
Building Blocks for Co-Design of Controllers and

Implementation Platforms in Embedded Systems

by

Leslie Grace Maldonado

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author
Department of Mechanical Engineering

May 10, 2013

Certified by...........
Anuradha nnaswamy

Senior Research 6cientist
Thesis Supervisor

A ccepted by
David E. Hardt

Chairman, Department Committee on Graduate Theses

ARCHNES
'A3SACHUSFT TS NT ffE

F-

Building Blocks for Co-Design of Controllers and

Implementation Platforms in Embedded Systems

by

Leslie Grace Maldonado

Submitted to the Department of Mechanical Engineering

on May 10, 2013, in partial fulfillment of the

requirements for the degree of

Master of Science in Mechanical Engineering

Abstract

One of the biggest challenges in implementing feedback control applications on dis-

tributed embedded platforms is the realization of required control performance while

utilizing minimal computational and communication resources. Determining such

tradeoffs between control performance (e.g., stability, peak overshoot, etc.) and re-

source requirements is an active topic of research in the domain of cyber-physical

systems (CPS). In this thesis, a setup is considered where multiple distributed con-

trollers communicate using a hybrid (i.e., time- and event-triggered) communication

protocol like FlexRay (which is commonly used in automotive architectures). Map-

ping all control messages to time-triggered slots results in deterministic timing and

hence good control performance, but time-triggered slots are more expensive. The

event-triggered slots, while being less expensive, result in variable message delays

and hence poor control performance. In order to tradeoff between cost and control

performance, a number of recent papers proposed a switching scheme where messages

are switched between time- and event-triggered slots based on the state of the plant

being controlled. However, all of these studies were based on a monotonic approx-

imation of the system dynamics. This while simplifying the resource dimensioning

problem (i.e., the minimum number of time-triggered slots required to realize a given

control performance) leads to pessimistic results in terms of usage of time-triggered

communication. In this thesis, it is shown that the usage of time-triggered commu-

nication (i.e., the requirement on the minimum number of time-triggered slots for a

given control performance) is reduced when an accurate, non-monotonic behavior of

the system dynamics is considered in the analysis. This technique is illustrated using

a number examples and a real-life case study. While the focus is on communication

resources in this thesis, these results are general enough to be applied to a wide range

of problems from the CPS domain.

Thesis Supervisor: Anuradha Annaswamy

Title: Senior Research Scientist

3

4

Acknowledgments

I would like to thank Dr. Anuradha Annaswamy for her support in my research and

all the mentoring she has provided me. I would like to thank Ken Butts and Prashant

Ramachandra from Toyota for their support and interest in my research and for their

direction during my summer work at Toyota. I would also like to my labmates Sarah

Thornton and Dan Wiese for all the late night homework and study times. Thank

you also to Andy Wright for his awesome support and encouragement through all

these semesters at MIT. Lastly, thank you to my mom, dad and brother for their

understanding, support and unconditional love.

Support: This work was supported in part by the NSF Grant No. ECCS-1135815

via the CPS initiative.

5

6

Contents

1 Introduction 17

1.1 Contributions . 18

1.2 Related work . 19

1.3 Organization . 20

2 Problem Setting and Motivation 21

2.1 Control Problem . 21

2.2 Distributed Implementation . 23

2.2.1 Task Triggering . 23

2.2.2 Hybrid Communication Bus Protocol 24

2.3 Performance Requirements . 25

2.4 Resource Constraints . 26

2.5 Design Challenges . 26

2.6 Basic Switching Scheme . 27

2.7 Controller Design . 29

2.7.1 TT Controller Design . 29

2.7.2 ET Controller Design . 29

2.7.3 Control Strategy . 30

3 Non-Monotonic System Behavior 33

3.1 Impact of Non-Monotonic System Behavior 33

3.2 Analytical Description of Non-Monotonicity 36

3.2.1 Remark About Performance Measure 37

7

3.3 Examples of Non-Monotonic Systems 38

3.4 Relation Between Dwell and Wait Times 39

4 Schedulability Analysis 43

4.1 Assumptions for Schedulability . 43

4.1.1 Task-to-Slot Mapping . 43

4.1.2 Occurrence of Disturbances 44

4.1.3 Schedule Within a Slot . 45

4.2 Worst-Case Response Time . 45

4.2.1 Convergence to Fixed Point 47

4.3 Scheduling Parameters . 52

4.4 Slot Scheduling Algorithm . 53

4.5 Simulation of Algorithm . 54

4.5.1 Communication Details. 55

4.5.2 Results. 55

4.5.3 Discussion . 55

5 Simulation 57

5.1 Distributed Architecture . 57

5.2 Hybrid Communication Bus . 58

5.2.1 Static Segment . 59

5.2.2 Dynamic Segment. 60

5.3 Switching Scheme . 60

5.4 Simulation of Example System . 62

5.4.1 Communication Details. 63

5.4.2 Controller Design . 64

5.4.3 Schedule of TT Slots . 65

5.4.4 Results. 66

5.4.5 Discussion . 66

6 Conclusion 71

8

A Scheduling Parameters MATLAB Code 73

B Slot Scheduling C++ Program 83

B.1 Number-ofslots.cpp 83

B.2 C-app.h .. 87

B .3 Slot.h . 89

9

10

List of Figures

2-1 Distributed cyber-physical architecture 23

2-2 Hybrid communication protocol . 24

2-3 Relation among various response times 27

2-4 Basic switching scheme between time- and event-triggered communi-

cation depending on the system states. 28

3-1 Relation between tdw,i and twait,i . 34

3-2 Non-monotonicity with xi(0) = -1 and x 2 (0) = 5. 35

3-3 Monotonicity with xi(0) = -1 and x 2 (0) = -1 35

3-4 Example of non-monotonic behavior in third-order system 38

3-5 TT for different initial conditions from ET 40

4-1 Example of partitioned scheduling on the static segment 44

5-1 Simulink model of typical control application of distributed system 58

5-2 Simulink model of communication bus for sharing a single TT slot . 59

5-3 Simulink model of switching scheme 61

5-4 Simulink model of distributed system 63

5-5 Communication protocol used in simulation 64

5-6 Simulink model of communication bus 67

5-7 Responses of the six control applications 68

5-8 Schedule of the communication bus 69

11

12

List of Tables

4.1 Example control applications (parameters in ms) 54

5.1 Exam ple plants . 62

5.2 Example control applications (parameters in s) 65

13

14

List of Algorithms

4.1 Scheduling parameters algorithm . 51

4.2 Slot scheduling algorithm . 54

15

16

Chapter 1

Introduction

This thesis focuses on the distributed implementation of multiple feedback controllers

onto an automotive architecture with a network of electronic control units (ECUs).

In particular, the scenario where the ECUs transmit signals over a shared hybrid

communication bus such as FlexRay [1] and TTCAN [11] is of interest. Due to wide

variety of functional and timing requirements in domains like automotive the hybrid

protocols are considered to be an attractive option for today's in-vehicle communi-

cation network. In general, the hybrid bus protocols allow both time-triggered (e.g.,

static segment of FlexRay) and event-triggered (e.g., dynamic segment of FlexRay)

communication. Both segments have their own advantages and disadvantages. By

pure time-triggered (TT) communication with perfectly synchronized TT slots and

ECUs, it is possible to achieve negligible communication delay. But pure TT com-

munication is highly bandwidth consuming and hence expensive in terms of resource

usage. On the other hand, a bandwidth efficient pure event-triggered (ET) implemen-

tation often results in a variable and large communication delay due to the arbitration

with higher-priority traffic. Thus, a feedback controller provides (i) a good control

performance with high resource usage (i.e., network bandwidth) in a pure TT im-

plementation (ii) a poor control performance with low resource usage in a pure ET

implementation. The goal is to obtain an improved control performance with a tight

resource dimensioning. That is, what is aimed for is to achieve a control performance

better than what one could have achieved using a pure ET implementation and at the

17

same time, to reduce the usage of TT slots compared to a pure TT implementation.

Towards achieving these two conflicting goals, another possible implementation is to

map the feedback signals dynamically to the time-triggered and the event-triggered

segments depending on the state of the plant being controlled [16]. That is, multiple

controllers share a TT slot and each controller has its own ET priority: only one

controller can use the TT slot at any given point in time and all other controllers

use their ET priority for message communication. Essentially, a TT slot is arbitrated

by the multiple controllers based on the plant's state which further depends on the

underlying dynamics being controlled. The presented technique aims to achieve a

tighter resource dimensioning using such mixed time-/event-triggered communica-

tion schemes. Although the applicability of the presented technique is illustrated in

the context of resource dimensioning in hybrid protocols, it can be adapted to other

settings such as control loops with variable sampling rates or task periods.

1.1 Contributions

In the above context, an external disturbance causes perturbation in the system dy-

namics which brings the system in transient state (see - Fig. 2-4). To reject such

disturbance for bringing it back to steady state within a given time duration Q, a

control application Ci needs to use the shared TT slot for the transmission of its

feedback signal and towards this, it needs to arbitrate with other control applications

for accessing the TT slot. In this setting, as a slot-sharing policy, this work considers

fix-priority non-preemptive scheduling where each control application has a prede-

fined priority. Once an application gets chance to send its feedback signal via the

TT slot, it cannot be preempted for tdw,i time units which is computed to be enough

to completely reject all possible disturbances under consideration. While arbitrating

for the access to the TT slot, a control application Ci might have to wait twait,i time

units since the TT slot might already being used by the higher-priority applications.

Thus, the above arbitration for the TT slot gives rise to a classical schedulability

problem which is what is attempted to be addressed in this work. Here, the relation-

18

ship between td,i and twaiti depends on the underlying system dynamics and plays

a key role in achieving tighter resource dimensioning (see Figure 3-1 - parameters

are explained later). To this end, all previous attempts made simplifying assump-

tion [16, 17, 9] on monotonic system dynamics which resulted in a linear relationship

between tdw,i and twait,i - see Figure 3-1. The results presented here show that such

monotonic assumption often results in conservative resource allocation. In this work,

a schedulability analysis is presented which takes this accurate non-monotonic system

dynamics into account. It is shown that there exists a stable fixed point solution of

the above schedulability problem utilizing classical Lyapunov based approach from

control theory. Further, the existence of the above non-monotonic property is verified

using an automotive experimental setup. Finally, the effectiveness of this technique is

shown in terms of savings in communication resource (i.e., the number of TT slots).

Although the presented technique is applicable to many other domains such as avion-

ics, the applicability of this analysis is more prominent in the cost-sensitive domains

like automotive.

1.2 Related work

While control over wireless networks has been a focus of networked control system

(NCS) literature [10, 6, 12], this work mainly targets fault-tolerant wired commu-

nication for the feedback signals. This work can be classified as "control/network"

co-design [5] which is related to two broad areas: (i) schedulability/timing analy-

sis (ii) control/schedule co-design. The timing/schedulability analysis for real-time

systems mainly determines response time of a real-time task [23, 4]. In distributed

settings, timing analysis methods exists for time-triggered [19, 13, 24], hybrid [21],

and event-triggered [20] systems. Typical questions addressed in these works include

computation of the worst-case end-to-end delays, optimal schedules synthesis, and

partitioning of system functionality into time-triggered and event-triggered activities.

The schedulability of control tasks is studied in several recent works [15, 25, 7,

14, 17, 16]. In general, the question addressed in these works is to how to do schedu-

19

lability analysis or schedule synthesis such that one or multiple control applications

provide optimal performance. Analysis methods exist for schdulability/timing anal-

ysis for both single-processor [25] and distributed architectures [15, 7, 14] in this

context. Further, in the case of distributed settings, the problem of network schedule

synthesis/analysis taking control performance requirements into account is studied in

[7, 17, 16]. The work presented in [17] formulated a schedulability analysis problem

using a limited-preemption scheme with retransmissions which reduces the number of

time-triggered slots that are necessary. In [16], a similar scheduling analysis was done

with a monotonic assumption between dwell time tdw,i, the time taken by the TT slot

to result in a desired response, and wait time twait, the time that the application

may lie in an ET implementation due to priority-based arbitration.

1.3 Organization

The rest of this thesis is organized as follows. The problem is formally presented in

Chapter 2. Chapter 3 then provides a formal characterization of the non-monotonic

system behavior the control applications may have. This is followed by a discussion of

the schedulability analysis in Chapter 4. The applicability of this analysis is illustrated

with a case study in Chapter 5.

20

Chapter 2

Problem Setting and Motivation

In this chapter, the distributed implementation of multiple control applications on

a network of ECUs is described in detail and the problem to be addressed in this

thesis is formally presented. The goal from the controls context and from the systems

context is outlined and a co-design is proposed where the design of the distributed im-

plementation uses information from the control application and the controller design

uses information from the description of the distributed architecture.

2.1 Control Problem

For a control application Ci, we consider a standard continuous-time model, given by

z -(t) = Aizi(t) + Bi(t -Ti) + Di(t) (2.1)

where xi are the plant states, ni is the control input, Di is an impulse disturbance

that occurs sporadically, and rh is the maximum communication delay between reading

sensor data and the corresponding actuation (sensor-to-actuator delay) and can be

arbitrary. In order to implement the requisite controller, the signals in (2.1) are

sampled at a constant sampling period hi. Since T can be arbitrary, the following is

21

defined:

r| = 7r, - - hi

T1,: - (2.2)

T2,i [hi

Defining xi[k] := xi(khi) and ui[k] := ui(khi), the zero-order hold sampling of the

continuous-time model in (2.1) gives the discrete plant-model [3]

xi[k + 1] = <Dizi[k] + Fo,uiu[k - Ti,j] + FI,%iu[k - T2,j] + bi[k] (2.3)

where <bi, Fo,i and I1,j are discrete-time equivalent system matrices and are given by

<bi = e Aihi

i hi -rf
-= eA'd s Bi (2.4)

hi-rr'= - i e Asds Bi

and bi[k] is the discrete equivalent disturbance given by

Di[k] = E M DjAihi (kD,+1 h)[k - kD,j]. (2.5)
j=1

In the above equation, 6 is a unit impulse function, ND is the number of impulse

disturbances that occur, MD is the magnitude of the impulse disturbance, tD is time

it occurs and kD is the corresponding sample in which it occurs and is given by

kD - l-

With the plant model as in (2.3), the goal of the control application is to choose

ui[k] so that regulation is achieved in a stable manner, i.e., choose ui[k] so that xi[k]

tends to zero. In addition, each application C, must achieve the regulation within a

specified desired response time or deadline (.

22

2.2 Distributed Implementation

Each control application Ci uses two ECUs and is divided into three tasks as shown

in Figure 2-1: a sensor task T,, measures the plant states xi, a control task T,,

computes the control input ui, and an actuator task Ta,i applies the control input Ui

to the actuator. The tasks T,i and T, are mapped to one ECU which is attached

to the corresponding sensors and the task Ta,i is mapped to a second ECU which is

attached to the corresponding actuators. Additionally, the control input ui is sent

from task T, on one ECU to task Ta,i on the other ECU over a hybrid communication

bus. Since the tasks T,i and T,, are mapped to the same ECU, they do not need to

communicate over the bus.

Hybrid Communication Bus

Figure 2-1: Distributed cyber-physical architecture

2.2.1 Task Triggering

The tasks T,i and Ta,i that belong to a particular control application are triggered

periodically with the sampling period hi. Task T, is triggered after the execution of

task T,,i is finished. Therefore, each periodic triggering generates one control input

ui which is then transmitted over the communication bus and received by task Ta,i.

23

2.2.2 Hybrid Communication Bus Protocol

The communication bus follows FlexRay specification [1] where the communication

bandwidth is divided into communication cycles of equal and predefined length. Each

communication cycle on the bus is further divided into a time-triggered (or static)

and an event-triggered (or dynamic) segment as shown in Figure 2-2.

Slots Slots

Time-triggered Event-triggered Communication cycle

Figure 2-2: Hybrid communication protocol

The static segment follows time division multiple access (TDMA) scheduling pol-

icy where the entire segment is divided into multiple slots with predefined size or

length. Each control application Ci is assigned a static segment slot to transmit its

control inputs and they are only allowed to be transmitted during the assigned slot.

If the generation of the control input ui is synchronized with the starting time of its

slot, the control input can immediately get transmitted. In the dynamic segment,

scheduling is priority-based. Every control application Ci is assigned a priority. The

control application with the highest priority gets to transmit its control input first

while the lower priority control applications wait to transmit their control inputs.

Every controller task T,, can send control input ui to task Ta,i over either the static

or the dynamic segment of the bus. The transmission rate in FlexRay is 10 Mbit/s.

As a result, the transmission times of control inputs over the bus are generally in the

order of ps and therefore negligible compared to the sampling periods hi of common

control applications which are in the order of ms. The execution times of tasks T,1,

T, and T,i are on the order of a few ps and therefore also negligible compared to

the sampling period hi.

24

Static Segment Attributes

The triggering of tasks T,i and T,i are synchronized with a given slot on the static

segment of the bus. It is assumed (which is common in real applications) that the slot

length on the static segment has been chosen such that every possible control input

fits entirely into one slot. The transmission of control inputs u, therefore, experience

zero (or negligible) delay when being transmitted over the static or time-triggered

(TT) segment.

Dynamic Segment Attributes

On the dynamic or event-triggered (ET) segment, the sending of control inputs may

experience a maximum communication delay ri. This is due to a possible contention

among control applications with different priorities trying to send their control inputs.

The maximum delay the sending of control inputs experience can be computed by the

traditional worst-case response time analysis. We assume that the priority assigned

to every control application C for the dynamic segment is such that 0 < Ti < hi holds

for that Ci. This implies that

T1 , = 0
(2.6)

in equation (2.3).

2.3 Performance Requirements

We consider n control applications Ci (i E {1, 2... n}) with sampling period hi that

run on a distributed automotive architecture as in Figure 2-1. As already mentioned,

the objective of each control application is to achieve the system states xi[k] -> 0.

In this context, a disturbance Di in (2.1) moves xi[k] away from zero. Based on the

error tolerance of the system, a value Eth is chosen by the designer such that the norm

of the system states Vx[[k]xi[k] < Eth is tolerable and referred to as steady-state.

25

Denoting the norm of the vector xi[k] as |Ixi[k] II where

||xi [k j]| := x [k]]xi[k],

when a disturbance arrives, the state norm moves away from zero resulting in xi [k] >

Eth. In that case, the performance requirement of each control application is to bring

the state norm down to Eth, i.e., iJxj[k]| < Eth or steady-state, within a desired

response time of (d from when the disturbance occurs.

2.4 Resource Constraints

We assume that there are m TT slots Sj (j E {1, 2... m}) and m < n. That is,

the number of available TT slots is less than the number of control applications.

Therefore, each control application Ci cannot be assigned a dedicated TT slot for

transmitting their computed control inputs ui.

2.5 Design Challenges

As mentioned before, the control input ui can either be transmitted via TT slots or the

priority-based ET segment. Given this, there are two design possibilities to consider:

(D1) Fully synchronized time-triggered implementation and communication via TT

slots. With zero communication delay, such an implementation leads to fast response

times (TT that meet the performance requirements since (TT < (d as shown in Figure

2-3. In this design, a dedicated TT slot is necessary for each control application.

Therefore, n TT slots would be needed for such an implementation. (D2) Fully

event-triggered implementation and communication via ET segment. In this case,

the delay Ti between sensor to actuator causes a significant deterioration in response

times, where (fT are the response times, since (fT > (f. Clearly, the design option

(D1) is not implementable with the given resource constraints of having less than n

TT slots and design option (D2) does not satisfy the performance requirements of

26

Response time with Response time with Desired response Response time with

TT implementation our scheme time ET implementation

I I

Figure 2-3: Relation among various response times

having response times within (f. Another design option is therefore proposed in the

following section to meet all the given constraints.

2.6 Basic Switching Scheme

The overall goal is to meet the performance requirements (by making sure (; < (' for

i C {1, 2... n}) in presence of resource constraints (using m TT slots with m < n).

To achieve this, a basic switching scheme, shown in Figure 2-4, is proposed where TT

slots are used to transmit control input whenever ||xi[k]|| > Eth (i.e., a disturbance

arrives), but not otherwise (i.e., during steady-state). This switching scheme allows

one to economize the number of TT slots (which is necessary as m < n). Therefore,

more than one control application Ci are assigned to a particular TT slot S for

j C {1, 2... m}. The control applications, that are sharing the same TT slot, send

their control inputs ui via the TT slot only in the case of a disturbance. When

multiple such control applications (sharing the same TT slot) experience disturbances

simultaneously, only the one with the highest priority can use the TT slot for message

communication while all the rest with lower priorities must use ET communication

and wait until the shared TT slot becomes available. In this setting, a lower priority

control application has to wait twait time using ET communication to reject the current

disturbance while their TT slot is not available. Once the TT slot is available to such

an application, it takes another tdw,i or dwell time, with TT communication to fully

reject the disturbance. The response time of such lower priority control application

27

is then

(i = tdw,i + twait,i. (2.7)

We need to achieve

tdw,i + twait,i < C,

for each control application Ci to meet our performance requirements. Evidently, the

relation between twat,i and tdw,i highly depends on the system dynamics and plays

an important role in this scheme. An accurate and non-monotonic behavior of the

system dynamics is exploited to determine which control applications are scheduled

on each TT slot so that they meet their performance requirements and is shown

in Chapter 4. This is unlike the previous efforts in this direction [16, 17] where a

simplified/approximated system model was considered.

Disturbance
||x,[k]||> Eth

Disturbance Rejected TT Slot SiNot Available

||x;[k]J| 5 Elh

TT Slot S;Available

TTSlot S, Available

Figure 2-4: Basic switching scheme between time- and event-triggered communication
depending on the system states.

28

2.7 Controller Design

The design of the controller is focused on one that switches between two cases, where

in the first case the control input is sent through the TT segment and in the second

case, the control input is sent through the ET segment. The discussions in the

previous sections lead to the following control application models for transmitting

using each respective segment in the communication cycle.

2.7.1 TT Controller Design

In the TT segment, the underlying discrete-time model experiences zero delay (i.e.,

ri = 0), and hence is of the form

xi[k + 1] = <Dixi[k] + Fo,inu[k] + bi[k] (2.8)

where

<bi = eihi

- hj (2.9)
F0, 10 Ai esds Bi.

This can be seen directly from (2.3) where T = 0, which follows from T = 0 in (2.2).

The control input ui to be sent over the TT segment is then designed using this model

of the plant.

2.7.2 ET Controller Design

In the ET segment, the underlying discrete-time model has a delay Ti. Since we

assume, as mentioned in Section 2.2.2, that r < hil, equation (2.6) follows, and

'It should be noted that if ri > hi, the inputs in (2.10) are altered as u[k - ri,i] and u[k - T,j - 1]
with T1,1 5 0. The control strategy that is discussed in the following section can be suitably altered
to accommodate the resulting dynamics.

29

therefore equation (2.3) reduces to the form

xi[k + 1] = <bizi[k] + ['oui[k] + Fiug[k - 1] + bi[k] (2.10)

where <bi and Fo,i and 71,j are discrete-time equivalent system matrices and are given

by

(i e Ahi-r

Fi =j e Aisds Bilhi

Equations (2.10) and (2.11) can be compactly represented in state-space form as

<bi F1~ r o i I
X ±[k +1] = ' Xj[k] + ui[k] + Di [k] (2.12)

0 0 I 0

where Xi[k] = zi [k]T ui[k - 1]T . In (2.8) and (2.12), the discrete equivalent dis-

turbance h6(k) is given by (2.5). The control input ni to be sent over the ET segment

is then designed using this plant model that takes into account the communication

delay T that may be experienced in transmission.

2.7.3 Control Strategy

The plant models for the ET and TT segments can be controlled using a variety of

control strategies including state feedback and model predictive control (MPC). For

example, one can use state feedback control of the form

u[k] = Gz[k] (2.13)

30

where G is chosen using optimal control principles [8] or an extended state feedback

with Linear Matrix Inequalities (LMI) methods [2] of the form

u[k] = KX[k]. (2.14)

Using whichever control strategy desired, the controller is designed in particular

for use in the TT and ET segments, respectively. The resulting control sequences ui

are then the control input into the plants to obtain the closed-loop responses. It is

noted that because of the delay present in the ET segment, the response time of the

system in the TT segment, TT is significantly less than (ET, the response time of the

system in the ET segment.

31

32

Chapter 3

Non-Monotonic System Behavior

In order to schedule n control applications Ci (Z E {1, 2 ... n}) onto m TT slots S

(j c {1, 2 ... m}) where m < n such that each control application meets their desired

response time or deadline (d, the relation between dwell time tdw,i and wait time twait,i

must be known. This relation is dependent on the behavior of the system dynamics

and is described in this chapter. Particularly, a non-monotonic system behavior is

looked at closely as this has a significant impact on the tdw,i and twait,j relation.

3.1 Impact of Non-Monotonic System Behavior

For illustration, consider the cases (j = twait,i + tdw,i and (= twaitj + tdw,j. When

the system behaves in a monotonic manner,

twait,i > twait~j 7 dw,i < tdw,j-

However, in reality, the system behavior often has non-monotonic phase, i.e.,

twait,i > twait~j ='?tdw,i > tdw,j -

Figure 3-1 shows a typical non-monotonic response (parameters will be explained

in the later sections). In this figure, the non-monotonic behavior is shown between

33

tdw,i
- - Approximated Monotonicity

- Non-monotonicity

TT

Figure 3-1: Relation between tdw,i and twait,i

twait,i 0 to tp,, and the system behavior becomes monotonic with twait,i > tp,i.

In general, for an arbitrary initial condition (i.e., x(t) at t = 0 in (2.1) or x(0))

of the plant, it is quite possible for the system states, even with a well-designed

controller, to decay to their steady-state value in a non-monotonic manner. For illus-

tration, we consider a second order system with two states x1(t) and x 2 (t). Figure 3-2

shows non-monotonic behavior with x1 (0) = -1 and x2 (0) = 5 while the same system

behaves monotonically with x1 (0) = -1 and x2 (0) = -1 as shown in Figure 3-3. It

is noticeable from Figure 3-2 that both x1 (t) and x 2 (t) initially increase before they

delay to their steady state values. This particular nature in state response results

in non-monotonicity in system behavior as shown in Figure 3-1 between twait,i = 0

to twait,i = tp,,. On the other hand, Figure 3-3 shows that the states x1(t) and x 2 (t)

increase monotonically and the resulting system behavior is shown in Figure 3-1 with

twait,i > t,. Hence, this property is dependent on the initial condition x(0), as shown

in Figure 3-2 and 3-3.

34

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time (s)

8

6

x 4

2

0 ~ i i i I~
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (s)

Figure 3-2: Non-monotonicity with xi(O) = -1 and x 2 (0) = 5.

0

-0.2

-0.4

-0.6

-0.E

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time (s)

0

-0.2

-0.4

-0.6

-1 0 1 2 3 5 6 8 9 0 1 2 1 1

- . . .

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time (s)

Figure 3-3: Monotonicity with xi(O) = -1 and x2 (0) = -1

35

-.... .

xu

3.2 Analytical Description of Non-Monotonicity

The focus of these discussions is the manner in which the state x of the system

x[k + 1] = Ax[k] (3.1)

evolves as k increases, given that the system (3.1) is stable. Stability of (3.1) implies

that [18] a symmetric positive-definite matrix P exists such that it solves the matrix

equation

ATPA - P = -I (3.2)

where I is an identity matrix. This is because the positive definite function V(x[k])

defined as in (3.3) has the property that

V(x[k + 1]) -V(x[k]) = xT[k](A TPA - P)x[k]

= -Ix[k]| 2 < 0.

This does not imply, however, that Ix[k] will decrease to zero in a monotonic manner.

Non-monotonicity occurs if there is any instant ko where

||x[ko + 1]II > ||x[ko]II.

This can only occur if in some regions of the state-space, the norm of the state x

increases and in other regions it decreases. This behavior is found in the class of

systems where the matrix A in (3.1) is indefinite. That is, given a stable system as

in (3.1), non-monotonicity occurs if A is indefinite.

The following are theorems from [22] that define and provide necessary and suffi-

cient conditions for an indefinite A.

Let m and n be nonzero vectors such that m'Am > 0 and n'An < 0.

Theorem 3.2.1. A is indefinite if and only if the magnitude of the state vector

increases with time for x = m and decreases with time for x = n.

A necessary and sufficient condition for A to be indefinite:

36

Theorem 3.2.2. Let A be a real matrix. Then A is indefinite if and only if A + AT

is indefinite.

Another necessary and sufficient condition for A to be indefinite:

Theorem 3.2.3. In order that a real matrix A be indefinite, it is necessary and

sufficient that at least one of the following two conditions is met:

1. There exists a negative principle minor of A + AT of even order.

2. Not all principle minors of A + AT of odd order have the same algebraic sign.

There arc many different classes of matrices that will produce a non-monotonic

behavior of the system, but the following is an important, general, class of matrices

that are indefinite:

Theorem 3.2.4. If A is in phase-variable form then A is indefinite whenever either

of the following conditions are met:

1. A is a 2 x 2 matrix of nonunity determinant,

2. A is an n x n matrix where n > 2.

3.2.1 Remark About Performance Measure

Instead of using |xi [k]|l as specified in Section 2.3, one can use a more general positive

definite function of the system states xi in the form of

V(xj) = x[Px, (3.3)

where P is a symmetric positive definite matrix. If V(xi) is small, one can then infer

that x is proportionately small with the proportionality constant determined by the

eigenvalues of P. Thus, the performance measure that is monitored to switch between

the static segment and the dynamic segment can also be a positive definite function

V(xi[k]) defined as in (3.3). In the case, the matrix P is chosen such that it coincides

with the solution of (3.2), then it follows that V(xi) will always be monotonic. If

37

on the other hand, the norm IIx[k]|| is used as a performance measure, then it can,

as outlined above, lead to a non-monotonic response for a general dynamic system

(3.1). The advantage of choosing V, which is essentially a weighted norm of xi, is

the underlying monotonicity. The disadvantage is that its computation requires the

determination of P which in turn, by virtue of (3.2), is dependent on the system

model. The use of Ix[k] avoids direct dependence on the system model, but suffers

from a possible non-monotonic response which is the focus on this work.

3.3 Examples of Non-Monotonic Systems

1 II

0.9

0.8

0.7

0.6

0.4

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

time (s)

Figure 3-4: Example of non-monotonic behavior in third-order system

Consider the system in (3.1) where A is given as

-1.30 -0.12 0.90

A = -0.62 -0.25 0.50

-0.75 -0.06 0.40

38

The eigenvalues of this system are -0.7576, -0.1829 and -0.2095. Since they are

all less than zero, this system is stable. Using Theorem 3.2.3, it can be determined

whether A is indefinite and therefore whether non-monotonicity occurs in this system.

-2.60 -0.74 0.15

A + AT -0.74 -0.50 0.44

0.15 0.44 0.80

The principal minors of A + AT of even order are 0.7524 and -0.5936. Since at least

one of these is negative, condition 1 of Theorem 3.2.3 is satisfied and A is indefinite.

Therefore, this system, although stable, has non-monotonic behavior. This system

is simulated and the non-monotonic behavior can be seen for an initial condition

Xo = [1 0 0]T in Figure 3-4.

As another example, consider the system in (3.1) where A is in phase-variable

form. The general form of A and A + AT are

0 1
A =

a b

A+AT = 0 1+

1+a 2b

The principle minor of A + AT of even order is -(1 + a) 2 . This is always negative

if a # -1 so condition 1 of Theorem 3.2.3 is satisfied and A is indefinite if a $ -1.

Therefore, this system has non-monotonic behavior if a # -1. Since the determinant

of A is -a, this also proves Theorem 3.2.4, condition 1.

3.4 Relation Between Dwell and Wait Times

Given that closed-loop system responses can have the above non-monotonic response,

its effect on the total response time is examined when switching the transmission of

control inputs between TT and ET segments. An accurate determination of this

39

0.35

0.3

0.25-

0.2-

0.15-

0.1-

0.05-

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

X1

Figure 3-5: TT for different initial conditions from ET

effect will in turn affect the scheduling of control applications Ci to TT slots Sj in

the schedulability analysis, discussed in Chapter 4.

Consider a second-order model for a control application as (2.1) where xi(t) is
-T

given as [i(t) x 2 (t)1 . In Figure 3-5, the set of state trajectories x 1 and x 2 of

the corresponding closed-loop systems in the ET and TT segments are shown. We

assume that the disturbance is such that the state starts at the point (-1, 0) in the

phase-space. The red curve represents the trajectory of the ET closed-loop system

that starts at this point. Following this trajectory, the system is brought back to

stability at (0, 0). The blue curves represent the trajectories of the TT closed-loop

system at different initial conditions of the ET-trajectory. Depending on at what

point in the trajectory of the ET system does the switch to TT, the TT system takes

a different (blue) path to return to the origin.

In the case of a non-monotonic closed-loop response of the ET and TT systems

as in the above example, the dwell time tdw,i initially increases as the amount of

40

wait time increases since the TT closed-loop system receives worse initial conditions

resulting in longer trajectories to stability. After this initial increase and as the

wait time continues to increase, t dw,i then decreases with twait,i when better initial

conditions are received resulting in shorter, monotonic trajectories that converge to

zero. The maximum value tdw,i reaches before then decreasing is called the maximum

response time (i and occurs after t,, time, or the time to peak, of wait time twaiti.

This relationship between the dwell time and wait time can be depicted in Figure 3-

1 using two piecewise linear curves. From this relation, the dwell time tdw can be

written as a piecewise function of the wait time twait.

{{T + afrtwait twait,i < tP,1
tdw,i = ,E (3.4)

i -#itwait,i twait,i > tp,

where

tp i
(3.5)

ET -t P)

As stated earlier, since the response time of the system in the TT segment is signif-

icantly less than the response time of the system in the ET segment, fi < 1. The

total response time (i is then

twait,i + tdwi (3.6)

(twait,i + ([T + aitwait,i twait,i < tpi (3.7)

twait,i + #3 gOE -itwait,i twait,i > tp,j

i + (1 + ai)twait,i twait,i < tp,, (3.8)

#,;?T -+ O i)twait,i twait,i > tp,

This model is general for both non-monotonic and monotonic closed-loop re-

sponses. For a monotonic closed-loop response, the time to peak t, would be zero

41

and the maximum response time Q" = ([T. While this linear fit provides a good

approximation of the actual relationship between dwell time and wait time, a good

upper bound approximation, or monotonic approximation (MA), could be to extend

the negative slope part of the curve, shown as a dashed line in Figure 3-1. This mono-

tonic approximation will result in a more conservative scheduability analysis since in

the region with the positive slope, the extension will predict a higher tdi than what

it actually is and higher dwell times result in the use of more static slots.

42

Chapter 4

Schedulability Analysis

In this chapter, the scheduling of control applications Ci to TT slots Si is described.

It is shown that the non-monotonic system behavior described in the previous chapter

affects this scheduling analysis. Inclusion of this effect into the analysis yields a more

accurate and less conservative result than has been done previously.

4.1 Assumptions for Schedulability

The overall goal is to assign n control applications to m shared TT slots (with m < n)

such that (j < (d for i E {1, 2... n}, i.e., the performance requirements are met.

4.1.1 Task-to-Slot Mapping

In order to meet the overall goal, there are two possible mappings from the tasks,

i.e., the control applications Ci, to the TT slots Sj for j E {1, 2. .. m}. Consider,

for example, three control applications C1, C2, C 3 and two slots Si, S 2 . One option

is partitioned scheduling: C1 and C 2 are assigned to Si and C3 to S 2 . With this

scheduling, if C1 and C2 experience disturbances at the same time and S2 is free, C1

or C2 cannot use S2 . The task-to-slot mapping is fixed in this option. The other

option is global scheduling: C1, C2, 03 can all use S1, S2 based on their necessity. For

this schedulability analysis, a partitioned scheme is used as shown in Figure 4-1. That

43

is, each control application is assigned to a single TT slot such that it always uses

the same slot when transmitting over the static segment. Each slot then contains one

or more control applications Ci that request its access to transmit control input for

tdw,i time after the occurrence of a disturbance. The slot must provide this amount

of service to these applications within their desired response time (from when the

disturbance occurs. From the schedulability perspective, the desired response time

(i of each control application then acts as a deadline.

CI C2 C, C4 -.-. Cn

Static Segment

Figure 4-1: Example of partitioned scheduling on the static segment

4.1.2 Occurrence of Disturbances

For the schedulability analysis, the pattern of when the disturbances occur for each

controller is assumed to be sporadic with a minimum inter-arrival time ri, where

(d < ri for every Ci. Under this assumption, each control application should have

enough time to reject a disturbance before another one occurs. The sources of the

disturbances are also assumed to be independent of each other so that one disturbance

will not cause another one to occur. The worst-case disturbance pattern is therefore

when disturbances occur simultaneously with their respective minimum inter-arrival

times ri for all control applications Ci in one slot.

44

4.1.3 Schedule Within a Slot

The schedule between the control applications sharing a single TT slot is designed to

be priority based. Every control application Ci is assigned a priority according to their

deadline (f. The shorter the deadline of a C, the higher priority it has in the shared

slot. Therefore when multiple control applications Ci simultaneously request access

to a shared slot to transmit control input, the control application with the highest

priority is granted access to the slot. The other control applications must then wait

until the higher-priority control application finishes using the TT slot. While they

wait, these control applications will use their respective ET slots to transmit control

input.

Since a control application switches from ET to TT only once in the process of a

particular disturbance rejection, it blocks the TT slot for tdw,i time once it gets access

to it. It will block the slot regardless of whether a higher-priority application requests

access within the tdw,i time. In other words, the sending of control input over the

static segment is non-preemptive. Therefore, if the slot is being used by one control

application, another application Ci will have to wait for access to the slot regardless

of its priority. This increases the wait time twait,i of the blocked C, which affects its

dwell time tdw as discussed earlier. Also, because #i > 1, the increase in wait time

also increases the total response time (i. The schedulability of a control application

Ci on a shared slot is then guaranteed if for every possible wait time twait,i, (i < (f.

4.2 Worst-Case Response Time

In order to determine the schedulability of C to a particular TT slot, the maximum

possible wait time, t wait,i, that leads to the worst-case response time, i, must be found.

It is assumed that all higher-priority applications Cj interfering with C require their

maximum possible dwell time on the slot, (j. This assumption leads to a conservative

schedulability analysis since dwell time of the higher-priority application can be less

depending on the blocking time suffered by Cj. Using this assumption, the worst-case

response time for control application Ci occurs when it needs to use the TT slot at the

45

same time as all the higher-priority applications Cj and it also suffers blocking time

due to a lower-priority application since the sending of messages is non-preemptive.

This worst-case can occur when a lower-priority is using the slot and all higher-priority

applications Cj and Ci have disturbances occur simultaneously.

To find the worst-case response time of a task under a fixed-priority non-preemptive

scheduling, the response times of all jobs of that task must be computed within its

maximum busy period. The task here is given by a control application Ci sending

its control input over the shared static slot. The maximum busy period tmax,i of Ci

is then the longest time which the slot is constantly being used by higher-priority

control applications and by C. It is assumed that tmax, < ri for all Ci so there is

only one transmission of messages of Ci over the TT segment within its busy period

tmax,i. Using this assumption, only the response time (i of the sole job of Ci within

tmax,i needs to be computed to obtain the worst-case response time (j. This can be

done using (3.8) and the maximum possible wait time twait,i described above to yield

the following iterative equation for (.

(pT + (1+ a)bi + (1+ ai) (Case 1
(i (4.1)

{,3ET + (1 - #3)bi + (1 - 0i)[]7 Case 2

Cases 1 and 2 are defined depending on the value of (, as

i- 1 - i -
Case 1: bi + Y, < tP,,

j=1

Case 2: bi + Z(H > tP,,
=13

where bi = maxnki 1 (m) is the maximum possible blocking time due to lower-priority

applications suffered by Ci and n is the number of control applications. For the rest

of the paper, it is assumed that applications are sorted in order of decreasing priority

so that Cj has a higher priority than C, and Ci has a higher priority than Ck for

46

1 < j < i < k < n. Equation (4.1) can be solved iteratively starting from

([T + (1 + ai)bi bi < t,,i{ / 3 T + (1 - #i)bi bi > tp,j

and proceeding until either (a) (j becomes greater than (f or (b) converges to a value

j. If (j is greater than (', then it implies that Ci is not schedulable on the shared

slot. If it converges, then C, can meet its deadline and is schedulable on the slot.

For either case (a) or case (b) to occur, it is necessary that the implicit equations

in (4.1) have a solution. In what follows, we discuss the analytical framework that

ensures the existence of such a solution.

4.2.1 Convergence to Fixed Point

We note that equation (4.1) essentially is a difference equation. Its solutions converg-

ing to a fixed value implies that (4.1) has a fixed point. Expressing both cases 1 and

2 of (4.1) as

(j(k + 1) = f,((j(k)) (4.3)

where

f, ((j(k)) = a, + c, ~(g (k) j
j=13

ai = (TT + (1 + ai)bi, a2 = i ET + (1 - #3)bi

cl = 1 + ai, c2 = 1 - f,

we state conditions below in Theorem 4.2.1 under which (4.3) has a fixed point , to

which all solutions converge.

Theorem 4.2.1. Consider the nonlinear difference equation

(i(k + 1) = f (j (k))

i 1 - (k) (4.4)
f ((g(k)) = a + c 1 V

j=1

47

and let m be defined as
i-1

m = c .,i
j=1 3

If a > 0 and m < 1, then all solutions of (4.4)

1. have a fixed point i, and

2. converge to li.

Proof. The right hand side of (4.4) can be bounded with linear upper and lower

bounds using the following property of the ceiling function:

x < Fx] <x +1 (4.5)

Linear combinations of [x] are used to get lower and upper bounds of f(j(k)) as

i-1

a ± c
j=1

pm

' - j(k) <
i

i-1 m
f({i(k)) < a + c (k)

1 j-1

The above inequality can be simplified as

L(ti(k)) < f({s(k)) < L(tj(k)) +
j=1

where

L (-(k)) = a + m(k)
i-1 m

m = c Y .

j=1 Ti

By definition, the fixed point i has the property

j (k) = -- tij(k + 1) = j.

That is, , lies on the line

gj(k + 1) = j(k).

48

It follows that f((g(k)) = j has a solution if L(j(k)) = j has a solution. The latter

holds if a > 0 and m < 1, which proves the first part of Theorem 4.2.1.

To prove that (g(k) will converge to , for all initial conditions, we consider the

Lyapunov function candidate

V((i(k)) - (j(k) - i)2

If the fixed point j is stable, then the following inequality must be satisfied:

V((j (k + 1)) V((j (k)) < 0

Substituting the Lyapunov function candidate into (4.6), we obtain that

V((g (k)) = ((g(k + 1)

= (2 j - (j (k) - (g (k + 1))((j (k) - (g (k + 1)).

In what follows, we show that V(k) is a Lyapunov function by showing that

(1) 2 j - (g(k) - (g(k + 1) > 0 and (2) (g(k) (g(k + 1) < 0.

(1) Let ((k) be such that (;(k) < j. Another property of the ceiling function is

X1 < x 2 -+ [xil < [X 2]

Since (g(k) < j, inequality (4.7) implies that

f ((j (k)) < f (j).

Since di is a fixed point,

f(i) = i,

and with equation (4.4) therefore implies that (4.8) can be rewritten as

(g k + 1) < 1.

49

V(j (k + 1))

(4.6)

(4.7)

(4.8)

i)2 - (j (k) - i)2

Then again since (g(k) < j, it follows that

(j - (g(k)) + (j - (& (k + 1)) > 0.

(2) Given (g(0) 0, prove (g(k) < (;(k + 1) by induction. Base Case:

i(o) < (i)

i_
1

0 < a + c y
j=1 F 1 " = a

a > 0 so the base case holds.

Inductive Step: If (;(k) < &(k + 1) holds, then (i(k + 1) < (g(k + 2) holds.

Assume (g(k) < (g(k + 1) holds, then using

6i < 2 -+ f(6i) < f (2)

from before gives,

f(di(k)) < f ((g (k + 1))

Then from (4.4), it follows that

(g(k + 1) < (g(k + 2)

Since both the basis and inductive step have been proved, then by induction

(g(k) < (g(k + 1) for all k.

It further implies that (4.6) is satisfied and hence the fixed point . is stable. El

A direct application of Theorem 4.2.1 to equation (4.3) implies that in cases 1 and

2 of (4.1), (j converges to a fixed point j if a, > 0 and m, < 1 for p E-{1, 2}.

50

Algorithm 4.1 Scheduling parameters algorithm

Require: Plant parameters A and B, delay d, sampling period h, and time t

{Form equivalent discrete model for ET}

1: Phi = expm(A*h)
2: Gamma_= expm(A*(h-d))*integrate(expm(A*s)*B,'s',O,d)

3: Gamma_0 integrate(expm(A*s)*B,'s',O,h-d)

4: AdET [Phi Gamma_1 ; zeros(1,2) 0]
5: BdET = [Gamma_0; 1]
6: Compute control input u

7: Form closed-loop AclET
8: Define initial conditions xOET for ET system

9: xET = simulate(Acl,ET,t,x0ET)
10: for i = 1 to length(xET) do
11: xnormET(i) = norm(xET(i,1:2),2)
12: end for

{Set inital conditions for TT controller as ET trajectory}

13: xOTT = xET(:,1:2)
{Form equivalent discrete model for TT}

14: AdTT = Phi

15: BdTT = integrate(expm(A*s)*B,'s',0,h)

16: Compute control input u

17: Form closed-loop AclTT

{Compute norms for TT time responses using ET trajectory as initial conditions

for TT controller}
18: for i = 1 to length(xOTT) do

19: xTT simulate(AclTT,t,xOTT(i,:))

20: for j = 1 to length(xTT) do

21: xnormTT(j) = norm(xTT(j,:),2)

22: end for
23: SettTimeTT(i) settlingtime(xnormTT,t)

24: end for
25: tdw = SettTimeTT

26: twait t t
27: Calculate linear approximations of tdw vs twait
28: Obtain parameters from linear approximations

51

4.3 Scheduling Parameters

Some of the scheduling parameters needed for (4.1) are chosen, but most are deter-

mined by the system behavior. The minimum inter-arrival time for the disturbances,

rj, and the deadline, (j, are chosen by the designer. The response time with a TT

implementation, (TT response time with an ET implementation, (rT, time to peak,

tp'i, and maximum response time, ", are parameters obtained for each control ap-

plication as outlined below using equations from Section 2.7.

Procedure for Parameters:

1. Begin with a plant model given as in (2.1)

2. Using A and B in (2.1), compute <b, FO, F1 given sampling time h and delay

T / 0 for ET, T = 0 for TT using (2.11) and (2.9)

3. Compute UET[k] = GETX[k] and UTT[k] = GTTx[k] where GET and GTT and

chosen so that the closed-loop systems are stable

4. Form closed-loop systems for ET and TT using UET[k] and UTT[k] as follows:

X[k + 1]=4 X[k] + FOuET~
0 0 I

ETeL
y[k] = 0] X[k]

UET[k] = GETx~k]

x[k + 1] =<bx[k] + FoUTT[k]

TTej y[k] - Cx[k]

UTT[k] GTTx [k]

5. Compute ET closed-loop response XET= simulate(ETci, k, XETO) using an initial

condition XETO

6. For i = 0 to kfinal

52

(a) Compute TT closed-loop response XTT = simulate(TTci, k, XET()) using

XET(i) as the initial condition

(b) For j = 0 to kfal

i. Compute norm of XTT(j)

(c) Compute settling time tdw(i) of the norms

7. Set twait = k

8. Using Step 7, i.e., {twait, tdw(twait)}, determine a piecewise-linear function tdw

of twait, as in Figure 3-1

9. Obtain parameters (T, (ET, m and tp from linear approximations as in Fig-

ure 3-1

An algorithm of this procedure is shown in Algorithm 4.1. This algorithm is carried

out in MATLAB and the full code can be seen in Appendix A.

4.4 Slot Scheduling Algorithm

Using the parameters obtained as specified in 4.3, Algorithm 4.2 schedules a given

set of control applications Ci to a number of static segment slots using (4.1) to

decide whether a control application Ci is schedulable on a particular slot Sy. The

algorithm begins with one slot and inserts the control applications Ci as long as they

are schedulable on the slot as per the schedulability analysis. From that analysis, a

C, is schedulable on a particular slot if it can meet its deadline (when assigned to

the slot. The algorithm attempts to schedule all Ci to the existing slots. However,

if a Ci cannot be scheduled on an existing slot, a new slot is added and the Ci is

inserted there. Once all C, have been scheduled, the algorithm returns the number of

static segment slots that were necessary. This algorithm was implemented as a C++

program and the full program can be seen in Appendix B.

53

Algorithm 4.2 Slot scheduling algorithm

Require: n control applications Ci with parameters ri, (f, iT, ET and t
1: Sort Ci in order of decreasing priority
2: num-slots = 1
3: for i - 1 to n do
4: for s = 1 to num-slots do
5: if Schedulable(slot(s), Cj) then
6: Insert Ci into slot(s)
7: break
8: else if s - num.slots then
9: num..slots = num-slots + 1

10: Insert Ci into slot(num-slots)
11: break
12: end if
13: end for
14: end for
15: return num-slots

4.5 Simulation of Algorithm

Consider six control applications distributed as shown in Figure 2-1. The parameters

of each control application are shown in Table 4.1, columns 2 through 7. All six

control applications were chosen to have a non-monotonic closed-loop response and

therefore a non-monotonic relation between dwell time tdw,i and wait time twait,i as

shown in Figure 3-1.

Table 4.1: Example control applications (parameters in ms)

Ci r i d (Ti P , i MA i

1 2000 85 36 200 46 16 84.5 36.0

2 2000 500 144 550 184 44 317.1 327.3

3 1500 85 36 200 46 16 84.5 36.0

4 2000 300 144 400 184 32 292.0 300.0

5 5000 1000 576 2000 736 160 576.0 576.0

6 600 600 216 700 276 56 216.0 216.0

54

4.5.1 Communication Details

The communication protocol is assumed to be FlexRay with a cycle length of 5 ms.

The static segment has 2 ms length and it is divided into 10 slots. The rest of

the cycle is assigned to the dynamic segment. The proposed scheduling analysis is

applied to these control applications and the necessary number of slots that guarantee

all necessary requirements is determined using Algorithm I.

4.5.2 Results

The schedulability analysis yields four slots: Si = {C1, C 3 }, S 2 = {C 4 , C 2 }, S 3 = {C6}

and S4 ={C}. The worst-case response times for each control application is shown

in Table 4.1, column 8. This is compared to the same schedulability analysis using

a monotonic approximation (MA) for the relation between dwell and wait times, as

shown in Figure 3-1, which yields five slots: Si - {CI}, S2 = {C3}, S3 ={C4, C2},

S 4 = {C 6 } and S5 = {C5}. For this case, the worst-case response time for each

control application is shown in Table 4.1, column 9. This result was expected since

in the region with the positive slope in Figure 3-1, the monotonic approximation (the

dashed line in the figure) will predict a higher tdwi than what it actually is. The

higher dwell times then result in the use of more TT slots which is shown with this

example.

4.5.3 Discussion

The results show that the proposed schedulability analysis allows for a reduced num-

ber of TT slots with respect to a purely TT scheme, which would require six slots,

or a schedulability analysis that does not take into consideration the non-monotonic

system behavior. When non-monotonic system behavior is considered in the analysis,

the requirement on the number of TT slots is four in order to guarantee the control

performance which saves 33% TT communication usage. On the other hand, with a

simplified monotonic assumption on system behavior, the system needs five TT slots

to guarantee the desired control performance. In this case, the saving is only 17%.

55

56

Chapter 5

Simulation

The distributed control applications setup as detailed in Chapter 2 is simulated using

MATLAB/Simulink in combination with Truetime. Truetime is a MATLAB/Simulink

based simulator for real-time control systems developed by the Department of Au-

tomatic Control at Lund University. Simulink is used to simulate the plants and

controllers, while Truetime is able to simulate the Flexray communication network

and the timing of the transmission of control input. The simulation shows that given

n control applications Ci (i C 1,2... n) and m TT slots Sj (j E 1, 2. .. m) where

m < n and given by the schedulability analysis proposed in Chapter 4, all the control

applications do actually meet their desired response time or deadline (.

5.1 Distributed Architecture

Using Simulink, each control application is distributed as specified in Section 2.2. A

typical control application is shown in Figure 5-1. The controller gets the plant states

from the plant and sends a computed control input through the communication bus

back to the plant just as shown previously in Figure 2-1. Recall from Section 2.2 that

the execution times of the tasks T,,, T, and Tai are assumed negligible. Because of

this, the plant states are fed directly to the controller and likewise, the control input

is directly applied to the plant. Also, the control input is immediately available at

each sampling period, meaning the simulation assumes zero execution time for the

57

Clock Display

1 Interpreted
MATLAB Fcn

Norm1

S r,y;u1

Plant1

Controller

3eference1
ET1

ds1

f

Controller1
Trigger

Communication Bus

Figure 5-1: Simulink model of typical control application of distributed system

computation of the control input.

5.2 Hybrid Communication Bus

Using the Truetime Network, Send and Receive blocks, as well as logic to arbitrate

and route all the signals correctly, the hybrid communication bus is simulated as

specified in Section 2.2.2. The typical setup of the communication bus for two con-

trol applications sharing a single TT slot is shown in Figure 5-2. The blue colored

Truetime Send blocks send control inputs through the static segment of the commu-

nication cycle, while the orange colored Truetime Send blocks send control inputs

through the dynamic segment of the communication cycle.

The Truetime Network block simulates the Flexray specification where the com-

munication bandwidth is divided into communication cycles of equal length. The

58

Splitter: 1 and 2
DataTTr1

Datain Trigger TT 1
Data in

Arbitration: 1 and 2

TT(k) 1 Data TT TrueTime Re ive

t(from Static 1) t c 1

uET(k) 1 Trigger TT TrueTime SendRe aeive
Static1 (to Static1) TrSme N Trigger TT Data

Ddyn_stg 1 Data ET 1
Date ETfD

uTT(k) 2Trigger ET I Network
TrueTime Send Schedule Treie eev

L~ uET(k) 2 Data ET 2 Dynamic1 (to Dynami 11) S or (from Dynamic 11) Swth

_DataTT

dyn seg 2rrigger ET 2

Trie T T Dt
TrueTime Send Dt T

Dynamic2 (to Dynamic 12)
Dt T

Arbitration:1 and 2 Send
Trigger Trigger1 TrueTime Receive

(from Dynamic 12)

Figure 5-2: Simulink model of communication bus for sharing a single TT slot

length of the communication cycle is predetermined by the length of the static and

dynamic segments, which is specified in this block.

5.2.1 Static Segment

The static segment is specified in the Truetime Network block by its slot length and

schedule. As stated previously, the slot length is chosen to be large enough to fit

every possible control input. For the schedule, every slot is given a number and the

order they are placed in the schedule determines its order on the segment. Therefore,

if the slots are given numbers in increasing numerical order and placed in that same

order, then the segment will be identical to the static segment shown in Figure 2-2.

Using the slot length and the length of the schedule, or number of slots, the total

length of the static segment can be determined.

The Truetime Send blocks are assigned over which segment to send a particular

control input and when being sent through the static segment, they are also assigned

a specific slot in the segment. These blocks, therefore, determine which control ap-

plications are assigned to each TT slot.

59

5.2.2 Dynamic Segment

The dynamic segment is specified in the Truetime Network block by its mini-slot

length and schedule. In Truetime, a mini-slot works much like a slot in the static

segment where each one is given a number and the order they are placed in the

schedule determines its order on the segment. The key difference, however, is that

the mini-slot length is typically chosen to be smaller than the length necessary to

send a control input, meaning that it takes several mini-slots to send a message

over this segment. Whereas in the static segment, a transmission of a control input

is assigned to a particular slot for the length of time of that slot, in the dynamic

segment, a transmission is a assigned to a particular mini-slot to begin its sending,

but it continues to transmit using the length of time of other mini-slots until it is

done sending.

As stated in Section 2.2.2, the dynamic segment is priority-based. To simulate

this, the schedule must be chosen in such a way there are no mini-slots that will

never be able to begin a transmission, meaning there is a stream of control inputs

(assigned to that mini-slot) that are never able to be send. One such schedule is

[1, 2, 3, 1, 2, 3, 1, 2, 3, 1], where a complete transmission of a control input takes four

mini-slots. Using this schedule, any two mini-slots could send their assigned control

inputs over the dynamic segment within one communication cycle with the higher

priority one (i.e., the smaller numbered one) transmitting first.

5.3 Switching Scheme

The switching scheme detailed in Section 2.6 and Figure 2-4 is simulated using

Simulink and Truetime. The majority of the work occurs within the Arbitration

block shown in Figure 5-2. The internal logic of this block is shown in Figure 5-3 in

the case that two control applications are sharing a single TT slot. Each controller

sends this block their computed control inputs to be sent either over the static or

dynamic segment as well as a signal indicating which segment is requested. This

signal is determined by checking whether the system states are in steady-state or not

60

Trigger

dyn seg = 0: Send through Static Segment
dyn-seg = 1: Send through Dynamic Segment

Figure 5-3: Simulink model of switching scheme

as indicated in an earlier section. If the system is not in steady-state (i.e., a distur-

bance arrives), the static segment is requested. Otherwise, the dynamic segment is

requested.

The block checks whether the higher-priority control application C1 requests the

static segment. If it does, then it gets to send its particular control input through

the shared TT slot and the other control application C2 sends its control input that

goes through the dynamic segment. If the higher-priority control application does

not request the static segment, then it sends its particular control input through

the dynamic segment and the block checks whether the other control application

requests the static segment. If it does, then it gets to send its particular control input

through the shared TT slot. The logic in this block therefore ensures that if both

control applications assigned to a single TT slot request access to it, only the one

61

Table 5.1: Example

with a higher priority will receive access and the other will have to wait and use the

dynamic segment in the meantime as specified in Section 2.6.

5.4 Simulation of Example System

Consider six continuous-time plants of the form in (2.1) with system parameters as

shown in Table 5.1. By applying Theorem 3.2.3 directly to all six Ai it can be seen

that all six plants have non-monotonic behavior.

These plants are distributed and communicate over a hybrid communication bus

as discussed in Section 5.1. Figure 5-4 shows the Simulink model showing the six

control applications with the plants from Table 5.1 and the communication bus.

62

Ci Ai Bi

1 -0.76 0.43 [11
[-0.34 0.07 0]

2 -1.50 1.39 1
-0.75 0.581 [0

3 0.57 -1.43 1
1.-93 -3.07] [0

4 1.00 0.66] [1]

[0.60 0.30 0

5 -0.92 0.56 1
-0.50 0.17 [0]

6 [-5.00 3.501 [11
[-3.00 2.001 [01

plants

Clock Display

MnTeA tn MATLB Fn []
Normi Norm2

r, y. U 1 r, y u 2
1 ryul 22 ryu2

Co olie1 Controll r2

TT1 -TT
eferencel eference2

ET1 ET

U1 d 1 u2 d 2

ff
Controller1 Controller2

Trigger Trigger

[j Interprete ~ nterprtend111:! 111 [1111]eMj)P ATLAB Fcn MTA c
Norm4 Norm5

u4 r,y; u4 5 r, y; u5

u4

MTLAB Fn
Norm3

r, y; u 3

Controlle

- TT

leference3
ET

u ds3

f

Controller3
Trigger

Inter~pretedLI]
s MATLAB Fcn

Norm6

r, y; u 6

uS

US

Controller4 Controller5
Trigger Trigger

uG

U6

Controller6
Trigger

uommunication bus

Figure 5-4: Simulink model of distributed system

5.4.1 Communication Details

The communication protocol is assumed to be FlexRay with a cycle length of 5

ms. The static segment has 2 ms length and it is divided into 10 slots. Therefore,

63

Static Segment Dynamic Segment

Communication cycle

Figure 5-5: Communication protocol used in simulation

each slot can transmit control inputs of size 250 bytes. The slots are numbered 1

to 10 and are placed in that order on the static segment. The rest of the cycle

is assigned to the dynamic segment. The mini-slots on the dynamic segment are

numbered 11 to 20 and are smaller in size compared to the static slots. It takes

11 mini-slots in order to transmit a control input in the dynamic segment. Figure

5-5 shows one communication cycle of the communication protocol used. It also

shows the scheduling of the control applications to the TT slots, determined by the

schedulability analysis below, and how each control application is assigned their own

mini-slot in the dynamic segment.

5.4.2 Controller Design

A variety of control strategies can be used to control the plant models for the static

(2.8) and dynamic (2.12) segments. In this simulation, state feedback control is used

for the static segment of the form

ui[k] = GTT,ixi[k] (5.1)

where GTT,i is chosen using optimal control principles. For the dynamic segment, an

extended state feedback is used of the form

ui[k] = GET,iXi[k]. (5.2)

64

where GET,i is chosen using Linear Matrix Inequalities (LMI) methods.

5.4.3 Schedule of TT Slots

Using the procedure outlined in Section 4.3, we can obtain the parameters for the

slot scheduling algorithm in Algorithm 4.2 to determine the number of TT slots

necessary so that all the control applications meet their desired response time (f.

These parameters are shown in columns 2 through 7 of Table 5.2.

Table 5.2: Example control applications (parameters in s)

C r i_ __T _T _ t i M A li

1 200 9 1.6809 11.6243 5.3027 2.2675 8.57086 6.5877

2 20 6.25 2.578 8.5865 2.9487 1.342 5.88212 3.495

3 15 2 0.38562 3.9724 0.64081 0.68966 1.51785 1.58611

4 200 7.5 2.495 10.3982 4.0258 1.9215 6.48666 4.9384

5 20 8.5 2.7534 10.633 4.577 1.9714 8.11936 5.6187

6 6 6 0.71207 7.94 0.92249 0.66886 1.55448 1.68436

Using these parameters in the slot scheduling algorithm yields three TT slots:

Si = {C3,C6}, S2 = {C 2 ,C 4}, S3 = {C5 ,C1 }. Figure 5-6 shows this assignment

of the control applications to TT slots in the communication bus. The worst-case

response times for each control application is shown in Table 5.2, column 8.

This is compared to the same schedulability analysis using a monotonic approxi-

mation (MA) for the relation between dwell and wait times, as shown in Figure 3-1,

which yields five slots: Si - {C3, C6}, S2 = {C2}, 53 = {C4}, S4 = {C} and

S 5 - {Ci}. For this case, the worst-case response time for each control application

is shown in Table 5.2, column 9. This result was expected since in the region with

the positive slope in Figure 3-1, the monotonic approximation (the dashed line in the

figure) will predict a higher tdw,i than what it actually is. The higher dwell times

then result in the use of more static slots which is shown with this example.

65

5.4.4 Results

The response of each control application is shown in Figures 5-7. The blue region

denotes the time that control inputs to the plant were sent through the static segment,

while the orange region denotes the time that control inputs were sent through the

dynamic segment. The dashed red lines indicated the region of steady-state. Recall

that the control application should send the corresponding control input through

the static segment when, in this case, ||x| > 0.1 and through the dynamic segment

otherwise.

The schedule of the communication bus is shown in Figure 5-8. It can be seen

that the control applications use the static (TT) and dynamic (ET) segments as the

switching scheme indicates from earlier.

5.4.5 Discussion

In cost-sensitive domains like automotive, an efficient resource is one of the most im-

portant design consideration. These results clearly show that a tighter resource usage

(i.e., using fewer TT slots) is achievable using the presented scheme and analysis.

In general, a large number of feedback loops run on in-vehicle Electrical/Electronic

(E/E) architecture incorporating various functionalities such as adaptive cruise con-

trol, idle speed control, active suspension control, engine control etc. In the most

cases, the control loops are implemented in a distributed fashion leading to the need

to access the shared communication network. In such scenarios, the application of

the presented analysis can potentially achieve significant resource saving.

66

TrueTime Receive
uTT(k) 1 Daa TT (from Static 1)

ED *UET(k) 1 Trigger TT TrueTime Send
Static1 (to Static 1) TI

L >+dynLseg 1 Data ET 1 D

Lj>4uTT(k) 2 Trigger ET 1

TrueTime Send TrueTime Receive
uET(k) 2 Data ET 2 Dynamic1 (to Dynamic 11) (from Dynamic 11)

dyn_seog 2Trigger ET 2 D

t TrueTime SendD
Dynamic2(to Dynamic 12)

Arbitration:1 and 2 Send
Trigger Trigger1 TrueTime Receive

(from Dynamic 12)

krbitrtion: Datda

TrueTime Receive
ur(k) 1 Data TT (from Static 2)

E "uET(k) 1 Trigger Tr -DreieSn
Static2 (to Static 2) Tr Time N

g >*dyn-seg 1 Data ET 1

E "uTT(k) 2 Trigger ET 1 Network
TrueTi m eSend Schedule

uET(k) 2 Data ET 2 Dynamic3(tO Dynamic 13) Sector (romn i13)

gZ *dyni_seg 2TrIgger ET 2 D

TrueTime Send
..- Dynamic4(to Dynamic 14) &D

Arbitration:3 and 4 Send
Trigger Trigger2

TrueTime Receive
(from Dynamic 14)

Dta

TrueTime Receive
uTT(k) 1 Data TT (from Static 3)

rTrigger T ueTime Send
Static3 (to Static 3)

dyn_se.g 1 Data ET 1

uTT(k) 2 Trigger ET 1 TrueTime SendReev
E >*uET(k) 2 Data ET 2 Dynamic5(to Dynamic 15) rureTime Rciv

(from Dynamic 16)

dynseg 2Trigger ET 2 D

TI

TrueTime Send

Arbitration:5 and 6 Send Dyai6tDnmc1)D
Trigger Trigger3

TrueTime Receive
(from Dynamic 16)

Figure 5-6: Simulink model of communication bus

67

0.

0.

1 2 3 4 5 6 7 8 -0.20 1 2 3 4 5 6 7 8
time (s) time (s)

(a) Response of C1

0.8

0.6

0.4

0.2

0

-0.20

1.2

1

0.8

0.6

0.4

0.2

0

-0. -0.

(b) Response of C2

2 3 4 b b I U U I z 3 1 5
time (s) time (s)

(c) Response of C3 (d) Response of C4
1.2

0.

0.4

0.2

) -0.
0 1 2 3 4 5 6 7 8 0.O 2 4 6 8 10 12

time (s) time (s)

(e) Response of C5 (f) Response of C6

Figure 5-7: Responses of the six control applications

68

1.2

0.

0.

0.

0.

1

0.

0.

0.

0.

1

2

2

3

3

4

4
time (s)

5

5

6

6

Figure 5-8: Schedule of the communication bus

69

to)

1

3

2n
0

1 *
0 1 7 8

17

16

15

14
nialm IBM RUMUMN ol mmainsimill miumviiiiiinsloo

13
Mae MIN

12

0 7 8

70

Chapter 6

Conclusion

This thesis deals with a resource efficient distributed implementation of control ap-

plications on embedded platforms. In general, an aggressive control algorithm with

good control performance, e.g., shorter settling time requires higher resource on an

embedded platform. On the other hand, a relatively less aggressive control algorithm

with poor control performance requires lower resource on an embedded platform. The

presented work aims to achieve an implementation which ensures that the resource al-

located to the control applications is as close as possible to what resource is necessary

to achieve a desired control performance. The idea is to switch between these two

possible control algorithms and the corresponding resource allocations such that the

"average" resource usage is close to what is necessary for the control applications. To-

wards this, the work presented here used the non-monotonic system dynamics of some

systems and accommodated it in the presented schedulability analysis to achieve a

tighter resource dimensioning. The technique is illustrated considering a hybrid com-

munication bus as a shared resource and reduced the usage of the time-triggered

communication on that bus. Further, it is possible to adapt the presented analysis

for a wider class of combinations of embedded resource and control algorithm. For

example, an aggressive control algorithm can be realized with a higher sampling rate

and hence, higher resource usage on the processor. In such cases, the presented tech-

nique can also be applied to vary the sampling rate of the control applications to

achieve a tight resource dimensioning in terms of processor utilization.

71

72

Appendix A

Scheduling Parameters MATLAB

Code

function distributed-w schedan-init

cle , clear all

global b sampleTime

Wo Fixed for all cases

b = [1;0];

sampleTime = 0.02; % Sampling interval = 20 ms

assignin('base', 'B', b);

assignin ('base' , 'sampleTime', sampleTime);

Wo CASE 1

d1_1 = -5/27;

d2_1 = -1/2;

v1_1 = [3/5;4/5];

v2_1 = [1;3/5];

Al = [vl.1,v2_l] * diag([dl_ d2.1]) * [vl-l,v21l]^(-l);

dl = 0.007; % Delay in ms

[KET1,KTT1] = ETandTTControl(Al, dl);

xO1 = [1;0];

73

22

23 assignin ('base', 'Al', Al);

24 assignin ('base', 'KET' , KET1);

25 assignin ('base', 'KIT' , KITT);

26 assignin ('base' 'xO-1 ' , xO1);

27 WO CASE 2

28 d1.2 = -1/4;

29 d2_2 = -2/3;

30 v1.2 = [2/3;3/5];

31 v2_2 = [1;3/5];

32 A2 = [v1_2 v2_2] * diag([d1_2 d2_2]) * [v1_2 v22]^(-l);

33

34 d2 = 0.017; % Delay in ms

35

36 [KET2,KTT2] = ETandTTControl(A2,d2);

37

38 xO-2 = [0.2; -0.4];

39

4o assignin ('base', 'A2' , A2)

41 assignin ('base' , 'KET2' , KET2);

42 assignin ('base' , 'KT2' , KTT2)

43 assignin('base' 'xO2', x02);

44 WO CASE 3

45 d1_3 = -2;

43 d2_3 = -1/2;

47 v1-3 = [1/2;9/101;

48 v2-3 = [4/5;3/5];

49 A3 = [v1.3 v2.3] * diag ([d1_3 d2.3]) * [v1.3 v23]^(-1);

50

si d3 = 0.012; % Delay in ms

52

S3 [KET3,KTT3] = ETandTTControl(A3, d3);

54

55 x0_3 = [1;0];

56

57 assignin('base', 'A3', A3);

74

...

58 assignin ('base', 'KET3', KET3);

59 assignin ('base', 'KTT3', KT3);

6o assignin('base', 'xO3', x03);

i Wo CASE 4

62 d1-4 = -1/5;

63 d2_4 = -1/2;

64 v1_4 = [2/3;4/5];

os v2_4 = [4/5;3/5];

66 A4 = [v1_4,v2_4] * diag([dl-4 d2-4]) * [v14,v2-4]^(-1);

67

68 d4 = 0.012; % Delay in ms

69

70 [KET4,KTT4] = ETandTTControl(A4, d4);

71

72 xO4 = 1;-0.1

73

74 assignin ('base', 'A4' , A4)

75 assignin ('base', 'KET4', KET4)

7c assignin ('base', 'KTT4' , KT4);

77 assignin('base', 'xO4', x04);

78 0 CASE 5

79 d1-5 = -1/4;

8o d2_5 = -1/2;

si v1_5 = [1/2;3/5];

82 v2_5 = [4/5;3/5];

83 A5 = [v15 ,v2_5] * diag([d1-5 d2_5]) * [v15,v2_5]^(-1);

84

85 d5 = 0.017; % Delay in ms

86

87 [KET5,KTT5] = ETandTTControl(A5,d5);

88

89 xO-5 = [1; -0.1];

90

i assignin ('base' , 'A5' , A5);

92 assignin ('base ' , 'KET5', KET5);

93 assignin ('base ' , 'KIT5' , KT5);

75

assignin('base', 'x05', x0-5);

%o CASE 6

A6 = [-5,3.5;-3,2];

d6 = 0.007; % Delay in ms

[KET6,KTT6] = ETandTTControl(A6,d6);

x0_6 = [1;0];

assignin('base', 'A6', A6);

assignin ('base', 'KET6', KET6);

assignin ('base', 'KTT' , KTT6);

assignin('base' 'xO6', xO.6);

%7 Simulation and Plots of Responses

sim ('distributed -w-schedanNM pretty')

assignin('base', 'tout', tout);

assignin ('base', 'yl ' , yl);

assignin('base', 'y2', y2);

assignin('base', 'y3', y3);

assignin('base', 'y4', y4);

assignin('base', 'y5', y5);

assignin ('base ', 'y6' , y6');

assignin ('base', 'nschedulel', nschedulel)

% Response

xi-1 = ts(

xi_2 = ts(

xi_3 = ts(

xi_4 = ts(

xi_5 = ts(

xi_6 = ts(

Times

yl. signals (1,1) . values

y2. signals (1,1) . values

y3. signals (1,1) values

y4. signals (1,1) . values

y5. signals (1,1) . values

y6. signals (1,1) . values

% Color Definitions for Shadings

blue = [97/255,189/255,252/255];

orange = [255/255,128/255,0/255];

tout);

tout);

tout);

tout);

tout);

tout);

% Static segment

% Dynamic segment

76

94

95

96

97

98

figure (1) ;

% Shading static and dynamic segements

area([0 xi_1],[1.2 1.2],-0.2,'FaceColor',blue); hold on;

area([xi_1 8],[1.2 1.2],-0.2,'FaceColor',orange);

% Plot response

plot (tout ,yl . signals (1 ,1) . values , 'LineWidth' ,2) ; hold off;

xlabel('time (s) ' , 'FontSize' ,12, 'FontWeight' , 'bold');

ylabel (' Ix|| ' , 'FontSize ' ,12, 'FontWeight ','bold');

% Plot lines showing steady-state region

line ([0 8] ,[0. 1 0.1] , 'Color', 'r ', 'LineStyle','-', 'LineWidth' ,2)

line ([0 8] [-0.1 -0.1], 'Color' , 'r ','LineStyle',' ' LineWidth ' ,2)

% Set other figure properties

grid on; xlim ([0 8]) ; ylim ([-0.2 1.2]);

set (gca, 'FontSize ' ,12, 'FontWeight ','bold 'Layer' , 'top');

figure (2) ;

% Shading static and dynamic segements

area([0 xi_1],[1.2 1.2],-0.2,'FaceColor',orange); hold on;

area([xi1 xi_2],[1.2 1.2],-0.2,'FaceColor',blue);

area([xi2 8],[1.2 1.2],-0.2,'FaceColor',orange);

% Plot response

plot (tout ,y2. signals (1 ,1) . values , 'LineWidth' ,2) ; hold off;

xlabel ('time (s) ' , 'FontSize' ,12, 'FontWeight' , 'bold');

ylabel (' |I xI| ' , ' FontSize ' ,12, 'FontWeight ' , ' bold ')

% Plot lines showing steady-state region

line ([0 8] ,[0.1 0.1] , 'Color ' , 'r ' , 'LineStyle ' , '- ' , 'LineWidth' ,2);

line ([0 8] ,[-0.1 -0.11, 'Color' , 'r ','LineStyle','-', 'LineWidth ' ,2)

% Set other figure properties

grid on; xlim([0 8]) ; ylim([-0.2 1.2]);

set (gca, 'FontSize ' ,12, 'FontWeight' , 'bold ','Layer' , 'top');

figure (3) ;

% Shading static and dynamic segements

area([0 xi-3],[1.2 1.2],-0.2,'FaceColor',blue); hold on;

area([xi_3 8],[1.2 1.2],-0.2,'FaceColor',orange);

77

166 % Plot response

167 plot (tout ,y3. signals (1 ,1) .values , 'LineWidth' ,2) ; hold off;

168 xlabel('time (s) ' , 'FontSize' ,12, 'FontWeight ','bold');

169 ylabel (' I x|| ' , 'FontSize ' ,12, 'FontWeight ','bold');

170 % Plot lines showing steady-state region

171 line ([0 8] ,[0.1 0.1] , 'Color ' , 'r ' , 'LineStyle','-' , 'LineWidth' ,2)

172 line ([0 8] , -0.1 -0.1 , 'Color 'r ','LineStyle',' 'LineWidth' ,2)

173 % Set other figure properties

174 grid on; xlim([0 8]) ; ylim([-0.2 1.2])

175 set (gca, 'FontSize ' ,12, 'FontWeight' ,'bold 'Layer 'top')

176

177 figure (4)

178 % Shading static and dynamic segements

179 area([0 xi3] ,[1.2 1.2],-0.2, 'FaceColor' ,orange); hold on;

18o area([xi_3 xi_4],[1.2 1.2],-0.2,'FaceColor',blue);

181 area ([xi-4 10] ,[1.2 1.2] , -0.2, 'FaceColor ' ,orange)

182 % Plot response

183 plot (tout ,y4. signals (1 ,1) . values , 'LineWidth ' ,2) ; hold off;

184 xlabel('time (s) ' , 'FontSize ' ,12, 'FontWeight ' , 'bold');

is ylabel (' I x|| ' , 'FontSize ' ,12 , 'FontWeight ','bold');

186 % Plot lines showing steady-state region

187 line ([0 10] ,[0.1 0.11 , 'Color ' , 'r ' , 'LineStyle', ' ,'LineWidth' ,2)

188 line ([0 10] ,[-0.1 -0.1], 'Color', 'r ','LineStyle','-', 'LineWidth' ,2)

189 % Set other figure properties

190 grid on; xlim ([0 10]) ; ylim ([-0.2 1.2]);

191 set (gca, 'FontSize ' ,12, 'FontWeight' ,'bold' ,'Layer' , 'top');

192

193 figure (5)

194 % Shading static and dynamic segements

19, area([0 xi_5],[1.2 1.2],-0.2,'FaceColor',blue); hold on;

196 area([xi_5 8],[1.2 1.2],-0.2,'FaceColor',orange);

197 % Plot response

198 plot (tout ,y5. signals (1 ,1) . values , 'LineWidth ' ,2) ; hold off;

199 xlabel ('time (s) ' , 'FontSize ' ,12 , 'FontWeight' , 'bold');

200 ylabel(' II x|| ' , 'FontSize ' ,12, 'FontWeight ','bold')

201 % Plot lines showing steady-state region

78

202 line ([0 8] ,[0.1 0.1] 'Color', 'r ' , ' LineStyle ' , '-' , 'LineWidth ' 2) ;

203 line ([0 8] [-0.1 -0.1], 'Color' , 'r' , 'LineStyle ' , '-' , 'LineWidth' ,2)

204 % Set other figure properties

205 grid on; xlim([0 8]); ylim([-0.2 1.2])

206 set (gca , 'FontSize ' ,12, 'FontWeight ' , 'bold ' , 'Layer ' , 'top ')

207

208 figure (6)

209 % Shading static and dynamic segements

210 area ([0 xi_5] ,[1.2 1.2], -0.2, 'FaceColor ' , orange); hold on;

211 area ([xi5 xi-6] ,[1.2 1.2], -0.2, 'FaceColor ' , blue);

212 area ([xi-6 12] ,[1.2 1.2] ,-0.2, 'FaceColor ' ,orange)

213 % Plot response

214 plot (tout ,y6. signals (1 ,1) .values , 'LineWidth' ,2) ; hold off;

215 xlabel('time (s) ' , 'FontSize ' ,12, 'FontWeight' , 'bold');

210 ylabel (' IlxII ' , 'FontSize ' ,12, 'FontWeight ','bold');

217 % Plot lines showing steady-state region

218 line ([0 12],[0.1 0.1] ,'Color', 'r ','LineStyle', '-','LineWidth' ,2)

219 line ([0 12] ,[-0.1 -0.1], 'Color', 'r' 'LineStyle', '-','LineWidth' ,2)

220 % Set other figure properties

221 grid on; xlim ([0 12]) ; ylim ([-0.2 1.2]);

222 set (gca, 'FontSize ' ,12, 'FontWeight ','bold ''Layer ','top');

223

224 figure (7)

225 subplot (2,1 ,2);

226 plot (tout , nschedulel . signals .values (: ,1)) ; hold all

227 plot (tout , nschedulel . signals . values (: ,2))

228 plot (tout ,nschedulel .signals. values (:,3)); hold off

229 grid on; xlim([0 8]);

230 xlabel ('time (s) ' , 'FontSize' ,12, 'FontWeight' , 'bold')

231 ylabel ('TT slots ','FontSize' ,12, 'FontWeight' , 'bold')

232 set (gca , 'FontSize' ,12, 'FontWeight' , 'bold');

233 subplot (2,1 ,1) ;

234 plot (tout , nschedulel . signals . values (: ,4)) ; hold all

235 plot (tout ,nschedulel .signals .values (:,5))

236 plot (tout ,nschedulel . signals . values (: ,6))

237 plot (tout ,nschedulel .signals .values (:,7))

79

238 plot (tout , nschedulel signals values (: ,8)) ;

239 plot (tout , nschedulel signals values (: ,9)); hold off

240 grid on; xlim([0 8]);

241 ylabel('ET slots ','FontSize' ,12, 'FontWeight' ,'bold');

242 set (gca, 'FontSize ',12, 'FontWeight ','bold');

243

244 function [KET,KTT] = ETandTTControl(a, delay)

245 % 'IT and ET systems using LQR

246 global b sampleTime

247

248 % Continuous system model

249 A = a;

25o B = b

251

252 % Time Parameters

253 d = delay; % Delay in ms

254 h = sampleTime;

255 % ET response

256 % Form equivalent discrete model

257 symS S ;

258 eAs = expm(A*s);

259 Phi = subs(eAs,s,h);

20 Gamma_1 = double(subs(eAs,s,h-d)*int (eAs*B, 's',O,d));

261 Gamma_0 = double(int (eAs*B, 's ' ,O,h-d));

262 AdET = [Phi Gamma_1

263 zeros (1,2) 0];

264 BdET = [Gamma_0

265 1];

20 sysET = ss (AdET,BdET, zeros (1 ,3) ,0 ,h);

267

268 % Compute LQR gain K

2609 QET = [eye(2) zeros(2,1)

270 zeros(1,2) 10];

2 71R = 0.01;

272 KET = lqr (sysET ,QET,R)

273 %o' TT responses

80

274 % Form equivalent discrete model

275 AdTT = Phi;

276 BdTT = double(int (e-As*B, 's ' 0,h));

277 sysTT = ss (AdTT,BdTT, zeros (1,2) , ,h);

278

279 % Compute LQR gain K

280 QIT = eye (2);

281 KIT = lqr (sysTT ,QIT,R);

src/distributed-w-schedaninit.m

81

82

Appendix B

Slot Scheduling C++ Program

B.1 Number-of-slots.cpp

#include <iostream>

#include <iomanip>

#include <list >

#include <vector>

#include " C...app.h"

#include " Slot .h"

using namespace std;

int Number-of-slots (list <C-app> &Ci);

void print (vector<Slot> &slotArray)

int main()

I
// For TrueTime Simulation

// Non-Monotonic

C-app *C1 = new C-app(1,200,9

C-app *C2 = new C-app(2,20 ,6.25

C-app *C3 = new C-app(3,15 ,2

C-app *C4 = new C-app(4,200,7.5

C.app *C5 = new C.app(5,20 ,8.5

C-app *C6 = new C-app(6,6 ,6

,1.6809 ,11.6243

,2.578 ,8.5865

,0.38562 ,3.9724

,2.495 ,10.3982

,2.7534 ,10.633

,0.71207 ,7.94

83

,5.3027

,2.9487

,0.64081

,4.0258

'4.577

,0.92249

,2.2675)

,1.342)

,0.68966)

,1.9215)

,1.9714)

,0.66886)

22

23 list<C-app> SortedCapps;

24

25 // For TrueTime Simulation

26 SortedCapps. push-back (*C3);

27 Sorted-Capps. push-back (*C6);

28 SortedCapps. push-back (*C2);

29 SortedCapps. push-back (*C4);

30 SortedCapps. push-back (*C5);

31 SortedCapps. push-back (*C1);

32

33 cout << "Number of Slots: " << Number-of-slots(Sorted-Capps) << endl

34 return 0;

35 }
36

37 int Number-of-slots (list <C.app> &Ci)

38 {

39 list <C-app>:: iterator it

40 int number-slots = 1;

41 Slot *first = new Slot ()
42 vector<Slot> slotArray ;

43 slotArray .pushback(* first);

44 for (it=Ci. begin ;it!=Ci.end(; it++)

45 {

46 cout << "Scheduling C" << it->getID() << endl;

47 for (int s=O;s<slotArray . size () ; s++)

48 {
49 cout << "Trying Slot " << s+1 << endl;

50 if(slotArray[s].Scheduable(*it))

51 {
52 slotArray [s] insertCapp (* it)

53 break

54 }
55 else

5" {

84

57 if(s==slotArray size () -1)

58 {

59 number-slots = number-slots + 1;

6o cout << "NEW SLOT #" << numberslots << endl;

61 Slot *next = new Slot ();
62 slotArray. push-back (*next);

63 it->setXI(it->getXITT());

64 slotArray [s+1]. insertCapp (*it)

65 break;

66 }

67

68 }

69 }

70 print (slotArray)

71 // return number-slots;

72 return slotArray .siZe ()

73 }

74

75 void print (vector<Slot> &slotArray)

76 {

77 cout << "Ci & $r-i$ & $\\xi-d-i$ & $\\xi^{TT}.i$ & $\\xi^{ET}Ii$

& $\\xi^m-i$ & $t_{p, i}$ & $\\hat{\\xi}_i$ & MA $\\hat{\\xi}.i$

\\\\ \\hline" << endl;

78 cout << left

79 for (int i=O;i<slotArray. size(; i++)

80 {
81 for (int j=O;j<slotArray [i]. getSize () ; j++)

82 {

83 cout << setw(1) << slotArray[i].Sch.Capps[j].getID() << " &

<< setw(4) << slotArray[i].Sch-Capps[j].getR() << " &

,<K

84 setw (4) << slotArray [i] SchCapps [j]. getXI.D () <<

& " << setw (7) << slotArray [i]. SchCapps [j].

getXI-TT () << " & " <<

85 setw (7) << slotArray [i]. SchCapps [j]. getXIET() <<

& " << setw (7) << slotArray [i SchCapps [j]

85

getXIM () << " & " <<

setw (7) << slotArray[i]. SchCapps [j]. getT.P () << " &

<< setw (7) << slotArray [i]. SchCapps [j]. getXl

() << " \\\\ \\hline" << endl;

}
}
cout << endl;

for (int i=O;i<slotArray. size () ; i++)

{

cout << "1 " ;

for (int j=O;j<slotArray[i]. getSize () ; j++)

{
cout << slotArray [i].SchCapps [j]. getlD () << "

}

}
cout << "|" << endli;

}

src/Number-of-slots.cpp

86

86

B.2 C-app.h

1 #ifndef CAPP.H

2#define CAPPH

3

4 #include <iostream>

5 using namespace std;

6

7 class C-app

8 1

9 protected:

10 int id;

11 double r;

12 double Xi-d;

13 double Xi_TT;

14 double XiET;

15 double Xi-m;

10 double tp;

17 double Alpha;

18 double Beta;

19 double Xi-new;

20 double Xi;

21 public :

22 // Constructor

23 C-app(int ID, double R, double XID, double XITT, double XLET,

double XIM, double TP);

24 // Get Methods

25 int getID() {return id;}

26 double getR() {return r;}

27 double getXI-D() {return Xid ;}

28 double getXITT() {return XiTT;}

29 double getXIET() {return XLET;}

30 double getXIM() {return Xi-m;}

31 double getT-P() {return t-p;}

32 double getALPHA() {return Alpha;}

33 double getBETA() {return Beta;}

87

double getXINEW() {return Xi-new;}

double getXI() {return Xi;}

// Set Methods

void setXINEW(double XLNEW) {Xi-new = XLNEW;}

void setXI(double XI) {Xi = XI;}

C-app::C.app(int ID, double

double XIM, double TP)

R, double XID, double XITT, double XIET,

{
id = ID;

r = R;

Xi-d XLD;

XiTT = XLTT;

XLET = XLET;

Xi-m XLM;

t-p = TP;

Alpha (Xi-m - XLTT) / t-p;

Beta = Xim / (XLET - t-p);

Xi-new = 0;

Xi = 0;

}

#n di f

src/C-app.h

88

34

35

36

37

38

39

40

B.3 Slot.h

1 #ifndef SLOTH

2 #define SLOTH

3

4 #include <iostream>

5 #include <vector>

6 #include "C-app.h"

7 #include <cmath>

8 using namespace std;

9

10 class Slot

11 {
12 protected:

13 vector<C-app> SchCapps;

14 public:

15 // Constructor

16 Slot () {SchCapps. clear ;}

17 // Get Method

18 int getSize () {return SchCapps. size ;}

19 // Other Methods

20 void insertCapp (C-app &C);!/ {Sch-Capps. push..back (C) ;}

21 double maxb(int minIndex, C-app &C);

22 bool Scheduable(C-app &C);

23 friend void print (vector<Slot> &slotArray)

24

25

26 void Slot :: insertCapp (C-app &C)

27 {

28 cout << "INSERTED C" << C. getID() "!!!" << endl;

29 cout << endl;

30 SchCapps. push-back (C);

31 }
32

33 double Slot:: maxb(int minIndex, C-app &C)

34 {

89

double bMin = 0;

for (int i=minIndex; i<Sch.Capps. size () ; i++)

{
i f (bMin<Sch..Capps [i]. getXIM ()) bMin = SchCapps [i] . getXI.M ;

}

i f (bMin<C. getXI.M) bMin = C. getXIM ;

return bMin;

35

36e

37

38

39

40

41

42

43

bool Slot :: Scheduable (C-app &C)

{
bool TF;

if (SchCapps . empty()

{
C. setXI (C. getXITT ()

TF = true;

}
else

{
cout << "Already " << SchCapps. size () << " here" << endl;

for(int i=;i<Sch-Capps. size(); i++)

{

cout << "LOOP #"<< i << endl;

double b = 0;

if (i==SchCapps. size ()-1) b = C.getXI_M ;

else b = maxb(i+1,C);

cout << "maxb = " << b << endl;

double Xi-old = 0;

double Xi = 0;

if (b<Sch-Capps [i] . getTP()) Xi = Sch-Capps

(1 + SchCapps[i].getALPHA() *b;

else Xi = Sch.Capps[i].getBETA() * SchCap

(1 - SchCapps[i).getBETA() *b;

cout << "Xi = " << Xi << endl;

while (Xi<=Sch.Capps [i] . getXID() && Xi!=Xi

{

[i] . getXITT () +

ps[i]. getXLET () +

-old)

90

}

436

637

68

double sum = 0;

Xi-old = Xi;

for(int j=O;j<i;j++)

I
sum = sum + ceil (Xi-old/SchCapps[j].getR() *

Sch-Capps [j]. getXIM ()

I
if ((b4-sum)<Sch-Capps [i]I. getT-P~

I

69

70

71

72

73

74

75

76

77 () + (1 + SchCapps [i].

SchCapps [i].getALPHA()

Xi = Sch-Capps [i]. getBETA () * SchCapps [i]. getXIET

() + (1 - SchCapps [i] .getBETA() * b + (1 -

SchCapps[i].getBETA() * sum;

}
}
cout << "Slot Loop " << i << ": Xi =" << Xi << endl;

cout << " Xi-old=" << Xi-old << endl;

if(Xi==Xi-old) SchCapps[i].setXINEW(Xi);

else

{

cout << " Slot

TF = false;

return TF;

}

double Xi-old = 0;

double Xi = 0;

Xi = C. getXI-TT;

while (Xi<=C. getXID ()

{

double sum = 0;

Loop " << i << " exits early" << endl;

&& Xi!=Xi-old)

91

Xi = SchCapps [i]. getXI-TT

getALPHA() * b + (1 +

* sum;

else

{

78

79

80

81

100 Xi-old = Xi;

101 for(int j=O;j<SchCapps. size () ; j++)

102 {

103 sum = sum + ceil (Xi-old/SchCapps [j]. getR() * SchCapps

[j].getXIM()

104 }

105 if (sum<C. getTP() Xi = C.getXITT () + (1 + C.getALPHA() *

sum;

106 else Xi = C.getBETA() * C.getXIET() + (1 - C.getBETA()) *

sum;

107 }

108 cout << "Sched Contl : Xi =" << Xi << endl;

109 cout << " Xi-old=" << Xi-old << endl;

110 if (Xi=-Xi-old)

il {
112 C. setXI (Xi)

113 for(int i=O;i<SchCapps. size) ;i++)

114 {

115 SchCapps [i 1. setXI (SchCapps [i]. getXINEW()

11 }

117 TF = true;

118

119 else TF = false;

120 }

121 cout << "Scheduable at end? " << TF << endl;

122 return TF;

123 }

124 #endif

src/Slot.h

92

Bibliography

[1] The FlexRay Communications System Specifications, December 2005. Ver. 2.1.

[2] A. Annaswamy, D. Soudbakhsh, R. Schneider, D. Goswami, and S. Chakraborty.

Arbitrated network control systems: A co-design of control and platform for

cyber-physical systems. In the Workshop on the Control of Cyber-Physical Sys-

tems, Baltimore, MD, 2013.

[3] Karl J. Astr6m and Bj6rn Wittenmark. Computer-Controlled Systems: Theory

and Design. Prentice Hall, 1997.

[4] Sanjoy Baruah. Dynamic- and static-priority scheduling of recurring real-time

tasks. Real-Time Systems, 24(1):93-128, 2003.

[5] X. Cao, P. Cheng, J. Chen, and Y. Sun. An Online Optimization Approach for

Control and Communication Co-Design in Networked Cyber-Physical Systems.

IEEE Transactions on Industrial Informatics, 2012.

[6] M. Cea Garrido and G. Goodwin. Stabilization of systems over bit rate con-

strained networked control architecture. IEEE Transactions on Industrial Infor-

matics, 2012.

[7] L. Feng-Li, J.K. Yook, D.M. Tilbury, and J. Moyne. Network architecture and

communication modules for guaranteeing acceptable control and communication

performance for networked multi-agent systems. IEEE Transactions on Indus-

trial Informatics, 2(3), 2006.

[8] Dip Goswami, Martin Lukasiewycz, Reinhard Schneider, and Samarjit

Chakraborty. Time-triggered implementations of mixed-criticality automotive

software. In Proceedings of the 15th Conference for Design, Automation and

Test in Europe (DATE), Dresden, Germany, 2012.

[9] Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty. Re-engineering

cyber-physical control applications for hybrid communication protocols. In

DATE, pages 914-919, 2011.

[10] C. Huang, Y. Bai, and X. Liu. H-Infinity State Feedback Control for a Class of

Networked Cascade Control Systems With Uncertain Delay. IEEE Transactions

on Industrial Informatics, 6(1):62-72, 2010.

93

[11] Time- Triggered Communication, 2000. Part 4.

[12] A. Jestratjew and A. Kwiecien. Performance of HTTP Protocol in Networked
Control Systems. IEEE Transactions on Industrial Informatics, 2012.

[13] Martin Lukasiewycz, Michael GlaB, Jiirgen Teich, and Paul Milbredt. Flexray
schedule optimization of the static segment. In CODES+ISSS, pages 363-372,
2009.

[14] P. Marti, A. Camacho, M. Velasco, and M. E. M. Ben Gaid. Runtime allocation
of optional control jobs to a set of can-based networked control systems. IEEE
Transactions on Industrial Informatics, 2(4), 2010.

[15] Adolfo Martinez and Paulo Tabuada. On the benefits of relaxing the periodicity
assumption for networked control systems over CAN. In RTSS, pages 3-12, 2009.

[16] Alejandro Masrur, Dip Goswami, Samarjit Chakraborty, Jian-Jia Chen, Anu-
radha Annaswamy, and Ansuman Banerjee. Timing analysis of cyber-physical
applications for hybrid communication protocols. In DATE, pages 1233-1238,
March 2012.

[17] Alejandro Masrur, Dip Goswami, Reinhard Schneider, Harald Voit, Anuradha
Annaswamy, and Samarjit Chakraborty. Schedulability analysis of distributed
cyber-physical applications on mixed time-/event-triggered bus architectures
with retransmissions. In SIES, pages 266-273, June 2011.

[18] K.S. Narendra and A.M. Annaswamy. Stable Adaptive Systems. Dover Books on
Electrical Engineering Series. Dover, 2005.

[19] Paul Pop, Petru Eles, and Zebo Peng. Schedulability-driven communication
synthesis for time triggered embedded systems. Real-Time Systems, 26(3):297-
325, 2004.

[20] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the FlexRay
communication protocol. Real-Time Systems, 39:205-235, 2008.

[21] Traian Pop, Petru Eles, and Zebo Peng. Design optimization of mixed
time/event-triggered distributed embedded systems. In CODES+ISSS, pages
83-89, 2003.

[22] George C. Reis. Some properties of indefinite matrices related to control theory.
IEEE Transactions on Automatic Control, 12(6):789-790, December 1967.

[23] Ken Tindell, Alan Burns, and Andy J. Wellings. An extendible approach for
analyzing fixed priority hard real-time tasks. Real-Time Systems, 6(2):133-151,
1994.

[24] H. Zeng, M. D. Natale, A. Ghosal, and A. Sangiovanni-Vincentelli. Schedule
optimization of time-triggered systems communicating over the FlexRay Static
Segment. IEEE Transactions on Industrial Informatics, 7(1), 2011.

94

[25] Fumin Zhang, Klementyna Szwaykowska, Wayne Wolf, and Vincent

John Mooney III. Task scheduling for control oriented requirements for cyber-

physical systems. In RTSS, pages 47-56, 2008.

95

