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Abstract

This thesis presents the design of a novel type of miniature floating offshore platforms

with a heave plate attached at the keel, suitable for developing deep-water marginal
fields. This design features a small displacement, easy fabrication, reduced cost and a
favourable motion performance in waves. The design process includes the preliminary

estimation, hydrodynamic analysis and hull optimization. A self-developed model
"Discrete Vortex Ring Model" (DVRM) to efficiently estimate the viscous drag due

to the vortex shedding of the oscillatory heave plate is presented in details. This
new model DVRM combined with the standard radiation/diffraction code WAMIT is

used to analyse the effect of different geometric parameters on the motion behaviour
of the platform. Finally, these two models are integrated into a genetic optimization
algorithm to obtain a final optimal design.
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Chapter 1

Introduction

1.1 Motivations

Humans' demand for hydrocarbons is expected to increase by 5% per year for the

following decades, but very large oil and gas fields are fewer and fewer. Therefore,

oil and gas companies are transitioning to look for means of developing their proven

smaller reserves, which are so-called "marginal fields". A lot of such reserves have

already been discovered in the deep water of Gulf of Mexico recently. However, the

expenses of a stand-alone deep-water field development, including a platform and

pipeline infrastructure, are usually beyond the value of the oil or gas it contains.

Nowadays, providing surface support to deep water developments is mainly achieved

by three types of platforms, all of which are costly.

Semi-submersible platforms are moored floating structures composed by multiple

columns connected by pontoons. This kind of platforms achieves its stability by

large displacement, normally exceeding 20,000 tons. Therefore, such platforms can

support a large payload, but at the same time their cost is high. In addition, their

large displacement requires very large mooring system, which increases significantly

in size and cost with water depth.

Spars are a hollow vertical cylindrical structure moored to the sea bed. Such plat-

forms usually have a very deep draft to minimize heave motion, but this also increases

the system cost. In addition, another inherent problem of such concept is that the

21



cylinder suffers greatly from Vortex Induced Motions (VIM) in the current. These

induced oscillations would reduce the fatigue life of the mooring system, resulting

in operational concerns. One of the most common mitigation devices is strake. But

strakes increase the wetted surface of the platform and the strength requirements of

the mooring system. The spar installation and fabrication costs are also high.

Finally, tension leg platforms (TLP) have also been widely used to support deep

water facilities in depth extending to almost 5,000 ft. TLPs are connected to the

sea-bed by a set of vertical steel tendons, like an inverted pendulum. These tensioned

tendons limit the heave and pitch motion very well. Due to the motivation from

the marginal fields, a lot of mini-TLPs were invented, such as Seastar mini-TLP and

Modec mini-TLP. However, TLP cannot be extended to the ultra deep water greater

than 5,000 ft and the installation of these tendons is very expensive. In addition, the

tendons are subject to Vortex-Induced Vibrations (VIV), which makes their design

challenging.

The existing floaters are all very large and costly. Marginal fields cannot support

these costs. This motivates the industry to seek for a clever design of a novel miniature

floating platform with loose mooring systems, of which the displacement is around 104

ton. In addition, such mini-platforms should also have a good motion performance in

waves. However, it is quite challenging to achieve both goals at the same time. This

thesis would focus on how to find such an economic but also safe design.

1.2 Wave loads on offshore platform

It is essential to predict the wave-induced loads and motion in both design and op-

eration of the offshore platforms. Motions of floating platforms usually involve six

degrees of freedom. The rigid-body translatory motions are surge, sway, and heave.

The angular motions are referred as roll, pitch and yaw.

To date, the majority of research has assumed that the water can be considered as

incompressible and inviscid, and that the flow around the body remains irrotational.

Under this assumption, the Laplace equation is valid everywhere in the fluid domain
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and the hydrodynamic forces acting on the body can be considered as the solution to

the boundary value problem. However, this is not implying that viscous effects are

not important. On the contrary, for certain phenomena they are dominant. However,

the inviscid fluid problem is an order of magnitude easier to solve and therefore has

been the basis for much of the research in the area. For many types of problems and

geometries the inviscid assumption gives quite an acceptable accuracy (Beck 1994).

1.2.1 Linear wave-induced motion and loads

Under operational conditions when the amplitudes of incident waves and body mo-

tions are relatively small, linear theory in the frequency domain generally gives good

predictions for wave body interactions. Based on the linear wave theory, a sea state

is usually described by a wave spectrum and a floating body's response to this ran-

dom sea can be approximated by superposing the body's response to each regular

incident wave component in the spectrum (St. Denis & Pierson 1953). The solution

of regular incident wave interactions with floating bodies can be obtained by solving

the boundary value problem which can be further split into seven sub-problems: a

radiation problem associated with forced harmonic oscillations in six modes of rigid

body motion, and a diffraction problem when the body is fixed in incident regular

waves. In each of these sub-problems, a velocity potential is found as the solution

of the Laplace equation subject to a body boundary condition applied on the mean

wet surface, a sea-bottom condition, the classical linearized free surface condition

and a radiation condition at far field. For a general body shape, numerical schemes

are usually used, including finite difference, finite element, finite volume, and bound-

ary element methods. Among all these numerical schemes, the potential-flow based

boundary element methods (panel methods) using a Green function technique have

gained great popularity due to their efficiency, accuracy, and flexibility (King 1987;

Newman & Sclavounos 1988; Newman 1992). From the linear theory, wave-induced

body motion reserves wave frequency and has the motion amplitude linearly propor-

tional to the incident wave amplitude.

For the linear problems, the time-domain and frequency-domain solutions are
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complementary via Fourier transforms. However, the conventional frequency-domain

approach is computationally much faster than the time-domain approach. In addi-

tion, the linear method in frequency domain can capture most of the leading order

effects in a mild sea condition. Therefore, it is widely used to explore the design

space at the preliminary design phase, to understand the system responses and to

obtain fundamental insights into the optimization of the systems' design. Since this

thesis focuses on the concept design and preliminary optimization of a novel floating

platform, the standard linear Radiation/Diffraction theory in the frequency domain

is used.

1.2.2 Partially nonlinear wave-induced motion and loads

The biggest limitation of a frequency domain analysis based on the linear wave and

linear dynamics theory is that the amplitudes of ambient wave and body motions

have to be small compared to the ambient wavelength. However, extreme wave envi-

ronments under nonlinear effects could also be of importance.

The most common way to solve the nonlinear wave body interaction problem is to

use perturbation analysis with the ratio of wave amplitude and wavelength as a small

parameter. If we extend the linear theory to the second order, i.e., the free surface and

body boundary conditions are satisfied up to the second order in the wave steepness,

we could obtain nonlinear wave forces of sum- and difference-frequencies. If these

frequencies are close to the natural frequencies of the system, resonance would also

occur (Faltinsen 1990).

There are other studies taking partial nonlinearity effects into account in the

wave-body interactions. One is the body-exact numerical method which is usually

for practical problems involving large-amplitude body motions but relatively small

incident and diffraction waves. The body boundary condition is implemented on the

exact instantaneous wet body surface while the free surface condition is linearized

at the undisturbed water surface (Lin & Yue 1991; Faltinsen & Chezhian 2005).

The other is called "weak-scatter theory". This theory linearizes the free surface

boundary condition on the incident wave profile, and still satisfies the exact body
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boundary condition. This is one step further than the body-exact theory, but still

has limitations on the nonlinearity of disturbance flow (Pawlowski 1992; Huang 1997).

Since the body boundary condition is satisfied on the instantaneous wet surface, time

domain analysis is the convenient alternative, but much more time consuming in

computation.

1.2.3 Fully nonlinear wave-induced motion and loads

For problems like slamming, green water on deck and wave over-topping, fully non-

linear numerical simulation is required. However, because of the computational cost

and complexity in modelling the muti-scale nonlinearities, such three-dimensional

fully nonlinear results for general bodies are still limited. One of the most popular

methods is the mixed-Eulerian-Lagrangian (MEL) approach combined with a bound-

ary element method (BEM). At each time step, the BEM is first used to solve the

BVP, and the MEL is then used to update the nonlinear free surface (Dommermuth

& Yue 1987; Liu, Xue & Yue 2001). Finite difference methods or finite volume meth-

ods, which are much more computationally expensive than the BEMs, are at present

not practical in the study of fully nonlinear wave-body interaction for the design of

offshore structures.

1.2.4 Viscous damping

Viscous damping is of importance in the design of offshore platforms because it can

be utilized for suppressing the motion of the platform. However, the state of the art

in calculating the viscous loads on offshore structures is not satisfactory. Tradition-

ally, Morison's equation (Morison et al. 1950) has been widely used to calculate wave

and current loads on cylindrical structures. The inertia and drag coefficients have

to be empirically or experimentally determined. In addition, Morisons equation can-

not predict the oscillatory forces due to vortex shedding. This motivates numerous

researches in developing more rational methods for estimating the viscous damping

effects.
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The simplest model to use is a single-vortex model. This is an inviscid method

that models the flows with thin vortex sheets separated from sharp corners at high

Reynolds numbers and low Keulegan Carpenter numbers (KC). This model represents

the vortex sheet by a single vortex and a cut joining this single vortex and the

adjacent separation point. Brown & Michael (1955) first applied the condition of

total zero force on the sum of the single vortex and the cut to determine the location

of the vortex. Kutta condition is satisfied at the separation point to determine the

strength of the vortex. Faltinsen & Sortland (1987) used a similar idea to study drag

coefficients for an arbitrary two-dimensional bodies with sharp corners and obtained

good results compared to the experiments. Stiassnie et al. (1984) applied the single

vortex method on oscillating problems to estimate the energy dissipation due to the

vortex shedding at the lower sharp edge of a vertical plate in waves. They assumed

only one pair of vortices shed per period and neglected the influence of previously shed

vortices, focusing on one half cycle only. The result has the same trend compared

to the experiment, but the error is not trivial. In addition, his method is limited

to 2D simple geometry with known analytical solution for the same problem with

no vortex. Graham (1977) also attempted to apply this simple method on more

general oscillatory flow, but the calculation becomes invalid if the vortex shedding

rate changes the sign. Long time calculation will lead to a divergent result.

Graham (1980) later carried out a semi-analytical analysis for KC-+ 0. He as-

sumed that the vortex flow for a small KC number depends on the local flow around

the sharp edge only. He found out a qualitative relation between the drag coefficient

and the KC number. However, the analysis is for the 2D problems and only gives

qualitative results.

Usually Reynold's number associated in hydrodynamic problems for marine struc-

tures is very large. Therefore, when vortex shedding occurs, the boundary layer is

very thin. This motivates researchers to use vortex sheet method to model the sepa-

ration phenomenon. A vortex sheet is actually a line of distribution of vorticity. For

2D problems, Jones (2003) proposed a general computational method for the flow sep-

aration of a plate based on the work of Krasny (1991). He distributed vortex blobs
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on both sheets and the plate, and did not use conformal mapping method which is

widely used for solving 2D problems. Hence such method can be generalized to tackle

3D problems. However, his method cannot do the simulation for long time. As for 3D

axisymmetric problems, not too much work has been done until now. De Bernardinis

et al. (1981) and Nitsche & Krasny (1994) applied the vortex ring method to some

axisymmetric problems. For 3D problem, vortex sheet method is commonly used in

BEM to distribute the dipoles or vorticity on body and the vortex sheet. Kutta con-

dition is applied on each time step to determine the strength of the newly shed sheet.

Such scheme can predict the drag coefficients accurately but very time-consuming.

In addition to the numerical methods, another popular approach is to measure the

drag coefficients by experiments and plug them into the Morison's equation. As for

experiments, Keulegan & Carpenter (1958) measured the force of a fixed 2D thin plate

in oscillating flow and found that the drag coefficient is a function of KC number. Very

recently, Canals and Pawlak (2011) also studied this 2D problem experimentally, but

focusing more on the vortex dynamics. He et al. (2008) studied the hydrodynamics

of a thin 3D circular plate oscillating by experiments, and found that the viscous

damping coefficient depends on both KC number and the diameter-thickness ratio of

the plate. However, we should note that it is impossible to do experiments to obtain

the viscous damping force for every case of the design at the initial stage.

As we can see, the separated flow around the marine structure is such a compli-

cated phenomenon that a general feature of the existing methods is that a simple

model will have deficiencies, therefore leading to more complicated numerical mod-

els. The result of this trend is that one ends up wanting to solve numerically the

Navier-Stokes equations for turbulent flows. However, the solution of NS equations

with turbulence is still unrealistic (Rodi 1985). It is not a wise choice to spend much

time and computation power only to obtain a drag coefficient while all the other

major hydrodynamic coefficients can be obtained by standard radiation/diffraction

method within a minute. So rather than following the trend with a more and more

complicated model, one may be attempted to go the opposite way and try to find a

simple model which can capture the important features of separated flow.
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In this thesis, we propose a simple model based on the single vortex idea to

estimate the drag coefficient due to the vortex shedding very quickly, both for 2D

and 3D axisymmetric cases. The results agree with the experiments satisfactorily.

We then combine this simple model with the standard Radiation/Diffraction method

to obtain an optimum design of a miniature offshore platform for marginal fields.

1.3 Objectives and overview

The research objectives of this thesis would include the following three parts. The

first thing is to come up with a new design of a mono-column mini-platform from

hydrodynamic analysis. Since we hope to utilize the viscous damping effects to im-

prove the motion behaviour of the platform in waves, a quick model accounting for

this damping effects would be developed. Finally, we would combine the hydrody-

namic analysis and viscous damping model to carry out the optimization to obtain

the optimum design.

This thesis is organized into six chapters.

Chapter 1 provides an introduction of the motivation and research goals of the

present work. A brief literature review of the calculation of the hydrodynamic loads

is also given.

Chapter 2 would concentrates on some preliminary considerations on design, in-

cluding the estimation of the main dimensions and weight distribution.

In Chapter 3, we would present the hydrodynamic models and methods used for

design in details: the linear Radiation/Diffraction method (WAMIT), and the newly

developed vortex damping model. For the viscous damping problem, we would first

discuss the widely-used vortex sheet method in 2D problems, and then focus on the

self-developed new model, called "Discrete Vortex Method" (DVM). Then this new

model will be extended to 3D axisymmetric problems, called "Discrete Vortex Ring

Method" (DVRM), and compared with the widely-used vortex ring sheet method.

Finally, we combine this new model DVRM with WAMIT to derive the solution to

the hydrodynamic equation of motion.
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Chapter 4 applies the models and methods to the design of hull shape of our

mini-platform. We first discuss the evolution of the hull shape of our platform from

a spar with the same displacement and draft. Next, we presents an initial design

of our platform compared with the spar in the heave motion quantitatively to show

the advantage of our design, using the combination of WAMIT and DVRM. Finally,

how different geometric parameters influence the motion performance is discussed to

provide some guides for the following optimization.

Next in Chapter 5, we use a multi-objective genetic optimization algorithm to

find the optimal hull shape for our mini-platform. The combination of WAMIT

and DVRM is integrated into the optimization algorithm to achieve an efficient and

automatic calculation.

Finally Chapter 6 summarizes the whole thesis and provides some recommendation

for the future work.
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Chapter 2

Preliminary Design Considerations

for the Mini-platform

This chapter will discuss several important considerations in the initial design phase.

Our objective is to design a mono-column floating platform for deep water with dis-

placement around 104 ton and satisfactory motion performance. For floating struc-

tures, in addition to the hydrodynamic response in waves, the weight control and

stability are also key design challengers. Therefore, before we perform any hydrody-

namic analysis, the first job is to determine the size and weight distribution of the

platform to guarantee that such a design satisfies the hydrostatic stability criteria

and is compatible with its function.

2.1 Functions and configurations of the mini-platform

In the design of a platform, a clear knowledge of the functions should be in hand.

This will strongly influence the configuration of the platform. Production, storage,

drilling and workover are the four major functions currently performed by floating

platforms (Chakrabarti 2005; Vol.1, Ch.7, Sec.7.2.2). Since we target at designing

a floating platform with a displacement around 10,000 ton, the carrying capacity

of our platform is limited. Therefore, the function of our platform is defined for

production only, similar to mini-TLPs (Ronalds 2002). The oil production for the

31



present miniature platforms usually ranges from 30 - 40k barrels per day (bpd)

(Wilhoit 2010; Ronalds 2002). Here we initially set the oil production rate for our

mini-platform to be 30k bpd.

X2

Deck -

X1
A i" A

A-A
Ri

H

44 : I
Heave Plate

Figure 2-1: General configuration and definition
miniature floating platform

of the coordinate system for our

The general configuration of our platform is shown in Figure 2-1. We define a

coordinate system with the origin at the mean waterline and the vertical coordinate X2

coinciding with the axis of symmetry. As can be seen, the mini-platform is composed

of three parts: deck structures above the waterline, a hull with a moonpool inside, and

a heave plate attached at the bottom of the hull. The topsides deck is a multi-level

structure supported by the submersible part. It is mainly used for supporting the

weights due to the facilities for oil production. The submersible part is called "hull".

For such kind of single-column floating platforms, there is normally an opening with

several well slots inside the hull, called "moonpool" (Chakrabarti 2005; Vol.1, Ch.7,

Sec.7.7). The function of this moonpool is to allow technicians to lower pipes and

instruments into the sea. Finally, the thin plate attached at the keel is called "heave

plate", which is a commonly used device to mitigate the motion amplitude of the
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platform.

The main dimensions of the platform is also provided in Figure 2-1.

9 Hf is called "freeboard", which is the distance between the waterline and the

lowest deck level;

o H is the total draft of the submersible part of the platform;

o R 1 is the radius of the water-plane area;

o R 3 is the radius of the heave plate;

o Ro is the dimension of the extension of the heave plate relative to the hull.

The weights of the different components of the platform are defined as follows:

" Wp is the topsides payload, representing the sum of the carrying capacity of a

platform and the self-weight of its deck structures;

" WH is the weight of the hull;

" A is the displacement, a representative of the scale of a platform. It refers to

the total mass of the sea water displaced by the submersible hull.

Another two important parameters reflecting the inertia of the platform are also

in need at the initial stage.

" VCG stands for the vertical coordinate of the centre of gravity;

" R. is the radius of gyration for pitch (or roll), which is usually used to describe

the mass distribution around the axis of symmetry;

In the following sections, we will discuss how to distribute weight among different

configurational components, how to estimate the main dimensions, and how to obtain

the parameters of inertia.
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Name Type WP/t WH/t A/t
Minifloat IV semi 4,000 - 12,698

Morpeth mini-TLP 3,175 2,540 10,605
Allegheny mini-TLP 3, 719 2,359 10,605
Typhoon mini-TLP 3,810 2,817 12,157

Prince mini-TLP 5,533 3,175 13,097
Matterhorn mini-TLP 12,208 5,352 14,881
Marco Polo mini-TLP 12, 700 5, 216 24,947

Table 2.1: Statistics of the weight distribution of the payloads, hull weight and dis-
placement of the present mini-platforms, where Wp is the topsides payload, WH is
the self-weight of the hull, and A is the displacement (from Hudson & Vasseur 1996;
Wilhoit 2010; Kibbee et al. 1999; Kibbee & Snell 2002; Koon et al. 2002; Ronalds
2002; Cermelli et al. 2004)

2.2 Estimation of the weight distribution of the

mini-platform

2.2.1 Statistics of the weight distribution of the present mini-

platforms

There are numerous miniature platforms to date and most of them are mini-TLPs.

Table 2.2.1shows the statistics of weight distribution for the present miniature plat-

forms (from Hudson & Vasseur 1996; Wilhoit 2010; Kibbee et al. 1999; Kibbee &

Snell 2002; Koon et al. 2002; Ronalds 2002; Cermelli et al. 2004)). These data can

provide us a guide for the initial estimation. In the following context in this section,

emphasis is put on the estimation of Wp, WH and A.

2.2.2 Topsides payload of the mini-platform (Wp)

The topsides payload is the total weight above the waterline, which measures the

carrying capacity of a platform. It can be further divided into three parts: facilities

weight, drilling or workover weight, and the deck structure weight (Chakrabarti 2005;

Vol.1, Ch.7, Sec.7.3).
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Facility weight of the mini-platform

Facility weights represent the maximum fixed plus the variable payload weights carried

by the hull, normally excluding drilling. These weights can be estimated according to

the export production of the platform. Figure 2-2 shows the typical range of facility

weights for the Gulf of Mexico (GOM) floaters as a function of oil production rate

(Chakrabarti 2005; Vol.1, Ch.7, Sec.7.3).
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Figure 2-2: Upper and lower bounds of the topside facility weight for typical floaters

as a function of oil production rate, Gulf of Mexico (from Chakrabarti 2005; Vol.1,
Ch.7, Sec.7.3)

The oil production rate in our case is 30 k bpd, so the facility weight can be

estimated to be around 2,500 st, i.e., 2,300 ton.

Drilling or workover weights of the mini-platform

Drilling or workover weights are the self-weights of the drilling or workover rigs. Since

our platform is designed for production instead of drilling or completion, we can ignore

this weight.
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Deck structure weight of the mini-platform

Usually the self-weight of the deck structure is 30 ~ 40% of the weight of facilities and

drilling equipment (Chakrabarti 2005; Vol.1, Ch.7, Sec.7.3). Therefore, this weight

item is at least around 700t.

The sum of the above three items arrives at a total weight of the topsides around

3,000 ton. We can also justify the reasonableness of this value from the statistics in

Table 2.2.1 and the principles of stability for different types of platforms. Table 2.2.1

shows that for the present mini-platforms (mini-TLPs and a semi-submersible) with

a displacement less than 13, 000 ton, their payloads normally range from 3, 000 to

4, 000 ton. Since the stability of the TLPs is mainly achieved by tendons, and that of

semi-submersibles is by the restoring moment of the multiple columns, i.e., "column-

stabilized", both of them allow the centre of gravity above the centre of buoyancy.

Contrarily, for single-body floating platforms like Spars, or our mini-platform, the

gravity centre must be lower than the buoyancy centre to guarantee enough stability.

This implies that TLPs have the highest gravity centre, semi-submersibles come the

second, and Spars own the lowest in general. Therefore, TLPs generally have a

relatively larger payload-displacement ratio compared to other types of platforms. In

other words, with the same displacement, mini-TLPs hold a larger topsides capacity

than our platform. Hence 3, 000 ton should be a reasonable estimation for the topsides

payload in our case if we assume the displacement is also no more than 13, 000 ton.

2.2.3 Displacement of the mini-platform (A)

Our design purpose is a miniature platform, so the displacement of the platform

should be limited. Referring to the previous statistics in Table 2.2.1, we can see that

most of the mini-platforms have a displacement of 10,000 - 15,000 ton. Similarly,

we should confine our platform within this range.

We can also estimate the displacement according to the displacement/payload

ratio and the topsides payload obtained in the previous subsection.

Figure 2-3 (from Wybro 2006) shows that for conventional platforms, TLPs own
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Figure 2-3: Displacement/payload ratio as a function of the displacement for different

types of floating platforms (from Wybro 2006)

the smallest displacement/payload ratio, semi-submersibles take the second place, and

Spars have the largest ratio. This is consistent with the previous statement inferred

from the principles of stability of these three types of platforms. We can also see from

Figure 2-3 (Wybro 2006) that for mini-platforms with displacement below 20, 000 ton,

mainly mini-TLPs, their displacement/payload ratio are mostly near 5.0. Therefore,

it is reasonable to assume the ratio of our platform slightly larger, about 5 - 6. The

payload (excluding deck steel) for our platform is 2,300 ton, so the displacement A

should be around 11, 500 ~ 13,800 ton. Here we can set it to be 13, 000 ton.

2.2.4 Hull weight of the mini-platform (WH)

In practice, the approaches of estimating the hull steel weight for a semi-submersible

and a TLP in the initial design stage are similar (Chakrabarti 2005; Vol.1, Ch.7,

Sec.7.5-7.6). Here we also apply this estimation approach to our mini-platform. At

this stage we know little about the structure of the hull, one common way is to use a

steel density for the enclosed hull volume. For semi-submersibles, values of between

10 lb/ft in the upper sections to 151b/fta in the pontoons are typical (Chakrabarti

2005; Vol.1, Ch.7, Sec.7.5). Here we can use an averaging density of 131b/fts, i.e.,
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p, = 0.208 t/m 3 , and ignore the volume between the topsides and mean water line

which is small compared to the submersible part.

WH = p8V = 0.208 X (11500 ~ 13800) = 2392 ~ 2870.4 ton (2.1)

where p, is the average steel density of the hull; V is the displaced volume of the

platform.

In addition, from Table 2.2.1, the hull weights for miniature platforms usually lie

at 2000 - 3000 ton. Therefore, we can set WH to be 2800 ton in the initial design

phase.

2.2.5 Ballast of the mini-platform (WB)

The ballast is needed to adjust the vertical centre of gravity to ensure enough stability.

The weight of the ballast WB should be the difference between the total loads exerted

on the platform and the displacement A.

2.2.6 Summary in the weight distribution of the mini-platform

In summary, the weight distribution would be:

(1) A: 13,000 t

(2) Wp: 2,500 t

(3) WH: 2,800 t

2.3 Estimation of the main dimensions of the mini-

platform

Having obtained the weight distribution of the platform, we pay our attention on the

dimensions defined in section 2.1 in this section.
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2.3.1 Waterplane radius of the mini-platform (R1)

As mentioned earlier, such kind of mono-column platforms normally have a moonpool

in the centre of the hull (see Figure 2-1). For mini platforms, well counts are generally

4 - 6 (Kibbee et al. 1999). Spars can be referred to to estimate the size of the

centerwell. To date, all the centerwells of spars have been square, leading themselves

to 4 x 4, 5 x 5, or 6 x 6 well slots. Slot spacing for existing centerwells ranges from

8ft to 14ft. The size increases with water depth because of the higher tensions

required. The recommended spacings for spars would be (Chakrabarti 2005; Vol.1,

Ch.7, Sec.7.6):

Up to 3000ft water depth 12ft

3000 - 5000ft 13ft

Greater than 5000ft 14ft or more

For our platform, we assume a moonpool of 2 x 2 square and use 12ft as the slot

spacing. Then the dimension of the centerwell is around 2 x 12ft ~ 7.2m. Based

on the Figure 2-4 (Barton, n.d.), the diameter of the spar is usually 2 times the

dimension of the centerwell. Therefore, R1 should be at least 7 m.

2.3.2 Freeboard of the mini-platform (Hf)

Freeboard Hf is defined as the distance from the mean water line to the lowest

deck level (see section 2.1). The estimation of this dimension is determined by the

estimation of the "Air Gap (Ha)". Air gap means the distance between the highest

wave crest and the deck. For the US GOM conditions, API RP2A (1993, 2000)

recommends that this air gap should be a minimum of 5 ft, i.e., Ha = 1.5 m. The

highest wave, or the crest level above still water, is specified with the design wave

height H,. For deep water, we usually estimate the crest level above mean water line

to be H, (Chakrabarti 2005; Vol.1, Ch.7, Sec.7.5). For survival condition (100-year

return period), we consider the significant wave height (H,) to be 12.0 m, and the

peak wave period (T,) to be 14.0 s. Thus the extreme crest elevation He:
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Figure 2-4: Statistics of the diameters of the existing spars (Barton, n.d.)

2 2
He -H, = - x 12 = 8 m (2.2)

3 3

However, there can be too much air gap. Excessive air gap raises the centre of

gravity and thereby impairs the payload performance. Determination of the effective

free-board should take the relative motions of the hull into account. For large, long

period waves, such a floating platform will tend to rise and fall synchronously with

the waves, possibly as much as 20% of the wave height. To recognize this, in initial

design, it can be conservatively assumed that the platform rises 10% of the wave

height. Then setting the calm water deck height at 5 ft plus 90% of He should suffice

(Chakrabarti 2005; Vol.1, Ch.7, Sec.7.5). Thus the free-board Hf should be at least:

Hf = Ha + 90%He = 1.5 + 0.9 x 8 = 8.7m (2.3)

Thus, we can finally set the Hf to be 9 m.
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name description draft H/m
minifloat IV semi 30

Morpeth mini-TLP 27.7
Allegheny mini-TLP 27.7
Typhoon mini-TLP 27.7

Matterhorn mini-TLP 32
mini-TLP 28.51

WADO mini-TLP 28.5
Prince mini-TLP 34.75

Marco Polo mini-TLP 39.6

Table 2.2: Statistics of the draft H of the present mini-platforms (from Wilhoit 2010;

Kibbee et al. 1999; Kibbee & Snell 2002; Koon et al. 2002; Cermelli et al. 2004)

2.3.3 Dimensions of the decks of the mini-platform

Due to the limit of small water plane area, the deck usually has two or three levels

for mono-column floaters (Chakrabarti 2005; Vol.1, Ch.7, Sec.7.6) . Here we can refer

to the topsides of SeaStar miniTLP which is also a mono-column small production

platform. The deck has two levels. The dimensions of the deck is 27.4 m x 27.4 m

(Kibbee et al. 1994). Since we hope to lower the gravity as much as possible, we

initially choose 6 m to be the distance between the two levels.

2.3.4 Draft of the mini-platform (H)

Our platform is similar to spars in achieving hydrostatic stability by placing the

gravity centre below the buoyancy centre. The product of inertia of the water plane

usually contributes little. Therefore deeper draft is beneficial for lowering the centre

of gravity. In addition, deeper draft tends to decrease the area of waterplane, thereby

reducing hydrodynamic motions. However, large draft would result in heavier steel

for the lower part of the hull. Hulls with shorter drafts and larger diameters have

less surface area and less steel. Referring to Table 2.3.4 (from Wilhoit 2010; Kibbee

et al. 1999; Kibbee & Snell 2002; Koon et al. 2002; Cermelli et al. 2004), we can see

that most of the drafts of the present miniature platforms are around 30 m. Hence

we can initially select the draft H around 30 m.
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2.3.5 Dimensions of the heave plate of the mini-platform

As mentioned in section 2.1, heave plates are one of the most common motion-

suppression devices in offshore floating platforms. They can increase heave added

mass and viscous damping effectively without increasing too much displacement.

Larger R 3 tends to generate larger added mass, beneficial for the hydrodynamic mo-

tion. For smaller R 3 , interference of the hull boundary on the vortex formation and

shedding process at the edge of the heave plate suppresses the vortices, resulting in

lower damping (Tao & Cai 2004). However, since the draft of our platform is not

too deep, larger plate would induce larger wave exciting force. Also, large heave

plate would bring inconvenience in transportation and installation of the platform.

Therefore, we need to make a trade-off when selecting the dimension of the heave

plate.

As for thickness, thinner plates generally have more significant damping effects.

This is because small thickness enhances the interaction of the vortices formed during

any two successive half cycles (Tao & Thiagarajan 2003; Tao & Cai 2004). Therefore,

we should try to minimize the thickness. Let us set it within 0.2 - 0.7 m at this

initial phase.

2.3.6 Summary in the main dimensions of the mini-platform

In summary, the main dimensions of our platform would be:

(1) Waterplane: R1 > 7.0m

(2) Freeboard: Hf - 9m

(3) Deck: 27.4m x 27.4m x 6m

(4) Draft: H - 30m
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Items Weight/t x 2 /m
Topside Payload 3,000 11.0

Hull 2,800 -20.0
Heave Plate 1,000 -30.0

Ballast+Mooring 6,200 -30.0-
Total 13, 000 -18.4

Table 2.3: An example of the estimation of the VCG of the platform based on the

weight distribution of different components at the initial stage, where the coordinate

2.4 Estimation of the inertial parameters of the

mini-platform

2.4.1 Vertical centre of gravity of the mini-platform (VCG)

After sizing the platform and obtaining the weight distribution, we can estimate the

vertical centre of gravity (VCG) and check whether it satisfies the hydrostatic stability

requirement. The estimation of VCG requires us to list the weight and the centre

of gravity for different items (Li & Ou, 2010) (see Table 2.3). For the arrangement

of the topsides, we try to place the heavy facilities on the lowest deck level (cellar

(leck) as much as possible. Here we can consider its VCG is about 2 m above the

cellar deck. For the ballast and mooring, we assume the VCG to be at the keel of the

platform.

Table 2.3 is an example to illustrate how to obtain the vertical coordinate of the

gravity centre of the platform at this initial phase based on the standard weighting

method. The dimensions and weights shown in the Table 2.3 can be further adjusted

within the frame of the general scale in the following design stages. The centre of

buoyancy (VCB) is the geometric centre of the submersible volume. Ignoring the

contribution from the water-plane area, it is easy to obtain the rough value of the

metacentric height GM based on VCG and VCB. According to ABS rules (ABS 2012),

the metacentric height for MODUs should satisfy:

0 < GM < 2.24m (2.4)
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Larger GM provides better hydrostatic stability. However, we should also keep in

mind that GM also measures the stiffness of the pitch motion. Smaller GM tends to

result in smaller natural frequency in pitch motion.Therefore, we again need to make

a trade-off between the hydrostatic stability and the hydrodynamic motions when

determining GM. Here we choose GM as small as possible while not smaller than 1

m.

2.4.2 Radius of gyration of the mini-platform (Rg)

In addition to the gravity centre, the radius of gyration is another important param-

eter of inertia. Given that the vertical distribution of important items have already

be determined (see Table 2.3), it is straightforward to capture the radius of gyration

around X1/X 3 (Li & Ou 2010).

As the conceptual design, we suppose the mass is uniformly distributed around

X2 when estimating the R9 around x2.
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Chapter 3

Hydrodynamic Models and

Numerical Methods

In the previous chapter, we have estimated the main dimensions and weight distribu-

tion of our mini-platform. The next phase of design is to obtain a geometry that has

a satisfactory motion response in waves within the frame of the previous sizing. In

this chapter, the models and methods for describing the motion response of a floating

body in ocean waves would be presented. We start with the simplest case where the

incident waves are plane progressive waves of small amplitude. The result of this

case is the response of a floating body in regular waves. Later the prediction of the

response in irregular based on the solution to the problem of regular waves will be

given.

3.1 Equation of motion of a floating body in reg-

ular waves

Let us first derive the equation of motion of a free floating body in regular waves by

equating all the hydrodynamic forces to the inertial forces. Here at the very initial

stage of the design, we ignore the forces due to risers and moorings. Assume the

platform is rigid, unrestrained, and already in a state of stable equilibrium when in
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Figure 3-1: Definition of the coordinate systems and sketch of body motions in six
degrees of freedom, where (1 - (6 represent the displacement in the corresponding
modes (from Newman 1977)

clam water. The response of the platform to the action of waves including six degrees

of freedom and the coordinate system are illustrated in Figure 3-1 (from Newman

1977). It is well known that the equations of motion for free oscillations of a rigid

body in plane progressive waves of frequency w are in the following form (Newman

1977):

(Mij + A j),) + Bfig + B |vj + Cj gy = AXi (i, j 1, 2, -. 6) (3.1)

Where: Mij is the mass matrix;

Aij is the added mass coefficients;

BP is the linear wave damping coefficients;

By is the viscous damping coefficients;

Cij is the restoring force coefficients;

A is the amplitude of the linear incident wave;

Xi is the wave exciting force on the body in the i-th direction per incident

wave amplitude;

(j is the amplitude of the body response in the j-th direction.

The forces in this equation of motion (3.1) imply that we can decompose this
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problem into two sub-problems. One is the well-known wave radiation/diffraction

problem which associates with all the linear hydrodynamic coefficients. For this

problem, the most common way is to apply the potential flow model. The other is

the viscous damping problem involving the nonlinear damping term Bglig|('. As

mentioned in Chapter 1, a new model is developed in this thesis to quickly estimate

the viscous damping coefficient By.

3.2 Potential flow model for the linear wave-body

problem

For this sub-problem, we assume the flow to be inviscid, incompressible and irrota-

tional. Therefore, potential-flow theory is valid. Due to the linearity of this problem,

the total velocity # can be decomposed into the following form (Newman 1977; Mei

et al. 2005):

6

#(x,y, z,t) = Re(Z joj(x,y, z) + AOA(x,yz))eiwt  (3.2)
j=1

In the above, #j represents the radiation potential associated with the harmonic

motion of a rigid body in the j-th direction, which is forced with unit amplitude

in the calm water. For example, if the body is forced to oscillate in heave with

unit amplitude, the resulting velocity potential is denoted as #2. The potentials

#p, j = 1, 2,-- . 6 are the solutions of the so-called "radiation" problem.

The potential #A for the flow due to the interaction of a fixed body with incident

waves. This is regarded as the wave "diffraction" problem.

Let us define the following symbols:

" L is the length scale of the floating body;

" V is the displaced volume;

" SB is the wetted body surface;
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e SF is the free surface;

" n is the unit normal vector, directed out of the fluid;

" r is the position vector (x 1 , x 2 , x 3 );

" A* is the dimensionless added mass coefficient;

" BP* is the dimensionless linear wave damping coefficient;

" C* is the dimensionless restoring coefficient;

" X' is the dimensionless wave exciting force;

3.2.1 Hydrostatic force of a freely floating body

For a freely floating body, the hydrostatic force can be written as (Lee 1995):

6

F = - i , i = 1, 2,- 6 (3.3)

here Cij is 6 x 6 restoring coefficient matrix with nonzero elements:

C22 = pgS

C44 = pgV[(S 33/V) + x2 - x2]

C66 = pgV[(S/11 V) + xB - xG]

(3.4)

(3.5)

(3.6)

Here x' is the VCB, x G is the VCG (defined in Chapter 2, section 2.4), S is the

waterplane area, and the waterplane moments are defined as:

Si= xixjdS (3.7)
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The corresponding nondimensional form of the restoring coefficients are:

C22 = C 22|pgL
2

C*4 = C44/pgL4

C6*6 = C66/pgL 
4

(3.8)

(3.9)

(3.10)

As can be seen, there is no hydrostatic restoring force or moments in surge, sway

and yaw, so these are neutrally stable modes. On the contrary, heave, pitch and roll

are self-restored modes. These three modes are statically stable if the corresponding

Cij are positive.

3.2.2 Radiation problem of an oscillatory body in calm water

For the radiation problem, the governing equations are (Newman 1977; Lee 1995; Mei

et al. 2005):

V2# j = 0,

0+ J= 0 ,
ay

on iwnj,
9n

__= fw(r

#

#i

in fluids,

on y = 0,

on SB,

x n)j,

-+ 0,

c R-1/26 -ikRa

on SB,

as y -+ -oo,

as R - oo,

j = 1 , 2,. 6 .

j =1,2,... 6.

j = 1,2,3.

j =4,5,6.

j = 1, 2, --. 6.

j = 1, 2, --. 6.

Here R = (x2 + X2)i/ 2 , and k is the wavenumber corresponding to the frequency w.

The pressure due to the radiation potential can be derived from the Bernoulli's

equation provided that # 's are solved. Integrating the pressure over SB and retaining

only the first order linear terms, we can obtain the added mass coefficient and the
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



linear wave damping coefficients:

A* - iBT*= ni#jdS (3.17)

A -
A*. = j (3.18)

BP* = pLkW (3.19)

where k =3 for i,j = 1,2,3, k = 4 for i = 1,2,3, j = 4,5,6 or i =4,5,6, j = 1,2,3

and k = 5 for ij = 4,5,6.

3.2.3 Diffraction problem of a fixed body in regular waves

The governing equations for the diffraction problem is (Newman 1977; Lee 1995; Mei

et al. 2005):

#A = #o + #7, (3.20)

V2 #j = 0, in fluids, (3.21)

# + =0, on y = 0, (3.22)9 ± Yg ay
&#$7  &#0~

=m - , on SB, (3.23)

#j -+ 0, as y -+-oo (3.24)

#i oc R-1/26 -ikR, as R -+ oo. (3.25)

where 0 is the incident wave potential, which is known. #7 is the scattering potential

to represent the disturbance of the incident waves by the fixed body. R = (1f +x3)1 /2

Similarly, the pressure is given by the Bernoulli's equation. Integrate the pressure

over the wetted surface, we can obtain the wave exciting force and moment on the

body:

Xi* g Jj(# + 7) dS (3.26)
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where m= 2 for i = 1,2,3 and m = 3 for i =4,5,6.

Therefore, as long as we can solve the boundary value problems governing #j, i

1, 2,--. 7, we can obtain all the linear hydrodynamic coefficients in equation 3.1. In

our design, we use the standard Radiation/Diffraction code WAMIT to solve for all

these coefficients.

3.2.4 Panel method for the radiation/diffraction problem

In WAMIT, the boundary value problems for j, j = 1,2,.- -7 defined above are

solved by the boundary integral equation methods (Lee 1995).

To derive the integral equation, we introduce a Green Function G which satisfies

the following conditions (John 1950; Lee 1995):

V2 C = 0, in fluids for (x 1 ,x 2 ,X 3) -# (x1, xx) (3.27)

w2  DG
--- +- = 0, on y =0 (3.28)

9 19y

G - 0, as y -oo (3.29)

C - is bounded for (x 1 , x 2 , x 3 ) -> (x,x, x ) (3.30)

where R = /(x1 - x1) 2 + (x 2 - X2) 2 + (X3 - X02

One solution of G is:

1 1 2kI' ex2x0)
G(x; x0 ) = - I + - d ( X Jo(r) (3.31)

R R' r o , - k

R= I(x - xi)2 + (x 2 + x8)2 + (x3 - X3) 2  (3.32)

r = (X1 - X) 2 + (x 3 - X3) 2  (3.33)

where J0 is the Bessel function of zero-th order. x = (Xi, x 2 , X3 ), while x 0

(x, I8 A A).

According to the Green's Theorem:

G-G (#5 -G )dS j=1,2,.--7 (3.34)Jjo~2 CV2 4Q Jj n D anDv
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Now consider a control volume of fluid Q, bounded by the free surface SF, body

surface SB, a surface at infinity S,, and an infinitely small spherical surface Se

surrounding the singular point (x, xi, 4X) (see Figure 3-2). Then equation (3.34) can

be further expanded in the following way:

X2

S EFX3

S- .

Figure 3-2: Sketch of the domain for the boundary value problem and the definition of
the coordinate system, where SF is the free surface, SB is the wetted body surface, S""
is the surrounding surface at infinity and S, is an infinitely small surface surrounding
a singular point. n is the normal vector pointing out of the fluid.

(#V2G -GV 2#O)dQ = (J I-F+ G S S )dSfi fSF+SB+Swk+SE On On (3.35)

Where # represents #j, j = 1, 2,. - - 7.

Since G satisfies the same boundary condition as # at free surface and infinity,

(3.36)Jf/I/s == 0
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We thus have:

(#V2 G -GV2#O)dQ = s 0(# G 0 )dS = 0 (3.37)JfjojV2 - BVkd IB+ Se~ On On

If (x0, x0, Xz) is on SB, then S, becomes a hemisphere with radius of c, and we

obtain:

2rq#(x, x, IX) = - ( - G 0)dS (3.38)
1 2 3 JJSB 0  On a

To be more specific, if we plug in the kinematic boundary conditions for radiation

and diffraction velocity potentials, we can arrive at:

OG~x; x0))
2x#roj4) + #Ox8Gx * ) dx = j nG(X; X0) dz j = 1, 2, . .. 6 (3.39)

270A(X(0) + 'A(X)8G x; xO) dx = 40(x) (3.40)
IJSB n

where n is the normal vector evaluated at point x.

After obtaining the integral equations (3.39) and (3.40), we solve these two equa-

tions by using the so-called "Panel Method". Since the integrals are evaluated on SB,

we approximate the body surface by a collection of quadrilaterals, i.e., "panels". Each

panel is defined by four vertices, lying on the body surface. Then # is approximated

by a constant over each panel. Based on this discretization, the continuous integral

equations (3.39) and (3.40) are reduced to a set of linear equations for the unknown

values of the potentials over the panels (Lee 1995; Lee & Newman 2005). For the

radiation velocity potential:

N N

2xr#(xi) + S Dikbk = ( Sik(-)k, (3.41)
k=1 k=i

where i = 1,2,..- N with N being the total number of panels. For the diffraction

potentials,
N

--o~i +5 Dik 417o(xi) (3.42)
k=1
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The influence coefficient matrices Dik and Sik are defined as:

// G(x;x)dDik - Gx i dx ' (3.43)
D fk k Jf x

Sik -= G(x; xi)dx (3.44)

where sk denotes the surface of the kth panel. The collocation points xi, where the

integral equations are enforced, are located at the panel centroids. The evaluation of

these matrices on panels are discussed in Newman (1986).

Therefore, solving the linear systems of equations (3.41) and (3.42), we obtain the

potentials anywhere on the wetted surface body, thereby obtaining the added mass,

wave damping coefficients and wave exciting forces in equation (3.1).

3.3 Vortex damping model for the viscous drag on

the heave plate

Our design combines features of a spar and a heave plate at the keel, to provide a

small floating platform with excellent motion characteristics (see Chapter 2, section

2.1). The heave plate can increase the viscous damping significantly through vortex

shedding. However, this effect cannot be captured by the potential flow model. In

addition, as discussed in Chapter 1, there is no satisfactory model nowadays that

can predict By efficiently and accurately. In this section, we would present a newly

developed model "Discrete Vortex Model (DVM)" or " Discrete Vortex Ring Model

(DVRM)", which is capable of providing a reliable estimation of the viscous damping

coefficient efficiently.
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3.3.1 Viscous drag of a 2D oscillatory thin plate

Problem formulation

Let us start with a simplified problem. Consider a two dimensional infinitely thin

plate with a length of D oscillating in an unbounded and inviscid fluid. The velocity

of the plate is prescribed as:

V (t) = Vo sin( T7 t) (3.45)

The flow separates at the two edges of the plate, shedding vortices into the flow.

The Reynolds number (Re) in this problem is infinite. The two dimensionless pa-

rameters governing this 2D problem are Keulegan-Carpenter number (KC) and total

force coefficient (C).

KC = (3.46)
D

oFC = F(3.47)

where F is the total hydrodynamic force on the plate and p is the fluid density.

N>
D 27r

V(t) = Vsin(-t)
T

Figure 3-3: A two dimensional infinitely thin plate with a length D oscillates in an

unbounded and inviscid fluid.

For typical offshore platforms, KC number is normally less than 10 (Faltinsen

1993). The maximum displacement of fluid particles in the undisturbed flow is small

compared with the characteristic length of the body. This physically means that

the viscous force is small compared to the inertia force in general. This justifies the

assumption that the fluid is inviscid.
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In this problem, separation occurs at the edges of the plate, and will give rise to

two free shear layers in the flow. At the edges, the flow cannot negotiate with the high

curve and thus separates, thereby forming free shear layers of thickness comparable

to that of the thin boundary layer. Therefore, the effects of viscosity are important

in the formation of the free layers, but only confined to a small region close to the

boundaries of the plate (De Bernardinis et al., 1981). Since we assume the Reynolds

number to be infinite, we expect that the separated shear layers do not diffuse and

thicken, but remain thin for all the time. This serves as the basis of representing

the two free shear layers by two free vortex sheets. This is the common method

to deal with the vortex shedding problems now, as mentioned in Chapter 1. Next

we will review the existing known vortex sheet model (VSM), and then present the

development of the new model Discrete Vortex Method (DVM).

Vortex sheet model (VSM)

In this subsection, we follow the general outline of Jones (2003) and Krasny (1991)

to illustrate this commonly used model VSM.

Assume a bound vortex sheet lies on the plate, and is shed at the two separation

points as two free vortex sheets (Krasny 1991; Hou el at. 2006; Jones 2003). The

problem of finding the associated drag force on the plate can be divided into three

parts: (1) the potential flow solution, (2) the inviscid flow separation and (3) the

evolution of the free vortex sheet.

Define the following symbols:

" L is the oscillating plate;

" 1+ are the free layers shed into the fluid;

" xe+ are the two edges of the plate from which the vortex sheets are shed;

n i is the normal vector pointing into the fluid;

" y is the strength of the vortices distributed on the plate and the free layers.
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(1) Potential Flow Solution

The governing equation for an ideal, inviscid and irrotational flow is the Laplace

equation:

V2 # = 0 (3.48)

where # is the velocity potential. The potential should satisfy the kinematic boundary

condition on the plate all the time:

i = V -n, on 1= (3.49)an

where V is the velocity of the plate.

A boundary integral method can be used to solve the boundary value problem for

Q. Basically we distribute bound vortices on 1= and free vortices on 1+. The position

of 1= (t) is known since it coincides with the plate at any time t. However, the position

of the free vortex sheets 1±(t) are only known initially, and need to be determined at

later times. The strength of the vortices on these sheets is determined by imposing

the kinematic boundary conditions on the plate.

( (, t) kx ds + f k xrF ds) - n~x = Vo sin(wt) (I E 1=) (3.50)

where - = I-, is the point in which the kinematic boundary condition is imposed,

and is the point where the vorticity strength - is evaluated.

Now let us define a function T (Y, t) in the following form.

fa dy, for Y E l+(t)

T (Y, t) = fl d7 + f , d-y, for zF E 1=(t)

fdy + f dy +f _ dry, for Y E 1_(t)

T is the circulation around the contour which includes one free end B, and inter-

sects the boundaries once at point Y. Such a contour is shown in Figure 3-4. Based

on Kelvin's Theorem, for a flow starting from the rest, the total circulation around
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9' (X, t)

d7 + y + y = (3.51)

I Xe+
aft WO OF

, L (:,)

Sbt

Figure 3-4: A sketch of the distribution of the singularities on the plate and the free
layers. The definition of IQ is illustrated (adapted from Jones 2003)

a closed contour which does not intersect 1(t) should be conserved to be zero all the

time. Therefore, the following condition should be guaranteed:

jd +±j y&+ dy=0 (3.51)

Note that a vortex sheet is such a line in the fluid that across it the normal velocity is

continuous, whereas the tangential velocity and potential is discontinuous. Therefore,

the expression of the tangential velocity at the upper and lower sides of the boundary

would be:

V t) kf x Fkxi 1 mv(x-jt) (3.52)

where S' is the tangential vector along the sheet (see Figure 3-4). Therefore, the jump

of the tangential velocity across the sheets can be expressed as:

AV aA(- t) _q aPQ-, t) (.3010 09aSas(.3

By integration along the sheet, we can also obtain the potential jump across the

sheet.

A#(4, t) = A#(B, t) + j ' ds = T (Z, t) (3.54)

58



Knowing the potential jump and the tangential velocity jump across the plate, we

can derive the pressure jump by applying the Bernoulli's equation.

Apt) = - ' + -(V+2 _ V 2)} (355)X 2

Therefore, the total drag coefficient on the plate is:

C(t) f Ap(7, t)ds (3.56)
pIVo2D

Thus the key is to solve the integral equation (3.50) for unknown vortex strength.

Equation (3.50) is a Fredholm equation of the first kind. We can obtain an numerical

solution of this equation by discretizing the plate 1= into N segments Si3 , and then

approximate the continuous distribution of vorticity -y by N+1 bound point vortices

situated at the ends of these N segments with strength:

rib = ijg 1, 2, ...- N + 1 (3.57)

Also, the two free vortex sheets can be approximated by a set of free point vortices

in the fluids with strengths Pf to be determined by Kutta condition. This will

be presented later. Therefore, equation (3.50) becomes a N x N linear equations

evaluated at the midpoint si of each segment.

N+1

F(kx knxr,,2 i) i =1,2,... N (3.58)
j 2r Iri,1| 2wrri,ml

Similarly, equation (3.51) can be written as:

j + f =0, j = 1,2, -.. N + 1 (3.59)

Note that in our case, the problem is symmetric. Thus we need to consider half

of the plate only.
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Equation (3.58) and equation (3.59) together can also be written in a matrix form:

AL = B (3.60)

Therefore, the solution would be:

F = A 1 B (3.61)

Here the matrix A only depends on the geometry of the boundaries.

After obtaining the strengths of all the singularities, we can solve for the tangential

velocity and the pressure jumps across the plate from equation (3.52) and equation

(3.55).

The accuracy of this method depends on the the use of the number of the elements

and the distribution of the quantities over each element (Hess & Smith 1966). We

should pay attention on the geometrical singularities in the boundaries, i.e., the ends

of the plate. As the distance along the boundary from the singularity decreases, the

size of the element should decrease to ensure the accuracy of the solution.

(2) Inviscid Flow Separation

In this problem, the viscosity effect is important in producing vortices, but only

confined to a small region. This effect is handled by imposing the so-called Kutta

condition in potential theory to determine the vortex shedding rate and the position

of the nascent vortices.

It is known in the potential flow theory that if the flow passed an edge of zero

angle without separation, there is a square-root singularity in velocity at that edge

(Newman 1977). This is not allowed in the real physical problem. Thus the Kutta

condition is derived from the central physical principle that the velocity filed should be

bounded everywhere (Bearman 1984). There are many versions of Kutta conditions,

including steady Kutta condition and unsteady ones. Here we impose one of the

unsteady Kutta conditions following the work of Krasny (1991). It is different from

the one used in Jones (2003).
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This Kutta condition contains two requirements:

- Pressure jump at the edge must vanish;

- The vortex is shed from the edge tangentially.

Due to the symmetry of this problem, here we consider one edge of the plate xe+ as

illustration. The vortex shedding rate can be determined by the following equation:

dF d'I(xe+, t) 1 I -2 _ y+2)_~ t____ (3.62)
dt dt 2

where V-- and V+ are the one-sided velocities at the edge. The slip velocities satisfy:

1
V- + V+ g, (1 y-- V+) = 7(xe+) (3.63)

2

where Vt is the averaged velocity, and '}(Xe+) is the vortex sheet strength at the edge.

The average velocity Vt is the induced velocity due to all the singularities in the

fluids. 7(xe+) ~ &'(xe+)/8s is calculated by a finite difference formula applied to T.

Specific procedures are:

(i) Solve the linear system equation (3.58) to obtain the bound vortices strength

near the edge, thereby obtaining -y(Xe+) via finite difference method;

(ii) Calculate the averaged slip velocity at the edge t using the discretized form

of equation (3.52):

t (Te+,I t) = I (2 xm 2'xe). (3.64)

where k is the unit vector of the vorticity of the m-th point vortex. r is the vector

from the m-th point vortex to Xe+, and stx) is the tangential unit vector at Xe+

(iii) Use equation (3.63) to obtain 17~ and V+. Note that the shedding rate (3.62)

is insensitive to the sign of the slip velocity. However, a negative value of V or

1/+ represents an attached slip flow on that side of the plate, while a positive value

denotes a separating flow. Therefore, if either VJ < 0 or V+ < 0, we set the value of

the sided slip velocity to be 0 to prevent an attached slip flow.

(iv) Obtain the vortex shedding rate using the new values of V-~ and Kt+ from
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equation (3.62).

The continuous shedding process is simulated by releasing free point vortices from

the edge at regular time intervals 6t. The strength of the m-th vortex shed satisfies

If = dlT/dt - 6t. When a nascent free vortex is produced at the edge, let it convect

with velocity (u, v) = (V(xe+, t), t(xe+, )). This determines the position of the

newly shed vortex, and also guarantees the tangential shedding condition required

previously.

(3) Free Vortex Sheet Evolution

After shed into the fluids, the free vortices convect with the local flow velocity.

However, there is a singularity when calculating the induced velocity due to all the

vortices. In order to avoid the singularity associated with this induced velocity of

a thin vortex sheet, the desingularization method of Krasny (1987) is applied. The

induced velocity of the m-th free vortices is given by:

dx, dym (ym - yi), (xm - zi))
dt dt Z 27r[(xm - X,)2 + (ym - y,) 2]

E (-(ym - Yk), (Xm - Xk))]F
- Xk ) 2 + (Yi - A)) 2 + 62] (3.65)

where 6 is the desingularization factor and 0 < 6 < 1. It can be proved that when 6

approaches to zero, this induced velocity approaches to the true value (Krasny 1987).

In summary, equations (3.65) and (3.62) form a coupled system of ordinary dif-

ferential equations for the motion of the free vortex sheets and the variation of the

total shed circulation 'IF(xe+, t). We solve this system numerically. At each time step

the solution procedure consists of four steps:

(i) Solve the linear equation system (3.58) for the strength of the bound point

vortices Fj;

(ii) Evaluate the velocity of the free vortices (dxm/dt, dym/dt) from equation

(3.65);

(iii) Evaluate the vortex shedding rate dF/dt and the averaged slip velocity V at

the edge from equation (3.62) and (3.63);
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(iv) Update the free vortex sheets including newly shed vortex and the new posi-

tions of the previously shed vortices, preparing for the next time step.

By simulating the vortex shedding process associated with the oscillating thin

plate is oscillating from the rest, we obtain the time variation of the total drag coef-

ficient from equation (3.56).

Discrete vortex model (DVM)

(1) Motivation

The above VSM has two severe limitations. The first issue is that this method is

very inefficient in calculation. Using VSM to obtain for determination of the viscous

damping coefficient By in equation (3.1) takes about 50 times longer in computational

time than the evaluation of the other hydrodynamic coefficients in WAMIT. This is

because as the simulation time increases, more and more point vortices need to be

tracked. Another issue is that VSM cannot run for sufficient long time for determining

BV. As Jones (2003) points out, as the plate is oscillating, the shed vortices do not

convect away but remain in the vicinity of the plate. Hence, these vortices will

interfere with the shedding process. Some of them may even hit the plate. These two

limits of VSM motivates us to seek for a new model which can predict the damping

coefficient BV quickly and accurately.

Canals and Pawlak (2011) recently conducted an interesting experiment associated

the vortex dynamics in oscillatory flow separation. According to their observations

as illustrated in Figure 3-5, during the first half cycle of the oscillation, a shear layer

is produced at the separation point and gradually rolls up into one vortex structure.

This vortex structure keeps growing until the flow reverses. At the second half cycle,

this vortex structure stops growing but breaking away from the edge of the plate.

This vortex does not lose its strength, and is driven to the other side of the plate. At

the same time, another opposite vortex structure starts to grow and rolls up at the

edge just as the first one. Due to the interaction between the previous vortex and the

plate, the growth of this opposite vortex structure is enhanced. By the end of the
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Figure 3-5: Sequence of phase-averaged spanwise vorticity and velocity vectors show-
ing vortex pair formation for KO = 1.07. The phase of the oscillation, 0, is given in
degrees at the top of each frame. The contour represents the strength of the vortic-
ity. Note the ejection of a single vortex pair in the positive x/r/ direction, which is a
repeatable feature for each cycle (from Canals & Pawlak 2011).

whole cycle, these two vortex structures both break away from the plate, and pair up.

The vortex pair causes a self-induced motion from the plate at a particular shedding

angle. In addition, this pair decay fairly fast, almost invisible after one period. This

unidirectional vortex pairing process repeats with each cycle of oscillation. The overall

vortex shedding patterns repeat from cycle to cycle.

Based on this observation, we develop a much simpler model -"Discrete Vortex

Model" (DVM).

(2) The "Single Vortex" Approximation
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In order to simplify the description, we again focus on one edge of the plate. In this

model, the whole "rolled-up" vortex structure is replaced by a single concentrated

point vortex. All the shed vortices are assumed to be accumulated to a point vortex

F(t). Since this point vortex represents a growing spiral vortex sheet attached to the

edge of the plate, it should be connected to the edge by a cut representing the sheet,

as shown in Figure 3-6. Such a structure of a point vortex plus cut is first proposed

by Brown & Michael (1955) in studying the spiral vortex above the leading edge of a

slender wing.

Xr

Figure 3-6: The sketch of the "single vortex" approximation. The whole vortex

structure is represented by a single point vortex connected to the separation point by

a cut. Xr denotes the location of the point vortex.

(3) Growth of the Vortex

While the point vortex F(t) is growing , the growth rate of the strength dF/dt is

determined by the Kutta condition just as before:

d- = (V2 V+2 ) (3.66)
dt 2tV t

where Vt- and Vj+ are the one-sided velocities at the edge.

When dF/dt changes the sign, which means the magnitude of this vortex reaches

the maximum, we break the cut and force this vortex to stop growing. At the same

time, a new opposite vortex plus cut structure starts to grow similarly as the previous

one until the growth rate dF/dt changes the sign again.Therefore, different from VSM,

65



DSM has only two vortices to track during one cycle. This enhances the calculation

efficiency considerably.

While the vortex is growing, its location should be easily determined by its local

fluid velocity at the first thought. However, a free vortex with a growing strength

in the fluid is incompatible with the Kelvin's Theorem. The original vortex sheets

cannot sustain any forces. If we represent the whole vortex spiral into a concentrated

point vortex only without the cut, its strength should not change with time, or if F

changes, an unbalanced pressure jump will exist on any cut connecting the vortex

and the edge of the plate. Brown & Michael (1954) proposed an approach in dealing

with this issue. Let the vortex not be free, but subject to a Joukowski force, which

cancels the unbalanced force on the cut. Based on this, the velocity of the vortex can

be determined to be:
-- 1{dGzrF) dl'

V(r =} dt dt } (3.67)

(4) Decay of the Vortex

As observed in the experiments in Canals and Pawlak (2011), after the vortex struc-

tures break away from the plate, they pair up and decay fairly quickly (see Figure

3-5). The decay time scale td is of order of a period O(T) (see Figure 3-7). According

to Canals and Pawlak (2011), such a decay is not due to the viscosity diffusion, but

the elliptical and centrifugal instability of the vortex structure. These vortex struc-

tures transitioned to 3-D turbulence rapidly before the viscous effects set in. The

decay time scale td does not vary significantly with Re,, indicating that the three

dimensional instability dominates over the viscous effects. In addition, we can see

from Figure 3-7 that smaller KC results in a slightly longer td. This implies that td

is a function of KC number. From the governing equation of vorticity is:

= W -ViV2, W(3.68)

It is clear that the decay of the vortex strength should be an exponential function

of viscosity. In our problem, there is no viscosity, but as mentioned before, KC
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Figure 3-7: Non-dimensional vortex decay time scale td as a function of Re,, which is

defined in terms of the vortex circulation. Error bars denote one standard deviation,
and the grey shade of each symbol represents the value of KC for that experiment

(from Canals & Pawlak, 2011)

number is defined as the ratio between the viscous effects and inertia effects. Based

on these, we propose the following decay model:

l'(t) = o - e-KCT (3.69)

where Fo is the strength when the vortex breaks away from the plate at time to. As

for the location of the vortex when it is decaying, we set it to be free, convecting with

the local fluid velocity.

Comparison and verification of VSM and DVM

For verification, we compare the predictions of VSM and DVM with the experimental

data of Keulegan & Carpenter (1958). The experiments were designed to measure

the unsteady hydrodynamic force on a submerged flat plate in a time-periodic flows.
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Here we first use run number 42 as an example, in which the Reynolds number is

11400, and KC number is 3.8. Note that in our problem, KC is defined so that the

non-dimensional period of oscillation is 2KC.

In the experiment the plate is fixed while the fluid moves. In our computation,

the plate moves in an otherwise calm water. Since the displacement of the plate

can be neglected, the hydrodynamic force in these two cases are equivalent. Figure

3-8 shows the comparison of the total force coefficient C(t) computed by these two

methods with the experimental measurements. The vortex shedding rate dP/dt and

the total circulation shed at one edge F(t) are also compared between VSM and

DVM predictions. As shown in Figure 3-8, both models match the experimental data

well. The accuracy of these two models is comparable. However, DVM is much more

computationally efficient and can continue the simulation over many periods.

15- VM-VM DVM

VSM - -- -v------
10 -- - --- 10---- .....I--------- u-------- VSM

5---- ------ -- vs. --. X
5 . ..... ...,5 .. .. ....... ... .

2 .. . .. ..

.. . . . .. . .. .. . . . -- .. .. 0 .. . -- --- - -

-2 . . . . . . ... . . . . .

10 . .. ... 10 - --- v--

-15. -10 -15---- -- - ----

0 !05 1 1!5 _2 2 5 3 0 1 2 3 0"O 0!5 1 1!5 2 25 3
VT VT Vtf

Figure 3-8: Comparison of the time variation of the total circulation shed at one edge
of the plate 1(t), the vortex shedding rate dF(t)/dt and the total force coefficient
C(t) for KC = 3.8. The blue solid line is the result of VSM, the green solid line is
from DVM and the red dash line is the experimental result adopted from Keulegan
& Carpenter (1958)

In addition to the force, VSM can also predict the wake shape. Figure 3-9 plots

the positions of the plate and the free vortex sheets at different times during one cycle

of oscillation. The black line in the first row is the results from Jones (2003). He used

a similar vortex sheet model but with another version of unsteady Kutta condition.

The second row in blue, however, is the calculation from VSM used in this thesis. As

can be seen, the wake shapes are similar, verifying our VSM model.

68



o -1 0 I 0 2 4 21 01234$5 -210 2 4

Figure 3-9: The wake induced by the sinusoidal oscillation of a flat plate in an other-
wise stationary fluid with KC = 3.8 and V(t) = Vo sin(27rt/T). The positions of the
plate and the free vortex sheets at times t = 0.5KC, 1.25KC, 1.5KC, 2KC, 2.25KC,
and 2.5KC are shown. The first row is the result adopted from Jones (2003). The
second row is the result from our VSM. Our VSM uses a slightly different Kutta
condition from the vortex sheet method used in Jones (2003).

Based on these comparisons, we can see that both methods can calculate the

vortex induced drag of an oscillating plate. In addition, VSM can also predict the

wake shape, but DVM can calculate the force much more quickly than VSM.

More comparisons of the DVM prediction with the experimental data are shown

in Figure 3-10 for different KC numbers.The errors in the averaged peak value over

a number of cycles of the DVM prediction compared to the experimental data are

shown in Figure 3-11.

As can be seen from Figure 3-10 and 3-11, DVM with vortex decay model can

correctly predict the trend of the drag coefficient as KC number varies. The error is

less than 5% for KC < 4 and becomes larger when KC number increases but within

25%for KC up to near 10. This is because when KC is larger, the viscosity effects

becomes more important. The vortex pattern would also become different. Rather

than one vortex per half cycle, the flow past the body would form a wake containing a
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Figure 3-10: Comparisons of the time variation of the total force coefficient C(t) be-
tween DVM and experimental data for KC = 1.7, 2.7, 4.7 and 6.6. The experimental
data is retrieved from Keulegan & Carpenter (1958)

number of vortices staggered as in the Von Karman Street. Then the "single vortex"

approximation is no longer valid, so the error would become larger. Hence we here

restrict our study within the low KC range (KC < 10).

3.3.2 Viscous drag of a circular oscillatory thin plate

In reality, the heave plate is a circular disk instead of an infinitely long plate. There-

fore, we need to extend our models to the 3D axisymmetric cases. Such extension is

straightforward but non-trivial. There will be a much more complicated interaction

between vortices, and the self-induced velocity of a vortex ring. The key idea is to

replace the point vortices in both VSM and DVM by vortex rings.

The problem formulation would be similar as before. An infinitely thin circular

disk with radius R is oscillating with velocity V = V sin it in an unbounded and
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Figure 3-11: Difference in the average of peak values of the total force coefficient

between DVM prediction and the experimental data for different KC's. The experi-

mental data is retrieved from Keulegan & Carpenter (1958)

otherwise undisturbed fluid. We still assume infinite Reynold's number, and KC

0(1), where KC = VoT/R.

Vortex ring sheet model (VRSM)

In this subsection, we follow the general idea of De Bernardinis et al. (1981) and

Nitsche & Krasny (1994) who have already extended the vortex sheet model into 3D

cases.

The basic idea is similar. We distribute a series of bound vortex rings with un-

known strength Tb on the disk, and represent the vortex wake by a set of free vortex

rings rf of which the strengths are determined by the Kutta condition. In the fol-

lowing context, we use vortex ring sheet model (VRSM) to represent this idea. All

the singularities of vortex rings should satisfy the kinematic boundary condition at

N collocation points all the time.

1[irn, + f0nz) + z[~ + Wn [rfr+ iznz = Vni, i = 1, 2 ... N (3.70)
j m
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where ' = (nr, nz) is the normal vector of the disk. Vi is the normal velocity of the

plate at the i-th collocation point. (i0,, i4) is the velocity at (r, z) induced by a unit

vortex ring at (r', z'). This can be obtained from Lamb (1993):

1 r2 - r'2+, (Z - z')2 + 62
v2 = + [q - E(q)} (3.71)

27r[(r-r')2  (z-z') 2 + 62]2 (r-r') 2 + (z - z3.71)

S-(z - z') r 2 + r'2 + (z - z) 2 + 62

2tr[(r - r') 2 + (z - z') 2 + 621 (r - r') 2 + (z - z') 2 + 6 2 S(q)} (3.72)

where K(q) and E(q) are the complete elliptic integrals of the first and second kind

with the argument:
4rr'

q = (3.73)q=(r + r')2 + (Z - z')2 + 62 (.3

where 6 is the vortex-blob smoothing parameter. 0 < 6 < 1 if (r', z') is on the vortex

ring sheets. 6 is set to be zero if (r', z') is on the plate.

The circulation shedding rate at the edge of the disk is determined from the

following unsteady Kutta condition used in Nitsche & Krasny (1994):

dl' 1 -
V2 _ +2 ) (3.74)

where V,-2 , y+2 are the slip velocity at the upper and lower edge of the disk. They

satisfy:

V- - V+ y Y V+ + V-) = Iv, (3.75)

where -y is the bound vortex sheet strength at the edge, and V is the average slip

velocity.

The nascent free vortex ring is shed from the edge at the velocity (14, V). Then

it convects at the local fluid velocity.

Discrete vortex ring model (DVRM)

The extension of the DVM to discrete vortex ring model (DVRM) is similar. Such an

extension is reasonable because similar vortex shedding pattern was also observed in

experiments for a fixed thin disk in oscillatory flow at low KC number (Lake et al.,
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2010; De Bernardinis et al. 1981). During the first half cycle, the vorticity shed tends

to roll up into a single vortex ring. As the flow slows down, the flow at the edge of the

disk reverses and a second vortex sheet of opposite magnitude starts to emanate, and

be shed at the second half cycle. At the same time, the first vortex ring is interacting

with part of the second ring to form a vortex ring pair, convecting away from the

disk. The residual part of the second ring is not that strong, thereby amalgamated

by the third vortex ring at the beginning of the second cycle. The third vortex sheet

develops into an organized vortex ring similar to the first vortex ring. Thus this whole

pattern is repeated from cycle to cycle. As for the vortex ring pair during the first

cycle, they also decay fairly fast because of the instability and viscous diffusion, so it

is very difficult to follow their motion at greater distances. These suggest that both

the "single vortex ring" approximation and the decay model can be used in the 3D

axisymmetric case.

We represent the vortex ring structure by a single vortex ring F(t) plus a surface

cut transporting the vorticity to this vortex ring. The vortex shedding rate satisfies

the same unsteady Kutta condition. The position of this growing vortex ring is

determined by the condition that the total force on the ring and the cut is zero.

When dJ/dt changes the sign, this ring stops growing but start to decay, and move

with the local velocity. The decaying rate is also the same as the 2D case. Meanwhile,

a new opposite vortex ring starts to grow until the next change in sign of the vortex

shedding rate.

Comparison and verification of VRSM and DVRM

Using both VRSM and DVRM, we can calculate the vorticity and velocity distribu-

tion, then obtain the pressure field based on the Bernoulli's equation. The unsteady

axial force acting on the disk is the integration of the pressure over the entire surface.

However, it is usually convenient to decouple this force into two components. One

associates with the inertia effects of the attached flow around the disk, i.e., the added

mass. The other is due to the vorticity shedding. We can write this total force in the
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form (Graham 1980):

4 1 2
F(t) = -1rpR 3 CMo + -rpV2 R 2CFV(t) (3.76)3 2

where CMO is the inertia coefficient, and has a value of 0.637 for a circular disk. CFV

is the force coefficient due to vortex shedding.

Here we first compare CFV for different KC's based on VRSM, DVRM and the

results in De Bernardinis et al. (1981). In De Bernardinis et al (1981), a similar vortex

ring sheet model is used. As for the Kutta condition, they assumed that the vortex

shedding is governed by the flow characteristics near to the geometrical singularity in

the boundary. They considered the shedding to be locally tow-dimensional, so a 2D

Kutta condition is applied. Figure 3-12, 3-13 and 3-14 show the time evolution of the

vortex force coefficients CFV(t) for different KC numbers based on different models.

Figure 3-12 is the result from our DVRM code, Figure 3-13 is the result from VRSM,

and Figure 3-14 is the calculation from De Bernardinis, et al. (1981).

Usually we write the force in the form of Morison's equation (Keulegan & Car-

penter 1956):
4 1

F(t) = 4WPR 3 CM+ 1 rpVIVIR 2  (3.77)32

where

CM = CMO ~ 3 J0 CFV (t) cos tdt (3.78)

CD = frT CFV(t) sin 27 dt (3.79)4T j0 7Td

Figure 3-15 provides the comparison of CD as KC number varies. The left figure

is from our VRSM and DVRM codes, while the right one is the result from De

Bernardinis et al. (1981).

Figure 3-12, 3-13, 3-14 and 3-15 show that both VRSM and DVRM agree well

with the result of De Bernardinis et al. This verifies the extension of our simple model

from 2D to 3D axisymmetric problems. As can be seen from Figure 3-15, the drag

coefficient decreases as KC number increases. Note that DVRM is more reliable in

74



15
KC=0.5
KC=1
KC=2
KC=3
KC=5

10 ------------ - .-- ----- -- --- -- -- - -

-0 ---------------- ----------- ---- -------------- -

-15
V,1 Iw I

-101

-15-

0 025 0.5 0.75 1 1.25 1.5
trr

Figure 3-12: Time variation of the force coefficient due to vortex shedding CFV of

an infinitely thin circular disk oscillating in an unbounded, inviscid, and otherwise

undisturbed fluid based on DVRM, for KC = 0.5, 1, 2, 3 and 5

obtaining the drag coefficient for KC > 2.

After obtaining this drag coefficient CD, we can easily calculate the viscous damp-

ing coefficient BV in equation (3.1) using the DVRM (Cozijn et al. 2005). For heave

motion,
1

B = -pCDA (3.80)
2

where A, is the extended area of the heave plate relative to the keel of the platform.

KC is defined as:

KC = 27r 2 0  (3.81)
Ro
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Figure 3-13: Time variation of the force coefficient due to vortex shedding CFV of

an infinitely thin circular disk oscillating in an unbounded, inviscid, and otherwise
undisturbed fluid based on VRSM, for KC = 0.5, 1, 2, 3 and 5

where B20 is the amplitude of the heave oscillation.

3.4 Solution to the motion equation in regular waves

3.4.1 Procedure of solving the motion equation

We are now in the position where we can handle all the hydrodynamic coefficients in

equation (3.1). The solution to this equation would be derived in this section based on

the combination of the potential flow theory (see section 3.2) and the vortex damping
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Figure 3-14: Time variation of the force coefficient due to vortex shedding CFV of

an infinitely thin circular disk oscillating in an unbounded, inviscid, and otherwise

undisturbed fluid for KC = 0.5, 1, 2, 3 and 5 (from De Bernardinis et al. 1981)

model (see section 3.3). A flow chart of solving the equation of motion in regular

waves (3.1) is illustrated in Figure 3-16. We first input the geometric information of

the dimensions, weights and inertial parameters based on the estimations in Chapter

2. Then we obtain all the linear hydrodynamic coefficients including added mass

[A], linear wave damping [BP], restoring force [C] and wave exciting force [X] via

WAMIT. The viscous damping coefficients due to the vortex shedding of the heave

plate is obtained through our newly developed model DVRM. Plugging all these

coefficients and the inertial parameters of the floating body into the equation of

motion (3.1), we can obtain the solution which is usually called " response amplitude

operator" (RAO). RAO is defined as the ratio between the amplitude of the motion
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Figure 3-15: Comparisons in Drag Coefficients CD as a function of KO number in
log scale. The left figure is the result from the codes used in this thesis. The blue
line is from VRSM, while the green line is from DVRM. The right figure is the result
adopted from De Bernardinis, et al. (1981)

response and the amplitude of the incoming regular wave. In the next subsection, we

will present the derivation of the RAO given that all the coefficients in the motion

equation are known.

3.4.2 Derivation of the RAO

Let us first recall the equation of motion of a floating body in regular waves.

(M1  + Agg)j +Bd +B |jy ± + = AX, (i,j 1,2, -6) (3.82)

As can be seen from this equation, it is difficult to be solved because of the nonlin-

ear term associated with the viscous damping. Let us first ignore this nonlinear term.

Since for such spar-like platform the key mode is the heave motion r22 (Sclavounos

2013), the response amplitude operator (RAO) for heave motion without viscous

damping would be:

3.42 X2iaio fth A

A -- w2 ( A 22 + M ) + iwB= ± 02 (3.83)

If we take the viscous term into consideration, we use the linearization technique
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Figure 3-16: The flow chart of solving the dynamic motion equation of a floating
body in regular waves in combination of the potential flow theory (WAMIT) and the
vortex damping model (DVRM)

to this term in order to apply the frequency domain analysis based on the linear wave

induced motion theory. Note that the viscous damping effect is much more important

than the wave damping term, therefore we can ignore the B2 term for simplicity

(Sadeghi et al. 2004). Assume the motion response 2 and the wave exciting force X2

to be:

= 20 cos(Wt - #2) (3.84)

X2= X 2 0 cos(Wt - 62) (3.85)

where w is the incident wave frequency.
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Then the motion equation in heave would be :

[C2 2 - w2 (M + A 22)]B20 cos(wt - /2)

-w2B2 2 2 0 sin(wt - #2)1 sin(wt - 02)1 = X 20cos(wt - 02) (3.86)

Using the first term of the Fourier series expansion of sin(wt - 02)1 sin(wt - 02)1,

this nonlinear term can be approximated as:

8
sin(wt - 32)1 sin(wt - 32)1 -- sin(wt - 32)

37r (3.87)

Therefore, the original motion equation in heave can be written as:

(M + A22 ) 2 + B eq 2 + C22(2 = X2 (3.88)

where the equivalent damping term Bie is defined as:

i = 8-wB2E2 022 37r 2 2 (3.89)

where B2 is derived in equation (3.80).

Equation (3.88) looks like a linear differential equation, but actually B" 2 is still

a nonlinear term with respect to the motion amplitude.

The conventional methods of solving equation (3.88) is by iteration, but this equa-

tion can also be solved without iteration (Sadeghi et al. 2004). Let us first write the

equation in the complex notation.

[C22 - w2(M + A 22 )]E2 oRe{e-i(Wt~-2)}

-w 2Bv2 oRe{ie-it2)} = X 2 oRe{e~i(Wt-0
2)} (3.90)
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or

Re{[C 22 - W2 (M + A22 )]1 20e -i2

8 io2BV-2e iWte 3 2 - X 20eeiWteiO2} 0
37

or

Re{(C22 - W2 (M + A 22)]E2oei2

-iw 2
22 2 oe-02 - X 20eiO2 )e-iwt} = 0

where 5 22 = 'BV. Assuming that

Z1 = [C22 - W2 (M + A 22 )]E 2oe - iW 522E2oe f2 - X 2oeO2

Therefore, equation (3.92) can be written as

Re(Z1Z 2 ) = 0

Re(Zi) cos wt + Im(Zi) sin wt = 0

To guarantee the above equation to be true for an arbitrary w, it is necessary that

Re(Zi) = 0 and Im(ZI) = 0. Equivalently,

Zi = 0 (3.97)

Substituting for Z 1 we can obtain

[C22 - W2 (M + A 22)]Bi20 - iw2 5 22Eo2 = X 2oe 2

[C22 - +2 (M + A2 2 )] 2 0 -222 = X 2oe(O2-2
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Taking the modulus of both sides of equation (3.99) yields

[C22 - 2 (M + A 22)]2Bso + [w25 22]2E = (3.100)

[w2 f 2 2]2B 0 + [C2 2 - w2 (M + A 2 2)]2B|o = (3.101)

Let us introduce the following substitution.

X =- 20 (3.102)

Then equation (3.101) can be written as a quadratic equation in x, which can be

solved without iteration.

ax2 + bx - c = 0 (3.103)

where

a = [w25 22 ]2, b = [C22 - W2 (M + A2 2)]2, c =X22 (3.104)

It is easy to solve this equation to obtain:

= ±4ac (3.105)
2a

Therefore,

-b± kvb2 + 4ac
-20 = 2a(3.106)

Then the response amplitude operator in regular waves (RAO) can be defined as

the ratio between the response and the incident wave amplitude A.

-kvb2 + 4ac
RAO = /A (3.107)

2a

Note that the RAO defined in equation (3.107) is obtained by direct solution

of the nonlinear equation of motion for a particular wave amplitude because the

wave exciting force X2o is proportional to the incident wave amplitude A. Therefore,

the above RAO is different from the traditional one. It also varies with the wave
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amplitude (Sadeghi et al. 2004). Here for simplicity we ignore this variation with the

wave amplitude when predicting the motion performance in sea-states in the following

section.

3.5 Motion Response in Ocean Environments

3.5.1 Description of ocean waves

RAO reflects the response of the platform to a regular plane wave with unit amplitude

assuming that the platform is a linear system. However, what we need to know in

reality is the response of the platform to the irregular waves. The complexity of

ambient wave motions in the ocean is evident. They are not only dispersive, but

random. However, in spite of the randomness, ocean waves can be modelled by a

linear superposition of sinusoids of random phase which satisfy normality via the

central limit theorem. Then the wave elevation is Gaussian distributed with zero

mean and variance oa. In this subsection, we will summarize the description of the

ocean waves from Newman (1977).

In general, the ocean wave elevation can be expressed in the form:

rq(x, z, t) = Re J dA(w, 0) exp[-ik(x cos 0 + y sin 0) + iwt] (3.108)

where A(w, 0) represents the amplitude of a plane wave of frequency w propagating

in the direction of 0.

Given that in our case, the platform is axisymmetric, we need to consider the

uni-directional wave spectrum:

?](x, t) = Re dA(w) exp(-ikx + iwt) (3.109)

Here the wave number k is defined in terms of the frequency w by the dispersion

relation in deep water.

2 = gk (3.110)
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Then the average energy density can be computed as follows:

'2 = dA(w) exp[-ik(w)x + iwt] x dA* (w') exp[ik'(w')x - iw't] (3.111)

where (*) represents the complex conjugate. Therefore,

r2 JdA(w)dA*(w) j S(w)dw (3.112)
2 0

where S(w) is defined as the wave spectrum density. Then the total mean energy of

the wave spectrum of the wave system per unit area of the free surface is:

E = Pg S(w)dw (3.113)

Therefore, the wave spectrum density defined previously S(w) represents the wave

energy.

It can be proved that the variance of the wave elevation U2 satisfies:

o.2 = S(w)dw (3.114)
0o

The wave spectrum can be estimated from wave measurements. It assumes that

we can describe the sea as a stationary random process.This means in practice we

consider a limited time period ranging from 0.5 hour to around 10 hours.This is

usually referred to as a short-term description of the sea.

Usually we use the following two parameters to characterize the wave spectrum.

One is the significant wave height H, defined as the mean of the one third highest

waves. The other is the peak wave period T, corresponding to the peak frequency of

the spectrum.

mk = WkS(w)dw (3.115)
0o

H, = 4,yn0 = 40- (3.116)

Tp = 1.408T2 (3.117)
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where

T2 = 27r(mo/m 2)2 (3.118)

The Pierson-Moskowitz spectrum is usually used for fully developed seas. In order

to overcome the limitation of fully developed seas, a two parameter spectrum was

developed which is called the Modified Pierson-Moskowitz spectrum (International

Towing Tank Conference (ITTC); Michel 1999). In this thesis, we use this spectrum

to predict the motion of our mini-platform.

S(W) 5H w4-1.25( W (3.119)
16w 5

where wo = 27/T,.

3.5.2 Motions of general bodies in irregular waves

With the spectral description of ocean waves given in the preceding subsection, we

can use the RAO to predict the motion behaviour of a floating body in irregular seas.

If the ocean waves are described by equation (3.109), and if the response of the body

to each wave component is defined by a linear transfer function RAO(w) in equation

(3.107), then the body response would be (St Denis & Pierson 1953; Newman 1977):

(j(t) = Re RAOj(w)ew tdA(w) (3.120)

The assumption used here is that everything is linear and therefore the linear super-

position is used.

Like the waves, the response in equation (3.120) is also a random variable. Its

variance is defined as (Sclavounos 2013):

o = f S(w)|RAO(w)|2 dw (3.121)
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Then similarly, we can define the significant motion response as:

G = 40r (3.122)

This significant value (, is the mean motion height of the one third highest re-

sponse, which can reflect the magnitude of the motion amplitude of a floating body

in waves. In the next chapter, we will use the models and methods elaborated in this

chapter to design the geometry of the hull for our mini-platform. (, obtained in this

chapter would be used as an important parameter to measure the motion performance

of the platform.
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Chapter 4

Conceptual Design and Analysis

for the Mini-platform

In the last chapter, a description of the hydrodynamic models and numerical methods

used for design is presented. In this chapter, we will apply these models and methods

to seek for a hull shape for a small mono-column floating platform with a satisfactory

motion behaviour.

The content of this chapter is as follows. First, we use the potential theory model

(see Chapter 3, section 3.2) to obtain a general hull shape on the basis of a spar

with the same displacement. Next, an example of initial design compared with the

spar is given to show the advantage of our design in suppressing the motion in waves.

Finally, we carry out a systematic analysis to study the effect of different geometric

parameters on the heave motion of the platforms.

4.1 Hull shape evolution of the mini-platform

In this section, we will illustrate the evolution from a circular cylinder (spar) to the

general shape of our mini-platform based on the potential flow theory.

Here we use the heave motion amplitude of a single-column floating platform as

the design criteria. The heave motion is uncoupled with other modes. The RAO for

heave mode without viscous damping is derived from equation (3.83).
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S2 X2

A -W 2 (A 2 2 + A) + iWB 2 2 + C22 (4.1)

The natural frequency in heave is:

022
Wn= 2 2  (4.2)

A22 + A

When the incident wave frequency is at or close to this resonant frequency, the

body would experience a response of large amplitude. Therefore, we should shift the

natural frequency of the platform far from the peak frequency of the design wave

spectrum. One way to do that is to increase the natural frequency of the platform.

This requires to increase the stiffness of the body C22. This is the idea used in the

design of TLP, which achieves a high natural frequency by attaching several stiffeners

at the keel of the platform to the sea floor. However, these tendons are costly in

installing and limited by the water depth. Therefore, we choose to lower the natural

frequency of the platform. In Gulf of Mexico, the general peak period of the waves

is around 10 ~ 14s (ITTC), so the natural period of our platform in heave motion

should be at least 20s. It is well known that spars achieve a small natural frequency

by increasing the displacement in equation (4.2). In our case, the displacement is

restricted. To achieve this purpose, we developed a new design based on modifications

from spars. .

In addition to shifting the natural frequency, we should also keep the RAO low for

all the frequencies, especially near the resonance frequency. Based on equation (4.1),

this requires to reduce the wave exciting force and increase the damping, in general.

In summary, the suppression of the heave motion can be achieved by:

(1) Reducing the stiffness

(2) Increasing the added mass

(3) Reducing the wave exciting force

(4) Increasing the damping

which all help move the heave natural frequency to the lower value.
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We start with a preliminary design of a spar with draft H = 30 m, radius Ra",

11.3 m, and displacement V = 12,000 m 3 . The dimensions for our platform are

defined in Chapter 2, section 2.1 (see Figure 2-1).

4.1.1 Reduce the stiffness

022 measures the stiffness of the platform in heave. C22 = pgS, where S is the water-

plane area (see Chapter 3, section 3.2). Therefore, we should decrease the radius R 1

of the water plane area to reduce the stiffness.

4.1.2 Increase the added mass

For a quick estimation of the heave added mass of such a buoy, we assume the

added mass is frequency-independent, and ignore the influence of the free surface

(Sclavounos, 2013). The added mass of a spar-like floating body can be estimated

as a half sphere at the bottom, i.e., A 2 2 oc R2, where R 2 is the radius of the keel.

Therefore, R 2 should be increased to achieve a large heave added mass.

To justify our estimation, let us consider a floating body composed of two circular

cylinders with radius R1 and R 2 . Here we fix the displacement and the draft of the

body, and use WAMIT to examine the trend of the heave added mass of such a body

as R2/ Ravg varies.

Figure 4-1 shows the variation of the heave added mass coefficient as a function of

the dimensionless oscillation frequency and R 2/Rvg. The projection of the contour

surface on the horizontal plane justifies the near independence of the added mass on

the frequency. From the linear fitting line in Figure 4-2, we can see that A22/p7rR3vo

(R 2 /Ravg) 3 . This justifies the previous estimation and also implies that the heave

added mass is mainly an end effect.

As mentioned in previous chapters, a thin heave plate is attached at the keel in

our design to increase added mass. Therefore, at phase I of the hull evolution, we

obtain a design of two cylinders with a heave plate (see Figure 4-3).
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Figure 4-1: Variation of the heave added mass coefficient as a function of the di-
mensionless oscillation frequency and R2/Rag for a floating body composed of two
cylinders with radius R1 and R 2 respectively. The displacement and the draft of the
body are fixed. Ravg is the radius of a circular cylinder with the same displacement
and draft. The calculation results are from WAMIT.

4.1.3 Reduce the wave exciting force

Semi-submersibles and TLPs utilize the column/pontoon effect to cancel heave excit-

ing force. This may suggest us to add a shoulder into our design (Haslum & Faltinsen,

1999). The dynamic pressure force acting on this shoulder to some extent can coun-

teract the exciting force at the bottom (see Figure 4-5). Due to the exponential decay

in pressure with depth, a higher shoulder can provide a greater cancellation effect in

wave exciting force. This is verified by the following calculation. We still consider a

body composed of two cylinders with radius R 1 and R 2 , respectively. The variation

of the wave exciting force coefficient as the position of the shoulder H 1/H varies is

plotted in Figure 4-4, where H1 is the length of the upper cylinder. Here we fix

Ri/Ravg, R2/Ravg and H.
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Figure 4-2: Variation of the heave added mass coefficient as a function of (R2/Ravg) 3

for a floating body composed of two cylinders with radius R1 and R 2 respectively.

The displacement and the draft of the body are fixed. Ravg is the radius of a circular

cylinder with the same displacement and draft. The red curve is the linear fitting line

based on the scattered points obtained from WAMIT.

Figure 4-4 shows the variation of the heave exciting force for designs with differ-

ent shoulder positions and a cylinder with no shoulder. As can be seen, this shoulder

results in a smaller wave exciting force at lower frequencies, especially near the reso-

nance. In addition, a higher shoulder can result in a smaller exciting force in the lower

frequencies, but also leads to a larger force in the higher frequencies. Note that RAO

in heave motion is usually small in these high frequencies. Therefore, a high shoulder

is appreciated in the design from the consideration of reducing exciting forces.

However, such a horizontal shoulder is a rapid variation in the cross section, so it

should be deep enough to prevent it from penetrating the free surface. Furthermore,

we should always guarantee the hydrostatic stability during all the design phases.

These imply that we need to make a trade-off in determining the position of the

shoulder. One trial is to modify the shoulder from a flat one to an oblique one.

To see the effect of the inclination of the shoulder a on the wave exciting force, we

calculate the heave exciting force for different a's but with fixed draft H, H 3 /H,

91



Ra R

H

R2

R3

Figure 4-3: Sketch of the result of phase I of the hull evolution from a circular cylinder.
We shrink the water-plane area, enlarge the keel radius and attach a heave plate at
the keel to achieve soft stiffness and large added mass in heave motion.

Ri/Rag and R 2/Ravg (see Figure 4-5).

From Figure 4-6 we can conclude that:

(1) An oblique shoulder is equivalent to a horizontal shoulder in terms of the can-

cellation of the heave exciting force;

(2) The hydrostatic stability can be achieved with less difficulties for a design with

an inclined shoulder than that with an even shoulder.

(3) Oblique shoulders avoid the rapid variation of the cross section.

In terms of the wave exciting force, we arrive at a design with two cylinders

connected by an inclined shoulder at phase II of the evolution of the hull shape (see

Figure 4-5).

4.1.4 Increase the viscous damping

The presence of the heave plate can also increase the viscous damping via shedding

vortices at its edge, thus further reduce the heave motion of the platform. This effect

is captured by DVRM (see Chapter 3, section 3.2).
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Figure 4-4: The heave exciting force coefficients for different H 1 /H from WAMIT.

The black curve is the result for a circular cylinder with H = 30 m and Ravg = 11.3 m.

The zero force coefficients at low frequencies for the designs with a shoulder justify

the cancellation effect of the exciting force due to this shoulder.

In summary, the basic shape of our platform is shown in Figure 4-7.

4.2 An example of the mini-platforms compared

with the spar in heave

We obtain the basic geometric shape of the hull on the basis of a spar with fixed dis-

placement and draft. In this section, we will compare the heave motion performance

of our platform with the spar quantitatively. The mini-platform and the spar have

the same displacement of 12,000 ton and the same draft of 30 m. For simplicity, A

is used to denote the spar while B is used to represent our miniature platform in the

following description.

The dimensions of these two platforms are summarized in Table 4.1.
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Figure 4-5: Sketch of the result of phase II of the hull evolution from a circular
cylinder, to two cylinders with a high even shoulder, and to two cylinders connected
by an oblique shoulder. Such a design utilizes the cancelling effect of the heave
exciting force, and avoids an abrupt fluctuation in the cross section.

# Ri/m R 2 /m Ro/m R 3/m H/m
A 11.3 11.3 0 11.3 30
B 8 12.1 5 17.1 30
# Hi/m H 2 /m H3/m t/m A/t
A 0 0 0 0 12,034
B 2 7 21 0.5 12,773

Table 4.1: Dimensions of the spar A and newly designed mini-platform B.

4.2.1 Comparison in the RAO's

We calculate the RAO's (with and without viscous effects) for both platforms accord-

ing to equation (3.83) and (3.107). As for the determination of CD, we let "20 be 0.5

m, and then obtain KC = 0.6 from equation (3.81). Therefore, CD = 8.5 from our

DVRM code. The comparison of RAO's is shown in Figure 4-9.

Figure 4-9 shows that the resonance frequency for spar A falls into the range near

14s which is close to T, for GoM (see Chapter 3, section 3.5.1), but our new design

has a natural period greater than 20s. Also, the response for our design A at the

resonance frequency with viscous effect included is reduced significantly compared to

that without viscous effect.

94



co(H/g)1
2

Figure 4-6: Variation of the heave exciting force coefficient for a floating body of two

cylinders connected by a shoulder with different inclination a's. The draft of the

body H and the length of the lower cylinder H 3/H are fixed. The calculation results

are from WAMIT.

4.2.2 Comparison in the response in various sea-states

We consider the two sea-states for design. One is the operation condition for 1-year

term, and the other is the survival condition for 100-year term. For Gulf of Mexico,

H, and T, characterizing these two design conditions usually are given in Table 4.2

(ITTC). We use the modified Pierson-Moskowitz (PM) spectrum for calculation (see

equation (3.119)).

Operation Condition Survival Condition

H,/m 4.0 12.0

T,/s 10.0 14.0

Table 4.2: The characteristic parameters of the design condition of the sea-states. H.

is the significant wave height. T, is the peak period of the wave spectrum. The data

is retrieved from ITTC.

The modified PM wave spectrum for these two design conditions are shown in

Figure 4-10. The heave motion responses of the spar A and the mini-platform B
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Figure 4-7: Summary of all the phases of the hull evolution from a circular cylinder
to the final configuration of the mini-platform

under these two sea-states are shown in Table 4.3.

GM/rn Tn/S 1-year 100-year
_________ ___ ___ s/m (,/m

A 1.8354 12 4.6308 11.5016
B (w/o Damping) 1.0631 21.5 0.4122 2.5088
B (w/ Damping) 1.0631 21.5 0.4115 1.0298

Table 4.3: Comparison of the significant heave motion height (, in various sea-states
for spar A and mini-platform B, where GM denotes the hydrostatic metacentric
height, and T, is the natural periods in heave. The result is obtained from the
combination of WAMIT and DVRM.

As can be seen in Table 4.3, our newly designed mini-platform not only satisfies the

basic hydrostatic requirement (see equation (2.4)), but also has a satisfactory motion

performance compared to the spar. The natural period is 21.5s, which is much larger

than the peak periods of the wave spectrua under operation and survival conditions.

The significant motion height (, in the two design conditions are significantly reduced
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Figure 4-8: Sketch of the miniature platform and the spar with the same displacement

A = 13,000 ton and the same draft H = 30 m.

in comparison with that of the spar with the same displacement.

4.3 Effect of the geometric parameters of the mini-

platform on heave

The example provided in the last section is the conceptual design. In this section,

emphasis will be placed on the effect of the ratios of different dimensions on the heave

motion. This parameter analysis provides a guidance for the optimization of the hull

in the next chapter.

In the following analysis, we use the (dimensionless) significant heave motion

height ( 8 /H, to quantify the heave response. The dimensions of the newly-designed

mini-platform can be referred in Figure 4-7.
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Figure 4-9: Comparison of the heave RAO of our mini-platform B and the spar A. The
blue curve is the RAO without viscous damping for A. The green curve is the RAO
without viscous damping for B. Both of these two curves are obtained from WAMIT.
The red curve is the modified RAO with viscous damping defined in equation (3.107)
based on the combination of WAMIT and DVRM. The red curve has a much smaller
peak value compared with the other two curves.

4.3.1 Effect of the draft on heave

Let us first study the influence of the total draft H on the heave motion. Here we fix

all the other geometric parameters.

H1/H2 = 1 (4.3)

H2/H3 = 1 (4.4)

R2/R1 = 1.5 (4.5)

R3/R2 = 1.3 (4.6)

The results of the heave performance versus the total draft are shown in Figure 4-
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Figure 4-10: Modified Pierson-Moskowitz spectrum used for design. The blue curve

is for the operation condition with H, = 4.0 m and T, = 10.0 s. The green curve is

for the survival condition with H, = 12.0 m and T, = 14.0 s

11. Figure 4-12 shows the stiffness, added mass coefficients and resonance frequencies

while Figure 4-13 gives the wave exciting force coefficients at the resonant frequency

as a function of draft H. We can see that deeper draft corresponds to a smaller heave

motion amplitude. This can be explained from Figure 4-12 and 4-13. One reason

is that the wave effects decay exponentially with increasing submergence, resulting

in smaller wave exciting force, as can be seen from Figure 4-13. This is exactly

the principle behind the concept of deep draft floaters like spars. The other reason is

that deeper draft with a fixed displacement leads to smaller water-plane area, thereby

providing softer stiffness. This shifts the heave natural frequency further lower from

the frequency range of high wave energy, as shown in Figure 4-12. Note that the

resonance frequency does not decay as fast as the stiffness because the added mass is

sacrificed while the draft increases.

In addition, deep draft is beneficial for lowering the gravity centre, ensuring the

hydrostatic stability. However, increasing the draft of the system makes construction

and installation more costly. Sometimes, transit routes may also limit the choice in

draft. Therefore, we need to make proper tradeoffs between the choice of draft and
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Figure 4-11: Variation of heave motion amplitude (,/H, for the mini-platform as
a function of the total draft H/V 1/ 3 , where V = 13,000 M 3 , H 1/H 2 = H2/H3 =
1, R 2 /R1 = 1.5 and R3 /R 2 = 1.3.The results are from equation (3.122) based on
WAMIT and DVRM.

erquirement of small heave response. For the optimization in Chapter 5, we will use

these two parameters H/V and (,/H, as our objectives.

4.3.2 Effect of the axial distribution of the displacement on

heave

This subsection will concentrate on investigating how the axial distribution of the dis-

placement affects the heave motion. Variable controlling approach is applied again.

The heights of the three sections of the platform can form two independent dimension-

less parameters H1 /H and H3 /H which vary between 0 ~ 1. All the other parameters

are fixed at some moderate values to exclude extremely odd shapes.

V = 13000 m 3  (4.7)

H/'Y = 1.5 (4.8)
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Figure 4-12: Variation of the stiffness, added mass coefficients and resonant fre-
quencies for the mini-platform as a function of the total draft H/V1/ 3 , where
V = 13,000 m 3, H 1/H 2 = H2 /H 3 = 1, R 2/R 1 = 1.5 and R 3 /R 2 = 1.3. The re-
sults are from WAMIT.

R2/R1= 1.5 (4.9)

R3/R2 = 1.5 (4.10)

Figure 4-14 shows the contours of the significant heave motion amplitude (,/H,

while H 1/H and H3 /H vary. As can be seen, there are two regions where (,/H,

achieves the minimal values. One is the region where HI/H is around 0.2, and H3 /H

is around 0.7. This corresponds to a design of a high shoulder. The other region is

on the opposite. With H1 /H about 0.5 ~ 0.6 and H 3/H about 0.1 ~ 0.3, this region

provides another type of design with a low shoulder.
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Figure 4-13: Variation of the wave exciting force coefficient for the mini-platform as
a function of the total draft H/V1/3, where V = 13, 000 m3, H1/H2 = H2/H3 =1
R2/R1 = 1.5 and R3/R2 =1.3.The results are from WAMIT.

The results in Figure 4-15, 4-16 and 4-17 can help explain the features of the

results in Figure 4-14. Let us discuss these two regions respectively.

Region I obtains a satisfactory motion response for the following reasons. Firstly,

Since the draft of the mini-platform is only around 30 meters, much shallower com-

pared to the spars (around 200 meters in draft normally), a significant vertical wave

exciting force is exerted at the keel, especially in long waves. A high shoulder can

counteract a fairly large portion of this exciting force in the long-wave frequencies (see

section 4.1.3). As shown in Figure 4-17, the heave exciting force coefficient X 2 /pgV 2/ 3

decreases as the position of the shoulder rises. Secondly, a high shoulder moves much

of the displacement downwards, so the stiffness C 2 2 /pgV 2/ 3 and hence the natural

frequency of the heave motion are reduced, as can be seen in Figure 4-16. However,

the raise of the shoulder is limited by two constraints in practice. On one hand, the
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Figure 4-14: Contours of the dimensionless heave motion amplitude ( 8 /H, for the

mini-platform as a function of H1 /H and H 3/H, while V = 13000 m, H/IV = 1.5,
R2/R1 = 1.5 and R3 /R 2 = 1.5. The results are from equation (3.122) based on

WAMIT and DVRM.

water-plane radius R1 should be larger than 7 m due to the precense of the moonpool

(see Chapter 2, section 2.3). On the other hand, we should prevent the shoulder from

penetrating the water surface during the motion (see section 4.1.3).

As for Region II, a lower shoulder may not reduce the heave exciting force and

stiffness, but can result in a large heave added mass. Based on Figure 4-15, the

added mass A 22 /pV reaches the maximum when the shoulder is lowest. In addition,

contrary to Region I, we do not need to concern about the shoulder penetrating the

water surface. However, we need to ensure that the hydrostatic stability is satisfied

while lowering the shoulder.

To sum up, based on the analysis of the above two regions, we see that the axial
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Figure 4-15: Contours of the heave added mass coefficients as a function of H1/H
and H3/H, while V = 13000 m3 , H/fi/ = 1.5, R 2/R 1 = 1.5 and R3/R 2 = 1.5. The
data is obtained from WAMIT.

distribution of the hull determines the competition between the wave exciting force

and added mass. In addition, attention should always be paid on different constraints.

We could expect that the optimal design should fall into either of these two regions.

4.3.3 Effect of the radial distribution of the displacement on

heave

We have narrowed down the optimal solution space in terms of the axial distribution,

now let us investigate the effect of radial distribution on heave motion. The three radii

for the three sections and the heaving plate form two independent non-dimensional

parameters R 2 /R 1 and R 3/R 2 . The basic geometric shape for our platform is narrow

in top and wide at keel. Hence here we vary these two parameters from 1 to 2.
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Figure 4-16: Contours of the dimensionless stiffness as a function of H 1/H and H3 /H,
where V = 13000 m3 , H/fi = 1.5, R 2/R 1 = 1.5 and R 3/R 2 = 1.5. The results are

from WAMIT.

Let us take Region II as an example. All the other parameters are fixed as follows.

V = 13000 m3  (4.11)

H = 1.5 (4.12)

H1 /H = 0.55 (4.13)

H3/H = 0.3 (4.14)

As can be seen from Figure 4-18, for smaller values of the two radius ratios, the

heave motion response decreases as both R 2 /R 1 and R3 /R 2 increase. This is because

large radius ratios shrink the water-plane area and enlarge the keel radius, resulting

in a larger added mass (see Figure 4-19), more viscous damping (see Figure 4-20)
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Figure 4-17: Contours of the wave exciting force coefficients as a function of H 1 /H
and H3/H, while V = 13000 M3, H//i7 = 1.5, R2/R 1 = 1.5 and R 3/R 2 = 1.5. The
results are from WAMIT.

and softer stiffness (see Figure 4-21). Consequently, the resonance frequencies can

be shifted into lower ranges for larger radius ratios (see Figure 4-22). However, we

can also see from Figure 4-18 that for radius ratios greater than 1.5, increasing these

two ratios may not mitigate the motion response further. This can be explained in

terms of the wave exciting force. As can be seen from Figure 4-23, the wave exciting

force coefficient generally has a small value for smaller radius ratios, and reaches the

minimum value when R 2 /R1 and R 3 /R 2 are around 1.5. Beyond this value, the wave

exciting force increases significantly as the radius ratios increase, counteracting the

contribution due to the larger added mass, more viscous damping and softer stiffness

on suppressing the motion.

In addition, we should keep in mind that these radius ratios are limited by the

following constraints. The first is that the water-plane area is restricted because of
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Figure 4-18: Contours of the dimensionless heave motion amplitude (,/H, for the

mini-platform as a function of R 2/R 1 and R 3 /R 2 , while V = 13000 m, H/9 V 1.5,
H1 /H = 0.55 and H 3/H = 0.3. The results are from equation (3.122) based on

WAMIT and DVRM.

the moonpool, as mentioned earlier. The next is that the centre of buoyancy should

not be too low in order to guarantee the hydrostatic stability. Finally, a large heave

plate may bring inconvenience to installation and transportation. Therefore, for the

optimization in the next chapter, we need to examine these constraints.

Based on the above analysis, we expect that the final optimal design should have

the radius ratios around 1.5.
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Figure 4-19: Contours of the added mass coefficient for the mini-platform as a function
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Figure 4-20: Contours of the viscous damping coefficients for the mini-platform as a

function of R 2/Ri and R 3/R 2 , while V = 13000 m 3 , H/Yi = 1.5, H1 /H = 0.55 and

113 /H = 0.3. The results are from DVRM.
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Figure 4-21: Contours of the dimensionless softness for the mini-platform as a function
of R 2 /Ri and R3 /R 2 , while V = 13000 m3 , H/IYV = 1.5, H1/H = 0.55 and H3 /H
0.3. The results are from WAMIT.
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Figure 4-22: Contours of the dimensionless resonance frequencies in heave for the

mini-platform as a function of R 2/R1 and R 3/R 2, while V = 13000 m 3 , H/V9= 1.5,
H1/H = 0.55 and H3 /H = 0.3. The results are from WAMIT.
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Figure 4-23: Contours of the wave exciting force coefficients for the mini-platform as
a function of R 2/R 1 and R3 /R 2 , while V = 13000 m3 , H/ V = 1.5, H1/H = 0.55
and H 3/H = 0.3. The results are from WAMIT.
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Chapter 5

Hull Optimization for the

Mini-platform

In this chapter, we will apply a genetic algorithm to seek for the optimal design of

the miniature platform based on the analysis in the previous chapter. The effective

application of optimization requires a completely automated evaluation of appropriate

design criteria and their mathematical representations (objective functions). For the

platform shape optimization, the following items must be provided (Birk, 2007):

" Flexible shape definition by forming parameters and an automated shape gen-

eration

" Hydrodynamic analysis of arbitrary hull geometry

" Definition of suitable objective functions

Therefore, design variables have to be chosen from the available form parameters.

In addition, both objective functions and constraints must be formulated to guarantee

that the resulting design is feasible with respect to all requirements imposed on the

design.

Figure 5-1 illustrates the general optimization procedure used in this thesis. A

subset of parameters describing the hull shape constitutes the vector of free variables

x. Some other parameters p remain fixed for all the designs. The optimization loop

starts when the initial data is provided. Constraints examination, hydrodynamic
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Free Variables x

Fixed Variables p

Variation of
Free Variables

Generation

Optimized Design

Value of ObjectIve Function f(x, p)

Figure 5-1: Framework of the parametric optimization of hull shape

analysis and the assessment of the designs are repeated with adjusting free variables

until the minimum of the objective functions are achieved. Such control of the process

is conducted by an optimization algorithm, and is completely automatic with no user

interference. In the following sections, we will present this process in details.

5.1 Optimization parameters for automatic gener-

ation of the hull shape

Due to the automation of the optimization, we need to first define the parameters

to create the hull shape. Our mini-platform is set up with two cylindrical parts

which are connected by an intermediate part of variable length (see Figure 5-2). As

a design premise, we fix the displacement of the platform to be V = 13,000 m3 (see

Chapter 2, section 2.2.3) and the thickness of the heaving plate to be th = 0.5 m (see

Chapter 2, section 2.3.5), i.e., p = (V, th). Therefore, five independent dimensionless

parameters determine the shape of the hull entirely. They serve as the free variables
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x for the optimization. Their upper and lower limits are defined in table 5.1, which

are consistent with the parameter analysis in Chapter 4 (see Chapter 4, section 4.3) .

These limits are selected to provide a rather flexible space for designs but also avoid

extremely odd shapes.

Figure 5-2: Setup of the mini-platform for the hull optimization.

Clearly the total draft is the sum of all the part heights.

i=3

H =EH
i=1

Substituting recursively the relation Hi = Hjj+ 1 - Hi+1 yields an equation which

can be solved for the unknown H3 .

H

H3 = H(5.2)
H 12H 23 + H 23 + 1
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No. I

X1

x 2

X3

x 4

x5

Table 5.1: Upper and lower
the hull shape

efinition

H/ V
H1 /H 2

H 2 /H 3

R2/Ri
R3/R2

limits of

Symbol
Hj*

H 12

H2 3

R21

R 32

the five free

Range
1.06~ 1.91

1/5 - 5
1/5 ~ 5
1~2

1.1~ 1.5

optimization variables to describe

Therefore,

Hi = H3 H 12 H 2 3

H2 = H3 H23

(5.3)

(5.4)

Calculation of the cross section radius follows a similar approach to the length

calculation. The total displaced volume is the sum of two circular cylinders and a

truncated cone. Here we ignore the volume of the heave plate.

V = rRHi + 7rRH 3 +-(R 2 + R2 + R1R2)
31 2 +R) (5.5)

Utilizing the radius ratios R 2 1 we substitute the radius R 2 = R. R 21 into equation

(5.5) so that only R1 is left. Then R1 can be computed from:

R1 = + + 2
7r{H1 + R iH3 + 1 (1 + R i)H2}

Therefore,

R 2 = R1- R21

R3 = R1 - R32 - R21

(5.7)

(5.8)

Thus the geometric shape of the hull can be generated with the free variables

vector Y = [x1, x 2 ,X 3 , x 4 , X5 ] and the fixed parameters vector p = [V, t].

116

s

(5.6)



5.2 Constraints for the mini-platform designs

As discussed in Chapter 1, the following constraints must be examined for each design.

1. Constraint for heave natural period

T, 19s (5.9)

A heave resonance period of just 19 seconds would be considered low for both

of the target operation areas (see Chapter 4, section 4.2.2). Since minimiz-

ing the motion amplitude is consistent with maximizing the resonance period,

19 seconds could be a compromise between eliminating unwanted designs and

unnecessarily narrowing down the solution space.

2. Constraint for metacentric height

Metacentric height should satisfy the following condition based on the analysis

in Chapter 2 (see Chapter 2, section 2.4):

GM = ZB - ZG + > 1.0m (5.10)

3. Constraint for waterplane area

Based on the previous analysis, the water-plane radius should be consistent with

the moonpool design (see Chapter 2, section 2.2).

R1 > 7.Om (5.11)

5.3 Objective functions for the hull shape opti-

mization

The purpose is to find a design with a satisfactory seakeeping characteristic and

a "not-too-deep" draft. However, these two goals cannot achieve the minimum at
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the same time (see Chapter 4, section 4.3.1). Deeper draft increases the cost of

construction and installation, but reduces the wave exciting force, thereby suppressing

the heave response. Therefore, draft and heave motion amplitude are selected to be

our objective functions. Our target is to find a compromised solution between these

two objectives.

Mathematically, the two objective functions F = [fi, f2] can be defined as follows:

fi = HI/i (5.12)

As for f2, we choose the dimensionless significant heave motion amplitude (,/H,

under the survival sea-state condition (see Chapter 4, section 4.2.2).

00f2 = 4/j Sw) IRAO (w)I12dw/H8  (5.13)

where S(w) is the given wave spectrum for the survival condition defined in Chapter

4 (see Table 4.2). RAO is the modified RAO defined in equation (3.107).

5.4 Optimization algorithm

Since we have two contradictory objectives, this is a multi-objective optimization.

Here we use the so-called multi-objective genetic algorithm (E - MOGA) (Laumanns

et al., 2002; Deb et al., 2003). Let us first introduce two concepts: Pareto frontier

and -dominance.

5.4.1 Two concepts: Pareto frontier and e-dominance

In this subsection, we follow Laumanns et al.s' paper (2002) and use two-objective

optimization as an example to illustrate these two concepts, which is also the case in

this thesis.

Multi-objective optimization aims at finding the set of nondominated solutions,

which are called Pareto frontier. For design © to dominate design @, © must
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be better than (2 in all the objectives, otherwise, they are non-dominated by each

other. This is usual-dominance concept. As illustrated in Figure 5-4, solution P

dominates the region PFCEP, and solution 1 and 2 are nondominated in terms of

the above usual-dominance concept. Nondominated designs, or Pareto frontier, can

only be improved in one objective by encumbering deterioration in at least one other

objective. They themselves are the trade-off solutions we want to find (Laumanns et

al., 2002) (see Figure 5-3).

f2 0 0 Feasible Designs0
o 0 0 Pareto Frontier

0 0 X Infeasible Designs
x

0 0

O 06
Ix \0

0 0

x 0, 0 0

I x

Figure 5-3: Illustration of the Pareto frontier. The black circles represent the feasible

designs, the green circles are designs of Pareto frontiers, and the red crosses denote

the infeasible designs violating the constraints.

In order to keep the number of designs in the Pareto frontier finite and small, we

apply a concept of e-dominance, where c is a small positive number. Let us assign an

identification array B = (B1 , B 2 , - , BM) to each solution, where M is the number

of the objectives (in our case M = 2).

Bj(f) = floor[(fj - fmin)/j], for minimizing fj, j = 1, 2 (5.14)

where fj,min is the minimum possible value of the j-th objective, and ej is the allowable
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F C

E

Figure 5-4: Illustration of the concept of usual-dominance and E-dominance (from
Deb et al., 2003)

tolerance in the j-th objective below which the values are insignificant to us. The

determination of cy would be presented later.

Now we apply the above usual-dominance to the identification array B. If B of

design © dominates that of design @, then we say design (T) E-dominates design 0.

Otherwise, we call these two solutions E-non-dominated by each other. As illustrated

in Figure 5-4, solution P c-dominates the region ABCDA, which is larger than the

region PECFP in the usual-dominance sense.

The value of c can be determined as follows.

e=K' -T 1 (5.15)

where a is the maximum size of the Pareto frontier archive; K' is set to be the current

maximum relative range of the 2 objectives:

K' = max{ui - li} (5.16)
i=1,2

where ui and li: ui > 1i > 0 are the current maximum and minimum values of

objective function i.

As we can see, c stands for the tolerance to the values of the objective functions.

The bigger the E, the greater the "tolerance". In addition, c decides the size of the
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Pareto frontier archive.

5.4.2 Optimization flow based on c - MOGA

Here we summarize the procedure for the hull shape optimization based on the c -

AOGA (Laumanns et al., 2002; Deb et al., 2003; Clauss & Birk, 1996; Birk et al.,

2004; Birk, 2007; Birk & Clauss, 2008).

1. Generate the initial population

This algorithm uses a fixed size population and a separate archive of a variable

size for the current set of nondominated solutions.

First we can generate enough initial designs, i.e., the population. Each free

variable is picked up randomly within its own range. Then we calculate their

objective functions and examine the constraints to keep the feasible ones to

be the initial designs . Here we use 200 cases to serve as the initial feasible

population jP.

2. Generate the Pareto frontier based on c-dominance concept

Using the c-dominance concept, we extract the set of c-dominated designs to be

the initial Pareto frontier archive fo.

3. Pick up parents for producing the new design

Next we need to select two solutions to be the "parents" to produce a new design

"child". First, we randomly select two parents from the current population

p for a competition. If one dominates or E-dominates the other, it becomes

the winner. If both are not dominated by the other, the winner is selected at

random. The winner is the first parent. The second parent is randomly selected

from the current Pareto frontier archive f

4. Cross over of the two parents

There are numerous ways to do the mating for the two parents selected in the

last step. In this thesis, we use the so-called the "single point cross-over" tech-
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nique. Each design is represented by five free variables . = [x1, X2, X3, x4 , X5 ].

Each time, we select a point among the five free variables randomly. Then two

children are generated by crossover of the values of these free variables of the

selected parents around this point (see Figure 5-5). Here we only choose one of

them, i.e., only one child is generated each time.

Parents

randomly determined crossover point

Children

Figure 5-5: Illustration of the single point cross over for two parents to generate two
children

5. Mutation of the child

If random(O, 1) < a user defined mutation probability, we will apply a mutation

step for the child. Mutation means that one randomly selected free variable is

varied in this step, taking a new random value within its range. This mutation

aims at introducing new design variations.

6. Update the Pareto frontier archive and population

Once the free variables of the child are defined, we can evaluate their objective

functions using WAMIT and DVRM codes and also check the constraints. If

this child is not feasible, then go back to step 3 to regenerate the child.

If this child is feasible, then do the following to update the archive. Compare
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this child with the current archive member one by one. If the child is dominated

or c-dominated by all the archive members, then this child is not accepted. If

this child dominates any archive member, this dominated archive member is

deleted and the child is accepted. If neither of the above two cases occur, then

this means the child is non-e-dominated by any of the archive member. There

are two situations for this case. One situation is that the child shares the same

B vector with an archive member, i.e., they belong to the same hyper-box.

Then we first check their relations in the usual non-domination sense. If the

child dominates the archive member or the child is non-dominated to the archive

member, but is closer to the B vector in terms of Euclidean distance than the

archive member, then the child is retained. Solutions 1 and 2 in Figure 5-4

belong to this situation. They are in the same hyper-box (have the same B),

and they are non-dominated based on the definition of usual-dominance. Since

solution 1 has a smaller distance to the B vector, it is kept and solution 2 is

deleted. The other situation is that the child does not share the same vector

with any archive member. Then the child is selected into the Pareto frontier

archive.

As for the population, we here use a different technique. Again, we compare

the child with all the population member one by one. If the child dominates

one or more population members in the usual-dominance sense, then the child

replaces one of them (chosen by random). If the child dominates nobody, then

the child is deleted. When both of the above two cases fail, the child replaces

a randomly chosen member since the child is non-dominated to the population

members.

In the update of the Pareto frontier archive and the population, if the child is

not accepted, then we go back to step 3 to regenerate the child.

By applying the above two techniques, we can guarantee a fixed size for the

population and a bound size of the Pareto frontier archive. In addition, the

c-dominance concept helps ensure a well-distributed frontier.
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EA

7. Repeat from step 3 to step 6

The above procedure from step 3 to step 6 is repeated for a specified number

of iterations. The optimization stops when enough number of children designs

are created. The current archive of nondominated designs represents the final

estimate for the true Pareto Frontier. We can also compare the development of

Pareto frontier during the final cycles. If the Pareto frontier changes little, we

can stop the optimization.

Archive

usual T

Offspring

-- C-dam

62

Figure 5-6: Illustration of the procedure of c-MOEA (from Deb et al., 2003)

8. Determine the Final Result

There are several choices in the final Pareto frontier archive. They are all the

optimal solutions theoretically. Therefore, it is our job to make the trade-off

among them to make the final decision.

To sum up, the whole procedure of this e-MOEA is indicated in Figure 5-6.

5.5 Final hull shape for the mini-platform

In our study, we start with an initial population of 200 cases, and do the optimization

until the total number of the population reaches 350. A good variety of initial designs
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has been created to guarantee that the process will not converge to a single design at

last. The Pareto frontier for the population of 350 is shown in Figure 5-7.

0.18
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1 1.1 1.2 1.3 1.4 1.5

f I=1/V
1 /
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1.6 1.7 1.8 1.9 2

Figure 5-7: Final Pareto frontier of the Multi-objective optimization for the hull

shape of the mini-platform when the population number reaches 350. The objective

functions are evaluated based on the combination of WAMIT and DVRM.

As expected, there are more than one design falling into the Pareto frontier, and

these optimal designs are well-spread. Here a few selected shapes are presented in

Figure 5-8 and Table 5.5.

" Design 98 minimizes the first objective with a total draft of 25.12 m. Such a

shallow draft can help reduce the cost for construction and installation. How-

ever, just because of such a small draft with a relatively large water-plane area,

this design suffers a relatively large wave exciting force and a relatively large

natural frequency. Hence it does not behave well in the second objective.

* Design 114, on the other hand, features the smallest heave response in the
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Figure 5-8: Hull shape of the
population of 350.

selected designs from the final Pareto frontier of a

Design 98 288 114
Draft fi = H (m) 25.12 37.6 42.19

Heave response f2 = (s (m) 0.9512 0.5926 0.5010
R1 (m) 11.64 9.35 9.03
R2 (M) 17.90 14.54 13.82
R3 (in) 25.92 21.07 20.49
Hi (n) 18.67 27.51 31.00
H 2 (M) 4.61 6.06 8.98
H 3 (M) 1.84 4.05 2.22

GM (m) 1.37 1.86 2.66

Tn (S) 21.4 21.7 22.1

Table 5.2: Dimensions and optimization objectives of the selected designs of the
mini-platforms from the final Pareto frontier of a population of 350.

survival sea-state. But its draft is also deepest among these three selected

designs. This again validates the contradictory of the two objectives.

9 Finally, design 288 is represented as a compromised candidate. It has a moder-

ate draft of 37.6 m and a natural period of 21.7 s. Its heave motion response is

also satisfactory.

We can also see that all these optimal results have a relatively low shoulder with

radius ratios around 1.5. This is consistent with the expectation in the parameter

analysis in Chapter 4 (see Chapter 4, section 4.3).

However, due to the limited time, we stop the optimization when only 150 children

are produced. The pareto frontier could be pushed forward further. A sensitivity test
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needs to be conducted to see whether the Pareto frontier would change much as

the population grows. In addition, here we do not consider the performance of the

designs in pitch motion. In future work, we can also include the pitch motion as

another optimization objective.
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Chapter 6

Summary and Recommendations

6.1 Summary

Due to a large number of marginal oil fields discovered in Gulf of Mexico, and the

high cost of the existing floaters, oil companies hope to seek for a design of a novel

miniature floating platform with loose mooring systems. To be more specifically,

the displacement for such a design should be around 10,000 ton to reduce the cost

in construction and installation. In addition, the platform should behave well in

hydrodynamic motion in waves. It is challenging to achieve the both goals at the

same time. This thesis presents the procedure of the novel design and related models

involved.

In Chapter 2, we discuss in details some necessary preliminary considerations

for the design. This includes the estimation of the weight distribution, the main

dimensions, the centre of gravity and radius of gyration. All of these are based on

the standard codes and rules, and also consistent with the statistics of the existing

miniature platforms. Such estimations provide a general frame for the following

calculations.

For a concept design, we focus on the hydrodynamic performance of the plat-

form. Therefore, Chapter 3 is mainly concerned with the hydrodynamic models and

numerical methods involved in the calculation of the motion of a floating body in

waves. Based on the equation of motion, this problem can be decomposed into two
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sub-problems. One is the well-known wave-body radiation/diffraction problem. This

sub-problem assumes the fluid to be completely inviscid, incompressible and irrota-

tional. Therefore, the potential flow model is used to obtain the linear hydrodynamic

coefficients in the motion equation. In this thesis, the standard 3D panel code WAMIT

is adopted. The other sub-problem which involves the viscous effects, however, has

not been well solved yet nowadays. Therefore, we develop a new model called Dis-

crete Vortex Ring Model (DVRM) which can efficiently and accurately estimate the

viscous drag coefficient. Such an efficiency in the calculations is appreciated in the

following optimization. After obtaining all the hydrodynamic coefficients in the mo-

tion equation, we solve for the response of a floating body in regular waves in the

combination of WAMIT and DVRM. The later part of Chapter 3 presents the deriva-

tion of the solution for a modified response amplitude operator (RAO) with viscous

effects included. The prediction of the response of a floating body in irregular waves

based on this modified RAO is also given.

Chapter 4 concentrates on applying the models and methods presented in Chapter

3 to the design of our mini-platform. We first qualitatively discuss the evolution of the

hull shape of our platform on the basis of a spar with a fixed displacement and draft.

The potential theory model is mainly used for this qualitative analysis, and a basic

shape for our platform is obtained. Then we provide an example of an initial design

of our platform, compared with the basis spar in the heave motion quantitatively in

the combination of WAMIT and DVRM. The comparison shows that our platform

behaves better in heave compared with the spar with the same displacement. It also

shows the feasibility of our combined model between WAMIT and DVRM. Finally,

we utilize this combined model to investigate the influence of different geometric

parameters of the mini-platform on the heave motion, providing some expectations

for the optimal designs.

In Chapter 5, we present how to integrate our combined model into an automatic

optimization framework to obtain the optimal design of the hull form. A so-called e-

MOEA algorithm is used to solve the constrained multi-objective optimization prob-

lem. Finally, a compromised design with a moderate draft, a satisfactory motion
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performance in waves and a small displacement of 13,000 ton is obtained.

6.2 Recommendations

The following are the recommendations that need to be further investigated in order

to further improve the design of the effective mini-platform.

" For the DVRM, in this thesis, we only consider an infinitely thin circular plate

for simplicity. We do not consider the effect of the hull on the plate. In the

future, we can extend this model to a body with a disk to obtain a more accurate

vortex induced drag coefficient.

" As discussed in Chapter 5, we stop the optimization when there are 350 cases

in total. We do not examine the stability of the Pareto frontier obtained based

on these 350 cases. A sensitivity test is required to see how much the Pareto

frontier can be further pushed as the number of the optimization population

grows.

" The whole thesis places the emphasis on the heave motion of the platform, but

the pitch motion behaviour is note examined. In the future work, we should

include this part into the analysis and optimization, to obtain a more reliable

design.

" As mentioned in Chapter 2, there is a moonpool in the hull of our mini-platform.

However, when we calculate the motion response for our platform, we do not

take into account the effect of the moonpool. The effect of moonpool on the

platform motion in waves should be examined.

" Nonlinear effects should also be examined. These include the mooring effects,

Mathew instability, wave slamming, vortex-induced vibration (VIV) and wave-

curent interaction.
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