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ABSTRACT

The immense chemical complexity of atmospheric organic particulate matter

("aerosol") has left the general field of condensed-phase atmospheric organic
chemistry relatively under-developed when compared with either gas-phase
chemistry or the formation of inorganic compounds. In this work, we endeavor
to improve the general understanding of the narrow class of oxidation reac-
tions that occur at the interface between the particle surface and the gas-phase.

The heterogeneous oxidation of pure erythritol (C4H1 00 4 ) and levoglucosan
(C6 H1 00 5 ) particles by hydroxyl radical (OH) was studied first in order to eval-
uate the effects of atmospheric aging on the mass and chemical composition of
atmospheric organic aerosol, particularly that resembling fresh secondary or-
ganic aerosol (SOA) and biomass-burning organic aerosol (BBOA). In contrast
to what is generally observed for the heterogeneous oxidation of reduced organ-
ics, substantial volatilization is observed in both systems. As a continuation
of the heterogeneous oxidation experiments, we also measure the kinetics and
products of the aging of highly oxidized organic aerosol, in which submicron
particles composed of model oxidized organics- 1,2,3,4-butanetetracarboxylic
acid (C8H 100 8), citric acid (C6 H8 0 7), tartaric acid (C4H6 0 6 ), and Suwannee
River fulvic acid-were oxidized by gas-phase OH in the same flow reactor,
and the masses and elemental composition of the particles were monitored as
a function of OH exposure. In contrast to studies of the less-oxidized model
systems, particle mass did not decrease significantly with heterogeneous oxida-
tion, although substantial chemical transformations were observed and char-
acterized.

Lastly, the immense complexity inherent in the formation of SOA-due pri-
marily to the large number of oxidation steps and reaction pathways involved-
has limited the detailed understanding of its underlying chemistry. In order to
simplify this inherent complexity, we give over the last portion of this thesis to
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a novel technique for the formation of SOA through the photolysis of gas-phase
alkyl iodides, which generates organic peroxy radicals of known structure. In
contrast to standard OH-initiated oxidation experiments, photolytically initi-
ated oxidation forms a limited number of products via a single reactive step.
The system in which the photolytic SOA is formed is also repurposed as a gen-
erator of organic aerosol for input into a secondary reaction chamber, where
the organic particles undergo additional aging by the heterogeneous oxidation
mechanism already discussed. Particles exiting this reactor are observed to
have become more dramatically oxidized than comparable systems containing
SOA formed by gas-phase alkanes undergoing "normal" photo-oxidation by
OH, suggesting simultaneously the utility of gas-phase precursor photolysis as
an effective experimental platform for studying directly the chemistry involved
in atmospheric aerosol formation and also the possibility that heterogeneous
processes may play a more significant role in the atmosphere than what is pre-
dicted from chamber experiments. Consideration is given for the application of
these results to larger-scale experiments, models, and conceptual frameworks.

Thesis Supervisor: Jesse Kroll
Title: Assistant Professor of Chemical Engineering, Assistant Professor of Civil
Engineering
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Chapter 1

Introduction

The presence of particulate matter (or "aerosols") in the atmosphere is of

special importance due to its impact on both human health [1] and global
climate-in the latter case primarily due to both direct radiative forcing and
cloud condensation effects [2, 3]. The high degree of uncertainty in predict-
ing these effects underscores the need for both improved understanding of the
underlying mechanisms of formation (and transformation) of particles and im-
proved models to estimate both aerosol loading and its attendant influence on
the planetary energy balance. Although aerosol particles have been extensively
studied from the point of view of their inorganic components, characterization
of organic aerosol remains less well understood, in large part because of the
chemical complexity inherent in a system containing many diverse compounds.
The number of uniquely identified compounds present in the atmosphere has
been estimated to be in the tens of thousands [4], and the number of theoret-
ically possible compounds is shown through Figure 1.1 to be several orders of
magnitude greater, even in very narrow cases for which several restrictions are
placed on the definitions of chemical complexity.

Organic compounds account for anywhere from 20% to 90% of the partic-
ulate matter present in the lower troposphere [5, 6], yet the exact chemical
composition of these mixtures is difficult to fully characterize. Organic aerosol
particles in the atmosphere have two distinct sources. Primary organic aerosols
(POA) are emitted directly into the atmosphere, whereas secondary organic
aerosols (SOA) are formed from the condensation of lower-volatility oxidation
products of volatile and semi-volatile organic compounds (VOCs and SVOCs,
respectively) present in the gas phase. SOA has been shown in many stud-
ies to contribute a substantial fraction to total organic particulate matter,
though most field studies show measured amounts of SOA to be 10-100 times
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Figure 1.1: Total number of possible oxidized compounds for a given number of
carbon atoms, assuming a linear backbone and allowing for hydroxyl, carbonyl,
and carboxyl functional groups only.

higher than predicted by current models [7, 8, 9], indicating several as-yet
unaccounted-for sources.

In addition, the classification of types of organic aerosol is further compli-
cated by the definitions of various classes of oxidation through positive ma-
trix factorization (PMF), which defines large datasets, containing time series
of many mass spectra, in terms of a statistically restricted set of "factors",
which are subsequently evaluated and given labels ranging from hydrocarbon-
like organic aerosol (HOA, typically the most chemically reduced form) to
oxygenated organic aerosol (OOA), biomass-burning organic aerosol (BBOA),
and other region-specific factors [10]. Several factors, taken from multiple field
campaigns and given the common label of low-volatility OOA (or LV-OOA),
have been evaluated by elemental analysis, which is described in greater de-
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tail in the next chapter, and are depicted in Figure 1.2 as a Van Krevelen
diagram, which plots the hydrogen-to-carbon ratio (H/C) against oxygen-to-
carbon (O/C) as a generic description of the chemical character of the organic
species. In many cases, this description is sufficient to determine many use-
ful properties of the aerosol as a whole [11, 12]. Even for a class of aerosol
components with a common label and interpretation among the atmospheric
chemistry community, we can observe a very broad range of values within this
Van Krevelen space. The range in question is outlined using a confidence re-
gion based on the covariance of the data set itself [12].

The chemical oxidation of organic compounds in the atmosphere may oc-
cur in either the gas phase or the condensed phase (in the latter case, most
frequently at the surface of a particle, via a heterogeneous mechanism), as in-
dicated by the various mechanisms previously studied and depicted in Figure
1.3 [13, 14]. In many cases, oxidation is initiated by a hydrogen abstraction
step, in which a hydroxyl radical (OH-) reacts with the organic compound to
form an alkyl radical. The subsequent reaction pathways lead either to ad-
dition of functional groups (generally hydroxyl and carbonyl groups) to the
carbon backbone of the molecule, which tends to lower the molecule's volatil-
ity, or to carbon-carbon bond scission, which frequently increases volatility
[15, 16]. Additionally, oxidation of unsaturated hydrocarbons may also occur
by an ozonolysis pathway, in which an alkene reacts directly with 03 to form
an ozonide intermediate before forming more heavily oxidized products [16].

Of particular interest in this work is the competition between those reac-
tions that contribute to a net increase in overall oxygen content of organic
aerosols (functionalization) and those that contribute to a net decrease in car-
bon content (fragmentation). Whereas functionalization reactions are likely to
decrease the volatility of the organic species, fragmentation reactions typically
lead to carbon loss by yielding two separate products, each one more volatile
than the parent compound. The most common understanding of oxidation
tends to assume that further oxidation generally leads to lowered volatility in
almost all cases. Preliminary results observed in the oxidation of squalane,
however, have demonstrated that fragmentation pathways are likely to be im-
portant even for mildly oxidized components [13].
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reactions depicted here are initiated by hydrogen abstraction by the hydroxyl

radical (OH). Reaction rates and branching ratios between competing mecha-

nisms are heavily influenced by a compound's partitioning between phases.

1.1 Classification of Mixtures

In considering the complexity of organic mixtures in the atmosphere, three

classes, or orders, of organic mixture are of special note. The first, as discussed

already, is the mixture of different possible reaction products available from

a given oxidative step. Competition between fragmentation and functional-

ization reactions, and variations among numerous functional groups that may

be added to a compound, characterize the complexity of this particular class,
which grows larger with each successive reaction. The second grouping con-

siders mixtures among different generations of products, as depicted in Figure

1.4. Smith et al. have shown that initial oxidation of a large starting com-
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pound (in this case, squalane, a branched C30 alkane shown in Figure 1.5) may
be represented in a simplified form by a single series reaction in which each
generation is treated as a single product [14:

Sq-+ OH A Sqo 1

SqO, + OH -4 SqOn+1  (1.1)

If the same rate constant is used in each oxidation step (approximately valid
for the first few reactions of a very large compound), the resulting analytical
expression for the simplified system is

Tn

[SqOn] = [SqJ0 n exp(-rF) (1.2)

where T= k (OH) t is the number of squalane lifetimes and represents the
amount of exposure required to decrease the amount of starting compound by
one exponential unit. As demonstrated in Figure 1.4, several generations may
co-exist for a given exposure level, thereby adding to the complexity of the
system.

Lastly, the degree of oxidant exposure to which a compound is subjected is
determined by the amount of time it spends in the system of interest. There-
fore, the residence time distribution, which is controlled by transport consid-
erations, dictates variations in the number of average lifetimes a single particle
may experience. An understanding of the interplay among all three classes of
mixing is important for two reasons. The first is that each level of detail is
necessary in order to accurately model the atmospheric behavior of organic
species, since a small fraction of highly oxidized compounds may potentially
contribute disproportionately to either aerosol mass or additional thermophys-
ical properties of the condensed phase (e.g. cloud condensation activity and
human uptake). Additionally, the collection of useful laboratory data requires
restriction of higher-order mixing in order to yield useful insights regarding
the specific microscopic behavior of the systems in question.

1.2 Modeling of Secondary Organic Aerosols

Most recent treatments of SOA follow the two-product model proposed by
Odum [17], in which the fractional aerosol yield is determined from the indi-
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vidual yields (ai) and gas-aerosol equilibrium partitioning constants (Kom,i)
of every possible reaction product according to

Y = = COA z (1.3)
AC R 1 + KomiCOA

where COA is the mass concentration of organic aerosol present in the sys-
tem and CR is the concentration of the reactive species. The two-product
model simplifies the above expression by assuming that the sum over all pos-
sible products can be represented by two characteristic pseudo-products:

Q1 Kom, 1 a 2 Kom, 2Y ~O Co + (1.4)
1 + Kom,1Co 1 + Kom,2COA)

Application of this model to atmospheric systems entails identifying suit-
able precursors (primarily terpenes and aromatic hydrocarbons), performing
chamber oxidation studies to estimate mass yields as a function of aerosol
loading, and fitting the data to Equation 1.4 to obtain values of ai, a 2 , Kom,1,

16



and Kom,2 for the compound being studied. Several potentially important pre-
cursors have been characterized in this manner [18, 19], but the large number
of candidate organic compounds underscores several limitations of the model.
Because the model treats precursors on a compound-by-compound basis, it
cannot make predictions for compounds that have not been explicitly iden-
tified and characterized, and the addition of each new precursor makes the
non-linear solution of Equation 1.3 more unwieldy and prone to numerical er-
rors. Additionally, the focus on aerosol production in terms of product yields
implies a single-step chemical process, whereas multigenerational reaction ki-
netics have been demonstrated to act as both significant sources [20] and sinks
[21] of SOA.

Another model, proposed by Donahue et al. [22], rewrites Equation 1.3 in
terms of the total atmospheric concentration (as opposed to reaction yield) of
a given compound:

COA =( iCi; i (I + - (1.5)

where (i is the fraction of the compound present in the condensed phase
and C* (which is just the inverse of Kom,i as shown above) is the compound's
saturation concentration in the gas phase, determined from the compound's
vapor pressure, temperature, and activity coefficient in the condensed phase,
as well as the average molecular weight of the aerosol mixture:

C* = MOAY 2 RP (1.6)

In the Donahue model, the values of Cl are fixed (eschewing the assumption
of a limited number of possible products), and all compounds of approximately
the same volatility are grouped into bins. One practical benefit of grouping
different molecules according to volatility is that if the total concentration Ci
in each bin is known, the solution for organic aerosol mass requires only 6-7
terms and becomes relatively easy to solve numerically.

At the same time, grouping compounds by their partitioning constants at
25 'C is likely not to be sufficient to describe a given system completely. Dif-
ferent compounds with the same gas-phase saturation concentration are likely
to have different reactivities or cloud condensing properties, and differences in
heats of vaporization can change the volatility distribution significantly over
the range of temperatures encountered within the troposphere (-60 to 30 C).
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Donahue et al. suggest the introduction of additional bins to describe chemical

functionality, degree of oxidation, or elemental ratios as a means of capturing

enough information to fully characterize a model system [22].

1.3 Overview of Heterogeneous Oxidation Ex-
periments

The overarching goal of this work is to establish a useful set of rules for pre-

dicting the chemical behavior of organic aerosol systems undergoing aging via

heterogeneous oxidation, which is considered as one narrow subset of all possi-

ble oxidation pathways in the atmosphere (including bulk condensed-organic-
phase oxidation, gas-phase reactions, and aqueous chemistry). In order to

sample from a sufficiently broad range of possible organic aerosol types, we
choose to use a set of model compounds that represent several different rel-

ative levels of oxidation and have a wide array of functional groups. Figure
1.5 displays the major compounds studied in this thesis, each of which is in-

troduced separately to a flow tube reactor (described in this section and in

subsequent chapters, where relevant) and subjected to reaction with hydroxyl
radicals (OH). These compounds include hydrocarbons (squalane, C30H62 ),
poly-ols (erythritol and levoglucosan), and highly oxygenated acids, the last
of which are used as representatives for OOA, which is otherwise very difficult
to reproduce in a laboratory setting [23, 24, 25].

The reactor that is used to oxidize the compounds of interest is depicted in
Figure 1.6. Briefly, compounds are introduced, already in the condensed phase
as sub-micrometer particles, along with a mixture of hexane, ozone, oxygen,
nitrogen, and water vapor. The ozone, in the presence of 254-nm light, rapidly
photolyzes and reacts with water vapor to form hydroxyl radicals, which are
the primary oxidants in this system. The exiting particle flow is monitored by
several conventional (and commercially available) instruments, as well as the
Aerosol Mass Spectrometer, which is discussed in greater detail in the next
chapter.
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Figure 1.5: Chemical structures of the model compounds to be used in this
work. Squalane [13]; erythritol and levoglucosan [26]; and tartaric, citric,
and 1,2,3,4-butanetetracarboxylic acids [27] are all introduced separately into
a flow tube reactor (by various methods described for each experiment) and
subjected to reaction with high concentrations of the hydroxyl radical, OH.
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Figure 1.6: Diagram of the flow-tube reactor to be used in this work.
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Chapter 2

Analysis of High-Resolution
Aerosol Mass Spectrometry
Data

Analysis of the composition of aerosols exiting our reacting systems was per-
formed using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer
(HR-ToF-AMS, Aerodyne Research Inc., depicted in Figure 2.1) and has been
extensively characterized [Jimenez 2003, Canagaratna 2007]. The front end
consists of a sampling chamber in which the particle flow is sampled through
a 100-,um critical orifice at a flow rate of -0.1 L min- and is focused through
an aerodynamic lens at a pressure of -2 mmHg into a beam approximately
1 mm in diameter. The particle beam then passes to the ionization and sub-
sequent detection region for mass spectral analysis of the entire condensed
phase. Alternatively, if the instrument is set to "PToF" (Particle Time-of-
Flight) mode, the beam is interrupted by a chopper so that aerosols enter a
sizing chamber in small pulses. Individual particles are separated according
to their vacuum aerodynamic diameter so that they enter the detection region
at different times, thereby enabling the evaluation of a size-based distribution
of mass spectra.

Mass spectra of the compounds and mixtures that pass through the selected
front end instrument are analyzed via a time-of-flight mass spectrometer pro-
vided by Tofwerk AG. The main advantage afforded by this device is the use
of high-resolution (~5000) data gathering to differentiate between fragment
ions having the same nominal mass (e.g. CO+, with a mass of 43.990, and
C 2 H40+, with a mass of 44.026 amu, as illustrated in Figure 2.2 below). A
common application of high-resolution mass spectral analysis is the evaluation
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Figure 2.1: Aerosol Mass Spectrometer set-up. Particles are sampled at the
inlet of the AMS front end, pass through a chopper and PToF chamber for

sizing, and then enter the ionization region, where they are vaporized, ionized,
and analyzed by time-of-flight mass spectrometry [28].

of elemental composition, as described below for systems using electron impact
(EI) ionization [29, 30]. The utility of separating ion fragments shall be further
illustrated in Section 3.2, which contains profiles of the two ions mentioned

above for a system in which erythritol particles undergo oxidation in a flow

reactor as described above. Although the unit-mass peak at m/z = 44 is fre-
quently used as a marker for the degree of oxidation of a system [30], the case

presented here shows that even as the system becomes more heavily oxidized

(as indicated by the rising CO- peak), the unit-mass peak appears to decrease.

2.1 Ionization Techniques

The most common ionization method used in the commercial AMS is the well-

characterized electron impact (EI) method, whereby molecules are bombarded

by electrons from a tungsten filament at an electrical potential difference of 70
V. This process tends to lead to substantial fragmentation of organic molecules,
so that there is frequently little to no trace of the original parent ion detected.
Although this fragmentation precludes the identification of individual com-
pounds within a mixture, the reduction of the mixture to a set of fragments,
most with masses of no more than 100 amu, enables the unambiguous identi-

fication of many individual fragments, thereby allowing for the measurement
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Figure 2.2: (Above) Unit mass resolution spectrum of a typical organic aerosol.
(Below) High-resolution spectrum of the same organic aerosol at a nominal
m/z = 44. Individual ions are differentiated by small deviations in mass.
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of elemental ratios (oxygen to carbon, hydrogen to carbon, etc.) within the
mixture [29, 30].

An alternative method of ionizing compounds, compared with El as de-
scribed above, is vacuum-ultraviolet single-photon ionization (VUV-SPI), a
"soft" technique that avoids excessive fragmentation of analyte ions. Photon
energies employed are within 10-12 eV, just above the ionization energy of
typical organic compounds (8-11 eV). The ultraviolet light required can be
generated from a krypton lamp mounted inside the AMS, with a plurality of
emitted photons at energies of 10 and 10.6 eV [31], or from a synchrotron
radiation source. Because the latter option affords the advantages of a much
greater level of radiation intensity and a highly tunable photon energy output
(to within 0.1 eV over a range of 5-20 eV), synchrotron radiation was employed
for the entirety of this project through continuing collaboration with Aerodyne
Research, Inc. and Lawrence Berkeley National Laboratory (LBNL).

The utility of VUV ionization is demonstrated in Figure 2.3 below, in
which a highly branched alkane (molecular weight 422 amu) is introduced in
aerosolized form to the AMS. Whereas El ionization reduces the mixture to
a series of fragments for which m/z < 100 (useful for bulk composition stud-
ies), VUV photoionization yields a predominant molecular peak and select few
fragment peaks. When the particles are oxidized in a flow tube as described
previously, several individual oxidation products can be identified and moni-
tored with changing oxidant exposure in order to develop a working model for
the kinetics of their time evolution [14].

2.2 Dimensionality Reduction of Aerosol Mass

Spectra
Dimensionality reduction in the AMS has frequently been used as a means
of extracting physically relatable information from complicated mass spectra.
The most often-employed techniques include the calculation of total aerosol
mass; the fractional presence of the marker peaks at m/z = 43 and m/z = 44,
used respectively to identify moderately- and highly-oxidized OA [32]; ele-
mental ratios H/C, O/C, and N/C [29, 30]; and positive matrix factorization
(PMF), which identifies the reduced and oxidized portions of organic aerosol,
in addition to specific sources from unique events (e.g. biomass burning), via
statistical speciation of large amounts of time-resolved AMS data [10].
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Figure 2.3: Mass spectra of squalane (branched C30 alkane, structure shown
inset) generated using electron impact ionization and vacuum-ultraviolet pho-
toionization. The "soft" ionization technique yields a molecular peak not
otherwise seen in most EI-AMS studies, with only very mild fragmentation
observed.

Each of these dimensionality reduction techniques is capable of providing
highly useful chemical and/or physical information about the unresolved com-
plex mixture of organic species that is typically found in ambient aerosol (e.g.
by gas chromatography studies). However, by simplifying a high-resolution
mass spectrum to only a handful of variables, we risk discarding additional
information by over-simplifying. We therefore seek a means of consolidating
the full mass spectrum in a manner that is physically descriptive, retains a
substantial amount of chemical information from the original spectrum, and
relies on a very small number of variables in the final output. To this end,
we introduce the concept of an oxidation-state distribution of carbon atoms,
which can be applied to a single molecule or to large complex mixtures of
many molecules.

25



1.2
1.0- Am/z = 13.97 (+10, -2H)

1.0 Sq SO 0.8-

SqO 0,6-

0 0.8 0.4

C 0.2 -

-' 0.6 -
)0.0

C0L 420 425 430 435 440

SqO 2

0.2 -

ISqO 3  SqO4

420 440 460 480 500
m/z

Figure 2.4: Mass spectrum of a multigenerational mixture of oxidized squalane
particles, with different generations identified by the mass of the molecular
peak.

The oxidation-state distribution, which we display here as a frequency his-
togram, identifies the fraction of total carbon at each possible oxidation state
(which, for molecules with more than one carbon atom, ranges from -3 for the
most reduced carbon, CH 3, to +3 for fully oxidized carbon, COOH). By sub-
dividing total carbon in this way, we are able to present a picture of organic
aerosol as a dynamic mixture of reduced and oxidized carbon in a manner
that allows for both greater conceptual understanding of mass spectra and a
potentially improved analysis of key physicochemical properties of the organic
mixture (e.g. reactivity, hygroscopicity, refractive index [11, 33, 34, 2, 35]).
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2.3 Discussion

Construction of an oxidation-state distribution for a single molecule is rela-
tively straightforward. With very few exceptions (e.g. molecules containing
a single carbon atom), the oxidation state of carbon atoms within a molecule
typically take on integer values between -3 and +3. By counting the num-
ber of atoms at each possible state, we can construct a histogram depicting
the relative frequency of each level of oxidation. One such sample histogram
is depicted in Figure 2.5a, for pure citric acid, which contains two reduced
secondary carbon atoms, a hydroxyl group on a tertiary carbon, and three
carboxyl groups.

A similar approach is undertaken in constructing carbon oxidation distri-
butions from mass spectra of unresolved OA mixtures. The AMS does not
provide direct information about the degree of oxidation of each individual
carbon atom. However, the high degree of fragmentation caused by electron
impact (EI) ionization within the instrument ensures that a majority of the
ion signal in the mass spectra comes from fragments containing three or fewer
carbon atoms. As a result, the estimate of each fragment's average carbon
oxidation state,

_ OH
OSc ~ 2 , (2.1)C C,

will result in only modest errors compared with carefully reporting the
oxidation state of each constituent atom. Different ion fragments with the
same approximate OSc are grouped together, and the carbon contribution
from each one is tallied in order to produce a frequency plot, as illustrated in
Figure 2.5b for atomized citric acid. The non-integer values depicted in the
distributions are the result of taking the average oxidation state for fragments
with multiple carbon atoms. Note that because the formal positive charge
associated with each ion is a product of the ionization process, and not an
intrinsic characteristic of the organic aerosol, it is ignored for the purpose of
our analysis.

Additionally, an alternative method (for which the relevant code is pro-
vided in the Appendix) simplifies the distribution-as calculated from the
AMS data-to integer values of OSc in order to attempt an estimate of the
"true" oxidation state distribution. The method by which this calculation is
carried out involves first an empirical estimate of the relationship between the
fraction of signal at m/z = 44 (specifically, the fraction of the ion CO') and
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Figure 2.5: (Top, Blue) Oxidation state distribution of pure citric acid. (Top,
Red) Inferred oxidation state distribution of citric acid obtained from manipu-
lation of the mass spectra. (Bottom) Distribution of average carbon oxidation
state of AMS fragments, weighted by carbon abundance.
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the known fractional presence of carbon with an oxidation state of +3 in a
given training set [29]. From there, the oxygen on remaining fragment ions
is apportioned to values of -1 through +2 according to the relative degree of
saturation (determined by the hydrogen content of the same fragments), and
the remaining (non-oxidized) carbon in each fragment is apportioned to the
reduced (-3 through 0) values of OSc. Fragments with no oxygen content at
all are apportioned to the values of -3 through 0 in the same manner, with
non-integer values of OSC determining the division of carbon between the two
nearest integer values.

Such distributions are intended to provide a generic picture of reduced and
oxidized OA that has greater physical significance beyond the simple MS-based
picture, which typically must be interpreted by expert methods. Additionally,
such distributions may avoid the potential danger in PMF studies of conflat-
ing the various factors (e.g. hydrocarbon-like OA and oxidized OA) with fixed
classes of molecules. Because the oxidation state distribution is only concerned
with the degree of oxidation of carbon atoms, there is no danger of conflation
of the atomic information with molecular information.

In order to demonstrate the potential value of these oxidation-state distri-
butions, Figure 2.6 provides distributions for the factors obtained by positive
matrix factorization (PMF) from the CARES field campaign [36]. Each of the
factors depicted has already been identified, on the basis of analysis of the
high-resolution mass spectra, according to the relative levels of oxygenation
observed. However, by simply processing the spectra individually, the degrees
of oxidation can be depicted directly for ready analysis.

Additionally, Figure 2.7 depicts the oxidation state distributions at several
different levels of oxidation in the heterogeneous aging of Squalane [13], rang-
ing from unoxidized to several weeks' worth of OH exposure. Once again, the
gradual increase in average oxidation state-and, as importantly, the broaden-
ing of the distribution to include a wider array of values-is depicted cleanly
and directly. The distribution begins tightly centered about OSc = 2, as is
expected of typical alkanes. As particles become oxidized, the distribution
becomes broader and shifts to higher oxidation states on average. We can also
note that there is still some "reduced" carbon left in the mixture, even after
heavy oxidation in the flow reactor.
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Figure 2.6: Distributions for three factors obtained by PMF from the CARES
campaign. (Top, red) Hydrocarbon-like Organic Aerosol, HOA. (Middle, blue)
Less-oxidized Oxygenated Organic Aerosol, LO-OOA. (Bottom, brown) More-
oxidized Oxygenated Organic Aerosol, MO-OOA. The average of the distribu-
tion is observed to be higher for the factors identified as more-oxidized.
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2.4 Implications

We have introduced in this chapter a method for interpreting aerosol mass
spectra that eschews the frequent view of OA as a sum of "factors". Rather,
the distributions described herein approach the aerosol simply as a sum of
many carbon atoms of varying oxidation states, in keeping with the tradi-
tional difficulty of obtaining any greater molecular information from the high-
fragmentation El mass spectra [28]. This view of OA as a distribution of com-
ponents, rather than as specific molecules, allows us to examine with greater
clarity how oxidation changes affect the mixture as a whole, with a gradual al-
teration of the distribution's shape indicative of the chemical transformations
occurring within the particle phase.

In the future, we might consider using such distributions in the context of
low-variable-number models of the kinetics of atmospheric oxidation, in order
to better capture the nature of oxidative aging of OA. By using a universally-
applied method of characterizing the aerosol components, a parameterization
for the kinetics of oxidation may be introduced for the purpose of allowing
comparisons among the many different classes of organic compound and aerosol
type that are included in this thesis. Future work on this project should focus
on creating a generalized framework for describing all of these classes in a single
model, such that the evolution of novel systems can be accurately predicted
prior to carrying out the relevant experiments.
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Chapter 3

Heterogeneous Oxidation of
Poly-Alcohols: Erythritol and
Levoglucosan

The bulk of the work performed in this thesis focuses on experiments concern-
ing oxygenated organic compounds, considering the many studies that have al-
ready been undertaken with respect to heterogeneous aging of reduced species
and various types of chamber-generated secondary organic aerosol (SOA). Sev-
eral of these studies [23, 37, 14] have previously found that substantial oxida-
tion of reduced organic species, as well as loss of OA mass, occurs only at very
high oxidant exposures, beyond what most particles will experience in their
atmospheric lifetimes. Nonetheless, our work suggests that oxidized organic
compounds may be susceptible to volatilization reactions; these may be atmo-
spherically important given the abundance of oxidized compounds in OA [2].

In this chapter we investigate the kinetics and products of the hetero-
geneous oxidation of oxygenated (polyhydroxylated) species by exposure to
hydroxyl (OH) radicals. We focus on two model organic systems, chosen both
for their high degree of oxidation and for their importance as surrogate or
tracer species in OA. Erythritol, C4H1 00 4, is an analog of 2-methyl erythri-
tol, a tracer species for isoprene SOA [38, 39]. Levoglucosan, C6 H1 00 5 , is
a known product of cellulose pyrolysis and is frequently used as a tracer for
biomass burning OA (BBOA) [40]. Although the role of these compounds
in atmospheric chemistry differs greatly, they are functionally similar, with
low carbon numbers, several hydroxyl groups, and a relatively high degree of
oxygenation (oxygen-to-carbon ratios of 0.8 to 1.0). The rates of oxidation of
both species may strongly affect their efficacy as tracers in determining rel-
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ative amounts of SOA and BBOA [41, 42, 43, 44]. More generally, the goal

of this work is to investigate the possibility that oxidative aging of organic

aerosol may serve as a chemical sink of atmospheric particulate matter (PM)
via formation of volatile products [45].

3.1 Experimental Methods

The flow reactor used to study the heterogeneous oxidation of particles has

been described in detail previously [13, 14] and is discussed briefly here. The

reactor is made up of type-219 quartz, with a length of 130 cm, inner diameter

of 2.5 cm, and residence time of ~37 s. Carrier flow consists of an02/N2
mixture (in a 5/95 volume ratio), humidified to 30% RH. Organic aerosol is

generated by sending an aqueous solution of each organic through either a

constant-output atomizer (erythritol, 99% purity, Aldrich) [46] or a commer-

cial nebulizer (levoglucosan, 99% purity, Aldrich) [47], and the resulting par-

ticles (surface-weighted mean diameter of -270-305 nm) are drawn through a

diffusion drier and into the flow reactor at loadings of ~500-750 pg m- 3 . Such

loadings are sufficiently high to ensure that more than 95% of the erythritol

and 99% of the levoglucosan, respectively, is present in the condensed phase

at equilibrium. Because non-equilibrium aerosol mixtures tend to favor the

condensed phase due to slow evaporation rates [48], we are confident that het-

erogeneous oxidation reactions will dominate under these conditions.

Ozone is produced by either a mercury pen-ray lamp (1-10 ppm) or a

commercial corona discharge ozone generator (10-200 ppm, OzoneLab Instru-

ments). 03 concentrations, which determine the level of OH exposure within

the reactor are determined using an ozone monitor (2B Technologies Inc.).

Within the flow reactor (temperature: 35 C), ozone is photolyzed by UV
light at 254 nm from two mercury lamps positioned immediately outside the

quartz tube. O( 1 D) generated by ozone photolysis subsequently reacts with

water vapor to form a pair of hydroxyl radicals (OH), which initiate oxidation

of the particles. The water vapor concentration is maintained at a sufficiently

high level to ensure that direct oxidation of particles by O( 1 D) is negligible,
as determined previously [14]. Hexane (~100 ppb) added to the tube is moni-

tored by GC-FID to quantify OH concentration. This technique has been used

to correctly predict rate constants in the reaction of OH with other selected

gas-phase hydrocarbons [13, 14]; OH concentrations, which are changed by
varying 03, range from 109 to 2 x 10" molecule cm- . Such concentrations
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correspond to approximate atmospheric exposures of one day to four weeks,
assuming an average ambient OH concentration of 3 x 106 molecule cm-3. It
should be cautioned that these high OH concentrations may lead to significant
secondary chemical effects, which would make linear extrapolation to ambient
levels highly uncertain. Examination of these secondary effects by compari-
son of low- and high-concentration experiments at varying residence times is
therefore an important topic for future research.

Particles exiting the flow reactor are sampled into a scanning mobility parti-
cle sizer (SMPS, TSI, Inc.), for the measurement of particle mobility diameters,
and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS,
Aerodyne Research, Inc.), for the measurement of particle composition (oper-
ating in "W-mode") and vacuum aerodynamic diameter ("V-mode"). Particle
mass is obtained from combined SMPS measurements and AMS particle-time-
of-flight (PToF) data, by multiplying average particle volume (from the SMPS)
by the effective particle density (Figure 3.1). The effective density is calculated
from the mobility diameter, Dm (SMPS), the vacuum aerodynamic diameter,
Dva (PToF), and the standard density, po (1 g cm 4, used in calibration of the
instrument), using the equation:

Dva
Peff =Dm Po (3.1)

Although this equation is strictly valid only for spherical particles, minor
variations in particle shape will result in only small errors in measured mass,
less than 10% [49].

Pure particles of levoglucosan and erythtritol did not change in composition
or mass when the UV lights were turned on but no ozone was added, verifying
both that the parent organic compounds studied are not directly photolyzed,
and that UV-generation of condensed-phase oxidants is negligible. Significant
gas-phase oxidation of the semivolatile compounds studied here is also highly
unlikely, due to their strong partitioning into the particle phase and the short
residence time in the flow reactor. Thus any oxidative changes to the mass or
composition of the particles result from heterogeneous oxidation of particulate
species by gas-phase OH radicals.

The amount of starting compound (levoglucosan or erythritol) lost by re-
action is quantified by selecting a marker peak from the high-resolution mass
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Figure 3.1: Measured effective density of particles for oxidized erythritol (red
circles) and levoglucosan (blue squares). Actual densities of pure crystalline
compounds are 1.45 and 1.5 g cm-3 , respectively. Discrepancies between real
and measured values are likely to be caused by morphological effects and errors
in PToF calibration, though these are not expected to affect our results (Figure
3.6).

spectrum and computing its fractional contribution to total AMS mass:

myj = .t moA (3.2)
itotal

where ij is the peak signal of the fragment ion selected to represent compound
j, itotal is the sum of all organic peak signals from the AMS, and moA is the
OA mass, normalized by particle number in order to account for wall losses

(assuming that dilution has no effect on other particles), small atomizer fluctu-
ations, and changes in collection efficiency of the AMS. This method assumes
that the chosen marker peak does not constitute a significant portion of the
individual mass spectra of the oxidation products, so that the peak represents
only the compound of interest. This approach has recently been shown to
compare very well with offline techniques for quantifying levoglucosan [41].

The peak used to track the mass loss of erythritol is chosen to be C4HsO0
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(m/z = 104.047), which is formed by the neutral loss of H2 0 from the molec-
ular ion (M - 18). Likewise, the selected marker peak for levoglucosan is
C6HsO (m/z = 144.042), also obtained by the loss of H20. Both peaks were
observed to be the fragments of highest mass in the pure compound spectra
for which the AMS signal-to-noise ratio was suitably large. It is unlikely that
any oxidation products would contribute significantly to the selected peaks,
since they are expected to be of lower mass (aside from oligomerization prod-
ucts, which are not strongly represented in these AMS spectra) and have fewer
hydrogen atoms than the parent compound.

The effects of oxidation by OH exposure may vary widely, depending on
the nature of the organic compound being oxidized. It is therefore useful
to introduce the mass loss ratio (MLR), defined as the ratio of the change in
particle mass to the change in mass of the reacting species. For a given particle
mass moA, reactive species mass mR, and particles initially composed of the
pure reactive species, such that moA(0) mR(0), one may write:

MLR = AmoA moA - moA(0) _ 1 - po (3.3)
AmR mR- mR(0) 1 -A

where t is the mass fraction remaining of either total aerosol or the reac-
tive species. For our purposes, we assume that pR = my/mj(0), where my
is the mass of the selected AMS peak as computed in Equation 3.2. The
MLR therefore describes the approximate yield of gas-phase products upon
oxidation. Values of the MLR are determined by averaging all data points for
which the total particle mass loss is greater than 20%, since values computed at
low-oxidation conditions are subject to substantial numerical errors, while val-
ues computed at high-oxidation conditions did not appear to vary significantly.

We characterize the chemical changes to the reacting systems in terms
of changes to the overall elemental composition of the organic mixture in
the condensed phase. In particular, the oxygen-to-carbon ratio (0/C) and
hydrogen-to-carbon ratio (H/C) are combined to estimate the overall degree
of oxidation of OA particles and the relative contributions of key functional
groups. The method for calculating elemental ratios from high-resolution AMS
data is described in detail by Aiken et al. [29, 30]. This approach requires a
set of factors to correct measured values for biases in ion fragmentation. Such
factors are expected to be most accurate for complex organic mixtures, such
as are found in ambient OA. As noted by Aiken et al. [29, 30], these standard
correction factors (0.75 for O/C and 0.91 for H/C), are not as accurate for
the measurement of individual organic species, such as those studied in the
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present experiments. We therefore use system-specific correction factors for

these studies in order to ensure that the elemental ratios of pure compounds

are reported as their known values. The correction factors used are 0.44 for

O/C and 0.82 for H/C for erythritol, and 0.50 for O/C and 1.1 for H/C for

levoglucosan, which is similar to the correction for pure levoglucosan reported

previously [29]. Regardless of the correction factor used, the overall conclu-

sions reached with respect to the oxidative mechanism described below remain

unchanged.

3.2 Fragment Ions at m/z = 44

While most studies have in the past used the unit-mass resolution peak at

m/z = 44 in order to quantify the presence of highly-oxidized compounds [30],

we have in this case focused specifically on the CO' peak. For both pure ery-

thritol and levoglucosan, the CO' signal is negligible, and the C2 H4 0+ peak

dominates the total m/z = 44 signal (Figure 3.2). As oxidation continues (Fig-

ure 3.3), the dynamic shifts to favor the presence of CO', so that the fractional

contribution of C 2 H 4 0+ may be used as a tracer for compounds closely resem-

bling erythritol and other tetrols. The lack of a strong C 2 H 4 0+ presence in

some atmospheric measurements [50] may suggest that isoprene-derived tetrols

contribute only weakly to the total sampled OA in several regions and points

to a useful avenue of inquiry in future field studies.

3.3 Kinetic Model and Fitting

Traces used in Figure 3.6b and 3.6e are obtained from a fit to the model

described herein. By designating the initial compound (erythritol or levoglu-

cosan) as Po, first-generation condensed-phase products as P1, and volatilized

products as V, we can write a simplified mechanism as:

Po- + OH P1

P 0 + OH V

P 1 + OH 4 Products (3.4)

where ki is the decay rate coefficient of initial component, k2 is the decay

rate of first-generation products, and # is the fraction of first-step reactions
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Figure 3.2: High-resolution AMS spectrum of highly oxidized erythritol, at
nominal mass-to-charge ratio of 44. The separation of the CO2 and C2H4 0+
peaks is clear and unambiguous, allowing for the calculation of elemental ratios
[29, 30] and the monitoring of changes in specific fragment ions during the
oxidation process.

that lead to production of low-volatility first-generation oxidized compounds.
For small variations in the concentration of OH, the reaction scheme in equa-
tion 3.4 can be solved analytically to yield the concentrations of each species:

Cp. = Cp.(O)exp(-kr)

C = OkiCp0 (0) [exp (-k 2r) - exp (-klT)] (3.5)
k1 - k2

where T = (OH) At is the average OH exposure, as measured by the ob-
served decomposition of hexane.

Non-linear exponential fits of concentration versus T was performed for the
initial slope of erythritol and levoglucosan, using the first line of equation 3.5,
over the first e-fold in the data in order to determine the value of k1 , as de-

picted in Figure 3.4. This value was then inserted into the second line and
combined with a non-linear fit of first-generation measurements in order to

then determine k2.
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Figure 3.3: Fractional contribution of CO' (red) and C 2H40+ (blue) to organic
signal in the erythritol system, along with the combined signal at rn/z = 44
(gray).

3.4 Results

3.4.1 Erythritol

Figure 3.6a depicts the decay rates of both erythritol and total particle mass
for the heterogeneous oxidation of pure erythritol particles (surface-weighted

mean diameter: 270.5 nm). The exponential decay of erythritol is consistent

with a pseudo-first-order approximation of the second-order reaction of organic

compounds with OH, although the chosen marker peak (C4 H8 3) does not
appear to decay to zero. Possible reasons for this apparent offset include unre-

acted erythritol in the core of the particles (with a slow mass transfer rate) and
signal interference from product compounds at the marker peak. A fit over the

range of 0-4 x 1012 molecule s cm- 3 is therefore used (Figure 3.4) to obtain a
rate constant of (2.54 t 0.22) x 10-13 cm 3 molecule- 1 s-1. The mass loss ratio,
as a measure of the formation of gas- versus particle-phase reaction products

(Equation 3.3), is computed to be 0.75 t 0.04. Thus the heterogeneous oxida-
tion of erythritol leads primarily to the formation of volatile products (~75%
yield), which escape into the gas phase. Reported errors reflect uncertainty in
the AMS peak calculation, SMPS mass, and fluctuations in the atomizer flow
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Figure 3.4: Exponential fits performed on measured erythritol (red circles)

and levoglucosan (blue squares), presented on a logarithmic scale.

and OH concentration within the reactor.

Heterogeneous oxidation kinetics can be described in terms of the effective

uptake coefficient Ti,OH, defined as the ratio of the number of reactive collisions

between OH and the compound of interest to the total number of collisions

[14]. The uptake coefficient may be calculated from the determined second-

order rate constant ki,OH according to

2Do pZNA
7i,OH = _ X(Do)ki,OH (3.6)

3cOHMk(

where Do is the surface-weighted average particle diameter at the start of the

experiment, pi is the density of the organic compound, NA is Avogadro's num-

ber, cOH is the average speed of hydroxyl radicals in the gas phase, and Mi

is the molecular weight of the compound. The uptake coefficient calculated

by this method for erythritol, after correcting for diffusion limitations (which

account for approximately a 40% difference in the final value, using a diffusion

constant of OH in air of 0.217 cm 2 s 1 ) [14, 51], is 0.85 ± 0.12. Equation 3.6 is

exact for spherical particles and may slightly overestimate Ti,OH for particles

with higher ratios of surface area to volume.
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Figure 3.5: Representative AMS spectra of erythritol and levoglucosan, at

zero OH exposure and at - 8 x 1012 molecule s cm-3 . Note the change in
scale between unoxidized and oxidized spectra (a factor of -10 in the case of

erythritol and -3 for levoglucosan), indicating a significant decrease in the

total ion current observed by the AMS.

Figure 3.6b shows the evolution of three selected fragment ion signals from

the AMS (each normalized to its maximum value for the sake of showing all

fragments on the same scale) with increasing oxidant exposure. As in Fig-

ure 3.6a, the amount of erythritol remaining is represented by its marker ion,
C4 H8 O. Additionally, we use C4H70 (m/z = 103, M - 19) as a marker for

first-generation oxidation products; the signal from this ion is negligible for

pure erythritol compared with its observed rise in the reacting system. While

the choice of marker peak is determined on a largely empirical basis, it should

be noted that if we assume that each oxidation reaction involves the forma-

tion of a carbonyl, either by addition or by conversion of a hydroxyl group and
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Figure 3.6: (A) Decay curves of pure erythritol (open circles) and total parti-
cle mass (filled triangles) over increasing oxidant exposures. (B) Mass contri-
butions of selected marker peaks, used to represent erythritol (circles), first-
generation products (squares), and heavily-oxidized products (triangles). Solid
and dashed curves denote non-linear fits to Equation 3.5. (C) Hydrogen-to-
carbon (H/C, open triangles) and oxygen-to-carbon (0/C, filled triangles) ra-
tios of reacted erythritol system. (D-F) Structure and evolving characteristics
of levoglucosan system, as compared to erythritol.
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requiring the loss of two hydrogen atoms (as discussed in the next section),
higher-generation products would necessarily have 6 or fewer hydrogen atoms
and would therefore be unable to form the C4H703 fragment ion. We are

therefore confident that the selected ion peak serves as a useful metric for the
formation of first-generation products.

The rate coefficient computed for the decay of erythritol is combined with
a simplified two-step oxidation model (described in detail in Section 3.3) in
order to estimate a rate coefficient for the decay of first-generation products,
with the fit trace shown in Figure 3.6b. The resulting effective uptake coeffi-
cient is calculated by equation 3.6 as 0.28 ± 0.03, significantly less than that of
its parent compound, erythritol. Although the model fits performed for these
compounds (and for the levoglucosan system, discussed in the following part)
tend to under-predict the amount of compound at high exposures, they pro-
vide a useful look at uptake rates for lower concentrations of oxidant (closer
to atmospheric conditions) and give a conservative lower-bound estimate for
the reaction rates of the compounds in question.

Lastly, CO' (m/z = 44) is taken to be representative of the most highly
oxidized compounds present in the mixture, likely indicating the presence of
carboxylic acid groups in product molecules; additional discussion of changes
in the C02+ presence may be found in Section 3.2. The calculated decay
of first-generation products and apparent subsequent growth of more oxidized
compounds together indicate that heterogeneous oxidation is a multigenera-
tional process, in accord with previous results [14], and points to the continu-
ally evolving chemical nature of OA, which is consistent with a recent study
of the heterogeneous oxidation of SOA [52].

The elemental ratios O/C and H/C for the particulate products of the re-
action of OH with erythritol, as shown in Figure 3.6c, undergo the most rapid
change during the initial stages of oxidation. Although the relative amount of
oxygen in erythritol particles rises only slightly, the hydrogen content drops
by a significant degree over the course of the reaction, suggesting that the
dominant reactions that yield condensed-phase products are likely to involve
the conversion of hydroxyl groups to carbonyl groups. The slight increase in
O/C can be accounted for in part by the growing CO' signal (to a maximum
of -6% of the AMS organic signal), which suggests the increased importance
of carboxylic acid functional groups as well.
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3.4.2 Levoglucosan

The levoglucosan oxidation experiments were analyzed using the same ap-
proach as used for erythritol, described above; results are presented in the
right half of Figure 3.6. Figure 3.6d depicts the decay rates of both lev-
oglucosan mass and total particle mass in a system initially containing pure
levoglucosan particles (surface-weighted mean diameter: 304.3 nm). The ex-
ponential decay is again consistent with a second-order reaction model and
has a corresponding rate constant of (3.09 ± 0.18) x 10- 13 cm 3 molecule- s-1,
with a diffusion-corrected effective uptake coefficient of 1.05 ± 0.11. Although
this computed value is greater than unity (although within the calculated un-
certainty), errors caused by under-estimating the average particle surface area
using the mobility diameter may lower the actual value. The mass loss ratio,
determined by equation 3.3, is 0.23 ±0.04, significantly lower than what was
observed for erythritol. This indicates that the majority of the products of
levoglucosan oxidation remain in the particle phase. Hennigan et al. have re-
ported a similar effect, whereby mass loss of biomass-burning organic aerosol
upon oxidation is much slower than the loss rate of levoglucosan [411.

As with erythritol, we can measure the progression of selected marker ion
peaks in the levoglucosan system with increasing oxidant exposure (Figure
3.6e). Initial levoglucosan is represented by C6Hs04', first-generation products
are denoted by C6 H704 (m/z = 143, M - 19), and the most highly oxidized
compounds are monitored by CO'. The selection of these three ion peaks
follows the same process as described for erythritol in Figure 3.6b. Again,
the growth and subsequent decay of first-generation products, coupled with
the later rise in CO' signal, presents evidence of significant multigenerational
chemistry on atmospherically relevant oxidation timescales. The effective up-
take coefficient for product decay is calculated to be 0.39 ± 0.05, a similar
effect to the one observed in the erythritol oxidation system, and fit traces for
both levoglucosan and its products, described by Equation 3.5, are indicated
in Figure 3.6e as well.

Levoglucosan undergoes a drop in H/C similar to erythritol, as shown in
Figure 3.6f, but the larger rise in O/C suggests that oxidation reactions also
involve the addition of new functional groups, such as hydroxyl, carbonyl, and
carboxylic acid groups (CO signal reaches ~8% of the total AMS organic
signal), instead of solely the conversion of alcohols to carbonyls. As oxidant
exposure increases, the values of O/C of both systems begin to converge to an
upper bound of ~1.1.
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3.5 Discussion

3.5.1 Oxidative mechanisms & Structural effects

In marked contrast to the heterogeneous oxidation of reduced particulate or-
ganic compounds [23, 37, 14], the heterogeneous oxidation of erythritol and
levoglucosan leads to a substantial loss of OA mass via volatilization reactions.
The differences in the mass loss plots of erythritol and levoglucosan (Figures
3.6a and 3.6d, respectively) indicate that the effects of oxidation on aerosol
loadings are highly dependent on the chemical structure of the organic species
in the aerosol. Although the two compounds decay at very similar rates-the
effective uptake coefficients -y agree to within experimental uncertainty-the
total particle mass follows this decay much more closely for erythritol than it
does for levoglucosan. This discrepancy likely arises from differences in the
chemical mechanisms leading to volatility changes.

These differences can be understood in terms of the mechanism of the ox-
idation of polyols, depicted in Figure 3.7 [53). In pathway A, abstraction of a
hydrogen atom from a carbon bonded to a hydroxyl group, followed by reac-
tion with 02, leads to the direct formation of a carbonyl without the cleavage
of a C-C bond. In pathway B, the hydrogen atom is instead abstracted from
the hydroxyl group directly. The resulting a-hydroxy alkoxy radical rapidly
decomposes by C-C bond scission. While the former case raises product vapor
pressure by approximately one order of magnitude [15], the latter may raise
volatility by a much larger degree by decreasing the carbon number of each
product molecule. However, in the case of cyclic molecules, "tethering" of the
R groups allow for the cleavage of a C-C bond with no change to the carbon
number. Levoglucosan, which has two cyclic moieties, can therefore undergo
up to two cleavage reactions without dissociating to two separate molecules
and so will not experience as dramatic an increase in vapor pressure as erythri-
tol. The rate of mass loss relative to oxidation is therefore lower, suggesting
that compounds with ring structures and higher molecular weights are likely
to contribute to longer-lived organic aerosol.

Because both compounds are polyhydroxylated, similar pathways to those
discussed above are possible for successive generations of oxidative reactions.
The low decay rate of first-generation products in both systems-relative to the
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Figure 3.7: Two possible reaction pathways in the oxidation of erythritol and
levoglucosan, adapted from Bethel et al. [53]. The functionalization pathway
(A) leads to a higher degree of oxidation without resulting in the loss of carbon,
but the conversion of a hydroxyl group to a carbonyl group results in a product
of higher volatility. The fragmentation pathway (B) leads to degradation of C-
C bonds and strongly increases overall particle volatility. If the two R groups
are connected to each other, however, the molecular backbone will remain
intact, and volatilization will be suppressed.

decay rate of initial compound-indicates, however, that the reaction process
is demonstrably slowed, in part by the loss of hydrogen atoms needed for ab-
straction in the first step of oxidation. Although some degree of the difference
in reaction rates can be explained by the changing sphericity of particles with
increasing oxidation, conservative estimates of the uptake coefficient still yield
significant discrepancies between the decay rates of initial compounds and the
decay of first-generation products. Additionally, the growing presence of the
CO' ion in both systems points to the likely production of carboxylic acid
groups upon later generations of oxidation; this is consistent with our recent
evidence that carboxylic acid addition becomes increasingly important with
fragmentation reactions [13], although the detailed mechanisms are not yet
well understood.

3.5.2 Van Krevelen Analysis

A "van Krevelen diagram" (a plot of H/C vs O/C) [54, 55] is introduced to
make a direct comparison of elemental ratios independent of time or of oxidant
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exposure (Figure 3.8). Heald et al. recently showed that for many ambient
measurements of OA, as well as for several laboratory oxidation studies, ele-
mental ratio data tend to fall along a line passing through (0,2) and with a
slope of about -1 in this space, consistent with an approximately equal mix-
ture of carbonyl- and hydroxyl-forming reactions during oxidative aging [54].
As shown in Figure 3.8, erythritol and levoglucosan are located at points far
away from this line. As the particles are exposed to larger amounts of OH,
the condensed-phase oxidation trajectory tends strongly downwards, with an
approximate slope of -4.6 for erythritol and -1.3 for levoglucosan. The steeper
slope for erythritol is a result of the conversion of hydroxyl groups to car-
bonyl groups. Both systems are moving towards similar C/H/O relationships,
consistent with previous observations that oxidative aging of widely varying
organic species tends to form products with similar chemical properties [2].

The chemical information supplied by a system's coordinates on a van
Krevelen diagram is sufficient to estimate the minimum number of carbon
atoms that a compound must have to be found predominantly in the particle
phase at a given loading. These are determined by assuming that compounds
are composed solely of contiguous saturated carbon chains and have only hy-
droxyl and carbonyl (and, by extension, carboxylic acid) functional groups.
Volatilities are calculated using the group contribution method of Pankow and
Asher [15], and the carbon number represents the minimum number of carbon
atoms required to ensure that the compound will partition by at least one-half
into the condensed phase [22]. A more complete discussion of the process of
estimating the connection between nc, 0/C, H/C, and C* may be found in
the Appendix and will be used in subsequent chapters.

The shaded regions in Figure 3.8a represent the minimum carbon number
calculated over the entire range of realistic O/C and H/C values for a sys-
tem in which the aerosol loading is 700 pug m-3 , the approximate loading in
the present experiments. The data for both erythritol (four carbon atoms)
and levoglucosan (six carbon atoms) remain within the prescribed limits for
condensed-phase elemental composition, indicating consistency between the
estimated volatilities of organic compounds and the present measurements.
However, because each point on the diagram represents an average in terms of
the elemental composition of the system, individual products may be further
removed from the observed data, leading to significant phase partitioning of
some highly oxidized compounds.
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Figure 3.8: (A) Van Krevelen plot of H/C versus O/C for the erythritol (cir-
cles) and levoglucosan ('x') reacting systems. The direction of oxidation is
downward and to the right for each system. Dashed line depicts the "am-
bient" line (H/C = 2 - 0/C), which is the average of many measurements
[54]. Shaded regions represent the approximate minimum number of carbon
atoms per molecule required in order for the compounds to have a satura-
tion concentration less than 700 pg m-3, the approximate mass loading of the
systems considered herein. Blank spaces represent regions for which the cal-
culated minimum carbon number, along with the represented hydrogen and
oxygen numbers, result in chemically infeasible combinations in the absence of
carbon-carbon double bonds. (B) The same Van Krevelen plot, with shaded
regions adjusted to the more atmospherically-relevant loading of 10 Ag m-3.
The erythritol system average moves out of the "4-carbon" region at an OH
exposure of 4 x 1012 molecule s cm- 3 , corresponding to ~15.4 days of oxidation
in the atmosphere.
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3.5.3 Atmospheric Implications

Although Figure 3.8a is sufficient to describe the phase partitioning behavior
of compounds in the present experiments, the aerosol loadings studied are 1-3
orders of magnitude greater than typical ambient loadings [2]. We correct for
this in Figure 3.8b, which adjusts the contours to correspond to a loading of 10

pg m -. In this case, levoglucosan and its immediate oxidation products are
still expected to remain largely within the condensed phase during aging. The
erythritol system, however, moves rapidly into a region for which four carbon
units is insufficient to ensure that oxidation products will be present primarily
in the particle phase. Many of the condensed-phase products observed in this
experiment are therefore likely to become even more strongly volatilized in the
atmosphere, so that the mass loss ratio is likely to increase as the atmospheric
OA loading becomes more dilute; this observation underscores the importance
of volatility changes arising from interconversion of functional groups upon
oxidation.

The effective uptake coefficient can be combined with estimates of particle
size and atmospheric oxidant concentration in order to determine a pseudo-
first-order rate coefficient for the compound of interest and, by extension, the
compound's atmospheric lifetime. Assuming a mean diameter of -200 nm
and OH concentration of 3 x 106 molecule cm-3, erythritol would have a het-

erogeneous oxidation lifetime of about 12.7 days, while levoglucosan would
have a lifetime of about 9.6 days, both of which are very near the estimated
depositional lifetimes (-10 days) of similarly-sized particles [5]. Whereas pre-
vious studies have suggested that heterogeneous oxidation of reduced organic
species (i.e. hydrocarbons) [23, 37, 14] and some SOA systems [34] does not
significantly affect aerosol mass on atmospherically relevant timescales, the
much lower lifetimes determined here for levoglucosan and erythritol suggest
that mass changes from heterogeneous reactions may be more significant for
compounds that are already more oxidized and have low molecular weights,
which is consistent with our recent results [13]. Additional studies have shown
that in aqueous droplets and environments with high relative humidity, the
lifetimes of both compounds are decreased to less than a day [41, 42, 43]. It
should also be noted that because erythritol is semi-volatile, gas-phase oxida-
tion reactions are likely to represent an even larger atmospheric sink for the
compound in regions with low-to-moderate OA loadings; this may partially
explain previous observations of a decrease in isoprene SOA mass by further
aging [21].
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The chemical lifetimes of OA mass contributed by these compounds-
comprising the initial compound and its condensed-phase oxidation products-
may be estimated approximately by dividing the product lifetime by its mass
loss ratio. Since the mass loss ratio of erythritol approaches unity at atmo-
spheric conditions, its OA lifetime will be about the same as that of erythritol
(~12.7 days), suggesting oxidative aging could in fact be an important sink
of polyhydroxylated (and possibly other oxidized) components of OA, though
the secondary effects of more complex aerosol mixtures on oxidation remains
an important topic for further research. The low observed MLR of levoglu-
cosan, by contrast, implies longer-lived particle-phase products, on the order
of several weeks, although OA continues to be slowly volatilized during this
time. We therefore demonstrate that oxidized organic compounds found in
both SOA and BBOA-which make up a large fraction of total aerosol load-
ing [2]-are susceptible to further heterogeneous oxidation reactions and that
these reactions are capable of significantly altering both the chemical compo-
sition and the mass of the oxidized OA.
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Chapter 4

Heterogeneous Oxidation of

Aged Organic Aerosol

One large source of the uncertainty in the prediction of the climate and health

effects of fine atmospheric particulate matter is the extent to which organic
particles may undergo physical and/or chemical changes over their atmospheric
lifetimes [2]. Oxidized organic aerosol (OOA) has been difficult to accurately
model in the oxidation of reduced species in the atmosphere, with respect to
the rates, products, and effects on aerosol properties of the aging reactions
involved. Detailed studies of such effects have been impaired by the difficulty
of reproducing the atmospheric formation of highly oxidized aerosol in the
laboratory [23, 24, 25] and the very high chemical complexity of such aerosol.

With a continuing focus on the heterogeneous oxidation of organic par-
ticles by gas-phase hydroxyl radicals (OH) [23, 34, 52, 26, 13, 14, 56, 37],
the work up until this point has indicated that as particles are progressively
aged, the degree of oxidation of the particulate carbon increases. Moreover,
volatilization processes become increasingly dominant at these higher levels of
oxidation, leading to significant decreases in aerosol loading (as discussed in
Chapter 3).

Similar studies by other groups [23, 52, 13, 14, 26, 57] focused on the ox-
idation of relatively reduced organic aerosol, with average carbon oxidation
states [58] of 0 or lower. Ambient measurements have shown that a large frac-
tion of atmospheric organic aerosol is substantially more oxidized than this,
with average carbon oxidation states as high as +1 [2, 58]. However, the re-
activity (oxidation kinetics and products) of this oxidized organic aerosol is
almost completely unconstrained at present; this limits our ability to accu-
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Figure 4.1: An assumed representative structure of an aquatic fulvic acid,
based on fractionation and chemical analysis of samples [62].

rately model the evolution and fate of atmospheric organic aerosol. The goal
of this part of the thesis is thus to study the oxidative aging chemistry of
this already highly-oxidized aerosol in the laboratory. Because of the very low
volatility of the constituent molecules [59, 60, 61], their fraction present in the
gas phase is expected to be negligible, so that their oxidation must necessarily
occur in the condensed phase. Therefore the aging mechanism probed in these
experiments-heterogeneous oxidation by OH-is likely to be important in the
atmospheric evolution of this class of organic aerosol.

4.1 Methods

As in our previous studies of less-oxidized species, the aging kinetics and
chemistry of the aerosol are probed by studying the heterogeneous oxida-
tion of simpler, more chemically tractable model systems. The surrogate or-
ganic species used in this study, chosen for their high oxidation states and
low vapor pressures, are citric acid (C6 Hs0 7; Aldrich, 99.5%), L-(+)-tartaric
acid (C4 H6 0; Aldrich, 99.5%), and 1,2,3,4-butanetetracarboxylic acid (BTA,
CsH100s; Aldrich, 99%). Molecular structures and average carbon oxidation
state (OSc) [58] of these model compounds and the three compounds from our
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previous studies [13, 26] are provided in Figure 1.5. Additionally, the aging of
a more complex organic mixture, Suwannee River fulvic acid (SRFA, obtained
from IHSS) is also examined. SRFA has an OSc that lies between 0.2 and
0.3 and is commonly used as a surrogate for highly oxidized organic aerosol in
order to study laboratory techniques [63, 64].

Heterogeneous oxidation experiments are carried out in the same flow re-
actor used in our prior studies, which enables us to combine high OH concen-
trations and low residence times in order to quickly simulate multiple weeks
of oxidation under ambient conditions. Again, the reactor is made up of type-
219 quartz, with a length of 130 cm, inner diameter of 2.5 cm, and residence
time of -37 s. Carrier flow consists of 5% 02 in N2, at 30% relative humidity.
Particles are generated by atomizing and subsequently drying aqueous solu-
tions of each of the starting compounds; the resulting particles, which have
surface-weighted mean diameters of -130-145 nm, are drawn into the flow re-
actor at loadings of -500-650 pg m-3 . These loadings are sufficiently high to
ensure that at equilibrium well over 99% of the starting compound is present
in the condensed phase, so that even for the most volatile compounds, gas-
phase reactions will account for a very small fraction (less than 5%) of the
total oxidation, assuming typical rates of hydrogen abstraction by OH [65].

Ozone is produced by either a mercury pen-ray lamp or a commercial
corona discharge ozone generator (OzoneLab Instruments). 03 concentrations,
which control the level of OH exposure within the reactor, are measured using
an ozone monitor (2B Technologies Inc.). Within the flow reactor (tempera-
ture: 35 C), ozone is photolyzed by UV light at 254 nm from two mercury
lamps positioned immediately outside the quartz tube. O('D) generated by
ozone photolysis reacts with water vapor to form a pair of hydroxyl radicals
(OH), which initiate oxidation of the particles. The relative humidity in the
flow tube, maintained at 30%, is sufficiently high to ensure that direct oxida-
tion of particles by O( 1D) is negligible, as determined previously [14], while
also small enough to inhibit hygroscopic growth (~5% for organic acids) and
the subsequent formation of an aqueous phase [64, 66, 67, 68, 69]. Hexane
(~100 ppb) added to the tube is monitored by GC-FID to quantify OH con-

centration. This technique has been used to correctly predict rate constants
in the reaction of OH with other selected gas-phase species [13, 14]; OH con-
centrations, which are changed by varying 03, range from 1 x 109 to 3 x 1011
molecule cm-3 . These concentrations correspond to atmospheric OH expo-
sures of approximately one day to four weeks, assuming an average ambient
OH concentration of 3 x 106 molecule cm-3 .
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Particles exiting the flow reactor are sampled into a scanning mobility par-
ticle sizer (SMPS, TSI, Inc.), for the measurement of particle mobility diame-
ters, and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-
AMS, Aerodyne Research, Inc.), for the measurement of particle composition
and vacuum aerodynamic diameter. Particle mass is determined by multiply-
ing average particle volume (from the SMPS) by the effective particle density,
which is in turn calculated from the ratio of the vacuum aerodynamic diameter
(obtained from the AMS) to the mobility diameter (obtained from the SMPS)
[49]. Although this method is strictly valid only for spherical particles, minor
variations in particle shape will result in only small errors (less than 10%)
in measured mass [49]. Measured effective densities (mostly in the range of
1.3-1.5 g cm-3) do not vary significantly during the course of the experiments.

Particles of pure components do not change in composition or mass when
the UV lights were turned on with no ozone added, verifying both that the
parent organic compounds studied are not directly photolyzed, and that UV-
generation of condensed-phase oxidants is negligible. Likewise, there are no
compositional changes observed in the presence of ozone and absence of light,
suggesting that direct reaction of the particles with ozone is negligible. Signifi-
cant gas-phase oxidation of the compounds studied here is also highly unlikely,
due to the strong partitioning into the particle phase, as previously mentioned,
and to the short residence time in the flow reactor.

We characterize the chemical changes to the reacting systems in terms of
changes to the overall elemental composition of the organic condensed phase.
In particular, the oxygen-to-carbon ratio (0/C) and hydrogen-to-carbon ratio
(H/C) are combined to estimate the overall degree of oxidation of the organic
particles and the relative contributions of key functional groups. The method
for calculating elemental ratios from high-resolution AMS data is described in
detail by Aiken et al. [29, 30].

4.2 Results and Discussion

4.2.1 Oxidation Kinetics

The rate of heterogeneous oxidation was quantified by measuring the decay of
the parent compound, as estimated by a selected marker ion. The marker ion
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Figure 4.2: Aerosol mass spectra of reactants and products, with each mass

spectrum normalized to the sum of its components. In all cases, peaks with
m/z > 120 did not contribute significantly to the total spectrum. (A,C,E,G)
Mass spectra of unoxidized BTA, citric acid, tartaric acid, and fulvic acid,
respectively. The spectra of the single-component systems (panels A, C, and
E) contain several high-mass ion fragments, which are used to identify the

relative amount of the starting compound left in the mixture at a given level

of oxidation. (B,D,F) Product mass spectra of the oxidation of BTA, citric
acid, and tartaric acid, respectively, determined by spectral subtraction of the

unoxidized spectra from the most oxidized spectra. (H) Mass spectrum of ox-

idized fulvic acid at the highest OH exposure. Residual spectra, and the mass

spectrum of unoxidized fulvic acid, are dominated by low-mass oxygenated ion

fragments, consistent with ambient measurements of oxidized organic aerosol.
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selected for each experiment was identified by spectral subtraction. The mass
spectrum of the pure component in each system was scaled and subtracted
from the average spectrum at every subsequent oxidant exposure level, so that
the resulting residual spectrum contained no negative peaks beyond a specified
tolerance (peaks contributing less than 0.1% of the total mass were ignored in
order to avoid confounding effects of a small background signal). The ion that
most frequently disappeared first in each system was chosen as the marker ion:
C4H2 O (m/z 98) for tartaric acid, C4H4 0+ (m/z = 68) for citric acid, and

C8 H8 O (m/z 152) for BTA. Mass spectra of the three single-component
systems and residual spectra from the highest level of oxidation are provided
in Figure 4.2. In all cases, the residual spectra-which represent oxidation
products-are dominated by low-mass fragment ions such as m/z 44 (CO+)
and so do not provide suitable marker ions for the study of subsequent genera-
tions of oxidation. The mass spectrum of unoxidized fulvic acid is also shown
in Figure 4.2; because it is a mixture of many compounds and does not exhibit
any distinct marker ions, its kinetic behavior could not be determined.

Second-order rate constants for the reaction of the particulate organic
species with OH, using the plotted intensity of the selected marker ions versus
OH exposure (Figure 4.3), are estimated from an exponential fit using ini-
tial slopes, using only values corresponding to OH exposures below 2 x 1012
molecule s cm-3 , the range over which the parent organic species decays expo-
nentially (in this and the previous chapter). The leveling-off observed for the
marker ions at high OH exposures may be a result of a mass transfer limita-
tion, possibly caused by changes in phase or viscosity as the particles evolve
from a single-component to a multi-component system [70, 71]. This effect
may prevent the oxidation of all of the parent species over the short timescale
of the experiment (-37s). The kinetic model also assumes that the level of ox-
idation in the reactor varies only as the product of average OH concentration
times the residence time. Secondary processes that do not vary linearly with
the amount of oxidant present are more likely to have a strong effect at very
high concentrations [56, 72], above the limit of 2 x 1012 molecule s cm-3 that
we have set. Rate constants, determined for each single-component aerosol
type, are listed in Table 4.1.

From the second-order rate coefficients and other known parameters of the
system, we also calculate the effective reactive uptake coefficient, defined as
the ratio of the initial rate of reactive loss of the parent species to the OH col-
lision rate with the particle surface [14]. The uptake coefficient is calculated
from the rate constant according to Equation 3.6 as discussed previously. Ap-
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BTA Citric Acid Tartaric Acid Fulvic Acid
ki x 101 (7.6 ± 2.4) (4.3 ± 0.8) (3.3 ± 0.9) N.D.

7__i,OH 0.51 ± 0.19 0.37 ±_0.08 0.40 i 0.13 N.D.
Atmospheric 8 days 13 17 N.D.
Lifetime
Van Krevelen -0.31 ± 0.02 -0.33 ± 0.01 -0.60 ± 0.02 -0.59 ± 0.05
Slope

Table 4.1: Uptake Coefficients, Atmospheric Lifetime, and Van Krevelen Slope
of Model Systems

plication of the diffusion correction discussed previously [511 accounts for a
15-30% increase in the calculated uptake coefficients. Uptake coefficients for
the three single-component systems are listed in Table 4.1, with values rang-
ing from 0.37 to 0.51. Such high values suggest that heterogeneous uptake in
this experiment may be aided by the adsorption of OH to the particle surface
prior to reaction with particulate organic molecules (or by adsorption of ozone
and water, which can form OH directly at the surface), such that the radical
has more time to abstract a hydrogen atom before diffusing away from the
particle [52, 73]. Moreover, these values lie between the coefficient that we
previously reported for squalane [14] and those of erythritol and levoglucosan
[26]-all of which is consistent with the assumption that oxygen addition aids
the stabilization of radicals during further oxidation while hydrogen loss tends
to inhibit abstraction rates [74]-so we once again expect that heterogeneous
oxidation will occur on atmospherically relevant timescales. Indeed, the life-
time against reaction with OH, estimated for particles with a diameter of 200
nm and an average OH concentration of 3 x 106 molecule cm-3, ranges from
8 to 17 days (see Table 4.1), as compared with a depositional lifetime of ~10
days for similarly sized particles [5].

4.2.2 Elemental Analysis

The oxidation trajectories of each of the four systems studied in terms of the
hydrogen-to-carbon (H/C) and oxygen-to-carbon (0/C) ratios are presented
in Figure 4.4. In order to compare the results with similar studies of ambient
organic aerosol [54, 75], we calculate elemental ratios by modifying measured
ratios by the empirical correction factor determined by Aiken et al. [29, 30].
The measured H/C and O/C values of the pure compounds tend to be lower
than their exact values-an effect that has been previously reported for pure
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Figure 4.3: Mass fraction remaining of key ions in the oxidation of the single-
component systems. CsH 8O3 (m/z = 152) is used for BTA, C4 H40+ (m/z =
68) for citric acid, and C4 H2 O (m/z = 98) for tartaric acid. An initial-slope
exponential fit, which only includes ions at exposures up to 2 x 1012 molecule s
cm-3, is used to estimate the effective second-order rate coefficient for reaction
with OH. The fitted trace is displayed over the data.

compounds using this technique [29]. However, the overall trends observed
in the trajectories remain unchanged, regardless of the correction factor used.
The slope of the trajectory is indicative of the average chemical transforma-
tion of particulate species [54]. For example, a slope of 0 corresponds to the
addition of hydroxyl groups (oxygen addition with no net hydrogen loss), -2
corresponds to carbonyl addition, and steeper slopes denote the conversion of
functional groups (e.g. hydroxyl to carbonyl, which involves a loss of hydro-
gen with no oxygen addition). On the other hand, if the oxidation reaction
involves fragmentation-the cleavage of C-C bonds-and subsequent loss of car-
bon to the gas phase, then the resulting slope can take on a range of different
values, depending on the chemical characteristics of the volatilized fragment.
While previous studies have observed that measured ratios and trajectories
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of reduced and lightly oxidized organic aerosol follow a line with a slope of
-1 [54], the data presented here have slopes ranging from -0.6 to -0.3 (Table
4.1). This tendency of more highly oxidized systems to acquire oxygen with a
smaller net loss of hydrogen is consistent with recent studies of the aging of
oxidized organic aerosol [75].

One possible reason for the shift in slopes may be that at higher oxida-
tion levels, reactions leading only to oxygen addition, such as the formation
of hydroxyl groups, are more strongly favored [75]. However, the volatility of
oxidation products likely also plays an important role, since the elemental ra-
tios describe only those compounds of sufficiently low volatility to be present
in the particle phase. This effect is illustrated in Figure 4.4, which relates
elemental ratios (position in van Krevelen space), vapor pressure, and carbon
number. The contours show the carbon number required for an organic com-
pound to be present (at least 50%) in the particle phase under the conditions
of the present experiments (i.e. where saturation vapor concentration equals
aerosol loading [17, 22], -500 pg m 3 ). These contours were determined by
relating each point in van Krevelen space to a functional group distribution,
assuming only hydroxyl, carbonyl, and carboxylic acid functionalities and esti-
mating vapor pressures for a given number of carbon atoms using the SIMPOL
group additivity method [15] and the steps outlined in the Appendix. Organic
species with high O/C and H/C values (the upper-right of the van Krevelen
plot) are the lowest in volatility and can therefore have a lower carbon num-
ber while remaining in the condensed phase, due to the increased possibility
of strong hydrogen-bonding interactions. Therefore, as oxidation proceeds,
and as fragmentation (C-C cleavage) reactions become increasingly important
[13, 76], particulate products are more likely to be found in this area of the van
Krevelen plot. This effect may explain the shallower slopes associated with
the oxidation of highly oxidized species.

The particulate mass fraction remaining and the relative abundances of
carbon and oxygen atoms in each of the systems studied is plotted against
OH exposure (Figure 4.5). The exposure levels are adjusted to account for
differences in particle size among experiments; the values presented are the es-
timated equivalent exposures for a particle with a surface-area-weighted mean
diameter of 200 nm, using the relationship between rate coefficient and diam-
eter presented in Equation 3.6. The slight increase in mass for the BTA and
citric acid systems at the highest OH exposure level is attributed to fluctuation
in the atomizer output, which causes the particle distribution to shift to larger
diameters, rather than to a physical or chemical effect within the reactor. For
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Figure 4.4: Van Krevelen diagram showing the elemental hydrogen-to-carbon
(H/C) ratio vs. oxygen-to-carbon (O/C) at all points during the oxidation of
the four systems in this study. The solid black line represents observations
of ambient aerosol at moderate levels of oxidation [54]. The dashed black
line represents measurements of ambient organic aerosol at higher oxidation
levels [75]. Red contours represent lines of constant volatility-the approximate
number of carbon atoms a molecule must have at a given elemental composition
in order to retain a saturation concentration of 500 pg m- 3. As compounds
become more oxidized, a shallower slope leads them more quickly to a region
that allows a lower carbon content for the same volatility (or, conversely, lowers
the volatility for a fixed number of carbon atoms).
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each of the three pure-component systems, the loss of carbon by volatiliza-
tion processes-principally fragmentation during oxidation-is offset by the
addition of oxygen atoms, so that the total particle mass remains approxi-
mately constant. As a result, the primary effect of heterogeneous oxidation
is to change particle composition (and therefore physicochemical properties),
but not total mass. While there might be a mass transfer barrier that could
prevent us from observing some eventual mass loss [77], our previous studies
on more reduced systems have demonstrated our capability for observing more
significant mass changes on similar timescales [26]. Moreover, our observation
that the particles do not experience a significant change in mass upon aging
is consistent with results from recent field measurements, which find that par-
ticle 0/C, but not mass, increases with photochemical age [78, 79, 80].

4.3 Conclusions

The key changes to particles upon heterogeneous oxidation are examined in
Figure 4.6 for all of the systems studied here, as well as those from our previous
work (squalane, erythritol, and levoglucosan) [13, 26]. Figure 4.6a shows the
overall degree of oxidation of the condensed phase species, as described by the
average carbon oxidation state, approximated by the equation OSc ~ 2g -C
[58]. Regardless of the initial system chosen, there is invariably a marked in-
crease in the level of oxidation upon exposure to OH. Furthermore, analysis
of the atmospheric lifetimes of these compounds indicates that such chemical
transformation by heterogeneous oxidation occurs on timescales commensu-
rate with particle loss by deposition [5]. This is of particular significance for
the lowest-volatility fraction of the oxidized organic aerosol, which is unlikely
to be found in the gas phase and thus must undergo oxidation in the con-
densed phase-either by heterogeneous reaction with OH or via aqueous-phase
chemistry [81].

Additionally, we can observe changes in the relative carbon content of
each system as a function of OH exposure, which serves as a useful proxy for
volatilization of the particulate organic species (Figure 4.6b); all systems ex-
hibit some carbon loss, indicating that heterogeneous oxidation leads to the
formation of oxidized species not only in the particle phase but in the gas
phase as well. While the degree of carbon loss exhibits a good deal of vari-
ability from species to species, likely due to differences in carbon number and
molecular structure, general trends with oxidation state are apparent. The
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Figure 4.5: Fractional mass contribution of carbon (red) and oxygen (blue),
and total mass fraction remaining per particle (black) for each of the four
systems over the course of oxidation. The x-axis in each plot is an effective
OH exposure, adjusting to a mean particle diameter of 200 nm in each sys-
tem. Total mass in each pure component system (not counting the fulvic acid
mixture) remains unchanged within observation error, as the loss of carbon is
offset by an approximately equivalent increase in oxygen.
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least oxidized species (squalane, a saturated alkane) initially does not undergo
any volatilization upon oxidation, due to the dominance of functionalization
over fragmentation reactions [13]. As it gets more oxidized, however, further
oxidation leads to significant loss of carbon (and total particle mass). This
trend is also seen for the moderately oxidized species, erythritol and levoglu-
cosan, which exhibit the most rapid volatilization. However, for the most
oxidized species (the polycarboxylic acids examined in this work), carbon loss
is restricted over the course of the experiment to no more than ~20%. This
may be because fragmentation processes which otherwise contribute strongly
to volatilization [13] either are less favored during oxidation or, more likely,
produce fragments that are sufficiently low in volatility that they remain in the
condensed phase. Furthermore, the loss of carbon for the most oxidized species
is typically offset by an equivalent increase in oxygen, so that the overall pro-
cess approximately conserves particle mass. Atmospheric oxidation of the most
oxidized organic aerosol is therefore unlikely to be a significant sink of aerosol
mass, though it is still capable of transforming the chemical composition-and
therefore key properties such as hygroscopicity [11, 33, 34, 2, 35] and refractive
index [11]-of the particles over their atmospheric lifetimes.
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Figure 4.6: Summary of heterogeneous oxidation experiments. (A) Average

carbon oxidation state as estimated from AMS elemental analysis [58] during

the course of oxidation for squalane, erythritol, levoglucosan, and the systems

introduced in this work. For consistency the same elemental analysis correc-

tion factors [29] are applied in all cases, and OH exposure is adjusted for a

particle diameter of 200 nm (as in Figure 4.5). In general, there is an ini-

tial increase in oxidation state, at approximately the same rate, regardless of

the system studied. (B) Estimated carbon loss, which serves as a measure of

volatilization, for the same seven systems. Squalane, a reduced compound,
undergoes moderate carbon loss. The moderately oxidized species, erythritol

and levoglucosan, lose a much larger proportion of initial carbon to the gas

phase, probably due to increased fragmentation reactions. On the other hand,
the most oxidized species (the acids examined in the present study) experience
only mild volatilization, possibly because fragmentation products are so low

in volatility that they remain in the condensed phase.
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Chapter 5

Formation of Secondary Organic
Aerosol by Direct Photolysis of
Gas-Phase Iodide Species

In this work so far, we have made a point of underscoring the chemical complex-
ity inherent in reacting systems, but we have not yet addressed the oxidative
mechanisms that give rise to such complexity in the atmosphere. Most ex-
perimental studies of the products of atmospheric organic reactions, including
secondary organic aerosol (SOA) and the experiments outlined in Chapters 3
and 4, involve the oxidation of a single model compound or mixture of com-
pounds by exposure to an atmospheric oxidant over some amount of time
[18, 23, 14, 26, 27], in each of these cases by the hydroxyl radical (OH). How-
ever, the high reactivity of OH can confound laboratory studies of chemical
mechanisms, since multiple and sequential oxidative steps are possible during
a single experiment. Presented in this chapter is an experimental system de-
signed to limit oxidation processes to a single generation of products formed
from a single radical precursor. In lieu of the abstraction of a hydrogen atom
by OH, we use a photolabile precursor to generate SOA. Although this tech-
nique is commonly employed to study the kinetics and products of simple
gas-phase reactions, e.g. [82], to our knowledge it has not been used in the
explicit study of SOA formation chemistry.

The immediate product of the reaction of a hydrocarbon with OH is typ-
ically an alkyl radical, which in turn reacts rapidly with ambient oxygen to
form the peroxy radical, RO 2 [76]. Peroxy radicals may subsequently react
with NO or with other peroxy species to yield a distribution of products, each
of which is free to react again with OH and form a new set of products. By
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using photolabile compounds-in this case, a series of n-alkyl iodides-the bi-
molecular hydrogen abstraction step is bypassed during the formation of the
initial alkyl radical, as demonstrated in Figure 5.1. In this manner, a single
radical species is formed, in marked contrast to reactions that are initiated by
reaction with OH. Secondary organic chemistry involving the iodine photofrag-
ment is predicted to be minimal, as the C-I and H-I bonds are weak enough
to make their formation energetically unfavorable [16, 83].

H H20

'0 H

1. R HO/H02 /NO

First- OH Later-
Generation --- * Generation
Products Products

Figure 5.1: Simplified mechanism of alkane oxidation chemistry. In the
atmosphere-and in most experimental studies-alkyl radicals are formed by ab-
straction of a hydrogen atom from any site on the carbon backbone by OH
(top pathway); in this study, radicals are instead formed in a more controlled
manner and at a determined site on the carbon backbone by the photolysis
of alkyl iodides (bottom pathway). First-generation oxidation products will
react further in the presence of OH, whereas stable products of the photolysis
pathway are less likely to react further.

5.1 Methods

In the experiments presented here, gas-phase 1-octyl, 1-decyl, or 1-dodecyl

iodides (98% purity, Sigma-Aldrich Co.; hereafter referred to as the C8 , C1 0,
and C1 2 systems, respectively) were introduced to a flow tube reactor, with a

carrier flow of synthetic air. Oxidation was initiated by irradiation by 254-nm

light (which is near the absorption maximum for alkyl iodides [84]). In the

absence of either light or gas-phase alkyl iodides, no particle formation is ob-

served. However, when the precursor species is introduced to the irradiated
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tube, particle formation and growth is observed to occur rapidly.

Experiments were carried out in a flow reactor, which has been described

previously in detail [13, 14, 26, 27] and is modified for oxidant-less reactions

in this case. The reactor is made up of type-219 quartz, with a length of 130

cm and inner diameter of 2.5 cm. The effective residence time-defined by the

section of the reactor exposed to 254-nm UV light from the pair of external

mercury lamps-is ~37 s. Four streams were mixed before entering the flow

tube reactor: 1) 200 sccm pure 02, 2) 30 sccm hexane (5 ppm) in N2, 3) a

variable flow rate of N2 , which is passed through a bubbler containing liquid

organic iodide (98% purity, Sigma-Aldrich Co.), and 4) a makeup flow of dry

N2, such that the total flow rate in the reactor is 1 slm. Concentrations of

alkyl iodides are not measured directly, but are instead estimated from known

vapor pressures [85], assuming the air from the bubbler is saturated in iodine

species. Concentrations range from 240 ppb to 120 ppm. The hexane is used as

a tracer for OH; concentrations did not change when the lights were turned on,
indicating negligible OH-initiated secondary chemistry. Approximately 97% of

the precursor is assumed to be photolyzed in the reactor, based on estimates

of the photolysis rate constant from an absorption cross-section of 10-18 cm 2

and a photon flux of 8 x 10-1 W cm--2. The quantum yield is assumed to

be unity for the sake of a conservative estimate. Particle formation occurs

spontaneously within the reactor, with no need for added seed nuclei.

5.2 Discussion

As with standard chamber experiments regarding SOA generation, aerosol

growth is dependent on total aerosol loading, indicating that particulate or-

ganic species are semi-volatile. Following Odum et al. [17] and Donahue et

al. [22], the partitioning of the product mixture was modeled using a set of

representative semi-volatile products of varying volatility:

IACOA _ ~-( CJ
Y a (1 + (5.1)

/XCR ,COAl

where Y is the organic aerosol mass yield, COA is the mass concentration

of particulate organics, ACR is the decrease in mass concentration of the gas-

phase reactive species, and a and C* are, respectively, the product yield and

saturation concentration of product "i."
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Figure 5.3: Experimental setup for iodide photolysis and secondary organic
aerosol generation. Nitrogen is bubbled through liquid alkyl iodide, such that
the exiting gas is saturated in organic compound before being diluted by the
makeup gas and entering the flow reactor.

The mass yield of organic aerosol is calculated relative to the concentra-
tion of the precursor species after subtracting the mass of the iodide atom.
This subtraction is performed in order to facilitate comparison of the observed
aerosol yields with those reported for oxidation of n-alkanes [86]. This value
is plotted against the total aerosol mass loading for the C8 , Cio, and C12
systems in Figure 5.4. As expected, the precursor species with higher molec-
ular weights exhibit increased aerosol yields, due to the lower volatility of the
oxidation products. The data in each set is fitted to the volatility basis set
(Equation 5.1) using two volatility bins (C* = 100 pug m- 3 and C2* = 1000 pg
m- 3) for the range of COA studied [22]. Fits using a larger number of bins
gave values of ai that were statistically insignificant (i.e. indistinguishable
from zero) or unphysical (negative). Fitted product yields are shown in Table
5.1 for each of the three systems. Most of the product mass is observed in the
higher-volatility bin, such that a single generation of oxidation is unlikely to
produce SOA in significant yields at atmospherically relevant aerosol loadings.
This is consistent with previous studies that indicate the importance of multi-
ple oxidation generations in the formation of SOA from alkanes, especially for
shorter hydrocarbon chains [86, 87]. Additionally, the yields observed here are
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approximately one-half of those previously observed in chamber experiments
of comparable alkane oxidation systems [86]. This lower yield is indicative
of higher overall volatility among oxidation products; this may result from
the limited number of allowed reactions, differences in R0 2 chemistry (e.g.
R0 2+RO 2 vs. R0 2+NO reactions), or possible differences between the chem-
istry of primary alkylperoxy radicals (used here) and secondary radicals (which
are more commonly encountered in normal alkane oxidation by OH).

15

10

>2

5

01
101 102

COA' p9g3

Figure 5.4: Adjusted organic aerosol mass yields versus total particle mass
loading for the Cs, C10 , and C12 systems. Trend lines are generated using a
two-parameter fit to a volatility basis set, as shown in Equation 5.1 and Table
5.1.

Chemical characterization of product aerosol mixtures was obtained from a
high-resolution Aerosol Mass Spectrometer (AMS, Aerodyne Inc.), which was
operated alternately in electron impact (EI) mode (with the vaporizer set at
600 'C) or in vacuum-ultraviolet single-photon ionization (VUV-SPI) mode,
operating at 10.5 eV and with the vaporizer set at 100 'C [14].

The high resolution of the mass spectrometer and high degree of fragmen-
tation in El mode enable the estimation of elemental ratios of hydrogen to
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Reactive Species C8 H1 71 CiOH 2 11 C 1 2 H 2 5 1
ai, %; (C* =100g m-3) 0.6 ± 0.5 1.0 + 0.3 1.1 0.5

a 2, %; (C2* 1000pg M- 3 ) 1.9 ± 0.6 5.1 ± 0.5 16.8 1.2
O/C range 0.12 to 0.13 0.083 to 0.10 0.07 to 0.10
H/C range 1.92 to 1.94 1.97 to 2.02 1.85 to 2.05

# Oxygen per carbon chain 0.99 to 1.07 0.83 to 1.0 0.80 to 1.2

Table 5.1: Product yields from a two-parameter fit to Equation 5.1, using the
two indicated values of CZ to define the volatility bins, and ranges of calculated
elemental ratios (oxygen-to-carbon, O:C, and hydrogen-to-carbon, H:C) for all
samples with a mass loading of at least 1 pg m-3 . The number of oxygen atoms
per contiguous carbon chain is also estimated as the value of O:C times the
number of carbon atoms in the parent molecule. Elemental ratios given are
expected to have a 95% confidence interval of ±30% of the given value for O:C
and ±10% for H:C [29].

carbon atoms (H/C) and oxygen to carbon atoms (0/C), which are summa-
rized in Table 5.1, using the method described by Aiken et al. [29, 30]. Figure
5.5 shows a sample El mass spectrum for each of the C8 , C10 , and C12-derived
aerosol mixtures. Mass spectra are dominated by ions of the form C2 H+,
though oxygenated fragments (CH 0+, z = 1, 2) are also present. The rel-
ative presence of oxygenated fragments declines as the precursor molecular
weight increases, due to an increase in the total number of carbon atoms per
molecule. A small amount of particle-phase iodide (1+ and HI+) also appears
in this spectrum (accounting for less than 2% of the total ion signal in all
systems), although there are no peaks of the form CxHy021+. This suggests
that the observed iodine presence comes from inorganic products (e.g. I,,
crystals), which have been observed in similar systems [88]. We therefore con-
clude that the organic aerosol formed is primarily due to chemistry of the alkyl
photofragment, with little to no influence from subsequent iodine chemistry.

The measured O/C values of the aerosol (Table 5.1) are lower than those
measured in chamber studies of SOA from the OH-initiated oxidation of alka-
nes [86], again suggesting the importance of multiple generations of oxidation
in those systems. The number of oxygen atoms per contiguous carbon chain,
determined by multiplying O/C by the number of carbon atoms in the precur-
sor molecule (and assuming no reactions break or form C-C bonds), indicate
that, on average, only one 0 atom is added per contiguous carbon chain. While
such a low degree of oxidation is expected, as only one oxidation step is ac-
cessed in these experiments, the identity of the low-volatility species observed
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Figure 5.5: Sample electron-impact mass spectra Of C8, C10, and C12 aerosol,

taken from the highest range of concentrations in each experiment and normal-

ized by the total signal. Sticks are colored according to oxygen content of frag-

ments as measured by high-resolution peak-fitting. Fragments at m/z = 127

and m/z = 128 are 1+ and HI+, respectively. Peaks with m/z > 130 account

for a very minor fraction (less than 4%) of the total organic AMS signal.
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must be reconciled with the apparently low number of polar functional groups.
For example, even for dodecanol-one of the lowest-volatility C12 compounds
to have only one oxygen-the expected saturation concentration is ~ 104 pg
m-3 , at least an order of magnitude greater than what is needed to produce the
mass yields observed here [89]. It therefore appears that a significant fraction
of the aerosol is composed of compounds of higher molecular weight, possi-
bly formed by oligomerization processes. For instance, a C 1200C12 peroxide
(formed by combination of two dodecyl peroxy radicals) has an expected sat-
uration concentration of ~50 pg m-3, which is sufficient to contribute to SOA
in the yields observed. Other potential formation mechanisms of low-volatility,
slightly oxidized species are described below. It should be noted that the ac-
tual oxygen content might be somewhat greater than what is estimated here,
due to uncertainties in the O/C parameterization; such uncertainties may be
especially large in this case because the measured product mixture is limited
to a small number of individual species [29].

AMS measurements were also carried out using VUV-SPI, a "soft" ion-
ization technique involving a lower degree of fragmentation than in El and
therefore improved determination of molecular species. Figure 5.6 shows rep-
resentative VUV mass spectra from the C8, C10, and C12 experiments, with
the dominant peaks occurring at higher values of m/z than in the El spec-
tra. The spectra are reasonably complex and are dominated by ions with
odd-numbered masses, indicative of molecular fragments. This is not typical
of VUV spectra of organic aerosol, which tend to show molecular (even-mass)
peaks [14, 90, 91]. This suggests that the present chemical system may contain
weakly-bound and/or easily photoionized species, such as organic peroxides
[92].

Major peaks in each VUV mass spectrum are clustered about m/z = 127
(C8H 1 5 O+), 155 (C1 0H190+), and 183 (C 1 2H2 3 0+), respectively, which corre-
spond to the mass of the main carbon chain, with one oxygen atom added and
two hydrogen atoms lost (in addition to the loss of the iodine; high-resolution
analysis confirms these assignments, as the I+ ion contributes less than 1%
to the total ion signal at m/z = 127). The mass differences (A(m/z) = 28)
between these peaks are consistent with the differences between the molecu-
lar weight of the precursor species. Other significant peaks at ±2 amu may
indicate various degrees of (un)saturation of the organic species being ob-
served. The higher-mass clusters correspond to ions with multiple oxygen
atoms; these minor species again suggest the presence of isomerization and
chain-propagation products.
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Shown in Figure 5.7 are the major reactive pathways available to R0 2

radicals formed in the simple chemical system studied here (n-alkyl iodides

+ 254-nm light + air), with product yields estimated from a simple kinetic

model (described in Section 5.3). The initial radical chemistry is straightfor-

ward: the alkyl radicals (R) react with oxygen to form alkylperoxy radicals

(RO2 ), which mostly react with other R0 2 radicals (Reactions of alkyl and

alkoxy radicals with other organic species are negligible). R02+RO2 chem-

istry may lead to the formation of low-volatility peroxides of the form ROOR

[93, 94, 95]. Other major R0 2+RO 2 products include alkoxy radicals; these

can isomerize to hydroxycarbonyls, which may themselves isomerize and de-

hydrate to form low-volatility dihydrofuran species [86]. This pathway also

generates HO 2 , which will react with R0 2 radicals to form hydroperoxide

species (accounting for more than 25% of the RO 2 reaction). ROOH species

are not low enough in volatility to condense into the particle phase, but they

may react with carbonyls to generate low-volatility peroxyhemiacetals [96].

The formation of these various low-volatility species-dialkyl peroxides, dihy-

drofurans, and peroxyhemiacetals-may explain the formation of aerosol with

relatively low oxygen content. Moreover, the formation of these products

also may explain the relatively complicated VUV-MS spectra shown in Fig-

ure 5.6 simply by providing a larger-than-expected number of products that

are capable of fragmentation at lower temperatures and photon energies than

the hydrocarbons previously studeid [14]. This observation underscores the

substantial chemical complexity of SOA, even when secondary reactions and

multigenerational oxidation are heavily suppressed.

Although the chemical complexity of the organic mixture may inhibit iden-

tification of individual species by the methods used here, bulk measurements of

total aerosol concentration and elemental ratios are nonetheless aided greatly

by the resolution of generational complexity provided by direct photolytic

initiation of the oxidation step, which can be applied to systems with novel

photolabile precursors (which would most likely be synthesized in the labora-

tory) for more targeted experiments. Also, in the atmosphere, RO2 will mostly
react with NO and HO 2, which may lead to the formation of aerosol with very

different loading and composition [86, 21]. Introduction of such species will

be the focus of future studies; the distribution of oxidation products may be

further simplified in this system as R0 2 self-reaction becomes negligible.
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Figure 5.6: VUV mass spectra of the C8 , Cio, and C12 systems. The principal
clusters of peaks in each case correspond to C2O, with indications of more
highly oxidized molecules at higher masses. The number of oxygen atoms
in each cluster is confirmed by high-resolution analysis. Other peaks with
m/z > 220 are measured, though they have not been positively identified;
these ions, which presumably correspond to high-molecular-weight species

(such as oligomeric peroxides), account for 18-30% of the total ion signal.
Peaks with m/z < 100, which correspond to fragment ions, account for an
additional 30-42% of the total ion signal.
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Figure 5.7: Expected reaction pathways for the alkylperoxy radical in this
experiment. Although chemistry is initially dominated by R0 2+R0 2 self-
reaction, the generation of hydroxycarbonyl species also produces HO 2, which
is an important sink for the remaining R0 2. Stable molecules are indicated
by shaded boxes, with the more-volatile species against light gray and the
less-volatile ones against dark gray. Approximate molar product yields, es-
timated by a kinetic model (described in Section 5.3), are indicated in each
box. Although peroxyhemiacetal and dihydrofuran products are not explic-
itly modeled, these products are sufficiently low in both volatility and oxygen
content to agree qualitatively with the experimental results.

5.3 Kinetic Model of Iodide Photolysis

In order to examine the relative importance of various reaction pathways in the
reactive systems studied in this chapter, we have performed a kinetic simula-
tion of such reactions under the relevant experimental conditions. All reactions

(and corresponding rate coefficients) used in this kinetic model are listed in
Table 5.2. Self-reaction of R0 2 radicals leads to the production of alcohols,
carbonyls, peroxides of the form ROOR, and alkoxy radicals (RO-) [14]. The
alkoxy radical rapidly isomerizes and reacts with oxygen to form the hydroxy-
alkylperoxy radical, which again engages in R0 2 self-reaction [86]. Reaction of
the hydroxy-alkoxy radical with oxygen yields a hydroxycarbonyl compound

77

1%0



and HO 2 ; this radical will react with R0 2 to form hydroperoxides [86].

Secondary reactions, which may complicate the reactions described above,
are also included in this kinetic model. These focus on the radical abstraction
of the hydrogen atom from the parent iodide compound, RI, by alkyl, alkylper-
oxy, alkoxy, and hydroxyl radicals. The hydroxyl radical may be formed by
the photolysis of either organic hydroperoxides (ROOH) or hydrogen peroxide
(H 20 2). Conservatively high rate coefficients for these side reactions are used
as upper limits.

A 37-second simulation of the reactions (consistent with the residence time
of the reactor) was performed for an initial concentration of RI of 6 x 1013
molecule cm-3 (consistent with the levels used in this experiment for dodecyl
iodide), with the final concentrations of stable (non-radical) products given
in Table 5.3. Species formed by the R0 2 self-reaction and R0 2+HO 2 chan-
nels are present at levels at least two orders of magnitude greater than those
formed by reactions of the parent molecule with other radicals, which account
for less than 1% of all reactions of RI. We are therefore confident that the ob-
served chemistry arises from the R+0 2 reaction to form R0 2 radicals, followed
R0 2+RO 2 and R0 2+HO 2 reactions.
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Reaction
RI -+ R -+I-

R - (+02) - RO2 -
R0 2 +R'0 2 ' -+ ROOR' +02

RO2 - +RO2 - RO -+RO-+02
R02 -+R0 2 - ROH + R=O+O 2

(H-)RI+ R. -RI+ RH
-RI+0 2 - RIO 2 -

R - +R'- R R'
R0 2 - +(H-)RI -+ ROOH + -RI

RO - (+02) -* R' (OH) R"0 2-
R'(OH) R"O. --+ R'(OH) R"=O + HO2 -

RO 2 - +HO 2 -+ ROOH +02
ROOH -+ RO - + - OH

HO2 +H02. - H2 0 2 +02
H202 2 -OH

2 (-OH) -+ H 20 2

-OH + HO2 -+ H2 0 +02
-OH + (H-)RI -* -RI + H 20

Rate Coefficient
1.56 x 10-2
1.87 x 104

3.84 x 10- 15

3.97 x 10-44

2.04 x 10-14

1.5 x 10-13

1.87 x 104

5.0 x 10-12

3.90 x 10-19
1.5 x 107
4.7 x 104
7.7 x 10-12

4.53 x 10-4
2.84 x 10-12
1.16 x 10-3

4.7 x 10- 25

1.1 x 10-16

1.1 x 10-18

Table 5.2: Reactions and rate coefficients used in a simplified photolytic oxi-
dation scheme. Pseudo-first-order rate constants (reactions 1, 2, 7, 10, 11, 13,
and 15, assuming a constant 20% 02 presence) are in units of s-1, while all
other rate constants have units of cm 3 molecule-1 s-'. Photolysis rates are es-
timated by comparing the absorption cross-sections of ozone (1.13 x 10-17 cm 2

[97]) with those of methyl iodide (1.11 x 10-18 cm 2 [98]), methyl hydroperoxide
(3.23 x 10-20 cm 2 [102]), and hydrogen peroxide (6.7 x 10-20 cm 2 [104]), as well
as a previously-estimated photolysis rate coefficient of ozone of 0.159 s-1 in
the flow reactor. Quantum yields in all cases are assumed to be unity in order
to provide an upper limit on the reaction rate of RI. Rate coefficients for the
self-reaction of alkyl radicals and for H-abstraction by the peroxy radical are
estimated from condensed-phase studies [100], adjusted upwards by a factor
of 50 in order to provide a credible upper limit for the calculated rate by ac-
counting for the increased collision frequency between dissimilar compounds.
The hydroxyalkyl radical formed by isomerization in reaction 10 is assumed
to immediately form an alkylperoxy radical by reacting with abundant 02.
Subsequent reactions with other radical species are as described in reactions
3, 4, 5, and 12. Additionally, reaction 11 has 02 as an implied reactant, which
does not affect the pseudo-first-order rate constant.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Source
[97, 98]

[65]
[65]
[65]
[65]
[99
[65]

[100]
[100]
[101]
[65]
[65]

[97, 102]
[103]

[97, 104]
[103]
[103]
[65]



Species

RI
RH
ROOR'
ROH
R=O
R-R'
R(OH)R(=O)
ROOH
R(OH)ROOH
H2 0 2

Final Concentration
(Fraction of Initial RI)

0.011
5.4 x 10-12

0.037
0.196
0.196

2.3 x 10-25
0.252
0.152
0.096

2.8 x 10-4

Table 5.3: Final concentration values of stable (non-radical) species, as a frac-
tion of the initial concentration of RI, for a simulation of the kinetics described
in Table 5.2. The reaction time is estimated to be -37 s (the residence time of
the flow reactor used here), and the initial concentration of species RI is given
as 6 x 1013 molecule cm-3. Approximately 5% of the total organic signal is
estimated to be in remaining radical (alkylperoxy and alkoxy) species, which
are not listed here.
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Chapter 6

Aging of
Photolytically- Generated
Secondary Organic Aerosol

So far, the topics of heterogeneous oxidation of organic aerosol and photolytic
chemistry of aerosol-forming species have been approached as two separate sub-
jects. This last unit focuses on a synthesis of the two subjects, with a general

objective of demonstrating the potential utility of introducing direct photolytic

processes to a wider range of organic aerosol studies and a more particular goal

of obtaining evidence for novel chemical reactions and condensed-phase prod-

ucts that are often overlooked by current state-of-the-art atmospheric models.

Several drawbacks exist to the traditional single-component heterogeneous

oxidation procedure as outlined in Chapters 3 and 4. Because oxygenated com-

pounds often tend to exist in a cyrstalline phase when not mixed with other

organic species, the issue of phase change must be addressed for high levels of

oxidant exposure and sufficiently long reaction times [77]. Additionally, there

is no guarantee that a given compound (or even group of compounds) will

on its own sufficiently encompass the physical and chemical properties of the

system we are attempting to study.

In our own experiments, we wish to replicate the atmospheric conditions of

SOA formation-including particle size and phase, as well as approximate mix-

ture properties-while at the same time maintaining the relatively tractable

small number of starting compounds afforded by pure-species heterogeneous

oxidation. For this purpose, the utility of the photolytic SOA experiment de-

scribed in the previous chapter can be demonstrated most clearly in Figure
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6.1, which compares the VUV mass spectrum of dodecyl iodide SOA with that
of SOA formed from the reaction of gas-phase dodecane with hydroxyl radi-
cals, OH. Whereas the alkane + OH system yields a busy spectrum with many
small fragments (caused either by a wider array of oxidation reaction products
or by a higher degree of fragmentation in the AMS for more oxygenated com-
pounds [14]), the spectrum for alkyl iodide photolysis shows just a handful of
significant peaks, which correspond generally to identifiable compounds.

100 -

80 - Dodecane + OH

60-

40 -

20-
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Figure 6.1: (Top) VUV mass spectrum of SOA generated from the exposure of
pure dodecane to OH. (Bottom) VUV mass spectrum of SOA generated from
the photolysis of dodecyl iodide, with a much smaller degree of fragmentation.
Peaks at m/z = 183 and m/z = 185 correspond to C 12H230+ and C12H250+,
respectively, which may arise from the photolysis of C1 2 H2 500C 1 2 H25 or from
the loss of a hydrogen atom from dodecanal and dodecanol, respectively.

In this work, we examine the aging of the dodecyl iodide SOA system by
the heterogeneous oxidation method outlined previously. We then compare
the results of this aging process both with the results of the single-component
studies and with the further oxidation of the straightforward dodecane + OH
SOA system. We intend to show that the results make a strong case for closer

82

ljodododeane

-d -t



inspection of specific features of typical aging experiments, and we discuss the

atmospheric implications of these findings.

6.1 Methods

Photolytic SOA is generated by the method detailed in the previous chapter

(and as demonstrated in Figure 6.2), by bubbling N2 through pure liquid-phase

dodecyl iodide, followed by photolysis at 254 nm in a flow tube with a diam-

eter of -1 in and a residence time of ~37 s. The aerosol mixture exiting the

flow tube reactor passes through a charcoal denuder to remove most gas-phase

species from the flow, while condensed-phase species evaporate slowly enough

to prevent noticeable losses of particles. The flow exiting the denuder is then

mixed with ozone and introduced to a second reactor, with the same dimen-

sions as the first, where a second set of 254-nm lights initiates the formation of

hydroxyl radicals in the same manner as in our heterogeneous oxidation exper-

iments for single-component systems. Once again, OH exposure is controlled

by altering the amount of ozone introduced to the reactor, with the residence

time in the reactive region fixed at -37 s.

In the dodecane + OH system, liquid dodecane is injected by a microliter-

scale syringe pump at a rate of 2 pL hr-1 into a nitrogen flow prior to entering

the flow tube. Hydroxyl radicals are again generated via the photolysis of

ozone. Oxidant concentrations are increased to a level comparable with the

exposures used in aging the dodecyl iodide SOA, roughly equivalent to 2-3

weeks of aging in the atmosphere.

6.2 Results

The relative presence of carbon remaining in the C12 aerosol, plotted against

OH exposure (Figure 6.3), shows that the SOA mixture reacts readily with hy-

droxyl radicals according to the same patterns that were observed for squalane

aging [13]. The observation of continuing carbon loss with a plateau in the

addition of oxygen is consistent with earlier results observed in the oxidation

of squalane as well. The overall mass change is initially small, as the loss

of carbon is offset by the addition of new oxygen. Additionally, the rate of

reaction is comparable to those earlier systems, and the initial reactants (as

detected by VUV-MS) decay more thoroughly, with only ~10% remaining by
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Figure 6.2: Experimental setup
secondary organic aerosol.

for the generation and aging of photolytic

an exposure of 4 x 1012 molecule s cm- 3 , compared with a remainder of ~20%
at much higher exposures in the erythritol and levoglucosan systems [26].

Figure 6.4 provides the changes in OSc and the relative carbon abundance
in the dodecyl iodide SOA upon reaction in the flow tube, both of which are
superimposed upon the traces previously depicted in Figure 4.6. The rate of
increase of the degree of oxidation is higher than for the pure compounds pre-
viously studied, and the rate of carbon loss is very rapid as well.

Lastly, as observed in Figure 6.5, the overall elemental composition of the
system, as described by the O/C and H/C values, changes very dramatically
over a relatively small range of oxidant exposures. The trajectory within
the Van Krevelen space is very similar to the trajectory for the oxidation of
squalane (the underlying set of gray points) and is consistent with the approx-
imate one-to-one ratio of hydroxyl and carbonyl group addition to the carbon
backbone, while the uptake rate appears to be within the same range as ob-
served for squalane particles (0.3-0.5). By comparison, the same trajectory
for the dodecane + OH experiment results in a much lower level of oxygen
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Figure 6.3: Normalized amount of carbon and oxygen detected in the C12 -
derived organic aerosol.

addition, even at comparable levels of OH exposure.

Several possible explanations, both physical and chemical, could account
for the discrepancy between the photolytic and traditional SOA systems in
regards to aging by hydroxyl radicals. Because photolysis of dodecyl iodide
yields exclusively a primary dodecyl radical-whereas abstraction of a hy-
drogen atom from dodecane is most likely to yield a mixture of secondary
radicals-the range of condensed phase products may be significantly different
between the two types of aerosol (This finding has been suggested by personal
communication from others in the group, which have produced varying aerosol
yields from alkoxy radicals at the primary and secondary carbon positions).
Additionally, because gas-phase reactions are likely to be much faster than
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Figure 6.4: Summary plots of the changing average carbon oxidation state
(left) and normalized particulate carbon mass (right) for the aging of dodecyl-
iodide SOA (red) as compared with all previous heterogeneous oxidation ex-
periments (gray).
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condensed-phase reactions, rapid oxidation of gas-phase dodecane may lead
to heavy fragmentation before the oxidized compounds have sufficient time to
condense onto particle surfaces. Lastly, the phase in which the oxidation re-
actions themselves occur may affect the types of products from any given step
(whether through solvation effects or via secondary reactions between organic
species), such that heterogeneous reactions lead more quickly to the formation
of OOA.

We therefore have evidence that the photolytically generated SOA is aged
more readily than other model systems, representing both primary and sec-
ondary sources, in part because the compounds contained in the particle phase
have relatively high hydrogen content, and partly because the phase of the
particles themselves may be more liquid-like in the formation of SOA, thereby
leading to greater uptake of OH.
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Figure 6.5: Van Krevelen plot of C1 2 photolytic SOA at increasing levels of
oxidation. As exposure increases, the oxidation trajectory follows the same
path as other alkanes, as well as several field observations, consistent with the
equal addition of hydroxyl and carbonyl functional groups to the molecule,
which are expected from R0 2 + R0 2 reactions in the condensed phase. Addi-
tionally, the degree of change of both O:C and H:C is greater than what has
been observed for most other systems, even for only mild OH exposure levels,
suggesting that the photolytic SOA is more readily aged.
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Chapter 7

Conclusions and Outlook

This work has discussed multiple experiments in which organic aerosol par-

ticles were oxidized rapidly by interaction with gas-phase hydroxyl radicals

in order to simulate the effects of several weeks' worth of chemical aging

in the atmosphere. A major takeaway point has been the observation that

heterogeneous oxidation-rarely included in atmospheric models-occurs on

time-scales commensurate with depositional losses of particles [51, and that

the resulting chemical transformation of the aerosol can have a significant ef-

fect on the physical and chemical properties of the particles, even if overall

concentration does not change by a significant degree.

Chapters 5 and 6 have also demonstrated the possible experimental utility

of gas-phase direct photolysis of organic compounds as a mechanism for gener-

ating secondary organic aerosol. This method provides the primary benefit of

an experimental system by which oxidation chemistry can be studied directly,
with a limited number of steps, in order to examine individual chemical steps

that lead to the formation of SOA. The aerosol formed by this method can, as

an additional benefit, be introduced to subsequent analysis techniques, such

as heterogeneous oxidation or cloud condensation nucleus (CCN) counting, as

an alternative to existing methods of particle generation (chamber SOA, at-

omization, nucleation, etc. [18, 26, 13]).

In order to tie these experiments into a broader atmospheric context, it

will be necessary to examine their implications for future experiments and the

information that they can provide toward making improved predictions about

the atmospheric behavior of oxidized low-volatility organic species.
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7.1 Experiment

One major concern of all flow-tube oxidation experiments, which combine short
residence times and high oxidant concentrations in order to achieve roughly
the same overall oxidant exposure as with several weeks' time spent in the
atmosphere, is that any chemistry found to deviate from the second-order re-
action of organic compound + OH might indicate a substantial discrepency
between experimental results and environmental reality. For instance, if the
initial reaction with the hydroxyl radical is not the rate-limiting step, as is typ-
ically assumed of the production of R0 2, then reactions in the flow tube will
tend to under-report the apparent rates of reaction, especially as the oxidant
concentration is increased to its highest levels. As a result, further experiments
intended to examine identical reactions across an array of experimental appara-
tus are suggested. In particular, future experiments should evaluate the effects
of varying the flow rate through a tube of known geometry, in addition to com-
paring flow tubes of differing volumes and various chambers. The efficacy of
using a single "oxidant exposure" metric, calculated from the same technique
across all experimental platforms, can then be evaluated, and the most atmo-
spherically relevant parameters can be separated from the apparatus-specific
parameters (including those dealing with wall loss [105] or secondary chemical
effects [103]).

We have so far compared the reactivity of photolytic SOA when aged by
heterogeneous oxidation by hydroxyl radicals (using dodecyl iodide as an SOA
precursor) with the aging of dodecane by high concentrations of OH. However,
in order to better establish the comparison between the two systems-and the
observation that heterogeneous oxidation of the photolytic SOA yields more
oxidized aerosol products-the experiment must be tailored more closely to a
narrower interpretation of the possible causes for the discrepencies mentioned.

In particular, the possible differences between primary- and secondary-
carbon alkyl radicals (with the former the dominant intermediate species for
dodecyl iodide photolysis and the latter the major expected intermediate of the
dodecane + OH reaction) should be examined in the context of aging, particu-
larly since other experiments in this laboratory have demonstrated differences
in aerosol yield when comparing primary and secondary radicals. Additionally,
a more careful process for aging the dodecane SOA should involve removing the
gas-phase components of the aerosol mixture using a charcoal denuder in order
to examine the differences between the gas-phase reactions that dominate in
a system at equilibrium and the heterogeneous oxidation that dominates in
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a denuded mixture. Because the time scale for evaporation in the flow tube
is much more than 15 times the residence time in the reactor [48, 106], we
can safely assume that effectively no partitioning takes place during this time.
The results of these experiments may well help to elucidate the relative im-
portance of the two phases in the atmospheric aging that leads to OOA [57],
and it may also inform the design of future photolysis experiments intended
to better replicate specific aspects of SOA formation in the atmosphere or in
larger chamber studies.

Additionally, we ideally want to know more about predicting aerosol prop-
erties beyond loading and elemental ratios. For that reason, an examination of
the cloud-condensing nuclei (CCN) activity and refractive properties of SOA
formed from gas-phase photolabile species may be useful, both for the general
purpose of furthering our understanding of the physicochemical properties of
organic aerosol and for an additional point of comparison between our narrow
laboratory standard for SOA and actual atmospheric SOA.

7.2 Modeling

Although further experimental results are likely to provide even greater un-
derstanding of the exact nature of chemical evolution through heterogeneous
oxidation, we also want to be able to make some sort of predictions about how
that chemical evolution will affect the broader global picture. To that extent,
we must examine current modeling practices and how these results may aid in
the expansion of the predictive capabilities of state-of-the-art global transport
models.

Typical models used to make predictions of atmospheric behavior of chem-
ical species have focused either on long-range chemical transport of a limited
number of species within a three-dimensional system (using programs such as
GEOS-Chem [107]) or on the detailed kinetic mechanisms of a very specific set
of compounds (as with the Master Chemical Mechanism, MCM [108, 109]).
Additionally, recent efforts have attempted to achieve improved model effi-
ciency by introducing random selection of species during initial self-generation
of the model in question [110] and through traditional model reduction tech-

niques [111]. These methods have had reasonable success in allowing porta-
bility of several kinetic systems to global transport models, but they remain
limited by the need to generate a full description of the reactions involved
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every time a new species is introduced, and the ability to accurately predict
aerosol loadings and properties remains severely limited [112].

There have been several recent attempts toward remaking the framework
in which aerosol formation and aging are evaluated, most notably by Donahue
et al. and by Daumit et al. [74, 12]. In such an accounting, the total organic
mixture is viewed, not as a sum of uncountably many individual species, but
rather as a distribution of total mass (or, equivalently, of carbon mass) across
a low-dimensionality range, in which properties of the aerosol components are
limited to generic descriptions of the elemental composition in place of specific
molecular structures. Donahue et al. propose a two-dimensional Volatility
Basis Set (VBS) that uses OSc and C* as the dimensions of interest [22, 74],
while our group suggests an alternative three-dimensional view that combines
Van Krevelen space (0/C and H/C) with carbon number (nc) to describe
aerosol properties [12, 26, 27]. The former method has the advantage of using
more directly measureable quantities as aerosol descriptors and of requiring
a smaller number of effective "species" (i.e. bins within the two-dimensional
space)-necessary for incorporation into a global three-dimensional transport
model of sufficient resolution. The latter method, meanwhile, provides both
greater predictive power by the inclusion of an additional chemical dimension
(H/C) and also a more straightforward framework for predicting the chemi-
cal evolution of organic species (in which the average carbon oxidation state,
OSc, and the vapor pressure, C*, are treated as physical properties, which are
functions of the intrinsic variables and are not themselves treated as intrinsic
variables).

In order to apply the results of the analysis in this thesis to such a model
framework, we must first restrict the analysis to a narrow view of those com-
pounds with sufficiently high carbon number and degree of oxygenation (or,
equivalently, sufficiently low volatility) to effectively halt gas-phase oxidation
under typical ambient conditions (i.e. loadings in the range of 0.1-10pg m-3
and low relative humidity). The results discussed previously have demon-
strated that although heterogeneous oxidation is several orders of magnitude
slower than gas-phase oxidation, even for semi-volatile species, condensed-
phase reactions begin to dominate as the volatility of organic species drops,
while remaining competitive with other sources and sinks of OA. Thus, for
models that intend to represent accurately the formation of the most highly
oxygenated aspects of OA (which in turn have the largest impact on proper-
ties such as hygroscopicity and light scattering), it is necessary to choose rate
parameters that correctly replicate the results of these experiments.
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7.3 Atmospheric Implications

As mentioned previously, when we observe organic aerosol in the atmosphere,
we wish primarily to understand the processes that lead to the concentrations
(loadings) observed through particle detection techniques, in addition to the
physical properties that determine how those particles interact with other at-
mospheric effects (e.g. water, light). In many cases, these properties tend to
be dominated by the most highly oxygenated fraction of the aerosol. In this
work, we have demonstrated a viable pathway by which so-called low-volatility
oxygenated organic aerosol (LV-OOA) can be formed on time scales that com-
pete with other atmospheric processes, although some question remains as to
whether faster aging processes (on the order of one or two days) can similarly
produce LV-OOA as observed in the field [12]. Although some models have
recently had greater success at predicting organic aerosol loadings, they tend
to produce inaccurate estimates of the degree of oxidation [112], such that
better predictions of broader global effects, such as the impact on climate and
on human health, are often precluded. As a result, assessments that aim to
link the effects of climate and industrial policy to quantifiable environmental
effects tend to see the largest uncertainties through aerosol-related channels [3].

More broadly, the work undertaken in this thesis aims to correct the view
of the atmospheric condensed organic phase as a chemically inert mixture, as
evidenced by the much heavier emphasis placed on both gas-phase [103, 65]
and aqueous-phase [113] processes. Where many previous studies [7, 9, 18]
have considered the reactions of organic compounds to be "finished" at the
point of particle formation, this work promotes a modified view of organic
aerosol not just as a reservoir for low-volatility species, but also as a reactive
phase in which significant chemical transformations may occur. The evidence
provided in directly comparing gas- and particle-phase aging has demonstrated
that the reactions involved are sufficiently different from each other to merit
the explicit modeling of the processes occuring within each phase and the
interactions between them.
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Appendix A

Estimation of Volatility
Properties in Van Krevelen
Space

The approximate carbon number of organic aerosol can be estimated from
its volatility (C* using structure-activity relationships (SARs) for determining
vapor pressure. This thesis uses SIMPOL [15], which allows for the direct de-
termination of C* from no and the functional group abundance, as described
below. Chapters 3-6 focus on partitioning only into the condensed organic
phase, as described by C*. Partitioning into liquid water could also be in-
cluded using this general approach, but it would require use of a SAR for
estimating the volatility over water (i.e. the Henry's law constant), which is
beyond the scope of this work.

Key inputs for SIMPOL (and most other SARs for estimating vapor pres-
sures) are the abundances of different functional groups in the molecule [15]. In
order to determine these from our values for nc, H/C, and 0/C, we make two
assumptions. The first is that functional groups in the molecule are limited to
carbonyls, hydroxyls, or some combination of the two (e.g. carboxylic acids).
Since each functional group contains only one oxygen atom, their abundances
can be related to the oxygen number of the molecule:

0
no = no = n-OH + n=0 (A.1)

where no, no, and O/C are as defined above, and n-OH and n=O are the
number of hydroxyl groups and carbonyl groups in the molecule, respectively.
While other functional groups are also likely to be present in organic aerosol,
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several groups can be approximated using this simple treatment.

The second assumption is that all sites of unsaturation (double bond equiv-

alents, DBE) in the molecule arise from carbonyl groups:

n~=nDBE=l+nc 1 2 C (A.2)

We therefore assume that our target contains no carbon-carbon double

bonds or rings. While this is reasonable for C=C bonds, which are highly

susceptible to oxidation and unlikely to survive significant atmospheric pro-

cessing, cyclic structures may be present in highly oxidized OA. The effect of

neglecting any rings present is to overestimate n=0 and underestimate n-OH,
thereby overestimating C* somewhat.

The two assumptions above (Equations A.1 and A.2), combined with sim-

ple chemical bonding considerations, allow for the straightforward derivation

of expressions relating elemental ratios, functional groups, volatility, and car-

bon number. The number of hydroxyl groups (n-OH) can be determined by

combining the first two equations directly:

n-OH no -=O=ncC- 1+nc 2- )
O 1H

= -1+nc +_ 1 (A.3)
(C 2C

The carbon number (nc) and functional group abundances (n-OH and

n= 0 ) allow for the calculation of C* (tg m-3) using SIMPOL:

log C* log (ap*)= log a + bo + bcnc + bon_ + b-OHn-OH

1 HH=log a+ bo +bcnc +bo[ 1 + n1~~

+b-OH [-I + nc C + 1 (A.4)

where p* is the vapor pressure in atm, a is the conversion from p* to C*,

and the bi terms are the different group contribution terms for quantifying the

contribution of each chemical moiety to vapor pressure: bo is the zero order

term, bc is the carbon number term, b= 0 is the carbonyl group term, and
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bOH is the hydroxyl group term, (at 293 K, equal to 1.79, -0.438, -0.935, and
-2.23, respectively [15]). The conversion factor a = MW/RT is 8.314 x 109 at
293 K, where M, is the average molecular weight (g mol- 1) of the molecules
making up the absorbing phase, R is the ideal gas constant (8.21 x 10-5 atm
m3 mol-1 K-1), and T is the temperature in K. For these calculations we use
an assumed M value of 200 g mol-1; the actual value used has little effect
on the results. Rearranging Equation A.4 to solve for carbon number, and
substituting in values of n-OH and ng from Equations A.2 and A.3, we
obtain

log C* - log a - bo - b=0 + b-OH (A5)
"bc + b--O (1 - -1 ) + b-OH (0 + }$ - 1)

Equation A.5 allows for the determination of carbon number from elemen-
tal (H/C, O/C) and volatility (C*) data. This approach is similar to that
of Donahue et al [74] for estimating carbon number from OSc (or O/C) and
C* alone; that approach, however, required specific assumptions about func-
tional group distribution (specifically that n-OH = n=0 ). With the explicit
inclusion of H/C, we gain a more accurate estimation of no.
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Appendix B

MATLAB and Igor Scripts

B.1 Evaluating Chemical Diversity of Organic
Compounds

The first set of code, "oxid-calc-n-alkane.m", uses a simple combinatorial for-

mula (with modifications for symmetrical compounds) to estimate the number

of possible compounds at each value of nc and OSC:

%Function(s) to determine the number of possible molecules at each

%oxidative state of a linear alkane

%Written by: Sean Kessler (plith@mit.edu) on 21 July 2009

%Last Modified: Never

%Inputs:
%Outputs:

numC = number of carbons in molecule

oxstate = vector of possible oxidative states ((20-H)/C)

nummol = number of molecules in each ox. state

function [ox-state, num-moll = oxidcalc_n_alkane(numC)

%Sanitize; only accepts integer values of C >= 2

n = max(2,round(numC));

XAll possible oxidative states for the molecule described

oxstate = (((-2*(n+1)):2:(2*(n+1)))/n)';
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XTnitialize number of molecules
nummol = zeros(length(ox-state),1);

%No acids:

numO = oxidcalc(n,0,1,nummol);

%Acid on one end (no longer symmetrical); one carbon less being considered

%because one carbon at the end is already spoken for

num1 = oxidcalc(n-1,1,0,num-mol);

%Diacid (symmetry back)

num2 = oxidcalc(n-2,2,1,num-mol);

XAdd all possibilities together
nummol = numO + numi + num2;

%Display results graphically

bar(oxstate,num-mol);

xlabel('Level of oxidation');ylabel('Number of molecules');

return;

%Function to do the actual calculations

%Written by: Sean Kessler (plith@mit.edu) on 21 July 2009

%Last Modified: Never

%Inputs:

%Outputs:

X/0

n = number of carbons looked at
numcarboxyl = number of carboxyl groups present (for acids)
sym = 1 if molecule may possibly be symmetrical (not

possible for monoacids)

nummol = blank vector for placing numbers of molecules
nums = number of molecules at each oxidative state given its

level of acidity

numexcl = number of molecules excluded due to having too many
carbonyls in a row

function [nums numexcl] = oxid-calc(n,num-carboxyl,sym,num-mol)

%Initialize with zero vectors
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nums = num-mol;
num-excl = nummol;

%Two loops for the number of carbonyls and hydroxyls to be added, no more

%than the total number of sites to which they can add

for num-carbonyl = O:n

for num-hydroxyl = 0:(n-num carbonyl)
%Calculate spot in vector where calculated value will go

oxnum = 3*num-carboxyl + 2*num-carbonyl + numhydroxyl + 1;

%Combination of two possibilities

tempnum = factorial(n)/(factorial(num-carbonyl)*...
factorial(num-hydroxyl)*...

factorial(n-num-carbonyl-num-hydroxyl));
%Check whether symmetrical molecules are possible

if sym == 1

if ((mod(numcarbonyl,2) == 0) && (mod(num-hydroxyl,2) == 0)...

|| ((mod(n,2) == 1) && (mod(num-carbonyl+num-hydroxyl,2) == 1

n_new = floor(n/2);
n_h = floor(num-hydroxyl/2);
n_c = floor(num-carbonyl/2);
num-sym = factorial(n-new)/(factorial(nh)*...

factorial(n-c)*factorial(nnew-nc-n-h));
tempnum = tempnum + num-sym;

end
%Now divide by 2 to account for double-counting

nums(oxnum) = nums(oxnum) + (tempnum/2);

else
%If no symmetry possible, no double counting

nums(oxnum) = nums(oxnum) + tempnum;

end
end

end

The second set of code, "oxid-calc-long.m", walks through all possible per-

mutations of compounds at a given carbon length and removes instances for

which the number of carbonyl groups in a row exceeds a preset maximum:
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function [oxstate num-moll = oxidcalc-long(C-num,carb-max)

%Sanitize; only accepts integer values of C >= 2

n = max(2,round(C-num));
%Only take carbmax >= 1

carbmax = max(1,round(carb-max));

%All possible oxidative states for the molecule described

oxstate = (-2*(n+1:2:(2*(n+1)/n)';

%Initialize number of molecules

nummol = zeros(length(ox-state),1);

XNo acids:
numO = oxidcalc(n,O,num-mol,carb-max);

%Acid on one end (no longer symmetrical); one carbon less being considered
%because one carbon at the end is already spoken for
num1 = oxidcalc(n,1,num-mol,carb-max);

%Diacid (symmetry back)

num2 = oxidcalc(n,2,num-mol,carb-max);

%Add all possibilities together

nummol = numO + num1 + num2;

C_nums = C_num*ones(size(num-mol));

disp(C-nums);

disp(ox-state);

disp(num-mol);

%Display results graphically

% bar(ox-state,num-mol);
% xlabel('Level of oxidation');ylabel('Number of molecules');

return;

function nums = oxid-calc(nC,n_acidnummolcarbmax)

newC = nC - nacid;
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molecule = zeros(newC);
finished = 0;

nums = num-mol;

if(newC == 0)

finished = 1;

if(carbmax == 1)

nums(7) = 0;

else

nums(7) = 1;

end

end

halfC = floor(newC/2);
if(n-acid >= 1)

minval = 2;
else

minval = 1;

end

while(finished == 0)
num-temp = 1;

doesbreak = 0;

%Check whether symmetry is a concern; a non-symmetrical molecule is

%worth half as much in this case, because it will be counted twice in

%the process.

if(nacid ~= 1)

for idex = 1:halfC

if(molecule(idex) ~= molecule(newC + 1 - idex))

numtemp = 0.5;
break;

end

end

end

%Searching through the molecule to determine whether to add it to the

%pile (i.e., does it have more carbonyls in a row than are permitted?)

if((n-acid == 2))
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doesbreak = 1;

for idex = 1:carbmax
if(molecule(newC + 1 - idex) 2)

doesbreak = 0;
break;

end

end

if(does break == 1)

num-temp = 0;

end

end

if((n-acid >= 1) && (doesbreak == 0))

does-break = 1;

for midex = 1:carbmax
if(molecule(m-idex) 2)

doesbreak = 0;

break;

end

end

if (doesbreak == 1)
num-temp = 0;

end

end

if(does-break == 0)

for idex = minval:(newC - carb-max)

doesbreak = 1;

for midex = 0:carbmax
if(molecule(idex + mjidex) ~= 2)

doesbreak = 0;
break;

end

end

if(does-break == 1)

numtemp = 0;
break;

end

end

end

nums((3*n-acid)+sum(sum(molecule))+1) =
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nums((3*n-acid)+sum(sum(molecule))+1) + numtemp;

XBuilding the next molecule to examine
XSearch through the vector and increase Ox state of the first C atom

Xthat is not already oxidized to carbonyl; all carbonyls encountered

%along the way are reset

for idex=1:newC

if(molecule(idex) < 2)

molecule(idex) = molecule(idex) + 1;

break;

else

if(idex == newC)

finished = 1;

else

molecule(idex) = 0;

end

end

end

end

return;
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B.2 Formation of Oxidation State Distribu-
tions from High-Resolution Mass Spectra

//Function to take as input a text wave describing the chemical formulas

of the fragment ions fitted in Pika

//Outputs waves that interpret the formulae to record the number of

C, H, and 0 in each fragment
Function FindCHO(formulas ,prefix)

wave/z/t formulas

string prefix

variable num = numpnts(formulas)

//Make 4 new vector waves. The first three describe the number of

C, H, and 0 in each fragment ion. The fourth is the

//average carbon oxidation state, given by OSc = (2*0 - H)/C.

make/n=(num) /o $(prefix+"FragmentC")

make/n=(num) /o $(prefix+"FragmentH")

make/n=(num)/o $(prefix+"Fragment_0")

make/n=(num)/o $(prefix+"FragmentDeg_0x")

wave/z fragC = $(prefix+"FragmentC")
wave/z fragH = $(prefix+"FragmentH")

wave/z frag_0 = $(prefix+"Fragment_0")

wave/z degox = $(prefix+"FragmentDeg_0x")

//Index variable, temporary storage locations for C/H/O numbers,
and string values to help us parse the input text wave

variable idex

variable Ctemp, U-temp, H-temp

string Fragment, str1, str2, str3

variable charPos, numAfterElement

for(idex = 0; idex < num; idex += 1)

C_temp = 0
Utemp = 0
H_temp = 0
Fragment = formulas[idex]
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//Step 1: Parse out isotopes of C/N/O/etc. We don't care if the

mass is different; we just want total numbers

if(strsearch(Fragment,"j",0,2) >= 0)
splitstring/E="(jlJ)(\\d{1,3})([CNOSI)" Fragment, str1, str2, str3

if(strsearch(str3,"C",0)>=0)

C-temp += 1

elseif(strsearch(str3, "0" ,0)>=0)

Otemp += 1

endif

Fragment = ReplaceString(strl+str2+str3,Fragment,"")
endif

//Step 2: How much C? (Pilfered from Elemental Analysis procedure file)

charPos = strsearch(Fragment, "C", 0)

if (charPos>=0 && !grepstring(Fragment[charPos+1], "alullrlo") )
// changed to include o for Cobalt in 1.04A

splitstring/E="(C)(\\d{1,3})" Fragment, stri, str2

if (strlen(str2) ==0) //we do not have numbers after the letter

numAfterElement = 1

else

numAfterElement = str2num(str2)

endif

C.temp += numAfterElement

endif

//Step 3: How much 0?

charPos = strsearch(Fragment, "0", 0)

if (charPos>=0)

splitstring/E="(0)(\\d{1,3})" Fragment, str1, str2

if (strlen(str2) ==0) //we do not have numbers after the letter

numAfterElement = 1

else

numAfterElement = str2num(str2)
endif

Otemp += numAfterElement

endif

//Step 4: How much H?

charPos = strsearch(Fragment, "H", 0)

if(charPos >= 0)
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splitstring/E=" (H)(\\d{1,3})" Fragment, str1, str2

if (strlen(str2) ==O) //we do not have numbers after the letter

numAfterElement = 1

else

numAfterElement = str2num(str2)

endif
H_temp += numAfterElement

endif

//Assign the temporary variables to the correct location in the wave.

fragC[idex] = C-temp

fragH[idex] = Htemp

frag_0[idex] = 0_temp

degox[idex] = ((2*0_temp) - H-temp)/C-temp

endfor

End

Function GetTodoNums(todo-names,prefix)

wave/z/t todonames

string prefix

variable numrows = numpnts(todo-names)
variable idex

make/n=(numrows)/o $(prefix+"todo nums")

wave/z todonums = $(prefix+"todo-nums")

for(idex = 0; idex < numrows; idex += 1)

todonums[idex] = numpnts($(todo-names[idex]))
endfor

End

//Function to reduce an MxR matrix to an MxS matrix, where R is the number

of runs (ignoring NaN columns)

// in the todo wave used to generate the Org matrix. S is the number of

individual samples desired, with 'r' runs
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// in each sample. "todo-nums" is the vector wave of the 'r' values that

correspond to each sample, while

// "inmat" is the MxR matrix. Make sure before you start that R is equal

to the sum of all values in todonums.

// Don't worry about deleting blank columns; this script will ignore

them anyway.

Function GetAvgRuns(todo-nums,inmat,prefix)

wave/z todo-nums, inmat

string prefix

//Get the desired number of rows and columns in the output matrix

variable numrows = dimSize(inmat,O)
variable numcols = numpnts(todo-nums)

//cidex tells us which column we're working on in the output mat.

variable cidex

//Counter to determine where in the input matrix we are

variable counter = 0
variable tcount = 0

//Make a wave to store temporary data (summed)

make/n=(numrows)/o tempamounts

//Matrix to store final values (averaged, rather than summed)

make/n=(numrows,numcols)/o $(prefix+"FragmentAmounts")

wave/z amts = $(prefix+"FragmentAmounts")

for(c-idex = 0; cidex < numcols; cidex += 1)

temp-amounts = 0

t_count = 0

//A while loop to keep searching until it finds the determined 'r'

many non-NaN columns

do

//Sanity check; if the counter exceeds the dimensions of the matrix,
we abort.

if(counter > dimSize(inmat,1))
abort "Error: End of fragment matrix reached without obtaining

all indicated values."
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endif

//Check whether we have a NaN at the
if we do, we skip.

if(numType(inmat[0] [counter]) == 2)

else

//If there's no NaN (i.e. the values

we add it to the temp wave

t_count += 1

temp-amounts += inmat[p][counter]

endif
counter += 1

while(t-count < todo-nums[c-idex])

top of the current column;

in the column are real),

amts[][cidex] = temp-amounts[p] / todonums[cjidex]
endfor

killwaves temp-amounts

End

//Function to take the MxS matrix from before and weight the values of
each fragment by the

//M-per-part value (the average mass of a particle, relative to starting
mass)

Function GetWeightedRuns(mwave,xwave,prefix)

wave/z mwave,xwave

string prefix

wave/z amtmat = $(prefix+"FragmentAmounts")
// display amt-mat[O][1 vs xwave
duplicate/o amt-mat $(prefix+"FragmentNorm")

wave/z normmat = $(prefix+"FragmentNorm")
duplicate/o amtmat $(prefix+"FragmentW")

wave/z wmat = $(prefix+"FragmentW")

variable numrows = dimSize(amt_mat,0)
variable numcols = dimSize(amtmat,1)
variable cindex, rindex

for(c-index = 0; c_index<numcols; c-index += 1)
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normmat [ [cjindex] /= amtmat [p] [01
w-mat[][c-index] *= mwave[cjindexl/(mwave[01*amt-mat[p][01)

endfor

display normmat[01][ vs xwave;

for(r-index = 1; rjindex<numrows; r index += 1)

appendtograph normmat[r-index][] vs xwave;

endfor

display w-mat[01[] vs xwave;

for(r-index = 1; rindex<numrows; rjindex += 1)

appendtograph w-mat[rjindex][] vs xwave;

endfor

End

//Function to take an M-by-S matrix and convert it to an N-by-S matrix,

where M is the number of fragment

// ions obtained from Pika fits, and N is the number of oxidation-state

"bins" described by the wave binnums.

// Make sure that all of the relevant waves have the same prefix in their

names and suffixes that correspond to

// the lines below (i.e. if the prefix is kputsza, make sure you have

waves called kputszaFragmentDegOx,

// kputszaFragmentAmounts, and so on. If you've been using the same

prefix in the above functions, this

// should not be a problem.

Function Make0xHistogram(bin-nums,prefix,prefixoutmaxC)

wave/z binnums

variable maxC

string prefix, prefix-out

//Finds the desired waves in the current folder based on the given prefix.

wave/z oxvals = $(prefix+"FragmentDegOx")
wave/z ion-amt = $(prefix+"FragmentAmounts")
wave/z ion-mass = $(prefix+"FragmentMass")

//Index numbers, for keeping track of matrix dimensions

variable num = numpnts(bin-nums)
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variable numx = max(DimSize(ion-amt,1),1)
variable numnfrags = DimSize(ion-amt,0)
variable idex,xidexf_idex

duplicate/o $(prefix+"FragmentC") Cnumstemp

wave/z C-nums = Cnums-temp
if(maxC > 0)
for(fidex = 0; fjidex < numfrags; fidex += 1)

if(C-nums[fjidex] > maxC)
C_nums[fjidex] = 0

endif
endfor

endif

wave/z Hnums = $(prefix+"FragmentH")

wave/z 0_nums = $(prefix+"Fragment_0")

//Specifies that a bin at "0.5" will include all points greater

than the average of 0.5 and the number

// before it and less than the average of 0.5 and the number

following it. In other words, defines the

// width of each bin.

make/n=(num+1)/o binbounds

binbounds[0] = -10

binbounds[num+1] = 10

for(idex = 0; idex < (num-1); idex += 1)

binbounds[idex+11 = (bin-nums[idex] + bin_nums[idex+11)/2
endfor

//Make a pair of matrices, your so-called oxidation histograms.

The first is simply mass-weighted; the latter

// is weighted by carbon number. We'll most likely be using the

latter for most cases.

make/n=(num,num-x)/o $(prefixout+"ox-hist")

wave/z oxhist = $(prefixout+"oxhist")
make/n=(num,num-x)/o $(prefixout+"C-hist")

wave/z Chist = $(prefix-out+"Chist")

//make/n=(num,numx)/o $(prefix+"H hist")

//wave/z H-hist = $(prefix+"Hhist")
//make/n=(num,numx)/o $(prefix+"0_hist")
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//wave/z 0_hist = $(prefix+"Ohist")

//Initialize
oxhist = 0; Chist = 0;

//An "occurency" histogram tells us how many fragment ions

from the given list can be found in each bin.

make/n=(num)/o $(prefixout+"occhist")

wave/z occhist = $(prefix-out+"occ-hist")

occhist = 0

//A normalizing wave; temporarily stores the mass-weighted

and C-weighted fragment distribution so we can

//later normalize each column of the output matrix so that

it adds up to unity.

make/n=(num-frags)/o masses-at-x, Cat_x

for(x-idex = 0; xidex < numnx; xidex += 1)

for(idex = 0; idex < num; idex += 1)

masses-atx = ion-amt[p][x-idex]

C_atx = ionamt[p] [xidex] * Cnums[p] / ion-mass[p]

for(f-idex = 0; fidex < num-frags; fjidex += 1)

//If a fragment fits in the bin, we add it. Otherwise,

we ignore it for now and most likely add it

// later, when we get to the proper bin.

if((ox-vals[fjidex] > binbounds[idex])

&& (ox-vals[fjidex] <= binbounds[idex+11))

oxhist [idex] [xidex] += ion-amt [fidex] [xidex]

C-hist[idex] [xidex] += ionamt[fjidex] [xidex]

* Cnums[fjidex] / ion-mass[fjidex]

if(x-idex==0)

occ-hist[idex] += 1

endif

endif

endfor

//Normalize everything.

oxhistEidex] [xidex] /= sum(massesat-x)

C-hist[idex] [xidex] /= sum(C-at-x)
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endfor

endfor

killwaves massesat_x, binbounds

End

//Function to take an M-by-S matrix and convert it to an N-by-S

matrix, where M is the number of fragment

// ions obtained from Pika fits, and N is the number of oxidation-

-state "bins" described by the wave binnums.

// Make sure that all of the relevant waves have the same prefix

in their names and suffixes that correspond to

// the lines below (i.e. if the prefix is kputsza, make sure you

have waves called kputszaFragmentDeg_0x,
// kputszaFragmentAmounts, and so on. If you've been using the
same prefix in the above functions, this

// should not be a problem.

Function Make~xHistogramInt(prefix,prefix-out,maxC)

variable maxC

string prefix, prefixout

//Finds the desired waves in the current folder based on the given prefix.

//wave/z ox vals = $(prefix+"FragmentDeg_0x")
wave/z ion-amt = $(prefix+"FragmentAmounts")

wave/z ion-mass = $(prefix+"FragmentMass")

make/n=7/o $(prefix-out+"OSc") = -3 + p
wave/z binnums = $(prefix-out+"OSc")

//Index numbers, for keeping track of matrix dimensions

variable num = numpnts(bin-nums)
variable numx = max(DimSize(ion-amt,1),1)
variable num-frags = DimSize(ion-amt,O)
variable idexx_idex,fidex

//duplicate/o $(prefix+"FragmentC") Cnumstemp

//wave/z C-nums = Cnums-temp
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//if(maxC > 0)
// for(fidex = 0; fjidex < num-frags; fidex += 1)

// if(C-nums[fjidex] > maxC)

// C-nums[fjidex] = 0

// endif

// endfor

//endif

wave/z Cnums = $(prefix+"FragmentC")
wave/z Hnums = $(prefix+"FragmentH")
wave/z 0_nums = $(prefix+"Fragment_0")

//Make a pair of matrices, your so-called oxidation histograms.

The first is simply mass-weighted; the latter

// is weighted by carbon number. We'll most likely be using the

latter for most cases.

make/n=(numnum-x)/o $(prefix-out+"ox-hist")

wave/z oxhist = $(prefixout+"oxhist")
make/n=(num,num-x)/o $(prefix-out+"C-hist")

wave/z Chist = $(prefixout+"C-hist")
//make/n=(num,num-x)/o $(prefix+"H-hist")

//wave/z Hhist = $(prefix+"H hist")

//make/n=(num,num-x)/o $(prefix+"O-hist")

//wave/z 0_hist = $(prefix+"0_hist")

//Initialize

oxhist = 0; Chist = 0;

variable nO, nC, nH, osctemp, ntemp, dbe, pos-dbe, fco2, idexco2

//A normalizing wave; temporarily stores the mass-weighted

and C-weighted fragment distribution so we can

//later normalize each column of the output matrix so that

it adds up to unity.

make/n=(numfrags)/o massesat_x, Cat_x

make/n=7/o normwave

for(f-idex = 0; fidex < num-frags; fjidex += 1)

if((ion-mass[f-idex] > 43.989) && (ion-mass[f-idex] < 43.99))
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idexco2 = fidex

break

endif

endfor

for(xidex = 0; xjidex < num_x; xidex += 1)

massesatx = ionamt[p][xjidex]

C_atx = ion-amt[p][xjidex] * Cnums[p] / ion-mass[p]

f_co2 = ionamt[idex-co2l[x-idex] / sum(massesatx)

C_hist[61[xjidex] = 5*fco2*sum(C-at-x)

for(fidex = 0; fjidex < num-frags; fidex += 1)

nO = 0_nums[f-idexl/0.75

nC = C-nums[f-idex]

nH = H-nums[f-idexl/0.91

if((nO*0.75) > nC)

//C-hist[61[xjidex] += ionamt[fjidexl[xjidex]

* (nO/2) / ionmass[f-idex]

//nC -= nO/2

//nH -= nO/2

//nO = 0
osctemp = ((2*nO) - nH)/nC

nC *= max(min((1 - (C-at-x[idex-co2l/C-at-x[fjidex])),1),0)

if(osctemp<-3)

C_hist[01][xidex] += ionamt[f-idexl[xjidex] * nC

/ ion-mass[fjidex]

elseif(osctemp < -2)

ntemp = osctemp + 3
C_hist [1] [xidex] += ionamt[fjidex] [x-idex] * nC

* ntemp / ion-mass[fjidex]

C_hist[01[xjidex] += ionamt[f-idexl[xjidex] * nC

* (1 - ntemp) / ion-mass[fjidex]

elseif(osctemp < -1)
ntemp = osctemp + 2
C_hist[21[x-idex] += ionamt[fjidexl[xjidex] * nC

* ntemp / ion-mass[fjidex]

C_hist[11[xjidex] += ionamt[f-idex][x-idex] * nC

* (1 - ntemp) / ion-mass[fjidex]
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elseif(osctemp < 0)
ntemp = osctemp + 1
C-hist[31[x-idex] += ion amt[f-idexl[x-idex] * nC

* ntemp / ion-mass[fjidex]

C-hist[21[xjidex] += ion-amt[fjidexl[x-idex] * nC

* (1 - ntemp) / ion-mass[fjidex]

elseif(osctemp < 1)
ntemp = osctemp
C-hist[41[x-idex] += ion-amt[fjidexl[xjidex] * nC

* ntemp / ion-mass[fjidex]

C-hist[31[x-idex] += ion-amt[fjidex][x-idex] * nC

* (1 - ntemp) / ion-mass[fjidex]

elseif(osctemp < 2)

ntemp = osctemp - 1

C-hist[5]Exidex] += ion-amt[fjidexl[x-idex] * nC

* ntemp / ion-mass[fjidex]

C-hist[4][x-idex] += ion-amt[fjidex][xjidex] * nC

* (1 - ntemp) / ion-mass[fjidex]

elseif(osctemp < 3)

ntemp = osctemp -2
C-hist[6][x-idex] += ion-amt[fjidex][x-idex] * nC

* ntemp / ion-mass[fjidex]

C-hist[5][xjidex] += ion-amt[fidexl[xidex] * nC

* (1 - ntemp) / ion-mass[fjidex]

else

C-hist[6][xidex] += ion-amt[fjidex][xjidex] * nC

/ ion-mass[fidex]

endif

elseif(ionmass[fjidex] > 30)

//nO/=0.75

//nH/=0.91

dbe = min(nO,max(0,nC + 1 - ((nH+2)/2)))

if(nO > 0)

pos-dbe = dbe/nO

if(pos-dbe < 0.5)

C-hist[3][xjidex] += ion-amt[fjidexl[xjidex] * 2

* (0.5 - pos-dbe) * nO / ion_mass[f_idex]

C&hist[41[xjidex] += ion-amt[fjidex][xjidex] * 2

* (pos-dbe) * nO / ion-mass[fjidex]
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else
C_hist[4][xjidex] += ionamt[fjidex][x-idex] * 2

* (1 - pos-dbe) * nO / ion-mass[fjidex]

C_hist[5][xjidex] += ionamt[fjidex][xjidex] * 2
* (posdbe - 0.5) * nO / ion-mass[f-idex]

endif

endif
nC -= nO

nH -= 2 * (nO - dbe)/0.91
nH = max(nH,0)

osctemp = -nH/nC

if(osctemp<-3)

C_hist[01[x-idex] += ionamt[f-idexl[xjidex] * nC

/ ion-mass[fjidex]

elseif(osctemp < -2)
ntemp = osctemp + 3
C_hist[11[xidex] += ionamt[fjidex][xjidex] * nC * ntemp

/ ion-mass[fjidex]

C_hist [01 [xidex] += ionamt[fjidex] [xidex] * nC * (1 - ntemp)
/ ion-mass[fjidex]

elseif(osctemp < -1)
if((xidex == 0) && nO > 0)
//print(fidex)

//print(ion-amt[fjidexl[xjidex] * nC * (1-ntemp)/ ionmass[f-idex])

endif

ntemp = osctemp + 2
C_hist [21 [xidex] +=

/ ionmass[fjidex]

C_hist[11[xjidex] +=

/ ion.mass[fjidex]

elseif(osctemp < 0)

ntemp = osctemp + 1
C_hist[3][xjidex] +=

/ ion-mass[fidex]

C_hist[21[xjidex] +=

/ ion-mass[fidex]

else

C_hist[31[xjidex] +=

endif

ionamt[fjidex][xjidex] * nC * ntemp

ionamt[fjidex] [xidex] * nC * (1 - ntemp)

ionamt[f-idex][xjidex] * nC * ntemp

ionamt[fjidex] [xidex] * nC * (1 - ntemp)

ion-amt[f idex] [xidex] * nC / ionmass [fidex]
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endif

endf or

normwave = Chist [p] Exidex]

//Normalize everything.

//ox-hist[idex] Exidex] /= sum(masses_atx)

C-hist [] [xjidex] /= sum(normwave)

endfor

killwaves massesat_x, C-at-x//, Cnums-temp

End

B.3 The Van Krevelen "Ellipse" for Elemental
Ratios

The function "vk-ci.m" takes a range of O/C and H/C values and reports the

mean value along with an ellipse which represents the 95% confidence region

in Van Krevelen space. This ellipse is calculated from the covariance matrix

of the elemental ratios.

function [oc-ellipse hc-ellipsel = vk-ci(oc-in,hc-in)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
% Uncomment these two lines to use the "corrected" EA values %

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
% ocin = 1.3*oc-in;

% hcin = 1.1*hc-in;

%Averages

ocav = mean(oc-in);

hcav = mean(hc-in);

%Used to get the variance

diff_mat = [(ocin - oc-av) , (hc-in - hc-av)];
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%Define the covariance matrix and scale it by 1.96 to establish the "95%

%confidence interval"

covmat = diffmat'*diffmat/(length(oc-in)-1);
cov_95_mat = (1.96^2)*cov-mat;

%Because covariance is designed to be symmetric, it Schur decomposition is

%equivalent to its eigenvalue decomposition (and the eigenvectors are at

%right angles to each other, of course!)

[Q-vk L-vk] = schur(cov_95_mat);

XThe idea is that when we use the "rotated" variables as a coordinate
%system, the extremes of the confidence interval lie along the axes. It's a

%simple matter from there to rotate them into VK space with Q-vk
%The equation of the ellipse in rotated coordinates is simply

X1 = (q1^2)/L1 + (q2^2)/L2
%(See how easy it is!)

%We get the extremes of q1 by setting q2=0, then create a vector of points

%in between

%We get the corresponding values of q2 by solving the above equation

q1_half = linspace(-sqrt(L-vk(1,1)),sqrt(Lvk(1,1)),500);
q2_half = sqrt((1 - (qlhalf.^2/(L-vk(1,1))))*L-vk(2,2));

%We double up the q1_half and q2_half vectors to account for the +/- sign

%that comes from solving quadratic equations

q-all = [[qlhalf,-qlhalf];[q2_half,-q2_half]];

%Rotating it back. We add "real(" just in case solving the equation near

%an extreme of q1 led to a rounding error and a minorly complex result

eaall = real(Q-vk*q-all)';

%Pick out the newly rotated values (and add them to the average value,

%since they're just "differences" when computed from the covariance)

ocellipse = ea-all(:,1) + oc-av;
hcellipse = ea-all(:,2) + hc.av;

%Plot it!

figure(1)

clf reset

plot(oc-ellipse,hc-ellipse,'r-',ocin,hcin,'bx');

axis([O 1.2 0 2.51)

xlabel('0:C');ylabel('H:C');title('LV-OOA from many sites');
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return

B.4 Calculation of Carbon Contours in Van
Krevelen Space

The function "vanlkrev-plot3.m" takes a given value of no and C* as inputs
and in return outputs the corresponding values of [O/C, H/C]. The method
can then be run for several different values of nc (or of C*) in order to create
multiple contours, as in Figure 4.4.

function [oc-out hcout] = van-krev-plot3(Cstar,nc)

ocout = linspace(0,1.5,201);

hcout = zeros(size(oc-out));

% nCH = 0;

bO = 1.79;
b1 = -0.438;
% b5 = -0.105;

b7 = -2.23;
b9 = -0.935;

R = 0.0821e-3; %m^3*atm/mol*K
T = 293.15; XK
% pstar = Cstar*R*T/M; %atm

opts = optimset('Display','off');

for ocn = 1:length(oc-out)

o_c = ocout(ocn);
hcval = fsolve(@(h-c)...

(loglO(Cstar*R*T/(hc+12+(16*oc))) -6-loglO(nc)-bO+b7-b9)/

(bl+(b7*((h-c/2)+o-c-1))+(b9*(1-(h-c/2)))) - nc,5,opts);
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X C = (loglO(pstar)-bO+b7-b9)/...

X (bl+(b7*((h-c/2)+o-c-1))+(b9*(1-(h-c/2))));

hc-out(ocn) = hcval;
end

return
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