
Flexible Schedule Optimization for

Human-Robot Collaboration

by

Ronald J. Wilcox

B.S., The College of William & Mary (2011)

ARCHMS
MASSACHUSETTS INSTffJTE

OF TECHNOLOGY

JUN 2 5 2013

LIBRARIES

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Massachusetts Institute of Technology 2013.

A uthor
//
'

All rights reserved.

Departmgnt of Mechanical Engineering
May 10, 2013

Certified by..
Julie A. Shah

Boeing Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

C ertified by
H. Harry Asada

Ford Professor of Engineering
-' Thesis Supervisor

A ccepted by
S"David'E.' Hrdt

Chairman, Department Committee on Graduate Theses

KY

.....................

2

Flexible Schedule Optimization for

Human-Robot Collaboration

by

Ronald J. Wilcox

Submitted to the Department of Mechanical Engineering
on May 10, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Robots are increasingly entering domains typically thought of as human-only. This
convergence of human and robotic agents leads to a need for new technology to enable
safe and efficient collaboration. The goal of this thesis is to develop a task allocation
and scheduling algorithm for teams of robots working with or around teams of humans
in intense domains where tight, fluid choreography of robotic schedules is required to
guarantee the safety of all involved while maintaining high levels of productivity.

Three algorithms are presented in this work: the Adaptive Preferences Algorithm,
the Multi-Agent Optimization Algorithm, and Tercio. Tercio, the culminatory algo-
rithm, is capable of assigning robots to tasks and producing near-optimal schedules
for ten agents and hundreds of tasks in seconds while making guarantees about pro-
cess specifications such as worker safety and deadline satisfaction. This work extends
dynamic scheduling methods to incorporate flexible windows with an optimization
framework featuring a mixed integer program and a satisficing hueristic scheduler.

By making use of Tercio, a manufacturing facility or other high-intensity domain
may fluidly command a team of robots to complete tasks in a quick, efficient manner
while maintaining an ability to respond seamlessly to disturbances at execution. This
greatly increases both productivity, by decreasing the time spent recompiling solu-
tions, and responsiveness to humans in the area. These improvements in performance
are displayed with multiple live demonstrations and simulations of teams of robots re-
sponding to disturbances. Tercio acts as an enabling step towards the ultimate goal
of fully coordinated factories of dozens to hundreds of robots accomplishing many
thousands of tasks in a safe, predictable, efficient manner.

Thesis Supervisor: Julie A. Shah
Title: Boeing Assistant Professor of Aeronautics and Astronautics

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Engineering

3

4

Acknowledgments

I would like to thank all those who supported me in completing this thesis.

I am deeply grateful to my adviser, Julie Shah. Starting a research group from

scratch is no easy task, yet her vision and deft management have already built the

Interactive Robotics Group (IRG) into a place I've been proud to call home for two

years. She took a chance on a theoretical physics undergraduate who didn't know the

first thing about computer programming, let alone robots; her extraordinary patience

and constant willingness to explain and aid were always matched by a steadfast belief

in me both technically and personally. I am also very grateful for the opportunities she

has given me, from international trips to attend prestigious conferences to conducting

frequent lab tours and the associated chances to hone my presentation skills. I thank

her, as well, for fully supporting me in my choices for the future and for always giving

me the best of advice in pursuing my goals even when I wasn't sure what they were.

I am very grateful for all Julie has given me, and I count myself an immensely lucky

individual for having had this experience working with her (even despite not having

a blender in the lab).

I would not have been able to successfully complete this thesis without the con-

stant help and support of my labmates here in the IRG. My thanks for help with

demos, comments and critiques on papers and presentations, and all-around jovial-

ness, making it easy to look forward to working in the lab every day. It was an honor

being Social Chair for such a friendly, accepting, and talented group of people. Spe-

cial thanks to Matthew Gombolay, whose brilliance led to many of the innovations

in Tercio and whose friendship and conversations were some of the highlights of my

graduate years.

My thanks to Professor Harry Asada, my Mechanical Engineering advisor, for his

help and guidance throughout my journey researching Artificial Intelligence in the

Mechanical Engineering Department. I am very appreciative of the inclusiveness that

allowed me to join the group meetings and lunches of the D'Arbeloff Laboratory.

I very much enjoyed witnessing the creative, clever designs and analysis of the lab

5

members, improving my knowledge of state-of-the-art mechanics while participating

in the collaborative, supportive atmosphere among the students.

I am very grateful to the members of the Man-Vehicle Lab. Their inviting welcome

towards new IRG students and familial attitude towards each other gave our fledgling

group a social atmosphere to work towards. I thank them for being the surrogate

elder grad students and showing us the ropes when we needed it. MVL members

excel in finding a balance between life and work, reminding me frequently that there

is so much in Boston and Cambridge to do, so many people to meet, and so much

fun to be had. My thanks also for convincing me to push myself towards completing

my first triathlon; I couldn't have hoped for a more inspiring group of people to train

with.

Finally, my heartfelt thanks to my family for providing the caring, supportive

home base for my many trials and adventures. I would not be who I am today

without you. I thank my Dad for his guidance, from fixing the terrible English in

a third grader's Ben Franklin book report to editing the professional resume of that

same third grader setting off for a career, you've been there every step of the way,

providing a strong example of how to live firmly rooted in one's beliefs and values.

I thank my Mom for her compassion, showing me that living with your heart on

your sleeve is the truest and deepest form of honesty and humility. You've been

my constant pillar of support, providing my first and most enduring example of

love. I thank my sister and brother, Mary and Joe, for their surefire friendship (and

occasional artistic direction); every playful jab of wit and wisdom reveals itself day-in

and day-out as evidence of the deep connection we will always have. Lastly, I thank

Meg for her love; a separation that began six years ago is finally coming to a close,

and as a new chapter begins I cannot fathom my fortune that I can experience it with

you.

6

Contents

1 Introduction 15

1.1 Multi-Robot and Human-Robot Collaboration in the Assembly of Large

Aerospace Structures . 16

1.2 The Adaptive Preferences Algorithm 19

1.3 The Multi-Agent Optimization Algorithm 20

1.4 T ercio . 21

2 The Adaptive Preferences Algorithm: Optimization of Temporal

Dynamics Using Flexible Windows 23

2.1 Introduction & Motivation . 24

2.1.1 Motivating Applications . 26

2.2 Dynamic Scheduling & Simple Temporal Problems 28

2.3 Simple Temporal Problems with Preferences 34

2.4 The Adaptive Preferences Algorithm 36

2.4.1 Compiler for STPP DO Form 37

2.4.2 Dispatcher . 41

2.5 Empirical Validation & Robot Demonstration 45

2.5.1 Adaptive Preferences Algorithm Evaluation 45

2.5.2 Robotic Demonstration . 48

2.6 Discussion & Improvements . 50

3 Multi-Agent Optimization: Optimization of Task Allocations and

Schedules for Multi-Robot Teams 53

7

3.1 Introduction & Motivation .

3.1.1 Motivating Applications .

3.2 Mixed Integer Programming .

3.3 Multi-Agent Optimization Algorithm

3.3.1 Objective Modeling .

3.3.2 Constraint Modeling .

3.3.3 Processing and Integration .

3.4 Empirical Validation & Robot Demonstration

3.4.1 Multi-Agent Optimization Evaluation

3.4.2 Robotic Demonstration .

3.5 Discussion & Improvements .

4 Tercio: Fast Assignment and Scheduling of Human-Robot Collabo-

rative Teams

4.1 Introduction .

4.2 T ercio .

4.2.1 Problem Statement & Multi-Agent Optimization Review . . .

4.2.2 Tercio Pseudocode

4.2.3 Tercio Agent Allocation

4.2.4 Tercio's Task Sequencer: A Real-

Analogy

4.2.5 Creating Flexible Plans

4.3 Empirical Validation

4.3.1 Tercio Evaluation

4.3.2 Generating Random Problems . .

4.3.3 Computation Speeds

4.3.4 Optimality Levels

4.4 Demonstrations

4.5 Contributions

8

Time

.

.

Processor Scheduling

.

.

.

.

.

.

.

.

.

54

56

57

61

62

63

66

68

68

69

71

73

74

77

77

80

81

83

84

85

85

85

85

86

88

89

5 Conclusions and Future Work 91

5.1 The Adaptive Preferences Algorithm 92

5.2 The Multi-Agent Optimization Algorithm 93

5.3 Tercio . 94

5.4 Factory-Scale Extensions . 95

5.4.1 Multicell Temporal Disturbances 95

5.4.2 Multicell Agential Disturbances 96

9

10

List of Figures

1-1 Projected increase in the use of composite materials over the next two

decades [20] . 17

1-2 Automated Placement Machine (AMP) used to lay down composite

m aterial . 17

1-3 Projected increase in the number of AMPs required to meet the in-

crease in composite laydown [20] . 18

1-4 'Monument' machines used to drill holes in aircraft structures 19

1-5 'Right-sized' robot systems being developed for drilling large aircraft

structures 19

2-1 ABB FRIDA robot acting as a robotic assistant 26

2-2 Spar assembly is a manual process that could be improved by a robotic

assistant (image courtesy of Boeing Research and Technology) 27

2-3 Left: Constraint form representation; indicates that event B must

occur at least 2 time units after event A but no more than 3 time units

after it, or 2 < XB - XA < 3, Right: Distance graph representation;

indicates the same interval as the constraint, but yields two equivalent

inequalities, XB - XA < 3 and XA - XB < -2 28

2-4 Left: Inconsistent two-event STP; forms a negative cycle where the up-

perbound is lower than the lowerbound; Right: After Floyd-Warshall's

algorithm; inconsistent, negative cycle is outlined in red 29

11

2-5 Left: Inconsistent three-event STP; forms a negative cycle where each

event has precedence before the next; Right: After Floyd-Warshall's

algorithm; inconsistent, negative cycle is outlined in red 30

2-6 Left: Inconsistent three-event STP; forms a negative cycle where the

upperbound on one interval is not large enough to let the other two

intervals' lower bounds occur in time; Right: After Floyd-Warshall's

algorithm; inconsistent, negative cycle is outlined in red 30

2-7 Left: Consistent four-event STP; does not explicitly state a constraint

between every pair of events, so contains implicit constraints; Right:

After Floyd-Warshall's algorithm; implicit constraints are exposed . . 30

2-8 Step 1: Dispatching of an STP: propagated times are shown for when

each event would be live; event XA occurs at time t =0 31

2-9 Step 2: Event XB is allowed to occur between t = land t = 4;

at execution, it is selected to execute at t = 2; once it is executed,

constraints are propagated through to give new, tighter bounds for

events Xc and XD - - - - - - - - - - - - -. 32

2-10 Step 3: With the propageted bounds, Event Xc is now allowed to

occur between t = 4 and t = 9; at execution, it is selected to execute

at t = 6; once it is executed, constraints are propagated through to

give new, tighter bounds for event XD 32

2-11 Step 4: With the propageted bounds, Event XD is now allowed to

occur between t = 9 and t = 11; at execution, it is selected to execute

at t = 10; the resulting solution gives a time assignment for each event

that satifies all of the constraints . 33

2-12 An example of the chop in the binary chop method; the original in-

terval (subscripts i) is tightened to the final interval (subscripts f) to
guarantee that any solution would give this interval a preference value

f(t) above y . 36

2-13 Pseudocode for the compilation algorithm 38

2-14 Example STPP to illustrate compilation 40

12

2-15 DO Form of the STPP in Fig. 2-14 40

2-16 Pseudocode for the dispatching algorithm 43

2-17 Dispatching & propagation status after event A has been executed at

t = 0 and event B has been executed at t = 2 44

2-18 Cumulative Compilation Time as a function of the number of events

in the plan . 47

2-19 Plan Flexibility of DO Form and NLP Solution 47

2-20 Compilation Time as a function of the number of events in the plan . 48

2-21 Demonstration Set-up . 49

2-22 STPP for the Robotic Demonstration; the f preference functions cor-

respond to group A workers, while preferences, g, correspond to group

B w orkers . 50

3-1 The effect on compilation time of temporal constraints for plans with

10 workpackages with 2 and 4 agents. There were 50 plans generated

for each constraint data point; mean and standard deviation indicated 69

3-2 Demonstration Set-up . 70

4-1 Example of a team of robots assigned to tasks on a fuselage. 79

4-2 Psuedo-code for the Tercio Algorithm. 81

4-3 Computation Speed as function of number of work packages and num-

ber of agents. Results generated on an Intel Core i7-2820QM CPU

2.30G H z. 86

4-4 Empirical evaluation Tercio suboptimality in makespan for problems

with 4 agents. 87

4-5 Empirical evaluation Tercio suboptimality in number of interfaces for

problems with 4 agents. 87

4-6 Hardware demonstration of Tercio. Two KUKA Youbots build a mock

airplane fuselage. A human worker requests time on the left half of

the fuselage to perform a quality assurance inspection, and the robots

replan . 88

13

4-7 Large scale simulation of Tercio optimizing the work of five robots

working on over 100 tasks on a fuselage. 89

14

Chapter 1

Introduction

Robots are increasingly entering domains and roles typically thought of as human-

only. This convergence of human and robotic agents leads to a need for new technology

to enable safe, trustworthy, and efficient interaction and collaboration. The goal

of this thesis is to develop a task allocation and scheduling algorithm for teams of

robots working with or around teams of humans in intense domains where tight, fluid

choreography of robotic motion is required to guarantee the safety of all involved

while maintaining high levels of productivity.

As robots become more common in manufacturing environments traditionally de-

voted to humans, new technical approaches are needed to enable teams of robots and

teams of humans to work seamlessly and safely around each other. I envision a kind

of choreography where robots can fluidly move around humans, assisting them safely

or simply avoiding them while working on separate tasks. To create this kind of high

level of coordination in a manufacturing environment, algorithms are required that

can schedule the tasks for the robotic team, and quickly modify task allocations and

schedules as disturbances are introduced. In this chapter, I provide an overview of

the technical contributions of this thesis, algorithms that calculate optimal sched-

ules and task allocations while preserving flexibility and robustness to disturbance.

I also motivate the next steps in enabling full factory-scale resource allocation and

scheduling.

In Section 1.1, I provide the motivations for the considered applications within air-

15

craft manufacturing. In Section 1.2, the Adaptive Preferences Algorithm is described

and important contributions are highlighted. In Section 1.3, the Multi-Agent Opti-

mization Algorithm is introduced. In Section 1.4, the multiple working parts of Ter-

cio are described and the important technical innovations and results are highlighted.

Relevant related work is discussed in each individual chapter: Simple Temporal Prob-

lems and Simple Temporal Problems with Preferences in Chapter 2, mixed-integer

programming in Chapter 3, and task allocation and scheduling systems in Chapter 4.

1.1 Multi-Robot and Human-Robot Collaboration

in the Assembly of Large Aerospace Structures

The use of automation and robotics in manufacturing environments has traditionally

depended on highly repetitive, predictable processes. The future of manufacturing,

however, will move towards more semi-structured, variable processes that will require

new, smart decision-making procedures to maximize the productivity benefit from

robotics. Two enlightening examples of this shift and the potential improvements

involved are robotic composite material laydown and robotic drilling of aerospace

structures.

The use of composites in aircraft is projected to increase from 10% to 50% over

the next 20 years, with an associated doubling of the large commercial aircraft fleet

(see Figure 1-1 [20]. At the same time, the industry aims to increase amount of

composite material placed by machines from 30% to 70-80%. Composite material

is currently laid down by large automated placement machines (AMPs) such as the

one shown in Figure 1-2 that require the same amount of area (footprint) as the

wing or fuselage they are constructing. At the current laydown rate of an AMP,

the projected increase in the use of composites will result in a required increase in

the number of machines from around 150 to around 800 (see Figure 1-3) [20]. The

footprint of 800 AMP machines approximately corresponds to the area of 11 football

fields. This increase in factory footprint will significantly increase recurring costs

16

related to factory infrastructure.

Figure 1-1: Projected increase in the use of composite materials over the next two
decades [20]

MTorres - Torreslayup

Figure 1-2: Automated Placement Machine (AMP) used to lay down composite ma-
terial

'Right-sized' robots provide an alternative to monument-style automation for the

aerospace industry. Previous studies assert that multi-robot systems for material

placement may one day be able to achieve 40% the rate of the AMP machines. How-

ever, they provide the ability for parallelization of tasks, so the expected team size

of 5 robots would double the laydown rate while significantly reducing the required

footprint, the amount of energy consumed by the systems, and the capital cost of the

systems themselves. A team of five coordinated robots performing composite material

laydown requires new algorithms in task assignment and scheduling that can enable

17

LCA Composite Ibs (MM)IYear

120

otoot

o Mini Jumbo
6D m Mid Market

ENarrow Body

Y0a

Yeaw

1000 -

900

800_
No Imprlovemnt _____

700-

600
on curren raes

400

300
20 ImprovemeubtYear.
200-

100

0
2005 2010 2015 2020 2025 2030

Year

Figure 1-3: Projected increase in the number of AMPs required to meet the increase
in composite laydown [20]

smart decisions about how to most efficiently perform the work while accommodating

disturbances in the system.

Another important area of improvement is in robotic drilling. A small fraction of

holes are currently drilled in an automated fashion, but the aerospce industry hopes

to nearly fully automate this process in the next 10-20 years. This will require the

number of drilling machines to double to keep up with the demand; these 'monument'

systems, as shown in Figure 1-4, are similar to the AMP machines of composite

laydown in their large footprint and energy consumption.

New 'right-sized' multi-robot systems (as shown in Figure 1-5) will allow for in-

creased rates, in comparison to the the monument systems, and will drastically reduce

factory footprint.

These systems will require a careful choreography of the multiple robots to flow

around each other in efficient, productive, and safe ways. Substantial workflow ben-

efits in assembly and manufacturing tasks can be realized if robotic teams have the

ability to work in concert with each other or with a human worker. For example, a

robotic team that is able to rearrange its schedule to account for a robot failure can

mitigate productivity loss due to the breakdown. Traditionally, human workers and

robots work in isolation from one another, but a large increase in efficiency may be

achieved if humans and robots are allowed to work in the same vicinity. For example,

18

Figure 1-4: 'Monument' machines used to drill holes in aircraft structures

Figure 1-5: 'Right-sized' robot systems being developed for drilling large aircraft
structures

quality assurance teams can inspect work being completed in real time if the robots

have the ability to resequence work dynamically to keep at a safe distance from the

people.

1.2 The Adaptive Preferences Algorithm

In Chapter 2, the Adaptive Preferences Algorithm (APA) is presented. The Adaptive

Preferences Algorithm (APA) uses the output of a non-linear program solver to com-

pute a flexible optimal scheduling policy that accommodates temporal disturbance.

The algorithm also supports on-the-fly optimization in response to changing pref-

19

erences. APA is built upon the foundations of the Simple Temporal Problem with

Preferences model in dynamic scheduling. The Simple Temporal Problem and its fast,

flexible dispatching methods are reviewed. Next, the Simple Temporal Problem with

Preferences is reviewed. This model features the optimization of a Simple Temporal

Problems solution according to soft constraints, also called preferences.

The Adaptive Preferences Algorithm is then described, building on this dynamic

scheduling foundation with the inclusion of convex objective functions and methods

for maintaining flexibility. APA makes use of a nonlinear program solver to create

a dispatchably optimal form of an input Simple Temporal Problem with Preferences

and features a modified dispatching policy that allows for recomputation of opti-

mal schedules in response to large disturbances. Examples are provided to give an

intuitive grasp of how the algorithm computes and dispatches dispatchably optimal

schedules. APA is then empirically evaluated and shown to be capable of maintaining

approximately 70% of the flexibility of the original Simple Temporal Problem with

Preferences, leading to an 80% decrease in the cumulative amount of time spent com-

puting. APA is demonstrated in a hardware testbed where two people with different

assembly styles each collaborate with a robot to assemble a spar. APA is used to

subtly adapt the timing of the robot's actions to each person's individual preferences

for performing the task. The Adaptive Preferences Algorithm is capable of scheduling

a robotic assistant for one-on-one human-robot interaction but cannot consider po-

tential spatial constraints or make decisions in regards to allocating tasks to different

robots; the Multi-Agent Optimization Algorithm provides the necessary extensions

to accomplish these goals.

1.3 The Multi-Agent Optimization Algorithm

In Chapter 3, the Multi-Agent Optimization Algorithm (MAOA) is presented. MAOA

assigns and schedules tasks to agents to meet spatial and temporal requirements on

workflow. Work must be coordinated amongst various agents to maximize efficiency

while satisfying hard safety and resource constraints, among others. Mixed integer

20

programming is reviewed to provide a background for the methods used to model

multiple robots working in close physical proximity. The mathematical formulation of

the mixed integer quadratic program is then presented. Each constraint and objective

in the program is described in the context of real-world manufacturing applications.

The Multi-Agent Optimization Algorithm is a complete algorithm and is empir-

ically evaluated to be capable of scheduling up to 2 robots performing 10-12 tasks

in less than thirty minutes. Larger problem sizes than this lead to intractability in

computation time. MAOA can, however, optimally schedule robots to multiple tasks

and make safety guarantees while maintaining around 40% of the flexibility in the

original input STP. Two simulations are presented in which MAOA is used to sched-

ule and dispatch a team of two robots. MAOA can optimally compute schedules and

task assignments but is limited in its applicability by the problem sizes it can handle;

it is shown that the sequencing, or ordering, of multiple tasks assigned to the same

agent provides the largest contribution to the slow runtime. Tercio, introduced in

Chapter 4, solves this problem by integrating a fast, satisficing scheduler with the

mixed-integer task assignment and flexible dispatching of MAOA.

1.4 Tercio

The Tercio Algorithm is presented in Chapter 4. Tercio features a mixed integer

linear program that computes optimal task allocations. Sequencing of tasks is then

performed by a fast, satisficing scheduler. Solutions are produced in an iterative

manner until a satisfactory total task time (or makespan) is achieved. Tercio makes

use of the flexible windows and adaptive dispatching of APA while encoding all of

the constraints and objectives of MAOA in an efficient algorithm.

Tercio is empirically evaluated to be capable of assigning tasks to agents and cal-

culating near-optimal schedules for up to 10 agents and hundreds of tasks in seconds

on average. Empirical evaluation on small-sized problems demonstrates that solutions

produced are within 10% of the optimal makespan, providing adequate performance

for the factory setting. A hardware demonstration is presented in which a quality as-

21

surance agent requests time on part of a fuselage; Tercio is then applied to recompute

task assignments and schedules to accomodate this request.

Tercio provides first steps towards a sought-after technology for fluid coordina-

tion of multi-human-robotic work. Computation is fast enough to support the fast

recompilation of schedules in response to disturbances or plan changes; Tercio can

handle moderately-sized problems for the factory, involving up to 10 agents and hun-

dreds of tasks. Chapter 5 concludes this thesis with a review of the major technical

contributions and lays out a path for future work that extends the current system to

full factory-scale coordination problems involving dozens of agents and thousands of

tasks.

22

Chapter 2

The Adaptive Preferences

Algorithm: Optimization of

Temporal Dynamics Using Flexible

Windows

In this chapter, we develop a robotic scheduling and control capability that adapts to

the changing preferences of a human co-worker or supervisor while providing strong

guarantees for synchronization and timing of activities. We present the Adaptive

Preferences Algorithm (APA) that uses the output of a non-linear program solver

to compute a flexible optimal scheduling policy that accommodates temporal distur-

bance. The algorithm also supports on-the-fly optimization in response to changing

preferences.

Section 2.1 motivates the problem solved by the Adaptive Preferences Algorithm.

Section 2.2 describes the Simple Temporal Problem model used in dynamic scheduling

to allow for flexibility and adaptability in schedules. Section 2.3 describes the Sim-

ple Temporal Problem with preferences which features the optimization of a Simple

Temporal Problem's solution according to soft constraints, also called 'preferences'

Section 2.4 describes the Adaptive Preferences Algorithm that computes the flex-

23

ible scheduling policy and a dispatching algorithm for scheduling events according

to the flexible policy. Section 2.5 shows empirically that execution of the Adap-

tive Preferences Algorithm is fast, robust, and adaptable to changing preferences for

workflow and presents a demonstration of the capability for human-robot teaming

using a small industrial robot. Section 2.6 discusses the roles preferences can play

in different applications and the potential future extensions that can be made on the

Adaptive Preferences Algorithm.

2.1 Introduction & Motivation

Traditionally, industrial robots in manufacturing and assembly perform work in isola-

tion from people. When this is not possible, the work is done manually. We envision a

new class of manufacturing processes that achieve significant economic and ergonomic

benefit through robotic assistance in manual processes. For example, mechanics in

aircraft assembly spend a significant portion of their time retrieving and staging

tools and parts for each job. A robotic assistant can provide productivity benefit by

performing these non-value-added tasks for the worker. Other concepts for human

and robot co-work envision large industrial robotic systems (such as Figure 1-5 in

Chapter 1) that operate safely in the same physical space as human mechanics by

choreographing their movements around the humans.

The Adaptive Preferences Algorithm is a robotic scheduling and control capability

for human-robot collaborative work that addresses two key challenges in the manu-

facturing environment. First, preferences about task completion are prone to change

since the ordering and timing of activities in many manual processes are left to the

discretion of the human workers. Many manufacturers find that this freedom provides

for higher morale and better productivity from workers. A high level of adaptability

and robustness must therefore be built into any robotic system that works in close

collaboration with people.

Second, human and robotic work in manufacturing and assembly must meet hard

scheduling constraints, including pulse rates between build stations and flow rates for

24

end-to-end assembly. The changing preferences of a human co-worker or supervisor

must be accommodated while preserving strong guarantees for synchronization and

timing of activities.

Our approach generalizes from dynamic scheduling methods [11, 23, 36] first devel-

oped to perform scheduling onboard a deep space satellite [23]. Dynamic scheduling

is domain independent and has been successfully applied to scheduling within the

avionics processor of commercial aircraft [36], autonomous air vehicles [34], robot

walking [14], and recently, human-robot teaming [28, 31]. We leverage prior art

that addresses efficient real-time scheduling of plans whose temporal constraints are

described as Simple Temporal Problems (STPs) [11, 23, 36]. STPs compactly encode

the set of feasible scheduling policies for plan events that are related through simple

interval temporal constraints. Temporal flexibility in the STP provides robustness to

disturbances at execution.

We make use of this simple yet powerful framework to model joint human-robot

work as a Simple Temporal Problem with soft constraints (called preferences). The

preferences encode person-specific workflow patterns and human operator input for

suggested workflow. Simple Temporal Problems with Preferences (STPPs) have been

studied previously [18, 22, 26] for weakest-link optimization criteria, but these solu-

tion techniques do not generalize to optimization criteria relevant to manufacturing

applications. Alternatively, an STPP with arbitrary objective function may be formu-

lated and solved as a non-linear program (NLP), where the solution is an assignment

of execution times to each event in the plan. This approach results in brittle solu-

tions; any disturbance in execution time requires time-consuming re-calculation of

the schedule.

We describe a robotic scheduling capability that leverages the strengths of STP

and NLP solution methods: flexibility in execution and optimization of arbitrary

objective functions, respectively. We present the Adaptive Preferences Algorithm

(APA) that uses the output of a NLP solver to compute a flexible optimal scheduling

policy that accommodates temporal disturbance. The algorithm also supports on-

the-fly optimization in response to changing preferences.

25

2.1.1 Motivating Applications

In this section, we discuss two types of applications that motivate our work: one-on-

one robotic assistance for a worker, and single-operator orchestration of robot teams.

Robotic assistant to assembly mechanic

We aim to develop a capability that supports efficient and productive interaction

between a worker and a robotic assistant, such as the FRIDA robot shown in Fig. 2-

1. Although important aspects like tolerances and completion times are well defined,

many details of assembly tasks such as the ordering and fine-scale timing are left

largely up to the mechanic.

Figure 2-1: ABB FRIDA robot acting as a robotic assistant

Assembly of airplane spars is one example of a manual process where mechanics

develop highly individualized styles for performing the task. Fig. 2-2 shows a me-

chanic assembling a spar composed of two pieces that must be physically manipulated

into alignment. After alignment, wet sealed bolts are hammered into pre-drilled holes

and fastened with collars. Excess sealant is removed, and the collars are re-torqued

to final specifications. The ordering (or 'sequencing') of these tasks is flexible, subject

to the constraint that the sealant is applied within a specified amount of time after

opening it.

A robot such as FRIDA can assist a mechanic by picking bolts and fasteners from

a singulator, rotating them in front of a stationary sealant end-effector, and inserting

them into the bores. This would allow the mechanic to focus on wiping sealant,

26

Figure 2-2: Spar assembly is a manual process that could be improved by a robotic
assistant (image courtesy of Boeing Research and Technology)

hammering the bolts, and placing and torquing the collars. This division of labor

would provide productivity benefit through parallelization of tasks.

Our aim is to enable a robotic assistant in this type of configuration to adapt to

person-specific workflow patterns. If most mechanics like to hammer all bolts before

torquing collars, the robot would support this approach by placing all bolts in a

pattern that anticipates the mechanic's actions. When the robot is paired with a

mechanic that instead prefers to hammer and torque the collar for each bolt as it is

placed, the robot would quickly perceive this difference and reoptimize its schedule

to converge on a turn-taking pattern with the mechanic. The robot woukd adapt

according to the mechanic's preferences, subject to the constraint that the sealant

would be utilized within the specified window.

Robotic Team Orchestration

We also aim for our capability to enable a single operator to direct a team of robots

while ensuring that hard scheduling deadlines such as mandated flow rates are met.

Work will be shifted according to operator preferences through fast re-computation

of the robots' schedule, while preserving guarantees that assembly will finish within

specified deadlines.

Unscheduled maintenance is frequently required for new, specialized robots that

perform traditionally manual work, including drilling and composite lay-down. Cur-

rent practices require all robots halt while one robot is repaired, or while a quality

27

assurance agent inspects the work. These slowdowns and subsequent workflow re-

calculations cost the facilities hours of productivity that can be avoided with the

quick recomputation and flexible schedules provided by our approach. The Adap-

tive Preferences Algorithm presented in this chapter is designed for a single agent;

generalization to multiple agents and the requisite considerations arising from this

transition constitute the primary content of the subsequent two chapters.

2.2 Dynamic Scheduling & Simple Temporal Prob-

lems

In this section, the Simple Temporal Problem and its solutions and capabilities for

dynamic scheduling are reviewed.

A Simple Temporal Problem (STP) [11] consists of a set of executable events,

X. These events are connected via binary temporal constraints (intervals) bij that

indicate a range for the temporal duration between events Xi and X,. Fig. 2-3 (left)

presents the constraint form graphical depiction of a binary temporal constraint.

Events are represented as nodes, and the temporal constraint is depicted with an

arrow and assigned interval.

The STP constraint form may be mapped to an equivalent distance graph form to

support efficient inference [11]. Fig. 2-3 (right) presents the distance graph form of

the temporal constraint. The interval upperbound is mapped to a positive arc from

XA to XB, and the lowerbound is mapped to a negative arc from XB to XA.

3

(2,3) A-2B

Figure 2-3: Left: Constraint form representation; indicates that event B must occur
at least 2 time units after event A but no more than 3 time units after it, or 2 <
XB - XA < 3, Right: Distance graph representation; indicates the same interval as
the constraint, but yields two equivalent inequalities, XB-XA < 3 and XA -XB < -2

28

A solution to an STP is a time assignment to each event such that all binary

temporal constraints are satisfied. An STP is said to be consistent if at least one

solution exists. Checking an STP for consistency can be cast as an all-pairs shortest

path problem. The STP is consistent if and only if there are no negative cycles in

the all-pairs distance graph. Intuitively, this consistency check is searching for a pair

of events where the upperbound of the connecting interval would be less than the

lowerbound, which would require the event to end before it began. This check can

be performed in O(n 3) time by applying the Floyd-Warshall algorithm [11]. Some

pairs of events, although not explicitly related through temporal constraints, may be

implicitly constrained so maintain temporal consistency of the network; the use of

an all-pairs shortest path algorithm also serves to expose these implicit constraints

from the original formulation. Some examples of consistent and inconsistent STPs

both before and after applying the Floyd-Warshall algorithm are given in Figures 2-4

through 2-7.

2

A B(3,2) A-3

Figure 2-4: Left: Inconsistent two-event STP; forms a negative cycle where the
upperbound is lower than the lowerbound; Right: After Floyd-Warshall's algorithm;
inconsistent, negative cycle is outlined in red

The all-pairs shortest path graph of a consistent STP is also a dispatchable form of

the STP, enabling flexible real-time scheduling [23]. The dispatchable STP provides

a compact representation of the set of feasible schedules. Dynamic scheduling of

the dispatchable STP provides a strategy that schedules events online just before

they are executed, with a guarantee that the resulting schedule satisfies the temporal

constraints of the plan. Scheduling events on-the-fly allows the robot to adapt to

temporal disturbance associated with past events through fast linear-time constraint

propagation. More formally, a network is dispatchable if for each variable Xi it is

possible to arbitrarily pick a time t within its timebounds and find feasible execution

29

(3,1

Figure 2-5: Left: Inconsistent three-event STP; forms a negative cycle where each
event has precedence before the next; Right: After Floyd-Warshall's algorithm; in-
consistent, negative cycle is outlined in red

B -2 B

(2,7

A (6,10) A 10 -6

s
(3,5)

C -C

Figure 2-6: Left: Inconsistent three-event STP; forms a negative cycle where the
upperbound on one interval is not large enough to let the other two intervals' lower
bounds occur in time; Right: After Floyd-Warshall's algorithm; inconsistent, nega-
tive cycle is outlined in red

84 B 0
(1,4 ,10) -1 -6

7 -2

A (,)D A D

C 1 C 5

Figure 2-7: Left: Consistent four-event STP; does not explicitly state a constraint
between every pair of events, so contains implicit constraints; Right: After Floyd-
Warshall's algorithm; implicit constraints are exposed

windows in the future for other variables through one-step constraint propagation of

the Xi temporal commitment.

30

The dispatcher schedules events on-the-fly just before they are executed while

guaranteeing that the resulting schedule satisfies the temporal constraints of the plan.

This guarantee is achieved through constraint propagation of temporal commitments

to executed events. An event may be executed if it is both enabled and live. An

event is enabled if all events with lowerbounds to that event (called predecessors,

those events that must 'precede' the considered event) have been executed. An event

is live if the current time of the system falls within the time bounds propagated from

the executed predecessors. The output of the dispatcher is an assignment of event

execution times that satisfies the given temporal constraints of S.

As an example of STP dispatching, Figures 2-8- 2-11 present step-by-step the

dispatching of an STP already in all-pair-shortest-path form. The time at which

event Xi is performed is referred to here as ti. The algorithm logic is shown here;

augmented pseudocode can be seen with a walkthrough in Section 2.4.2.

[1,4]

B

(1,4) 6,10)

(2,7)

(3,11 3,5
C

[3,11]

Figure 2-8: Step 1: Dispatching of an STP: propagated times are shown for when
each event would be live; event XA occurs at time t = 0

In Figure 2-8, Step 1, the constraint form is shown with event XA being assigned

at time t = 0; this selection is propagated through the constraints to the other events

by adding the lower and upperbound from the time assignment to create the bounds

on the time assignment for each event. Thus, constraint bAB propagates to event

XB with tA = 0 to give tB E [tA + bAB(lowerbound), tA + bAB(upperbound)] = [1, .

Constraints are propagated similarly to events Xc and XD.

31

tB=2

B

(1,4)6,10)

(2,7)

tA=0 A (7jp1 D [8,12]

(3,11 3,5)
C

[4,9]

Figure 2-9: Step 2: Event XB is allowed to occur between t = 1 and t = 4; at

execution, it is selected to execute at t = 2; once it is executed, constraints are

propagated through to give new, tighter bounds for events Xc and XD

tB 2

B

(1,4)6,10)

(2,7)

tA=0 A (704 D [9,11]

(3,11 3,5)
C

te=6

Figure 2-10: Step 3: With the propageted bounds, Event Xc is now allowed to occur
between t = 4 and t = 9; at execution, it is selected to execute at t = 6; once it is

executed, constraints are propagated through to give new, tighter bounds for event

XD

In Figure 2-9, Step 2, XB has been executed at time t = 2. Constraint propagation

occurs as before so that tc E [tB+ bBc(lowerbound), tB + bBc(upperbound)] = [2 +

2,2 + 7] = [4,9] and tD E [tB + bBD(lowerbound), tB + bBD(upperbound)] = [2 +

6,2+ 10] = [8, 12]. Note that since the network is in a dispatchable form, all previous

propagated bounds on Xc and XD are still honored; the newly propagated bounds

are either equal to or tighter than the previous bounds.

In Figure 2-10, Step 3, Xc has been executed at time t = 6. Constraint prop-

32

tB=2

B

(1,4)6,10)

(2,7)

(3,11 ,5)
C

tc=6

Figure 2-11: Step 4: With the propageted bounds, Event XD is now allowed to
occur between t = 9 and t = 11; at execution, it is selected to execute at t = 10;
the resulting solution gives a time assignment for each event that satifies all of the
constraints

agation occurs again so that tD E [tC + bCD(lowerbound), tC + bCD(upperbound) =

[6 + 3,6 + 5] = [9, 11]. Finally, in Figure 2-11, Step 4, event XD is executed at time

t = 10.

We now have a solution for the original STP, a time assignment for each event

that satisfies all of the binary constraints. The process of dispatching has allowed the

events to be scheduled on-the-fly, taking into account potential disturbances. Propa-

gating the execution time only once the event has been executed (as opposed to when

it is commanded) yields flexibility to accomodate disturbances in the schedule. In-

stead of constantly having to redesign and rerun an all-pairs shortest path algorithm,

a simple one-step constraint propagation covers a large majority of disturbances. It

is readily seen that an STP with very tight bounds (in the rigid limit, [a, a]) becomes

brittle, losing much of this flexibility to respond to disturbances.

The solutions to the Simple Temporal Problem are simply satisficing, yielding

timepoints that are guaranteed not to invalidate any constraints; solutions do not

have the ability to guide schedules toward desired forms in any way. In the next

section, we describe the Simple Temporal Problem with Preferences, which adds an

additional capability of schedule optimization to the Simple Temporal Problem.

33

2.3 Simple Temporal Problems with Preferences

An STP with Preferences (STPP) [22] is a Simple Temporal Problem with the ad-

dition of soft binary constraints, or preference functions, fbi, (t) relating the temporal

durations between events. The global preference function, F, of an STPP repre-

sents the overall objective function derived from the individual binary constraints'

preference values based on a time assignment to each event. An optimal solution to

the STPP is consistent with the temporal constraints by and optimizes the global

preference function F.

Preferences provide an expressive and natural framework for encoding human in-

put. A supervisor may apply preference functions to specify the most effective timing

for an activity without providing hard constraints that lead to schedule brittleness.

For example, a supervisor may specify the desire for painting to take four hours, but

allow any time up to six hours as acceptable.

Preference functions may also be applied to encode statistical information about

likely execution times for human actions, so as to drive the robot schedule to con-

form to human behavior. Data mining of typical human workflows can provide the

statistical information necessary to infer preference functions. Recent work has also

explored the possibility of having robots learn the preferences of a human partner by

switching roles in a virtual environment [24]. In addition, preference functions may

be used to model the effect of implicit communications; recent studies indicate that

gestures induce preferences over execution sequence and timing in human teams [29].

This effect may be reproduced in human-robot teams using preference functions.

STPPs were originally developed to perform scheduling for Earth observation

satellites [18]. Scientists were asked to provide preferences indicating the most ef-

fective times for them to access the satellite. The STPP framework was applied to

solve the scheduling problem, using an objective function that maximized the pref-

erences of the least satisfied scientist. Solution methods, including a slow constraint

propagation technique and fast binary chop method [26], have been designed for this

weakest link optimization criterion.

34

The binary chop method allows for convex preference functions that include pref-

erence values in the range [0, 1] and finds the maximum minimal preference value,

y, which represents the lowest preference value of any individual interval in the final

solution. All preference values in the optimal solution are enforced to be above this

cutoff by pulling the hard bounds from the edges of the hard binary constraint to

the time points where the cutoff level intercepts the preference curve. Figure 2-12

shows this process in its intuitive, graphical form; here, the initial lowerbound and

upperbound, [lbi, ub] are tightened to their final value so as to guarantee that any

solution would give a preference value above y. Formally, all intervals [lbi,, ubij]

with preference function fj (t) are tightened to [lbf,j, ubf,j) such that y = f, (lbf,j)

and y = fj(ubf,j). The cutoff preference value y is iteratively increased until the

derived hard bounds on all of the intevals become so tight that the problem becomes

infeasible. This chop procedure produces a STP (without preferences) that can be

dispatched as discussed previously to create a solution that satisfies all original hard

binary constraints while guaranteeing that any intervals with preference functions

yield preference values above the cutoff value, y. The final y can be interpreted as a

level of satisfaction that each preference function has been satisfied to; thus, in the

satellite application above, every scientist could be said to be, for example, "at least

.8/1.0 satisfied," giving a level of fairness across multiple teams.

Fairness is not a concern in the optimization of a manufacturing process. It is

acceptable to sacrifice one interval's preference value to improve the preference val-

ues for many other intervals (e.g. slow down one robot so that it does not block

the path for the other robots). For example, for many manufacturing applications,

an approach that optimizes the STPP with respect to the sum of preference values,

EZbi fb 1 (t),is more appropriate. Similarly, in a manufacturing process some intervals

with preference functions may be more important than others; requiring preference

values in [0, 1] precludes much of the possible relative weighting among preference

functions that would be useful in finding optimized schedules for realistic processes.

Finally, creating a cut and disposing of the preference function, simply requiring that

the cut is obeyed discards much preference information that could be used to fine-

35

f (t)

Figure 2-12: An example of the chop in the binary chop method; the original interval
(subscripts i) is tightened to the final interval (subscripts f) to guarantee that any
solution would give this interval a preference value f(t) above y

tune the optimization. An STPP with arbitrary objective function may be formulated

and solved as a non-linear program (NLP), where the solution is an assignment of

execution times to each event in the plan. However, this approach results in brittle

solutions; any disturbance in execution time requires time-consuming re-calculation

of the schedule. In the next sections, we present a method for computing a tempo-

rally flexible optimal scheduling policy that leverages the strengths of STP and NLP

solution methods. The Adaptive Preferences Algorithm computes a flexible optimal

scheduling policy that accommodates fluctuations in execution time and supports

robust online optimization in response to changing preferences.

2.4 The Adaptive Preferences Algorithm

The Adaptive Preferences Algorithm (APA) takes as input a Simple Temporal Prob-

lem with Preferences (STPP), composed of

* a set of variables, X1 , ...X,, representing executable events,

* a set of binary temporal constraints of the form bij encoding activity durations

and qualitative and quantitative temporal relations between events Xi and Xj,

36

" a set of preferences functions of the form f,, (t) encoding preference values over

the temporal interval bij , and

" a global objective criterion F defined as a function of the preferences functions

fbj (t). We use F = Zbi3 fbi (t) for prototyping of the described manufacturing

applications, although note APA generalizes to other forms of the objective

function.

The output of the algorithm is a dispatchably optimal (DO) form of the STPP

that supports fast dynamic scheduling. We define an STPP as dispatchably optimal

if it is possible to maximize the global preference function F through the following

procedure: for each variable Xi it is possible to arbitrarily pick a time t within the

DO form's timebounds and find feasible execution windows in the future for other

variables through fast one-step constraint propagation of the Xi temporal commit-

ment.

Notice that the proposed problem may be formulated as a non-linear optimization

problem to solve for event execution times. This approach provides a solution that

is brittle to disturbance, requiring recomputation when an event does not execute

at precisely the specified time. In contrast, our approach compiles a temporally

flexible optimal scheduling policy that accommodates fluctuations in execution time.

This method leverages the insight that there are many potential schedules that are

consistent with an optimal time assignment to preference functions. Section 2.4.1

presents the compilation algorithm that computes the DO form for the STPP. Section

2.4.2 presents the dispatcher algorithm that generates a schedule using the STPP DO

form, and supports robust online reoptimization in response to changing preferences.

2.4.1 Compiler for STPP DO Form

The Compiler takes as input a STPP composed of events Xi, constraints bij, and

preference functions fb,, (t). It then reformulates and optimizes the STPP as a non-

linear program. The resulting optimal timestamps are used to modify the network

so that intervals with preference functions are tightened to the values returned by

37

the optimizer; intervals without preferences retain their flexibility. After an all-pairs-

shortest-path computation, the resulting output is a DO plan, which encodes a flexible

scheduling policy that maximizes the global preference function F subject to the given

binary temporal constraints bij.

Pseudocode for the compilation algorithm is provided in Fig. 2-13. The first

step (Line 1) of APAcompilePlan is to compute the all-pairs shortest path form

of the STP using the Floyd-Warshall algorithm. This process exposes implicit con-

straints and is necessary to ensure events are scheduled in the proper order with

requisite temporal durations between events. The result of the all-pairs shortest path

computation is a fully-connected network, with binary constraints relating each pair

of events. Many of the added constraints are redundant and can be removed from

the problem (Line 2) without loss of information [23]. Our empirical investigations

indicate that the pruning of redundant constraints reduces the total number of con-

straints by 40 - 50%. The resulting network is the most compact representation of

the binary temporal constraints that still contains all feasible solutions present in the

original problem [23].

function APAcompilePlan(STPP plan)
1. STP compiled_plan = perform APSP(plan)
2. compiledplan = prune redundant edges(compiledplan)
3. optimalexecutiontimes = new NLP Solver(compiledplan)
4. givenprefs = gather constraints with preferences (plan);
5. for(each interval b'{ij} in compiledplan)
6. if(there exists a constraint relating events Xi and Xj in givenprefs)
7. set b' {ij } to difference in optimal execution times[Xj-Xi];
8. end if
9. end for
10. perform APSP (compiledplan);
11. return compiledplan;

Figure 2-13: Pseudocode for the compilation algorithm

In Line 3, we use the resulting representation as input to a standard, third-party

optimization solver [1]. The STPP is formulated as a nonlinear program as follows.

38

Events are encoded as variables with ranges that span the possible execution times

computed by the APSP computation. Binary constraints are formulated as linear

inequality constraints relating the variables. For the manufacturing applications we

are interested in, the objective function is defined as EZbi fa3 (t), the sum of the

preference values evaluated across each binary interval constraint. The preference

functions are permitted to be nonlinear, resulting in the nonlinear formulation, but

are required to be convex. The solver returns an assignment of event execution times

that optimizes the global preference value F subject to the given constraints bij.

Note that we do not use the output of the nonlinear optimizer directly to set

the schedule, as this would provide no robustness to uncertainty and disturbance in

the execution. Instead, we use the output as follows to reformulate the STPP and

compute a temporally flexible, optimal scheduling policy.

In Line 4, the algorithm iterates through all constraints in the original STPP and

makes a list givenprefs of those that have preference functions associated with them.

Line 5 searches through each constraint b'i in the partially compiled plan. If b 3 also

exists in given-prefs, then b'i is updated, setting both the upper and lower bounds of

the constraint to the optimized time of execution (with a small tolerance built in).

Finally, in Line 10, the APSP network is computed to expose implicit constraints of

the tightened network. The result (Line 11) is a DO form of the STPP that preserves

temporal flexibility in the network where there is no impact on the time assignments

to preference values.

We now walk through an illustrative example for applying the compilation al-

gorithm (for simplicity, we refer to both XA as A). Consider the STPP shown in

Fig. 2-14. This network is an all-pairs-shortest path graph (Line 1), with all implicit

constraints exposed, and does not contain any redundant constraints (Line 2). Line

3 generates a list containing the following constraints with preference functions: bAD

and bBC-

Line 4 creates a solver with variables for each event: A, B, C, D. All six intervals

act as inequality constraints (e.g. for interval AC, we have 3 < C - A < 11). The

objective function is given by

39

(7_14) D AD(t)=-t 2+21t-98
4) BC(t) =-t2+9t-14

(3,11r 35)
C

Figure 2-14: Example STPP to illustrate compilation

fglobal -(D - A) 2 + 21(D - A) - 98 - (B - C) 2 + 9(B - C) - 14. (2.1)

The non-linear program is solved, and yields optimal execution times of A =

0, B = 2, C = 6.5, D = 10.5. Next, we create a new copy of the plan and re-

place intervals bAD = [7, 14] with bAD = [10.5,10.5] and BC[2, 7] with BC[4.5, 4.5].

Performing Floyd Warshall on this new network then produces the DO form of the

STPP, given in Fig. 2-15. Any choice of times satisfying the constraints in Fig. 2-15

produces a solution that maximizes the global preference value fglobal.

Figure 2-15: DO Form of the STPP in Fig. 2-14

Next, we provide a proof that the STPP-DO form computed by APAcompile-

Plan encodes all feasible solutions in the original STPP that are consistent with a

given optimal time assignment to preference functions. In the next section, we discuss

the process for dispatching the DO form of the STPP.

40

Lemma (STPP-DO Form): Given an STPP with an optimal time assignment

tb, -+ fbi, (t) to each preference function,

(i) the STPP-DO form encodes all feasible solutions in the STPP that are consis-

tent with tb, -+ fbi (t), and

(ii) the STPP-DO form supports dispatchable scheduling.

Proof: (i) Lines 5-8 in APAcompilePlan tighten constraints in the original

STPP, ensuring that any solution satisfies tbj -+ fb,3 (t) and achieves the optimal

global preference value. Line 10 computes the all-pairs-shortest-path form of the

resulting STP, which by definition contains all feasible solutions present in the original

problem [23] that also satisfy tb3 --+ fbi (t).

(ii) The resulting STPP-DO form returned at Line 11 is an all-pairs-shortest-path

STP, which by definition is also a dispatchable STP [23].

2.4.2 Dispatcher

In this section, we present a dispatcher algorithm that supports two functions: the dis-

patcher (function1) generates a schedule using the STPP DO form, and (function2)

supports robust online reoptimization in response to changing preferences. The dis-

patcher takes as input an STP compiled-plan that encodes the DO form of an STPP

S. As in Section 2.2, the dispatcher schedules events on-the-fly just before they are

executed while guaranteeing that the resulting schedule satisfies the temporal con-

straints of the plan. This guarantee is achieved through constraint propagation of

temporal commitments to executed events. The output of the dispatcher is an as-

signment of event execution times that optimizes the STPP S global preference value

F, subject to the given temporal constraints of S.

The dispatcher also supports robust online replanning of the DO form, in response

to changing preference functions and disturbances in the optimal execution. In these

situations, the DO form must be recompiled by calling the algorithm APAcompile-

Plan with the modified STPP S'. As discussed in Section 2.5.1, this recompilation

takes on the order of seconds for moderately-sized real-world problems.

Function1 of the dispatcher is achieved using the standard STP dispatching

41

algorithm [23]. Function2 is achieved by augmenting the STP dispatching algorithm

with two additional methods: the first method triggers recompilation for changing

preference functions or deviations from the optimal schedule; the second method runs

concurrently to ensure the dispatcher makes progress during recompilation and that

the execution schedule satisfies the hard constraints of the STPP S.

Fig. 2-16 presents the STPP dispatching algorithm. Augmentations to the stan-

dard STP dispatching algorithm are highlighted. We walk through the dispatch of

the DO plan in Fig. 2-15 to illustrate the algorithm.

First, in Line 1, all events without predecessors are added to the Enabled list. In

our example from Fig. 2-15, event A is initially added to the Enabled list. In Line 2,

the current time is set to zero. Line 3 contains the first major change to the standard

dispatching algorithm. Here a concurrent thread is started to shadow dispatch the

STP associated with the orig-plan. This thread is used to ensure the dispatcher

makes progress during recompilation and that the execution schedule satisfies the

hard constraints of orig-plan.

Dispatching continues until there are no unexecuted events in the plan (Line 5).

If new preference functions are made available or the execution deviates from the

optimal scheduling policy, recompilation is triggered (Line 6). Execution control is

switched to the STPdispatch thread (Line 7). The orig-plan is updated with execution

commitments (Line 8) and is compiled (Line 9). Next, execution control is transferred

back to STPPdispatch (Line 9), and execution proceeds in Lines 11-25 according to

the standard STP dispatching algorithm.

The dispatcher listens for notice of successful event executions from the robot

(Line 13). Executed events are recorded in the Executed list and removed from the

Enabled list (Lines 14-17). In Lines 18-21, the dispatcher commands an event to be

executed if it is both enabled, meaning all predecessors have been executed, and is

alive, meaning the current time is within the event's feasible window of execution. In

our example, at t = 0 Event A is enabled and alive, and is executed.

If an event is executed (Line 24), the Enabled list is updated (Line 26), and the

commitment is propagated through the network compiled-plan to update liveness

42

function STPPdispatch(STP compied_plan, STPPorigplan)
1. Enabled = {first event}; Executed = {}
2. currenttime = 0
3. new thread STPdispatch(origplan)
4. while(size of Executed < number of events)
5. if(new preferences or deviation from optimal schedule)
6 switch execution control to STPdispatch thread
7. origplan'= replace past intervals with rigid links(origplan)
8. compiledplan = compilePlan(orig_plan')
9 switch execution control to STPPdispatch
10. end If
11. for(each event e in plan)
12. if(Executed does not contain e)
13. If(robot signals event has been performed)
14. add event and execution time to Executed
15. remove event from Enabled
16. eventexecuted = true
17. end if
18. if(event e is in Enabled)
19. Interval bounds = extract 'liveness bounds for e
20. if(bounds lowerbound< current _time < bounds upperbound)
21. signal robot to execute event e
22. endif
23. end if
24. if(eventexecuted)
25. eventexecuted = false;
26. Enabled = gather enabled events
27. propagate event commitment to compute liveness windows
28. wait for next live event or until robot signals an executed event
29. end if
30. end if
31. end for

Figure 2-16: Pseudocode for the dispatching algorithm

windows for all connected unexecuted events. With event A successfully executed,

the liveness windows for events B, C, and D are updated to B : [1, 3), C : [5.5, 7.5],

43

D : [10.5,10.5]. Once A executes, event B is added to the Enabled list. Event B is

live when the current time is between 1 seconds and 3 seconds. Executing event B at

t = 2 seconds then leads to the situation shown in Fig. 2-17.

tB=2

B
(1,3) (7.5,9.5)

(4.5,4.5

tA=0 A (051.) D (10.5,10.5)

(5.5,7.5) 3,5)
C

(6.5,6.5)

Figure 2-17: Dispatching & propagation status after event A has been executed at
t = 0 and event B has been executed at t = 2

With events A and B in the Executed list, event C becomes enabled and is executed

at t = 6.5. This commitment is propagated forward, and event D is executed at

t = 10.5. The resulting schedule maximizes the global preference value and satisfies

the temporal constraints of the problem.

The signal-and-response structure (signal in Line 21 and robot response in Line

13) provides robustness in execution by allowing for situations that prevent the robot

from completing the task at precisely the specified time. For example, consider if event

B is commanded at t = 2 but is delayed at execution until t = 3. The STPP DO form

accommodates this disturbance on-the-fly through one-step constraint propagation.

The liveness windows for events C and D are updated to C : [7.5, 7.5], D : [10.5, 10.5].

The potential for recompilation in Lines 5-9 accounts for the fact that execution

may sometimes be pushed outside the bounds of the compiled DO form, since it is by

definition tighter than the originally allowed STPP. Consider, for example, if event

B were commanded at t = 2 but was delayed in execution until t = 4, which was

allowed in the original STPP, Figure 2-14. If this occurred, orig.plan' would be given

a rigid link of AB E [4,4] and compilePlan would be called again to create a new DO

form that took this time commitment into account. The resulting DO form would

44

have a lower overall global preference value than the first DO form since tB = 4 was

not feasible in the first DO form; the new DO form would however yield the highest

global preference value possible given the past time commitment.

The compiler and dispatcher presented in Figs. 2-13 and 2-16 have been im-

plemented and tested successfully. Section 2.5 presents an empirical evaluation of

APA and describes a robot demonstration applying APA to one-to-one human-robot

teaming.

2.5 Empirical Validation & Robot Demonstration

2.5.1 Adaptive Preferences Algorithm Evaluation

The STPP DO form is designed to be temporally flexible, reducing the impact of

disturbance on the schedule. In this section, we empirically investigate the benefit of

this flexibility in two ways and compare the results to the non-linear programming

(NLP) solution. We also present computation times for on-demand recompilation of

the plan, showing that a robot using APA can quickly adapt its schedule in response

to changing preferences.

Empirical results are produced using a random problem generator that creates

structured problems in the same manner as prior art [30, 37]. The generator takes as

input the number n of events, the number of user-specified constraints c, and the set

P of preference functions. Each temporal constraint relating plan events is generated

by randomly selecting two events from an array and connecting them with a binary

interval constraint. Constraint upper and lower bounds are set randomly and then

scaled by the difference in array indices between the two events. This creates a net-

work that has a natural structure, with more distant events related through longer

temporal durations than local events. Each preference function in P is assigned to a

binary constraint in the order the constraints are generated. Following the precedence

of previous work in STPPs [26], we consider preference functions of constant, linear,

and quadratic form only. Only positive-valued, convex preference functions are per-

45

mitted. A randomized multiplier is applied to distinguish relative importance among

preference functions. The output of the generator is an STPP, which is provided as

input to the compiler. The APA compiler, dispatcher, and random problem generator

are implemented in Java, and non-linear (here, quadratic) programs are solved using

the Java implementation of Gurobi [1]. Results are generated using an Intel Core

i7-2620M 2.70 GHz Processor.

First we run simulations to evaluate the cumulative time a robot spends re-

computing the schedule in response to frequent small disturbances, for example, from

a human co-worker that does not precisely follow the optimal scheduling policy. This

measure represents the total execution time the robot spends unresponsive to the

human co-worker's preferences for workflow. Fig. 2-18 presents results showing the

worst-case cumulative compilation time for randomly-generated structured problems,

in response to frequent small disturbances in the optimal schedule. Each data point

signifies the average and standard deviation across fifty randomly generated prob-

lems. Results were computed for problem sizes ranging from 25 to 250 events. The

number of preference functions was set at 20% the number of events, based on the

observation that real-world problems typically have many fewer preference functions

than events. Cumulative compilation time for the inflexible NLP approach scales

with the number of events in the plan, whereas the STPP DO approach scales with

the number of preference functions. The result is that the STPP DO form provides

on average an 80% reduction in cumulative compilation time.

Next, we compute a comparative measure of the temporal flexibility between both

the STPP-DO form and the NLP solution and the original STPP. We compiled 50 ran-

dom problems and compared the resulting interval durations to the original STPP's

interval durations. This ratio then represents the percentage of flexibility retained

from the original problem; higher values of this ratio correspond to an increased ro-

bustness to disturbances during execution. We compare this to the flexibility ratio

for the NLP-specified schedule on the same 50 problems; Fig. 2-19 presents the

results. The DO form captures on average more than 70% of the temporal flexibility

in the original plan, whereas the NLP solution captures less than 1%. The DO form

46

LO U

0

U
U

*

U
U

E

* STPP DO Form

400 600 800 1000 1200 M NLP Solution

Number of Events

Figure 2-18: Cumulative Compilation Time as a function of the number of events in
the plan

provides a marked improvement in robustness to disturbance over the NLP solution

while achieving global optimization of the schedule.

DO Form Flexibility NLP Solution
Ratio Flexibility Ratio

50 74.7% ± 3.3% 1.0% ± 0.3%
100 75.4% ± 3.2% 0.5% ± 0.1%
150 72.2% 3.1% 0.4% 0.1%
200 71.7% ± 2.0% 0.2% ± 0.05%

Figure 2-19: Plan Flexibility of DO Form and NLP Solution

Finally, we present the computation times for single on-demand recompilation

of the plan. These results simulate the execution latency associated with operator-

specified changes to the workflow. Fig. 2-20 presents the compilation time results for

randomly-generated structured problems ranging in size from 50 to 1000 events. The

number of preference functions is set at 20% the number of events. We empirically

analyzed the impact of the number of preference functions, ranging from 20% to 80%

of the number of events, and found no significant effect on performance. Instead,

the number of temporal constraints appears to be the primary driver of computation

47

100

E

0

0.01

0.001

1

time.

25

20

U1

10
E

5

0
0 200 400 600 800 1000 1200

-5
Number of Events

Figure 2-20: Compilation Time as a function of the number of events in the plan

The results show satisfactory compilation times on the order of seconds for prob-

lems with hundreds of events. Compilation time is less than five seconds for problems

with 400 events and less than 1 second for 150 events or less. These results provide

sufficient capability for one-to-one human-robot collaboration, indicating a robot can

adaptively schedule its actions over a horizon of approximately 75 activities with

sub-second speed.

2.5.2 Robotic Demonstration

We have applied the Adaptive Preferences Algorithm to perform human-robot team-

ing using a small ABB IRB 120 industrial robot (set-up shown in 2-21). This demon-

stration is based on the spar building application described in Section 2.1.1. The

robot's job is to apply sealant to each hole, and the mechanic places and torques the

fasteners. The mechanic and robot must work together to ensure that each fastener

is placed within three seconds of sealant application. This requires that the robot

adapt to the timing of the mechanic's actions to avoid applying the sealant too early.

48

One set of workers, group A, likes to place all fasteners before torqueing them. The

other set, group B, likes to place and torque each fastener before moving on to the

next. The robot uses APA to adaptively schedule its actions based on the type of

worker it is paired with; worker-type is inferred from the timing of the mechanic's

actions. Specifically, APA tracks the two different sets of preference functions and

switches to the set that achieves the maximum possible global preference value. The

STPP representation of this joint human-robot plan is shown in Figure 2-22. Video

of the demonstration can be found at http://tinyurl.com/7n439eg.

Figure 2-21: Demonstration Set-up

Trials of human-robot teaming demonstrated that the robot was successfully able

to adapt its schedule to both types of workers. When a group A mechanic performed

the assembly task, the robot applied the sealant in regular intervals every 3 seconds

to keep just ahead of the mechanic, allowing the mechanic to place the fasteners in

the holes before the sealant dried. When a group B mechanic performed the task, the

robot began by applying the sealant every 3 seconds. However, once it sensed that

the mechanic had torqued the first fastener before inserting the second, the robot

recompiled its schedule using group B preferences. The robot changed its pace to

match the mechanic's using the newly computed flexible optimal scheduling policy.

This required slowing down the rate of sealant application to every 7 seconds. Using

49

Fastener I Fastener 2 Fastener 3 Fastener 4

Torque T1 T2 T3 T4

[3, 100] [3, 100] [3, 100] [3, 100]
f(t)= 0 f(t) = 0 f(t) = 0 f(t)= 0

g(t)=40-2t g(t)=40 -2t g(t)=40 -2t g(t)=40 -2t
Place

Fastener

[1, 3] [1, 3] [1, 3] [1, 3]

Apy S1 S2 S33W S4Sealant [3, 100] [3, 100] [3, 100]
f(t) = 40 - 2t f(t)= 40 - 2t f(t) = 40 - 2t

g(t) = 0 g(t)= 0 g(t) = 0

Figure 2-22: STPP for the Robotic Demonstration; the f preference functions corre-
spond to group A workers, while preferences, g, correspond to group B workers

the Adaptive Preferences Algorithm, the robot was able to make on-the-fly decisions

about how to most effectively aid each worker.

2.6 Discussion & Improvements

The Adaptive Preferences Algorithm provides an adaptive framework for scheduling

robots that collaborate with humans by combining flexible windows with arbitrary

objective functions to allow for robust, practical schedule optimization.

APA is fast enough to handle one-on-one human-robot teaming but lacks some

of the machinery necessary for controlling teams of robots working with teams of

people. It does not assign different tasks to different agents or take into account

resources shared among different agents. APA does not have the ability to schedule

tasks to a single agent in such a way as to guarantee that agent will be required to

perform only one task at a time (a constraint we will refer to as sequencing). To

make decisions about the ordering of tasks, a disjunctive STPP would be required,

but the computational complexity of these types of problems prevents scaling to the

task sizes required for manufacturing applications [31].

The Adaptive Preferences Algorithm is also not designed to solve problems con-

50

taining constraints other than simple temporal constraints. Specific other constraints

of interest include spatial constraints (such as requiring a safety zone around each

agent where others cannot enter) and constraints on agent allocations (such as which

agent is able to perform which task). These issues, among others, form the ground-

work for expanding schedule optimization in the subsequent chapters. Flexible time

windows and the computational benefits involved will be folded into optimization

problems that can handle temporal, spatial, and miscellaneous other important con-

straints and objectives, culminating in an algorithm fully capable of taking in a pro-

cess of many tasks and agents, assigning agents according to various criterion, forming

a planned schedule for how the entire process will be accomplished, dispatching the

agents to perform the tasks, and recompiling as necessary in response to disturbances

in the original plan.

51

52

Chapter 3

Multi-Agent Optimization:

Optimization of Task Allocations

and Schedules for Multi-Robot

Teams

In this chapter, a mixed-integer optimization framework is developed that assigns

agents to tasks and schedules the tasks subject to various constraints and objectives.

This optimization framework is used in conjunction with the Adaptive Preferences

Algorithm described in Chapter 2 to gain benefits from the flexibility of dynamic

scheduling methods. The framework described in this chapter, however, allows for

more general constraints and objectives, including spatial considerations and desired

solution properties, greatly increasing applicability.

Section 3.1 provides an introduction to the applications considered and motivation

for the problem solved by the Multi-Agent Optimization Algorithm. Section 3.2

describes mixed-integer programming and how it can be used to model problems of

interest.

Section 3.3 describes the Multi-Agent Optimization Algorithm that computes the

optimal agent assignment and schedule subject to various constraints and objectives

53

described quantitatively modeled. Section 3.4 evaluates the Multi-Agent Optimiza-

tion Algorithm with respect to flexibility of schedules and speed of computation and

presents simulations showing the Multi-Agent Optimization Algorithm solving our

motivational problems. Section 3.5 discusses the potential improvements that can

be made on the Multi-Agent Optimization Algorithm.

3.1 Introduction & Motivation

Substantial workflow benefits in assembly and manufacturing tasks can be realized if

robotic teams have the ability to work in concert with each other or with a human

worker. For example, a robotic team that is able to rearrange its schedule to account

for a robot failure can mitigate productivity loss due to the breakdown. Traditionally,

human workers and robots work in isolation from one another, but a large increase

in efficiency may be achieved if humans and robots are allowed to work in the same

vicinity. For example, quality assurance teams can inspect work being completed in

real time if the robots have the ability to resequence work dynamically to keep at a

safe distance from the people.

In this chapter, we present a robotic scheduling and control capability for human-

robot collaborative work that addresses several key challenges in the assembly manu-

facturing environment. First, introducing humans to a traditionally robot-only space

on the factory floor also introduces a large degree of unpredictability to the system;

many manual assembly and manufacturing processes in the aerospace industry, for

example, grant freedom to the worker to decide how best to accomplish a task. A high

level of adaptability and robustness must therefore be built into any robotic system

that works in close collaboration with people.

Second, human and robotic work in manufacturing and assembly must meet hard

scheduling constraints, including pulse rates between build stations and flow rates for

end-to-end assembly. The changing preferences of a human co-worker or supervisor

must be accommodated while preserving strong guarantees for synchronization and

timing of activities.

54

Third, a centralized controller must schedule all agents effectively to meet quali-

tative and quantitative spatial and temporal requirements on workflow. For example,

the system must guarantee for safety that there be a buffer region around each robot

so that an unexpected malfunction will not harm a person or damage another robot.

Work must be coordinated amongst various agents to maximize efficiency while sat-

isfying these and other hard constraints.

Our technical approach generalizes from the Adaptive Preferences Algorithm (APA),

the subject of Chapter 2, which makes use of prior work in Dynamic Scheduling

concerning efficient real-time scheduling of plans whose temporal constraints are de-

scribed as Simple Temporal Problems (STPs) [11, 23, 36]. STPs compactly encode

the set of feasible scheduling policies for plan events that are related through simple

interval temporal constraints. Temporal flexibility in the STP provides robustness to

disturbances at execution.

The Adaptive Preferences Algorithm makes use of this simple yet powerful frame-

work to model joint human-robot work as a Simple Temporal Problem with Prefer-

ences (soft constraints) that can encode person-specific workflow patterns and human

operator input for suggested workflow. APA formulates and solves an STPP with

arbitrary objective function as a non-linear program (NLP), where the solution is

an assignment of execution times to each event in the plan. This approach results

in brittle solutions; any disturbance in execution time requires time-consuming re-

calculation of the schedule. APA (and the Multi-Agent Optimization Algorithm)

both leverage the strengths of STP and NLP solution methods, flexibility in execu-

tion and optimization of arbitrary objective functions, respectively. APA uses the

output of a non-linear program solver to compute a flexible optimal scheduling policy

that accommodates temporal disturbance. The algorithm also supports on-the-fly

optimization in response to changing preferences.

The Adaptive Preferences Algorithm is built on a solely temporal framework and

thus cannot handle important applications containing spatial constraints or prefer-

ences; it also does not support task assignment, restricting useful applications to those

of a human worker and a single robotic assistant. We therefore proceed to expand

55

upon the foundation laid in Chapter 2 to create a system capable of scheduling mul-

tiple agents while providing temporal and spatial guarantees as well as optimizing

various productivity-based objectives. We describe the Multi-Agent Optimization

Algorithm(MAOA), which makes use of a mixed integer quadratic program (MIQP)

to optimize according to objectives relevant to manufacturing and then leverages

the flexibility of STP scheduling in a manner similar to APA to provide a flexible

multi-agent schedule. Finally, we demonstrate in simulation that the integration of

APA and MATOA allows for a controller capable of controlling multiple robots un-

der an assortment of different objectives and constraints that provides the flexibility,

adaptability, and robustness required for human-robot collaboration.

3.1.1 Motivating Applications

Section 2.1.1 outlined two motivational applications for this work in robotic assis-

tants and robotic orchestration. The Adaptive Preferences Algorithm is capable of

scheduling one-on-one robotic assistants to follow the preferences of the human, but

cannot orchestrate teams of robots. Multi-Agent Optimization seeks to fulfill the

robotic orchestration goal. In this section, we discuss two applications within robotic

orchestration that motivate this work: the malfunction of a single robot in a robotic

team, and the disruption of a process by a Quality Assurance agent.

Robot Breakdown

We aim to develop a capability that supports efficient redistribution of work in re-

sponse to a disturbance. In aerospace assembly manufacturing, many of the end-

effectors equipped on robots are new, specialized technology and are prone to fre-

quent breakdown. Often, the entire multi-robot system is halted to repair one robot,

leading to work slowdowns and lost time. Instead, our approach seeks to enable the

multi-robot system to respond to the malfunction by automatically shifting work and

resequencing tasks among the remaining robots. Further, we aim to take advantage

of data mining techniques that allows one to predict how long a robot will be down

56

based on the type of malfunction which has occurred. This data can be used to pre-

dict a time window for the robot's return and plan accordingly to direct other robots

to pick up the slack of the broken one in an optimal manner.

Quality Assurance Interruption

We also aim for our capability to enable a single operator to direct a team of robots,

while ensuring that hard scheduling deadlines such as mandated flow rates are met.

Individually commanding robots is inefficient; instead, we aim to develop a control

system whereby an operator can add a preference on-the-fly to an existing plan to pro-

vide real-time high level guidance to the workflow. The robots would then reconfigure

the task assignment and schedule while still guaranteeing that all hard temporal and

spatial constraints are met.

Our approach supports the ability for a supervisor to specify, for example, that

work on the aft part of the fuselage be delayed by a certain amount of time to

provide a safe working environment for a quality inspection team. Work will be

shifted according to operator preferences through fast re-computation of the robots'

schedule, minimizing the amount of lost time while making space for the team for as

long as is requested.

3.2 Mixed Integer Programming

In this section, we briefly review mixed integer programming and describe how it

can be used to model our problem of interest. The Multi-Agent Optimization Algo-

rithm uses third-party optimization software, Gurobi [1]. Mixed integer programs

(MIPs) are optimization models with n variables, X 1 ...X2, some of which may be

integer valued, which are selected to optimize an objective function Obj subject to

m constraints, C1...Cm. The computational complexity of finding MIP solutions is

notoriously difficult to predict, with some MIPs being quickly solvable while others

are intractably slow with little predictive power for what models will fall in which

category. Mixed integer linear programs (MILPs) are specific instances of MIPs that

57

require both Obj and all Ci to be linearly dependent on the variables. MILPs offer the

greatest chance for computational tractability, but to model some of the constraints

and objectives we are interested in, we will use a mixed integer quadratic program

(MIQP), intuitively involving objectives (but not constraints) which are quadrati-

cally dependent on the variables X. MIQP solution techniques use similar methods

as MILP techniques, which are reviewed below to help explain the computational

complexity.

MILPs are generally solved using a linear-programming branch-and-bound tech-

nique which solves many linear program (LP) relaxations, a copy of the MILP model

ignoring all of the integrality constraints [13]. It can be shown that removing con-

straints always makes the objective value equal or better than the original, more-

constrained problem; for this reason, an LP relaxation should always return a better

objective value than the original MILP. The relaxed LP can be solved very quickly

using standard algorithms like the Simplex Method or interior-point methods; if the

LP solution returns variables which are all integers, the algorithm has (luckily) found

a solution that also satisfies the MILP and terminates. Usually, however, a majority

of the variables will have fractional values. One of these fractional variables is chosen

(for example, X 4(optimal) = 7.6) and constraints are added to create two different

MILPs, enforcing that the 'branching variable' be above or below the corresponding

integer (X 4 > 8 for one new MILP and X4 < 7 for the other). Both of these MILPs

can then be then solved and the higher of the two solutions is the solution to the

original MILP. This process could potentially be repeated exhaustively until there

existed a separate branch for each variable, resulting in a tree of many MILPs. This,

however, would not be computationally tractable, so methods are used to cut sections

of the tree from requiring a full search for optimality.

Branch-and-bound attempts to cut the exhaustive search by cutting sections of

the tree based on limitations of the objective function. A node of the tree, an MIP

with any number of branching constraints, can be fathomed, or not searched past,

under a few circumstances. First, if a LP relaxation is solved and gives only integral

variables, then a feasible solution to the original MIP has been found and the node

58

can be fathomed. The feasible solution just found is then compared to the best feasi-

ble integer solution found so far, called the incumbent (the algorithm begins with no

incumbent). If the new solution has a better objective value than the incumbent, it

becomes the new incumbent and the search continues; if not, the search continues as

normal. A node can also be fathomed if its LP relaxation is infeasible or if it returns

an objective value worse than the incumbent (since by adding constraints further

down the tree the objective value can only get worse). The algorithm terminates

when every path has been either searched or fathomed. Many types of 'tricks' have

been developed to speed up the search, including presolves, cutting planes, and var-

ious other heuristics. To make the most use of this prior research, our Multi-Agent

Optimization Algorithm makes use of third party software, Gurobi, which has been

used extensively and contains many of these advanced solution techniques.

Our primary interest lies in using mixed integer programming to model constraints

and objectives important for manufacturing applications. Fortunately, MIQPs pro-

vide a very expressive framework for mathematically encoding many types of objec-

tives and constraints that are described in a mathematically logical way. We now

describe a common modeling technique used for simple logic, big M, with an exam-

ple. Consider the MILP specification that a continuous variable X be either below

3 or above 7 (X < 3 or X > 7). This OR logic can be modeled using the following

two constraints with a binary variable B and M a large positive constant number

(theoretically infinite).

X > 7 - M(B) (3.1)

X < 3 + M(l - B) (3.2)

With some inspection, it can be seen that the binary variable B now makes the

'decision' as to whether X < 3 or X > 7 is enforced: since M ~ inf, if B = 1, the first

constraint becomes X > - inf, which is trivially satisfied and the second becomes

X < 3; if, on the other hand, B = 0, the first constraint becomes X > 7 and the

second becomes X < inf, which is trivially satisfied.

59

A typical formulation makes use of Big M methods to model logical Operations

Research as a conjunction of linear mathematical terms. We can use a modified

version of Big M to handle more complicated logic such as AND, NAND, or any

other 2 x 2 truth table. As an example, given a binary variable C, one would typically

model the specification that C = A AND B by multiplying the binary variables A

and B; decreasing the order of constraints and objective function allows for much

faster computation, however, so we use another method. We make use of linear Big

M constraints by considering the sum S = A + B and difference D = A - B in the

following way:

C > 1 - M(2 - S) = 1 - M(2 - A - B) (3.3)

C < M(1 - D) = M(1 - A + B) (3.4)

C < M(1 + D) = M(1 + A - B) (3.5)

C < MS = M(A + B) (3.6)

The combined effect of these four constraints is to force C to 0 or 1 based on the

values of the sum and difference of A and B. If A = B = 1, the first constraint

requires C > 1 while the other constraints become trivially satisfied; since C by

definition satisfies 0 < C < 1, these constraints force C = 1. If A = 1 and B = 0, the

second constraint forces C = 0 while the others become trivial; conversely, if A = 0

and B = 1, the third constraint forces C = 0. Finally, if A = B = 0, the fourth

constraint forces C = 0 while the others trivialize. It can interestingly be noted that

we do not explicitly require C to be binary; as long as we take 0 < C < 1 and

continuous, the logic itself forces C to be binary without requiring us to add a binary

variable to the model. Binary variables greatly increase computation time by adding

levels to the branch-and-bound search tree, so this allows us to keep the computation

time as low as possible. Big M will be used extensively in modeling many of the

constraints and objectives of interest, which are described next in Section 3.3.

60

3.3 Multi-Agent Optimization Algorithm

In this section, we describe the schedule optimization of multiple agents according to

various spatial and temporal constraints and performance objectives, modeled as a

mixed integer quadratic program (MILP). As input, the Multi-Agent Optimization

Algorithm (MAOA) framework takes a STP encoding the temporal constraints of the

problem, a spatial grid representing the positions of the various work packages, a list

of agents along with their capabilities, and a previous agent allocation detailing where

the agents were assigned in the previous iteration of the algorithm (or, alternatively,

a suggestion of where the agents should be assigned). As output, MAOA returns an

assignment of each work package to an agent and a flexible schedule of when each

work package should be executed.

We have modeled objectives and constraints applicable to assembly manufactur-

ing, though this modeling process is readily extensible to teams of agents in other

situations as well. The objective function, Obj, includes terms that minimize the

difference from the previous agent assignment to the returned agent assignment, the

number of spatial interfaces between work packages that two different agents have

completed, and the overall idle time of the system. We create constraints ensuring

that (1) temporal requirements are met, (2) each work package is assigned to one

agent, (3) agent capabilities and limitations (in terms of temporal constraints on

task completion) are taken into account, (4) agents maintain safe buffer distances be-

tween each other, and (5) that schedules produced are temporally consistent. Table

1 presents the binary and continuous decision variables of the model.

Variable Properties Description
Aaj Binary Indicates whether agent a performs work package j
Ji Binary Indicates whether work package i is performed before work package j
Te Continuous Indicates at what time event e is performed

Table 3.1: Descriptions of the Decision Variables used by MAOA

'Work packages' or 'tasks' refer to a pair of events that signify the start time and

end time of the task. Next, we individually describe the objectives and constraints

61

and their efficient, MIQP formulations.

3.3.1 Objective Modeling

The objective function, Obj is composed of a weighted sum of three terms, each

corresponding to a different goal. The weights are arbitrary and allow the objectives

to be valued differently based on the specific application.

Obj = a x D + # x Int + -y x Idle (3.7)

In manufacturing environments with humans and robots working together, it is

crucial to maintain predictability of the robotic system to support human worker

trust and situational awareness. We therefore want to avoid oscillations between

equally optimal solutions if the system needs to be recompiled in response to a major

disturbance. For this reason, we minimize D, the difference between agent allocations,

where Pi is the value of Aai from the previous solution, Ag is the set of all agents,

and y is the set of all work packages:

D= E E(AaiPai) 2 (3.8)
aEAg ie'y

Inter-robot accuracy is challenging for multi-robot systems of standard industrial

robots. In robot painting, this can lead to gaps or overlaps at interfaces between work

done by two different robots. Therefore we minimize the number of spatial interfaces

using the following formulation, where R is the set of all work packages (i, j) that are

spatially adjacent:

Int= E (Ai - Aa) 2 (3.9)
aEAg (ij)ER

We next minimize the agent idle time; this both maximizes the efficiency of the

robot system and, for mixed human-robot teams, is beneficial from a human fac-

tors perspective. A few intermediate composite variables are required to meet the

quadratic restriction; the first is a variable Bothaij indicating whether agent a per-

62

forms both work packages i and j, computed as the conjunction Aai AND Aaj using

the Big M method described in Section 3.2. The idle time between two work packages

is the difference between the assigned time of the last event of the first work package

and the assigned time of the first event of the second work package. This is adequate

in the case where the ordering of the work packages is known (for example, if they have

a required delay between them), but to include the idle time between work packages

which are allowed to occur in any order, two new variables must be created combining

the two possible sequencing cases. We designate Comboaij = Bothaij AND Jij and

AltComboaij = Bothaij AND (NOTJij), where recall that Jij is the decision variable

governing the order in which two unordered work packages i and j are chosen to

occur; Jij = 1 if work package i occurs before work package j. Using these compos-

ite variables, we can find the total idle time of the system. The idle times between

ordered (below, represented by set 0) and unordered (below, represented by the set

U) work packages are summed in a separate manner using the following formulation

(the time of the start event of work package i is t0 and the end time is i):

Idle = ((Bothai x (t - t)+
aEAg (i,j)EO

Z Z CombOait x - tf) +
aEAg (i,j)EU

((AltComboaij x (ti - tj)
aEAg (ij)EU

The weighted sum of D, Int, and Idle composes the objective function to be

minimized.

3.3.2 Constraint Modeling

Constraints are included in the model to ensure that various requirements in the man-

ufacturing environment are satisfied. The first of these are mandatory deadlines and

delays, collectively referred to as temporal requirements. These are encoded within

an STP and built into the model in a manner identical to that used in the Adap-

63

tive Preferences Algorithm from Chapter 2, ensuring that the differences between all

event times fall within the interval bounds in the STP, where recall bij contains the

lowerbound and uppbound on the temporal duration between event i and event j.
The STP constrains are added for all event pairs i and j:

bij(lower) < tj - tj < bij (upper) (3.10)

Note that since this constraint is required to be true for all events, it encodes (1)

requirements on the amount of time a single work package can take by constraining

the duration of the task, (2) potential required delays between work packages (i.e. for

paint to dry), and (3) potential required deadlines in the process.

The second requirement states rather intuitively that all work packages must be

completed, and that one agent executes each work package. This corresponds to the

mathematical requirement that, for all work packages i:

E Aai (3.11)
ac-Ag

We next take into account the capabilities and limitations of the various agents.

Every agent input a has an interval, [lbai, ubai] indicating the least time and most time

it is capable of performing work package i ([lbai, ubai] = [0, 0] to signal that the agent

is incapable) and how quickly and slowly it can do each work package. The events

associated with the start and finish of the work package must be assigned to occur

within the times given by the agent's capabilities. We make use of the common bigM

formulation of mixed-integer programming described in Section 3.2, where M takes

on a very large (theoretically infinite) value to activate or relax the constraints based

on the value of the binary decision variable. Thus, we add the following constraints

to the model for all agents a and work packages i for which [lbai, ubai] $ [0, 01:

lbai - M(1 - Aai) t - t (3.12)

64

ubai + M(1 - Aai) tf - tS (3.13)

These constrains enforce that if Aai = 1, meaning agent a has been assigned to

work package i, then the respective agent capability bound must be obeyed.

Safety for both robots and people dictates that there be a buffer zone around

each robot that another agent cannot enter; this mitigates the effect of unexpected

malfunctions or motions. For this reason, we include constraints preventing a robot

from being assigned a task while another agent is working on a task directly adjacent

to it. We allow an agent to enter a space within a minimum time of buf fer of another

agent leaving it. We again use the set R of adjacent work packages to formulate, for

all pairs of work packages i and j within R:

- tE > buffer - M(1 - Jij) (3.14)

t - tE > buffer - MJij (3.15)

Recall that Jij encodes the ordering of work packages i and j, so that these

constrains enforce for all adjacent work packages that either the start event of the

second work package comes after the end event of the first work package or vice versa

depending on which value Jij is chosen to take.

Finally, we formulate sequencing constraints to ensure that no agent is assigned

to do two work packages at once. These constraints also assign an order to work

packages that are originally unordered and include two big M terms, one to enforce

which order work packages will occur, and another to apply the constraints only if

the same agent is working on both work packages; these two conditions are similar

to the objective formulation of the Idle time. We again make use of the buffer time,

buffer. These constraints are applied for all agents a and work packages i and j:

t - tf > buffer - M(1 - Jij) - M(2 - Aai - Aaj) (3.16)

65

t - tE > buffer- MJij - M(2 - Aai - Aaj) (3.17)

These constraints are nearly identical to the previous ones except that instead of

applying only to pairs of work packages in set RS, they apply to all work packages

and are governed by the extra big M term enforcing them only if the same agent is

assigned both tasks.

The third party optimization software, Gurobi [1], minimizes the objectives sub-

ject to these constraints and returns the optimal values of all the decision variables:

the agent allocation, the sequencing, and the time schedule. In a similar manner to

the Adaptive Preferences Algorithm, these returned values are used to tighten the

network while attempting to maintain as much flexibility as possible so as not to

create brittle solutions; this procedure is discussed in Section 3.3.3

3.3.3 Processing and Integration

In order to effectively use the STP dispatching algorithm outlined in Section 2.2,

we integrate the returned optimized variables from MAOA into the original, input

STP. First, all intervals corresponding to the work packages are tightened to the

capabilities of the agent assigned to that work package. For example, an interval

corresponding to a painting work package required to be completed between 2 and 8

hours may be tightened to 4 to 6 hours to account for the fact that the robot assigned

to it cannot complete it faster than 4 hours and should not take more than 6 hours.

Agent assignments made by MAOA are associated with each work package interval

and are communicated to the robot system when the start event of that work package

is executed. The sequencing selected by the optimizer is then enforced, so any work

packages that were unordered in the original STP are tightened to have a positive

lower bound on their connecting intervals. This is done instead of specifying the

exact start times of each event returned by the optimizer so as to retain flexibility in

the STP. Finally, an all-pairs-shortest-path computation is applied to expose implicit

constraints in the network based on these modifications [9]. This process outputs a

66

dispatchable form of the network that provides a temporally flexible scheduling policy

for the multi-agent system [36, 38].

There are three options for combining the two algorithms developed thus far in

Chapters 2 and 3, APA and MAOA: (1) executing APA to tighten preferenced links

in the input STP before appling MAOA, (2) applying APA after sequencing and

agent-based constraints have been added by MAOA, or (3) integrating the preferences

themselves into the MAOA framework.

Performing APA before MAOA (1) causes one to weight the preference functions

higher than objectives built into MAOA since APA tightens the resulting network

(which would be input to MAOA). This is a useful choice for some applications where

the preferences drive the desired behavior, but in some circumstances it can lead to

infeasibilities when the preferences are optimized to regions out of the agents' inherent

capabilities.

An alternative method for integration performs MAOA before APA (2), ensuring

feasibility of the agent selection process and then optimizing the preferences of the

network around these sequencing choices. This leads to guaranteed feasibility of the

agent allocation (given a feasibly designed input problem), but can lead to suboptimal

solutions for the preferences. The sequencing decisions of MAOA can potentially lead

the network to be tightened away from the true optimal of the input STPP. whereas

an equally optimal agent allocation may have allowed a better final objective value

for APA.

The final choice for combination involves replacing the idle time objective in MA-

TOA with preference functions (3), since idle time is essentially a preference to pull

all intervals to their shortest possible duration. One can then tighten the network

around the preferences, sequencing, and agent capabilities in the processing phase of

the algorithm. All three possibilities can be useful for different applications.

67

3.4 Empirical Validation & Robot Demonstration

3.4.1 Multi-Agent Optimization Evaluation

The Multi-Agent Optimization Algorithm schedules multiple agents to perform a set

of tasks subject to various constraints and objectives described in Section 3.3. In this

section, we evaluate the speed of compilation and the flexibility preserved by the post

processing performed on the output from the third-party optimization software.

Empirical results are produced using a random problem generator that creates

structured problems using as input the number n of work packages, the number of

user-specified constraints between work packages c, and the number of agents a. The

output of the generator is an STP, a spatial grid of work packages, a list of agents

and their capabilities, and a set of previous agent assignments which are provided

as input to the compiler. The MAOA compiler and random problem generator are

implemented in Java, and non-linear programs are solved using the Java implemen-

tation of Gurobi [1]. Results are generated using an Intel Core i7-2620M 2.70 GHz

Processor.

First we evaluate the optimization time for plans with a number of work packages

varying in the range [5, 10]. Ten work packages was the maximum number that could

reliably be scheduled in less than 30 minutes. Next, we ran tests on plans with 10

work packages to determine the impact of the number of agents and the number of

user-specified constraints between work packages. These results are presented in Fig-

ure 3-1. We find that the addition of constraints decreases the compilation time; this

is because the sequencing decisions, which only occur for work packages without con-

straints between them, constitute the most substantive contribution to compilation

time. This plot shows that the number of agents available to execute the work pack-

ages did not change the compilation time significantly, although theoretically more

agents leads to higher compilation times because of the addition of binary variables

to the MIQP, which would become apparant if we could compile larger problem sizes.

We also evaluated the flexibility gained by running the post-processing on the

specific times yielded by the MIQP optimizer. We use a measure of flexibility similar

68

* 100

*10 WPs, 2 Agents

S-b10 WPs, 4 Agents* 101

0 2 4 6 8 10 12

Number of Constraints

Figure 3-1: The effect on compilation time of temporal constraints for plans with 10
workpackages with 2 and 4 agents. There were 50 plans generated for each constraint
data point; mean and standard deviation indicated

to that used for APA in Chapter 2 where the percentage of flexibility is the sum of the

amount of time in each interval of the compiled plan divided by sum of the amount of

time in each interval of the original plan. Theoretically, because many intervals are

changed from unordered to ordered because of single-agent sequencing limitations,

we expect a decrease in flexibility compared to the APA results; however, the direct

use of optimizer-returned times leads to much more brittle and rigid schedules than

MAOA. We found that MAOA allows for 40% of the flexibility of the original problem

as compared to less than 1% for the MIQP; this ratio is relatively constant through

all problem sizes.

Although MAOA is too slow for large problems, it does capture a reasonable

amount of flexibility. In the next section, we demonstrate the ability of MAOA to

schedule multiple agents for two important factory applications.

3.4.2 Robotic Demonstration

Robot Malfunction

We demonstrate the ability of MAOA to optimize a system of two robots assembling

a large structure. The plan involves executing six work packages. Figure 3-2 shows

69

Figure 3-2: Demonstration Set-up

the setup of the system; work packages are denoted by the stripes and are numbered

left to right. The first, third, fourth, and sixth work packages each take 5 seconds

to perform, and the second and fifth work packages each take 2.5 seconds. Each

robot takes 1 second to move between stations. The robots are commanded to finish

all work packages within 20 seconds. The video of this execution can be found at

http://youtu.be/QGhlcKlkFBO. After 5 seconds the Left Robot breaks down and

requires 8 seconds for repair. MAOA computes a new plan in response to this dis-

turbance using the additional constraint that the Left Robot may not perform any

activity during the next 8 seconds. MAOA then re-allocates work packages to robots

and re-sequences the work to finish within the 20 seconds allotted.

Specifically, the Right Robot is sent immediately to the second work package to

ensure that it "picks up the slack" for the Right Robot while guaranteeing the robots

maintain safe distances between each other. This complex behavior arises with the

addition of a single constraint that prevents the Left Robot from performing any work

for 8 seconds after a malfunction and demonstrates that MAOA enables on-the-fly

adjustment of agent assignments and schedules.

70

Quality Assurance Interruption

The Adaptive Preferences Algorithm (APA) and Multi-Agent Optimization Algo-

rithm (MAOA) have been successfully integrated to create a system that is capable

of quick reoptimization in response to changing operator preferences. In the following

video http://youtu.be/3ewBl5511mc two robots work together to execute twelve work

packages. Each work package take 10 seconds to complete. After the first work pack-

age is completed, a quality assurance agent adds a preference that no work be done

on the left half of the work piece for the next twenty seconds, so s/he can inspect the

progress. APA is run before MAOA to apply a preference that the robots vacate the

left side of the fuselage for as close to twenty seconds as possible. Next, MAOA is

applied to optimize the idle time of the multi-robot team. In this way, the command

of a single operator is capable of modifying the behavior of an entire team of robots,

as desired.

3.5 Discussion & Improvements

The Multi-Agent Optimization Algorithm presented in this chapter provides an op-

timization model for integrating spatial, temporal, and performance objectives and

constraints on teams of agents while making use of the flexibility proven to be ef-

fective in Chapter 2. Integration with the Adaptive Preferences Algorithm has been

achieved and offers the capability for controlling teams of robots and receiving op-

timally complex behavior with the addition of simple, intuitive constraints as in the

examples of Section 3.1.1.

The empirical evaluations of MAOA make clear its greatest shortcoming: com-

putation time is prohibitively long for problems of interest. The description of MIP

solution techniques presented in Section 3.2 makes clear that mixed-integer programs

can be very costly in computation, with many binary variables creating many levels

for search in the branch-and-bound method. An analysis of the model presented will

lead one to conclude that the most binary variables are introduced in the formulation

of the Idle Time objective as well as the sequencing and agent-safety constraints. For

71

a typical problem, the number of tasks will far outweigh the number of agents in-

volved, so there are far fewer agent allocation variables A (numAgents x numTasks)

than sequencing variables J (numTasks x numTasks) without even accounting for

the many composite, intermediate variables required to maintain a quadratic formu-

lation.

Chapter 4 describes Tercio, an agent assignment and scheduling algorithm with

similar inputs and outputs to MAOA that uses a very efficient scheduling algorithm to

solve the scheduling subproblem, including sequencing, idle time, agent-safety zones,

and other temporal constraints. Pulling apart the temporal part of MAOA leaves the

agent assignment problem, which can be reformulated more efficiently as a; these two

halves will be combined in a satisficing framework. Tercio will be adequately scalable

to handle the problem sizes of interest, allowing us to fully realize our goal of taking

in a full factory process, assigning agents, creating and dispatching schedules, and

efficiently recompiling to adaptively respond to disturbances.

72

Chapter 4

Tercio: Fast Assignment and

Scheduling of Human-Robot

Collaborative Teams 1

In this chapter, we develop Tercio, an algorithm that performs task assignment and

scheduling of robotic work. Tercio scales to moderately sized real-world problems by

combining a fast, satisficing scheduler with a standard MILP for task assignment.

Although the algorithm is satisficing, since its scheduler is satisficing, we show that it

produces near-optimal task sequences for real-world, structured problems. To execute

plans, Tercio makes use of the dynamic scheduling techniques introduced in Chapter

2 to provide robustness to disturbance.

Section 4.1 provides an introduction to Tercio and places it within the context of

other, related approaches to task assignment and scheduling. Section 4.2 describes

Tercio, including how it assigns tasks, a high-level description of the inputs and out-

puts of the satisficing scheduler 2, the framework used to combine the task allocation

and sequencing components, and the creation of a flexible schedule from the solved

task allocation and sequence to improve robustness to disturbance.

'This chapter features joint work with Matthew Gombolay.
2The satisficing scheduler is the work of Matthew Gombolay, and the reader is referred to [12]

for further information

73

Section 4.3 shows empirically that Tercio can compute schedules for up to 10

robots and 500 tasks in a reasonable amount of time and, despite being a satisficing

algorithm, loses less than 10% optimality versus the Multi-Agent Optimization Algo-

rithm of Chapter 3. Section 4.4 features a live demonstration of Tercio rescheduling

a pair of robots in response to a disturbance and a full-scale simulation of the problem

sizes and disturbances Tercio is capable of handling. Section 4.5 discusses the key

innovations in the Tercio algorithm.

4.1 Introduction

Robotic systems are increasingly entering domains previously occupied exclusively

by humans. In manufacturing, there is strong economic motivation to enable human

and robotic agents to work in concert to perform traditionally manual work. This

integration requires a choreography of human and robotic work that meets upper-

bound and lowerbound temporal deadlines on task completion (e.g. assigned work

must be completed within one shift) and spatial restrictions on agent proximity (e.g.

robots must maintain four meter separation from other agents), to support safe and

efficient human-robot co-work. Any scheduling algorithm deployed in the factory

must also be able to quickly re-compute factory schedules in response to disturbances

that can occur from the loss of an agent, late arrival of necessary resources, et cetera.

The multi-agent coordination problem with temporospatial constraints can be readily

formulated as a mixed-integer linear program (MILP) as in the Multi-Agent Opimiza-

tion Algorithm presented in Chapter 3. However, the complexity of this approach is

exponential and leads to computational intractability for problems of interest in large-

scale factory operations [3]. In particular, the bottleneck in computation time of this

approach is often the sequencing of tasks, rather than the task allocation.

Various decentralized or distributed approaches achieve fast computation and

good scalability characteristics [5, 6, 10, 21, 32]. Fast computation is desirable be-

cause it provides the capability for on-the-fly replanning in response to schedule dis-

turbances [2, 6, 27]. These works boost computational performance by decomposing

74

plan constraints and contributions to the objective function among agents [5]. How-

ever, these methods break down when agents' schedules become tightly intercoupled,

as they do when multiple agents are maneuvering in close physical proximity. While

distributed approaches to coordination are necessary for field operations where envi-

ronment and geography affect the communication among agents, factory operations

allow for sufficient connectivity and bandwidth for either centralized or distributed

approaches to task assignment and scheduling.

In this Chapter, we present Tercio 3, a centralized task assignment and scheduling

algorithm that scales to multi-agent, factory-size problems and supports on-the-fly

replanning with temporal and spatial-proximity constraints.

Tercio improves upon the computation speed of the Multi-Agent Optimization

Algorithm with a fast, satisficing multi-agent task sequencer that is inspired by real-

time processor scheduling techniques but is adapted to leverage hierarchical problem

structure. The task sequencer computes in polynomial time a multi-agent schedule

that satisfies upperbound and lowerbound temporal deadlines as well as spatial re-

strictions on agent proximity. Although the sequencing algorithm is satisficing, we

show in Section 4.3.1 that it is tight, meaning it produces near-optimal task sequences

for real-world, structured problems. We use this fast task sequencer as a subroutine

within a standard MILP solver, and show that we are able to generate near-optimal

task assignments and schedules for up to 10 agents and 500 tasks in less than 10

seconds on average. In this regard, Tercio scales better than previous approaches to

hybrid task assignment and scheduling [7, 8, 15, 16, 17, 35]. An additional feature of

Tercio is that it returns flexible time windows for execution, which enable the agents

to adapt to small disturbances online without a full re-computation of the schedule.

There is a wealth of prior work in task assignment and scheduling for manufactur-

ing and other applications. To achieve good scalability characteristics, various hybrid

algorithms have been proposed. A brief survey of these methods follows.

One of the most promising approaches has been to combine MILP and constraint

3Our method is named Tercio for the Spanish military formation used during the Renaissance
period, which consisted of several different types of troops, each with their own strengths, working
together as a single unit.

75

programming (CP) methods into a hybrid algorithm using decomposition (e.g. Ben-

ders Decomposition) [15, 16, 17]. This formulation is able to gain orders of magnitude

in computation time by using a CP to prune the domain of a relaxed formulation of

the MILP. However, if the CP is unable to make meaningful cuts from the search

space, this hybrid approach is rendered nearly equivalent to a non-hybrid formulation

of the problem. Auction methods (e.g. [5]) also rely on decomposition of problem

structure and treat the optimization of each agent's schedule as independent of the

other agents' schedules. These techniques preclude explicit coupling in each agent's

contribution to the MILP objective function. While the CP and auction-based meth-

ods support upperbound and lowerbound temporal deadlines among tasks, they do

not handle spatial proximity constraints, as these produce tight dependencies among

agents' schedules that make decomposition problematic.

Other hybrid approaches integrate heuristic schedulers within the MILP solver

to achieve better scalability characteristics. For example, Chen et al. incorporate

depth-first search (DFS) with heuristic scheduling [8], and Tan incorporates Tabu

Search [35] within the MILP solver. Castro et al. use a heuristic scheduler to seed a

feasible schedule for the MILP [7]. These methods solve scheduling problems with 5

agents and 50 tasks in seconds or minutes and address problems with multiple agents

and resources, precedence among tasks, and temporal constraints relating task start

and end times to the plan epoch time. However, more general task-task temporal

constraints are not considered.

The next section describes Tercio, an algorithm which solves task assignment and

scheduling problems with a full set of features: multiple agents, precedence and tem-

poral constraints among tasks, and spatial proximity constraints.

76

4.2 Tercio

4.2.1 Problem Statement & Multi-Agent Optimization Re-

view

In this section, as a brief review we provide a compact representation of the Multi-

Agent Optimization Algorithm presented in Chapter 3. Problem inputs include:

" a structured temporal problem which includes the least amount of time

each task can possibly take, the most time each task is allowed to take, the

expected time the task usually takes, and the delay and deadline constrains

relating the tasks,

" two-dimensional (x,y) positions specifying the floor spatial locations where

tasks are performed (in our manufacturing application this is location on the

factory floor),

* a suggested agent task assignment for seeding a solution to guide the al-

gorithm towards,

" agent capabilities specifying the tasks each agent may perform and the agent's

expected time to complete each task, and

* an allowable spatial proximity between each pair of agents.

A solution to the problem consists of an assignment of tasks to agents and a

schedule for each agent's tasks such that all constraints are satisfied and the objective

function is minimized. The mathematical formulation of the problem is reviewed

below:

min Obj(A, P, J, S, R, y) (4.1)

77

subject to

EAaZ = 1,Vj E (4.2)
aEAg

bij(lower) < t3 - ti bij(upper),V(i, j) E T (4.3)

tE - tt > lbak- M(1 Aak),Vk E y, a E Ag (4.4)

tE - tt < ubak + M(1 Aak),Vk E 7, a E Ag (4.5)

ti - >t buffer - M(- Jij), Vi, j E R (4.6)

ts - tf buffer - MJi,Vij E R (4.7)

t. - tE > M(1 - Jij)+ M(2 - Aai - Aaj)

Vij E 7 (4.8)

tS- t > MJij + M(2 - Aai - Aa)

Vi,j E 7 (4.9)

where recall Aaj E {0, 1} is a binary decision variable for the assignment of agent a

to task j. Jij is a binary decision variable specifying the relative sequencing of two

tasks i and j (Jij = 1 indicates task i occurs before j). T is the set of all interval

temporal constraints relating tasks, equivalently encoded and referred to as the Simple

Temporal Problem (STP) [11]. R is the set of task pairs (i, j) that are separated

by less than the allowable spatial proximity. Ag is the set of all agents, Y is the set

of all tasks, and t0 and tf represent the start and end times of task i, respectively.

Finally, Pai is the variable Aai from the previous allocation (if any). M is an artificial

variable set to a large positive number, and is used to encode conditional constraints;

bigM modeling is covered in Chapter 3, section 3.2. The variable buffer is a positive

number specifying the minimum time required between when one agent leaves a space

and another enters it.

78

($ (I

Figure 4-1: Example of a team of robots assigned to tasks on a fuselage.

Figure 4-1 visually depicts a problem instance of this MILP, with two robots and

six tasks (depicted as six stripes on the workpiece). The agent on the left [or right]

is assigned the three tasks on the left [or right] of the workpiece.

Equation 4.2 ensures that each task is assigned to one agent. Equation 4.3 ensures

that the temporal constraints relating tasks are met. Equations 4.4 & 4.5 ensure

that agents are not required to complete tasks faster or slower than they are capable.

Equations 4.6 & 4.7 sequence actions to ensure that agents performing tasks maintain

safe distances from one another. Equations 4.8 & 4.9 ensure that each agent only

performs one task at a time. Note Equations 4.6 and 4.7 couple the variables relating

sequencing constraints, spatial locations, and task start and end times, resulting in

tight dependencies among agents' schedules.

The objective function Obj(A, P, J, S, R, -/) is application specific. In our empirical

evaluation in Section 4.3.1 we use an objective function that includes three equally

weighted terms. The first term minimizes D(A, P, -y), the difference between the

previous (or, on the first iteration, the suggested) agent assignment and the returned

agent assignment. Minimizing this quantity helps to avoid oscillation among solutions

with equivalent quality during replanning. The second term Int(A, R) minimizes the

number of spatial interfaces between tasks performed by different robots. Inter-robot

accuracy is challenging for multi-robot systems of standard industrial robots. In

robot painting, this can lead to gaps or overlaps at interfaces between work done

by two different robots, and so we seek a task assignment with the fewest interfaces

possible. In Figure 4-1 the agent allocation results in one interface between the red

work assigned to the left robot and the blue work assigned to the right robot. The

79

third term Idle(A, J, S, E, -y) minimizes the sum of the idle time for each agent in

the system, which is functionally equivalent to minimizing the time to complete the

entire process (i.e. the makespan).

The optimal solution consists of an agent-task allocation and schedule that min-

imizes the different considerations of the objective function while obeying the con-

straints. Recall, the objective function was formulated in Chapter 3 as a Mixed-

Integer Quadratic Program (MIQP); optimization of the MIQP is fast for small prob-

lems but does not scale to moderately sized real-world problems. This is because the

number of binary variables scales exponentially with the number of tasks and agents.

Because of this, the computation time grows to hours on an Intel Core i7-2620M 2.70

GHz Processor with problems as small as sixteen tasks and four agents.

4.2.2 Tercio Pseudocode

In this section pseudocode for Tercio is presented; the next few sections discuss the

specific aspects of each component of the code. Pseudo-code for the Tercio algo-

rithm is presented in Figure 4-2. Section 4.2.3 describes the agent allocation MILP

used to solve the agent assignment problem (Line 4). Section 4.2.4 provides a high

level description of how the fast task sequencer produces sequences and the problem

structure used for calculations (Line 6). Finally, 4.2.5 presents an approach similar

to the Adaptive Preferences Algorithm used for processing the outputs of Tercio to

create an STP that encodes the returned, near-optimal task allocation and schedule

while incorporating flexible windows to allow for the adaptibility benefits outlined in

Chapter 2 (Lines 5, 8, and 9).

The inputs to Tercio are as described in Section 4.2.1. Tercio also takes as input a

user-specified makespan cutoff (Line 2) used to terminate the optimization process.

This can often be derived from the temporal constraints of the manufacturing process.

For example, a user may specify that the provided task set must be completed within

an eight-hour shift. Tercio then iterates (Lines 3-7) to compute an agent allocation

and schedule that meets this makespan, each time adding a constraint (Line 3) to

exclude the agent allocations tried previously. Tercio first solves the agent allocation

80

TERCIO(STP, P,,, Ag, 'y, R, cutof f)
1: makespan +- inf

2: while makespan > cutof f do
3: A +- exclude previous allocation Pa,i from agent capabilities
4: A +- TERCIO-ALLOCATION(y, STP, Ag)
5: STP +- update agent capabilities
6: makespan, seq +-

TERCIO-SEQUENCER(A, STP, R, cutof f)
7: end while
8: STP +- add ordering constraints to enforce seq
9: STP <- DISPATCHABLE(STP)

10: return STP

Figure 4-2: Psuedo-code for the Tercio Algorithm.

problem (Line 4) described in Section 4.2.3, then processes the allocation (Line 5) and

gives the resulting temporal problem to the sequencer (Line 6) described in Section

4.2.4. The task sequencer returns a tight upperbound on the optimal makespan for the

given agent allocation as well as a sequence of tasks for each agent. Tercio's iterative

solution process terminates when the returned makespan falls beneath cutof f, or else

when no solution can be found after iterating through all feasible agent allocations.

Because Tercio uses a satisficing and incomplete sequencer, it is not guaranteed to

find an optimal solution, or even a satisficing solution if one exists. In practice, as

will be shown in Section 4.3, Tercio is able to achieve makespans within about 10%

of the optimal minimum makespan for real-world structured problems.

4.2.3 Tercio Agent Allocation

Tercio performs agent allocation in Line 4 of the pseudocode in Figure 4-2 by solving

a simplified version of the Multi-Agent Optimization Algorithm from Chapter 3.

Substantial improvement is introduced by linearizing the objective using additional

constraints; we have found empirically that a MILP with more constraints is often

solved more quickly than a MIQP with fewer constraints modeling the same problem.

The objective function for the agent allocation MILP is formulated as follows:

81

Objective = min D(A, P, -y) + Int(A) + v,

where, recall g minimizes the difference between the previous agent assignment and

the returned agent assignment to help avoid oscillations between equivalent qual-

ity solutions during replanning, and Int minimizes the number of spatial interfaces

between tasks performed by different robots.

For each potential interface Intij between two work packages i and j, we create

the following constraints to force Intij = 1 if different agents are performing adjacent

tasks i and j:

Intij ;> Aaj - AajVa E Ag (4.11)

Int, > Aaj - AaiVa E Ag (4.12)

We introduce a proxy variable v into the objective function to perform work-

balancing and guide the optimization towards agent allocations that yield a low

makespan. The variable v encodes the maximum total task time that all agents

would complete their tasks if those tasks had no deadline or delay dependencies and

is defined as:

V > cj x Aa,jVa (4.13)

where c3 is a constant representing the amount of time each task takes. We find in

practice the addition of this objective term and constraint guides the solution to more

efficient agent allocations. The agent allocation MILP must also include Equations

4.2, 4.4, 4.5 ensuring each task is assigned to exactly one agent and that the agent-task

allocation only permits agents to be assigned to tasks they are capable of.

Tercio iteratively solves this agent allocation problem and gives the optimal allo-

cations to the scheduler to see if the cutoff makespan can be satisfied. If the cutoff

is not satisfied, the agent allocation MILP must then return the most optimal so-

82

(4.10)

lution that has not been tried before, effectively stepping-down the optimality with

each iteration. To do this, a single constraint is added with each loop iteration to

disallow the previously tried solution:

Z Aai + (1-Aai) > 0 (4.14)
a,iLai=O a,ilLai=1

where La,i is the solution from the last loop iteration. The single constraint given by

each iteration combines with those from the other iterations to disallow any previously

tried solution.

4.2.4 Tercio's Task Sequencer: A Real-Time Processor Schedul-

ing Analogy

This section provides an overview of Tercio's fast satisficing task sequencer, developed

by Matthew Gombolay; the reader is referred to [12] for further technical details. The

fast sequencer is designed using a processor scheduling analogy win which each agent

is a computer processor that can perform one task at a time. A physical location in

discretized space is modeled as a shared memory resource that may be accessed by

at most one processor at a time. Wait constraints (lowerbounds on interval temporal

constraints) are modeled as "self-suspensions," [19, 25] times during which a task is

blocking while another piece of hardware completes a time-durative task.

Assembly manufacturing tasks have more structure (e.g., parallel and sequential

subcomponents) than are typical for real-time processor scheduling problems. Al

scheduling methods handle complex temporal constraints and gain computational

tractability by leveraging hierarchical structure in the plan [33]. Tercio's sequencer

bridges the approaches in Al scheduling and real-time processor scheduling to pro-

vide a fast multi-agent task sequencer that satisfies tightly coupled upperbound and

lowerbound temporal deadlines and spatial proximity restrictions (shared resource

constraints).

Tercio's takes as input a restricted form of an STP and leverages information of

the problem structure to improve efficiency of the sequencing task. Specifically, the

83

sequencing method relies on a plan structure composed of parallel and sequential

tasks. It also requires a temporally consistent input problem (recall from Chapter

2, this means no negative loops in an all-pairs-shortest-path computation). Despite

these structural limitations to the input STP, we find this formulation is sufficient to

represent many real-world factory scheduling problems.

4.2.5 Creating Flexible Plans

In Line 5 of Figure 4-2, Tercio modifies the input temporal problem to account for

the agent allocation returned in Line 4. For every task i, Tercio takes the agent

capability of the agent a assigned to it and replaces the input temporal interval

[leastamountoftimepossible, mosttimeallowed] = [lbi, ubj] by the interval

[max(lbi, lbai), min(ubj, ubai)] where, recall, lbai is the least time in which agent a can

perform task i.

Agent sequencing constraints are added in Line 8. The scheduler returns a spec-

ified schedule of start times of tasks in a manner like the Multi-Agent Optimization

Algorithm of Chapter 3; instead of rigidly requiring these times, the implied sequence

of tasks is extracted by comparing the assigned times. Constraints are then added

to the STP enforcing this ordering between work packages performed by the same

agent (Line 8) . Finally the resulting Simple Temporal Problem is compiled to a dis-

patchable form (Line 9) [11, 23, 38], which guarantees that for any consistent choice

of a timepoint within a flexible window, there exists an optimal solution that can be

found in the future through one-step propagation of interval bounds. The dispatch-

able form maintains flexibility to increase robustness to disturbances at execution,

and has been shown to decrease the amount of time spent recomputing solutions in

response to disturbances by up to 75% for randomly generated structured problems

[38].

84

4.3 Empirical Validation

4.3.1 Tercio Evaluation

In this section, we empirically validate that Tercio is fast in solving the multi-agent

task assignment and scheduling problem with temporal and spatial-proximity con-

straints. We also show that Tercio produces near-optimal solutions for real-world

structured problems.

4.3.2 Generating Random Problems

We evaluate the performance of Tercio on randomly generated, structured problems

that simulate multi-agent construction of a large structural workpiece, such as an air-

plane fuselage or wing. Task times are generated from a uniform distribution in the

interval [1, 10]. We set approximately 25% of the wait durations (i.e. lowerbound tem-

poral constraints, or self-suspensions) to be greater than zero with durations drawn

from a uniform distribution in the interval [1, 10]. The number of deadline constraints

is chosen so that approximately 25% of tasks are deadline-constrained. The upper-

bound of each deadline constraint, di, is drawn from a normal distribution with mean

set to the lowerbound temporal duration between the start and end of the set of con-

strained tasks. Physical locations of a subtask are drawn from a uniform distribution

in [1, n] where n is the total number of subtasks in the problem instance, I.

4.3.3 Computation Speeds

In Fig. 4-3 we evaluate the scalability and computational speed of Tercio. We show

the median and quartiles of computation time for 25 randomly generated problems

with 4 and 10 agents, and between 5 and 500 work packages. For comparison, we

show computation time for solving the same set of problems with the Multi-Agent

Optimization Algorithm described in Chapter 3. Tercio is able to generate flexible

schedules for 10 agents and 500 tasks in seconds. This is a significant improvement

over prior work [7, 8, 35], which report solving up to 5 agents and 50 tasks in seconds

85

10
" Tercio

" Exact Method

102

10 -I - g nsgen t s

44 Agents~10 - - - -

10

10 10 102 10
Number of Workpackages

Figure 4-3: Computation Speed as function of number of work packages and number
of agents. Results generated on an Intel Core i7-2820QM CPU 2.30GHz.

or minutes.

4.3.4 Optimality Levels

In Figures 4-4-4-5 we show that Tercio is able to achieve makespans within 10% of the

optimal makespan and to produce less than five additional interfaces when compared

to the optimal task allocation. The figure shows median and quartiles of subopti-

mality percentages for 25 randomly generated problems, for 4 agents and up to 16

work packages. We are unable to measure the suboptimality gap for larger problem

instances due to the computational intractability of the Multi-Agent Optimization Al-

gorithm. We note that it is more difficult for Tercio to achieve the optimal makespan

for smaller problem instances (e.g. 4 or 6 workpackages), but the Multi-Agent Opti-

mization Algorithm is quick enough for problems of this size anyway. Tercio's purpose

is to solve the problem of scheduling with tens of agents and hundreds of tasks. As

we can see in Figure 4-4, Tercio tightly tracks the optimal solution.

86


~~~0

cr3~
0~>
U)0

I-

60

50

40

30

20

10

0

4 6 8 10 12
Number of Workpackages

Figure 4-4: Empirical evaluation Tercio suboptimality in makespan for problems with
4 agents.

0

C>
%to

60

50

40

30

20

10

0

- "' -"Tercio

- .....-.-- - .- .

- - - ---

4 6 8 10 12 14 16
Number of Workpackages

Figure 4-5: Empirical evaluation Tercio suboptimality in number of interfaces for
problems with 4 agents.

87

I

- J-.- ..- .-.

.1.

14 16

J- 1~

MMMMPIT

-. .....



Figure 4-6: Hardware demonstration of Tercio. Two KUKA Youbots build a mock
airplane fuselage. A human worker requests time on the left half of the fuselage to
perform a quality assurance inspection, and the robots replan.

4.4 Demonstrations

We demonstrate the use of Tercio to plan the work of two KUKA Youbots in a live

testbed and to simulate five robots working on over 100 tasks on a fuselage. Video of

the live demo can be found at http://youtu.be/E09VDD-jPDE.

The two robots are working to assemble a mock airplane fuselage. The robots

must perform their tasks at set work points, or specific locations on the factory floor.

To prevent collisions, each robot must reserve both the physical location for its task,

as well as the immediately adjacent work points. Initially, the robots plan to split

twelve identical work packages in half down the middle of the fuselage (note, this

minimizes the number of interfaces). After the robots finish their first work packages,

a quality assurance agent requests time to inspect the work completed on the left half

of the fuselage. In the problem formulation, this corresponds to adding a resource

reservation for the left half of the fuselage for a specified period of time. Tercio replans

in response to the addition of this new constraint, and reallocates the work packages

among the robots in a near-optimal manner to make productive use of both robots

and to keep the number of interfaces reasonably low. In implementation, we required

the robots to wait for each other during movement to visually depict constant travel

time between work packages. For many manufacturing applications, robot travel

time is a small percentage of ask time and can be treated, as we do in this work, as

a constant to be incorporated into task time.

88



Figure 4-7: Large scale simulation of Tercio optimizing the work of five robots working
on over 100 tasks on a fuselage.

Video of the large-scale simulation to show the scalability of Tercio can be found

at http: //www. youtube. com/watch?v=7DVgc3C1pRA&feature=youtu. be.

The five robots begin splitting the work evenly among them in five broad sections

of work. Immediately after the first task is completed, however, an inspector requests

time on the back right half of the fuselage, leading the robots to shift within their

own zones without changing the allocation. Soon after this plan change, another

disturbance occurs when one of the robots malfunctions and is removed from the pro-

cess. Two nearby agents are assigned to split the work originally given to the broken

robot. Finally, accelerated deadlines are placed on half of the fuselage, potentially

corresponding to a part arriving early and an opportunity fo speed-up being taken.

All four remaining robots are reassigned to this half of the fuselage, after completion

of which all four move to the other half and finish the work undisturbed. All three

disturbances are readily taken into account as the plan progresses; allocations and

schedules are quickly recalculated in less than a second to allow for work to continue

without a significant loss of efficiency and optimality.

4.5 Contributions

Tercio provides a capability for quickly producing near-optimal task allocations and

schedules for teams of robots performing work in close physical proximity. We describe

and benchmark Tercio for problems with objectives and constraints that commonly

arise in manufacturing problems. However, the key innovations of this work, including

89



the decomposition of the problem into task allocation and sequencing components and

the use of a fast satisficing sequencer, are not domain specific.

Tercio is capable of scheduling up to 10 agents and 500 tasks in as little as 10

seconds and can maintain makespans around 10% above optimal (for the problem sizes

at which we can measure). This provides the practical ability for factories and other

facilities to plan for teams of robots working in a single cell for a reasonably long time

horizon in most cases. Scheduling many robots for the work being done in an entire

factory is still beyond the scale Tercio is capable of, however. Multiple possibilities

exist to expand this single-cell capability to be able to allocate and schedule resources

for an entire facility, and some of these potential future approaches will be briefly

outlined in the next, concluding chapter.

90



Chapter 5

Conclusions and Future Work

As robots become more common in manufacturing environments traditionally de-

voted to humans, new technical approaches are needed to enable teams of robots

and teams of humans to work together seamlessly and safely. I envision a kind of

choreography where robots can fluidly move around humans, assisting them safely

or simply avoiding them while working on separate tasks. To create this high level

of coordination in a manufacturing environment, algorithms are required which can

efficiently schedule robotic team members to perform different tasks and design and

modify task allocations as disturbances are introduced to the process. In this chap-

ter, I provide an overview of the technical contributions of this thesis, which provides

enabling technology to achieve the goal of more seamless human-robot interactions.

I also describe the next steps in this work, which is to expand the Tercio system to

enable full factory-scale resource allocation and scheduling.

In Section 5.1, the Adaptive Preferences Algorithm is reviewed and important con-

tributions are highlighted. In Section 5.2, the Multi-Agent optimization framework is

reviewed and important constraints and objectives for real-world factory problems of

interest are covered. In Section 5.3, the multiple working parts of Tercio are reviewed

and the important technical innovations and results are highlighted. Finally, in Sec-

tion 5.4, I outline the different possibilities for gaining scalability in the allocation

and scheduling problems considered.

91



5.1 The Adaptive Preferences Algorithm

In Chapter 2, the Adaptive Preferences Algorithm (APA) was presented. APA is

built upon the Simple Temporal Problem (STP) model, which provides a fast, flexible

method for scheduling problems featuring simple temporal constraints of lowerbounds

and upperbounds on the durations between events. Prior work extends the STP model

to include temporal preferences on execution times for events; this model is called

the Simple Temporal Problem with Preferences (STPP). Solution methods for Simple

Temporal Problems generally revolve around fairness-type metrics, which are not of

concern in the robotic team applications of interest. In this thesis I present APA,

which provides a new method for scheduling under more arbitrary types of objective

functions.

A nonlinear program (NLP) solver is readily capable of encoding an arbitrary

global preference function subject to the simple interval constraints of an STP. APA

reformulates the output of the NLP solver to create a dispatchably optimal form of

the input STP which maintains flexibility while guaranteeing the objective function

is optimized. APA also features a modified dispatching algorithm for scheduling on-

the-fly, recompiling if disturbances are extreme enough to push execution out of the

bounds of the dispatchably optimal form of the temporal plan.

APA is empirially shown to reduce the number of recomputations necessary in the

face of schedule disturbances. These results demonstrate the benefit of flexibility re-

tained from the original problem. Dispatchably optimal forms of STPs are empirically

evaluated to retain approximately 70% of the flexibility encoded in the original STP.

A single compilation by APA takes on the order of seconds of computation time for

plans with hundreds of events, which is on the scale necessary for the factory-based

problems of interest. APA is demonstrated scheduling a small industrial robot to

work with two different individuals, optimizing its schedule on-the-fly in response to

different preferences of the two human partners. APA is capable of creating schedules

optimized for convex temporal objective functions, but cannot take into consideration

constraints and preferences over spatial locations of agents APA also does not perform

92



task allocation among agents; the Multi-Agent Optimizer provides these capabilities.

5.2 The Multi-Agent Optimization Algorithm

In Chapter 3, the Multi-Agent Optimization Algorithm (MAOA) was presented.

Mixed-integer programming provides an expressive mathematical formulation for

many of the types of constraints and objectives of interest in task assignment and

scheduling problems. MAOA is encoded with several factory-relevant objectives and

constraints in a mixed-integer quadratic program. Objectives of interest include min-

imizing the amount of time each agent spends idle, minimizing the number of spatial

interfaces between work executed by two different agents, and minimizing the dif-

ference between the returned agent allocation and a previous (or suggested) agent

allocation. The constraints include the requirement that each task is assigned to

exactly one agent, the temporal deadlines and required delays are obeyed, agents'

capabilities and limitations are respected, agents keep a safety buffer zone between

them at all times, and each agent is scheduled to perform only one task at a time.

Output from the MIQP solver is used to modify the original input STP in such a

way as to maintain as much flexibility as possible by adding sequencing constraints

instead of requiring the exact times returned by the optimization software.

MAOA is evaluated to be able to schedule up to 4 agents and 12 tasks, above

which the computation time becomes infeasible because of its exponential nature.

The flexibility retained by MAOA is measured to be around 40% of the flexibility

of the original STP. MAOA is demonstrated through a simulation that assigns and

schedules tasks of two robots doing work on a fuselage. I present simulations for two

scenarios, one in which one robot breaks down for a time, requiring a recomputation

to redistribute work among agents and an other where a quality assurance agent

requests time to inspect work. MAOA succeeds in creating optimal task allocations

and schedules but falls short in terms of scalability because of the binary nature of

the sequencing decisions made for each pair of tasks; Tercio improves greatly upon

the scalability by introducing a satisficing sequencer.

93



5.3 Tercio

In Chapter 4, Tercio was presented. Tercio features a simplified MILP and fast

sequencer that allow for problems of large sizes to be solved quickly.

Tercio's agent allocation portion is based on the MAOA constraints and objectives

that affect agent selection without depending on the timing of tasks; it features a sim-

plified form of these equations, dropping the order of the formulation from quadratic in

MAOA's MIQP to linear in Tercio's MILP. Tercio's sequencer is based on an analogy

from factory scheduling to processor scheduling and makes use of temporal problems

with more structure than is typical for processor scheduling problems. Tercio's it-

erative framework solves the agent allocation and sequencing/scheduling problems

separately and iterates until it finds a schedule that falls below the input makespan.

Once the desired makespan has been achieved, Tercio runs post-processing to create

a STP that encodes a flexible schedule, allowing for a dispatching algorithm similar

to APA.

Tercio is shown to be capable of solving problems with up to 10 agents and 500

tasks in around 10 seconds. It finds schedules that are approximately 10% above

the true optimal for problems small enough to allow comparison between Tercio and

MAOA. Tercio is demonstrated in a multi-robot hardware testbed. Tercio performs

scheduling of two robots working on a mock fuselage; in the demonstration, the robots

replan in response to a request from a quality assurance inspector.

Tercio is the culmination of this thesis, allowing one to input a set of tasks,

temporal requirements, agents, and locations and rapidly computing a near-optimal

allocation and schedule. The schedule can be dispatched flexibly to accommodate

temporal disturbances and can be swiftly recompiled in the case of large disruptions.

While Tercio provides a full capability for single-cell scheduling, another important

problem of interest involves scheduling and allocating resources for an entire factory;

Tercio can act as an enabling technology in this instance but must rely on other

scale-up approaches to achieve full solutions.

94



5.4 Factory-Scale Extensions

Recommendations for future extensions of this work revolve around the need to scale

resource allocation, task allocation, and scheduling to a size required by large factories

of many robot cells, dozens to hundreds of robots, and thousands of tasks. Tercio

is a capable base off of which to build this type of system, but further, higher-level

algorithms would be required to produce a satisfactory solution. Our ideas for these

algorithms and how they can be assembled are presented in this section.

We consider a problem with multiple cells, each with its own schedule and team

of robots. Tercio is capable of scheduling each of these cells individually, but the

interplay of considerations among these separate cells yields an interesting research

direction. With many distinct cells involved, questions of two types arise, which we

shall call 'temporal disturbances' and 'agential disturbances'.

5.4.1 Multicell Temporal Disturbances

Many temporal disturbances are common in a factory environment that can disrupt

the planned schedule, such as late parts, malfunctions, worker confusion, and other

unexpected events. It has been shown in Chapter 4 that Tercio is capable of handling

these kinds of disturbances on a local, single-cell scale, but opening the problem

to larger sizes introduces new aspects. For example, in a facility with just-in-time

inventory or a constantly moving assembly line, a late part can affect not only the cell

directly involved but also cells further down the chain. Performing a full recompilation

of all schedules for each of these events is undesirable since, as shown in Chapter 2,

frequent recompilation slows down the system, makes it unresponsive to external

input, and can lead to unexpectedly changing solutions, eroding worker trust.

A few options exist for handling these temporal disturbances. One could employ

a centralized approach in which a large STP is maintained at a high level with every

schedule in each cell interwoven via their connecting constraints (shared parts that

could, for example, arrive late). Tercio could be run on each cell separately and the

connecting intervals added afterwards to represent the inter-cell dependencies. In

95



one possibility, an all-pairs-shortest-path computation could be run and the central

server dispatch all agents; this method would gain all of the benefits of flexible STP

scheduling outlined in Chapter 2. However, on this size network an all-pairs-shortest-

path computation would likely be slow and the resulting solutions unwieldy, making

schedule analysis by managers difficult due to the high level of interconnectedness

where every single trivial timing choice affects every other even among different cells.

Different methods exist for handling this kind of specialized problem; decomposing a

large, unwieldy STP into STPs for each cell would drastically improve performance

and usefulness. This kind of decomposition would feature distributed STPs which are

largely independent but maintain their important connections for inter-cell timing and

resource considerations. There exists a subfield of dynamic scheduling which deals

with these kind of decomposed networks, maintaining temporal consistency among

the separate STPs with occasional updates and careful information sharing [4]. In

this manner, even though each cell is centralized, the overall construction of the

factory-scale plan is distributed, potentially allowing an increase in speed.

5.4.2 Multicell Agential Disturbances

Agential disturbances are typical in a manufacturing environment, such as malfunc-

tioning robots and scheduled maintenance. One interesting aspect of this problem

is that most facilities with many robots will feature a storage area where robots not

being used are kept; this storage area can be considered a sink for robots where sched-

uled maintenance will occur and and a source where robots can be taken if needed.

It has been shown by the robot malfunction simulation in Chapter 3 (referring there

to MAOA but also applicable for Tercio) that robot malfunctions can be handled in

a single cell by recomputing the schedule with some knowledge of when the agent

will return. This is, however, undesirable, as it will almost always result in longer

makespans than if the agent could be immediately replaced. With the availability of

multiple cells and the additional storage area, these longer makespans can be avoided;

this opens up a question of resource allocation among cells, where the resources are

the robots/agents themselves.

96



If an agent were to be removed for any reason, a computation could be performed

to determine where the replacement agent would optimally be taken from. One

option is to always take the agent from the storage area; this is not always ideal as

these robots will have a longer distance to travel to reach their new assignment than

other, closer robots and will have some overhead involved with starting them up from

scratch. Robots can be taken from other cells and shifted over, which will result in

much smaller distances to travel and less time to reconfigure to the new environment.

Another interesting aspect of this problem is that cells will often feature a priority

level for the tasks being done within them. For example, the cell at the front of

a constantly-moving line of cells will be the most important, as major disturbances

within it could potentially affect the entire line, whereas the cell at the back can only

drastically affect its own schedule.

These considerations together suggest a kind of cycling approach, where robots at

high priority cells that are removed can be replaced by robots from lower priority cells,

and these cells can take the increased makespan associated with bringing a robot from

the storage area and getting it started up (although still a markedly smaller increase

than waiting for the original agent to be repaired). Balancing of these considerations

will be vital; for example, in some cases, it may be most useful to take a robot from

the nearest cell regardless of priority and shift a robot from each cell one cell down,

spreading out the wasted time, whereas in others it may make the most sense to wait

the full time for the new robot to travel from storage and be initialized and have

the lost time affect only one robot cell. Which robots are removed and from which

cells would be most effectively chosen with some knowledge of each cell's individual

schedule. For example, one might imagine a scenario where a robot must be procured

from a cell where one agent is only a minute from being finished with all of its tasks,

which would lead to an optimal situation of the system waiting one minute for the

task to be completed before taking the robot instead of disrupting the task.

Another aspect complicating matters is the existence of scheduled maintenance for

each agent. Each agent can be considered to have a countdown clock from when they

leave the storage area to when they must return to it for regular maintenance. Since

97



maintenance intervals are predefined, these additions and removals of agents can be

folded into the schedules Tercio produces. There may even be some robots designated

as 'plug-ins' for when an agents is planned to be removed, so the transition can be as

seamless as possible. When agential disturbances occur, however, these maintenance

schedules should be taken into account; an agent that only has one hour left before

scheduled maintenance should not be assigned to a two-hour task where it will need

to be replaced again after another hour.

Both temporal and agential disturbances can inform the design of a system that

employs multiple Tercio instances to control the task allocation and scheduling of an

entire factory, taking steps toward the tight, flexible choreography factories of the

future will depend upon.

98



Bibliography

[1] Gurobi optimizer version 5.0, April 2012.

[2] A. Ahmed, A. Patel, M. Ham T. Brown, M. Jang, and G. Agha. Task assignment
for a physical agent team via a dynamic forward/reverse auction mechanism. In
Int'l Conf. on Integration of Knowledge Intensive Multi-Agent Systems, 2005.

[3] D. Bertsimas and R. Weismantel. Optimization over Integers. Dynamic Ideas,
2005.

[4] J. Boerkoel, L. Planken, R. Wilcox, and J. Shah. Distributed algorithms for
incrementally maintaining multiagent simple temporal networks. In International
Conference on Automated Planning and Scheduling, 2013.

[5] L. Brunet, H.-L. Choi, and J. P. How. Consensus-based auction approaches
for decentralized task assignment. In AIAA Guidance, Navigation, and Control
Conference (GNC), Honolulu, HI, August 2008 (AIAA-2008-6839).

[6] D. A. Castanon and C. Wu. Distributed algorithms for dynamic reassignment.
In IEEE CDC, volume 1, pages 13-18, December 2003.

[7] E. Castro and S. Petrovic. Combined mathematical programming and heuristics
for a radiotherapy pre-treatment scheduling problem. 15(3):333-346, 2012.

[8] J. Chen and R. Askin. Project selection, scheduling and resource allocation with
time dependent returns. 193:23-34, 2009.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[10] J. Curtis and R. Murphey. Simultaneous area search and task assignment for a
team of cooperative agents. In IEEE GNC, 2003.

[11] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif. Intell.,
49(1):61-91, 1991.

[12] M. Gombolay. PLACEHOLDER TITLE. MIT S.M. Thesis, Cambridge, Mas-
sachusetts, 2013.

[13] F. Hillier and G. Lieberman. Introduction to Operations Research. McGraw-Hill,
1995.

99



[14] A. Hofmann and B.Williams. Robust Execution of Temporally Flexible Plans
for Bipedal Walking Devices. In Proc. ICAPS, pages 386-389, 2006.

[15] J. Hooker. A hybrid method for planning and scheduling. In Carnegie Mellon
University Research Showcase, 2004.

[16] J. Hooker. An improved hybrid milp/cp algorithm framework for the job-shop
scheduling. In IEEE Int'l Conf. on Automation and Logistics, 2009.

[17] V. Jain and I. Grossmann. Algorithms for hybrid milp/cp models for a class of
optimization problems. 13(4):258-276, 2001.

[18] L. Khatib, P. Morris, R. Morris, and F. Rossi. Temporal constraint reasoning
with preferences. In Proc. IJCAI, pages 322-327, 2001.

[19] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time tasks
with rate-monotonic priorities. In Real- Time and Embedded Technology and Ap-
plications Symposium, 2010.

[20] D. McCarville. Evolution of and Projections for Automated Composite Material
Placement Equipment in the Aerospace Industry. PhD thesis, Walden University,
2009.

[21] T.M. McLain and R.W. Beard. Coordination variables, coordination functions,
and cooperative timing missions. AIAA Journal on Guidance, Control, and
Dynamics, 28(1):150-161, 2005.

[22] P. Morris, R. Morris, L. Khatib, S. Ramakrishnan, and A. Bachmann. Strategies
for global optimization of temporal preferences. In Proc. CP, pages 408-422.
Springer, 2004.

[23] N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating Temporal Plans
For Efficient Execution. In Proc. KRR, 1998.

[24] Stefanos Nikolaidis and Julie A. Shah. Huamn-robot cross-training: Computa-
tional formulation, modeling and evaluation of a human team training strategy.
In IEEE/ACM International Conference on Human-Robot Interaction, 2013.

[25] P. Richard. On the complexity of scheduling real-time tasks with self-suspensions
on one processor. In Euromicro Conf. on Real-Time Systems, 2003.

[26] F. Rossi, K. B. Venable, L. Khatib, P. Morris, and R. Morris. Two Solvers for
Tractable Temporal Constraints With Preferences. In Proc. AAAI workshop on
preference in AI and CP, 2002.

[27] S. Sariel and T. Balch. Real time auction based allocation of tasks for multi-
robot exploration problem in dynamic environments. In AIAA Workshop on
Integrating Planning into Scheduling, 2005.

100



[28] J. Shah. Fluid Coordination of Human-Robot Teams. MIT PhD Thesis, Cam-
bridge, Massachusetts, 2010.

[29] J. Shah and C. Breazeal. An Empirical Analysis of Team Coordination Behav-
iors and Action Planning With Application to Human-Robot Teaming. Human
Factors, 52, 2010.

[30] J. Shah, J. Stedl, B. Williams, and P. Robertson. A Fast Incremental Algorithm
for Maintaining Dispatchability of Partially Controllable Plans. In Proc. ICAPS,
2007.

[31] J. Shah, J. Wiken, B. Williams, and C. Breazeal. Improved Human-Robot Team
Performance Using Chaski, a Human-inspired Plan Execution System. In Proc.
A CM/IEEE HRI, pages 29-36, 2011.

[32] T. Shima, S.J. Rasmussen, and P. Chandler. Uav team decision and control
using efficient collaborative estimation. In Proc. A CC, volume 6, pages 4107-
4112, June 2005.

[33] D. Smith, J. Frank, and A. J6nsson. Bridging the Gap Between Planning and
Scheduling. Knowledge Engineering Review, 15, 2000.

[34] J. Stedl. Managing Temporal Uncertainty Under Limited Communication: A
Formal Model of Tight and Loose Team Communication. Master's thesis, MIT,
2004.

[35] W. Tan. Integration of process planning and scheduling - a review. 11:51-63,
2000.

[36] I. Tsamardinos and N. Muscettola. Fast transformation of temporal plans for
efficient execution. In Proc. AAAI, 1998.

[37] I. Tsamardinos and M. Pollack. Efficient solution techniques for disjunctive
temporal reasoning problems. Artif. Intell., 151:43-89, December 2003.

[38] R. Wilcox, S. Nikolaidis, and J. Shah. Optimization of temporal dynamics for
adaptive human-robot interaction in assembly manufacturing. In Proc. RSS,
2012.

101


