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Abstract
Ankle mechanical impedance, which is a dynamic relationship between angular

displacement and the corresponding torque at the ankle joint, plays a key role in natural
interaction of the lower-extremity with the environment. The human ankle is a
biomechanically complex joint consisting of three bones with non-intersecting anatomical
axes, and its motions under normal motor control and function are predominantly in multiple
degrees-of-freedom (DOF). This thesis provides a quantitative characterization of multi-
variable ankle mechanical impedance of young healthy subjects in two DOF, both in the
sagittal and the frontal planes. Multi-variable studies provide several important characteristics
of the human ankle, unavailable from single DOF studies, which have mostly been in the
sagittal plane. Three characterization methods were developed to study ankle mechanical
impedance in different conditions: 1) steady-state static, 2) steady-state dynamic, and 3)
transient dynamic.

First, steady-state static ankle mechanical impedance, which is a non-linear torque and
angle relationship at the ankle, was characterized in two coupled DOFs over the normal range
of motion. Robust vector field approximation methods based on thin-plate spline smoothing
with generalized cross validation showed that static ankle impedance is highly direction
dependent, being weak in the inversion-eversion direction. Activating a single muscle or co-
contracting antagonistic muscles significantly increased static ankle impedance in all
directions but more in the dorsiflexion-plantarflexion direction than the inversion-eversion.
Static ankle behavior in both relaxed and active muscles was close to that of a passive elastic
system.

Second, steady-state dynamic ankle mechanical impedance was characterized based
on linear time-invariant multi-input multi-output stochastic system identification methods. A
highly linear relationship between muscle activation and ankle impedance was identified in all
movement directions in the sagittal and frontal planes. Furthermore, small coupling between 2
DOF and energetic passivity were observed at different levels of muscle activation and over a
wide frequency range.
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Third, transient dynamic ankle mechanical impedance was characterized during
walking on a treadmill, across the gait cycle from the end of stance phase through swing and
to early stance phase. Modified linear time-varying ensemble based system identification
methods enabled reliable identification of transient behavior of the ankle. In both DOF,
damping and stiffness decreased at the end of stance phase before the toe-off, remained
relatively constant during the whole swing phase, and substantially increased around the heel-
strike.

Quantitative characterization of multi-variable ankle mechanical impedance of young
healthy subjects will shed light on its roles in lower-extremity motor function. It will serve as
a baseline for clinical studies in patients, especially those with neurological disorders, as well
as studies of elderly subjects, whose biomechanical and neurological properties may be
altered due to impairments and/or aging. Finally, the methods presented in this thesis are
intended to be sufficiently general to be applicable to any multi-joint system or single joint
having multiple DOF.

Thesis Supervisor: Neville Hogan
Title: Professor, Department of Mechanical Engineering

Professor, Department of Brain and Cognitive Sciences
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Chapter 1

Introduction

1.1 Statement of Purpose

While all joints in the kinematic chain between foot and trunk (ankle, knee, and hip)

participate in lower-extremity functions, the contribution of the ankle is significant for healthy

people [1-4] as well as for those with neurological disorders [5-7]. Ankle mechanical

impedance plays a key role in natural interaction of the lower-extremity with the environment,

including postural stabilization during standing as well as propulsion, energy-absorption, and

lower limb joint coordination during locomotion.

The goal of this thesis is to provide a quantitative characterization of multi-variable

human ankle mechanical impedance, paving the way to better understand its roles in lower-

extremity function, and suggesting a baseline for clinical studies in patients, especially those

with neurological disorders.

More specifically, the primary goal of this thesis is to develop methods for

characterizing human joint mechanical impedance in multiple degrees-of-freedom (DOFs),

possibly time-varying and nonlinear. The methods are intended to be sufficiently general to be

applicable to any multi-joint system or single joint having multi-DOFs.
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The second goal is to identify, through application of these methods, human ankle

mechanical impedance in different muscle active conditions and both under stationary and

transient conditions: steady-state static, steady-state dynamic, and transient dynamic ankle

mechanical impedance.

The strategy to realize these two goals involves use of a wearable ankle robot and

several different system identification methods.

1.2 Background

1.2.1 Definition of Mechanical Impedance

It is important to clarify the definition of mechanical impedance, used throughout this

thesis. Strictly speaking, by analogy with electrical engineering usage, impedance is a

functional that maps any velocity time-history onto a corresponding force time-history,

v(t) -> f(t), where f and v are dual or conjugate interaction-port variables such that power

(P) into the interaction port (positive inward by convention) is determined by their product,

P = f -v. However, the analogy between electrical and mechanical systems has been debated

for decades [8].

Mechanical impedance could be defined to map force onto velocity or vice-versa but

neither definition would reflect the profound role of geometry and kinematics in all aspects of

mechanical system dynamics. For example, finite rotations, which are common in human

movements, do not commute in addition (final orientation of the body differs according to the

sequence of rotations) [9]. Thus, we may lose important displacement information from
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integration of velocity. On the other hand, velocity can be derived from differentiation of

displacement.

In this thesis, the term "mechanical impedance ( Z )" is defined to be a dynamic

operator that maps a time-history of displacement onto the corresponding force time-history,

where the force and displacement vectors are energetically conjugate such that they may

define mechanical work ((Eq. (1.1)):

Z :xQt) -+> f (t) (I.)

dW =f T dx

This might be termed a "dynamic stiffness function" but stiffness connotes a locally

linear approximation to a displacement-force function, and an assumption of linearity is

neither necessary nor desirable for mechanical impedance.

Following the definition, ankle mechanical impedance is defined as a dynamic

relationship between angular displacement (0) and the corresponding torque (T-) at the ankle

joint ((Eq. (1.2)), where 0 and r are not confined to single DOF.

Z:0(t) -> r(t) (1.2)

dW =TTdO

For the remaining part of the thesis, the term "ankle impedance" is used

synonymously with "ankle mechanical impedance" for brevity.

1.2.2 Importance of Characterization of Mechanical Impedance

20



Why is characterization of joint mechanical impedance important? Mechanical

impedance is a fundamental medium between the limb and the environment enabling natural

dynamic interaction. Proper modulation of joint impedance permits effective regulation and

control of desired postural and movement behaviors [10, 11]. Thus, we can investigate how

human central nervous system (CNS) and biomechanical systems of the body controls

interaction with its mechanical environment through the study of impedance of the neuro-

muscular system.

Besides the importance in the neuro-motorcontrol aspect, study of joint impedance can

provide valuable information in clinical aspects. Improper regulation of joint impedance can

lead to injuries to the soft tissue of joints, such as tendons, ligaments, and muscles, when the

achieved joint impedance is mismatched to the task, causing undesired, unexpected or

excessive movement or velocity at the joint. For example, ankle sprains frequently occur

when we walk on uneven terrain or stairs. Given the accurate characterization of joint

impedance for each individual person, we may suggest a customized strategy to prevent

possible orthopedic injuries. In addition, impedance characterization can serve as an

assessment tool to follow up patients' recovery from injuries.

Characterization of joint impedance has great importance not only in orthopedic but

also in neurological applications. As the number of patients with neurological disorders, such

as strokes, multiple sclerosis (MS), spinal cord injuries (SCI), cerebral palsy (CP) etc., is

increasing apace with the aging society, the demand for neuro-rehabilitation is also growing

[12]. Most neurological diseases induce alterations of mechanical properties of joints, which

results in abnormal motor behaviors [13-15]. Thus, characterization of joint impedance of

patients and investigation of how it may deviate from the norm as a result of disorders is
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expected to help better diagnose of pathological behaviors of the joint. Furthermore, a regular

inspection of this property can be used to quantitatively assess the progress of neuro-

rehabilitation.

Last but not least, characterization of human joint impedance can provide new

opportunities in the robotics field facilitating advancement of physical human-robot

interaction. While various types of wearable devices, such as powered exoskeletons and

active orthoses, have been developed for different purposes [16], controllers for those devices

are still yet to be perfected. One of the main reasons is the lack of understanding on how

human joint impedance changes during physical human-robot interaction. Once joint

impedance is fully quantified, this can be utilized in designing an impedance controller for

each joint of the robot, whose impedance value is determined based on the characterized

human joint impedance.

1.2.3 Importance of Multi-variable Study

Human motor behavior generally involves multi-joint motions and/or single-joint

multi-DOF motions, and therefore multi-variable study of joint impedance in multiple DOFs

promises deeper understanding of its roles in motor control and function.

Characterization of the human ankle joint impedance also falls into this category. The

human ankle is a biomechanically complex joint including three bones: the tibia, the fibular,

and the talus. These bones all come together to allow movements in multiple DOFs, both in

the sagittal and the frontal planes. Although ankle motions are often described about a medial-

lateral axis (perpendicular to the sagittal plane) and anterior-posterior axis (perpendicular to

the frontal plane), respectively, the anatomical axes of the joint do not intersect, are far from

22



orthogonal, and change with ankle movement [17, 18]. These complexities could introduce a

biomechanical coupling between 2 DOFs. Furthermore, single degree-of-freedom (DOF)

movements are uncommon under natural conditions; for example, even in normal human

walking, frontal plane motions of the ankle are substantial as well as sagittal plane motions.

Thus, the control of multiple ankle DOFs may present unique challenges, and quantitative

characterization of multi-variable ankle impedance promises better understanding of the

functional role of the ankle and may afford unique insight about its special vulnerabilities.

1.3 Related Work

1.3.1 Upper-Extremity Study

Multi-variable and multi-joint, upper-extremity mechanical impedance has been

extensively studied ever since interactive arm robots, such as MIT-MANUS [19], were

introduced. Earlier multi-variable studies provided richer information on multi-joint limb

control and opened a new research area in neuro-motorcontrol, unavailable from single DOF

studies [10, 11, 20-22]. Most of earlier studies used transient position disturbance to retrieve

stiffness ellipse.

More recently, different research groups employed system identification methods,

which find a relationship between perturbation inputs and the corresponding outputs at joints,

to determine the dynamic properties of multi-joint arm impedance [23-26], elbow joint

impedance [27-29]. In addition, a wrist robot was used to experimentally characterize the

wrist stiffness in flexion-extension, radial-ulnar deviation, and combinations of the two under

relaxed muscles condition [30, 31].
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1.3.2 Lower-Extremity Study

For the lower-extremity, many studies examined ankle stiffness [32-34] or knee

stiffness [35-37] by calculating the slope of the torque-angle curve. However, this cannot

explain the instantaneous joint stiffness or impedance [38], and often described as quasi-

stiffness [39].

To directly measure stiffness or impedance, external energy input to perturb the joint

of interest is essential. Several system identification methods, both parametric and non-

parametric methods, have been widely used. While few studies on knee [40, 41] and hip

impedance [42] have been reported, a considerable number of studies on ankle impedance,

both simulation and experimental work, have been published.

Hunter and Kearney [43-45] and Weiss et al. [46, 47] used stochastic system

identification techniques to examine elastic, viscous and inertial terms of the ankle joint. They

investigated effects of mean ankle torque, mean ankle position, and input displacement

amplitude, on ankle impedance. Intrinsic and reflex component of ankle impedance was also

extensively studied based on nonlinear system identification methods [48, 49]. Time-varying

behavior of the ankle was also investigated in simulation [50, 51], goal directed imposed

movement conditions [52, 53], and experimentally during stance phase of human walking

[54].

Besides studies in healthy people, there have been several studies characterizing ankle

impedance of patients with neurological disorders, such as stroke [14, 55-57], MS [13], and

SCI [15], to better understand pathological behavior of the human ankle.
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While all of the above ankle studies have investigated ankle impedance in the sagittal

plane, i.e., dorsiflexion-plantarflexion (DP) direction, only a few studies measured ankle

impedance in the frontal plane, inversion-eversion (IE) direction [58-60]. Multi-DOF studies

are even less. Roy et al. measured ankle stiffness in both IE and DP directions but did not

assess coupling between these DOFs [61, 62].

1.4 Overview of Remaining Chapters

In Chapter 2, steady-state static ankle mechanical impedance, which is a non-linear

torque and angle relationship, is characterized as a first step to study multi-variable ankle

impedance in 2 coupled DOFs, both in the sagittal and frontal planes. Robust vector field

approximation methods are introduced to quantify the anisotropy and "spring-like" property

of static ankle impedance under relaxed and active muscles.

In Chapter 3, characterization is extended to the frequency domain, and steady-state

dynamic ankle mechanical impedance is characterized based on linear time-invariant multi-

input multi-output stochastic system identification methods. Anisotropy of the impedance and

its relationship to muscle activation levels is investigated. The energetic passivity of the ankle

is also quantified as a function of frequency and muscle activation levels.

In Chapter 4, transient dynamic ankle mechanical impedance is characterized during

walking on a treadmill. Modified linear time-varying ensemble based system identification

methods are used to investigate how damping and stiffness of the ankle in 2 DOFs change

across gait cycle between the end of stance phase to the early stance phase. Close

investigation around the heel-strike and toe-off events is also provided.
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In Chapter 5, a brief comparison between three different characterization methods

presented in previous chapters (Chapter 2~4). On-going work, future applications, and the

relevance of this study to other fields of study are discussed.

Formal licenses were obtained from publishers to reuse any portion (e.g., figure, graph,

table, or textual material) of copyrighted papers [63-69].
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Chapter 2

Multi-Variable Steady-State Static Ankle
Mechanical Impedance

2.1 Summary

This chapter presents quantification of multi-variable static ankle mechanical

impedance. An experimental protocol using a wearable therapeutic robot enabled reliable

measurement of torque and angle data in multiple degrees-of-freedom simultaneously, a

combination of inversion-eversion and dorsiflexion-plantarflexion.

The measured nonlinear torque-angle relation was represented as a vector field, and

approximated using a method based on thin-plate spline smoothing with generalized cross

validation. A robust approximation method provided a reliable estimate of static ankle

mechanical impedance even in the (inevitable) presence of noisy data.

The vector field enabled assessment of several important characteristics of static

component of ankle mechanical impedance that are not available from prior single degree-of-

freedom studies: the directional variation of ankle mechanical impedance, the extent to which

the ankle behaves as a spring, and evidence of uniquely neural contributions.
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Experiments with young unimpaired subjects quantified the behavior of the human

ankle under maximally-relaxed muscles and voluntary contraction of ankle muscles either

singly or antagonistically. Under fully relaxed ankle muscles, ankle mechanical impedance is

spring-like but strongly direction-dependent, being weakest in inversion, exhibiting a

characteristic "peanut" shape.

Predominantly activating a single muscle or co-contracting antagonistic muscles (10%

of maximum voluntary contraction) significantly increased ankle stiffness in all directions but

it increased more in the sagittal plane than in the frontal plane, accentuating the relative

weakness of the ankle in the inversion-eversion direction. Remarkably, the observed increase

was not consistent with simple superposition of muscle-generated stiffness.

Static ankle behavior in active muscles was close to that of a passive elastic system,

although statistically significant non-zero curl components were observed. This externally

simple behavior would help to ensure stable dynamic interaction with the environment.

2.2 Introduction

While a considerable number of single DOF studies and a few of uncoupled 2 DOF

studies on ankle impedance have been reported, to the best of my knowledge, no one has

investigated ankle impedance in the coupled DOFs. As stressed in Chapter 1, multi-variable

studies in coupled DOFs of the ankle will provide richer information in many aspects.
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Figure 2.1: Planes of interest and the corresponding ankle motions.
(a): Sagittal and frontal planes. (b): Dorsiflexion-plantarflexion.

In this chapter, a nonlinear torque-angle relationship at the ankle, which is defined as

static ankle mechanical impedance, was studied as a first step to characterize ankle impedance

in 2 coupled DOFs, a combination of IE and DP (Figure 2.1).

Static ankle impedance was characterized under fully relaxed muscles and active

muscles, either singly or antagonistically at 10% maximum voluntary contraction (MVC)

levels.

In the following sections, an experimental setup, especially a wearable ankle robot, is

described in detail. Next, a vector field approximation method to quantify static ankle

impedance is explained. Characterization results on young healthy subjects under relaxed and

active muscles follow.

2.3 Experimental Setup
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(a) (b)

Figure 2.2: A wearable ankle robot, Anklebot.
(a): Anklebot actuator. (b): Anklebot connected to the knee brace and the shoe

A wearable ankle robot, Anklebot (Interactive Motion Technologies, Inc.) [62], was used

as the center piece to characterize ankle impedance (Figure 2.2 (a)). The most salient features

of this robot are that it is highly back-drivable with very low intrinsic mechanical impedance,

and has two active DOFs and a third passive DOF which prevents imposing any inadvertent

kinematic constraints on the motion of the ankle. This design minimally interferes with

normal motion of the foot relative to the shank, and allows the maximum range of motion

(ROM) required for the typical gait of healthy or pathological subjects [2]. The robot can

provide actively controllable torque up to 23 Nm in the sagittal plane for dorsiflexion-

plantarflexion (DP) and 15 Nm in the frontal plane for inversion-eversion (IE) motions. The

robot was mounted to a knee brace and end effectors of the robot were connected to a U-shape

bracket attached to a custom designed shoe (Figure 2.2 (b)).
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Figure 2.3: Subject wearing the Anklebot in a seated posture.

Subjects wore the brace and shoe, and seated with their ankle held by the robot clear

of the ground in a neutral position with the sole at a right angle to the tibia. The knee brace

was securely fastened to the chair to support the weight of the robot and the leg and to ensure

that measurements were made in a repeatable posture (Figure 2.3). In addition, to prevent foot

slippage inside the shoe, a proper shoe size was selected for each subject, the foot was tightly

fastened with shoe laces, and a wide Velcro strap was secured over the laces.
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PL GAS

TA SOL

Figure 2.4: Four major ankle muscles.

To monitor muscle activation levels, electromyographic (EMG) signals were recorded

using differential surface electrodes with built-in pre-amplifiers (Delsys Inc.). They were

placed on the bellies of major muscles related to ankle movement: tibialis anterior (TA),

peroneus longus (PL), soleus (SOL), and medial gastrocnemius (GAS) (Figure 2.4). EMG

signals, band pass filtered between 20 Hz and 450 Hz, were sampled at 1 kHz and their

amplitudes were estimated using a root-mean-square (RMS) filter with a moving window of

200 ms after removing any DC component of the signal.

2.4 Methods

2.4.1 Vector Field Approximation Method
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In general, ankle mechanical impedance is a dynamic operator that maps a time-

history of angular displacement onto a corresponding time-history of torque. Its time-invariant,

static component is a relation between angle and torque, possibly nonlinear, and can be

represented as a vector field (Eq. (2.1)).

(TIETDP) = V(OIE IDP) (2.1)

where 9
IE and 9

DP are angular displacements in the IE and DP directions, respectively, and

TIE and TDP are the corresponding applied torques. In this study, I decomposed the vector

field approximation (V) problem into two scalar function estimation problems (Eq. (2.2)).

TIE 01 (
9
IEIDP)

TDP 02 IE IDP (2.2)

For scalar function estimation, I used Thin-Plate Spline (TPS) [70] smoothing with

Generalized Cross Validation (GCV) [71]. TPS smoothing provides a surface approximation

for each scalar function. With the application of GCV, each scalar function (pland #2) is

uniquely determined in the form of a TPS, and the total vector field (V) can be defined

accordingly.

In detail, given a set of n data points ( PI = (x,,y,), i = 1,2,...,n ) in 912 and n vectors

z= (z ,z2,-., Zn), where z corresponds to the z value at point PJ, a weighted combination of

TPS centered about each data point together with an affine transformation gives the

interpolation function (f ) that passes through the points exactly (Eq. (2.3)).
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n

f(x,y) = ao +aix+a 2 y+ w, U(|PJ -(x,y)|)

U(r) =r 2 logr 2 , U(0)=0 (2.3)

Noise reduction by smoothing is very important for robust data analysis, since

biological experimental data contain considerable noise. Smoothing TPS is a regularization

problem with a smoothing parameter (A). For a fixed smoothing parameter (A), the function

for TPS (fA) is the minimizer of EP, (Eq. (2.4)).

f2 = arg min E,
f

n 2
2 + 2

Et,=1 (zi -fAxi, y,)+ A 2 2 + 2 - xd

/ =(2.4)

As A runs from 0 to 0o, the smoothing surface changes from an interpolation to a flat

surface in a least squares sense. The challenge in TPS smoothing is to find the optimal

smoothing parameter (A *) that creates functions that pass, as closely as possible, to all data

points while maximizing smoothness. In other words, the challenge is to determine the best

tradeoff between fidelity to the data and roughness of the surface.

For this purpose, we adopted the GCV approach which provides an excellent estimate

of the optimal smoothing parameter even when the amount of noise is unknown [71]. Finding

the optimal smoothing parameter (A *) is a nonlinear regression problem of minimizing mean

squared error R(A) between the estimate (fA) and the underlying function (f ) (Eq. (2.5)).

z, = f(xi,y,)+ E,
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R(A)= (X,,yi)-f(X,,yi))2
i=1 (2.5)

A*= argminR(A)

where z, are measured data, f(x,,y,) an underlying smooth surface, f2 (x,y 1 ) an estimate,

and e, a white noise process. Details of calculating optimal smoothing parameters and

description of TPS smoothing with GCV in a matrix form are provided in Appendix A.

2.4.2 Anisotropy of Static Ankle Mechanical Impedance

To quantify the anisotropy or directional variation of ankle mechanical impedance, the

effective ankle stiffness was evaluated from the friction-compensated nonlinear vector field

for each direction of movement by computing the slope of a least squares linear fit to the

displacement and torque data in that direction, and the variation of ankle stiffness with

direction in IE-DP space was constructed accordingly. This representation of stiffness ignores

all components orthogonal to the displacement.

Although stiffness can be calculated at any point of interest in the displacement field,

in this study, to estimate the predominant behavior of the ankle, stiffness was calculated as the

average slope of data points between the neutral and target positions. Its slope represented the

effective stiffness opposing displacement in that direction.

2.4.3 Vector Field Decomposition

The nonlinear vector field approximation was also decomposed into a conservative

(symmetric) component and a rotational (anti-symmetric) component. Although a vector field
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may be nonlinear for large displacements, it is approximately linear for small deviations about

any point in the displacement field as long as the field is sufficiently smooth around that point.

Therefore, the torque-angular displacement relationship around a point of interest can be

expressed as a Taylor series expansion (Eq. (2.6)):

IE IEo IE0,DP I)90E + IT IE0 
9
DP0 )

9
DP +higherorderterms

a IE aDP

&TDP = P (IE 0DP0 IE rDP (
9
IEO I

9
DPO )

6
DP + higher order terms (2.6)

a IE DP

For sufficiently small displacements from the point of interest, the higher order terms

may be neglected, and the torque-angular displacement relation is linear to a first-order

approximation, yielding in matrix notation (Eq. (2.7)):

[STIE [K, K 12 ][89IE 1
STDP_ K 2 1 K 2 2 L6DP_

KI =- IE K 12 = IE
aI DP

K 2 1 = DP K 2 2 = DP

a IE DP

=K6 (2.7)

The locally linearized stiffness matrix K can be further decomposed into its symmetric

(K,) and anti-symmetric (K,) components (Eq. (2.8)):

K = K, + Ka
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K+K(T  K 9 ) (K2 +K 2 )/2]
Ks 2 _(K+K)/2 K2

K-KT ~ 0 (K12 -K 2 )/2]
2 L(K21 -K 12 )/2 0

where superscript T denotes the transpose operation. The symmetric component is

conservative, having zero curl but non-zero divergence, while the anti-symmetric component

is non-conservative, having zero divergence but non-zero curl.

The conservative component is spring-like. Here, a set of muscles is defined as spring-

like if the torque vector is an integrable function of displacement so that a potential function

analogous to the elastic energy stored in a spring may be determined [10]. In that case, the

torque vector is the gradient of a potential function and, as a result, the curl of the torque field

must be identically zero. Spring-like behavior is passive, since no energy is generated or

removed by cyclic displacements. On the other hand, the rotational component is active

because cyclic displacements may add or remove energy. Thus we can quantify how spring-

like the ankle is by comparing the size of the rotational (curl) component of the field with its

conservative component. A detailed definition of "spring-like" is provided in Appendix B.

The comparison of the relative magnitudes of K, and K, enabled quantification of

the extent to which the ankle is passive, more specifically spring-like. The ratio of the square

roots of the determinants of the anti-symmetric ( K, ) and symmetric ( Ks ) parts of the

stiffness matrix was calculated to assess the importance of non-zero curl components in the

rotational field (Eq. (2.9)).

K,.,a = det(Ka) / det(K,) (2.9)
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When the rotational field has no curl, i.e., det(Ka) = 0 and Krao = 0 accordingly, the

torque field can be derived from a potential function, meaning that the system is

fundamentally spring-like.

2.5 Validation of Analysis Methods

Figure 2.5: A physical mockup consisting of passive elements.

To validate our methods, the procedure was tested using a simple physical "mock-up",

loosely resembling the human foot-ankle-shank complex. It consisted of two wooden blocks

joined by a flexible steel plate and connected to the Anklebot in the same way as the shoe and

knee brace (Figure 2.5). To allow for the robot torque limits and prevent plastic deformation
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of the steel plate, the nominal angular displacement of this "mock-up" was set as 30, and the

torque-angle data were recorded for movements in 24 directions.

Although the mockup did not display the same torque-angle relation as the human

ankle, it provided a challenging test of our methods because (i) by design it had strongly

direction-dependent behavior and (ii) its torque-angle relation had zero curl, because we know

from physical principles that any collection of passive elements (elastic, inertial or frictional)

however connected, cannot generate non-zero curl.

Total Vector Field: (rIE, rDp)= V (GE,i
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Figure 2.6: Validation of the vector field approximation methods using a physical mockup. Top: joint
coordinates, bottom: actuator coordinates, left: total field, right: rotational field.

The total vector field measured from the physical mock-up is shown in Figure 2.6. As

expected from the geometry of the thin steel plate connecting the blocks, it was substantially
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stiffer in IE than DP, and this was reflected in the pattern of the vector field. In addition,

whether the torque-angle relation is linear or nonlinear, because the mock-up was a passive

mechanical structure, the vector field must be conservative. Decomposition of the measured

vector field showed that its curl components were not significantly different from zero (Figure

2.6).

If curl is zero in one coordinate frame, it should be zero in all coordinate frames. We

verified this by computing the curl in joint coordinates and in actuator coordinates, first

transforming the raw data between the two frames through the nonlinear kinematic relations

due to the mechanical connection of the Anklebot to the limb [62] then applying the vector

field fitting procedure. Although the shape of the total vector field was changed by this

coordinate transformation, the curl value remained zero (Figure 2.6).

These results showed that analysis methods correctly identified curl when it was

absent. To test whether the method correctly identified curl when it was present, we simulated

a torque field with non-zero curl and noise comparable to our experimental data and applied

our method to analyze it. The results (detailed in Appendix C) verified that curl was also

correctly identified when it was present.

2.6 Steady-State Static Ankle Mechanical Impedance in Relaxed
Muscle

2.6.1 Subjects

Eight unimpaired young human subjects with no reported history of biomechanical or

neuromuscular disorders (4 males, 4 females; age 22 to 31; height 1.62 m to 1.90 m; weight

59.0 kg to 84.8 kg) were recruited for this study. Participants gave written informed consent
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to participate as approved by MIT's Committee on the Use of Humans as Experimental

Subjects (COUHES).

2.6.2 Experimental Protocol

Subjects were instructed to relax while Anklebot applied terminated ramp

perturbations to the ankle with a slow velocity (50/sec), selected to avoid evoking spindle-

mediated stretch reflexes and maintain quasi-static conditions. Anklebot moved the ankle

along a commanded trajectory, and held the foot for 0.1 seconds at the starting and ending

positions.

Dorsiflexion

90

Inversion 180 0 Eversion

270

Plantarflexion

Figure 2.7: The displacement profile in IE-DP space. Solid red lines denote outbound movements, and
dotted blue lines represent inbound movements.

The complete protocol consisted of 48 movements total along 24 equally-spaced

directions in IE-DP space, once outbound and once inbound per direction, with a nominal
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displacement amplitude of 200 in each direction (Figure 2.7). Perturbations began with pure

eversion (00), rotated by 15' on each subsequent perturbation (450 corresponded to equal

perturbations in eversion and dorsiflexion) and ended at 345'.

Thuman

() + K Bs +ro + Ankle Dynamics - -

PD Controller

Figure 2.8: Schematic representation of a simple impedance controller. 0. and 6 are the reference

ankle angle and measured angle from the neutral position, respectively.

A simple impedance controller was implemented to move the ankle along the

commanded trajectory (Figure 2.8). A PD controller for joint angle with proportional gain

K =100 Nm / rad and derivative gain B =2 Nms / rad guaranteed safe, stable, and highly

compliant operations in human-robot interactions.

Applied torque and actual angular displacement in both DOFs as well as EMG data

were sampled at 200 Hz. The complete set of measurements took a little over 3 minutes.

Any torque components required to overcome the inertia and friction of the actuators

were measured by 10 repetitions of the experimental protocol explained above but with no

human subject. The average of these measurements was expressed as a multi-variable relation

between torque and angle and subtracted from the recorded torque. Furthermore, data points

around the neutral and target positions were discarded to avoid possible errors due to initial

lengthening and shortening of muscle fibers [72].
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2.6.3 Reliability of Field Approximation
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Measurements are depicted as point sets in 24 directions, and the vector field consists of 2 TPS surface
estimates (a) Outbound, (b) Inbound

Outbound and inbound torque and angular displacement data were approximated

separately (Figure 2.9). The data points distributed in 24 directions are the friction-

compensated measurements. The surfaces are estimates of the two torque components

obtained by TPS approximation with an optimal smoothing parameter determined by GCV.

The actual displacement amplitude was about 150 (mean value across 24 directions of all
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subjects data is 15.330 with standard deviation 1.540), and all data except points near the

starting position (0~1') of each movement direction were used for scalar function estimation.

The mean deviation between measurements and estimates was less than 0.005 Nm with

standard deviation (SD) 0.380 Nm, from which we defined zero deviation as -0.740 to 0.750

Nm with 95% confidence. Because of the substantial smoothing effect of the surface fitting

procedure used to identify the vector field, this error was substantially smaller than the

apparatus measurement error range, ±1 Nm [62].
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Figure 2.10: Representative 2D slices of the vector field in 4 major directions (inversion, eversion,
dorsiflexion, and plantarflexion). Measurements in 4 major directions and the fitted field (top),

projected 2D data in inversion-eversion (mid) and dorsiflexion-plantarflexion (bottom).

Representative 2D-slices of the vector field in 4 major directions (inversion, eversion,

dorsiflexion and plantarfelxion) show how well the field fit the observed data (Figure 2.10).
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2.6.4 Anisotropy of Static Ankle Mechanical Impedance and Hysteresis in

Relaxed Muscles

For all subjects, the effective ankle stiffness was calculated from the estimated vector

field in 48 movement directions (24 outbound, 24 inbound) as detailed above. To check the

validity of this stiffness estimate, we quantified how well this linearized approximation fit the

nonlinear torque field by calculating an R 2 value. The lowest R 2 value was 0.88 and most

subjects showed R2 values higher than 0.90, indicating that the linearized stiffness accounted

for at least 90% of the variance.

D
25

E |I

P

(a)

D
0.6[J]

E

P

(b)

Figure 2.11: Anisotropy of static ankle mechanical impedance and hysteresis. Directional variation of
(a) ankle stiffness (Dark solid band: Mean value of outbound and inbound data, Light solid bands:

Mean±SE, Dotted band: Mean of outbound data, Dashed band: Mean of inbound data) and (b)
hysteresis (Dark solid band: Mean value, Light solid bands: Mean±SE) in IE-DP space.

The averaged stiffness estimation results of all subjects but one (subject #6) are plotted

in polar coordinates in (Figure 2.11 (a)). Ankle stiffness varied significantly with direction in

IE-DP space and was consistently lower in the IE direction than in the DP direction, resulting
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in a "peanut" shape, pinched in the IE direction. Subject #6, who was excluded from the

means presented in Figure 2.11 (a) had an unusually low dorsiflexion impedance (9.86

Nm/rad) and an unusually high plantarflexion impedance (33.15 Nm/rad) compared to the

mean values of all other subjects (16.99 Nm/rad for dorsiflexion and 15.71 Nm/rad for

plantarflexion).

The torque required for outbound (loading) movements was consistently greater than

for inbound (unloading) movements, even after static torques due to Anklebot friction were

subtracted from the measurements. In all 24 directions, this torque was statistically different

from zero (p<0.05). The resulting energy dissipation was quantified by the area enclosed

within the "hysteresis" loop formed by the compensated outbound and inbound curves of the

raw data. The result is graphically depicted in IE-DP space in (Figure 2.11 (b)). Hysteresis

was highly correlated with stiffness (IR2 = 0.88) and larger in DP than IE, exhibiting a pinched

"peanut" shape.

2.6.5 "Spring-like" Property of Static Ankle Mechanical Impedance
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Figure 2.12: Decomposition of a representative vector field. The torque vector is represented by an
arrow drawn with its tail at the tip of the angular displacement vector (Red: positive curl, Black:

negative curl).

Decomposition of the vector field into a conservative field (with zero curl) and a

rotational field (with zero divergence) showed that, in general, the rotational components

were much smaller than the conservative components (Figure 2.12).

The mean magnitude of curl and the ratio of the determinants of the anti-symmetric

and symmetric parts of the stiffness matrix ( K,,i, ) were computed. Excluding one subject

(subject #3, discussed below), the average magnitude of curl was 0.22 Nm with SD 0.19 Nm,

which was statistically indistinguishable from zero. The mean value of Ko for the same 7

subjects was 0.13 (see Table 2.1 for details). The ankle joint is predominantly spring-like in

the fully relaxed condition.
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Table 2.1: Rotational components and effective stiffness in major directions for all subjects.

OUTBOUND Mean curl Curl std. Stiffness in major directions (Nm/rad)

Subject magnitude dev. Kratio Inversion Eversion Dorsiflexion Plantarflexion
__________ (Nm) (Nm)

1 0.17 0.13 0.11 5.35 7.06 12.33 14.26
2 0.13 0.1 0.09 8.28 8.85 16.25 15.41
3 0.35 0.4 0.20 11.26 10.39 24.46 18.21
4 0.22 0.18 0.09 9.91 15.4 29.65 15.47
5 0.29 0.19 0.15 5.26 11.51 19.72 21.11
6 0.28 0.24 0.17 6.69 11.67 9.33 34.11
7 0.23 0.21 0.10 7.83 13.21 21.02 11.86
8 0.22 0.24 0.15 4.28 4.66 7.32 19.74

INBOUND Mean curl Curl std. Stiffness in major directions (Nm/rad)

Subject magnitude dev. Kratio Inversion Eversion Dorsiflexion Plantarflexion
___________ (Nm) (Nm)

1 0.19 0.15 0.13 5.35 6.73 11.39 13.45
2 0.14 0.13 0.11 6.1 8.09 14.29 14.47
3 0.41 0.36 0.26 9.71 8.57 15.44 11.68
4 0.29 0.24 0.13 9 12.65 20.15 18.51
5 0.26 0.21 0.14 6.98 11.63 16.57 15.87
6 0.27 0.22 0.15 7.23 9.98 10.38 32.18
7 0.24 0.18 0.11 8.99 11.5 19.97 13.17
8 0.2 0.19 0.15 4.72 4.82 9.23 16.69

One subject (subject #3) exhibited undesired muscle activation during the protocol,

apparently being unable to relax fully. This subject significantly activated tibialis anterior

(evident as a large magnitude of EMG, ~ 0.02 mV) during movements in directions between

255 and 345 O. For comparison, the mean EMG magnitude for each of four fully relaxed

muscles was lower than 0.002 mV.
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Figure 2.13: Non-zero curl components (right panel, color code as in Figure 2.12) due to undesired
muscle activation (left panel). (Red: TA, Green: PL, Blue: SOL, Pink: GAS)

This subject's muscle activation was accompanied by non-zero rotational components,

notably in the 2550 and 270' directions (the highlighted region in the right panel of Figure

2.13).

Another interesting subject (subject #2) who fell asleep during the measurement

protocol exhibited an average magnitude curl of 0.13 Nm with SD 0.1 Nm. These were the

smallest values recorded among all subjects.

2.6.7 Discussion

Identifying a vector field by treating each vector component as a scalar field has been

challenged by who pointed out that the details of a scalar approximation (e.g. using Gaussian

radial basis functions) vary with the coordinates chosen by the experimenter, potentially

rendering the structure of the estimated vector field sensitive to an investigator's arbitrary

choices [73]. I validated the suggested method experimentally using a simple physical "mock-

up" consisting of wooden blocks and a steel plate. From physical considerations we know that

the rotational component (curl) of the vector torque-angle relation for the mock-up must be
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identically zero, and measurements confirmed this. In addition, I showed that the conclusion

that curl was zero did not depend on the coordinate frame used to represent the data. Although

the detailed shape of the total vector field may change when it is represented in different

coordinates (Figure 2.6), certain physical properties (such as whether the field is energetically

conservative, with zero curl) must be independent of coordinates. I verified that the

observation of zero curl was invariant even under nonlinear coordinate transformations.

A plot of stiffness vs. direction exhibited a characteristic "peanut" shape, pinched in

the IE direction. Although ankle stiffness is highly variable even within a group of young

healthy subjects, on average, ankle stiffness in the DP direction was higher than in the IE

direction by about a factor of 2. The orientation of this "peanut" shape was not precisely

aligned with the axes of joint coordinates, the maximum-stiffness direction being consistently

tilted slightly from the DP axis in a counterclockwise (CCW) direction. These are clinically

meaningful results and indicate the direction of rotation in which the ankle is most vulnerable.

Lower frontal-plane stiffness indicates a greater tendency for the foot to roll, especially in

inversion. Perturbations, e.g. from uneven ground, may evoke excessive displacement and

possibly injury of the ankle. This is consistent with the observation that most ankle-related

injuries occur in the frontal plane rather than in the sagittal plane [74].

I also found that the torque evoked by displacement away from the equilibrium

posture (outbound) was typically greater than the torque corresponding to the same

displacement as the foot returned towards equilibrium (inbound). As positive net work was

required to displace the ankle and return it to equilibrium, the presence of some dissipative

phenomenon is indicated, similarly observed in the wrist [75]. As forces due to static friction

or other non-ideal behavior of the Anklebot were measured prior to the experiments and
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subtracted from the recorded data, and the phenomenon varied with direction similarly to

ankle stiffness, it appears to be a characteristic of muscle. Further study seems warranted.

Analysis of the estimated multi-variable vector field provided a precise quantification

of the extent to which the ankle is "spring-like". Across almost all subjects, curl was

indistinguishable from zero both for outbound and inbound fields with friction and hysteresis

compensation; the ankle was spring-like. Because muscles were relaxed, this may seem

unsurprising. The force-length relation for each individual muscle resembles a spring (albeit

possibly nonlinear) and any arbitrary connection of spring-like muscles to the skeleton will

yield a spring-like joint behavior (again possibly nonlinear). However, neural feedback (e.g.

from spindles and Golgi tendon organs) may also contribute to static ankle mechanical

impedance. If it does, then inter-muscular feedback between muscles which act on different

degrees of freedom may introduce a deviation from spring-like behavior [10]. If curl is zero

while inter-muscular feedback is non-zero, then the feedback gains must be exactly balanced;

a dorsi-plantar flexion torque evoked by an inversion-eversion displacement must be identical

to the inversion-eversion torque evoked by a comparable dorsi-plantar flexion displacement.

Conversely, with constant muscle activity, non-zero curl can only be due to unbalanced inter-

muscular feedback. Spring-like behavior (zero curl) in the presence of non-zero inter-

muscular feedback is important because it would indicate that although the neuromuscular

system is internally complex, it apparently exhibits an externally simple behavior. Spring-like

behavior is consistent with dynamically passive ankle mechanical impedance which would

help to ensure stable interaction with a dynamically passive environment [76].

Remarkably, I observed non-zero curl in one alert subject. This subject showed a small

but significantly non-zero activation of TA and a small but significantly non-zero curl when
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the foot was displaced towards plantar flexion, stretching the TA. Movement in other

directions evoked zero curl and EMG was silent, showing that this subject was able to relax

fully under our experimental manipulation. The activation of TA when it was stretched

suggests an involuntary action of neural feedback. If so, the observation of non-zero curl may

be due to unbalanced inter-muscular feedback. Conversely, our most relaxed subject (who fell

asleep during the measurement procedure) exhibited the smallest curl measured in all subjects.

Taken together, these observations show that vector field approximation based on scalar

methods using TPS smoothing with GCV works well-sufficiently precise to detect the subtle

differences in structure due to small changes in muscle activation.

2.7 Steady-State Static Ankle Mechanical Impedance in Active
Muscle

2.7.1 Subjects

The participants in this study were 10 unimpaired young human subjects with no

reported history of biomechanical or neuromuscular disorders (7 males, 3 females; age 19 to

31; height 1.55 m to 1.80 m; weight 55.8 kg to 81.6 kg). Approval for this study was obtained

from COUHES and participants gave written informed consent to participate as approved by

COUHES.

2.7.2 Experimental Protocol

As a first step for active studies, the MVC of each muscle was measured while

subjects stood upright. In detail, subjects were asked to activate each to their maximum level
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and maintain it for 5 seconds while the robot provided high restoring torques to hold the ankle

near the neutral position. Measurements were repeated 3 times for each muscle with enough

rest time between measurements to minimize fatigue. Amplitudes of measurements were

estimated and the MVC level was determined as the maximum of 3 measurements.

The target EMG level was set as 10% of MVC. I set the target to a constant level of

muscle activity, rather than constant torque, to better understand the role of "muscle stiffness"

and "kinematic stiffness" in joint stiffness changes. In detail, joint stiffness is determined not

only by muscle stiffness but also by the nonlinear kinematics due to the variation of muscle

moment arms and their derivatives.

Subjects were seated with their ankle held by the robot in a neutral position with the

sole at a right angle to the tibia. As a baseline for active studies, passive ankle impedance was

first measured with muscles fully relaxed. For active studies, a graphical user interface was

provided to subjects, showing real-time EMG amplitudes of TA and SOL along with the

corresponding target levels (10% MVC) subjects were to maintain. EMG amplitudes were

estimated as described above and normalized to the MVC level.

Subjects were first instructed to activate a specific muscle and maintain it at the target

level. When the activation level reached the target level, the robot applied terminated ramp

perturbations to the ankle with a slow velocity (100 /sec) selected to maintain quasi-static

conditions (no contribution of inertia and minimal effect of viscosity) and minimize the

involvement of spindle mediated stretch reflexes [77]. During measurements, subjects were

instructed not to resist robot perturbations voluntarily.

Three types of active study were performed: in two of them subjects were instructed to

activate only a single muscle (TA or SOL) against a resisting torque exerted by the robot.
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Especially, SOL was selected for the plantarflexor active study over the GAS, since GAS is a

bi-articular muscle that crosses both the ankle joint and the knee joint, which may induce

motions at the knee. In the third, subjects were instructed to co-contract both TA and SOL

while maintaining each at a level comparable to that when nominally acting alone.

To minimize any possible effects due to inconstant muscle activation, four repetitive

measurements were performed for each study.
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Figure 2.14: (a): The displacement profile in active studies. (b) Representative IE-DP displacement
profiles. Solid red lines denote outbound movements, and dotted blue lines represent inbound

movements.

Each measurement consisted of a total of 24 movements along 12 equally-spaced directions in

lE-DP space, once outbound and once inbound per direction (Figure 2.14 (a)). Measurements

with a decreased number of movement directions from 48 in relaxed muscles to 24 minimized
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was to prevent muscle fatigue during the four repeated measurements. The robot moved the

ankle along a commanded trajectory with a nominal displacement amplitude of 150 to cover

the normal ROM of the ankle, and held the foot for 0.1 seconds at the starting and ending

positions.

The same impedance controller described in section 2.6.2 was used, but with different

gain settings (K = 200 Nm / rad and B= l Nms / rad ) to guarantee safe and stable data capture

even when muscles were highly activated.

As in the relaxed study, any torque components required to overcome the friction of

the actuators were subtracted from the measured torque prior to further analysis. Examples of

IE and DP displacement profiles are presented in (Figure 2.14 (b)). The applied torque and

actual angular displacement in both DOFs (IE and DP) were recorded at 200 Hz. To avoid

fatigue, a 3 minute rest period was given between measurements.

2.7.3 EMG Analysis

The ratio of EMG amplitudes with muscles active to their corresponding MVC levels

satisfied the normality condition (p>>0.05 according to MATLAB'sjbtest function) justifying

comparison using paired t-tests (MATLAB's ttest2 function).
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Figure 2.15: The ratio of EMG amplitudes with muscles active. The x-axis represents the type of study
and the y-axis presents each muscle's activation level as a percentage of the corresponding MVC level.
Target muscle activation levels (10% MVC) are depicted as red dots. The mean ± SE of all analyzed

subjects are illustrated as an asterisk and bars, respectively. For each study, total ankle muscle
activity was approximated by summing normalized EMG amplitude of all measured muscles, and

represented at the bottom of the figure.

They demonstrated that all 10 subjects could follow instructions (Figure 2.15). In general,

subjects were able to maintain TA activation around the target level, 10% MVC, quite well:

the mean of all subjects was 8.63% (0.17%) for the TA active study, and 9.56% (0.43%) for

the co-contraction study. The value in parentheses is the standard error (SE) over all subjects.

Activation levels of the SOL were slightly lower than the target level: the mean of all subjects
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was 8.05% (0.42%) for the SOL active study, and 8.33% (0.28%) for the co-contraction study.

In both studies, activation levels of TA and SOL muscles in the co-contraction study were

comparable to those when nominally acting alone (p>0.05).

In addition, total ankle muscle activity was approximated by summing normalized

EMG amplitudes of all measured muscles. For the TA and SOL active studies, estimates were

14.52 (0.59) and 15.83 (1.37), respectively. The estimate for the co-contraction study was

27.10 (1.47) (Figure 2.15).

2.7.4 Reliability of Repetitive Measurements and Field Approximation

Four repetitions of measurements in the 24 directions (a total of 96 movements) were

approximated as 8 separate fields (4 outbound and 4 inbound), and averaged into an estimate

of a single continuous vector field for outbound and inbound movement.

One subject (#1) from the SOL active study and another (#6) from the co-contraction

study exceeded the torque limit of the hardware. Data exceeding the limit were excluded from

subsequent analysis. The mean error between the friction-compensated measurements and

surface approximates obtained by the TPS smoothing with GCV was less than 0.02 Nm,

which is substantially smaller than the measurement error range, ± 1 Nm [62]. This validates

the accuracy of the field approximation.

To investigate the variability of repetitive measurements, the mean and SD of absolute

error between the approximated field from each of four repeated measurements and their

average as a single field were calculated for each subject separately, and averaged across all

subjects (Table. 2.2).
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Table 2.2: Variability of repeated measurements.

Scalar Function (0A) Scalar Function (2)

Direction Study Mean of Error SD of Error Mean of Error SD of Error
Outbound Relaxed 0.10 (<0.01) 0.02 (<0.01) 0.15 (0.01) 0.03 (0.01)

TA Active 0.20 (0.03) 0.05 (0.01) 0.51 (0.06) 0.14 (0.03)
SOL Active 0.25 (0.08) 0.08 (0.04) 0.52 (0.08) 0.17 (0.07)

Co-contraction 0.25 (0.01) 0.06 (0.01) 0.64 (0.05) 0.18 (0.04)

Inbound Relaxed 0.11 (<0.01) 0.02 (<0.01) 0.15 (0.01) 0.03 (0.01)
TA Active 0.20 (0.02) 0.05 (0.01) 0.54 (0.04) 0.12 (0.02)
SOL Active 0.23 (0.04) 0.06 (0.01) 0.59 (0.07) 0.13 (0.02)

Co-contraction 0.28 (0.03) 0.06 (0.01) 0.63 (0.04) 0.17 (0.02)

The mean and SD of absolute error in Nm between the field derived from each measurement and the
single field averaged from four measurements were calculated for each subject separately. The mean
and SE (in parentheses) across all analyzed subjects are presented in the table.

The mean and SD for the scalar function #2 were greater than for the scalar function #. In

addition, the mean and SD with muscles active were greater than when relaxed. In all study

conditions both for outbound and inbound data, the mean error was less than 0.28 Nm and

0.64 Nm for $1 and 02, respectively. The SD was even smaller, less than 0.08 Nm and 0.18

Nm for # and #2, respectively.
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Figure 2.16: Representative measurements and the resultant vector field. (a) Friction compensated
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Figure 2.16 shows raw data and the resultant single vector field of a representative

subject (subject #1) and 2D-slices in four major directions (inversion, eversion, dorsiflexion,

and plantarflexion) to demonstrate how well the field fit the measurements and how small the

variability of repetitive measurements was.

2.7.5 Anisotropy of Static Ankle Mechanical Impedance in Active Muscles

For each subject, the directional variation of ankle stiffness was identified. The

effective ankle stiffness was evaluated from the averaged single vector field for each direction

of movement by computing the slope of a least squares linear fit to the displacement and

torque data in that direction (data between nominal displacements of 1* to 140 were used for

fitting), and the variation of ankle stiffness with direction in IE-DP space was constructed

accordingly.

To evaluate the effective resolution of stiffness estimation, we calculated the

minimum difference of stiffness values between two adjacent directions among 36 directions

for each study and for each subject separately. When averaged across all subjects, the

resolution was substantially smaller than the stiffness values in all study conditions, verifying

that our approach was sensitive enough to detect small stiffness changes in different

movement directions (Table 2.3).

62



Table 2.3: Effective resolution for stiffness estimation.

Study Relaxed TA Active SOL Active Co-contraction

Outbound 0.04 (0.01) 0.06 (0.02) 0.11(0.03) 0.13 (0.04)

Inbound 0.05 (0.01) 0.06 (0.02) 0.13 (0.05) 0.13 (0.04)

Parentheses denote SE. The unit is Nm/rad.

90
50 [Nm/radl

180 0

270

Figure 2.17: Anisotropy of ankle stiffness. Stiffness increases significantly in all movement directions
with active muscles (p<<0.0 5). Black: relaxed, Red: TA active, Green: SOL active, Blue: Co-
contraction Solid line: mean value of all analyzed subjects, Dashed: mean ± SE.

Results were represented in a polar plot (Figure 2.17), where outbound and inbound

results were averaged, and the means and SE for all analyzed subjects in all conditions, 3
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active and 1 relaxed, are presented. Absolute stiffness values did not satisfy the normality

condition, so comparisons were performed using Wilcoxon signed-rank tests. Predominantly

activating a single muscle or co-contracting antagonistic muscles significantly increased ankle

stiffness in all directions (p<0.05). However, stiffness increased more in the sagittal plane (DP

direction) than in the frontal plane (IE direction) in all active studies, substantially

accentuating the "peanut" shape, pinched in the IE direction. The ratio of active stiffness to

maximally-relaxed stiffness satisfied the normality condition (p>0.05). Its values in the four

principal directions (inversion, eversion, dorsiflexion, plantarflexion) and the average for all

directions are presented in (Table 2.4).

Table 2.4: Ratio of active stiffness to relaxed stiffness.

:St rcon Inversion Eversion Dorsiflexion Plantarflexion All directions

TA Active 2.00 (0.24) 1.45 (0.13) 1.85 (0.23) 1.98 (0.26) 1.87 (0.21)

SOL Active 1.85 (0.20) 1.55 (0.12) 2.60 (0.40) 2.62 (0.29) 2.22 (0.23)

Co-contraction 2.30 (0.22) 1.69 (0.12) 3.12 (0.42) 3.14 (0.35) 2.65 (0.24)

Parentheses denote SE. The unit is Nm/rad.

All subjects except one (#4) showed the greatest DP stiffness increase when co-contracting

antagonistic muscles.

2.7.6 Passive Property of the Ankle in Active Muscles

Passive/non-passive behavior of the ankle was identified from curl analysis on the

averaged single vector field. For the curl analysis, I first defined a criterion for zero curl from

four repetitive measurements using the same experimental protocol but without a human
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subject. Rotational field of these measurements should be zero ideally, since the robot with

the suggested controller was implemented as a passive system. Any non-zero curl identified

from the friction compensated vector field was regarded as artifactual curl arising due to the

precision limit of measurements or numerical errors in differentiation. The identified

artifactual curl components followed normal distribution (p>0.05). The mean was 0.012 Nm

with SD 0.369 Nm, which implied that any value outside the range -0.719 to 0.728 Nm was

significantly different from zero with 95% confidence.

Following the vector field decomposition method described in 2.4.3, a rotational field

containing curl components was calculated.
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A representative example (#5) of a total vector field and its rotational (curl) component is

shown (Figure 2.18). As reported in the relaxed study, curl components in the maximally-

relaxed were not statistically significantly different from zero. In contrast, significant non-

zero curl components were observed when muscles were active.

The mean and SD of the curl components in the rotational field are summarized in

(Table 2.5).

Table 2.5: Curl components and Kratio for all data analyzed.

Subject Mean (SD) of curl components [Nm] Mean of K

Relaxed TA SOL COC Relaxed TA SOL COC

1 -0.033 (0.164) -0.238 (0.356)* N/A -0.179 (0.543)* 0.083 0.118* N/A 0.104*

2 -0.022 (0.131) -0.017 (0.200) -0.265 (0.388)* -0.189 (0.281)* 0.079 0.093 0.176* 0.085

3 -0.041 (0.106) -0.173 (0.277)* -0.052 (0.255) -0.067 (0.294)* 0.080 0.117* 0.110* 0.113*

4 -0.010 (0.140) 0.006 (0.316)* -0.150 (0.398)* -0.132 (0.365)* 0.096 0.101* 0.148* 0.137*

5 -0.042 (0.112) -0.149 (0.283)* -0.224 (0.282)* -0.254 (0.345)* 0.074 0.135* 0.160* 0.172*

6 -0.036 (0.109) -0.085 (0.317)* -0.170 (0.431)* N/A 0.083 0.150* 0.158* N/A

7 -0.012 (0.108) 0.034 (0.257) -0.224 (0.268)* -0.082 (0.348)* 0.096 0.115 0.114* 0.121*

8 -0.045 (0.233) -0.194 (0.448)* -0.146 (0.347)* -0.007 (0.711)* 0.091 0.132* 0.172* 0.137*

9 -0.043 (0.134) -0.086 (0.423)* -0.096 (0.330)* -0.052 (0.385)* 0.099 0.091* 0.109* 0.091

10 -0.048 (0.208) -0.087 (0.265) -0.173 (0.405)* 0.040 (0.318)* 0.087 0.097* 0.090 0.056**

Average -0.033 (0.144) -0.099 (0.314) -0.167 (0.345) -0.083 (0.399) 0.087 0.115 0.137 0.113

Asterisks (*) denote significant difference from the relaxed study (p<0.05). Double asterisks (**)

indicate significantly lower Kratio than relaxed. Lower K,.t,0 values are due to greater increase

of conservative components with activation than rotational components.

Outbound and inbound results were averaged since no significant difference was found

between them (p>0.05). Averaged over the entire rotational field, the mean of the curl

components was not statistically different from zero.
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Figure 2.19: Curl component analysis for all data analyzed. (a) Relaxed, (b) TA active, (c) SOL active,
(d) Co-contraction. The x-axis is subject number and the y-axis the curl value in [Nm]. In each box,
the central mark is the median and the edges of the box are the 25th and 75th percentiles of all curl
values. Significantly non-zero curl values (outside the range of -0.719 to 0.728 Nm (shaded region)) are
plotted individually with red crosses (+).

However, significant non-zero curl components were observed in some regions: in 7 out of 10

subjects for the TA active study, 8 out of 9 subjects for the SOL active study, and in all 9

subjects for the co-contraction study (Figure 2.19). Calculating Kraii showed that non-

spring-like behavior increased with muscle activation, though the rotational component

averaged over all subjects was less than 14 % of the corresponding conservative component

(Table 2.5). However, we found no common patterns in the rotational field across subjects.

2.7.7 Discussion
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An accurate characterization of ankle mechanical impedance with active muscles is

important since most normal lower-extremity functions require muscle activations either

singly, synergistically, or antagonistically. Furthermore, abnormal muscle tone, a condition in

which some muscle or group of muscles is hyper-active or hypo-active, is a common

consequence of neurological disorder [14, 55, 61].

Repetitive measurements using a wearable robot combined with robust function-

approximation methods based on TPS with GCV enabled reliable characterization of the

multi-variable torque-angle vector field at the ankle in IE-DP space and how it varied with

muscle activation.

EMG analysis showed that our young unimpaired human subjects could maintain

substantially constant muscle contraction under the given experimental conditions. However,

despite instructions, most subjects had difficulty activating only one muscle exclusively

(Figure 2.15). This is consistent with a growing body of evidence that the central nervous

system addresses muscles in functional groups called synergies, and not individually [78, 79].

In addition, most subjects could voluntarily activate SOL more easily than GAS, and appeared

to be especially incapable of focusing voluntary control on PL, at least in the context of this

experiment.

Under voluntary contraction of ankle muscles at 10% MVC either singly or

antagonistically, the variability of repeated measurements was significantly smaller than the

measurement error of our apparatus (Table 2.2), although it was higher than when muscles

were relaxed. This is consistent with previous studies showing increased variability of force

with voluntary contraction [80].
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In general, ankle stiffness increased in all directions with activation of a single muscle

or co-contraction of antagonistic muscles (Table 2.4, Figure 2.17). Ankle stiffness was highly

direction-dependent whether muscles were maximally relaxed or active. In all cases, the

directional variation of stiffness exhibited a characteristic "peanut" shape, pinched in the IE

direction. This might be expected, as normal locomotor progression is predominantly in the

sagittal plane. However, the effect of muscle activation was not simply to scale stiffness

magnitude as observed in the upper extremity [11]. The shapes observed with co-contraction

or predominant TA or SOL activation were not scaled-up copies of relaxed behavior. Instead,

contraction or co-contraction of the major dorsi- and plantar-flexors contributed much less to

increase IE stiffness (Table 2.4), which means the ankle remains relatively more vulnerable to

frontal plane perturbations even with voluntary contraction of these muscles.

What might account for these results? One possible explanation is a different

contribution of "passive" and "active" stiffness to the different movement directions. Passive

stiffness adds to active muscle stiffness as a bias or offset from zero which was greater in DP

than IE. If active muscles contributed more to DP than IE and their ratio was greater than the

ratio of passive contributions to DP and IE, the total stiffness would increase more in DP than

IE, as we observed. To clarify with a hypothetical example, a muscle that was aligned to

contribute exclusively to DP torque and stiffness, with zero contribution to IE torque and

stiffness, would add to DP stiffness but not IE stiffness. This explanation is consistent with

the preponderance of potentially synergistic muscles contributing to DP but not IE: only 5 out

of 13 ankle muscles contribute to inversion-eversion, while 12 out of 13 muscles contribute to

dorsiflexion-plantarflexion.
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Interestingly, the joint stiffness when antagonistic muscles were co-contracted was

less than the sum of what was observed in the TA and SOL active studies (passive stiffness

was included just once in summing the stiffness of TA and SOL active studies): 2.00 vs. 2.43

for the IE direction, 3.13 vs. 3.53 for the DP direction, and 2.65 vs. 3.09 for all directions

(Table 2.4). This may have been due, in part, to the fact that the TA and SOL active studies

also evoked a degree of co-contraction due to synergies. However, estimated total muscle

activity in the co-contraction study exceeded that of the TA active study by 87% while the co-

contraction joint stiffness exceeded that of the TA active study by only 64% in the DP

direction, 16% in the IE directions and 42% averaged over all directions (Table 2.6).

Table 2.6: The effect of muscle activation was not simply to scale stiffness magnitude.

Increase Ratio in Stiffness

Cocontraction
o-contraction Total muscle

Reference activation DP IE All
ReeeneDirection direction DirectionStudy

TA Active 1.87 1.64 1.16 1.42

SOL Active 1.71 1.20 1.17 1.19

The ratios of total muscle activation and stiffness in the co-contraction study to their values in the
single-muscle-active studies were calculated. Mean values for all subjects analyzed are presented.

Comparing the co-contraction study to the SOL active study, the discrepancy was even more

marked: estimated total muscle activity in the co-contraction study exceeded that of the SOL

active study by 71% while the co-contraction joint stiffness exceeded that of the SOL active

study by only 20% in the DP direction, 17% in the IE direction and 19% averaged over all

directions (Table 2.6). In both studies, the joint stiffness increase ratios in DP, IE and all

directions were significantly lower than the corresponding increase ratios of estimated total

muscle activity (p<<0.05).
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Several possibilities might explain these experimental observations. First, it is known

that, with fatigue, a greater amplitude of EMG is required to maintain a constant force. To the

extent that subjects maintained constant levels of EMG, if they fatigued, the force (and

presumably stiffness) they generated would have declined. However, the experimental

protocol was specifically designed to avoid fatigue. Compared with previous experiments on

ankle muscle fatigue [81], contractions at 10% MVC for 40 seconds with intervening 3-

minute rest periods seem very unlikely to have induced fatigue.

A second possibility arises from nonlinear musculo-tendon kinematics. The

derivatives of muscle length with respect to joint angle define muscle moment arms which, in

general, vary with joint angle [82, 83]. The nominal ankle positions in the TA and SOL active

studies were slightly dorsiflexed and plantarflexed from the neutral position, respectively,

while the nominal ankle position in the co-contraction study was close to the neutral position.

This difference of nominal ankle position might have influenced the measured ankle stiffness.

To explore this possibility, the stiffness in each study was evaluated based on shifted

displacements. However, the effect of different initial ankle positions was negligible, not

enough to explain our experimental observation.

A third possibility is also related to nonlinear musculo-tendon kinematics. Because

humans have an endo-skeleton, if tendon tension is non-zero, that leads to a negative joint

stiffness of purely kinematic origin [84, 85]. Any relation between intrinsic muscle stiffness

and tension will vary between muscles; longer muscles of lower cross-sectional area may be

expected to contribute more tension with less stiffness. Thus contraction (or co-contraction) of

longer, slenderer muscles may, in principle, reduce joint stiffness. However, both the positive

(intrinsic) and negative (kinematic) contributions of any muscle contribute linearly to net joint
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stiffness. Therefore, if muscle activity in the co-contraction study was the simple sum of

muscle activities in the TA and SOL active studies, the stiffnesses should also have added; but

they did not.

A fourth possibility may arise from possible contributions of unmonitored muscles.

We monitored 4 superficial muscles but 8 out of 13 ankle muscles are deep and were not

monitored. Those muscles might have contributed positively or negatively to ankle stiffness.

If they contributed positively, it might be that these deep muscles were comparably active in

all three studies. As a result, their activity in the co-contraction study would not have been the

sum of their activities in the TA and SOL active studies. That would result in our observation

that co-contraction stiffness was not the sum of TA and SOL active stiffnesses. In contrast,

deep muscles tend to be more slender than superficial muscles (such as gastrocnemius) and

might contribute negatively to joint stiffness. If they were more active in the co-contraction

study, they would result in our observation that co-contraction stiffness was not the sum of

TA and SOL active stiffnesses.

Interestingly, one subject (#4) exhibited lower DP stiffness when co-contracting

antagonistic muscles than when activating single muscles, even though muscle activation

levels were comparable in all cases and this cannot be dismissed as imprecision of our

measurement (Table. 2.7).
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Table 2.7: Stiffness may not increase with co-contraction.

Ratio of active stiffness to relaxed stiffness EMG amplitude levels normalized to MVC

Direction Dorsi- Plantar- uscle Approximates

flexion flexion DP Study TA SOL PL GAS of total muscle
Study activity

TA Active 1.86 2.74 2.30 TA Active 8.27 3.10 1.30 1.42 14.09

SOL Active 2.65 2.28 2.47 SOL Active 1.23 7.55 4.45 1.86 15.09

Co-contraction 2.23 2.20 2.22 Co-contraction 8.83 8.33 3.55 1.93 Jb2.64

One subject (#4) exhibited lower DP stiffness during co-contraction than with single muscles active

despite comparable or greater levels of activation.

In detail, when all normalized EMG amplitudes were summed as an approximate estimate of

total ankle muscle activity of this subject, the co-contraction study showed 50% to 60%

greater total activation: TA active sum was 14.09; SOL active sum was 15.09; Co-contraction

sum was 22.64 (Table 2.7). In the absence of nonlinear kinematic effects, impedances add and

we should expect a greater increase of impedance with co-contraction [86]. However, in the

dorsiflexion direction, the stiffness increase in the co-contraction study was only 18.8%

compared to TA active study and decreased compared to the SOL active study by -16.6%. In

the plantarflexion direction, the difference was even more compelling: -24.6% compared to

the TA active study and -3.6% compared to the SOL active study. The average of both

directions was -3.6% and -11.3% compared to the TA active and SOL active studies,

respectively, substantially smaller than the 50% to 60% increase expected from the sum of

muscle electrical activities.

Of the possible explanations we considered above, the only one that appears to be

compatible with this observation is that unmonitored deep muscles contributed negative joint

stiffness (consistent with their slenderness) and were more active in the co-contraction study.
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However, only one subject out of 10 clearly displayed this phenomenon and further study is

required to understand this observation. Nevertheless, even this single subject emphasizes that

there is no guarantee that joint stiffness will increase in proportion to muscle activation.

Consequently, our observation that, averaging over all subjects, net ankle stiffness

increased with muscle activation-by as much as a factor of 2 to 3 with co-contraction (Table

2.4)-is not a-priori obvious. It suggests that impedance modulation by antagonist muscle co-

contraction-despite its substantial cost in metabolic energy consumption-serves an important

function; and that function is sufficiently important that muscle may have co-evolved with

musculo-skeletal kinematics so that its stiffness increased sufficiently rapidly with force to

ensure stability [87]. In fact, a recent study showed that the limits of upper-extremity force

production were determined by the need to stabilize the joints [88] rather than by muscle

strength.

The musculo-skeletal anatomy of the ankle is highly variable in humans [89] and that

implies a comparable variability in the effect of muscle activity on joint stiffness; as we

observed, increasing muscle activity may not always increase joint stiffness. Moreover,

biomechanical injury to the passive tissues of the ankle may permanently change the relation

between muscle activity and joint stiffness, and the full range of ankle stiffness (and in

particular, joint stability) that was available pre-injury may no longer be accessible post-injury.

Further experimental study is required to quantify these possibilities.

Investigation of passive/non-passive behavior of the joint is very important, since this

may affect stability of the neuromuscular system in interaction with the environment. More

specifically, the necessary and sufficient condition for a system such as a robot or a human

limb to be stable when coupled to any stable and passive object is that its driving point
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impedance should be passive [90]. Coupled stability for the robot interacting with the

environment has been well addressed by impedance control [91-93]. On the other hand, we

cannot make a priori assumption that human joints are fundamentally passive, since the

central nervous system of human, from the spinal cord to the cortex, plays a significant role in

movement controls, and passive behavior of joint impedance can be affected by muscle

activation and changes in inter-muscular feedback (e.g. from muscle spindles or Golgi

Tendon Organ). Especially, when interactions due to inter-muscular feedback are unbalanced,

non-zero curl is introduced, which is non-passive.

The suggested vector field approximation methods based on TPS smoothing with

GCV enabled reliable characterization of multi-variable torque-angle vector field at the ankle

in the 2D-space consisting of sagittal and frontal planes. Passive/non-passive behavior of the

ankle joint was identified from curl analysis on the approximated vector field, in different

muscle active conditions. Note that this analysis was previously not available in the single

DOF studies, because curl analysis requires the determination of the influence of

displacements in one DOF on the forces generated in another DOF.

The static behavior of the fully-relaxed ankle was that of a passive elastic system, i.e.,

spring-like. In contrast, generating a steady ankle torque or voluntarily co-contracting

antagonist muscles evoked statistically significantly non-passive static behavior, i.e. non-zero

curl, which may arise from unbalanced inter-muscular feedback between IE and DP muscle

groups. Non-zero curl due to failure to maintain constant muscle activation cannot be

completely ruled out, though to minimize this possibility we averaged four repeated

measurements. To investigate the source of non-zero curl more thoroughly, we compared

EMG levels and their variation in regions with non-zero curl with their values in regions with
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zero curl. If the level and variation of EMG in the two regions were statistically

indistinguishable, it is more likely that the non-spring-like behavior (non-zero curl) was due

to unbalanced neural feedback rather than non-constant muscle activation. To test the equality

of two variances and means, F-tests and paired t-tests were used with a significance level 0.05.

In fact, we found no statistical difference (p>0.05) in EMG variation between regions of non-

zero curl and zero curl in all active studies, except in one region for one subject (subject #1) in

the TA active study. In addition, EMG levels in the majority of non-zero curl regions were not

statistically different (p>0.05) from the levels in zero curl regions: statistical differences

(p<0.05) were found in only 14.3 % of curl regions from the TA study, 19.2 % from the SOL

study, and 14.7 % from the COC. From these results, we infer that the observed non-zero curl

originated more from unbalanced neural feedback than non-constant muscle activation due to

changes of voluntary descending drive.

Compared to relaxed muscles, active muscles, either singly, synergistically or

antagonistically, exhibited significantly greater mean magnitude and SD of curl components

as well as K,-aio in general (Table 2.5). However, we found that Kratio of the co-

contraction study was lower than the single muscle active studies. This is because the

conservative components increased more than the rotational components, when co-contract

antagonistic muscles.

We found no common patterns in the rotational field across subjects. That may reflect

imperfect tuning of spinal feedback circuits. If the central nervous system had evolved

towards maintaining ankle impedance to resemble a passive system even when muscles were

active, this would require any heteronymous feedback loops (from the sensors of one DOF to

the muscles of another DOF) to be perfectly balanced. But perfection is rare in biological
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systems. If the biological system had evolved to approximate passivity, though imperfectly,

we might expect individuals to differ in this departure from perfection due to different motor

ability, sensory acuity, genetic factors, or other causes.

Whatever its origin, the non-passive static behavior of the ankle with active muscles

was modest in the unimpaired young subjects we studied-a K,.atio value of 0.087 in the

relaxed condition and K,-atio values less than 0.140 in all active conditions can be interpreted

as relatively small non-passive behavior (Table 2.5).
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Chapter 3

Multi-Variable Steady-State Dynamic Ankle
Mechanical Impedance

3.1 Summary

While a nonlinear torque-angle relationship at the ankle was described in Chapter 2,

the characterization was limited to the static component of ankle mechanical impedance. This

chapter presents quantitative characterization of multi-variable dynamic ankle mechanical

impedance.

Measurements using the Anklebot combined with linear time-invariant multi-input

multi-output stochastic system identification methods enabled reliable identification of

dynamic ankle mechanical impedance in two degrees-of-freedom simultaneously, both in the

sagittal and frontal planes. In addition to the identification in two major planes, directional

variation (anisotropy) of ankle impedance in the 2D-space formed by the two planes, and

energetic passivity of the ankle were identified under maximally-relaxed muscles and

voluntary contraction of ankle muscles. Impedance matrix and its ellipse representation were

also provided for their widespread use in the field of biomechanics and motor control.
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Experiments with young healthy subjects with no reported history of biomechanical or

neuromuscular disorders successfully quantified the dynamic behavior of the ankle over a

wide frequency range and in different muscle activation levels.

Ankle impedance in joint coordinates showed responses more or less consistent with a

2 " order system with inertia, damping, and stiffness, although slight mid-frequency

transitions were observed both under relaxed and active muscles, which may be due to the

contribution of muscle mass as well as non-negligible couplings between 2 degrees-of-

freedom. While inertia was relatively constant, stiffness and damping increased with the

higher level of muscle activation. Especially, low- (<2 Hz) and mid-frequency (5-8 Hz)

impedance increased linearly with muscle activation in both degrees-of-freedom.

Ankle impedance increased linearly with muscle activation in all directions in the 2D-

space but more in the sagittal than in the frontal plane, resulting in an accentuated "peanut

shape" both in the TA active and SOL active studies. The peanut shape was slightly tilted in

the counter-clockwise direction, which can be well explained with anatomical axes of

rotations of the ankle.

The ankle of young healthy subjects was energetically passive under relaxed muscles.

Non-passive behavior was observed in some subjects with active muscles, but its contribution

was modest, and most subjects satisfied the passivity condition.

The highly linear relationship between muscle activation and multi-variable

impedance, the small coupling between 2 degrees-of-freedom, and the energetic passivity of

the ankle will all together help the construction of a simple model of multi-variable ankle

impedance for young healthy subjects.

79



3.2 Introduction

The study of multi-variable static ankle mechanical impedance provides

biomechanically and neurologically valuable information about the ankle joint, not available

from previous single DOF studies. Although this study sheds lights on quantitative

characterization of ankle impedance, it may not be directly used in more general situations,

since the ankle operates in different frequency regions for different lower-extremity functions.

For example, the frequency content of normal human walking is considerably higher than 10

Hz [94, 95].

Along the same line of the previous static study, I quantified the directional variation

of ankle impedance and the energetic passivity of the ankle over a wide range of frequency.

The same experimental setup, Anklebot and the EMG system used in the static study, was

also used in this study.

In the following sections, linear time-invariant (LTI) multi-input multi-output (MIMO)

stochastic system identification methods and subsequent analysis methods are explained.

Characterization results on young healthy subjects under relaxed and active muscles follow.

3.3 Methods

3.3.1 Multi-Variable Dynamic Ankle Mechanical Impedance in Joint

Coordinates

Anklebot actuates left (L) and right (R) linear drives in actuator coordinates, which in

turn applies perturbations to the ankle joint, in both IE and DP directions. The IE and DP
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directions define joint coordinates, and torques and angular displacements in the joint

coordinates are obtained by transforming actuator forces and linear displacements through the

nonlinear kinematics of the Anklebot [62].

Multi-variable ankle impedance in joint coordinates can be identified by applying a

standard non-parametric MIMO stochastic identification method on recorded time history of

torque and displacement data [25, 96]. This method is preferred to other parametric system

identification approaches because it requires no a-priori assumption about the dynamic

structure of joint mechanical impedance, and can provide a chance to investigate its complex

higher order dynamics, if exists. In addition, the use of mild random white noise as inputs

rather than transient inputs, such as impulse, step, or ramp, is preferred, since it minimizes the

possibility of subjects' voluntary reactions to perturbations.

Mechanical admittance (Y) was identified first, since we applied torque input and

recorded displacement output (Eq. (3.1)):

O=Yr, 0=(1E IDP)' =(TIE TDP) (3.1)

[BIE 1 [1 ()12 () [IE y [11(f Y2()

DP 1 (f) 2(f) TEDP

A brief description of MIMO stochastic identification methods based on spectral analysis to

obtain each element of Y is provided in Appendix D.

To calculate auto- and cross-power spectral density, Welch's periodogram approach

(MATLAB's cpsd function) was used [97]. This method splits the data of finite length into

overlapping sections, computes modified periodograms of the sections, and averages the

resulting periodograms. An appropriate window size should be selected to reduce both bias

errors and variance as well as to provide a fine spectral resolution. When the window size is
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large, periodograms are calculated with the fine spectral resolution (lowest/smallest resolvable

frequency), and bias errors decrease. However, due to the reduced number of average, the

variance of estimation increases. So there exists trade-off between the periodograms

resolution, bias errors, and variance. In this study, the sampling rate was 1 kHz, and the

number of FFT points was set as 4000, yielding a spectral resolution of 0.25 Hz. A periodic

Hamming window was used to provide 50% overlap of the window size.

In the linear system, mechanical impedance (Z) can be calculated from the inverse of

mechanical admittance (Y ), if positive definite condition ofY is satisfied (Eq. (3.2)):

T = Y 1 0 = ZO, z Z 11(f) Z12(f) (3.2)
Z21 (f) Z22(f)_

Here, a portion of the recorded angular displacements resulted from the robot

dynamics. To compensate for the contribution of the robot dynamics, impedance of the robot

( ZAbo, ) should be identified first, and then subtracted from the measured impedance

(ZAnke+Abot) (Eq. (3.3)):

ZAnkle ZAnke+Abot (f) - ZAbot (f)

r(f) T(f) (3.3)

Tf ) Ankle+Abot 0(f) Abot

This is the case when the system is open-loop (Figure 3. 1).
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Ankle + Actuator Dynamics
YAnkle+Abot(S)

Figure 3.1: Open-loop system identification.

In fact, a closed-loop system identification was used in this study for ankle impedance

identification, and details of this method will be described in section 3.4.

Next, from the analysis of partial coherence, which indicates linear dependency

between input and output after removing the effects of other inputs, we investigated the

linearity of each element ofZ,,,kl, and the amount of coupling between the 2 DOFs. A method

to calculate partial coherence based on spectral analysis is also provided in Appendix E.

Within high coherences ranges, we can investigate the impedance in the major

directions (diagonal terms of Z,,k, ) and interactions among them (off-diagonal terms of

Zankle). Frequency response of ankle impedance is represented as a Bode plot.

3.3.2 Anisotropy of Dynamic Ankle Mechanical Impedance

In addition to impedance identification in joint coordinates ( 9 IE, DP ), we can

characterize directional variation of ankle impedance in the coupled 2 DOFs. With a

rotational transformation (R ), new coordinates (0') can be defined (Eq. (3.4)):

cosa sina
O'= RO, T'= RT, R = sina cosa] (3.4)
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where a is the angle defined as a CCW direction from the axis for the direction of 9
IE (Figure

3.2).

Actuator Coordinate
(xr, x) - (Fr, F,)

" 2 2

Rotated Joint Coordinate
(e1E, ODP) -- (r IE', ' DP)

Rotational
Transformation

in the IE-DP space

Joint Coordinate
(01E, ODP) ~-+ (T lE, T DP)

Figure 3.2: Impedance identification in rotated joint coordinates (0'= (0E', GDP ).

For example when a = 45', 9
IE' and 9

DP' correspond to the directions in the middle of 9
IE

and 6Dp directions. By applying the same impedance identification procedure (Eq. (3.1) ~

(3.3)) to the transformed data (0' and r'), and changing the angle a from 0 to 90', ankle

impedance in any direction in the 2D-space can be calculated. One thing to check is whether

mild random perturbations applied to each actuator provide enough power to excite the ankle

in the rotated joint coordinates of any a.
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Representation of a directional variation of ankle impedance or an isotropy of ankle

impedance, can be also obtained by calculating the magnitude of impedance for each

movement direction in the 2D-space and plotting them in polar coordinates. Compared to the

static study, this study provides how directional variation of impedance changes as a function

of frequency.

3.3.3 Ellipse Representation and Impedance Matrix

The representation of the directional variation of impedance in polar coordinates

(direction dependent map) is different from a widely used "stiffness ellipse", a linear

representation of stiffness matrix [11]. In detail, the direction dependent map explains torques

that oppose motions in a particular direction, i.e., magnitude of impedance for each movement

direction in the IE-DP space. On the other hand, the ellipse representation describes the

trajectory of restoring torque vectors when the joint is displaced along the unit circle in the

IE-DP space.

Although the ellipse representation cannot provide direct information of the magnitude

of impedance in a particular movement direction, considering its widespread use, I also

provide ellipse representation of ankle impedance together with the direction dependent map.

In fact, the ellipse representation can be directly derived from the direction dependent map. In

addition, directions of maximum and minimum impedance magnitude in the direction

dependent map correspond to the major and minor principal axes of the impedance ellipse.

Once the ellipse representation is determined, a 2-by-2 impedance matrix (Z ) is

further calculated based on energy conservation between different coordinates (Figure 3.3 and

Eq. (3.5)).
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-I 1

Z =[ 21]
[ Z21 Z223

= 0 Z22'I

Figure 3.3: Ellipse representations in different coordinates. Axes 1 and 2 define the original
coordinate system (IE-DP), and axes 1' and 2' define directions of minor and major principal axes of
the ellipse. The angle between the axis of the original coordinate frame and the minor principal axis is

defined as 0 .

When the rotational transformation between two frames is defined as R , Z is calculated as Eq.

(3.5).

Z = RT Z'oR = s - sin (P ZII' 0 cos 0 sin ]

[sin 0 cos ( 0 Z 2 2 ' - sin 0 cos j

Z 1  Z 12 ] Z [z 'cos 2 2 + Z 22 'sin2 0 (Z 1 '-Z 22 ')sin(cos 1
Z21 Z22 (Z'-Z 22')sin(cosO Z 1 'sin2 0 + Z 2 2 ' cos 2o
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As representative characteristics of the ellipse representation, three parameters

defining the orientation, shape, and size of the ellipse were calculated: the angle between the

minor principal axis and the axis defining the IE direction (<P), the ratio of Z2'/Z1 I', and the

determinant of Z .

Simple examples comparing the direction dependent map and the ellipse

representation are provided in Appendix E.

3.3.4 Energetic Passivity of the Ankle Joint

To validate the use of the direction dependent map and the ellipse representation

described in previous sections, energetic passivity should be checked. If the passivity

condition is not satisfied, at least one of four variables of the impedance matrix is discarded.

Investigation of energetic passivity of the joint is also important to understand coupled

stability of physical interaction and the contribution of neural feedback to the joint. It has

been known that two physically coupled systems with energetically passive port functions

guarantee coupled stability [98]. But the passive property of the ankle may change, since

many lower-extremity functions accompany changes of limb kinematics, muscle activities,

and reflex actions. In addition, if there is unbalanced inter-muscular reflex feedback around

the ankle joint, this can act as active components, i.e., energy source [10]. Hence we must

check whether the ankle is passive to be able to state anything about coupled stability.

A passivity analysis was performed following the procedure described in [99, 100]. In

brief, the passivity criterion for the linear system is described as Eq. (3.6), where matrix H is

a 2x2 transfer matrix relating inputs (u) and outputs (y) to the system, and u and y are dual

or conjugate interaction-port variables:
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Vw 0, T(jw) = H(jw) + H(-jw) T  0 (3.6)

y(jw) =H(jw)u(jw)

Inputs and outputs were selected in rotated joint coordinates (IE'-DP' where a = 450)

as follows: u = r'= ('rIE,, 'DP) and y = w'= (cvIE, DP,) where r'denotes torques (Nm) in the

rotated joint coordinates after compensating the contribution of actuator dynamics, and c'

represents the corresponding angular velocities (rad/s). The compensation was performed in

a similar way as we did for impedance identification (Eq. (3.3)). When the positive definite

condition (Eq. (3.7)) of T(jw) is satisfied, the ankle is dissipative, or strictly passive.

Vw 0, T(jw) = H(jw) + H(-jw) T > 0 (3.7)

Detailed descriptions for the analysis method are provided in [94, 95].

3.4 Closed-loop Mechanical Impedance Identification

With an open-loop system identification explained in chapter 3.3, we cannot prevent

actuators from drifting from initial positions. In ankle impedance identification, keeping the

foot around the initial neutral position against gravity is required for reliable identification. A

closed-loop system identification with a simple proportional-derivative (PD) controller can be

a good solution.

3.4.1 Closed-loop Identification of Anklebot Mechanical Impedance
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Before running human experiments, impedance of Anklebot (Zb,,) was identified

first, which will be used to compensate for the contribution of the robot dynamics in

subsequent analyses. Identification results were also used to validate analysis methods and

experimental procedures.

irand Motor Trand Linear Drive
Dynamics (Roh'lix)

Irand

+ ~ K + Bs ++2
I Z bAbotS + mAbotS

PD Controller Actuator Dynamics
YAbat(s)

Figure 3.4: Controller for the identification of Anklebot impedance. The same controller was
implemented for each of left and right actuators independently. Intrinsic inertia and damping of the

actuator are denoted as mact and bact, and programmed stiffness (P gain) and damping (D gain) as K

and B.

A simple PD controller was integrated with random input perturbations for the system

identification (Figure 3.4). Gains of the controllers were set as K = 500 N / m and

B = 0 Ns / m, and Anklebot was unconstrained by anything. The initial position of actuator

x0 was set as 0. Two uncorrelated mild random perturbations (band-limited white Gaussian

noise with stop frequency 100 Hz) were applied to each actuator for 60 seconds.

The closed-loop transfer function ( YCL (s) = Z-CL (s) ) between random force

perturbations to the actuator ( fnd) and the corresponding linear displacement ( x ) was

represented as Eq. (3.8):
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(3.8)Yc~)Z~Ls~ x(s) Y bO(s) 1Y L( ) Z -C _bot (b)

frand(s) CL ~ I +(K + Bs)Ybot,(S) IAboS2 + B bos+K

ZAbot (s) = IAbors+ B Abot s

ZCL(S) = ZAbot(s)+K

Frequency responses of ZCL (s) in 2 coupled DOFs were estimated based on the

previously explained MIMO system identification. Magnitude and phase responses were

calculated and represented as Bode plots, and partial coherences plots were also provided.
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Figure 3.5: Closed-loop impedance ZCL(s) in actuator coordinates.
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Figure 3.6: Partial coherence plots in actuator coordinates. Subscript 11, 12, 21, and 22 denote partial

coherence relating X1 and f,, Xr and f,, X, and fr , and Xr and fr -

Identification results in actuator coordinates and partial coherence plots are presented

in Figure 3.5 and Figure 3.6. Partial coherences of diagonal terms were very high (>0.9) over

the wide frequency range up to 50 Hz, implying that mechanical impedance of each actuator

can be well explained with a linear model. On the other hand, coherences of off-diagonal

terms were close to zero across all frequency regions, indicating no coupling or interaction

between the left and right actuators. This is because the controller for each actuator was

implemented independently.

Both magnitude and phase plots for diagonal terms showed clear frequency response

of a 2 nd order system, which was expected from Eq. (3.8). Stiffness was dominant in the low

frequency region approximately below 2 Hz with a zero magnitude slope. In the high

frequency region over about 4 Hz, inertia was dominant with a magnitude slope 40 dB/decade
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(dec). Negligible phase lag at low frequencies and the 1800 phase lag of at high frequencies,

also matched well with that of a 2nd order system.

Estimated programmed stiffness ( K ), calculated by averaging the impedance

magnitude below 2 Hz, was 498.1 N/m and 506.9 N/m for the left and right actuator,

respectively. This corresponds to the estimation error less than 0.4% and 1.4% of the

commanded value (500 N/m), validating the experimental setup, protocol and analysis

methods. In addition, frequency responses of left and right actuators were almost identical.

The best-fit inertia and damping were 0.81 kg and 0.79 kg, and 20.2 Ns/m and 20.8 Ns/m for

left and right actuators, respectively.

Identification results in joint coordinates through nonlinear kinematic transformation

from the actuator coordinates to the joint coordinates, and the corresponding partial coherence

plots are also presented in Figure 3.7 and Figure 3.8.

211(Ie10E) Z22 (1: 1eDP)
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Figure 3.7: Anklebot impedance in joint coordinates.
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3.4.2 Closed-loop Identification of Ankle Mechanical Impedance

When the human ankle was connect to end effectors of the Anklebot, the control loop

(Figure 3.4) changes to Figure 3.9.
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Figure 3.9: Control block diagram when human ankle is connected to the Anklebot. The same
controller was implemented for each of left and right actuators independently. External ankle force is

denoted as fAnkle *

The closed-loop transfer function (YAnkleCL (S) = Z Ankle CL(s)) between random force

perturbations to the actuator ( fnd ) and the corresponding linear displacement ( x ) was

represented as Eq. (3.9):

YAnkle CL(S) = Z 'Ankle CL(S) = x(s)
frand (s) AnkleCL

YAnkle+Abot (S)

1 + (K + Bs)YAnk,,+Abot (s)

Since the ankle and Anklebot share the same displacement, they are modeled as parallel

impedance elements (Eq. (3.10)):

ZAnkle+Abot (s) = Y-1 Ankle+Abot (s) = ZAnkle(S) + ZAbot (s) (3.10)

Finally, ankle impedance (Z nke) is obtained by subtracting Anklebot dynamics (ZAO,)

and programmed Anklebot stiffness (K) from the closed-loop impedance (ZAnkle CL (s)) (Eq.

(3.11)):
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ZAnkle (s) = ZAnkle CL (s) - ZAbot (-K (3.11)

3.5 Steady-State Dynamic Ankle Mechanical Impedance in
Relaxed Muscle

3.5.1 Subjects

Ten unimpaired young human subjects (5 males, 5 females; all right footed) with no

reported history of neuromuscular or biomechanical disorders participated in this study.

Subjects were between the ages of 21-37, the heights of 1.58 m-1.90 m, and the weights 48.0

kg-80.0 kg. Following procedures approved by the ethics committee (institutional review

board), MIT's Committee on the Use of Humans as Experimental Subjects, informed consent

was obtained from all subjects.

3.5.2 Experimental Protocol

MVC level of each muscle was first measured in the standing posture in the same way

as described in the static study (section 2.7.2).

Each MVC level was used as a reference to calculate normalized EMG amplitudes.

Next, a neutral position of the ankle in 2 DOFs was measured while subjects stood upright.

Relaxed ankle impedance was measured in two different postures to investigate its

posture dependent property: standing (knee stretched) and seated (knee flexed).
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Figure 3.10: Impedance measurements in two different postures. Left: standing (knee stretched),
Right: seated (knee flexed)

For the standing measurement, subjects were instructed to place the left foot on the

block to provide a clearance between the right foot and the ground. Subjects were allowed to

hold a bar in front of them and asked to relax their ankle muscles (Figure 3.10 (left)).

For the seated measurement, the weight of the robot was supported through elastic

bands, and a right angle between the thigh and shank was maintained (Figure 3.10 (right)).

Elastic bands were used instead of the rigid mounting device used in the static study, mainly

to decouple dynamics of the chair from measurements.

Two uncorrelated mild random perturbations (Gaussian white noise with bandwidth

100 Hz) were applied to each actuator for 40 seconds. The same PD controller, used for the

identification of Anklebot impedance, was used. Force-displacement in actuator coordinates,
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torque-angular displacement in joint coordinates, and EMG data were sampled at 1 kHz.

EMG amplitudes were calculated from the sampled raw signal using a root-mean-square filter

with a moving window of 200 ms.

3.5.3 EMG Analysis

Both in standing and seated measurements, all subjects well maintained relaxed

muscle condition. When EMG amplitudes were normalized to their corresponding MVC

levels, activation levels were under 1.3% MVC when averaged across all subjects, and even

the maximum activation level for each muscle was always less than 4.3% MVC for each

subject (Table 3.1).

Table 3.1: EMG amplitudes normalized to their corresponding MVC levels.

re Muscle TA PL SOL GAS

Seated 0.28 0.08 0.21 0.15
(0.42) (0.06) (0.14) (0.12)

Standing 0.88 0.67 1.28 0.65
(0.82) (0.52) (1.00) (0.58)

The mean and SE (value in parentheses) over all subjects are presented. (Unit: %MVC)

3.5.4 Dynamic Ankle Impedance in Joint Coordinates

Ankle impedance has been known that it varies with mean displacement amplitude

[44]. Thus, it is important to note ranges of torque input perturbations and the corresponding

output displacements in this experiment (Table 3.2).
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Table 3.2: Ranges of commanded torque inputs and recorded angular displacements.

Input (Nm) Output (Deg.)

irection IE DP IE DP

Posture RMS Min/Max RMS Min/Max RMS Min/Max RMS Min/Max

Seated 2.20 -9.45/8.57 1.48 -5.35/5.29
2.23 -5.25/5.25 3.29 -7.74/7.74 (0.08) (0.47)/(0.34) (0.09) (0.15)/(0.16)
2.23in -. /2.17 -9.31/8.06 1.54 -4.86/5.19

Standg (0.06) (0.34)/(0.27) (0.04) (0.15)/(0.54)

The mean and SE (in parentheses) across all subjects are presented in the table. The same torque
inputs were used across all subjects. Parentheses denote SE.

For the mild torque perturbations, RMS and maximum values of displacement in joint

coordinates (IE and DP directions) were less than about 2.20 and 1.5" and less than about 9.2"

and 5.40, respectively.

Diagonal components of the partial coherence matrix were very high (>0.8) up to 50

Hz, indicating that ankle impedance in IE and DP directions can be well explained with linear

models under the given experimental conditions (Figure 3.11). On the other hand, off-

diagonal components of the partial coherence matrix were lower than 0.3, which explains that

coupling between different DOFs (IE and DP directions) were substantially small (Figure

3.11).
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Figure 3.11: Partial coherences in joint coordinates. Red and blue lines denote standing (knee
stretched) and seated (knee flexed), respectively. Thick and thin lines represent the mean and mean±1

SE of all subjects, respectively.

Diagonal components of ankle impedance, i e, IE and DP impedance, were

represented as Bode plots to show magnitude and phase responses of impedance in the

frequency domain (Figure 3.12). In average of all subjects, inertia was dominant (magnitude

increase at ~-40 dB/dec) in a high frequency region over about 8~1]0 Hz for both directions and

both postures. For the DP direction, break frequency was higher in the standing than the

seated. Stiffness was dominant (zero magnitude slope) below this region, although slight

deviations from the zero slope were observed between 2 Hz and 5 Hz. Resonance and anti-

resonance behaviors over about 20~30 Hz, which is more evident in DP impedance, was due

to vibration modes of the bracket attached to the bottom of a shoe. The same behavior was

observed from mechanical impedance of a physical mockup having the same shoe bracket.

Details are provided in Appendix F.
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Figure 3.12: Ankle mechanical impedance in joint coordinates. Left: IE impedance (Z11), Right: DP
impedance (Z22). Top: magnitude responses, Bottom: phase responses, respectively. The same color

codes as in Figure 3.11.

The magnitude of impedance was calculated in two different frequency regions, which

I defined the low-frequency region as below 2 Hz and the mid-frequency region between 5 Hz

and 8 Hz.

Impedance magnitude in different DOFs (ZI vs. Z2 2 ), different knee configurations

(knee stretched vs. knee flexed), and different frequency ranges (low-frequency vs. mid-

frequency) were calculated and compared (Table 3.3). When pooling all subjects together for

each condition, impedance magnitude satisfies normality conditions (p>0.05). Paired t-tests

were performed to investigate statistical difference between groups. Results are illustrated in

Figure 3.13 ~ 3.14.
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Figure 3.13: IE impedance (Z11) vs. DP impedance (Z22). The mean and mean±1 SE of all subjects are
illustrated. Asterisks (*) denote significant difference between groups
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Low Freq. vs. Mid Freq.
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Table 3.3: Impedance magnitude in different DOFs, knee configurations, and frequency ranges.

Directions IE (Z1 ) DP (Z 22)
Frequency

gion Low Mid Low Mid
Posture _________________

Seated 7.96 10.73 12.61 16.54
(0.62) (1.27) (1.27) (1.69)

Standing 8.79 11.62 17.94 24.85
(1.06) (1.58) (2.27) (2.50)

The mean and SE (in parentheses) across all subjects are presented in the table. (Unit: Nm/rad)

Impedance in the IE direction was always lower than the DP direction for both

frequency regions and postures (p<0.01 for all conditions). For each condition, the increase of

DP impedance in reference to the corresponding IE impedance was calculated. The increase
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was greater in the standing than in the seated posture, due to higher DP impedance in the

standing posture (Figure 3.13).

When impedance in standing (knee stretched) and seated (knee flexed) was compared,

no statistical difference was observed for IE impedance (p>0.20), while significant difference

was found for DP impedance (p<0.01). About 30% of impedance decrease was observed

when the knee was flexed than when stretched (Figure 3.14).

Mid frequency impedance was about 30-40% greater than low frequency impedance

in all conditions (p<0.01) (Figure 3.15).

3.5.6 Energetic Passivity of the Ankle Joint in Relaxed Muscles

Energetic passivity of the ankle was tested by evaluating positive semi-definite

condition of T(jw) = [IT T2;T T ]22] (Eq. (3.6)). In detail, the passivity condition was satisfied

when all of the leading principal minors of T (To andlT|) were equal or greater than zero.

Since the order of inputs and outputs can be arbitrarily selected, i.e., IE' first and DP' next or

vice versa, we should check both T as well as T. In both seated and standing

measurements, T 1 are T were strictly positive and TIwas equal or greater than zero up to 50

Hz. This condition was satisfied for all subjects, and average results were shown in Figure

3.16.
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Figure 3.16: Energetic passivity of the relaxed ankle in seated (top row) and standing (bottom row)
postures. Thick and thin lines represent the mean and mean±1 SE of all subjects, respectively.

3.5.7 Anisotropy of Dynamic Ankle Impedance in Relaxed Muscles

The directional variation of dynamic ankle impedance was identified based on

calculations in rotated coordinates. The increment of the rotation angle (a ) for the rotational

transformation ( R ) in Eq. (3.4) was set as 10 (a = 0',10',...,800 ).

Input power spectral density (PSD) was first estimated in the rotated coordinates. PSD

of rIE' a DP' were flat up to 100 Hz for any a, validating that ankle impedance can be

reliably estimated in all directions in the IE-DP space based on spectral analysis (Figure 3.17).
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Figure 3.17: Input power spectral density in the rotated joint coordinates (a = 0*,100,...,800). Top:

PSD of r'IE, bottom: PSD of rDP

The directional variation of impedance was depicted in polar coordinates, where the

angle corresponds to each movement direction in the 2D-space, and the radius corresponds to

the magnitude of impedance in that direction. As in the representation of directional variation

of static ankle impedance (section 2.6.4), directions of 0',90',180' and 2700 in the polar

coordinates represent eversion, dorsiflexion, inversion and plantarflexion, respectively.

Average results of all subjects in the low-frequency and mid-frequency regions under

seated and standing postures are shown in Figure 3.18. Results of individual subject are

provided in Appendix G.
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Figure 3.18: Anisotropy of dynamic ankle impedance in seated and standing postures. Thick and thin
lines represent the mean and mean±1 SE of all subjects, respectively. Blue and red lines represent low-

and mid-frequency impedance, respectively.

In average across all subjects, impedance in the mid-frequency region was greater than

in the low-frequency region in all movement directions (p<0.05) in the standing posture, and

in all movement directions except the directions 00 a 60' and 180' a5 240* in the

seated posture. In addition, impedance in the standing measurement was greater than in the

seated measurement in the directions 70' a! 1500 and 250* a 330' for the low

frequency and 50' a 140' and 230' a 320' for the mid frequency (p<0.05), otherwise

statistically not significantly different (p>0.05).

Directions of highest and lowest impedance magnitude, which I defined as a major

principal axis and a minor principal axis, respectively, were tilted in the CCW direction from

the original joint coordinates. Directions of major and minor principal axes and the

corresponding impedance magnitude are summarized in Table 3.4.
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Table 3.4: Direction of major and minor axes and the corresponding impedance magnitude.

Direction of Impedance in the Major Impedance in the Minor
Principal Axes Principal Axis Direction Principal Axis Direction

Frequency
egion Low-Freq. Mid-Freq. Low-Freq. Mid-Freq. Low Mid

Posture _
6.0 14.5 13.5 18.1 7.0 9.1

Seated (3.1) (2.7) (0.9) (1.2) (0.6) (1.2)
14.0 10.0 19.6 26.9 7.0 9.4

Standing (1.7) (1.6) (1.8) (1.7) (0.6) (0.7)

The direction of major and minor axis and minor axis are defined from the axis for the direction of IE
and DP, respectively, in the CCW direction (Unit of direction: 0, unit of magnitude: Nm/rad). The
mean and SE (value in parentheses) over all subjects are presented.

3.5.8 Ellipse Representation and Impedance Matrix in Relaxed Muscles

Following the description in section 3.3.3, the directional variation of dynamic ankle

impedance was represented as an ellipse. Average results of all subjects in the low-frequency

and mid-frequency regions under seated and standing postures are shown in Figure 3.19.

Results of individual subject are provided in Appendix G.
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seated and standing postures. The

2-by-2 impedance matrix was calculated for each posture and for each subject

separately according to Eq. (3.5), and the mean± 1 SE is presented below:

Zsatd ow 7.25 - 0.63 ]0 r.59 0.36

1-.313.281 0O.36 0.891Zseated low= 0.3+.5036

[9.86 -2.13] 1.30 0.451seated - 2.13 17.4 1 -I.45 1.12

7.73
Zstan =1stnding _low [28

- 2.821 [0.66 0.33

18.87 j[0.33 1.811

[10.92 -3.041 [0.89 0.691
stan ding mid 3.04 26.17 J[0.69 1.54

Average results of three parameters defining the orientation (0 ), shape (Z 22 '/ZI'),

and size of the ellipse (|ZI) are also presented in Table 3.5.
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Table 3.5: Orientation, shape, and size of the impedance ellipse.

Parameters Orientation (0i) Shape ( Z 22 '/Z 11') Size ( Z )

Frequency
egion Low-Freq. Mid-Freq. Low-Freq. Mid-Freq. Low Mid

Posture
6.0 14.5 1.97 2.14 98.0 175.9

Seated (3.1) (2.7) (0.12) (0.16) (12.9) (33.7)
14.0 10.0 2.86 2.91 142.6 259.8

Standing (1.7) (1.6) (0.20) (0.16) (24.3) (35.7)

The mean and
size: [Nm/rad]2

SE (value in parentheses) over all subjects are presented. Unit of orientation: ", unit of

The orientation 0 exactly matched with the direction of minor principal axis of the direction

dependent map. The ratio between the largest and smallest impedance magnitude was

between 2 and 3. The size of impedance ellipse was bigger in the mid frequency region than

in the low frequency, and the size in the standing was larger than in the seated measurement.

To investigate the variability across subjects, coefficient of variation (CV=standard

deviation/mean) was calculated for each parameter and summarized in Table 3.6.

Table 3.6: Coefficient of variation of parameters for impedance ellipse.

Parameters Orientation (di) Shape ( Z2 2 '/Z 1 ') Size (Z )

Frequency
egion Low-Freq. Mid-Freq. Low-Freq. Mid-Freq. Low Mid

Posture
Seated 1.55 0.56 0.18 0.22 0.39 0.57

Standing 0.36 0.48 0.21 0.16 0.51 0.41

The same units as in Table 3.5.

In general, the CV of shape was smaller than that of orientation or size. However, care is

needed for this interpretation, because orientation can be very sensitive to numerical error. For

example, high value of the CV for the orientation in low-frequency of the seated measurement
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is due to one outlier subject (subject #3) showing orientation tilted in opposite direction

(clockwise (CW) for the DP direction).

3.5.9 Discussion

The analysis of partial coherences showed that ankle impedance in relaxed muscles

can be well investigated from linear system identifications in both IE and DP directions.

However, coupling between different DOFs in the joint coordinates were substantially small;

in other words, activations of major muscles for DP (IE) barely introduced motions in IE (DP)

direction.

When muscles were relaxed, both IE and DP impedances showed clear inertia

dominant behavior over about 8~10 Hz. Low- and mid-frequency responses below the inertia

dominant region were more or less consistent with stiffness, although slight deviations were

observed. As a result, impedance magnitude in the mid-frequency was significantly (about

30-40%) higher than in the low-frequency. The transition behavior in this frequency region is

practically important, since operating conditions of the ankle during fast walking or running

may fall into this region.

In all subjects, DP impedance was greater than IE impedance both in the seated and

standing measurements, which was consistent with previous observations in the static study

[64]. In addition, the magnitude of DP impedance in the standing posture was consistently

higher than in the seated posture across all subjects. This can be explained with the stretch of

gastrocnemius, which is a bi-articular muscle running from its two heads just above the knee

to the heel. When the knee was stretched in the standing posture, gastrocnemius also stretched

more than in the knee flexed posture causing higher passive stiffness. This effect was
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negligible in IE impedance, since gastrocnemius is a plantarflexor acting only in the sagittal

plane.

Ankle impedance was highly direction dependent, being weak in the IE direction,

resulting in a "peanut" shape structure. The impedance structure in the mid-frequency region

was bigger than that in the low-frequency region, but the characteristic "peanut" structure was

maintained. This feature is consistent with prevalent ankle injuries in the IE direction,

observed in various unconstrained situations accompanying ankle motions in different

frequency regions [74, 101]. In addition, directions of principal axes well match with

anatomical axes of rotations of the ankle. It has been reported that the axes of rotation for IE

and DP motions are slightly tilted in the CCW and CW directions with respect to the axes

perpendicular to the frontal and sagittal planes, respectively [17].

Ankle impedance was also simply represented as a 2-by-2 impedance matrix, and

three parameters defining the orientation, shape, and size of impedance were calculated.

Under relaxed muscles, variation of the shape across subjects was relatively small compare to

that of the orientation and the size of impedance, implying that the ratio of impedance

magnitude between major and minor principal axis directions is relatively invariant, even

when absolute impedance values across subjects are highly variable.

The passivity analysis showed that the relaxed ankle of young healthy subjects is

fundamentally passive (I T J=0 ) in the low-frequency region where stiffness was dominant.

This result is consistent with previous finding in the static study: zero curl under relaxed

muscle condition for young healthy subjects [64]. The ankle was dissipative (strictly passive)

where damping was dominant, and almost passive in the inertia dominant high frequency

region.
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3.6 Steady-State Dynamic Ankle Mechanical Impedance in Active
Muscle

3.6.1 Experimental Protocol

The same 10 unimpaired young human subjects (5 males, 5 females; all right footed)

described in section 3.5.1 participated in this study. To investigate effects of muscle activation,

ankle impedance was measured in different muscle active levels. TA and SOL were selected

as target muscles for dorsiflexor and plantarflexor active studies, respectively. Ankle

impedance was measured at 5 different activation levels, from 10% to 30% of MVC level in

increments of 5% MVC. As a baseline for active studies, passive ankle impedance was also

measured with muscles fully relaxed. To prevent muscle fatigue, a 3 minute rest period was

given to each subject between measurements.

During measurements, subjects were seated with their ankle held by the robot in a

neutral position with the sole at a right angle to the tibia (Figure 3.10 (right)). A visual display

showing current and target activation levels were provided to subjects. Subjects were first

instructed to activate a specific muscle and maintain it at the target level. When the activation

level reached the target level, the robot applied two uncorrelated mild random perturbations

(Gaussian white noise with bandwidth 100 Hz) to the ankle for 40 seconds. The same PD

controller in the relaxed study was used (Figure 3.9), except different gain settings. The

Anklebot stiffness or P-gain in the controller was set to 2000 N/m for active studies.

Force-displacement in actuator coordinates, torque-angular displacement in joint

coordinates, and EMG data were sampled at 1 kHz. EMG amplitudes were calculated from

the sampled raw signal using a root-mean-square filter with a moving window of 200 ms.
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3.6.2 EMG Analysis

First, activation levels under relaxed muscles were under 0.3% MVC, when averaged

across all subjects. To ensure that each subject was able to maintain target muscle activation

levels, the mean EMG amplitude for each measurement was calculated and its ratio to the

MVC level was compared with the corresponding target level (10~30% MVC). The linearity

of actual activation levels was measured by calculating the correlation coefficient (R).

Linearly increasing activation levels of TA and SOL were observed in all subjects with very

high R 2 (Table 3.7).

In addition, total ankle muscle activity was approximated by summing normalized

EMG amplitudes of all measured muscles, and its linearity was calculated. This is important

because subjects could not solely activate a single muscle, but evoked a degree of co-

activation of other muscles due to synergies (Figure 3.20). For example, in the SOL active

study, all platarflexors (SOL, PL, and GAS) were activated in the same pattern, while TA

activation was very low. Linearity of total muscle activation levels was also very high for

both studies (Table 3.7), validating the suggested experimental protocol to investigate the

effect of muscle activation on ankle impedance.
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Table 3.7: Linearity of Muscle Activation.

Study TA Active SOL Active

Target Total Target Total
(TA)(SL
1.000 0.985 0.988 0.983

2 0.994 0.980 0.978 0.912

3 0.998 0.916 0.987 0.987

4 0.995 0.946 0.996 0.930

5 0.999 0.983 0.993 0.959

6 0.999 0.993 0.995 0.955

7 0.998 0.958 0.999 0.998

8 0.997 0.897 0.999 0.959

9 0.999 0.971 1.000 0.985

10 0.999 0.994 0.996 0.974

Mean 0.998 0.962 0.993 0.964
(SE) (0.0002) (0.004) (0.001) (0.003)

The correlation coefficient (R2) was calculated for each subject and presented in the table.

TA Active Study

M10%MVC
15% MVC
20% MVC

=25%MVC
30% MVC 0
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SOL Active Study

PL SOL
Muscle

Figure 3.20: Activation levels of all measured muscles in two active studies. The y-axis presents each
muscle's activation level as a percentage of the corresponding MVC level. The mean ± SE of all

subjects are illustrated.

Average results of all subjects are shown in Figure 3.21. Target levels in the TA active

study were well maintained, while activation levels of SOL were slightly higher than the

target levels. The level of total muscle activations was significantly higher in the SOL active

study than the TA active study.
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Figure 3.21: Linearity of muscle activation levels. Top: target muscle activation, bottom: total muscle
activation. The mean ± SE of all subjects are illustrated as asterisks and bars. Red lines are linear

regression fits to measurements.

3.6.3 Dynamic Ankle Impedance in Joint Coordinates

Different mean ankle positions are expected for different levels of muscle activation.

Ankle impedance has been known that it varies with mean ankle position [46]. Thus, it is

important to note ranges of ankle positions measured in this experiment (Figure 3.22).
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Figure 3.22: The mean ankle position in active muscle studies. Positive (negative) values denote
dorsiflexion (plantarflexion) and eversion (inversion) in the sagittal and the frontal planes,

respectively. The mean ± SE of all subjects are illustrated as asterisks and bars.

In the TA active study, the ankle was more inverted and dorsiflexed with increased

muscle activation, since TA is a major dorsiflexor and an inverter. In the SOL active study,

the ankle was plantarflexed due to the activation of major plantarflexors. Among

plantarflexors, PL is a main everter, and the activation of this muscle introduced slight

eversion.

Across all muscle activation conditions, the ankle was constrained in a small ROM

due to high restoring torques by the Anklebot in both DOFs: -1.60 -0.7* (IE) and -0.5* ~

3.50 (DP) for the TA active study, and -0.1" ~ 0.60 (IE) and -9.40 -4.70 (DP) for the SOL

active study.
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Diagonal components of the partial coherence matrix were high in all muscle

activation conditions up to 50 Hz, except the low frequency region below 1~2 Hz. In this

region, partial coherences decreased as muscle activation increased. Off-diagonal components

were substantially low even with muscle activations, although not negligible.
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Figure 3.23: Partial coherences in the TA active study. Red, green, blue, magenta, and cyan colors
denote 10%, 15%, 20%, 25%, and 30% MVC, respectively. The means of all subjects are presented.
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Figure 3.24: Partial coherences in the SOL active study. The same format as in Figure 3.23.

Diagonal components of ankle impedance in the TA active and SOL active studies are

shown as Bode plots in Figure 3.25 and Figure 3.26, respectively. Both studies showed

response more or less consistent with a 2 order system with inertia, damping, and stiffness.

When averaged across all subjects, inertia was dominant in the high frequency region over

about 10~20 Hz depending on muscle activations. Below inertia dominant regions, the

magnitude of impedance increased with the increase of muscle activation either TA or SOL.

Phase transitions around break frequencies were smoother with higher muscle activation. In

addition, phase transitions of IE impedance were more rapid than DP impedance.

The similar resonance and anti-resonance behaviors over about 20~30 Hz explained in

the relaxed study were also observed.
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Figure 3.25: Ankle mechanical impedance in the TA active study. Left: IE impedance (Zii), Right: DP
impedance (Z22). Top: magnitude responses, Bottom: phase responses, respectively. The same color

codes as in Figure 3.23.
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Figure 3.26: Ankle mechanical impedance in the SOL active study. The same format as in Figure 3.23.

The magnitude of impedance in the low-frequency region (1~2 Hz) and mid-frequency

region (5-8 Hz) were calculated, and the relationship between muscle activation and

impedance was investigated for each subject separately. Impedance value below 1 Hz was not

considered due to low partial coherence values.

Most subjects showed a highly linear trend between muscle activation levels and the

corresponding impedance magnitude in both TA active and SOL active studies. Only one

subject (subject #6) in the SOL active study showed substantially low R2 values in all

conditions. When the mean for the SOL active study was re-calculated except this outlier

subject, R 2 value was 0.90, 0.90, 0.92, and 0.92 for low-frequency IE, mid-frequency DP,

low-frequency DP, and mid-frequency DP impedance.
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Table 3.8: Actual muscle activation level vs. Ankle impedance.

Study TA Active SOL Active

Direction IE DP IE DP

Freq. Region Low Mid Low Mid Low Mid Low Mid
Subject Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.

1 0.98 0.96 0.98 0.95 0.93 0.91 1.00 0.99

2 0.95 0.97 0.87 0.96 0.96 0.94 0.97 0.98

3 0.90 0.94 0.90 0.93 0.78 0.85 1.00 0.99

4 0.93 0.96 0.95 0.79 0.96 0.95 0.91 0.88

5 0.89 0.92 0.84 0.89 0.95 0.95 0.89 0.93

6 0.93 0.95 0.94 0.96 0.51 0.39 0.61 0.37

7 0.94 0.84 0.98 0.90 0.88 0.85 0.94 0.94

8 0.97 0.98 0.95 0.91 0.97 0.95 0.92 0.89

9 0.98 0.97 0.80 0.90 0.88 0.85 0.78 0.70

10 0.97 0.97 0.95 0.98 0.78 0.84 0.90 0.90

Mean 0.94 0.95 0.92 0.92 0.86 0.85 0.89 0.86

(SE) (0.01) (0.01) (0.02) (0.02) (0.05) (0.06) (0.04) (0.06)

The correlation coefficient (112) was calculated for each subject and presented in the table.

When the linearity was calculated based on the pooled data from all 10 subjects, R 2

value was very high closed to 1 (Table 3.9 and Figure 3.27).

Table 3.9: Actual muscle activation level vs. Ankle impedance based on the pooled data.

Study TA Active SOL Active

Direction IE DP IE DP

. Low Mid Low Mid Low Mid Low Mid
Freq. Region Freq. Freq. Freq. Freq. Freq. Freq. Freq. Freq.

R2  0.993 0.985 0.997 0.975 0.985 0.978 0.959 0.963

Slope 0.43 0.52 1.89 2.10 1.03 1.22 3.48 4.30

The unit of slope is Nm/rad/%MVC.

The slope of linear fit was calculated. Slopes in the IE direction were lower than in the DP

direction, and slopes in the SOL active study were higher than the corresponding values in the

TA study.
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Figure 3.27: Actual muscle activation level vs. Ankle impedance based on the pooled data. Top row:
TA active study, bottom row: SOL active study, left column: IE impedance, right column: DP

impedance. Low- and mid-frequency impedance is illustrated as blue and red colors, respectively. The
mean ± SE of all subjects are illustrated as asterisks and bars.

For the same target muscle activation level, low- and mid-frequency impedance for the

TA study and SOL study were compared. The ratio between impedance in the TA study and

the SOL study was summarized in Table 3.10. In average across all subjects, impedance in the

SOL study was greater than in the TA study, and the discrepancy became more marked with

the increased muscle activation.
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Table 3.10: The ratio of impedance in the SOL study to the TA study.

Freq. Region Low-Freg. Mid-Freq.

Direction
Target IE DP IE DP
Activation Level

10% MVC 1.04 1.05 1.18 1.08

15% MVC 1.13 1.01 1.20 1.01

20% MVC 1.20 1.03 1.33 1.07

25% MVC 1.33 1.21 1.38 1.22

30% MVC 1.58 1.40 1.69 1.52

The ratio was calculated based on pooled data from all subjects.

Mid-frequency impedance was consistently higher than low-frequency impedance for

both IE and DP directions in all muscle activation levels. The ratio between low- and mid-

frequency was summarized in Table 3.11.

Table 3.11: The ratio of mid-frequency impedance to low-frequency impedance.

Study TA Active SOL Active
Direction

Target IE DP IE DP
Activation Level

10% MVC 1.07 1.19 1.22 1.23

15% MVC 1.13 1.23 1.19 1.23

20% MVC 1.11 1.22 1.23 1.26

25% MVC 1.13 1.22 1.17 1.23

30% MVC 1.13 1.14 1.21 1.24

Mean 1.11 1.20 1.20 1.24

(SD) (0.03) (0.04) (0.02) (0.01)

The ratio was calculated based on pooled data from all subjects.

3.6.4 Energetic Passivity of the Ankle Joint in Active Muscles

Energetic passivity of the ankle in active muscles was investigated by evaluating

positive semi-definite condition of T(jw) = [T T2; T21T22] (Eq. (3.6)). Most subjects (9 out of

10 for the TA study and 7 out of 10 for the SOL study) satisfied the positive semi-definite
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condition of T in all muscle activation conditions up to the frequency region of our interest

(<30 Hz). Average results of all subjects are shown in Figure 3.28.
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Figure 3.28: Energetic passivity of the ankle in active studies. Top: TA study, bottom: SOL study.
The mean of all subjects are presented. Black: relaxed, red: 10% MVC, green: 15% MVC, blue: 20%

MVC, magenta: 25% MVC, cyan: 30% MVC.

The ankle of young healthy subjects under active muscles is fundamentally passive in

the low-frequency region where stiffness was dominant (I T J=0 ), and almost passive in the

high-frequency region where foot inertia contributed. The passivity condition was strictly

positive where damping was dominant.

Interestingly, several subjects didn't satisfy the passivity condition in the low-

frequency region below 2 Hz: one subject (subject #1) in the TA study and 3 subjects (subject

#2, #5, #9) in the SOL active study showed non-passive behavior. To evaluate how significant

the non-passive behavior of these subjects is, impedance matrix was calculated in the
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frequency region where the passivity condition was not satisfied, and the ratio of the square

roots of the determinants of the anti-symmetric ( Z, ) and symmetric ( Z', ) parts of the

impedance matrix was calculated (VZ = det(Za) / det(Z,) ). Results are summarized in

Table 3.12, and the result of one subject (#5) was excluded in the evaluation due to low partial

coherence (<0.3) in this frequency region.

Table 3.12: Zratio for subjects showing non-passive behavior.

Subject
Target TA Study #1 SOL Study #2 SOL Study #9
Activation Level

10% MVC 0.11 0.02 0.02

15% MVC 0.08 0.04 0.01
20% MVC 0.10 0.05 0.01

25% MVC 0.08 0.08 0.04

30% MVC 0.10 0.08 0.10

In all muscle activation levels, the contribution of the anti-symmetric

than about 10% of the corresponding symmetric component.

component was less

3.6.5 Anisotropy of Dynamic Ankle Impedance in Active Muscles

The directional variation of dynamic ankle impedance was identified in active muscles

based on the same method used in the relaxed study. Average results of all subjects are shown

in Figure 3.29 and Figure 3.30 for the TA study and SOL study, respectively.
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Figure 3.29: Anisotropy of dynamic ankle impedance in the TA active study. Left: low-frequency
impedance, right: mid-frequency impedance. Thick and thin lines represent the mean and mean1 SE

of all subjects, respectively. The same color codes as in Figure 3.28.
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Activating muscles significantly increased ankle impedance in all directions in the

IE-DP space, but it increased more in the sagittal plane (DP direction) than in the frontal

plane (IE direction), accentuating the "peanut" shape, pinched in the IE direction. The ratio of

active impedance to maximally-relaxed (passive) impedance was calculated for each

movement direction, and results in the IE direction, DP direction, and the mean of all 36

directions are summarized in Table 3.13. The ratio for the DP direction was substantially

higher than the IE direction.

Table 3.13: The ratio of active impedance to relaxed impedance.

Freq. Region Low-Freq. Mid-Freq.
Direction

Target IE DP All IE DP All
Activation Leve

10% MVC 1.63 (0.12) 2.81 (0.25) 2.31 (0.20) 1.74 (0.15) 3.35 (0.28) 2.66 (0.22)

TA 15% MVC 1.96 (0.16) 3.58 (0.39) 2.89 (0.29) 2.21 (0.22) 4.42 (0.42) 3.47 (0.33)
St 20% MVC 2.25 (0.20) 4.25 (0.52) 3.40 (0.38) 2.50 (0.23) 5.19 (0.56) 4.04 (0.42)

Study 25% MVC 2.52 (0.20) 4.82 (0.46) 3.84 (0.35) 2.86 (0.25) 5.88 (0.58) 4.59 (0.44)

30% MVC 2.76 (0.22) 5.57 (0.64) 4.37 (0.45) 3.11(0.27) 6.38 (0.64) 4.97 (0.48)

10% MVC 1.69 (0.30) 2.94 (0.46) 2.40 (0.38) 2.06 (0.37) 3.62 (0.57) 2.95 (0.46)

SOL 15% MVC 2.22 (0.53) 3.63 (0.50) 3.01 (0.50) 2.64 (0.59) 4.47 (0.68) 3.68 (0.61)
20% MVC 2.70 (0.62) 4.38 (0.65) 3.65 (0.62) 3.31 (0.77) 5.53 (0.90) 4.56 (0.81)

Study 25% MVC 3.36 (0.72) 5.84 (1.20) 4.75 (0.95) 3.93 (0.75) 7.16 (1.61) 5.75 (1.20)

30% MVC 4.35 (0.76) 7.82 (1.59) 6.31 (1.21) 5.25 (0.86) 9.68 (2.26) 7.76 (1.64)

The ratio was calculated for each subject separately, and averaged across all subjects. The mean and
SE (in parentheses) across all subjects are presented in the table. All direction implies the mean of all
36 directions.
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Figure 3.31: Linearity between muscle activation level and ankle impedance in IE-DP space. The
correlation coefficient (R2) for each movement direction was presented in polar coordinates. Each thin
red line represents the result of individual subject, and the thick black line represents the mean of all

subjects. Top row: TA active study, bottom row: SOL active study, left column: low-frequency
impedance, right column: mid-frequency impedance.

The correlation coefficient (R 2 ) between the level of muscle activation and the

magnitude of ankle impedance for each of 36 movement directions was calculated for each

subject and presented in Figure 3.31. In average across all subjects, R 2 value for the TA study
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was very high (>0.90) for all directions. For the SOL study, the averaged R 2 value was still

high (>0.85), although two subjects (#6 and #9) showed an outlier behavior.

Both in the TA active and SOL active studies, major and minor principal axes were

slightly tilted in the CCW direction from the original joint coordinates in all muscle activation

conditions (Table 3.14).

Table 3.14: Direction of major and minor axes of dynamic ankle impedance and the corresponding
impedance magnitude in the TA active and SOL active studies.

Target Direction of Impedance in the Major Impedance in the Minor
Study Activation Princi al Axis Principal Axis Direction Principal Axis Direction
Type Level Low-Freq. Mid-Freq. Low-Freq. Mid-Freq. Low-Freq. Mid-Freq.

10% MVC 0.5 (0.1) 4.0 (0.2) 37.3 (3.4) 44.6 (3.7) 11.8 (0.8) 12.4 (1.0)

TA 15% MVC 1.0 (0.1) 6.0 (0.2) 47.6 (5.1) 59.1 (5.6) 14.2 (1.2) 15.6 (1.6)

Study 20% MVC 2.5 (0.1) 6.5 (0.2) 56.5 (6.9) 69.3 (7.6) 16.3 (1.5) 17.7 (1.8)
25% MVC 4.0 (0.2) 6.5 (0.2) 64.1 (6.2) 78.7 (7.9) 18.1 (1.4) 20.1 (1.8)
30% MVC 4.0 (0.2) 6.5 (0.2) 74.2 (8.6) 85.3 (8.6) 19.8 (1.6) 21.9 (1.9)

10% MVC 6.0 (0.2) 7.0 (0.4) 39.6 (6.3) 49.0 (7.7) 11.7 (2.0) 14.0 (2.2)

SOL 15% MVC 8.5 (0.3) 11.0 (0.3) 49.9 (7.1) 61.1 (9.5) 14.3 (2.6) 17.4 (3.1)

Study 20% MVC 10.0 (0.3) 11.0 (0.3) 60.1 (9.1) 76.5 (12.9) 17.6 (3.4) 21.0 (3.7)
25% MVC 14.0 (0.2) 12.5 (0.2) 80.6 (16.2) 98.4 (21.8) 21.3 (4.1) 25.2 (4.4)
30% MVC 12.0 (0.3) 13.0 (0.3) 107.4 (21.3) 132.8 (30.5) 28.1 (4.9) 33.9 (5.4)

The direction of major and minor axis and minor axis are defined from the axis for the direction of IE
and DP, respectively, in the CCW direction (Unit of direction: 0, unit of magnitude: Nm/rad). The
mean and SE (value in parentheses) over all subjects are presented.

Directions of principal axes were more tilted in the CCW direction in the SOL study

than in the TA study. The variability across subjects was very small (SE less than 0.40) in all

muscle activation conditions. As expected from Figure 3.29 and Figure 3.30, the magnitude of

impedance in the major axis direction was substantially larger than in the minor axis direction,

more than 3 times in average across all subjects.

3.6.6 Ellipse Representation and Impedance Matrix in Active Muscles
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Ellipse representations of dynamic ankle impedance in the TA active and SOL active

studies were shown in Figure 3.32 and Figure 3.33.
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Figure 3.32: Ellipse representation of dynamic ankle impedance in the TA study. The same format as
in Figure 3.28.
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Figure 3.33: Ellipse representation of dynamic ankle impedance in the SOL study. The same format as
in Figure 3.28.
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Impedance matrix was calculated for each study and for each subject separately, and

the mean± 1 SE of all subjects is presented in Table 3.15:

Table 3.15: Impedance matrix for ankle impedance in active studies.

Freq. Region Low-Freq. Mid-Freq.
Impedance

Target Element Z Z22 Z12 (or Z21) Z Z2 Z12 (or Z21)

Activation Level
10% MVC 11.9 (0.9) 37.2 (3.3) -0.35 (0.7) 12.8 (1.1) 44.3 (3.6) -2.4 (1.0)

15% MVC 14.3 (1.2) 47.5 (5.1) -0.41 (0.4) 16.4 (1.6) 58.3 (5.6) -4.5 (1.4)

TA 20% MVC 16.6 (1.5) 56.2 (6.9) -1.83 (1.0) 18.7 (1.9) 68.3 (7.3) -5.8 (1.8)
Study 25% MVC 18.6 (1.5) 63.6 (6.1) -3.24 (1.5) 21.3 (2.0) 77.6 (7.7) -6.7 (2.0)

30% MVC 20.7 (1.8) 73.4 (8.3) -4.7 (2.2) 23.1 (2.1) 84.1 (8.4) -7.3 (2.2)

10% MVC 12.5 (2.3) 38.8 (6.0) -3.5 (1.4) 15.5 (2.9) 47.5 (7.5) -4.2 (2.1)

15% MVC 16.0 (3.5) 48.2 (6.6) -5.1 (2.1) 19.7 (4.2) 58.8 (8.9) -7.7 (2.3)

SOL 20% MVC 19.9(4.5) 57.9(8.5) -6.8(2.5) 24.4(5.4) 73.1 (11.9) -10.2(3.7)
Study 25% MVC 24.9 (4.9) 77.0 (15.9) -12.6 (2.4) 28.8 (5.4) 94.8 (21.3) -14.0 (3.4)

30% MVC 31.4 (5.4) 104.0 (21.1) -13.5 (3.2) 38.5 (6.0) 128.1 (30.1) -17.8 (4.6)

2-by-2 impedance matrix is represented as Z =

table.
[Zu Z12; Z2 1 Z221 and each element is presented in the

Average results of three parameters defining the orientation (0 ), shape (Z 22 '/Z'),

and size of the impedance ellipse (JZ ) are also presented in Table 3.16.
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Table 3.16: Orientation, shape, and size of the impedance ellipse in active studies.

Freq. Region Low-Fre . Mid-Freq.
Impedance

Element Orientation Shape Size Orientation Shape Size
Target (0) (Z22'/ZI') (Z|) (0) (Z22'/Z1 ') (|Z|)
Activation Level _

10% MVC 0.5 (0.1) 3.2 (0.1) 458.9 (65.6) 4.0 (0.2) 3.7 (0.2) 575.8 (80.9)

TA 15% MVC 1.0 (0.1) 3.3 (0.2) 718.1 (125.2) 6.0 (0.2) 3.9 (0.2) 981.1 (166.1)

Study 20% MVC 2.5 (0.1) 3.4 (0.2) 994.2 (198.4) 6.5 (0.2) 4.0 (0.3) 1312.9 (228.9)
25% MVC 4.0 (0.2) 3.5 (0.2) 1223.2 (201.3) 6.5 (0.2) 4.0 (0.3) 1668.4 (284.9)
30% MVC 4.0 (0.2) 3.7 (0.3) 1551.2(304.8) 6.5 (0.2) 3.9 (0.3) 1963.2 (358.5)
10% MVC 6.0 (0.2) 3.6 (0.4) 537.1 (165.0) 7.0 (0.4) 3.7 (0.5) 774.4 (215.3)

SOL 15% MVC 8.5 (0.3) 3.8 (0.4) 839.8 (272.4) 11.0(0.3) 3.7 (0.4) 1234.9 (382.1)

Study 20% MVC 10.0 (0.3) 3.9 (0.6) 1277.0 (443.8) 11.0 (0.3) 3.8 (0.5) 1925.0 (638.3)
25% MVC 14.0 (0.2) 4.1 (0.6) 2173.2 (902.1) 12.5 (0.2) 4.0 (0.5) 3080.8 (1159.4)
30% MVC 12.0 (0.3) 4.1 (0.6) 3716.3 (1466.7) 13.0 (0.3) 3.9 (0.5) 5567.1 (2144.0)

The mean and SE (value in parentheses) over all subjects are presented. Unit of orientation: 0, unit of
size: [Nm/rad]2.

In addition, to investigate the variability of three parameters across subjects, the CV

was calculated for each parameter and summarized in Table 3.17. In general, the CV of shape

was less than the CV of orientation or size. As mentioned in section 3.5.8, care is needed for

this interpretation, because orientation can be very sensitive to numerical error.

Table 3.17: Coefficient of variation of parameters for impedance ellipse in active studies.

Freq. Region Low-Fre . Mid-Freq.
Impedance

Element Orientation Shape Size Orientation Shape Size
Target (0) (Z22'/ZI') (Z|) (0) (Z22'/Z1 ') (|ZI)
Activation Level

10% MVC 7.4 0.1 0.4 1.1 0.2 0.4

TA 15% MVC 3.2 0.1 0.5 0.9 0.2 0.5

Study 20% MVC 1.7 0.2 0.6 0.7 0.2 0.5
25% MVC 1.3 0.1 0.5 0.7 0.2 0.5
30% MVC 1.3 0.2 0.6 0.7 0.2 0.5
10% MVC 1.2 0.3 0.9 1.7 0.4 0.8

SOL 15% MVC 1.0 0.3 1.0 0.8 0.3 0.9

Study 20% MVC 0.9 0.4 1.0 0.8 0.4 1.0
25% MVC 0.5 0.5 1.2 0.6 0.4 1.1
30% MVC 0.7 0.4 1.2 0.6 0.4 1.2
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3.6.7 Discussion

Measurements using the Anklebot with LTI MIMO stochastic system identification

methods enabled reliable characterization of steady-state dynamic behavior of the ankle in 2

DOFs simultaneously under active muscles.

Results of partial coherence analysis verified that mild random perturbations used in

this study were powerful enough to reliably estimate ankle impedance in 2 DOFs (Figure 3.23

and 3.24). Partial coherences of diagonal terms were very high over the wide frequency range

up to 50 Hz, even at the high muscle activation level of 30% MVC. Coherence drops were

observed at the low frequency region below 1-2 Hz in both TA active and SOL active studies.

Coherence drops may be due to insufficient input power, measurement noise, contribution of

unmeasured inputs, and/or nonlinear input-output relationship. In this study, the most likely

cause was the increased nonlinearity due to coupling to the human subject. Especially, the

higher the muscle activation, the lower the partial coherence in this region. Partial coherences

below 1 Hz were lower than 0.8. Hence measurements below 1 Hz were not considered in

calculating the magnitude of low-frequency impedance. Partial coherences of off-diagonal

terms were still very low (<0.2) in most frequency regions, except the region about 5~15 Hz.

In this region, coherences were higher than those in the relax study, and increased with

muscle activation, which implied non-negligible coupling between 2 DOFs. However, the

highest coherence value was still low (-0.4).

A closed-loop control with a high proportional gain for the actuator (2000 N/m)

constrained the ankle in a small ROM: less than 0.90 and 0.7' for the IE direction and less than

4.00 and 4.7' for the DP direction in the TA active and SOL active studies, respectively, when
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averaged across all subjects (Figure 3.22). This minimized position dependence of ankle

dynamics, and enabled a clear investigation of the relation between muscle activation and

ankle impedance.

All subjects could successfully activate TA or SOL around 5 different target activation

levels, from 10% to 30% MVC levels in increments of 5% MVC. The linearity of measured

activation levels was very high, close to R 2 value 1, and even the lowest R 2 value was 0.9

(Table 3.7). Total ankle muscle activity was also estimated, since activation of other ankle

muscles besides the target muscle (TA or SOL) can contribute ankle joint impedance. Rough

estimates of total muscle activity, calculated by summing normalized EMG amplitudes of 4

measured muscles, also showed a highly linear trend (Figure 3.21).

High partial coherences, constrained ankle positions in all muscle activation levels,

and the high linearity of muscle activation validate the suggested experimental setup and

protocol to investigate the effect of muscle activation on ankle impedance.

Magnitude and phase responses of IE and DP impedance under active muscles, either

dorsiflexors or plantarflexors, were close to those of a 2 nd order system with stiffness,

damping, and inertia components (Figure 3.25 and 3.26). Responses over the break frequency

were relatively invariant in all measurement conditions, consistent with the same inertia of the

foot and ankle complex across measurements.

Responses around the break frequency were explained by the damping of ankle. In

general, phase transitions in the DP direction were smoother than the IE direction, suggesting

more damped behavior of the ankle in the sagittal plane than in the frontal plane. In addition,

damped behavior became more salient when muscles were more active. From this result, it is

anticipated that increased viscosity of the ankle with muscle activation will make an essential
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contribution to shock-absorption during lower-extremity functions to maintain the stability in

the aspect of energy dissipation.

In the frequency region below the break frequency, the magnitude of impedance was

relatively constant, although slight deviation from the zero slope were observed. The

magnitude of impedance in the mid-frequency was about 10-25% higher than in the low-

frequency (Table 3.10). This is significantly smaller than the increase ratio observed in the

relaxed muscles, which was about 30~40% increase. Further study seems warranted to

investigate the biomechanical origin of this transient behavior.

Magnitude of impedance increased with muscle activation. Especially, all subjects

except one (subject #6 in the SOL active study) showed a very highly linear relationship

between the level of muscle activation and the magnitude of impedance in both IE and DP

directions in the TA active and SOL active studies (Figure 3.27). While linear trends were

observed in both directions, impedance increased more in the DP than IE direction with

increased muscle activation, which is expected due to the fact that most ankle muscles (12 out

of 13) contribute to DP, while only 5 out of 13 muscles contribute to IE. In addition,

impedance increased more in the SOL study than in the TA study (Table 3.9). As a result, for

the same target muscle activation level, impedance in the SOL study was greater than in the

TA study, and the discrepancy increased with the increasing muscle activation (Table 3.10).

This is because most subjects accompanied activation of GAS and PL due to muscle synergy

in the SOL active study, and the total muscle activation in the SOL study was substantially

greater than in the TA study.

In general, joint stiffness is determined by muscle generated stiffness and kinematic

stiffness due to nonlinear musculo-tendon kinematics. Detailed descriptions are provided in
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Appendix H. In this study, ankle positions under the given experimental conditions were

tightly constrained and the variation of muscle moment arms was expected to be very small,

while derivatives of muscle moment arms, which determine the kinematic stiffness, need not

be. Even with this confounding factor, ankle impedance could be accurately predicted solely

from activation of ankle muscles. This expectation was well verified by the highly linear

relationship between muscle activation and ankle impedance in all movement directions in the

IE-DP space (Figure 3.31).

Interestingly, subject #6 exhibited no impedance increase at activation levels higher

than 20% MVC, contrary to the clear linear increasing trend observed between 10% and 20%

MVC. To investigate this experimental observation, muscle activation levels and impedance

magnitudes at 25% and 30% MVC were compared with values at 20% MVC (Table 3.18).

Table 3.18: Impedance may not increase with muscle activation.

Impedance Magnitude Muscle Activation
Freq. Region Low-Freq. Mid-Freq. Target Total

Drrction IE DP IE DP Muscle Muscle
Tar t~ee _____________________________________ (SOL)

25% MVC 1.02 0.95 0.85 0.82 1.18 1.06

30% MVC 0.96 0.94 0.85 0.82 1.41 1.14

The ratio of the impedance magnitude and muscle activation level in reference to the corresponding
value at 20 %MVC was calculated.

Muscle activation showed a linearly increasing trend for SOL as well as for the sum of

normalized EMG amplitudes of all 4 measured muscles. However, impedances at 25% and

30% MVC were comparable each other and lower than those at 20% MVC, except the low-

frequency IE impedance. Lower impedance at higher muscle activation is due to the

contribution of negative kinematic stiffness as explained in Appendix H. However, we might
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expect even lower impedances at 30% MVC than 25% MVC, because the effect of negative

kinematic stiffness can become more noticeable with increased muscle activation.

In fact, mean ankle positions in two measurements were almost same (difference

between two measurements was less than 0.20 and 0.60 for IE and DP directions, respectively),

and moment arms and their derivatives were expected to be almost same, accordingly. Under

this condition, we should expect more contribution of negative kinematic stiffness with

increased muscle activation, but it was not. So what might account for the experimental

observation?

One plausible explanation is the positive contribution of unmonitored muscles. As

mentioned in section 2.7.7, only 4 superficial muscles were monitored but 8 out of 13 ankle

muscles are deep and were not monitored, which might have contributed positively or

negatively to ankle impedance. If they contributed positively, this would compensate the

increased contribution of negative kinematic stiffness at higher activation level, resulting in

the experimental observation that ankle impedance at 30% MVC was comparable to that at

25% MVC.

In general, ankle impedance substantially increased with muscle activation in all

directions in the 2D-space consisting of sagittal and frontal planes, but highly direction

dependent as observed in the relaxed study (Figure 3.29 and 3.30). Actually, more impedance

increase in the DP direction than the IE direction resulted in an accentuated "peanut shape"

both in the TA active and SOL active studies (Table 3.13). Although IE impedance in active

muscles was relatively weak compared to DP impedance, activation of ankle muscles could

effectively increase IE impedance a few times higher than the passive impedance. Thus for

healthy subjects, activation of ankle muscles can be a good strategy to help lateral stability in
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lower-extremity functions. However, this strategy may not be possible for neurologically

impaired patients, if they are unable to modulate ankle muscles, either voluntarily or

reflexively.

Ellipse representation of ankle impedance and impedance matrix were also provided

for their prevalent use in the field of biomechanics and neuro-motorcontrol. The major and

minor principal axes of the impedance ellipse were slightly tilted in the CCW direction to the

joint coordinates (IE and DP directions). The tilt angle was less when TA was active than

SOL active, which may be due to the contribution of TA (main inverter) in the frontal plane.

The direction of principal axis changed depending on muscle activation levels, although the

variability was small (Table 3.13). Different nominal ankle positions with different muscle

activations may partly explain this observation. In addition, directions of principal axis were

not exactly matched for low- and mid-frequency regions. To better understand whether this is

a true property of human ankle or variations due to numerical calculations, further study is

required to investigate the direction of principal axis as a function of frequency. The ratio of

impedance magnitude between directions of principal major and minor axes was relatively

constant across different muscle activation levels (Table 3.16). As a result, the shape of

impedance ellipse was much less variable than the size.

Most subjects satisfied the passivity condition under substantial activation of ankle

muscles. In addition, even subjects not satisfying the passivity condition exhibited mild non-

passive dynamic behavior of the ankle (less than about 10% of passive behavior). This finding

was comparable with curl analysis results of static ankle impedance with active muscles

(Table 2.5).
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Chapter 4

Multi-Variable Transient Dynamic Ankle
Mechanical Impedance

4.1 Summary

Steady-state static and dynamic ankle mechanical impedance were quantified in

Chapter 2 and 3, respectively. This chapter presents the characterization of transient or time-

varying dynamic ankle mechanical impedance during human walking.

Multiple realizations of stride data were successfully obtained from 13 minutes of

walking with the Anklebot and foot-switches. Since the robot is highly backdrivable and most

of its inertia is concentrated on the knee, young healthy subjects could walk with the robot

without discomfort or muscle fatigue.

The negligible effect of mild random perturbations on muscle activity during walking,

the low variability of stride, stance, and swing durations, and no significant effect of time-

scaling of realizations all together supported the use of the ensemble-based approach to

identify transient ankle impedance.

Two ensemble sets, the stance and the swing, were constructed after normalizing all

realizations to the length of the mean stance or the swing duration and removing outliers
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based on spatial, temporal, and neurophysiological criteria. Time series of random torque

perturbations were used for inputs of ensemble sets, and the corresponding angular

displacements at the ankle were used for outputs, after compensating the effect of actuator

dynamics.

Impulse response functions were accurately estimated with the correlation-based

system identification method, from pre-swing phase through swing phase to early-stance

phase before the toe-down. This interval corresponds to the period when either heel or toe or

both heel and toe are off the ground. Estimated impulse response functions were reliably

approximated with a 2 nd order model consisting of inertia, damping, and stiffness for both

degrees-of-freedom.

Several noticeable time-varying behaviors of ankle impedance were found. Damping

and stiffness significantly decreased at the end of stance phase before toe-off, remained rather

constant during swing phase and substantially increased around heel-strike. In general,

damping and stiffness in the IE direction and damping in the DP direction increased even

before heel-strike.

Impedance increase after heel-strike was greater in the IE direction which cannot be

solely explained by co-contraction of antagonistic muscles in the frontal plane. A kinematic

constraint due to the "lock" of the ankle in the frontal plane after the heel-strike as well as the

compression of soft tissue at the ankle joint may well explain the observed ankle behavior.

High impedance after the heel-strike in both the sagittal and frontal planes will help

the stability of the lower-limb from the moment of heel-strike to the loading response. It is

expected that healthy human subjects can easily maintain the lateral stability when the foot

first contacts the ground by landing with the heel not with the toe.
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4.2 Introduction

A study of multi-variable static ankle impedance provided quantification of nonlinear

torque-angle relationship at the ankle over the normal ROM in 2 DOFs, a combination of IE

and DP. In addition, a study of steady-state dynamic ankle impedance enabled

characterization of multi-variable ankle impedance over a wide range of frequency.

While investigation of steady-state ankle behavior is a very important first step to

characterize ankle impedance, we could better understand its roles in motor control and

function, if transient or time-varying behavior of the ankle can be additionally identified.

Characterization methods suggested in previous chapters were limited to time-invariant

conditions, preventing their application to time-varying situations, such as during human

locomotion.

In fact, several different time-varying system identification methods, such as a

regressive technique [22, 102], temporal expansion method [103, 104], time-frequency

method [105, 106], and ensemble-based method [50-53], have been developed to investigate

transient behavior of biological systems. Among them, the ensemble-based identification

method outperforms others for the following reasons: it requires no a priori assumption on the

structure of the system to identify, can capture very fast time-varying behavior of the system,

and is robust to noisy measurements.

A few previous studies have investigated time-varying behavior of the human ankle in

simulations [50, 51] or imposed movement environments [52, 53]. However, to the best of our

knowledge, there is only one study which experimentally identified ankle mechanical

impedance during walking [54]. That study utilized a robotic platform applying an angular
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perturbation to the ankle during stance phase. Ankle impedance, approximated as a 2nd order

model with inertia, damping, and stiffness, was reliably estimated at four timing points

between 13% and 63% of the stance phase, showing that stiffness and damping values

increased throughout this period. Although we acknowledge the importance of impedance

identification during the mid-stance phase, we may better understand human locomotion if we

can measure ankle impedance in other sub-phases of the gait cycle, especially at heel-strike

(HS) and toe-off (TO) which are important reference points for the transition from the swing

to the stance phase or vice versa.

In this chapter, time-varying ankle impedance was studied during human walking on a

treadmill, focusing on swing phase and initial and final stages of stance phase. As with

previous steady-state studies, I aimed at identification of time-varying ankle mechanical

impedance in 2 DOFs simultaneously, both in the sagittal and frontal planes. The Anklebot

and a modified ensemble-based linear time-varying system identification method were used

for this purpose.

In the following sections, an experimental procedure, a modified linear time-varying

(LTV) ensemble-based system identification, and subsequent analysis methods are explained.

Characterization results on young healthy subjects under normal walking on a treadmill

follow.

4.3 Experiments

4.3.1 Experimental Setup
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The Anklebot was used as the centerpiece to measure multi-variable ankle impedance

during walking. The total mass of the robot is about 3.6 kg, but most of that mass is

concentrated at the knee, not the ankle or shank. This design is intended to minimize the

effect of the device on normal human walking, and one recent work verified this [107].

Subjects wore the brace and custom designed shoe, and the robot was attached in the

same way as described in steady-state studies (Chapter 2.3). A shoulder strap, running up

around the shoulder and neck, was additionally connected to the knee brace to prevent

slippage of the Anklebot and the knee brace.

Two footswitches (Delsys Inc.) were used to detect the moment of HS and TO, from

which the stance and the swing phase of the gait were defined. One sensor was attached to the

heel and the other to the big toe. The same EMG setup and analysis method were used to

estimate the amplitude of muscle activation during walking.

The torque exerted by the Anklebot, the resulting kinematics of the ankle in 2 DOFs

were recorded at 500 Hz in one computer, and footswitch and EMG data were sampled at 1

kHz in another computer. To synchronize data from 2 different computers, a single triggering

step signal (0 to 5 V) was recorded by both computers before running the walking experiment.

The whole experimental setup is shown in Figure 4.1.

143



(b)

(a) (c)

Figure 4.1: Experimental setup for walking on a treadmill. (a): side view, (b): front view, (c): rear
view.

4.3.2 Experimental Protocol

First, MVC level of each muscle was measured in the standing posture in the same

way as described in the static study (section 2.7.2).

After the MVC measurement, subjects walked on a treadmill for a few minutes

without actuation of the robot to familiarize themselves with the experimental setup. Then

they were asked to select a preferred walking speed (PWS) by themselves, which was

comfortable enough to maintain for the duration of the experiment with the added mass of the

Anklebot and other apparatus. Next, subjects were instructed to walk comfortably on the
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treadmill with their selected PWS. After one minute of walking, mild random torque

perturbations were applied to the ankle for 13 minutes for data collection.

Two uncorrelated mild random perturbations (band-limited white Gaussian noise with

stop frequency 100 Hz) were applied to each actuator to produce random torque perturbations

at the ankle joint in 2 DOFs. To prevent excessive deviations from the nominal trajectory of

ankle displacement due to perturbations, stiffness of the Anklebot (P-gain) was set as 500

N/m. The ranges of the applied torques (peak-to-peak torques) were ±7.7 Nm and ±5.3 Nm

for DP and IE, respectively. This magnitude of perturbations was low enough not to disturb

natural walking, but strong enough to perturb the ankle throughout the gait cycle except

during the middle and terminal stance phases, when the foot is flat on the ground (about

10-50% of the gait cycle).

4.4 Methods

4.4.1 Linear Time-Varying (LTV) Ensemble-based System Identification

The LTV ensemble-based system identification used in this study was based on the

correlation approach presented in [50, 53].

For each sampling time i, the relationship between the noise-free input (u,.(i)) and the

corresponding noisy output ( z, (i) = y, (i) + n, (i), where y, (i) is the true output and n, (i) is

additive white noise) for the rth realization of the ensemble data, can be represented as a

discrete convolution equation (Eq. (4.1)):

Zr (i) = AtY h(i, j)Ur(i - j) (4.1)
j=0
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where h(i, j) is an impulse response function (IRF) estimate with a finite lag length

L = M +1 ( h(i, j) =0 for j >M ), which is often called finite impulse response. By

multiplying both sides of Eq. (4.1) with u,. (i - k) and summing over all realizations and

dividing them with the number of realizations (R), we get the Wiener-Hopf equations (Eq.

(4.2)):

1R M R
- z,.(i)u,.(i-k) = At h(i,j)- u,(i-j)u,(i-k) (4.2)
R r=1j= R r.=1

In fact, Eq. (4.2) can be written simply as (Eq. (4.3)) with an input-output cross-correlation

function estimate ( zu) and an input auto-correlation function estimate (Ouu):

M

z (i,-k) = Atj h(i, j)u, (i - k, k - j) (4.3)
j=0

We can get a matrix equation (Eq. (4.4)) by changing the lag index k from 0 to M,

where EDuu(i)is a L xL matrix and $J,(i) and h(i) are L xlvectors:

D.2(i) At$,,(i)h(i) (4.4)

h(i)= (I S.(i)-'$D,,(i) (4.5)
At

The IRF estimate (h(i)) is obtained from an inverse matrix operation (Eq. (4.5)). In this study,

the lag length L was selected long enough for the IRF estimate settle down close to zero.

4.4.2 Solutions for the Limitations of the Original Ensemble-based Method
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A fundamental assumption of the ensemble-based method is that every realization

experiences the same time-varying behavior. This assumption may hold for simulations or in

a limited experimental condition. However, it is not valid in many practical measurements,

such as real human locomotion. Even in walking on a treadmill at a fixed speed, stride

duration, step length, and joint kinematics may vary significantly on each gait cycle. This

violates the fundamental assumption of the ensemble-based method, and we cannot directly

apply the method described in the previous section. To address this problem, two solutions

were considered: time-scaling (normalization) of each realization and rejection of highly

variable realizations.

Two ensemble sets were constructed in this study: one set for stance data and the other

for swing data. However, the length of each realization is not the same, preventing direct

application of the identification method. As a remedy, all realizations of the stance ensemble

set were normalized to the length of mean stance duration, and the swing ensemble set to the

length of mean swing duration. The effect of time-scaling (normalization) on the distortion of

impedance should be addressed (see the section 4.6).

In addition, highly variable realizations were discarded to construct ensemble data sets.

Three criteria were used to reject outliers: temporal, spatial, and neurophysiological criteria.

First, deviation of the stance duration from the mean stance duration of all realizations and

deviation of the swing duration from the mean swing duration were used as temporal criteria.

Second, deviation of the DP angle from the averaged DP angle across one gait cycle of all

realizations was selected as a spatial criterion. Third, deviation of the EMG level of TA and

triceps surae (TS: SOL and GAS) from the corresponding nominal activation profile was
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considered as a neurophysiological criterion. For each of criteria, the outermost 5% of all

realizations were discarded.

4.4.3 Transient Dynamic Ankle Mechanical Impedance in Joint

Coordinates

Diagonal components of the impedance matrix, i.e, IE and DP impedance, were

identified based on the modified LTV ensemble-based identification method, which was

explained above sections.

One important thing to note is to clearly define input (u, (i)) and output (z, (i)) to be

used for the system identification. To identify ankle impedance during walking, we need to

find the displacement profile purely due to input torque perturbations. However, the measured

displacement (z, (i)) contains two components: one due to the input torque perturbations and

the other one simply as a result of walking, which I called a nominal trajectory (z(i)). The

output z, (i) was obtained by subtracting z. (i) from z, (i).

The nominal trajectory was determined by averaging all selected realizations. This

approach of calculating z, (i) is valid, since averaging of considerable number of realizations

removes the effect of random perturbations.

The IRF estimate (h(i)) was obtained at every 2 ms, since the measurement rate in

this study was set as 500 Hz. In the calculation of h(i) in Eq. (4.5), 5D, (i) satisfied the

positive definite condition (tested with MATLAB's chol function).

Assuming that human ankle behavior does not change significantly within w , a

smoothed IRF (h,(i)) was calculated by averaging the h(i) with a moving window having
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the size of w (Eq. (4.6)), where N, is the number of h(i) inside the window between i - w/ 2

and i+w/2.

Sj=i+w/2
h,(i) = h(j) (4.6)

NW jpi-wl2

According to [94], 98% of power in normal human walking is contained below 10 Hz

and 99% below 15 Hz. It has been also known that the reflex loop delay is greater than 40 ms,

which means that feedback cannot contribute impedance changes within this period [48, 49,

108]. Based on these reported values, I set the moving average window size as w =40 ms.

In the steady-state dynamic study, responses of ankle impedance in joint coordinates

in different muscle activation conditions were close to a 2 "d order system. In addition, ankle

impedance during stance phase was successfully approximated as a 2nd order system [54]. So

the smoothed IRFs (h,(i) ) were approximated with inertia (I(i)), damping (B(i) ), and

stiffness (K(i)) components, and its goodness-of-fit was calculated. The best fit parameters

(I * (i), B * (i), K * (i)) were estimated by minimizing the mean squared error between IRF of

the model (hmod(i)) constructed by 1(i),B(i),K(i)and the smoothed IRF (h,(i)). Here, the

optimal parameters I * (i), B * (i), K * (i) include the contribution from the Anklebot dynamics

in ankle joint coordinates. As impedance of Anklebot ( IAb,, BAbo,, KAbo,) was also accurately

approximated as a 2 nd order system (Figure 3.7), ankle parameters (A,,kl,, BAnkl, ,KAnkle) can be

obtained as Eq. (4.7):

Ankle - Abot

BAnkle =B*-BAbo, (4.7)
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KAnkle =K*-K Abot

However in this study, IAnkle was not considered since IAbot I 'Ankle and small errors in

I, can cause substantial variations of .Ankle

The reliability of IRF estimation was evaluated by calculating the variance accounted

for (VAF) between z, (i) and ^, (i) (the output predicted by the convolution of hmod(i) and

U, (i)) for each realization (Eq. (4.8)):

VAFU,,u, (r) = 100 x (1 - var(z, (i) - ,.(0)) (4.8)
var(zr (i))

Absolute output error between Zr (i) and , .(i) was also calculated for each realization

(Eq. (4.9)):

eoutput(r)= | zr (i)- (i) (4.9)

In addition, to assess the goodness of fit of 2nd order model approximation, the VAF

between hmod(i) and h,(i) was calculated for each sampling step (Eq. (4.10)):

VAFp, (i) = 100 x (1- var(h,(i) - hmod () (4.10)
var(h (i))

4.4.4 Ankle Parameters in Sub-Gait Phases

In this study, mild random perturbations were used not to disturb natural walking, but

at the same time, the power of perturbations was not strong enough to properly actuate the
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ankle during a weight-bearing stance. So ankle parameters were identified throughout the gait

cycle except when the foot is flat on the ground. In the stance phase, only early and late stages

were considered, which was defined as early stance phase (EST) and pre-swing phase (PSW):

EST begins with HS (initial contact) and ends at toe contact, and PSW begins with

contralateral HS and ends at TO. The swing phase was evenly divided into 3 periods: initial

swing phase (ISW), mid-swing phase (MSW), and terminal swing phase (TSW). The 5 sub-

gait phases are illustrated in Figure 4.2.

EST PSW ISW MSW TSW

Figure 4.2: The gait cycle and 5 sub-phases for impedance identification. Impedance was identified in
EST, PSW, MSW, and TSW, but not in the loading response, mid-stance, and terminal stance.

Copyright: Wolters Kluwer Health | Lippincott Williams & Wilkins

Although IRF estimates and ankle parameters were identified at every 40 ms from

PSW to EST, I also calculated representative parameter values for each sub-gait phase to

more clearly see how ankle parameters change across the gait cycle. Identification results

within each sub-gait phase were averaged into a single representative value for each

parameter.
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In addition, parameter changes around HS and TO were closely investigated. Three

data sets were compared for each case (Figure 4.3): parameter values at 40 ms before and after

HS (HS~ and HS+) were compared with the mean value within a period between the start of

TSW and 40 ms before HS, and parameter values at 40 ms before and after TO (TO~ and TO*)

were compared with the mean value within a period between the start of PSW and 40 ms

before TO.

40 ms 40 ms
I I

I 0 i-i®
t t t t

Heel-Strike (HS): TSW HS-40 ms HS HS+40 ms

Toe-Off (TO): PSW TO-40 ms TO TO+40 ms

Figure 4.3: Comparison of ankle parameters around HS and TO.

4.5 Effect of Random Perturbations on Muscle Activity

Mild random perturbations were applied to the ankle for 13 minutes during walking on

a treadmill. Although the amount of torque was selected as low not to disturb natural human

walking, it may affect reflex activity of ankle muscles.

In fact, Stein and Kearney assessed the influence of random perturbations on the reflex

torque and EMG, showing that reflex responses decreased with application of the random

perturbations under isometric contraction of TA and GAS in a supine posture [109]. However,
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properties (amplitude and bandwidth) of perturbation and experimental conditions in this

paper are not same as I performed.

On the other hand Ritzmann et al. has shown that vibratory motions at the ankle can

evoke substantial stretch reflex [110]. Thus, it is important to investigate the effect of random

perturbations on muscle activity under the same experimental condition described in section

4.3.

4.5.1 Subjects

Ten young healthy subjects (age 18 to 24; height 1.60 m to 1.90 m; weight 47.7 kg to

81.8 kg) with no reported history of biomechanical or neuromuscular disorders participated.

Approval for this study was obtained from COUHES and participants gave written informed

consent.

4.5.2 Experimental Protocol

The same experimental setup described in section 4.3.1 was used in this study. After

MVC measurements, subjects were asked to walk with their own PWS on a treadmill. After

one minute of walking, the same mild random torque perturbations used for impedance

identification were applied to the ankle for 10 minutes, but the perturbations were turned on

and off every 30 seconds. As a result, 20 segments of walking data were collected, 10 with

perturbations and another 10 without perturbations.

4.5.3 Results
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EMG amplitudes of all measured muscles were calculated using a root-mean-square

filter with a moving window of 200 ms, and representative mean values were calculated for

each of 20 segments. Two data sets, one set with perturbations and another without

perturbations, were compared to investigate how random perturbations changed EMG levels.

Both data sets of individual subject satisfied the normality condition for all muscles

(p>>0.05) justifying statistical comparison using paired t-tests. Paired t-tests were performed

to compare two data sets with and without perturbations. In addition, the increase ratio of

EMG amplitudes with perturbations to without perturbations as well as the absolute increase

amount of EMG amplitudes (in %MVC) was calculated.

EMG records of a representative subject are shown in Figure 4.4, and analysis results

of all subjects are summarized in Table 4.1.
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Figure 4.4: EMG records 4 muscles of a representative subject. Black lines denote raw EMG data.
Red and green lines represent EMG amplitudes with and without perturbations, respectively.

(a): Whole data set (10 minutes), (b): Sampled data set around 5 minutes (20 seconds).
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Table 4.1: The increase ratio and increase amount of EMG amplitude with perturbations.

Muscles TA PL SOL GAS
Increase Increase Increase Increase Increase Increase Increase Increase

Subject Ratio (%) Amount Ratio (%) Amount Ratio (%) Amount Ratio (%) Amount
1 6.24* 0.50 8.59* 0.36 2.76 0.24 11.41 * 0.66
2 2.05 0.28 6.78* 0.87 1.71 0.21 3.57* 0.16
3 0.27 0.02 1.28 0.05 2.72 0.13 0.68 0.06
4 4.23* 0.61 5.17 0.92 4.75 0.45 5.11* 0.28
5 4.63* 0.43 11.84* 0.49 4.98 0.95 7.09 0.74
6 7.51 0.91 -1.55 -0.16 12.07* 1.87 1.02 0.01
7 12.30* 1.12 6.66* 0.90 0.42 0.05 1.74 0.04
8 4.58* 0.28 2.88 0.24 -1.56 -0.09 0.59 0.01
9 2.87 0.35 10.03* 0.68 9.92* 0.64 9.28 0.15

10 2.08 0.18 -1.62 -0.11 -0.83 -0.13 5.41 0.74

Mean 4.68 0.47 5.01 0.43 3.70 0.43 4.59 0.28
(SE) (0.34) 1(0.03) (0.47) (0.04) 1(0.44) (0.06) (0.38) (0.03)

Asterisks
MVC.

(*) denote significant difference from 0 (p<0.05). The unit for the increase amount is %

In general, most subjects showed increased EMG amplitudes in all muscles when

random perturbations were applied to the ankle. However, many of them were statistically

insignificant, or very small even when significant. In average across all subjects, all 4 muscles

showed less than about 5% increase of activations with perturbations, which corresponds to

the increase amount less than about 0.5% MVC. In conclusion, the effect of random

perturbations on muscle activity during walking experiment for impedance identification is

expected to be minimal.

4.6 Effect of Time-Scaling on Impedance Estimation

To investigate the effect of time scaling of realizations (normalization) on impedance

estimation and to verify the validity of the normalization process in this study, simple
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simulations were performed with several 2 "d order models having different time-varying

parameters I(i), B(i), K(i) (Figure 4.5).

0.025 35 120

002 3 100
2.5 80

0.015 2
E ~60

X .1Z1 ,1 40

0.005 0.5 20

00 L0 _
00 0 2 0!4 0.6 0.8 1 0 0.2 0.4 0'6 0'8 1 0 0'2 0'4 0.6 08 1

Time(s) Time(s) Time(s)

Figure 4.5: Simulations with 3 different 2nd order models. Red: parameters with constant values,
green: parameters change linearly, blue: parameters change non-linearly. Plausible ranges were set

for each parameter.

For each simulation condition, an ensemble set of 500 realizations (R = 500) having

different lengths was constructed. Random inputs were generated by using a random number

generator (MATLAB's normrnd function), so that the distribution of the length (duration) of

input realizations had a normal distribution with the mean of 1 second and different SDs.

Several different SDs were tested to investigate how the different amount of distortion affects

the error in impedance estimation.

Outputs of the ensemble set were constructed by the convolution of generated inputs

and time-varying IRFs (h(t)) obtained by I(i), B(i), K(i). Thus, each pair of input and output

realizations had the same length. The lag length for IRFs was set as 200 ms, the same length

used in the analysis of experimental data. Next, all realizations of inputs and outputs having

different lengths (L(r)) were normalized to the mean of all realizations (LR), which is 1

second. The mean of distortion ratio due to the normalization was calculated as Eq. (4.11):
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distortion ratio = 1 R L(r)- (4.11)
R r=1 LR

By applying the same LTV ensemble based system identification method on the

normalized ensemble set, new time-varying IRFs ( hd,,,,,(i) ) and the corresponding

parameters (Idisort(i), Bdj,,,,, (i), Kdi,,ort (i)) were obtained.

The estimation error due to time-scaling was evaluated as Eq. (4.12):

,,ror (%) = p,0 - x100 (4.12)
NT i=0 P(i)

where p can be either I, B or K, and NTis the number of evaluation points between time 0

and T.

Simulations were repeated 10 times for each model, and the mean and SE of

repetitions are shown in Figure 4.6.

B error KMW
10 10 10

2. . .--.--.--..-- - - - - -. -- - -- ---- -- ---- - ------ 2 - -- - -- --- ------ - -

0, 0 0
0 001 002 003 004 005 0 001 002 003 00 005 0 001 002 003 004 005

Distortion ratio Distortion ratio Distortion ratio

Figure 4.6: Parameter estimation error vs. Distortion ratio. The mean and SE of 10 iterations are
presented as points and bars, respectively. The same color codes as in Figure 4.5.

The variability due to different random inputs was negligible. The parameter

estimation error increased with the higher level of distortion ratio. Except the condition with
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constant parameters (red lines in Figure 4.5 and 4.6), the estimation error for K is lower than

that for B , and B lower than I. Based on simulation results, less than 6% and 4% errors

for B and K are expected from the average distortion ratio of 0.02 and 0.04, respectively.

4.7 Transient Dynamic Ankle Mechanical Impedance in Human
Walking

4.7.1 Subjects

Ten young healthy male subjects (age 26 to 34; height 1.71 m to 1.91 m; weight 61.0

kg to 90.0 kg) with no reported history of biomechanical or neuromuscular disorders

participated. Approval for this study was obtained from COUHES and participants gave

written informed consent.

4.7.2 Ensemble Set Construction

All 10 subjects walked on a treadmill for 14 minutes (1 minute of walking without

perturbations and subsequent 13 minute walking with perturbations) successfully with their

own PWS. Selected PWS was lower than the normal human walking speed (about 4 km/h),

probably due to the added mass of the robot and other apparatus. The ratio of the mean swing

duration to the mean stride duration was close to the reported value of normal human walking

(about 0.4).

As a first step to construct ensemble sets (a stance ensemble set and a swing ensemble

set), stride data were identified by two successive heel-strikes. The moment of TO divided

each stride data into a pair of stance and swing data, each of them became one realization for
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the corresponding ensemble set. The number of realizations generated from 13 minutes of

walking was more than 500. Samples of foot-switches (toe and heel sensors), knee and ankle

angles in the sagittal plane of a representative subject (subject #1) are shown in Figure 4.7.

ST SW ST SW ST SW ST SW ST SW ST SW ST SW

- : Heel Strike -: Toe Off
ST SW ST SW ST SW

Angh

Too senso

2

3 6 3 4 3,4 35 1as5 3.6
1eel senso

A kWe DP Antol

0
3.35 3.4 34 3. 35 3.6

r=1 r=2 r=3 r=4 r=5 --- -- rm500

Figure 4.7: Samples of stance and swing data for ensemble set construction. Stance phase (ST) begins
with HS and ends at TO, and swing phase (SW) begins with TO and ends at next HS. Orange and

green lines define the moment of HS and TO, respectively. X-axis represents number of sample
measured at 500 Hz.

Data distributions of the stride duration, stance duration, and swing duration were

close to normal. Histograms of all subjects are provided in Appendix I. In addition, the CV of

the stride, stance, and swing durations were small, supporting the application of ensemble-

based approach.
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The mean stance duration (Lsr ) and mean swing duration (Lsm ) of all realizations

were calculated. The stance and swing durations of all realizations were compared with

LST and Lsw , and 5% outermost realizations were discarded for each case.

All selected realizations in the stance and swing ensemble sets were then normalized

to have the length of LST andLsw . For each subject, distortion ratios for stance and swing

were calculated as Eq. (4.13):

1 R LsT r) - LS
distortion ratioST = 1 - sr (4.13)

R r1 LST

1R LsM L
distortion ratiosw = 1 -R ,.=1 Lsw

where LST(r) and Lsw (r) are original length of stance and swing data of realization r ,

and R is the number of selected realizations.

In average of all subjects, distortion ratios due to time scaling were about 0.024 and

0.041 for the stance and swing ensemble sets, respectively. The distortion ratio for the swing

was greater than the stance because Lsm < LST

Once all realizations of the stance and swing ensemble sets were normalized, outlier

realizations were further discarded based on additional 2 selection criteria (spatial and

neurophysiological) explained in section 4.4.2. About 16% of all realizations were discarded.

The summary of the walking experiment is provided in Table 4.2.
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Table 4.2: Summary of the walking experiment.

Walking Total Rejection Stride Stance Swing Distortion Distortion Swing!
Subject Speed Stride Ratio by Duration Duration Duration Ratio Ratio Swing

(km/h) Number 3 Criteria CV CV CV (Stance) (Swing)

1 2.9 557 0.15 0.022 0.026 0.043 0.018 0.032 0.40
2 2.9 544 0.16 0.013 0.016 0.033 0.012 0.024 0.38
3 2.6 529 0.16 0.026 0.027 0.057 0.020 0.042 0.36
4 2.6 522 0.14 0.037 0.052 0.072 0.033 0.049 0.37
5 1.9 606 0.15 0.029 0.043 0.061 0.030 0.042 0.40
6 3.2 544 0.15 0.030 0.030 0.063 0.022 0.046 0.42
7 2.4 536 0.16 0.028 0.039 0.049 0.028 0.035 0.41
8 2.4 536 0.16 0.032 0.041 0.065 0.029 0.047 0.35
9 3.2 522 0.17 0.018 0.039 0.070 0.029 0.052 0.40
10 3.2 553 0.16 0.029 0.030 0.054 0.022 0.040 0.41

Mean 2.7 544.9 0.16 0.026 0.034 0.057 0.024 0.041 0.39
(SD) (0.4) (24.5) (0.01) (0.007) (0.010) (0.012) (0.007) (0.009) (0.02)

Finally, ensemble sets of input (u,) and output (z,) pairs were saved for the system

identification. Outputs due to input perturbations ( z, ) were obtained by subtracting z,

from zm. Samples of ur , zm, and zr for both IE and DP directions are shown in Figure 4.8.
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Figure 4.8: Samples of ur , Zm, and Zr in 2 DOFs. (a): IE direction, (b): DP direction. Red and blue

bars represent the timing of HS and TO, respectively.
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4.7.3 Ankle Kinematics and EMG Records

Ankle angular trajectories in 2 DOFs for one gait cycle were calculated from the

normalized ensemble sets (Figure 4.9 and 4.10).

,a

Ankle IE Angle

Gait Cycle (%)

Ankle DP Angle

40 60
Gait Cycle (%)

100

Figure 4.9: Ankle angular trajectories in 2 DOFs. Each thin gray line represents the result of
individual subject, and the thick red and black lines represent the mean and mean±1SD of all

subjects. Solid blue and dotted blue lines represent the timing of TO, the mean and mean±1SD,
respectively.

Although, the ROMs for IE and DP angles were less than those of normal human

walking probably due to non-zero stiffness of the robot, the shape of trajectories was

qualitatively similar:
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EMG trajectories of 4 muscles (TA, PL, SOL, and GAS) for one gait cycle were also

obtained from the normalized ensemble sets (Figure 4.8). Plantarflexors (SOL, GAS, and PL)

were turned off at the end of stance phase, while TA started to activate from PSW. TA

continued to increase until right after TO, and started to decrease from ISW until it became

active again just before HS. Plantarflexors were rather inactive across entire swing phase.

After HS, antagonistic muscles for inversion (TA) and eversion (PL) were co-contracted.
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Figure 4.10: EMG trajectories of 4 muscles (TA, PL, SOL, and GAS) in one gait cycle. The same color
codes as in Figure 4.6.

4.7.4 IRF Estimation and 2 "d Order Model Approximation

IRFs were estimated at every 2 ms and smoothed with a moving average window of 40

ms as explained in section 4.4.3. However, the moving average operation was not applied to

the boundary between TSW and EST to better understand a discrete event at HS. Once IRFs

were estimated, they were approximated with a 2 nd order model.
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A representative result of IRF estimation and 2nd order model approximation (subject

#1) is provided in Figure 4.11.

IRF EsUmates (IE)
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Figure 4.11: IRF estimation and the reliability of a second-order model approximation. 1st row: IE
direction, 2"d row: DP direction. 1st column: IRF estimates with the suggested method (gray) and the

best-fit 2nd order response (magenta: PSW, red: ISW, green: MSW, blue: TSW, cyan: EST). 2"d
column: Model goodness of fit by Eq. (4.10). The start of PSW is set as zero time, and time step

between estimates is 40 ms.

Samples of measured outputs and reconstructed outputs from the convolution of inputs

and IRF estimates are also provided in Figure 4.12.
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Figure 4.12: Samples of measured outputs vs. reconstructed outputs. Left: IE direction, Right: DP
direction, Red lines: measured outputs after subtracting the nominal trajectory, blue lines: predicted

outputs based on estimated IRFs.

The reliability of IRF estimation and 2 nd order model approximation was evaluated by

calculating VAF,,, , and VAFRF . The mean and SE of reliability measures of all

subjects are summarized in Table 4.3.
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Table 4.3: Reliability measures for IRF estimation and 2nd order model approximation.

Reliability 
VAF

Measures IRF VAF e
Phase output oupu

Dir. Subject PSW ISW MSW TSW EST

1 97.1 97.9 99.2 98.8 96.3 87.4 0.69
2 95.3 96.8 99.1 99.0 95.4 94.6 0.77
3 94.1 95.9 99.1 98.8 91.8 88.3 0.80
4 96.7 96.6 99.2 99.3 95.3 89.2 0.64
5 93.7 96.7 97.7 98.9 92.1 89.2 0.54
6 96.5 95.6 99.1 98.8 93.5 85.4 0.70

IE 7 95.7 96.1 98.8 97.9 95.1 83.8 0.72
8 95.7 97.8 99.1 98.0 82.9 86.5 0.84
9 96.7 96.9 99.2 98.7 96.5 88.1 0.67

10 92.5 97.7 98.7 96.3 85.5 87.0 0.88

Mean 95.4 96.8 98.9 98.4 92.4 87.9 0.72
(SE) (0.5) (0.3) (0.1) (0.3) (0.5) (0.9) (0.03)

1 88.7 96.9 98.7 98.0 89.9 86.6 1.12
2 79.7 93.2 98.9 98.2 94.9 90.2 1.17
3 87.8 94.4 99.1 97.7 96.3 97.3 1.07
4 91.4 97.0 99.0 98.2 96.8 88.6 0.89
5 92.9 96.6 99.0 99.1 95.2 91.3 0.69
6 86.4 96.1 98.8 98.6 95.7 91.7 0.99

DP 7 90.7 94.9 99.1 97.3 95.5 88.1 1.06
8 88.6 97.2 97.7 96.8 93.8 85.9 1.11
9 83.5 96.3 98.7 98.6 97.1 94.9 0.88
10 92.7 94.6 99.1 98.1 86.1 93.0 1.00

Mean 88.2 95.7 98.8 98.1 94.1 89.8 1.00
(SE) (1.3) (0.4) (0.1) (0.2) (1.1) (0.9) (0.08)

The unit for VAFIRF and VAFutpu is %, and e,,t, is degree.

In general, all subjects showed very high VAFuPU and small e,,,,,, verifying the

reliability of IRF estimation based on the modified ensemble-based method. In addition, high

VAFIRF in all sub-gait phases between PSW and EST supported the validity of 2 nd order

model approximation.

Identified parameters (IAnkle+Abot BAnkle KAnkle) of all subjects are plotted in Figure 4.13.
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Figure 4.13: Time-varying ankle parameters of all subjects. 1" row: IE direction, 2 "d row: DP
direction. 1s column: inertia (Ankle+Abo. 2"d column: damping (B r), d column: stiffness (K ).

The start of PSW is set as zero time, and time step between estimates is 40 ms. The same color code as
Figure 4.11.

In both DOFs, several noticeable time-varying behaviors of the ankle were found.

First, the variability of IAnkle+Abot was substantially lower than B2nk,, and Ksnkl, across

sub-gait phases for both directions. The SD and CV of I,+Ab,, , B2nk,, and K were

summarized in Table 4.4.
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Table 4.4: The variability of parameters

Measures SD CV

DAnkle+Abot BAnkle KAnkle IAnkle+Abot Ankle Ankle

IE 0.002 0.32 27.3 0.11 0.69 1.06
(0.0001) (0.02) (2.22) (0.01) (0.04) (0.06)

DP 0.005 0.46 14.41 0.12 0.40 0.38
DP (0.001) (0.04) (1.94) (0.02) (0.03) (0.04)

The mean and SE (in parentheses) across all subjects are presented in the table.

Second, BAnkle decreased at the end of stance (PSW) and remained relatively constant

throughout swing phase, and increased again in TSW, and continued to increase after HS in

EST. Third, KAnkle showed the similar patterns as BAnkle Interestingly, KAnkle started to

increase in TSW (just before HS) and substantially increase in EST, especially in the frontal

plane. In general, BAnkle and KAnkle were higher in the sagittal plane than in the frontal plane,

except EST. In EST, KAnkle in the IE direction is comparable to or higher than that of the DP

direction.

4.7.5 Time-Varying Ankle Parameters in Sub-Gait Phases

Results of IRF estimates, 2 nd order model approximates, and identified ankle

parameters within each of 5 sub-gait phases were averaged into representative values. The

mean and SE of all subjects are shown in Figure 4.14 and 4.15, and results of individual

subject are provided in Appendix J.
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Figure 4.15: Representative time-varying ankle parameters in sub-gait phases. Solid red line: DP
direction, dotted blue line: IE direction.

Statistical analyses were performed to compare ankle parameters in the IE and DP

directions, and investigate changes across sub-gait phases from PSW to EST. When pooling
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all subjects together for each sub-gait phase, each parameter satisfied normality conditions

(p>0.05).

First, paired t-tests were performed for each parameter and for each sub-gait phase to

investigate difference between IE and DP directions. There was significant statistical

difference between 2 directions (p<<0.05) in all conditions except stiffness (KAnkle) at EST

(p=O. 14).

Next, one-way ANOVA (MATLAB's anoval function) was performed for each

parameter and for each direction to examine differences between PSW and EST. Furthermore,

Tukey's honestly significant difference (HSD) test (MATLAB's multcompare function) was

used to find pairs that differed significantly from each other. In all statistical analyses,

significance level of 0.05 was used.

No statistical difference was found for IAnkle+Abot in the DP direction. However, several

pairs for IAnkle+Abot in the IE direction were statistically significantly different (p<0.05). This is

because the variability of ,Ankle+Abot in the IE direction was very small for each sub-gait phase

(substantially smaller than the one in the DP direction).

For both directions, BAnkle decreased from PSW to ISW and remained relatively

constant throughout the swing phase, and increased again in EST. BAnkle in the IE direction at

EST was significantly higher than PSW. On the other hand, the value in the DP direction was

higher in PSW than in EST, although statistically insignificant. K Ankle showed the same time-

varying trend as BAnkle in both directions, except an observation that the value in EST was

significantly higher than in PSW.
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4.7.6 Impedance around Heel-Strike and Toe-Off

To investigate any significant changes of B,,,,kl and KAnke around two important

transition events from the swing phase to the stance phase and vice versa, identified ankle

parameters around HS and TO were more closely investigated following the description in

section 4.4.4.
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Figure 4.16: Ankle parameter changes around HS and TO. 1" row: around HS, 2 "d row: around TO.
Solid red line: DP direction, dotted blue line: IE direction. The mean and mean±1 SE of all subjects

are illustrated as asterisks and bars, respectively.

First, two general trends were observed around HS for both DOFs: BAnkle increased at

the end of swing (HS-) and continued to increase after HS (HS*), while KAnkle significantly

173



increased right after HS (HS*). Second, substantial decrease of B,,,,kl and KAnkl was observed

around TO for both DOFs.

Statistical analysis using absolute values may mislead interpretation, when pooling all

subject data together. So the increase ratio around HS (or TO) (section @ and @ in Figure

4.3) in reference to the value at TSW (or PSW) (section () in Figure 4.3) was used for the

statistical analysis. Since, normalized values of the section @ and @ did not satisfy the

normality condition, Wilcoxon-rank tests (MATLAB's signrank function) were performed to

check any statistical difference between normalized @ and 1 (reference value) as well as

between normalized © and normalized @. Significance level of 0.05 was used.
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Figure 4.17: Ankle impedance increase ratios around HS and TO. The same format as in Figure 4.16.
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First, BAnkle and K Ankle at HS* were substantially higher than at HS- and at TSW for

both DOFs. Especially, B Ankle and K Ankle at HS~ in the IE direction were significantly higher

than at TSW. The increase of BAnkle at HS in the DP direction was less than in the IE

direction, although statistically significant. No statistical change was observed for K A,,kl, in

the DP direction between TSW and HS~.

Second, BAnkle and KAnkle at TO- were substantially lower than at PSW for both DOFs.

In the IE direction, BAnkle and KAnkle at TO+ further decreased than at TO-, while no statistical

difference was found for the DP direction.

4.7.7 Effect of Time-Scaling in Impedance Estimation around Heel-Strike

and Toe-Off

Although simulation studies verified the small effect of time-scaling on impedance

estimation, larger errors due to time-scaling may occur around HS and TO, because both are

two key events between the stance and swing phases of the gait cycle. Especially HS is often

described as a discrete event.

To address this issue, I compared two sets of ankle parameters, one estimated based on

normalized realizations and the other one based on original realizations (no time-scaling). In

average of all subjects, less than 6% errors between two sets were observed, which are

statistically not significantly different (Table 4.5 and Figure 4.18).
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Table 4.5: Parameter estimation with and without time-scaling.

Dir. Parameters Phase HS' HS* TO~ TO+

B Ankle 0.97 0.99 0.95 0.94
IE

KAnkle 1.00 0.98 0.99 0.96

BAnkle 1.02 1.04 1.01 0.97
DP

KAnkle 1.01 0.97 1.01 0.95

The ratio of parameter values estimated with time-scaling to without time-scaling was presented. All
values showed no significant difference (p>0.05).
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Figure 4.18: Effect of time-scaling in estimation of ankle parameters around HS and TO. 1' row:
around HS, 2"d row: around TO. Solid and dotted red line: estimates without time-scaling and with
scaling, respectively, in the DP direction. Solid and dotted blue line: estimates without time-scaling

and with scaling, respectively, in the IE direction.
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4.7.8 Discussion

Transient dynamic ankle impedance from final to initial stages of stance phase during

walking (PSW~EST) on a treadmill was well characterized by the modified ensemble-based

linear time-varying system identification method.

All healthy young subjects participated in this study could walk on a treadmill with the

robot for about 15 minutes with no discomfort or muscle fatigue. Walking for 13 minutes with

mild perturbations generated ensemble sets with more than 500 realizations. Even after the

outlier rejection by 3 different criteria (temporal, spatial, and neurophysiological), the number

of realizations was more than 450, which enabled robust identification of ankle impedance

with possibly noisy measurements. Low variability of stride, stance, and swing durations (CV

less than 0.03, 0.04, and 0.06, respectively) also justified the use of an ensemble-based

approach.

The effect of mild random perturbations used in the study was very low, causing only

the increase of muscle activation less than 0.5% MVC for all measured muscles. Simulation

studies on the effect of time-scaling (normalization) also supported the approach to normalize

all realizations to the mean stance or swing duration. We may alternatively run ensemble-

based system identification on original data without time-scaling by introducing sub-ensemble

approach [63, 111]. This approach requires construction of several sub-ensemble sets based

on reference points, i.e., HS, TO, and the mid of swing phase. As shown in section 4.7.7,

around HS and TO, there was no statistical difference in impedance identification, whether

original or time-scaled data was used. On the other hand, setting the reference point for the

mid of swing phase needs care. It can be set based on swing duration or joint kinematics
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(ankle and/or knee angle), and identification results may vary depending on which reference

point is used, which is not an issue when all realizations are normalized to the same length.

IRFs were accurately estimated with the correlation-based system identification

method in the time-domain. When averaged across all realizations, VAF,,,PU was very high

(>87%) and e.,,, was very small (<;1) for both DOFs, validating the accuracy of IRF

estimation.

The lag size was set as 200 ms, since IRFs in all conditions settled close to zero within

200 ms. In addition, a causal filter was used, because admittance of the ankle was identified

based on torque inputs and resulting angular displacement outputs, rather than impedance,

which involves an acausal representation ofjoint mechanics [112].

Estimated IRFs were successfully approximated with a 2 nd order model with inertia,

damping, and stiffness to identify time-varying ankle parameters. VAFJR in the swing phase

was higher than 95% for both DOFs. In PSW and EST when the foot had contact with the

ground, VAF, was lower than the swing phase, but still close to or higher than 90%. Ankle

parameters may be directly derived from frequency response functions (FRF), calculated from

IRFs with discrete Fourier transform. However, the short lag length of IRF limits the

resolution and lowest identifiable FRF. Zero padding can be a solution to increase the

resolution of FRFs, but this operation may also introduce noisy responses in the frequency

domain.

Several interesting time-varying ankle behaviors were found in both DOFs across all

10 subjects. First, ,Ankle+Abot was relatively constant across 5 sub-gait phases in both DOFs,

and its variability was substantially lower than that of B Ankle and K ,Ankle Only the value at
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PSW in the DP direction was statistically different from the rest sub-phases. This is because

some subjects showed high inertia in PSW. More investigation for these subjects is required.

At the end of the stance phase (PSW), BAnkl, and K Ankle decreased to the level

comparable to other sub-swing phases (ISW~TSW). According to previous work [54], BAnkle

and KAnkle in the DP direction in the terminal stance (TST) phase were 0.038Nms/rad/kg and

4.6 Nm/rad/kg, respectively. These values are much higher than PSW values identified in this

study. Substantial decrease of BAnkle and KAnkle matches well with decreased activation of

plantarflexors (SOL, GAS, and PL) from the end of TST to PSW. In swing phase, both

parameters remained relatively constant, in contrast to the finding in stance phase [54], where

both damping and stiffness value increase throughout the stance phase.

Substantial increase of B Ankle and KAnkle was observed in EST after HS. More close

investigation around HS revealed that BAnkle and KAnkle in the IE direction and BAnkle in the DP

direction actually started to increase just before HS, while KAnkl, in the DP direction increased

right after HS. This finding is important evidence of "pre-tuning" for shock-absorption, one

essential factor to maintain the stability of human walking. For example, the increase of ankle

impedance increase will help exert a torque on the shank in the sagittal plane by the action of

placing the foot and transferring body weight to it. That torque will act to move the knee out

of hyperextension into the flexed position most appropriate for absorbing the kinetic energy of

the descending body mass.

Another interesting finding is that B Ankle and KAnkl, in EST, especially K Ankl,

increased more rapidly in the IE direction. Increased muscle activation of TA and PL, which

are antagonistic pair in the frontal plane, can contribute to impedance increase right after HS.
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This co-contraction mechanism is known to serve as an efficient way to increase mechanical

impedance of the joint [86]. However, this is not enough to explain more and rapid increase of

BAnkle and KAnkle in the IE direction than the DP direction, since TA and PL also contribute to

DP impedance.

One possible explanation is the "lock" of the ankle joint in the frontal plane when HS

occurs. The subtalar joint, which is responsible for IE movements, locks with eversion [113]

and it has been known that the subtalar joint immediately goes from inversion to eversion

right after HS [114, 115]. In addition, the mortise of the ankle, which is the space formed by

the top of talus and the lower ends of the tibia and the fibula, locks in the frontal plane at the

moment of the heel-strike. Another explanation is the stiffness increase due to the

compression of soft tissues. Whatever its origin, substantial increase of ankle impedance in

the frontal plane will help lateral stability from the moment of HS to the loading response.

The comparison of ankle parameters (BAnkle and KAnkle) around HS and TO with and

without time-scaling of realizations showed negligible effect of the time-scaling for

impedance identification.

The nominal trajectory (z.) used in this study was obtained from all realizations from

14 minutes of walking. However, it has been known that walking is not completely random,

and even in walking less than 10 minutes, long-range correlations in stride duration was

observed, implying that the stride duration at any time depends on the stride duration at

remote previous times [116, 117].

To evaluate the variability of impedance identification due to the variability of the

nominal trajectory, a jackknife resampling method was used. In detail, first the whole

ensemble set was splitted into 10 subsets, then for each of 10 iterations, one subset was
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removed from the whole ensemble set and other 9 sets were used to construct a new nominal

trajectory. Ten iterations with different nominal trajectories provided a distribution for IRF

estimates and parameter approximates ( Ik,,Abo, BAnkle ,, KAnkle).

To compare parameters obtained by the resampling method and the original method

using all realizations, statistical analyses (paired t-tests) were performed for each parameter

and for each sub-gait phase on the pooled data from all 10 subjects. The ratio of parameter

values from the resampling method to the original method was calculated and its statistical

significance was evaluated (Table 4.6 and Figure 4.19).

Table 4.6: Parameter estimation by resampling of the nominal trajectory vs. by original method.

Dir. PSW ISW MSW TSW EST

IAnke+Abot 1.01 0.95* 0.93* 0.97 0.99

IE B 0.95 0.98 1.07 1.07 1.06

KAnkle 1.04 0.88 0.83 0.99 0.92

IAnke+Abot 1.02 0.96 0.96 0.95 0.98

DP B 0.99 0.99 1.05 1.05 1.02

KAnkle 1.04 0.92 0.92 0.87 0.88

The ratio of parameter values from the resampling method to the original method was presented.
Asterisks (*) denote significant difference (p<0.05).
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Figure 4.19: Time-varying ankle parameters in sub-gait phases. Red line: estimation based on the
resampling method, black line: estimation based on the original method. 1V row: IE direction, 2 "d row:

DP direction.

No statistical difference between two measures was observed except IAnkle+Abot at ISW

and MSW, which was expected mainly due to very low variability of inertia estimates. This

finding supports the current method of calculating z0 with no further consideration of the

effect of long-range correlation.
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Chapter 5

Conclusion

5.1 Ankle Mechanical Impedance of Young Healthy Subjects:
"Internally Complicated, but Externally Simple"

The human ankle joint is an intricate combination of the talocrural joint, the subtarlar

joint, and the inferior tibiofibular joint, supported by 4 ligaments. The combination of these

bones allows movements in multiple DOFs through the action of multiple muscles and

tendons. The anatomical axes of the ankle joint do not intersect, are far from orthogonal, and

even change with ankle movement.

Ankle muscles are activated either voluntarily by neural commands from the brain or

reflexively through intra-muscular or inter-muscular feedback [10]. Both of voluntary and

reflex actions contribute to ankle mechanical impedance, more specifically to intrinsic and

reflex component of impedance, respectively [49].

Even with the internally complicated neuromusculoskeletal behavior of the ankle,

ankle impedance of young healthy subjects has shown externally simple behaviors, consistent

across most subjects, at least in the context of this experiment. These simple behaviors are

expected to be very advantageous in many applications.
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When ankle impedance is described in both the sagittal and frontal planes, interaction

or coupling between different DOFs is substantially small, although non-negligible, over a

wide frequency range and at different levels of muscle activation. In other words, generated

ankle torques in the DP (IE) direction have small effect on ankle motions in the IE (DP)

direction, or vice versa. Furthermore, ankle impedance in each DOF can be well

approximated with a 2 "d order model with inertia, damping, and stiffness, both under steady-

state and time-varying conditions.

Another simple behavior of the ankle of young healthy subjects is its energetic

passivity. The ankle of young healthy subjects in all measurement conditions was close to the

energetically passive system.

Most subjects showed a highly linear relationship between muscle activation and ankle

impedance in all movement directions in the 2D-space, even though joint stiffness is

determined not only by muscle generated stiffness but also by kinematic stiffness due to

nonlinear musculo-tendon kinematics.

Above findings will be a great help in controlling the mechanical device that interacts

with the lower-extremity. First, when small coupling between 2 DOFs is neglected, we may

design an independent controller for the sagittal and frontal planes. Second, we can guarantee

the coupled stability of physical interaction between the human and the robot by making the

robot behave as energetically passive system. Third, based on the highly linear relationship

between muscle activation and impedance, we may use EMG sensors and other kinematics

sensors to predict ankle impedance, while a wearable robot is used as an actuator for other

purposes. This approach may also be used to estimate ankle mechanical impedance when
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direct identification is not available such as impedance during the mid- and terminal stance

phase of the gait.

Externally simple characteristics of young healthy subjects will also serve as a

baseline to explore ankle mechanical impedance of older and neurologically impaired subjects,

whose biomechanical and neurological properties may be altered with aging and impairments.

Based on several characteristic measures presented in this thesis, the severity of pathological

behaviors of the joint can be quantified by calculating its deviation from the norm as a result

of disorders.

5.2 Comparison of Characterization Methods

Three different characterization methods were presented in this thesis to study ankle

impedance in different conditions. This chapter compares the three methods and briefly

describes pros and cons of each method.

The first method described in Chapter 2 provides accurate nonlinear torque and angle

relationship (vector field) over the wide ROM, from which we can directly calculate local

stiffness at any point in the displacement field. On the other hand, other two methods using

random perturbations can only provide information around the initial set position. For

example, to get stiffness information at 150 dorsiflexed and 15' plantarflexed ankle positions

using the second method, two separate measurements with different initial set positions are

required, while the same information can be derived from a single measurement based on the

first method. The limitation of the first method is that it can only provide stiffness information,

but not damping, inertia or higher order dynamics of the ankle in multi-DOF.
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The second method described in Chapter 3 quantifies dynamic properties of the ankle

joint, not available from the first method. The use of mild random perturbations, due to its

random nature, enables reliable measurements even in high muscle activation conditions with

minimal likelihood of voluntary reactions. In addition, simple rotational operations provide

fast computation of the anisotropy of ankle impedance around the initial set position as a

function of frequency. However, impedance in opposite directions cannot be distinguished

with this method because perturbations are applied around the initial set position, and all

measurements in both directions are used for impedance identification. Thus, to identify

impedance in both of opposite directions, separate measurements with different nominal ankle

positions are required. For example, stiffness in dorsiflexion and plantarflexion directions can

be identified with 2 separate measurements with different nominal ankle positions, one with

dorsiflexed and the other with plantarflexed.

The third method presented in Chapter 4 characterizes transient or time-varying

dynamic behavior of the ankle, not available from other two static or time-invariant methods.

The same random perturbations in the second method are used to minimize involvement of

voluntary reactions during time-varying motor functions, walking in this study. However,

since the estimation is performed both across the time-axis as well as realizations of the

ensemble set, longer measurements to collect hundreds of realizations are required for the

reliable impedance identification.

Since each method has its own advantages and limitations, a proper method should be

selected for different applications. Even when multiple methods should be used together,

different types of measurements can be completed in a relatively short time using the same

experimental setup. For example in this study, the same experimental setup including the
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Anklebot was used across all three types of studies. While most of the experiment time was

consumed for setting up the experiment, actual running time for each measurement was

considerably less than the setup time, even in the walking experiment for transient impedance

identification. Hence, the combination of all different methods using the same experimental

setup can be a good package to better characterize the joint mechanical impedance.

5.3 Future Work

There are several interesting and important areas of investigation for future research.

First, from the studies of steady-state static and dynamic ankle impedance, a

characteristic "tilted peanut" shape of ankle impedance in IE-DP space and its relationship to

muscle activation were identified. In addition, several distinctive transient behaviors of ankle

impedance in both DOFs were observed consistently across subjects. Although simple

explanations were provided in this thesis, rigorous modeling studies based on reported

biomechanical properties of the ankle will help better understanding of ankle impedance,

which may be utilized in further simulation studies.

Second, as mentioned before, if predicted ankle impedance from sensor data (EMG

and kinematics) is accurate enough to replace direct identification, the ankle robot can be used

as an actuator for other purpose such as subject training or rehabilitation. More studies under

different measurement conditions, both time-invariant and time-varying, will provide richer

data sets to find a mapping, possibly dynamic and nonlinear, relating EMG and kinematics to

the corresponding ankle impedance.

Third, the methods presented in this thesis are intended to be sufficiently general to be

applicable to any multi-joint system or single joint having multiple DOFs. For example,
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multi-variable impedance of the knee and ankle or the hip and knee can be studied to

understand interaction dynamics between joints. The wrist is a good example of single joint

multi-DOF system, which has 3 DOFs to be studied.

5.4 Implication for Neuro-rehabilitation

The demand for lower-extremity rehabilitation for people with neurological disorders

is growing as the number of patients is increasing apace with the aging population. Every year,

about 795,000 Americans have a new or recurrent stroke [118]. This number corresponds to

the fact that someone in the US has a stroke every 40 seconds. An estimated 764,000

Americans children and adults currently have cerebral palsy [119] . In addition in the US,

about 250,000~350,000 people have been diagnosed with multiple sclerosis (MS) [120], and

250,000 people have spinal cord injuries, and approximately 11,000 new injuries occur every

year [121]. These diseases cause severe damage to the neuromuscular system of the human

body and alter mechanical properties of joint mechanical impedance that directly affects

motor behaviors, including lower-extremity functions. Many of these persons have significant

gait impairments including at the ankle, which causes abnormal walking patterns such as drop

foot, excessive inversion, crouched gait, toe walking, and so on.

While several consistent characteristics of ankle impedance were observed in young

healthy subjects, we may expect significantly different characteristics for neurologically

impaired patients due to altered neuromuscular properties. A prerequisite for effective neuro-

rehabilitation is an accurate diagnosis of pathological behaviors, and our characterization

methods can be well used for this purpose.
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In fact, a preliminary study with 4 neurologically impaired patients (3 stroke and 1 MS)

was performed at the Providence Veteran Affairs Medical Center (RI, USA) after obtaining

an approval of Institutional Review Board. Static ankle impedance was characterized in

relaxed muscles following the same experimental procedure and analysis methods used in

young healthy subjects [122].

Interestingly, 2 of 4 patients (AO 1 and A02) showed substantial non-passive behavior

(non-zero curls) even when fully relaxed. The non-passive behavior was observed in both

affected and unaffected sides, which can be only attributed to unbalanced inter-muscular

feedback between different DOFs. This is in contrast to results obtained in young healthy

subjects that were conservative everywhere. If the damage to descending neural pathways

affects peripheral neural networks and causes unbalanced inter-muscular feedback

accordingly, that could account for these non-zero curls.

Another interesting observation was that 2 patients (AO1 and A02) showing non-

passive behavior exhibited highly asymmetric anisotropy of ankle impedance between

affected and unaffected sides (Figure 5.1). Asymmetric ankle impedance may require a more

complex control scheme to guarantee balance, postural stabilization and joint coordination

during locomotion. Further study is needed to verify any correlation between curl components

and the amount of symmetry of the impedance structure.
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Figure 5.1: Anisotropy of static ankle mechanical impedance of neurologically impaired patients. Left:
unaffected side, Right: affected side. Outbound and inbound results were averaged.

Although only static component of ankle impedance was characterized for a small

number of patients, this study sufficiently shows the possibilities of characterization methods

introduced in this thesis to be used for the neuro-rehabilitation application.

The preliminary study indicated that externally simple behaviors observed from young

healthy subjects may not be valid any more for people with neurological disorders. Thus,

multi-DOF studies can become more important in clinical studies to characterize pathological

behaviors, which cannot be attained from multiple single-DOF studies.

With more rigorous studies for patients having neurological disorders, we anticipate

that the suggested characterization methods will provide a quantitative measure to better

diagnose impairments and understand lower-extremity functions of patients, and eventually to

design strategies to rehabilitate them.
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Appendix A: Thin-Plate Spline Smoothing with
Generalized Cross Validation

As described in section 2.4.1, given a set of n data points (P =(xi,y,), i=1,2,...,n) in

912 and n vectors z = (z, z2 ,..., z,) , where zi corresponds to the z value at point P1 , a

weighted combination of TPS centered about each data point together with an affine

transformation gives the interpolation function (f ) (Eq. (A. 1)) that minimizes bending energy

Eb represented as a quadratic form (Eq. (A.2).

n

f(xy)=aO +alx+a 2y + w, U(p -(x,y))

U(r)= r 2 log r2 , U(O)=0 (A.1)

Ef )2 +2( J+ rjjj (A.2)
b :=f X2 aa 2

where x and y represent angular displacements (O6E and 6
DP respectively), and f(x,y) is the

corresponding torque value (either rIE or TDP). The weighting factor W= (wI ,w2 ,- .- ,w) and

coefficients for the affine transformation D=(aO,aj,a2 ) can easily be calculated by matrix

operations (Eq. (A.3)).
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where r, is the distance between P and P3 .

For a fixed smoothing parameter A, the smoothing function TPS (f2 ) is the minimizer

of E,, (Eq. (A.4)).

(A.4)EL = (zi -fx + Al + 2 + dxdy

In a matrix form, this equation can be represented as (Eq. (A.5)).

Et, =||Z-PD-KW|2+ AWT KW,
n

(P'W = 0) (A.5)

The weighting factor W=(w1 ,w2 ,---,wn) and coefficients D = (aO,aj,a 2)

can be solved using a least squares approach using QR decomposition of P

Details of this solution can be found in [71].

P=(Q: Q2

W = Q2 (QKQ2 +AI)-Q 2 |Z

D =R-TQT(Z -KQ27)

of function

(Eq. (A.6)).

(A.6)
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where, Q, and Q2 are nx3 and nx(n-3)unitary matrices, respectively.

Finding the optimal smoothing parameter (A*) is a nonlinear regression problem of

minimizing mean squared error R(A) between the estimate (f) and the underlying function

(f ) (Eq. (A.7)).

z, = f(xi,y,)+e,

R(A)= (ff(xi, y,) - f (xi, yi))2 (A.7)
ni=1

A* = argmin R(A)
A

where z, are measured data, f(x ,y) an underlying smooth surface, fA(x,,y,) an estimate,

and e, a white noise process.

However, we cannot calculate A* = argminR(A) directly since it involves an unknown
A

function f(x,,y1 ). According to Craven and Wahba [123], the minimizer of the GCV function

V(A) defined by Eq. (A.8) also minimizes R(A) for large n (providing reliable estimates of A

for n >25).

12

V(A)= n 2 (A.8)
ITr (I - A( A))

nI

where Z is the measured displacement vector and A is an influence matrix that relates

Z and estimates vector fz (Eq. (A.9)).
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(fA(x 1 ,y),..,fA(x",y,))T = A(2)(z1 ,.

A(A) = I - nAQ 2 (Q2
T (K + nXI)Q 2) 2  (A.9)

Thus, the optimal smoothing parameter A * can be calculated by finding the minimizer of

V(A) consisting of the measurement vector (Z) and the influence matrix ( A ) (Eq. (A. 10)).

A*= arg min V(A) (A.10)

Full descriptions of the GCV algorithms can be found in [71, 123].
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Appendix B: Definition of Spling-like Property

From physical system theory, a spring is defined as an elastic energy-storage element

characterized by a relation between generalized force and generalized displacement such that

the integral of force with respect to displacement is mechanical work. The relation between

force and displacement may be nonlinear or even discontinuous. A neuromuscular system is

defined as spring-like if its force-length (or torque-angle) behavior permits the definition a

scalar potential function ( E (q)) of its length (or angle) (Eq. (B. 1)) .

Ep(q) = j f(q)T dq (B.1)

where f and q denote force and displacement vectors, respectively. By definition, force is

the gradient of the potential field (Eq. (B.2)), and the curl of a gradient is zero (Eq. (B.3)). A

necessary and sufficient condition for the vector field f to be spring-like is that its curl is

zero. Zero curl means that stiffness is symmetric (Eq. (B.4)).

f = VqEp(q) (B.2)

Vxf =VxVqEp(q)=0 (B.3)

, Vij (B.4)
aq, aqj
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Appendix C: Simulation of Vector Field
Approximation

To validate our vector field approximation method based on approximating each

vector component as a scalar field, two different datasets were simulated: one approximately

conservative, the other an approximately rotational field. Artificial data were generated by

sampling points in these conservative and rotational fields and adding noise with magnitude

comparable to that observed in real experiments.

These data were approximated using our method, and the estimated field was

decomposed into conservative and rotational components to check how well the method can

detect curl components both when they are present and when they are not. For this purpose,

paired t-tests were performed on the total vector field and the decomposed fields. Simulation

results verified that our methods worked well whether the field has curl or not (Figure C. 1)

In case (a), the conservative field was statistically indistinguishable from the total field

and the rotational field is not significantly different from zero (p>>0.05). Conversely, in case

(b), the conservative field was not significantly different from zero and the rotational field

was statistically indistinguishable from the total field (p>>0.05).
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Figure C.1: Verification of our method using artificially generated noisy data. A conservative field (a)
and a rotational field (b). Artificial data (depicted as point sets in 24 directions) and the corresponding

approximated field (consisting of two TPS surface estimates (#1,#02) (top row) as well as the total

vector field and decomposed fields are presented (bottom row).
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Appendix D: Linear Time-Invariant Multi-Input
Multi-Output Stochastic Identification

Linear time-invariant Multi-input, multi-output (MIMO) nonparametric system

identification methods based on spectral analysis are described. When the time history of 2

inputs x = (x 1 , x 2 ) and 2 outputs y=(y1 ,y 2 ) are given, each element of transfer matrix

(H(f) =[H1 H12;H21H22]) (Eq. (D.1)) can be calculated from input auto- and cross-spectral

density and input-output cross-spectral density (Eq. (D.2)).

Yi H 11(f) H 12 (f) ][XI 1 (D.1)

LY2 I H21(f) H 22 (f)_ X2 _

x~y 1-'1x2 x2yl 21 'x2x1 xly1
1 xlxl_ xP2xyl x2 PP

H(f)= 2 Px1x1 x2x20x1,1 0x2x2 xlxlx
2
yl (D.2)

xIx2 xly2 I x1x2 x2y2 x2y2 x2x xly2

x1x1 x2x2 Xly2 'x2x2 1x1 x2y2)

where Pab denotes cross power spectral density between a and b, and yh 2 is the ordinary

coherence function between x1 andx 2 defined as (Eq. (D.3)):

2

2 22 xlyl (D.3)
x x 1x1x 2x2

Partial coherence indicates linear dependency between input and output after

removing the effects of other inputs. For a 2 inputs and 2 outputs system, a partial coherence

matrix (n2 ) is given by Eq. (D.4).

198



2 2pp21- 2pp2 2

Q2 U 2 1xy1'2x2 - "2y1' x1x2 'pt2y xlxl - xly1' 2x

P1  _ 2x2c2x2'x1'ly~y2 (1 - Yx2xl 2)(1 - x2y2 
2

) xlx'xlx1'x2x2y~y2 (1 - Yxlx2 2)(1 - xy2_

(D.4)
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Appendix E: Representations of Directional
Variation of Mechanical Impedance

The directional variation of ankle mechanical impedance was represented in polar

coordinates (direction dependent map), which describe the magnitude of impedance for each

movement direction in the IE-DP space. On the other hand, stiffness ellipse describes the

trajectory of restoring torque vectors when the joint is displaced along the unit circle in the

IE-DP space (Eq. (E.1)). In fact, one representation can be derived from the other one, and

vice versa. To illustrate two different impedance representations, three examples of joint

stiffness matrices are defined as below:

["E i K2] ,I K = Kl12(E. 1)
z DP_ K21 K2 2 _GDP _ _K21 K22 _

[10 0]
Example 1: K = I

L0 20_

F10 01
Example 2: K = 1

L0 30

Example 3: K = L05 -]
1-5 30

For each example, two different stiffness representations are simulated and shown

(Figure E.1- Figure E.3).
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Figure E.1: Example 1. Ratio between Ka and K22 is 1:2.
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Figure E.2: Example 1. Ratio between KI1 and K2 2 is 1:3.
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Figure E.3: Example 3. Off-diagonal components of the stiffness matrix are non-zero.

Directions of principal eigenvectors of the stiffness ellipse match with major and

minor principal axes of the direction dependent map.
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Appendix F: Resonance and Anti-Resonance
Behavior of the Shoe Bracket

Identified ankle impedance showed resonance and anti-resonance behaviors over

about 30 Hz (Figure 3.12). To investigate whether this is real biomechanical property of the

human ankle, an additional test was performed using a physical mockup loosely resembling

the human leg. The mockup consisted of the wooden thigh, shank, foot, and a connecting joint

made of rubber. The same shoe used in human experiments was worn on the wooden foot,

and the knee brace was installed over the wooden thigh and shank. Then, the robot was

attached to the knee brace and the bracket of the shoe (Figure F. 1 (left)).

z z"

~00 .....---- 00

FiueF1 eoac n nirsonac behavior -ofteso sraktolc:Anlbtle

400

A 0 Mk 10d M

~100 -4 .......... ...... 100

saepoeue*sdi ua sujcs0aniuersos ovraot 0H n phs

Figure F.1: Resonance and anti-resonance behavior of the shoe bracket. Black: Anklebot, Blue:
Anklebot + Mockup, Red: Mockup.

Mechanical impedance of the mockup in joint coordinates was identified following the

same procedure used in human subjects. Magnitude response over about 30 Hz and phase

response over about 20 Hz were similar to those observed in human subjects (Figure F. 1
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(right)). Although not included, similar resonance and anti-resonance behavior was observed

when the bracket was directly connected to the wooden block and measurement was

performed without the shoe. In conclusion, the observed resonance and anti-resonance

behavior was originated from the shoe bracket not from the ankle.
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Appendix G: Directional Variation of Dynamic
Ankle Impedance of Individual Subject

Directional variation of dynamic ankle impedance was represented both by the

direction dependent map and ellipse representation. Results of individual subjects under

relaxed muscles are shown in Figure G.1 ~ Figure G.4, and results under active muscles are

provided in Figure G.5 ~ Figure G.12.

Low Freq.

40 [Nmlrad]
60

Mid Freq.

90 40 [NmIrad]
60

0 180

270 270

Figure G.1: Anisotropy of dynamic ankle impedance in seated posture. Left: low-frequency
impedance, right: mid-frequency impedance
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Figure G.2: Anisotropy of dynamic ankle impedance in standing posture.
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Figure G.3: Ellipse representation of dynamic ankle impedance in seated posture.
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Figure G.4: Ellipse representation of dynamic ankle impedance in standing posture.
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Figure G.5: Anisotropy of dynamic ankle impedance in the TA study (Low-frequency impedance).
Unit: Nm/rad.
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Figure G.6: Anisotropy of dynamic ankle impedance in the TA study (Mid-frequency impedance).
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Figure G.7: Anisotropy of dynamic ankle impedance in the SOL study (Low-frequency impedance).
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Figure G.8: Anisotropy of dynamic ankle impedance in the SOL study (Mid-frequency impedance).
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Figure G.9: Ellipse representation of dynamic ankle impedance in the TA study
(Low-frequency impedance).
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Figure G.10: Ellipse representation of dynamic ankle impedance in the TA study
(Mid-frequency impedance).
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Figure G.11: Ellipse representation of dynamic ankle impedance in the SOL study
(Low-frequency impedance).
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Figure G.12: Ellipse representation of dynamic ankle impedance in the SOL study
(Mid-frequency impedance).
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Appendix H: Effect of Kinematic Stiffness

Increased activation of muscles around a joint does not guarantee that the

corresponding joint stiffness will also increase. A confounding factor arises from the

nonlinear kinematic relation between joint angle and muscle length, 1 = l(ODP I9 1E = 1()

The derivative of muscle length with respect to joint angle determines the moment

arms of the muscle force about the joint, rDp(o) = M 6 Dp and rIE (0) = ala9IE , and hence

the relation between muscle force and the corresponding joint torques, TDP = DP(o)f and

TIE I (o)f . As indicated, in general the moment arms vary with joint angle. As a result,

when the muscle generates force, part of the joint stiffness arises from this variable moment

arm.

For example, DP stiffness is KDP = aiDP /a DP = rDP (DP ) DP /DP )f

The first term in this expression is the muscle stiffness times the square of the moment arm

(as required for consistency of units). The second term is due to the nonlinear kinematics and

is proportional to muscle force. Because of human endo-skeletal anatomy, for modest

displacements of the joint from its neutral posture this "kinematic stiffness" is negative; the

muscle-generated torque acts to move the limb in a direction that increases the muscle

moment arm. Consequently, if the stiffness of muscle and passive tissues around the joint

were constant, co-contraction of opposing muscles would act to decrease the joint stiffness. If

sufficiently large muscle forces could be exerted, joint stiffness would become negative, i.e.

statically unstable. This is conceptually similar to the Euler buckling of a column under
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compressive loading. Of course, muscle stiffness is not constant but is generally observed to

increase with activation. However, unless muscle stiffness increases more rapidly with force

than the "kinematic stiffness" decreases with force, co-contraction of opposing muscles will

decrease net joint stiffness.

Agonist Antagonist

in

W W

r rn

Figure H.1: A simple musculoskeletal model. Two identical muscles are depicted by the thin lines.
Positive (negative) angles imply flexion (extension). The joint axis and the muscle origins lie on a

straight line with each muscle origin at a distance w from the joint axis. The muscle insertions are
each at a distance h axially along the bone (thick line) from the joint. The joint angle is denoted as 0

and the muscle length for the agonist and antagonist is 19 and 1, , respectively.

An example may clarify the conditions under which negative joint stiffness may occur.

Consider a single limb segment with two identical muscles (Figure H. 1) having a linear force-

length-activation relation with a constant stiffness as Eq. (H. 1):

if F,> 0

otherwise
(H.1)
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where F > 0 is muscle force (muscles pull and can't push), ui 0 is a dimensionless measure

of neural activation, F is a scaling constant with dimensions of force, k is muscle stiffness,

1i is muscle length and 10 is muscle length at rest.

Muscle lengths (Ig and l) and moment arms (r, and rn) of agonist and antagonist

muscles are derived from kinematic relations of the model (Eq. (H2) and Eq. (H3)). As 0

increases from zero, rg increases while rn decreases. Note that dlg/d6 is negative because

increasing angle shortens the agonistic muscle.

,= jh 2 +w 2 -2hw sin(9)(H2
1, = + +2sin(9) (H.2)

lJh+w+2win(6)

dig hwcos(9)

d9 i

The net joint moment (r) is as Eq. (H.4), and the torque restoring the limb to any posture

within the range - ir / 2 9 6 ;r / 2 has the opposite sign, re,,,wring = _T

Z" =g -rn = rgFg -rnFn = hwcos(O) Fg - hwcos(O) Fn (H.4)
1 9 in

The net joint stiffness (K ) is derived from Eq. (H.4), which has terms of two different types

as explained above: the "kinematic stiffness" due to the variation of moment arms with joint

angle, and the usual spring-like stiffness due to the variation of muscle force with muscle

length (Eq. (H.5)).
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K = restoring = (rgFg -rF)

dr aFg dl, dr WF dln= Fg - r + Fn +r
d g alg do d " al, d6

dr dr 2= rF+ "F+(r2 +r2)k
d9 g d9n

=-7gFg + yF, +(r 2 +r 2 )k

=-g{ugFo +k(lg -l 0 )}+ y{unFO +k(ln -lo)}+(r 2 +rn2 )k

where derivatives of moment arms ( yg and yn) are as Eq. (H.6):

drg hw hw
yg - - (-sin(6)+-2-cos2 (6))7 dO 1 1

dr hw hw
dO- - (sin(9)+-2 cos2(9))

d inl in

(H.5)

(H.6)

Thus, the stiffness of each muscle contributes positive (stabilizing) joint stiffness. However,

the "kinematic stiffness" may be negative and, in this case, it is.

Simulation results of this model are provided in Figure H.2, assuming r =0 (both

muscles are equally active) and 9=0 . Parameters used in simulations are as follows:

F=5000N, k =10000N/m, w=0.03m,h=0.2m.
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Figure H.2: Simulation results of a simple musculoskeletal model. Both antagonist muscles are equally
active (ug = un , r = 0 ), enabling investigation of joint stiffness at 0 = 0. Top left: muscle length vs.

joint angle; Top right: moment arm; Bottom left: derivative of moment arm vs. joint angle; Bottom
right: joint stiffness vs. muscle activation. If ug = Un >0.41 , the joint stiffness is negative.

Joint stiffness declines with muscle co-contraction and for sufficiently large muscle activation,

joint stiffness becomes negative (Figure H.2 (bottom right)).

Even when a single muscle is considered (for example, the agonist, and K can be

redefined as in Eq. (H.7), the effect of kinematic stiffness is still present. Compared to co-

contraction of antagonistic muscles, the magnitude of the kinematic effect is smaller because

the contribution of yu,F in Eq. (H.5), which is negative, is absent in single muscle activation.

K =-yg{ugFo +k(lg -l 0)}+ y{k(l, -0 })}+(r 2 +r,2 )k (H.7)
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Appendix 1: Temporal Distribution of Walking Data

Histograms of the stride duration, stance duration, and swing duration of each subject

are provided in Figure 1. 1 -Figure 1.3.

Histogram of Stride Duration
12 3 4

25 35 20 20 25

20 20
2025 15 15 2

15 20 115

10 10

10 15 10

10 5 5
5 5

01 0 - 01 0 0
1.2 1.3 1.4 1,5 1.2 1.3 1.4 1.5 1.2 1.3 1.4 1.5 1.3 1.4 1.5 1.6 1.1 12 1.3 1.4
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14
20 20-

12 15

10 1001
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10 1 

64 5
5 5.

0 0 0- a 0
12131.41.5 12 131.41.5 13141.516 1314 1.515 121.31.41,5

Figure 1.1: Histogram of stride duration. The x-axis represents stride duration (unit: second), and y-
axis denotes count. Each plot represents the result of individual subject.
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Histogram of Stance Duration
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Figure 1.2: Histogram of stance duration. The x-axis represents stance duration (unit: second).

Histogram of Swing Duration
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Figure 1.3: Histogram of swing duration. The x-axis represents swing duration (unit: second).
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Appendix J: Time-Varying Ankle Parameters in
Sub-Gait Phases

Results of IRF estimates, 2 "d order model approximates, reliability measures, and

identified ankle parameters in 5 sub-gait phases of individual subject are provided in Figure

J.1 -J.3.

Representative IRF (1E)

0.6-

0.4

0.2

0

0 0.D 0.1 0.15 0.
Lag(sec.)

Representative IRF (DP)

0 0.06 0.1
Lag(sec.)

0.16 0.2

- -- -
0.5 ------

0 - 0

PSW ISW MSW TSW EST 02
Lag(sec.)

0.00

PSW SW MSW TSW EST 0.2
Lag(sec.)

Figure J.1: IRF estimates of individual subject in sub-gait phases. 1't row: IE direction, 2"d row: DP
direction. 1st column: 2D representation. 2"d column: 3D representation. Each plot represents the

result of individual subject (magenta: PSW, red: ISW, green: MSW, blue: TSW, cyan: EST).
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Figure J.2: Reliability measures for IRF estimation ( VAFt,,, and eoutpur ) and 2nd order model

approximation ( VAFIRF ) of individual subject. 1st row: IE direction, 2 nd row: DP direction.
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s0

40

20

0
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Figure J.3: Time-varying ankle parameters of individual subject in sub-gait phases. Solid red line: DP
direction, dotted blue line: IE direction.

Parameter changes around HS and TO of individual subject are also provided in

Figure J.4 and J.5.
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Figure J.4: Ankle parameter changes around HS and TO. 1" row: around HS, 2"d row: around TO.
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Figure J.5: Ankle impedance increase ratio around HS and TO. The same format as in Figure J.4.
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