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To simplify the map, all intersecting angles were 90 degrees and there were

exactly eight potential connection points for a hallway. This meant that a room or

hallway could only connect to another hallway at one of eight points: top left, top middle,

top right, bottom left, bottom middle, bottom right, left and right (Figure 4).

Sample Hallway

Figure 4. The orange segments represent the eight potential hallway connection points

Procedure

The experimental task was to explore a floor plan of three rooms interconnected

by three hallways until the subject believed he/she had a good understanding of it, and

then identify different aspects of the layout using a physical modeling kit immediately

after each trial. Aspects the user was asked to focus on included: room size, hallway

widths and lengths, placement of rooms in relation to hallways, and hallway

intersections. The experimental task was performed as a training trial and a test trial

under each condition (No Forcefield, Forcefield), for a total of four trials. Table 2

presents the nominal order of the trials which were counter balanced across subjects.

Either the No Forcefield condition was presented first in the Training #1 and Test #1

trials, and then the Forcefield condition in the second set of trials, or vice versa. The

four maps were randomly assigned to the four trials for each subject. See Appendix B.1

for the actual ordering for each subject.

Training #1 No Forcefield 1
Test #1 No Forcefield 2

Training #2 Forcefield 3

Test #2 Forcefield 4

Table 2. Nominal set of trials for repulsive force field experiment #1

In addition to the general procedure described in Section 3, subjects were

introduced to a physical modeling kit that consisted of magnetic laser-cut % inch thick

acrylic replicas of the hallways and rooms to be used in the identification task (see

Figure 5 for an example completed model).
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Figure 5. Example of a completed model. This is a model of Map 2 completed by Subject
4. The width of the region shown is eight inches.

Once the subject had completed the entire experiment, he/she was asked the following

questions:

a. Was the task difficult? What parts were difficult? What parts were easy?

b. Did one condition seem more difficult than the other? Why?

c. What information (e.g., room size, hallway size) was made easier or more difficult

with force fields?

d. Was using the force field easy or difficult?

e. Did using the force field help? If yes, in what way?

f. Do you have any other comments?

Variables

The dependent variables in this experiment included preference for the feature

(i.e. the force field), build error (the number of errors in the physical model), build time

(the time needed to build the physical model of the map), and exploration time (the time

needed to learn the map layout). Build errors included selecting the wrong length or

width hallway, placing a room in the wrong general location (e.g., placing the small room

where the large room should be), and connecting a hallway to another hallway or room

at the incorrect intersection point (of eight potential points on a hallway). See Table 3.
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Use of force field Preference for force field Number of hallways Hallway orientation
Build error Size of hallways Hallway parameters
Build time Number of rooms Total room-to-room distance

Exploration time Size of rooms Hallway-to-room parameters

Table 3. Repulsive force field experiment #1 variables

4.3.2 RESULTS / DISCUSSION

Figure 6 shows the mean exploration time, physical model build time, and build

error averaged across subjects for the two conditions, with lower values corresponding

to better performance (error bars in the figure are ± 1 standard deviation). The complete

set of data is included in Appendix B.1. The mean times for exploring the map and

building the physical model, and the mean number of errors in the model were

approximately equal for both conditions. These results suggest that while repulsive

force fields can be used, they do not add to the user's ability to navigate and understand

the VE.

Mean Exploration Time Mean Build Time Mean Build Error
800 150 3.0

2.5
1 600 100 2.04001 1.S~E

501.
2000

Force Field No Force Field Force Field No Force Field Force Field No Force Field

Figure 6. Performance metrics by condition of repulsive force field experiment #1

Indeed, the post experiment questionnaire revealed that users either did not

notice the repulsive force field or actively ignored it. Observations of subject exploration

during testing confirmed this. Additionally, all subjects expressed an affinity for

physically touching the walls as opposed to relying on the force fields emanating from

the walls. Without vision, subjects looked for solid objects to ground them during

exploration; the force field, with its variable "surface," complicated the task of pinpointing

and retaining the user's position in space.

Interestingly, the force field condition had a much larger standard deviation for

build error as compared to the no force field condition, despite having approximately

equal means. This may have been due to the issue that the force field was not intuitive.

Perhaps with practice the build accuracy might improve.
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While the application of repulsive force fields to all surfaces may not be ideal, it

may be useful in a smaller scope to provide information about specific objects, such that

it does not affect the user's ability to ground himself/herself. This leads us into the

second repulsive force field experiment.

4.4 EXPERIMENT #2: FORCE FIELDS IN OPEN SPACES

The goal of this experiment was to determine if repulsive force fields could be

used to learn about outdoor spaces. In this experiment, the virtual objects of interest

represented buildings and the task involved learning their locations while traveling along

a virtual street.

4.4.1 METHODS

Subjects

Subjects ranged from 23 to 33 years of age. There were two male subjects and

two female subjects. All subjects were right-handed and had normal or corrected normal

vision, hearing and sense of touch. Only subject 1 took part in the previous experiment.

See Table 4.

Subject ID Gender Age Height Weight (lb) Profession Hand Vision Hearing Touch

1 M 23 518" 135 Student Right Normal Normal Normal

5 M 23 5'11" 160 Student Right Normal Normal Normal

6 F 24 5'811 130 Student Right Contacts, Astigmatism Normal Normal

7 F 33 516" 170 Researcher Right Contacts Normal Normal

Table 4. Repulsive force field experiment #2 subjects

Arrangement

A total of 12 different layouts of similar complexities (Figure 7) were used for the

22 tasks; two maps were used for the training trials and the remaining ten maps were

used for the test trials in both conditions (each test map was used in the force field

condition and the no force field condition). Again, we designed the maps to be similar in

complexity. The virtual workspace was 8.3 m in width and 6.5 m in length. Each map

had a centered road 0.9 m wide, bounded by curbs on each side and two square

buildings (1.0 m on a side) located somewhere outside of the road. Curbs were

rectangle objects, rendered in yellow in the figure that extended from the floor up 1/10 of
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the distance to the ceiling. Buildings were made of four walls that extended from floor to

ceiling. The subject was able to move along the edge of the curb as a guide if the proxy

was touching the ground, but could also jump over the curb and explore the rest of the

map if the proxy was moved up slightly in the vertical axis (out of the page). There were

six potential locations for the two buildings - bottom left, middle left, top left, bottom

right, middle right, or top right.

While the maps were believed to be similar in complexity as they were comprised

of the same components, the subject could still believe one map was more challenging

to explore than another based on the placement of the two buildings. Thus, we aimed to

create a uniform distribution of different map arrangements. Specifically, the test maps

consisted of five categories of building arrangements with two maps in each category as

shown in Figure 7. The training maps were a sixth category. Lastly, the force fields

emanating from the buildings were designed so that users could sense the buildings

while moving along the road; the force field's radius of influence was approximately the

length of one side of a building in the horizontal plane.

Map1 Map2 Map3 Map4
(i) Directly across from each other (ii) Next to each other on the same side

Map5 Map 6 Map 7 Map8
(iii) Separated by one unit on the same side (iv) Across from each other, offset by one unit
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Map9 Map 10 Map A
(v) Across from each, offset by two units (vi) Training maps

Figure 7. Repulsive force field experiment #2 map layouts

Map B

Procedure

The experimental task was to explore a virtual street with buildings on either

sides of it and identify the locations of the buildings verbally. Overall, the procedure was

very similar to that of Experiment #1. Specifically, in terms of counterbalancing the

conditions, either the No Forcefield condition was presented first with its training trial

followed by ten test trials, and then the Forcefield condition with its training and ten test

trials, or vice versa. Table 5 presents the nominal order of the trials which were counter

balanced across subjects. See Appendix B.2 for the actual ordering for each subject.

The two training maps were randomly assigned to the two conditions and the ten test

maps were randomly assigned to the ten tests of each condition. The main difference in

Experiment #2 was that subjects gave verbal responses to indicate the locations of the

buildings rather than build a physical model. The maps were also simpler, enabling

more trials in a test session. The post experiment questionnaire was identical.

Tra Codto Map0

Training #1 Force Field A

Test #1 Force Field 1

Test #2 Force Field 2

Test #3 Force Field 3

Test #4 Force Field 4

Test #5 Force Field 5

Test #6 Force Field 6

Test #7 Force Field 7

Test #8 Force Field 8

Test #9 Force Field 9

Test #10 Force Field 10

Table 5. Repulsive force field

Training #2 No Forcefield B

Test #11 No Forcefield 1

Test #12 No Forcefield 2

Test #13 No Forcefield 3
Test #14 No Forcefield 4
Test #15 No Forcefield 5

Test #16 No Forcefield 6
Test #17 No Forcefield 7

Test #18 No Forcefield 8
Test #19 No Forcefield 9
Test #20 No Forcefield 10

experiment #2 example setup
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Variables

The dependent variables in this experiment were: preference for the feature,

identification error (the number of buildings the subject located incorrectly), and

exploration time (the time needed to locate the buildings). See Table 6.
Ineedn Varabl Deenen Vaibe Cotole Vari0ables

Use of force field Preference for force field
Identification error

Exploration time

Table 6. Repulsive force

Size of road
Location of road

Size of curbs
Location of curbs

field experiment #2 variables

Size of buildings
Number of buildings
Location of buildings

4.4.2 RESULTS / DISCUSSION

Figure 8 shows the mean exploration time and identification error by condition

averaged across subjects, with lower values corresponding to better performance (error

bars in the figure are ± 1 standard deviation). The exploration time of the two conditions

was essentially equal; and on occasion, the force field condition took longer (see

Appendix B.2). In the eighty test trials conducted, only two trials, both in the force field

condition, resulted in an identification error. This may imply that mistakes are more

easily made in the force field condition. Similar to the prior experiment, the results

suggest that the repulsive force field is usable but does not increase learning efficiency.

Mean Exploration Time Mean Identification Error

70 0.30

60 0.25
500

S40 0.20
E 30 J-01

20 E 0:20

10 20.05
I 0 0.00

Force Field No Force Field Force Field No Force Field

Figure 8. Performance metrics by condition of repulsive force field experiment #2

Discussions with the subjects revealed that they found the force field feature easy-

to-use because it required less overall exploration; however, they also expressed a few

issues. Comments concerning issues included:

* The force field was helpful until you tried to touch the building, at which point it

pushed you away.
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* It took longer to translate and verify the locations of the buildings because you

could only sense that it was there. However, practicing made the ability to locate

easier.

e You had to know exactly where you were in the map for it to be helpful; otherwise

there was no clear location reference.

The results of both experiments were insufficient to support the use of repulsive

force fields to improve global sensing. While more experimentation to support or refute

this claim was possible, we believed that the preliminary tests were convincing enough

to switch gears and consider another type of force field.

4.5 DISCUSSION OF LEARNING CURVES IN THE TWO EXPERIMENTS

Before moving on to development and testing of the new force field, we did the

following analysis and identified a useful change to the initial experimental procedure.

Specifically, in the first two force field experiments, the training and test trials were

grouped together for each condition. This meant that the subject was trained and tested

in the first condition, and then trained and tested in the second condition. In our initial

design of the experiment, having one training was thought to be sufficient as the subject

was given as much time as he/she needed to feel comfortable with the apparatus.

Analysis of the performance metrics with respect to the first and second tests of

Experiment #1, independent of the force field condition, shows a modest improvement

across all three metrics (Figure 9).
Mean Exploration Time Mean Build Error Mean Build lime

600 3.0 150

Itz 400 20  
. 1004

EE

00 0

0 0.0 0
Test#1 Test#2 Test#1 Test#2 Test#1 Test#2

Figure 9. Performance metrics by test number of force field experiment #1 independent
of condition

A similar trend can be observed for the second experiment (Figure 10). The first

few tests show large variability in performance but quickly approach an asymptote.
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Based on these observations, we adjusted the procedures of all following experiments.

The procedure conducts trainings before any tests to provide sufficient time to stabilize

the learning curve.

Mean Exploration Time

80

70 _

60

50

40 ---

1 30

20

10

0
#1 #3 #5 #7 #9 #11 #13 #15 #17 #19

Test Number

Figure 10. Exploration time by test number of force field experiment #2

35



5 ATTRACTIVE FORCE FIELDS FOR GLOBAL HAPTIC

SENSING APPLIED TO ROUTE GUIDANCE

Route guidance is an important aspect of navigation for all people. Route

guidance can provide users with the most efficient route to a specific destination as well

as alternate routes. Depending on the size of the map, finding places like the nearest

grocery store without guidance can be very difficult and even impossible. While there

are many ways to implement a guide agent, the most commonly used guide strategies

are to provide instructions visually and/or verbally. With blind people, the audio

channels can become overloaded because much more information is presented aurally.

This issue is also apparent in the BlindAid program; audio is an easy tool to use to

convey information so using haptics when possible can alleviate the burden placed on

the audio channels.

Because simply being lead through a route is insufficient for route learning, we

thought to use attractive force fields for global sensing so that users could keep track of

objects (or the route), while still learning the space around them. We first devised a

concept to set tether points while exploring so that users could explore without losing

track of where they were. From this, stemmed the idea of creating a path of tether

points that would comprise a route to guide the user (by pulling him/her along it) while

still allowing the user to explore around the route. We decided to investigate global

sensing with an attractive force field in the context of this application.

The remainder of the chapter presents our development of the haptic route guide

chronologically, beginning with discussions of the initial design and implementation of

the guide. We then discuss the first developmental experiment in which we evaluated

four potential haptic guide designs and selected the most promising one. The plan was

to compare the most promising haptic guide to conventional alternatives in a main

experiment. Before moving on to the main experiment, we developed an audio guide to

provide a standard for comparison in the main experiment along with the no guide

condition. The audio guide development involved an initial design and implementation

phase in which four candidate audio guides were created, and then experimentally

evaluated to select the best one similar to the initial haptic guide development. The
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experimental procedures were also refined in the first two experiments for the main

experiment. The results of initial tests in the main experiment suggested further

improvements to the haptic guide were needed. The haptic guide design was revised

accordingly and the final main experiment was performed. The final results showed the

haptic guide was indeed effective for global sensing and route guidance.

5.1 INITIAL DESIGN

GPS devices are commonly used by drivers for route guidance in the real world.

These devices use audio to verbally convey instructions about the route at key points,

called way points, where the user must act to stay on the route. Typically, a GPS will

first inform the user that a new route action will be required ahead and then instruct the

action. GPS devices for blind persons typically follow this methodology, but can also

convey additional audio information that is normally presented visually for sighted users.

Such additional information includes the user's current location with respect to

addresses, streets and intersections. Because these types of audio features can always

be added to the haptic guide later, we focused primarily on developing the haptic guide.

5.1.1 HAPTIc GUIDE COMPONENTS

There are three components of the initial haptic guide concept that we proposed:

(1) guide line, (2) tether, (3) forward force.

Guide Line

The guide line (initial concept) is a set of line segments going from one way point

to the next along a route. While other shapes could be used to specify the route (e.g., a

surface representing a sidewalk or street), a set of line segments was thought to be

sufficient and certainly the simplest way to start. Initially, the concept represented line

segments haptically as snap-to objects. A snap-to object produces a strong attractive

force to the proxy when the two are very close to each another. We had also considered

representing way points and curved segments haptically. However, since curve

segments could be represented by straight line segments and were not needed in the

actual experiments, we decided to work with line segments.
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Tether

The "tether," which allows the user to explore the region around the route while

keeping track of the guide line, is an attractive force between the proxy and another

point on the guide line - this point is called the tether point or anchor point. Anchor

points may be located at any point along the guide line, nominally shifting in the forward

direction as the user progresses along the route. The placement of anchor points can

be determined using a number of different strategies. These strategies include setting

the anchor point to: the last touched point on the guide line, the closest point to the

proxy on the guide line (moves with the user), and important way points such as turns

that can be selected manually or automatically to progress in the forward or reverse

direction. Additionally, the attractive force can be constant or vary by distance, linearly

or non-linearly.

Forward Force

The "forward force" concept is a force that can push/pull the user in the forward

direction along the route, toward the destination. A few strategies were devised for how

to use the forward force: (1) the anchor point could move along the guide line, pulling

the user along via the tether (2) the forward force acts only when the user is snapped to

the guide line, (3) the tether to way points acts as a forward force (by placing the tether

point ahead of the user). Again, the force can be constant, linear, or non-linear.

5.1.2 SELECTION OF CANDIDATE HAPTIc GUIDES

We explored many alternative design concepts of the proposed haptic guide,

involving different implementation and combinations of the three components.

e Guide line only gives more information than no assistance but does not provide

information about the forward direction.

e Tether to last touched point on guide line produces no forces when the user is in

contact with the guide line, but creates an attractive force to the last touched

point on the guide line when the user moves away from it.

* Tether to closest point on guide line produces an attractive force to the closest

point on the guide line only when the user is not in contact with it. The closest
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point strategy is not ideal because the tether point can switch abruptly in concave

segments of the route.

* Manual forward force uses the idea of attaching a tether to the next way point.

Specifically, the user manually selects the next way point to be the tether anchor

point so that he/she is pulled in the desired direction along the route. This

concept may be implemented with or without a guide line and the tether enables

the user to explore the region around the current way point without losing contact

with the route.

" Automatic forward force is similar to the manual version, except the user does

not have manual control over which way point is selected to be the anchor point.

Instead, the anchor point automatically changes to the next way point when the

user arrives at the current way point.

* Various other forward force concepts were considered (e.g., a force acting in the

forward direction when the proxy is on the guide line; or a forward force acting on

the anchor point of a tether, pulling the user forward along the guide line via the

tether), but all cases in which the forward and tether forces functioned

independently, were found to be confusing or caused stability issues with the

Phantom.

5.2 INITIAL IMPLEMENTATION

Based on preliminary testing in the lab (without subjects), the following four

concepts were selected to implement and test in the first developmental experiment.

The haptic guide program code can be found in Appendix A.4.

5.2.1 GUIDE LINE

The concept for this implementation was to use the guide line only design to

demark the route, with no tether and no indication of the forward direction. This is the

simplest of the four concepts and is used in combination with other features in the other

three haptic guides. The entire guide route is made up of multiple guide lines in

succession. A guide line is defined by two end points much in the way walls and doors
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are defined in the program. However, unlike walls, guide lines are straight line segments

lying on the floor as opposed to defining a plane. Additionally, wall entities are

considered contact objects meaning that the proxy cannot pass through them, while

guide lines are called constraint objects; constraint objects force the proxy to their

surface when it is within the snap distance. In this implementation, the snap distance

was 1.0 mm in the physical workspace of the Phantom. The OpenHaptics API allows

this feature to be added with a couple lines of code (see Sensable Technologies, 2008,

p. 9-3 and 9-4):

hlTouchModelf(HLSNAPDISTANCE, 1.0);

hlTouchModel(HLCONSTRAINT);

Other haptic properties such as friction and damping could also be specified using the

hlMaterialf function (see Sensable Technologies, 2008, p. 9-2).

5.2.2 TETHER To LAST TOUCHED POINT

This guide, which is also referred to as the "tether" guide, adds a tether feature to

the guide line to keep track of the last location visited on the route. When the user is on

the guide line, no forces are produced, but when the user leaves the guide line, the

program stores the user's last location and produces an attractive force to this anchor

point on the guide while the user explores the neighboring area. Again, there is no

information about the forward or backward direction along the route. In this

implementation, the anchor point is updated every time the proxy touches the guide line.

The program code loops through the array of guide lines (the array is created when the

map first loads) and determines whether the proxy is on a guide line; if the proxy is

found to be touching a guide line, the anchor point is reset to the proxy's new location.

The tether force is always on, but while the proxy is on a guide line, the distance

between it and the anchor point is too small to produce a detectable force.

Additionally, the user may increase or decrease the strength of the force (by

adjusting the force constant) by pressing the up and down arrow keys. This option

allows the user to adjust the strength of the tether to his/her comfort level as well as

exercise the option to explore freely when desired. The lower limit of the force constant

is zero; at this setting, the force is effectively turned off.

40



5.2.3 MANUAL FORWARD FORCE

The manual forward force guide (also referred to as the "manual" guide) uses

guide lines in conjunction with a forward force that is implemented by a tether to the

next way point. The design enables the user to explore the region around the current

way point without losing contact with the route through the use of a static variable,

iAnchorlD, which keeps track of the current way point. When a map loads, the anchor is

set to the starting route way point. The user can then move the anchor point forward or

backward by increasing or decreasing the value stored in iAnchorlD by pressing the

right or left arrow keys, respectively. The user is tethered to the selected anchor point

whether he/she is on or off the guide line. All way points are associated with a unique ID

number and the range of ID numbers are limited by the number of way points. When the

value stored in iAnchorlD changes, the algorithm reassigns the anchor to the way point

corresponding to the new value and recalculates the attractive force. If the user reaches

the destination and presses the forward (right) key or presses the backward (left) key

while at start, the value stored in iAnchorlD and the anchor point do not change. The

user can also increase or decrease the strength of the force as described in the

previous section (5.2.2).

5.2.4 AUTOMATIC FORWARD FORCE

The automatic forward force guide (also referred to as the "auto" guide) is

implemented in essentially the same way as the manual guide described in the previous

section, except the location of the anchor point is updated automatically. Specifically,

the proxy is initially anchored to start. Once the proxy touches start (the first way point),

the anchor point moves to the second way point on the route. If the proxy reaches the

second way point, the anchor point then switches to the next way point. This process

continues until the user reaches the end of the route. The user can also switch the

travel direction by pressing the left or right arrow key, such that he/she can go towards

the guide-start instead of the guide-end, and adjust the strength of the force as

mentioned in the previous two guide implementations.
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5.3 HAPTIc ROUTE GUIDANCE EXPERIMENT

The focus of this experiment was to first, determine whether haptic guides could

be used to facilitate route learning and second, to find the best haptic guide among the

designs considered. The experiment consisted of learning and evaluation tasks

completed eight times: the first four trials were for training in each condition, the last four

trials were for testing in each condition (Table 7). As discussed in Section 4.5, we chose

to group the four trainings together to give the user more time to become acclimated

with using BlindAid.

5.3.1 METHODS

Subjects

The subjects used in this experiment were the same subjects from the second

force field experiment. See Section 4.4.1.

Arrangement

A total of eight different layouts of similar complexities were used (Figure 11). In

order to maintain a comparable level of complexity, the VE layouts consisted of

alternating the same set of basic components. Each map had a guide route consisting

of three guide lines in random order: one horizontal, one vertical and one with a 45

degree slant. The guide route had two turns and each guide line was 4.5 m long. The

map itself consisted of a room with three doors (one entrance, one exit and one extra),
three objects of different shapes (triangle, rectangle, and parallelogram) constructed of

the same type of virtual "wall" object used to construct the room (see Section 2.4), and

three barriers to obstruct any other complete routes to the exit besides the one indicated

by the guide route. The triangle was 3.0 m long on each side, the rectangle was 3.8 m

by 1.7 m, and the parallelogram was 4.0 m in width and 1.7 m in height. The VE

workspace varied from 15.4 m by 11.6 m to 17.5 m by 13.1 m to fit the different

configurations of objects and guide lines. Walls, doors and barriers had different contact

sounds to help the user identify touched objects; shapes used wall contact sounds since

they were constructed of wall objects. The beginning and end of the route were placed

such that the forward direction of the route was always left to right. Each door lead to a

small contained space that played a background sound ("Entrance," "Exit," and "Wrong
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Door") to indicate location. Barriers allowed subjects to enter incorrect paths but not

reach the exit door using these paths. This configuration provided opportunities to

observe errors in the subject's navigation without allowing him/her to complete the

exercise by reaching the exit through an alternate path. Additionally, shapes were

included to test whether subjects could explore and learn about objects that were not

directly on the path.

Map 2

Map 5

Map 3

Map 6

I--
4.

4.
4.__Ku II :*2

I A -~

Map 7 Map 8

Figure 11. Haptic guide experiment map layouts
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Procedure

The experimental task was to explore a room layout and a specific route through

it (as many times as needed to learn), draw certain aspects of the room and route on a

piece of paper, and then navigate through the room without the guide, as quickly and

accurately as possible. Subjects were asked to focus on the locations of the following

objects when drawing the layout: guide lines (route), shapes with respect to the guide

lines, the entrance, and the exit. Note that the subjects, who all had normal or corrected

normal vision, were allowed to take the blindfold off while making the drawing.

The experimental task was performed as a training trial and a test trial under

each condition (Guide Line, Tether to Last Touched Point, Manual Forward Force,

Automatic Forward Force), for a total of eight trials. Table 7 presents the nominal order

of the trials which were counter balanced across subjects. The eight maps were

randomly assigned to the eight trials, and the four conditions were randomly assigned

separately to the training and test trials for each subject. See Appendix B.3 for the

actual ordering for each subject.

Training #1 Guide Line 1
Training #2 Tether to Last Touched Point 2

Training #3 Manual Forward Force 3
Training #4 Automatic Forward Force 4

Test #1 Guide Line 5

Test #2 Tether to Last Touched Point 6

Test #3 Manual Forward Force 7

Test #4 Automatic Forward Force 8

Table 7. Nominal set of trials for haptic guide experiment

In addition to the general procedure described in Section 3, subjects were given

instructions on how to use the restart key (see Section 2.4). Once the subject had

completed the entire experiment, he/she was asked the following questions:

a. Which guide was the most useful? Order the guides from most useful to least

useful. Why?

b. Which guide was the least confusing to use? Order the guides from easiest to

most difficult to use. Why?

c. Which guide gave you the most confidence in knowing how to navigate from start

to end? Order the guides from most confident to least confident. Why?
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d. Do you have any other comments?

Variables

Independent Variable Dependent Variables Controlled Variables
Haptic guide type Preference for guide Number of guide lines Number of shapes

Navigation error Orientation of guide lines Type of shapes
Navigation time Size of guide lines Size of shapes

identification error Number of turns Number of barriers
Exploration time Number of doors Number of complete paths

Table 8. Haptic guide experiment variables

The variables in this test are listed in Table 8. The dependent variables were:

" Preference for the guide was an average of three subject rankings; the rankings

measured helpfulness, ease of use, and the ability to instill confidence in

navigating the route after learning. This method of determining subject

preference was used for all route guidance experiments.

* Navigation error referred to the number of wrong turns made when navigating

without the guide. An error was logged every time the proxy passed the corner of

a side (of an object) that was not in the direction of the guide line. In the example

map below, entering the areas enclosed by the pink dotted lines would have

resulted in a navigation error (Figure 12).

* Navigation time was the total time needed to navigate from start to finish.

* Identification error was the number of errors in the drawing. Errors included

incorrect placement of the guide lines (orientation), the start and finish doors, and

the shapes with respect to the guide lines (the shape needed to be next to and

on the correct side of the correct guide line).

* Exploration time was the time needed to learn the route and layout.
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Figure 12. Entering the areas enclosed by the pink dotted lines would result in a
navigation error

5.3.2 RESULTS / DIScUSSION

The following figures (13, 14, 15) present the mean results averaged across all

subjects, with lower values corresponding to better performance (error bars in the figure

are ± 1 standard deviation). The complete set of data is included in Appendix B.3.

Subjects communicated a preference for the manual guide (Figure 13) which the

navigation time and error data supported (Figure 14). The manual guide resulted in the

highest preference as well as the fastest time for navigation and the least number of

navigation errors. The automatic guide was the next preferred guide, but its navigation

performance was the least favorable (Figure 14). The line guide and tether guide were

the least preferred (Figure 13).

F Mean Preference
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5

4

3
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1

0

Auto Tether Line Manual

Figure 13. Mean preference of haptic guides
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Figure 14. Mean navigation time and error of haptic guides

Exploration times were comparable (Figure 15), suggesting that users were

capable of using all four guides. The mean number of identification errors was also

comparable; however, the manual guide had the largest standard deviation.

Mean Exploration Time Mean Identication Error
250

4
200

3
150 -i

E 100 -

50 _ 0

Auto Tether Line Manual Auto Tether Line Manual

Figure 15. Mean exploration time and identification error of haptic guides

For the manual guide, users liked that they could move at their own pace and

choose to turn off the guide as desired (by setting the force constant to zero). Both the

automatic and manual guides could be used to give an overall sense of the route, but

some users struggled with the "forcefulness" of the automatic guide as it pulled the

proxy along the entire path without pause. The data also suggested that users had

trouble with retaining the navigation information presented using the automatic guide.

Conversations with subjects provided some insight: subjects believed that the automatic

guide provided too much assistance, making it easier to rely on the guide and not on

one's actual knowledge of the space. On the other hand, users felt that the guide line

gave too little information, while the tether guide gave confusing and unintuitive

information. While there isn't a full proof case in favor of one guide over the others, the
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manual guide appeared to be the best option to compare with conventional alternatives

in the main experiment.

5.4 AUDIO ROUTE GUIDE DEVELOPMENT

The purpose of developing the audio route guide was to create a good standard

with which to compare the usefulness of the haptic guide. At the base level, all audio

guides provide information about when a decision such as a turn must be made. We

looked into existing audio guides such as the Trekker Breeze GPS and Sendero Maps

to identify "standard features." Features included:

e Providing step by step instructions to a specific destination

" Announcing the user's current location on command ("Where am I?" feature)

" Announcing street and intersection information as the user encounters them

* Recording specific routes while traveling

" Recording landmarks along a route that play automatically when within range

We developed four alternate designs to simulate the features of a standard audio

guide in the VE (except for the recording features which can easily be added to the

haptic guide later) and the best guide was selected for the main experiment in a

developmental test (Section 5.6). One guide was designed to behave like an audio GPS

device, giving step by step instructions automatically. Another guide, a manual guide,

was modeled after the most successful haptic guide, since we believed that an audio

guide that mirrored the haptic guide could provide a fair comparison.

One potential advantage of an audio guide in the BlindAid VE over existing audio

guides is the ability to use spatialized sound. Spatialized sound can provide the user

with more information about the location of the way point without additional message

content. To take advantage of this feature, we introduced two additional audio guides.

The third guide adapted the manual guide to use spatialized sound - we could have

also added spatialized sound to the automatic guide, but did not, to limit the number of

test scenarios. The fourth guide used spatialized audio in a way that allowed users to

hear the entire path through "audio landmarks" (see Section 2.4).
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The implementation of the audio guides employed the use of a class called

vmap_locations that is modeled after another BlindAid class called vmapareas.

Vmapareas play background sounds when the proxy is within a specified horizontal

region of the VE (see Section 2.4). For simplicity, the guide divides the map into a grid

and treats each unit of the grid as a separate location. When the proxy is contained

within the perimeter of a way point location (a location where the proxy must turn to stay

on the route), an identification sound is played. The ID sound plays once every time the

proxy enters or re-enters the location. For the manual guide, the ID sound is the way

point ID number, and for the automatic guide, it is the next set of instructions. The

design and implementation of each guide is described in depth below and the program

code is presented in Appendix A.5.

5.4.1 MANUAL AUDIO GUIDE

The manual audio guide consists of way points that announce themselves

automatically when the user first enters them. The first way point after start has an ID

number of one, the second way point has an ID number of two, and so forth. Off-route

locations announce themselves as "off-route" so the user is always aware of whether

he/she is on or off the route. Users can toggle the "auto-announce" feature of the guide

on and off by pressing the Ctrl key; this can be used to test their knowledge of the map.

The location ID sound (e.g., "start," "way point 5," "between way points 4 and 5," etc.)

will also play if the user presses the down arrow key to provide a "where am I" feature.

While on the route, instructions to the prior or next way point can be accessed by

pressing the left or right arrow key, respectively. While off of the route, pressing the left

or right arrow key will only provide the general direction in which to find the route.

5.4.2 MANUAL SPATIALIZED AUDio GUIDE

The manual spatialized audio guide differs from the manual audio guide in that it

utilizes spatialized sound when providing instructions. When the user presses the left or

right arrow key, the instruction sound will originate from the destination way point (e.g.,

"left to way point 5" will originate from way point 5 on the left), giving the user an

additional sense of the direction.
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5.4.3 AUTOMATIc AUDIo GUIDE

The automatic audio guide also consists of way points that announce themselves

when entered, but instead of playing the way point ID number, it plays the instructions to

the next or prior way point depending on whether the direction of motion is set to

forward or backward. The down arrow key still functions as a "where am I" tool and the

left and right arrow keys change the direction of motion to backward and forward,

respectively. Off-route locations also announce instructions to the route rather than

saying "off-route." Off-route instructions only indicate the general direction in which the

user should move to exit the dead-end. For example, if the dead-end is to the left of the

route, then the instructions may say "right to route."

5.4.4 LANDMARKS GUIDE

Similar to the other guides, the landmark guide consists of way points that

announcement themselves automatically and includes the "where am I" tool.

Additionally, there is a separate set of way point audio files that can be accessed

independent of where the proxy is located. The user can scroll through the way point ID

sounds using the left and right arrow keys and repeat an ID sound by pressing the up

arrow key. This independent set of way point ID sounds begins at "start." Pressing the

right arrow key will cause the "way point 1" spatialized audio file to play (sound

originates from way point 1 - see Section 2.4), pressing the right arrow key again will

then cause the "way point 2" spatialized audio file to play, and so forth. This guide is

unique in that it allows the user to get a sense of the entire route through spatialized

sound, but also navigate locally by playing the way points around the user's current

location to determine the direction in which to move next.

5.5 AUDIo ROUTE GUIDANCE EXPERIMENT

The design of this experiment mirrored that of the haptic route guide experiment

except the VE arrangement was a 4 x 4 grid maze. The task consisted of exploring the
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route and space using the audio guide and then navigating through the same maze

without the guide and with a focus on time and accuracy.

5.5.1 METHODS

Subjects

The subjects used in this experiment were the same subjects from the second

force field experiment. See Section 4.4.1.

Arrangement

A total of eight different layouts of similar complexities were used (Figure 16).

Each map was a closed 4x4 maze with only one route from the entrance to the exit that

was always the same length, moved from left to right, and had the same number of

turns (seven). Each grid square was 2.1 m in length and the virtual workspace was 18.8

m by 14.1 m. The entrance and exit areas announced themselves when entered by

playing distinct background sounds. Additionally, the maze always had two dead-ends.

A maze design was chosen for this task because its grid-like structure was well-suited

for the audio guide implementation. Moreover, navigation errors could be more easily

assessed with a maze as each unit of space was dedicated to either the route or a

dead-end.

Map I Map 2 Map 3
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Map 4 Map 5 Map 6

Map 7 Map 8

Figure 16. Audio guide experiment map layouts

Procedure

The procedure was identical to the one used for testing the haptic guides

including the post experiment questionnaire (see Section 5.3.1). The nominal set of

trials for the audio guide experiment is listed in Table 9.

Training #1 Manual 1

Training #2 Manual Spatial 2

Training #3 Automatic 3

Training #4 Landmarks 4
Test #1 Manual 5

Test #2 Manual Spatial 6

Test #3 Automatic 7

Test #4 Landmarks 8

Table 9. Nominal set of trials for audio guide experiment

Variables

The dependent variables in this test were: preference for the guide (calculation

described in Section 5.3.1), navigation error (the number of times the subject entered a
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dead-end while navigating without the guide), navigation time (the time needed to

navigate through the maze without the guide) and exploration time (the time needed to

learn the route and space). See Table 10.

Audio guide type Preference for guide Size of maze Number of dead-ends

Navigation error Length of route Length of dead-end
Navigation time Number of turns Number of doors

Exploration time

Table 10. Audio guide experiment variables

5.5.2 RESULTS / DISCUSSION

The following figures (17, 18) present the mean results averaged across all

subjects, with lower values corresponding to better performance (error bars in the figure

are ± 1 standard deviation). The complete set of data is included in Appendix B.4. User

preference was similar across the manual, spatialized manual and automatic, but the

preference for the landmark guide was noticeably worse (Figure 17). The difference in

user preference was statistically significant with a P-value of 0.04 based on an

independent group ANOVA test. Such an analysis can indicate if there is difference in

the averages across a group but not between the specific variables. That being said, the

graphical representation of the mean preference shows almost no overlap in rank

values between the landmark guide and the other guides. The exploration time data

presented a similar story. Navigation times were similar across all of the guides.

Navigation errors occurred rarely, and only in the spatialized manual and automatic

guide conditions (Figure 18).

Mean Preference Mean Exploration Time

5 250

4 200

3 150

ix 2 10

0 EEZEZ
Manual Spatialized Auto Landmark Manual Spatialized Auto Landmark

Manual Manual

Figure 17. Mean preference and exploration time of audio guides
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Figure 18. Mean navigation time and error of haptic guides

All four users expressed distaste for the landmark guide as it gave the least

amount of assistance. Similar to the haptic guide experiment, the automatic audio guide

was thought to have provided too much assistance and thus hindered learning, while

the manual guide was desirable because it allowed the user to digest the information

and learn at his/her own pace. The difference between the manual and manual spatial

guide was seen as negligible by most users.

The lack of differentiation in navigation performance across the guides may be

related to the ease of the task; thus for the main experiment, the task was made more

challenging. A case could be made to choose any of the guides save the landmark

guide; however, we chose to use the manual guide in the main experiment because it

produced no navigation errors and matched the guide of choice in the haptic guide

experiment, potentially minimizing confounding factors.

5.6 MAIN HAPTIc ROUTE GUIDANCE EXPERIMENT - INITIAL

The main experiment focused on determining the usability of a haptic guide. In

this experiment, a haptic guide was compared with an audio guide, which represented

the current standard, and free exploration (i.e., no guide) as the control condition.

Specifically, the manual haptic and audio guides used were chosen based on the

results of the previous two experiments. The haptic guide consisted of an attractive

force that anchored the user to a'manually selected way point along a snap-to guide line

(located in the center of the grid squares). The audio guide consisted of way points and

off-route locations that announced themselves automatically when entered and allowed
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the user to play instructions to the prior or next way point on command. In free

exploration, the user was given no assistance in learning the route. This experiment

compared the effectiveness of using a haptic guide, an audio guide, and free

exploration for route learning.

5.6.1 METHODS

Subjects

All four subjects in the initial main experiment were right-handed males. The

subjects ranged in age from 23 to 28 and all had corrected or corrected normal vision,

and normal hearing and sense of touch. None of the subjects had participated in any of

the prior tests. See Table 11.

Subject ID Gender Age Height Weight (.b) Profession Hand Vision Hearing Touch

8 M 25 5'9" 171 Student

9 M 28 5'4" 140 Software Developer

10 M 25 6'3" 187 Student

11 M 23 5'9" 155 Student

Right Glasses, Astigmatism Normal Normal

Right Astigmatism Normal Normal

Right Normal Normal Normal

Right Normal Normal Normal

Table 11. Initial main experiment subjects

Arrangement

A total of six layouts of similar complexities were used (Figure 19). Each map

was a closed maze with only one complete route from the entrance to the exit; the

forward direction of the route was always left to right. ). Each grid square was 2.1 m in

length and the virtual workspace ranged from 34.0 m by 25.6 m to 40.9 m by 30.7 m,

depending on the configuration. The route was the same length (34 grid squares), had

the same number of turns (12 turns), and was constructed of the same 12 pieces

(Figure 20). Six of the turns were "open" turns, meaning they lacked a wall that forced

the user to turn (Figure 21).
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Figure 19. Main experiment map layouts
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open turn

Figure 20. Route components Figure 21. Example of an open turn.
Red arrow indicates a wrong turn.

There were six dead-ends that were identical in each map (Figure 22); three of

which were connected to the route via "open" turns and three which were connected to

the side of the route (chosen at random). There were also three dead-end 2x2 rooms

that were connected to the route via "open" turns - two rooms were created using two

units from the route (Room A) and one room used no route units (Room B) (Figure 23).

Room A Room B

Figure 22. Dead-end components Figure 23. Open turn examples

Additionally, there were four reference areas that were each two units long. The

reference areas acted as the 1/5, 2/5, 3/5 and 4/5 markers of route (plus or minus two

units). In the initial four trials of the main experiment, the first marker was a cafeteria

sound, the second marker was a soft texture, the third was a chirping sound, and the

forth was a rougher texture; one sound and one texture were always placed at way

points. The second marker was a smooth texture with 0.0 mm peak amplitude, 160.0

mm period, 0.5 up/period ratio, and 0.0 deadband/period ratio. The fourth marker was a
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sinusoidal texture with 0. 3 mm peak amplitude, 4.0 mm period, 0.5 up/period ratio, and

0.0 deadband/period ratio (Schloerb, Lahav, Desloge, & Srinivasan, 2010).

Procedure

The procedure was identical to the one used for testing the haptic guides

including the post experiment questionnaire, except for the number of conditions &

maps (see Section 5.3.1). The nominal set of trials for the main experiment is listed in

Table 12.

Training #1 None 1
Training #2 Audio 2

Training #3 Haptic 3
Test #1 None 4

Test #2 Audio 5
Test #3 Haptic 6

Table 12. Nominal set of trials for main experiment

Variables

The dependent variables in this test were: preference for the guide, navigation

error, navigation time, and exploration time. See Table 13. The calculation for the guide

preference is described in Section 5.3.1 and the details for all other dependent variables

are presented in Section 5.5.1.

Guide agent type Preference for guide Length of route Type of route segments
Navigation error Type of route segments Number of rooms
Navigation time Number of doors Type of rooms
Exploration time Number of turns Number of reference areas

Number of "open" turns Type of reference areas
Number of dead-ends Placement of reference areas

Type of dead-ends

Table 13. Main experiment variables

5.6.2 RESULTS / DISCUSSION

As in the previous experiments, the following figures present the mean results

averaged across all subjects, with lower values corresponding to better performance

(error bars in the figure are ± 1 standard deviation). The complete set of data is included

in Appendix B.5. Figure 24 presents the mean user preference for each guide, showing

the audio guide was the most favored and the haptic guide least favored. If we take the

58



null hypothesis to be that the preferences across the three guides were the same, we

get a P-value of 0.0002. This gives strong support for the alternate hypothesis that the

preferences are unique. If we drill down further and do a pair-wise comparison of the

haptic guide to the audio guide and the haptic guide to no guide and apply the

Bonferonni adjustment (since multiple t-tests increase the chance of finding an incorrect

significance), we get P-values of 0.0002 and 0.04, respectively. This means that the

finding that the haptic guide is the least preferred is statistically significant. The mean

exploration time data (Figure 24) also suggests that it was harder to learn to use the

haptic guide. Although the mean navigation performance was similar across all

conditions (Figure 25).

Mean Preference Mean Exploration Time

4 1500 -

3 - 1000 -

1 500

Audio None Haptic Audio None Haptic

Figure 24. Mean preference and exploration time of route guides by type
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Figure 25. Mean navigation time and error of route guides by type

Based on observations and comments by subjects, issues with using the haptic guide

included:

* Guide lines could be confused for walls.

" It was easy to get lost in the dead-end segments.

" Once lost, the anchor continued to pull in a direction that was not intuitive.
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* The anchor could also continue to move away from the user if the user

presses the forward or backward keys in an attempt to regain his/her

bearings.

* The guide could pull too quickly and forcefully, making it difficult to remember

the path.

e When the way points were closer together, it was difficult to tell that they were

separate points.

5.6.3 REVISED HAPTIc GUIDE DESIGN/IMPLEMENTATION

The first four subjects struggled with the haptic guide and found that it hindered

their ability to learn the route. When compared with other haptic guides, the manual

haptic guide was well-received and thought to be very helpful. However, when

compared with a more standard audio guide, the haptic guide fell short. Thus, we

decided to stop the experiment and re-think the design of the haptic guide.

The first question we asked was "What information do I need when navigating?"

We need to be able to answer two questions at all times:

1. Am I on or off the route?

2. How do I get to where I need to go? If on the route, what is my next step? If

off the route, how do I get back to the route?

The current implementation of the haptic guide could only give vague answers to these

questions. Open space along a guide line (on the route) could easily be confused for

open space in a dead-end. Guide lines were intended to indicate the route; however, at

times, guide lines were confused for walls. It was also easy to get lost behind a wall of a

dead-end but still be tethered to a point that gave no information about how to exit the

dead-end. Furthermore, frustrated users would press the arrow keys in hopes of finding

the anchor, only to have it move further and further away. Keeping the most important

navigation questions in mind, we proceeded in re-designing the guide.

We removed the guide lines altogether since it seemed that this feature only

caused confusion. The tether was also removed because it became increasingly clear

that the freedom to explore was extremely important for learning and retaining

information. In the new design of the guide, the user is able to move freely along the
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path without being pulled unless he/she specifically asks for directions by pressing the

left or right key. Users receive directions in the form of a gentle constant force (nudge)

in the right direction. The nudge instruction is always dependent of the proxy location

since having access to way points further along the path has little value. Pressing the

left or right key pushes the user in the direction of the previous or next way point while

on the route. The force is active for as long as the user holds the key down, so a user

could use this capability to get an overview of the entire route. The force strength is

constant as a distance-dependent one was found to be confusing. The default force

strength is 0.4 N but can be increased to 0.5 N or decreased to 0.3 N using the up and

down arrow keys. Texture is used to denote dead-ends, providing immediate haptic

feedback about whether the user is on or off the route. Finally, pressing the left or right

key while off-route nudges the user in the direction of the exit to the route from the

dead-end. Based on this version of the guide, we conducted ten trials of the main

experiment.

5.7 MAIN HAPTIc ROUTE GUIDANCE EXPERIMENT - FINAL

The main experiment was repeated with the revised haptic guide using the same

methods as in the initial experiment.

5.7.1 SUBJECTS

There were six female and four male subjects ranging between the ages of 23

and 28. Three were left-handed and seven were right-handed (Table 14). All subjects

had corrected or corrected normal vision and normal hearing and sense of touch. None

of the subjects had participated in any of the prior tests.
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12 F 24 5'3" 115 Student Right Glasses Normal Normal

13 F 28 5'9" 125 Mech Engineer Right Contacts Normal Normal

14 F 23 5'1" 105 Student Right Contacts Normal Normal

15 M 24 6'3" 193 Student Right Contacts Normal Normal

16 F 25 5'4" 140 Student Right Contacts Normal Normal

17 M 23 5'8" 155 Student Left Glasses Normal Normal

18 F 27 5'6" 125 Student Right Normal Normal Normal

19 M 25 5'11" 155 Student Right Normal Normal Normal

20 F 28 5'7" 115 Student Left Contacts Normal Normal

21 M 28 5'10" 145 Student Left Glasses Normal Normal

Table 14. Final main experiment subjects

Arrangement

The map arrangements were identical to those used in the initial main

experiment, except the texture reference areas were replaced by sounds (the "soft"

texture by a playground sound and the "rough" texture by an ocean sound) and the

"soft" texture defined in Section 5.7.1 was repurposed to represent off-route areas.

Procedure

The procedure was identical to the one used for testing the haptic guides

including the post experiment questionnaire. The nominal set of trials for the main

experiment is shown in Table 12.

Variables

The dependent variables are also identical to the initial main test. See Table 13.

5.7.2 RESULTS / DISCUSSION

Figure 26 presents the mean preference and the mean times for exploring

(learning) the route for each of the experimental conditions. As in previous sections, the

figure presents the mean results averaged across all subjects, with lower values

corresponding to better performance (error bars in the figure are ± 1 standard

deviation). The complete set of data is included in Appendix B.6.

On average, subjects found each guide to be equally satisfactory. In other words,

qualitatively, the haptic guide was as well received as the audio guide, which we

designed to approximate the type of guides that are currently in use. Also, the

exploration times were approximately equal across the three guides, with slightly less
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time spent using the haptic guide. A single factor ANOVA test produced a P-value of

0.61, providing support for the null hypothesis: the time needed to learn the route using

the three guides is equal.

Mean Preference Mean Exploration Time
3.0 - 1000

2.5 800
2.0

S600

1. 400

0.5 200

0.0 0
None Audio Haptic None Audio Haptic

Figure 26. Mean preference and exploration time of guides

It was initially surprising to see that having no guide was equally favored in

preference and that the no guide exploration time was essentially the same as with a

guide. Subjects liked the no guide condition because it typically resulted in good

retention of the layout - there was no confusion on whether they knew the map or not.

However, it is important to note that in a closed maze like the ones designed for this

experiment, the no guide case works well because the person can eventually find

his/her way out. However, real maps are much more complex and typically continuous

like the landscapes they model, making it much more difficult, if not impossible, to find a

destination without any guidance. For experimental purposes, it was important to create

closed maps that subjects could finish to keep the exploration times within reason.

Figure 27 presents the mean navigation times and errors for each of the

experimental conditions, averaged across all subjects, with lower values corresponding

to better performance. To simplify the discussion, the navigation error will not be

considered further because it was strongly correlated to the navigation times, with a

correlation coefficient of 0.97 (Figure 28). A correlation coefficient of 1 indicates that the

two data sets are perfectly positively correlated. Navigation times were more variable

with the haptic guide, requiring the most amount of time and having the greatest

standard deviation. The no guide condition had the fastest navigation time; this result

was not surprising since learning with less help typically results in the better retention of
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information. That being said, the ANOVA test still supported the null hypothesis that the

navigation times were not different, with a P-value of 0.08.
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Figure 27. Mean navigation time and error of guides
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Figure 28. Correlation between navigation time and error

5.7.3 OUTLIER ANALYSIS

Closer analysis of the data (Figure 29) shows one data point in the exploration

time dataset and two data points in the navigation time dataset that could be statistical

outliers (greater than three standard deviations from the mean). Note that the

histograms in Figure 29 sum the data for all of the subjects.
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Figure 29. Exploration and navigation time histograms

Without the three outliers, the mean exploration time for the audio guide

increases to a level roughly equal to the mean haptic exploration time, and the mean

haptic navigation time decreases to a level below that of the audio guide (Figure 30).

Additionally, the alternate hypothesis that the times are not different becomes even less

likely (P-value for exploration time = 0.82; P-value for navigation time = 0.31).

Mean Exploration Time Mean Navigation lime
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Figure 30. Mean exploration and navigation time less outliers

5.7.4 DISCUSSION OF LEARNING CURVE

All ten subjects had no experience with haptics so the learning curve, which

could make the results of the last test more favorable than the first, could skew the data.

The experimental procedure was configured to help avoid this issue, and the results of

experiment suggest that the learning curve did not pose a problem as can be seen in

Figure 31. The figure presents the mean exploration and navigation times averaged

across all subjects and conditions (including the outliers), for each of the three tests.

The results from the first test (#1) in the experiment are essentially the same as the
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results for second and third tests (#2 & #3). Given that the conditions were distributed

evenly between the tests, this means that on average, performance did not improve

over time.

Exploration lime Navigation Time
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Figure 31. Mean exploration and navigation time of tests

5.7.5 DisCUSSION OF PERFORMANCE BASED ON PREFERENCE

Preference for a guide may be related to the user's proficiency with it. If we

separate the exploration and navigation times by preference, we see that a correlation

exists between preference and exploration time but not necessarily navigation time

(Figure 32 - 34). Five subjects ranked the haptic guide the highest, two subjects ranked

the audio guide the highest, two subjects ranked no guide the highest, and one subject

ranked them all equally.

Preference Exploration Time Navigation Time
4.0 ---------- 1500 200

2.0100 - -- 100A

S2.0 j ftE 00 t
500

Haptic None Audio Haptic None Audio Haptic None Audio

Figure 32. Mean results averaged across the subjects who preferred the haptic guide
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Figure 34. Mean results averaged across the subjects who preferred no guide

5.7.6 DISCUSSION OF SUBJECT COMMENTARY

General Strategy

Every subject implemented a different set of strategies; however, there were

several prominent strategies (Table 15). Most users relied heavily on the reference

areas, since it was the only tool that carried over to the navigation task. Some users

stuck close to the walls to guide their turns. Another popular strategy was to segment

the route into multiple pieces and learn each segment separately. After realizing that

the guide would not be available in the navigation task, many users learned to use the

guide as a supplemental tool to avoid over dependence on it.
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Generl Stateg Subet

Used reference areas 9

Followed the walls 6

Learned in segments by retracing steps 6

Explored areas around reference sounds to determine the next step 5

Tried not to rely on the guide too much 5

Learned to switch to the other side of the path to avoid dead-ends 4

Got an overview of the route using the guide 3

Verbalized instructions 3

Used restart option often when lost 3

Table 15. General strategy

Haptic Guide

The haptic guide consists of textures that denote off-route areas and an

instruction tool that uses a constant force to push users in the correct direction when

activated. Table 16 illustrates the perceived positives and negatives of the feature. The

ability to receive instructions in the form of a gentle push was thought to be helpful and

easy to understand, however, it was not used very often. Most subjects relied heavily on

the textures and only asked for instructions when lost (Table 17). The reception of

textures was mixed. Half of the subjects thought that they were intuitive in indicating

areas to avoid and were able to use them effectively. The other half thought that

textures were confusing and difficult to use because textures made traveling in the

learning stage easy, allowing the user to become less active in his/her learning. This

issue - that the guide is helpful until it is removed - is one that affects both the haptic

and audio guides. However, subjects that were able to moderate their dependence on

the guide found that the additional information provided by the guide was very helpful.

This result is important because it highlights the need for ensuring that the user has

truly learned the route when using a guide agent.
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No. of No. of

Pros Subjects Cons Subjects

Nudge instruction was helpful because
the direction was easy to follow and it
reinforced the path

Textures were intuitive and gave clear
indication to turn away

Ability to toggle the texture on and off
was helpful

7

6

1

Guide was helpful but felt lost when
guide was removed

Didn't like texture because it was easy
to become inactive in learning and at
times confusing
Nudge instruction was difficult to
understand

cons of the haptic guide

5

4

1

Instructions

Didn't ask for instructions often, relied mostly on the textures 7

Asked for instructions primarily when lost 5

Asked for instructions often 1

Instruction Keys

Tapped the instruction key 6

Held instruction key down to learn longer segments of the route 4

Textures

Turned around when came in contact with texture to avoid dead-end 6

Toggled texture on and off often 2

Table 17. Strategies used with the haptic guide

Audio Guide

The audio guide consists of route way points and off-route points that can

announce themselves automatically and an instruction tool that provides verbal

directions on command. The sequential ordering of the way points was thought to be

logical and useful in learning (Table 18). The other aspects of the guide returned mixed

reviews. Some users thought the auto-announce feature was very helpful; others

thought it was distracting and discouraging, particularly when in the off-route areas.

Some users believed having to translate the verbal instructions into physical motion was

unnecessarily time-consuming, while others found it useful for remembering the path.
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Like the haptic guide, most users did not ask for instructions often and instead relied on

the auto-announce feature (Table 19).

No. of No. of

Pros Subjects Cons Subjects

Sequential ordering of way points was
logical and made learning easier
Could use the guide as a supplement
so removing it was not an issue
Liked the immediate off-route
feedback
Translating the audio helped with
remembering the route

3

2

1

Guide was helpful but felt lost when it
was removed

Disliked the off-route feeback

Translating the audio was time-
consuming

Too many sounds to keep track of

Didn't like the auto-announce feature

Table 18. Pros and cons of the audio guide

Instructions

Didn't ask for instructions often, relied mostly on the auto-announce feature 8

Used instructions often 2

Auto-announce

Toggled the auto-announce feature on and off often 6

Disliked the auto-announce feature 1

Table 19. Strategies used with the audio guide

No Guide

While having no guide was thought to be the most difficult to learn with initially, it

often gave users a greater sense of confidence in their understanding of the route

(Table 20). Not having a guide agent in a real life implementation of BlindAid is not

realistic, so it is important to be able to instill the same level confidence in the user's

understanding of the route while using a guide. One way to achieve this is to wean the

user off of using the guide agent as he/she learns the route.
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No. of No. of

Pros Subjects Cons Subjects

Gave me the most confidence since I
had to learn it on my own

Was easy to use

Didn't give as much information about
4 the route and off path areas as the

guides

2 Difficult to learn the route

Table 20. Pros and cons of no guide

71

3

2



6 CONCLUSIONS

This thesis focuses on improving global sensing for haptics through the use of

force fields. The application of repulsive and attractive force fields to objects in the VE

was studied through a total of six experiments.

Repulsive Force Fields for Global Haptic Sensing

Repulsive force fields were designed to enable global sensing to help users learn

about the environment more quickly. We experimented with using repulsive force fields

in both indoor and outdoor spaces; however, they were unable to produce an

improvement in navigation ability in either environment. In both experiments, the times

to explore and acquire the desired information with the force field and without were

essentially equal. On occasion, the repulsive force field required more exploration time

and resulted in additional errors. There are a few important conclusions to derive from

these experiments.

First, it is difficult to ground oneself using variable surfaces. While the purpose of

the force field was to provide information with less exploration, the user first needed to

know where he/she was before processing any additional information. Hence, we

observed subjects pushing through the force fields in an effort to gain their bearings

using the walls. This leads us to the second point - knowing that an object exists is only

useful if you know where you are currently. Additionally, applying a repulsive force field

to an object of interest may not be ideal, since the repulsive force pushes the user away

if he/she tries to approach the object. Next, sensing an object rather than actually

touching it can be challenging. This method of learning about an object may cause

navigation errors because it is more difficult to gauge the object's exact location.

Furthermore, subjects may need to spend more time translating and verifying the

locations of objects (e.g., moving past the object multiple times or seeking it out to

physically touch it).

Attractive Force Fields for Global Haptic Sensing Applied to Route Guidance

The attractive force field is another tool that was designed to improve VE

exploration. In this thesis, we focused specifically on using attractive force fields for
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route guidance. Previous attempts at using haptics for route guidance (by actively

leading the user) had proved unsuccessful, so our goal was to improve global sensing

during route learning.

In the first developmental experiment, we evaluated four potential haptic guide

designs and selected the most promising one. Our intention was to compare the most

promising haptic guide to conventional alternatives (using no guide and an audio guide)

in a main experiment. Similar to the haptic guide development, we designed and

evaluated four audio guides and selected the best one. In both developmental

experiments, the manual guide was deemed the most favorable. The haptic manual

guide consisted of an attractive force that anchored the user to a manually selected way

point along a snap-to guide line. The audio manual guide comprised of way points and

off-route locations that announced themselves automatically and allowed the user to

play instructions to the prior or next way point.

The manual guides were preferable because they allowed users to move at their

own pace and test their knowledge by turning the guides off as needed. While these

aspects helped to improve map retention, all of the guides were susceptible to

incomplete learning due to an over reliance on the feature. On the other hand, subjects

that were able to moderate their dependence on the guide found that the additional

information provided by the guides was beneficial to learning and did not hinder

retention. This was one of the most important findings.

The main experiment compared using the best haptic guide and audio guide to

using no guide. Despite strong reception for the manual haptic guide in the first

experiment, the haptic guide fared poorly when compared to a more standard audio

guide in the initial main experiment. Thus, we re-designed the haptic guide to address

the issues it faced. In the final main experiment, we found that all three guides were

equally favorable in terms of user preference and performance. This meant that the

haptic guide was as well received as the audio guide, which was designed to

approximate the type of guides that are currently in use. While it was surprising to find

that the no guide condition performed as well as the audio and haptic guides, it is

important to note that in a closed maze like the ones designed for this experiment, the

no guide case works because the person can eventually find his/her way out. Based on
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user preference and performance, the haptic guide is as capable and useful as the

current standard of route guidance. The results of this experiment validate its use as a

guide agent in virtual environments.
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APPENDix A: PROGRAM CODE

A.1 NOTE ABOUT PROGRAM CODE ILLUSTRATIONS

The BlindAid program is written in C++. The program code makes use of a C++

structure called VECTORTYPE that consists of an x, y and z component. Thus to

access these components we use a period: Point.x, Point.y and Point.z. This syntax will

be used often in the explanation of the code in this thesis. Additionally, some of the

variable names have been changed or the code has been simplified for illustrative

purposes. Finally, some variable initializations are outside of the scope of the function.

A.2 COMMUNICATING WITH THE PHANTOM

The OpenHaptics API associated with the Phantom provides the framework for

communicating with the Phantom via code. Accessing the real-time position of the proxy

is made possible through a function provided by the API:

hdGetDoublev(HDCURRENTPOSITION, Proxy). The program code associated with

finding the force point is shown below.

A.3 FORCE FIELD PROGRAM CODE

Repulsive Force

The program calculates the repulsive force based on the location of the force point.

// Com puteForcefieldEffect
void HLCALLBACK ComputeForcefieldEffect(HDdouble force[3], HLcache *cache, void *userdata)
{

//Typecast the pointer passed in appropriately
vmapforcefield* pvforcefield = (vmapforcefield*)userdata;

/Nariables are set in the header of the vmap file
HDdouble ForceMultiplier = pvforcefield->dForceMultiplier; //low multiplier = weaker force
double MaxRadius = pvforcefield->dMaxRadius; //forcefield radius (range)

/Get proxy position in physical workspace frame
static HLdouble Pp[3]; //proxy in physical (phantom) workspace
static VECTORTYPE Pw; //proxy in world workspace

//Transform the proxy to worldspace keeping in vmap units
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hdGetDoublev(HDCURRENTPOSITION, Pp);
pvforcefield->PWTransformVmap(&Pw, Pp);

//Compute the wall points from which forces should be calculated (called force points)
VECTORTYPE forceP;
pvforcefield->ComputeForcePoint(&forceP, Pw);

//Calculate force between the force point and the proxy for each wall and aggregate the forces
if (forceP.z != -1000000) //But only do so if a valid force point exists
{

HLdouble forceVec[3] = {0,0,0}; /Nector to hold temporary force values

//Calculate difference vector between the proxy and the force point
HLdouble diffVec[3];
diffVec[0] = forceP.x - Pw.x;
diffVec[1] = forceP.y - Pw.y;
diffVec[2] = forceP.z - Pw.z;

//Find the magnitude of the distance
double dist = sqrt(pow(diffVec[0], 2) + pow(diffVec[l], 2) + pow(diffVec[2], 2));

//If the proxy is close enough to the force point, calculate a repulsive force
if (dist <= MaxRadius)
{

for (nt i=0;i<3;i++)
{
diffVec[i]=diffVec[i]/dist; //Normalize vector
forceVec[i] = -ForceMultiplier * diffVec[i] * (MaxRadius-dist)/MaxRadius;
}

}
//If proxy is too far away from the force point, there is no repulsive force
else if (dist > MaxRadius)
{

pvforcefield->ResetpbWallTouchedAndinRange(FALSE);

for (nt i=0;i<3;i++)
{forceVec[i] = 0;)

}

//Find the max continuous force that the device is capable of (error handling)
HDdouble nominalMaxContinuousForce;
hdGetDoublev(HDNOMINALMAXCONTINUOUSFORCE,

&nominalMaxContinuousForce);

//Limit force calculated to Max continuous to avoid exceeding value
for (nt i=0;i<3;i++)
{

if(forceVec[i]>nominalMaxContinuousForce/2)
forceVec[i] = nominalMaxContinuousForce/2;

if(forceVec[i]<-nominalMaxContinuousForce/2)
forceVec[i] = -nominalMaxContinuousForce/2;

}

//Rotate to physical (phantom) workspace (-90 deg about x) and add to the existing force
force[0] += forceVec[0];
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force[1] += forceVec[2];
force[2] -= forceVec[1];

}

return;
}

Force Point

The force point, the point from which the repulsive force is calculated, is either the point

perpendicular to the proxy on the wall or one of the end points.

// ComputeForcePoint
void vmapforcefield::ComputeForcePoint(VECTORTYPE* forceP, VECTORTYPE proxyP)
{

//Assign variables values from wall and proxy to use for calculations
double XO, X1, X2, YO, Y1, Y2, ZO, Z1, Z2;
XO = proxyP.x; YO = proxyP.y; ZO = proxyP.z; /proxy location
X1 = wallX1; Y1 = wallYl; Z1 = 0; /wall endpoint 1
X2 = wallX2; Y2 = wallY2; Z2 = 0; /wall endpoint 2

VECTORTYPE perpP = CheckforPerpPoint(proxyP);

//if there is a perpendicular point and the proxy is in front of the wall, assign perpP as forceP
if((X2-X1)*(Y0-Y1)-(Y2-Y1)*(X0-X1)<0 && perpP.z!=-1000000)

{*forceP = perpP;}
else /otherwise get the corner point of the wall
{

VECTORTYPE cornerP=CalcProxyWallAngle(proxyP);

/if there is cornerP exists, set this to forceP
if (((X2-X1)*(YO-Y1)-(Y2-Y1)*(XO-Xl)<0) &&

perpP.z==-1000000 && comerP.z!=-1000000)
{ *forceP = cornerP;}
else /otherwise set forceP to the no value setting
{ forceP->x = -1000000; forceP->y = -1000000; forceP->z = -1000000;)

}

return;
}

// CheckforPerpPoint
VECTORTYPE vmapforcefield::CheckforPerpPoint(VECTORTYPE proxyP)
{

VECTORTYPE perpP = {-1000000, -1000000, -1000000);

double XO, X1, X2, YO, Y1, Y2, ZO, Z1, Z2;
XO = proxyP.x; YO = proxyP.y; ZO = proxyP.z; //proxy location
X1 = wallX1; Y1 = wallYl; Z1 = 0; /wall endpoint 1
X2 = wallX2; Y2 = wallY2; Z2 = 0; /wall endpoint 2

//Find the point on the wall that is perpendicular to proxy depending on the orientation
if (Y2-Y1 ==0) //If the line segment is horizontal
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{ perpP.x = XO;
perpP.y = Y1;
perpP.z = ZO;

}
else if (X2-X1==0) //If the line segment is vertical
{ perpP.x = X1;

perpP.y = YO;
perpP.z = ZO;

}
else //If the line segment has a non-zero real slope
{

perpP.x = (YO + ((X2-X1)/(Y2-Y1))*X0 - Y1 + ((Y2-Y1)/(X2-X1))*X1)/
(((Y2-Y1)/(X2-X1))+((X2-X1)/(Y2-Y1)));

perpP.y = YO - ((X2-X1)/(Y2-Y1))*perpP.x + ((X2-X1)/(Y2-Y1))*XO;
perpP.z = ZO;

}

//Check if perpendicular point is on the wall
If (perpP.x>=min(X1,X2) && perpP.x<=max(X1,X2) && perpP.y>=min(Y1,Y2) &&

perpP.y<=max(Y1,Y2))
{ ; /Do nothing
else /If not, then set the perpendicular point to the no value point
{ perpP.x=-1000000; perpP.y=-1000000; perpP.z=-1000000;}

return perpP;

}

CalcProxyWallAngle
VECTORTYPE vmapforcefield::CalcProxyWallAngle(VECTORTYPE proxyP)
{

double XO, X1, X2, YO, Y1, Y2, ZO, Z1, Z2;
X0 = proxyP.x; YO = proxyP.y; ZO = proxyP.z; /proxy location
X1 = wallX1; Y1 = wallYl; Z1 = 0; /wall endpoint 1
X2 = walIX2; Y2 = wallY2; Z2 = 0; /wall endpoint 2

//Calculate the distance from the proxy to each end point of the wall and determine the closest
/corner point. Keep track of the corner point and the angle associated with this wall's corner (half
/of the total corner angle)
double distcornerl = sqrt(pow(XO-Xl,2)+pow(YO-Y1,2)); //dist from proxy to (X1, Y1)
double distcorner2 = sqrt(pow(XO-X2,2)+pow(YO-Y2,2)); //dist from proxy to (X2, Y2)

double angle = 0;
double theta; I/Wall angle where force is applicable
VECTORTYPE vec1, vec2, comerP;

if(distcornerl <=distcomer2) /If proxy is closer to (X1, Y1)
{

/Create vectors to determine the angle
vec1.x=(XO-X1);
vec1.y=(Y0-Y1);
vec2.x=(X2-X1);
vec2.y=(Y2-Y2);

//Assign cornerP to (X1, Y1) and theta to the angle for this corner
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comerP.x = X1;
comerP.y = Y1;
comerP.z = ZO;
theta = comeranglel; //CornerAngle1 value set when map was first loaded

}
else if(distcorner2<distcomerl) //If proxy is closer to (X2, Y2)
{

vec1.x=(wallXl-wallX2); vec1.y=(wallY1-wallY2);
vec2.x=(proxyP.x-walX2); vec2.y=(proxyP.y-wallY2);

//Assign cornerP to (X2, Y2) and theta to the angle for this corner
comerP.x=wallX2; comerP.y=walY2; cornerP.z=ZO;
theta=cornerangle2; //CornerAngle2 value set when map was first loaded

}

/Find the angle between the proxy and wall and determine if this wall is responsible for
/contributing the corner point
angle = AngleBtwnVectors(vecl, vec2);

/If the proxy is in the area outside of the corner that this wall is responsible for then the corner
point is /set to this corner's coordinates
if (angle*(180/PI)<=90+theta)
{ ;} /Leave the corner point as it was set above
else /Otherwise, set the corner point to the no value setting
{ comerP.x=-1000000; comerP.y=-1000000; comerP.z=-1000000;}

return comerP;
}

AngleBtwnVectors
double basetexture::AngleBtwnVectors(VECTORTYPE v1, VECTORTYPE v2)
{

double angle;

/Normalize the vectors
VECTORTYPE norVec1, norVec2;
norVec1.x = v1.x / sqrt(pow(vl.x, 2) + pow(vl.y, 2));
norVec1.y = v1.y / sqrt(pow(vl.x, 2) + pow(vl.y, 2));
norVec2.x = v2.x / sqrt(pow(v2.x, 2) + pow(v2.y, 2));
norVec2.y = v2.y / sqrt(pow(v2.x, 2) + pow(v2.y, 2));

//Calculate the dot product of the normalized vectors
double dotProd = (norVec1.x * norVec2.x) + (norVec1.y * norVec2.y);

if ( abs(dotProd - 1.0) <= epsilon)
angle = 0;

else if ( abs(dotProd + 1.0) <= epsilon)
angle = PI;

else
{

double cross = 0;
angle = acos(dotProd);
cross = (norVec1.x * norVec2.y) - (norVec2.x * norVec1.y);

if (cross < 0) // vec1 rotate counter clockwise to vec2
angle = 2 * PI - angle;
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}

return angle;
}

A.4 HAPTIc GUIDE PROGRAM CODE

Tether to Last Touched Point

TouchedTetherForce
void vmapanchorforce::TouchedTetherForce (VECTORTYPE proxyP)
{

VECTORTYPE P1, P2, PointOnLine;

for (nt i = 0; i < iNumGuides; i++)
{

//pdGuidesArray stores all the guide lines in order of the route
//Set P1 to the first end point of the first guide line and P2 to the second end point
//Set the first potential anchor point to P1, the start of the route
setP (&P1, pdGuidesArray[4*i], pdGuidesArray[(4*i)+1], 0);
setP (&P2, pdGuidesArray[4*i+2], pdGuidesArray[(4*i)+3], 0);
PointOnLine = P1;

//Determine whether the proxy is on the guide line
if (P2.x-P1.x == 0) //If the guide line is vertical
{

//If the proxy is in line with the last touched position on the guide line and within
/the bounds of the guide line, record the proxy's new position as the last touched
/position and set it as the anchor
if (abs(PointOnLine.x-proxyP.x) < 0.1 &&

proxyP.y >= min(P1.y,P2.y) && proxyP.y <= max(P1.y,P2.y))
{

setP (&PointOnLine, P1.x, proxyP.y, 0);
AnchorP = PointOnLine;
return;

}
}
else if (P2.y - P1.y == 0) /lf the guide line is horizontal
{

if (abs(PointOnLine.y - proxyP.y) < 0.1 &&
proxyP.x >= min(P1.x,P2.x) && proxyP.x<=max(P1.x,P2.x))

{
setP (&PointOnLine, proxyP.x, P1.y, 0);
AnchorP = PointOnLine;
return;

}
}
else if ((P1.x-P2.x) != 0 && (P1.y-P2.y) != 0) //All sloped guide lines
{

double slope = CalcSlope(P1, P2);
VECTORTYPE PerpP = CalcPerpPoint(P1, P2, proxyP);
double length = CalcMagnitude(PerpP, proxyP);
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if (Length < 0.1 &&
PerpPoint.x >= min(P1.x,P2.x) && PerpPoint.x <= max(P1.x,P2.x) &&
PerpPoint.y >= min(P1.y,P2.y) && PerpPoint.y <= max(P1.y,P2.y))

{
setP (&PointOnLine, proxyP.x, proxyP.y, 0);
AnchorP = PointOnLine;
return;

}

CaIcSlope
double basetexture::CalcSlope(VECTORTYPE p1, VECTORTYPE p2)
{

return (p2.y-p1.y)/(p2.x-p1.x);
}

//
double basetexture::CalcMagnitude(VECTORTYPE p1, VECTORTYPE p2)
{

return sqrt(pow(pl.x-p2.x, 2) + pow(pl.y-p2.y, 2));
}

CalcMagnitude

// CalcPerpP
VECTORTYPE basetexture::CalcPerpPoint(VECTORTYPE p1, VECTORTYPE p2, VECTORTYPE
pw)
{

VECTORTYPE PerpP;
double slope = (p2.y-p1.y)/(p2.x-p1.x);

PerpP.x = (pw.y + (1/slope)*pw.x - p1.y + (slope)*p1.x)/(slope+(l/slope));
PerpP.y = pw.y - (1/slope)*PerpP.x + (1/slope)*pw.x;
PerpP.z = 0;

return PerpP;
}

Key Press for Tether to Last Touched Point

//xdSpringStiffness() gives access the value stored in SpringStiffness
//setdSpringStiffness() sets the value stored in SpringStiffness
//MessageBeep( plays an error sound
//StiffnessIncrement is the amount that the stiffness (which directly impacts the strength since the force
/is calculated like a spring force) can increase with a single button press. It is initialized to 0.05.
/MaxStiffness and MinStiffness are initialized to 1.00 and 0.00, respectively.
case VKUP:II--------------------------------------------------------increase spring stiffness

Stiffness = xdSpringStiffness(;
if ( (Stiffness + StiffnessIncrement) > MaxStiffness)
{

setdSpringStiffness(MaxStiffness);
MessageBeep(uiNONAPPLICATIONKEY);
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}
else
{ setdSpringStiffness(Stiffness + StiffnessIncrement);}
break;

case VKDOWN://----------------------
Stiffness = xdSpringStiffnesso;
if ( (Stiffness - StiffnessIncrement) < MinStiffness)
{

decrease spring stiffness

setdSpringStiffness(MinStiffness);
MessageBeep(uiNONAPPLICATION_KEY);

}
else
{ setdSpringStiffness(Stiffness - StiffnessIncrement);}
break;

Manual Forward Force

void vmapanchorforce::ManualAnchorForce (void)
{

}

ManualAnchorForce

if (iAnchorlD == -1)
{ setP (&AnchorP, pdGuidesArray[0], pdGuidesArray[1], 0);}
else if (iAnchorlD > -1 && iAnchorlD < iNumGuides )
{ setP (&AnchorP, pdGuidesArray[4*iAnchorlD+2], pdGuidesArray[4*iAnchorlD+3], 0);}
else
{ setP (&AnchorP, -1000000, -1000000, -1000000);}

return;

Key Press for Manual Forward Force

//xiAnchorlDO gives access the value stored in iAnchorlD
//setiAnchorlDO sets the value stored in iAnchorlD
case VKLEFT:!/-----------------------------------

if (xiAnchorlDO > -1)
{ setiAnchorlD(xiAnchorlD() - 1);}
else
{ MessageBeep(;}
break;

case VKRIGHT://------------
if (xiAnchorlDO < xiNumGuideso - 1)
{ setiAnchorlD(xiAnchorlDO + 1);)
else
{ MessageBeepo;)
break;

select prev anchor

-select next anchor
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Automatic Forward Force

// AutoAnchorForce
void vmapanchorforce::AutoAnchorForce (VECTORTYPE Pw)
{

/SnapDistance is set to 0.1. The proxy is thought to be touching a way point if it is less than the
/SnapDistance away.
//bDecreaseAnchorlD is a static Boolean variable that keeps track of direction of travel (forward or
/backward)
double DistancefromAnchor = CalcMagnitude(AnchorPoint, Proxy);
if (DistancefromAnchor < SnapDistance && iAnchorlD >= -1 && iAnchorlD < iNumGuides)
{
if (bDecreaseAnchorlD == TRUE && iAnchorlD > 0)
{ /lf travel direction is backward

iAnchorlD--;
setP (&AnchorP, GuidesArray[4*iAnchorD], GuidesArray[4*iAnchorlD+1], 0);

}
else if (bDecreaseAnchorlD == FALSE && iAnchorlD < iNumGuides-1)
{ /lf travel direction is forward

iAnchorlD++;
setP (&AnchorP, GuidesArray[4*iAnchorlD+2], GuidesArray[4*iAnchorlD+3], 0);

}
}

Attractive Force Used for Guide Agent

ComputeAnchorForce
void HLCALLBACK ComputeAnchorForce(HDdouble force[3], HLcache *cache, void *userdata)
{

//Typecast the pointer passed in appropriately
vmap_anchorforce* pvanchorforce = (vmapanchorforce*)userdata;

/Get proxy position in physical workspace frame
static HLdouble Pp[3]; /Proxy in physical (phantom) workspace
static VECTORTYPE Pw; /Proxy in world workspace

//Transform the proxy to worldspace keeping in vmap units
hdGetDoublev(HDCURRENTPOSITION, Pp);
pvanchorforce->PWTransformVmap(&Pw, Pp);

/Compute the anchor point from which spring force should be calculated
/Variable is static so that it holds the point until intentionally reassigned
/Otherwise anchor point(s) will reset everytime function is called
pvanchorforce->ComputeAnchorPoint(Pw);

static VECTORTYPE anchorP;
pvanchorforce->SetAnchorPoint(&anchorP);

if (anchorP.z != -1000000)
{

/Calculate force between the anchor point and the proxy
HLdouble forceVec[3] = {0,0,0}; /vector to hold temporary force values

//Calculate distance vector between the proxy and the anchor point
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HLdouble diffVec[3];
diffVec[0] = anchorP.x - Pw.x;
diffVec[1] = anchorP.y - Pw.y;
diffVec[2] = anchorP.z - Pw.z;

HDdouble springStiffness = pvanchorforce->xdSprngStiffness(;

for (nt i=0;i<3;i++)
{ forceVec[i] = springStiffness * diffVec[i];}

//Find the max continuous force that the device is capable of (error handling)
HDdouble nominalMaxContinuousForce;
hdGetDoublev(HDNOMINALMAXCONTINUOUSFORCE,

&nominalMaxContinuousForce);

//Limit force calculated to Max continuous to avoid exceeding value
for (nt i=0;i<3;i++)
{

if(forceVec[i]>nominalMaxContinuousForce/2)
forceVec[i] =nominalMaxContinuousForce/2;

if(forceVec[i]<-nominalMaxContinuousForce/2)
forceVec[i] = -nominalMaxContinuousForce/2;

}

//Rotate to physical (phantom) workspace (-90 deg about x) and add to the existing force
force[0] += forceVec[0];
force[1] += forceVec[2];
force[2] -= forceVec[1];

}

return;
}

A.5 AUDIO GUIDE PROGRAM CODE

This function is responsible for executing all four audio guides depending on the user

designated condition (e.g., manual audio, auto audio).

ExecuteAudioGuide
void vmap::ExecuteAudioGuide(void)
{

char* szTempPrevlD = NULL;
static DATATYPE* pdt = NULL;
int ilD = 1;

vmaplocation* pLocation = NULL; //Pointer to vmaplocation object
if ( locations.ListisNotEmpty() //If locations exist, initialize the sound variables
{

szCurrentlDSnd = NULL;
szPrevlDSnd = NULL; szNextlDSnd = NULL;
szPrevDirSnd = NULL; szNextDirSnd = NULL;
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PrevlDCoord.x = -1000000; PrevlDCoord.y = -1000000; PrevlDCoord.z = -1000000;
NextlDCoord.x = -1000000; NextlDCoord.y = -1000000; NextlDCoord.z = -1000000;

pLocation = locations.GetNextObj(TRUE);
while ( pLocation != NULL) /Loop through the all the locations
{

if (pLocation->xBln() == TRUE) //lf the proxy is contained in a specific location
{

/Set the location ID sound to that of the object the proxy is in
szCurrentlDSnd = pLocation->xszlDSnd(;
szPrevDirSnd = pLocation->xszPrevSndo;
szNextDirSnd = pLocation->xszNextSnd(;

//Automatically play the ID sound if it's the first time in the way point
if(bAudioGuideAutoPlay == TRUE && pLocation->xBWasln() == FALSE

&& pLocation->xiLocationType( == 1)
{

if (vAnchorForce.xiTestMode() == 2) //Auto audio mode
{

if (vAnchorForce.xbDecAnchorlD() == FALSE)
{

pdt = Data->RecCommand( iCMDPLAYIDSOUND);
vAud->ID(szNextDirSnd, Px, Py, Pz, AUDbNOW,

AUDiDISTSCALE_ON, AUD_iVOL, pdt);
}
else
{ /Play directions to the next way pt

pdt = Data->RecCommand( iCMDPLAYIDSOUND);
vAud->ID(szPrevDirSnd, Px, Py, Pz, AUDbNOW,

AUDiDISTSCALEON, AUD_iVOL, pdt);
}

}
else I/All other modes
{ /Play the way point ID number

pdt = Data->RecCommand( iCMDPLAYIDSOUND);
vAud->lD(szCurrentlDSnd, Px, Py, Pz, AUDbNOW,

AUDiDISTSCALEON, AUDiVOL, pdt);
}

}

I/Iterate to the next location on the route and save the coordinates for the
/manual spatialized guide
pLocation = locations.GetNextObj(;
if ( pLocation != NULL && ilD < iNumWayPoints-1)
{

NextlDCoord.x = pLocation->xXs(;
NextlDCoord.y = pLocation->xYso;
Next|DCoord.z = pLocation->xZs();

}
else
{

NextlDCoord.x = -1000000;
NextlDCoord.y = -1000000;
Next|DCoord.z = -1000000;

}
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return;
}

/f proxy was not found in the location, save the location's coordinates and set as
/the previous way pt's coordinates for the manual spatialized guide and iterate to
lithe next way pt to check
if ( ilD < iNumWayPoints-1) /iNumWayPoints is equal to 11
{

PrevlDCoord.x = pLocation->xXs(;
PrevlDCoord.y = pLocation->xYs(;
PrevlDCoord.z = pLocation->xZs();

}
else
{

PrevlDCoord.x = -1000000;
PrevlDCoord.y = -1000000;
PrevlDCoord.z = -1000000;

}

pLocation = locations.GetNextObjo;
ilD++;

}
}
return;

}
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APPENDIx B: EXPERIMENTAL DATA

B.1 FORCE FIELD EXPERIMENT #1 DATA

Subec ID Tra Codto Ma . Exlr 0 ime (s Bul rim (s Bul0Err

1 Training #1 No Force Field 2 253 153 4
1 Test #1 No Force Field 4 325 139 1
1 Training #2 Force Field 1 152 183 0
1 Test #2 Force Field 3 225 76 0
2 Training #1 Force Field 2 186 92 3
2 Test #1 Force Field 4 707 122 3
2 Training #2 No Force Field 1 450 90 0
2 Test #2 No Force Field 3 560 57 1
3 Training #1 No Force Field 1 248 108 4
3 Test #1 No Force Field 4 340 89 2
3 Training #2 Force Field 2 1120 100 0
3 Test #2 Force Field 3 329 72 1
4 Training #1 Force Field 1 183 66 3
4 Test #1 Force Field 3 255 62 2
4 Training #2 No Force Field 2 259 50 1
4 Test #2 No Force Field 4 207 47 2
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B.2 FORCE FIELD EXPERIMENT #2 DATA

Subject #1

Training #1 Force Field B 60 0
Test #1 Force Field 2 16 0
Test #2 Force Field 9 20 0
Test #3 Force Field 3 19 0
Test #4 Force Field 7 18 0
Test #5 Force Field 6 13 0
Test #6 Force Field 10 15 0
Test #7 Force Field 1 11 0
Test #8 Force Field 8 12 0
Test #9 Force Field 5 18 0
Test #10 Force Field 4 10 0
Training #2 No Force Field A 30 0
Test #11 No Force Field 9 16 0
Test #12 No Force Field 5 15 0
Test #13 No Force Field 2 17 0
Test #14 No Force Field 4 14 0
Test #15 No Force Field 8 17 0
Test #16 No Force Field 3 14 0
Test #17 No Force Field 1 9 0
Test #18 No Force Field 7 14 0
Test #19 No Force Field 10 8 0
Test #20 No Force Field 6 14 0

Subject #5

Training #1 No Force Field A 161 0
Test #1 No Force Field 5 51 0
Test #2 No Force Field 4 72 0
Test #3 No Force Field 8 105 0
Test #4 No Force Field 6 40 0
Test #5 No Force Field 1 35 0
Test #6 No Force Field 3 32 0
Test #7 No Force Field 9 67 0
Test #8 No Force Field 10 44 0
Test #9 No Force Field 7 45 0
Test #10 No Force Field 2 65 0
Training #2 Force Field B 63 0
Test #11 Force Field 7 35 0
Test #12 Force Field 3 36 0
Test #13 Force Field 5 17 0
Test #14 Force Field 8 48 0
Test #15 Force Field 2 20 0
Test #16 Force Field 1 29 0
Test #17 Force Field 6 29 0
Test #18 Force Field 4 19 0
Test #19 Force Field 9 27 0
Test #20 Force Field 10 25 0
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Subject #6

Training #1 Force Field B 82 0
Test #1 Force Field 5 16 0
Test #2 Force Field 2 20 0
Test #3 Force Field 8 19 0
Test #4 Force Field 9 18 0
Test #5 Force Field 10 13 0
Test #6 Force Field 7 15 0
Test #7 Force Field 6 11 0
Test #8 Force Field 1 12 0
Test #9 Force Field 3 18 0
Test #10 Force Field 4 10 0
Training #2 No Force Field A 45 0
Test #11 No Force Field 9 16 0
Test #12 No Force Field 5 15 0
Test #13 No Force Field 2 17 0
Test #14 No Force Field 4 14 0
Test #15 No Force Field 8 17 0
Test #16 No Force Field 3 14 0
Test #17 No Force Field 1 9 0
Test #18 No Force Field 7 14 0
Test #19 No Force Field 10 8 0
Test #20 No Force Field 6 14 0

Subject #7

Training #1 No Force Field B 270 0
Test #1 No Force Field 5 51 0
Test #2 No Force Field 4 72 0
Test #3 No Force Field 8 105 0
Test #4 No Force Field 6 40 0
Test #5 No Force Field 1 35 0
Test #6 No Force Field 3 32 0
Test #7 No Force Field 9 67 0
Test #8 No Force Field 10 44 0
Test #9 No Force Field 7 45 0
Test #10 No Force Field 2 65 0
Training #2 Force Field A 63 0
Test #11 Force Field 7 35 0
Test #12 Force Field 3 36 0
Test #13 Force Field 5 17 0
Test #14 Force Field 8 48 0
Test #15 Force Field 2 20 0
Test #16 Force Field 1 29 0
Test #17 Force Field 6 29 0
Test #18 Force Field 4 19 0
Test #19 Force Field 9 27 0
Test #20 Force Field 10 25 0
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B.3 HAPTIc GUIDE EXPERIMENT DATA

1 Training #1 1 Guide Une 176 27 1 1 0 - - - -

1 Training #2 3 Manual 93 19 7 0 2 - - - -

1 Training #3 5 Tether 125 20 2 0 1 - - - -

1 Training #4 8 Automatic 130 22 2 0 0 - - - -

1 Test #1 2 Manual 75 19 2 0 0 1 1 1 1
1 Test #2 4 Automatic 76 33 3 0 0 2 2 1 2
1 Test #3 6 Tether 61 24 3 0 0 4 4 1 4
1 Test #4 7 Guide Une 160 24 3 0 0 3 3 1 3
5 Training #1 1 Tether 525 30 16 2 3 - - - -

5 Training #2 4 Guide Une 275 25 3 0 0 - - - -

5 Training #3 6 Manual 412 20 5 2 2 - - - -

5 Training #4 7 Automatic 374 25 3 2 0 - - - -

5 Test #1 2 Automatic 110 18 2 0 0 2 2 1 2

5 Test #2 3 Tether 149 25 5 2 1 3 3 3 3
5 Test #3 5 Manual 200 16 6 0 2 1 1 2 1
5 Test #4 8 Guide Line 80 20 3 2 0 4 4 4 4
6 Training #1 1 Automatic 593 20 9 1 1 - - - -

6 Training #2 3 Guide Une 145 25 13 0 2 - - - -

6 Training #3 5 Tether 239 39 5 0 0 - - - -

6 Training #4 7 Manual 510 16 22 1 0 - - - -

6 Test #1 2 Tether 219 16 6 0 1 4 4 4 4

6 Test #2 4 Manual 111 21 4 0 0 1 1 1 1
6 Test #3 6 Guide Line 186 15 5 0 0 3 3 3 3
6 Test #4 8 Automatic 230 10 10 0 3 2 2 2 2
7 Training #1 2 Guide Une 176 27 1 1 0 - - - -

7 Training #2 4 Manual 93 19 7 0 2 - - - -

7 Training #3 5 Tether 125 20 2 0 1 - - - -

7 Training #4 7 Automatic 130 22 2 0 0 - - - -

7 Test #1 1 Guide Line 102 91 10 2 3 4 3 4 4

7 Test #2 3 Automatic 51 145 24 2 4 3 4 1 3
7 Test #3 6 Tether 152 3 10 0 2 2 2 3 2

7 Test #4 8 Manual 139 102 3 4 0 1 1 2 1

*Preference is the average of the Helpful, Easiest, and Confidence rankings.
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B.4 AUDIo GUIDE EXPERIMENT DATA

1ujctI Testl #1 oSdatiozdnua 4a 38. 3xlrto 0aiato 2ror 1epu 1ais 1.3decPeerne

1 Training #1 Automatic 6 125 3 0 - - - -
1 Training #2 Spatialized Manual 3 77 3 0 - - - -
1 Training #3 Landmark 7 97 3 0 - - - -
1 Training #4 Manual 1 57 4 0 - - - -

1 Test #1 Spatialized Manual 4 38 3 0 2 1 1 1.3
1 Test #2 Automatic 6 95 3 0 1 3 1 1.7
1 Test #3 Manual 2 47 3 0 2 1 1 21.3
1 Test #4 Landmark 8 117 3 0 4 4 4 4.0
5 Training #1 Manual 1 207 6 0 - - - -

5 Training #2 Landmark 7 285 7 1 - - - -

5 Training #3 Automatic 5 100 3 0 - - - -

5 Training #4 Spatialized Manual 3 101 3 0 - - - -

5 Test #1 Automatic 6 113 3 0 1 1 3 1.7
5 Test #2 Spatialized Manual 4 158 4 0 2 2 2 2.0
5 Test #3 Manual 2 159 3 0 2 2 2 2.0
5 Test #4 Landmark 8 247 2 0 4 4 1 3.0
6 Training #1 Landmark 7 201 25 2 - - - -

6 Training #2 Manual 1 126 5 0 - - - -

6 Training #3 Automatic 5 126 5 0 - - - -

6 Training #4 Spatialized Manual 3 156 8 1 - - - -

6 Test #1 Automatic 6 55 9 1 1 1 1 1.0
6 Test #2 Manual 2 31 4 0 2 2 2 2.0
6 Test #3 Landmark 8 77 5 0 3 3 3 3.0
6 Test #4 Spatialized Manual 4 72 4 2 4 4 4 4.0
7 Training #1 Manual 1 167 12 1 - - - -

7 Training #2 Spatialized Manual 3 300 7 1 - - - -

7 Training #3 Landmark 7 102 8 0 - - - -

7 Training #4 Automatic 5 47 11 0 - - - -

7 Test #1 Landmark 8 77 5 0 4 4 3 3.7
7 Test #2 Spatialized Manual 4 39 3 0 2 1 1 1.3
7 Test #3 Automatic 6 48 6 0 1 3 4 2.7
7 Test #4 Manual 2 36 8 0 3 2 2 2.3

*Preference is the average of the Helpful, Easiest, and Confidence rankings.

96



B.5 INITIAL MAIN EXPERIMENT DATA

8 Training #1 Audio 6 1021 55 5 - - - -

8 Training #2 Haptic 5 580 151 17 - - - -

8 Training#3 None 4 1300 32 4 - - - -

8 Test#1 None 2 385 30 2 2 2 1 1.7
8 Test #2 Audio 1 218 138 10 1 1 2 1.3
8 Test #3 Haptic 3 390 50 6 3 3 3 3.0
9 Training#1 Audio 1 1005 44 9 - - - -

9 Training #2 None 6 274 147 32 - - - -

9 Training #3 Haptic 2 1096 55 17 - - - -

9 Test #1 Haptic 3 1162 56 6 2 3 3 2.7
9 Test #2 Audio 5 990 38 3 1 1 1 1.0
9 Test #3 None 4 790 38 9 3 2 2 2.3
10 Training #1 Haptic 5 1110 205 16 - - - -

10 Training #2 None 4 566 27 4 - - - -

10 Training #3 Audio 1 248 352 36 - - - -

10 Test#1 None 3 225 199 15 2 1 1 1.3
10 Test #2 Haptic 2 198 135 13 3 1 3 2.3
10 Test #3 Audio 6 133 152 14 1 1 1 1.0
11 Training #1 Haptic 6 1340 133 16 - - - -

11 Training #2 Audio 1 539 20 3 - - - -

11 Training #3 None 4 411 16 4 - - - -

11 Test #1 Audio 5 237 13 2 1 1 1 1.0
11 Test#2 None 1 354 24 1 2 2 2 2.0
11 Test #3 Haptic 3 720 18 4 3 3 3 3.0

*Preference is the average of the Helpful, Easiest, and Confidence rankings.
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B.6 FINAL MAIN EXPERIMENT DATA

Number of

Completion Time (s) Navigation Subject Ranking
Subject ID Trial Map # Condition Learn Navigation Errors Helpful Easiest Confidence Preference*

12

12

12

12

12

12

13

13
13
13
13
13
14
14

14
14

14

14

15

15
15
15
15
15
16
16
16
16
16
16
17
17
17
17
17
17
18
18
18
18
18
18

Training #1
Training #2
Training #3
Test #1
Test #2
Test #3
Training #1
Training #2
Training #3
Test #1
Test #2
Test #3
Training #1
Training #2
Training #3
Test #1
Test #2
Test #3
Training #1
Training #2
Training #3
Test #1
Test #2
Test #3
Training #1
Training #2
Training #3
Test #1
Test #2
Test #3
Training #1
Training #2
Training #3
Test #1
Test #2
Test #3
Training #1
Training #2
Training #3
Test #1
Test #2
Test #3

Audio
Haptic
None
None
Audio
Haptic
Audio
None
Haptic
Haptic
Audio
None
Haptic
None
Audio
None
Haptic
Audio
Haptic
Audio
None
Audio
None
Haptic
None
Haptic
Audio
Haptic
None
Audio
Audio
None
Haptic
None
Audio
Haptic
None
Audio
Haptic
Audio
Haptic
None

1295
738
939
821
428
526
620
494
598
308
604
344
1650
870
1106
281
960
725

1929
1110
489
270
144
195
510
1050
840
360
600
375
1195
546
525
499
396
263
1259
730
553
1429
470
732

69
34

19
26
127
120
26
40
24
13

19

20
17

58
34

9
29
35

188
195
64
36
50
38
62
90
44
65

44

25
35
14

43

13

25
94
24

46

41

84

240
45

1.7
3.0
1.3

1.3
3.0
1.3

1.0
3.0
2.0

2.0
2.0
2.0

2.7
1.3
2.0

2.7
2.3
1.0

2.0

1.0
2.0

*Preference is the average of the Helpful, Easiest, and Confidence rankings.
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19 Training #1 3 Audio 345 12 1 - - - -

19 Training #2 5 Haptic 1285 22 2 - - - -

19 Training #3 2 None 828 18 4 - - - -

19 Test #1 4 Haptic 870 194 26 2 2 2 2.0

19 Test #2 1 Audio 810 22 1 1 1 1 1.0
19 Test #3 6 None 866 20 3 3 3 3 3.0
20 Training #1 2 None 867 18 4 - - - -

20 Training #2 3 Audio 570 41 6 - - - -

20 Training #3 6 Haptic 1314 87 14 - - - -

20 Test #1 1 Audio 296 81 8 1 1 1 1.0
20 Test #2 5 Haptic 235 12 4 2 2 2 2.0

20 Test #3 4 None 809 45 6 3 3 2 2.7
21 Training #1 2 None 500 35 5 - - - -

21 Training #2 5 Audio 685 20 3 - - - -

21 Training #3 1 Haptic 750 28 4 - - - -

21 Test #1 6 Haptic 660 17 1 1 1 2 1.3
21 Test #2 3 None 452 16 1 3 2 1 2.0

21 Test #3 4 Audio 825 31 2 2 3 3 2.7

*Preference is the average of the Helpful, Easiest, and Confidence rankings.
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