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Abstract

Desalination is an important separation process which can provide water scarce re-
gions with clean water for drinking or for agricultural use. Thermal distillation has
historically been the dominant method for obtaining pure water, but today, reverse
osmosis (RO) produces a greater percentage of the total desalinated water worldwide
by a large margin. Fundamentally, an RO system is a membrane-based osmotic mass
exchanger. Another type of membrane-based osmotic process, a subset of forward
osmosis (FO) called pressure retarded osmosis (PRO), currently exhibits promise for
making desalination more energy efficient and is receiving attention in the literature.

PRO exchangers are capable of producing power from two streams of different salin-
ity and recovering energy from the brine stream of any desalination process when
paired with water pumps and turbines. RO and PRO exchangers are essentially mass

exchangers with a hydraulic or osmotic pressure difference across a membrane acting
as the predominant driving potential.

Using a simple resistance model for mass transfer applied across an ideal RO and
PRO membrane, closed form expressions are developed which relate the performance
of a one-dimensional membrane as a function of membrane properties, membrane
area, inlet salinities, operating conditions, and flow configuration. These closed form
expressions are analogous to the effectiveness versus number of transfer unit (c-NTU)
models which have been used for decades in the rating and sizing of heat exchangers.
The closed form expressions, along with numerical simulations for validating the

models, are used to determine the limits of permeate flux in one-dimensional RO,
PRO, and FO membranes; analyze the power performance of a one-dimensional PRO

membrane; and determine the viability of using a PRO-based energy recovery device

to reduce the net power consumption for RO desalination.
The closed-form solutions for determining the performance of the RO and PRO

membranes require that osmotic pressure be defined as a linear function of salinity.
It is found that for a seawater RO process with a typical recovery ratio of 50% or less,
the maximum error associated with linearization is less than 6.1%. For brackish water
desalination, where processes typically operate at very high recovery ratios but have
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brine salinities lower than those encountered in seawater desalination, the error does
not exceed 1.8%. For PRO membranes, using varying linearization curves, maximum
errors for flux performance of less than 5.5% are incurred by the linear approximation.
It is also found that the maximum Second Law efficiency of the power achievable
from a one-dimensional PRO membrane is 66.48%. For large membrane areas, the
maximum power for a PRO membrane occurs at a hydraulic pressure difference that is
not equal to exactly one-half the osmotic pressure difference as reported in literature
for zero-dimensional PRO membranes. For PRO membranes used for brine chemical
energy recovery from an RO plant treating a feed stream of 35 g/kg, it is found that
a wastewater salinity of less than 20 g/kg is required to recover power. Because the
membranes within this study have been assumed as ideal, the performance results for
flux, power, and power recovery can serve as informative upper bounds.

Thesis Supervisor: John H. Lienhard V
Title: Collins Professor of Mechanical Engineering

4



Acknowledgments

I dedicate my first words of gratitude to whichever benevolent creator or spark set

this awe inspiring universe in motion. Life is truly the greatest gift and these are

marvelous times in which we live.

I sincerely thank all of my past engineering mentors whom have guided me through

the scientific process and showed me how to become a better researcher: Prof. Robert

Boehm, Dr. Jay James, and Dr. Omar Abdelaziz. To my current advisor, Prof. John

Lienhard V: I am grateful for your guidance, wisdom, and trust in my abilities when

you chose me to join the Center for Clean Water and Energy. I would also like to

thank Dr. Mostafa Sharqawy for his contributions to this work and to King Fahd

University of Petroleum and Minerals for funding this research through the Center

for Clean Water and Clean Energy at MIT and KFUPM.

Gracias a mis padres, Carlos y Adriana, por la paciencia que tuvieron en criarme,

porque no era un niio ficil de criar; por el amor inmenso y el apoyo que me siguen

dando; y por inspirarme con su fuerza y valor ejemplificado por actos como establecer

una vida en un pais extrafio, empezar una empresa exitosa, o tomar roles de liderazgo

en la sinagoga, en los deportes, y en organizaciones profesionales y comunitarias.

Gracias por servir como modelos de c6mo ser una persona de bien. Tambien doy

gracias a mis dos hermanos, Anna y Marcos, quienes me siguen inspirando con sus

propios 6xitos y a todos las otras personas, inumerables de mencionar, que ayudaron

a que este momento sea una realidad. Los quiero muchisimo.

5



THIS PAGE INTENTIONALLY LEFT BLANK

6



Contents

1 Introduction

1.1 W ater crisis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.1 Osmotic mass exchangers. . . . . . . . . . . . . . . . . . . . .

2 Analogy of Reverse Osmosis Mass Exchangers to Heat Exchangers

19

19

19

20

25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Reverse osmosis mass exchanger model . . . . . . . . . . . . . . . . . 28

2.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Dimensionless parameters . . . . . . . . . . . . . . . . . . . . 32

2.3 Reverse osmosis effectiveness (E-MTU model) . . . . . . . . . . . . . 36

2.3.1 Numerical model of RO mass exchanger . . . . . . . . . . . . 38

2.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Design example . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Analogy of Pressure Retarded Osmosis Mass Exchangers to Heat

Exchangers 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 PRO mass exchanger model . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Parallel-flow configuration PRO model . . . . . . . . . . . . . 49

3.2.2 Dimensionless parameters . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Counterflow configuration PRO model . . . . . . . . . . . . . 55

7



3.3 PRO effectiveness (E-MTU model) . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Parallel-flow PRO effectiveness . . . . . . . . . . . . . . . . . 61

3.3.2 Counterflow PRO effectiveness . . . . . . . . . . . . . . . . . . 63

3.4 Numerical PRO mass exchanger model . . . . . . . . . . . . . . . . . 64

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Limits of Flux and Power for a One-Dimensional Ideal FO and PRO

Membrane 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Alternative PRO mass exchanger model . . . . . . . . . . . . . . . . 77

4.2.1 Parallel-flow configuration PRO model . . . . . . . . . . . . . 78

4.2.2 Dimensionless parameters . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Counterflow configuration PRO model . . . . . . . . . . . . . 82

4.3 Alternative PRO effectiveness (E-MTU, model) . . . . . . . . . . . . 84

4.3.1 Parallel-flow PRO effectiveness . . . . . . . . . . . . . . . . . 85

4.3.2 Counterflow PRO effectiveness . . . . . . . . . . . . . . . . . . 85

4.4 Forward osmosis mass exchanger model . . . . . . . . . . . . . . . . . 86

4.4.1 Parallel-flow FO permeation ratio and effectiveness . . . . . . 86

4.4.2 Counterflow FO permeation ratio and effectiveness . . . . . . 89

4.4.3 Effect of concentration polarization on FO permeate flux . . . 93

4.5 Reversible model for salinity gradient power production . . . . . . . . 96

4.5.1 Governing equations for a reversible mixing process . . . . . . 99

4.5.2 Reversible model results and discussion . . . . . . . . . . . . . 101

4.6 Irreversible model for PRO power production . . . . . . . . . . . . . 102

4.6.1 Irreversible model results and discussion . . . . . . . . . . . . 107

4.7 Conclusions . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . .111

5 Use of PRO Membranes as Energy Recovery Devices 113

5.1 Introduction . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 114

5.2 Thermodynamic analysis of reversible separation . . . . . . . . . . . . 116

5.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 117

8



5.2.2 Expressions for least power . . . . . . . . . . . .

5.2.3 Reversible model results and discussion . . . . .

5.3 Thermodynamic analysis of irreversible separation . . .

5.3.1 Reverse osmosis system with pressure exchanger

5.3.2 Modified system with PRO exchanger . . . . . .

5.3.3 Governing equations . . . . . . . . . . . . . . .

5.3.4 Irreversible model results and discussion . . . .

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . .

A Modified van 't Hoff Coefficient

A.1 van 't Hoff coefficients for various PRO operating conditions . . . .

B Determination of the Osmotic Pressure Function

9

. . . . . . . 120

. . . . . . . 121

. . . . . . . 126

. . . . . . . 126

. . . . . . . 127

. . . . . . . 128

. . . . . . . 131

. . . . . . . 140

143

145

147



THIS PAGE INTENTIONALLY LEFT BLANK

10



List of Figures

1-1 Total worldwide installed capacity by desalination technology for 2012. 20

1-2 Schematic drawing of a reverse and forward osmosis exchanger . . . . 21

1-3 Qualitative plot of the various operating regimes of osmotic membrane-

based m ass exchangers. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-1 Schematic drawing of a single inlet heat and osmotic mass exchanger. 27

2-2 Schematic drawing of a membrane-based RO osmotic mass exchanger. 29

2-3 Recovery ratio vs. mass transfer units at various osmotic pressure ratios. 34

2-4 Salinity of rejected brine vs. mass transfer units at different osmotic

pressure ratios when the inlet feed salinity is 35 g/kg. . . . . . . . . . 35

2-5 Concentration factor vs. mass transfer units for varying osmotic pres-

sure ratio and arbitrary feed salinity. . . . . . . . . . . . . . . . . . . 36

2-6 Effectiveness vs. mass transfer units for varying osmotic pressure ratios. 38

2-7 Recovery ratio vs. mass transfer units with contours of osmotic pressure

ratio for analytical and numerical model. . . . . . . . . . . . . . . . . 41

2-8 Concentration factor vs. mass transfer units with contours of osmotic

pressure ratio for analytical and numerical model. . . . . . . . . . . . 42

2-9 Effectiveness vs. mass transfer units with contours of osmotic pressure

ratio for analytical and numerical model. . . . . . . . . . . . . . . . . 43

3-1 Schematic drawing of a two-inlet heat and osmotic mass exchanger. . 48

3-2 Schematic drawing of pressure retarded osmosis exchangers in parallel-

flow and counterflow configurations. . . . . . . . . . . . . . . . . . . . 50

11



3-3 Permeation ratio vs. mass transfer units at different mass flow rate

ratios for a parallel-flow configuration. . . . . . . . . . . . . . . . . . 56

3-4 Concentration factor of feed and draw streams vs. mass transfer units

with contours of mass flow rate ratio for parallel-flow configuration. . 56

3-5 Permeation ratio vs. mass transfer units at different mass flow rate

ratios for a counterflow configuration. . . . . . . . . . . . . . . . . . . 60

3-6 Concentration factor of feed and draw streams vs. mass transfer units

with contours of mass flow rate ratio for counterflow configuration. . . 60

3-7 Effectiveness vs. mass transfer units at different mass flow rate ratios

for a parallel-flow configuration. . . . . . . . . . . . . . . . . . . . . . 63

3-8 Effectiveness vs. mass transfer units at different mass flow rate ratios

for a counterflow configuration . . . . . . . . . . . . . . . . . . . . . . 65

3-9 Permeation ratio vs. mass transfer units with contours of mass flow rate

ratio for analytical and numerical model. Exchanger is in counterflow

configuration with seawater and river water inlet streams. . . . . . . . 68

3-10 Concentration factor vs. mass transfer units with contours of mass

flow rate ratio for analytical and numerical model. Exchanger is in

counterflow configuration with seawater and river water inlet streams. 69

3-11 Effectiveness vs. mass transfer units with contours of mass flow rate

ratio for analytical and numerical model. Exchanger is in counterflow

configuration with seawater and river water inlet streams. . . . . . . . 70

3-12 Permeation ratio vs. mass transfer units with contours of mass flow rate

ratio for analytical and numerical model. Exchanger is in counterflow

configuration with brine and seawater inlet streams. . . . . . . . . . . 71

3-13 Concentration factor vs. mass transfer units with contours of mass

flow rate ratio for analytical and numerical model. Exchanger is in

counterflow configuration with brine and seawater inlet streams. . . 72

3-14 Effectiveness vs. mass transfer units with contours of mass flow rate

ratio for analytical and numerical model. Exchanger is in counterflow

configuration with brine and seawater inlet streams. . . . . . . . . . . 73

12



4-1 Permeation ratio vs. mass transfer units with contours of mass flow

rate ratio for a parallel-flow configuration in FO operation. . . . . . . 88

4-2 Concentration factor vs. mass transfer units with contours of mass flow

rate ratio for a parallel-flow configuration in FO operation. . . . . . . 88

4-3 Effectiveness vs. mass transfer units with contours of mass flow rate

ratio for a parallel-flow configuration in FO operation . . . . . . . . . 89

4-4 Permeation ratio vs. mass transfer units with contours of mass flow

rate ratio for a counterflow configuration in FO operation. . . . . . . 91

4-5 Concentration factor vs. mass transfer units with contours of mass flow

rate ratio for a counterflow configuration in FO operation. . . . . . . 91

4-6 Effectiveness vs. mass transfer units with contours of mass flow rate

ratio for a counterflow configuration in FO operation. . . . . . . . . . 92

4-7 Schematic diagram of a reversible salinity gradient engine with (a)

complete mixing and (b) incomplete mixing schemes. . . . . . . . . . 97

4-8 Specific maximum reversible power of complete mixing versus the mass

flow rate ratio for fixed inlet salinities. . . . . . . . . . . . . . . . . . 102

4-9 Reversible power of incomplete mixing versus permeation ratio for

varying mass flow rate ratios and fixed inlet salinities. . . . . . . . . . 103

4-10 Schematic diagram of a PRO power generation system. . . . . . . . . 104

4-11 Specific power vs. pressure ratio at MTU, = 0.1 with contours of MR

for a one-dimensional, counterflow PRO membrane. . . . . . . . . . . 107

4-12 Specific power vs. pressure ratio at MTU, = 1 with contours of MR

for a one-dimensional, counterflow PRO membrane. . . . . . . . . . . 108

4-13 Specific power vs. pressure ratio at MTU, = 5 with contours of MR

for a one-dimensional, counterflow PRO membrane. . . . . . . . . . . 108

4-14 Specific maximum power and optimum pressure ratio vs. MR at MTU, =

0.1 for a one-dimensional, counterflow PRO membrane. . . . . . . . . 109

4-15 Specific maximum power and optimum pressure ratio vs. MR at MTU , =

1 for a one-dimensional, counterflow PRO membrane. . . . . . . . . . 110

13



4-16 Specific maximum power and optimum pressure ratio vs. MR at MTU,=

5 for a one-dimensional, counterflow PRO membrane. . . . . . . . . . 110

5-1 Schematic diagram of a reversible separator without and with a re-

versible energy recovery device. . . . . . . . . . . . . . . . . . . . . .. 117

5-2 Reversible recovered power vs. permeation ratio for varying MR and

wastewater salinity at a separation recovery ratio of 0.5. . . . . . . . 124

5-2 Reversible recovered power vs. permeation ratio for varying MR and

wastewater salinity at a separation recovery ratio of 0.5. . . . . . . . 125

5-3 Schematic diagram of an irreversible separation system without and

with a pressure retarded osmosis based energy recovery device. ..... 135

5-4 Specific recovered power vs. pressure ratio with contours of MR for a

fixed brine inlet salinity and varying wastewater salinity. . . . . . . . 136

5-4 Specific recovered power vs. pressure ratio with contours of MR for a

fixed brine inlet salinity and varying wastewater salinity. . . . . . . . 137

5-5 Specific recovered power vs. permeation ratio with contours of MR for

a fixed brine inlet salinity and varying wastewater salinity. . . . . . . 138

5-5 Specific recovered power vs. permeation ratio with contours of MR for

a fixed brine inlet salinity and varying wastewater salinity. . . . . . . 139

A-i Seawater osmotic coefficient, nonlinear osmotic pressure, and linear

osmotic pressure vs. salinity at T = 25'C. . . . . . . . . . . . . . . . 144

A-2 Nonlinear seawater osmotic pressure vs. salinity with linear approxi-

mations using varying van 't Hoff coefficients. . . . . . . . . . . . . . 145

14



List of Tables

2.1 Data input for RO numerical model . . . . . . . . . . . . . . . . . . . 39

3.1 Data input for PRO numerical model . . . . . . . . . . . . . . . . . . 66

3.2 Modified van 't Hoff coefficients over three ranges for determining os-

motic pressure as a function of salinity at T = 25'C . . . . . . . . . . 67

3.3 Maximum errors resulting from linearized osmotic pressure. . . . . . . 69

4.1 Inputs for the calculation of flux through an ideal and real membrane 95

5.1 Reversible model inputs . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Irreversible model inputs . . . . . . . . . . . . . . . . . . . . . . . . . 132

15



Nomenclature

Roman symbols Units

A water permeability coefficient kg/s-m2-kPa

Am total membrane surface area m2

b molality - moles of solute per kilogram of solvent mol/kg

C modified van 't Hoff coefficient kPa-kg/g

c molarity - moles of solute per cubic meter of solution mol/m 3

CF concentration factor -

g specific Gibbs free energy kJ/kg

h specific enthalpy kJ/kg

i van 't Hoff factor

K solute resistance to diffusion s/m

k mass transfer coefficient m/s

rh solution mass flow rate kg/s

M molecular weight g/mol or kg/mol

MR mass flow rate ratio

MTU number of mass transfer units

N number of elements in a numerical exchanger

P hydraulic pressure kPa

P* pressure ratio

PR permeation ratio

Q heat transfer rate kW

R universal gas constant kJ/mol-K

RR recovery ratio

s specific entropy kJ/kg-K

SR osmotic pressure ratio

T temperature K or C

w salinity - grams of solute per kilogram of solution g/kg

W work transfer rate or power kW

16



Greek symbols

az first quadratic root

#3 second quadratic root

A a difference

effectiveness

isentropic efficiency

0 modified osmotic pressure ratio

first quadratic root

A second quadratic root

7r osmotic pressure

p density

<0 osmotic coefficient

w Lambert or omega function

Subscripts

0

actual

A

B

b

comp

d

db

exp

f

i

in

least

max

environmental property

actual operation

system A

system B

brine stream

compression

draw stream

diluted brine stream

expansion

feed stream

pertaining to the ith section of a one-dimensional exchanger

inlet

pertaining to the jth solute in a solution

reversible operation

maximum

17

Units

kPa

kg/m 3



net

opt

out

p

pump

pure

rec

recipe

rev

s

sep

turb

ww

Superscripts,

"

rev

Acronyms

ECP

ERD

FO

ICP

NTU

PRO

PX

RO

SGE

net system work

optimum

outlet

permeate or product stream

associated with a pump

property of pure water

work recovered by use of energy recovery device

corresponds to a reference of seawater constituents

reversible

salt

separation

associated with a turbine

wastewater stream

modified variable

flux (per unit area)

reversible

external concentration polarization

energy recovery device

forward osmosis

internal concentration polarization

number of transfer units

pressure retarded osmosis

pressure exchanger

reverse osmosis

salinity gradient engine

18

Units

1/M 2



Chapter 1

Introduction

1.1 Water crisis

"Water, water, everywhere, nor any drop to drink"

So cried Samuel Coleridge's ocean stranded ancient mariner, but for many living

in the world today, this is not fiction but a stark reality. According to the United

Nations, almost one-fifth of the world population currently lives in areas of physical

water scarcity and one-quarter lives in developing countries which face water scarcity

due to a lack of adequate water related infrastructure [1]. In addition to scarcity,

the quality of available water in certain parts of the world is so low that in 2010 the

Secretary-General of the United Nations declared that dirty water kills more people

than war [2]. There are solutions, however, to quench the world's thirst.

1.2 Existing solutions

Conservation and wastewater recycling are crucial first steps for reducing water de-

mands in water stressed regions. Where these efforts are insufficient or unsuccessful,

however, desalination plays an essential role in providing fresh water for potable use

and for agriculture. Desalination is any process that separates ions from saline waters.

Figure 1-1 shows the total worldwide installed capacity by desalination technology
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Hybrid 1%

Other 2% Reverse osmosis 63%
Electro-dialysis 3 %-

Multi-effect distillation 8% Installed capacity
74.8 million m3/d

Multi-stage flash 2 I3% hI

Figure 1-1: Total worldwide installed capacity by desalination technology for 2012.

in 2012 [3]. The desalination technologies shown here can be categorized by their

primary driving potential: temperature, for multi-stage flash and multi-effect distil-

lation; voltage, for electro-dialysis; or hydraulic pressure, for reverse osmosis.

Of the nearly 75 billion liters per day currently produced by desalination, reverse

osmosis (RO) systems produce the lion's share of 47 billion liters per day. Because

RO dominates the global installed capacity, this work will focus on ways to improve

reverse osmosis systems in order to alleviate worldwide water scarcity.

1.2.1 Osmotic mass exchangers

Figure 1-2 depicts the two osmotic mass exchangers which will be the focus of this

work. Figure 1-2a shows a basic representation of a reverse osmosis mass exchanger.

In a reverse osmosis system, a feed stream to be purified, typically seawater or brackish

water, is first pre-treated to prevent membrane damage. In this step, anti-scalants

are added and foulants are removed. The pre-treated feed stream is then pumped to

a high pressure and sent into the exchanger.

The RO exchanger is comprised of a semi-permeable membrane which allows water

to pass through but, not salts or other dissolved solids. Water is forced through the

membrane via a large trans-membrane hydraulic pressure difference. This hydraulic

pressure difference, AP = Pfeed - Pproduct, must be greater than the difference in

trans-membrane osmotic pressure, A = 7 fecd - Wproduct, in order for the water to flow

in the direction of lower salt concentration.

20



-+ Product
Permeate

(a) Representation of a reverse osmosis exchanger

Feed in Feed out

Draw in Draw out
Permeate

(b) Representation of a forward osmosis exchanger

Figure 1-2: Schematic drawing of a reverse and forward osmosis exchanger.

The osmotic pressure of a stream is a function of the local amount of dissolved

salts. The phenomenon of osmosis is a mass transfer process in which water travels

through a membrane impermeable to salts from a region of low salt concentration

to a region of high salt concentration. The high salinity region is said to have high

osmotic pressure, whereas the low salinity region is said to have low osmotic pressure.

Inside of the reverse osmosis exchanger, the feed is concentrated and the product

is very pure. This corresponds to a high osmotic pressure feed and a low osmotic

pressure product, which, in the absence of a hydraulic pressure difference, will serve

to force permeate from the product side to the feed side. For the RO process, as

long as the applied hydraulic pressure difference is larger than the osmotic pressure

difference, the permeate will flow through the membrane in the intended direction.

The remaining feed exits as a concentrated brine and the permeate is collected as

the product. In practice, each exchanger unit is a pressure vessel comprised of one or

more spiral wound membranes. There may be multiple pressure vessels in series and

in parallel in an RO plant.

Figure 1-2b shows a typical forward osmosis (FO) exchanger. Like an RO sys-

tem, a semi-permeable membrane is used which allows water, but not salts, to pass

21
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Permeate flux

c E0

X -a No flux, AP =AnRO P>a

0

Pressure difference, AP

0 L.

.2 .4-J

4- Drc F, AP= 0OA>0

Figure 1-3: Qualitative plot of the various operating regimes of osmotic membrane-
based mass exchangers. Figure adapted from Lee et al. [4].

through. Unlike RO, however, the permeate flows into the more concentrated stream

due to an osmotic pressure difference which is higher than the hydraulic pressure dif-

ference. The term forward osmosis specifically means that the permeate flows through

the membrane in the direction of the more concentrated stream. The value of the

hydraulic pressure difference, AP = Paraw - Preed, relative to the osmotic pressure

difference, A7r = 7araw - Tfeed, is what denotes whether the exchanger operates in the

pressure retarded osmosis (PRO) or direct forward osmosis regime as illustrated in

Fig. 1-3. An exchanger operates in direct forward osmosis when both streams are at

the same hydraulic pressure and in the PRO regime when 0 < AP < ATr. Through-

out this work, the terms direct FO and FO both denote the regime of operation where

AP = 0.

The second chapter of this work will present a method for rating and sizing RO

exaers exch is similar to a model used for heat exchangers. This model can

allow RO system designers to select the appropriate amount of membrane area for

given operating conditions, membrane properties, and desired performance. The third

22



chapter extends the method of rating and sizing RO exchangers to FO exchangers

operating in the PRO regime. These types of exchangers can be used for either power

production or for recovering chemical energy from the brine stream of a desalination

process. The final two chapters examine the limits of FO performance, the limits of

PRO power production, and the viability of using PRO membranes for brine chemical

energy recovery from a reverse osmosis system.
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Chapter 2

Analogy of Reverse Osmosis Mass

Exchangers to Heat Exchangers

Leonardo D. Banchik, Mostafa H. Sharqawy 1, and John H. Lienhard V

Chapter abstract

A strong analogy exists between heat exchangers and osmotic mass exchangers. The E-
NTU method is well-known for the design of heat exchangers. In the present chapter,
a similar method, called E-MTU (effectiveness-mass transfer units), is developed for

osmotic mass exchangers in order to design RO systems. This method is used to

relate the size, applied hydraulic pressure, inlet salinity, and other parameters to the

recovery ratio and a newly defined effectiveness parameter for such mass exchangers.

The governing equations for an RO mass exchanger are nondimensionalized assuming

ideal membrane characteristics and a linearized form of the osmotic pressure function

for seawater. A closed form solution is found which relates three dimensionless groups:

the mass transfer units for an RO device, MTU, which is equivalent to an effective size

of the exchanger; a pressure ratio, SR, which relates osmotic and hydraulic pressures;

and the recovery ratio, RR, which relates the permeate to the inlet feed flow rate.

In addition, the effectiveness of an RO exchanger is defined as the recovery ratio

divided by the maximum recovery ratio. A one-dimensional numerical model of an

RO exchanger is developed in order to establish the range of validity of the analytical

model based on a linearized osmotic pressure approximation. The analytical E-MTU
model for the RO exchanger can be easily used for design or performance evaluation.

'Dr. Sharqawy contributed to the work in this chapter by assisting in the development of the
equations, developing the reverse osmosis effectiveness definition, and providing the design example.
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2.1 Introduction

Reverse osmosis (RO) is a separation process commonly used for the production of

pure water from brackish water or seawater. In RO, a saline source of water, the

feed stream, is pumped to a high hydraulic pressure and allowed to flow across one

side of a semi-permeable membrane within a pressure vessel, while lower pressure is

maintained on the other side. The membrane is permeable to water diffusion but

highly resistant to salt permeation so that, along the length of the membrane, pure

water flows through the membrane from the feed to the lower pressure, permeate side.

The permeate is collected as a product at the outlet whereas the feed stream exits

the vessel as a concentrated brine. The process is called reverse osmosis because the

input hydraulic pressure of the feed stream must be greater than the osmotic pressure

difference between the brine and permeate streams which would otherwise cause an

osmotic flow of water from the permeate to the feed.

There are many mathematical models for the mass transport process through the

RO membrane and which relate the performance of the RO system to the operating

conditions. A well-known model for the membrane transport is the solution-diffusion

model of Lonsdale et al. [5]. This model assumes that the membrane is a non-porous

material into which molecules dissolve and diffuse through. This diffusion theory

applies to both the solvent and solute molecules. Other mathematical models for

RO include the porous model [6], the capillary flow model [7], and the irreversible

thermodynamic model [8]. Much research has been conducted on the physics of

the solution-diffusion model [9-13] and many numerical studies have been applied to

account for the more complex effects of concentration polarization, salt diffusion, and

fouling [14-18]. Others have applied the solution-diffusion model for the design of

RO modules such as spiral wound and hollow fiber modules [19-22]. In addition, the

solution-diffusion model has been used together with relevant conservation laws to

optimize the operation of RO systems and minimize the specific power consumption
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Figure 2-1: Schematic drawing of a single inlet heat and osmotic mass exchanger.

of a plant [23-28].

In the heat exchanger shown in Fig. 2-la, the temperature difference between a

hot and cold fluid is the driving potential for a differential amount of heat transfer.

The resistance to heat flow per unit area is the reciprocal of the overall heat transfer

coefficient, U. The exchanger shown here is for a phase change process which has

a fixed cold temperature throughout the length of the exchanger. The analogous

system for an osmotic mass exchanger is the RO system shown in Fig. 2-lb. A feed

solution of a high salinity and high osmotic and hydraulic pressure enters the left

side of the exchanger. Along the length of the exchanger, permeate is forced through

a semipermeable membrane, leaving the salts behind. At the exit of the exchanger,

the feed is recovered as a concentrated brine and the product is recovered as the

accumulated amount of pure permeate. The driving potential for mass transfer is the

difference in hydraulic and osmotic pressures. The resistance to the mass transfer per

unit area is the reciprocal of the water permeability coefficient, A.

In heat exchangers, the effectiveness-number of transfer units (E-NTU) method
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developed by Kays and London [29] is a well-known design method that determines the

required surface area of a heat exchanger for a fixed effectiveness and inlet conditions.

The method uses three dimensionless groups: the effectiveness, which is the ratio of

actual heat exchange to the maximum heat exchange possible; a heat capacity rate

ratio, which is the heat capacity rate of the minimum capacity rate stream divided by

that of the maximum capacity rate stream; and the number of transfer units, which

is an effective size of the heat exchanger.

This chapter develops an E-NTU method for an RO mass exchanger. The gov-

erning equations for permeate flow in an RO exchanger are nondimensionalized and

solved to provide closed form analytical expressions which relate the effective size of

the exchanger, the performance of the exchanger, and the input operating conditions.

A new dimensionless performance indicator, the effectiveness of the RO exchanger,

is defined. These new dimensionless groups are discussed, and the analogy to heat

exchangers is drawn. Because the analytical model requires a linearization of the

osmotic pressure, a numerical model using the nonlinear osmotic pressure is also ap-

plied to quantify the errors associated with using the linear approximation. Finally,

a design example is given to illustrate the use of the present approach as a tool for

design of an RO system.

2.2 Reverse osmosis mass exchanger model

Figure 2-2 is a schematic drawing of an osmotic mass exchanger working in the RO

mode. A feed solution with a high salt concentration flows through a channel alongside

a semi-permeable membrane. The hydraulic pressure difference (AP) is greater than

the osmotic pressure difference (A7r) across the membrane, so that water flows from

the feed side to the permeate side. The inlet conditions of the feed stream are given

as the mass flow rate, hydraulic pressure, and osmotic pressure (which is a function of
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Figure 2-2: Schematic drawing of a membrane-based RO osmotic mass exchanger.

the local stream salinity) as indicated in Fig. 2-2. The total membrane area (Am,) and

water permeability (A) of the membrane material are also given. The model makes

the following assumptions:

" The water permeability coefficient (A) is constant.

" Concentration polarization is neglected, so that the salt concentration near the

membrane surface is equal to the bulk concentration of the associated stream.

" Hydraulic pressure drop through the flow channels is negligible.

" Salt rejection is 100%, so that only pure water diffuses through the membrane.

* The osmotic pressure follows van 't Hoff's equation which is linearly propor-

tional to the salt concentration (see Appendix A).

2.2.1 Governing equations

The permeate flow rate in the direction of the permeate stream through a differential

membrane area is given by Eq. (2.1)

drh = A . (A P - A-r) dAm (2.1)

where

e drhy, is the permeate mass flow rate through the membrane in kg/s,
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* A, is the modified2 water permeability coefficient of the membrane in kg/s-m2_

kPa,

* AP is the hydraulic pressure difference between the feed and permeate (i.e.,

Pf - Pp) in kPa,

* Air is the local osmotic pressure difference between the feed and permeate (i.e.,

7r - wp) in kPa, and

" Am is the membrane surface area in M2 .

The osmotic pressure for a solution [30] is given by

7T = #(RTPsoivent) bj (2.2)
j=solutes

where # is the osmotic coefficient, predominantly a function of temperature and salin-

ity; R is the universal gas constant; T is the absolute temperature; Psolvent is the

solvent density (pure water); and E bj is the sum of the molalities of each solute.
j=solutes

A detailed derivation of the osmotic pressure for seawater is given in Appendix B.

Equation (2.2) shows that osmotic pressure is a nonlinear function of salinity. In

order to facilitate our analysis, we use van 't Hoff's equation to linearize the osmotic

pressure. In the second half of this chapter, this assumption will be checked for its

validity by comparing results to a numerical model which uses the nonlinear osmotic

pressure. Checking for the validity of the linearization assumption will be especially

important for ranges of operation which encounter high salinities. Expressing the

osmotic pressure as a linear function of salinity yields:

AiF = 7f - FP =C(Wf -WP) (2.3)

2It is important to note that the water permeability coefficient (A) is often given in units of
m/s-bar or L/m 2-hr-bar [16], which is the permeate water volume flux per unit pressure difference;
however, for the present model, we express this coefficient on a mass basis (equivalent to multiplying
it by the density of pure water and some obvious SI conversion factors).
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where w is the salinity (mass of solutes per total mass of solution) in g/kg and C

is a modified van 't Hoff's coefficient (see Appendix A). The modified van 't Hoff's

coefficient can adjusted by range to address for nonlinearity. Substituting Eq. (2.3)

into Eq. (2.1),

diP = A -[AP - C(wf - wp)] dAm (2.4)

Applying conservation of solutes for the feed side between the inlet and any arbitrary

location along the flow channel:

m I, f m Tf, in X Wf,j in f X W (2.5)

At the same arbitrary location, conservation of mass requires that

Tnf, in = rf + hp (2.6)

Substitution of Eq. (2.6) into Eq. (2.5) yields

Wf~ =rnf, in X Wf, in (2.7)
mf, in - mp

Under the assumed condition of 100% salt rejection, only pure water permeates

through the membrane; hence the salinity of the permeate and its osmotic pressure

are zero. Substituting Eq. (2.7) into Eq. (2.4) and setting wp = 0 yields

drhp=A AP-Cmfin X w, i1 dAm (2.8)
mf, in - mp_

We now proceed to cast Eq. (2.8) in a dimensionless form. Three dimensionless

parameters are introduced for this purpose.
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2.2.2 Dimensionless parameters

Recovery ratio, RR

RR m 7 (2.9)
mf, in

The recovery ratio is a primary performance metric of an RO mass exchanger as

it represents the amount of pure water recovered from the feed stream. (In so far as

the inlet mass flow rate is greater than the maximum amount of permeate that can

be recovered, the recovery ratio should not be confused with the effectiveness which

will be described in the next section.)

Osmotic pressure ratio, SR

S Rf - 'f "n (2.10)AP

The osmotic pressure ratio is the ratio of the osmotic pressure at the feed inlet to the

trans-membrane hydraulic pressure difference. This ratio should always be less than

one since in the RO system the hydraulic pressure difference must be greater than

the osmotic pressure of the feed.

Mass transfer units, MTU

AAmAP
MTU = (2.11)

rnf, in

The number of mass transfer units (MTU) is a dimensionless parameter for a mem-

brane mass exchanger similar to the number of transfer units (NTU) used in heat

exchanger design. The total membrane area, Am, is analogous to the total heat ex-

changer surface area and A, the overall water permeability coefficient, is analogous

to the overall heat transfer coefficient in heat exchangers. Therefore, the MTU in the

membrane-based mass exchanger will play the same role that NTU plays in E-NTU

analysis of heat exchangers.
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Dividing Eq. (2.8) by rthfi and substituting Eqs. (2.9)-(2.11) yields

dRR = 1- 1 R) dMTU (2.12)
1 - RR)

Assuming no pressure drop through the flow channels, the hydraulic pressure

difference between the feed and permeate sides (AP) is fixed. With the boundary

condition that RR = 0 where MTU = 0 (at the inlet), Eq. (2.12) can be integrated

to give the mass transfer units as follows

MTU = RR + SRf ln SRf 1  (2.13)
(SRf + RR - 1)

Alternatively, an explicit solution for the recovery ratio can be obtained from

Eq. (2.13) as follows

SR R [1-SR" (1-SRf-MTU ~
RR - - SRf - SRf -w exp SRf (2.14)

[(SRf SRf _

where w is the Lambert, or omega, function in which w(x) is the solution to x = we".

Equation (2.13) can be used to design an RO membrane mass exchanger where the

required mass transfer units (hence the effective membrane surface area) is given as

an explicit relation of the form

MTU = fn(RR, SRf) (2.15)

Figure 2-3 shows the variation of the recovery ratio (RR) with mass transfer units

(MTU) for varying osmotic pressure ratios at a temperature of 250C. For salinities

of feed which are close to seawater, the SRf = 0.1 contour will result in brine that is

highly saline at MTU values of greater than 1. In this range, the osmotic pressure

of the brine stream significantly deviates from the linearized value. Seawater RO
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Figure 2-3: Recovery ratio vs. mass transfer units at various osmotic pressure ratios.

systems, however, typically operate at recovery ratios of about 60% and lower.

The outlet feed (or brine) salinity, wf, out, can be expressed as a function of the

recovery ratio and the inlet feed salinity:

WW, out = in (2.16)
1-RR

The concentration factor, CF, can be defined as the ratio of the brine to inlet feed

salinity. From Eq. (2.16), we have

CF =Wfout 1(2.17)
Wf, in 1- RR

The concentration factor (CF) is a crucial design parameter in desalination tech-

nologies, in that too high a CF can lead to scale formation. In practice, for seawater

desalination, the CF rarely exceeds 3, whereas for brackish water desalination this

figure can be increased to 5 or even 10 depending on the characteristics of the feed
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Figure 2-4: Salinity of rejected brine vs. mass transfer units at different osmotic

pressure ratios when the inlet feed salinity is 35 g/kg.

water. Figure 2-4 shows the brine salinity as a function of the mass transfer units

with varying osmotic pressure ratio for a fixed inlet feed salinity representative of

seawater. It can be seen that the contour of SRf = 0.1 provides an unacceptably high

brine salinity for MTU greater than 1. However, it is very unlikely that a seawater RO

system will be designed to operate at such high recovery ratios required to produce a

brine in this salinity range. Figure 2-5 shows the concentration factor plotted versus

the mass transfer units for varying osmotic pressure ratios.

It is clear from Eq. (2.15) that the three dimensionless parameters are similar to

effectiveness-NTU representations of heat exchangers in which NTU is a function of

the effectiveness and the heat capacity rate ratio; however, an additional derivation

will be needed to reach a parameter analogous to effectiveness. This will be presented

in the subsequent section.
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Figure 2-5: Concentration factor vs. mass transfer units for varying osmotic pressure
ratio and arbitrary feed salinity.

2.3 Reverse osmosis effectiveness (E-MTU model)

The effectiveness of the RO system can be defined as the ratio of the permeate flow

rate actually achieved by an exchanger of a given size to the maximum possible

permeate flow rate for a given hydraulic pressure and inlet osmotic pressure. The

effectiveness so defined is the same as the ratio of the actual recovery ratio to the

maximum possible recovery ratio. This definition is evident in Fig. 2-3, in which the

recovery ratio reaches a maximum value for a given osmotic pressure ratio as the

MTU becomes large. The exchanger effectiveness approaches one in this limit.

In this section, we wish to derive a relation for the maximum recovery ratio in

order to write an equation for the effectiveness. We note that the maximum permeate

flow rate will be reached when the osmotic pressure difference between the feed and

permeate rises to the point that the net driving force (AP - A7r) equals zero at the

outlet of the membrane channel. From Eq. (2.1), this fixes the outlet osmotic pressure
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as

AP = agr = rf, out (2.18)

The relation between the inlet and outlet osmotic pressure can be obtained using

conservation of solution and solute on the feed stream as follows

7r, out 7f, n (2.19)1- RR

Substituting Eq. (2.18) into Eq. (2.19), the following relation for the maximum re-

covery ratio is obtained

RRmax = 1 - SRf (2.20)

Equation (2.20) gives the maximum recovery ratio as a function of the osmotic pres-

sure ratio. Now, the effectiveness is defined as

RR (2.21)
RRmax

Substituting Eqs. (2.20) and (2.21) into Eq. (2.13), an expression for MTU as a

function of the effectiveness can be obtained as given in Eq. (2.22):

MTU = E(1 - SRf - SRf ln(1 - E)) (2.22)

Figure 2-6 shows the variation of effectiveness with the mass transfer units for

various osmotic pressure ratios. It may be observed that for small values of MTU, the

effectiveness is approximately equal to MTU. This result can be found mathematically

by taking the derivative of Eq. (2.22) with respect to effectiveness and taking the

limit to where effectiveness approaches zero. The result can also be found, as shown

in Eq. (2.23), by substituting the integrated form of the zero-dimensional transport

equation, Eq. (2.1), along with Eq. (2.20) into Eq. (2.21) while noting that A7r - 7 f , in
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Figure 2-6: Effectiveness vs. mass transfer units for varying osmotic pressure ratios.

for a zero-dimensional exchanger with pure permeate.

at MTU << 1, e=RRzero-dimensional _ A x Am(AP ) = MTU (2.23)
RRmax Md«1, in (1 - 10)

This is analogous to the well-known limit for heat exchangers where the effective-

ness is equal to NTU as NTU approaches zero [31].

2.3.1 Numerical model of RO mass exchanger

The analytical expressions required that a linear relationship between osmotic pres-

sure and salinity be assumed. This assumption is acceptable for relatively dilute

solutions, but for more saline waters, the variation is somewhat nonlinear. In this

section, a numerical model of a one-dimensional reverse osmosis mass exchanger is

developed using a nonlinear function for the osmotic pressure, so as to determine

the deviation of the analytical results given earlier. The model applies a discretized

version of the transport equation, Eq. (2.1), and conservation of solutes and solution
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Table 2.1: Data input for RO numerical model

Input Symbol Value/Range
Ambient temperature To 25 0 C
Modified water permeability coefficient A 3.61 x 10-6 kg/s-m 2-kPa

Feed mass flow rate hf 'in 1 kg/s

Inlet feed salinity Wf,in 5 g/kg and 35 g/kg
Trans-membrane pressure difference AP 0.60-3.08 MPa
Membrane area Am 0-3.46x 103 m 2

to N membrane elements in series. The number of elements was increased to 50

at which point the results were grid independent. The total amount of permeate is

calculated by numerically integrating the permeate mass flow rate produced by all

elements. The development of the nonlinear osmotic pressure function used in this

numerical model is given in Appendix B.

The numerical model is used to estimate the error in the analytical model that

results from using a linearized osmotic pressure function. All other assumptions

made for the analytical model are also made for the numerical model. An additional

assumption is that the RO membranes can withstand arbitrary net driving pressures.

Two cases are considered: brackish water, Wf, in = 5 g/kg, and seawater, wfin =

35 g/kg. The input parameters for the numerical calculation are given in Table 2.1.

The water permeability coefficient used is representative of a typical spiral wound

seawater membrane [14].

To determine the effectiveness from the numerical model, we once again note that

the maximum recovery ratio, RRmax, is achieved when the equality from Eq. (2.18)

holds. Applying conservation of solutes and solution to the feed stream yields the

following expression:

RRmax = 1 - Wf' i (2.24)
Wf, out, max

The maximum outlet salinity, wf, out, max, is determined by Eq. (2.20) of which the
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osmotic pressure at the outlet, 7rf, out, is a function. The effectiveness can now be

determined by Eq. (2.19) using the maximum recovery ratio defined by Eq. (2.24).

2.3.2 Results and discussion

Figure 2-7 shows the recovery ratio versus mass transfer units for varying osmotic

pressure ratios. The black solid lines are the same curves displayed in Fig. 2-3, and the

circles and triangles are for the brackish water and seawater cases using the nonlinear

function for osmotic pressure. As shown in this figure, the maximum deviation of the

analytical result from the seawater numerical result is about 7.98% at the lowest value

of SRf. This is because for a high salinity feed stream (i.e., the seawater case), and

at higher recovery ratio (RR = 0.9 at this large deviation), the exit brine has a very

high salinity, hence the actual osmotic pressure deviates significantly from the linear

model. Because the actual osmotic pressure is higher than the linearized pressure at

high salinities (see Fig. A-1 in Appendix A.1), the amount of permeate is reduced and

the maximum achievable recovery ratio declines. The observed deviation is generally

acceptable because it occurs at high inlet feed salinity and low osmotic pressure ratio

conditions that are not found in practical operation. As previously mentioned, the

highest recovery ratio for seawater RO plants is typically in the range of 40 to 60%

[32, 33]. From Fig. 2-7, the maximum deviation between the analytical and numerical

solution for recovery ratios less than 50% does not exceed 6.1%.

Current RO technologies use a recovery ratio of about 80-90% for low salinity

surface water and municipal wastewater [32, 33]. The recovery ratio for brackish

water varies between the two ranges subject to the feed salinity. Even for these high

recovery ratios, however, the deviations in recovery ratio for the brackish water case

do not exceed 1.8% from the analytical model. This is because the osmotic pressure is

nearly linear with salinity for low salinity feeds such as brackish water and municipal

wastewater.
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Figure 2-7: Recovery ratio vs. mass transfer units with contours of osmotic pressure

ratio for (1) analytical Eq. (2.14), (2) brackish water with a nonlinear osmotic pressure

function, and (3) seawater with a nonlinear osmotic pressure function.

Figure 2-8 shows a comparison of the concentration factor from the analytical

model to those resulting from the numerical brackish and seawater cases. The same

trend as in Fig. 2-7 is evident in Fig. 2-8, where the greatest deviation incurred by

the analytical model is for high salinity feed solutions and low osmotic pressure ra-

tios. However, there is less deviation associated with the brackish water case because

the osmotic pressure is nearly linear with low salinity feed solutions. As previously

mentioned, CF will normally be limited in order to avoid precipitation of sparingly

soluble salts from the feed stream.

Figure 2-9 shows the effectiveness as a function of MTU varying with osmotic

pressure ratios for both the analytical and numerical cases. Again it is found that the

greatest deviation associated with linearization is for high salinity feed solutions and

low osmotic pressure ratios. For the seawater case, a maximum deviation of 7.8% was

found for an osmotic pressure ratio of 0.1. For the brackish water case, a maximum
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Figure 2-8: Concentration factor vs. mass transfer units with contours of osmotic
pressure ratio for: (1) analytical solution, Eq. (2.17); (2) brackish water with a non-
linear osmotic pressure function; and (3) seawater with a nonlinear osmotic.pressure
function.

deviation of 1.65% was found.

2.3.3 Design example

The following is a brief example which illustrates the use of the analytical expression

for design of an RO system using the E-MTU method. The provided data are adapted

from [33].

Find: Calculate the membrane area required for an RO system operating at the

following conditions:

* Feed pressure is 6,500 kPa

" Inlet feed salinity is 42 g/kg

* Permeate pressure is 101 kPa

" Water permeability coefficient is 2 x 10-6 kg/s-m 2 -kPa
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Figure 2-9: Effectiveness vs. mass transfer units with contours of osmotic pressure ra-
tio for: (1) analytical Eq. (2.22); (2) brackish water with a nonlinear osmotic pressure
function; and (3) seawater with a nonlinear osmotic pressure function.

" System temperature is 25'C

" Feed flow rate is 2.5 kg/s

* Permeate flow rate is 1 kg/s

* Pure water density is 1,000 kg/m 3

Solution: From the given feed and permeate flow rates, we can calculate the

recovery ratio as

RR = 1/2.5 = 0.4

The osmotic pressure ratio can be calculated as follows:

SRf = Ff, in/AP = 73.45 x 42/(6, 500 - 101) = 0.48

(2.25)

(2.26)

From Fig. 2-3, the MTU is 1.1 at RR = 0.4 and SRf = 0.48. Using the definition of

MTU given by Eq. (2.11), one can calculate the total membrane area to be 217.5 M2 .
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In comparison, the result obtained in [33] is 206.1 m2 based on assuming an average

osmotic pressure difference throughout the exchanger. El-Dessouky's approach results

in a slightly underestimated membrane area according to the present model.

2.4 Conclusions

The major conclusions of this chapter are as follow:

1. A closed form analytical solution for a one-dimensional reverse osmosis mass

exchanger was developed. The equation expresses the recovery ratio of the

membrane as a function of two dimensionless groups: the osmotic pressure

ratio and the number of mass transfer units.

2. A robust analogy exists between heat exchangers and osmotic mass exchangers

in which the effectiveness can be expressed by three dimensionless groups. The

new e-MTU model developed for osmotic mass exchangers can be used as a

design method for RO systems using a linear osmotic pressure function and

ideal membrane characteristics.

3. The maximum deviation of recovery ratio between the linearized analytical ex-

pression and the numerical solution that uses the nonlinear osmotic pressure

function is 7.98%. This maximum deviation occurs for seawater feed only at

very high recovery ratios (-90%), which is not practically applied. However, at

a typically used recovery ratio of 50% the deviation is less than 6.1%. For the

brackish water case, where plants typically operate at very high recovery ratios,

the deviation does not exceed 1.8%.
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Chapter 3

Analogy of Pressure Retarded

Osmosis Mass Exchangers to Heat

Exchangers

Mostafa H. Sharqawy', Leonardo D. Banchik, and John H. Lienhard V

Chapter abstract

Forward osmosis (FO) and pressure retarded osmosis (PRO) systems are being used
in desalination, water treatment, and energy production. These systems work on
the basis of mass transfer through a semi-permeable membrane which passes water
and rejects salts and other substances. These membrane-based devices are essentially
mass exchangers which are analogous to heat exchangers. The driving potentials in
these mass exchangers are the concentration and pressure differences, whereas in heat
exchangers the driving potential is the temperature difference. Closed form solutions
of the permeation rate through an ideal PRO mass exchanger are obtained for parallel
and counter flow configurations. The permeation ratio, PR, is obtained as a function
of dimensionless parameters such as the number of mass transfer units, MTU; the mass
flow rate ratio, MR; and the osmotic pressure ratio, SR. The resulting mathematical
expressions form an effectiveness-NTU model for osmotic mass exchangers. These

'Dr. Sharqawy contributed to the work in this chapter by deriving the analytical model and
developing the pressure retarded osmosis effectiveness.
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expressions are analogous to those for heat exchangers and can be used for the initial
design and rating of PRO membrane-based mass exchange devices.

3.1 Introduction

Pressure retarded osmosis systems are mass exchangers which are currently receiving

great attention for their capabilities to produce renewable power from two streams of

different salinities. In a PRO system, the higher salinity solution is called the draw

stream and the lower salinity solution is called the feed stream. For power production,

seawater and river water are typically used as the draw and feed streams, respectively.

These streams enter a mass exchanger where a semi-permeable membrane allows

water to pass through, but not salts. As opposed to RO operation, the difference in

osmotic pressure drives pure water, or permeate, from the feed stream, through the

membrane, and into the pressurized draw stream to dilute it. The pressurized diluted

draw stream can be depressurized through a hydroturbine, such as a Pelton wheel, to

produce power. In this chapter, we investigate the performance of the PRO exchanger

relative to the amount of permeate and develop a sizing methodology similar to that

commonly used for heat exchangers.

The concept of PRO was first proposed by Loeb [34]. Since then, numerous math-

ematical models have been developed and experiments implemented to determine the

work and permeate flux performance of PRO membranes. Mehta and Loeb were early

to recognize internal concentration polarization, a resistance to mass transfer which

occurs inside the support layer of the membrane, as significant in a model developed

for diffusion through a PRO membrane [35]. Lee et al. more rigorously investigated

concentration polarization in PRO membranes and developed equations to determine

the maximum work density and flux for zero-dimensional ideal membranes and mem-

branes with internal concentration polarization [4]. Two decades later, McCutcheon

and Elimelech developed a model which incorporates internal and external concen-
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tration polarization for a zero-dimensional FO and PRO membrane [36]. Currently,

PRO related research is being conducted to determine the effect of fouling on flux per-

formance [37-39] and the viability of novel materials for new membranes and hollow

fibers [40-42]. The performance of one- and two-dimensional forward and pressure

retarded osmosis experimental studies have also been numerically investigated very

recently [43-47].

The operation of an osmotic mass exchanger looks very similar to a heat exchanger

when both systems are compared side-by-side. In the heat exchanger schematic draw-

ing seen in Fig. 3-la, the temperature difference between a hot and cold fluid is the

driving potential for heat transfer. The resistance to a heat flow per unit area is the

reciprocal of the overall heat transfer coefficient, U. In the osmotic mass exchanger

seen in Fig. 3-1b, the osmotic pressure difference between a concentrated and a dilute

stream, draw and feed, is the driving potential for mass transfer. The resistance to

mass transfer per unit membrane area for an ideal membrane is the reciprocal of the

water permeability coefficient, A. For PRO systems, the driving potential, and thus

the amount of mass transfer, is retarded by the hydraulic pressure difference, Pd - Pf,

which is greater than zero and less than the maximum osmotic pressure difference in

the exchanger. For FO systems, this hydraulic pressure difference is equal to zero.

For heat exchangers, the effectiveness-number of transfer units (E-NTU) method

developed by Kays and London [29] is a well-known design technique that determines

the required surface area of a heat exchanger for a fixed effectiveness and inlet con-

ditions. The method uses three dimensionless groups: the effectiveness, which is the

ratio of actual heat transfer to the maximum heat exchange possible; a heat capacity

ratio, which is the lower heat capacity divided by the higher heat capacity; and the

number of transfer units, which is an effective size of the heat exchanger.

This chapter proposes an E-MTU method for a PRO mass exchanger. The local

transport equation for permeate flow in a zero-dimensional exchanger is combined
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(b) Two-inlet stream osmotic mass exchanger

Figure 3-1: Schematic drawing of a two-inlet heat and osmotic mass exchanger.

with conservation of mass and a linearized equation for osmotic pressure to develop

dimensionless expressions for parallel-flow and counterflow PRO exchangers. The

expressions are closed-form solutions which relate dimensionless performance param-

eters of the exchanger to the effective size and input stream properties. The effec-

tiveness of the PRO exchanger is defined as a novel performance parameter. The

dimensionless groups used in the closed form solutions are discussed, and an analogy

to the heat exchanger groups is made. A numerical model which uses a nonlinear

osmotic pressure function is also implemented in order to assess the errors associated

with linearizing the osmotic pressure function.

3.2 PRO mass exchanger model

Figure 3-2 is a schematic drawing of a membrane-based mass exchanger device. A feed

solution with low salt concentration (low salinity) flows through a channel where one

side of the channel has a semi-permeable membrane. On the other membrane side,
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a draw solution with higher salt concentration flows in the same direction (Fig. 3-

2a, parallel-flow configuration) or in the opposite direction (Fig. 3-2b, counterflow

configuration). The inlet and outlet conditions of both feed and draw streams are

given as the mass flow rate, osmotic pressure, and hydraulic pressure as indicated in

Fig. 3-2. The membrane characteristics are given as the total membrane area (Am)

and water permeability coefficient (A) of the membrane material. The model makes

the following assumptions:

" The water permeability coefficient (A) is constant.

* Concentration polarization effects are neglected, and the salt concentration near

the membrane surface is equal to the bulk concentration of the flow stream.

" Pressure drop through the flow channel is negligible on both the feed and the

draw side. Hence the hydraulic pressure difference between the draw side and

feed side (AP) is fixed over the length of the exchanger.

" The salt rejection is 100% and only pure water diffuses through the membrane.

" Within the operating salinity range of the PRO exchanger, the osmotic pressure

follows van 't Hoff's law so that it is linearly proportional to the stream salinity

(see Appendix A). The constant of proportionality may vary under different

operating conditions as shown in Appendix A.1.

3.2.1 Parallel-flow configuration PRO model

The differential permeate flow rate for an osmotic mass exchanger where the permeate

flows from the feed to the draw stream is given by Eq. (3.1) [4]

drh, = A - (Ar -AP) dAm (3.1)

where
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(a) Parallel-flow configuration

~F k f f drnf

hd +md rnd A, Am

f, out, 7f, out' Pf, out

rd, out, 7d, out d, out

rnf, out, 7f, out/ Pf, out

Draw stream
4- rd, in, Td, in, d, in

(b) Counterflow configuration

Figure 3-2: Schematic drawing of pressure retarded osmosis exchangers in parallel-
flow and counterflow configurations.

" dfi, is the permeate mass flow rate through the membrane in kg/s,

* A, is the modified2 water permeability coefficient of the membrane in kg/s-nm2_

kPa,

" A7 is the local osmotic pressure difference between the draw and feed (i.e.,

7d - 7f) in kPa,

* AP is the hydraulic pressure difference between the draw and feed (i.e., Pd - Pf)

in kPa, and

" Am, is the membrane surface area in m2

The osmotic pressure for a solution [30] is given by

7 = #(RTpsolvent) se
j solutes

(3.2)

2 It is important to note that the water permeability coefficient (A) is often given in units of
m/s-bar or L/m 2-hr-bar [16], which is the permeate water volume flux per unit pressure difference;
however, for the present model, we express this coefficient on a mass basis (equivalent to multiplying
it by the density of pure water and some obvious SI conversion factors).
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where < is the osmotic coefficient, predominantly a function of temperature and salin-

ity; R is the universal gas constant; T is the absolute temperature; Psolvent is the

density of the solvent (pure water); and Z by is the sum of the molalities of
j=solutes

each solute. A detailed derivation of the osmotic pressure for seawater is given in

Appendix B.

Equation (3.2) shows that osmotic pressure is a nonlinear function of salinity. In

order to facilitate our analysis, we use van 't Hoff's equation to linearize the osmotic

pressure. In the second half of this chapter, this assumption will be checked for its

validity by comparing results to a numerical model which uses the nonlinear osmotic

pressure. Expressing the osmotic pressure as a linear function of salinity yields:

Air = 7rd - rf = C(wd - wf) (3.3)

where w is the salinity in g/kg and C is a modified van 't Hoff's coefficient. It follows

that

dr = A - [C(wd - Wf) - AP] dAm (3.4)

Under the assumed condition of 100% salt rejection, only pure water permeates

through the membrane; hence the salinity of the permeate is zero. Applying con-

servation of solutes to the feed stream between the inlet and any arbitrary location

along the flow channel yields

ms, f = ~,i X n fif X Wf (3.5)

For the same arbitrary location, conservation of the solution requires that

mf, in = rf + rhp (3.6)
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Substitution of Eq. (3.6) into Eq. (3.5) yields

W= f, in X Wf, in(37wf = (3.7)mf, in - Thp

Similarly applying conservation of solutes and solution on the draw side for a

parallel configuration yields

Wd, = rd, in X Wd,in (3.8)
rnd, in - Thp

Substituting Eqs. (3.7) and (3.8) into Eq. (3.4) yields

drh = A [C (. j ' "n " ' " - AP dAm (3.9)
\ hd, in + Thp rhf, in - mp

We now proceed to cast Eq. (3.9) in a dimensionless form. Four dimensionless

parameters are introduced for this purpose, three of which are identical to those used

to describe the RO exchanger behavior in Chapter 2.

3.2.2 Dimensionless parameters

Permeation ratio, PR

PR = 0 (3.10)
mf, in

The permeation ratio is a primary performance metric of the PRO mass exchanger

as it represents the amount of pure water recovered from the feed stream. In so far

as the inlet mass flow rate is greater than the- maximum amount of permeate that

can be recovered, the permeation ratio should not be confused with the effectiveness

which will be described in the next section.
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Mass flow rate ratio, MR

MR m d'i" (3.11)
mf, in

The mass flow rate ratio is the ratio of the mass flow rate of the draw solution to that

of the feed solution at the inlet of the PRO mass exchanger.

Osmotic pressure ratio, SR

For the draw side:

SRd 7Fd'i" (3.12)
AP

For the feed side:

SRf f i" (3.13)
AP

The osmotic pressure ratio is the ratio of the osmotic pressure at the draw or feed

inlet to the hydraulic pressure difference. For PRO exchanger operation, SRd will

always be greater than SRf.

Mass transfer units, MTU

MTU AAmAP (3.14)
mf, in

The number of mass transfer units (MTU) is a dimensionless parameter for a mem-

brane mass exchanger similar to the number of transfer units (NTU) used in heat

exchanger design. The total membrane area, Am, is analogous to the total heat

exchanger surface area and A is the overall water permeability coefficient which is

analogous to the overall heat transfer coefficient in heat exchangers. Therefore, the

MTU in the membrane-based mass exchanger will play the same role that NTU plays

in E-NTU analysis of heat exchangers.
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Substituting Eqs. (3.10)-(3.14) into Eq. (3.9) yields

(MR x SRd
dPR= MR+PR

SRf
1- PR

-1 dMTU

Equation (3.15) can be integrated as follows:

PR/ MRxSRd
MR + PR

0

Equation (3.16) can

SRf
1 -PR

1

- ) dPR = MTU

be simplified into

PR
[(MR + PR)(1 - PR)dPR - MTU

(PR - a)(PR -/3)
0

+ MR(SRd - 1) + SRf)

1
- V(-1 -MR(SRd- 1)2

1
# = (1+ MR(SRd - 1) + SRf)

2

+±1V/(-1 - MR(SRd-1
2

SRf) 2 - 4MR(SRd - SRf - 1) (3.18)

SRf) 2 - 4MR(SRd - SRf - 1) (3.19)

Integration of Eq. (3.17) yields

MTU = (# - 1)(MR+ ) ln -PR)
(a - #) # f3)

(a - 1)(MR +a) a-PR P
(-- I3) n -PR (3.20)

Therefore, Eq. (3.20) can be used in the design of a membrane mass exchanger

where the required mass transfer units, effectively the membrane area, is given as an

explicit relation.
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1
a = (1
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An additional dimensionless parameter which may be useful to a designer is the

concentration factor. The concentration factor is the ratio of the outlet salinity of

a stream to the inlet salinity. If a designer is limited to output brine below certain

salinity from the PRO exchanger, the concentration factor can be useful in deter-

mining the maximum MTU allowable. By considering a pure permeate and applying

conservation of solution and solutes to the draw and feed streams separately, the ex-

pressions for the draw and feed concentration factors can be determined, as given by

Eqs. (3.21) and (3.22).

For the draw side:

Wd, out MR
CFd = ' 3.1

Wd, in MR+PR

For the feed side:

CFf - W, out 1 (3.22)
Wf,in 1 - PR

Figures 3-3 and 3-4 show the variation of the permeation ratio (PR) and the con-

centration factor (CF) with the mass transfer units (MTU), respectively, at different

mass flow rate ratios for the parallel-flow configuration.

3.2.3 Counterflow configuration PRO model

The transport model Eq. (3.1) and the van 't Hoff osmotic pressure model Eq. (3.3)

will again be used to describe the permeate flow rate in the counterflow configuration

shown in Fig. 3-2b. The differential permeate flow rate is given by Eq. (3.4) and the

conservation of solution and solute for the feed side between the inlet and any arbi-

trary location along the flow channel leads to Eq. (3.7) for the feed salinity. Applying
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Figure 3-3: Permeation ratio vs. mass transfer units at different mass
for a parallel-flow configuration.
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Figure 3-4: Concentration factor of the feed (dashed curves) and draw (solid curves)
stream vs. mass transfer units at different mass flow rate ratios for a parallel-flow
configuration.
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a similar conservation of solution and solute on the draw side for the counterflow con-

figuration at the same arbitrary location as taken for the feed stream gives a result

that differs from Eq. (3.8) for the parallel-flow configuration.

wK - ndout X Wdout (3.23)
md, out - p

Substituting Eqs. (3.7) and (3.23) into Eq. (3.4) yields

d~h - C( Td, utX Wd, out _ Thf,jin X Wf, in 1P ~ (.4
dL outAn - AP dAm (3.24)

Using the same dimensionless parameters as used for the parallel-flow configura-

tion (i.e. PR, MR, SRd, SRf, and MTU), Eq. (3.24) can be rewritten in a dimension-

less form. However, two additional dimensionless parameters are required; they are

defined as follows.

Outlet mass flow rate ratio, MRo

MR -- md out (3.25)
mf, in

Osmotic pressure ratio at draw outlet, SRd,o

SRdj, o out (3.26)
A P

Since we are interested in expressing the permeation ratio (PR) as a function of the

inlet flow conditions, we proceed to develop relations between the outlet dimensionless

groups defined by Eqs. (3.25) and (3.25) and the inlet dimensionless groups defined

by Eqs. (3.10)-(3.13).

The mass flow rate ratio defined in Eq. (3.11) can be written as a function of the

outlet mass flow rate ratio defined by Eq. (3.25) and the permeation ratio defined by

57



MR = rdin - rdout - p = MRo - PR
mf, in

MRO = MR+ PR

Similarly, the osmotic pressure ratio of the outlet draw stream can be written as a

function of the osmotic pressure ratio of the inlet draw stream, the mass flow rate

ratio, and the permeation ratio.

MR
SRd, o = SRd MR

MR+PR (3.29)

Using these dimensionless groups, Eq. (3.24) can be rewritten in a dimensionless form:

(MRo x SRd, odPR= MR -PR SRf
1 - PR

- 1) dMTU

Equation (3.30) can be integrated as follows:

PR

f (MRo x SRd, out
j MRo-PR
0

SRf
1-PR

1
dPR = MTU

Equation (3.31) can be simplified into

PR/(MRo - PR)(1
(PR - ac')(PR

0

dPR = MTU
- p')
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Therefore,

mf, in
(3.27)

(3.28)

(3.30)

(3.31)

(3.32)



where

,1
a = -(1 + MRo(1 - SRd,0 ) + SRf)

2

- V[(-I + MRo(SRd, o - 1) - SRf) 2 - 4MRo(1 - SRd, o + SRf) (3.33)

,1
= (1I + MRo(1 - SRd, o)+ SRf)

2

+ (-1 + MRo(SRd, - 1) - SRf) 2 - 4MRo(1 - SRdo + SRf) (3.34)

Integration of Eq. (3.32) yields

MTU - 1)(#' MR o) In ' -PR
(a' - #') K i')

(a' - 1)(a' - MRO) a' - PR R 3.5- , lIn ,R - PR (3.35)
(aV -43') in a

Therefore, Eq. (3.35) combined with Eqs. (3.25) and (3.26) can be used in the de-

sign of a membrane mass exchanger where the required mass transfer units, effectively

the membrane area, is given as an explicit relation of the form

MTU = fn(PR, MR, SRf, SRd) (3.36)

Figures 3-5 and 3-6 show the variation of the permeation ratio (PR) and the con-

centration factor (CF) with the mass transfer units (MTU), respectively, at different

mass flow rate ratios (MR) for the counterflow configuration. The concentration fac-

tors for the feed and draw stream as defined in Eqs. (3.21) and (3.21) are applicable

to the counterflow configuration as well.

It can be seen by comparing Figs. 3-3 and 3-5 that, for each contour of MR,

the permeation ratio is higher for the counterflow case than that of the parallel-flow

case. This is an expected result which is found in PRO literature [42, 43, 46] and is

analogous to similar results for heat exchangers.
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Figure 3-5: Permeation ratio vs. mass transfer units at different mass flow rate ratios
for a counterflow configuration.
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stream vs. mass transfer units at different mass flow rate ratios for a counterflow
configuration.
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3.3 PRO effectiveness (E-MTU model)

The effectiveness of the PRO system can be defined as the ratio of the permeate flow

rate to the maximum permeate flow rate, which occurs when MTU is increased to

infinity. The effectiveness can also be defined as the permeation ratio divided by the

maximum permeation ratio. Note that the maximum permeate flow rate is not the

inlet feed flow rate. The maximum accumulated permeated water occurs when the

net driving pressure (A7r - AP) to draw water from the feed stream has decreased to

zero at one end of the mass exchanger. The following is a derivation of the maximum

permeation flow rate and, hence, of the effectiveness of the PRO exchanger.

3.3.1 Parallel-flow PRO effectiveness

Using Eq. (3.1), the maximum permeate in the case of parallel-flow configuration

will occur when the hydraulic pressure difference is equal to the osmotic pressure

difference at the outlet.

A7tout =d, out - 7Ff, out = AP (3.37)

Using the van 't Hoff model

C(wd, out - Wf, out)= AP (3.38)

Applying conservation of solutes and solution on the draw side, one can find that

MR
Wd, out = MR + PR in (3.39)

Similarly on the feed side, one can find that

1

Wf, out =1 - PR (3.40)
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Substituting Eqs. (3.39) and (3.40) into Eq. (3.38) and using the dimensionless groups

defined earlier yields
MR x SRd SRf

MR + PR 1-PR 1 (3.41)

Solving Eq. (3.41) to find the maximum permeation ratio, one can find that there are

two solutions

PRmax,i = a

PRmax, 2 =3

(3.42a)

(3.42b)

where a and # are given by Eqs. (3.18) and (3.19), respectively. We notice from

Eqs. (3.18) and (3.19) that a is always less than 1 and 3 is always greater than 1.

The permeation ratio must be less than one. Therefore, the maximum permeation

ratio is equal to a. Now the effectiveness is defined as

PR
PRmax (3.43)

Hence,

PR = EPRmax - Ea (3.44)

By substituting Eq. (3.44) into Eq. (3.20), an expression for MTU as a function of

the effectiveness can be obtained:

(#3- 1)(MR +)
MTU= - ) ln ( /3-a

/3- a) (3.45)1)(MR + a)
(a-#0)

Figure 3-7 shows the effectiveness changing with the mass transfer units for varying

mixing ratios.
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Figure 3-7: Effectiveness vs. mass transfer units at different mass flow rate ratios for

a parallel-flow configuration.

3.3.2 Counterflow PRO effectiveness

Using Eq. (3.1), the maximum permeate in the case of counterflow configuration

will occur when the hydraulic pressure difference is equal to the osmotic pressure

difference at the right side or the left side of the exchanger schematic shown in Fig. 3-

2b. Therefore, there are two conditions at which the driving force for permeate flow

will vanish.

(3.46)7d, out -
7Tf, in A P

Using the van 't Hoff model and applying conservation of solution and solute, this

condition will lead to
MR xSRd

PRma, i - MR -MR
1 + SRf

(3.47)

The other condition will lead to

(3.48)
7d, in - 7f, out
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and

PRmax, 2 =1 - (3.49)
SRd - 1(

Since there are two solutions for the maximum permeation ratio, we should take the

minimum value, hence:

PRmax = min (PRmax, iPRmax, 2) (3.50)

The effectiveness defined by Eq. (3.43) and the permeation ratio can be written in

terms of the effectiveness and maximum permeation ratio as given by the first equality

of Eq. (3.44). Substituting Eq. (3.44) into Eq. (3.35), an expression for MTU as a

function of the effectiveness is obtained:

MU=(# - 1)(#'()- MRo) I ' -EPRmax

_(a' - 1)(a' - MRo) (a' - e~a
(a , - ) In EPRmax- EPRmax (3.51)(a - #/) a/

Figure 3-8 shows the effectiveness changing with the mass transfer units for varying

mass flow rate ratios.

It should be noted that by varying the modified van 't Hoff coefficient of each

stream, the closed-form solutions given in the above sections allow for the two streams

entering the PRO exchanger to have different compositions, such as seawater and

ammonia-carbon dioxide, sodium chloride and pure water, or flowback water and

ammonia-carbon dioxide.

3.4 Numerical PRO mass exchanger model

The closed form solutions derived in the previous sections required the assumption

that osmotic pressure is a linear function of salinity. While this assumption is valid for
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Figure 3-8: Effectiveness vs. mass transfer units at different mass flow rate ratios for

a counterflow configuration

relatively dilute solutions, the variation becomes increasingly nonlinear as the mixture

salinity increases. In this section, a numerical model of a one-dimensional PRO mass

exchanger is developed using a nonlinear function for the osmotic pressure of seawater,

so as to determine the accuracy of the approximate analytical results given earlier.

The model applies a discretized version of the transport equation, Eq. (3.1), and

conservation of solution and solutes to N membrane elements in series. The number

of elements was increased to 50 at which point the results were grid independent. The

total amount of permeate is calculated by numerically integrating the permeate mass

flow rate produced by all elements. The equations comprised by the numerical model

were solved using Engineering Equation Solver [48], a simultaneous equation solver

which iterates to find a solution to sets of coupled nonlinear algebraic equations.

The details of the nonlinear osmotic pressure function and the modified van 't Hoff

coefficient used in this numerical model are given in Appendix B and Appendix A.1.

The numerical model is used to estimate the error in the analytical solutions that
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Table 3.1: Data input for PRO numerical model

Input Symbol Value/Range
Ambient temperature To 25 0 C
Modified water permeability coefficient A 3.07 x 10-6 kg/s-m 2-kPa
Feed mass flow rate mf,in 1 kg/s
Inlet draw salinity Wd,in 70 g/kg and 35 g/kg
Inlet feed salinity Wf ,in 35 g/kg and 1.5 g/kg
Trans-membrane pressure difference AP 1.24-1.47 MPa
Membrane area Am 0-9.45x10 5 m2

results from using a linearized osmotic pressure function (the van 't Hoff equation).

All other assumptions made for the analytical model are also made for the numer-

ical model. An additional assumption is that the PRO membranes can withstand

arbitrary net driving pressures. Two representative uses of a PRO system are for

power production at a river delta [49] and for recovering the chemical energy which

exists between the rejected brine of a desalination system and available seawater

[28, 50, 51]. Therefore, two numerical cases are considered: (1) a power production

case with seawater and river water, Wd, in = 35 g/kg and Wf, in = 1.5 g/kg; (2) and an

energy recovery case with brine and seawater, Wd,in = 70 g/kg and wf,in = 1.5 g/kg.

The inputs for the numerical model are given in Table 3.1. The water permeability

coefficient used is representative of a typical spiral wound forward osmosis membrane

[52].

The percent error of the analytical model is given by Eq. (3.52)

analytical
error = 1- nx 100% (3.52)

numerical

The inlet salinities given in Table 3.1 are used to calculate the inlet osmotic

pressures using the nonlinear osmotic pressure function and the modified van 't Hoff

coefficient. For both cases, the hydraulic pressure difference is set to equal one-

half of the maximum osmotic pressure difference. This assumption requires that
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Table 3.2: Modified van 't Hoff coefficients over three ranges for determining osmotic

pressure as a function of salinity at T = 25 0 C.

C [kPa-kg/g] Range [g/kg] R2

73.07 0 - 35 0.9997
76.76 35 -70 0.9926
82.65 70 -105 0.9691

SRd - SRf = 2. To improve the accuracy of the linear case, we use different values

of the modified van 't Hoff coefficient to cover ranges of interest (see Appendix A.1

for details). Table 3.2 lists modified van 't Hoff coefficients for three ranges with the

coefficient of determination given in the third column. The first and second value

of C from Table 3.2 will be used in the linear model to compare the two numerical

cases.

We first consider the seawater-river water stream combination with a counterflow

exchanger configuration. Figure 3-9 shows the permeation ratio versus mass transfer

units for contours of the mass flow rate ratio, MR, and for fixed inlet draw and

feed salinities. The inlet salinities are used to calculate the nonlinear and linear

osmotic pressure for the draw and feed stream and the hydraulic pressure difference

is determined by assuming that SRd - SRf = 2 as described in the previous section.

It can be seen in Fig. 3-9 that the errors associated with linearization are highest

for low mass flow rate ratios and for high values of MTU. For MR = 0.5 and for

MTU greater than 2, the largest error associated with linearization of the osmotic

pressure function is 4.62%. Figures 3-10 and 3-11 show the concentration factor

and effectiveness plotted versus MTU for the same contours of mass flow rate ratio

and inlet salinity. The maximum error for the draw and feed stream concentration

factors is 2.12% and 20.3%, respectively. The relatively high error of 20.3% results

from the contour of MR = 1 and corresponds to an outlet salinity difference between

the numerical model and the analytical solution of about 1.9 g/kg. The errors are
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Figure 3-9: Permeation ratio vs. mass transfer units for varying mass flow rate ratios,
counterflow configuration, and fixed inlet salinities representative of seawater and
river water. Lines are from analytical Eq. (3.35), and the points are the results of a
numerical model using a nonlinear osmotic pressure function.

higher for the feed stream concentration factor because the feed stream salinities are

lower, which lends to a smaller denominator in the error calculation even though the

overall difference in outlet feed salinities may be low. The maximum error for the

effectiveness is 4.41%.

Figures 3-12 - 3-14 display the same dimensionless groups as Figs. 3-9 - 3-11 except

that the inlet salinities are now representative of brine and seawater as defined by

the energy recovery case 2. The maximum error between models for the permeation

ratio versus MTU of Fig. 3-12 is 5.37% and corresponds to the lowest mass flow

rate ratio of MR = 0.5 at MTU = 0.5. For the case 2 concentration factor and

effectiveness versus MTU shown in Figs. 3-13 and 3-14, the maximum error is less

than 2% and 5%, respectively. Table 3.3 summarizes the maximum error incurred for

each dimensionless variable and for each case and configuration.
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Figure 3-10: Concentration factor vs. mass transfer units for varying mass flow rate

ratios, counterflow configuration, and fixed inlet salinities representative of seawater

and river water. Solid and dashed lines are from analytical Eqs. (3.21) and (3.22),

respectively, and the points are the results of a numerical model using a nonlinear

osmotic pressure function.

Table 3.3: Maximum errors resulting from linearized osmotic pressure.

Case 1: Seawater & River Water PR CFd CFf E

Parallel-flow 3.69% 1.61% 3.41% 3.36%
Counterflow 4.62% 2.12% 20.03% 4.41%

Case 2: Brine & Seawater PR CFd CFf E

Parallel-flow 2.34% 0.43% 0.45% 1.71%

Counterflow 5.37% 1.26% 1.68% 4.95%
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Figure 3-11: Effectiveness vs. mass transfer units for varying mass flow rate ratios,
counterflow configuration, and fixed inlet salinities representative of seawater and
river water. Lines are from analytical Eq. (3.51), and the points are the results of a
numerical model using a nonlinear osmotic pressure function.
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Figure 3-12: Permeation ratio vs. mass transfer units for varying mass flow rate

ratios, counterflow configuration, and fixed inlet salinities representative of brine and

seawater. Lines are from analytical Eq. (3.35), and the points are the results of a

numerical model using a nonlinear osmotic pressure function.
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Figure 3-13: Concentration factor vs. mass transfer units for varying mass flow rate
ratios, counterflow configuration, and fixed inlet salinities representative of brine and
seawater. Solid and dashed lines are from analytical Eqs. (3.21) and (3.22), respec-
tively, and the points are the results of a numerical model using a nonlinear osmotic
pressure function.
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Figure 3-14: Effectiveness vs. mass transfer units for varying mass flow rate ratios,
counterflow configuration, and fixed inlet salinities representative of brine and seawa-

ter. Lines are from analytical Eq. (3.51), and the points are the results of a numerical

model using a nonlinear osmotic pressure function.
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3.5 Conclusions

The major conclusions of this chapter are as follow:

1. Closed form analytical solutions for a one-dimensional pressure retarded osmosis

mass exchanger using an ideal membrane were developed. The equations express

the permeation ratio of the membrane as a function of the configuration of the

membrane and four dimensionless groups: two osmotic pressure ratios, a mass

flow rate ratio, and the number of mass transfer units.

2. A robust analogy exists between heat exchangers and osmotic mass exchangers

in which the effectiveness can be expressed by four dimensionless groups. The

new E-MTU model developed for the osmotic mass exchanger can be used as a

design tool for PRO systems using a linearized osmotic pressure function and

ideal membrane characteristics. Combinations of stream compositions can be

analyzed by selecting the appropriate modified van 't Hoff coefficient to be used

in the dimensionless osmotic pressure ratio.

3. In order to develop closed-form analytical solutions of the PRO exchanger per-

formance, osmotic pressure must be approximated as a linear function of salinity.

Modest errors are incurred in doing so. Two cases were modeled to determine

the errors associated with linearization: a power production case with inlet sea-

water and river water, and a desalination energy recovery case with inlet brine

and seawater. For both cases the hydraulic pressure was set to equal half of the

maximum osmotic pressure difference. Also for each case, the modified van 't

Hoff coefficient is varied to more closely approximate the nonlinear osmotic

pressure for the range of salinity. For the power production case, the maximum

error is less than 5% for the permeation ratio and effectiveness of a counterflow

PRO exchanger. For the energy recovery case, the maximum error is less than

5.5%.
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Chapter 4

Limits of Flux and Power for a

One-Dimensional Ideal FO and

PRO Membrane

Chapter abstract

Pressure retarded osmosis (PRO) is a method of producing energy from two streams
of a different salinity using a membrane-based mass exchanger. In practice, this tech-
nology uses seawater and river water, which converge at a river delta, to produce
power. PRO technology can also be used to recover chemical energy from a reverse
osmosis system by combining the rejected brine stream with the feed water source
or available wastewater. In previous chapters of this work, it has been demonstrated
that by making a few idealizations, closed-form expressions can be derived for the
flux performance of one-dimensional RO and PRO membrane-based mass exchang-
ers. These expressions are functions of several dimensionless parameters which relate
the permeate flux, membrane area, hydraulic and osmotic pressure, and mass flow
rates. These expressions are analogous to effectiveness vs. number of transfer unit
relations that characterize heat exchanger performance. This chapter modifies the
PRO closed-form expressions in order to more easily analyze the maximum flux at-
tainable during direct forward osmosis operation and the power performance under
PRO operation. For the PRO power production case, the optimal hydraulic pressure
is found which produces the maximum power for a given membrane area and inlet
stream salinities. The global maximum power attainable for given stream salinities
is also found. Additionally, a reversible salinity gradient engine is studied to deter-
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mine the maximum reversible power attainable by two streams of a different salinity.
The reversible model is used as a benchmark for the one-dimensional PRO exchanger
performance.

4.1 Introduction

When two streams of a different salinity are separated by a semipermeable mem-

brane, the natural process of osmosis causes water to diffuse 'from the dilute to the

concentrated stream. If the concentrated stream is pressurized to a hydraulic pressure

greater than that of the dilute stream before entering into a PRO exchanger, then the

permeate which enters into the concentrated stream via osmosis becomes pressurized.

This permeate can be depressurized with the original concentrate through a turbine

to create more electrical work than the concentrate alone would have provided. This

method of power production is called pressure retarded osmosis (PRO) in the litera-

ture. Typically, seawater and river water are used as the concentrate, or draw, and

dilute, or feed, streams, respectively. The process is 'pressure retarded' because the

osmotic driving potential is deliberately reduced by increasing the hydraulic pressure

of the draw stream relative to the feed stream in order to produce the maximum

power.

In 1954, Pattle introduced a method for extraction of power from salinity gradients

via a hydroelectric pile, now known as the Reverse Electrodialysis (RED) method [53].

The PRO method was introduced by Loeb two decades later [34]. A seminal paper

in the PRO field was authored by Lee et al. in 1981 [4]. In addition to experimental

results and an early characterization of concentration polarization in real membranes,

Lee et al. present the commonly cited expression for the maximum power achievable

for a zero-dimensional, ideal, and semi-permeable PRO membrane [54-57]. By con-

sidering the flux or power achievable from a zero-dimensional membrane, however,

it is assumed that the streams do vary in concentration throughout the exchanger.
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This assumption may be valid for small, coupon-sized membranes in a laboratory

experiment, but for an FO desalination process or PRO power plant the membrane

areas are greater and the change in salinity throughout the exchanger must usually

be considered.

This chapter will apply dimensionless expressions for determining the flux through

a one-dimensional FO or PRO membrane mass exchanger in order to provide a more

realistic estimate of the performance of these exchangers. Because this chapter does

not consider the effect of concentration polarization within the exchanger, and be-

cause that phenomenon effectively increases the resistance to mass transfer within

the exchangers, the flux and power performance of both the FO and PRO exchangers

by this analysis are considered to be an upper bound.

For a more detailed explanation of forward and pressure retarded osmosis ex-

changer operation, refer to Sec. 3.1.

4.2 Alternative PRO mass exchanger model

In this section, we will re-derive the PRO mass exchanger model from the previous

chapter in order to facilitate analysis of the limits of permeation in direct forward

osmosis (FO) operation and of power production in PRO operation. Modifications

of the previous chapters' dimensionless parameters will be presented along with a

new dimensionless parameter which balances the hydraulic to osmotic driving poten-

tial within the exchanger. One reason for these modifications is that in direct FO

operation, the hydraulic pressure difference across the membrane is equal to zero.

This results in osmotic pressure ratios (see Sec. 3.2.2) which approach infinity and a

mass transfer units, MTU, value equal to zero independent of membrane area. Thus,

it is important to separate the effect of the hydraulic pressure difference, AP, from

these dimensionless parameters in order to properly analyze the performance of a one-
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dimensional direct forward osmosis exchanger. In the case of PRO power production,

we wish to find the optimal hydraulic pressure difference at which to operate the

system to provide maximum power. Therefore, the MTU dependence on the pressure

difference must be altered because we wish to vary AP while maintaining a fixed

membrane area.

After developing the modified PRO closed-form expressions, the limits of direct

forward osmosis performance will be presented followed by an analysis of the power

attainable by mixing two streams reversibly with a salinity gradient engine. Finally,

the modified expressions are used to determine the maximum power attainable and

at which hydraulic pressure difference this power can be attained.

4.2.1 Parallel-flow configuration PRO model

For the details of the PRO closed-form expressions, refer to Sec. 3.2. Derivation of

the modified closed-form expressions will begin with Eq. (3.9) for the PRO exchanger

in a parallel-flow configuration and is reproduced here as Eq. (4.1).

drhy = A [C . " x Wd,in h, in x wf, i" (4.1)
A d,in ( + rmp mf,in - rhp /

Some of the important assumptions inherent in this equation are that the water

permeability coefficient is constant, concentration polarization effects are neglected,

the pressure drop through the flow channel is negligible, the membrane is ideal and

rejects 100% of solutes, and the osmotic pressure is a linear function of salinity.

Four dimensionless parameters are used to cast Eq. (4.1) in a dimensionless form.

Two of these dimensionless parameters are identical to those used in Chapter 3.
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4.2.2 Dimensionless parameters

Permeation ratio, PR

PR = . (4.2)
mf, in

The permeation ratio is identical to the parameter described in Chapter 3. It is

the ratio of permeate to feed mass flow rate and it should not be confused with the

effectiveness which will be described in a later section.

Mass flow rate ratio, MR

MR - d in (43)
mf, in

The mass flow rate ratio is the mass flow rate of the draw solution divided by the

feed solution at the inlet of the PRO mass exchanger. It is also the same parameter

as described in Chapter 3.

Modified osmotic pressure ratio, 0

For the draw side:

0 - Fd, in (4.4)
AFmax

For the feed side:

_ 71f, in (4.5)
'Aimax

where

Armax = 7d, in - 7f, in (4.6)

The modified osmotic pressure ratio is the ratio of the osmotic pressure at the draw

or feed inlet to the maximum osmotic pressure difference. The maximum osmotic

pressure difference is simply equal to the difference of the inlet draw and feed solution

osmotic pressures. For FO and PRO operation, 6d will always be greater than Of.
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Modified mass transfer units, MTU

A Am A~mr.
MTUWr A= m/f, in (47)

As seen before, the number of mass transfer units (MTU) is a dimensionless parameter

for a membrane mass exchanger similar to the number of transfer units (NT U) used in

heat exchanger design. In this chapter, however, the mass transfer units is dependent

on the maximum osmotic pressure difference, Airmax, from Eq. (4.6). The number of

mass transfer units based on the hydraulic pressure difference, AP, which constitutes

the RO and PRO solution in the previous chapters, could presently be denoted as

MTUp. This parameter is related to MTU, by the equality MTU = MTU, x P*

where P* is the pressure ratio to be introduced in the following subsection.

Pressure ratio, P*

AP
P A (4.8)

The pressure ratio is equivalent to the hydraulic pressure difference divided by the

maximum osmotic pressure difference. For FO and PRO operation where the perme-

ate flows in the direction of the more concentrated solution, P* is a number between

zero and unity. When P* = 1, the trans-membrane hydraulic pressure difference is

equal to the maximum osmotic pressure difference and there is no flux through the ex-

changer, per Eq. (3.1), regardless of orientation. At the other limit when P* = 0, the

exchanger operates in the direct forward osmosis regime and the maximum amount

of flux permeates through the membrane.

Dividing Eq. (4.1) by rhfin, multiplying the right hand side by A7max/A7rmax, and

substituting Eqs. (4.2)-(4.8) into Eq. (4.1) yields,

dPR = -M xI P*) dMTU, (4.9)
MR+PR 1- PR
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Equation (4.9) can be integrated as follows:

PRJ MR xOd Of _ - dPR = MTU,
j MR+ PR 1 - PR
0

Equation (4.10) can be simplified into

PR
[ (MR + PR)(1 - PR) dPR = MTU,

J P*(PR - )(PR - A)
0

where

1= (P* + MR(Od - P*) + Of)
2P*

1
I(P* + MR(Od - P*)+

2P*

A = (P* + MR(Od - P*) + O)2P*

+ y (P* + MR(Od - P*) +
2P

Of) 2 - 4MR P* (O - Of - P*)

Of) 2 - 4MR P*(A - Of - P*)

(4.12)

(4.13)

Therefore the integration of Eq. (4.11) will be

MTU x P* (A - 1)(MR + A)I A - PR)MTU, x P* = ln

(K- 1)(MR + K) n - PR PR
-(InA)-PR

(4.14)

Equation (4.14) can be used in the design of a membrane mass exchanger where the

required mass transfer units, effectively the membrane area, is given as an explicit

relation.

As seen in the previous chapter, by considering a pure permeate and applying

conservation of solution and solutes to the draw and feed streams separately, the

expressions for the draw and feed concentration factors can be determined, as given

by Eqs. (4.15) and (4.16)
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For the draw side:

CFd Wd, out MR
Wd,in MR+PR

For the feed side:

Cf Wf, out 1 (4.16)
wPin 1 - PR

4.2.3 Counterflow configuration PRO model

For the PRO exchanger in a counterflow configuration, the derivation of the modified

closed-form expressions will begin with Eq. (3.9) and is reproduced here as Eq. (4.17).

dh = A C ( , out X Wd,out ,in X w,i" AP dA (4.17)
. Ad, out - p mf, in - mp 4

Using dimensionless parameters similar to those used for the parallel configuration

(i.e. PR, MR, Of, P*, and MTU,), Eq. (4.17) can be rewritten in a dimensionless

form. However, two additional dimensionless parameters are required and are defined

as follows.

Outlet mass flow rate ratio, MRo

MRO= rnd, out (4.18)
mf, in

Modified osmotic pressure ratio at draw outlet, 0 do

d, o out (4.19)
A7Tmax

Since we are interested in expressing the permeation ratio as a function of the in-

let parameters, the following are relations between the outlet dimensionless groups

defined by Eqs. (4.18) and (4.19) and three inlet dimensionless groups.
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The mass flow rate ratio defined in Eq. (4.3) can be written as a function of the

outlet mass flow rate ratio defined by Eq. (4.18).

MR rnTd, in = mhd, out - ,MR=' ' = MR- PR
mf, in mf, in

MR, = MR+ PR

(4.20)

(4.21)

Similarly, the modified osmotic pressure ratio of the outlet draw stream can be written

as a function of the modified osmotic pressure ratio of the inlet draw stream, the mass

flow rate ratio, and the permeation ratio as follows:

MR
'o MR+PR

(4.22)

Using these dimensionless groups, Eq. (4.17) can be rewritten in a dimensionless form

as follows:

dPR = ~ X O'" o O

MRo -PR 1-PR

Equation (4.23) can be integrated as follows:

- P* dMTU., (4.23)

PR
MRo xd, out

I ("MRO - PR
0

1

1 - PR ) dPR = MTU,

Equation (4.24) can be simplified into

PR
(MRo - PR)(1 - PR) dPR MTU,
p*(PR - r')(PR - A')

0

Therefore,

(4.24)

(4.25)
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where

1 2 * (P* + MRo(P* - Od,o) - Of)

-2P* I(P* + MRo(P* - Zd, o) - ,)2 + 4P*MR(P* + 0 d, o - Of (4.26)

A = (P* + MRo(P* - Od, o) - Of)

+ 2 (P* + MRo(P* - 6d, o) - Of)2 + 4P*MRo(- P* + d, o- Of) (4.27)

Integration of Eq. (4.25) yields

' -(A' -()1A' - MRo) In A' - PR)

(i' - 1)(' - MRo) ' -PR PR (4.28)
,X , -A') in

Hence, Eq. (4.28) combined with Eqs. (4.21) and (4.22) can be used in the design of

a PRO membrane mass exchanger where the required mass transfer units, effectively

the membrane area, is given as an explicit relation of the form

MTU7, fn(PR, MR, Of, 6d, P*) (4.29)

4.3 Alternative PRO effectiveness (E-MTU, model)

As seen in Sec. 3.3, the effectiveness of a PRO exchanger is equivalent to the actual

amount of permeate divided by the maximum possible amount of permeate. The

maximum possible amount of permeate is achieved when the membrane area is large

enough to allow the hydraulic and osmotic driving potentials to become equal. In

this section, the effectiveness-MTU model is altered to account for the modified di-

mensionless parameters. The effectiveness is reproduced from the previous chapter
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as Eq. (4.30).
PR (4.30)

PRmax

The derivation of the alternative effectiveness of a PRO mass exchanger operating in

parallel or counterflow configuration is nearly identical to the steps shown in Sec. 3.3.

Therefore, this derivation will be omitted and the final results displayed below.

4.3.1 Parallel-flow PRO effectiveness

For a parallel-flow PRO mass exchanger, the maximum permeation ratio, Eq. (4.1)

is found to be one of the roots to the PR-MTU, solution, K, as given in Eq. (4.12).

Therefore,

PR = EPRmax = E (4.31)

Substituting Eq. (4.31) into Eq. (4.14) yields an expression, Eq. (4.32), relating

MTU., the effectiveness, and other dimensionless parameters.

MTU x * =(A - 1)(MR + A) InA - e
MTU x P*= l

(/ - )M +A
1) MR+ r)ln (1 - E) - Er, (4.32)

4.3.2 Counterflow PRO effectiveness

For a counterflow PRO mass exchanger, there are two local maximum permeation

ratios which are found depending on which side of the exchanger first reaches a zero

net driving potential. Equations (4.33) and (4.34) display these two local maxima.

MR Bd
PRmax,i = + Qd- MR (4.33)

P* + Of

PRmax, i 1 - Of (4.34)
Od - P*
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The lesser of these local maximum permeation ratios is the global maximum as given

by Eq. (4.35).

PRmax = min (PRmax, 1, PRmax, 2) (4.35)

Substituting Eq. (4.30) into Eq. (4.28) yields an expression for MTU, as a function

of effectiveness as given by Eq. (4.36).

MTUxP* = (A' - 1)(A - MRo) A' - EPRmax

(K' - At) A/
'- 1)(' - MRo) a' - x

- in , )- EPRmax (4.36)

4.4 Forward osmosis mass exchanger model

The PR-MTU, model Eqs. (4.14) and (4.28) and the E-MTU, model Eqs. (4.32)

and (4.36) are closed-form solutions for the performance of a one-dimensional PRO

exchanger with different inlet conditions and orientation. The equations are valid

for a P* value between zero and one. As previously mentioned, when P* = 0, the

maximum amount of permeate is achieved and the exchanger is said to operate in the

direct FO, or FO, regime. Finding a solution for this regime is important because

some desalination processes use FO as a means for separating water from a saline

source using a concentrated draw solution. A back-end process, such as a distillation

column, can then be used to recover the permeate and regenerate the draw solution.

This section will derive equations which relate the permeation ratio and effectiveness

with MTU, for FO processes where P* = 0.

4.4.1 Parallel-flow FO permeation ratio and effectiveness

One way to achieve the permeation ratio and effectiveness for the FO case is to

perform numerical calculations that approach the limit of P* -+ 0 using computer
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software. To derive a closed-form solution for the FO case, however, we must return

to Eq. (4.10) and set P* = 0 as shown in Eq. (4.37) in a simplified form.

PR
(MR + PR) (1 - PR) dPR = MTUs (4.37)

IROd (1- PR) - Of(MR+ PR)
0

Integrating Eq. (4.37) yields,

MRlX l R~ PR ala
MTUr = MRln - + (1 - MR) P + aIna

b a bb2n X

1 /2 a 3_X
+ b 2 yin X 2) + 2aX -2 (4.38)

where

a = MR (Od - Of) (4.39)

b = - (MROd + Of) (4.40)

X = a + b x PR (4.41)

Figures 4-1 and 4-2 show the variation of the permeation ratio (PR) and the concen-

tration factor (CF) with the mass transfer units (MTU) at different mass flow rate

ratios for the parallel-flow configuration. An inlet draw stream salinity of twice the

inlet feed stream salinity is considered.

To find the maximum permeation ratio of the parallel-flow case, we equate the

osmotic driving potential to zero instead of equating it to the hydraulic pressure

difference, AP, as was done in the previous chapter.

Arout = 7d, out - 7f, out = C (Wd, out - Wf, out) = 0 (4.42)

Substituting conservation of solution and solutes for the draw and feed streams, as

done in the previous chapter in Eqs. (3.39) and (3.40), to express the outlet salinities
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Figure 4-1: Permeation ratio vs. mass transfer units with contours of mass flow rate
ratio for a parallel-flow configuration in FO operation.
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Figure 4-2: Concentration factor vs. mass transfer units with contours of mass flow
rate ratio for a parallel-flow configuration in FO operation.
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Figure 4-3: Effectiveness vs. mass transfer units with contours of mass flow rate ratio

for a parallel-flow configuration in FO operation.

in terms of the inlet salinities and other dimensionless variables, and dividing by

Armax, yields the following expression,

OdMR Of = 0 (4.43)
MR + PRmax 1 - PRmax

Solving for PRmax yields,

PRmax MR(Od-Of) (4.44)
ma MR + Of

Again, the effectiveness is defined by Eq. (4.30) and is plotted versus MTUx for the

parallel-flow configuration in Fig. 4-3.

4.4.2 Counterflow FO permeation ratio and effectiveness

Again, Eqs. (4.26)-(4.28) and Eqs. (4.33)-(4.36) can be solved numerically as P*

approaches zero in order to solve for the limit of FO operation. To arrive at a closed

form solution, however, Eq. (4.24) must be integrated where P* = 0 as shown in
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Eq. (4.45) in a simplified form.

PR

I
0

(MRo - PR)(1 - PR) dPR = MTUr
MRoQd, o (1- PR) - Of (MRo - PR)

Performing this integral yields the following result:

MRo0MTUr= In
d
1

c2

- + (1+ MRo)
C

In - +
c 2) +

PR c Y
d d2 cJ

Y2-

-- 2cY
2 (4.46)

c = MRo (Od, o - Of)

d =Of - MRo d, o

Y = c + d x PR

(4.47)

(4.48)

(4.49)

Figures 4-4 and 4-5 show the variation of the permeation ratio (PR) and the con-

centration factor (CF) with the mass transfer units (MTU,) at different mass flow

rate ratios for the counterflow configuration. A draw stream salinity of twice the feed

stream salinity is considered.

To find the effectiveness, the osmotic driving potential is set to zero on both sides

of the exchanger.

7d, out - 7f, in = 0 (4.50)

Using the van 't Hoff model and applying conservation of solution and solutes, this

condition will lead to

PRmax, i MR (4.51)
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Figure 4-4: Permeation ratio vs. mass transfer units with contours of mass flow rate
ratio for a counterflow configuration in FO operation.
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Figure 4-5: Concentration factor vs. mass transfer units with contours of mass flow
rate ratio for a counterflow configuration in FO operation.
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Figure 4-6: Effectiveness vs. mass transfer units with contours of mass flow rate ratio
for a counterflow configuration in FO operation.

The other condition will lead to

7Fd, in - 1f, out = 0

PRmax, 2 = 1
6d

(4.52)

(4.53)

Since there are two solutions for the maximum permeation ratio, we should take the

minimum value.

PRmax = min (PRmax, 1, PRmax, 2) (4.54)

The effectiveness is defined as given by Eq. (4.30) and is plotted versus MTU, for the

counterflow configuration in Fig. 4-6.
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4.4.3 Effect of concentration polarization on FO permeate

flux

Again, it is important to note that the values shown in Figs. 4-1 - 4-6 will be altered

once concentration polarization is included in the model. To gain an understanding

of how significant the decrease in flux can become when concentration polarization is

taken into account, a simple example of a zero-dimensional FO exchanger with and

without concentration polarization is presented below.

The permeation flow rate per unit area through a zero-dimensional ideal membrane

operating in the direct forward osmosis regime is given by

rih = A (wd - f) (4.55)

where A is the water permeability coefficient given in units of kg/s-m'-kPa and the

two osmotic pressure terms pertain to the draw and feed streams with units of kPa.

The ideal membrane assumption implies no salt permeation and no concentration

polarization effects.

Unlike ideal membranes, real membranes operated in the FO and PRO regime will

experience a dual diffusion process allowing for salt permeation from the concentrate

to the dilute stream. Real membranes also experience internal and external concen-

tration polarization (ICP and ECP). ICP is due to concentration boundary layers

that occur within the porous support layers of the membrane. The function of these

support layers is to provide structural support to the active layer. ECP is due to

external concentration boundary layers which form on both sides of the membrane.

Collectively, salt permeation, ICP, and ECP reduce the net driving pressure across

the membrane, thereby reducing the permeate flux for FO and PRO systems and the

power produced in PRO systems.

The governing equation for the permeate flux in a zero-dimensional membrane
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operating in the FO mode with ICP, the ECP on the feed side of the membrane, and

no salt permeation is given by

rhp = A [rd exp - )- 7rf exp (i)] (4.56)

where K is the solute resistance to diffusion within the support layer of the membrane

with units of s/m, kf is the mass transfer coefficient for the feed side with units of

m/s, and pp is the permeate density (considered to be pure water) with units of kg/m 3

[52]. The osmotic pressure difference from Eq. (4.55) has now been replaced by the

effective osmotic pressure difference which is the expression within the square braclsets

of Eq. (4.56). This expression includes the difference of the bulk osmotic pressures

each multiplied by an exponential modulus which limits the amount of permeate per

unit area of membrane due to concentration polarization effects. The first modulus

represents the ICP, is a function of K, and reduces the draw side osmotic pressure

when the term within the exponential brackets is less than zero. The second modulus

represents the ECP, is a function of kf, and increases the feed side osmotic pressure

when the term in the exponential is greater than zero. The equation is implicit in

the variable rh" and therefore requires a numerical method of solution.

The permeate mass flux through an ideal and real membrane is now compared.

The inputs for the calculation are given in Table 4.1. The water permeability coeffi-

cient A, mass transfer coefficient kf, and the solute resistance to diffusion K are given

by McCutcheon and Elimelech [52]. The solutions are taken as having the same solute

ratios as the solutes in seawater. The osmotic pressure model used for the solutions

is discussed in Appendix B. A simultaneous equation solving software, Engineering

Equation Solver (EES), is used to solve both functions [48]. The inlet salinities chosen

are representative of a differential element of an FO exchanger used for desalinating

seawater.
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Table 4.1: Inputs for the calculation of flux through an ideal and real membrane

Input Symbol Value

Ambient temperature, TO 25 0C
Draw salinity Wd ,in 42 g/kg
Feed salinity Wf ,in 35 g/kg
Permeate density pp 1000 kg/m 3

Water permeability coefficient A 3.07 x 10-6 kg/s-m2 -kPa

Feed side mass transfer coefficient kf 1.74 x 10-5 m/s

Solute resistance to diffusion K 2.67 x 10' s/m

For the given stream salinities, the osmotic pressures are F d = 31.4 bar and

Ff = 25.9 bar and the rate of permeate mass flux through the ideal membrane is

1.70x 103 kg/s-m 2. Including the exponential moduli for ICP and ECP decreases

the flux to 4.35x 10-4 kg/s-rm2 . This result indicates that the amount of permeate

flux through the real membrane is 25.7% of the flux through an ideal membrane for

the inputs given.

By inspecting Eq. (4.56), one can see that there are ways to reduce the effects

of concentration polarization and achieve more permeate from the real membrane.

By reducing the solute resistance to diffusion, K, and increasing the mass transfer

coefficient, kf, the permeate flow rate can be increased. For example, by halving the

value of K, the real membrane mass flux increases to 37.05% of the ideal membrane

flux. This signifies an 11.4% increase in flux. By doubling kf, however, the real flux is

27.4% of the ideal flux, which results in a mere flux increase of 1.7%. Comparing both

of these examples, it is clear that reducing K has a stronger effect than increasing kf.

This is because FO is dominated by internal concentration polarization as has been

documented in the literature [4, 35, 58].

In the limit that there is no support layer, then K = 0 and the real membrane

mass flux increases to nearly 68% of the ideal membrane flux. In order to achieve

a real membrane flux reduction of 10% compared to an ideal membrane, there must
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be no support layer and kf must be increased by a factor of 4.2 for the inputs given

in Table 4.1. In theory, this could be achieved by designing a structurally stronger

membrane active layer in order to do away with the support layer, reducing the

channel spacing of the feed stream, and increasing the feed stream Reynolds number.

Due to the significance of concentration polarization in these osmotic mass ex-

changer systems, future work should focus on modifying the current equations to

account for this phenomenon. The present model, however, can serve as a useful up-

per bound on performance for the ideal case where the mass transfer resistances due

to concentration polarization are negligibly small compared to the resistance through

the active layer of the membrane.

4.5 Reversible model for salinity gradient power

production

Before determining the limits of power production for a PRO exchanger, a reversible

model is first analyzed to provide the thermodynamic upper limit to the power avail-

able from two streams of a different salinity. In thermodynamics, a reversible heat

engine produces power by exploiting a heat transfer from a high temperature reservoir

to a low temperature reservoir. Here, we analyze a reversible salinity gradient engine

(SGE) which produces power by exploiting the mixing of a high chemical potential

stream with a low chemical potential stream. Thermodynamic analysis is performed

on two black box models, shown in Fig. 4-7, to determine the maximum amount of

power an SGE can produce by completely or incompletely mixing two streams of a

different salinity. The systems are first introduced and the governing equations for

determining the amount of power available are subsequently derived.

A control volume for a salinity gradient engine with three streams of water of

varying salinity is denoted by the dashed box in Fig. 4-7a. The boundary of the

96



vV

Draw stream

Feed stream

md in

Wd, in

mf in

Wf, in

rnmix, out

Wmix, out

T = To

(a) Complete mixing engine

Draw stream

Feed stream

T = To

(b) Incomplete mixing engine

Figure 4-7: Schematic diagram of a reversible salinity gradient engine with (a) com-

plete mixing and (b) incomplete mixing schemes.
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control volume is drawn far away enough from the internal process so that all streams

are at ambient pressure and temperature as defined by Mistry et al. [59]. The control

volume itself is at ambient temperature. Within the control volume, a concentrated,

or draw, stream of water is completely mixed with a dilute, or feed, stream which

results in a solution with a salinity of wmix. The maximum amount of power available

from the two inlet streams of different salinity is produced during complete reversible

mixing, and the value has been derived in the PRO literature [56, 60].

Figure 4-7b shows a more specific model that accounts for incomplete mixing

through the use of four streams instead of three, as is the case in a PRO system, and

is cited in literature [61]. Unlike the model considered in [61], however, salt diffusion

from the draw to the feed stream is not considered due to the high salt rejection

in membranes. For instance, salt rejection rates of greater than 99.7% are found in

commercial seawater RO membranes [62]. In the incomplete mixing model, a draw

and feed stream are brought together within a control volume and only water from

the feed stream is allowed to mix with the draw stream. This water permeate, defined

as hp = rf, in - nf, out, dilutes the incoming draw stream and concentrates the feed

stream.

Also in the incomplete mixing model, as in the complete mixing model, the control

volume is at ambient temperature and the boundary of the control volume is drawn

such that all streams are at ambient pressure and temperature. The boundary, how-

ever, is not drawn so far as to allow the outlet streams to mix completely, where the

salinity of the outlet streams are equal. This means that there is an amount of power

that is lost due to incomplete mixing because the outlet streams could once again be

brought together to produce more power. If the salinities of the outlet streams are

equal (Wd, out = Wf, out), the power produced will limit to the maximum amount of

available power given by the system in Fig. 4-7a.
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4.5.1 Governing equations for a reversible mixing process

To quantify the amount of reversible power available from both systems, let us con-

sider a generalized open, steady state, power-producing system with multiple streams

of varying salinities entering and exiting the control volume. The system is in thermal

equilibrium with the environment via a heat interaction, Q, that enters the control

volume at the temperature of the boundary which is equal to the ambient tempera-

ture, To. Neglecting changes in kinetic and gravitational energies of the streams, the

First and Second Law of Thermodynamics for the system are given below:

0= Q-W+Z h - I h (4.57)
in out

0= Q+ rs - Ts +gen (4.58)
in out

We multiply Eq. (4.58) by To and subtract the result from Eq. (4.57) to attain an

expression for the power of mixing, Eq. (4.59).

Wmix E h - To s + Tgen (4.59)
in-out in-out

For a reversible system, Sgen = 0, and Eq. (4.59) simplifies to Eq. (4.60).

W ev h - To s (4.60)

in-out in-out

When the inlet and outlet streams are isothermal and at ambient temperature, we

can substitute the definition for specific Gibbs free energy (g = h - Ts) into Eq. (4.60)

to give:

E= rg (4.61)

in out
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If the value for the Gibbs free energy as a function of temperature, pressure, and

salinity of each stream is available, the amount of reversible power by mixing can

be calculated by inputting these values along with the flow rates of each stream into

Eq. (4.61).

Two previously defined dimensionless parameters are used in this analysis. The

mass flow rate ratio, MR from Eq. (4.3), and the permeation ratio, PR from Eq. (4.2).

In this case, the permeation ratio controls how much of the feed stream is used for

dilution of the draw stream.

Maximum reversible power by complete mixing

To find the maximum reversible power of mixing, Eq. (4.61) is applied to the complete

mixing model of Fig. 4-7a. Several equations for mass conservation and Eq. (4.3) will

also be used.

The mass conservation equations for solutions and solutes are given by

md, in + nf, in = mix, out (4.62)

md, inlEd, in + rnf, inWf, in mix, out Wmix, out (4.63)

The maximum reversible power by complete mixing is normalized by the feed

stream mass flow rate to account for system size and is given by:

'vvrev
complete = MRgd, in + gf, in -(1 + MR) gmix, out (4.64)
mf, in

Reversible power of incomplete mixing

To find the reversible power for a system with incomplete mixing, Eq. (4.61) is applied

to the model in Fig. 4-7b along with several equations for mass conservation and use

of Eqs. (4.3) and (4.2). For the mass conservation equations, the salinity of the
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permeate must also be given.

The mass conservation equations for solutions and solutes are given by

md, in + Tfl, in m d, out - rnf, out (4.65)

f, inWf, in TpWp + rnf, outWf, out (4.66)

md, inWd, in ~ rnpWp rd, out Wd, out (4-67)

The reversible power by incomplete mixing is normalized by the feed stream mass

flow rate to account for system size and is given by:

r evioplete -Mgi f n-(.8
mcomplete = MR gd, in + gf, in - (MR - PR) gd, out - (1 + PR) gf, out (4.68)

mf, in

When the outlet salinities are equal in the incomplete mixing case, then the specific

Gibbs free energy of the outlet streams become equal, gd, out = gf, out, and Eq. (4.68)

reduces to Eq. (4.64).

4.5.2 Reversible model results and discussion

The reversible power derived for the complete and incomplete mixing cases is plotted

against the variation of relevant parameters and the trends are discussed. The specific

Gibbs free energy of each stream as a function of temperature, pressure, and salinity

is evaluated using a seawater package developed by Sharqawy et al. [63].

Complete mixing case

Figure 4-8 shows the specific maximum reversible power of complete mixing, Eq. (4.64),

plotted against the mass flow rate ratio at To = 25 C, Po = 1 bar, and fixed inlet salin-

ities representative of seawater, Wd,in = 35 g/kg, and river water, Ef,in = 1.5 g/kg.

The figure shows that as the mass flow rate ratio is increased, the power rather

quickly approaches an asymptotic value. As MR approaches infinity, this value reaches
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Figure 4-8: Specific maximum reversible power of complete mixing versus the mass
flow rate ratio for fixed inlet salinities.

roughly 2.44 kJ per kilogram of feed for the given inlet salinities and represents the

absolute maximum amount of power available by mixing two streams.

Incomplete mixing case

The specific power of incomplete mixing, Eq. (4.68), is plotted in Figure 4-9 as a

function of the permeation ratio for various mass flow rate ratios.

As the permeation ratio increases, each MR contour approaches the maximum

specific power where the salinities of both streams are equal. Note that Fig. 4-8 is

reproducible by plotting Eq. (4.68) with equal outlet salinities (Wd, out - Wf, out).

4.6 Irreversible model for PRO power production

The previous section investigated the limits of reversible power production from two

streams of a different salinity. This section will use equations derived earlier in this
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Figure 4-9: Reversible power of incomplete mixing versus permeation ratio for varying
mass flow rate ratios and fixed inlet salinities.

chapter for the flux performance through a one-dimensional PRO mass exchanger

to determine the maximum power achievable in a process more representative of an

actual system.

For a zero-dimensional PRO exchanger, the governing equation for the mass flow

rate of permeate is given by the integral form of Eq. (3.1):

r2p = A - (A-F - AP) Am (4.69)

Figure 4-10 shows a PRO system that takes in a draw and feed stream, or seawater

and fresh water, respectively [54]. The draw and feed solutions are brought into the

system at atmospheric pressure and pumped to a slightly higher pressure via two low

pressure pumps. The draw solution is then pressurized to a variable top pressure by

entering a pressure exchanger. The pressurized feed and the draw streams enter a

counterflow PRO mass exchanger where an amount of permeate is forced through a
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Figure 4-10: Schematic diagram of a PRO power generation system from Achilli et
al. [54]. The permeate is depressurized through the hydroturbine to produce useful
power.

semi-permeable membrane. The permeate is depressurized through a Pelton wheel

or hydroturbine while the remaining outlet draw solution, which is now diluted, is

used to pre-pressurize the inlet draw solution via a circulation pump and a pressure

exchanger. A portion of the power from the hydroturbine is used to operate the

pumps and the remainder is useful power.

We can determine the amount of useful power achievable from the permeate de-

pressurization by applying the First Law of Thermodynamics to the hydroturbine.

Equation (4.70) assumes that the system is open, at steady state, and adiabatic where

changes in kinetic and gravitational energy are neglected.

Wactuai =rhp (hiu - hout)actuai (4.70)

The enthalpy difference is given by integrating the definition of enthalpy between the
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inlet and outlet states, as shown in Eq. (4.71).

in

hin- ho J T ds + I dP (4.71)

out

We will first calculate the isentropic power and then correct for the actual power by

using a turbine efficiency. For an isentropic process, the change in specific entropy is

zero (ds - 0). Furthermore, the incompressible fluid model (p = constant) is used so

that the density of the stream can be taken outside of the integral, yielding Eq. (4.72).

The density in this equation is equal to the density of the diluted outlet draw stream

which in Fig. 4-10 is labeled as diluted seawater.

1
(hin - hout)rev - (Pin - Pout) (4.72)

p

The definition of the isentropic efficiency is used to relate the reversible and actual

enthalpy differences as shown in Eq. (4.73).

= (hin - hout)actuai (4.73)
(hin - hout)rev

Equations (4.72) and (4.73) are substituted into Eq. (4.70) to give an expression for

the actual power produced by the hydroturbine. The inlet hydraulic pressure to the

hydroturbine is taken to be the draw stream pressure and the outlet is taken to be

the feed stream pressure which is slightly above atmospheric. Therefore, the change

in pressures for the hydroturbine is equal to the PRO trans-membrane hydraulic

pressure, AP.

actuai= X A AP (4.74)
p

By substituting Eq. (4.69) into Eq. (4.74) and differentiating with respect to AP, it

can be shown that the maximum power occurs when AP = A-r/2. This result was
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first shown by Lee et al. [4] and is valid for a zero-dimensional membrane where the

salinity, and consequently the osmotic pressure, does not vary throughout the length

of the exchanger. This result corresponds to an optimal pressure ratio of P*pt

AP/A7r = 1/2 for the zero dimensional case.. For a zero-dimensional exchanger,

A7r = A7rmax, and it can be shown that the maximum power per unit mass flow rate

of the feed stream, is given by Eq. (4.75)

Wmax, O-D _ " Am A A7r2

.f,= 1. p 4(4.75)Tf, in mf, in p 4

where p is the density of the outlet draw stream, Am is the membrane area, and A is

the water permeability coefficient.

To find the actual power for a one-dimensional exchanger, we make use of the

equations developed in the first half of this chapter for determining the flux per-

formance of the membranes. Returning to Eq. (4.74), and dividing by Tmf, in and

multiplying the right hand side by A7rmax/A7rmax, yields the following expression for

the specific power of a one-dimensional exchanger relative to an inlet feed stream of

one kilogram per second:

W1-D Tlima PR- P (4.76)
rf, in P

As previously mentioned, the limits for P* are between zero and one for PRO oper-

ation. When P* = 0, the maximum permeation ratio is achievable for a fixed value

of MTU, but there is no hydraulic pressure difference and therefore no power is pro-

duced. When P* = 1, there is a maximum amount of hydraulic pressure difference,

but zero permeation ratio and therefore no power is produced. In the following power

analysis we will only consider a counterflow PRO exchanger.
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Figure 4-11: Specific power vs. pressure ratio at MTU, = 0.1 with contours of MR
for a one-dimensional, counterflow PRO membrane.

4.6.1 Irreversible model results and discussion

Using Eqs. (4.26)-(4.28) and (4.76), the specific power output achievable can be

plotted versus the full range of the pressure ratio for a given value of MTU, and

contours of MR varying between 0.1 and 4 as shown in Figs. 4-11 - 4-13. The inlet

salinities considered in this analysis are wd,in = 35 g/kg and wf,in = 1.5 g/kg, which

are representative of seawater and river water. The isentropic turbine efficiency, rj, is

considered to be unity to determine the maximum power for the given inputs.

It can be seen from these plots that for a given mass flow rate ratio, a maximum

power results for a given value of the pressure ratio. Therefore, these plots can be

used to better approximate the design hydraulic pressure to use in a PRO system

for optimum performance. These plots can also be used to give an upper bound for

the maximum power achievable from a one-dimensional PRO membrane. This upper

bound is more realistic than the one given by Eq. (4.75) because the salinity of each

stream is allowed to change throughout the length of the exchanger.
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Figure 4-12: Specific power vs. pressure ratio at MTU, 1 with contours of MR for
a one-dimensional, counterflow PRO membrane.
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Figure 4-14: Specific maximum power (solid line) and optimum pressure ratio (dashed

line) vs. MR atMTU, = 0.1 for a one-dimensional, counterflow PRO membrane.

The optimum pressure ratio, P*, is found by using the quadratic approximations

numerical optimization method in Engineering Equation Solver [48]. By substituting

the optimum pressure ratio into Eq. (4.76), the maximum specific power, Wmax/rhf, in,

can be determined. Figures 4-14 through 4-16 show the maximum specific power rising

to an asymptotic value as MR increases from 0.1 to 15. These figures also show the

optimum pressure ratio deviating from the zero-dimensional limit of one-half as MR

varies. The deviation from the zero-dimensional limit increases as MTU, increases.

The global maximum specific power achievable for a combination of seawater and

river water is found when MR approaches infinity and MTU, is increased to where

the effectiveness of the exchanger is unity. This global maximum specific power is

determined to be 1.57 kJ/kg, which is not much greater than what is shown in Fig. 4-

16. Dividing the global maximum specific power by the maximum reversible power

of complete mixing, wrorpiete/rhf,in = 2.44 kJ/kg, yields a Second Law efficiency of

64.48%. This is a high value because the one-dimensional power values achieved in
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Figure 4-15: Specific maximum power (solid line) and optimum pressure ratio (dashed
line) vs. MR at MTU, = 1 for a one-dimensional, counterflow PRO membrane.
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Figure 4-16: Specific maximum power (solid line) and optimum pressure ratio (dashed
line) vs. MR at MTU, = 5 for a one-dimensional, counterflow PRO membrane.
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this section assume an ideal membrane with no concentration polarization and no salt

permeation. The addition of concentration polarization and salt permeation into the

transport model will effectively add resistances to mass transfer. To first order, the

effect of concentration polarization can significantly decrease the amount of permeate

flux achievable, and therefore the power which can be produced. This analysis is still

useful, however, in that the values determined here provide important upper limits

for power performance.

4.7 Conclusions

The important conclusions from this chapter are as follow:

1. The analogy between osmotic mass exchangers and heat exchangers allows for

effectiveness versus mass transfer units expressions to be developed. These

expressions function in a similar way to the E-NTU expressions used to size and

rate heat exchangers. The expressions, developed in the previous chapter of

this work, can be modified to facilitate the analysis of the upper limits of flux

and power performance for FO and PRO membrane mass exchangers.

2. A new dimensionless group, the pressure ratio P*, is presented which represents

a balance of trans-membrane hydraulic to osmotic driving potentials. This

dimensionless group conveniently varies between zero and unity which spans

the range of operation for a PRO exchanger.

3. The maximum reversible power available to a salinity gradient engine occurs

during complete mixing of streams and limits to 2.44 kJ/kg of feed for repre-

sentative seawater and river water salinities of 35 and 1.5 g/kg. An incomplete

mixing case was also investigated for the reversible salinity gradient engine.

4. For a one-dimensional osmotic mass exchanger used in a PRO system, the zero-
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dimensional theory that the maximum power available occurs at a hydraulic

pressure difference equal to exactly one-half of the osmotic pressure difference

is shown to be an idealization which is only valid for membranes with a small

MTU,, effectively small membrane areas. As the size of the membrane increases,

significant deviations from this one-half value result and are quantified in this

chapter.

5. A global maximum power per unit of feed flow rate exists for a one-dimensional

PRO system given the salinities of the two inlet streams. This value is found

where the MTU, increases until the effectiveness of the exchanger is equal to

unity and the mass flow rate ratio increases to infinity. For a combination of

seawater and river water, this value is 1.57 kJ/kg. Dividing this value by the

reversible power of complete mixing, a Second Law efficiency of nearly 64.5% is

realized. This is an optimistic upper bound which will decrease as a result of

concentration polarization, salt permeation, and pressure drop.
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Chapter 5

Use of PRO Membranes as Energy

Recovery Devices

Chapter abstract

Thermodynamic analysis is applied to assess the energy efficiency of hybrid desalina-
tion cycles that are driven by simultaneous mixed inputs, including heat, electrical
power, and chemical energy. A seawater desalination cycle using power and a chemical
input stream is analyzed using seawater properties. Two system models, a reversible
separator and an irreversible component based model, are developed to find the least
power required to operate the system with and without osmotic recovery. The com-
ponent based model represents a proposed desalination system which uses a reverse
osmosis membrane for solute separation, a pressure exchanger for recovering a frac-
tion of the mechanical energy associated with the pressurized discharge brine, and a
pressure retarded osmosis (PRO) module for recovering some of the chemical energy
contained within the concentrated discharge brine. The energy attained by the ad-
dition of the chemical input stream serves to lower the amount of electrical power
required for operation. For this analysis, a wastewater stream of varying solute con-
centration, ranging from feed to brackish water salinity, is considered as the chemical
stream. Unlike other models available in the literature, the PRO exchanger is numer-
ically simulated as a mass exchanger of given size which accounts for changing stream
concentration, and consequently, stream-wise variations of osmotic pressure through-
out the length of the unit. A parametric study is performed on the models by varying
input conditions. For the reversible case it is found that significant power reductions
can be made through the use of an energy recovery device when the inlet wastewater
salinity used is less than the feed salinity of 35 g/kg. For the irreversible case with
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a typical recovery ratio and feed salinity, significant power reductions are only noted
for wastewater inlet salinities of less than 20 g/kg due to pumping power losses. In
the irreversible case, the use of a numerical model to simulate the PRO exchanger
results in a maximum power reduction when the pressure difference between streams
was around one half of the osmotic pressure difference as opposed to the precise value
of one half found in zero-dimensional exchanger models.

5.1 Introduction

As fresh water resources are strained, the world is increasingly turning to saline water

sources to meet water demands. Both membrane and thermal technologies are com-

mercially available for desalinating saline water sources, but a concern surrounding

their implementation is the high energy cost associated with separation. As a result

of a variety of technological improvements, such as the development of the pressure

exchanger and falling membrane costs, reverse osmosis (RO) separation is currently

the most widely used method for desalination [3]. In an effort to make RO more vi-

able, an energy recovery device (ERD) has been proposed [64] to reduce the amount

of electrical power required for operation.

All desalination systems discharge a concentrated brine with a higher salinity than

the feed stream. By virtue of its composition, the brine stream has a higher Gibbs

free energy than the feed and can be used to recover chemical energy if it is not

immediately rejected to the environment. The proposed energy recovery device is a

type of forward osmosis exchanger (FO), called.a pressure retarded osmosis (PRO)

mass exchanger, integrated with a pressure exchanger. The device can be used when

a chemical stream with a lower total dissolved solids than the discharge brine is

available. The chemical stream could be the feed stream water or another source

such as wastewater. In certain cases, it may be more advantageous to simply purify

and treat the wastewater source instead of desalinating the more saline stream. This

study, however, assumes that the wastewater is only used to recover energy for the
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desalination process. This might represent a case where policy does not allow for the

human consumption of treated wastewater.

Current literature in the area of FO is generally between studies of desalination

[64-68] and studies of power production [4, 28, 34, 47, 49, 54, 56-58, 69-71]. Forward

osmosis based power production is often referred to as pressure retarded osmosis

(PRO) and it is currently receiving significant attention in the literature.

This chapter explores two perspectives of the ERD. First, we will use control

volume thermodynamic analysis on two reversible separators, one with and the other

without energy recovery, in order to determine the theoretical least power required for

operation. Second, we use thermodynamic analysis to determine the power required

for a model of two systems with irreversible components. The first irreversible system

is a single pass RO system with a pressure exchanger and the second is the same plant

integrated with a PRO-based ERD.

For the reversible case it is found that significant power reductions can be made

through the use of an ERD when the inlet wastewater salinity used is lower than the

feed salinity of 35 g/kg. For the irreversible case, early results suggested a wastewater

turbine is a necessary component for maximum power recovery. For the irreversible

case with a recovery ratio of 0.5 and a feed salinity of 35 g/kg, significant power

reductions were only noted for a wastewater inlet of less than 20 g/kg due to pumping

power losses. In the irreversible case, the use of a numerical model to simulate the

PRO exchanger resulted in a maximum power reduction when the pressure difference

between streams was around one half of the osmotic pressure difference as opposed to

the precise value of one half found in zero-dimensional exchanger models [4, 28, 54, 711.
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5.2 Thermodynamic analysis of reversible separa-

tion

Two reversible separators are shown in Fig. 5-1. Both systems represent black box

processes that reversibly separate an incoming feed stream of saline water into a

product stream of low salinity and a concentrated brine stream. The mass flow rates,

denoted by rm, are in units of kilogram of solution per second. The control volume

displayed in Fig. 5-la, the reversible separator without recovery, was studied by [59]

and represents a typical desalination process. This system is referred to as system A.

As shown, system A rejects a concentrated brine stream which contains a higher salt

concentration, and thus has a higher Gibbs free energy, than the feed stream. The

difference in Gibbs energy is related to a difference in osmotic pressure and can be

used to drive a mass flux of water from the less saline to the more saline stream when

the streams are separated by a semi-permeable membrane. This additional mass flow

can be converted into useful power using a turbine or used to create power transfer

in a pressure exchanger. The difference in Gibbs energy is also related to a difference

in chemical energy which could be converted into useful power by using a reverse

electro-dialysis process [57].

The control volume displayed in Fig. 5-1b, referred to as system B, uses system

A to separate the feed stream into a product and brine stream, and then uses a

reversible energy recovery device to recover power. The reversible energy recovery

device considered here is identical to the salinity gradient engine considered in Sec-

tion 4.5. System B recovers power by taking in a chemical stream and rejecting a

diluted brine stream. In the cases considered in this chapter, the chemical stream

is a low salinity water stream, such as might result from wastewater after secondary

treatment. The wastewater stream enters the reversible ERD at a certain salinity,

transfers an amount of water into the brine stream, and exits at an increased con-
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Figure 5-1: Schematic diagram of a reversible separator without and with a reversible

energy recovery device.

centration. The wastewater inlet stream must have a salinity less than the salinity

of the brine stream if power is to be recovered. This chapter will only consider the

case where the wastewater that exits the ERD has the total mass flow rate of salts

as the incoming wastewater. This means that the wastewater which dilutes the brine

stream is pure water with zero salinity which implies perfect salt rejection by the

PRO module.

5.2.1 Governing equations

To find the maximum reduction of power that can be attained by the reversible energy

recovery device, a control volume analysis is performed on systems A and B.

Least power formulation

The First and Second Laws of Thermodynamics are given in Eqs. (5.1) and (5.2) for an

open, steady state, power-consuming system in thermal equilibrium with its environ-

ment where changes in the kinetic and gravitational potential energy of each stream
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are neglected. The heat transfer into each system is at the ambient temperature.

0 = Q+ Wsep + 1 rh - Z rh(
in

5.1)
out

0 - + -- Z s + 5gen
in out

(5.2)

We multiply Eq. (5.2) by To and subtract it from Eq. (5.1) to attain an expression

for the power of separation, Eq. (5.3).

Wsep = S Th - To 5 ns + Tgen
out-in

(5.3)
out-in

For a reversible system, 5gen = 0, and Eq. (5.3) becomes Eq. (5.4).

Vleast = epv =
Z rh -To E hs

out-in out -in

If we assume for simplicity that all streams entering and exiting the control volume

are isothermal at the environment temperature, then the energy balance given in

Eq. (5.4) becomes a Gibbs free energy (g = h - Ts) balance as given in Eq. (5.5).

(5.5)Wleast = I mg - rug

out in

Conservation of mass

For both separator models, conservation of mass must be satisfied. Solution and salt

balances for system A are given in Eqs. (5.6) and (5.7). Here we define w as the

mass fraction of salt in units of grams of solute per kilogram of solution (parts per

thousand).

rnf = rnp + nhb (5.6)

(5.7)nfwf = rpWp + rnbWb
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Equations (5.6) and (5.7) still apply for system B along with additional balance

expressions for the streams interacting with the control volume around the reversible

energy recovery device given in Eqs. (5.8)-(5.10).

rnb + rnww, in = rndb + ww, out (5.8)

Two salt balances are required for the brine and the wastewater streams because the

salt is conserved in both streams.

nbWb = ndbWdb (5.9)

mww, inw., in = mww, out www, out (5.10)

Dimensionless parameters

Equations (5.11)-(5.13) present three dimensionless parameters used for analysis:

recovery ratio, RR; permeation ratio, PR; and a mass flow rate ratio, MR. These

parameters were introduced and used in earlier chapters, but will be reintroduced

here. The first dimensionless parameter, recovery ratio, is defined for the reversible

separator as the ratio of product mass flow rate to that of the feed.

RR- iP (5.11)
mf

This parameter is greater than zero, and limited to some value less than one to avoid

scaling or precipitation in the RO unit.

The second dimensionless parameter, permeation ratio, is defined for the ERD as

the ratio of the permeate wastewater to the inlet wastewater stream mass flow rate.

PR - ""' in - mww, out Amhi (5.12)
tnww, in muww, in

Where Arnww is the water from the inlet wastewater which dilutes the brine stream.

119



The permeation ratio is greater than or equal to zero. It will be less than one to avoid

salt precipitation in the PRO unit.

The final parameter, MR, represents the ratio of brine entering the ERD to the

inlet wastewater mass flow rate.

MR mb (5.13)
Mww, in

5.2.2 Expressions for least power

Following Eq. (5.5) and using the solution balances from Eqs. (5.6) and (5.8), we may

now express the least amount of power per unit of product water for both systems in

terms of the dimensionless parameters RR, PR, and MR. For system A,

Wleast,A 1
=9bg + gp - g (5.14)

rP RR RR

For system B,

Wleast, B MR 1 [(1 PR)(gww, out - gdb) + 9db - gm, in]

+ ( g -1) -db P gR9  (5.15)RR RR

We define the reversible recovered power as the difference between the least power

for system A and system B in Eq. (5.16).

AWre _ Wleast, A_ Wleast, B (5.16)
fP MP flp

A reversible recovered power of greater than zero means that the ERD is advantageous

for power recovery. If the reversible recovered power is greater than the least power of

system A, this means that system B is producing excess power than what is required
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to separate the feed stream into product and brine.

Limits of permeation ratio

We now briefly discuss the limits of PR and their effect on the least power of separation

with recovery. In the limit of PR equals to zero, system B functions exactly as system

A because no wastewater is being used to dilute the brine stream. This can be

shown mathematically by substituting PR = 0 into Eq. (5.15) and recognizing that

Yww, in = ww, out and gdb = g when PR = 0.

In the other limit, PR can only equal one when the salinity of the incoming

wastewater is zero. When saline wastewater is used, PR cannot equal one because

of the constraint that the leaving waste stream should not be so concentrated that

salt precipitation could occur. It is for this reason that we do not consider a specific

maximum PR in our analysis.

Reversible model inputs

For simulation of the reversible model, we consider a system with a recovery ratio

of 0.5. This will allow for a clear comparison of power with the irreversible system

which is also operated at a recovery ratio of 0.5. The specific Gibbs free energy of

each stream is evaluated using a seawater property package developed by Sharqawy et

al. [631. The seawater package allows for thermophysical properties of a stream to be

evaluated as a function of temperature and salinity and is applicable for temperatures

of 0-120'C and salinities of 0-120 g/kg.

5.2.3 Reversible model results and discussion

We now plot Eq. (5.16) with the inputs listed in Table 5.1. Each plot in Figs. 5-2a -

5-2d shows the reversible recovered power per kilogram of product water as a function

of PR and several values of MR. Four plots are given for wastewater salinities ranging
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Table 5.1: Reversible model inputs

Input Symbol Value / Range
Ambient temperature TO 25 0 C
Ambient pressure Po 1 bar
Feed mass flow rate rhf 1 kg/s
Feed salinity Wf 35 g/kg
Product salinity WP 0 g/kg
Recovery ratio RR 0.5
Mass flow rate ratio MR 0.2, 0.4, ..., 4.0
Permeation ratio PR 0 -4 max
Inlet wastewater salinity ww, in 35 -- 1.5 g/kg

from 1.5 to 35 g/kg. For a recovery ratio of 0.5, the specific least power of system A

alone is 3.93 kJ per kilogram of product water.

The reversible recovered power plots show that in the reversible case, considerable

reductions in the power required can be achieved for the range of MR plotted. Each

successive figure allows for higher permeation ratios to be used because for lower

salinities of inlet wastewater, the permeation ratio can approach one. The maximum

PR displayed corresponds to a wastewater outlet salinity of nearly 120 g/kg which is

the salinity limit for a stream in the seawater property package used.

Several conclusions can be drawn by comparing the figures. As expected, a lower

inlet wastewater salinity will allow for larger reductions in least power. We can also

note that reversible recovered power increases for decreasing MR. As PR decreases

to zero, the reversible recovered power approaches zero; meaning that the system B

power is equal to the system A power as less water is extracted from the wastewater

stream. An optimum permeation ratio exists for each MR contour. This is because

a there is a trade-off between diluting the brine stream coming into the reversible

ERD at the expense of rejecting a more highly concentrated wastewater stream.

The optimum permeation ratio appears to increase for decreasing inlet wastewater

salinities. This is because at higher inlet wastewater salinities, a high PR will reject
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a highly concentrated wastewater stream, penalizing the attainable power reduction.

It can also be seen in Figs. 5-2c and 5-2d that the reversible ERD in system

B is capable of producing excess power than what is required to separate the feed

stream for lower values of MR. This is evident by noting that certain contours of

MR result in recovered reversible power values above 3.93 kJ/kg, the least power

of separation for system A. For a wastewater salinity of 1.5 g/kg, the largest power

recovery of 7.84 kJ/kg can be achieved at the local optimum permeation ratio of

0.88 and MR = 0.2. This means that system B produces 7.84 - 3.93 = 3.91 kJ of

power for each kilogram of product water separated from the feed source. For the

case in which seawater is used as a wastewater energy recovery stream, Figure 5-2a

shows that the maximum recovered power is 0.94 kJ/kg. This corresponds to a least

power of 2.99 kJ/kg for system B, which is a 24% reduction in the reversible power

of separation.
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5.3 Thermodynamic analysis of irreversible sepa-

ration

To determine how much power is recovered through use of the ERD integrated with

an RO system, we must first find the power required for the irreversible RO system

without energy recovery. We then combine the system with an additional pump, a

PRO-based mass exchanger for energy recovery, and a turbine to recover a fraction

of the wastewater pumping losses. The RO system with a PRO mass exchanger and

pump comprise a system proposed in literature [72]. A wastewater turbine was added

to the present model after early analyses pointed to excessive, recoverable losses in

the wastewater pump.

The governing equations used for analysis of the system performance are given

after the system descriptions.

5.3.1 Reverse osmosis system with pressure exchanger

A typical single pass seawater RO system with a pressure exchanger (PX) is displayed

in Fig. 5-3a. In this system, denoted as system A, a feed stream of seawater at a given

salinity is initially pumped to a pressure of 2 bar by pump P1. The feed is then split

into two streams. One stream is pre-pressurized by the PX and the other is sent to a

high pressure pump, P2, where it is brought to the top pressure of 64.8 bar required for

operation of the cross-flow RO exchanger. The stream exiting the PX is pressurized

to an intermediate pressure of 60.5 bar and is pumped to 64.8 bar by pump P3 after

which it joins the high pressure stream exiting pump P2. The full mass flow is now

sent through the RO where a fraction permeates through the membrane to become

product water at the environment pressure of 1 bar. The remaining mass exits the

RO module at a higher salinity than the feed stream and at a slightly lower pressure,

63.5 bar, due to viscous losses within the exchanger. The full amount of pressurized
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brine is finally sent through the PX before being rejected to the environment. The

PX is designed to allow two streams with the same volume flow rate to enter and

exit. Conditions selected for this model RO system are representative of an actual

large scale RO plant [59, 73].

5.3.2 Modified system with PRO exchanger

A modified version of the schematic diagram of Fig. 5-3a is shown in Fig. 5-3b. This

system now includes a PRO exchanger, a pump (P4), and a turbine (TI) for energy

recovery. In this system configuration, the brine stream exiting the RO module enters

the PRO module at a high salinity relative to the feed stream. On the opposite side

of the PRO membrane, a wastewater stream is pumped to a variable pressure of Pw

by pump P4 and runs in a counterflow configuration to the brine stream. Along the

length of the PRO exchanger, mass is exchanged. The mass exchanged is pure water

which permeates from the wastewater stream through the semi-permeable membrane

to the brine stream. The net driving pressure responsible for mass flux results from

hydraulic and osmotic pressure differentials in the usual way. The remaining wastewa-

ter that exits the PRO unit is depressurized through a turbine, T1, in order to recover

a fraction of the pumping power from pump P4. The PRO unit, pump, and turbine

comprise the ERD and can potentially reduce the net power into the RO system by

increasing the volumetric flow rate entering the PX. As the volumetric flow rate en-

tering the PX increases, the amount of feed water that can be pre-pressurized by the

PX increases, thereby reducing the amount of power required by the high pressure

pump, P3.

Pressure retarded osmosis exchanger

The PRO exchanger was numerically modeled in Engineering Equation Solver [48]

as a finite difference counterflow mass exchanger with N sections of unit width by
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a differential length. By testing for the convergence of permeate flow rate through

the PRO exchanger for each additional section added, N was determined to be fifty

sections.

5.3.3 Governing equations

To evaluate the pumping power associated with pressurizing an incompressible fluid,

Eq. (5.17) is used.

T4 (Pout - Pin)
1pump - POU-P (5.17)

P 7pump

The turbine power associated with depressurizing an incompressible fluid is given by

Eq. (5.18).

Wub-r(in -- Pout) 7lturb (5.18)Wturb = (.8
P

The pressure of the feed stream exiting the pressure exchanger is given by Eq. (5.19),

which is derived by equating the power of pressurization of the feed stream to the

depressurization of the diluted brine stream [59].

Pf, out = Pf, in + Comp7exp (Pb, in - PO) (5.19)

The differential mass flow rate through each section of the exchanger is a function

of four parameters: the water permeability coefficient, the differential area of each

section, the local difference in osmotic pressure across the membrane, and the local

difference in hydraulic pressure across the membrane:

dri = A x Am,i (X7ri - AP) (5.20)

Here Am, j, in units of square meters, is the differential area of each membrane section

and is given by the total membrane area of the exchanger, Am, divided by N number

of sections, Am, i = Am/N. A is defined as the water permeability coefficient, is a
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property of the membrane characteristics, and has units of kg/s-m'-kPa. The local

hydraulic and osmotic pressure differences are given by Eqs. (5.21a) and (5.21b):

A bi = 7b, i - 7T,, i (5.21a)

APi = Pb, i - Pww, i (5.21b)

The differences in osmotic and hydraulic pressures are equal to the brine value of the

ith section minus the wastewater value of the ith section. Both differentials have units

of pressure in kPa. Equation (5.20) denotes forward osmosis operation, meaning that

the permeate flows in the direction of increasing salinity, and requires that A-ir > AP.

For a direct FO unit, the hydraulic pressure difference AP is zero. For RO operation,

AP, > AxFi. The ERD is PRO-based because this system will operate at a hydraulic

pressure difference between FO and RO operation.

The mass of the permeate for each section is calculated, added to the brine stream,

and subtracted from the wastewater stream. The salinities for subsequent sections are

calculated based on the new water flow rates which will alter the osmotic pressures

in each stream. For simplicity, this model does not consider changes in hydraulic

pressure along the PRO module.

The total permeate mass in the pressure retarded osmosis exchanger is equal to

the sum of the differential mass flow rates through each section, Eq. (5.22).

N

An3 = deir (5.22)
i=1

Equations (5.23a) and (5.23b) define the net power consumed by the components

shown in Figs. 5-3a and 5-3b. Equation (5.23c) presents the difference of the two net

powers per kilogram of product water, or the specific recovered power, for assessment

of plant performance.
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Wnet,A = WP 1 +WP2 + WP3 (5.23a)

Wnet,B WP1 +WP 2 +WP 3 +WP4 -WTI (5.23b)

AW _ Wnet, A Wnet, B (5.23c)

A specific recovered power, Eq. (5.23c), of greater than zero results in an advantageous

use of the ERD.

Dimensionless parameters for irreversible case

In this section we describe dimensionless parameters that are useful for the irreversible

system analysis. From the reversible case, we again use recovery ratio, Eq. (5.11),

to govern the streams in the RO module. We also use the dimensionless flow rate of

brine to wastewater stream, MR from Eq. (5.13), to define the flow rate of incoming

wastewater in the irreversible case simulations.

The pressure ratio, P*, Eq. (5.24), previously introduced in Sec. 4.2.2, is defined

to set the limits of operation for pump 4 in system B as a value between zero and

one.
AP _b,in - Pww,inP -- b - ' (5.24)

Almax 7b, in - 7ww, in

By Eq. (5.24), AP = 0 when P* = 0 which means that pump 4 pressurizes the

wastewater to match the brine stream pressure at 63.5 bar (assuming no hydraulic

pressure drop in the PRO module). According to Eq. (5.20) this will maximize the

mass flow rate through the PRO exchanger. When P* = 1, pump 4 pressurizes the

wastewater stream to the lowest pressure allowable for maintaining forward osmosis

operation. A balance between P* and MR will be required for optimum system

performance.
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Irreversible model assumptions

In these model simulations we made several assumptions to reduce the problem space.

We neglected hydraulic pressure drop in the PRO exchanger and also the presence

of internal or external concentration polarization. According to Wilf [62], for typical

spiral wound seawater RO membranes, salt rejection rates are about 99.8% with

a water permeability coefficient of 1.0 L/hr-m2-bar. We neglected salt permeation

through the PRO membrane because of the high rejection rate. The total membrane

area for the PRO exchanger is equivalent to the total RO membrane area required for

a single pass seawater RO desalination plant with the same amount of product water,

as given by Wilf [62]. Parameter values used for the simulation are listed in Table 5.2.

It is also unclear whether current pressure retarded osmosis membranes can withstand

the applied hydraulic pressures present in the current model [56]. For the recovery

ratio chosen, the mass flow rate of the brine and product streams will be 0.5 kg/s.

The density of each stream is evaluated as a function of temperature and salinity

using seawater properties developed by Sharqawy et al. [63]. The osmotic pressure

of each stream is evaluated using a seawater osmotic pressure model developed in

Appendix B.

5.3.4 Irreversible model results and discussion

For the inputs shown in Table 5.2, the net power required for system A is a constant

7.50 kJ per kilogram of product water. The power recovered by the system with

recovery, Eq. (5.23c), is plotted against P* varying between zero and one for a range

of MR values in Figs. 5-4a - 5-4d. Each figure corresponds to a value of the wastewater

inlet salinity which varies between 35 and 1.5 g/kg.

Figure 5-4a shows that for a wastewater inlet salinity equal to that of the feed

stream salinity, at any MR, the addition of the ERD to the RO system is not advanta-

geous. This is because the power required by pump 4 is greater than the power saved

131



Table 5.2: Irreversible model inputs

Input
Ambient temperature
Ambient pressure
Feed mass flow rate
Feed salinity
Product salinity
Recovery ratio
Pump efficiency
Turbine efficiency
PX compression efficiency
PX expansion efficiency
Total PRO membrane area
Water permeability coefficient
Mass flow rate ratio
Pressure ratio
Inlet wastewater salinity

Symbol
TO
PO
rnf
Wf

wp
RR

U7pump
rjturb

?lcomp

77exp

Am
A

MR
P*

Www, in

Value / Range
25 0C
1 bar

1 kg/s
35 g/kg
0 g/kg

0.5
90%
90%
98%
98%

128 m 2

2.67x 10-6 kg/s-m 2 -kPa
0.2, 0.4, ..., 4.0

0-+ 1
35 -± 1.5 g/kg

by pumping less feed in pump 2. The conclusion

that concentration polarization and pressure drop

exchanger were not considered in this analysis.

is all the more convincing given

in the pressure retarded osmosis

For certain values of MR, the recovered power contours stop for low values of P*.

This end point is termed 'end of operation' and is due to an unacceptably high net

driving pressure across the membrane which would result in more permeate flow than

provided by the wastewater stream.

For a wastewater inlet salinity of 20 g/kg, in Fig. 5-4b, we begin to see a point at

which the ERD is advantageous for P* values of between 0.2 to 0.85. The concave

shape of each MR contour is due to the trade-off associated with a high or low value

of P*. For low P*, the pump 4 input power increases, but more permeate is allowed

through the PRO exchanger. For high values of P* the opposite is true.

Figure 5-4c clearly shows that for a wastewater salinity of 5 g/kg an optimal value

of P* exists for each MR contour. This optimum point shifts to higher values of
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P* for larger values of MR. Theoretically, as published in literature, the maximum

power obtainable by a zero-dimensional (1 section) PRO exchanger used for power

production is where AP = Air/2 [4, 28, 54, 71]. Although it is not entirely analogous

(because the system considered in this chapter does not produce power), Fig. 5-4c

shows that for a one-dimensional exchanger the optimal pressure is not at half of the

maximum osmotic pressure gradient and that it also varies with MR for a fixed inlet

wastewater salinity. The greatest recovered power shown in Fig. 5-4c is 1.34 kJ/kg

and corresponds to MR = 1.2 and P* = 0.42.

As expected, more power can be recovered for very low values of inlet wastewater

salinity as shown in Fig. 5-4d. The greatest recovered power value of 1.71 kJ/kg,

shown in the figure, corresponds to MR = 1.2 and also P* = 0.42. This power

recovered yields a total system B power of 5.8 kJ/kg and represents a power reduction

of about 22.7% which can be significant for large scale plants. Values of MR less than

1.2 do not result in greater recovered power for the input conditions chosen. This

highlights the trade-off associated with the choice of MR. For higher MR, the pump

4 power decreases but less permeate can be attained through the exchanger. The

opposite is true for lower values of MR.

Figures 5-5a - 5-5d show the variation of recovered power with permeation ratio,

as previously shown for the reversible case. In Fig. 5-5a it is once again apparent

that for the case in which the inlet wastewater stream and feed stream salinities are

35 g/kg, any value of MR cannot contribute to a system A power reduction. The

main reason for the overestimation of power reduction in the reversible case stems

from the fact that there is no pump in the reversible case and there is no energy

penalty for introducing a large mass flow rate of wastewater into the system. This

pumping power penalty can also been seen by the fact that when PR is equal to zero,

i.e., when zero wastewater permeates through the forward osmosis membrane, the

recovered power does not equal zero as it did in the reversible case. This is because of
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the energy penalty associated with pumping the wastewater through the ERD system

regardless of whether permeate was attained. Similar to the reversible case, the other

figures also exhibit the existence of an optimum PR which increases with decreasing

wastewater inlet salinity.
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(b) System B

Figure 5-3: Schematic diagram of an irreversible separation system without and with

a pressure retarded osmosis based energy recovery device.
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(a)

w i = 20 g/kg
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Pressure ratio, P*
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(b)

Figure 5-4: Specific recovered power vs. pressure ratio with contours of MR for a
fixed brine inlet salinity and varying wastewater salinity.
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Figure 5-4: Specific recovered power vs. pressure ratio with contours of MR for a
fixed brine inlet salinity and varying wastewater salinity.
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Figure 5-5: Specific recovered power vs. permeation ratio with contours of MR for a
fixed brine inlet salinity and varying wastewater salinity.
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Figure 5-5: Specific recovered power vs. permeation ratio with contours of MR for a
fixed brine inlet salinity and varying wastewater salinity.
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5.4 Conclusions

Desalination systems reject a highly concentrated discharge brine which has a higher

Gibbs free energy than the feed stream. With a pressure retarded osmosis mass

exchanger, a portion of this energy can be recovered to reduce the system's net power

of separation. This can be done if an available wastewater stream of a salinity less

than that of the rejected brine stream is available.

Expressions were derived to describe the least power of separation for a system

without and with a reversible energy recovery device. Along with the recovery ratio,

two dimensionless parameters relating the mass flow rates in the reversible energy re-

covery device, MR, and permeation ratio, PR, were used to assess the performance of

a system with energy recovery. In addition to investigating the thermodynamic limits

of separation for a reversible system, a simple model of an irreversible component-

based system with and without energy recovery was numerically simulated.

The major conclusions of this chapter are as follow:

1. Reversible results suggest that significant power reductions can be made with

a salinity gradient engine used as an energy recovery device.

2. For maximum power recovery, a wastewater turbine is recommended to recover

a fraction of the energy penalty incurred in pumping the wastewater into the

PRO mass exchanger.

3. With reasonable assumptions made regarding the PRO membrane area and

characteristics, the irreversible case shows that by using seawater as the feed

stream and the wastewater stream, an energy recovery device is not advanta-

geous. This conclusion is made more convincing by recognizing that concentra-

tion polarization and pressure drop in the pressure retarded osmosis membrane

will further contribute to losses in the system.
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4. A wastewater stream with a salinity of less than 20 g/kg is necessary to make

the PRO-based energy recovery device advantageous.

5. An optimal hydraulic pressure difference and mass flow rate ratio between

streams in the PRO exchanger exists for maximum power reduction. The op-

timal pressure, contrary to expressions found in the literature, was not found

to equal exactly half of the maximum osmotic pressure difference between the

streams.
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Appendix A

Modified van 't Hoff Coefficient

The van 't Hoff equation for osmotic pressure [30] applies to dilute, ideal solutions

and is given as:

r iRTc (A.1)

where i is the van 't Hoff factor, R is the universal gas constant, T is the absolute

temperature, and c is the molarity of the solution with units of mol/m 3 . Molarity can

be expressed as a function of salinity, the density of the solution, and the molecular

weight of the solute in units of g/mol:

c = PsolutionW (A.2)
Msointe

Because the van 't Hoff equation assumes a dilute solution, the density in Eq. (A.2) is

approximated as that of pure water. Substituting this expression for molarity into the

van 't Hoff equation Eq. (A.1), we can now define a modified van 't Hoff coefficient,

C, to linearize the osmotic pressure function:

i RTPpure, iRTpuew =Cw ( A.3)
Msolute
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Figure A-1: Seawater osmotic coefficient and osmotic pressures versus salinity at
T = 25'C shown as solid and dashed curves. The osmotic coefficient curve and
nonlinear osmotic pressure curves are extrapolated for salinities greater than 120 g/kg
and these sections are shown as bold dashed lines. The linear osmotic pressure curve
is denoted by a solid line.

Using a least squares method for salinities between 0 and 10 g/kg on Fig. A-1, the

modified van 't Hoff coefficient (C) is determined to be 73.45 kPa-kg/g at a temper-

ature of 250C. This linear model represented by Eq. (A.3) can be used for a salinity

range of 0 to 70 g/kg, which is the typical range for most desalination applications.

For this range, the maximum deviation from the non-linear osmotic pressure function

is 6.8%.

For processes in which the salinity of a stream exceeds 70 g/kg, large deviations

between the nonlinear and linear osmotic pressure can lead to large errors in per-

formance calculations. These deviations are especially prevalent in seawater reverse

osmosis processes with very high recovery ratios as seen in Sec. 2.3.2.
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A.1 van 't Hoff coefficients for various PRO oper-

ating conditions

A PRO process may use inlet stream salinities which differ according to the oper-

ation required. For power production, seawater and river water may be the PRO

input streams, whereas for brine chemical energy recovery, a concentrated brine and

seawater may be used. To reduce the errors associated with linearizing the nonlinear

osmotic pressure function, salinity ranges of interest are approximated as linear.

The nonlinear osmotic pressure of seawater as a function of salinity in g/kg is

shown in Fig. A-2. The modified van 't Hoff coefficient, C, can be determined as the

slope of the nonlinear osmotic pressure between specific salinity ranges of interest.

The osmotic pressure can be approximated as the product of the modified van 't Hoff

coefficient and the salinity of the solution using Eq. (A.3).
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Using a best-fit least squares method between the range of 0 and 35 g/kg, the

modified van 't Hoff coefficient is determined to be 73.07 kPa-kg/g at a temperature

of 25'C. This linear model represented by Eq. (A.3) can be used for a salinity range

of 0 to 35 g/kg, which is the typical range for power production at a river delta with

a PRO exchanger. For salinities between 35 and 70 g/kg, the modified van 't Hoff

coefficient is determined to be 76.76 kPa-kg/g which is the typical range for power

production using seawater and disposed brine from a seawater desalination plant. For

salinities between 70 and 105 g/kg, the modified van 't Hoff coefficient is determined

to be 82.65 kPa-kg/g.

146



Appendix B

Determination of the Osmotic

Pressure Function

From Robinson and Stokes [30, chap. 2], the osmotic pressure for a solution composed

of multiple solutes can be written as:

7F = (RTpsoivent) b (B.1)
j=solutes

where # is the osmotic coefficient; R is the universal gas constant; T is the absolute

temperature; psoivent is the density of pure water; and by is the molality of the jth

solute in the solution. The molality of a solution with multiple solutes is equal to the

sum of the molality of each solute. The molality of a solution written as a function

of salinity is given by

b- =) W (B.2)
j=solutes (1000 - w) My

where w is the salinity of the solution, wy is the salinity of the Jth solute, and Mj

is the molecular weight of the jth solute with units of kg/mol. A table of seawater

constituents, which we will call a recipe, was found in Millero and Leung [74] where
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the salinity for each solute of seawater, wj, is given for a solution of a fixed salinity, w.

To use the recipe, we note that w can be scaled with a solution of variable salinity,

w, by the following expression:

j W -Wi recipe (B.3)
Wj, recipe

This scaling expression is substituted into Eq. (B.2) which can be rewritten as

b- = ' recipe (B.4)
j=solutes (1000 -- w) .M w, recipe

Using the seawater recipe, the summed term on the right side of Eq. (B.4) results in

a value of 31.841 mol/kg.

A correlation for the osmotic coefficient of seawater is given by Sharqawy et al.

[63] and is valid between 0 and 200'C and for salinities between 10 and 120 g/kg. The

osmotic coefficient for a mixture, as described by Debye-Hilckel theory, approaches a

value of 1 with decreasing salinity and does so independently of temperature. Litera-

ture values and correlations of the osmotic coefficient and osmotic pressure for diluted

seawater with a salinity of 10 g/kg and below which adhere to this proper physical

limit have been difficult to find. Therefore, an extension of the correlation provided

by Sharqawy et al. is proposed by use of the theoretical expression for the osmotic

coefficient given in Eq. (B.5), Bronsted's equation [75].

#5 = 1- #bi/ 2 + Ab (B.5)

This expression describes the osmotic coefficient as a function of molality and is

dependent on two constants, 3 and A. To find the value of these constants, Eq. (B.5)

and the first derivative of Eq. (B.5) with respect to salinity form two equations with

the two constants as unknowns. These equations are set to equal the value of #
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given by the correlation and its first derivative with respect to salinity at a salinity

of 10 g/kg. For a temperature of 25 C, the two constants are found to be # = 0.3484

and A = 0.3076. The final osmotic coefficient function is now set to be a piece-wise

function with Eq. (B.5) forming the function for 0 < w < 10 g/kg and the correlation

forming the 10 < w < 120 g/kg section. The extended osmotic coefficient function

and the sum of molalities as a function of salinity, Eq. (B.4), are now implemented into

Eq. (B.1) to determine the osmotic pressure of a stream at a given temperature and

salinity. Figure A-I shows the resultant seawater osmotic coefficient, osmotic pressure,

and van 't Hoff approximation vary as functions of salinity at a fixed temperature of

T = 25'C.
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