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Abstract

As the workforce within manufacturing grows older, especially within aircraft man-
ufacturing, the need for new technologies to assist workers arises. If a technology
could offer improvements to an aircraft manufacturing laborer's efficiency, as well as
reduce the load on his body, it could potentially see vast use. This thesis discusses a
potential solution to these issues - the Supernumerary Robotic Limbs (SRL). These
limbs could potentially increase the workspace of the human operator to him more
efficient, as well as reduce the load on the human while he performs staining tasks.
It accomplishes this by providing the worker with extra arms in the form of a wear-
able backpack. This thesis first evaluates how the torques imposed on a human are
affected when he uses an SRL-like device to help bear a static load. It is shown that
the human work load necessary to bear such a load is reduced substantially. The
second focus of this thesis is the skill acquisition. A data-driven approach is taken
to learn trajectories and a leader-follower coordination relationship. This is done by
generating teaching data representing trajectories and coordination information with
two humans, then transferring the pertinent information to a robot that assumes the
role of the follower. This coordination is validated in a simple one-dimension exam-
ple, and is implemented on a robot that coordinates with a human leader during a
control-box wiring task.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation for New Assistive Technologies in

Aircraft Assembly

In the past two decades, there has been a resurgence in the desire to establish man-

ufacturing superiority in the United States [1]. This desire is especially true within

the context of aircraft manufacturing, where companies like Boeing wish to expand

their domestic manufacturing capabilities within the US. Boeing, in collaboration

with various universities, is investigating technologies within the field of robotics to

accomplish this goal. When using robotics to expand these manufacturing capabil-

ities, there are two approaches that can be taken. The first approach is to employ

heavily autonomous robotic systems, which have been widely adopted in some indus-

tries. The second, starkly different approach is to instead keep humans in the loop

and provide them with technologies that would increase their efficiency, enhance their

accuracy, and reduce their fatigue while performing their tasks.

Given all the potential benefits of heavily autonomous systems such as repeata-

bility of performance and precision monitoring, a valid question is why are efforts not

fully devoted to the development of a robust autonomous system? The reality of the

situation in the aircraft manufacturing and assembly world is that many jobs cannot

be automated due to task and spacial constraints. One example task that would be
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quite difficult to automate is the assembly of titanium beams, which requires assis-

tance from a support structure, as well as demands the labor of multiple workers.

Small-lot production is another challenge. There are many other tasks like this that

could not be easily accomplished with autonomous systems.

Because all tasks are not able to automated within the aircraft manufacturing

process, potential issues and problems that arise from the requirement of manual

laborers must be investigated. The first major concern is that the average worker

age in all industries is roughly 40 years old, but the median age of workers in aircraft

manufacturing in 48.4 years. Taxing aging bodies is of obvious concern in the context

of both stamina and health.

In both general and aircraft manufacturing, there are a number of especially strain-

ing or dangerous tasks that the workers must perform. One issue inherent with man-

ual labor in this context is the difficulty in reaching various positions. Some tasks

may require the worker to adopt unergonomic positions. A second issue inherent to

manual labor tasks is the physically demanding nature of the work, which can fatigue

workers, especially the older workers in this industry, quickly. Additionally, a real

danger that aircraft manual laborers are exposed to is the inhalation of the carbon

fiber particles that are the result of drilling into carbon fiber material. These parti-

cles are extremely toxic to humans. In order to present the spread of these particles,

the task of drilling into carbon fiber becomes a two person job. While one worker

drills, another worker must be constantly vacuuming up the particles. This leads to

an obvious loss in overall worker productivity.

1.2 The Supernumerary Robotic Limbs (SRL)

Taking into consideration all these problems with manual labor, the d'Arbeloff lab

has developed the Supernumerary Robotic Limbs (SRL), which is described in the

three proceeding subsections.
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1.2.1 Concept of the SRL

The SRL is a wearable robot that provides extra limbs to a human worker with the

intent of assisting him in manufacturing and various other tasks. A concept drawing

of the SRL is shown in Figure 1-1, while the realization of the SRL is shown in Figure

1-2.

Figure 1-1:
Parietti.

Concept drawing of the Supernumerary robotic limbs. Picture by F

These extra limbs can take the roles of either extra arms, legs, or both, while

assisting the worker in a workspace that potentially exceeds that of the human. The

aim of the SRL is that it will be so closely integrated with the human body that it

will increase both the efficiency and productivity of the worker. Because it will be

worn directly by the user at the iliac crest (in the same fashion of a hiking backpack),

as well as share much of the workspace of the human, it is designed to operate at safe

and comfortable ranges. Ultimately, we wish for the human to work so closely with

the SRL that the SRL is perceived as an extension of the human body.

1.2.2 Potential Uses of the SRL

There are many tasks in the aircraft manufacturing setting where the SRL could

potentially benefit the manual laborer.

* Imagine the situation where a human needs to hold up a heavy piece to be
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Figure 1-2: Realization of the Supernumerary robotic limbs. Picture by F Parietti
and K Chan.

drilled. Using the SRL, the human can focus on carefully operating the drill

while the SRL bears the load of the piece.

" Imagine the task of wiring a control box. With the SRL, the human can focus

on positioning the wires into the appropriate control box terminals while the

SRL comes in and affixes the wires.

* Imagine the task of drilling in an unergonomic position. Using the SRL to brace

or otherwise support the worker, he can complete his drilling job in a tight, hard

to manage space without fear of falling [2].

" Imagine the task of drilling and vacuuming carbon fiber as previously discussed.

With the SRL, it would take only one human to drill holes in the carbon fiber

because the SRL limbs would simultaneously vacuum the toxic carbon residue.

One can easily envision potential benefits of the SRL in other contexts outside

the aircraft manufacturing setting.

* One can envision an astronaut using the SRL to assist work on space shuttles

and the International Space Station.
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" One can envision the SRL assisting a surgeon in the operating room, providing

him an extra hand to hold tools or assist in the cutting operations.

" One can envision the SRL providing help to an assisted living worker, by ei-

ther helping him support an elderly's weight or grabbing one of the elderly's

belongings.

1.2.3 Potential Benefits of the SRL

Ultimately, the SRL is designed to provide the worker the benefits of having addi-

tional robotic limbs. The first potential benefit is the increase in productivity due to

being able to accomplish more without having to rely on other workers. The second

potential benefit is the expansion of the human workspace, which could subsequently

allow humans to perform new tasks that they could not otherwise. The third poten-

tial benefit is the elimination of the poor postures due to the SRL's weight-bearing

ability. Similarly, the fourth potential benefit is the reduction of the human work

load, which should increase a worker's safety and reduce his fatigue. The fifth po-

tential benefit is the increase of the accuracy and work quality of the human due

to the robotic limb's enhanced positioning. The sixth and last potential benefit is

the addition of in situ error detection and correction made possible by limbs fully

equipped with task-monitoring sensors.

1.3 Thesis Layout

This work will focus specifically on a few potential benefits that the SRL has to

offer. The first focus is the validation that the SRL in fact does reduce the work

load of the human worker in the case of static loading. In order to realize many of

the potential benefits of the SRL, however, the implementation of its control scheme

must be addressed. More specifically, the details close interaction of the human and

the robot must be determined. Therefore, the second focus of this paper is on the

coordination of the human worker with the SRL by means of learning in order to
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realize those benefits described above. This coordination has two main parts. The

first is learning the robotic motions from human demonstrations of a task. The second

is learning how the SRL adjusts its behavior based on the actions of the human, again

from human demonstrations of a task.

The following are the chapters of this thesis.

1. Chapter 1 motivates the development of the SRL and its research areas.

2. Chapter 2 explores the prior art in the areas of SRL-like robots, biomechanics,

and trajectory generation.

3. Chapter 3 briefly introduces the design of the SRL.

4. Chapter 4 examines the biomechanics of using the SRL for static loading cases.

5. Chapter 5 explores a method of generating endpoint trajectories in a reduced

dimensional space using Partial Least Squares Regression.

6. Chapter 6 develops a method for coordinating the human with the SRL.

7. Chapter 7 concludes and lists potential future work.

This concludes the introduction and the details of this work of the last two years

follow.
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Chapter 2

Prior Art Relating to the

Objectives of the SRL

2.1 Adopting the SRL as Part of the Human Body

Although not the focal point of this particular thesis, we hope that one day the

extra limbs provided by the SRL can be accepted as parts of the body. Therefore,

psychological work concerning the ownership of corporeal and non-corporeal objects

is of interest.

2.1.1 The Right Hand Illusion

The standard experiment for controlled manipulation of body image and ownership

is the right hand illusion (RHI), developed originally by Botvinick and Cohen [3].

To induce the sense of ownership of a rubber hand, they simultaneously touched the

participants' real hand, which was hidden out of view, and a rubber hand. When this

occurred, participants reported feeling the strokes of the experimenter on the rubber

hand.

The general structure of the experiment has been repeated over the last decade

and a half in order to discover the conditions necessary to induce the illusion and

subsequently understand the brain's mental model of one's appendages. Currently,
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there are two competing appendage model. Armel and Ramachandran proposed that

as long as visual and tactile correlations are established, the illusion can be induced

[4]. Subsequently, they predicted that any object can be adopted as part of one's own

body. Tsakiris et al. ran an experiment testing the sense of ownership on increasing

lifelike objects and found that participants only experienced ownership of a rubber

hand. This suggests that although the visual and tactile stimulation is necessary in

experiencing the RHI, only corporeal objects are included in one's model of self [5].

This last test has important implications on designing a supernumerary device that

the user perceives as his own. Indeed, it suggests that the adoption of the arm into

the model of one's self would be best accomplished with a robot that is similar in

both form factor and dynamic performance to the human arm or leg.

2.1.2 The Right Hand Illusion with Additional Limbs

Quite recently, the RHI was extended to test the ownership experience of extra limbs

in work done by Guterstam et al [6]. Instead of hiding the participants' right hands

as done in the traditional RHI experiments, Guterstam et al. placed an object next

to the real hands while hiding the space between the participants' shoulder and the

beginning of the extra object with a cloth. As in the traditional RHI experiments,

both the real and hands and object were stimulated via touch. This stroking invoked

a feeling of having two right hands, instead of a strong disownership of the real

right hand. Supporting Tsakiris et al's suggestion, the Guterstam et al. work found

that the sense of ownership in the extra object was only invoked when both the

object and the right hand were stroked synchronously, and when the extra object was

anatomically similar to the right hand. Such a finding suggest that one may be able

to perceive a robot arm as an extra limb if it is made and aligned in an anatomically

similar fashion to his real arms.
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2.2 Systems Similar to the SRL

When evaluating the potential utility of the SRL, one must examine other robotic

systems that operate closely with a human operator for comparison. Over the last 50

yeas, there has been much progress in the development of exoskeletons. There have

been two general areas of advancement - in exoskeletons and active orthoses.

2.2.1 Exoskeletons

An "exoskeleton" is generally thought of as a device that enhances the abilities of its

wearer. With these types of devices, the design focus seems to be on load-bearing

capacity, speed, and stamina [7, 8, 9, 10, 11]. Although these certainly do assist

users with physically taxing tasks such as bearing loads of up to 84kg for a sustained

period of time (something many humans cannot do without substantial fatigue), the

exoskeletons do not come without their drawbacks. Current technical difficulties in-

clude minimizing the weight of the exoskeleton, designing lightweight, transportable,

and long-lasting power supplies, and creating more efficient transmission systems [11].

It is important to note that while exoskeletons do increase the strength of humans,

they do not increase the workspace of the human - in fact, a sizeable problem of this

technology is kinematic constraints caused by attachments of joints and actuators.

[7]

2.2.2 Active Orthoses

An "active orthosis" is generally thought of as a device to assist someone with leg

problems [7]. Although these devices are designed to increase the weight bearing

capacity of a damaged leg, the focus of these devices is not to provide strength that

far surpasses that of a normal human. To this effect, the objective of these devices is

far different than those of the SRL. This detail notwithstanding, these devices have

to be light enough to be worn for extremely long time periods and thus the SRL can

take design cues from solutions to this constraint.
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2.3 Programming by Demonstration (PbD)

Because a substantial focus of this work concerns endpoint trajectory and coordina-

tion learning, it is useful to look at data-driven, programming by demonstration, and

teaching-by-showing approaches to trajectory learning and trajectory recognition in

robotics.

Robot programming by demonstration has been used in a number of studies to

reduce the amount of explicit commands that are needed to be programmed into the

robot, especially in repetitive assembly tasks [12]. Vision has been used to discern

high-level plans from hand data [13]. Contact positions between a robot and its envi-

ronment were found also using vision by Miura and Ikeuchi [14]. Virtual environments

have been used to learn assembly strategies by looking at a robot's contact transitions

with its environment [15]. Force-based states were used by Skubic and Volz so that

skill execution is reliant on changes in force and not absolute position [16]. Using

this approach, detailed geometric information of the environment does not need to

be known a-priori. Using the covariance that was exhibited between learning trials,

Dong learned primitive motions using a representation called probabilistic flow tubes,

automatically detected relevant features in the environment, used temporal informa-

tion to handle traversing across learned trajectories, and recognized in real time the

current classification of motion [17].

Different PbD and other data-driven techniques have not only been used to gen-

erate assembly and manufacturing tasks, but have also been used to identify various

types of hand gestures and grasps.Many of these techniques are heavily rooted in

computer science and statistics. Hidden Markov Models were used to continuously

identify sequences of hand gestures in work by Bernardin et al [18]. Gaussian mix-

ture models (GMMs) were used by Palm et al. to model fingertip positions as grasp

primitives. Using these primitives, they recognized various hand gestures [19]. The

Glove-Talk project showed the power of neural network techniques in recognizing

hand grasps [20]. Fuzzy rule-based approaches have been used by Bedregal et al.

[21]. Ju et al. produced impressive results when identifying continuous hand ges-

26



tures with a time-clustering method that used finger angle trajectories and the angle

models [22]. Although all the these techniques concern hand positions, they are quite

related to the question of discerning operator intent with the SRL so that it may

react appropriately.

2.4 Input Space Reduction

When dealing with such a complex system as the SRL, the size of one's input space

which decisions are based off of becomes of interest. In gesture recognition and robotic

arm traversal this has been explored using the technique of Principal Component

Analysis (PCA), which seeks to reduce the size of one's input space by describing his

data with a smaller number of variables. Fod et al. represented human movements

using linear primitives [23]. Jenkins et al and Lim et al used these primitives to reduce

computation when replicating human movements in robot arms [24, 25]. Jiang et al.

extended the PCA technique so that the primitives do not need to be recalculated

every time new data is captured [26].

2.5 Departure from Prior Work

As mentioned in the previous chapter, one focus of this work is in the impact of using

the SRL during the operation of static loading. The departs from the prior work in

that a device like the SRL has not been used to assist in load bearing - its design

differs in structure and intent from that of the exoskeletons and the active orthoses

and therefore needs to be examined. More generally, it is of interest to provide a

quantitative biomechanical benefit of using our device. The second focus of this

paper is motion generation. Most importantly, we explore the real-time updating of

the motion of a robot that interacts closely with a human. It does so by constantly

examining information about the position of a human or other objects of interest.

My focus here differs with the prior work mentioned above in the emphasis on using

learning to generate motions in real time, as opposed to classification.
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Chapter 3

Brief Design Introduction

Before the biomechanical analysis and the control of the SRL are presented, it is

beneficial to include a brief introduction of the design of the SRL so the reader

understands the system to be analyzed. However, the design is not the point of this

particular thesis, nor my personal work. This is largely the work of Ph.D. student

Federico Parietti and undergraduate student Kameron Chan.

3.1 Design Concept

As explained in the introduction, the purpose of the SRL is to assist workers in the

context of aircraft manufacturing and final assembly. It achieves this via augmenting

the workspace of the human and bearing a load that would otherwise be born by the

human. Both of these capabilities should allow a single operator to accomplish jobs

that were previously impossible to accomplish with a single human or that imparted

large loads onto the human. Lastly, the robot can potentially offer additional safety

features to the workers by offering an extra leg if the worker is slipping, or by grabbing

a scaffold when the human adopts unsafe postures.

29



3.2 Functional Requirements

The largest functional requirement of the SRL is to well-mimic a human arm. The

reasons for this are three-fold:

1. In order to give the user the highest probability in perceiving the SRL as an

extension of the human body, the robot dynamics should well match those of a

human arm or leg.

2. Because part of the intended purpose of the SRL is to take over fatiguing jobs

from the human, the SRL bandwidth, velocities, and torques must be compa-

rable or better to that of the human.

3. In order to interface well with tools and fixtures that are designed by and for

humans, a robotic arm similar to that of a human can be quickly integrated

into aircraft assembly facilities.

Because the workers will likely be wearing this robot for substantial periods of

time, another functional requirement is that the robot is lightweight and able to be

worn for hours with minimal external forces exerted on the worker during both periods

of rest and periods of operation. Next, another purpose of the SRL is to augment the

workspace of the human, rather than to interfere with it. To this effect, interference

in the humans workspace must be minimized. Lastly, the robot must be safe. This

will be working in extremely close proximity with the human, and potential forces

and hazardous motions that can be applied to the human during cases of malfunction

must be minimized, if not eliminated entirely.

3.3 Prototype Realization

The SRL was realized with two, three degree-of-freedom robot arms affixed to a

hiking backpack-like harness, which is worn by the operator at the hip. Each arm

has two rotational joints at the base and one at the middle of the arm. The torque

characteristics are modeled after the shoulder and the elbow to achieve the first
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functional requirement. The arms are actuated with flat brushless motors. Using

large amounts of carbon fiber tubing, the mass of the system is kept near 20kg, which

achieves the weight functional requirement. Because the motors are largely housed

behind the operator, it interferes very little with the humans workspace and due to its

size, expands it. In order to achieve safety, series viscoelastic components are placed

between the gearhead output of the motor and the actuator output, which minimize

impact forces in the event that the robot malfunctions. An operator wearing the SRL

in a rest position is shown in Figure 3-1. An example task for the SRL, which is to

hold a piece of material while the human operator drills, is shown in Figure 3-2.

Figure 3-1: Supernumerary robotic limbs being worn by an operator. Picture by F
Parietti and K Chan.

31



Figure 3-2: Supernumerary robotic limbs assisting an operator with a drilling task.
Picture by F Parietti and K Chan.
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Chapter 4

Biomechanic Analysis of the

Supernumerary Robotic Limbs

4.1 Introduction

As stated in Chapter 1 as one of the objectives of the SRL, reducing the load of the

worker is of great importance. When looking at the potential use cases of the SRL,

one quickly finds that effort reduction is especially pertinent in static load-bearing

cases. A static loading case can be considered the situation where one must hold a

mass steadily at a particular distance away. Consider again Figure 3-2, where the SRL

is helping bear the load of the piece of aluminum to be drilling. It would obviously

be beneficial to the human if his work load was less while performing this task with

the SRL than without the SRL.

In order to evaluate the work load of the SRL in the static load-bearing case, the

subject of this chapter, there are a number of things to take into consideration. The

first is determining how to quantify this work load. The joint torques at each major

joint provide good insight into how much load the operator is bearing. It was the

initial hopes that the joint torques in the aggregate should be reduced. However, a

major obstacle facing the SRL is its substantial mass, which is a non-negligible 18kg

in its first iteration and one that would surely induce an increase in joint torques.

In order for the SRL to therefore be useful, the positive effects of the load reduction
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must counteract the negative affects of the induced joint torques brought about by

the mass of the SRL.

The precise manner in which the joint torques were derived and the work load

of the human quantified during a static loading task with and without the SRL are

described in the following sections of this chapter.

4.2 Biomechanic Model

A biomechancial model of the human performing the static loading task with and

without the SRL was developed and shown in Figure 4-1.
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Figure 4-1: Biomechanical
bearing task.

model of the human utilizing the SRL in a static load

34

/t 2

(94



In order to reduce the complexity of the human to a manageable order while

still offering richness that would allow for insight into the impact of the SRL on the

human, the human was reduced down to five rigid bodies that were connected into a

kinematic chain that exists in the sagittal plane. The five rigid bodies included in the

model were abstractions of the leg shanks, the thighs, the torso, the upper arm, and

the forearms. The body number of these segments are 5, 4, 3, 2, and 1 respectively.

Lengths and mass properties of these segments were found in works by Boling et al.

and Wang et al. [27, 28]. They are presented here in Table 4.1.

Table 4.1: Biomechanical model rigid body segment names and physical properties

Joint Number Name Length (m) Length to CoM (m) Mass (kg)

1 Forearms 0.472 0.322 1.650
2 Upper Arms 0.346 0.151 2.100

3 Torso 0.536 0.268 21.675
4 Thighs 0.456 0.258 7.500
5 Shanks 0.530 0.209 4.575

Modeling the interaction of the SRL with the back can potentially be quite com-

plex. Because the SRL is to be worn like a hiking backpack, looking at prior works in

the field of modeling backpack interactions with the human provided insight into this

issue. Ren et al. developed a dynamic model to describe a pack's response to trunk

motions by using a nonlinear pack suspension equation. The force that a pack ex-

erted on the axis parallel with the spine was captured with cubic polynomials, whose

parameters were calculated from dynamic test data. Using this technique, it was

possible to evaluate the resultant pack forces and moments imposed on torso motions

[29]. Despite the utility in dynamic tests, this method is a bit complicated for a first

pass at understanding the SRL effects and requires both dynamic data and a complex

test rig. Instead, Foissac et al. modeled the movement of a hanging backpack as a

damped harmonic oscillator moving in a single direction [30].

Taking Fissac's work as inspiration, the forces imposed on the human were mod-

eled simply. Taking into consideration that the supporting frame of the SRL comes

into contact with the human body predominantly at the shoulders and the hip, the
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SRL was abstracted into point forces that acted on the human kinematic chain at

these locations. At the shoulder, the user feels forces imposed by the SRL in the

direction along the shoulder and thus the force imposed on the human is modeled

as one point force acting vertically at the shoulder joint and one point force acting

horizontally at the shoulder joint. At the hip, the SRL is secured at the iliac crest

and thus the force imposed on the human here is one point force acting horizontally

at the hip joint.

The static load to be born is modeled simply as a point force acting at the begin-

ning of rigid body 1 in the vertical direction.

From this model, the joint torque at each joint can be calculated using the follow-

ing equations:

71= PL 1 cos 01 + migdi cos 01  (4.1)

Ti = ri_1 + P +( mkg Li + migdi cos O6+
.k=1

[-V*Licos 0 + Hisin0i](i > 3)+ (4.2)

[- V*Li cos Oi + H Li sin ](i > 4)

where Equation 4.1 describes the torque on joint 1 and Equation 4.2 describes the

torques on the rest of the joints, where i = 2, .., 5. In Equation 4.1, 71 is the torque

at joint 1, P is the static load to be born, g is the acceleration of gravity, mi is the

mass of the first joint, di is the distance from joint 1 to rigid body 1's center of mass,

L1 is the length of rigid body 1, and 01 is the angle of the first rigid body with respect

to the horizontal. In Equation 4.2, ri is the torque at joint i, Li is the length of rigid

body i, mi is the mass of rigid body i, di is the distance from the joint i to rigid body

i's center of mass, 6i is the angle formed between rigid body i and the horizontal, and

g is the acceleration of gravity. For the point forces, P is the static load to be born

as in the previous equation, variables V and H denote horizontal and vertical forces,

36



subscripts S and H denote the shoulder and the hip, respectively, and superscript *

indicates the force is evaluated in the global frame.

4.3 Experimental Setup

This section describes how the joint torques were calculated experimentally.

4.3.1 Testing Apparatus

Because the SRL was not completed at the time of this experiment, a test rig that

mimicked the mass properties and the geometry of the SRL was created. The test

rig is shown in Figure 4-2.

Figure 4-2: Test rig used in experiments to find effects of bearing a static load with
the SRL on the human

To mimic the weight and position of the motors and gear train of the SRL, 15kg

masses were attached to the bottom of the rig where it made contact with the hip.

Because 80/20 does not mate well with the human, 3D printed shoulder cups and

hip plates were attached to the 80/20 frame. These can be seen as the black pieces
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in Figure 4-2. In order to capture the forces exerted by the SRL onto the human,

FlexiForce@ sensors (model A201) were positioned throughout the testing apparatus.

To capture the shoulder forces, two force sensors were places on the opposite ends of

each 3D printed shoulder support 300 from the vertical. To capture the horizontal

hip forces, two force sensors lined the abdomen and two were placed along the lower

back in the horizontal direction.

To use the biomechanical model, the angles of the human joints needed to be

found. For that, a vision system was used. At each joint a marker was placed. To

capture the position of the marker and thus the joint angles in the sagittal plane, a

simple camera was used. The measurements from the force sensors were all captured

with LabView data acquisition software running at a sampling rate of 50 Hz.

4.3.2 Experimental Task Description

In order to capture the differences in human work load during a static loading task

with and without the SRL, the subject performed the load-bearing task with and

without the test rig in many configurations. In the first set of tests, the test rig was

not used to assist in bearing load. In the second set of tests, the user wore the rig to

bear the load. In each set of tests, the participant bore masses of 0 to 9.07kg in incre-

ments of 2.268kg. The weights were held at distances of 0.425, 0.55, 0.675, and 0.800m

from the human, at a constant height of 0.9m. The participant maintained a comfort-

able static position for 20 seconds at each weight/distance combination while force

data was collected. Pictures of each combination were taken to capture posture in-

formation. The experimental setup for the mass/distance combination 9.07kg/0.55m

is shown in 4-3.

4.3.3 Data Processing

Joint torques could be calculated after raw force data was collected in the manner

described in the previous section. First, the raw force data from the testing appara-

tus was used to find the resultant point shoulder and hip forces. Joint angles were
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Figure 4-3: Experimental setup for the static loading task for mass/distance combi-
nation 9.07kg/0.55m with and without the testing apparatus.

calculated via processing of posture images with the MATLAB@ Image Processing

Toolbox. These experimentally derived forces and angle measurements were used as

inputs into Equations 4.1 and 4.2, which directly calculated the torques at each joint

of interest.

There was an imperfection with the testing rig that needed addressing. This was

the fact that the horizontal forces that were calculated at the hip and the shoulder

were not equal, as would be expected in the static loading case. This may have

been the result of the back and/or the stomach not being in full contact with the

force sensors. Given that the test rig was held against the human's hips via a bar of

80/20, this is not all that unlikely. In order to compensate for this problem, a force

equal in magnitude and acting in the direction opposite to the more accurate (due to

geometric constraints) horizontal shoulder reaction force was assumed to be acting at

the hip to ensure that the static equilibrium condition was met. The torques at each

joint were then calculated.
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4.4 Raw Joint Torques

4.4.1 Numerical Results

The calculated torques for bearing a static load without the test rig are summarized in

Table 4.2, while the torques for bearing a static load with the test rig are summarized

in Table 4.3. The torques given are for joints 1, 2, 3, 4, and 5, and have units of Nm.

Table 4.2: Calculated raw torques (Nm) from bearing static loads without test rig.

Distance (m) Mass (kg) 1 Joint 11 Joint 21 Joint 3 Joint 4 [Joint 5
0.425 0 5.04 6.75 -4.36 -14.94 -2.79
0.425 2.27 5.57 6.55 -2.42 -2.30 5.50
0.425 4.54 5.96 7.10 -3.86 -4.39 3.27
0.425 6.80 6.61 7.22 -3.21 -6.05 6.56
0.425 9.07 7.13 6.24 -0.09 -2.25 -29.04
0.550 0 4.98 9.24 5.56 8.35 23.56
0.550 2.27 5.44 8.43 1.61 8.99 32.30
0.550 4.54 6.03 8.89 5.58 7.20 29.61
0.550 6.80 6.54 9.76 4.62 6.14 26.92
0.550 9.07 7.05 10.01 11.63 12.00 34.13
0.675 0 4.68 11.55 10.80 10.87 21.41
0.675 2.27 5.12 11.03 18.10 17.34 30.65
0.675 4.54 5.74 11.40 17.76 17.67 34.46
0.675 6.80 6.15 11.66 29.82 28.72 46.31
0.675 9.07 6.79 12.31 21.97 20.50 39.31
0.800 0 4.94 10.63 27.61 20.30 39.63
0.800 2.27 5.00 12.35 41.13 15.00 34.91
0.800 4.54 5.80 12.68 46.67 26.53 40.54
0.800 6.80 6.04 14.01 50.25 7.93 36.04
0.800 9.07 6.38 14.62 55.81 15.33 29.74

Results for illustrative absolute joint torque distance/mass pairs for loading with

and without the test rig are shown in Figure 4-4. The mass/distance combination

pairs in the figure are 2.27kg/0.55m and 9.07kg/0.800m.
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Table 4.3: Calculated raw torques (Nm) from bearing static loads with test rig.

Distance (m) Mass (kg) Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

0.425 0 5.20 3.64 -2.74 -3.98 24.61
0.425 2.27 5.21 3.05 1.12 -1.58 23.92
0.425 4.54 5.21 2.56 3.41 2.90 37.55
0.425 6.80 5.20 3.37 4.43 -2.03 37.08
0.425 9.07 5.21 2.69 6.69 3.15 35.13
0.550 0 5.18 2.74 -1.99 4.77 16.66
0.550 2.27 5.20 3.51 0.13 8.43 25.04
0.550 4.54 5.20 2.97 3.59 7.83 26.59
0.550 6.80 5.15 3.84 2.01 10.34 30.31
0.550 9.07 5.19 4.35 14.05 18.70 36.37
0.675 0 5.17 4.74 -5.67 -1.42 11.98
0.675 2.27 5.21 3.67 0.33 7.88 20.13
0.675 4.54 5.19 2.55 12.01 14.03 22.99
0.675 6.80 5.14 2.81 9.90 1.87 23.71
0.675 9.07 5.20 3.91 9.54 7.82 45.51
0.800 0 5.14 2.17 -3.71 11.63 24.03

0.800 2.27 5.20 3.39 -0.36 7.65 22.36
0.800 4.54 5.11 1.40 1.57 0.75 20.02
0.800 6.80 5.15 1.78 13.36 2.97 38.96
0.800 9.07 5.17 3.48 20.09 5.78 50.40

4.4.2 Discussion

The first trend of note is that while using the SRL rig, the torques acting on joints 4

and 5 are typically higher than the torques acting on the other joints. These resultant

higher torques likely occur on these joints of the lower body because the weight is

being borne by the testing rig instead of the arms. The second trend of note is that

the torques caused by the masses 0 to 6.8kg at a distance of 0.55m were quite low.

Such low torques in these configurations were likely a result of the torques caused by

the loading mass counteracting the torques caused by the mass on the back of the

testing apparatus.

The third trend of note is that the static load-imposed joint torques tend to be

smaller for the same mass/distance combination while wearing the rig compared to

those torques imposed when not wearing the rig. However, this trend is not without

exception. The torques imposed on joint 5 while bearing the load with the test
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Figure 4-4: Illustrative joint torques for static loading task for mass/distance combi-
nation 2.27kg/0.55m with and without the testing apparatus.

rig at the distances of 0.550m, 0.675m, and 0.800m for the mass of 9.07kg tend

to comparable but slightly higher to those torques imposed while bearing the load

without the rig. This is likely due to the load being borne predominantly by the lower

body instead of the upper body, which is the case when bearing the load without the

test rig. The final trend of note is that the torques on joint 5 tend to be far higher

when the load is borne at a distance of 0.425m from the body. This is likely caused

by the lever arm of the load being too small to effectively help counterbalance the

torques imposed by the mass of the rig.

4.5 Normalized Joint Torques

4.5.1 Numerical Results

When attempting to evaluate the effectiveness of baring the static load with the rig

when compared to not using the rig, one needs to consider that the torques imposed

on the joint 1 will not have the same perceived effect on the human's exertion because

humans are able to bear more torques on some joints than others. Therefore, a metric
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other than the sum of absolute joint torques needs to be developed. If the imposed

torque on each joint is normalized by the maximum torque that the joint is able to

bare, the imposed torques on each joint can be directly summed to obtain a single

metric to allow one to compare the torques from trials of the same mass/distance

combination imposed with and without the test rig.

The metric Overall normalized Exertion (OE) for each mass/distance pair can be

therefore expressed as

52

OE E (= (4.3)
i=1 rTMAX,i

where TMAX,i is the maximum possible torque output for joint i, Ti is the calculated

joint torque of joint i, and OE is the overall exertion. The maximum torques for each

joint used in the calculations for overall exertion are given in Table 4.4. These values

were obtained from [27, 28].

Table 4.4: Maximum exertable torques for each joint in biomechanical model.

Joint Number Maximum Torque
1 70
2 40
3 200
4 360
5 150

Using the results of the absolute joint torques and Equation 4.3, the overall exer-

tion of each trial was calculated. The values for each trial are given in Table 4.5 and

the results are given in graphical form in Figure 4-5.

4.5.2 Discussion

Using the OE metric described in this section, one clearly sees the benefit of using a

load-bearing rig to bear loads. The OE was found to be lower for every weight while

using the rig to bear the load at distances of 0.550m, 0.675m, and 0.800m compared
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Table 4.5: Calculated overall exertion
rig.

from bearing static loads with and without the

Distance (m) Mass (kg) 11 OE without Rig] OE with Rig
0.425 0 0.036 0.041
0.425 2.27 0.035 0.037
0.425 4.54 0.040 0.073
0.425 6.80 0.044 0.077
0.425 9.07 0.072 0.066
0.550 0 0.084 0.023
0.550 2.27 0.098 0.042
0.550 4.54 0.097 0.043
0.550 6.80 0.101 0.056
0.550 9.07 0.129 0.084
0.675 0 0.112 0.027
0.675 2.27 0.134 0.033
0.675 4.54 0.151 0.038
0.675 6.80 0.217 0.038
0.675 9.07 0.188 0.110
0.800 0 0.168 0.035
0.800 2.27 0.199 0.035
0.800 4.54 0.240 0.024
0.800 6.80 0.252 0.079
0.800 9.07 0.261 0.136

to without it. Insight into why this occurs comes from looking at the equations

of static equilibrium. When using the test rig, the imposed torques caused by the

load were transferred to the lower joints. Because these lower body joints can exert

more torque than their upper body counterparts, the normalized exertion typically

decreases when using the test rig. The OE is only typically decreased because at

a distance of 0.425m, the OE was higher when using the test rig. Here, the lever

arm from the human to the load was small, and therefore the imposed torques are

small. Despite the rig still transferring the weight to the lower body, these smaller

torques are unable to counteract the imposed torque contribution from the mass of

the test rig. Such a result shows that the SRL can be useful in bearing static loads at

particular distances. The biomechanical analysis can be extended to find the optimal

placement of the load in order to reduce the human exertion as defined by the Overall
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without the test rig for each mass/distance

Exertion metric when using a load-assistance mechanism such as the SRL. This can

be potentially combined with trajectory generators, which would allow the SRL to

minimize human exertion while traversing its trajectory. As far as future work is

concerned, this evaluation should be conducted with more subjects, and eventually

the analysis should be extended to dynamic load-bearing. This evaluation should

also be done with the actual SRL. However, this analysis shows that the SRL will

reach its objective of reducing the human work load of its operator, at least in this

particular use case.
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Chapter 5

Endpoint Trajectory Generation

5.1 Relationship to Human-SRL Coordination

To be of use to the operator, the robot obviously must have some means of deciding

where to go. The process of assigning a path, whether dynamic or static, is an

extensively researched task within the context of robotics and artificial intelligence.

Nevertheless, trajectories must be obtained for the SRL for each task and thus the

methodology for this process should be developed explicitly. This is the subject of

the rest of this chapter.

Generating a trajectory does not paint the complete picture, however. Once a

trajectory has been generated for the SRL, feedback from the human should be used

to decide how the SRL traverses that trajectory in order to best coordinate the

SRL with human actions. This coordination step is one whose importance cannot

be overlooked. If the SRL blindly follows trajectories, it can in no way respond to

the action of a human. For instance, a cue given from the human may be used to

command the SRL to go to its goal location. However, while the SRL is traversing

its commanded trajectory the human may falter or decide the action needs to be

dynamically updated. In these two instances, it would be desirable if the SRL updated

its position along its trajectory given the new actions of the human instead of blindly

stopping or continuing on its path. Because of this, the process in which human

information is used to update the SRL's traversal along its trajectories is explored
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in Chapter 6. Coordination between stationary robots and humans sharing the same

workspace has been explored previously in [31].

5.2 Approaches

When determining robot trajectories, there are typically two different approaches

taken: the model driven approach and the empirical-data driven approach. The two

approaches are briefly summarized here.

5.2.1 Model Driven Trajectory Generation

The model-driven approach is the one where the equations of motion of a system

are derived and used to dictate the motion. This approach is quite beneficial for

providing physical insight into what the underlying physics of a system are. Once

they are understood, they can then be easily combined with other metrics in an

optimal motion planner in order to optimize the trajectory to a particular criteria.

Another benefit of this approach is that it is a well-developed field, especially in terms

of state prediction. Using techniques such as the Kalman Filter, one can easily predict

the future positions and states of the robot at time points in the future, in addition

to enabling the estimation of the states not directly sensed by the system.

However, a major drawback to this approach is that the equations of motion

must be generated for every task that one wants to accomplish. If there are many

submovements within a particular task, this can be quite tedious. Moreover, if the

task is complex (as many real physical systems are), the derivation of these equations

can be not only quite tedious but also quite challenging as well. Within the context

of aircraft manufacturing, this may very well be the case.

5.2.2 Empirical-data Driven Trajectory Generation

Contrasting the model-driven approach is the empirical-data driven approach. Here,

the trajectories of a robot are derived from a set or multiple sets of training data
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obtained from demonstrations of trajectories via backdriving, simulation, or repli-

cation of a human. Once these sets are obtained, they are used as input into an

algorithm of choice, which extracts relevant information and outputs a trajectory

that the robot is to follow. A large benefit of using the data-driven approach is that

once a technique has been developed to evaluate the data, it can be used over and

over again with different tasks without the need to develop complex models of the

tasks to be accomplished. Of course, new training data for each task would still need

to be obtained.

As with the model-driven approach, there are some drawbacks of using the data-

driven approach. One issue that was faced in the research was that depending on

the representation of the trajectory, it may be difficult to predict future positions of

the robot. The problem of dealing with initial conditions (ICs) during runtime that

were unlike those of training data must also be addressed. One hopes that the set

of training data is rich enough to include the typical ICs that one may encounter,

however, this is not guaranteed and nevertheless must still be handled. The last issue

with the data-driven approach is that is provides little insight into the underlying

physics behind a system, which are often desirable for use during the process of

control or within the greater context of engineering as a whole.

5.3 Data-Driven Control Scheme

For this work, a data-driven approach to learning tasks related to aircraft manufac-

turing was taken. The scheme for controlling the SRL or any other robot during an

arbitrary task using the data-driven approach is summarized in Figure 5-1. Because

the robot must be coordinated with the human, desired trajectories for both the

human and the robot must be found.

The process of trajectory generation is denoted by the black dot-dashed line.

During the offline portion of the trajectory generation, three main steps occur:

1. Trial data for the desired task to be learned is generated for both the human

and the robot. Here, the desired path of the robot is shown to the robot via

49



:--.........---------I
- - - - - - --~...L~ - -. - - -..............

Humnan-SRL
coordination

Figure 5-1: Controlling the SRL using a data-driven approach to task modeling.

backdriving it and recording the positions, obtaining positions via a simulation,

or learning from the positions of another human. The desired path for the

human is determined via whatever sensing mechanism is appropriate for the

given task. It is beneficial if the training set obtained from this step has a

variety of likely ICs because the task may have different trajectories depending

on different starting conditions. The total data obtained during this stage is

considered the "teaching" or "training" set.

2. Trials from the training set are grouped together based on the similarity of their

initial conditions.

3. Representative trajectories are generated for each of the initial condition clusters

determined in the previous step and are stored in memory.

Once the memory bank of trajectories has been created offline, the appropriate

trajectory can be chosen on-line in a process defined by the next two steps:

1. The initial conditions of both the human and the robot are sensed in real time

and the closest initial conditions from the memory bank for each are found.
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2. The representative trajectory that corresponds to the IC that best matches the

human and the robots' current ICs are selected from the memory bank.

Once the human and robot's desired trajectories are chosen, the process of human-

robot coordination in real time can begin. This is denoted by the green dashed line.

Here, it is abstracted into two extremely simple steps, although it will be elaborated

in great detail in the next chapter.

1. The position along the trajectory of the human along his desired trajectory is

determined.

2. Based on this human position, the desired corresponding position along the

robot's trajectory is determined and is given as a command to the robot.

5.4 Task Description

5.4.1 Drilling Task

The process of generating single trajectories via trial data was attempted in the

context of the wiring task, which is the affixing of wires to control boxes in the

aircraft. This is an essential task because there are hundreds of miles of wires to

be strung across the aircraft [32]. If the operator can hold the wires while the SRL

affixes them, the operator's efficiency will be increased. In order to teach the robot

its trajectories, the drilling task was completed with two humans - one assuming the

role of the leader, and the other the follower. This data was processed in the manner

described above, where the data obtained from the follower human is used as the

teaching data for the robot. The two-person wiring process is summarized in Figure

5-2 and is explained below.

There are six main steps in the two-person wiring process:

1. The first human grabs two wires to be affixed to the wiring control box. He

then approaches the control box with the wires in hand.
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Figure 5-2: Summary of the two-person drilling task used to train the SRL trajecto-
ries. Step 1 begins with human 1 obtaining wires. Step 2 sees human 1 holding wires
up to the control box terminals. Step 3 sees human 2 approaching the wires held by
human 1. Step 4 is the affixing of the wires. Step 5 is the clearing of the workspace
by human 2. Step 6 sees human 1 retrieving more wires to be affixed.
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2. Once at the control box, human 1 holds the wires at the appropriate wiring

terminals and waits for a predetermined amount of time to signal that the

wires are in place.

3. Once the wires are in place, the second human comes in with an automatic

screwdriver.

4. Via the screwing in of the terminals, human 2 affixes the wires to the control

box.

5. At this point, the second human clears himself from the area near the control

box in order to clear up the workspace for human one.

6. Free now to move about, the first human grabs more wires to be affixed to the

control box and repeats steps (1)-(5) until all wires are affixed.

5.4.2 Simulation

As a first pass at obtaining the trajectories, a simulation of the two person wiring

task was created to allow the author full authority over the relationship between the

first human and the second human. The parameters of interest in the relationship

between the two humans were the XY, and Z coordinates and the roll, pitch, and yaw

values of both the wires and the drill. Because this is a trajectory, time is obviously

important. A data set containing ten trials starting at random initial conditions and a

sampling frequency of 100Hz was generated. This simulation is summarized in Figure

5-3.

5.5 Analysis of the Drilling Task

Once a training set of data from the wiring task was obtained, the trajectories of the

drill and the human could then be extracted. The method of trajectory extraction is

explained in the remaining sections of this chapter.
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Figure 5-3: Simulation of the wiring task. The pictures show the movement of the
left and right wires held by human one and the drill held by human two. The control
box (shown in black) is also in the picture. The key in the bottom right square
explains the items seen throughout the figure. The numbers at the top-left hand
corner of each square indicate each stage of the wiring task, as explained in Figure
5-2. Human 2 fixes both the left and right wires of human 1, hence the steps (3) and
(4) (approaching a wiring with a drill and affixing it) happen twice.
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5.5.1 Introduction to Partial Least Squares Regression

The technique chosen to extract the trajectories is Partial Least Squares Regression

(PLSR). Developed originally as an economic tool, PLSR relates data in two matrices

with a linear multivariate model, while capturing their structure. It can accomplish

this even in the presence of noisy and correlated data, which separates it from tradi-

tional multiple linear regression (MLR).

Let the first matrix, X, be the input space of predictors, while the output space

of responses is called Y. The whole goal of this process is to predict Y from X

while evaluating the structural similarities between the two matrices. It does this by

calculating latent vectors that decompose X and Y while at the same time ensuring

these latent vectors explain the maximum possible covariance between X and Y. It

assumes that the data has the underlying structure

X = TPT + E (5.1)

Y =UQT + F (5.2)

,where X and Y are the predictor and output matrices as previously explained,

T and U are the inferred latent variables, P and C are the loadings or weights of the

latent variables, and E and F are the residual matrices, which are the parts of X and

Y that the latent variables cannot explain. In one way or another, PLSR algorithms

work to minimize these residual matrices.

Geometrically, the PLSR is a reduction of the original data of the X space into

a lower dimensional hyperplane as defined by loadings. These loadings associated

with the latent variables also inform one about how strongly correlated the X and

Y are. The latent variable T contains the projections of the X space into the lower-

dimensional hyperplane. The positions of these projections are strongly related to

the values of matrix Y [33, 34].

There are a number of different algorithms that can be used in order to calculate

the latent variables and the weights. PLS1 attempts to find T, which is assumed to
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be othonormal. One benefit of this particular algorithm is that X and Y do not need

to be centered prior to using, which is convenient for prediction later on. Despite its

widespread use, the NIPALS algorithm will be used due to its prevalence in statistical

packages. The basic steps of this algorithm are:

1. Estimate the weights of X.

2. Estimate the latent variable T.

3. Estimate the weights of Y.

4. Estimate the latent variable U.

Further details of this algorithm can be found in [33].

5.5.2 Adapting Partial Least Squares Regression to Trajec-

tory Data

The formulation of this algorithm assumes snapshots of data - as it stands, PLSR

is not useful for estimates of time-series data. However, with modifications made

to the matrices X and Y, PLSR can still be useful in the application of extracting

dynamic trajectories. Spatial-temporal analysis with PLSR was first investigated by

[35] in the context of fMRI analysis. In order to use it in this context, fMRIs with

a fixed number of images (1..T) were taken. There were 1..M points of interest in

the fMRI throughout trials 1..K. At each observation time point t, a submatrix was

constructed of the form shown in Figure 5-4. The measurements of trial k constituted

a row within submatrix Xt, and the trials 1..K formed a matrix of size K x M in the

case of the input space.

Once this matrix was constructed for each of the observation time points, the

submatrices X1 ..Xt..XT were then concatenated to form the single input matrix X,

as shown in Figure 5-5. This process was done for both the input space X and the

output space Y.
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Figure 5-4: Submatrix construction for PLSR at time point t.

X1 Xt XT

Figure 5-5: Submatrix concatenation to form input matrix X.

However useful, the conditions in which this technique was used were quite ideal.

For instance, the fMRIs each had the same number of samples and they were taken

at the same sample interval. In our work, it is inevitable that each trial length differ

due to the varying time it takes to complete each step of the task across trials. This

can be seen both as a negative and a positive - the negative being that this is further

indication that humans are imperfect in their timing abilities, but the positive being

that having multiple examples of this imperfection will likely make the results more

generalized. In order to overcome this issue of trials of varying length, each trial was

reduced down to the number of sample points in the shortest trial by down-sampling

the longer trials. This had the result of creating trials that have different effective

sampling rates.

Ideally, the trial would be segmented in order to allow each phase of a trial to

occur in the same submatrices across trials. This could be accomplished with two

approaches - the data could be segemented manually and interpolated within each

segment. This is not desirable and goes against the goal of making this an automatic

process. The other approach is to use a technique like Dynamic Time Warping to

align the key features of the trajectories [36]. Dynamic Time Warping could also be

used instead of PLSR because it has been proven to be an effective way to generate
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trajectories for a data set [17]. However, the unsegmented trial data organized in

the manner described at the beginning of this subsection produced surprisingly good

results with the NIPALS algorithm. These results are given in the next subsection.

5.5.3 Predictive Ability for Drill Trajectory

As described previously, a data set of 10 simulated trials of the wiring task was

generated. The trial data was rearranged in the manner described in the previous

section and put into the PLSR implementation within MATLAB@ . Once the PLSR

representation was established, a test trajectory of the wires was provided, and the

resultant drill positions were calculated. There are a number of qualities used to

evaluate the effectiveness of this representation. The first is that for the representation

to useful, it must capture the goal positions well; because the accuracy with which

the goal positions must be approached with is extremely high, the ability to capture

their exact position is imperative. Second, we hoped that PLSR would capture the

"triggering" relationship between the wires and the drill; this relationship shown

during the trials and is defined by the drill not approaching the wiring control box

until after the wires were held at their goal positions for a specified amount of time.

Indeed, both these important relationships were found. In Figure 5-6, the desired

left and right drill position coordinates are shown and compared to the outputted

coordinates of the PLSR fit. In the trials, the drill did not approach the wires until one

second after they were affixed. This can be clearly seen as the non-motion exhibited in

the fitted trajectories. To give a better sense of how well the reconstructed trajectories

reached the import points, the reconstructed trajectory of the drill is plotted and

compared to the actual trajectory of the drill in that particular trial in Figure 5-7.

For the most part, the trajectories are quite well matched. This is especially apparent

in the desired and reconstructed trajectories matching almost exactly at the the points

representing the positions of the fixing of the wires to the control box.

The major problem with this approach as it stands is that the drill trajectories can

only be constructed once the entire trajectory of the hands has been generated. This

is obviously not useful at all when attempting to determine the trajectories in real
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Figure 5-6: Individual reconstructed vs. actual drill angles for wiring task.

1.5 1 1 1 1 1

-- actual trajectory Point of Fixing Point of Fixing
--- predicted trajectory Left Wire Right Wire

1

0

2 3
X coordinate (m)

6

Figure 5-7: Reconstructed vs. actual drill trajectory for wiring task.
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time. However, not all is lost here. The method of created the trajectory bank can

still be used to generate the sample trajectories offline. However, online recognition

will have to be done in some other manner. For this real time coordination, the

representatiQn of regression trees is used to determine where along a precalculated

trajectory the robot is supposed to go based off the position of the human.

60



Chapter 6

Human-Robot Coordination

This chapter explains the process of how human-robot coordination can be derived

for any robot once a trajectory has been generated in the manner described in the

previous chapter, especially within the context coordinating the wiring task with the

SRL. Like with the trajectory learning, here the goal is to teach the robot coordination

with the human by generating training data with two humans, then transfering the

role of one of the humans over to the robot.

6.1 Defining a Simple Relationship

As a first pass, the wiring task as described in the previous chapter seems a bit

too complicated to tackle. This is because it has a substantial number of degrees of

freedom. Before this particular task is tackled, it should be verified that a relationship

within a one degree of freedom task can be captured accurately and in a representation

that is of use for the real-time coordination of a robot with a human. It would be of

particular interest if in the qualitative sense this task well captures the relationship

that is expected to exist between human one and human two during the wiring task

teaching phase.

To this end, we proposed an extremely simplified leader-follower task as depicted

in Figure 6-1. There are two humans - one who takes the role of the leader, and

another who takes the role of a follower. Both the leader and the follower turn a
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handle attached to a rotating shaft from an initial position to a goal position. The

leader moves as he wants from his random initial angle condition towards a pre-set

goal angle. The follower is to then go to his goal position from his random initial

angle condition by reacting to the leaders actions in a very well-defined manner. The

one degree of freedom for each human in this task is the angular distance between his

current position and his goal position.

Handles

Leader Follower

Table
anchoring

the handles

Figure 6-1: Illustration of simplified leader-follower task to be learned.

The set of rules that relate the reaction of the follower human to the actions of

the leader human are summarized in Figure 6-2, as well as listed below.

1. In general, the follower should approach his goal angle as long as the leader

human is either approaching his own goal or at his goal angle. In the context of

the wiring task, this simulates the simultaneous approach of the leader human

carrying his wires to their goal positions and the follower human carrying the

drill towards the wire terminals to affix the wires.

2. If the leader human begins oscillating his angular distance away from his goal

position, the follower should pause at his current angle. In the context of

the wiring task, this simulates the follower human being unable to infer the

intentions of the leader human. If the follower human or robot in a real scenario

cannot infer the intentions of the leader human, it could be desirable for the

follower to pause his current actions. This rule simulates such a response.

3. If the leader human is consistently moving away from his goal angle, the follower

human should start moving away from his goal angle as well. In the context

of the wiring task, this simulates the follower human clearing up the workspace
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of the leader human once the follower human has determined that the leader

human wants to move away from the wiring control box.

4. If the leader human is at his goal angle, the follower human should approach his

respective goal angle quickly. In the context of the wiring task, this simulates

the follower human attempting to be as efficient with his time as possible by

quickly approaching the terminals with the drill once the wires are in place.

Goal
Position00

Follower
Leader Human
Human

0 0
r i

Figure 6-2: Rules describing the coordination between the leader and follower humans
in the simplified coordination task. The numbered frames provide an illustration of
their respectively described rule.

6.2 Experimental Setup

To capture the angle of each human while he turns a handle, an extremely simple

testbed was made.
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6.2.1 Design

The device used to capture the human coordination during the simplified task is

shown in Figure 6-3. The main component of the device is an absolute magnetic

encoder with PWM output (US Digital, model MAE3), which captured the angles

of the handle. An aluminum shaft was mated to the handle, and at the encoder end

of the shaft was the magnet that lay inside the encoder. In order to prevent play in

the aluminum shaft, which could potentially add noise the the encoder readings, two

bearings were used. The encoder was given enough room for its cables to reach it

by using 2" standoffs. In order to use the device in an accurate and repeatable way,

it was held to the desk via c-clamps. However, using these clamps could potentially

interfere with the motion of the handle. To provide extra clearance for these c-clamps,

threaded rods separated the plates containing the bearings for the aluminum shaft.

Lastly, a standoff was attached to the top plate in order to mark the goal position of

the handle.

Handle for Hard stop to indicate

turning goal position

Bearings to
prevent play
in that shaft
that would

add noise to
Threaded rod to create oeencoder

that mount testbed to
the table -3

PWM Encoder

Figure 6-3: Testbed used to capture the human coordination exhibited during the
simplified task.

64



6.2.2 Data Acquisition

In order to process the data output of the PWM encoder, a data acquisition device was

necessary. A schematic of the setup of this device is shown in Figure 6-4. The PWM

signal of the encoder was captured by a digital input card (National Instruments

9403) that took up a slot in a National Instruments compactRio device (NI cRIO-

9047). The signal was sampled at 100Hz. The cRIO device communicated with the

computer via an ethernet chord. A computer running Labview version 12 controlled

the sampling process.

A

PWM
representin

angle

E'I"

Computer Running
LabView to control the

starting and stopping of

each trial

M

A

repre

WM
senting
ngle

I - W i

Follower Testbed

Figure 6-4: Data acquisition setup used to capture the human coordination exhibited
during the simplified task.

6.2.3 Trial Process

Obtaining the training data set with the two humans was a five-step process, which

is explained below.

1. The leader human and the follower human move their handles to random initial

distances away from the pre-set goal position. The leader human picks his angle
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independently from the follower human.

2. The leader human begins his approach towards his goal position. This initial

movement of the leader human marks the start of each trial.

3. The leader human and the follower human move towards their respective goal

positions. The leader human approaches his goal as he pleases. The follower

approaches his goal in a manner determined by the rules described previously.

4. When the follower human reaches his goal, the trial is considered finished.

5. The data from this trial is saved. Steps (1) - (4) are then repeated 99 more

times to obtain a training data set that consists of 100 trials.

6.2.4 Preprocessing

After the trail processing, ideally no further preprocessing would have to be done

before the data could be put into a structure to be used by the coordination-learning

algorithm. However, this is not the case because the digital input channel was quite

noisy, which lead to many faulty measurements. The angle of the handle was calcu-

lated using information about the pulse width and pulse period of the output of the

encoder. The noisy channel led to many false readings in both the pulse width and

period, which lead to either incorrect or completely nonsensical angle measurements.

Because of these erroneous readings, preprocessing had to be done on the raw angle

signal in a process described below and summarized in Figure 6-5.

1. The calculations involving the PWM encoder are only supposed to produce

angles between 0 and 360. The first step was therefore discarding angles that

were outside this range. Also, any angle found that was a result of using an

unreasonable pulse width or pulse period was also discarded.

2. Given the very high sampling frequency (100Hz), the angles between sample

points should not change much. Therefore, angles that were not discarded as
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a result of the initial filtering were put through a low-pass filter to remove

high-frequency angle noise.

3. After discarding the non-negligible number of error-containing angles, there

were many points missing in the data. Additionally, the sampling period was

inconsistent, which was obviously not desirable. Therefore, the angle data was

interpolated at a fixed interval to mimic consistent sampling. The data was

downsampled to 10Hz.

4. The output of the encoder only gave absolute angles. However, the degree of

freedom of interest was not the arbitrary angle of the handle but the angular

distance of the handle of its current position to its goal position. The goal

position of both the leader and the follower were therefore normalized to 0,

which led to the angle measurements corresponding to the angular distance

instead of their own arbitrary angles.

Figure 6-5: Preprocessing and filtering of the raw single output of the PWM encoder.

6.3 Learning of the Leader/Follower Relationship

Now the that training data had been collected, it was time to extract the relationship

between the leader and the follower. However, before choosing or developing an

algorithm to collect it, it would be quite helpful to first determine an underlying

relationship structure or model that the follower human followed.
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6.3.1 Defining the Leader/Follower Relationship

Considering that the follower human's actions were a result of first inferring whether

the leader human was approaching his goal, it becomes clear that the follower human

had to keep track of the leader's prior positions. As a guess, it is likely that the follower

human also based his actions off his own prior positions. For this reason, we assume

that the position of the follower human at time point t follows an autoregressive model

of the form:

f (t) = gabs [f (t - 1), f(t - 2), ..., f(t - nb), (6.1)

1(t - 1), 1(t - 2), ..., I (t - na)]

where f(t) is the location of the follower human at time t, 1(t) is the location

of the leader human at time t, and gabs [..] is the function describing the location

of the follower human using the absolute angle inputs. It is assumed that we are

interested in the na previous positions of the leader, and the nb previous positions

of the follower. What these values are is not known ahead of time, and they can

be considered a design choice when formulating the input space of the training data,

which is described in the next section. Although this formulation makes intuitive

sense, upon further examination the differential change in angles between time points

is more important that the absolute angles themselves. Equation 6.1 can therefore

be reformulated to

Af(t) = gdff[Af(t - 1), Af(t - 2), ..., Af(t - nb), (6.2)

Al(t - 1), Al(t - 2), ., lt-na)]

where Af(t) is the change in the angle of the follower from time t - 1 to t

Al(t) is the change in the angle of the leader from time t - 1 to t, and gdiff[..] is the

function describing the change in angle of the follower human using the differential

angle inputs. However, if a triggering relationship is to be found, that is, one where
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the follower cannot move unless the leader has passed a particular threshold, then

Equations 6.1 & 6.2 can be refined further to include absolute and differential angle

information:

Af (t) = gmix[f (t - 1), f (t - 2), ..., f (t - n),

1(t - 1), 1(t - 2), ..., I (t - na),1(63

Af(t - 1), Af(t - 2), ..., Af (t - n),

Al(t - 1), Al(t -- 2), ...,I Al(t - na)]

where f (t), 1(t), Af(t), and Al(t) all are as described previously, and gmix[..] is the

function describing the change in angle of the follower human using the combination

of differential and absolute angle as inputs. In Equation 6.3, it is of interest as to

why Af(t) was chosen to be on the left side of the equation instead of f(t). Certainly

f (t) can be chosen instead, but as stated before, how the angle changes between time

points is of greater interest than its absolute angle counterpart.

6.3.2 Idea of Regression/Classification Trees

Now that a general model of the relationship between the follower and the leader

humans has been established, a representation that well captures the underlying na-

ture of the relationship needs to be selected. Here it is important to reemphasize

the very conditional nature of how the follower human selects his action. Because of

this conditional nature, regression trees are chosen to represent the relationship. The

concept of using classification/regression trees to relate an output to an input space

is shown in Figure 6-6.

The purpose of the classification/regression tree is to predict the values of a target

variable from several values of an input variable. It does this with a tree-like structure.

Conceptually, the input space is partitioned with binary splits and each partition is

assigned an output value. Each leaf of the tree represents the value of a target variable

given the values of the chosen input variables, found by traversing the tree from the
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15 -------- ----------- < X2<15 2>15
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output
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5 X1

Figure 6-6: A simple example of using classification trees to map an output space to
an input space. The data set with an R2 input space and a binary (0/1) outputs is
shown on the left. The classification tree representation of this data is shown on the
right.

root to the leaf. For instance, if the variable x1 takes a value of 1 and x 2 takes a value

of 1, then the output from the tree is 1 because x1 is < 5 and x 2 is < 15. Similarly,

if xi takes a value of 10 and x2 takes a value of 5, then the output from the tree is 0

because x1 is > 5 and x2 is < 15. In the left side of the figure, the dashed blue lines

in the input space represent the tests at the nodes and partitions.

It should be noted that many classification/regression trees can be generated for

a given data set. There is nothing preventing one from creating a regression tree for

the data in the figure that first checks the value of x 2 and then checks the values of xi.

It should also be noted that not all variables need to be partitioned. An even simpler

tree could simply choose output values based on the value of xi. Also, multiple splits

can occur along a single variable. For instance, the tree can first check if x1 is < 5,

then underneath its subbranch test whether x1 is < 2.

Lastly, it should be noted that the example in Figure 6-6 is technically classifi-

cation tree. This is because the outputs can take on classifications, rather than

real numbers. However, a regression tree only differs in that the output takes on

numerical values. The tree structure for the two is exactly the same. The only other

difference between the two is that the algorithms for finding each tree take slightly

different approaches.
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6.3.3 Algorithms for Finding Regression/Classification Trees

The problem of finding the optimal classification/regression tree is an NP-complete

problem - i.e., no efficient solution to this problem is known. However, there have

been a number of algorithms that take a greedy approach to this problem. One widely

used algorithm used for classification/regression tree building is the CART algorithm

developed by Breiman et al [37], which serves at inspiration for this work. In order

to build the regression tree from the input data for this problem, a variant of the

CART algorithm was implemented in MATLAB@ . The stages of this algorithm are

as follows:

1. All input data is considered. For each variable, examine a split at all points as

defined by a particular resolution. Looking at Figure 6-6 for example, assume

that we choose a resolution of 0.1. Then the splits considered are at 0, 0.1,

... 10 for x1 and 0, 0.1, ..., 20 for X2 , assuming the largest values in the input

data for x1 and x2 are 10 and 20, respectively. The resolution used for this

implementation was 0.01 .

2. Possible outputs are tested for each split. The split whose output results in the

lowest mean squared error (MSE) between the actual outputs and the assigned

possible outputs is selected.

3. The selected split is applied to the data. In this way, the input space is parti-

tioned.

4. This process is repeated recursively for the two children notes that are created

as a result of the split.

5. Splitting is stopped when the MSE of the current tree drops below a threshold

and the regression tree is returned.

There are a number of tradeoffs in deciding the threshold balance. The first is

having it small enough that it maps the input well. However, if it is too small,

the tree can have a very large depth due to a likely increased number of splits. A
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tree with an extremely large depth is undesirable for two reasons. The first is that

it is hard to implement in a controller if the splits must be programmed manually.

The second is that the length of time in which an output is obtained from a tree is

directly proportional to the depth of the tree. This becomes important when the tree

is traversed in real time to obtain commands for the robot. Therefore, the MSE must

be balanced in such a way to both well-map the input data and run quickly in real

time. The exact balance obviously depends on the real-time needs of the application.

One thing that is not explored is the biasing of particular variables in the splitting.

For instance, more splits across a more relevant variable may be desirable. Even

without taking this information into account, the performance of this algorithm was

still acceptable.

The algorithm was structured to take data in a similar fashion to the majority of

learning algorithms. This structure is explained in the following section.

6.3.4 Structuring of Input Data

Before the input data for the regression trees is structured, the underlying model

model must be chosen between Equations 6.1, 6.2, and 6.3. During the generation

of the first set of training data via human trials, a thresholding condition of the

movement of the follower human was not imposed. Therefore, the underlying model

proposed in equation 6.2 was chosen. This representation has the benefit of having

a smaller input space of only differential angles when compared to the input space

of both differential and absolute angles. This is important for two reasons. The first

is in learning the tree. The number of splits performed during the building of the

tree increases with each variable, and makes the building of the tree take longer.

Additionally, more splits can potentially lead to a tree with larger depth, which as

described before has ramifications for real-time performance.

Typically, the process of learning the tree structure that represents a set of training

data takes m observations of a variable Y that is caused by p predictor variables, x1 ,

... z,. The inputs to most algorithms are matrices X and Y. X is a matrix of size

m x p, whose columns are the predictor variables and the rows are the observations.
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Y is a column vector of size m x 1. This is illustrated in Figure 6-7.

obs1

obs2

obs

obsm

X

obs1

obs 2

obs

obsm

Y

Figure 6-7: Typical training data structure for learning regression trees.

Because in our particular example we are concerned with predicting the follower

angle from previous differential follower and leader angles, we choose the predictor

variables to be Af (t - 1), ..., Af(t - nb) , Al(t - 1), ... , Al(t - n,), and the predicted

values to be Af(t). It is assumed that for each trial, each sample point constitutes an

observation an observation as defined previously. For a particular trial X", there are

nK observations. Therefore, the observation matrix Xn is a nK X (na + nb) matrix,

while the output matrix Y is a nK x 1 column vector. This is illustrated in Figure

6-8.

Af(t - 1) ... Af(t - nb),Al(t - 1) ... AL(t - n.)

obs1

obs 2

obs1

obSnK

Af(t)

obs1

obs 2

obs

obsn

Figure 6-8: Training data organization of a single trial for use in regression tree

learning algorithm.

Because the leader and the follower share the same relationship both between
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each trial during the process of training data generation and across each time slice

within a given trial, the individual trial input matrices X" for each trial can be

vertically concatenated with the other input matrices to form a single input matrix:

X = X 1 , ..., X,. The same is dowe for the output matrices to form a single output

matrix: Y = Y, ..., Y,. This is illustrated in Figure 6-9.

X Y

X Y

Figure 6-9: Concatenation of individual input matrices X, and Y to form regression
tree algorithm inputs X and Y.

The data set generated through the 100 trials as described above was arranged in

the manner just described to allow for use with the regression tree algorithm.

6.3.5 Results of Using Regression Trees for Prediction in

Simplified Follower Task

With the objective of using the regression tree output as commands for an actual

system, the stopping criterion of the regression tree was chosen to create a tree of

depth 20 when using the training data set from the 100 trials. In order to validate the

use of regression trees in predicting the change of the follower angle at time t from

previous follower and leader angle changes, the training data segment was divided

into two sets - one used for training, and one used for validation (50 for training, 50

for validation).
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An example reconstruction of the follower angle based on real-time regression tree-

based calculations is shown in Figure 6-10. The upper graph shows the differential

follower human angle output from the regression tree. The bottom graph shows the

reconstruction of the follower angle based on the output of the regression tree at each

time point. For reference, the differential and absolute angle of the leader is shown

in each graph.

0
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S100
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Figure 6-10: Follower angle outputs calculated by the learned regression tree.

The graph shows the success of the algorithm in capturing the leader-follower

relationship of the simplified task. Although the differential output has occasional

spikes that do not well capture the actual differential angles, the reconstructed angle

still very closely follows the actual angle of the follower human during the trial.

Because of the imperfect following of the rules by the follower human, whether the

angle adheres to these rules is difficult to tell. What's important here, however,

is the qualitative response of the follower human. If we assume that the follower

human followed these rules in a relatively close manner, then the relationship should
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be captured. Upon a qualitative inspection of the figure, all of the rules previously

specified are followed. This gives hope in capturing leader-follower relationships of

more complicated tasks, whose learning can potentially be the subject of future work.

6.4 Implementation of Leader/Follower Relation-

ship of SRL-Mimicking Robot

Given that the leader-follower relationship could be captured in the one-dimension

case, transferring this follower behavior a robot was attempted for use in the wiring

task. In order to do this, the wiring task had to be reduced to a single dimension,

which was considered the distance of a component away from its goal. Taking the

place of the leader human was the position of a wire, which started arbitrarily far away

from a wire control box and approached in a linear fashion. Taking the place of the

follower human was a miniature robot that traveled from its arbitrary initial condition

to a wire terminal in order to simulate the affixing of the wire to its terminal. It did

so in a piece-wise linear trajectory. The regression tree, which dictated the motion

of the robot across its trajectory based on the position of the wire, was scaled to

match both the sampling rate and magnitudes of distances that were relevant given

the wiring task.

The task simulated the affixing of three wires to a wiring control box. Each wire

had a random starting position and a predetermined goal position. The equipment

setup used in the implementation of the wiring task is shown in Figure 6-11. An

Opti-Track motion capture system consisting of four high-speed cameras was used to

track the wires, which were outfitted with markers that identified the wires uniquely.

The cameras ran at a speed of 100Hz and tracked objects of interest in six degrees

of freedom. The robot used was a Denso Robot (Denso Robotics Teaching Edition),

which is a seven degree of freedom robot. The Denso robot had some less than

ideal performance characteristics - its joint angle commands were open loop because

that lack of sensory information at the joints, and due to proprietary communication
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protocol constraints, it could only be run at 1 Hz.

JMJ Denso___ __ ___ Ro ot

Figure 6-11: Setup for the implementation of the wiring task completed with human-

robot coordination.

Despite these glaring drawbacks, the coordination task was still accomplished in

a fluid and cohesive manner. The robot followed the motions of the wires quite well.

As the wire approached the wiring terminal, the robot approached the terminal as

well. If the wire was moving away from the control box, the robot went back to

its initial condition. If there was a substantial amount of noise in the distance of a

wire away from its goal position, then the robot paused at its current position. This

behavior is the desired behavior seen in the simplified coordination task as defined

before. The only noticeable downside of the implementation set-up was an occasional

lag in responding to a wire switching from approaching a goal to moving away from

a goal and vice versa. This is almost certainly due to the poor sampling rate, since

the robot still travels forward between the sampling intervals. Such a result is very

promising because it implies that a very simple one-dimensional relationship can be

captured from two human demonstrators and transferred to a robot that coordinates

with a human in six dimensions.
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Chapter 7

Conclusion

In this work, the concept of the Supernumerary Robotic Limbs (SRL) was introduced.

This newly developed SRL is a set of extra limbs in the form of a wearable robot. The

initial goal of this robot is to assist a human in aircraft manufacturing and assembly

tasks. One can envision the SRL being used to assist a human operator in a slew of

tasks, such as the wiring of a control box, bearing the load of a window to be affixed

to a fuselage, and the vacuuming of extremely hazardous carbon fiber particles that

are a result of drilling. Outside of aircraft assembly, one can envision the SRL being

used in the operating room, in space, or other manufacturing contexts. The SRL

promises to assist the human in at least two large ways. The first is to augment his

workspace. The second is to assist in load bearing to ultimately reduce the workload

imposed on the human. These additional limbs were realized in the form of two, three

degree of freedom robotic arms that have the load-bearing capacity of human arms

and attach to the human operator much like a hiking backpack. An element of safety

was introduced to these limbs via the coupling of an elastic element with the output

shaft of each DC brushless motor.

The biomechanics of using the SRL to assist in the static load-bearing task were

then explored in depth. A test rig that mimicked the mass and geometric properties

was used to evaluate the reaction forces imposed on the human by the SRL. Sensory

information derived from this rig was used in a biomechanical model that related

those reaction forces and the angles of major human joints to the torques at those
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joints during a static load bearing task with and without assistance from an SRL-like

apparatus. It was found that the raw torques were higher on the lower joints but

smaller on the upper body joints when using the test rig to assist in bearing weight

compared to when not using the rig. A metric to summarize the impact of imposed

torques on the human was developed. Using this new metric, it was shown that the

work load of the human was reduced during the static load bearing task when using

an SRL-like rig.

Within the context of endpoint trajectory learning, the model-based approach

and the data-driven approaches were compared in terms of utility for the SRL in

its aircraft assembly setting. A data-driven approach was selected, and the process

with which a robot (especially the SRL) can both empirically derive its trajectories to

follow and coordinate with its human leader was proposed. The specific task of wiring

a control box was chosen as an exemplar task. The endpoint trajectory was found

via Partial Least Squares Regression, which represented the trajectory in a lower

dimensional space. This representation well captured the important points along the

trajectory but provided little insight as how the robot was to coordinate with the

human along that trajectory.

Before tackling the capturing of the leader-follower relationship in the wiring task,

a simplified task that captured the essence of the original task was proposed. A

testbed used to capture the relationship that dictated the actions of the leader and

the follower in the simplified task was created and used to generate 100 demonstrations

of the task. An autoregressive model relating the differential movement of the follower

human to both his past differential movements and the past differential movements

of the leader was chosen to capture the underlying relationship between the humans.

The representation of regression trees was chosen to predict the change in follower

human position from the past differential movements of both the leader and follower,

and a variant of the CART algorithm was developed to generate a regression tree

from the trial data. Once it was verified that the regression tree could well predict

the follower human position changes in this simple case, the full wiring task was

attempted. Here, the robot took the position of the follower human and guiding its
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actions based on the positions of the wires was the scaled regression tree derived from

the simplified task. It was found that this generated the desired qualitative behavior

for the robot; thus, the potential extension of the regression tree learning strategy to

more complex tasks looks promising.
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