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Abstract

Regulated cell-surface proteolysis underpins key processes of cellular growth and
motility in both physiological and pathological contexts. However, comprehending
how multiple proteolytic events cohesively integrate to yield context-dependent cel-
lular behavior remains a challenge in the fields of both protease biology and systems
biology in general. This work begins to address that challenge by quantitatively
investigating the integrated effect of multiple diverse proteolytic events and their
interaction with cell-signaling pathways from a computational network perspective,
particularly focusing on A Disintegrin and Metalloproteinases (ADAMs). ADAMs
have been studied for decades as the principal cell-surface "sheddases" responsible
for cleaving growth factor ligands and receptor tyrosine kinase ectodomains from the
cell surface. However, activity regulation, feedback, and catalytic promiscuity impede
our understanding of context-dependent sheddase function, and clinical trials target-
ing metalloproteinases in cancer have failed in part due to a poor understanding of
the complex functions they mediate.

This thesis outlines a conceptual framework for studying protease network biol-

ogy (Chapter 1), describes novel experimental methods designed for such a framework
(Chapters 2-3), and applies both to understand protease regulation in invasive dis-
ease (Chapter 4). Using combined measurement and computational modeling, we
present a paradigm for monitoring and analyzing complex networks of protease ac-
tivities that interface with signaling pathways to influence cellular migration in the
invasive diseases of cancer and endometriosis. We find sheddase activity integrates
with signaling pathways to direct cell migration, especially through concomitant pro-
teolysis of both ligands and receptors. We find that indirect reduction of sheddase
activity through kinase inhibition can lead to an accumulation of growth-factor re-
ceptors on the cell surface, consequently producing undesired compensatory signaling
feedback. Thus, here we present a novel mechanism of rapid, protease-driven resis-
tance to kinase inhibitors, and we subsequently demonstrate strategies for overcoming
resistance through drug combinations. We develop a novel microfluidic platform to
study protease activities in clinical samples, and apply the technology to study the
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peritoneal fluid from endometriosis patients. Results indicate joint dysregulation of
sheddase activity with disease. Overall, this work provides a model for measuring,
understanding, and targeting networks of proteases and the kinases with which they
interact.

Thesis Supervisor: Douglas A. Lauffenburger
Title: Professor

Thesis Supervisor: Linda G. Griffith
Title: Professor
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Chapter 1

Systems-Level Analysis for

Understanding Protease Network

Operation

Abstract

Extracellular proteases play critical roles in extracellular matrix remodeling and cell

migration, both in normal physiology and in diseases such as cancer. However, com-

plex networks of protease crosstalk, substrate regulation, and feedback interactions

have limited our ability to understand and therapeutically target these enzymes. Re-

cent developments in experimental methods allow quantitative characterization of

multiple pathways within the protease network. However, mathematical modeling

has yet to be appreciably utilized for interpreting relationships between proteases,

regulatory processes that govern their activity, and affected phenotypes such as cell

migration. In this chapter we offer the cue-signal-response paradigm as an especially

promising approach to parsing complex biochemical interactions in the protease net-

work, and suggest experimental and computational methods appropriate for such

data-driven investigations.
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1.1 Introduction

Proteolytic remodeling of extracellular matrix (ECM) plays a central role in phys-

iological processes such as embryological development and wound healing, and is

implicated in diseases including arthritis, asthma, and cancer (Overall and Blobel,

2007). Matrix metalloproteinases (MMPs) have been perhaps the most well studied

ECM-degrading enzyme family, particularly in the context of mediating cellular mi-

gration and cancer metastasis (Kessenbrock et al., 2010). However, research over the

last decade combined with discouraging clinical trial results for MMP inhibitors have

shown that metalloproteinases (MPs), and indeed many extracellular protease fami-

lies, exhibit multifaceted and context-dependent behavior (Kessenbrock et al., 2010;

Mason and Joyce, 2011). Many MMPs degrade cell-signaling molecules, protease

inhibitors, and proteases themselves, in addition their canonical ECM substrates.

The complex set of biochemical interactions among proteases, their substrates, and

their regulating pathways constitutes a "protease network" not easily interpreted on

a component-by-component basis.

This thesis chapter offers the cue-signal-response (CSR) paradigm as a multi-

variate, quantitative, systems-level approach to understanding the protease network,

especially as it relates to cell migration. Major progress has been made in develop-

ing various global profiling, or "omic", methods to catalog the numerous biochemical

interactions among proteases and their interacting partners (Impens et al., 2010).

Nonetheless, opportunity remains to use this catalog of biochemical interactions to

build quantitative, data-driven, and predictive models of protease network behavior

in development and disease. The feedback, cross-talk, and cooperative non-linear

behaviors exhibited by protease networks compel the application of systems-level

conceptual frameworks and computational methodologies that have been successful

in other similarly challenging applications, including intracellular phosphosignaling

networks (Prill et al., 2011; Hyduke and Palsson, 2010; Morris et al. 2010), metabolic

circuits (Oberhardt et al., 2009) and the integrated modeling of an entire organism

(Karr et al., 2012) or disease process (Akavia et al., 2010).
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In this essay, we begin by briefly defining the landscape of key extracellular pro-

teases related to cell migration, and provide recent examples of how protease net-

work complexity has produced abstruse results. We describe the CSR framework for

integrating computational methods and experimental tools to understand protease

network function, and provide examples of its successful application. Finally, we de-

scribe how CSR modeling could aid in the development of therapeutic strategies that

target the protease network.

1.2 Protease Network Components and Interac-

tions

Recent advances in genomic and proteomic methods, combined with a growing ap-

preciation for the multiple roles of proteases in vivo, have illuminated the extent of

complexity in extracellular protease biology in recent years (Rodrguez et al., 2010)

Fig. 1-1. Much of this information has been cataloged in easily accessible formats,

such as with the MEROPs database (Rawlings et al., 2012). Of the over 250 ex-

tracellular and cell-surface proteases in the human genome, three enzyme families

have received the bulk of attention relating to ECM degradation and cellular migra-

tion: the 23 members of the MMPs; the 8 members of the related A Disintegrin and

Metalloproteinases (ADAMs) that are somatically expressed and catalytically active

(Primakoff and Myles, 2000); and the roughly 15 cathepsins, which comprise serine,

aspartyl, and cysteine proteases known for lysosomal proteolysis at low pH (Overall

and Blobel, 2007). Members within all three groups directly proteolyze ECM compo-

nents. Other relevant proteases include tissue- and urokinase- plasminogen activators

(tPA and uPA, respectively), which degrade ECM components chiefly through the

activity of plasmin. The tolloid family of proteases, including bone-morphogenic-

protein-1 (BMP-1), also degrade ECM components and are especially involved in

cartilage and bone development. Closely related to ADAMs, ADAMs with throm-

bospondin motifs (ADAM-TS) proteases are a large family of enzymes that most
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A

C

B Cathepsin D

Cathepsin G .v Cathepsin B +- tPA
Cahpi MMP3% IuPA ++ Plasmin

MMP9 +-MCP4

Figure 1-1: Overiew of the protease network. A) Proteases of the human genome,
defined by active site chemistry, and their inhibitors. B) Proteases are enmeshed in a
complex and recursive network of biochemical interactions. Arrows indicate a known
proteolytic cleavage reaction, and colors correspond to active-site chemistry depicted
in A. Interaction network is not exhaustive, but nevertheless conveys feedback rela-
tionship among closely interacting enzymes. C) More thoroughly studied proteases
such as ADAM-10 and -17 have revealed a dense network of both upstream sig-
naling regulation and promiscuous interaction with substrates and other proteases.
In Chapter 4 of this thesis, all cell-surface receptors depicted here were stimulated
with exogenous ligand and found to modulate supernatant accumulation of various
substrates in a MP-dependent manner (shown by arrows; bars on arrows indicate
supernatant levels change following receptor stimulation, corresponding by color).
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prominently degrade glycoproteins and proteoglycans such as aggrecan. Characteri-

zation of newly uncovered protease families continues to be an active area of research.

Type-II transmembrane serine proteases (TTSPs), including matriptase and hepsin,

cleave diverse substrates including uPA (Bugge et al., 2009). Meprin-beta is another

recently characterized MP capable of cleaving and activating ADAM-10 (Jefferson et

al., 2013). Although not an exhaustive list, the roughly 50 enzymes discussed above

constitute a majority of actively investigated proteases involved in cellular migration.

These key proteases participate in a dense network of biochemical interactions.

Numerous mechanisms of feedback, cross-talk, and cooperativity that characterize the

protease network have been extensively described in several recent reviews (Kessen-

brock et al., 2010; Mason and Joyce, 2011; Duffy et al., 2011). MMP, cathepsin, and

ADAM(TS) family enzymes are generally capable of cleaving multiple distinct sub-

strates, often with non-exclusive substrate preferences. Proteomic studies have docu-

mented these substrates, which include structural ECM components such as collagen;

growth factor and cytokine ligands and receptors; adhesion ligands and receptors;

endogenous protease inhibitors; and extracellular proteases themselves (Rodrguez et

al., 2010; Impens et al., 2010). Proteolysis generally modifies substrate bioactiv-

ity in complex manners, for example by modifying ECM binding sites on degraded

chemokines (Starr et al., 2012). Ultimately the complex web of protease-substrate

interactions has impeded our ability to interpret the overall impact of individual

proteases.

Protease activity regulation is also complex. Hundreds of endogenous inhibitors

act upon multiple proteases (Rawlings, 2010). For instance, tissue inhibitors of MPs

(TIMPs) block MMP and ADAM activity; serpin serine protease inhibitors block

plasminogen activators; cystatins inhibit cysteine proteases including some cathep-

sins; and Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) inhibits

MMP-9 (Clark et al., 2007). Additional protease regulation occurs through prote-

olytic processing and trafficking, for example by the rhomboid family member iRhom2

(Adrain et al., 2012; Mcllwain et al., 2012), along with ectodomain shedding of the

mature protease from the cell surface. ADAM-10 activity, for instance, can be regu-
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lated by ADAM-9 shedding it from the cell surface (Moss et al., 2011), and ADAM-9

can in turn be shed by MT1-MMP (Chan et al., 2012). Cell surface protease activity

responds to intracellular signaling pathways, although the exact mechanisms remain

uncertain. For example, regulated dimerization (Xu et al., 2012) and phosphorylation

of the C-terminus (Xu and Derynck, 2010) have been described as a possible mech-

anism of controlling ADAM-17, yet other reports demonstrate induced ADAM-17

activity in a manner independent of the C-terminus (Hall and Blobel, 2012). C-

terminal phosphorylation also regulates MT1-MMP through control of its endosomal

trafficking (Sugiyama et al., 2010). In addition to regulation of the protease itself,

several reports have documented substrate-specific pathways of proteolytic regula-

tion. For instance, specific growth-factor ligand shedding events can be regulated by

distinct PKC isoforms (Dang et al., 2011; Kveiborg et al., 2011). ECM components

and mechanical forces regulate cell-surface MMPs and ADAMs through integrin en-

gagement, especially relevant to arthritis (Gooz et al., 2012; Leong et al., 2011; Mori

et al., 2013). Overall, a clear theme of feedback control has emerged: extracellular

proteases cleave the very substrates that govern their behavior, including signaling

molecules, ECM components, proteases, and endogenous inhibitors.

1.3 Manifestation of Protease Network Complex-

ity

Complexity in the protease web has frustrated efforts to understand and clinically

target extracellular proteases. As evidence, failed clinical trials of first-generation

MP inhibitors actually worsened outcomes in some cases. These failures were largely

attributed to poor drug specificity, and recent research has shown that some pro-

teases, for example MMP-8, represent anti-targets in several contexts (Decock et al.,

2011). Subsequent drugs have been optimized for selectivity. However, even perfectly

selective inhibitors will face problems owing to underlying cross-talk and feedback.

For instance, genetic deletion of MMP-2 leads to global in vivo changes in protease
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expression and activity, clouding the biological implications of MMP-2 as a drug tar-

get (auf dem Keller et al., 2013). As another example, ADAM-10 continues to be

pursued as a target in breast cancer, chiefly for its role in shedding mitogenic epi-

dermal growth factor (EGF) ligands from the cell surface. Although results show

that ADAM-10 inhibition blocks growth factor shedding and tumor growth in several

contexts (Fridman et al., 2007; Witters et al., 2008), other reports show inhibition

actually enhances metastasis through reduced shedding of the ADAM-10 substrate

and proto-oncogene c-MET (Schelter et al., 2011).

The role of proteases during migration through ECM has become an area of focus

coinciding with a shift of experiments from 2D systems to more relevant 3D models

(Cukierman et al., 2001; Fraley et al., 2010; Meyer et al., 2012). Unfortunately, tar-

geting a single migration modality can be met with compensatory mechanisms (Petrie

et al., 2012; Wolf et al., 2003; Guiet et al., 2011). For instance, in some contexts cells

can switch from a mesenchymal-like to amoeboid mode of migration in response to

broad-spectrum protease inhibition (Wolf et al., 2003; Sabeh et al., 2009). Overlap-

ping substrates among proteases suggests that specific protease inhibitors may lead to

compensatory activation of alternative enzymes. Redundancies have been observed

in studies involving knockout mice, and as a consequence, significant investment has

been made into the development of mouse models lacking combinations of two or even

three proteases (Gill et al., 2010). Given the large number of possible protease com-

binations at hand, such efforts - and their therapeutic counterparts - would certainly

benefit from a quantitative, systems-level comprehension of overall protease network

behavior to inform experimentation and therapeutic design.

1.4 The CSR Approach

To organize multivariate, quantitative studies of protease networks, here we offer

the CSR abstraction as a flexible and simple paradigm (Hughes-Alford and Lauffen-

burger, 2012; Miller-Jensen et al., 2007; Lee et al., 2012; Kemp et al., 2007) (Fig.

1-2). The approach simplifies complex networks of molecular interactions into a hi-
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Figure 1-2: A cue-signal-response paradigm provides a conceptual frame-
work for systems-level modeling. A cue-signal-response paradigm provides a
conceptual framework for systems-level modeling. "Cues" encompass exogenously
manipulated variables, and most often constitute growth factor or cytokine treat-
ment, or manipulation of the ECM environment. Measured "signals" often include
substrate shedding, direct protease activity, post translational modifications, or cy-
toskeletal features. "Responses" are those measurements of interest for prediction,
typically including cell phenotypes such as migration, differentiation, apoptosis, or
proliferation, but can also be protease activities or other measurable quantities.
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erarchy where molecular or cellular "cues" affect a cascade of biochemical activities,

or "signals", which then affect downstream "responses" at the molecular, cellular,

or even physiological level, depending on the application. "Cues" usually represent

experimental treatments chosen to address a particular biological question, and may

encompass microenvironmental features such as ECM composition, growth factors

and cytokines, genetic manipulations, or pharmacological treatments. "Signals," by

definition, involve downstream molecular features involved in processing upstream

cues. For example, in studies that examine phosphosignaling networks, the "signals"

generally comprise concentrations of cell-signaling proteins themselves, such as phos-

phorylated kinases and transcription factors (Lee et al., 2012). "Signals" are selected

to obtain a broad picture of multiple regulatory pathways, especially those which

are therapeutically relevant (Duncan et al., 2012; Lau et al., 2011). In protease ap-

plications, "signals" may encompass features of protease activity, such as substrate

cleavage rates or the active protease concentrations. Finally, "responses" relate sig-

nals and cues to a downstream phenotype, and typically include cell processes such

as apoptosis, proliferation, and cell migration (Lee et al., 2012; Lau et al., 2011; Kim

et al., 2011; Platt et al., 2009). Broadly speaking, definitions of cues, signals, and

responses are application-specific: cues in one application may be better defined as

signals or responses in the next, and vice versa (Park et al., 2012; Kleiman et al., 2010;

Morris et al., 2011; Huang and Fraenkel, 2009). Although other integrative modeling

techniques have been reviewed elsewhere, particularly in the context of cancer (Pe'er

and Hacohen, 2011), the CSR framework is particularly valuable for understand-

ing and targeting dynamic networks of biochemical activities. The next sections of

this chapter describe three components required for successful CSR implementation:

manipulation of the network into distinct states through a sufficiently diverse set

of cues, measurement of appropriate signals and responses downstream of the cues,

and computationally modeling of the assembled data for biological interpretation and

prediction.
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Measure: Direct measurement of specific protease activities, rates of cleavage for

specific substrates, or ideally both in parallel is critical to understanding protease net-

work function. Due to complex regulation, indirect markers of activity such as protein

concentration are often uninformative, especially in the context of rapid dynamics.

Ubiquitous enzymatic cross-talk, cooperativity, and feedback within protease net-

works generally require the simultaneous measurement of multiple activities to fully

understand systemic patterns of network regulation. Finally, the high degree of inter-

connected biochemical interactions compels a diverse and numerous set of "cues" by

which to observe the network. One strategy for elucidating a CSR landscape involves

combinatorially stimulating distinct pathways while simultaneously blocking effector

molecules within those pathways, consequently revealing causal relationships between

stimuli, effector molecules, and downstream phenotypic outcomes (Saez-Rodriguez et

al., 2011).

These considerations imply that the most useful technologies for studying the

protease network measure activity directly and in a high-throughput and multivari-

ate manner. Unfortunately, few techniques achieve all three abilities (Fig. 1-3),

and broadly fall into one of three categories: singleplexed and having the ability to

measure only one specific molecular feature, multiplexed and having the ability to

simultaneously measure multiple molecular features, and global "omic" approaches

that generally identify the most significant molecular features among hundreds or

thousands in a complex biological sample.

Global proteomic technologies have been developed for assessing protease activ-

ities, and global proteolytic profiling is rapidly becoming sufficiently quantitative

for detailed computational modeling. For analysis of substrate cleavage activity in

samples, peptide libraries can be used in combination with mass spectrometry to

globally gauge the sequence preference of a sample's proteolytic activity (Schilling et

al., 2011; Gosalia and Diamond, 2010). TAILS N-termini labeling can identify cleaved

substrates both in cells and in vivo, providing a very broad picture of endogenous

protease substrates (Kleifeld et al., 2011). To directly measure active proteases rather

than their substrates, activity-based probes have additionally been used as affinity
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reagents for mass-spectrometry proteomic applications (Deu et al., 2012). However,

such discovery-based mass spectrometry methods are time-, cost-, and technically

limited in multiplexing to usually fewer than ten samples, and suffer from significant

run-to-run variability.

In contrast to global discovery-based methods, several targeted technologies of-

fer a much higher sample throughput combined with the potential for multiplexing.

Traditional antibody-based methods can assess protease expression levels in a high-

throughput manner using spotted or solution-phase array technology. Solution-phase

antibody arrays comprising dye-labeled polystyrene (Luminex Corp.) or optically-

patterned hydrogel (Appleyard et al., 2011) microparticles are especially attractive

for their high-sensitivity and low sample-requirement. Furthermore, antibodies are

increasingly becoming available that specifically target active proteases, for example

as done recently with ADAM-17 (Tape et al., 2011). Products of proteolysis can also

be measured in a targeted manner, for example using antibodies for targeting neoepi-

topes exposed only upon cleavage by a specific protease (Takahashi et al., 2012).

Additionally, several technologies have been developed to directly assess the active

kinetics of specific proteases. For instance, synthetic FRET-based peptides have been

developed for high-throughput enzyme kinetics assays (Moss et al., 2009). However,

poor specificity of the fluorogenic substrates has traditionally precluded their ap-

plication to complex biological samples. To overcome this issue, the substrates have

been used in conjunction with a preliminary immunopurification (EMD Calbiochem),

although this method currently is not amenable to multiplexing. Alternatively, Chap-

ter 2 of this thesis describes protease activity matrix analysis (PrAMA) for live-cell,

non-invasive monitoring of multiple specific protease activities (Miller et al., 2011).

PrAMA uses panels of FRET-based substrates, potentially analyzed in the presence

or absence of specific protease inhibitors, to generate a signature of protease activi-

ties for a given biological sample. This signature of substrate cleavage rates is then

compared with known enzyme-specificities for each of the FRET-substrates, allowing

specific protease activities to be computationally deconvolved from the panel of non-

specific FRET-substrate readings (Miller et al., 2011). Recent advances have also
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been made in multiplexed zymographic methods, although these approaches have

the disadvantage of dissociating non-covalent complexes, for example with protease

inhibitors (Chen and Platt, 2011).

Cell-to-cell heterogeneity has been an increasingly appreciated feature to under-

standing many biological processes, perhaps most significantly in the areas of stem

cell biology and -cancer metastasis. Currently, the vast majority of protease-focused

studies examine cells on a population level, averaging over significant heterogeneity

among even genetically identical populations. Extracellular proteases play a central

role in driving cellular heterogeneity, particularly through their modulation of in-

tercellular signaling processes and local ECM remodeling. In fact, many stem-cell

markers are protease substrates, including CD44. Microwells are one useful technol-

ogy for isolated analysis of secreted cellular factors, including proteases (Yalcin et al.,

2012). Biomaterials containing fluorogenic protease sensors reveal activity at sub-

cellular resolution, for instance with in situ zymography (Hadler-Olsen et al., 2010).

Furthermore, many of the antibody-based methods described previously are amenable

to single-cell flow-cytometric and highly multiplexed mass-cytometric (Bodenmiller

et al., 2012) analysis. Although the tools to examine the proteolytic network on a

single-cell or subcellular scale typically lack multiplexing capability, this continues to

be an active area of investigation.

Measurement of phenotypic behavior such as cell migration also requires quantita-

tive and relatively high-throughput methods. The CSR modeling framework supports

simultaneous inclusion of multiple phenotypes, and for cell migration these might

comprise metrics of cell speed, directional persistence, mode of migration (amoeboid

/ mesenchymal / collective), or leading edge morphologies such as lamellipodial pro-

trusion dynamics (Kim et al., 2008; Meyer et al., 2012; Hidalgo-Carcedo et al., 2011).

Numerous chemotaxis assays have been developed, and are extensively discussed else-

where (Hughes-Alford et al., 2012). 2D cell cultures allow cell migration and cy-

toskeleton dynamics to be observed with high-throughput and resolution. Wound

healing and plug-closure assays (Gough et al., 2011) enable high-throughput end-

point measurement, while single-cell tracking captures multiple morphological and
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migration-related features of heterogeneous cell behavior. Both can be interpreted

with automated image-processing packages (Stoter et al., 2012; Sacan et al., 2008;

Haass-Koffler et al., 2012; Gobaa et al., 2011) to generate high-content quantitative

data. 2D measurements fail to capture many roles of proteolysis, and cell migration

depends on ECM composition, mechanics, and geometry (Meyer et al., 2012; Friedl

et al., 2012). High-throughput endpoint migration assays quantify migration into

a gel from a fixed initial position (such as the bottom of a microtiter plate), and

Chapter 4 of this thesis describes an automated software package for performing as-

says in microtiter format. Single-cell tracking (Kim et al., 2008), organotypic assays

that use mixed cell cultures (Gaggioli et al., 2007) and/or decellularized clinical tis-

sue samples as ECM (Ridky et al., 2010), and live-animal models such as the chick

chorioallantoic membrane (CAM) model (Ota et al., 2009) provide lower-throughput

yet more detailed and physiologically representative descriptions. In rodent models,

fine-needle invasion assays and intravital imaging (Entenberg et al., 2013) both have

proven useful. Regardless of methodology, the ECM components, molecular orga-

nization, and other physiochemical properties should be carefully considered in the

context of proteases directly acting upon ECM and adhesion molecules.

Manipulate: Targeted perturbation is essential for CSR modeling (or at the very

least, validating results), In addition to cross-talk and feedback issues, proteases of-

ten exhibit functions independent of catalytic activity (Mori et al., 2013). Altogether,

these effects may lead to inconsistencies between acute versus chronic protease inhi-

bition (Le Gall et al., 2010), or genetic versus pharmacological inhibition (Le Gall et

al., 2009). Explicit modeling of these differences within the CSR framework could

be an efficient strategy for parsing contradictory results. Within the context of net-

work inference, ideal perturbations are those that stimulate the protease network

to identifiably diverse and distinct states. In addition to using combination of ge-

netic/pharmacologic manipulations, this outcome can be realized through environ-

mental stimulations such as cytokine treatment in applications of immunology, for

instance. Genetic cDNA and RNAi-based libraries continue to grow more efficient
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Figure 1-3: Experimental methods for measuring the protease network.
Network-level investigations into mechanisms of feedback control, combinatorial or

cooperative interactions, and dynamic non-linear biochemistry generally require both

a high degree of sampling (across multiple time-points, experimental conditions, or

perturbations) and a high degree of measurement coverage (across multiple regula-

tory pathways, molecular features, and phenotypic behaviors). Direct measurement
of protease activity and substrate degradation is preferable to assessment of protease
expression or secretion. (a) Protease immunocapture followed by FRET-substrate
addition can be performed in a relatively high-throughput microtiter format, yet al-
lows for measurement of only one protease activity and removes the enzyme from its
in-cell regulatory environment. (b) Multiplexed zymography has been developed as
a useful tool for studying cathepsins, in particular, but faces similar issues relating
to removing enzymes from their in-cell regulatory partners. (c) This thesis describes

PrAMA (see Chapter 2) as a novel method to measure multiple specific MPs in a
relatively high-throughput, multiplexed manner in the live-cell context.
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and accessible (Pan et al., 2012), and represent a valuable set of tools for specifically

manipulating the protease network. These technologies have not been extensively

used to specifically address regulatory features of the protease network until very re-

cently, despite their widespread and fruitful application to in vivo and in vitro screens

for kinase or integrin activation (Rantala et al., 2011; Meacham et al., 2009).

Model: The successful application of a computational modeling effort is intricately

tied to how much information is already known, the scope of data, and the biolog-

ical question. Modeling techniques range from the data-driven and abstract to the

mechanistic and specific, and have been discussed elsewhere, particularly in the con-

text of intracellular signaling networks (Janes and Yaffe, 2006; Morris et al., 2010;

Pe'er and Hacohen, 2011). A summary of some methods is presented in Fig. 1-4.

Within the CSR framework, more detailed modeling approaches mathematically re-

quire either extensive prior knowledge regarding the topology of network-interactions

and their rate-constants, or alternatively the largest number of "cues" relative to

"signals" to prevent model over-fitting and over-parameterization. Prior knowledge

of network topology denotes previous understanding the relationships among cues,

signals, and responses, for example as can be gleaned from "interactome" databases

such as MEROPS for protease interactions (Rawlings et al., 2012), or using known

biochemical rate constants that have been reported in the literature (for instance

binding constants between TIMPs and MMPs; Amour et al., 2002). "Omic" scale

experiments typically lack the requisite number of "cues" and/or prior knowledge,

and therefore are restricted to mechanism-free modeling techniques. Methods such

as clustering, principal component analysis, and partial least squares regression aid

in reducing data complexity into key clusters or axes of covariation, and can be

useful in visualization, classification, and quantitative prediction of overall network

behaviors. Statistical models have also been developed to infer network structure,

direct biochemical interactions, and even causal network relationships. From frame-

works of time-shifted correlation (Bar-Joseph et al., 2012), to mutual-information

based approaches (Margolin et al., 2006), to hierarchical multivariate regression tech-
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niques (Miller et al., 2012a), statistical network inference has been successfully used

to identify novel biochemical interactions and key regulatory processes in various

applications.

More detailed modeling techniques can be helpful for studies with extensive prior

knowledge or where the number of "cues" being tested outnumber the "signals".

Bayesian network analysis incorporates prior knowledge of even a single causal net-

work interaction to infer a globally directional network structure (Yu et al., 2004;

Hill et al., 2012). In contrast to simple correlation networks described above, the

causal network structure afforded by Bayesian analysis can better describe network

pathways and can better guide manipulation of the network into a particular state.

Logic-based modeling methods generally require more extensive prior knowledge, for

example based on KEGG pathway annotations. They similarly provide a causal net-

work structure, but within a constrained and interpretable set of interactions for

understanding how multiple biochemical species integrate to affect one another in a

cooperative, interdependent manner (Morris et al., 2013; Wynn et al., 2012). For

networks in which the key molecular players have been identified and connectivity

has been well established, highly mechanistic models comprised of differential equa-

tions can provide a useful, systems-level understanding of how individual biochemical

reactions integrate to influence overall network behavior. Time-dependent models

based on mass-action kinetics have been demonstrated as useful for elucidating feed-

back mechanisms and key biochemical reactions within larger networks (Chen et al.,

2009), and have been critical to the biophysical understanding of reaction and diffu-

sion processes related to cell signaling (Berezhkovskii et al., 2009) and cell migration

(Painter et al., 2010; Eisenberg et al., 2011).
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1.5 Demonstrations of Protease Network Model-

ing

Several recent examples provide encouraging results into how network-level compu-

tational modeling can lead to insights into protease and cell-migration biology. At

the mechanistic end of the modeling spectrum (Fig. 1-4), mechanics-based differential

equation models have described cell migration as a function of contractile forces, mate-

rial properties, and enzymatic proteolysis. These studies provide explanations for how

biphasic relationships may arise between integrin and MMP expression in the context

of mechanical forces driving migration (Harianto et al., 2010). In another example,

a partial differential equation model explores the relationship between tumor acidity,

proteolytic activity, and tumor invasion, finding low pH may prevent tumor invasion

in some contexts (Martin et al., 2010). Studies examine the role of material prop-

erties and mechanical forces in affecting cell migration, and quantitatively describe

experimentally observed behaviors as a function of multiple competing processes re-

lating to cell contraction, material geometry and deformation, and cell adhesion and

traction (Pathak et al., 2012; Corin et al., 2010; Zaman et al., 2006; Yamao et al.,

2011). Unfortunately, most biomechanics-oriented studies treat protease activity as a

single process and do not account for differences among proteases, signaling feedback

mechanisms, or post-translational protease modifications. Nonetheless, future work

may incorporate recently discovered protease biochemistry in greater detail, and the

CSR framework will be useful for organizing the increased complexity.

Work has also demonstrated the value in abstract, data-driven modeling ap-

proaches in studying protease biology. One recent study implemented a CSR approach

to understand how kinase activities from primary monocytes impacted morphologic

and cathepsin-related responses to cytokine induction of differentiation. In this case,

computational modeling drew quantitatively predictive relationships between signal-

ing pathway activities and downstream cathepsin activities that were consistent across

patient heterogeneity (Park et al., 2012). This work stands out as directly monitoring

and modeling the activity of specific proteases, and future directions may focus on
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understanding the downstream effects of these activities. In another example, gene

expression profiling across multiple breast cancer cell lines was used to describe mor-

phological features (including migration-related phenotypes) of cells growing in 3D

ECM cultures (Han et al., 2010). This data-driven approach identified peroxisome

proliferator-activated receptor gamma (PPARg) as a significant correlate with stel-

late cellular morphology, and validating experiments found PPARg inhibitors to be

effective in blocking this phenotype. This work stopped short of investigating the ad-

hesion, protease, and signaling-related mechanisms of the inhibitor treatment, which

may be interesting for future studies.

Systems-level approaches are commonly used in biological areas more easily amenable

to high-throughput and multivariate measurements, such as studies of global gene reg-

ulation and intracellular signaling, and recent studies in these areas have produced

results centered on extracellular proteases. For instance, one study used correlation

networks to analyze the global gene expression patterns of regulatory T-cells, and

found urokinase plasminogen activator (PLAU) to be centrally important in medi-

ating suppressor function in those cells (He et al., 2012). This work implemented a

modeling strategy that fits within the CSR framework, where global gene expression

"signals" were measured across a set of time-point "cues" post-stimulation, and were

used to discriminate cells as either effector or regulatory T-cells based on a correlation

network modeling strategy. Interestingly, results highlighted significant interactions

between PLAU, kinase signaling pathways, and cytokine production. Unfortunately

the mechanisms of PLAU catalytic activity were under-explored in this work, and

experimental methods described in this thesis chapter show potential for elucidating

the protease-related mechanism.

Network-modeling has also been successfully applied to study proteases using in

vivo models, as demonstrated by a recent investigation of skin inflammation (auf

dem Keller et al., 2012). In this study, mass-spectrometry based measurements of

global proteolytic activities were combined with genetic deletion of MMP-2 to show,

from a very broad perspective, how ubiquitous and complex proteolytic degradation

changes with phorbol ester treatment. This work identified a MMP-2 substrate,
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Cl-inhibitor, that regulates bradykinin generation and vessel permeability during

inflammation. The report demonstrated novel application of global proteolytic and

proteomic profiling methods to an in vivo model, and used straight-forward statistical

modeling to identify significant biological changes. In the future, these various data-

types, including measurements of expression levels, post-translational modification,

and prior knowledge of protease-substrate relationships, could be better leveraged into

a single CSR framework for a statistically richer, more integrated and interpretable

assessment of network regulation.

In Chapter 4 of this thesis, we combine multiple data-types, including phospho-

signaling, protease activity, substrate degradation, and cell migration into a unified

CSR framework. Using multiple data-driven modeling techniques including Bayesian

network inference, correlation networks, and partial-least-squares regression, we con-

struct quantitatively predictive models that describe endometriotic cell migration as a

function of sheddase regulation. The CSR approach was successful here in identifying

known regulatory relationships, for example between kinases and their canonical sub-

strates, while also providing novel insight into how multiple proteases concomitantly

cleave multiple ligands and receptors to affect downstream cell migration.

Overall, computational modeling within the CSR framework has been successful at

elucidating protease and cell-migration biology. Improved tools for directly assessing

specific protease activities, coupled with enhanced knowledge of underlying biological

chemistry, will allow future network-modeling efforts to be more activity-oriented and

mechanistic.

1.6 Clinical Consequences and Conclusions

The failure of first-generation protease inhibitors in clinical trials indicates a need

to better understand the complexities of the underlying protease network. A widely

accepted view is that more specific and potent protease inhibitors will be propor-

tionally more successful in the clinic (Drag and Salvesen, 2010). However, this exact

point of view has frequently been espoused in the design of kinase inhibitors, with

37



II Purpose

IFIUL nlmIIIIlIItLE 0
C

3

R
PLSR

0 ression1
- C

~~CL

Prior Network Needed

(c)
(a)

(b)

Time TNFR1 Sheddling

Figure 1-4: The appropriate computational network modeling approach de-
pends on the type of data, prior knowledge, and intended use. Larger
quantities of appropriately designed, high-quality measurements combined with prior
understanding of the system of interest can lend increasingly mechanistic information
about the system of interest and a greater predictive capacity. (a) Ordinary and
partial differential equations are well suited for pharmacokinetic modeling of pro-
tease inhibitor transport at the organismal/physiological levels combined with (b)
pharmacodynamic modeling of various competing biochemical processes at the cellu-
lar/molecular levels. (c) Logic-based modeling formalisms require less precise prior
knowledge, and support inference of combinatorial regulatory interactions. In this
toy model, TIMP1 and TIMP3 negatively regulate TNFR1 shedding, which is medi-
ated by active ADAM-17 phosphorylated at T735. HDMR: high dimensional model
representation; PLSR: partial least squares regression.
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only limited success. Knowledge of overall network dynamics, cross-talk, and sub-

sequent inhibitor resistance mechanisms promises to guide the successful design of

multitargeted inhibitors or combination therapies in protease and kinase inhibitors

alike (Pujol et al., 2010; Villanueva et al., 2010; Turke et al., 2010). In fact, the close

relationships between cell-signaling pathways and extracellular proteases suggest a

potential for combination protease- and kinase- inhibitor strategies (Lpez-Otn and

Hunter, 2010). Many extracellular protease substrates are already the target of clin-

ically approved therapies, the most prominent example being HER-2. CSR modeling

efforts can be useful to identify protease-related mechanisms of drug response and re-

sistance. For instance, computational modeling in Chapter 4 of this thesis describes

coordinated ligand and receptor shedding that significantly impacts the migratory re-

sponse of cells to kinase inhibition. Combination drug treatments are then designed

based on this observed mechanism, consequently suppressing compensatory signaling

pathways. Overall, computational network modeling promises to be especially useful

for designing combination therapies and understanding their mechanism of action.

Interpatient variability has been extensively discussed in the context of kinase in-

hibitors, and likely plays an equally important role among extracellular proteases as

well. Direct measurement of protease activities and their substrates will be valuable

for patient stratification and selection into protease inhibitor clinical trials. Protease-

activity probe development for in vivo diagnostics remains an active area of inves-

tigation, and recent advances include activity-based imaging agents (auf dem Keller

et al., 2010), microfluidic-based multiplexed protease activity assays for clinical fluid

samples (Chapter 3 of this thesis; Chen et al., 2012), and urinary protease activity

markers of disease (Coticchia et al., 2011). Network cross-talk and compensatory

feedback mechanisms motivate a multivariate approach to therapeutic and compan-

ion diagnostics. Ultimately, a systems-level understanding of basic protease-network

biology will be useful to guiding both therapeutic and diagnostic strategies, and the

integrative network modeling strategies discussed here aim to assist in that endeavor.
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Chapter 2

Proteolytic Activity Matrix

Analysis (PrAMA) for

Simultaneous Determination of

Multiple Protease Activities

Abstract

Matrix metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs)

are two related protease families that play key roles in matrix remodeling and growth

factor ligand shedding. Directly ascertaining the proteolytic activities of particu-

lar MMPs and ADAMs in physiological environments in a non-invasive, real-time,

multiplex manner remains a challenge. This work describes Proteolytic Activity Ma-

trix Analysis (PrAMA), an integrated experimental measurement and mathematical

analysis framework for simultaneously determining the activities of particular en-

zymes in complex mixtures of MMPs and ADAMs. The PrAMA method interprets

dynamic signals from panels of moderately specific FRET-based polypeptide pro-

tease substrates to deduce a profile of specific MMP and ADAM proteolytic activ-

ities. Deconvolution of signals from complex mixtures of proteases is accomplished

41



using prior data on individual MMP/ADAM cleavage signatures for the substrate

panel measured with purified enzymes. We first validate PrAMA inference using a

compendium of roughly 4000 measurements involving known mixtures of purified en-

zymes and substrates, and then demonstrate application to the live-cell response of

wildtype, ADAM10-/-, and ADAM17-/- fibroblasts to phorbol ester and ionomycin

stimulation. Results indicate PrAMA can distinguish closely related enzymes from

each other with high accuracy, even in the presence of unknown background prote-

olytic activity. PrAMA offers a valuable tool for applications ranging from live-cell in

vitro assays to high-throughput inhibitor screening with complex enzyme mixtures.

Moreover, our approach may extend to other families of proteases, such as caspases

and cathepsins, that also can lack highly-specific substrates.

2.1 Introduction

Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent endopep-

tidases that are part of the Metzincin family of enzymes and are generally active on

or near the cell surface (Lopez et al., 2007; Kessenbrock et al., 2010). As central reg-

ulators of extracellular microenvironments throughout the human body, MMPs play

key roles in normal physiological processes including development (Vu et al., 2000),

angiogenesis (Rundhaug et al., 2007; Handsley et al., 2005), tissue remodeling (Page

et al., 2007), wound repair, and inflammation (Eming et al., 2007). On the other

hand, they are also implicated in a wide array of pathologies, ranging from cancer,

tumor invasion, and metastasis (Deryugina et al., 2006), to respiratory diseases such

as asthma and chronic obstructive pulmonary disease (COPD) (Gueders et al., 2006).

MMP proteolytic activities are tightly controlled. Once active, certain MMPs (e.g.,

MMP2) have been demonstrated to act on hundreds of endogenous substrates (Dean

et al., 2007; Morrison et al., 2009). MMP substrates include signaling molecules

(e.g., cytokines, chemokines, growth factors, GCPRs, growth factor receptors, and

cytokine receptors), extracellular matrix components (e.g., collagen, laminin, and fi-

bronectin), cell adhesion molecules, clotting and complement cascade proteins, and
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proteases themselves (Egeblad et al., 2002; Stamenkovic et al., 2003; Myrphy et al.,

2008; Blobel et al., 2005).

Closely related to MMPs, ADAM (A Disintigrin and Metalloproteinase) enzymes

are metalloproteinases (MPs) within the Metzincin family that are mostly bound

at the cell surface (Rocks et al., 2008). At least 13 ADAMs existing in humans

have intact metalloproteinase domains and proteolytic activity (Murphy et al., 2008).

ADAMs mediate various cellular behaviors including migration, adhesion (Kirfel et

al., 2004), proliferation (Blobel et al., 2005), and apoptosis (Duffy et al., 2009; Rocks

et al., 2008). Similar to MMPs, ADAM family enzymes are found throughout the

body and support diverse physiological processes such as development (Blobel et

al., 2005) and angiogenesis (Rocks et al., 2008; Handsley et al., 2005). Likewise,

ADAMs can become dysregulated in a variety of diseases and play roles in pathologies

including cancer (Duffy et al., 2009; Lopez et al., 2007), inflammatory bowel disease,

and asthma (Rocks et al., 2008). Current research suggests that ADAMs have a

narrower repertoire of substrates compared to MMPs, and principally function to

shed the ectodomain of surface-bound proteins such as growth factor ligands, growth

factor receptors, cell adhesion molecules, and cytokine receptors (Murphy et al., 2008;

Blobel et al., 2005).

Three key properties of MP biology have created the need for methods that di-

rectly observe protease activity in a specific, non-invasive, real-time, and multiplex

manner. First, the extensive amount of post-translational modification and regulatory

mechanisms controlling MP proteolytic activity make direct activity measurements

a valuable and complementary addition to common methods of assessing protein

function, such as western blotting, immunohistochemistry, and genetic manipulation

(Horiuchi et al., 2007; Xu et al., 2010; Pillinger et al., 2005; Murthy et al., 2008).

Second, the plethora of endogenous substrates cleaved by certain MPs, the context

dependency of endogenous substrate cleavage, and the overlapping endogenous sub-

strate specificity of closely related MPs make it difficult to quantitatively match

the contributions of specific proteases to global observations of endogenous substrate

degradation (Horiuchi et al., 2007; Herrlich et al., 2008; Morrison et al., 2009). Quan-

43



titative determination of selected protease activities would complement measurements

that focus on endogenous substrate cleavage, thereby facilitating attempts to match

particular proteolytic activities to patterns of substrate degradation. Third, cyclical

feedback interactions and compensatory mechanisms among closely related MPs can

severely complicate the interpretation of protease network interactions (Joslin et al.,

2010; Blobel et al., 2005; Sahin et al., 2004). Non-invasive and multiplexed measure-

ment of MP activity would allow for the assessment of protease network interactions

without artificially biasing the underlying network structure.

While many useful methodologies currently exist to study MPs, unfortunately

none simultaneously allow for direct, non-invasive, multiplex, real-time measurements

of specific protease activity. In general, existing methods such as zymography, ac-

tivity based probes, and mass-spectrometry based methods all must choose between

invasiveness, specificity, and throughput (Butler et al., 2010; Dean et al., 2007; Galis

et al., 1995; Kleiner et al., 1994; Sghatelian et al., 2004; Blum et al., 2005). Synthetic

polypeptide protease substrates have been extensively developed to directly assess

MP activity in a non-invasive and real-time manner (Alvarez et al., 2005; Doedens et

al., 2003; Moss and Rasmussen, 2007; Hassemer et al., 2010; Xu et al., 2010). These

substrates typically consist of a fluorescence resonance energy transfer (FRET) donor

and quencher fluorophore that are separated by a 3-10 amino acid linker containing

a protease cleavage motif. Upon cleavage of the polypeptide linker, the donor flu-

orophore separates from the quencher and fluorescence increases. Protease activity

dynamics can then be tracked by observing the change in fluorescence over time.

Similarly to many endogenous MP substrates, MP FRET-substrates are generally

cleaved by multiple closely related proteases (Moss and Rasmussen, 2007; Caescu et

al., 2009; Nagase et al., 1998). Several strategies, including positional scanning of

synthetic combinatorial libraries (Lim et al., 2009; Caescu et al., 2009) and directed

evolution using phage display (Chen et al., 2002) have attempted to optimize sub-

strate sequences such that they are more selectively cleaved by a specific protease.

Combinations of multiple substrates and inhibitors have also been implemented to

increase specificity (Rasmussen et al., 2004). These strategies often succeed at dis-
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tinguishing between two or a few proteases, but cross-reactivity nevertheless remains

problematic in more complex mixtures (Caescu et al., 2009; Drag et al., 2010; Gosalia

et al., 2005).

This work describes an approach we term 'Proteolytic Activity Matrix Analysis'

(PrAMA) as a method of using panels of FRET-substrates to infer a dynamic, quan-

titative, and specific profile of MMP and ADAM proteolytic activities. PrAMA

ascertains specific protease activity by deconvoluting from measurements derived

from relatively non-specific FRET-substrates, employing prior knowledge of indi-

vidual MMP/ADAM cleavage signatures ascertained using purified enzymes. This

approach allows PrAMA to elucidate particular enzyme activities from cleavage sig-

natures obtained in complex samples containing multiple proteases. The integrated

experimental measurement and mathematical analysis framework exploits the ad-

vantages of FRET-substrates, which support non-invasive real-time measurements

of live-cell activity, while addressing their problems of limited specificity and mul-

tiplexing. Peptide library microarrays have been previously implemented to assess

global patterns of protease activity and infer specific protease activity (Gosalia et al.,

2006). Nevertheless, PrAMA's novel combination of mathematical and experimental

methodologies allows for greater quantification of protease activity, lower expense, and

higher throughput compared to microarray-based approaches. Ultimately, PrAMA

fills a niche that complements many other current methods of assaying MP activ-

ity and substrate degradation. This niche is especially important for multivariate

network-level analysis, where the ability to simultaneously measure multiple MP ac-

tivities in a non-invasive, real-time, and relatively high-throughput manner confers

the greatest benefits. We anticipate that such network-level approaches will be valu-

able for designing clinical trials focused on MMPs and for illuminating unintended

consequences of the many trials that have failed in the last decade (Morrison et al.,

2009; Dorman et al., 2010).

We present a compendium on the order of 4000 measurements involving mixtures

of FRET-substrates and purified recombinant MPs, and use these measurements to

both construct the PrAMA inference parameters and test the limits of PrAMA in-
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ference accuracy. A priori determination of the PrAMA inference parameters can

predict optimal subsets of substrates for distinguishing particular MPs from each

other. We demonstrate PrAMA as capable of accurately inferring MP activity even

in the presence of background protease activities. Finally, we apply PrAMA to assess

the live-cell proteolytic response of wildtype, ADAM1O-/-, and ADAM17-/- mouse

embryonic fibroblasts (MEFs) to phorbol ester and ionomycin stimulation. Overall,

this work presents the foundation, validation, and theoretical analysis of a general

methodology that has potential applications ranging from systems biology to in vitro

inhibitor screening.
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2.2 Materials and Methods

Materials - Recombinant human ADAMs 8, 9, 10, and 17 were purchased from R

& D systems. The catalytic domains of the following recombinant human enzymes

were purchased from Enzo Life Sciences: ADAM12 and MMPs 1, 2, 3, 7, 8, 9, 10, 12,

13, and 14. MMP9 Inhibitor I (Cat. No. 444278) was purchased from Calbiochem.

GM6001 was obtained from Enzo Life Sciences. Recombinant human TNFOa and

EGF were obtained from Millipore (Billerica, MA). 18 FRET-substrates were ob-

tained from BioZyme, Inc. In this work, we refer to substrates as numbers 1-18, and

these reference numbers correspond to polypeptide sequences listed in Table A. 1. We

performed time-lapse fluorimetry using 384-well OptiPlates from Perkin-Elmer and

the Spectromax M3 and M2e fluorimeters (Molecular Devices). We used excitation

and emission wavelengths of 485nm and 530nm, respectively, for all experiments.

Substrate assays with purified enzymes - For all experiments, substrates were diluted

from 5mM stock in dimethyl sulfoxide (DMSO) to a final concentration of 10pM in the

appropriate assay buffer. We conducted experiments in four different assay buffers.

"ADAM buffer" consists of 20mM Tris, pH 8.0, and 6 x 10-4% Brij-35. "ADAM

buffer" also includes 10mM CaCl 2 for experiments involving ADAM8. "MMP buffer"

consists of 50mM Tris, pH 7.5, 150mM NaCl, 2mM CaCl2, 5piM ZnSO 4 , and 0.01%

Brij-35. We obtained the third buffer, CloneticsTM Mammary Epithelial Cell Basal

Media ("MEBM"), as a phenol-red and serum free solution from Lonza, pH 7.4. Final

active concentration of MMPs and ADAMs in activity assays ranged from 0.01nM to

7.5nM.

As a fourth buffer, we spiked purified MMP into the conditioned media from the

MDA-MB-231 cell line, which is an estrogen receptor negative (ER-) breast cancer

cell line derived from the pleural effusion of a breast cancer patient. We obtained these

cells from the American Type Culture Collection (ATCC, Manassas, VA) and rou-

tinely cultured them at 370C, 5% CO 2 , in DMEM supplemented with 10% foetal calf

serum, 100 U/ml penicillin, 100pg/ml streptomycin, 4mM L-Glutamine, and 4.5g/L
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D-glucose. We collected cell supernatant under the following conditions: cells were

grown to 80% confluency in 10cm tissue-culture treated polystyrene plates obtained

from Corning Life Sciences (Lowell, MA), serum-starved for 4hrs in basal media con-

sisting of DMEM supplemented with penicillin/streptomycin, and stimulated with

basal media supplemented with either lOng/ml TNFa or 10ng/ml epidermal growth

factor (EGF). Supernatant was collected at 12hrs, spun down at 200g for 5mins to

remove debris, and immediately flash-frozen. For FRET-substrate assays involving

this supernatant, final reactions were composed of a 2:1:1 mixture of 20uM substrate

diluted from 5mM DMSO stock into phosphate buffered saline, 4nM active MMP7

diluted in "MMP buffer," and thawed supernatant.

We determined active site concentrations by comparing observed cleavage rates

to previously published catalytic efficiencies for the same substrates in either "MMP

Buffer" or "ADAM buffer" (Moss and Rasmussen, 2007; Mohan et al., 2002). In some

cases we performed active site titration with GM6001 to either confirm this compari-

son or to substitute it when comparison was unavailable. Activity data for active site

titrations were fit to the Morrison equation using non-linear least squares curve-fitting

(see below). We normalized substrate concentration to a positive control, comprised

of 10pM substrate incubated with 0.5% trypsin and 0.2% EDTA (Sigma). Almost

all experiments were performed in technical triplicate, except for the MMP7 dilution

series and the experiments involving cell supernatant, which both were performed in

technical duplicate. For the experiments in triplicate, we excluded clear outliers in

a few cases (<10% of all triplicates) using Dixon's Q-test with a 90% threshold. We

performed all experiments at 370 C. In general, readings measured fluorescence ap-

proximately every half-hour for roughly five hours. We conducted all computational

work using Matlab (2009a, MathWorks, Natick, MA).

Live-cell substrate assays - Mouse embryonic fibroblasts (MEF cells) were a kind

gift from Drs. Carl Blobel (Hospital for Special Surgery, New York, USA) and

Paul Saftig (University of Kiel, Germany). ADAM1O (Hartmann et al., 2002) and

ADAM17 (Horiuchi et al., 2007) knockout fibroblasts were derived from E9.5 and
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E13.5 embryos, respectively. Cells were maintained at 37"C, 5% CO2, in DMEM sup-

plemented with 10% foetal calf serum, 100 U/ml penicillin, 100pg/ml streptomycin,

4mM L-Glutamine, and 4.5g/L D-glucose. For PrAMA, we plate 5000 cells per well

in clear-bottom 384-well polystyrene plates from Thermo Scientific (roughly 70,000

cells/cm 2 ). The following day, we change media and add one of seven FRET sub-

strates (substrates 1, 2, 5, 6, 7, 9, and 15) at 10pM to each well, along with either 1pM

phorbol 12-myristate 13-acetate (PMA), 10piM ionomycin (IM), or a DMSO control.

In all cases media contained <1% DMSO. Following addition of substrate, cells were

imaged at 20-40min intervals and at 370C for 2hrs. We performed experiments in

biological quadruplicate and excluded data lying more than 1.5 standard deviations

from the mean (at most one sample per quadruplicate).

Enzyme kinetics modeling - We model enzyme kinetics as an extension of the classi-

cal Michaelis-Menten (M-M) model, where the initial rate of cleavage, V, is assumed

to be constant and is defined as the following: Vo = Ctj[Sj]o[Ej]. Cjj describes the

catalytic efficiency, kcat/Km, with which the jth enzyme [Ej] cleaves the ith substrate

[Si]. This model assumes Km >> [S], which has been experimentally confirmed for

several substrates (Moss et al., 2009). We assume minimal inner-filter effect, although

this can become significant at substrate concentrations above those used in this work

(> 20pM) (Palmier et al., 2007). In all experiments we aim to infer either the ini-

tial rate of substrate cleavage (V) or the catalytic efficiency (Cij) in a reaction,

depending on whether [E] is known or unknown (i.e., "self-blinded" in this work),

respectively. We infer these parameters by fitting a kinetic model to the time-lapse

fluorimetry data, where fluorescence F,(t) indicates product formation. Typically,

inference using M-M kinetics involves fitting early time-points to the linear M-M

model F,(t) = (Vot + B)Fo/[S]o, where B is the background signal and FO is the peak

fluorescence from the positive control (described above). We extend the linear M-M

description to a non-linear "depletion-decay" model. We let [S]/[S]o = 1 - Fp/Fo,

and describe the observed fluorescence, Fob,, in the following equations:
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dFobs/dt Vo(F0 - F)/[S]o - kdFobs (2.1)

dFp/dt Vo(Fo - Fp)/[S]o (2.2)

Where kd indicates the first-order photobleaching decay of the fluorescent cleavage

product. Eq. 2.2 explicitly accounts for the depletion of substrate reactant as it

becomes degraded by active protease, and we discuss substrate depletion further in

the supplement Text A.1. Michaelis-Menten kinetics have previously been modeled

to account for substrate depletion (Cornish et al., 1995; Robinson et al., 1984; Obach

et al., 2002; Nath et al., 2006), and the kinetic model used here varies slightly from

previous methods by considering both substrate depletion and photobleaching. We

define a lag-time, To, that denotes the amount of time between the reaction start and

the first fluorimetry measurements; kd = 0 for t < To. From these equations, the

analytical solution of Fob, takes the following form:

Fobs(t) = FoVo(e-vot/[0So)(kd[S]o - Vo)< + A--kdt (2.3)

A = ekdTOFo [(1 - e-voro/[s|0) - Vo(evoo/[S|o)(kd[S1o - V)'] (2.4)

We fit model parameters in several steps. First, we subtract the signal of a neg-

ative control (FRET-substrate only) from all other signals. The maximum fluores-

cence in the positive control, which is generally at the first time point, indicates

FO. We determine kd from the negative slope of the log-transformed positive control

(kd -- ln(Fpos. cont.)). We obtain the remaining two parameters (V and To) by

non-linear curve-fitting. In several cases, we explicitly measured To and compared

model fitting with and without explicitly defining that parameter. Results indicate

that V inference remains consistent regardless of whether To is inferred or measured.

In cases where [E] is known (i.e. not blinded), we calculate Cjj by the following

relation: Csj = Vo/(Sj]o[Ej]).
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PrAMA Inference- PrAMA inference uses panels of FRET-substrate cleavage mea-

surements, coupled with known catalytic efficiencies, C,3 , for all relevant i substrates

and j enzymes, to infer specific protease activity from a complex mixture of unknown

enzymes. PrAMA operates under the assumption that total observed cleavage for the

ith substrate Voi in a mixture of enzymes is the summation of cleavages from each

individual protease in that mixture:

Vo,i = [Silo E Ci,[E] (2.5)

In this application initial substrate concentration is equal among all experiments,

allowing it to be simplified as a scalar constant. The complete set of catalytic effi-

ciencies Cjj comprises the model's m x n Jacobian matrix for m total substrates and

n total enzymes, divided by the substrate concentration:[dy0 ,i1  1 ______

d[Ej 1] d[Ej=.]

C = : . : SO (2.6)

dvoi=, dvo,i=.

- d[Ej=1] d[Ej=.]_

We combine Eqs. 2.5 & 2.6 to relate the vector of substrate cleavage,

Vo = [Vo,- 1 , -... , V,i=m] to the catalytic efficiencies C, the initial substrate con-

centration [S]o, and the vector of specific proteases present in the reaction E =

[E1 , E2 , n ,E :

V 0 T = [S]oCET (2.7)

We determine C using mixtures of individual enzymes and substrates as described

above. The dimensions of C depend on the number of substrates used in the ex-

periments and the number of enzymes considered. Both of these parameters can be

customized to fit the given application. Once C has been identified, Eq. 2.7 can read-

ily be solved for E, allowing the activities of specific enzymes (E) to be deconvolved

from non-specific cleavage signatures (VO).
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Various methods can be applied' to solve Eq. 2.7. In this work, we implement

a non-negative least squares algorithm combined with inference sensitivity analysis.

We employ sensitivity analysis to quantitatively determine robustness to experimen-

tal error and to tune inference sensitivity and specificity. PrAMA inference involves

three main procedures once Vo and C have been measured. First, we perform a

bootstrapping scheme of randomly generating an ensemble of 1000 cleavage vectors

V0. Sampling is from a log-normal distribution with p= Vo and a standard de-

viation representative of the average variance between the experimentally observed

and PrAMA expected cleavage rates obtained from PrAMA validation sets of data.

Second, we use least squares to solve Eq. 2.7 for every V' in the sampling ensemble,

and compute the mean and standard deviation of the ensemble inference results E.

In some cases, we added artificial error to C for each iteration of the boostrapping

scheme, representative of experimentally observed parameter uncertainty. This ad-

ditional process did not significantly improve PrAMA inference, however, and was

excluded unless stated otherwise.

As the third step, we apply a robustness filter to the inference results to tune

specificity. This filter, termed the orT threshold, roughly defines specific protease

activities as significant if they are inferred in more than a certain percentage of the

ensemble of inferences. We scale oT as a fraction of the inference standard deviation

that is subtracted from the mean inference value. For example, setting oT = 1.0

roughly defines protease activity as significant if observed in at least 84% of the

ensemble inference results.
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Figure 2-1: PrAMA overview. Blue indicates PrAMA development & construction,
red indicates PrAMA implementation, and grey indicates experimental preparation
& procedure.

2.3 Results

Characterization of the non-linear kinetic model - PrAMA infers specific protease ac-

tivity levels from panels of kinetic cleavage measurements using FRET-based polypep-

tide substrates (see Fig. 2-1 for a schematic & illustration of the procedure). The

first steps of PrAMA involve determining the kinetic parameters Vo and C from

time-lapse fluorimetry data (see Methods). To establish these two parameters, we

employ a "depletion-decay" kinetic model of substrate cleavage that elaborates on

linear M-M kinetics to account for first-order photobleaching decay and substrate
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depletion. Typical raw time-course fluorimetry output for a mixture of enzymes and

substrates can be fit by both the linear and decay-depletion models reasonably well

(Fig. 2-2A). However, the often subtle non-linearity of the data can reveal signif-

icant differences in the underlying kinetics. For the time-course in Fig. 2-2A, the

cleavage rate V inferred from the decay-depletion model is roughly 50%greater than

that inferred when using the linear approximation. For a systematic comparison of

the two models, we inferred trypsin activity from time-lapse fluorimetry measure-

ments across 2-3 orders of magnitude in enzyme concentration, using both the linear

and decay-depletion models (Fig. 2-2B). With log-log scaling, the R 2 coefficient of

determination for the decay-depletion model in Fig. 2-2B is 0.9, compared to only

R 2 = 0.25 for the linear model. Disparity in inference accuracy lies almost entirely

at the extremely high and low enzyme concentrations, where substrate depletion and

photobleaching, respectively, become most significant. In effect, the decay-depletion

model increases the range over which protease activities can be quantitatively and

accurately measured by over an order of magnitude.

Several factors make photobleaching a significant issue in this work. We conduct

protease activity assays using fluorescein-based FRET substrates over long (often

> 5hrs) time scales. Fluorescein is relatively sensitive to photobleaching, and long

time scales further amplify photo-sensitivity effects. In this application we typically

read fluorescence every 15-30mins and observe resultant first-order decay constants

(kd values) as high as 10- 4 s- 1. Computational simulations using the decay-depletion

model demonstrate how significantly decay can influence the observed fluorescence

(Fig. 2-2C). Our results indicate that even the small amount of photobleaching in-

curred with infrequent plate-reader measurements may result in a several-fold decrease

in fluorescence after hours have elapsed.

PrAMA Construction - PrAMA requires the explicit measurements of the en-

tries of matrix C, which characterize the catalytic efficiencies with which individual

enzymes cleave FRET-substrates, before specific enzyme activities can be decon-

volved from complex reaction mixtures. The dimensions of C can be customized

depending on the experimental application, and Fig. 2-3A depicts one possible con-
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Figure 2-2: Modeling protease cleavage kinetics. (A) A typical time-lapse flu-
orimetry output for a single enzyme (0.5nM MMP1O) and substrate 13 in MMP
buffer. The data is fit with both linear and decay-depletion kinetic models. The
decay-depletion model almost perfectly overlays the data. (B) Inferred kinetic rates
(Vo/[S]o) of trypsin cleaving substrate 7 over a range of concentrations. (C) Decay-
depletion model simulations of substrate cleavage using the following parameters: FO
= 104 FLU, kcat/KM = 105 M-Is-1, [E]=lnM, [S]=10pM.
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figuration involving 18 FRET-substrates, 4 ADAMs, and 10 MMPs. In this figure,

catalytic efficiencies range from 103M-Is-1 to 106M-is-1. Although we success-

fully measured cleavage rates below this range, such low signals typically have high

error and ultimately have low impact on PrAMA inference. We hierarchically biclus-

tered the elements of C with a Euclidean distance metric and average linkage, without

mean-centering or variance normalizing, and with optimal leaf ordering. Several clear

patterns emerge from this clustering, as indicated by the dendrograms flanking the

array (Fig. 2-3A). MP clustering somewhat recapitulates DNA sequence based phy-

logenetic profiling of the enzyme families. For example, ADAMs partition from the

MMPs, and closely related MMPs such as the gelatinases (MMP2 & MMP9) cluster

together. The substrates form three distinct clusters: substrates with greater speci-

ficity towards ADAMs (cyan on the dendrogram); substrates with greater specificity

towards MMPs (red); and substrates cleavable by both MMPs and ADAMs (blue,

green to a lesser extent). More than anything, however, C explicitly indicates the

lack of selectivity among these substrates. Hence, this parameter matrix underscores

the need for a deconvolution process in extracting specific protease activities from

FRET-substrate measurements, and C ultimately becomes integral to this task.

A compendium of cleavage signature measurements - We performed roughly 4000 ex-

periments using a variety of enzyme combinations, buffers, and substrates to measure,

validate, and test the parameters and principles of PrAMA inference. We conducted

a wide array of PrAMA experiments whereby panels of FRET-substrates were used to

measure the cleavage signature Vo of various enzyme mixtures, including roughly 50

single enzyme mixtures, 30 double enzyme mixtures, and 10 triple enzyme mixtures.

We tested several buffers, enzyme concentrations, enzyme combinations, and have

presented the Vo values corresponding to these reaction conditions in Fig. 2-4. We

hierarchically biclustered the reaction conditions according to their mean-centered

and variance-standardized cleavage signatures Vo, using Euclidean distance, average

linkage, and optimal leaf ordering. Clustering can often serve as an effective tool to

group and/or classify objects. In this application, hierarchical clustering successfully

groups over 75% of individual MMPs with themselves, based on their Vo observed at
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different concentrations and buffers (Fig. 2-4A). Clustering analysis becomes more

difficult to interpret in multi-enzyme mixtures, yet some patterns still emerge (Fig.

2-4B-C). For example, Vo signatures from mixtures containing ADAM enzymes form

two main clusters, corresponding to reactions with and without MMP present (Fig.

2-4C). Nevertheless, simple hierarchical clustering inadequately classifies such com-

plicated enzyme mixtures, motivating a more effective inference methodology to as-

certain individual enzyme activities.

PrAMA classifies individual MPs - We first tested the ability of PrAMA to identify

an individual enzyme based on its cleavage signature observed at one concentration

and/or buffer compared to another. To demonstrate, we constructed a 16 x 5 pa-

rameter matrix C describing the cleavage of substrates 1-16 by MMPs 1,2,3,7, and 8

at {0.4, 0.1, 0.9, 0.7, 1.0}nM, respectively, in MMP buffer. We used these parameters

to analyze cleavage signatures Vo from the same enzymes at an order of magnitude

lower concentration. Results indicate PrAMA accurately infers the specific MMP

based on its cleavage signature, with an average total cross-reactivity of 11% (Fig.

2-3B). As a second demonstration, we used the same parameter matrix C to infer

cleavage signatures corresponding to MMPs 1-8 in MEBM buffer rather than MMP

buffer, again at different concentrations. Results for this analysis are even better:

4/5 PrAMA experiments show zero cross-reactivity, and one has 13% cross-reactivity

between MMP3 and MMP7 (Fig. 2-3C).

PrAMA inference strengths and weaknesses - We analyzed several properties of the

parameter matrix C in order to a priori predict which MMPs PrAMA can accurately

infer with high specificity. We transform C into a model covariance error matrix RM

that describes inference uncertainty as a function of data uncertainty, RD, which we

directly measure from the variance of replicate experiments. RM is mathematically

defined as the following:

Rm = (CTRDC) 1 (2.8)

The RM corresponding to the 16 x 10 parameter matrix C characterizing the cleavage

59



MMP9
-MMP12
-MMP14

-MMPIO
-MMPI3

- MMP8
- MMP3
- MMP7

'"-. -" -""" """---- -MMP2
- MMP1

4 6 8 10
# MMPs Considered

MMP

S102 D

1E

2 8 14 1 3 7
MMP

MMP1
100

-0

100

0 50
Measurement a
Off-Target CV -

Target CV -

MMP10

0 50
Measurement CV (%)

Figure 2-5: Parameter matrix error analysis. (A) Model error covariance matrix
Rm. (B) Relative model error matrix, R'm. (C) Median off-target PrAMA inference
error as a function of the number of MMPs considered in the parameter matrix,
averaged over all possible combinations of MMP subsets. (D,E) Average target and
off-target inference error as functions of the synthetic measurement error, when all
MMPs (D) or only MMPs 1 & 10 (E) are considered in the parameter matrix. (C-E)
Parameter matrix C was constructed using enzymes at -0.5nM. UT = 0 for all results
here. (C) Cleavage signatures were obtained at -0.05nM.

60

C

I

106 C
13

9

12

10

E. 2

8

14

1

3

7

102

C>)
(D

100

0

g 10-2

0

B

103

13

9

12

10

2

8

14

1

3

7



of substrates 1-16 by 10 MMPs reveals both absolute (Fig. 2-5A) and relative (Fig.

2-5B) amounts of model uncertainty. RM can reflect various types of experimental

error depending on its construction. RM, in its form described above, emphasizes

multiplicative experimental error and does not a priori make expectations regarding

the concentrations of particular proteases. Fig. A-1 shows a transformed RM that

emphasizes additive error, which we experimentally observe to be generally much less

significant than multiplicative error.

The diagonal elements of RM represent on-target model uncertainties, while off-

diagonal elements indicate off-target model error. To emphasize the relative amounts

of on- and off- target uncertainty, we subtract the diagonal elements of RM from

their respective rows to produce a "relative" model uncertainty matrix, Rm (Fig.

2-5B). Large positive values in Rr indicate the potential for high cross-reactivity in

PrAMA inference. For example, the R" rows for MMPs 9, 12, and 13 have large

elements corresponding to MMPs 3 and 7. This suggests that signals from MMPs 9,

12, and 13 are likely to be mistakenly inferred as MMPs 3 and 7. We experimentally

tested such cross-reactivity by performing PrAMA inference on MMP signals using

different C configurations. We tested all combinations of MMPs considered by C,

and performed PrAMA to infer MMP activity from individual enzyme mixtures (Fig.

2-5C). Results indicate that indeed MMPs 9, 12, and 13 have high cross-reactivity

with other MMPs. MMPs 1, 2, 3, and 7 are inferred with the greatest specificity.

Encouragingly, results suggest that inference cross-reactivity is relatively independent

of the number of MMPs considered, past a certain point. For most MMPs, there is

hardly any increase in average cross-reactivity when increasing the number of MMPs

considered from 6 to 10. For MMP13, the effects of high pairwise uncertainty be-

come diluted when more MMPs are considered, and total cross reactivity actually

decreases. To test cross-reactivity as a function of experimental variability, we sim-

ulated PrAMA by inferring MMP activity from cleavage signatures generated from

the columns of C, but with increasing artificial amounts of multiplicative error added

to the simulated cleavage signatures. Fig. 2-5D shows the average results from 1000

iterations of these simulations for MMPs 1 and 10, when all MMPs are considered
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in the C parameter matrix. In agreement with RM and R- , MMP1 has higher on-

target error, while MMP10 has high cross-reactivity. A priori analysis of RM can

suggest potential protease inhibitors to add or biophysical separation techniques to

apply in order to eliminate the number of MMPs considered in a given sample. Both

on- and off-target error significantly decrease when MMPs 1 and 10, which according

to RM have relatively low cross-reactivity, are the only two proteases considered in

PrAMA inference. Ultimately this analysis (a) reveals the potential need for addi-

tional FRET-substrates with certain specificities, (b) suggests which MMPs can be

accurately and simultaneously measured in a given sample, and (c) suggests the po-

tential use of inhibitors or supplementary experimental methods to achieve greater

inference resolution. For example, RM analysis suggests the potential need for ad-

ditional substrates that better distinguish MMP9 from MMP7. Although general

non-specificity may be difficult to eliminate, substrates could be designed to min-

imize particular cross-reactivity through a bioinformatic analysis of cleavage motifs

(Rawlings et al., 2009; Verspurten et al., 2009) or through targeted directed evolution

methods (Ohkubo et al., 2001; Schilling et al., 2007).

Inference sensitivity analysis improves PrAMA accuracy - Experimental error prop-

agates through PrAMA inference in a complex manner. Consequently, we perform a

bootstrapping sensitivity analysis to directly account for observed experimental er-

ror, gauge its effect on PrAMA inference, and to tune PrAMA specificity/sensitivity

(see Methods). Experimental replicates of C and Vo have an average standard de-

viation of 20%. Experimental variance is a mix of both additive and multiplicative

error, and standard deviation drops to roughly 10% at protease activity levels above

104M--s-1. In general, our results suggest that correct PrAMA inference is more

robust to experimental and/or artificial noise than incorrectly inferred enzyme activ-

ities (i.e. false positive results). As an example, we inferred MMP activity from a

cleavage signature Vo corresponding to a reaction that contained MMP8, but with

increasing synthetic multiplicative sampling error applied to the observed V (Fig.

2-6). In this instance, MMP8 does not have the highest average inferred MP ac-

tivity when synthetic sampling error is high. Nonetheless, PrAMA infers MMP8
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activity with the greatest consistency compared to the other MPs considered. We

developed a robustness threshold, termed the Or threshold, to take advantage of this

general observation. Total cross-reactivity of the inferred MMP activity is a function

of (a) the experimental and/or synthetic sampling error of the parameters Vo and

C, and (b) the cT threshold. For PrAMA inference of the single-enzyme mixtures

involving MMPs 1-8, total cross-reactivity can be totally eliminated by applying the

appropriate UT threshold, even when the standard deviation of the applied Gaus-

sian multiplicative error approaches 100% (Fig. 2-7A). As another example, the OrT

threshold can completely eliminate as much as 170% cross-reactivity in the inference

of individual MMPs 9,10,12, and 13 (Fig. 2-7B-C).

PrAMA inference of MP mixtures - We tested the ability of PrAMA to infer specific

protease activities from cleavage signatures Vo observed from 92 total mixtures of one,

two, three, and four MPs. We analyzed 48 single-enzyme mixtures, 30 two-enzyme

mixtures, and 12 triple-enzyme, and 2 four-enzyme mixtures involving 14 different

MPs (see Fig. 2-8A). For these mixtures, we did not consistently observe statistically

significant deviation between the observed cleavage signatures V and the expected

cleavage patterns based on PrAMA assumptions (e.g., see Eq. 2.7). Figs. A-2 to A-4

show raw time-lapse fluorimetry data, inferred & expected cleavage signatures Vo,

and PrAMA inference results for several of these enzyme combinations.

For each mixture, we define MP activity as significant if inferred at levels above

a defined OrT threshold. If that enzyme is actually present in the reaction mixture,

then we label the inference for that specific MP as "true positive." Receiver-operator

characteristic (ROC) curves then summarize the total PrAMA inference results (Fig.

2-8A). Tuning the oT threshold moves inference results along the ROC curve to adjust

the true positive and false positive rates. Inference accuracy, defined as the ratio (true

positives + true negatives) / (total positives + total negatives), is maximally ~90%

for all mixtures, using a parameter matrix that considers the presence of all 14 MPs

used in this study. Maximum accuracy for single-enzyme mixtures is slightly above

90%, while more complex triple and four-enzyme mixtures have inference accuracy

of roughly 80%. We explored an alternative boostrapping method in this work (see
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Methods), but found PrAMA results to be robust to the algorithm variation (Fig. A-

5). Fig. 2-8A shows PrAMA inference results with increasing levels of o-. Previous

information regarding MP interactions, co-expression, and cellular localization partly

informed the selection of MP mixture compositions. For example, mixtures involving

membrane-bound ADAM enzymes also included MMP14, which is the only MMP we

analyzed that is membrane-bound with a transmembrane domain. We also included

MMP2 in these mixtures, as previous work indicates MMP14 activates MMP2 at

the cell surface (Hernandez et al., 2000). We analyzed 5 double-enzyme and 10

single-enzyme mixtures involving ADAM10, ADAM17, MMP2, and MMP14. Fig.

2-9A-B present PrAMA results using a parameter matrix that focuses on just these

four enzymes. Maximum PrAMA inference accuracies for both the single and double

enzyme mixtures are roughly 90%.

Using PrAMA results from the 92 enzyme mixtures shown in Fig. 2-8A-B, we

analyzed which particular proteases PrAMA most reliably measures. We calculated

inference accuracy for each of the 14 MPs as a function of the significance threshold orT.

ROC curves (Fig. A-6) and corresponding maximum accuracies (Fig. 2-9C) for each

enzyme reveal ADAM 17 to be the most reliably identified MP. Results indicate MMP7

and MMP3 are the most difficult enzymes to measure, and this agrees with previously

discussed RM analysis (Fig. 2-5A). As a caveat, these results may be somewhat

skewed by the non-random selection of protease mixture compositions. Nevertheless,

results suggest that even enzymes with relatively low catalytic efficiencies for the

substrates, such as ADAM12, can be assessed with high accuracy.

We performed PrAMA inference on mixtures containing various concentrations of

MMP7 to ascertain PrAMA's ability to quantitatively infer MMP activity, in addi-

tion to simply inferring whether or not an enzyme is present (Fig. 2-9D). We used

16 substrates and considered 10 MMPs (i.e., constructed a 16 x 10 matrix C) in

this analysis, and tested 7 concentrations ranging from 0.01nM to lnM. In all cases,

PrAMA inferred MMP7 activity with 100% specificity. Furthermore, PrAMA de-

tected quantitative differences in protease activity with high accuracy. R2 = 0.98

for a log-log plot that describes inferred MMP7 activity as a function of its actual
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concentration. PrAMA has less success in quantifying absolute differences in activity

among multiple MPs (Fig. A-7A-B), in part due to the fact that the relationship

between MMP concentration and observed protease activity Vo is enzyme-specific

and can deviate from linearity (Fig. A-7C, Fig. A-8). In general, we observe the re-

combinant MMPs employed in this work to be less efficient at higher concentrations.

Enzyme concentration effects on proteolytic activity may be due to issues such as

non-specific protein adsorption and aggregation. To test this hypothesis, we added

increasing concentrations of Brij 35 to the reaction buffer (Fig. A-9A). Although Brij

can decrease proteolytic efficiency, our results suggest that Brij improves assay linear-

ity perhaps by decreasing non-specific aggregation at higher enzyme concentrations

(Fig. A-9B), which has been observed for other secreted proteins (Sluzky et al., 1992).

Even when nonlinear relationships between MMP concentration and observed pro-

tease activity Vo exist, PrAMA inference does not seem to distort these relationships

(Fig. A-7C). Consequently, quantitative comparisons of individual protease activities

from one experimental sample to another can still be accurately made.

PrAMA with unknown background protease activity - In many potential applica-

tions, PrAMA will not be able to explicitly account for all protease activities in the

parameter matrix C. In this work we account for up to 14 MPs simultaneously, and

more substrates and enzymes can be potentially included in the PrAMA for future

applications. Nevertheless, some biological samples may contain unknown proteinases

that are also capable of cleaving the FRET-substrates. Robustness to these unknown

proteinases is a crucial property of PrAMA. To test this, we applied PrAMA in-

ference to enzyme mixtures with known "background" protease activity that is not

explicitly accounted for in the parameter matrix C. For example, we constructed a

16 x 2 parameter matrix C to infer MMP9 & MMP10 activities. We tested PrAMA

inference on 5 enzyme mixtures that contained MMP9 and/or MMP1O, as well as at

least one additional MP that was unaccounted for in C (Fig. 2-10A). We repeated

this process for MMPs 1-8 (3 mixtures) and ADAMs 10 & 17 (3 mixtures). All three

sets of analyses performed roughly as well as the PrAMA inference results where all

protease activity was explicitly accounted for in C. PrAMA inference of ADAMs
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10 & 17 yielded a maximum accuracy of 100%, although statistical significance was

modest (p=0.17) due to the small sample size (3 mixtures) and low inference dimen-

sionality (only 2 enzymes). Statistical significances of the other two PrAMA results

were greater (MMP9 & 10, p<0.1; MMPs 1-8, p<0.001).

We also used PrAMA to infer protease activity over a background of conditioned

media from the breast cancer cell line MDA-MB-231 (Fig. 2-9D). We added recombi-

nant, active MMP7 to supernatant collected 12hrs after stimulating cells with EGF

and the inflammatory cytokine TNFa. We considered 10 MMPs in the parameter

matrix C, and ultimately were able to identify MMP7 protease activity with 100%

specificity. PrAMA did not detect any additional MMP activity in these samples.

Augmenting PrAMA with specific protease inhibitors The accuracy and specificity

of PrAMA can be bolstered by using protease inhibitors in conjunction with tradi-

tional PrAMA methods. Adding inhibitors to solutions of active proteases may be

appropriate when specificity and accuracy are considered more important than non-

invasiveness. In this work, we present an example of how PrAMA can be combined

with inhibitors. First, we measured the cleavage profile Vo of a mixture containing

~ 0.5nM MMP3 & MMP7 and ~ 0.05nM MMP9 in MMP buffer using substrates

1-16. Second, we measured the cleavage rate V of substrate-i when the mixture had

an added 100nM MMP-9 inhibitor (IC50 = 5nM). The decrease in observed cleavage

rate caused by adding the inhibitor, divided by the previously known catalytic effi-

ciency Cij and substrate concentration, produced an inferred MMP9 concentration

within 20% of the actual concentration: [E] = V/([S]Cij) ~ 0.04nM. Based on this,

we subtracted the expected MMP9 component of the cleavage signature from the

total signature Vo observed with no inhibitor and performed PrAMA inference on

the remaining non-MMP9 component. For this example, PrAMA achieves correct in-

ference of all three enzymes only when incorporating information gleaned from using

the inhibitor (Fig. 2-10B). Without this information, PrAMA fails to infer MMP9

without including several false-positives.

PrAMA inference of live-cell response to PMA & IM stimulation - We applied
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PrAMA to a well-studied set of wildtype, ADAM1O-/-, and ADAM17-/- MEF cell

lines in order to validate the approach in a live-cell context. Fig. 2-11A depicts the

increased substrate cleavage observed in response to PMA stimulation for four of the

total seven substrates used in this example. Within 2hrs, PMA causes a statistically

significant increase in substrate cleavage for at least one substrate in all three cell

lines (Fig. 2-11B): 4/7 substrates significantly increased cleavage with WT cells; 3/7

increased with ADAM1O-/- cells; and substrate 15 increased cleavage with ADAM17-

/- cells. In some cases, we observe more statistically significant changes in cleavage

when including measurements at later time points. Substrates 1, 9, and 15 signifi-

cantly increase cleavage in ADAM17-/- cells when assessing cleavage 8hrs after PMA

stimulation (p<0.05). From these measurements it would be difficult to attribute

changes in substrate cleavage to particular MPs without PrAMA. We assess protease

activity by using a parameter matrix C that considers the presence of five MPs (Fig.

2-11C). We define the observed cleavage vector V as the change of cleavage rate in

response to PMA stimulation, using all seven substrates. In this proof of principle,

we limit PrAMA inference to the first 2hrs following cellular stimulation, with the

anticipation that later time-point measurements may face greater issues relating to

off-target substrate cleavage. PrAMA inference indicates that PMA stimulates sig-

nificant ADAM17 activity (Fig. 2-11D). In all three cell lines, PrAMA did not detect

a significant increase in MMP2, MMP14, or ADAM1O activity. Results indicate that

substrate cleavage and subsequent PrAMA are sensitive to treatment with the met-

alloproteinase inhibitor GM6001 (Fig. A-10). As further validation, PrAMA infers

ADAM17-/- cells to have 90% less ADAM17 activity than WT. Remaining ADAM17

signal in ADAM17-/- cells likely arises from other proteases (e.g., ADAM9) with

similar substrate selectivity.

We also applied PrAMA to assess the protease-activity response to ionomycin

treatment. We used six substrates to ascertain activities of the same five proteases

considered in the PMA example, again using wildtype, ADAM1O-/-, and ADAM17-

/- MEF cells (Fig. 2-12). All substrates show a statistically significant increase in

cleavage upon IM stimulation within 2hrs (p<0.05), even in the mutant cell lines.
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In contrast to PMA stimulation, PrAMA results suggest that IM stimulates MMP9

& ADAM10 activity. In all three cell lines, PrAMA did not detect an increase in

MMP2, MMP14, or ADAM17 activity at the same level of significance as detected

for ADAM10 and MMP9 (zero at the significance level corresponding to results in

Fig. 2-12D). Encouragingly, ADAM10-/- cells show a >90% decrease in inferred

ADAM10 activity compared to wildtype cells. Again, remaining ADAM10 signal

may be attributed to other proteases with similar substrate preference. Interestingly,

the knockout cell lines seem to exhibit heightened general proteolytic response to

IM stimulation compared to the wildtype cells (Fig. 2-12A-B). However, PrAMA

analysis suggests that this increased activity likely arises from proteases other than

ADAM10 or ADAM17. Fig. 2-12C shows that wildtype cells cleave the good ADAM

substrates (6 & 9) at a greater relative rate compared to the knockout cell lines, even

if the absolute cleavage rate is lower. Consequently, PrAMA infers the knockout cells

to exhibit stronger MMP9 rather than ADAM activity.

Ultimately, PrAMA results that show ADAM17 to be activated in response to

PMA agree with multiple other reports in the literature (Sahin et al., 2004; Horiuchi

et al., 2007; Xu et al., 2010). Furthermore, PrAMA indications that IM stimu-

lates ADAM10 activity also agree with previous literature (Horiuchi et al., 2007).

This work complements these previous reports by observing specific ADAM17 and

ADAM10 activity in a non-invasive, real-time manner, without resorting to pharma-

cological or genetic perturbations.

Optimal substrate selection - Various logistical constraints may exist that limit the

number of substrates available to be used for PrAMA in certain applications. To

address this issue, we implemented a common optimal design criterion for selecting

substrates so as to maximize PrAMA accuracy. The determinant of the covariance

error matrix RM is one metric describing the volume of inference uncertainty. Mini-

mizing this volume, which is equivalent to maximizing the determinant of its inverse

and minimizing the condition number, ultimately reduces model uncertainty and opti-

mizes PrAMA inference accuracy (Belsley et al., 1991). Using the following function,

we optimally selected subsets of the total 18 FRET-substrates to perform various
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Figure 2-12: Live cell inference of ionomycin stimulated MP activity. PrAMA
was conducted using three cell lines (WT, ADAM10-/-, and ADAM17-/- MEFs) and
6 total substrates, tracking substrate cleavage up to two hours after adding substrate.
(A) Time-lapse fluorimetry for 3 of the 6 total substrates used in this experiment. (B)
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shown in A and using all time-points in A for the inference. Stars indicate p<0.05,
comparing between cleavage rates for the control and stimulated conditions. (C)
Observed cleavage vector Vo (columns), normalized to have total signal of 1, for each
of the three cell lines. (D) PrAMA inference results for the increased activity caused
by IM stimulation, using significance threshold o- =1.4. No significant increase in
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and ADAM10, all inferred differences were statistically significant (p<0.05). For all
subplots, error bars indicate standard deviation of three biological replicates.
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PrAMA inferences:

min det(RM) = max det(CTRDC) (2.9)

We tested the substrate selection strategy on PrAMA inference of mixtures involving

MMPs 1, 2, 3, 7, and 8, where only those 5 enzymes are considered in the parame-

ter matrix C (Fig. 2-13A-E). In general, the impact of optimal substrate selection

increases as the number of substrates decreases. Surprisingly, optimal substrate se-

lection allows PrAMA to use the theoretically minimum number of substrates, equal

to the number of MMPs considered in the parameter matrix C, without significantly

impacting inference accuracy. PrAMA inference of double-enzyme mixtures contain-

ing ADAM10, ADAM17, MMP2, and MMP14 maintains an accuracy indicated by

the area under the ROC curve (AUROC) of roughly 0.9 even as the number of sub-

strates decreases by nearly 50% (Fig. 2-13F). In general, the optimal combination

of substrates depends on which MPs are being analyzed by PrAMA, and the opti-

mal substrates combination for distinguishing ADAM activities is distinct from the

optimal combination for distinguishing activities of MMPs 1-8.

2.4 Discussion

Existing techniques used to study MPs each have advantages and disadvantages. Zy-

mography is one of the oldest and most common MP activity assays, and a variety

of zymographic techniques exist to measure the activities of diverse proteases and

their inhibitors (Kleiner et al., 1994; Fowlkes et al., 1997; Oliver et al., 1997). Most

zymographic techniques involve SDS-PAGE electrophoresis, which prevents continu-

ous real-time measurement (and generally disrupts non-covalent MP complexes). In

situ zymography, often applied to frozen tissue sections, allows for the observation of

localized protease activity (Galis et al., 1995). However, in most cases the substrates

used for in situ zymography (e.g., gelatin) are readily cleaved by a variety of MPs

and measurements consequently lack specificity. Recently a variety of methods have

been developed to observe the proteolytic degradation of endogenous MP substrates.

For example, mass spectrometric techniques can quantify hundreds of proteins that
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have freshly cleaved amide bonds within complex biological samples (Butler et al.,

2010). Problems involving the complex relationship between proteases and their sub-

strates make it difficult to accurately and non-invasively infer the contributions of

specific MPs to the global patterns of endogenous substrate degradation. Yet an-

other recently developed method, activity based probes (ABPs), support the direct

and specific measurement of diverse protease activities (Saghatelian et al., 2004; Blum

et al., 2005; Sieber et al., 2006). Like typical zymography substrates, however, ABPs

can act on a broad range of related proteases. Therefore, assays involving ABPs face

a trade-off between invasiveness and specificity. For specific protease identities to be

ascertained, biological samples analyzed with ABPs can be resolved by size through

electrophoresis.

Synthetic polypeptide protease substrates have been developed for an increas-

ingly wide range of enzymes. Within the last few years several FRET-substrates

have been designed with some specificity, thereby supporting their application in

complex biological samples (Alvarez et al., 2005; Moss and Rasmussen, 2007; Xu

et al., 2010). Nevertheless, cross-reactivity with closely related MPs and distantly-

related, but much more non-specific, proteases can still complicate the interpretation

of FRET-substrate activity assays. As an example, several FRET-substrates with

some specificity for ADAM17 have recently been developed with a sequence based on

the ADAM17 cleavage site on pro-TNFa (Alvarez et al., 2005; Hiraoka et al., 2008;

Mohammed et al., 2004; Moss and Rasmussen, 2007). Multiple recent reports employ

these ADAM17 FRET-substrates, even though they have documented cross-reactivity

with related MPs (Walker et al., 2009; Caescu et al., 2009). At least six MPs have

been recognized to cleave endogenous pro-TNFa, in some cases at the same site (Moss

and Rasmussen, 2007; Amour et al., 2002; Haro et al., 2000). Such non-specificity

complicates interpretation of the observed FRET-substrate cleavage, especially when

comparing multiple correlated MP activities in the same biological sample (Walker et

al., 2009). Several MPs cleave many of the same synthetic and endogenous substrates

that ADAM17 cleaves, suggesting the repertoire of ADAM17 substrates could be a

subset of the repertoire for more promiscuous MPs (e.g., MMP14) or non-specific
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proteases like plasmin (Tam et al., 2004). At least to some degree, this situation is

conceivable not just for ADAM17 but for a variety of MPs, and would make identi-

fying truly specific substrates impossible.

Although MPs have been extensively studied for decades, no method yet ex-

ists to assay multiple protease activities in real-time with high specificity and non-

invasiveness. One explanation partly accounting for this fact is that the ubiquitous

regulatory interactions, diverse substrates, and distinct roles played by closely related

MPs have only recently become fully appreciated. Both MMPs and ADAMs engage

in regulatory networks controlled by cyclical feedback interactions. For example,

ADAMs participate in an autocrine positive feedback loop in mammary epithelial

cells: EGFR transactivation stimulates Erk activity, which in turn stimulates ADAM

shedding of EGF ligands, further activating EGFR (Joslin et al., 2007). In this sit-

uation, common methods of ascertaining the influence of ADAM activity on EGFR

signaling, such as by applying a protease inhibitor or siRNA treatment, can both

disrupt the underlying feedback interactions and potentially create compensatory

reactions whereby closely related ADAMs modify their activity to accommodate per-

turbations (Sahin et al., 2004; Le et al., 2009; Blobel et al., 2005; Joslin et al., 2010).

As another example, many MMPs activate themselves and one another. Such inter-

actions can create positive feedback interactions that allow, for example, an initiating

MMP activation event to trigger further protease activation (Sternlicht et al., 2001).

We predict non-invasive, multiplexed, real-time, and specific measurements of MP

activity will be critical towards understanding the complex regulatory mechanisms

underlying MP networks.

We anticipate that PrAMA should have broad applicability in protease biology.

FRET-substrates have been extensively used for high-throughput inhibitor screen-

ing with individual purified enzymes. PrAMA would allow inhibitor screening to be

performed in more complex enzyme mixtures and biological samples, and could be

adapted for high-throughput in vitro functional assays of inhibitor activity. As dis-

cussed above, PrAMA is well suited for network-level analysis of in vitro protease

activity, and PrAMA can scale up and down in scope depending on the particular
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application. At the most basic level, PrAMA could use multiple FRET-substrates in

tandem to bolster the specificity of an activity measurement for even a single pro-

tease. In other words, the parameter matrix C could be as small as (2 substrates x 1

enzyme). PrAMA can capture protease activity on a variety of time-scales, depending

on the particular application. We demonstrate high sensitivity measurements that

are made over the course of >5hrs, and live-cell measurements can detect significant

differences in cleavage within 30min. Dynamic measurements on this short time-scale

can be relevant for detecting rapid post-translational protease activation, while longer

time-scale measurements have relevance, for example, to phenotypic responses that

are downstream of transcriptional changes. Soluble FRET-substrates can be directly

applied to both live-cells and cell lysate for protease activity measurement (Alvarez

et al., 2005; Walker et al., 2009). Our initial experiments show that PrAMA can op-

erate by adding individual yet distinct FRET-substrates to live-cells in a multi-well

format. Furthermore, FRET-substrates with distinctive excitation/emission spectra

may be simultaneously combined in the same solution for PrAMA of a single biolog-

ical sample. FRET-substrates have been tethered directly to 3D substrata such as

collagen (Packard et al., 2009), providing localized measurement of protease activity.

For simultaneously analyzing many protease activities, the mathematical framework

behind PrAMA can be applied to microarrays of peptides, for instance, that contain

hundreds or thousands of FRET-peptide substrates. Previous work with peptide mi-

croarrays has demonstrated how patterns of peptidase activity can be deconvoluted

using non-linear least squares in a similar manner to PrAMA, ultimately to infer the

presence of specific proteases within complex biological samples (Gosalia et al., 2006).

PrAMA builds upon this previous work by using non-invasive dynamic measurements

of peptide cleavage rather than static snapshots of cleavage patterns to quantitatively

infer kinetic parameters (i.e., Vo). The advantages of PrAMA's mathematical frame-

work include explicitly accounting for substrate depletion & photobleaching effects,

as well as readily extending to dynamic measurements of protease activity where Vo

is not constant. Strategies for selecting optimal substrates depend on the applica-

tion. Most commonly, optimal substrates are individually chosen by the combination
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of their specificity and cleavage efficiency (Gosalia et al., 2006; Caescu et al., 2009;

Chen et al., 2002). In this work, however, we employ a global optimization strategy

to identify the set of substrates that combine to yield the greatest specificity and the

least inference uncertainty. The principles behind PrAMA, including strategies for

optimally selecting substrates, are readily extendable to other classes of enzymes, such

as caspases and cathepsins. FRET-based protease substrates have been successfully

applied to measuring in vitro caspase activation. Like MPs, however, individual cas-

pases have overlapping substrate specificity and it can be difficult to interpret which

specific caspase has become activated (Bouchier et al., 2008). Lastly, PrAMA infer-

ence has many potential uses involving clinical samples. For example, simultaneous

measurement of multiple protease activities in patient fluid samples or biopsies could

reveal mechanistic insight and/or identify activity-based markers of disease state for

diagnostic/prognostic use. Ultimately, this work presents an integrated mathematical

and experimental framework that can be adapted and extended to a broad range of

applications. We have demonstrated various methods of a priori analyzing how best

to design PrAMA experiments, whether it be through choosing optimal substrates,

identifying which proteases can be specifically measured with the available substrates,

or understanding how to account for experimental variability.
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Chapter 3

Multiplexed Protease Activity

Assay for Low Volume Clinical

Samples Using Droplet Based

Microfluidics and Its Application

to Endometriosis

Abstract

As principal degrading enzymes of the extracellular matrix, metalloproteinases con-

tribute to various pathologies and represent a family of promising drug targets and

biomarker candidates. However, multiple proteases and endogenous inhibitors inter-

act to govern metalloproteinase activity, often leading to highly context-dependent

protease function that unfortunately has impeded their clinical utility. We present

a method for rapidly assessing the activity of multiple specific proteases in small

volumes (<20ul) of complex biological fluids such as clinical samples which are only

available in very limited amounts. We have developed a droplet-based microfluidic

platform that injects the sample into thousands of picoliter-scale droplets from a bar-
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coded droplet library containing mixtures of unique moderately selective FRET-based

protease substrates and specific inhibitors and monitors hundreds of the reactions

thus initiated simultaneously by tracking these droplets. Specific protease activities

in the sample are then inferred from the reaction rates using a deconvolution tech-

nique, Proteolytic Activity Matrix Analysis (PrAMA). Using a nine-member droplet

library with three inhibitors and four FRET substrates, we apply the method to the

peritoneal fluid of subjects with and without the invasive disease of endometriosis.

Results show clear and physiologically relevant differences with disease (in particular,

decreased MMP-2 and ADAM-9 activities).

3.1 Introduction

Extracellular proteases participate in myriad physiological and disease processes,

most prominently by degrading extracellular matrix components. In particular, ma-

trix metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs)

have been investigated as potential drug targets and diagnostic biomarkers. Metal-

loproteinase activities are regulated through a tight network of multiple proteolytic

enzymes and inhibitors (especially Tissue Inhibitors of Metalloproteinases, TIMPs),

frequently resulting in highly context-dependent behavior that has hampered their

usefulness in the clinic. Existing approaches such as zymography (Kleiner et al.,

1994), activity-based enzyme-linked immunosorbent assays (ELISAs) (Lauer-Fields

et al., 2004), peptide microarrays (Gosalia et al., 2006), and activity-based probes

(Sieber et al., 2006) have been limited by trade-offs including throughput, simul-

taneous measurement of multiple activities (multiplexing), cost, and direct kinetic

measurement. Alternatively, FRET-based polypeptides have been used in recently

developed techniques (Gosalia et al., 2006; Miller et al., 2011) including Proteolytic

Activity Matrix Analysis (PrAMA) to simultaneously ascertain multiple specific pro-

tease activities (Miller et al., 2011). The PrAMA technique interprets reaction rates

from panels of moderately selective fluorogenic substrates combined with specific

protease inhibitors to infer a profile of protease activities from relatively unprocessed
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physiological samples. Unfortunately, this approach involves performing separate

parallel biochemical reactions and consequently carries large liquid-handling and ma-

terial requirements, presenting a challenge in clinical applications with limited sample

quantities.

In this work we report the development and use of an integrated droplet-based mi-

crofluidics platform for initiating and simultaneously observing hundreds of protease

enzyme activity reactions for hours (up to around eight hundred individual droplets

using nine different reaction conditions) using limited quantities (<20 ul) of biologi-

cal/clinical samples and then deconvolving the observed reaction rates using PrAMA.

Compartmentalization of chemical reagents in picoliter-scale aqueous droplets allows

for a potential 106 -fold reduction in reagent consumption compared to standard meth-

ods, and facilitates the rapid monitoring of thousands of droplets, each of which may

contain unique experimental conditions (Agresti et al., 2010; Brouzes et al., 2009).

Droplet-based technology has recently been applied to a variety of biological applica-

tions (Zheng et al., 2003; Miller et al., 2012c; Chen et al., 2011), and pico-injectors

have recently been developed to efficiently perform multistep experiments for large-

scale multiplexing (Abate et al., 2010). Integration of these capabilities with PrAMA

confers particular synergy: the droplet microfluidics create large scale parallel mea-

surements of multiple protease activity reactions, while PrAMA efficiently interprets

the high-dimensional kinetic data to infer multiple specific proteolytic activities.

We applied this method to study the invasive disease of endometriosis, which

is generally defined by the presence of endometrial-like tissue residing outside the

uterus and strongly associates with pain and infertility. Metalloproteinases have been

implicated as important enzymes in endometriosis (Szamatowicz et al., 2002), but

their activities in the context of dysregulated endogenous inhibitors remain less clear

(Szamatowicz et al., 2002; Gilabert-Estelles, et al., 2003). Using the droplet based

multiplexed activity assay, we were able to analyze minimal amounts of clinically-

obtained peritoneal fluid from patients with and without endometriosis, and found

distinct patterns of protease activity between disease and control samples. In par-

ticular, we discovered that MMP-2 and ADAM-9 enzymatic activity decreased with
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disease and concluded that MMP and inhibitor (TIMP) protein concentrations alone

failed to accurately describe the altered proteolytic turnover of specific enzymes. The

multiplexing capability achieved through the microfluidic assay not only improved

discrimination between control and disease samples, but also supported inference of

multiple, specific protease activities that otherwise would have been ambiguous or

sample-limited using traditional approaches.

3.2 Results

The complete method developed is schematized in Fig. 3-1A. The details of microflu-

idic device design, fabrication and operation are described in Sec. B.1.We first pre-

pared protease substrate libraries consisting of 50 um diameter, monodisperse water-

in-oil emulsions using droplet generator chips. We formulated droplets to encapsulate

unique biochemical assays comprising aqueous solutions of particular protease sub-

strates and, in some cases, protease inhibitors. The PrAMA methodology describes

strategies for optimally selecting panels of substrates and inhibitors for accurately

inferring specific protease activities. In brief, multiple unique FRET-substrates with

distinct enzyme selectively profiles can be utilized in parallel to permit computational

inference of specific enzyme activities. This inference can be additionally strength-

ened by incorporating the comparison of reaction rates in the presence or absence

of specific inhibitors. In this application, we identify specific droplet compositions

by optically "barcoding" them using specific concentrations of one or more indicator

dyes (Alexa-405 and Alexa-546) (Agresti et al., 2010; Brouzes et al., 2009). The bar-

coded droplets are stabilized using an oil-phase surfactant, and then are mixed in a

single tube where they remain stable for more than one week. Once the droplet li-

brary has been generated, it is flowed into to the device (Fig. 3-1B) where individual,

single-file droplets (containing protease substrates) are mixed 1:1 with a fixed volume

of biological sample (containing proteases) using a pico-injector (Fig. 3-1C) (Abate

et al., 2010). After mixing with the sample, droplets are flowed to an integrated in-

cubation chamber (Fig. 3-1D) where they are monitored via time-lapse fluorescence
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Figure 3-1: The microfluidic device. (a) Various protease activity substrates,
and in some cases inhibitors, are encapsulated into the droplets distinguished by
optical dye labeling. (b) The droplet library flows into a pico-injector device (c)
with high volume fraction order, where they merge with the biological sample. (d)
Using automated image processing, the protease activity reactions in each droplet are
tracked over time in an observation chamber.
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microscopy for over three hours. Hundreds of droplet reactions can be simultaneously

monitored for hours using automated droplet tracking software, enabling both mul-

tiplexed capacity and accurate inference of reaction rates across multiple replicate

droplets.

To establish microfluidic PrAMA accuracy, we first conducted reactions using

recombinant enzymes. Purified enzyme solutions were injected into a four-component

droplet library, consisting of four unique protease substrates (Sec. B.2) that were

barcoded with Alexa-405. Sample-injected droplets were fluorescently imaged for

1.5 hours (Fig. 3-2A). Droplet tracking software (Sec. B.3) interpreted time-course

images, and reaction rates were inferred from the increase in fluorescence resulting

from substrate proteolysis (Fig. 3-2B) (Miller et al., 2011). We gated the four droplet

library components by their unique groupings of indicator fluorescence and reaction

rate (Fig. 3-2C). Enzyme catalytic efficiencies inferred from these groupings (Fig. 3-

2D) were compared to values obtained using a standard plate-reader assay (R2 >95%

between the two assay formats, Fig. B-1A). We inferred the composition of unknown

enzyme mixtures based upon their observed patterns of substrate cleavage, and results

indicated >95% accuracy (Fig. 3-2E-F, Fig. B-1B-C).

After using purified enzymes to validate the device, we applied it to the in vitro

study of an immortalized cell line (12Z) established from a peritoneal endometriotic

biopsyl1. To ascertain the proteolytic activity response of these cells to TNF-a (an

implicated inflammatory cytokine; Grund et al., 2008; Banu et al., 2008), we stim-

ulated cells for 24hrs, collected and clarified supernatant, and analyzed the samples

with the aforementioned four-component library (containing substrates S1-S4, Fig.

2G). Standard methods show here and in previous work that MMP-2, MMP-9, and

ADAM-9 are all secreted by 12Zs (Grund et al., 2008; Banu et al., 2008). We used

microfluidic PrAMA to specifically analyze MMP-2, MMP-9, ADAM-9, and ADAM-

10 (a known substrate of ADAM-9; Moss et al., 2011) activities. Of these enzymes,

microfluidic PrAMA detected a significant increase only in ADAM-9 activity with

TNF-a treatment (Fig. 3-2H, p<0.01, bootstrapping test; Miller et al., 2011). To

validate this result, we conducted activity assays in the presence or absence of the
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specific ADAM-9 inhibitor, proADAM-9 (Fig. 3-21) (Moss et al., 2011). The results,

combined with ADAM-9 ELISA data (Fig. 3-2J), confirmed upregulation of active

ADAM-9 secretion (p<0.05). By comparing PrAMA to ELISA results, we found

roughly 50% of ADAM-9 to be active, compared to <10% of MMP-2. This discrep-

ancy is consistent with high observed concentrations of the inhibitor TIMP-2, which

does not inhibit ADAM-9 but does inhibit MMP-2 (Fig. B-2) (Amour et al., 2002).

We then analyzed peritoneal fluid (PF) from patients with moderate/severe en-

dometriosis (n=7) and compared them to PF from a control population without the

disease (n=6) (Sec. B.4). Microfluidic PrAMA inference of specific protease activ-

ities revealed significant differences between disease and control samples. PF lines

the pelvic cavity and comprises a heterogeneous mixture of leukocytes, cell debris,

thousands of soluble proteins, and likely over 100 proteases and protease inhibitors

that interact with endometriotic lesions (Amon et al., 2010). We analyzed clarified

PF samples using a nine-component substrate library consisting of the same four sub-

strates used previously, but with the inclusion of droplets containing a broad spec-

trum metalloproteinase inhibitor (BB94), pro-domain inhibitors for ADAM-9 and

ADAM-10 (Moss et al., 2007; Moss et al., 2011), and buffer controls for the pro-

domain inhibitors. The nine types of droplets were distinguished by a ratio of two

indicator dyes (Fig. 3-3A). Overall, the observed reaction rates (Fig. 3-3B) showed

strongest activity with substrate S4, which can be efficiently cleaved by both MMPs

and ADAMs (Fig. B-3A,C). Addition of the broad-spectrum inhibitor BB94 reduced

the observed reaction rates by 90% on average, thereby confirming S4 cleavage to be

principally the result of metalloproteinases. For most PF samples, droplets contain-

ing pro-domain inhibitors for ADAM-9 and ADAM-10 exhibited significantly lower

reaction rates compared to their buffer controls. Across all samples, the ADAM-9 and

ADAM-10 inhibitors reduced reaction rates by an average of 25% (U=16%) and 80%

(-=3%), respectively (Fig. B-3D). For six of the thirteen PF samples, the summed

proADAM-9/proADAM-10 inhibition accounted for roughly all observed S4 cleavage.

We conducted PrAMA to infer specific protease activities from the cleavage measure-

ments (Sec. B.3), and found ADAM-10 to be the most active protease in general. Of
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the MMPs, PrAMA results suggested MMP-2 activity to be the highest on average

(Fig. B-3E-G).

Significant correlation among the observed droplet reaction rates compelled mul-

tivariate statistical approaches for data interpretation. We used partial least squares-

discriminant analysis (PLS-DA) to describe patient status as a statistical function of

multiple input variables, which we initially defined as the substrate cleavage measure-

ments. Droplet data was first normalized by dividing rates by their column averages

(Fig. 3-3B). In an automated manner, PLS-DA iteratively selected variables that

most accurately predicted disease status, which in this case were from three reac-

tions: S1, S4 with proADAM-9, and S4 with the buffer control for proADAM-9 (Fig.

B-4A). PLS-DA combined information from these three measurements to classify dis-

ease status with 95% accuracy (Fig. 3-3C, p=0.03, permutation test).

'Normalized Si' rates statistically decreased with disease even when analyzed in-

dividually (Fig. 3-3D, p=0.042, Mann-Whitney test, Bonferroni correction). Based

on the PLS-DA modeling, we also investigated the difference in reaction rates with

and without the proADAM-9 inhibitor (AproADAM-9), and found a decrease with

disease (Fig. 3-3D, p=0.035, Mann-Whitney test). Given pro-ADAM-9 specifically

inhibits ADAM-9, reduced AproADAM-9 can be readily interpreted as a decrease in

ADAM-9 activity with disease. However, interpretation of decreased S1 cleavage is

less straight-forward because S1 can be cleaved by multiple proteases (particularly

MMPs, including MMP-2, rather than ADAMs).

To address this issue, we utilized PrAMA inference to reveal significant differences

in specific protease activities, rather than ambiguous differences in substrate cleavage,

between disease and control samples. We used PLS-DA to identify the most significant

PrAMA descriptors of disease status, which yielded an equally accurate (Fig. B-4B-C,

93% accuracy, p=0.04, permutation test) four-component model that ranked MMP-

2 activity as the most significant determinant (Fig. B-4B). Based on the PLS-DA

result, we examined relative MMP-2 activity individually and found it to decrease

with disease (Fig. 3-3E, p=0.02, Mann-Whitney test). We performed ELISAs on the

PF samples for MMP-2 and two of its endogenous inhibitors, TIMP-2, and TIMP-4,
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to determine if changes in MMP-2 activity reflected trends in concentration (Fig.

B-5). Results identified high levels of both MMP-2 and TIMP-2, but neither the

absolute concentrations nor the ratio of MMP-2 to TIMP-2 significantly changed

with disease. Rather, TIMP-4 concentrations significantly decreased with disease,

particularly when divided by the average concentration of the three analytes for each

patient sample (Fig. 3-3F, p=0.024, Mann-Whitney test, Bonferroni correction). The

non-intuitive and concomitant decrease of both MMP-2 and ADAM-9 activities, in

spite of reduced TIMP-4 inhibitor concentration, suggests that endometriosis perturbs

multiple, overlapping protease-inhibitor interactions in the peritoneal environment.

This complexity highlights the challenges associated with inferring enzyme activities

from concentration alone, and emphasizes the need for multiplexed, direct activity

measurements.

3.3 Discussion

In summary this work creates a platform for assessing multiple specific protease ac-

tivity assays with minimal liquid handling and sample-requirement by integrating

several components, including a droplet generator (Agresti et al., 2010; Brouzes et

al., 2009), a pico-injector (Abate et al., 2010), and an analytical inference technique

(PrAMA) (Miller et al., 2011). Accomplishing the same multiplexed measurements

in a 96-well microtiter plate would consume roughly 100-fold more biological sam-

ple and reagent (20 ul sample for the multiplexed microfluidic assay, compared to a

96-well format requiring 80 ul sample/well, in triplicate, with the nine reaction con-

ditions) which would be a prohibitively high amount especially for clinical samples.

It is further noteworthy that only a tiny fraction (-30nl) of the 20 ul sample volume

was actually utilized to generate droplets for multiplexed sensing, due to unoptimized

world-to-chip interfacing. This leaves much room for efficiency improvement, either

by drastically increasing the degree of multiplexing or further decreasing the sam-

ple volume needed. Integrated chip design that combines droplet generation with

pico-injection, along with advanced droplet barcoding strategies, will be critical to
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advancing the platform multiplexing capabilities. Here we present proof-of-principle

droplet libraries that utilize three barcode colors and nanoparticle dyes (Fig. B-6),

and previous work has shown the potential of using microparticles, quantum dots, and

hydrogels to optically distinguish potentially thousands of unique particles that have

been shown as amenable to droplet encapsulation (Pregibon et al., 2007; Abate et al.,

2009). While such large droplet libraries may require additional optical setup, the

future challenge for enhancing the multiplexing capabilities of our platform and its

overall technological potential centers on the physical generation of the droplet-library

itself (Guo et al., 2012).

Our results underscore the value of multiplexing with microfluidic platforms for

clinical sample analysis. When examined individually, substrate cleavage cannot gen-

erally be understood as relating to specific proteases. However, in the context of mul-

tiple reactions using inhibitors and distinct substrates, results emerged that clearly

distinguished disease from control samples, while also enabling determination of spe-

cific enzyme activities. Furthermore, results from the multiplexed assay provided a

novel perspective into MMP/TIMP regulation in endometriosis (Sec. B.5). Previous

studies have reported conflicting observations regarding MMP-2 levels in endometrio-

sis patients, and direct evidence of protease activity in the context of multiple in-

teracting TIMPs has proved inconsistent (Szamatowicz et al., 2002; Gilabert-Estelles

et al., 2003). Here we report that despite absence of detectable changes in MMP-2

concentration, microfluidic PrAMA revealed a significant decrease in MMP-2 activity

with disease, and these observations help explain the frequent clinical observation

of isolated endometriotic cysts that do not invade the surrounding tissue (Gilabert-

Estelles et al., 2003). The microfluidic platform developed here could be extended to

various applications (Sec. B.6), and device modularity ultimately makes the platform

highly customizable for a variety of applications.
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Chapter 4

ADAM-10 and -17 Regulate Cell

Migration via Jnk/p38 and

Opposing Feedback through Dual

Ligand and Receptor Shedding in

Invasive Disease

Abstract

A Disintegrin and Metalloproteinases (ADAMs) are the principal enzymes for shed-

ding ligand and receptor tyrosine kinase (RTK) ectodomains from the cell surface.

Multiple layers of activity regulation, feedback, and catalytic promiscuity impede our

understanding of context-dependent ADAM function and our ability to predictably

target that function in disease. This study uses combined measurement and computa-

tional modeling to examine how various growth factor environments influence ADAM

activity and cellular migration in the invasive diseases of endometriosis and breast can-

cer. We find that ADAM-10 dynamically integrates numerous signaling pathways to

direct cellular motility. Data-driven modeling reveals that induced cellular migration
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is a precisely quantitative function of positive feedback through EGF-ligand release

and negative feedback through RTK shedding. Although ADAM inhibition prevents

autocrine ligand shedding and resultant EGFR transactivation, it also leads to an

accumulation of phosphorylated HER2, HER4, and MET on the cell surface, which

subsequently enhances Jnk/p38 signaling. Jnk/p38 inhibition reduces cell migration

by blocking ADAM activity while additionally preventing the compensatory signaling

from accumulated RTKs. In contrast, Mek inhibition reduces ADAM activity but fails

to inhibit compensatory signaling from accumulated RTKs, which actually enhances

cell motility in some contexts. Thus, here we present an ADAM-based mechanism

of rapidly acquired resistance to Mek inhibition through reduced RTK shedding that

can be overcome with combination Mek/MET inhibitor treatment. We investigate

the clinical relevance of these findings using targeted proteomics of peritoneal fluid

from endometriosis patients and find growth-factor driven ADAM-10 activity and

MET shedding are jointly dysregulated with disease.

4.1 Introduction

A Disintegrin and Metalloproteinases (ADAMs), especially ADAM-10 and ADAM-

17, are the principal mediators of proteolytic ectodomain shedding on the cell sur-

face (Blobel et al., 2005). ADAMs and the closely related matrix metalloproteinases

(MMPs) work together as "sheddases" to cleave hundreds of diverse transmembrane

substrates including growth factor ligands, receptor tyrosine kinases (RTKs), adhesion

molecules, and even proteases themselves from the cell surface. Unfortunately, little is

known regarding how such a broad palette of proteolytic activity integrates to control

behaviors such as cellular motility. Furthermore, extensive cross-talk and complexity

among signaling networks, proteases, and their substrates make understanding shed-

dase regulation on a component-by-component basis challenging (Morrison et al.,

2009). Therapeutics have targeted metalloproteinases and their substrates for the

treatment of invasive diseases such as cancer, yet many metalloproteinase inhibitors

have failed in clinical trials (Fingleton et al., 2008). Therefore, a need exists for
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understanding how the balance of ADAM-mediated degradation integrates multiple

layers of signaling networks to coordinately influence cell behavior in various disease

contexts.

Here we study how sheddase activity contributes to cell migration relevant to

invasive diseases such as endometriosis and breast cancer. Tumor metastasis gen-

erally involves dysregulated cell migration, with a prominent example being 'triple

negative breast cancer' (TNBC) in which expression of estrogen, progesterone, and

HER2/neu receptors are low or absent, but the epidermal growth factor receptor

(EGFR) is frequently over-expressed (Bhargava et al., 2005; Cancer Genome Atlas

Network, et al., 2012). Similarly to TNBC, endometriosis is also associated with dys-

regulated cell invasion into ectopic organ sites and EGFR over-expression (Uzan et

al., 2009; Inagaki et al., 2007). Endometriosis is a disease defined by the presence of

endometrial-like tissue residing outside the uterus, typically in the form of peritoneal

lesions, ovarian endometriomas, and deep infiltrating lesions. Up to 40% of infertile

women have the disease, which also exhibits co-morbidity with several cancers (Melin

et al., 2008; Ozkan et al., 2008). For both TNBC and endometriosis, targeted kinase

inhibitors represent attractive therapeutic strategies (Ngo et al., 2010; Hoeflich et al.,

2009; Yoshino et al., 2006). However, the recent failures of several kinase inhibitors in

TNBC clinical trials highlight the issues associated with context-dependent efficacy

and acquired inhibitor resistance (Carey et al., 2012; Duncan et al., 2012). Many

challenges in developing targeted therapeutics stem from network-level complexities

such as compensatory feedback, and recent work has demonstrated how critical such

mechanisms are to achieving therapeutic success, especially in cancer (Turke et al.,

2010; Muranen et al., 2012). Encouragingly, computational models of systems-level

biochemical networks have shown promise as tools to understand how multiple enzy-

matic reactions integrate to impact overall biological behavior, often with the goal of

aiding the design of personalized or combination therapies (Lee et al., 2012; Miller-

Jensen et al., 2007). Considering its crucial and complex role in disease, metallopro-

teinase regulation represents an ideal application of such network-level approaches.

Here we combine recently developed multiplexed methods to directly interrogate met-
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alloproteinase activities (Miller et al., 2011) with suspension array measurements of

intracellular signaling and supernatant proteomics to examine how environmental

cues interact with signaling and protease networks to affect cellular migration and re-

sponse to inhibitor treatments. To integrate the multiple layers of experimental data,

we use computational models that elucidate quantitative relationships among signal-

ing pathways, proteases, their many substrates, and overall cell behavior. These mod-

els underscore how metalloproteinase biology must be understood as an integrated

and quantitative function of multiple proteolytic reactions, and offer mechanisms

of context-dependent behavior and signaling feedback. We find ADAM-10 to be a

critical regulator of motility that is dynamically controlled through several signaling

pathways, affecting cell-behavior through both positive feedback from EGF-ligand

release and negative feedback from MET, HER2, and HER4 shedding. We find sig-

naling inhibitors that generally reduce ADAM activity and subsequent RTK shedding,

consequently allowing the accumulated RTKs to enhance downstream c-Jun kinase

(Jnk) and p38 signaling. Thus, here we demonstrate an ADAM-based mechanism of

rapidly acquired resistance to kinase inhibition through reduced RTK shedding that

can be overcome with combination therapy. Targeted proteomic analysis of clinical

samples from endometriosis patients indeed confirms growth-factor driven ADAM-10

activity and consequent MET shedding are dysregulated with disease. Overall, our

results have wide implications for designing combination therapies and identifying

context-dependent personalized therapeutic strategies for both kinase and protease

inhibitors.

4.2 Results

Integrative network inference suggests p38 and Jnk are upstream regu-

lators of motility that act principally through ADAM-10: We employed

a variety of techniques to first characterize the signaling, sheddase, and motile re-

sponses of endometriotic cells to different growth factors that have been clinically

associated with endometriosis progression (Tab. C. 1). We used immortalized 12Z
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Figure 4-1: 12Z phospho-signaling, sheddase activity, and migratory re-
sponse to growth factors. (A) Normalized phosphoprotein levels, protease ac-
tivities, and analyte shedding under multiple growth factor conditions. Phosphory-
lation was measured 5min post-stimulation. Protease activities were averaged over
the first 3 hr. post-stimulation. Ligand and receptor shedding was measured 24 hr.
post-stimulation. (B) Collagen-embedded cell movements were tracked via confocal
microscopy over 16 hr. Individual lines represent single-cell movement tracks, after
initializing positions at the origin. Box and bar plots describe median statistics.
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cells, a commonly studied line established from an endometriotic biopsy (Zeitvogel et

al., 2001). Shortly (5 min) after stimulating cells with six different growth factors, we

quantitatively measured phosphorylation of ten key signaling proteins known to be

downstream of RTK activation (Fig. 4-lA, Fig. C-1). Across the same growth factor

stimulations, we recorded the proteolytic response of three principal ADAM shed-

dases (ADAM-10, ADAM-12, and ADAM-17) over the first 3 hours post-stimulation

using Protease Activity Matrix Analysis (PrAMA) (Miller et al., 2011) (Fig. 4-1A,

Fig. C-1). PrAMA uses panels of soluble FRET-based polypeptide protease sub-

strates to directly assess the live-cell activity of specific metalloproteinases. At 24

hours post-stimulation, we quantified the accumulation of ADAM substrates that had

been cleaved from the cell surface, including RTKs and the ErbB-ligand amphireg-

ulin (AREG; Fig. 4-1A). Finally, we used time-lapse confocal microscopy to measure

single-cell motile responses to growth factor stimulation. 12Z cultures suspended in

collagen I gels were individually tracked for 16 hours, and the 'random motility coef-

ficient' was calculated as a metric of single-cell motility for each condition (Meyer et

al., 2012) (Fig. 4-1B, Fig. C-2 & C-3).

We used several network-inference methods to integrate these four types of data

together. First, we examined correlation between all pairs of measurements as they

varied across the seven treatment conditions (Fig. 4-2A). Not surprisingly, strongest

correlation was found between phosphorylation of Jnk and its known substrate c-

Jun. Similarly, ADAM-10 activity correlates well with accumulation of its known

substrate, MET, suggesting that significant regulation of substrate shedding occurs

through direct control of ADAM-10 catalytic turnover. Shedding of diverse analytes

including ectodomains of transmembrane receptors and ligands correlates most pos-

itively with cellular motility, with AREG especially strongly associated (Fig. 4-2B).

We performed Bayesian network analysis to integrate the data into a constrained

hierarchical structure, and results suggest that Jnk, p38, and Akt signaling are the

most significant upstream signaling regulators of proteolytic activity (Fig. 4-2C; Fig.

C-4), acting primarily through ADAM-10. These results are further supported by

complementary computational approaches, including partial least squares regression
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(PLSR; Fig. C-4 & C-5). Our initial network-inference thus suggests testable hy-

potheses that p38 and Jnk are upstream regulators of ADAM-10 activity. ADAM-10

in turn controls multiple shedding events, most importantly AREG shedding, that

ultimately direct cell motility.

Patterns of regulated sheddase activity describe 3D cell motility across

multiple cell lines: Our initial network modeling found strong correlation be-

tween ligand/receptor shedding and cell motility. We tested the generality of this

result by examining correlation between receptor/ligand shedding and 3D cellular

motility in three EGFR-overexpressing TNBC cell lines (MDAMB231, MDAMB157,

and SUM159PT). We identified significant correlation in all three cases (Fig. C-6).

Because migration behavior and possibly cell signaling can substantially differ be-

tween 2D and 3D environments (Meyer et al., 2012), we compared analyte shedding

in 12Z cultured on either 2D tissue culture plastic or in 3D collagen I matrices. We

found significant agreement between the shedding in 2D versus 3D cultures for those

species included in the Bayesian network analysis, including AREG and MET (Fig.

C-7).

We used a broad-spectrum metalloproteinase inhibitor (BB94) and an EGFR

blocking antibody (mab225) to determine the dependency of shed analyte accumu-

lation on metalloproteinase activity and EGFR endocytosis of autocrine ligand (Fig.

4-3, Fig. C-8). In addition to ligands and receptors, we profiled a panel of MMPs

and tissue inhibitor of metalloproteinases (TIMPs) to investigate enzymes more as-

sociated with extracellular matrix degradation. In both 12Z and MDAMB231, MMP

and TIMP levels remained relatively unmoved by growth factor treatment, generally

increasing only with treatment of the inflammatory cytokine TNFa in 12Z (Figs. C-8

& C-9). In contrast, we observed ligand shedding to be highly dependent on growth

factor signaling and EGFR transactivation in 12Z and TNBC cell lines, suggesting a

positive feedback relationship between signaling activity and EGF-ligand shedding.

We performed PrAMA to examine if protease activity itself depended on EGFR stim-

ulation and found mab225 to decrease ADAM activity (Fig. C-10 & C-11). However,
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Figure 4-2: Bayesian network analysis suggests a central role for ADAM-
10. (A) Spearman correlation among all pairs of variables in Fig. 4-1A-B. (B)
Box plot showing spearman correlation between measurements in Fig. 4-1A and the
observed motility in Fig. 4-1B. (C) Bayesian network analysis integrates data (Fig.
4-1) across all growth factor conditions into a hierarchical structure of directional
probabilistic relationships. For A-B, p-values are calculated from approximation of
the exact permutation distributions.
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Figure 4-3: Metalloproteinase- and autocrine EGFR- dependent super-
natant accumulation. Analyte accumulation was measured in the presence or
absence of the inhibitors BB94 and mab225. Clustering reveals confirmed metallo-
proteinase substrates (purple) and MMPs that are upregulated by TNFa (green).

not all substrate shedding responds identically to mab225 treatment (Fig. 4-3), impli-

cating additional mechanisms of substrate-selectivity such as trafficking and shedding

by multiple proteases (Horiuchi et al., 2007).

Although individual shed analytes significantly correlate with cellular motility in

multiple cell lines, single-variable relationships between shedding and motility fail to

accurately predict motile responses under untested conditions in a sufficiently quan-

titative manner (Fig. C-12). Consequently, we implemented PLSR as a statistical

method to distill the effects of multiple shedding events into key axes of control,

or principal components, that quantitatively combine to describe overall cellular be-
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havior. This modeling approach successfully used patterns of supernatant proteins,

relying most heavily on ligand and RTK shedding, to comprehend multiple features

of motility in 12Z with high accuracy (Fig. C-12). The PLSR approach also ex-

tends to TNBC cell lines, although the models generally contain cell-line specific

parameters. Interestingly, 12Z and MDAMB231 cell lines exhibit sufficiently similar

behavior that we could identify a unified PLSR model to accurately predict motile

response to growth factors of both cell lines together with high accuracy (Fig. 4-4A).

The integrated 12Z/MDAMB231 model describes cell motility as a balance of AREG,

MET, and TNF receptor shedding, with the first principal component (PC-1) captur-

ing overall ADAM proteolytic activity common among the three ADAM substrates

(Fig. 4-4B). In general, however, PLSR model accuracy significantly improves with

the incorporation of additional principal components (Fig. C-14), emphasizing that

ligand and receptor shedding are regulated by and in turn affect multiple axes of

regulation. For the integrated 12Z/MDAMB231 model, the second principal com-

ponent distinguishes AREG and MET as providing competing positive and negative

influences on motility, respectively. The integrated model successfully predicts that

although MDAMB231 exhibit heightened motility in response to HGF, 12Z do not.

AREG is the most significant model variable (Fig. 4-4C), and we find that unlike

with MDAMB231, AREG does not substantially accumulate after HGF stimulation

in 12Z (Fig. 4-4D). To confirm EGFR-transactivation, we found that HGF stimu-

lated p-EGFR in MDAMB231 but not 12Z, and p-EGFR stimulation is dependent on

metalloproteinase activity (Fig. 4-4E). These results demonstrate cell-type specific

autocrine EGFR-transactivation, while also implicating RTK shedding as a significant

modulator of distinct regulatory pathways involved in motility.

AREG-mediated EGFR transactivation sensitizes 12Z cells to kinase in-

hibition: With evidence of AREG-mediated EGFR transactivation, we examined

whether growth factor stimulation sensitized cells to EGFR kinase inhibition. We em-

ployed an endpoint cellular invasion assay as a higher-throughput supplement that

correlates with live-cell migration measurements (Fig. C-15). Briefly, cells were
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Figure 4-4: Integrated ectodomain shedding directs motility in multiple cell
lines. (A) PSLR describes both 12Z and MDAMB231 motility as a function of ana-
lyte shedding with Q2 fitting accuracy above 90%. The training-set of data (circles)

enabled prediction of the 12Z response to HGF (square). (B) Scores (circles) and

loadings (squares) for the PLSR model in A. (C) VIP scores for descriptor variables
corresponding to A-B. Black bars indicate measurements consisting of the difference
in receptor shedding observed with BB94 treatment. (D) HGF-induced AREG shed-
ding is higher in MDAMB231 compared to 12Z, as a fraction of maximum AREG
observed for each cell line across all conditions. (E) HGF stimulates p-EGFR in

a metalloproteinase-dependent manner, in MDAMB231 but not 12Z. Bars indicate
p<0.05, Student's t-test.
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seeded under collagen I gels and exposed to bath application of growth factors after 1

hour pre-treatment with inhibitors. 24 hours after stimulation, we quantified cellular

invasion into the gels (Fig. 4-5A). EGFR kinase inhibition using gefitinib and lap-

atinib (a dual EGFR/HER2 inhibitor) is ineffective at reducing cellular motility in

unstimulated 12Z (Fig. C-16). However, nearly every tested growth factor sensitizes

cells to kinase inhibition (Fig. 4-5B, Fig. C-16). We compared AREG shedding to

gefitinib sensitivity across the growth factor treatment conditions and found signif-

icant correlation (Fig. 4-5B). AREG shedding is particularly enhanced with IGF1

and TNFa treatment, and IGF1 sensitizes cells most to gefitinib compared to other

non-ErbB growth factors. Examination of p-EGFR in IGF1 and TNFa treated cells

confirms EGFR-transactivation under these conditions (Fig. 4-5B-C). In the TNFa

treated cells, EGFR transactivation depends upon autocrine EGF-ligand binding and

can be blocked with mab225 treatment (Fig. 4-5C). Furthermore, TNFa stimulation

enhances the effect of mab225 treatment in reducing cellular motility (Fig. 4-5D).

Treatment with an anti-AREG decoy antibody effectively reduces both basal and

IGF1-induced cellular motility, confirming a specific role for AREG among other po-

tential autocrine EGF-ligands (Fig. C-16). We found the same AREG antibody

also be effective in inhibiting MDAMB231 migration (Fig. C-16). In sum, this data

provides further evidence for the role of AREG-mediated EGFR-transactivation in

invasive cell behavior.

Ligand and RTK shedding is a function of multiple interacting proteases:

Having demonstrated causal relationships between ectodomain shedding and cell

motility, we next examined how shedding is regulated by proteases in these inva-

sive disease examples. We hypothesized that ligand mediated activation may have

complicated the previous network-inference results (Fig. 4-2). Therefore, we repeated

experiments to measure protease activity and ligand shedding, but in the presence of

mab225, across the panel of growth factor treatments. To better investigate recep-

tor shedding, we calculated pairwise correlations both in the presence and absence

of mab225. Consistent with results from the previous Bayesian and PLSR analyses,
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Figure 4-5: EGFR transactivation through AREG shedding sensitizes 12Z
to EGFR inhibition. (A) 12Z cell nuclei positions reveal EGF-stimulated migration
into collagen gels, as a function of distance from the plate-bottom. (B) In 12Z, growth-
factor stimulated AREG shedding (left axis) and p-EGFR levels (right axis) correlate
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in untreated 12Z. (C-D) TNFa stimulates EGFR phosphorylation (C) and motility
(D) in an EGFR-ligand dependent manner. In D, cellular-motility was calculated
using principal components analysis of time-lapse confocal microscopy measurements.
Scores (circles) and loadings (squares) are plotted (see Fig. C-3 for details).
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which did not include mab225 treatments, we identified strong correlation between

ADAM-10 activity and its known substrates, HER2 and MET (Fig. 4-6A). ADAM-

17 activity correlates with shedding of TNFR1, a known substrate. However, we

generally found relationships between protease activities and substrate shedding to

be overlapping, suggesting that cross-talk and coordinated protease regulation could

play a role. We constructed PLSR models to quantitatively describe AREG shedding

as a function of observed proteolytic activities (activities described in Fig. C-10 & C-

11), and found that incorporating measurements of multiple protease activities, most

importantly ADAM-10 and ADAM-17, greatly improves model accuracy (Fig. 4-6B,

Fig. C-17). Direct inhibition of ADAM-10 and ADAM-17 proteases using siRNA

treatment confirms a role for both enzymes (Fig. 4-6C, Fig. C-17). In fact, we ob-

served that both ADAM-10 and ADAM-17 knockdown significantly affects shedding of

all of the analytes measured, although ADAM-17 knockdown appears to yield a more

significant reduction in substrate shedding (Fig. 4-6C, Fig. C-17). Direct examina-

tion of specific protease activities in the siRNA-treated conditions reveals ADAM-17

siRNA to also affect ADAM-10 activity (Fig. 4-6D) but not expression (Fig. C-

18), which may contribute to overlapping knockdown effects on endogenous substrate

shedding. Consistent with Bayesian and PLSR analyses, ADAM-10 knockdown sub-

stantially reduces the motility of both 12Z and MDAMB231 lines (Fig. 4-6E). In

contrast, ADAM-17 knockdown does not show an effect in 12Z, although it does in

MDAMB231, consistent with previous cell-type dependencies possibly related to non-

enzymatic function (Simpson et al., 2008; Maretzky et al., 2011). Taken together,

these data demonstrate significant cross-talk between ADAM-10 and ADAM-17 pro-

teolytic activities, while also showing a substantial and consistent role for ADAM-10

in governing cellular motility.

Sheddase activity is regulated by multiple upstream signaling activities:

Given that ADAM-10 plays a central role in cellular motility and is governed by mul-

tiple phosphosignaling pathways, we next interrogated the effects of direct kinase in-

hibition on motility. We targeted key signaling pathways identified from the Bayesian
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Figure 4-6: PrAMA and siRNA reveal cross-talk among protease-substrate
interactions. (A) Pearson correlation between protease activity and shedding of
analytes, including experiments with mab225 to block ligand-EGFR interaction. (B)
PLSR describes AREG accumulation in the presence of mab225 as a function of
ADAM activities, with Q2 accuracy > 90%. (C) Both ADAM-10 and ADAM-17
knockdown reduce EGF-stimulated AREG shedding. (D) Basal 12Z ADAM activity
was measured using PrAMA. (E) ADAM-10 knockdown blocks unstimulated invasion
in both 12Z and MDAMB231, while ADAM-17 only reduces invasion in MDAMB231.
Asterisks indicate p<0.05.
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network analysis and found two distinct patterns of inhibitor efficacy: p38 and Jnk

inhibitors strongly reduce 12Z motility under all growth factor treatment conditions,

and in contrast, Mek and P13K inhibitors demonstrate context-dependent efficacy

(Fig. 4-7A). While Mek and P13K inhibitors effectively reduce EGF and TGFa stim-

ulated motility, they actually enhance motile responses to NRG1b and HGF. We

further tested context-dependency using more selective Mek and Jnk inhibitors and

several additional cell lines. In general, the patterns of context-dependent inhibitor

efficacy proved consistent: p38 and Jnk inhibition is effective under both EGF and

NRG1b/HGF stimulated environments, whereas Mek and P13K inhibition is effec-

tive only for EGFR-driven motility (Fig. 4-7B, Fig. C-19). We hypothesized that

the two classes of inhibitors may differentially inhibit ADAM activity, so we directly

measured protease activity in 12Z cells treated with either Mek or Jnk inhibitors.

However, the two sets of inhibitors behaved similarly in blocking ADAM-10 activity

(Fig. 4-7C), agreeing with the previous Bayesian network analysis. We analyzed the

effect of multiple inhibitors on receptor and ligand shedding to identify potentially

substrate-specific effects and found that inhibitors lack significant substrate-specificity

and broadly reduce shedding of all ADAM-substrates (Fig. 4-7D).

Furthermore, we examined phosphoprotein levels of ten intracellular signaling

proteins after NRG1b stimulation, in the presence of Mek or Jnk inhibitors. We im-

plemented partial least squares discriminant analysis (PLS-DA) to identify the most

significant differences in signaling network state between the two inhibitor treatments

(Fig. 4-8A-B, Fig. C-20). This analysis showed that compared to Mek inhibitors,

Jnk inhibitors more effectively reduce p-cJun, unsurprisingly, but also p-p38. In fact,

Mek inhibition actually increases p-p38 in some cases (Fig. 4-8C).

To determine if those signaling changes arise from the concomitantly reduced

ADAM activity, we measured p-p38 and p-c-Jun in the presence of BB94 and found

that protease inhibition alone is sufficient to increase p-p38 and p-c-Jun (Fig. 4-9A).

To explain this result, we measured phosphorylation of full-length RTK substrates of

the ADAM sheddases. Protease inhibition increases p-HER2 and p-HER4 levels in

12Z (Fig. 4-9B), and we confirmed very low but significant levels of metalloproteinase-
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ADAM activity. (A) The effect of kinase inhibition on growth-factor induced 12Z
motility. (B) Inhibitor sensitivities in multiple cell lines (12Z, MDAMB231, and
SUM159PT) reveal distinct Mek/PI3K (blue) and p38/Jnk (red) context dependen-
cies, fully labeled in Fig. C-19 . (C) PrAMA suggests Mek (blue), Jnk (purple), and
metalloproteinase (BB94) inhibitors block basal ADAM-10 activity. (D) Signaling
inhibitors block shedding of multiple ectodomains, measured 24 hours after inhibitor
treatment in the presence of mab225 or EGF.
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increased p-HER2 and p-HER4 in 12Z. (C) NRG1b-induced p-HER2 increases with
Mek (blue) and Jnk (purple) inhibition. In subplots A-C, signaling was measured
5min after growth factor stimulation, and 1hr after inhibitor pre-treatment. Asterisks
denote p<0.05.

dependent HER4 shedding in 12Z (Fig. C-21). Finally, we investigated the effect of

Mek and Jnk inhibition on NRG1b-stimulated p-HER2, and found inhibitor treat-

ment causes increased p-HER2 levels in response to NRG1b treatment (Fig. 4-9C).

We additionally confirmed that BB94 and U0126 also lead to increased p-HER2 and

p-HER4 levels in MDAMB231 (Fig. C-21). Overall, these data show that the prote-

olytic shedding of multiple RTKs contributes to downstream Jnk and p38 signaling,

which adds to EGF-ligand shedding in governing cell motility and context-dependent

inhibitor sensitivity.

Clinical peritoneal fluid samples suggest dysregulated ErbB-signaling and

amplified ADAM-10 activity with endometriosis: Finally, to test for relevance

of our in vitro findings to in vivo pathophysiology in human patients, we analyzed sur-

gically obtained peritoneal fluid (PF) from patients with and without endometriosis.
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PF comprises a heterogeneous mixture of leukocytes, cell debris, and soluble proteins

that interact with endometriotic lesions. We analyzed clarified PF samples using a

targeted proteomics approach that utilized roughly the same reagents employed in

12Z supernatant profiling experiments. We assessed total protein concentrations us-

ing multiplexed and traditional enzyme-linked immunosorbent assays (ELISAs) and

compared these measurements to previously reported proteolytic ADAM and MMP

activities from the same patient samples (Chen et al., 2012) (Fig. 4-10A). Due to

the large number of highly correlated variables measured in each patient sample, we

decomposed the protein level and activity measurements into an interpretable set of

principal components using principal components analysis (PCA). This unsupervised

statistical method describes patient samples in terms of latent variables that capture

the combined values and covariation of individual protein measurements. The first

and third principal components best capture differences between control and disease

PF samples (Fig. 4-10B; Fig. C-22). Interestingly, disease samples fall into two

distinct clusters in principal-component space, with one cluster defined by relatively

high levels of ADAM-10 activity and high concentrations of ADAM-10 substrates in-

cluding AREG, HER2, and HER4. In contrast, the second cluster of disease samples

exhibits relatively low ADAM-10 activity, higher levels of ADAM inhibitors (TIMPs),

and higher levels of ADAM-9 activity, which is not inhibited by TIMPs. The control

samples form a non-overlapping cluster between the two disease clusters. Although

the sample size is small, PCA results suggest multiple disease states in endometriosis

that are defined principally by dysregulation of ADAM-10 activity and correspond-

ing changes in ADAM-10 substrate accumulation. We then used supervised PLS-DA

to classify patient samples as falling into one of the three patient clusters based on

a minimal number of protein measurements. PLS-DA shows that combined mea-

surement of ADAM-9 activity and three ADAM-10 substrates (HER2, AREG, and

HB-EGF) can sufficiently classify patients with high (>95%) accuracy (Fig. 4-11A).

We also used PLS-DA to classify patient samples into just two groups, disease and

control, and observed that combined measurements of MMP-2 activity along with

MET and TIMP-1 levels sufficiently classify samples as either disease or control with
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high (>95%) accuracy (Fig. 4-11B). We analyzed the simple ratio of MET to TIMP-1

levels for a more interpretable result, and observed a significant increase with disease

(Fig. 4-11C). To identify the likely cellular source of increased MET shedding in

the peritoneal fluid samples, we analyzed various populations of cells from healthy

and endometriotic patients, including eutopic endometrial fibroblasts and peritoneal

fluid mononuclear cells (PFMCs). Endometrial fibroblasts, which generally express

significant MET (Yoshida et al., 2004), shed similar levels of MET compared to the

12Z (Fig. C-24). However, the PFMCs shed only 10% of MET by comparison (Fig.

C-25). We used PLS-DA to identify key differences in sheddase behavior between

the endometriotic 12Z and three other TNBC cell lines, and found that 12Z are most

distinguished in showing substantial EGF- and TGFa-induced MET shedding (Fig.

4-11D; Fig. C-26). Experiments with primary endometrial fibroblasts demonstrate

that EGF stimulates dual EGF-ligand and MET shedding in other relevant endome-

trial cell populations (Fig. C-24 & C-25). Therefore, both endometriotic legions

and endometrial fibroblasts represent significant sources of total MET observed in

the peritoneal fluid, particularly in those patients with elevated ErbB ligand present.

Consequently, the ratio of MET to TIMPI may be a good surrogate marker of ADAM-

10 activity on endometrial and endometriotic tissue. Overall, these results suggest

that joint dysregulation of ADAM-10 activity, ErbB-signaling, and corresponding

RTK shedding play an important role in disease progression.

Combined MET-Mek inhibition blocks motility across multiple growth

factor contexts: In light of the clinical evidence for enhanced MET shedding in

endometriosis patients, we investigated the cellular consequences of MET shedding in

12Z. Similar to HER2 and HER4, we found that direct inhibition of metalloproteinase

activity caused enhanced accumulation of both total and phosphorylated MET fol-

lowing HGF and NRG1b treatment (Fig. 4-12A; Fig. C-27). Given our evidence that

protease inhibition can enhance MET signaling and that Mek inhibitor resistance in

part arises from reduced ADAM activity, we hypothesized that Mek insensitivity in

the presence of HGF and NRG1b is mediated by enhanced MET signaling. Using
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Figure 4-10: Clinical PF samples reveal dysregulated ErbB-driven ADAM-
10 activity. (A) PF samples from patients with and without endometriosis were
profiled for protein levels and protease activities. (B) PCA scores and loading plot
decomposes patient samples along principal components of covariation, and separates
samples into three non-overlapping clusters (fully labeled in Fig. C-22).
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Figure 4-12: p-MET mediates Mek-resistance via reduced ectodomain shed-
ding. (A) Western blot densitometry shows that BB94 increases total, full-length
MET (x-axis) and pY-1349 (y-axis) in response to HGF and NRG1b. Representa-
tive gel images from replicate membranes are shown in Fig. C-27. (B-C) 1hr pre-
treatments with Mek and MET inhibitors reduce 12Z migratory response to growth
factor stimulation in the collagen I invasion assay. (C) Combination MET/Mek in-
hibitor treatment exhibits greater efficacy than either treatment alone. Plot corre-
sponds with Fig. 4-7B.

foretinib as an inhibitor of MET (and several other ADAM substrate RTKs, including

VEGFR-2), we found that combination Mek/MET inhibition was more effective than

either inhibitor alone, under multiple growth-factor contexts in 12Z (Fig. 4-12B-C).

Overall, these results confirm the importance of alternative RTK signaling in the

context of Mek inhibition and reduced RTK shedding.

4.3 Discussion

Understanding systematic regulation of ectodomain shedding has been challenging

to accomplish on a component-by-component basis for multiple reasons. The web of

protease-substrate interactions involves significant overlap and cross-talk: proteases

(a) degrade potentially hundreds of often shared substrates (Butler et al., 2010); (b)

interact with and regulate each other through direct proteolysis (Moss et al., 2011);
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and (c) respond to and modulate signaling pathways (Xu et al., 2010). These multi-

ple layers of complexity compel quantitative and multivariate approaches, and here

we employ integrative experimental/computational methodologies to understand how

multiple ADAM proteases interact with signaling networks to direct overall cellular

behavior.

In this work we combine quantitative experimental measurements with network-

inference methods to build computational models of signaling-mediated protease reg-

ulation and motility. This approach successfully identifies canonical biochemical in-

teractions, for example between Jnk and c-Jun (Fig. 4-2A), while simultaneously

providing unique insight into mechanisms of sheddase regulation. Shedding is gen-

erally considered a function of both protease catalytic activity and substrate avail-

ability, yet the balance of protease and substrate regulation remains unclear (Dang

et al., 2011). Here we directly assess proteolytic turnover in a relatively "ligand-

independent" manner using the PrAMA assay and find that substrate shedding gen-

erally does not precisely correlate with individual protease activity measurements,

but rather represents the combined action of multiple proteases (Fig. 4-6A). Un-

measured substrate-specific effects such as endocytic trafficking likely impact overall

shedding (Horiuchi et al., 2007). Nevertheless, statistical models accurately predict

AREG shedding, for example, as a function of multiple protease activities including

ADAM-10 and ADAM-17, without requiring measurement of AREG trafficking (Fig.

4-6B). siRNA knockdown of ADAM-10 and ADAM-17 confirm the dual dependency

of AREG and indeed multiple other substrates on both ADAM-10 and ADAM-17 ac-

tivities (Fig. 4-6C-D), in agreement with previous work (Le Gall et al., 2009). These

results demonstrate how protease activities dynamically interact with multiple sig-

naling pathways to govern overlapping ectodomain shedding events, and emphasize

the difficulty in selectively manipulating the proteolysis of specific substrates through

kinase and protease inhibitors.

Network-inference results suggest a significant role for AREG in promoting cellular

motility (Fig. 4-2B), which has been relatively unexplored in endometriosis. Previous

work has shown that the stability of localized intracellular signaling by sustained au-
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tocrine activity promotes persistent motility (Maheshwari et al., 2001). Accordingly

in this work patterns of ligand shedding correlate most closely with cellular persis-

tence compared to other metrics of general motility (Fig. C-12). In endometriotic

cells we demonstrate that AREG shedding mediates EGFR transactivation from mul-

tiple stimuli, which plays a quantitative role in determining the migratory response of

cells. Comparison of EGF-ligand shedding in the presence of either mab225 or satu-

rating exogenous EGF reveals that EGFR autocrine activity is sustained in a positive

feedback loop through the EGF-induced activity of multiple ADAMs (Fig. C-11), and

we identify multiple cell types including endometrial fibroblasts and PFMCs that may

contribute to this feedback through EGF-ligand release (Fig. C-24 & C-25). ErbB

activity significantly impacts cellular sensitivity to ErbB kinase inhibitors, and in this

work we find cytokine and growth factor stimulation sensitizes endometriotic cells to

gefitinib treatment through induced AREG shedding (Fig. 4-5B). In breast cancer,

pre-clinical studies have shown that ADAM-10 and ADAM-17 inhibitors reduce EGF-

ligand shedding and synergize with EGFR-kinase inhibitors to reduce tumor growth

in xenograft models (Liu et al., 2006; Witters et al., 2008).

Although ADAM involvement in ErbB-ligand shedding makes them compelling

drug targets in ErbB-driven disease, the biological consequences of ADAM-mediated

RTK shedding continue to be poorly understood. In HER2+ breast cancer, ADAM-10

inhibition reduces HER2 shedding, which generally has been described as beneficially

limiting the accumulation of the membrane-bound HER2 fragment (p95HER2) that

remains after ectodomain proteolysis (Xia et al., 2004). However, it remains unclear

how p95HER2 activity compares to full-length HER2, especially after ligand stim-

ulation, and soluble HER2 ectodomain can inhibit signaling (Ghedini et al., 2010).

For other RTKs including HER4 and MET, shedding likely reduces RTK signaling

at the cell surface (Naresh et al., 2006; Foveau et al., 2009). TIMP-1 inhibition of

MET shedding in breast cancer enhances MET signaling and increases liver metas-

tasis (Schelter et al., 2011). In this work we demonstrate that cellular motility is

an integrative process that depends not just on AREG shedding, but also on the

combined and quantitative effect of multiple proteolytic reactions, including RTK
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shedding. We find that ADAM-mediated receptor shedding downregulates HER2,

HER4, and MET signaling. Reduced ADAM activity and RTK shedding, either

through metalloproteinase inhibition or indirectly through signaling pathway inhibi-

tion, leads to accumulation of intact RTKs on the cell surface. RTK accumulation

potentiates the signaling response to HGF and NRG1b, and causes enhanced RTK

phosphorylation and downstream activation of Jnk and p38. Consequently, Mek and

P13K inhibitors actually enhance the motile response of endometriotic and breast

cancer cells to NRG1b and HGF treatment by inhibiting RTK shedding while failing

to block the compensatory p38 and Jnk activity that results from signaling of the

un-shed RTKs. Previous studies implicate Jnk and p38 in endometriosis and cancer

(Yoshino et al., 2004; Wagner et al,. 2009), and our results show that Jnk and p38

inhibitors effectively reduce ADAM-activity while also blocking the compensatory

signaling and motility regardless of the growth factor environment. Overall, these

results have significant implications for the design of combination therapies involving

the numerous signaling pathways that affect ADAM activity, and complement previ-

ous studies that stress the importance of Jnk/p38 pathways in cell migration (Huang

et al., 2003).

The emergence of secondary resistance to targeted kinase inhibition represents a

major obstacle in developing successful therapeutics, and in this work we identify a

novel ADAM-mediated mechanism of rapidly acquired inhibitor resistance that has

potential applications for a variety of kinase and protease inhibitor therapies. Al-

though Mek and P13K inhibitors show efficacy in TNBC xenograft mouse models

(Hoeflich et al., 2009), secondary resistance to Mek inhibitors has been well docu-

mented and arises from upregulation of RTKs that are known ADAM substrates,

including PDGFRb, MET, and Axl (Duncan et al., 2012). Furthermore, the presence

of growth factors that activate known ADAM-substrate RTKs, for example MET, fa-

cilitates the emergence of resistant populations (Turke et al., 2010). Consistent with

these results, here we present that Mek inhibitor resistance arises through multiple

upregulated RTKs, many of which have been implicated in other reports including

MET and HER2. In this work we demonstrate that proteases play a role in the
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acute upregulation of receptor levels, and this is particularly relevant in the presence

of growth factors that have been previously implicated as chemoprotective and pro-

metastatic microenvironmental cues (Turke et al., 2010; Wilson et al., 2012; Goswami

et al., 2005). In endometriosis, kinase inhibitors are in the earlier stages of testing and

acquired inhibitor resistance is not yet a clear problem. Nonetheless, we demonstrate

that the same logic of combination therapies can be equally successful in our in vitro

model for overcoming compensatory signaling pathways that arise secondarily from

inhibitor treatment.

Analysis of clinical samples from endometriosis patients helped demonstrate the

relevance and inherent overlap of ADAM-mediated proteolysis and RTK signaling

dysregulation in disease progression. Although many previous studies have examined

ErbB-signaling and metalloproteinase levels individually (Sec. C.1), here we present

a multivariate analysis of systemic interaction between ErbB-ligands, RTK shedding,

and metalloproteinase dysregulation. Furthermore, we use measurements from a re-

cently developed microfluidic device to analyze protease activity directly and relate

these observations to corresponding protease substrate levels observed in the same

patient sample (Chen et al., 2012). Clinical results confirm many of the observations

made in vitro, for example demonstrating significant correlation between ADAM-10

activity and accumulation of known ADAM-10 substrates such as HER2 and AREG

(Fig. C-23). Interestingly, we find that disease samples comprise two distinct clusters

defined in large part by the balance between ADAM-9 and ADAM-10 activities (Fig.

4-10B). ADAM-10 is a known ADAM-9 substrate, and ADAM-9 has been observed

to downregulate ADAM-10 activity on the cell surface (Moss et al., 2011). Common

among both clusters of disease samples, however, was the observation that the ratio

of MET shedding to TIMP-1 concentration increased with endometriosis, thereby

confirming the relevance of MET signaling in designing therapeutic strategies that

may impact ADAM activity (Fig. 4-11C). Previous work has shown TIMP-1 to in-

hibit the establishment of endometriosis in a mouse model, and these effects were

primarily assumed to be MMP-related (Bruner et al., 1997). However, in this work

we demonstrate the critical role of ADAM-10 in mediating in vitro cellular invasion,
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Figure 4-13: Ectodomain shedding exerts pro- and anti- migratory effects
depending on context. Left: Both direct EGFR stimulation and indirect EGFR
autocrine transactivation drive motility in an Erk/Akt dependent manner. High
ADAM activity leads to positive EGFR feedback signaling via AREG release, and
simultaneously leads to sustained HER2, HER4, and MET shedding. Center: di-
rect inhibition of ADAM activity using protease inhibitors, or indirect ADAM down-
regulation through Mek inhibition, leads to reduced RTK shedding and subsequently
enhanced response to NRG and HGF through Jnk and P38 pathways. Right: Suc-
cessful inhibition of cellular migration occurs through either direct inhibition of the
P38 or Jnk pathway, or through combination kinase inhibition of Mek and MET.

and our clinical evidence associates TIMP-1 with ADAM-10 activity via its relation

with MET shedding.

Overall, we have presented an integrative paradigm for analyzing complex net-

works of protease activities in concert with signaling pathway activities that operate

both downstream and upstream of the protease activities via ligand/receptor shed-

ding feedback (Fig. 4-13). We have demonstrated how ectodomain shedding serves

as an integrative layer of cellular signaling that critically influences how cells respond

to environmental cues and therapeutic interventions. Full appreciation of the many

competing roles of ADAM activity be will essential for understanding their role in

development and disease, and has wide implications for designing therapeutic strate-

gies.

4.4 Materials & Methods

Full description of the materials used in this work can be found in Sec. C.1. Briefly,

the 12Z cell line was generously provided by Anna Starzinski-Powitz (University of
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Frankfurt) by way of Steve Palmer (EMD Serono). Throughout the paper, phospho-

protein and supernatant protein measurements were all measured using commercially

available ELISAs (often Luminex bead-based) from Bio-Rad, EMD4Biosciences, Mil-

lipore, and R&D Systems, with the exception of measurements of MET phosphoryla-

tion by western blot (Fig. 9A). Throughout the paper, all experiments were performed

at least twice, from separate biological samples, and all reported error bars indicate

standard error of the mean (S.E.M.) unless otherwise stated.

For live-cell 3D migration assessment, cells were labeled with a cell-tracker dye

(CMPTX; Invitrogen), mixed with DMEM+2.2mg/mL pH-neutralized collagen I (BD

Biosciences) at 500,000 cells/mL, placed in a glass-bottom multiwell plate (MatTek;

Ashland, MA), polymerized for 30 min. at 37"C, and then overlaid with full serum

media overnight. Cells were stimulated four hours before imaging on an environment-

controlled Nikon TE2000 microscope. Image stacks of 70 - 3um slices were obtained

every 60 min. for 16 hrs. Cells were tracked using Bitplane Imaris (South Windsor,

CT). Each of the cell tracks were fit to a random walk model to calculate the random

motility coefficient (Kim et al., 2008). For endpoint invasion assays and 3D shedding

assays, unlabeled cells were mixed with DMEM+collagen on ice, immediately placed

in a standard 96-well tissue culture plate, spun for 5min at 300g, and polymerized for

30min at 370C. Gels were then bathed in 50ul full serum media containing inhibitors

for 60mins, followed by the addition of 50ul full serum media containing growth

factors. After 24hr incubation, supernatant was collected, clarified, and frozen for

later analysis. Gels were fixed with 1% PFA, stained with YO-PRO-1 (Invitrogen),

and imaged at 5X with a CARVII confocal imager (BD) every 3um. Images were

analyzed using a modified spot finding algorithm (Santella et al., 2011) in Matlab.
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Chapter 5

Conclusions and Future Directions.

This thesis has focused on applying a multivariate, quantitative, and systems-level

approach to understanding how extracellular protease networks are regulated in the

invasive diseases of endometriosis and breast cancer. In more well-studied and ex-

perimentally tractable biological systems, for example mitogenic kinase networks,

multivariate and computational approaches have been employed over the last 5-10

years to elucidate "high-level" principals that emerge as an integrated function of

interconnected, cooperative, and recursive biochemical reaction networks (Ideker et

al., 2003; Liu et al., 2009) . As recent examples, these include an understanding

of how complex patterns form during development via cellular communication (Lem-

bong et al., 2009); how pharmacology is affected by networks of biochemical reactions

(Kleiman et al., 2011); how complex oscillations may arise among signaling proteins

(Shankaran et al., 2009); and how biochemical noise may stabilize population dynam-

ics (Miller et al., 2012b; Acar et al., 2008). In contrast to intracellular signaling, the

tools to study metalloproteinase (MP) biology are less well developed, the underly-

ing biological complexity has only recently begun to be appreciated, and very few

systems-level studies of extracellular protease biology have been successfully under-

taken. Extracellular proteases represent a significant class of drug targets, and many

difficulties in clinically targeting them relate to a poor understanding of integrated,

network-level biology (Dufour et al., 2013). Although the term "systems-biology" has

been applied to MP research in the past (Overall et al., 2006), it has generally been
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used to describe -omic studies that examine broad changes in proteolysis across many

proteins, but without delving into the biological consequences of feedback, cross-talk,

and cooperative interactions. Therefore, a central aim of this thesis has been to bring

the types of quantitative, multivariate tools and approaches that have been successful

in studying cell-signaling networks to bear on MP biology. The first three chapters of

this work are engineering oriented, and describe conceptual frameworks (Chapter 1)

and experimental methodologies (Chapters 2-3) as foundational tools with which the

science is approached in Chapter 4. Although these methods have proved useful in

Chapter 4 and elsewhere (for example, Moss et al., 2011), there remains much room

for future development of experimental approaches, in particular.

5.1 Protease activity-based assays.

Because MPs are extensively post-translationally regulated, studies aimed at under-

standing their regulation inevitably rely upon assessment of protease activity rather

than mere expression. Unfortunately, measurement of specific activities has been

challenging, and a large portion of this thesis (Chapter 2-3) is aimed at developing

methods to address this issue. The PrAMA technique developed in Chapter 2 allows

for non-invasive, real-time, multiplexed assessment of proteolytic activities on live

cells (Miller et al., 2011; Chen et al., 2012). However, this method has shortcomings

that can be addressed through multiple promising avenues.

Live-cell protease activity using FRET-substrates: Live-cell assessment of

protease activity is especially critical for observing rapid dynamics while minimally

disturbing regulatory factors related to trafficking, non-covalent protein interactions,

and post-translational modifications such as phosphorylation or oxidation. PrAMA

faces four main limitations in live-cell application: (a) the soluble FRET-substrates

for PrAMA do not describe spatially localized protease activity; (b) the FRET-

substrates are by nature non-specific, and PrAMA inference accuracy suffers as a

result; (c) sensitivity issues limit the temporal resolution and cell-culture applica-
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tion, typically requiring dense cultures of highly proteolytic cell populations; and (d)

soluble FRET-substrates may not reflect proteolytic activity on membrane-bound en-

dogenous substrates. The following sections provide possible tactics for addressing

these four issues.

To generate FRET-substrates that are more specific for particular enzymes of

interest, substrates could be optimized using phage display (Chen et al., 2002), syn-

thetic peptide libraries (Lim et al., 2009), or through conjugation to highly-specific

affinity reagents like antibodies. FRET-substrate sensitivity could be enhanced with

more efficient fluorophores and ratiometric imaging (Preus et al., 2012), or by spatially

clustering multiple FRET-substrates for local signal amplification. Spatial clustering

could be performed within a polymer (for example similar to RGD clustering; Irvine

et al., 2001) or through direct conjugation to micro-particle beads (Carregal-Romero

et al., 2013).

Strategies for identifying localized protease activity on live-cells typically involve

substrate-immobilization to a matrix scaffold (Packard et al., 2009). One of the most

well-known implementations of this method involves conjugating FRET-quenched

fluorophores to collagen-I, which then become de-quenched upon collagenolysis. Gel-

embedded substrates, including DQ-collagen, have been routinely used for in situ zy-

mography, which can be performed on frozen or gently fixed tissue (Galis et al., 1995).

Long incubation times with relatively steady-state tissue allow sufficient proteolysis to

occur for signal detection. These approaches provide good sensitivity and localization,

but much like the soluble PrAMA substrates, fail to describe the activity of any spe-

cific protease. Alternatively, multiple FRET-peptides could be employed in combina-

tion using different colored fluorophores. PrAMA inference could then be used to de-

convolve the cleavage rates of multiple substrates, and inference algorithms could take

localization into consideration. Another promising avenue may be to spatially segre-

gate FRET-substrates within a matrix. Embedding FRET-substrates within spatially

confined and identifiable regions of a scaffold would allow for substrate-multiplexing

without necessitating multiple fluorophore colors (DeForest et al., 2012). Moreover,

spatial segregation could be used to enhance protease specificity. Substrates could
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be buried within a matrix to segregate cell-surface proteases from secreted. Phys-

iochemical barriers such as restricted matrix pore-size, pH, or hydrophobicity could

selectively modulate transport and catalytic efficiencies of various proteases. Overall,

FRET-substrate immobilization represents a promising approach for non-invasively

detecting protease activity on live-cells, yet faces specificity and sensitivity hurtles.

Membrane-bound substrate proteolysis: Direct examination of endogenous,

membrane-bound substrate proteolysis is generally a more biologically relevant indi-

cator of protease activity compared to observing FRET-substrate cleavage, insofar

as the endogenous substrates are themselves regulated and can affect downstream

biology. Chapter 4 of this thesis, along with other reports (Herrlich et al., 2008;

Dang et al., 2011; Inoue et al., 2012), have demonstrated how directly monitoring

membrane-bound substrate cleavage through detection of soluble-fragment accumu-

lation or using cell-surface immunostaining can be a valuable metric of protease activ-

ity. However, data in Chapter 4 and elsewhere (Dang et al., 2011) also emphasize that

membrane-bound substrates exhibit the same issues of non-specificity as the soluble

FRET-substrates: endogenous or membrane-bound substrate shedding often cannot

be uniquely attributed to a specific protease, and may also be a function of substrate-

specific modifications such as trafficking. In contrast, soluble FRET-substrates pro-

vide the relatively non-invasive (that is, not requiring transgenic substrate expression)

examination of active protease concentration in a manner that is essentially indepen-

dent of endogenous substrate regulation. Membrane-bound substrates are especially

useful for understanding substrate-specific regulatory pathways. Moreover, they en-

able single-cell cleavage detection, and therefore support shRNA library screening

and investigations of intercellular heterogeneity. Future directions will likely focus

on simultaneously measuring proteolysis of multiple membrane-bound substrates to

understand their specific regulation and integrated downstream effects.

Assessing protease activity in fixed or lysed cells and tissues: Both sen-

sitivity and specificity can be improved in more invasive experimental approaches.
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Protease inhibitors generally target the enzyme active site and can be tagged to

function as activity-based probes (ABPs) for a variety of applications, including fluo-

rescence microscopy for subcellular resolution of active enzyme concentrations (Keow

et al., 2012). In general, however, these probes are non-specific among closely related

enzymes, and future directions for this technology involve improvements to probe

specificity. Antibody-based approaches have been demonstrated as promising for

specifically binding active protease (Tape et al., 2011), and small molecule protease

inhibitors have largely improved in specificity over the last decade (Devy et al., 2011).

Future work may involve leveraging antibody specificity with active-site probes using

fluorescence co-localization or proximity ligation. ABPs can be used to purify active

proteases for downstream analysis using mass spectrometry or various immunoassays.

Future directions for this approach will likely involve improved ABP reagents for re-

duced cross-reactivity and greater purification capabilities for MS/MS applications

(Sieber et al., 2006). Although not specific to proteases themselves, ongoing work

continues to improve the breadth, quantitation, reproducibility, and throughput of

MS/MS based proteomic methods. For more targeted assays, antibodies have been

successfully used to immunopurify proteases for subsequent activity-based analysis

with either ABPs or FRET-substrates, and future directions for this approach will

likely focus on enhanced throughput, sensitivity, and multiplexing (for instance by

using microfluidics or suspension array technology).

Assessing protease activity in microfluidic platforms: Chapter 3 of this thesis

describes how the large sample-requirement of PrAMA can be overcome using droplet-

based microfluidics; however, several promising improvements and alternatives to this

solution exist. One of the chief limitations to the microfluidic PrAMA lies in the small

size of its droplet library. In Chapter 3 we construct droplet libraries comprising up

to eleven uniquely identifiable droplet-types based on their optical bar code. This size

is currently restricted due to a limited number of optically-discernible dyes and dye-

concentrations, along with the manual and serial construction of each type of droplet.

Therefore, future directions will likely be aimed at generating droplet libraries in an
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automated, highly parallelized fashion. For example, libraries could be pre-assembled

on a separate device that simultaneously loads multiple reaction mixtures from a mi-

crotiter plate (for example, as proposed in Guo et al., 2012), or on a single integrated

chip with the biological-sample injector. Regardless of the strategy for droplet gener-

ation, large libraries will require sophisticated droplet barcoding schemes. Integrating

droplet library generation on-chip with sample-injection would support confining the

droplet library to single-file within a microfluidic channel, subsequently allowing for

positionally encoded droplets. As another option, different types of droplets could be

identified by encapsulated microparticles (for instance, Pregibon et al., 2007), which

has the potential to support the unique identification of over 1000 types of droplets.

Ultimately, a larger droplet library would allow for additional protease substrates and

inhibitors to be combined at varying concentrations for a single biological sample. As

a result, more protease activities could be measured with greater accuracy; inhibitor

or drug combinations could be tested for synergistic effect; and dose-response curves

for various inhibitors could be calculated for a given biological sample. Alternative

microfluidic platforms have begun to be commercialized for small-volume combina-

torial reactions, and these show promise (for instance, platforms from Fluidigm and

Wafergen). However, the droplet-based approach exhibits the greatest promise for

monitoring rapid reaction kinetics and precisely controlling fluid mixing.

5.2 Network-level aspects of protease regulation.

In addition to developing protease activity assays, this thesis focuses on applying

them to understand and target sheddase activity in disease. This work puts forth,

as a proof-of-principle, how a systems-level "cue-signal-response" approach to under-

standing MP regulation can lead to novel insights and therapeutic strategies. Many

future directions exist for the application of systems-biology tools to study and target

extracellular proteases, and we highlight several in the following section.
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The biological chemistry of protease regulation: At a fundamental level, work

continues to be done in mapping out the known web of biochemical interactions among

proteases, their inhibitors, and their endogenous substrates. Although the last decade

has seen progress in this regard, the catalog of basic enzyme-substrate relationships

still remains incomplete. Furthermore, biochemical interactions have increasingly

become acknowledged as complex: cleavage reactions can inactivate, modify, or ac-

tivate their substrates in unexpected manners. From a forward-engineering systems-

biology perspective, a basic registry of biochemical reactions among proteases needs

to first be determined and understood before mechanistic models of protease networks

can properly be constructed. On the other hand, the experiments needed to under-

stand nuanced biochemical relationships among proteases can be extremely time- and

resource- intensive, and reverse-engineering methods from systems-biology are likely

to be useful tools for identifying critical components in the protease network to study.

Network-level modeling approaches may be especially important for understanding

and identifying higher-order protease interactions that involve multiple protein com-

ponents or pathways.

Beyond identifying individual biological components, network-level approaches to

protease biology may be particularly useful in elucidating mechanisms of protease

regulation. Multiple biological processes cooperatively interact to influence protease

activity, including trafficking, post-translational modification (for example phospho-

rylation), non-covalent dimerization, and substrate availability. Analogous to studies

exploring growth-factor receptor signaling and trafficking (Lauffenburger et al., 1996),

quantitative computational modeling will likely be helpful in assessing how different

biochemical processes related to proteases interact to impact overall behavior. In

many cases, the basic biochemical components and governing equations that describe

certain key proteases may be well known, and yet their functional behavior as an inte-

grated network of biochemical reactions has not been well understood. As an example

of this, network-biology based approaches are well suited to help explain, for instance,

the role of stoichiometry among multiple interacting proteases and their endogenous

inhibitors, which generally have overlapping enzymatic or inhibitory specificities, re-
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spectively. Mathematical modeling may be especially critical to understanding pro-

teases and their interaction with kinase signaling networks, where complex dynamics

and feedback mechanisms play a significant role. This thesis explores the role of

ligand and receptor shedding feedback on kinase signaling, and future studies may

investigate these relationships in much greater detail, with different proteases and

substrates, and in different disease models. Overall, network-level approaches show

promise as tools to elucidate the inherently interconnected and complex web of ex-

tracellular protease interactions.

The in vivo protease network: Extracellular protease regulation becomes es-

pecially complex in the in vivo context, where intercellular communication, reac-

tion/diffusion, and mechanical considerations can play significant roles. Extracellular

proteases can be regulated by oxidative stress (Katsu et al., 2010), mechanical proper-

ties of surrounding extracellular matrix (Leong et al., 2011), growth-factor/cytokine

signaling (Chapter 4 of this thesis), and by cycling hormones including estrogen and

progesterone (Curry et al., 2003). In turn, proteases are widely recognized as directly

and concomitantly contributing to all of these regulatory factors. As one example

feedback relationship, MP activities are sensitive to oxidative stress and hypoxia,

and at the same time mediate signaling and cell migration processes related to an-

giogenesis and ECM diffusivity. The integrated consequences of TIMP and MMP

interactions grow increasingly complex as reaction/diffusion consideration are taken

into account, especially given many proteases and their inhibitors can be found at high

circulating concentrations. Extracellular proteases and inhibitors have been found ca-

pable of directly binding ECM components, adding yet another layer of complexity

into understanding in vivo reaction/diffusion kinetics. In this work, we find peritoneal

levels of proteases, inhibitors, and protease substrates to all be highly covariate and

jointly implicated in endometriosis. Future work may investigate how various cell

populations contribute to the complex mix of proteases and inhibitors that systemi-

cally accumulates with disease, and how reaction/diffusion and intercellular feedback

mechanisms integrate to affect overall disease progression. We anticipate that mul-
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tivariate and quantitative approaches such as the cue-signal-response paradigm are

likely to be valuable in interpreting and prioritizing in vivo observations of this com-

plex biology.

Targeting the protease network in disease: Although this work chiefly in-

vestigates breast cancer and endometriosis, extracellular proteases and the signaling

pathways with which they participate have been implicated in many cancers and in-

flammatory diseases. In this work we examine how various kinase signaling pathways

affect sheddase activity, and many of the inhibitors we tested represent major drug

targets in a variety of settings. EGFR inhibitors, for example, are clinically approved

for non-small-cell lung cancer with ongoing clinical trials for other indications. Mek,

P13K, and p38 inhibitors are currently in clinical trials for multiple advanced malig-

nancies. P38 inhibitors in particular are being investigated for various inflammatory

diseases, most notably rheumatoid arthritis. Furthermore, many sheddase substrates

are attractive drug targets for these diseases, and some substrates have clinically ap-

proved therapies for various indications (for example, HER2 is targeted in HER2+

breast cancer).

This thesis presents a fairly complex image of sheddase regulation characterized

by cross-talk and feedback relationships; nevertheless, several clear conclusions can be

drawn regarding therapeutic strategy. Our results from the peritoneal fluid analysis

suggest that endometriosis is associated with an imbalance in multiple closely related

protease substrates, and emphasize that the disease is heterogeneous at the molecu-

lar level from patient-to-patient. Nevertheless, multivariate and quantitative methods

were valuable in interpreting this heterogeneity and finding interpretable (and ther-

apeutically actionable) features of disease. In fact, multiplexed measurements were

required in this case to identify statistically significant patterns in the clinical data.

We anticipate that similar combination of activity-based analytical measurements

with multiplexed assessment of downstream activity markers (in this case, substrate

shedding) will be applicable to a broad range of pathologies, and will be necessary for

identifying the most relevant patients to treat with a particular drug. Future work
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may also investigate using these approaches in more readily obtained biological flu-

ids, such as plasma, urine, or by using molecular measurements made through clinical

imaging modalities.

This work focuses most heavily on the feedback relationship between kinase in-

hibition and RTK shedding in endometriosis, and future work may investigate the

ubiquity of this mechanism in other diseases where drugs have been developed to tar-

get signaling pathways that regulate sheddase activity. For instance, Mek inhibitors

have been particularly well-studied in malignant melanoma, where several sheddase

substrate receptors (including Tyro-3) are known to be critical (Zhu et al., 2009).

Therefore, it would be interesting to investigate whether Mek inhibition leads to a

compensatory upregulation of Tyro-3 in melanoma, and to test whether combina-

tion Mek/Tyro inhibition synergistically blocks disease progression. We also found a

novel role for p38 and Jnk signaling pathways in the context of compensatory RTK

signaling. Inhibitors targeting these pathways were successful in broadly reducing

cell migration in multiple cancer cell lines, although we did not detect a significant

impact on cell growth. Therefore, future studies may investigate whether the Jnk

and p38 pathways could be targeted in combination with more cytotoxic drugs for

preventing cell-migration-dependent cancer metastasis.

Observed cross-talk between ADAM-10 and ADAM-17, coupled with their cat-

alytic promiscuity, make these sheddases problematic drug targets. However, recent

efforts at developing pharmacological protease-modulating drugs rather than pro-

tease inhibitors have shown promise, particularly with gamma-secretase as it relates

to Alzheimer's disease (Kukar et al., 2008). These small molecule agents function

by binding substrate directly, and our results suggest that an analogous approach

could be applied to ADAM-10 and ADAM-17 substrates, where RTK shedding but

not ligand shedding may be desired. In fact, a recently described anti-MET antibody

has been observed to inhibit signaling by, at least in part, enhancing MET shedding

(Schelter et al., 2010). Importantly, a challenge to all approaches directly targeting

sheddase substrates lies in the fact that multiple sheddase substrates may compensate

for each other. For example in this work we not only find MET, but also HER2 and
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HER4 to be implicated in compensatory signaling. Next-generation targeted ther-

apies are actively being developed to target multiple related signaling pathways or

RTKs (McDonagh et al., 2012), and development of these drugs may well be served by

consideration of sheddase-mediated feedback. Intracellular endogenous modulators of

sheddase activity are actively being sought after as another way to target multiple

sheddase substrates, and reports show that various PKC isoforms can impact the

cleavage of closely related sheddase-substrates in a biased manner (Dang et al., 2011;

Kveiborg et al., 2011). However, truly selective pathways of sheddase regulation that

clearly distinguish between EGF-ligand and RTK shedding, for example, have yet to

be identified.

Overall, this work attempts to develop and use tools from systems-biology to

gain enhanced understanding of protease regulation from a network-level perspective.

Our hope is that the results from this study have demonstrated the potential value

in using quantitative, multivariate methods to understand cross-talk and feedback

mechanisms inherent to protease biology; and that the tools and concepts presented

herein may help guide future drug-development efforts.

135



136



Appendix A

Supporting Information for

Chapter 2.

A.1 Comments regarding substrate depletion.

Substrate depletion often occurs in our experiments involving purified recombinant

enzyme. For example, roughly 70% of the initial substrate is degraded in the reac-

tion shown in Fig. 2-2A. Accounting for substrate depletion extends the quantitative

range of the assay and has no negative impact on inference when actual depletion

is negligible (Fig. 2-2B). Lastly, substrates can become depleted in live-cell applica-

tions. For example, basal proteolytic activity in mouse embryonic fibroblasts results

in roughly 25% of substrate 6 being degraded within three hours (Fig. A-9). After

three hours, raw fluorescence for that sample is -6000 FLU. Peak fluorescence of the

corresponding positive control is roughly -25000 FLU (data not shown).

A.2 Abbreviations

ABP, activity based probe;

ADAM, a disintegrin and metalloproteinase;

B, background signal;

DMEM, Dulbecco's Modified Eagle Medium;
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DMSO, dimethyl sulfoxide;

Cj, catalytic efficiency for the ith substrate and jth enzyme;

C, catalytic efficiency parameter matrix;

Cha, cyclohexylalanyl;

Dab, Dabcyl, 4-(4-dimethylaminophenylazo)benzoyl;

[E], enzyme concentration;

E, vector of enzyme activities;

EGF, epidermal growth factor;

FO, peak fluorescence from positive control;

Fob,, observed fluorescence from product formation;

F,, fluorescence from product formation;

Fam, 5-carboxyfluorescein;

FRET, fluorescence resonance energy transfer;

GABA, 7-aminobutyric acid;

Homophe, homophenylalanyl;

IM, ionomycin;

kcat, turnover number;

kcat/Km, catalytic efficiency;

kd, photobleaching decay constant;

Km, Michaelis-Menten constant;

M-M, Michaelis-Menten;

MEBM, Mammary Epithelial Basal Medium;

MMP, matrix metalloproteinase;

MP, metalloproteinase;

NorVal, norvaline;

PrAMA, Proteolytic Activity Matrix Analysis;

RM, model covariance error matrix;

Rrm, relative model covariance error matrix;

RD, data uncertainty covariance matrix;

[S]o, initial substrate concentration;
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[S], substrate;

oT, significance of inference threshold;

To, lag time;

TIMP, tissue inhibitor of metalloproteinase;

TNFo, tumor necrosis factor-alpha;

V, initial rate of substrate cleavage;

Vo, vector of Vo's for all substrates;

V0, bootstrapping sample ensemble of multiple Vo.
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Ref. # Cat. #

1 011 Dab-Gly-Pro-Leu-Gly-Met-
...-Arg-Gly-Lys(5-FAM)-NH2

2 014 Dab-Glu-His-Ala-Asp-Leu-
...-Leu-Ala-Val-Val-Ala-Lys(5-FAM)-NH2

3 021 Dab-Val-Pro-Val-Asn-Norleu-
...-Thr-Val-Lys(5-FAM)-NH2

4 015 Dab-Val-Asp-Leu-Phe-Tyr-
...-Leu-Gln-Gln-Pro-Lys(5-FAM)-NH2

5 008 Dab-Pro-Cha-Gly-Cys(Me)His-Ala-
...-Lys(5-FAM)-NH2

6 022 Dab-Leu-Arg-Ala-Glu-Gln-
...-Gln-Arg-Leu-Lys-Ser-Lys(5-FAM)-NH2

7 005 Dab-Leu-Ala-Gln-Ala-Homophe-
...-Arg-Ser-Lys(5-FAM)-NH2

8 017 Dab-Ala-Pro-Arg-Trp-Ile-
...-Gln-Asp-Lys(5-FAM)-NH2

9 010 Dab-Ser-Pro-Leu-Ala-Gln-
...-Ala-Val-Arg-Ser-Ser-Lys(5-FAM)-NH2

10 052 Dab-Ala-Pro-Phe-Glu-Met-
...-Ser-Ala-Lys(5-FAM)-NH2

11 016 Dab-Ser-Asn-Leu-Ala-Tyr-
...-Tyr-Thr-Ala-Lys(5-FAM)-NH2

12 059 Dab-Ala-Pro-Arg-Trp-Leu-
...-Thr-Thr-Ala-Lys(5-FLU)-NH2

13 053 Dab-Ala-Pro-Phe-Glu-Phe-
...-Ser-Ala-Cys(5-FLU)-NH2

14 012 Dab-Val-Pro-Phe-Glu-Phe-
...-Thr-Val-Lys(5-FAM)-NH2

15 013 Dab-His-Gly-Asp-Gln-Met-
...-Ala-Gln-Lys-Ser-Lys(5-FAM)-NH2

16 020 Dab-Val-Pro-Thr-Trp-Ile-
...-Gln-Asp-Lys(5-FAM)-NH2

17 200 Dab-GABA-Arg-Pro-Lys-Pro-
...-Val-Glu-NorVal-Ala-Arg-Cys(5-FLU)-Gly-CONH2

18 201 Dab-GABA-Pro-Gln-Gly-Leu-
...-Cys(5-FLU)-Ala-Lys-CONH2

Table A.1: Synthetic polypeptide FRET-substrate sequences. Reference num-
bers denote substrate indices used throughout the chapter.
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Figure A-1: RM transformed to emphasize additive rather than multiplica-
tive error. Columns of the parameter matrix C were normalized by their Euclidean
norm prior to calculation of RM.
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Figure A-2: Example Cleavage Signature of MMP1. kcat/Km values were de-
termined using MMP1 at O.4nM and individual substrates at 10uM in MMP minimal
buffer (see text). (A) Time-lapse fluorimetry data, normalized to the positive control
signal, Fo,s. Blue and red plots are paired, such that blue plots show the identical
data but at a zoomed in scale on the y-axis. Both blue and red lines indicate fit
to the non-linear kinetic model. Individual lines indicate technical replicates. (B)
kcat/Km values are inferred from each of the time-courses shown in A. Error bars
indicate standard deviation.
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Figure A-3: Example Cleavage Signature of MMP mixture. kcat/Km values
were determined using 0.2nM MMP1, 0.4nM MMP3, and individual substrates at
10uM in MMP minimal buffer (see text). (A) Time-lapse fluorimetry data, normalized
to the positive control signal, F0 ,s. Blue and red plots are paired, such that blue plots
show the identical data but at a zoomed in scale on the y-axis. Both blue and red
lines indicate fit to the non-linear kinetic model. Individual lines indicate technical
replicates. (B) Cleavage rates are inferred from each of the time-courses shown in A.
Error bars indicate standard deviation.
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Figure A-4: Summarized Cleavage Signatures of MMP mixtures and PrAM
Inference Results. (A) Cleavage rates were observed for various mixtures of MMPs
(black, Fig. A-3) and compared to rates expected by PrAMA based on the known
mixture composition and observed cleavage rates for single enzyme mixtures (white,
Fig. A-2). (B) Actual mixture compositions (black) and PrAMA inference results
(white) correspond to the cleavage signatures in A. Error bars indicate std. dev. of
inference, using 20% synthetic sampling error.
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Figure A-5: PrAMA inference using alternative bootstrapping scheme.
PrAMA inference was conducted on enzyme mixtures containing MMPs 1-8, corre-

sponding to Fig. 2-8, but using a modified bootstrapping scheme that more directly
considers uncertainty in the parameter matrix C. Max accuracy is roughly 95% for
single and double enzyme mixtures. For triple enzyme mixtures, max accuracy is

roughly 80%.
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Figure A-6: ROC Curves describing inference accuracies of individual en-
zymes. PrAMA inference corresponds to results shown in Fig. 2-9C. True positive
rate (TPR) and false positive rate (FPR) refer to inference results for each individ-
ual enzyme, for all mixtures tested and using a 16 substrate x 14 enzyme parameter
matrix C (see Fig. 2-8A).
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Figure A-7: PrAMA quantitative inference. PrAMA inference was performed on
all double enzyme mixtures involving MMPs 1-8 (A) and ADAMs 10 & 17 (B). These
plots show actual concentrations vs. PrAM inferred concentrations, where enzyme
levels were first normalized such that total enzyme concentration in a given mixture
sums to unity. R2 values for (A) and (B) are both roughly 0.5. (C) Black diamonds
indicate PrAM inference (ordinate) of MMP7 at various actual concentrations (ab-
scissa), based on the cleavage signature Vo from substrates 1-16. Red points show
PrAM inference of MMP7 in conditioned media from breast cancer cells. Axes are
log 1 -transformed and scaled such that the maximum actual concentration = 1. All
MMPs were considered in the parameter matrix C. The grey line indicates inferred
Vogj, averaged over all 16 substrates, with standard deviation shown by error bars.
The dashed line indicates linear inference.
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Figure A-8: Concentration effects on enzyme catalytic efficiency. Substrate
catalytic efficiencies Ci,, were calculated at three different concentrations of MMPs

(see Fig. 2-4) using 16 substrates. We define relative catalytic efficiency as the
log-transformed Cjj divided by the average log-transformed Cjj from all MMP con-
centrations. Each black line corresponds to the relative catalytic efficiencies observed
from individual substrates, and the red line denotes the average over all substrates.
Experiments with the lowest two concentrations used MMP buffer, and the high-
est concentration experiments used MEBM. We only considered Cij measurements
detected significantly above background signal.
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Figure A-9: The impact of Brij-35 on MMP proteolytic activity. MMP7 and
MMP9 proteolytic activities were observed in MMP buffer with increasing amounts
of Brij-35 (10x and 100x the concentration for MMP buffer). (A) Cleavage rates (Vo
/ [S]) were calculated from time-lapse fluorimetry data. To emphasize Brij effects on
background proteolysis, background cleavage rates were not subtracted in this case.
(B) MMP9 cleavage of substrate 5, corresponding to the lower right panel of A. In
this case, the background cleavage rates for each Brij concentration were subtracted
from the total observed rates. The slopes for the lx, 10x, and 100x Brij lines on
log-log axes are 0.50, 0.82, and 1.0. A slope of 1.0 indicates assay linearity.
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Figure A-10: Impact of GM6001 treatment on observed protease activity.
WT MEFs were seeded at 30,000 cells per well in a 384-well plate. The following day,
media was replaced with fresh media +/- 1OOuM GM6001. After an hour incubation
with the inhibitor, cells were treated with fresh 1OOuM GM6001 and one of seven
FRET substrates, used at a final concentration of 10uM. Cells were imaged for 3hrs
at 37"C using a plate reader. Error bars indicate standard deviation of biological
quadruplicates.
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Appendix B

Supporting Information for

Chapter 3.

B.1 Device fabrication and operation

The device was fabricated as a polydimethylsiloxane (PDMS, Sylgard 184, Dow Corn-

ing Inc., Midland, MI) chip bonded to a PDMS-coated glass slide. The fabrication of

the microchip includes the following steps: (1) master fabrication, (2) PDMS pour-

ing/curing step, (3) spin-coating PDMS on the surface of a glass slide (50mm x 75mm)

and (4) irreversible bonding of the PDMS microchannel and the PDMS coated slide

via plasma bonding. (5) The fabrications of electrodes in the picoinjectors.

SU8 photoresist (SU8-2050, MicroChem Inc., Newton, MA) was patterned on a

silicon wafer to build a positive master. The positive master mold for the device

contains channels that are 45um tall. The SU-8 master was further treated with a

hexamethyldisilane (Sigma-Aldrich, St. Louis, MO) for 1 hour to prevent adhesion

with PDMS after molding. The hexamethyldisilane solution was evaporated and

deposited on the master in a desiccator with a ~5 psi vacuum. In the second step,

PDMS was degassed in a desiccator with a -5psi vacuum for 1hr and poured on

the master mold. The mold was cured in an oven at 65"C for 6hrs, and then the

PDMS layer was peeled off from the silicon master. Holes were punched through the

end of the channels using a metal syringe needle with an outer diameter of 1/16in.
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(Hamilton Co., Reno, NV). To form the hydrophobic surface for making the droplet

generator, a glass slide was coated with a layer of PDMS. To obtain a thin coating,

PDMS was diluted by adding Hexane (Sigma, 1:1 mix) and was coated on a glass

slide by using a spin coater at 1800rpm. The coated glass was then put into oven

at 650C overnight. After plasma bonding, the device was put into oven at 650 C for

more than 20hrs for forming strong bonding and completely hydrophobic surfaces.

To make the electrodes in the devices, the empty microchannels in the shape of the

electrodes were first constructed1. We heated the devices and injected a low melting-

point liquid solder into the empty channels. After cooling the devices, the solder was

solidified to form the electrodes embedded in the microfluidic devices.

For device operation, one aqueous and two oil streams were introduced into a

droplet generator with co-flow channel geometry using syringe pumps (Harvard,

PHD2000). The oil flow rate (10 uL/min) roughly matched aqueous flow rates (5

uL/min) used to form the droplets (-30 pL/droplet with a generation rate of -4

kHz). For pico-injection, droplets passed through a narrow channel of size similar

to the droplet diameter (50 um) at flow rate ~0.03 uL/min. Oil was added from a

side channel at ~0.05 uL/min, maintaining the spacing between the drops for syn-

chronization with the pico-injector. To tune picoinjector function, experiments using

dye-labeled samples (Alexa-546) and droplets (Alexa-405) ensured a 1:1 mixing ratio

during droplet pico-injection. After pico-injection, the diameter of a droplet changes

from -35um (30pL) to ~50um (60pL), and the intensity of indicator dye decreases

by roughly 50% after substracting off the background fluorescence. Judging by the

changes in observed droplet volume and indicator dye intensity, we conclude the load-

ing efficiency to be roughly 1:1 (droplet : sample). After this characterization, the

injection flow rate was controlled as ~0.03uL/min and the DC voltage applied was

-80V with frequency of 1kHz. Time-lapse fluorescence microscopy was performed

using a triple-band filter (Semrock) with emitter wavelengths of 457nm, 530nm, and

628nm.
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B.2 General reagents & procedures

FRET-substrates (Biozyme, Inc; Apex, NC) contained the following polypeptide se-

quences: Sl: Dabcyl - Gly - Pro - Leu - Gly - Met - Arg - Gly - Lys (5-FAM) - NH2;

S2: Dabcyl - Pro - Cha - Gly - Cys (Me) His - Ala - Lys (5-FAM) - NH2; S3: Dabcyl

- Leu - Arg - Ala - Glu - Gln - Gln - Arg - Leu - Lys - Ser - Lys (5-FAM) - NH2;

and S4: Dabcyl - Ser - Pro - Leu - Ala - Gln - Ala - Val - Arg - Ser - Ser - Lys (5-

FAM) - NH2 2. Materials and buffers for the purified enzyme experiments, along with

all microtiter-plate assays, were performed as previously described unless otherwise

stated. Reaction conditions for the nine-component droplet library included the fol-

lowing in PBS, when appropriate: 10 uM substrate, 10 uM BB94 (Tocris Bioscience;

Ellisville, MO); 10 uM pro-ADAM-9 (Biozyme); 4 uM proADAM-10 (Biozyme); 5%

pro-domain buffer (Biozyme); 0.2% DMSO. The 12Z cell line was generously pro-

vided by Anna Starzinski-Powitz (University of Frankfurt) by way of Steve Palmer

(EMD Serono). Cells were cultured in DMEM/F12 supplemented with 100 U/ml

penicillin, 100 mg/ml streptomycin (Invitrogen; Carlsbad, CA), along with 10% fe-

tal bovine serum (Atlanta Biologicals; Atlanta, GA) at 37'C, 5% C02. ELISA kits

were obtained from R&D Systems (Minneapolis, MN). For supernatant experiments,

cells were seeded overnight at 80% confluency and treated the following day with

50ng/ml TNF-a (Peprotech; Rocky Hill, NJ). 24hrs after treatment, the cells were

trypsinized and analyzed for cell count and viability using ViCell instrumentation

after supernatant collection (Beckman Coulter; Brea, CA). No significant difference

was observed in cell count or viability across the different treatment conditions.

B.3 Computational analysis

Droplet image sequences were interpreted in a program written in Matlab (Math-

works; Natick, MA) using a modified spot finding algorithm (Santella et al., 2010).

Tracked droplets were filtered for appropriate diameter and fluorescence continuity

over time. The previously described PrAMA algorithm best suits mixtures with
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some prior knowledge of enzyme composition, allowing the inference procedure to

be exactly- or over-determined mathematically (Lawson et al., 1995). This method

was used to analyze purified enzyme mixtures (Fig. 3-2D-E, Fig. B-3-B-C) and con-

ditioned media samples (Fig. 3-2F-I). For clinical application, we assumed no prior

knowledge and applied PrAMA to the under-determined case where possible proteases

outnumber the quantity of employed substrates. Inference accuracy using the Lawson-

Hanson algorithm for non-negative least squares (NNLS) was validated on data from

roughly 100 different mixtures of recombinant enzymes to support this slight math-

ematical adjustment (Fig. B.2B) (Miller et al., 2011). Results show the adjustment

to be effective, consistent with previous work using the same NNLS algorithm to

discern specific protease activities (Gosalia et al., 2006). For PLSDA, variables were

mean-centered and variance-normalized across the set of samples. Forward-variable

selection heuristically identified minimal combinations of variables to describe dis-

ease status. The algorithm iteratively added input variables to the PLSDA model if

they improved model fit as determined by leave-one-out cross validation AUROC. For

inclusion, input variables were required to exhibit PLSDA loadings of greater mag-

nitude than their loading standard error. Standard errors for scores, loadings, and

variable importance in the projection (VIP) statistics were calculated by jack-knifing

(Efron et al., 1983). Prediction variance was computed according to Hoskuldsson

(Hoskuldsson 1988). All results demonstrated significance (p<0.05) as determined

by the permutation test. Briefly, we randomly shuffled disease status relative to the

model inputs, and ran the variable-selection procedure for each of 1000 random per-

mutations. Shuffled data yielded a lower AUROC value than that achieved by the

actual data-set more than 95% of the time.

B.4 Clinical subjects and procedures

All laparoscopy patients provided informed consent in accordance with a protocol

approved by the Partners Human Research Committee and the Massachusetts In-

stitute of Technology Committee on the Use of Humans as Experimental Subjects.
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Figure B-1: Validation of microfluidic PrAMA using plate-reader. (a) Cat-
alytic efficiencies obtained with the droplet platform (Fig. 3-2c) were compared to
previously published measurements obtained in a traditional microtiter-plate format
(R2 >0.95). Rates were log-transformed, mean-centered, and variance normalized
for each of the four enzymes. One of the sixteen data points (MMP-7 cleaving Si)
was excluded as an outlier, lying >2 standard deviations from the average compar-
ison error. (b) Top four boxes: PrAMA was used to infer the presence of single
enzymes based on the observed cleavage signatures from the single-enzyme mixtures
(Fig. 3-2c). Synthetic replicates of the data in Fig. 3-2c were simulated according to
measured experimental inaccuracy, and PrAMA was used to infer specific enzymes
based on these replicates. PrAMA inference parameters controlling sensitivity and
specificity were optimized with this training set of data and applied to a mixture
of two recombinant enzymes (bottom box, replicated from Fig. 3-2f). (c) Receiver-
operator characteristic curve summarizing the overall accuracy of PrAMA across the
five purified enzyme mixtures (AUROC = 0.9).
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Figure B-2: MMP-2 activity in 12Z conditioned media. (a) PrAMA results
for MMP-2 activity in response to TNF-a treatment (see Fig. 3-2g). (b) MMP-2
and TIMP-2 concentrations in the same conditioned media analyzed in (a) and Fig.
3-2g-i.

Enrollment was limited to pre-menopausal women with regular cycles (26-32 days)

and excluded individuals who had received hormonal treatment within three months

of surgery. Moderate/Severe (Stage III/IV) endometriosis was diagnosed according to

the revised criteria of the American Society for Reproductive Medicine (Canis et al.,

1997). Peritoneal fluid was aspirated from the rectouterine pouch immediately fol-

lowing trocar insertion and prior to peritoneal lavage or surgical manipulation. Upon

collection, specimens were immediately placed on wet ice and clarified within 15 min.

by centrifugation for 10 min. at 1000 rcf. Clarified aspirates were transported to the

laboratory on ice, aliquoted, and stored at -80'C until analysis. Two patient samples

contained sufficient volume to serve as 'master-controls' that were also analyzed in

a traditional microtiter-plate format. Enzymatic controls were performed with the

'master-controls' in the microtiter-plate to derive absolute cleavage rates from the

microfluidic device measurements, through calculating a linear scaling factor for each

of the nine reaction conditions (Miller et al., 2011). Variance in the scaling factor,

across the two 'master-control' patient samples, described consistency between the

two assay formats. For observed cleavage rates at least 50% above the background,

median standard error in the scaling factor was calculated at 11%.
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Figure B-3: PrAMA inference accuracy and results. (a) Catalytic efficiencies
have been previously reported for substrates S1-S4 across a panel of recombinant
enzymes, and are shown here in a clustergram (modified from Miller et al., 2011).
(b) Overall PrAMA inference accuracy using the Lawson-Hanson algorithm and the
parameter matrix shown in a. Cleavage signatures from roughly 100 different purified
enzyme mixtures (reported previously) were applied to the PrAMA algorithm for
under-determined inference. Red enzyme labels correspond to statistically significant
inference performance (p<0.05, permutation test; Miller et al., 2011). (c) Average
cleavage rate observed across all PF samples. (d) Effects of inhibitor treatment on
observed S4 cleavage in PF samples. (e) Average PF sample cleavage rates were
combined with purified enzyme rates, mean-centered and variance normalized by
row, and hierarchically bi-clustered. PF sample cleavage patterns cluster closely with
ADAM10 and ADAM17, both of which have high S4 cleavage efficiency. (f) Heat-
map summarizing PF sample PrAMA inference results of data divided by the mean
cleavage rate for each patient. (g) Hierarchical bi-clustering result corresponding to
f, with data mean-centered and variance-normalized by row. AproADAM-9 denotes
1-[S4+pA9]/[S4+Buff-9], and AproADAM-10 denotes the analogous expression.
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Figure B-4: PLSDA and PrAMA modeling results. (a) VIP scores for the
PLSDA model describing disease status as a function of raw cleavage measurements

(corresponding to Fig. 3b-c). (b) VIP scores for the PLSDA model describing disease
status as a function of PrAMA results. (c) Scores plot for PLSDA results using
PrAMA results, corresponding to b. For all plots, error bars represent standard error
determined by jack-knife.
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Figure B-6: Additional droplet-library formulations. (a) Formulation of a
droplet-library developed with mixtures of three indicator dyes (Alexa-488, Alexa-405,
and Alexa-546), shown by fluorescence microscopy. Three different concentrations of
Alexa-488 and Alexa-546 (Oug/mL, lug/mL, 2ug/mL) and two different concentra-
tions of Alexa-405 (Oug/mL, lug/mL) were prepared. Eleven different combinations
of the three dyes at these concentrations are presented here. (b) Droplets were com-
putationally identified and classified according to their prescribed combinations of
indicator dyes. Droplet classifications are shown by color, as two different projections
of droplet fluorescence from the three-dimensional space of fluorescence from the three
indicator dyes. The cyan and blue circles indicate how droplets can be distinguished
from one another by examining all three fluorescence values. Light gray dots remain
unclassified and indicate droplets that fall outside of the gates for the eleven dif-
ferent possible dye combinations. (c) Formulation of a nanoparticle-labeled droplet
library. Nanoparticles 100nm in diameter (Aex=495nm, Aem=530nm) were loaded
into droplets at three different concentrations (Oug/mL, 2.5ug/mL, 5ug/mL) to en-
code a three-component droplet library. (d) Nanoparticle-labeled droplets exhibit
distinct fluorescence values, shown as a histogram corresponding to c.
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B.5 Discussion of clinical endometriosis findings.

In demonstrating our microfluidic platform advantages, results from the multiplexed

assay provide a new perspective into MMP/TIMP regulation in endometriosis. The

role of MMP activity in disease progression remains poorly understood. Several pre-

vious studies have found concentrations of MMPs, including MMP-2, to increase

with endometriosis (Becker et al., 2010; Huang et al., 2004; Chung et al., 2002),

while others have reported a slight decrease in MMP-2 levels in patients with severe

disease (Protopapas et al., 2010). Furthermore, evidence of increased protease ac-

tivity in the context of multiple interacting MMPs and TIMPs has proved even less

consistent. Although increased MMPs suggest dysregulated endometriotic invasion,

concomitantly increased TIMPs may indicate an overall decrease in protease activity

that fits with the frequent observation of isolated endometriotic cysts that do not in-

vade the surrounding tissue (Gilabert-Estelles et al., 2003). In this work, multiplexed

protease activity measurements from endometriosis patients support the latter ob-

servation: although the concentration of MMP-2 may slightly increase with disease

(B-5), the multivariate analysis reveals a much more significant and consistent de-

crease in relative MMP-2 activity (Fig. 3-3E). We additionally observed a decrease in

relative ADAM-9 activity (Fig. 3-3D). Although relatively unexplored in the context

of endometriosis, ADAM-9 has been implicated in hormonally-regulated biological

processes including blastocyst implantation of the rabbit endometrium (Olson et al.,

1998) and breast cancer progression, where for instance it has been shown to pos-

itively correlate with tamoxifen response (Sieuwerts et al., 2005). Standard ELISA

measurements indeed confirmed dysregulated metalloproteinase/TIMP balance in the

endometriosis PF samples, evidenced by a decrease in TIMP-4 with disease (Fig. 3-

3F). Several previous studies have found clinical evidence of increased TIMP-4 with

estrogen therapy (Pilka et al., 2006), endometrial hyperplasia (Pilka et al., 2004), and

ovarian cancer (Ripley et al., 2006), while TIMP-4 levels may actually decrease in

malignant endometrial cancer (Pilka et al., 2004). In endometriotic 12Z cells, TIMP-4

increases in response to inhibition of prostaglandin signaling (Lee et al., 2011). In
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this work, we present the novel finding that relative TIMP-4 concentrations decrease

in PF samples with disease. The non-intuitive and concomitant decrease of both

MMP-2 and ADAM-9 activities, in spite of reduced TIMP-4 concentration, suggests

that endometriosis perturbs multiple, overlapping protease-inhibitor interactions in

the peritoneal environment. This complexity highlights the challenges associated

with inferring enzyme activities from concentration alone, and emphasizes the need

for direct activity measurements.

B.6 Discussion of more specific substrates and other

possible applications.

The presented microfluidic platform could be extended to various applications. Low

reagent and sample consumption make the platform amenable to non-invasive diag-

nostic screening (Roy et al., 2011). Fluorogenic substrates exist for diverse enzymes

including cathepsins, caspases, and kinases (Stains et al., 2012), and droplet-based

microfluidics could similarly improve liquid-handling and sample-quantity require-

ments in these applications. Strategies such as phage display (Felber et al., 2005) and

positional scanning of synthetic libraries (Schneider et al., 2009) have shown promise

to enhance the selectivity of substrates for proteases and other enzymes. However, for

many applications issues of specificity remain problematic, for example with inher-

ently promiscuous enzymes such as trypsin, and could still benefit from multiplexed

approaches similar to PrAMA. As a further application, inhibitor activity of a sample

could be assayed using droplet-libraries with spiked-in recombinant enzymes, anal-

ogous to the method of reverse zymography for TIMP activity measurement. The

modularity among the droplet based microfluidic components, biochemical reagents,

and methods to determine multiple enzyme activities ultimately makes the platform

highly customizable for a variety of applications.
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Protein

Stimuli
TNFa
EGF
TGFa
PDGFbb
HGF
IGF1
Signaling
p-p38
p-Erkl/2
p-Jnk
HSP27
c-Jun
p-Akt
p-STAT3
IRS-2
Tyk2
RTK/Ligand
EGFR
TNFR1
MET
HER-2
AREG
HBEGF
MMP/TIMP
MMP-2
MMP-3
MMP-7
MMP-9
TIMP-1
TIMP-2
ADAMs
ADAM-17
ADAM-10

Trend Evidence Citations

Up/-
Up/-

Up

Up
Up/-

Up
Up
Up
Up
Up
Up
Up

N/A
N/A

Up/-
Up
Up

Up/-
Up
Up

Up
Up
Up
Up

Up/Down
Down

Up
Up

S/PF/A
PF/A
A

S/PF
PF
S

T/A
T

T/A
T
T
T
T
GP
GP

T/S
S/PF
T

T/S
T
T

T/S/PF
A/T

A/GP
T/PF

T/S/PF
T

T

T

Kyama 2006; Bedaiwy 2002; Overton 1996
De Leon 1986; Huang 1996; Simms 1991
Simms 1991
Kalu 2007; Overton 1996
Osuga 1999
Matalliotakis 2003; Steff 2004; Gurgan 1999

Yoshino 2004; Yoshino 2006; Zhou 2010
Murk 2008; Honda 2008
Uz 2011; Yousef 2009
Matsuzaki 2004; El-Ghobashy 2005
Shazand 2004; Ohlsson 2009
Cinar 2009; Laudanski 2009; Honda 2008
Itoh 2013
Cayan 2010
Peluso 2012

Uzan 2009; Matalliotakis 2003; Ejskjaer 2009
Koga 2000; Steff 2004
Khan 2003
Prefumo 2003; Philippoussis 2004; Uzan 2009
Aghajanova 2011
Aghajanova 2011

Chung 2002; Huang 2004
Ramon 2005; Bruner 2002; Saito 1995
Shan 2006; Bruner 2002
Chung 2001; Collette 2006;
Sharpe 1998; Ramon 2005; Gottschal 2002
Chung 2002; Gottschal 2002

Gottschal 2002
Finas 2008

S = serum, PF = perit. fl., T = tissue, GP = gen. polymorph., A = animal model

Table C.1: Table of key proteins and their roles in endometriosis. Nearly

all growth factors, cytokines, RTKs, ligands, and proteases directly measured in this

work have been implicated in endometriosis to some degree by previously reported

clinical data. "Trend" denotes increase or decrease with disease. Table is not meant

to be comprehensive, but rather to demonstrate clinical relevance of study design.
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Figure C-1: Phospho-signaling levels and proteolytic response to growth-
factor treatment in 12Z. Bar graphs correspond to data in Fig. 4-lA. (A) Phospho-
signaling measurements, 5min post-stimulation, measured by bead-based ELISA and
normalized to total protein content. (B) PrAMA results for ADAM-10, ADAM-
12, and ADAM-17 measured over the first three hours post-stimulation. Error bars
indicate standard error (n=2 experimental replicates for signaling data, n=4 replicates
for PrAMA measurements).
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Figure C-2: Single-cell motile response of 12Z to growth factor treatment.
Population distributions of single-cell motile response in 12Z. Various descriptive fea-
tures of cellular motility were computed for individual cells based on single-cell track-
ing experiments using time-lapse confocal microscopy. Histograms and corresponding
box-and-whisker plots show population distributions from single-cell measurements,
pooled from n>2 separate experiments, with >100 individual cells for each condition.
A subset of these data are shown in Fig. 4-1B.
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Figure C-3: Multivariate analysis of 12Z motile response to growth fac-
tor/cytokine stimulation. (A) Median population statistics were calculated from
the single-cell data shown in Fig C-2, normalized to the control (+/- S.E.M. of ex-
perimental replicates, n>2 separate populations, with >100 cells for each condition).
(B) Principal component analysis of single-cell data decomposes observed motility
features into two key axes of covariation, captured in the first and second princi-
pal components PCI and PC2. Elliptical data-points correspond to scores of the
different treatment conditions, and square data-points indicate principal component
coefficients of the motility features (+/- S.E.M.). PCI roughly describes general
motility, while PC2 captures the directional persistence of motility.
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Figure C-4: Bayesian network hierarchy analysis. Bayesian network analysis
inferred a hierarchical structure of signaling-mediated sheddase activity and motility,
shown in Fig. 4-2C. In this figure, network nodes (comprising phospho-protein levels,
protease activities, and supernatant analytes) are plotted based on the summed edge-
weights leading into, and out from, each node. 'Upstream' nodes are in the lower right
of the graph, and have more edges going out than coming into the node. Bayesian
network analysis (Fig. 4-2C) represents an average of results across multiple Bayesian
algorithm parameters, and therefore this plot shows average "edge-in" and "edge-
out" values, +/- S.E.M., as they were calculated for each set of tested algorithm
parameters. Values from individual Bayesian algorithm parameter sets were first

mean-centered and variance normalized before averaging across multiple parameter

sets.
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Figure C-5: Bayesian network hierarchy analysis. Data used in Bayesian net-
work inference (Fig. 4-2C) were further investigated with correlation analysis and
PLSR. (A) Pearson correlation was calculated between network nodes after mean-
centering and variance normalization. Pairwise Pearson correlations above 0.4 are in-
dicated in gray, while those below -0.4 are indicated in blue. Phospho-protein levels,
protease activities, shedding measurements, and motility were considered as separate
groups. Only edges within or between adjacent groups are shown here. (B) PLSR
modeling describes ADAM activity as a function of phospho-protein levels. PLSR
models were built using all possible combinations of five individual phospho-protein
levels to describe each protease activity. The significantly enriched variables (shown
by blue edges; p<0.05, enrichment score defined in Sec. C.1) were then included in
a PLSR model to predict ADAM-10 activity (Q2 = 0.79). No sufficiently predictive
models of any size could be attained for ADAM-17 or ADAM-12 activity.
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Figure C-6: Ligand and RTK shedding in TNBC cell lines. MDAMB231,
SUM159PT, and MDAMB157 were stimulated with the same growth factor treat-
ments as those performed in the 12Z studies, in the presence and absence of BB94
or mab225. For MDAMB231, some analytes were measured in 2D environments with
cells growing on tissue-culture plastic, or in 3D environments with cells growing in
suspension cultures of collagen I gel. In the heat-maps, measurements were first
mean-centered and variance-normalized by row. We examined correlation between
ectodomain shedding and cell motility using previously published data describing
the 3D motile response of cells to the same growth factor cues (Meyer et al., 2012).
Asterisks denote significant correlation, after FDR correction (Storey et al., 2002).
A225 and ABB94 denote the change in analyte accumulation observed with inhibitor
treatment, across the panel of growth factor conditions.
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Figure C-7: Shedding measurements in 2D vs. 3D cell environments. MMP

secretion and ectodomain shedding were measured in 12Z grown on either tissue

culture plastic or in collagen I gels. Supernatant from both cell culture environments

were collected 24hrs post-stimulation with the panel of growth factors used in Fig. 4-1,
in the presence or absence of mab225 and BB94. Error-bars indicate standard error.

Spearman's and Pearson's correlation coefficients were calculated for each analyte,
and the greater of the two are reported as p. P-values based on correlation were

calculated using either a Student's t distribution or an approximation of the exact

permutation distributions, depending respectively on whether p denotes Pearson's or

Spearman's correlation.
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Figure C-8: 12Z supernatant proteomics with mab225 and BB94 treatment.
Supernatant analyte concentrations were measured 24hrs post-stimulation from 12Z
grown on tissue culture plastic in the presence of either 1OpM BB94 or 10pg/mL
mAb225. Error bars indicate t S.E.M., with n=2 experimental replicates. TIMPs
have n=1 replicate. HB-EGF measurements in the presence of exogenous HB-EGF
are excluded due to assay saturation.
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Figure C-9: MMP secretion in MDAMB231. MMP accumulation was measured
in the supernatant of MDAMB231 growing in suspension cultures of collagen I gel.
Supernatants were collected 24hrs after growth-factor stimulation. MMP secretion
does not significantly correlate with motility in MDAMB231.
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Figure C-10: Complete 12Z FRET-substrate cleavage data. PrAMA was used
to measure the effects growth factors/cytokines and mab225 treatment on metal-
loproteinase activities. After a 15min pre-treatment with mab225, 12Z cells were
co-treated with growth factor and PrAMA FRET-substrates. (A) Raw cleavage rates
of seven PrAMA substrates at multiple time-points, on the cell surface and in the su-
pernatant. For supernatant activity measurements, PrAMA substrates were added to
supernatant that was removed from cells and clarified at 24hrs post-treatment. Flu-
orescence was measured at 20 and 40hrs after substrate addition. (B) Clustergram
of results from A.
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Figure C-11: Summary of complete 12Z PrAMA measurements. PrAMA
inference results corresponding to Fig. C-10. PrAMA was used to measure the ef-
fects growth factors/cytokines and mab225 treatment on metalloproteinase activities.
After a 15min pre-treatment with mab225, 12Z cells were co-treated with growth fac-
tor and PrAMA substrates. (A) Raw PrAMA substrate shedding of PEPDAB05,
which is efficiently cleaved by ADAMs (Miller et al., 2011), and corresponds to "Surf
PEPDAB05 SA" in Fig. C-10A. (B) PrAMA results were determined using the data
from Fig. C-1A averaged over the first 3hrs post-stimulation ("SA" time-point), to
directly infer metalloproteinase activity. (C) Clustergram of PrAMA results, includ-
ing those presented in B. Cell-surface ADAM-10, ADAM-12, and ADAM-17 measure-
ments were used in the initial network-inference analyses (Fig. 4-1 & 4-2). PrAMA
algorithm parameters have been previously described (Chen et al., 2012).
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Figure C-12: PLSR uses ectodomain shedding to predict motility. (A) Q2

accuracies are reported for PLSR models that use various subsets of 12Z supernatant
measurements (columns) to describe various features of 12Z motility, for either the
median or 95th percentile of single-cells in the population. The bar plot shows col-
umn averages corresponding to the heat-map. Growth factor and cytokine treatments
tested in these models are described in Fig. C-2. (B) Q2 accuracies are reported for
PLSR models that describe shedding-motility relationships for individual and combi-
nations of cell lines. Combined cell line models use the same statistical parameters to
describe motility across multiple cell lines and growth factors, whereas the individual
cell line models use PLSR parameters that are specific to the particular cell line be-
ing described. The bar plot shows column averages corresponding to the heat-map.
Shedding measurements for the models comprise all overlapping sets of measurements
reported in Fig. C-6 & C-8.
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Figure C-13: Ectodomain shedding measurements from both 2D and 3D cell
cultures equally predict 3D motility. PLSR models were generated to predict 3D
12Z motility using supernatant measurements collected from cells cultured on either
tissue culture plastic (2D) or from cells suspended in collagen I gels (3D). According
to Q2 fitting accuracy, PLSR is capable of using both 2D and 3D supernatant mea-
surements to accurately predict 3D cellular motility. Enhanced signal-to-noise in 2D
shedding measurements may explain higher prediction accuracy for some cases. These
results are concordant with observed correlation between supernatant measurements
in 2D and 3D (Fig. C-7).
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Figure C-14: Accurate prediction of motility requires multiple principal
components. The integrated PLSR model that describes relationships between
ectodomain shedding and motility in both 12Z and MDAMB231 (Fig. 4-4A) depends
upon multiple shedding measurements and principal components. In this figure, lim-
its are placed on the number of principal components (shown as black bars) or the
number of variables (shown as gray bars, laid over the black bars) allowed to be
incorporated into the model structure.
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Figure C-15: Endpoint invasion assay correlates with live-cell migration.
(A) Computationally inferred cell nuclei positions from the invasion assay, in the
presence or absence of EGF. The x-y plane represents the inferred bottom of the
96-well plate. Nuclei with large z-coordinates are colored warmer. (B) Distribution
of nuclei z-coordinates, corresponding to A. (C) Clustergram of correlations between
the endpoint assay metrics and median live-cell motility data, compared across the
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Figure C-16: EGFR pathway inhibitors block invasion. Endpoint invasion
assays were performed following growth factor and inhibitor treatments. (A) 12Z
were stimulated with growth factors following a pre-treatment with the EGFR kinase
inhibitor, gefitinib, or the dual EGFR/HER-2 kinase inhibitor, lapatinib. Gefitinib
results correspond to Fig. 4-5B. (B) 12Z were stimulated with IGF1 following a
pre-treatment with an AREG decoy antibody. Basal invasion was also measured in
MDAMB231, with decoy antibody treatment. Error bars indicate S.E.M. from two
separate experiments. In B, asterisks indicate p<0.05 as determined by single-tailed
Student's t-test.
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Figure C-17: PLSR and siRNA suggest cross-talk between ADAM-10 and
ADAM-17. (A) PLSR was used to build models that describe AREG accumulation
(shown in Fig. C-8) as a function of PrAMA-determined ADAM activities (shown in
Fig. C-11). PLSR model accuracy improves with the inclusion of multiple protease
activities and principal components, suggesting that AREG shedding is regulated by
multiple proteases. Results from the model using three variables and two princi-
pal components (3 VAR, 2 PC) are shown in Fig. 4-6B. (B) siRNA knockdown of
both ADAM-10 and ADAM-17 reduces shedding of multiple endogenous substrates.
Results correspond to Fig. 4-6C.
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Figure C-18: Validation of siRNA ADAM-10/ADAM-17 knockdown by
western blot and ELISA. Western blots show ADAM-10 and ADAM-17 knock-
down in MDAMB231 (left side) and 12Z (right side) following siRNA treatment, at
48hrs post-transfection. For ADAM-10 measurement in 12Z, high western-blot back-
ground prompted the use of a bead-based sandwich ELISA for ADAM-10. Bead
fluorescence was quantified and shown relative to control levels. For the ELISA, sta-
tistically significant decrease in signal was observed only upon siADAM-10 treatment
(p<0.05, Student's t-test).

180

MDA-MB-2
N

12Z

0< z
low .

ADAM17



51

22

0

1.512Z:M

Fraction motility (U01

remaining in the
presence of 1.25

HGF

o ONRG1 0.
-Ctj

0 0.5
t5 2It Jnk JCS)

Mek inh 0.25

P13K inh

Jnk inh 0.1

01 0.25 0.5 0.75 1 125

01 Fraction motility remaining in the presence of EGF

F. 0

Figure C-19: Cellular invasion response to growth factor and kinase inhibitor
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Figure C-20: Fully labeled PLS-DA scores and loadings plot for compar-
ing the signaling responses between cells treated with either Mek or Jnk
inhibitors. Corresponds to Fig. 4-8B, with full labels.
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Figure C-21: Kinase and protease inhibitors affect RTK shedding in 12Z and
MDAMB231. (A) BB94 treatment reduces supernatant HER-4 in 12Z, measured
at 24hrs post-treatment (p<0.05, paired Student's t-test). (B) U0126 and BB94
increase p-HER-2 and p-HER-4 in MDAMB231, measured 5min post-stimulation
with NRG1b, after a 1hr pre-treatment with inhibitor. Each data point represent
the average of two experimental replicates. Across the eight data points shown,
phosphorylation of full-length receptor exhibits a statistically significant increase of
roughly 30% with U0126 or BB94 treatment (p<0.05, paired Student's t-test).
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Figure C-23: Correlation between PF protease activity and analyte concen-
trations. Spearman correlation was calculated between protease activities (columns)
and observed analyte concentrations (rows) across the set of thirteen PF samples. The
t-test for significance was determined using an approximation of the exact permuta-
tion distributions of correlation, with Storey correction for a 0.05 FDR (Storey et al.,
2002).
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Figure C-24: AREG, HBEGF, and MET shedding in ESC. Telomerase-
immortalized endometrial stromal cells (tHESC) and primary endometrial stromal
cultures from four patients were assayed for ligand and receptor shedding 24hrs af-
ter stimulation. Results were normalized to cell count and supernatant volume, and
correspond to picogram per million cells per day of analyte release (left graphs).
Shedding induction was calculated relative to basal levels and averaged across all five
samples (right graphs). Asterisks indicate p<0.05, according to the paired Student's
t-test.
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Figure C-25: AREG, HBEGF, and MET shedding in PFMC. Total PFMC
were separated into adherent, mature monocyte populations (M) and non-adherent
lymphocyte populations (L). Cells were stimulated with phorbol ester (PMA) and
ionomycin (Iono). Supernatant was collected at 24hrs post-stimulation and analyzed
by ELISA. "Average L/M" describes the average measurements from PFMC across
nine separate patient samples, +/- standard deviation. Results were roughly normal-
ized to cell count and supernatant volume, and correspond to picogram per million
cells per day of analyte release.
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Figure C-26: PLS-DA comparison between endometriotic and TNBC cell
lines. (A) Clustergram showing features of cell motility response to growth factors
in 12Z & TNBC cells. Color indicates percent change over unstimulated conditions
(black=0, white=100% increase). (B-C) PLS-DA distinguishes 12Z from TNBC cells
based on motility (B) and ectodomain shedding (C) responses. Squares represent
a PLS-DA loading of an individual motility (B) or shedding (C) response. Colors
indicate growth factor treatment, and circles correspond to cell-line scores. Compared
to TNBC cell lines, 12Z respond relatively more to NRG1b and IGF1, and relatively
less to HGF. TGFa and EGF induce more MET shedding in the 12Z compared to
TNBC cells. All data were mean-centered and variance normalized for each cell line
and analyte.
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C.1 Materials and Methods.

Growth factors and inhibitors: Recombinant growth factors and cytokines were

purchased from Peprotech (Rocky Hill, NJ). For all experiments, EGF was used at a

final concentration of 100ng/mL, NRG13 was used at 80ng/mL, and all others were

used at 50ng/mL. Inhibitors used in this paper, their final concentrations, and ven-

dor source are as follows: BB94 (Metalloproteinase inh.; 1OuM; Tocris Bioscience),

mAb225 (EGFR blocking mAb; 10ug/ml; purified from the ATCC hybridoma), gefi-

tinib (EGFR inh.; luM; LC Labs), lapatinib (EGFR/HER2 inh.; luM; LC Labs),

SP600125 (Jnk inh.; 20uM; LC Labs), TCS-6o (Jnk inh.; 1OuM; Tocris), Jnk-IN-

8 (Jnk inh.; 3uM; generously provided by the Gray Lab, Harvard Medical School),

SB203580 (P38 inh.; 20uM; LC Labs), LY294002 (P13K inh.; 1OuM; LC Labs), U0126

(Mek inh.; 1OuM; LC Labs), AZD6244 (Mek inh.; 5uM; Selleck Chem.), PD0325901

(Mek inh.; 1OuM; Tocris), Foretinib (MET inh.; 1OOnM; Selleck), Oa-AREG mAb

(AREG inh.; 10ug/ml; R&D Systems), pro-ADAM-9 (ADAM-9 inh.; 10uM; Biozyme,

Inc.; Apex, NC), pro-ADAM-10 (ADAM-10 inh.; 4uM; Biozyme, Inc.).

Tissue culture: The 12Z cell line was generously provided by Anna Starzinski-

Powitz (University of Frankfurt) by way of Steve Palmer (EMD Serono). Telomerase-

immortalized human endometrial fibroblasts (tHESC CRL-4003; ATCC), SUM149PT

(Asterand; Detriot, MI), MDAMB231 (ATCC), and MDAMB157 (ATCC) were cul-

tured according to supplier recommendations. Cells were 12Z were routinely cultured

in media that consisted of DMEM supplemented with 100 U/ml penicillin, 100pg/ml

streptomycin (Invitrogen), along with 10% fetal bovine serum (Atlanta Biologicals;

Atlanta, GA) at 37 0C, 5% CO 2.

Immunoassays: Phospho-protein levels were measured using the following bead-

based ELISA kits (Bio-Rad; Hercules, CA): p-Akt(Ser473), p-cJun(Ser63),

p-ERK1/2(Thr2O2/Tyr2O4, Thr185/Tyr187), p-HSP27(Ser78), p-Jnk(Thr183/Tyr185),

p-p38(Thr18O/Tyr182), p-Src(Tyr416), p-STAT3(Tyr7O5), p-GSK3a/b(Ser21/Ser9),

p-Tyk2(Tyr1054/Tyr1055),
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Figure C-27: Gel images for quantification of MET shedding and phos-
phorylation. Representative western blots show total and phosphorylated MET
at pY1234/35 and pY1349. Densitometric quantification of results from these blots,
averaged with an additional replicate blot, are shown at bottom. BB94 did not signif-
icantly change pY1234/34 levels, in contrast to pY1349 levels, which increased with
BB94 treatment in the presence of NRG1b and HGF.
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and p-EGFR(Tyr1173). The site-specific p-EGFR(Tyr1173) Ab was used only in Fig.

4-5C. Supernatant ligand, receptor, MMP, and TIMP measurements were performed

using R&D Duo-set ELISA kits (R&D Systems, Minneapolis, MN), Widescreen bead-

based ELISAs from EMD4Bliosciences (Merck KGaA, Darmstadt, Germany), and

Fluorokine MAP Multiplex kits (R&D Systems). EGFR, HER-2, and HER-4 phos-

phorylation levels were measured using a bead-conjugated ectodomain capture anti-

body and a pan-phosphotyrosine detection antibody (EMD4Biosciences). p-MET

western blots used clone D26 for p-MET(Tyr1234/1235) and clone 130H2 for p-

MET(Tyr1349), both from Cell Signaling Technologies (Danvers, MA). ADAM-17

western blots used a rabbit polyclonal antibody (Ab2051; Abcam). ADAM-10 western

blots used a rabbit polyclonal antibody targeting amino acids 732-748 (Sigma). West-

ern blots were imaged using an Odyssey (Li-cor) infrared scanner and dye-conjugated

secondary antibodies (Invitrogen). An ADAM-10 bead-based ELISA was developed

using an ectodomain-targeting monoclonal mouse IGG2b antibody (clone 163003,

R&D Systems) for capture and a biotinylated polyclonal goat antibody (Ab936,

R&D Systems) for detection. Antibodies were conjugated to carboxylated polysytrene

beads (Luminex; Austin, TX) using EDC/NHS crosslinking (Thermo Fisher; Rock-

ford, IL) following standard methods. The resulting bead-based ADAM-10 ELISA

used protocols and buffers from the Bio-Rad phosphoprotein kits.

Peritoneal fluid sample and analysis: Peritoneal fluid, primary HESC, and

PFMC samples were all from patients who provided informed consent in accordance

with a protocol approved by the Partners Human Research Committee and the Mas-

sachusetts Institute of Technology Committee on the Use of Humans as Experimental

Subjects. We limited enrollment to pre-menopausal women with regular cycles (26-

32 days), and excluded subjects having received hormone treatment within three

months of surgery. Moderate/Severe (Stage III/IV) endometriosis was laparoscopi-

cally diagnosed based on the revised criteria of the American Society for Reproductive

Medicine (Canis et al., 1996). Peritoneal fluid was aspirated during laparoscopy from

the rectouterine pouch, following trocar insertion and before lavage or surgical ma-
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nipulation. Specimens were immediately clarified within 15 min. by centrifugation,

aliquoted, and stored at -80'C until further analysis.

Primary and immortalized HESC: Endometrial tissue was obtained from pipelle

uterine biopsies of normally cycling pre-menopausal women. Isolation and purifica-

tion of endometrial stromal fibroblasts was performed as previously described (Osteen

et al., 1989). Briefly, tissue was dissected into approximately 1mma fragments using a

sterile scalpel blade, transferred into a tube containing fresh complete media and cen-

trifuged (400xg) to eliminate excess blood and debris. Fragments were resuspended

in an enzyme mix containing 0.5% collagenase type IV and 0.02% deoxyribonuclease

I, and 2% chicken serum in phenol red-free DMEM-F12. Suspensions were incubated

at 37"C for 1hr, intermittently aspirated through decreasing sizes of glass pipettes for

cell dispersion, and finally filtered through a 100um and subsequently 70um nylon

cell strainer.

PFMC isolation and media conditioning: Peritoneal fluid mononuclear cells

were isolated from fresh peritoneal aspirates by centrifugation (10 min. at 1000xg) and

cryopreserved in complete media supplemented with 10% DMSO. Upon thawing, cells

were washed and seeded at 100,000 cells/cm 2 in 24-well plates for selective adherence

of mature monocytes. Non-adherent populations were removed by gentle washing

after three hours of culture, and conditioned media collected following and additional

24 hours of monocyte-enriched culture. Flow cytometry routinely indicated >99%

CD45 expression in fresh PFMC suspensions and >90% lymphocyte depletion in

monocyte-enriched preparations.

Supernatant analysis: For quantification of supernatant analytes (Figures 1A,

2A, 3D-E, 4D, 4K, S1B, S6, S8, S9, S20), cells were plated on polystyrene plates

(Corning) at 80% confluency, and stimulated the following day with serum-free media

supplemented with growth factors after a 30min. pre-treatment with inhibitor. 12Z

were serum starved overnight before treatment. Supernatant was collected 24hrs

after stimulation, clarified by centrifugation (5min., 300g), and frozen at -20"C for
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storage. At the time of supernatant collection, cells were trypsinized and analyzed for

cell count and viability using ViCell instrumentation (Beckman Coulter; Brea, CA).

Final analyte concentration measurements were normalized to cell count.

siRNA knockdown protocol: siRNA treatments used ON-TARGETplus SMART-

pool siRNAs (Thermo Scientific), with siGENOME non-targeting siRNA pool-2 as

the negative control. For both 12Z and MDAMB231, 0.5 million cells were seeded

in 10 cm dishes. The following day the cells were transfected using 5 uL Dharma-

fect 4 and 125 pmol siRNA according to the manufacturer's protocol. One day after

transfection, cells were reseeded for knockdown experiments, and 48 hrs after trans-

fection cells were treated and lysed. Experiments for measuring ectodomain shedding

and cell invasion began with growth-factor stimulation 48 hrs post-transfection, and

ended 24 hrs later.

Migration assay computation: To interpret live-cell migration experiments, the

root-mean-squared cell speed was calculated from position intervals between time

points for each cell track, as well as the standard deviation of the mean (Kim et

al., 2008). In this work, persistence denotes net displacement divided by the total

path length. Endpoint invasion assays were interpreted using a modified spot finding

algorithm (Santella et al., 2010) in Matlab. Briefly, confocal z-stacks were first pre-

processed using background subtraction to eliminate uneven microscope illumination,

followed by top-hat filtering and contrast enhancement. Pre-processed images were

segmented using previously described software (Santella et al., 2010). Identified nuclei

positions were assessed by nearest-neighbor analysis and PCA to infer the well-bottom

where the majority of cells reside, and z-positions of the nuclei were determined as

a distance from the xy-plane of the well-bottom. Unless otherwise stated, invasion

metrics were calculated as a fraction of cells that had invaded further than 20um from

the well-bottom, although this threshold slightly changed depending on cell-type and

day-to-day variability to maximize signal-to-noise and minimize background.
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Bayesian network analysis: We employed Bayesian network analysis to produce

graphical representations of the conditional probabilistic dependencies among sig-

naling events, protease activity measurements, ectodomain shedding, and cellular

motility. The directed acyclic graphs produced by Bayesian network inference are

comprised of two components: nodes and edges. In this application, nodes describe

the various biochemical and phenotypical measurements that describe 12Z response

to growth factor stimulation. The edges represent conditional probabilistic relation-

ships between these measurements. Bayesian network inference allows for known

directional relationships to be pre-specified. In this application, biochemical rela-

tionships between phosphosignaling, ADAM activity, and ectodomain shedding, have

some known directionality. For example, because ADAMs are known to directly shed

ectodomains, while soluble ectodomains generally do not directly influence ADAM

activity, we model the relationship as directional. Furthermore, observed correlation

with cell motility (Fig. 4-2A) suggests a hierarchical relationship, and is greatest on

average with ectodomain shedding measurements, followed by ADAM activities, and

least so for phospho-protein levels.

We use a previously described Bayesian network inference method (Eaton et al.,

2007). Briefly, we derived consensus directed graph structures from exact Bayesian

network model averaging over all directed acyclic graph (DAG) structures for a given

number of parents per node. We averaged these results across the two algorithm

parameters: the number of maximum parent edges per node (ranging between 2 and

4), and the number of k-means clusters used for data discretization (between 3 and

5). For interpretable visualization, the consensus network (Fig. 4-2C) only includes

those edges with a score >0.24, which denotes that >24% of the derived Bayesian

networks tested over all iterations of optimization included that edge. Although our

implementation of Bayesian inference cannot capture cyclical feedback, bi-directional

edges can be observed with model averaging when using a significance threshold below

0.5. In Fig. 4-2C, edge weights and color correspond to the edge score, and node

color corresponds to the summed edge-weights emanating from that node.
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Partial least squares analysis: Partial least squares regression (PLSR), partial

least squares discriminant analysis (PLS-DA), principal component analysis (PCA),

hierarchical biclustering, and all other statistical analyses were performed using Mat-

lab (Natick, MA). Unless otherwise stated, all input and output variables were mean-

centered and variance-normalized across the set of environmental stimuli, prior to

PLSR, PLS-DA, or PCA. For PLSR and PLS-DA, we implemented a forward-variable

selection procedure to heuristically select the minimal combination of input variables

that optimally described output variable response. We iteratively added input vari-

ables to the PLSR model if they improved model fit as determined by leave-one-out

cross validation accuracy. To avoid local optima, we conducted heuristic searches with

several cost functions of the cross-validation accuracy, including Q2 (the R2 coefficient

of determination for prediction accuracy), Spearman rank correlation, Pearson corre-

lation coefficients, and for PLS-DA, area under the R.O.C. curve (AUROC). To avoid

over-fitting, we required the added input variables to demonstrate PLSR loadings of

greater magnitude than their observed loading standard error. Variable importance

in the projection (VIP) statistics were calculated in the usual manner. Standard error

for scores, loadings, and VIP were calculated by the jack-knife (Efron et al., 1983).

Variance of the prediction values were computed according to H6skuldsson (Hoskulds-

son et al., 1988). All results with non-zero Q2 or AUROC accuracy demonstrated a

statistical significance (p<0.05) as determined by the permutation test. Briefly, we

randomly shuffled output variables relative to the model inputs, and ran the variable-

selection procedure for each of 1000 random permutations. Shuffled data yielded a

lower Q2 value than that achieved by the actual data-set more than 95% of the time.

For PLSR prediction of ADAM-10 activity in Fig. C-5, we investigated enrichment

for the inclusion of phospho-proteins among PLSR models that exhibited at least

60% prediction accuracy (Q2 > 0.6). Enrichment calculations used a hypergeometric

distribution with Bonferroni correction.
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