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Abstract

The traditional method for maintenance of space systems consists in building reliable satel-

lites through redundancy and replacing them in case of failure, or whenever an upgrade is

necessary. On-orbit servicing could change this paradigm. What would be the missions for

which servicing would be most interesting, and what price would they be willing to pay

for the capability to be serviced? The answer to these questions would provide valuable

guidelines as to which servicing technologies to develop, and at what cost.
Assuming that the technologies enabling automated servicing are available, traditional

metrics and models are first proposed to systematically evaluate servicing cost-effectiveness

within a representative trade space of serviceable missions and servicing infrastructures.

It is shown that though it can capture some elements of cost-effectiveness, the traditional

approach tends to underestimate the value of servicing and demonstrate cost advantages

smaller than the cost uncertainty.
This issue is solved by then proposing a new approach to on-orbit servicing. First, the

intrinsic value of servicing is studied separately from its cost. Furthermore, a first framework

to evaluate the flexibility provided by on-orbit servicing to space systems is developed. This

framework is used to define models of the value of servicing for two families of space systems

faced with different types of uncertainty: commercial systems with uncertain market and

military missions with dynamic requirements.
For commercial missions with uncertain market, modeling servicing as an option on life

extension shows that space systems should not systematically be designed for the longest

possible lifetime. Instead, the optimal design life decreases with increasing uncertainty. The

maximum servicing price that would make servicing economically interesting is evaluated as

a function of uncertainty and the value of flexibility is illustrated on two current examples.

For military missions, a small number of satellites with the option to maneuver is consid-

ered as an alternative to global coverage for flexibility with respect to contingency location.

It is shown that while this alternative has little value in the case of a low Earth orbit radar

constellation, it has interesting potential for geostationary communication satellites.

Thesis Supervisor: Daniel E. Hastings
Title: Professor of Aeronautics and Astronautics and Engineering Systems
Director, MIT Technology and Policy Program
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Chapter 1

Introduction

Space systems are still the only complex engineering systems without routine maintenance,

repair and upgrade infrastructure. The Shuttle can access and maintain high value assets

such as the International Space Station (ISS) or the Hubble Space Telescope (HST). But

for the average space systems, maintenance means are limited to launching spacecraft.

Replacement is the only repairing scheme, so that a spacecraft can be lost even if the

majority of its components are still operational. One-of-a-kind, reliable and expensive

spacecraft have been the natural result of this lack of space logistics, as schematized on

figure 1-1. To amortize the high cost of spacecraft, their design lifetimes are made longer,

which in turn makes them more expensive.

The space industry as well as the United States governmental agencies recognize today

the need for a new paradigm of space systems design. Space technologies are mature enough

that pushing the limits of reliability further is becoming extremely expensive. In addition,

A--B means "A drives B up"

+ Spacecrafft Co)st 1

Design Lifetime Replacement Cost

Figure 1-1: Vicious Circle of Traditional Design Methods Leading to Longest Possible
Lifetime
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Figure 1-2: On-Orbit Servicing as Breaking the Vicious Circle: Towards Shorter Design

Lifetimes?

there is concern about the growing gap between space systems, which are often designed

to live more than a decade, and the shorter life cycles of market demand and technology

development. The result of this gap is a considerable risk that a spacecraft will become

technologically obsolete or will stop addressing any actual market before the end of its

design lifetime.

On-orbit servicing, defined as the ability to repair, refuel, replenish, and upgrade satel-

lites on orbit, has long been recognized as having the potential to change the way business is

carried out in space. As a cheap alternative to replacement, on-orbit servicing would make

possible a new trade between design margins and maintenance costs, as schematized on

figure 1-2. This trade is likely leading to less redundant, cheaper spacecraft. As a means of

life extension and upgrade, it would foster shorter design lifetimes, thus enabling spacecraft

to follow the market and technology dynamics more closely. It would also offer the potential

for designing new types of space systems, such as maneuverable spacecraft.

However, the implementation of on-orbit servicing requires a whole new way of designing

and managing space systems. In addition, decision makers perceive it as a significant source

of technological risk. For investments in on-orbit servicing to be actually deemed worth-

while, considerable advantages in terms of cost-effectiveness must be proven. Many stud-

ies have qualitatively explored the potential advantages of autonomous on-orbit servicing.

Several projects developed bottom-line architectures for on-orbit servicing of specific space

missions and demonstrated potential improvements in terms of cost or cost-effectiveness.

However, no advantages have yet been proven that outweigh the perceived risk and cost

uncertainty.
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Before the decision can be taken to make on-orbit servicing the new paradigm for space

systems maintenance, the conditions under which this would be cost-effective still remain

to be explored in detail. The objective of this thesis is to propose new tools to participate

in answering this question.

The typical research path followed by previous work has been to develop a design tailored

to a specific space system and simulate its cost-effectiveness over the mission life. While this

approach has been very successful at demonstrating the feasibility of automated on-orbit

servicing and at proposing realistic designs, it has not yet proved able to yield any general

conclusion about the cost-effectiveness of on-orbit servicing.

One of the reasons may be that such a process overlooks the intrinsic value of servicing

for space missions. This value, defined as the price a space mission would be willing to pay

for the capability to be serviced, should exist independently of any servicing architecture

design. Its systematic study would help identify the space missions that are most likely

to become customers of a servicing infrastructure. It would give valuable directions for

servicing design as to what space missions to target, and at what cost.

In addition, by using traditional valuation tools such as net present value calculations,

previous work has been underestimating an important component of servicing value. The

price that a space mission would be willing to pay for servicing is not limited to the cost

savings it would make by designing spacecraft for shorter lifetimes and smaller reliability.

Servicing would also provide space missions with options in the future to adapt to uncertain

parameters such as random failures,.market dynamics, technological development or chang-

ing requirements. This flexibility is a significant advantage of servicing, and it is important

to take its value into account.

In order to address the holes in previous research, this thesis proposes to step aside from

technology development and design, and assume that an infrastructure for on-orbit servicing

is available. It can then focus on the main research question:

Is there a general way to estimate the value of servicing for space systems,

defined as the maximum price under which servicing improves mission value,

taking into account the options that servicing provides to decision makers?

13



As a basis for constructing an answer to this question, we will first define its terms and

implications in slightly more details.

1.1 Definitions and Motivations for On-Orbit Servicing

1.1.1 A Few Definitions

Waltz [Wal93] gives a definition of on-orbit servicing:

On-orbit servicing is work in space. The work, performed by men, machines, or a

blend of both, relates to space assembly, maintenance, and servicing (SAMS) tasks to

enhance the operational life and capability of satellites, platforms, space station attached

modules, and space vehicles. In the broadest context of its definition, satellite servicing

also includes the in-space launching, reboosting, and retrieval of space systems. Growth

versions of some servicing functions involve space debris capture or containment and

emergency operations for crew rescue and return to an in-space safe haven or to the

Earth.

He divides the set of functions performed by on-orbit servicing into three categories:

Assembly is the fitting together of manufactured parts into a structure; it occurs

before a space system is operational.

Maintenance is the upkeep of facilities or equipment; it can be scheduled or on-

demand; it is performed after a system has become operational and includes any

on-orbit activity performed for the purpose of extending the operational life of a

space system, except replenishment of consumables.

Servicing is the broader term encompassing the replacement of expended consumables

and the logistics required to strategically locate supplies; it can be performed

before or after a system becomes operational.

In the framework of this thesis, we will refer to on-orbit servicing as any on-orbit activity,

including refueling, performed after a system has become operational, for the purpose of

extending the operational life of the system, or modifying some of its components. The

tasks included in this definition are indicated by a cross (X) in table 1.1. We will often use

the word servicing alone to refer to on-orbit servicing.

Traditional classifications of servicing functions, such as the one proposed by [Wa193]

and summarized by table 1.1, have been considering on-orbit servicing from the point of

14



Table 1.1: Servicing Functions Classification from [Wa193]
Servicing Tasks Task Functions In this thesis

Assembly Space station assembly
Space Station upgrade / modification X
Large spacecraft assembly
Deployment of appendages

Orbit Transfer Delivery to final orbit X
Retrieval from orbit
Earth return

Resupply Fluids X
Materials X
Film / Tape X

Maintenance and Repair Module changeout / replacement X
Refurbishment / retrofit X
Modification X
Decontamination X
Cleaning / resurfacing X
Test and checkout X
Unplanned repair X

Special Space debris control
Emergency operations X

view of designing a servicing architecture. For example, resupply and repair are two very

different tasks from a servicing mission point of view; while the former is a one-way mass

transfer, the latter can require taking out an old module before inserting the replacement

module, which is a two-way mass transfer and presents different technological challenges.

From the serviced mission point of view, the relevant distinctions are different. For

example, refueling or replacing batteries both aim at extending the lifetime of the existing

spacecraft design, while upgrading a module leads to a spacecraft with new or enhanced

capabilities. Taking the point of view of the serviceable missions, we will therefore group

the servicing functions into only three main categories: life extension, upgrade, and modi-

fication.

Life extension includes any on-orbit servicing operation aimed at extending the opera-

tional life of the system in its original design; this involves refueling, refurbishing and

repairing.

Upgrade includes any on-orbit servicing operation aimed at improving the performance

of the operational system in meeting its original mission goal; it involves insertion of

15



more recent technology into the design, through adding or replacing components.

Modification includes any on-orbit servicing operation aimed at meeting new mission

goals; examples include design changes through payload replacement, as well as refuel

to maneuver into a new constellation configuration.

A last important class of distinction concerns the timing nature of the servicing opera-

tions. They can occur either on an on-demand or an a scheduled basis.

On-demand on-orbit servicing is performed as needed; this is well suited for example to

repairing after random failures. It requires all servicing material to be constantly

available.

Scheduled on-orbit servicing involves setting in advance future servicing times; this is well

suited for example for life extension at the end of a design lifetime. Although the time

of servicing is set, the components to be delivered can be chosen at the time of service;

the decision can also be made not to service at that time after all.

1.1.2 Motivations for On-Orbit Servicing: Traditional Views

On-orbit servicing can enhance the design process by extending the possibilities available

to mission designers and the opportunities for trade-offs. It has been recognized to offer

many ways of increasing the achievable mission cost-effectiveness, in particular:

Enable Missions Certain missions are simply not viable without servicing because their

baseline lifetime is short and the cost of replacement is too high. This is the case

for very high value assets such as the International Space Station (ISS) or the Hubble

Space Telescope (HST), and all spacecraft that must be assembled on-orbit.

Reduce Initial Mission Cost The ability to refuel and repair satellites offers an alterna-

tive to replacement for trading initial spacecraft costs with mission lifetime costs. For

example, long-term consumables and redundant parts make up a mass on satellites

that is not immediately useful. The need for corresponding additional structures and

fuel increases this mass penalty. Satellites designed for servicing could therefore end

up being much smaller than their traditional counterparts.
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Improve Lifetime Performance/ Reduce Risk On-orbit servicing can increase mis-

sion lifetime performance by offering cheap and timely ways of mitigating risk [BP91).

This applies to risk in the launch phase (a satellite launched into the wrong orbit could

be refueled to maneuver to its desired orbit), risk in the physical life of components

(repairing for random failures instead of replacing the whole satellite) and risk in the

technological life of components (upgrading a component instead of designing a new

satellite).

Most previous work on servicing cost-effectiveness has been considering on-orbit ser-

vicing as an alternative to replacement for maintenance of a space system. The typical

approach adopted by such studies can be summarized as being made up of the following

steps:

1. Choose a specific space mission and analyze its serviceability,

2. Identify one or a trade space of, servicing architecture designs for this mission,

3. Simulate maintenance events over the lifetime of the mission, both for the serviceable

case and for a baseline case in which satellites are replaced,

4. Compare lifetime costs and some measure of lifetime performance (such as a utility

function, or constellation availability) for the serviceable and the baseline cases,

5. Draw conclusions on the percentage cost advantage, and possibly on the performance

advantage, of the chosen on-orbit servicing method.

1.2 A New Approach to On-Orbit Servicing

1.2.1 Defining the Value of Servicing for a Space System

When the approach described above is undertaken, whether on-orbit servicing proves

more interesting than traditional methods is actually the result of a trade-off between two

main effects: the cost savings from servicing on the one hand, and the price the space

mission is going to pay for servicing on the other hand. The cost savings from servicing

depend mainly on the satellite design and the elements to be serviced, while the price to pay

for servicing depends not only on the cargo to be delivered to the satellites, but also and
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principally on the assumptions, design choices and cost models for the servicing architecture.

Therefore the conclusions yielded by such a method are valid only for the specific mission

and servicing infrastructure considered.

A first possible approach to solve this issue consists in defining a general trade space

of space missions and servicing architectures, and systematically exploring the trade space

using general metrics for cost-effectiveness.

Another interesting consideration is that since the infrastructure for on-orbit servicing

does not yet exist, results which would give some guidance as to what types of technologies

to develop, what space missions to target, and what cost cap not to exceed, would be very

valuable. From a theoretical as well as from a conceptual point of view, it is therefore

interesting to study the value of servicing for space missions separately from its cost.

Both approaches will be considered in turn in this thesis.

1.2.2 Flexibility through Servicing: Turning Uncertainty into an Asset

Serviceable missions have options But the value of servicing is not limited to the

potential cost savings incurred when designing a system for a shorter design life. The

capability to be serviced in the future is also a great source of flexibility for space missions.

A serviceable mission would have options to react to the future resolution of parameters

that are uncertain at the time of launch. Examples include the option to refuel or repair

for life extension, the option to upgrade to avoid technological obsolescence, or the option

to modify to meet new requirements.

On uncertainty and risk By not taking flexibility into account, traditional decision

making often confuses uncertainty and risk. There is uncertainty in a mission if one or

several future mission parameters cannot be predicted exactly; uncertain parameters are

typically modeled as having a probability density function, and the standard deviation of

this distribution is a measure of uncertainty. There is risk in a mission if there is uncertainty,

and if the results of this uncertainty can have negative outcomes; a typical measure of risk

would be the expected negative outcome. For a mission that has no way to react to the

resolution of uncertainty, there is often a one-to-one relationship between uncertainty and

risk.
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Figure 1-3: The Cone of Uncertainty - Inspired from [AK98]

The cone of uncertainty Options de-couple risk and uncertainty. A good way to con-

ceptually capture this effect is the notion of cone of uncertainty proposed by real options

theory [AK98] and illustrated on figure 1-3. Decision makers consider the future as seen

from the apex of the cone (present). As they look further and further into the future, there

is more and more uncertainty associated with their forecast. This is what the cone repre-

sents, its angle being a measure of the level of uncertainty. If no option is available, then

an increasing uncertainty translates into an increasing probability of a negative outcome;

thus uncertainty means risk. But if options are available to react to uncertainty, then neg-

ative outcomes can be avoided and a higher uncertainty translates into a higher expected

outcome. Thus, for flexible missions, uncertainty is not a source of risk any more, but a

source of value.

Giving options to space missions is a significant advantage of on-orbit servicing. It is

important the capture the value of this flexibility.

1.3 Thesis Outline

This thesis proposes to develop a new framework to yield general results for the value of

servicing for space missions, taking flexibility into account. Three main steps are necessary

to accomplish this goal: first, analyze the traditional approach and identify its limitations;

then based on these limitations, develop a general theoretical framework that fills some

holes in previous research; finally, validate the framework on practical examples. These

steps are organized into the following chapters:

Chapter 2 summarizes a few results from previous research that are particularly relevant
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to this study. Previous work from three complementary areas is presented: the design and

evaluation of servicing infrastructures, the impact of servicing of spacecraft design and cost,

and the state-of-the-art in valuation methods.

Chapter 3 extends on previous work by defining general metrics to estimate cost-

effectiveness on a wide trade space of space missions and servicing infrastructures. It shows

how the cost uncertainty yielded by traditional approaches generally outweighs the advan-

tages of servicing in terms of cost-effectiveness.

Recognizing the need to study the full value of servicing independently from its cost,

chapter 4 proposes a new approach to on-orbit servicing. Building and expanding on decision

tree analysis and real options theory, it defines a framework to embed the value of flexibility

into the valuation of space missions faced with uncertainty. The framework relies on the

definition of a few building blocks, the most important being a model of the uncertainty, a

set of reachable operational modes, a sequence of decision points, and a definition of mission

value.

Chapter 5 uses this framework to develop a general model for the valuation of commercial

space missions with uncertain revenues. The linearity of mission value makes this simple case

very similar to real options valuation. The model is first used to estimate the value of the

option to abandon, which is available to all space mission but has never yet been accounted

for. The option to service for life extension is then considered. The optimal design life is

studied as a function of market uncertainty. The maximum servicing price under which a

serviceable design is optimal is mapped into a market level/market uncertainty space and

illustrated on two current examples from the satellite communications world: the Iridium

and Globalstar constellations.

Chapter 6 considers the more complex case of military missions with dynamic theater

locations. It shows how valuation models can be developed from the same framework in

spite of the continuity of the decision points and the non-linearity of the value function,

which make both real options theory and decision tree analysis impractical. The value of

refueling to make a constellation of satellites maneuverable is studied for two cases: a low-

Earth orbit radar constellation taken on the example of the Discoverer-II project, and a

geostationary fleet of communication satellites taken on the example of the Defense Satellite

Communications System (DSCS).

Chapter 7 concludes on the contributions and limitations of this work.
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Chapter 2

Relevant Previous Work

This chapter summarizes and discusses a subjective selection of previous research efforts

that have been found particularly relevant to the question of evaluating the value of on-orbit

servicing for space missions. There are three main elements in this question: value, on-orbit

servicing and space missions. Our discussion of previous work is accordingly divided into

three main areas of research. Section 2.1 summarizes some of the research about on-orbit

servicing architectures, which includes historical on-orbit servicing, technology development,

and cost-effectiveness studies. Section 2.2 deals with several aspects of the satellite design

changes in the presence of on-orbit servicing: the cost savings from designing for a shorter

design life on the one hand, and the penalty to design for serviceability on the other hand.

Finally, section 2.3 presents and compares three important ways of estimating value for

decision making: net present value (NPV), decision tree analysis (DTA) and real options

valuation.

2.1 Previous Work on On-Orbit Servicing

2.1.1 History Highlights

Waltz [Wa193] makes the point that although on-orbit servicing is sometimes perceived as

revolutionary, it has had an evolving history; maintenance considerations have always been

part of spacecraft design and systems engineering.

Space maintenance has been practiced since the beginnings of spaceflight in 1961, when

few missions were completed without crew intervention to correct malfunctions. But before
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1980, the demonstration of servicing in space had been limited to manned spacecraft such

as Skylab or Apollo in the United States, and the space station program in the USSR.

The Skylab missions (1973-1974) included scheduled maintenance activities [Wal93],

but also experienced, from the very launch, failures that required major maintenance efforts:

release of a solar array, deployment of a parasol and a twin-pole sun shield, installation of

a rate gyro package, servicing of the coolant system, and repair of a microwave antenna.

Almost all of the 53 Skylab experiments experienced various degrees of maintenance activity

during the mission. This maintenance was systematically performed by astronauts.

The Russian space stations program * started in the same years and lasted until the

death of the MIR space station. An extensive history of on-orbit servicing started with

the Salyut 6 space station, launched in 1977. Salyut 6 had two docking ports: the Soyuz

spacecraft docked to one port, leaving the other port available for visiting crews or Progress

resupply vehicles. A total of 12 Progress spacecraft, each of length 7 m and weight 7 tons,

delivered more than 20 tons of equipment, supplies and fuel during the station's lifetime;

the docking and fuel transfer were performed automatically. The latest version, Progress-

M, performed more than 40 servicing operations of the MIR space station. Its autonomous

docking system failed only three times at the first attempt: two Progress missions docked at

the second attempt, while one (the Progress M-24) crashed into the station and had to be

maneuvered by hand. In spite of this accident, the program has been a great demonstration

of the feasibility of routine autonomous docking and refueling.

The Solar Maximum Mission (SMM) spacecraft was the first unmanned spacecraft to

be serviced [Wal93]. The spacecraft underwent failure of three of its momentum wheels and

of its coronograph/polarimeter instrument ten months after it began collecting spectacular

data about the solar activity. After a year-long test program of high fidelity simulation on

the ground, astronauts on board the Shuttle Challenger were able to retrieve the spacecraft,

replace its attitude control module and repair its coronograph electronic box. Amounting

to a total estimated cost of $60 million, this repair mission proved less expensive than a

$230 million replacement. Some people believe that it proved the usefulness of the Shuttle

*http://www.nauts.com
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and ended the era of the throw-away spacecraft. Since then, there have been numerous

examples of unscheduled maintenance on Shuttle missions.

The Hubble Space Telescope (HST)t is probably the most striking example, as it

has been the most extensively serviced unmanned spacecraft is history. Immediately after

deployment of the telescope, scientists realized that its primary mirror had a major flaw:

a spherical aberration resulting in fuzzy images. The telescope would never have given its

revolutionary images of the Universe without the first servicing mission, HST 1 in 1993.

Although the overall servicing cost was as high as $500 million, it proved cheaper than

manufacturing a new $1 billion spacecraft. Hubble is also a good example of the power of

upgrading. The second servicing mission, in 1997, installed new instruments, multiplying

by 30 the spectral resolution and by 500 the spatial resolution of the imaging spectrographs,

and allowing the infrared camera to detect even more distant objects. At the same time, new

solid state recorders made possible the storage of ten times more data. The next servicing

mission, scheduled for November 2001, is expected to provide a tenfold improvement in the

Hubble's survey capability.

On-orbit servicing by the Shuttle is so expensive that it makes sense only for very high

value assets such as Hubble. Even in this case, the cost of the three servicing missions have

already outweighed the cost of the spacecraft itself. Therefore, recent efforts have been

focusing on developing technologies for servicing of the average spacecraft. Only unmanned,

autonomous on-orbit servicing can be cheap enough to make this a viable option.

The SAMS project (Space Assembly, Maintenance and Servicing) (Wal93] is a good

example of such an effort. It was a joint study between the Department of Defense (DoD),

the strategic Defense Initiative Office (SDIO), and NASA. Its primary objective was to

define, where cost-effective, SAMS capabilities to meet requirements for improving space

systems capability, flexibility, and affordability. The 7-year program consisted of three

phases: (1) study, under contract with TRW and Lockheed Martin, (2) concept development

and (3) implementation. The goal was to lead to a national SAMS capability in 2010.

The study identified five orbital regimes and constructed generic design reference mis-
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sions (DRMs) to create servicing scenarios for various types of satellites in each regime. It

studied the cost-effectiveness of servicing compared to replacing. One of its most interest-

ing results is the identification of breakpoints in the curves of potential cost savings from

on-orbit servicing, defined as places in the curve when a significant slope change occurs.

These breakpoints indicate that on-orbit servicing is most interesting under the following

conditions:

" When the cost of orbital replacement units (ORU) is lower than 50% of the satellite

replacement cost,

" When servicing equipment charges are lower than 50% of the total satellite replace-

ment cost,

" When servicing time intervals are shorter than 4 to 5 years,

" When servicing time intervals are shorter than on third of the time required to replace

the satellite.

2.1.2 Enabling Technologies for Autonomous On-Orbit Servicing

The two basic requirements for autonomous on-orbit servicing to be possible are the ability

to access the spacecraft with a maintenance capability (or the capability of the spacecraft

to access a maintenance capability), and the ability of the spacecraft to be maintained. The

technological prerequisites to meet these requirements can be divided into the functions

described below, where the the time sequence of a servicing operation is followed.

" Orbital access (launch) and orbital transfer from an orbit to another are mature

technologies, although some argue that a cheaper access to space would be necessary

for the success of on-orbit servicing.

" Proximity operations can be defined as two spacecraft sustaining joint actions within

93 km of each other; they include navigation control, safing, docking, thermal control,

observation, deployment, and retrieval. Many of these technologies are currently being

developed or demonstrated.

" Orbital assembly, modification and upgrade are being demonstrated on the Inter-

national Space Station in the context of close human supervision. Technologies for

routine autonomous operations still need to be developed.
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" Safety monitor, defined as the continuous assessment of critical equipment data, and

emergency operations and procedures still need to be defined.

" Jettison, defined as the separation of subsystems from a space vehicle with disposal of

the separated element on orbit, is being developed as part of the proximity operations

research effort.

" Space debris control is becoming a great concern, and mitigating methods are being

researched [AHOO]. Although servicing can be perceived as a way of reducing the

space debris problem by re-using existing resources, it will also create more space

debris from launches, remains of servicer vehicles, and disposal of used spacecraft

parts.

One of the technologies currently undergoing the most intense development in the United

States is autonomous rendezvous and capture (AR&C). A commonly accepted design for

AR&C, which uses flight proven technologies, is well described by Polites [Pol99]. A chase

spacecraft with both attitude and translation control capability actively navigates to a

target vehicle, which is passive in the rendezvous process but has attitude stabilization.

This means that spin- and gravity-gradient-stabilized satellites could not be serviced, but

also that components critical to the attitude control system could not be replaced, with

today's technology. The minimum payload to carry on the chase spacecraft consists of an

integrated GPS and inertial guidance sensor (GPS/INS), a video guidance sensor (VGS),

AR&C software, grappling mechanisms and possibly an autonomous formation flying sensor

(AFF); in the rest of this thesis we will call this the active AR&C payload. The target must

at least carry a docking interface equipped with retro-reflectors; we will hereafter call this

the passive AR&C payload.

Other enabling technologies include procedures for operations and ground override, mech-

anisms and actuators for capture and line connections, and fuel transfer gauges and proce-

dures. In addition, thermal management and attitude control for the docked configuration

remain important issues.
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2.1.3 Highlight on a Current Project: Orbital Express

The space industry as well as the U.S. governmental agencies have been recognizing more

and more clearly the need for a change in paradigm for space systems design, and the

potentials offered by on-orbit servicing to change the economy of space. As a result, sev-

eral technology demonstration projects are underway, among which the Defense Advanced

Research Agency (DARPA) Orbital Express program is probably the most extensive 1.

One of the goals of the study is to demonstrate in space an Autonomous Space rans-

porter and Robotics Orbiter (ASTRO) servicing spacecraft. ASTRO will autonomously

conduct operations such as inspection, docking, and satellite pre-planned electronics up-

grade, refueling and reconfiguration. The demonstration spacecraft will be launched with a

companion satellite that it will service on-orbit. The long-term vision is a servicing space-

craft capable of accessing satellites at all orbital altitudes (LEO-to-GEO-to Lagrangian

points) and of performing significant plane changes, using ascent-change plane-descent ma-

neuvers, and/or aero-assisted maneuvers.

Research is also underway on other important concepts such as on-orbit storage space-

craft, methods for large-scale on-orbit storage and handling of liquid and/or gaseous con-

sumables, and required changes to serviced spacecraft operational status while servicing.

2.1.4 Previous Work on Unmanned Servicing Cost-Effectiveness

Although the development of on-orbit servicing enabling technologies is well underway, the

cost-effectiveness of the concept remains to be proven before the final development steps

can be taken. This has been the subject of several research projects, of which this section

summarizes a subjective sample.

The SMARD study

The spacecraft modular architecture design study (SMARD) [DCAJ97] has been an ex-

tensive research effort making significant steps in both servicing architecture design and

cost-effectiveness assessment.

In the area of design, the work categorized different levels of on-orbit servicing in terms

of spacecraft serviceability level. It showed that at least 30% of a spacecraft mass would

$http://www.darpa.mil/tto/programsfrm.html
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be readily serviceable, and that this percentage would increase if spacecraft were designed

in a modular fashion, with on-orbit servicing in mind. Taking the example of a specific

surveillance constellation, it suggested alternatives to the current spacecraft design to make

servicing possible. It finally developed a point design for a rendezvous and docking space-

craft tailored to service the baseline constellation, and a concept of servicing operations.

One of the most interesting aspects of this design is that functional replacement is preferred

over physical replacement: failed components are not removed but simply unplugged from

the main spacecraft data bus. This simplifies the task of the servicer vehicle significantly.

This design was detailed enough to make a bottoms-up cost estimate possible. Combined

with a Monte-Carlo simulation of the performance of the constellation for various servicing

scenarios (scheduled / unscheduled), this estimate yielded reliable cost-effectiveness results.

It showed that the proposed architecture could be up to 38% less expensive than satellite

replacement for the baseline space mission.

Upgrading the GPS constellation

Two interesting companion studies published in 1999 addressed the question of autonomous

on-orbit servicing for upgrading the satellites of the global positioning system (GPS): one

considered the necessary structural modifications on the satellites themselves [HP99], and

will be discussed in section 2.2. The other presented a trade study for the best servicing

architecture [LWKM99],[LW99].

The goal of the latter work was to determine if the GPS Joint Program Office (JPO)

should view a satellite management system of on-orbit servicing as an alternative to its

current system of phased upgrade through replacement. The authors elaborated a large

two-dimensional trade space of design choices based on existing technology. The first di-

mension described possible on-orbit servicing architectures in terms of servicer capacity (de-

livered mass), capability (number of satellites serviced), design life, and propulsion scheme.

The second dimension consisted of maintenance strategies varying in time and space. The

authors chose a representative sub-set of thirty alternatives from this trade matrix and

compared them in terms of cost and value.

The cost was estimated by basing each servicer on a scaled version of an existing
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bottoms-up design and using the NASA/Air Force Cost Model'96 (NAFCOM'96) . The

value was expressed in terms of what is usually called a utility metric. It was developed

using decision analysis (DA) methods in close relationship with the actual GPS decision

makers. The value of each architecture was a linear combination of scores along the main

areas of concern for the decision maker: life cycle costs (recurring, non-recurring), perfor-

mance (availability, flexibility) and program viability (shareability, implementability).

This value does not account for the flexibility during the mission lifetime in a direct way.

The score for flexibility is made up of three scores dealing with how important the decision

makers deems the cycle time, the upgrade frequency and the mass capacity of an servicing

scheme. Such a value model is a good, general way of modeling the perception of flexibility

a decision maker has at the start of a mission; however, it does not account directly for the

options that will be available to decision makers after the system is operational.

The thesis concluded on six best alternatives, all comprising one servicer spacecraft per

plane, with high to medium capability and capacity, and long design lives. These would

deliver orbital replacement units (ORUs) carrying 150 kg to 30 kg of payload, four times

over a period of 15 years; the total cost of these four servicing mission would amount to

around $300 M. Although these alternatives would cost more that the baseline maintenance

scheme of staged upgrade, they would also score higher on the chosen value metric, due to

their reduced time to upgrade or repair; and they are an order of magnitude cheaper than

the "brute force" method of lumped replacement for upgrade.

In addition to research about on-orbit servicing design solutions, another main contri-

bution of this work has been to recognize the advantage of on-orbit servicing for upgrading

satellites, as a means of solving the conflict between the trend towards longer lifetimes and

the need for flexibility to technology development. Stressing the importance of flexibility,

the authors even mention the possibility to have satellite platforms in space: the upgrade

capability would "make it possible to market their satellites as platforms for customers

other than their traditional ones".

5As most existing cost models, this model is based on a historical database of satellite costs.
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Figure 2-1: Cost Penalty to Design for a Given Lifetime. Adapted from [SHN01]

2.2 Impact of Serviceability on Satellite Design

2.2.1 Cost to Design for a Given Design Lifetime

One of the advantages of on-orbit servicing is to make a new trade between spacecraft design

lifetime and maintenance costs possible, as mentioned in introduction and illustrated on

figure 1-2. Before being able to quantify this trade, an analysis of the relationship between

design lifetime and spacecraft cost is required.

Saleh & al [SHN01] carried out the exploration of this relationship by systematically

estimating the impact of the design lifetime requirement on each spacecraft subsystem.

The main direct effects of a longer design lifetime requirement are: design margins on solar

arrays to outweigh the expected degradation, additional batteries to account for a capacity

that decreases with number of cycles, increased electronics redundancy to achieve the same

reliability at end of life, and additional fuel mass for station keeping. Indirect impacts on the

structures, thermal, and propulsion subsystems only multiply the resulting mass increase.

Using standard cost models, this mass increase can be translated into a cost penalty.

For parameters typical of current spacecraft design practices, the final results indicate

a cost than increases almost linearly with design lifetime, as illustrated by figure 2-1. For

example, designing for 15 years instead of 3 years results in a 35% cost penalty. But the cost

is not proportional to lifetime, so that the cost per operational day decreases with required
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design lifetime. In the absence of any other design driver, this explains and justifies the

traditional approach of designing spacecraft for the longest possible time.

However, the authors note that other factors, such as technology obsolescence and mar-

ket dynamics, should be taken into account in the decision regarding the design lifetime

requirement. In addition, the cost-per-operational-day results would change if, instead of

implicitly assuming replacement, servicing for life extension was considered. This first es-

timation of the cost to design for a given lifetime will prove useful in our quantification of

the trade illustrated by figure 1-2.

2.2.2 Cost Penalty to Make Satellites Serviceable

The impacts of serviceability are not limited to the positive aspects of designing for a shorter

lifetime. Design changes would be required, at least for accessibility of the components.

Few papers have addressed the cost penalty to design a spacecraft for serviceability.

An interesting study by the Aerospace Corporation [HP99] concerned the necessary design

modifications to make the GPS satellites upgradable. Although this investigation was inde-

pendent of servicer architecture, it had to depend on the interface with the servicing system;

the assumption was that systems designed in [LW99] would be used. The study focused on

possible satellite upgrades through the addition of new components, which were assumed to

consist primarily of electronic boxes. It was therefore assumed that specific upgrade slots

would be added to the baseline design and launched empty, ready to receive any additional

module. Some thermal mass, data handling capacity and power would be added in the

initial design in order to allow for this upgrade.

The authors evaluated several design alternatives. For upgrades only, the best alterna-

tive appeared to be the addition of a separate compartment on top of the spacecraft. For

a combination of upgrades and repairs, a concept of replaceable panels on the spacecraft

sides offered more potential. The corresponding percentage mass penalties on the 1300-kg

baseline spacecraft are summarized in table 2.1.

According to this study, the mass penalty to design for upgrade through the addition of

new components is of the order of 10% of a spacecraft total mass. Since it would not require

any extra spacecraft compartment, designing for repairing and refurbishing should incur an

even smaller mass penalty. Furthermore, the penalties described above refer to modifying an
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Table 2.1: Average Mass Impact for Serviceability. Adapted from [HP991
Serviced Mass Added Power Mass Penalty

Upgrade 3.5% (50 kg) 125 W 9%
Upgrade 7% (100 kg) 250 W 15%

0 W 7%
Upgrade+Repair 7% 100 W 15%

0 W 12%
Upgrade 14% 500 W 25%

0 W 11%

existing design. If an infrastructure for on-orbit servicing of space systems were available,

spacecraft could be designed for serviceability in the first place. In addition, technologies

for increased modularity would be developed. The mass penalty for serviceability is likely to

be smaller in such a world than any study that uses the current spacecraft design paradigm

would estimate.

With the information available so far, it is therefore not unreasonable to assume that

the cost penalty to make a design serviceable is negligible compared to the cost penalty

to design for a longer lifetime. However, further research into the design of serviceable

spacecraft will be required before this assumption can be proven valid.

The previous sections set the technological stage for the thesis by depicting the current state

of research into technologies, designs and baseline cost impacts of on-orbit servicing. Before

exploring the cost-effectiveness of on-orbit servicing for space systems, we still need to set

the economic stage by investigating the current state of research into valuation methods.
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2.3 Estimating Value: Capital Budgeting Methods

This section reviews the three main families of methods to estimate project value: net

present value (NPV) calculation, decision tree analysis (DTA), which is becoming popular

among space managers, and the relatively new field of real options theory, which to the

author's knowledge has not yet been directly applied to space systems.

In order to fully capture the differences between these three approaches and how they

address the valuation problems relevant to space missions, this section will consistently

apply them to the simple following example:

A stock has the current value S = $ 200 and its price after one period is un-

certain: it can either go up to $400 = uS or down to $ 100 = dS (where we

implicitly assumed u = 11d = 2). Shareholder A ("the seller") holds one stock

and gives shareholder B ("the buyer") the option, but not the obligation, to ac-

quire this stock after one period for the set exercise price E = $200. What is

the value of this option? In other words, what price for the option are A and B

likely to agree upon?

Note that this case is analogous to a service-or-abandon real option, where S would be the

uncertain expected revenues from the market after the possible date of servicing, and E

would an agreed-upon servicing price.

2.3.1 Traditional Method: Net Present Value

The traditional method for capital budgeting has been to calculate the net present value

(NPV), which is the sum of future discounted cash flows (expenses and revenues). This

method is still the most widely used to evaluate and compare space mission architectures

[WL99]. An NPV calculation assumes that a fixed sequence of cash flows will be followed,

and accounts for the time value of money by weighting them with a fixed discount factor.

If for example, a yearly rate d is used to discount a discrete sequence of cash flows Ci over

N periods, the net present value is:

N

NPV(N) - .d (2.1)
(1 + d)i
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For cash flow rates that are continuous in time, this translates into:

T

NPV(T) = C(t) e-rt dt (2.2)

0

where the equivalence of the formulas is ensured if r = ln(1 + d).

Example of net present value calculation Let us look at our example from an NPV

point of view. Traditional valuation would consider that the stock will be bought whatever

its value. The NPV of buying the stock would therefore be:

uS-E dS-E
NPV = p - +(1-p)

1+ r1+1:r

where p is the probability that the stock price goes up, and ^r is the estimated discount rate

over one period. The NPV of not buying the stock would be zero.

Taking for example p = 1/4 and r = 0, we would have:

NPV={x200+Ax-100=$ -25

From an NPV point of view, deciding to buy the stock is not interesting, and the option

would be discarded from the start.

Advantages of Net Present Value

A great advantage of NPV is that it can be easily generalized to non-monetary values.

The goal of a space mission is not always to earn revenues; the case is obvious for

scientific as well as military space missions. Instead of being compared to the revenues, the

costs of the mission are therefore weighted against what is often called a mission utility of

a Function. Utility describes the metric of performance that is of prime interest to mission

decision makers. For an imaging mission for example, this could be the total number of

images taken during the mission lifetime that meet a certain resolution requirement.

The approach of NPV calculations, which is to make a best estimate of future benefits

and sum them up, can be directly generalized to such value metrics, and has been in the

past. We will refer to this type of generalization as traditional valuation. A good example is

the GINA methodology [Sha99], which proposes a Cost per Function CPF = C/F metric.
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Whenever there is uncertainty about a future cash flow, the expected value of the NPV

E{NPV} is usually considered. This same approach is easy to generalize for a cost per

function metric, where either E{C}/E{F} or E{C/F} are directly available to calculation.

Shortcomings of Net Present Value

If there is little uncertainty about the future, a net present value calculation is a valid method

to capture the value of the project. In the presence of uncertainty however, traditional

valuation lacks accuracy for two main reasons: its does not account for flexibility, and it is

faced with uncertainty in the discount rate.

The main downside of traditional valuation is its failure to account for the flexibility in

managerial decisions. In the real world managers do not actually have to set their decisions

for years ahead, but can instead adapt future decisions to future conditions. Therefore

cash flows are not fixed, but will depend on the resolution of some uncertain parameter(s).

Some negative cash flows will be avoided, while some good opportunities will be seized. Net

present value calculations underestimate the value of this managerial flexibility, compara-

tively giving too much importance to less flexible projects.

What about the appropriate discount rate to account for the time value of money? A

sum of money earned today can be placed in Treasury bonds, which are guaranteed to offer

appreciation at the risk-free interest rate r, so that after T years the initial sum C would

be worth erT C. Receiving the money later can be interesting only if it has an internal

rate of return at least equal to r, in other words its value is growing at a rate faster than

r. Symmetrically, paying an amount sooner is interesting only if its internal rate of return

exceeds r. The appropriate discount rate, defined as the one that captures the value that

people attach to time, is therefore exactly r.

Consider now the opportunity to invest in a project which is risky, i.e. that offers no

guarantees on its expected revenues. If the expected return a on the project equals the risk-

free interest rate, then it is more interesting to invest directly in Treasury bonds, since they

are risk-less. Therefore the project is worthwhile only if is offers a risk premium p = a - r

that outweighs its risk.

Thus whenever there is uncertainty, the appropriate discount rate a = r +p depends on
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the level of project risk. Risk is a function of external uncertainty as well as the internal

ways to react to this uncertainty. It is not only difficult to estimate, but also varying with

time. Whenever the conclusions drawn from a net present value calculation depend on the

discount rate that was used, they should therefore be taken cautiously.

2.3.2 Accounting for Managerial Flexibility: Decision Tree Analysis

Exercise /
Service ? YES|

uS - E = $ 200
u = 400 E = $ 200

Stock price/ p NO $0M
Market level

S = $ 200 Exercise /

1-p Service ? dS - E = $ - 100
E = $ 200

d S = $ 100 44 $0M

Figure 2-2: Example for Comparison of Net Present Value (NPV), Decision Tree Analysis
(DTA) and Real Options Theory

Decision tree analysis (DTA) is a tool to describe a sequence of decisions that are not

set from the start but can depend on the resolution of some uncertain parameter(s). Figure

2-2 is the simplest possible example of a decision tree. DTA takes flexibility into account

by using the following concepts:

Event nodes are used to represent future events that have an uncertain outcome. In the

lifetime of a mission, there can be several such events. In our example, the event is

the evolution of the stock price and the event node is represented by a circle.

States of nature represent all the possible outcomes of an event. In our example, each po-

tential future value of the stock is a state of nature. They are represented by branches

shooting up from the event node. Decision tree analysis attributes a probability to

each possible state of nature after each event node.

Decision nodes represent the times in the lifetime of the mission when a decision can be
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taken. Alternative decisions shoot up as branches from the decision node. In our

example, the two possible decisions are to buy or not buy the stock and the decision

node is represented by a square.

Decision analysis tree is the term used to describe the structure built up from decision

and event nodes and all their associated branches. Time flows in the tree from left to

right.

Decision path is the term used to define one particular sequence of decisions and states

of nature going from the origin of the tree to one of its possible ends. Summing the

cash flows (or the utility function) along one decision path determines the outcome of

this path. In our example, a decision path could be: the stock goes down and B buys

the stock (outcome +$100-$200 = -$100); there are four decision paths in this tree.

Backwards valuation The valuation starts from the outcome of each path and moves

backwards into the tree. Combining the outcome with the probability of the states

of natures gives the expected value of each decision at the last decision nodes. Only

the decision with the highest value is considered at each node, and taken as the new

outcome to continue moving backwards into the tree up to the initial decision or event.

The value thus yielded is often called the expanded net present value (eNPV).

Example of DTA calculation DTA takes the flexibility of decision maker B into account

by adding the cash flows that actually correspond to the optimal decision for every possible

evolution of the stock price, as illustrated on figure 2-2. The value of the option under these

conditions becomes:

max(uS - E, 0) + (1 - ) max(dS - E, 0) (2.4)
VDT = 1 + (1 - p+ i-dVDAP 1+r 1+r~

which under the same numerical assumptions as above (^r = 0, p = 1/4) gives:

VDTA = - x 200 + 1 x 0 = $ 50

This shows that a flexible decision maker would actually find the option so interesting that

she would be ready to pay as much as VDTA = $50 for it.
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The difference between NPV and VDTA can be interpreted as the value FDTA of the

flexibility in having the right, but no obligation to exercise the option:

FDTA = x (200 - 200) + 1 x (0 - (-100)) = $ 75

Advantages of Decision Tree Analysis

Similarly to net present value, decision tree analysis is easily generalizable to situations in

which value is not monetary. DTA is actually a part of the Decision Analysis framework,

which is also active in developing Utility function approaches. This makes the method

particularly suited for space missions.

But unlike NPV, DTA considers only the optimal decision after each possible state of

nature. Thus, it takes into account the possibility to adapt future decisions to the unfolding

of uncertain parameters, which solves the main shortcoming of traditional valuation.

Shortcomings of Decision Tree Analysis

However, this valuation of flexibility is limited. For DTA to remain practical, there must

be a finite number of decision nodes, occurring at set decision times. Thus DTA cannot

account for continuous flexibility such as on-demand servicing. Similarly, there must be a

finite number of possible states of nature after each event node. Thus, DTA cannot account

for uncertain parameters that can take values in a continuous interval, such as market

demand.

In addition, DTA does not solve the problem of the discount rate faced by NPV. On our

example, table 2.2 shows that both NPV and DTA are a strong function of the probability

p that the stock goes up, and therefore a strong function of the investment risk. This effect

should however be counteracted by the use of the appropriate discount rate. The more

likely the stock price is to go up (which increases the option value), the riskier it is to by an

option instead of buying the stock today, and therefore the higher the appropriate discount

rate (which decreases the option value).
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Table 2.2: Results of Net Present Value, Decision Tree Analysis and Arbitrage Pricing
Theory on a Simple Numerical Example

Case bigtrisngleright r = 0 r = 0 r =10% r = 10%
MethodV p=1/4 [p=1/2 p =l1/4 p= 1/2

NPV $ -25 $50 $ -22.73 $45.45
DTA $50 $ 100 $45.45 $90.91
APT $ 66.67 $ 66.67 $ 72.73 $ 72.73

2.3.3 A Leap Forward in Valuing Active Management under Uncertainty:

Real Options Theory

Real options theory is the only method that solves the problem of the discount rate. Its

principle is to extend the results from financial options theory to capital budgeting for real

assets. Options pricing has been building on an initial seminal paper by Black & Scholes

[BS73] about the exact situation we describe in our example. The first sentence of their

abstract lays down the fundamental principle of option pricing:

'If options are correctly priced in the market, it should not be possible to make

sure profits by creating portfolios of long and short positions in options and their

underlying stocks.'

Example of option valuation

Options theory cannot be summarized in one paragraph, but some insight into options

pricing can be gained by directly applying the above principle to our example.

First consider the decision tree of figure 2-2, but with p = 1/2. Decision tree analysis

gives VDTA = $ 100. Assume A offers B the option for this price. Before accepting the

offer, B wants to make sure that there is no other investment she could make with the same

amount of money, that would have a greater pay-off. For example, she considers buying

N = 2/3 stocks of the underlying asset at S = $200 and borrowing from a bank the missing

money B = NS - VDTA = $33.33. At the end of the period, she could sell the stocks

for either N.uS (if the stock price goes up) or N.dS (if the stock price goes down) and

reimburse the amount (1 + r)B to the bank, where r is now the risk-free interest rate. For
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r = 0, the pay-off would be:

N.uS - (1 + r)(NS - VDTA) = $233.33 if stock goes up

N.dS - (1 + r)(NS - VDTA) = $66.67 if stock goes down

By buying the option instead of the stock, the pay-off would have been:

max(uS - E, 0) = $ 200 if stock goes up

max(dS - E, 0) = $ 0 if stock goes down

Therefore, spending VDTA to buy the option on the stock is actually less interesting than

investing in the stock directly, no matter what the future state of nature. Thus, VDTA does

not accurately represent the money that B would be willing to pay for the option. The

actual value, VAPT, should be smaller.

Similarly, now consider p = 1/4, and assume that B offers to buy the option from A for

the price VDTA = $50. Instead, A could sell N = 2/3 stocks, and place the money difference

B = VDTA - N.S in a bank. After one period, A would buy the stocks and retrieve from

the bank the amount (1 + r)B so that his pay-off would be:

-N.uS + (1 + r)(NS - VDTA) = $ - 183.33 if stock goes up

-N.dS + (1 + r)(NS - VDTA) = $16.67 if stock goes down

By selling the option, A would have had to pay to B:

-max(uS - E, 0) = $ - 200 if stock goes up

-max(dS - E, 0) = $ 0 if stock goes down

Therefore, getting the amount VDTA for selling an option on the stock is in this case less

interesting than investing in the stocks directly, no matter what the future state of nature.

Thus, VDTA does not accurately represent the money that A would be willing to receive for

the option. The actual value, VAPT, should be higher.

From these two examples, we can infer that there must exist an equilibrium probability,

p, and an equilibrium option value, VAPT # VDTA, that make investing in the option

39



equivalent to investing in the stock directly. In this equilibrium, the portfolio comprised of

N stocks and B = NS - VAPT in the bank has the same pay-off as the option, no matter

what the future state of nature. Therefore by hedging the portfolio against the option (i.e,

buy the equivalent of one portfolio when you sell one option, and vice-versa), you can create

a risk-free situation in which the payoffs are zero no matter what the state of nature . This

is what is called an arbitrage. The equilibrium value of the option given by this arbitrage

pricing theory (APT) is obtained by solving for (N, VAPT) the system:

N.uS - (1 + r)(NS -VAPT) = max(uS - E,0) if stock goes up (2.5)

N.dS - (1+r)(NS -VAPT) = max(dS - E,0) if stock goes down

which results in:

max(uS - E, 0) max(dS - E, 0)
VAPT = 1+r +(1- ) =+r -$66.67 (2.6)

where
(1 + r) - d

S= d 1/3 (2.7)

is called the risk-neutral probability. It is the probability value for which decision tree

analysis and arbitrage pricing yield the same option value.

Advantages of Real Options Theory

Similarly to DTA, real options theory considers only the optimal decision as a function of

the outcome of the uncertain parameter(s), thus taking flexibility into account. In addition,

options theory was initially developed for stock markets, which are continuous both in

time and in possible values. Therefore it developed models that account for continuous

probability density functions, as well as for continuous decision making.

Furthermore, real options valuation uses risk-neutral equivalent probabilities. This

makes results independent of the risk level p, as shown by the numerical example in ta-

ble 2.2. This allows to discount money at the risk-free interest rate r, which is usually

available to observation and reasonably constant with time. Thus, there is no need for

modeling the appropriate discount rate, which can actually be considered as a by-product

of the valuation.
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Shortcomings of Real Options Theory

Real options theory has never yet been used directly outside of the commercial world. One

of its baseline assumptions is that the goal of every company is to increase the wealth of its

shareholders. It has therefore never been interested in capturing non-monetary values.

Furthermore, real options theory applies the principles of options pricing to real in-

vestment situations. As we saw on the example, option pricing solves the problem of the

discount rate by carrying out calculations using risk-neutral probabilities. This relies on

the possibility to create risk-free, hedging portfolios of the option and its associated stock.

In order to apply options pricing methods to real situations, there must therefore exist

what is called a twin security, whose behavior on the stock mimics the value of the un-

derlying investment. Thus, real options theory cannot be directly applied to all kinds of

investment-making situations, in particular not to most space missions.

Chapter 4 is an attempt at developing a framework that applies decision tree analysis to

space systems while capturing some of the advantages of real options theory.

2.3.4 Problem of the Discount Rate

A Measure of Risk-Aversion: The Capital Asset Pricing Method

There is no easy way to determine the discount rate given the risk on a project. But under

certain simplifying assumptions, the capital asset pricing model (CAPM) [Mer73] can give

an indication. According to the CAPM, if the risk associated with a project is independent

on the overall risk of the market, then investors can "diversify away" this risk by investing

in many different projects. Investors will only ask a risk premium for the part of the risk

that cannot be diversified away, which is the part that is correlated to the overall market.

The risk premium p is therefore given by:

p = (E{rm} - r) ,3 (2.8)

where E(rm) is the expected return on the market, and r the risk-free interest rate. The

"beta" # of the project is a metric commonly used by economists. It represents the sen-

sitivity of the project's returns to the market's returns and can usually be evaluated by
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performing least-squares regression on historical data.

cov(a, rm) (2.9)
oam

where a is the rate of return on the project and -m the variance of the market returns.

This risk premium can also be written:

p = A cov(a, rm) (2.10)

where the market price of risk A is a function of the global market conditions only.

Generalizing the Real Options Theory Approach

As in decision analysis, in this thesis we want to determine the optimum decision path as

a function of certain uncertain outcomes, and calculate a modified net present value given

the probability of each outcome. But we also want to capitalize on the notion of continuous

probability distribution for the uncertain parameter and solve as far as possible the discount

rate problem. The assumption of close link to the stock exchange is not valid for most space

systems, so that we cannot use the results of real options theory directly. Furthermore, we

would like to define non-monetary values. The framework we will propose in chapter 4 can

be seen as a generalization of the real options theory approach for space systems. It is in

essence equivalent to a decision tree analysis with an infinite number of branches and two

distinct treatments of the discount rate as described below.

Risk-neutral investors are investors that do not require a risk premium, such as govern-

mental agencies. All costs for government projects can therefore be discounted at the

risk-free interest rate r.

Risk-averse investors are investors that do require a risk premium, such as private in-

vestors. For commercial projects, we will therefore use two discount rates.

" Costs and revenues that are certain can still be discounted at the risk-free interest

rate r.

" Costs and revenues that are uncertain require a risk-premium assumed to verify

the CAPM given by equation 2.8. This requires to make an estimate of the # of
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the project on the one hand, and of the global trends of the market E(rm) - r

on the other hand. This also assumes that these values are constant over the

time frame of the mission; though clearly a bad approximation, this is at least

an improvement over discounting everything at the rate r. We will describe

uncertain costs and revenues by their total rate of return a = ap - p, where a, is

the expected rate of appreciation (for example, the expected market growth rate).

This artifact embeds the risk premium into the growth rate of the parameter. It

can then be discounted at the risk-free interest rate r, so that some results of

real options theory can remain valid.
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Chapter 3

Cost-Effectiveness of On-Orbit

Servicing: A Traditional Approach

Few studies have quantitatively addressed the costs and benefits of on-orbit servicing. Sav-

ings of up to 40% have been asserted. This was insufficient to outweigh the perceived cost

and performance uncertainty for on-orbit servicing, which is often considered a risky new

technology. Furthermore, most previous work has been focused on very specific case stud-

ies, so that no general conclusions about the cost-effectiveness of on-orbit servicing have yet

been drawn.

A solution to this problem would be to systematically explore a wide trade space of

servicing infrastructures and space missions, using cost models as a relative tool combined

with risk assessment, in search of servicing cost-effectiveness. In a limited time such an

approach could not reach the level of detail achieved by previous work. Only first order-

of-magnitude approximations would be made possible. But this could help identify the

conditions under which servicing makes the most sense, and the directions that would be

most interesting for future research to investigate. This chapter proposes to develop a

minimal model to make such an approach practical.

To this goal, section 3.1 sets up a general trade space of space missions and servicing

infrastructures, defines the minimum parameters necessary to describe a generic on-orbit

servicing situation, and proposes metrics for on-orbit servicing cost-effectiveness. Section

3.2 describes a minimal model to estimate these metrics on the trade space. Finally, section

3.3 illustrates the typical results that can be obtained by such an approach and concludes
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on its usefulness.

3.1 The Trade Space

The trade space is made up of mission types on the one hand, and maintenance types on the

other hand. It should be as large as possible so as to yield general results, but also detailed

enough to capture the main drivers for the optimal maintenance type. The ultimate goal

is to determine under what conditions the optimal servicing scheme is significantly more

cost-effective than a traditional maintenance type. Thus, we need a first-order-of-magnitude

model of the serviced and servicing missions that captures the most meaningful cost and

performance trends.

3.1.1 Missions

Possible Missions The potential customers for on-orbit servicing can be divided into

five main types of missions, which are summarized on figure 3-1:

A. A high value asset: servicing is the only alternative for maintenance of the Interna-

tional Space Station (ISS). For such a high value asset, manned servicing with the

Shuttle is clearly cheaper than replacement. It has also been the option chosen for

the Hubble Space Telescope, even though the total cost for the so-far three servicing

missions exceeded the initial spacecraft cost. These examples suggest that there may

be a minimum spacecraft cost over which on-orbit servicing is the optimal solution.

B. New missions: on-orbit servicing would make new types of space missions possible.

For example, refueling would enable satellites to become truly maneuverable; this

could help reduce the number of satellites in a radar constellation, as will be further

discussed in section 6.1. It is also a vital technology for replenishment of reactants in

a Space-Based Laser (SBL) system*.

C. A low-Earth orbit (LEO) constellation: for systems such as the Big-LEO commercial

communication systems, the high number of satellites can help amortize the non-

recurring cost of servicing.

*http://www.fas.org/spp/starwars/program/sbl.htm
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Orbital regime

F. Multiple missions
Multiple in multiple planes

GEO D. One GEO
mission

A. One high B. New C. LEO
LEO value asset missions constellation ~..Number

Small Large ofsatellites

Figure 3-1: Trade Space Part I: Types of Missions

D. One geostationary orbit (GEO) mission: for GEO systems, not only is replacement

very expensive, but the required satellite availability is often very high. For example,

operators of GEO communication satellites are concerned about the potential loss of

market share after any down-time. Servicing would offer a new alternative to trade

availability versus cost.

E. The whole ring of GEO satellites: geostationary satellites are very numerous into

the same orbital plane and at the same altitude. Thus, not only could their number

help amortize the non-recurring servicing costs as for the LEO constellation. The

incremental velocity to maneuver between all of them would also be relatively low,

which would make servicer vehicles even cheaper.

F. Several missions in several orbital planes: the cost to develop an infrastructure for

on-orbit servicing is likely to be much more expensive that what a single space mission

could afford. It may be that on-orbit servicing becomes cost-effective only on a big

scale, when each mission pays only the marginal cost of servicing. This situation has

been compared to the national highway system in the United States, which could

never have been developed by a single citizen or company [HLWS01].

Model of a Mission The wider the trade space, the more limited the level of detail

that can be achieved in describing each mission. A minimum set of parameters is however

necessary to yield meaningful results about the cost-effectiveness of servicing; at least the

baseline cost and performance of the mission must be evaluated.
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No servicer Non-serviceable Refuelable capabilities

servicer servicer

Figure 3-2: Trade Space Part II: Types of Maintenance Infrastructures

Important factors for cost at the constellation level include the number of orbital planes

(Np), the number of satellites per plane (Npp), the orbital altitude (ao) and inclination

(io), plus the development (CD) and yearly operations (op) costs. At the satellite level,

the serviceable part (subscript C for cargo) must be distinguished from the non-serviceable

part (subscript N). For each part we consider the failure rate ( AC, AN) or the mean time to

failure (TC = 1/Ac ,TN = 1/AN), the mass (MC, MN), and the production cost (Cc, CN).

Mission performance depends on the probability that the minimum mission requirements

are met. In order to evaluate it, at least the required number of operational satellites per

plane (N,,pp) must be known.

Finally, the impact of serviceability must be captured. In the rest of this chapter, we as-

sume that all satellites are attitude-stabilized and carry either passive or active autonomous

rendezvous and capture (AR&C) equipment. Whenever existing satellites are considered,

this equipment must be added to their payload cost and mass.

3.1.2 Infrastructures

Changing orbital planes in Earth orbit requires a high incremental velocity. The majority of

the reasonable servicing infrastructure designs can therefore be captured by restricting the

trade space to launching servicing material separately into each serviceable orbital plane.

Two types of parameters are necessary to describe a maintenance (replacing or servicing)

infrastructure. The first type consists of parameters that are uncertain today, but would

be set if the technologies for on-orbit servicing were available. It includes production and
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launch rates, maximum time allowed for a maneuver (A/Tmax), probability to crash when

attempting an AR&C maneuver (PC), and minimum servicer dry mass (Mo, corresponding

to the AR&C payload with the power and structures to support it). Parameters of the

second type describe the design choices for the maintenance infrastructure and are therefore

subject to optimization. Possible maintenance choices can be classified into five families as

summarized on figure 3-2:

1. Without on-orbit servicing, which is considered as the baseline, satellites are re-

placed if they fail, run out of fuel, or need an upgrade. The number of spares kept

on the ground or on orbit, and the level of redundancy carried on-board, are sub-

ject to optimization. The number of spares increases mission cost but also mission

availability. The level of redundancy increases initial cost but reduces replacement

costs.

2. Disposable servicer carrying all cargo corresponds to the minimal servicing capa-

bility. The orbital replacement units (ORUs) to be delivered are launched on board a

servicer vehicle with active AR&C capability. The servicer is disposed of after it has

delivered all its cargo. The potentials for optimization include the number of satellites

to visit with one servicer, the level of redundancy on the satellites, and the timing of

launches.

The last three families correspond to cases when ORUs can be stored in orbit. They can be

stored floating freely on their own, each carrying passive AR&C payload (depot); or they

can be attached on an orbiting structure (station). In both cases the depot/station altitude

(ai) is subject to optimization.

3. Satellites traveling to depot/station If equipped with active AR&C and maneuver

payload, the satellites can travel to the depot or station orbit to get serviced. Each

ORU must then be attitude-stabilized and carry passive AR&C payload, which can

represent a significant increase in mass and cost. This option has two further disad-

vantages. First, the down-time in mission availability while the satellites maneuver

to the station can be unacceptable. Second, capability for full maneuver and AR&C

on the satellites may not be available if they have failed or ran out of fuel.

4. Servicer roundtrips corresponds to the case when servicer spacecraft can be re-used
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by going to the depot/station and loading new cargo. They perform roundtrips from

the depot/station to the satellites orbits until they run out of fuel. Parameters for

trade include the total number of satellites to visit per servicer (N.P.), the number

of satellites to visit during each roundtrip (N), and the number of ORUs to keep on

orbit.

5. Refuelable servicer is the same as 4 except that the servicer vehicles can be refueled

at the station. This implies at least launching fuel tanks with passive AR&C payload.

A new parameter for trade is the number of roundtrips that each servicer performs

before being refueled (L).

Though they amortize the cost of a servicer over a longer lifetime, options 3-5 are

also more risky. They indeed increase the number of autonomous rendezvous and capture

maneuvers that are performed by each servicer. In practice, there will be many possible

failure modes for a servicing operation, with various degrees of severity. For example, several

AR&C attempts may be necessary before successful docking; this could push the servicing

time over the required time, but would have no catastrophic consequence. But a failure

could also consist of a crash between a servicer vehicle and a satellite, potentially leading to

a complete loss of both spacecraft. Whatever the exact risk of the various servicing tasks,

increasing the number of AR&C performed by each servicer increases the probability that

something can go wrong, and thus decreases the servicer availability.

In the rest of this thesis, servicing risk will be described by only one failure mode: crash

with total loss of the two spacecraft, having a constant probability PC to occur at each

AR&C attempt. This is the most that can be done before more technological data becomes

available.

On-Demand versus Scheduled Each of the schemes 1 to 5 can be carried out either on

an on-demand or on a scheduled basis. In the scheduled case, a maintenance period (Ts )

is defined. This method is well suited to service components with quasi-deterministic time

to failure, such as fuel tanks for station keeping. In the on-demand case, components are

serviced as they fail. This is well suited to components with a probabilistic time to failure.
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Figure 3-3: Trade Space Matrix Summary

3.1.3 Metrics for Cost-Effectiveness

The Generalized Information Network Analysis [Sha99]

The Generalized Information Network Analysis (GINA) methodology was proposed by Shaw

& al [SMH01] as meaningful tool to evaluate space mission cost-effectiveness. It relies on

the premise that most satellite systems can be represented as information transfer networks.

Their quality of service is measured by four capability metrics:

Isolation characterizes the system's ability to isolate and identify the informa-

tion signals from different sources within the field or regard.

Information rate measures the rate at which the system transfers informa-

tion between the sources and the sinks. This is most familiarly associated

with the data rate for communication systems. The revisit rate is the

corresponding parameter for imaging systems.

Integrity characterizes the probability of making an error in the interpretation

of an information symbol based on noisy observations. For communica-

tions, the integrity is measured by the bit error rate. The integrity of a

surveillance radar system is a combination of the probability of a missed

detection and the probability of a false alarm.
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Availability is the instantaneous probability that information symbols are be-

ing transferred through the network between known and identified origin-

destination (0-D) pairs at a given rate and integrity. It is a measure of

the mean and variance of the other capability parameters, not a statement

about component reliabilities.

The Cost-per-Function Alternative architectures designed to meet the same mission

requirements are compared by means of a Cost-per-Function (CPF) metric. The CPF

amortizes the total lifetime cost over all satisfied users of the system during its life. The

total lifetime costs include costs to initial operating capability (IOC) as well as operation

costs and expected failure compensation costs. The Function is the expected total number

of times the system will meet the minimum user requirements, expressed in terms of the

four capability metrics. The CPF is therefore a meaningful quantitative measure of cost-

effectiveness.

GINA has been successfully used to analyze the personal communication systems of Irid-

ium, Globalstar and ICO; the broadband systems of Spaceway, Astrolink, Cyberstar and

Teledesic; the Air Force TechSat 21 space based radar experiment and the NASA Terri-

torial Planet Finder (TPF) system based around interferometry from separated spacecraft

[JMSOO].

Servicing Cost-effectiveness

A servicing mission is not an information transfer network in itself. It is rather a mass

transfer network. However, the final goal of the mass delivery is to enhance the capabilities

of the serviced mission. Therefore on-orbit servicing of an information transfer network

is defined as cost-effective if it reduces its Cost-per-Function compared to a traditional

approach. The major effects that servicing can have on the CPF are:

" A decrease in the initial cost because less redundancy (or smaller fuel tanks) can be

built into each satellite,

" A change in the failure compensation costs, which will not only include routine re-

placements and servicing, but also satellite and servicer replacement after potential

AR&C crashes,
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* A change in mission performance, because the probability to meet the requirements

depends on the failure compensation scheme. Through failure compensation costs and

mission performance, risk assessment is embedded in the mission Cost-per-Function.

Hypothesis

Given this definition of cost-effectiveness, a few hypotheses can serve as guides in the ex-

ploration of the design matrix summarized on figure 3-3:

HI. There is a minimum required incremental velocity per unit time over which it is cost-

effective to refuel a spacecraft.

H2. There is a minimum cost to initial operating capability over which is it cost-effective

to service a high-value asset.

H3. Limits can be drawn in a (serviceable part cost/ serviceable part mass) space as to

whether redundancy, replacement, or servicing is most cost-effective.

3.2 A Model to Evaluate Cost-Effectiveness on the Trade

Space

Testing these hypothesis requires a model to estimate the impacts of servicing on the various

components of mission cost and mission performance. This section proposes a general model

to capture the relevant first-order-of-magnitude effects.

3.2.1 Serviceable Spacecraft

Cost Savings from Repairing

One of the main advantages of a repairing capability is to decrease the initial spacecraft cost

by designing space systems for a shorter design life. The cost savings incurred by shortening

the required design life have been studied by Saleh & al [SHNO1], and summarized in section

2.2.1. A linear fit to their final result gives the cost to initial operating capability CIoc as

a function of the design life TD in the form:

C0oc = 1+ , (TD - 3 T) (3.1)
C3
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A-±B means "A drives B up"

Figure 3-4: Feedback Effect Concerning Fuel Mass

where C3 is the cost to design for an arbitrary reference of 3 years and i ~ 2.75%/yr.

Cost Savings from Refueling

If a spacecraft can be refueled, it does not have to be designed for the total velocity increment

expected over its lifetime, but rather for the maximum total velocity increment between two

refueling operations. The corresponding cost savings may be greater than what is suggested

by [SHNO1] because of a feedback effect between the fuel mass and the propulsion system

dry mass. As illustrated on figure 3-4, the fuel mass is not proportional to the spacecraft

baseline dry mass as usually assumed in the literature. As fuel mass increases, the propulsion

system dry mass and the structures mass to carry it increase too. This increase in total dry

mass in turn increases the fuel mass.

This feedback loop is usually taken into account numerically on a case-by-case basis

by spacecraft designers. A simple mathematical description would not only be insightful,

but also very useful for the implementation of a general model. Let us consider what this

formula would be by making first-order-of-magnitude assumptions.

Mass budget as a function of design- AV Let us call design-AV and note AV the

maximum total incremental velocity a spacecraft's propulsion system is designed to provide

between two servicing operations.

Recalling the rocket equation (see for example [WL99]) the fuel mass a spacecraft has

to carry increases exponentially with its design-AV :

M e Vd

J dry - )(32
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where Mt, is the total spacecraft dry mass and Is, the specific impulse of its propulsion

system.

Increasing the fuel mass also increases the propulsion system dry mass. For a given type

of spacecraft design (a given type of fuel, a given shape of the fuel tank), the dry mass of

the propulsion system is roughly proportional to its fuel mass:

M" = f, Mfuel (3.3)

where f, can be called the propulsion dry mass factor.

Similarly, the structures mass can be taken to be roughly proportional to the total

spacecraft mass at launch: let us call structures mass factor and note fat the constant of

proportionality. Finally, if servicing is available, the spacecraft does not have to be launched

with all its fuel: let c be the fraction of the total fuel mass that is carried on the spacecraft

at launch. Then:

Mt = ft( Mry + e Mfuel) (3.4)

Combining equations 3.2, 3.3 and 3.4 gives a linear equation for the total spacecraft dry

mass:

Md = Mdase + f Mfuel + fst fp Mfuel + fat E Muel
/ AVd

OtM = M base+(1+fp+fst fp+ffst) e 1 Mtotdtry dry dry

where Mbase is the baseline spacecraft dry mass without its propulsion system and the

structures to support it during launch.

Solving this equation shows that the total spacecraft dry and wet masses behave as the

following functions of the design-AV :

Mbase

M t dry

1 -(fp + fatfp + e ft) (e S ) 9

Mlaunch = Mj 1 + e e4 - ) ]

(3.5)

(3.6)
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FAA. Physical Upper Bound on A V (I = 320 s, f = 15%)
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Figure 3-5: Physical Upper Bound on Design-Incremental Velocity for f, = 15%, I,p = 320 s

A linear analysis would have given:

Mto -Mbase Nip
dry dry 1 + (fP + fstf, + E fat) (e -

Comparison with equation 3.5 shows that this is a valid approximation only when the dry

mass factors and the incremental velocity are very small: fat, f, << 1 and AVd << g Isp.

Upper bound on design- AV Equation 3.5 places a physical upper limit on the satellite

maneuverability:

AVma < Isp g ln [1 + (Efst + fp + fpfst) 1 ] (3.7)

Figure 3-5 plots this upper bound as a function the structures mass factor fst in the special

case f,, = 15% and I,, = 320 s (chemical propulsion). Wertz & Larson [WL99] show that

current design practices typically lead to fat ~ 20%. State-of-the-art technologies could give

f,t ~ 10%. In either case, figure 3-5 shows that launching the satellites dry (e = 0), and

refueling them after launch, increases their maximum maneuverability AVmax significantly.

This is due to the fact that any mass present at launch increases the structures mass required

to protect the spacecraft from launch stresses.

Design-AV as a function of design life Let us further explore how the above mass

budget changes when a spacecraft is made refuelable. A typical spacecraft AV-budget is
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Mass Savings from Retueling and Launching Dry
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Figure 3-6: Mass Savings from Refueling and Launching Dry for r = 3 yr, f, = f't = 15%,
A4Ts = 100 m/s, AVtk = 30 m/s/yr, and AVD = 200 m/s

made up of three components:

1. An incremental velocity for initial orbit insertion A14n,

2. An incremental velocity for regular station keeping, which can be described as a yearly

required AVtk,

3. And an incremental velocity for de-orbiting at end of life AVD.

If a spacecraft is designed for a lifetime TH without refueling, then its design-AV must be

AV = A~In + AVtk TH + AVD and it must launched carrying all its fuel, so that e = 1.

If on the other hand a spacecraft can be refueled every -r years, its design-AV is reduced to

AV = max (Alin,, A Vtk r, AVD). In addition, it could be launched without its fuel and

refueled right before final orbit insertion, so that e = 0.

Figure 3-6 shows the corresponding mass savings for numerical assumptions typical of

a satellite in low-Earth orbit (LEO). As the design lifetime increases, the fuel for station

keeping makes up a larger and larger fraction of the satellite mass, which makes refueling

more and more interesting. Even for design lives as short as 3 years, up to 20% of a

spacecraft mass can be saved by making it refuelable.
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3.2.2 Maneuver Modeling

Maneuver modeling is key to sizing the spacecraft that moves in the servicing process, be it

the serviceable satellite itself or a servicing spacecraft. Servicing maneuvers are of at least

four kinds as described below:

Changes in inclination Even if the servicing material is launched into the satellites

orbital plane, a slight difference in inclination (Ai) may have to be compensated for. The

corresponding incremental velocity for an impulsive burn is:

AVinc = 2 Vo sin (3.8)
(2

where Vo is the orbital velocity at the satellite's altitude ao.

Transfers from an orbital altitude (ao) to another (ai) In order not to impinge

on the mission, the servicing material will be stored at a slightly different altitude. In the

case of impulsive burns, a simple Hohmann transfer can be used to maneuver between two

coplanar circular orbitst. Defining a = al/ao:

V V 1 2 2a
A iVa 1 + a 1 (3.9)

V ' 1 +0a 1 + ae

A Hohmann transfer is also used for de-orbiting any spacecraft at end of life, requiring an

incremental velocity AVD. In the case of a LEO satellite or servicer, the transfer brings the

spacecraft into an altitude at which it will quickly burn into the atmosphere (typically 150

km). A GEO satellite is instead boosted into a higher altitude, at which it will not impinge

on any future mission.

Phasing maneuvers within one orbital plane Circular phasing is useful for a servicer

to go from a satellite to the next. It can be performed by slightly raising the apogee

and waiting for the difference in period to cancel the difference in phase. The impulsive

incremental velocity for changing the phase by an angle # in less than a maximum allowed

tMore details are provided in appendix B.1.1
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time ATmax ist:

2
A =Vph = 2 2- - 1 (3.10)
V Kl -7027r

where 1 = Integer part of ATmax + -
To 27r

-1 if # > 0 and apocenter is raised

and c = 1 if 4 < 0 and pericenter is lowered

(0 otherwise

When the time allowed for the maneuver is much larger than an orbital period, then this

incremental velocity becomes inversely proportional to ATmax:

___ I TO _when To << ATmax (3.11)
Vo 27r ATmax

Fine maneuvers for the AR&C proximity and final phases These maneuvers are

made up of very small velocity increments, whose sum (AVf) depends on the AR&C control

algorithms. The higher the required AR&C reliability, the higher the necessary AVf. As

a first-order approximation, let us use a conservative AVf = 150 m/s and assume a high

AR&C reliability.

3.2.3 Servicing Infrastructure

Consider a servicer that has to visit Np, satellites at an altitude ao and has the capability

to load more cargo and to be refueled at an altitude a1 . This is the most general case as

defined in section 3.1. Instead of looking for the optimal maneuver scheme by numerical

simulation of all possible scenarios, this section proposes a mathematical representation

of the servicer mass budget as a function of its maneuver scheme. This will fasten the

exploration of the servicing trade space.

Servicer Maneuver Scheme For all infrastructure types but type 3, the servicer's ma-

neuver scheme can be described in terms of three integers (N, L, K).

IMore details are provided in appendix B.1.2
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Phasing

N satellites visited during each roundtrip
L roundtrips performed before refueling

Figure 3-7: Schematic of Servicer Maneuver Scheme

* N is the number of satellites that a servicer visits before loading more cargo. In the

most typical case, these satellites are equally spaced within the same orbital plane, so

that the maneuver from a satellite to the next always involves the same incremental

velocity: AVp = AVh + AVf. We call vp the normalized velocity increment required

to go from one satellite to the next:

_A Vh + AVf
Vp = A1 p + (3.12)

I, g

After visiting N satellites, the servicer returns to the station/depot altitude where it

loads more cargo, then maneuvers back to the constellation altitude to visit the next

N satellites. We call VH the normalized velocity increment required to go from the

servicer orbit to docking with one satellite. This is typically the same as the incre-

mental velocity to go from the satellites up to docking with cargo, and is performed

using a Hohmann transfer:
AVH + AVf (3.13)

I= p g

* L is the number of sets of N satellites a servicer visits before running out of fuel.

* K is the number of times a servicer is refueled to service N L more satellites. Thus

the total number of satellites per servicer is N,,, = N L K.
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Finally, VD is the normalized velocity increment to de-orbit:

VD = AVD (3.14)
Isp g

This maneuver scheme is reminded by figure 3-7.

Servicer mass budget The effective dry mass of a servicer decreases over time as it

delivers a mass MC to each satellite. Appendix B.2 shows that its fuel mass is a function of

its dry mass M vicer, the delivered mass Me, and the maneuver scheme (N, L) as follows:

Mservicer = A Mjsevicer + B MC (3.15)

f uel (3r15

where A = exp[L(N-1)vp+2LvH +vD-I

and B = exp[L(N -1)vp+2LvH - 1 (eNvp -1 vHN
exp [(N -1)vp+ 2vH -1 evP _ 1

Adding to the servicer minimum dry mass (Mo) the propulsion system dry mass and the

structural mass to carry the propulsion system and the cargo yields:

Mservicer = Mo + (fp + Efst + f, ) Mservicer + fstc N MC (3.16)dry Pft fuel (-6

where fstc is a structures mass factor corresponding to cargo mass (fstc > fst because

the cargo has to be moved for delivery). Solving the linear system given by the above

two equations gives the servicer dry mass as a function of its maneuvering scheme and its

specific impulse:

Mservicer - Mo + fstc N Mc + (fp + E fst + fstfp) B Mc (3.17)
dry 1-A(fp+efst+fstfp)

We note that this places a physical upper limit on the extent of the servicer maneuvers in

the form:

L (N - 1) AVp + 2L/AVH + AVD <Ispg ln 1 +
fp + f st + fst 1,

Optimizing the servicing infrastructure The total number of servicer vehicles and

the dry mass of each servicer are the two main drivers of the total servicer cost. For a given

number of satellites per servicer Nsps, equation 3.17 makes it possible to find the servicer
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maneuver scheme that minimizes servicer dry mass. A cost model will be the tool to trade

this dry mass against the number of servicers Nerv = Nspp/Nsps = N8,,/NLK.

3.2.4 Markov Model

Random Failures Satellite failures that are not deterministic are usually modeled by a

failure rate A(t) such that probability Pf to be failed at t + dt is only a function of the

probability to be failed at t: Pf(t + dt) = Pf(t) + [1 - Pf(t)] A(t)dt. This is a Markov

process. Constellation performance, defined as the probability to meet the requirements as

a function of time, is therefore modeled in the GINA framework via a Markov matrix Am.

Am contains failure rates such that the vector of state probabilities (P) is described by:

P= AMP (3.18)

On-Demand Maintenance On-demand maintenance can be modeled by a repair rate

p such that the probability for a failed device to be repaired/replaced during t and t + dt is

pdt. If the failure rates and the repair rates are all constant, the system remains a Markov

process; the Markov matrix now contains both A's and p's.

Deterministic Failures Satellite failures that are quasi-deterministic, such as fuel con-

sumption for station keeping, cannot be modeled by a failure rate. We take these failures

into account by incorporating a change in the Markov model initial conditions at the ex-

pected date of failure.

Scheduled Maintenance A simple change in the initial conditions is not adequate for

scheduled maintenance because of two kinds of risks. First, the time of maintenance is not

perfectly deterministic; a repair rate is a simple way of modeling this uncertainty. Second,

there is a certain probability of failure (for example AR&C crash). A way to take both these

effects into account while keeping a Markov process is to multiply the number of states in

the model. If Nsched is the number of scheduled events, each state is divided into (1 +Nsched)

sub-states, going from never maintained until maintained Nched times. At each scheduled

time, the Markov matrix is changed to incorporate new repair rates for transition to the

next sub-state.
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Table 3.1: Markov Model Cases Summary
Probabilistic Occurrence Deterministic Occurrence

Failure Failure rate A Change in the conditions
appears in matrix at time of failure TF

Maintenance Repair rate y Repair rate y appears
appears in matrix at time of repair Tsched

Number of Failures The expected number of times that a system has to be "repaired"

(serviced or replaced) from a state k is simply:

TH

Nrep/serv,k = J yk Pk(t) dt (3.19)

0

where Pk(t) is the probability to be in the failed state k (result of the Markov model),

and pk is the repair rate from this state. This relation is valid for the expected number of

satellite replacements as well as for the expected number of servicing operations over the

mission lifetime TH.

Number of Satisfied Users The mission's Function is the result of the Markov model

on the one side and a market model for the information transfer network on the other side.

Let Mj(t) be the instantaneous number of satisfied users per unit time in the operational

state j. Then the Function is:

TH

Fn=Z P(t)Mj(t)dt (3.20)
S0

3.2.5 Cost Modeling

Three spacecraft cost models are publicly available: the unmanned spacecraft cost model

(USCM7), the small satellite cost model (SSCM8) and a rule-of-thumb industry model.

These models are based on cost-estimating relationships (CERs), which are equations relat-

ing cost to given design parameters. These relationships were derived from historical data.

Their validity is therefore limited to a range of application, and is not exact but associated

with a standard deviation.
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" The CERs for the unmanned spacecraft cost model 7th edition (USCM7) are repro-

duced in [WL99] (tables 20-4 and 20-5, p 795-796). For each spacecraft subsystem,

this model provides CERs for the theoretical first unit (TFU) cost, which represents

the recurring part, and for the research, development, test and evaluation (RDT&E)

cost, which represents the non-recurring part. The applicability ranges correspond to

the traditional way of designing satellites.

" The CERs for the small satellite cost model (SSCM8) are reproduced in [WL961. This

model is more suitable to small, lightweight spacecraft designed with an aggressive

cost-reducing approach. For convenience of use, each CER gives the total (recurring

plus non-recurring) costs as a function of only one or two design parameters; when

more parameters are known, the CERs can be combined to improve the accuracy of

the cost estimate.

" The rule-of-thumb (ROT) industry model is convenient when very little information

is available about the design. It relies on the premise that spacecraft dry mass is

the main cost driver. The theoretical first unit cost CTFU is simply proportional to

dry mass and the development costs scale with CTFU by a technological factor F. A

typical numerical scale is CTFUMdry = 77, 000 FYO0$/kg [GVH+97].

In the case of a servicer vehicle, the different subsystems fall into the applicability

ranges for different cost models. While the payload, communication, and power subsystems

correspond to SSCM8-type satellites, the propulsion and attitude control systems require

the use of USCM7. This is due to the fact that cost models are not valid for such a

spacecraft because it differs too much from the historical data that was used to derive

them. Figure 3-8 illustrates this problem. Since a bottoms-up cost estimate is not possible

when exploring a large trade space, the most that can be done to mitigate the problem

is to use a combination of the three cost models. The total standard deviation o- is then

obtained from the individual standard deviations according to:

I =(3.21)
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x 10' Comparison of Cost Models
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Figure 3-8: Comparison of 3 Cost Models for 4 Typical Servicer (MC = 200 kg)

An uncertainty OTRL = 25% linked to the low technology readiness level (TRL) of on-orbit

servicing must be added to the servicing cost uncertainty obtained from the cost models:

os = U2 + aTRL (3.22)

The total production costs are obtained from the TFU cost by applying a standard

learning curve factor:

Cp = NB CTFU (3.23)

ln (100%/S)
with B = 1- 2

where as recommended in [WL99], S = 95% when less than 10 units are produced, S = 90%

when the number of units produced is N E [10; 50], and S = 85% for more than 50 units.

Launch costs are minimized by a look-up-table method as a function of spacecraft mass,

number of spacecraft, number of orbital planes, and launching nation; (WL99], table 20-18

p 812 is used as reference.

The same first-order model of operations costs [BL96] is used for the serviced mission

and the servicing infrastructure. Operations for scheduled servicing are considered to occur
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Figure 3-9: LEO 66 Market Forecast as Adapted from [GVH+97 (1997)

within the year of the event only. For on-demand servicing, a minimal operations team is

considered to be constantly available.

Initial costs are spread to yield a funding profile ([WL99] equation 20-3), which is added

to yearly operations, replacement, and servicing costs. Total costs are finally discounted

to account for the time value of money and calculate the net present value of the total

expenses.

The model is now ready to be applied throughout the trade space matrix (figure 3-3).

Although several applications were considered, only one result will be analyzed here, chosen

for its representative features.
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3.3 A Typical Result: LEO Constellation of Communication

Satellites

Problem Statement

Let us consider refueling a LEO communication mission, taking mission parameters on the

example of the Iridium constellation [FRGT98], hereafter called LEO66. As seen by decision

makers before the launch of the mission, the market was expected to grow quasi-linearly

as described in [GVH+97] and illustrated on figure 3-9. If the actual market had followed

this forecast, then it would have been interesting to extend the mission lifetime beyond its

initial requirement of 8 years.

Three design alternatives The goal of this case-study is to compare three design alter-

natives, all aimed at achieving an effective lifetime of 16 years:

1. Keep the baseline required lifetime of 8 years and replace the satellites after 8 years,

2. Keep the baseline required lifetime of 8 years and refuel the satellites after 8 years.

The non-recurring costs of building an on-orbit station are too high for only one

mission. The mission cannot afford to move the satellites to a depot because mission

availability is critical for market capture. The only choice is therefore infrastructure

type 2, where servicers are launched with their cargo into each orbital plane. The

refueling can be scheduled because fuel consumption is quasi-deterministic. The main

servicing design parameter is the number of satellites to be refueled by each servicer.

3. Design the spacecraft propulsion system for 16 years of operation. This increases the

cost to initial operating capability, but requires no scheduled maintenance.

Tables 3.2 and 3.3 summarize the numerical assumptions.

Results in the Baseline Case

In the baseline case, the satellites propulsion requirements are dominated by the fuel to

de-orbit, which accounts for almost a third of their total mass. Servicing makes it possible

to do away with this weight by refueling at end of life.

The Cost-per-Function is here the lifetime cost per billable minute as defined in [GVH+97.

Figure 3-10 compares several servicing schemes with the two traditional alternatives; total
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Table 3.2: LE066 Constellation Assumptions
Parameter Description Name Value Source

Constellation altitude ao 780 km [FRGT98]
Satellite launch altitude aoo 650 km [FRGT98]
Number of orbital planes N, 6 [FRGT98]
Number of satellites per plane Nsy, 12 [FRGT98]
Sats per plane to meet the reqs Nnsp, 11 [FRGT98]
Satellite specific impulse Isps 320 s Chemical
Sat mean time to failure (MTTF) 1/A 9.18 yr [FRGT98]
Time to replace one satellite 1/p 3 months Spare available
Satellite development cost factor FS 4 State-of-the-art
Discount factor d 7% Observed
Ballistic coefficient BC 50 kg/m 2  Assumed

Table 3.3: LE066 Servicing Assumptions
Parameter Description Name Value Source

Probability to crash at AR&C PC 0.1% Parameter
Servicer specific impulse Ispo 320 s Chemical
Servicer launch altitude al 700 km Assumed
Error in servicer inclination Ai 10 Conservative
Time allowed for approach A Tmax 2 days Typical
Final approach time ATf 1 day Typical
Docked time ATdocked 1 day Typical
Final approach AV AVf 120 m/s Conservative
Attitude control AV A Vy, 30 m/s/yr Typical LEO
Servicer development cost factor F 6 New technology
Structures mass factor fst 0.1 Optimistic
Propulsion dry mass factor f, 0.1 Optimistic
Structures mass factor for cargo fstc 0.2 Estimated
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LEO 66: Baseline
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Figure 3-10: LE066: Baseline Case Costs

costs are indicated in place of Cost-per-Function because the Function adds up to almost

the same amount for all cases. The most striking result is the extent of the uncertainty

bars, which outweigh the cost differences; we will return to this issue. Without considering

uncertainty bars, the optimal servicing scheme appears to be 6 satellites per servicer, which

corresponds to two servicers per orbital plane). First suppose that we want to improve

flexibility, defined here as the ability to extend the mission life as a response to unexpected

market growth; then refueling after 8 years is hardly more cost-effective than replacing the

whole constellation. If 16 years was the initial desired lifetime, refueling is even less inter-

esting. The satellite's AV requirements are low enough that they can carry fuel for 16 years

without significantly increasing lifetime costs.

Allowing the parameters to vary and studying the response of the Cost-per-Function

indicates what are the key parameters for servicing cost effectiveness.

Most Relevant Sensitivities

Sensitivity to Nominal Failure Rate In the baseline case, the satellites failure rate

is so high that even with refueling, 75% of the constellation has to be replaced before end

of life. At lower failure rates, empty fuel tanks become the dominating reason for satellite

failure, increasing the relative advantage of refueling. Figure 3-11 illustrates the results for
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LEO 66 with 4 x Reliability
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Figure 3-11: LE066: Costs for a Higher Reliability

four times the nominal satellites mean time to failure.

Sensitivity to altitude The lower the constellation altitude, the higher the AV, needed

to compensate for atmospheric drag. Under an altitude of around 400 km, it becomes

prohibitive to carry fuel for 16 years. The advantage of refueling thus increases as altitude

decreases, even though shorter refueling periods or bigger servicers become necessary. Figure

3-12 illustrates the results at an altitude of 400 km.

Sensitivity to AR&C Risk The cost-effectiveness of refueling is sensitive to the prob-

ability to crash when attempting AR&C. Increasing PC both decreases the mission perfor-

mance and increases its failure compensation costs. Figure 3-13 shows how for PC higher

than one percent, the mission performance, which is the probability that the minimum

number of satellites necessary to meet the requirements are available, drops below 70% just

after each refueling event. This is an unacceptable risk when market capture is at sake.

Conclusion

This example is typical of all the results that can be obtained with the model we proposed,

and that have been obtained by previous work on other special cases. Although situations
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LEO 66 @ 400 km, 4 x Reliability
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Figure 3-12: LE066: Costs at 400 km Altitude
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Figure 3-13: LE066: Sensitivity to PC: Performance and Cost per Billable Minute
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can be found for which servicing proves cost-effective, the cost advantage always remains

smaller than the cost uncertainty. This uncertainty is made up of two parts: the uncertainty

in the constellation cost and the uncertainty in the servicing cost.

The uncertainty in the constellation cost arises from the standard deviation in the

CERs used. CERs are designed from historical data to model the way costs depend on

various design parameters. Their standard deviation reflects an uncertainty in absolute

cost, but the relative cost difference between various designs are usually well captured.

Thus cost uncertainty is only a minor limiting factor for the conclusions in terms of relative

constellation costs.

However, we saw that a servicer spacecraft would be very different from historical satel-

lites, so that cost models would not be directly applicable. Therefore, the uncertainty in

the servicing price is here an absolute limiting factor, which makes any definitive conclusion

about the cost-effectiveness of servicing impossible. This has also been one of the major

problems faced by previous work on on-orbit servicing.

It is however interesting to note that at least one conclusion can be drawn by considering

figure 3-10: if servicing were free, the lifetime costs for a serviceable design would be 10%

lower than for a 16-year design. Whatever the price of servicing, the potential cost savings

for this case cannot exceed this limit. This is an indication of the intrinsic value of servicing.

It suggests a new perspective on on-orbit servicing, which we will now explore in more detail.

72



Chapter 4

A General Framework for the

Value of Servicing Under

Uncertainty

This chapter proposes a general framework that represents a new perspective on on-orbit

servicing for space systems.

Based on the issues faced by the traditional methods to study on-orbit servicing , sec-

tion 4.1 identifies the need for two major changes of approach as suggested by Saleh & al

[SLH01]. First, the value of servicing should be evaluated separately from its cost. Second,

a framework should be developed to account for the value of the flexibility provided by

on-orbit servicing.

Section 4.2 constitutes a first attempt at proposing such a framework. It lays out

fundamental principles for the valuation of flexibility, which will be used in the next chapters

to develop models for the value of servicing in various special cases.

4.1 Motivation and Approach

4.1.1 Model Motivation: Inadequacies of Previous Methods

Separating Servicing Value from Servicing Cost

In the common approach used by previous work and expanded in chapter 3, whether on-

orbit servicing proves more interesting that traditional methods is the result of a trade-off
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between two main effects that we may summarize as: the cost savings from servicing versus

the price the space mission is going to pay for servicing.

The cost savings from servicing depend mainly on the satellite design and the elements

to be serviced. For any given space mission, they can be estimated with reasonably good

accuracy. Using typical design assumptions and cost models based on historical data, their

order of magnitude can even be estimated on a large trade space of missions. For example,

we saw how Saleh & al [SHN01} estimated the cost penalty to design a typical spacecraft

for a given lifetime.

On the other hand, the price that a space mission will have to pay for servicing depends

on two factors that are both still very uncertain:

1. The cost of servicing depends not only on the cargo to be delivered to the satellites,

but also on the technologies, design choices and cost models assumed for the servicing

architecture. Servicing mass depends a lot on orbital dynamics and therefore on the

specifics of the constellation to service on the one hand, and on the specifics of the

servicing propulsion scheme on the other hand. Any conclusion can only apply to the

type of infrastructure that was assumed, not to on-orbit servicing in general. More-

over, chapter 3 showed that cost models are not adequate for such an infrastructure.

Therefore even these limited conclusions bear a very high uncertainty.

2. Furthermore, the price of servicing is not necessarily equal to its cost. The price

also depends on the development policy for the infrastructure: the cost of the whole

architecture could be paid by one space mission, or shared among several missions.

Even better, an infrastructure could be developed by a governmental organization, so

that only the marginal cost of servicing would be charged to individual space missions

[HLWSO1].

Estimating the cost savings from servicing separately from the servicing price would

therefore present several major advantages. From the conceptual viewpoint, it could serve

as a good indicator of the maximum price that a space mission would be willing to pay for

servicing. This would correspond to the intrinsic value of servicing, independently of the

servicing architecture. Missions for which servicing could make sense would be the ones for

which servicing value is significant compared to total mission value. Furthermore, it would

significantly reduce the uncertainty in the conclusions drawn.
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Since no infrastructure for on-orbit servicing exists yet, results which would give some

guidance as to what types of technologies to develop, what space missions to target as

potential customers, and what cost cap not to exceed, would be very valuable. This is the

type of results that can be obtained when studying the value of servicing separately from

its cost.

Accounting for the Flexibility Provided by On-Orbit Servicing

One of the main advantages of on-orbit servicing is that it gives decision makers options to

react to sources of uncertainty in the future.

The most obvious source of uncertainty consists of "random" failures; for example, a

satellite launched into the wrong orbit could be refueled to maneuver to its design-orbit; or

electronic components victim of single event upsets could be replaced. But another major

source of uncertainty is becoming more and more problematic. Spacecraft design lifetimes

are typically much longer than the time scales on which markets and technologies evolve.

By the time a spacecraft is launched, there is a fair probability that it will be obsolete or

not respond to any actual market. With on-orbit servicing, spacecraft could be designed

for shorter lifetimes with an option on life extension if market demand is high, and/or with

an upgrade option to avoid technological obsolescence. More generally, on-orbit servicing

provides decision makers with the option to modify their mission to respond to changes in

its requirements after the system has been fielded. This is a perfect example of flexibility

as defined by Saleh & al [SHOO].

Thus the price that a space mission would be willing to pay for servicing is greater than

the potential cost savings incurred if choosing servicing instead of replacing. It may even

be that a serviceable mission is more expensive in a strict sense, but provides the mission

with so much flexibility that it is more interesting than a traditional design. The value

of servicing should therefore account for the value of flexibility. This important advantage

of on-orbit servicing over traditional methods has never been quantified by previous work,

which relied on traditional valuation.

Building on decision tree analysis and real options theory, this chapter proposes a frame-

work to account for the value of flexibility in modeling the value of space missions faced

with external sources of uncertainty.
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Table 4.1: Examples of Options Available to Space Missions
Source of Option for Additional Option for
Uncertainty Traditional mission Serviceable mission

Operations cost Abandon
Random failures Replace Refuel, Repair
Market demand Abandon-or-replace Abandon-or-service
Technology Upload software Upgrade

Replace (e.g. computer)
New requirements New mission Modify

4.1.2 Example of Options Available to Space Missions

All space missions are at least flexible to some extent: the course of action for future

operations and maintenance is never perfectly set on the day the mission it launched. In a

way, the value of space missions has always been underestimated by not taking this flexibility

into account.

The option to abandon if operational costs turn out to be to high compared to mission

benefits is an example of option available to all space missions and that has been exercised in

the past. Recent examples include the Iridium constellation, which was abandoned because

its market turned out to be too low; or the NEAR (Near Earth Asteroid Rendezvous)

spacecraft, which was abandoned though operational in order to save money. Section 5.2

studies the value of this option for the case of commercial missions.

The option to replace for life extension or after a random failure is another type of

option available to all space missions. This expensive option has been exercised for very

successful missions only, such as key scientific and military missions, or in-the-money geo-

stationary communication satellites. For missions with high uncertainty, the value of the

option to replace for life extension should be traded against the cost to design for a long

lifetime. This trade has rarely been performed in the past, because of the high cost of

replacing, but also the lack of a way to quantify flexibility.

The option to service for life extension would only be available to serviceable mis-

sions. Traditionally seen as an alternative to replacement, this option also offers an in-

teresting potential to trade spacecraft design life against flexibility. We will see in section

5.3 how this trade leads to short optimal design lives for commercial missions with highly
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uncertain markets.

The option to upgrade would be available to serviceable spacecraft to avoid technologi-

cal obsolescence and improve their performance with respect to their baseline requirements.

The same type of option is also often exercised by traditional systems when they upload

new software to their satellite. Another example is the periodic upgrade of the Hubble Space

Telescope's components.

The option to modify would make it possible for serviceable spacecraft to respond to

changes in their requirements. For a commercial mission, this could mean addressing new

markets, such as data communication instead of voice. For a military mission, an example

of an uncertain requirement is the location of the main theater of action; chapter 6 explores

this option.

4.2 Servicing as Providing Options for Space Missions under

Uncertainty

The next chapters will propose models to estimate the value of on-orbit servicing for different

types of missions (commercial, military), having different types of options (abandon, replace,

service, upgrade, modify) to react to different sources of uncertainty (market, requirements,

technology, random failures). These models all deal with the same abstract goal: estimate

the value of having options to react to the future resolution of uncertainty.

This section lays out fundamental principles that are common to any option valuation.

These underlying principles, which apply to real options theory as well as decision tree

analysis, can be seen as a general framework to embed the value of flexibility into the

estimation of space mission value.

4.2.1 Basic Elements of the Framework

This subsection defines the basic elements required to fully describe a situation where op-

tions are available to adapt to the resolution of uncertainty. These elements are the building

blocks of the framework. Their particular values and behaviors must be defined for each

case under study as the first step in the valuation process.
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Uncertain parameter X In a world of certainty, options have no value. Therefore the

cornerstone of any option valuation is modeling the uncertainty in the future states

of nature. At least one uncertain parameter is required, which can be modeled as an

instantaneous stochastic process X*. This is a generalization of decision tree analysis

to account for continuity in the possible states of nature. If several parameters are

uncertain, X can be taken to have several dimensions: X = (X 1 , ..., Xn).

The most fundamental assumption on this source of uncertainty is that it should be

external to the mission and not be affected by decisions taken after the system has

been fielded. This is a valid assumption when desiring to capture how the availabil-

ity of options reduces risk not by reducing uncertainty, but rather by affecting the

consequences that uncertainty has on the mission.

In the following, we will also assume that the uncertain parameter follows a Markov

process: the distribution of X at time t > to knowing the path X([O; to]) is only a

function of X(to); in other words, only the latest information about X is relevant.

We will note pt(xlxo) the probability density function of X at t knowing X(to) = xo.

The main reason for this assumption is that it greatly simplifies the valuation process

while allowing to capture some aspects of flexibility. It is reasonably valid for sources

of uncertainty such as market dynamics, military contingency location, or random

failures.

Mission horizon TH In order to evaluate alternative mission scenarios on a fair basis,

their costs and benefits should be compared over the same elapsed time [0; THI, where

TH will be called the mission horizon. For example, satellites can be designed for

lives shorter than the mission horizon, in which case they may have the option to

be serviced or replaced at the end of their design lifetime. This option must be

considered in order to fairly compare them with satellites designed for a lifetime equal

to the mission horizon.

The mission horizon must be long enough for the options to have a chance to be

exercised. It must also be short enough to represent what is actually of interest to

decision makers at t = 0.

*Appendix A has a few more details on stochastic processes
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Decision points Tk The valuation of options relies on the existence of decision points,

which are times in the future when decision makers will have the option to choose

between several alternative decisions. For example in the case of an option on life

extension, the first decision point would occur at the end of the design lifetime, then on

a periodic basis. In the case of on-demand servicing, decision makers have the option

to continuously revise their strategy. This can be captured by modeling decision

points as periodic with a very short period. It corresponds to a generalization of a

decision tree to account for continuity in the decision points.

The time To = 0 can be considered as the first decision point, at which there is a

choice between doing nothing or building and launching a space system. The decision

points are finally To, ...TN with 0 = To < Ti < ... < TN < TH. For each Tk let us call

the next period and note Tk the time to the next decision point:

Tk = Tk+1 - Tk

with the convention TN = TH - TN. For simplicity of notation, for any variable Y we

will note Yk the quantity of Y incurred during the kth period: Yk = Y[Ta;T+1

Modes of operation (m) At each decision point, alternative decisions can be represented

as several possible modes of operation as suggested by rigeorgis [Tri96). Typical

examples of modes of operation that could be available to space missions are: (0)

abandoned, (1) operational in its initial design, or (m) operational with modification

m. We will mark the value of any variable Y in mode of operation (m) by an up-

perscript: Y(m); the value of any variable linked to a switch from mode (n) to mode

(m) by Y(n-+m); and any variable linked to a history of successive modes of operation

(Mi1,m2, ... mn) by Y(m,m2 ... m.n)

Utility metric U The utility metric is a generalization of the notion of revenues encoun-

tered in real options for commercial missions. For ti < t 2 , U([ti; t 2]) is a measure of

the aggregated benefits from the mission over the time interval [t1 ; t 2]. These benefits

are not necessarily monetary.

In most non-commercial cases, there can be several choices for the utility metric. For

example, the benefits from a space-based radar mission could be the total number of
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kilometer squared protected, or the total time a given area has been protected. The

right choice should be the one that most describes what is of importance to decision

makers. It must be such that, among several architectural alternatives with the same

cost, decision makers would choose the one offering the highest utility function.

The utility metric can be a function of the uncertain parameter X; for example,

market returns are a function of market demand. In such a case, U is a stochastic

process.

Utility rate u For any meaningful model, mission benefits are an increasing function of

time. In any given state of the system, there is be an instantaneous utility rate u such

that u = dU/dt. If this utility rate depends only on the present state of the system,

then we can say that utility is time-additive, i.e. total utility is the sum of past and

future utility.

For example, the utility rate of a commercial mission would be its revenues per unit

time. For an information-disseminating network, it would be the number of satisfied

users per unit time. In both cases, the utility incurred over two years is the sum of

utility incurred over the first year and the utility incurred over the second year.

Matrix of switching costs C The cost metric is the sum of all the expenses associated

with the mission and its options. For ti < t 2 , C([ti; t 2]) is the present value of the

aggregated costs of the mission over the time interval [ti; t 2). Costs are always time-

additive. Certain cost components may be a function of the uncertain parameter X:

in such a case, C is a stochastic process.

Three types of costs are associated with any mission:

1. The initial cost to develop, produce and launch the space system. This cost is

commonly called cost to initial operating capability (IOC), and will therefore be

noted Cwoc. It is a function of the mission type, the design life of the system,

and the required reliability at end of life.

2. The cost to operate the system, which can often be represented by a constant

operations cost per unit time oM). In this case the present value at Tk of the
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cost to operate in mode (m) during the kth period is:

O(") = cd(rk, r)o() (4.1)

where we define the cumulative discount function cd by

Ir i f r= 0
cd(r, r) = (4.2)

(1 - e-") /r otherwise.

3. The present value Cs"~" of the costs to transition from mode (n) to mode (m).

These are the cost incurred at a given time when the current mode is (n) and

the decision to choose mode of operation (m) is made. Servicing and replacing

costs are typical examples. Note that deciding to remain in the same mode of

operation can also incur a cost, so that Cs(n-n) 0. For example, in order

to stay operational at the end of its design lifetime, a spacecraft needs to be

serviced. The fact that a certain mode (1) may not be accessible from mode (m)

is taken into account by setting Cs* = oo; for example, a mission cannot be

re-initiated once its spacecraft have been de-orbited.

We define the total switching cost C ,m) from mode (n) to mode (m) at a decision

point Tk as the sum of all costs incurred during the kth period after deciding to switch

to mode (m). This includes not only servicing costs, but also operations cost during

the next period. Thus:

Cn-m) Cs(n-m) + O(")
k kmk

The various switching costs from any mode of operation to any other mode of operation

make up a matrix of switching costs Ck = (Cm-n)

Note on discounting costs Two types of discount rates are necessary for the valuation

of non-financial options such as space systems, as was discussed in section 2.3:

* Costs and revenues that are not subject to uncertainty, or that mimic the behav-

ior of a twin-security that is traded on the stock exchange, can be discounted at

the risk-free interest rate r, but
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Table 4.2: Examples of Possible Value Functions

Commercial Military Scientific

Utility U Revenues Utility f" GINA Function
Mission value V U- C U/C U/C = 1/CPF

(U - C)/C max(U; C < cost cap) max(U; C < cost cap)
Source of uncertainty Revenues Requirements Funding

* Costs and revenues that are uncertain and not linked to a twin-security must be

described by a rate of return a' = r + 6.

Value metric V The value of a mission is a trade-off between its benefits and its costs:

V([ti; t 2]) = f {U([ti;t 2]), C([ti; t22)}

The value metric should be chosen such that among several alternatives, decision

makers would systematically choose the one that maximizes the future expected value.

Examples of possible value metrics are given in table 4.2. For a commercial mission,

value is often simply the difference between benefits and costs: V = U - C. For

information-disseminating missions (which includes communications, scientific and

most military missions), Shaw [Sha99] introduced the notion of Cost-per-Function

(CPF). Capitalizing on this framework, utility can be taken to be the same as Func-

tion, in other words the total number of satisfied users over the mission lifetime. Value

can then be the utility per cost: V = U/C = 1/CPF.

It is important to note that although costs and utility are time-additive, value is not

necessarily. This means in particular that unless f is linear, maximizing future value

is not equivalent to maximizing lifetime value t .

The relevant uncertain parameters and decision modes are the ones that can affect the

mission value. Therefore, value will always be a function of the uncertain parameter

X. Value is thus a stochastic process.

Decision model The decision model describes how the decision should be taken at a

tThe condition on the value function f for these goals to be equivalent is:

f(U1, C1) > f(U 2 , C 2 ) 4=> f (U + U1 , C + C1) > f(U + U2 , C + C 2 ) (4.3)

which is not met by f(U, C) = U/C
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decision point Tk as a function of the current mode of operation and the current state

of the uncertain parameter Xk = X(T). If the value metric has been correctly defined,

the decision will be to chose the mode of operation that maximizes future mission

value. Let us call EV4"k-m)(xk) the expected value of the mission after Tk knowing

the current mode (n) and the current state of the uncertain parameter x = X(Tk)

and assuming that mode of operation (m) is chosen:

EVnm) (x) = E V(n-m)([Tk; TH]I | X(T) =x

The cornerstone of the valuation process is to consider only the optimal decision at

each decision point. The optimal mode of operation rnk(n, x) at Tk is given by:

nk (n, x) : max EV4nm) (X) (4.4)

The total mission value that needs to be evaluated is:

V = EV 0 (xo)

4.2.2 Valuation Process Illustrated on a Simple Example

Once the building blocks described in the previous section have been properly defined, the

expected value of the mission at time t = 0 can be deduced from an iterative backwards

process. This section describes the simple case when there is only one decision point and

two modes of operation, and the value metric is monetary. Building on this case, the next

section will describe the valuation process in its most general setting.

The Simple Option on Life Extension

Consider a space mission designed for TD = T with the option to be serviced at T, thus

increasing its lifetime up to TH. At T decision makers will choose between two modes

of operation: (0) not operational or (1) operational. Choosing (0) would incur the cost

C(1O) = 0 and choosing (1) would incur the cost C(-1*) = C' + Op = E, where C' is the

cost of servicing and Op is the cost to operate the system from t = T until t = TH. We

note this cost E because it is similar to the exercise price of a stock option: whereas a stock
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Service ? YES S-E>0

$ 0

Market level NO

MService ? YES S - E <0
E = $ 100

S<E 4 $0
NO

Figure 4-1: The Simple Option on Life Extension for a Commercial Mission

trader can buy an option on a stock, here the decision maker can buy an option on a life

extension.

What source of uncertainty would make this option interesting? Let us consider a

commercial mission. The revenues after time T are uncertain at the time of launch; we will

call these S because they are similar to the stock price for a stock option. S is a stochastic

process and at time t = 0 its value So is observed. The uncertain parameter can be defined

as the ratio X = S/So. Suppose we can observe the value x = X(T) at time T: then

staying operational is interesting only if it incurs more revenues than expenses, i.e. only

if x > E/So. The decision model will thus define the intervals of possible values of x for

which each decision should be taken:

Abandon 4=> x E I(0) = [0; E/SoJ

Service +=> x E IP1) = [E/So; +oo]

This situation is illustrated on figure 4-1. It is very similar to the example given in section

2.3 to compare valuation methods. The difference is that the possible values of the uncertain

parameter are now the continuous range [0; +oo].

What is the probability distribution function of these revenues? If the market behaves
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as a stock, its rate of change can be described as a diffusion process with volatility 4 :

dS
S=adt+o-dB (4.5)

where

* B is the Brownian process with unit volatility and zero mean.

* a represents the expected rate of return of the revenues. For a risk-neutral financial

investment, this is simply the risk-free interest rate r. In a more general setting, this

can be written as a = r + 6.

With these assumptions, the uncertain parameter at T follows the log-normal probability

density function:

1 1 1 [ln(x) - (a - a2/2)T]2 (p(x) = - {x - 2oTf(4.6)
y -2-i o,-v/T x 2u.2 T

Derivation of the Black-Scholes Equation

For this commercial mission, the utility function U is equal to the revenues and the value is

simply V = E{U - C}. This value being time-additive, the value at t = 0 of the option on

life extension is simply the expected present value of the potential benefits incurred after

time T. For risk-neutral investors, this is:

V = V"' 1 (x) p(x) dx + J V0' (x) p(x) dx

I(0) I(M
E/So 00

= 0 x p(x) dx + e-rT(x So - E) p(x) dx

0 E/So

The definition can be found in appendix A.
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Making the changes of variables w = inx-(a /2)T and y = w - ovT and defining
- In(E/So)-(a-a 2 /2)T.

00 00

V = e(" 2 /2)T S0  1 e2 dw - e-rT E f e2 dw

d2 -d2
oo

= ea-r)T So J dy - e-T E N(d 2 )

-d 2 +oV

The option value is finally:

V = e6 ISo N(di) - e-rT E N(d2 ) (4.7)

where:

" N is the cumulative normal distribution function N(x) = fx. e2 dt = 1-N(-x)

* di = [ln(So/E) + (a + O2/2)T] /cv T

* d2 = di - ov7

When 6 = 0, equation 4.7 is identical to the Black-Scholes equation, which was a key

result in the foundation of options pricing theory in 1973 [BS73]. The generalization of

this equation for 6 # 0 is useful for cases when the underlying option does not behave as a

financial asset [MS85].

Numerical example

Let us illustrate this result on a typical numerical example. Consider a mission designed

for T = 10 yr with the capability to be serviced to extend its life until TH = 20 yr for a

service-and-operations price E = $100 M. Let us assume for this example that the forecast

revenues after T are So = $125 M, and that r = 5%/yr and 6 = 0. Figure 4-2 plots the

value of the option to be serviced for life extension and compares it with the net present

value after time T, as a function of the volatility a.

A few general trends, which result from equation 4.7, are worth noting:

* When there is little uncertainty on the revenues, the option value equals the net

present value of the project tV = e6T So - e-T E. This occurs when the volatility
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Figure 4-2: Simple Option on Life Extension for a Commercial Mission: Case TH = 20 yr,

E = $100M, So = $125M, r = 5%/yr and 6=0

is very small (- -+ 0), or when the valuation is performed very close to the decision

time (T -- 0). It shows that traditional valuation is valid in a world of certainty.

* The option value increases with uncertainty. This is a direct illustration of the uncer-

tainty being turned into an asset when having options.

* When there is high uncertainty in the forecast, the option value equals the net present

value of the revenues alone: V -+ e6T So. This occurs when the volatility if very

high (o- -- o) or when the valuation is performed very long before the decision time

(T -- oo). The amount e6 T So is the worst possible difference between actual revenues

and forecast revenues. It is therefore a statement that the value of an option cannot

exceed the value of the potential losses it helps prevent.

Comparison with Net Present Value: Flexibility Value

A net present value calculation would not take into account the existence of an option.

For e6T So < e-rT E, it would consider that the spacecraft will never be serviced, and

therefore that there is no value in the servicing option. This corresponds to neglecting the
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probability that the mission be more successful than expected, thus being over-pessimistic.

For e 6T So > e-rT E, it would assume that the spacecraft will be serviced whatever the

market level S. Therefore it would be over-optimistic, and overestimate the future expenses;

the net present value incurred after time T would be:

00

NPV = tV = J erT(S - E)p(S) dS

0

which corresponds to underestimating the value of serviceability by an amount that can be

defined as the flexibility value:

E

F = -tV= e-rJ(E - S)p(S)dS > 0 (4.8)

0

Figure 4-3 is general plot of the option value and the flexibility value as a function of the

cumulative volatility o-v T, for various values of the revenues forecast So and the servicing

price E. Two additional general trends are worth noting on this plot:

" As could be expected, the option value increases with decreasing servicing price or

increasing forecast revenues.

" On the other hand, the relative flexibility value F/V decreases with increasing forecast

revenues. This is due to the fact that the higher the forecast revenues, the lower

the probability that the actual revenues will drop below the threshold level E, and

therefore the lower the losses that can be prevented by having an option.

This example presented a situation that is realistic while simple enough to be solved

analytically. Is showed general trends that will remain valid for almost all option valuation

situations. The rest of this chapter proposes to build on this example to construct an

options valuation process valid in the most general setting.

4.2.3 Valuation Process for a General Compound Option

Now consider the general case when there can be several decision points in the mission

lifetime, at times 0 < Ti < T 2 < ... < TN < TH, several modes of operation (0), (1), ... (NM),

and a non-linear value metric V = f(U, C).
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Figure 4-3: Simple Option on Life Extension: Value from Black-Scholes Equation. Case

TH = 20yr, r = 5%/yr and 6 = 0
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Figure 4-4: Schematic of Decision Situation at Node k

Choosing a certain mode of operation at time Tk gives the option to choose other modes

of operation at time Tk+1. For example, a spacecraft that has been serviced once has bought

not only a life extension, but also the option to be serviced once again. This corresponds

to an option on an option, which is called a compound option. The value of this future

option must be taken into account in estimating the value of the first option. The valuation

process therefore starts off with the last option and proceeds backwards in time. It is very

similar to working backwards in a decision tree, except that the finite number of branches

is now replaced by a continuous density probability function.

Figure 4-4 is a schematic representation of this valuation process. The valuation is

performed at t = 0, when only the initial value Xo of the uncertain parameter is known.

For each step Tk in the backwards process, the decision maker at t = 0 imagines:

"When I observe the uncertain parameter at Tk and look into the future, what

mode of operation uill I choose if I see X(Tk) = x

Last decision

The last decision gives the "initial" condition of the induction process. At t = 0, both the

uncertain parameter X(TN) and the mode of operation (n) in which the mission will be at

TN are unknown. The decision model must therefore determine for each possible entering

mode (n) the sets In,,) of values of the uncertain parameter at TN for which a switch to
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mode (m) will maximize future value:

X C IN 4-= max (EVN (x) = EVM)(x) = f (U(m) (x), C~nn)(x))N ~~I U -)()

Thus, while traditional valuation assumes only one possible mode of operation for the period

[TNI TH], with the new process the decision maker at t = 0 must think:

"If the previous mode of operation was (n) and X(TN) = x E IN occurs,

then I will choose to switch to mode (m)."

Induction Relation

Now consider decision point TN-1. A future mode must be chosen on the basis of the

previous mode of operation (1) and the observed value of the uncertain parameter x =

X(TN-1). In making the decision to switch to a mode (n), two things must be traded off:

" The cost C 1I") (x) and the utility Uhn) (x) that will be incurred during [TN-1, TNI

as a result of choosing (n), and

* The cost and the utility that will be incurred after TN, given that the decision point

TN will be entered in mode (n) and that the uncertain parameter y = X(TN) will

follow the density probability function pTN1 (ylx).

The choice of mode of operation that will be made at TN is known as a function of (n) and

y through the sets I>nm) determined at the previous step. Thus the value to maximize is:

N

EV>N_"l(x) = E f (UNi(x) + U" (y), C-l (x) + C1 " "")(y)) p(N-1
m=1-)

N

This determines the sets 193) of values of the uncertain parameter at TN-1 for which

a switch to mode (1) maximizes future value.
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* Mode switch

Figure 4-5: Decision Model

At decision point TN-2, the future value in turn writes:

Nm

EV (T)N- 2 (ylx)dy J PN(zly) dz ...
n,m=1 

n
N-1 N

f (UY_ 2 (x) + U!(n) + Uf"(z), C,_~*)(x) + C~i"(y) + Ch"m)(Z))

(4.9)

The same principle can be applied according to a backwards iterative process up to

To = 0 where it gives the total mission value as seen from the initial point.

Thus, the decision process maps the (time / uncertain parameter value) space into re-

gions corresponding to different optimal modes. A mode switch will occur at each decision

point when a boundary in this space has been crossed. Figure 4-5 is a conceptual represen-

tation of this mapping. Traditional valuation would assume that the forecast sequence of

events would occur (straight line), overlooking the possibility of unlucky scenarios for which

the mission would have to be abandoned, or lucky scenarios for which (for example) the

spacecraft would undergo several upgrades. The proposed valuation process on the other

hand recognizes the ability of decision makers to adapt to the resolution of uncertainty and

make optimal decisions in the future. It therefore considers the optimal sequence of events

for each possible evolution of the uncertain parameter with time.
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4.2.4 Determination of a Maximum Servicing Price

In this chapter, we saw the different types of options available to space missions and pro-

posed a general framework to embed this flexibility into the valuation of space mission

architectures.

This framework can now be used to derive three types of information about the market

base for servicing:

" The cost penalty that a space mission would be willing to pay to design for service-

ability is directly given by the value of the option on life extension; an example is the

Black-Scholes equation for the simple option on life extension seen in section 4.2.2.

* The value of a serviceable mission is a function of the price of servicing. Compar-

ing this function with the value of a non-serviceable mission will give the maximum

servicing price T that would make a space mission choose a serviceable design:

Serviceable > Traditional - Cservice < T

* Determining the flexibility value relative to traditional value:

F V-tV

tY tv

will indicate by how much traditional valuation underestimates mission value, and

therefore to what extent this framework is interesting.

The rest of this thesis applies this framework to find the value of on-orbit servicing and

the maximum servicing price for two types of space missions. Chapter 5 builds a general

model to deal with commercial missions faced with uncertainty in their future revenues.

As examples of non-commercial missions, chapter 6 considers military space missions faced

with uncertainty in the occurrence and location of contingencies.

But before jumping into the applications, let us consider the limitations to keep in mind.

4.3 Limitations of the Framework

The framework we proposed in the previous sections is only a first attempt at defining a

general framework for the valuation of options for space missions faced with uncertainty.
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Although it can account for many practical cases of space options, some simplifying as-

sumptions had to be made, which limit its generality as described below.

4.3.1 Non-Fundamental Limitation

Discrete decision times For the sake of clarity, the previous sections implicitly assumed

a finite number of set decision points. By setting the period to be infinitesimal, the frame-

work can easily be generalized to continuous decision points. However, it is clear that

an iterative backwards process such as described by equation 4.9 becomes impossible as

the number of decision points tends to infinity. A solution to this problem is to alter the

definition of value, defining

V' = f (E{U}, E{C})

instead of

V = E {f (U, C)}

This makes no difference for linear valuation functions as the one used for commercial

missions in chapter 5. It does for utility-per-cost metrics, and chapter 6 gives an example

of a continuous-time model using V = E{U}/E{C}.

Finite number of modes of operation For the sake of clarity, the previous sections

described the possible modes of operation as a finite set. This is not a fundamental assump-

tion and the same framework can directly be generalized to the case of a continuous range of

possible modes, such as a whole interval of possible orbital altitudes. The implementation

would however become more complex.

4.3.2 Fundamental Limitations

Exogenous uncertainty The framework applies for cases when the uncertainty is ex-

ogenous, i.e. the source of uncertainty is external to the mission and cannot be affected by

decisions taken after the system has been fielded. The presence of options reduces risk by

affecting the consequences that uncertainty has on the mission.

This assumption can be an adequate description of the option to service to react to

random failures, market and technology dynamics, or changing requirements. It can not

be used to describe the interactions between the source of uncertainty and the mission's
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decisions, such as the dynamics of competitive markets.

"Describing" the uncertainty The proposed valuation process relies on the availability

of the information necessary to define the building blocks of the framework. For many

practical cases, this information is not observable. In particular, the probability density

function p(xjxo) of the uncertain parameter in the future, which describes the uncertainty

in the parameter's forecast, is usually very uncertain itself. Assumptions have to be made,

and the sensitivity of the results to the assumed distribution must be estimated. As we

will see in the following chapters, there is usually a threshold uncertainty over which the

conclusions change. No conclusion can be drawn in situations where the uncertainty is

estimated to lie close to this limit.

Forms of flexibility This framework describes flexibility as a known set of possible modes

of operation available to decision makers. It can therefore not account for the most general

form of flexibility, which lies in the ability to define new, unpredictable modes of operation

to respond to unknown sources of uncertainty.
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Chapter 5

Value of Servicing for Commercial

Missions with Uncertain Revenues

One of the most typical situations in which a significant source of uncertainty affects a space

system is the case of a commercial space mission with uncertain revenues. In the light of

the framework developed in the previous chapter, this chapter proposes to study the value

of on-orbit servicing as a way to provide options to react to this source of uncertainty.

Section 5.1 describes the form taken by the building blocks and develops a general

valuation model for the commercial case. It shows how a monetary definition of value

simplifies the valuation process by making the model linear and very similar to the situations

encountered in real options theory. The section concludes with a convenient method for

numerical implementation of the model.

Section 5.2 uses this model to isolate and study the value of the compound option to

abandon, which the rest of the thesis will consider available to all space missions.

This serves as a preliminary study for the crux of the chapter, section 5.3, which considers

the value of servicing as a option on life extension to be traded against the cost to design

for a certain lifetime. It shows that the framework can prove a powerful tool to define a

new decision making approach regarding the choice of a design lifetime requirement when

servicing is available. After identifying the general conditions under which servicing has the

highest value, the section illustrates the value of flexibility on two case-studies with very

high market uncertainty, inspired from the constellations ITidium and Globalstar.
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5.1 General Model for Commercial Missions with Uncertain

Revenues

The general valuation process presented in chapter 4 becomes relatively simple when con-

sidering the case of a commercial mission with uncertain revenues, for which the linear

models and methods developed for real options theory apply almost directly. Section 5.1.1

sets up the model by defining the particular form taken in this case by the main basic

framework elements. Using these baseline assumptions, section 5.1.2 lays out the valuation

process for commercial missions with uncertain revenues is its general mathematical form.

Section 5.1.3 finally describes a convenient numerical method to put this valuation process

into practice.

5.1.1 Basic Elements of the Model

Section 4.2.1 defined the basic elements necessary to describe any option situation. For the

case of a commercial mission with uncertain market, a few of these building blocks take a

particularly simple form.

Uncertain Parameter X: Market Forecast

Definition Most commercial missions start off with a theoretical forecast for their ex-

pected market demand. Let us call M (t) the revenues per unit time that would be

incurred based on this forecast if choosing mode of operation (m). Two typical examples

are: a constant expected market Mth(t) = Mo; or a market base linearly increasing with

time Mth(t) = M 0 + at.

Market demand cannot be predicted perfectly: it is an uncertain parameter. The un-

certainty in market demand translates into uncertainty in mission revenues, which is the

parameter of direct interest to decision makers. We will take the ratio of the actual poten-

tial revenues in each mode of operation (m) over the theoretical market as our uncertain

parameter(s):

X(m) - M(m)()

M (t)

With this definition, there can be as many uncertain parameters as there are modes of

operation. This is necessary to take into account possible spacecraft modifications to address
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new markets.

The exogenous uncertainty assumption In the real world, managers can make de-

cisions that affect the revenues. All such decisions should be modeled as possible modes

of operation, so that each uncertain parameter X(m) remains an external source of uncer-

tainty. For example, X(m) can represent the number of people who would be interested in

the service provided by the space system if it were upgraded to a certain mode (m). This

number, which corresponds to potential revenues, varies as the result of external sources

of uncertainty, such as global economical growth and the action of competitors. Only the

actual revenues depend on the choice made by decision makers as to whether to upgrade the

constellation or not. Thus, as soon as the modes of operation have been properly chosen,

it is a fair assumption to assume that the uncertain parameter is an exogenous stochastic

process, i.e an external source of uncertainty.

The geometric random walk assumption In order to describe the uncertainty, an

assumption on its probability density function must be made. A convenient assumption used

by real options theory is the geometric random walk process with drift am and volatility

Um*, which is a good description of the behavior of stocks values. Under this assumption,

if X(m)(t) is known then x = X(m)(t + -r)/X(m)(t) has a log-normal probability density

function with mean e"-' and variance omifd:

1 1 1 (ln(x) - (am - ol/2)r)2

P ( ) =exp - (5}

(x = m2= x 2 o2 -r

The drift am is typically used to account for the time value of money.

This assumption presents two advantages in addition to its simplicity. First, the nor-

mal distribution (here used to describe the rate of deviation from expectation) is a usual

assumption when the form of uncertainty is unknown. It is a valid approximation when the

observed uncertainty is the sum of many independent uncertain parameters, which is often

the case for the market dynamics that make revenues vary. Second, the variation of the

standard deviation as V/t is a good description of the increase in uncertainty as one makes

predictions further away in time. Examples of practical cones of uncertainty obtained form

*Defined in appendix A.
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this assumption are given on figure 5-1.

The greatest shortcoming of the random walk assumption is the symmetry in the un-

certainty, which gives equal probability to revenues that exceed expectations as to revenues

that are lower than expectation. Though this would be a reasonable assumption for an ideal,

unbiased forecast, in the real world space mission revenues rarely explode significantly over

their forecast.

Cross-correlation In order to keep the model simple without sacrificing the main effects

of uncertainty, we will further assume that we are in one of the two following extreme cases:

1. The various components of the uncertain parameter (X(m)) are proportional. This

corresponds to only one effective uncertain parameter X = X( 1) with X(m) = (m) X.

This is a good description of a situation where potential modifications increase the

level of performance for the same market. Or,

2. The various components of the uncertain parameter (X(m)) are completely indepen-

dent. This is a good description for a situation where potential modifications address

different markets.

Utility Metric

Utility rate u For a commercial mission, the utility rate simply corresponds to the po-

tential mission revenues per unit time. It is therefore equal to the uncertain parameter X

times the revenues Mth predicted by the market forecast, and can depend on the current

mode of operation (m):

U(M) = M(M) (t) = M (M)(t) X(Mn (t) (5.2)

We will note Xkm" the value of the uncertain parameter observed at decision points Tk:
Xkk

xk" = X(")(T ).

Expected utility U The utility is simply the present value of the aggregated revenues.

If its internal rate of return a' has been defined as described in the introductory financial
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section (2.3), it can be discounted at the risk-free interest rate:

t2

U([ti; t 2]) = Je u dt (5.3)
ti

At a decision point Tk, the potential revenues rate u(m) (m) M(m) (Tk) will be observedUk Xk th

for each mode (m). According to the probability density function 5.1, the revenues rate

expected at any latter time t' = Tk + t will then be E{u(m)(t')} = eam A4 (mM (t'). The

value at Tk of the expected utility EUm) (Uk) over the next period if choosing mode (m)

will therefore be:

EU m) (Xk) = E ert M (m (Tk +t) X ()dt

k (i)JMW(T t) h ~ rtd0

= x (M) fM ()(Tk + t) e("m--r)t dt

0

Define the forecast incremental revenues:

Rn) = M )(Tk ± t) e(am-r)t dt (5.4)

0

Rkm) is a deterministic parameter. It is a function of the market forecast and the sequence

of decision points only. It corresponds to the value at Tk of the revenues that would be

incurred in mode (m) between times Tk and Tk+1, if the market followed its initial forecast.

The utility expected if choosing mode (m) in the kth period is the corrected prediction once

the uncertain parameter Xk is observed:

EUM m)(Xk) = x(m) Rm) (5.5)

Value Metric V

For a commercial mission, value is simply the difference between benefits and costs: V =

U - C. This linearity is extremely satisfying from a conceptual as well as from a practical

point of view. For example, total mission value is the sum of past and future value. Similarly,
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the expected future value is the sum of the value incurred in each of the future periods. It

also ensures that:

" Maximizing future value is consistent with maximizing total mission value, and that

* The obtained value V is greater than the net present value of the mission: V > tV.

This is a necessary condition to define a flexibility value F = V - tV.

5.1.2 Expanded Net Present Value

Last Decision point Now consider the decision model at the last decision point TN. The

expected future value if switching from mode (n) to mode (1) given X(O (TN) = x is:

EV " 0() = EU(' (x(O) -C" = Xi') R) -- "

Maximizing EV nl (x) gives the sets I(nm) of values of x = (x(0 ), ... x(Nm)) for whichN N

the optimal mode switch is (m) if the previous mode was (n). For example, if choosing

between an abandoned state with X(0) = 0 and a serviced state with X(1) = X, then

there is a minimum value 11l = C /R to choose mode (1), so I = [1(1). +oo] and

1(0) - [0; II(). This is exactly the situation encountered in 4.2.2 with IIfl = E/So.

The expected future value if entering the decision point TN is mode (n) is then given

by:

V X E I " " EV(n) (x) = x(m) R(m) - C (nm) (5.6)
N N N %-N

Induction Relation Now consider any decision point T entered in mode (1) observing

the uncertain parameter x = (xm)). The future value EV>7) 1 (x) of the mission after the

next decision point is known for each possible entering mode (n). The values of the uncertain

parameters at t = Tk+1 have the joint probability density function pyk(ylx). The expected

future mission value if switching from the current mode (1) to mode (n) will therefore be:

Nm

EV (x) = R - C(I-n) + e-" (3 EV "7l (y) pTk (ylx) dy (5.7)
m=1 I (n m)

Maximizing EV1k (x) in turn gives the sets I+1f3) Thus, knowing the functions EV>k+l(),

equation 5.7 gives the functions EV>k+1(x). This relation is much simpler than the general
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case described the previous chapter, for which a cascade of integrals on all future periods

was necessary (equation 4.9).

The backwards iterative process finally gives the expected value of the mission as seen

from t = 0:

V = EV>%(1) (5.8)

Since it is the difference between the present value of the expected revenues and the present

value of the expected costs, V is similar to a net present value (NPV). But unlike what is

traditionally done when calculating an NPV, the calculation of V takes into account the

optimal choices at each decision point as a function of the resolution of the uncertainty in

X. For this reason, we may call this value expanded net present value, and abbreviate it

eNPV.

Flexibility Value The flexibility value is here simply the difference between the expanded

net present value and the net present value:

F=V-tV=eNPV-NPV (5.9)

An NPV calculation would assume a set sequence of modes of operation (mo, MN) ac-

cording to the market forecast at t = 0, which simply gives:

N

tV = NPV e-rTk E n() R m) - C(mk_1-mk) (5.10)
k=O

where by convention m_1 = 0 (not operational).

We can note that NPV and eNPV are equivalent when there is no uncertainty, in other

words when the volatility of the market is null:

tv = V { =(m) = 0 (5.11)
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5.1.3 Calculating Expanded Net Present Values: Numerical Analysis

Method

The previous section defined the expanded net present value (eNPV) for commercial mis-

sions faced with a geometric Brownian source of uncertainty in their revenues, and gave the

backwards induction relation to calculate this value (equation 5.7).

This section presents the numerical method we chose to implement this equation. This

convenient method is an application with only slight modifications of the log-transformed

binomial lattice method proposed by Trigeorgis for the valuation of real options [Tri96].

For simplicity, we will here assume that there is only one uncertain parameter X, which

follows a geometric Brownian motion process with expected drift a and volatility a.

Log-transformation

The log-transformation consists in defining the intermediate variable Y = In X. Then

dX/X = a dt + a dB translates intot:

dY = (a--- dt + adB (5.12)

which means that Y is a Brownian motion with mean drift a - o2/2 and volatility a-. Thus

X, which has an exponential drift, is replaced by Y, which has a linear drift. This ensures

the stability of the numerical method.

Discretized Brownian Motion: the Random Walk

The Brownian motion is the limit of a random walk as the size of the steps in the walk

tend to zero. Since numerical methods require discretization, it is natural to discretize Y

"back" into a random walk process. Let ot be the time step of the simulation. During

each time step, Y will change by a probabilistic amount 6Y. The discretization reduces the

continuous probability density function of 6Y to a probability P that 6Y = +AY and a

probability 1 - P that 6Y = --AY. The appropriate values of AY and P are the ones that

tdY cannot be obtained through standard calculus because B is not differentiable. The demonstration

of this formula can be found in appendix A
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Figure 5-2: The Log-Transformed Binomial Lattice

conserve the mean drift and volatility of the process. They must therefore verify:

E{6Y} = a-- 6t= PAY + (1 - P)(-AY)

Var{SY} = a2 t = (P AY 2 + (1- P)(-AY) 2 ) - E{6Y} 2

which requires:

AY = o.2 6t+ a- 2)2 & 2  (5.13)

P = 1 (1(a 2)6t) (5.14)

The lattice is the two-dimensional grid representing the time flowing in Nt increments

of the time steps 6t, versus the possible values of the log-transformed uncertain parameter

Y in increments of AY. The values of Y that are reachable through the random walk fill

up only half of a rectangular grid (in other words, a triangle) as illustrated on figure 5-2.

Backward Iterative Process

The last time step corresponds to TN = Nt 6t. At that time Y is a vector taking values in

[Yo - Nt AY; Yo+Nt AY] with increment 2AY; its length is Ny = 1 +Nt. The values of the
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Figure 5-3: Main Matrices Used in the Numerical Simulation

uncertain parameter are given by Xi = eY. To each of these values corresponds the matrix

of size NM x NM containing future mission values if switching from mode (n) to mode (1):

EVN t (Xi) = X RN - C (5.15)

Determining the optimal mode switch (1) for each value of X and each entering mode (n)

gives the value after step Nt as a matrix (EVNe)i,n of size Ny x NM.

Now consider any two times j6t and (j + 1)6t which are not decision points, in other

words at which the mode of operation cannot be changed. For each value iAY of Y at j6t ,

Y can move either up or down by AY. Thus the present expected value at jot is determined

from the present expected future value at (j + 1)6t by:

(EVj)i, = e-r6t [P (EVj+1 )i+1,n + (1 - P) (EVj+1)_1,n]

This can be applied on each of the modes of operation (n), i.e. on each of the rows of

EVj+1-

Trigeorgis [Tri96] recommends an iterative backward process in j. But with computer

languages that allow for efficient matrix manipulation (such as MATLAB) it can be useful

to note that k time steps can be reduced to one operation with the following consideration.
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First note that EVj is a matrix of size (1 + j) x NM that verifies:

EV = Aj EVj+1  (5.16)

where the matrix A3 has size (1+ j) x (1+ j+ 1) and is such that

(Aj)i,= e- 6t p

(Aj),,i+1 = r11 (1 - P)

Using this induction relation, it can be proven that:

EVj = Aj<(j+k) EVj+k where (5.17)

[Aj-(j+k) i,i+ = erk6 t k P (1 - P)kn V i e {1, ..., 1 +j} Vn E {O, ..., k}
(n)

Adjusting Value at Decision Points

Whenever j reaches a decision point T = j6t, the value must be adjusted to account for

the optimal mode switch. If the next decision point is at (j + k)St, then:

EV n') (x) = x(1 R) -C &-1) + J EV1? (y)pj(yIx) dy

translates into:

( EV)nit = Xi Rf ) - C + AJ-(J+k) (EVj+k) (5.18)j 3

Figure 5-3 illustrates these various matrix elements. Choosing the optimal mode switch (1)

for each value i of Y and each entering mode (n) gives the expected future value (EVj),n.

This is particularly convenient with computer languages allowing manipulation of three-

dimensional arrays.

This backwards process can then be iterated up to j = 0 where it gives the value EV

for each possible initial mode of operation.
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5.2 Value of the Compound Option to Abandon

The option most immediately available to any space system is the option to abandon the

mission if the operations cost is considered too high. For the case of a commercial mission

with uncertain market, this will occur as soon as the operations cost exceeds the expected

revenues.

The value of this option has never been taken into account in the literature. Thus, the

value of space missions has been underestimated. The simplicity of the situation makes it

a good candidate for a first application of the model.

5.2.1 Building Blocks

The decision points for the periodic option to abandon with period -r, are Tk = k-r1a. At

each of these decision points, the mission must choose between two modes of operation: (0)

not operational and (1) operational. The revenues rate in mode (0) is X(0) = 0 so that there

is actually only one uncertain parameter X(1) = X.

In order to model the effect of the abandoning option alone, we will here assume a

constant market forecast Mth(t) = Mo. The expected revenues during period k if X(Tk) =

x is observed are then simply:

EU) (X)= 0

EU (x) = x e(a-r)Tk cd(ra, r - a) Mo (5.19)

Assume it costs nothing (or a negligible amount of money) to abandon the mission and

let op be the operations costs per unit time in the operating mode. The matrix of switching

costs will be the same at each decision node:

Ck =(0 op .cd(ra, r) + Cre-iit (5.20)
(0 op. .cd (ra, r)

where Cre-init is the cost to re-initiate the mission once it has been abandoned. Two bounds

on the value of this cost are easy to model:

* For an irrevocable option to abandon, Cre-imit = oo. The value of this option corre-

sponds to a lower bound on the general option to abandon.
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* For a perfectly temporary option to abandon, Cre-mit = 0. The value of this option

corresponds to an upper bound on the general option abandon.

The rest of this section proposes to study these two bounds.

5.2.2 Modeling the Option Value

Value of the Irrevocable Option to Abandon

First consider the case when abandoning is irrevocable. This is typical of a space system

in low-Earth orbit, where abandoning the mission means de-orbiting the satellites. Let's

consider that the mission also loses its licenses, so that even launching new satellites is not

possible.

Consider decision point Tk = k ra. If the system is operational, then there is a decision

to make between abandoning, which will produce no future value, and staying operational,

which will produce the utility EU , incur the cost op .cd(ra, r), and give a further option

at Tk+1. Thus the decision model will be of the form:

EV (x)= x.cd(ra, r - a) - op .cd(ra, r)+ e-ra f EV ()

Abandon <=#> EV j) 1 '(x) < 0

The future value is always an increasing function of the observed market level x. Thus

the decision model will yield a market threshold Uk over which it is interesting to pursue

the mission after time Tk. The total option value is then determined from the backwards

iterative process:

EV>k(x) = x.cd(ra, r - a) - op .cd(Tra, r) + e-ra f EVik+l(y)p(ylx)dy
rHk+1

EVk (Hk) = 0 defines Ilk (5.21)

V = EVro(1)

Value of the Temporary Option to Abandon

Now consider the case when abandonment is temporary and the mission can be re-initiated

at no cost. This is an approximation of the case of a system in geostationary orbit, for

which the satellites need not be de-orbited but simply boosted to a slightly higher orbit.
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Table 5.1: Irrevocable Option to Abandon: Numerical Assumptions
Parameter Notation Baseline Value

Mission horizon TH 10 yr
Risk-free interest rate r 5%/yr

Appreciation rate a 0%/yr

Operations costs $5 M/yr
Market forecast Mo $8 M/yr

Volatility 0- 30%.yr-2
Number of abandon options THITa 10

In practice, there will be a cost to maneuver the satellites back and possibly regain the

licenses; the results of this section can therefore only serve as an upper bound on the value

of the option to abandon.

When Cre-init = 0, the decision whether to operate in the next period is independent

on the entering mode of operation:

EV3(x) = x.cd(ra, r - a) - op.cd(ra, r) +

+e-re f EV?)+1(y)p(yIx) dy + e-rr f EV8+ 1(y)p(yIx) dy

rk+1 00

EV (x) = e-ra f EV+1(y) p(ylx) dy + e-"r f EV4e)+1(y)p(ylx) dy
>k()0 

rlk+1

EV 1 (U) = EVQ(I)(lk) defines [I

5.2.3 Study of the Option Value

Numerical Example

Figure 5-4 plots the resulting value and compares it with a net present value for the nu-

merical assumptions summarized in table 5.1. These numbers include all costs after initial

operating capability (IOC); they do not include the cost to produce and launch the system.

The plot shows that mission value increases almost linearly with uncertainty. For very high

uncertainty, the value incurred after IOC becomes twice what would have been estimated

from a net present value calculation.

General Case

Figures 5-5 and 5-6 illustrate the results in the general case. The plots use non-dimensional

parameters so as to be readily applicable to any special case. As for the Black-Scholes
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Figure 5-4: Value of the Compound Abandon Option for the numerical assumptions in table

5.1

equation (4.7), the results depend on costs in a relative fashion only, and depend on time

only through the products o-v t, at and rt. The option value V can therefore be written as

a function of only five variables:

V= ffl (MO TH (.2
tV ( Op Ta' I O TH , r TH, a TH (5.22)

Value as a Function of Decision Period Figure 5-5 shows that the value of the option

to abandon increases with the number of decision points available over the lifetime of the

mission. In other words, it increases with the frequency at which a decision to abandon

can be taken. This result is intuitive since more frequent decisions represent an enhanced

flexibility. However, the losses that are prevented by increasing the decision frequency,

decrease as the abandon period decreases; this explains why the option value quickly reaches

an upper bound.

The upper bound is reached as soon as at least 6 options are available over the mission

lifetime. In order to take a continuous option to abandon into account, it is therefore

sufficient to assume a yearly abandon option for a mission horizon longer than 6 years, or

a quarterly option to abandon for a mission horizon of a few years.
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Figure 5-5: Value of the Compound Abandon Option r = 5%/yr and a = 0: (a) As a

function of number of decision points for several values of volatility and for Mo/op = 1.2

(b) As a function of uncertainty for several market levels and for ra = 1 yr.
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Value as a function of market level The bottom part of figure 5-5 plots mission value

as a function of uncertainty for different market levels Mo. It shows that as the expected

revenues increase, the relative flexibility value decreases. This effect was already noticed in

section 4.2.2 for the simple option on life extension. It is due to the fact that the higher

the expected revenues, the lower the probability that the mission will be abandoned, and

therefore the less interesting the ability to abandon.

Sensitivity to interest and appreciation rates It is interesting to test on this simple

example the importance of using the appropriate discount rates. Figure 5-6 shows that the

relative abandon option value is sensitive both to the risk-free interest rate r and to the

difference 6 between the internal rate of return on the mission and the discount rate r.

The risk-free interest rate r captures the concept of time-value of money. As it increases,

what happens later in the mission is deemed less and less important. This reduces the

potential losses incurred if not being able to abandon, which in turn reduces the value of

the abandon option.

The difference 6 is the effective internal rate of return of the market relative to the risk-

free interest rate. 6 > 0 represents an exponential market increase; since it corresponds to

a higher market, it reduces the relative option value. On the other hand, 6 < 0 represents

a risk-premium, corresponding to discounting the risky revenues at a higher rate than the

(riskless) operations costs; it is equivalent to a exponential market decrease, which increases

the relative option value.

The sensitivity of the option value to these rates becomes more serious as longer mission

horizons are considered. A careful estimate of r and 6 is required for an accurate option

valuation.

Irrevocable versus Temporary

On figures 5-5 and 5-6, the value of the temporary option to abandon is indicated in dotted

lines. As could be expected, the temporary option has a more value than the irrevocable

option, since it provides more flexibility. However, the difference is of only of a few percent.

Since these two values can be seen as a lower and an upper bound on the value of realistic

options to abandon, there is not need to model the abandon option further: the estimate

can be deemed precise enough.
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Figure 5-6: Sensitivity of the Abandon Option Value to r and a in the case Mo/o,= 2,
or a = 200%

In the rest of this chapter, we will be interested in comparing systems with various design

lifetimes. A system designed for a shorter life always has the option to abandon at the end

of this lifetime. In order to compare it on a fair basis with a system designed for a longer

lifetime, we will assume that all missions have a periodic abandon option with the same

period. An appropriate choice for this period is 1 year. This compound abandon option

will represent additional decision points.

5.2.4 Conclusions

These results show that traditional valuation methods have been significantly underestimat-

ing the value of all missions with uncertain revenues, creating a bias in favor of conservative

projects. By recognizing the flexibility of decision makers to shut off an unsuccessful mis-

sion, the proposed valuation framework shows that some projects that would be deemed

uninteresting by traditional valuation can actually have significant value.

Thus, the application of the proposed framework proves useful even in the simple case

of the option to abandon a space mission, which is a limited form of flexibility. It should

prove even more interesting in studying the value of on-orbit servicing for space missions,

which is the focus of the rest of this thesis.
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5.3 Optimal Design Life under Market Uncertainty

This section considers servicing as an option on life extension for commercial satellites with

uncertain market.

Satellites are typically designed for the longest possible lifetime. This not only leads to

high mass and cost due to the requirement for large design margins, especially for power,

propulsion and redundancy [SHN01]; it also corresponds to a design lifetime that is often

longer than the characteristic market and technological life cycles. Thus there is a fair risk

that satellites will be obsolete and/or not respond to any actual market before their end

of life. If on-orbit servicing were available, satellites could be designed for a period of time

closer to the market dynamics, with the option to extend their life, abandon the mission or

upgrade their payload according to the market and technological conditions at a later time.

Is there sufficient value in this added flexibility to make servicing a commercial space

mission interesting? The framework we developed and its application to commercial mis-

sions are ideal to address this question.

Section 5.3.1 explains how to use this model for two types of study. For a given servicing

price and servicing interval, it yields the optimal design lifetime as a function of market

level and market volatility. Then for a given uncertainty level, it identifies the maximum

price that a space mission would be willing to pay for each on-orbit servicing operation, by

considering the conditions under which the optimal design life is shorter than the mission

horizon.

Section 5.3.4 applies these results to two examples of commercial missions with highly

uncertain market: the Iridium and Globalstar low-Earth orbit constellations of communi-

cation satellites.

5.3.1 Towards a New Decision Making Approach

Traditional Decision Making

With the traditional way of designing satellite systems, there is a strong incentive to design

for the longest possible lifetime. In the absence of uncertainty, a longer lifetime indeed

means a smaller cost per operational day [SHN01]. The typical traditional decision making

process is illustrated on figure 5-7. The net present value of the project is estimated without

taking into account the uncertainty in the revenues and the possible options to react to it.

116



Risk-neutral decision maker:

C Do Nothing Designfor Ti Do Nothing

Do Nothing Designfor TH

0 Mission NPV 0 Mission NPV

Figure 5-7: Traditional Decision Making

Two attitudes are then possible depending on the level of awareness of the decision makers

regarding uncertainty:

* Risk-neutral decision makers would simply not take uncertainty into account. They

would approve the project if its net present value is above a given threshold (it should

at least be positive), and design it for the longest possible lifetime TH to minimize its

cost-per-operational-day.

* Being concerned about uncertainty but lacking a way to quantify its effects, risk-averse

decision makers would simply reject any project whose uncertainty is higher than a

subjective threshold. This greatly limits the space of possible projects.

Towards a New Decision Making Approach

The framework proposed is chapter 4 can represent a useful tool to define a new decision

making process as illustrated on figure 5-8. By providing a means of quantifying the effects

of uncertainty and the value of managerial flexibility, it can make it possible to draw two

new decision boundaries:

Minimum market level: effect of the abandon option As seen in section 5.2, for

missions with a compound option to abandon and a low market level, mission value in-

creases significantly as uncertainty increases. Even if the net present value is negative, the

actual value can be positive because there is some probability that the revenues will rise

unexpectedly. Therefore, the minimum market level over which the mission is worthwhile
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on life extension
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Figure 5-8: Decision Making with Options

decreases with increasing uncertainty. This explains the shape of the left boundary on figure

5-8.

Minimum uncertainty level: effect of the servicing option We saw that the cost to

produce and launch a space system increases almost linearly with increasing design lifetime

requirement. This leads to a decreasing cost-per-operational day if replacement is the only

solution for life extension. But life extension through servicing has the potential to be

much cheaper than life extension through replacement. Therefore on-orbit servicing would

make possible a trade-off between the cost to design for a given lifetime and the price to

service for life extension. This trade-off could lead to an optimal design lifetime TD shorter

than the mission horizon TH. As uncertainty increases, the value of the option on life

extension increases as seen in section 4.2.2. Thus we can expect the existence of a minimum

uncertainty level over which the optimal design is serviceable. This explains the shape of

the right boundary on figure 5-8.

Through this new decision making approach, the proposed framework would provide

decision makers with the tools to fully understand the effects of external sources of uncer-

tainty and take their future options into account when deciding on a design-and-maintenance

strategy.
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The next sections will show how to use the framework to quantify the boundaries in the

above decision diagram, and to determine the maximum servicing price that a commercial

space mission would be willing to pay for each servicing operation.

5.3.2 Modeling the Irrevocable Service or Abandon Option

The option to service for life extension corresponds to a service-or-abandon option. Section

5.2 showed that there is little difference between the values of the irrevocable and of the

temporary options to abandon. When considering the option to service for life extension, it

can therefore be assumed, without loosing much generality, that abandoning is irrevocable.

This will at least give a lower bound on the option value.

Building Blocks

Consider a space system designed for a time TD with the option to be serviced in increments

of the service interval T up to the mission horizon TH: the decision points are Tk = TD +

(k - 1)r. At each decision point there is a choice between two modes of operation: (0)

abandoned and (1) operational in the initial design. The utility in mode (0) is zero, so that

there is only one uncertain parameter X(1) = X = M(t)/Mth(t).

The value at Tk of the expected revenues during the kth period if X(Tk) = x is observed

is:

EU(O)(x) =0
(5.23)

(1)()=~
EUk (x = x R

Let CIOC(TD) be the cost to initial operating capability as a function of the design life

TD; this function is described in sections 2.2.1 and 3.2.1. For the purpose of this study, it

is sufficient to use a linear cost model and a linear fit to the mass penalty as given by 3.1:

CIOC= 1 + (TD - 3 yr) (5.24)
C3

where C3 is the cost to initial operating capability for a arbitrary reference design lifetime

requirement of 3 years. This corresponds to defining a percentage cost penalty K per unit

time of design life.
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The initial matrix of switching costs at To = 0 is then:

Co= (0
Coo

C10c(TD)+op.cd(TDr)

00

At each following decision point, the situation it is very similar to the irrevocable option

to abandon studied in the previous section. The only difference is that at each potential

service time Tk+1 = TD + kr, the cost to stay operational is now the sum of the operations

cost and the servicing price. Let Cs be the price of each servicing operation. The matrix

of switching costs is then:

for the yearly option to abandon, at T # Tk,

for the service-or-abandon option, at T = Tk

0 o

Ci 0 op .cd(r, r)

0 oo

0 Cs +op.cd(,r,r)

Decision model

The total option value is determined from the following backwards iterative process:

(5.25)

It is convenient here to define all costs as percentages of the cost to design for 3 years,

CIoc( 3 ) = C3 . The present value of the mission at time To = 0 is finally a function of the

design life TD, the cost penalty per unit design time n, the servicing price Cs, the service

interval r, the market forecast Mth(t), the market volatility o, the operations cost op, the

mission horizon TH, the risk-free interest rate r and the rate of return a:

V =, fnTD C3  Mth OP TH, r, a (5.26)
C3 \ C3 C3 IC3) /)
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Optimal design life

For a given servicing price and service interval, the optimal design life TD is the design life

that gives the maximum expected mission value Vs.

Cs Mth Op
TD = C3 ) ' C3 , , TH, r, a (5.27)

In particular, for a given mission and market forecast, the valuation process will yield the

optimal design life as a function of the market uncertainty and the servicing price. A

serviceable design will be chosen only if the optimal design life is shorter that the mission

horizon TH:

Serviceable -> TD < TH

Comparison with the option to replace The replace-or-abandon option can be studied

in exactly the same way as the service-or-abandon option, simply using Cs ~ CIoc. An

optimal design life TD,R giving the maximum value VR can also be determined for the

replacement case. This adds an additional condition on the choice for serviceability:

Serviceable 4=>, TD < TH and VS

Maximum Servicing Price

For a given service interval, the maximum servicing price T can finally be defined as the

price under which the optimal design life is shorter than the mission horizon:

TD ,- - < TH -4~~~C < T
C 3 C3 ..

T = f" ;- M ; , TH, r, a (5.28)

Lower Bound on the Servicing Price

Whatever the choice of servicing infrastructure, it will be necessary to launch the mass that

has to be delivered to the serviceable spacecraft. Therefore the cost to produce and launch

this mass can be considered as a lower bound on the marginal cost of servicing, and hence
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Table 5.2: Irrevocable Service-or-Abandon Option: Constant Assumptions
Parameter Notation Baseline Value Source

Mission horizon TH 15 yr Typical GEO
Risk-free interest rate r 7.9 %/yr Adapted from [HJJKOO]
Rate of return a 4.2 %/yr Adapted from [HJJKOO]
Penalty rate KLEO 2.75 %/yr Adapted from [SHN01]
Operations cost OP 5 %C3 /yr Typical [WL99]

a lower bound on the servicing price. The cost relationship 5.24 suggests that this lower

bound be approximated by:

Cs > r r = Tmin (5.29)
C3

5.3.3 Results in the General Case

Three of the eight parameters that set the value of the maximum servicing price are par-

ticularly interesting to study:

" The service interval r, which is a free variable. In particular, the variation of the

maximum servicing price T as a function of -r can be compared to the linear variation

of the lower bound on the servicing price Tmin = K T,

" The market forecast Mth/C3 and its volatility, which are the two parameters that can

vary widely among space missions. For this very general study, we will consider only

constant market forecasts: Mth(t) = MO.

The five remaining parameters will be held constant as indicated in table 5.2. The value

for the interest and return rates in this table were obtained by considering current industry

data. We remember from section 2.3 that under the capital asset pricing method (CAPM)

assumptions, the rate of return on an asset should be of the form:

a = r + p = r + E{rm - r} (5.30)

Harbison & al [HJJKOO] plot the observed value of 13 and a for a variety of major industries,

including the aerospace industry. A fit to the equation 5.30 gives the risk-free interest rate

r ~ 7.9% and the overall market trend E{rm - r} ~ 8.3%. The Aerospace & Defense
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Decision Making Map as a Function of Servicing Price (c = 1 yr)
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Figure 5-9: Maximum Servicing Price for the Option on Life Extension: a Map in a Market

Level / Uncertainty Space as a New Tool to Decision Making. Case r = 1 yr.

industry as a whole (A&D) has a, ~ 10% and # 0.7, which corresponds to:

aA&D = ap - p = a, -E{rm - r}3# 4.2%

SA&D = aA&D - r -- 3. 7%

Quantifying the Boundaries in the New Decision Making Map

Expressing the resulting maximum servicing price T in units of its lower bound Tmin = nT

makes the results almost independent of the service interval 7r. This results from the fact

that the cost savings to design for a shorter lifetime are also proportional to . r. Figures

5-9 and 5-10 show that even the two extreme cases r = 1 yr and -r = 7 yr present indeed

very similar features.

These plots provide an estimate of the numerical values for the boundaries in the decision

making map envisioned in the previous section, in the most general case possible. They

constitute therefore a very valuable, directly applicable tool for decision making regarding

the design of serviceable spacecraft. The position of the left boundary is determined by

the option to abandon; it is a function of the operations cost only. The position of the
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Decision Making Map as a Function of Servicing Price (T = 7 yr)
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Figure 5-10: Maximum Servicing Price for the Option on Life Extension: a Map in a Market

Level / Uncertainty Space as a New Tool to Decision Making. Case r = 7 yr

right boundary, which determines when a design should be made serviceable, depends on

the price of on-orbit servicing. The lower the servicing price, the more interesting it is to

design for servicing for a given uncertainty.

These maps confirm that in the absence of uncertainty (o = 0), it is always optimal

to design for the longest possible lifetime. Thus, traditional valuation underestimates the

value of on-orbit servicing for commercial space missions by not taking into account the

effects of uncertainty. Only by taking the value of flexibility into account can the trade

between the cost to design for a given lifetime requirement and the price to service for life

extension be captured.

Furthermore, figure 5-9 shows that as soon as there is significant uncertainty (o >

40%.yr- ), the maximum servicing price is an order of magnitude greater than the cost to

produce and launch the serviceable mass. Thus, the value of on-orbit servicing for commer-

cial missions with high uncertainty is likely to be significant compared to the marginal cost

of servicing.
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Threshold Servicing Price as a Function of Service Interval
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Figure 5-11: Maximum Servicing Price as a Function of Servicing Interval: General Case
with Mo/C 3 = 10%/yr

Maximum Servicing Price as a Function of Service Interval

Figure 5-11 shows how the maximum servicing price T varies with the servicing interval r

and compares it with the minimum servicing price Tmin, for two values of the volatility and

for the example Mo/C 3 = 10%/yr. This type of plot could prove useful as a guide for future

technology development as to what servicing price a space mission can be charged: the price

should be higher than the cost Tmin to produce and launch the serviceable mass, but lower

than the maximum servicing price T that the mission is willing to afford. This figure shows

that the lower the service interval, the greater the range of possible servicing prices. This

result is in agreement with [Wal93}, which also identified shorter service intervals as more

interesting.

Maximum Flexibility Value as a Function of Volatility

Figure 5-12 plots the ratio of the expanded net present value (eNPV) over the traditional

NPV, and the relative value of the flexibility provided by on-orbit servicing as a function

of volatility. This plot corresponds to the case of free servicing: Cs = 0; it is therefore

the maximum flexibility value. This value not only increases as expected with increasing
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Figure 5-12: Expanded Net Present Value and Maximum Flexibility Value as a Function of

Volatility: General Case with r = 1 yr.

volatility, but is also much greater than in the case of the option to abandon. Even for high

market forecasts, the value of flexibility can make up as much as 50% of the total eNPV

of the mission. This amount represents by how much traditional valuation underestimates

the value of a serviceable mission.

The above results accomplish the goal of the section: they quantify the boundaries on the

decision making diagram envisioned on figure 5-8, show that on-orbit servicing is of great

value to commercial missions with highly uncertain markets, and estimate the corresponding

flexibility value. In doing so, they demonstrate the significance and many uses of the

proposed framework.

An additional piece of information would however be interesting. On the maps 5-9 and

5-10, the broad area labeled design for servicing corresponds to any design life shorter

than the mission horizon. How does the optimal design life actually behave as uncertainty

increases? Let us further explore this question by considering a realistic numerical example.

5.3.4 Application to Two LEO Communications Missions

Iridium and Globalstar

Iridium and Globalstar were two of the big LEO constellations of satellites conceived in the

early 1990's to address the great potential market of mobile telephony. By the time the
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systems were launched, the market they had been expecting had shrinked significantly due

to the advent and rapid evolution of cellular telephony networks. As a result, Iridium soon

filed for bankruptcy, and the same end may be awaiting Globalstar. The great uncertainty

in their market make these two constellation a perfect case-study for our valuation model.

Table 5.3: Approximate Parameters for Iridium and Globalstar
Parameter Name [ Iridium Globalstar

Cost to IOC Croc $3B $2B
Design life TD 5 yr 7.5 yr

Operations cost o, $245 M/qt $125 M/qt
Operational satellites Nsats 66 52

A Highly Uncertain Market

.-

U
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40-

20-

BigLEO Market Forecast and its Cone of Uncertainty

V
2000 2002 2004 2006 2008 2010 2012 2014

Figure 5-13: LE066 Market Forecast [GVH+97} with a Reference Cone of Uncertainty
1

o-= 30%.yr-2

Market forecast The expected market for these missions as forecast in 1997 is the same

as used in chapter 3 when studying an Iridium-like case from a traditional point of view.

The new approach requires to study not only the magnitude, but also the volatility of this

market. The market magnitude can be found in [GVH+97] in terms of number of billable

minutes per year for various assumptions of market penetration. This market is reproduced

on figure 5-13, where a cone of uncertainty corresponding to a = 30 % yr-2 is represented

for reference. The average price per minute around was $3/min for Iridium and $1/min
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Observed Value of Globalstar Stock (GSTRF)
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Figure 5-14: Time Variation of the Globalstar Stock (GSTRF) (Source

http://finance.yahoo.com/)

for Globalstar. Combining these numbers with a typical market penetration of 10% gives

the market forecast in terms of revenues: Mth(t).

Market volatility A major practical difficulty with any option valuation is the estimation

of the volatility of the market. While a market forecast is a necessary part of a business plan,

the uncertainty in the forecast is by definition unknown. The situation is made easier when

as in this case, historical data about the projects is available. We will therefore perform an

a posteriori volatility estimate.

A first, very crude, method of estimation consists in considering the actual number of

users. Six months after it started operating, Iridium had only 10000 customers instead of

the 52000 expected. This corresponds to an approximate volatility of o- ~ 1.2 yr-1 / 2 .

The method most widely used by financial experts however, is historical regression on

the value of a twin security traded on the stock exchange. This type of estimation is possible

for the case of the Globalstar mission, whose stock (GSTRF) is still traded. Figure 5-14

shows the five-year evolution of the Globalstar stock. It is obvious from this plot that the

volatility of GSTRF has not been constant as models always assume. Rather, figure 5-15

plots its evolution with time over the last four years: fairly high before 2000, the volatility

exploded as the stock price shrank after Iridium's failure. Thus, while o = 30 %.yrA2 could

have been estimated at the start of the mission, a more realistic value given recent history
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Figure 5-15: Estimation of the Volatility of the Globalstar Stock (GSTRF)

would be a = 90%.yr-2.

Given the uncertainty on the volatility, we shall keep it as a parameter as long as

possible.

Risk premium In the absence of any more information, a reasonable approximation is to

assume the same discount rate and internal rate of return as for the Aerospace and Defense

industry as a whole: r = 7.9% and 6 = -3.7%.

Optimal Design Life

Figure 5-16 maps the regions of different optimal design lifetimes for the parameters of the

Globalstar case, in a servicing price/volatility space. Expressing the servicing price in units

of its lower bound rs r 03 makes the optimal design lifetime approximately the same for the

two missions. As expected, the optimal design life decreases with decreasing servicing price

and increasing uncertainty. This map reveals the existence of two very different situations:

Although from this plot the shrinking of the stock value seems to show a deterministic trend, in the first

quarter of 2001 the Globalstar customer base has been growing significantly. The assumption of symmetric

uncertainty is thus not that bad.
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Optimal Design Life for Globalstar Parameters (r = 2 yr, 10% penet")
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Figure 5-16: Globalstar: Optimal Design Life as a Function of Servicing Price for r = 2 yr

" If servicing is very cheap (below two times the lower bound), then the servicing price

is the main driver for the optimal design lifetime, whatever the uncertainty. But the

optimal design lifetime is so sensitive to the servicing price that it is not a good guide

for decision making.

" When the servicing price is significant on the other hand, uncertainty becomes the

main driver for the optimal design lifetime. The regions of different optimal design

lifetimes become large enough to represent a significant tool for decision making.

However, an accurate estimation of the market uncertainty would be required to make

the right decision. For example, the Globalstar volatility a estimated at the start of

the mission (o = 30 %.yr-i) would recommend the longest possible lifetime. However,

the actual stock volatility as observed after five years (o- = 90 %.yr-i) corresponds

on the map to a shorter design lifetime with the option to service.

Flexibility Value

Figure 5-17 plots the relative value of flexibility for the two missions as a function of volatil-

ity. The results are very similar to those obtained in the general case. The relative flexibility

value of Globalstar is higher for the same volatility because its cost per minute is lower,
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Figure 5-17: Iridium and Globalstar: Flexibility Value as a Function of Volatility

I

making its overall market lower for the same penetration. If o- = 90 %.yr-2 is assumed

for Globalstar, then the flexibility value is 40% of the NPV, which represents $1.5B. If

o- = 120 %.yr-2 is assumed for Iridium, then the relative flexibility is 30%, which corre-

sponds to almost $6B. These cases thus confirm once more the importance of accounting

for flexibility when evaluating the advantages of on-orbit servicing.

5.3.5 Conclusions

This section proposed a new approach to decision making regarding the choice of a design

lifetime requirement and a maintenance strategy. The option valuation framework can

provide decision makers with two types of tools to strategically manage the uncertainty in

their revenues:

" If the price of on-orbit servicing is known, then the optimal design choice can be

plotted in a market level/volatility map such as figure 5-8. Provided that the uncer-

tainty is not close to the decision boundary, then broad estimations of market forecast

and volatility suffice to decide between designing for the longest possible lifetime and

designing for servicing.

* If accurate estimates of the market forecast and market volatility are developed, then

the optimal design life can be plotted in a servicing price/volatility map such as 5-16.
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Then only a broad estimation of the servicing price suffices to decide on a design

lifetime requirement.

Using these tools on the most general case possible, we showed that the maximum

servicing price that commercial space missions should be willing to pay for on-orbit servicing

is an order of magnitude higher than the cost to produce and launch the serviceable mass,

as soon as the volatility in their revenues is higher than about 40%.yr-2. This proves not

only that on-orbit servicing has significant value for commercial space missions, but also

that this conclusion can be reached only by accounting for the value of the flexibility it

provides them with.

Finally, theses results show how the valuation framework can be used as a guide for future

on-orbit servicing technology development, by defining the range of possible servicing prices

that a space mission can be charged (figure 5-11).

Note The above results suggest that the optimal design lifetime can be as long as 16

years, whereas the lifetime actually chosen by both missions was shorter than 8 years. This

is due to the simplifying assumptions made here that the cost to IOC is a linear function

of the design lifetime. In practice, there are technological limits to the design lifetime.

132



Chapter 6

Towards a Value of Servicing for

Military Missions

For a significant proportion of space missions, value is not monetary and the linear valuation

model described in the previous chapter is not valid. This chapter proposes to tackle the

problem of non-commercial on-orbit servicing valuation by choosing the example of military

space missions.

The decision process for a military mission differs greatly from what happens in the

commercial world. First, mission value is not a measure of revenues minus cost, but rather

takes the form of a complex utility function divided by cost. Thus, value does not have

the same linear properties as for the cases studied by real options theory. But even more

importantly, there exists two possible decision processes. When designing a space mission

during a peaceful time, the optimal design is taken to be the one the maximizes utility

per cost under certain constraints. But when making a decision about an operational

space mission involved in contingencies, the cost factor becomes much less critical than the

performance. The alternative that maximizes utility is generally chosen.

This chapter proposes a way to adapt the options valuation framework to the special

case of military missions faced with uncertainty in the location of contingencies over the

world. The value of refueling as a way to make satellites maneuverable will be explored

in two cases. Section 6.1 considers the potential for reducing the number of satellites in a

LEO radar constellation. Section 6.2 studies the potential improvement in capacity when

optimizing the distribution in longitude of a GEO fleet of communication satellites.
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6.1 A Thin Radar Constellation

This section is interested in the potential offered by on-orbit servicing to enable new ways of

designing space systems. It addresses the example of maneuverable satellites, which would

be made possible by a refueling capability. In particular, using maneuverable spacecraft

could help reduce the number of satellites in a low Earth orbit (LEO) radar constellation.

6.1.1 Problem Statement

Discoverer II The Discoverer II (DII) program* was an Air Force, Defense Advanced

Research Projects Agency (DARPA), and National Reconnaissance Office (NRO) joint ini-

tiative to develop and demonstrate revolutionary capabilities for space-based radar. The

program was based on DARPA's work on a new lightweight satellite called STARLITE.

Its goal was to develop, design, fabricate and launch two research and development satel-

lites capable of detecting and tracking moving targets on the Earth's surface, producing

high-resolution imagery and collecting high-resolution, digital terrain mapping data. If full

funding had been approved, deployment of additional 22 satellites was projected by DARPA

for 2003-2005. The resulting Discoverer II constellation would consists of 24 low cost satel-

lites, placed at 770 km altitude in 8 orbital planes in a Walker Delta-pattern t with a phase

value of 4 and an orbital inclination of 530; this constellation was designed to meet a com-

mander's requirement for an imaging operation within 15 min after receiving tasking, 90%

of the time, averaged across 650 north and south latitude. The Discoverer II program also

intended to show how individual satellite costs could be cut to less than $100M , reducing

the 20-year life-cycle cost of a large operational system to less than $10B. Despite these

efforts, the project was judged too expensive and was canceled.

The Idea of a Thin Constellation Space-base radar requirements are usually focused

around a few critical theaters. However, the location of these theaters cannot be predicted

at the time of mission design and can be expected to change several times over a mission

lifetime of more than a decade. Therefore, space-based radar missions need to be designed

with the flexibility to adapt to any possible theater location. Traditionally, this flexibility is

build up in the system by designing the constellation for global coverage over the range of

*http://www.fas.org/spp/military/program/imint/starlight.htm
fSee next section for a definition

134



possible theater latitudes, as was the case for the Discoverer II constellation. Space-based

radar systems need to be implemented in low-Earth orbit (LEO) in order to meet their

resolution requirement. Therefore global coverage requires many satellites, much more than

would be necessary for coverage of the current critical theater only. Radar constellations

are thus over-designed for instantaneous requirements.

This over-design for flexibility leads to high costs. The existence of a refueling capability

in space could offer an alternative to global coverage for flexibility to theater location. Mak-

ing satellites refuelable increases their maneuver capabilities. A constellation designed for

coverage over one location could therefore maneuver to optimize its orbital characteristics

for coverage over any new theater. Since it would be designed for instantaneous local cov-

erage, such a constellation would require fewer satellites, hence the name thin constellation.

A thin constellation offers the potential to reduce the lifetime cost of a radar constellation.

Maneuvering could also enable the constellation to focus its coverage over one theater,

improving its utility for the same cost. Thus there are at least two ways in which a refu-

eling capability could improve a mission's cost-effectiveness. But this maneuver-and-refuel

capability will of course come at an additional cost.

Goal of the Study The goal of this section is to evaluate the value of servicing to

reduce the number of satellites in a space-based radar constellation. For this purpose two

definitions of value are interesting:

9 Value can be the lifetime utility per cost, which we will define in the next section,

e Or it can refer to mission's lifetime cost only, because systems with high utility per

cost are unrealistic if their cost is higher than what decision makers are willing to

spend.

Mission Value

Four Capability Metrics The mission requirements for a radar constellation can be

expressed in terms of four GINA-type capability metrics as follows [Sha99]:

Isolation Isolation measures the ability to identify a target from the ground clutter. It is

expressed in terms of three numbers: ground resolution (cell size; 200 m), minimum

detectable velocity (MDV; lm/s), and velocity precision.
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Integrity Integrity measures the probability of an error in the information transferred.

It is here expressed in terms of the probability of false alarm and the probability of

detection.

Rate There are two important rates for a radar mission.

1. The first is the area search rate of a ground cell within a theater, omitting times

when the theater is not being searched. It measures how much territory can be

surveyed per unit time during the times in view.

2. The second is linked to the gap times between coverage of an area by successive

satellites. Discoverer II requirements are expressed in terms of what we will

called a reaction time. Reaction time is defined as the time it takes from a

request to observe an area to the actual collection of data over this area.

Availability In the GINA framework, availability is the probability to meet the mission's

requirements for isolation, rate, and integrity. It can be measured as a function of

any of these variables.

This study focuses on the trade between number of satellites and their maneuverability.

For this trade to remain unbiased, the satellites altitude and payload design will be held

constant. Under these conditions, isolation and integrity will be approximately the same

for all designs, because they are only function of the radar signal link budget. The theater

area search rate will also be constant at constant payload design.

In the framework of this study, availability is therefore a function of reaction time. The

requirements must specify a minimum availability for a minimum reaction time:

7 = (Av, Rxn)

The baseline requirements specified for Discoverer II are lZb = (90%, 15 min).

Function, Cost per Function; Utility and Value In the initial work by Shaw [Sha99],

Function was defined for a radar constellation as the total number of km 2 protected over

the lifetime of the mission. This definition holds when the constellation is designed for

global coverage and the actual target locations are unknown. In that case, coverage is
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indeed approximately uniform and the total number of km 2 protected can be considered to

be proportional to the number of critical km 2 protected.

But at any instant in time, a user can actually be satisfied only by observations of

the current critical theater. Therefore, we will define utility as the total time in view

of the instantaneous theater of interest. This theater has a probabilistic time and space

distribution, which must be taken into account.

6.1.2 Number of Satellites versus Maneuverability

Instead of designing a constellation for global coverage within a latitude band, we thus

propose to design a thin constellation using a distinct orbital configuration for each theater

location; the satellites would maneuver between each orbital configuration as the theater

location changes. This corresponds to carrying out a trade-off between the number of

satellites and their maneuverability. The more satellites can maneuver, the better they can

optimize their coverage over the current critical theater, and therefore the fewer the required

number of satellites for a given coverage requirement. On the other hand, there is a cost to

design satellites for maneuverability. This section proposes a simple maneuverability model

to help quantify this trade-off.

Reminder: Walker Delta patterns [Wal7l] are a family of configurations for constel-

lations of satellites in circular orbits at a given altitude and inclination. They are defined

by three numbers T/P/F:

" T is the total number of satellites

* P is the number of orbital planes; P can be any divisor of T

" F is the angle past its ascending node at which a satellite is when the satellite in the

neighboring plane to its East reaches its node; it has units of 2 ir/T and can take any

integer value in {0, 1,...T - 1}

A Simplified Model of Maneuverability

Maneuverability Aimax A good metric for maneuverability is the maximum incremen-

tal velocity that a satellite is designed to perform before it needs to be refueled. With this

incremental velocity AVmax, each satellite could a priori change any or all of its six orbital
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elements. In order to keep isolation and integrity constant without changing the payload de-

sign, we will consider a constant altitude and therefore constant eccentricity. The longitude

of the ascending node has little impact on the average coverage for circular low-Earth orbits.

Therefore inclination and phase between satellites in adjacent planes are the two orbital el-

ements that are interesting to change. In order to gain some insight about maneuverability

while keeping the study simple, let's further limit ourselves to Walker Delta-patterns with

a constant number of satellites placed into a constant number of planes. Then AVmax can

be used only for uniform inclination change, and change of Walker phase number.

The incremental velocity required for a change in phase, which is to first order inversely

proportional to the time allowed (equation 3.10), can safely be considered negligible com-

pared to the incremental velocity required for an inclination change. Therefore in this

simplified model, the maneuverability AVmax can simply be expressed in terms of a maxi-

mum inclination change before running out of fuel: Aimax.

As more satellites are available, mission requirements can be met at orbital inclinations

that are further and further away from the target's latitude, and at more diverse Walker

phases. Therefore increasing the number of satellites decreases their required inclination

change capability.

Viewing angle conditions Three viewing angle conditions must be met for a target to

be considered in view of the satellite, as illustrated by figure 6-1:

" A minimum grazing angle emin; the is the angle from the user's horizon to the target-

satellite line-of-sight.

" A minimum nadir hole angle rimin; this is the angle from the sub-satellite radial vector

to the satellite-target line-of-sight.

* A minimum cone angle #min; this is the angle from the satellite velocity vector to the

target-sub-satellite-point vector.

Meeting the requirements over a target Due to the rotation of the Earth below

satellites in LEO, the availability of a constellation over a location is a function of the

location latitude only. We will say that a constellation configuration meets the requirements
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Target

Figure 6-1: Definition of Viewing Angles: Satellite / Target Configuration and Satellite
Footprint

R = (Av, Rxn) over a target at latitude 9 if its reaction time for observing this target is

smaller than Rxn, Av% of the time.

Minimum number of satellites for a maneuverability For a constellation with a

fixed number of satellites T and a fixed number of orbital planes P, an orbital configuration

C is defined by two numbers, namely its inclination and its Walker phase number: C = (i, F).

Consider a target at a latitude 9. The orbital inclination i is possible if there exists

a phase F for which the configuration (i, F) meets the requirements over the target. Let

1(9) = [imin(0), imax(0)] be the range of possible orbital inclinations. In order to be able to

meet the requirements over any hot spot, it must have the maneuverability:

Aireq(T, P) = max 0, max(imin) - min(imax)

The minimum number of satellites Tmin for a maneuverability Aimax is.the minimum num-

ber of satellites T for which there exists a number of planes P such that Aireq(T, P) 5

Aimax. The function Tmin(Aimax) is illustrated on figure 6-2 for various requirements.

This estimate was obtained by numerically simulating all possible Walker Delta-patterns as

Keplerian orbits perturbed only by the oblateness of the Earth (J 2 -effect).

Ratio of time in view The ratio of time in view ( (9, C) of a given target latitude 9

is the average percentage time that the spot is viewed by a satellite in the constellation C

with the required viewing angle conditions. By convention, a constellation that does not

meet the (Av, Rxn) requirement for a target will be defined as having a null ratio of time
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Figure 6-2: Minimum Number of Satellites as a Function of Maneuverability. Ground moving

target indication (GMTI) viewing angle conditions (emin = 60, rin = 200 and # min = 00) and 10

possible targets between 0 = 0* and 0 = 48.50 are assumed.
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in view over this location. The optimal orbital configuration C(6) = (T(9), JF(6)) is the

configuration giving the maximum ratio C.

Optimal number of planes Suppose we have a finite number of possible theaters and

let PHn be the probability that the critical theater be number n. The expected utility rate

for a maneuverable constellation with T satellites in P planes is then:

NHS

U(T,P) = E PHn C (n,C(On))
n=1

Among the possible number of orbital planes P for a given number of satellites Nat = T >

Tmin(Ai), the optimal number of orbital planes P(T, Ai) is the one that yield the maximum

expected utility rate u(T) = U(T, P). If costs do not depend on the number of planes, then

this is also the number of planes that maximizes value.

Capturing the main trade With the above definitions, the number of orbital planes

and the optimal orbital configurations over each possible target are set once the number

of satellites and their maneuverability are chosen. Thus the cost as well as the utility

rate of a constellation depend only on two parameters: its number of satellites T and its

maneuverability Aimax. This is the level of simplification that we wanted to reach.

6.1.3 Maneuverable Satellite Propulsion System

Modeling the effect of maneuverability on the satellite cost is key to capturing the trade

between the number of satellites and their maneuverability. This effect is mainly dependent

on the design of a propulsion system.

This section considers the effect of choosing between two very different types of propul-

sion systems: chemical propulsion, which is very fuel consuming but allows for quasi-

instantaneous maneuvers; and electric propulsion, which requires long maneuvering times

but leads to much lighter spacecraft.

Chemical Propulsion

An example of a baseline chemical propulsion system that was designed for refueling is the

Gamma Ray Observatory (GRO) Propulsion Subsystem [WCH88]. It could carry up to
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Table 6.1: Selection of Representative Electric Propulsion Systems from [WL99]

Concept I[s] Pin[kW] Tp[mN/kW] Mp[kg/kW] Propellant

Resistojet 299 0.9 905 1 N 2H 4

Arcjet 580 2.17 113 2.5 N 2 H4

Pulsed Plasma Thruster (PPT) 1200 0.02 16.1 85 Teflon

Hall Effect Thruster (HET) 2042 4.5 54.3 6 Xenon

Ion Thruster 3400 0.6 25.6 23.7 Xenon

1800 kg of hydrazine.

If the maneuverable spacecraft use several times the same tank as for the GRO, or tanks

designed with the same sizing proportions, then the ratio of the total tank mass over the

usable fuel mass remains constant. It is then a fair approximation to define as in chapter 3

a constant propulsion subsystem mass factor f, such that:

dry - pfue

For the GRO, this factor is found to be fz~ 15%.

Chemical maneuvers are well modeled as impulsive burns, which means that the change

in inclination can be considered to be instantaneous. The incremental velocity and time

required to perform an inclination change Aimax are therefore:

AVm"em = 2 Vo sin (2a)
(6.1)

ATcax" =0

where V is the orbital velocity at the satellite's altitude ao.

Electric Propulsion

Unlike chemical impulses, electric propulsion maneuvers consist of low-thrust, continuous

burns over long periods of time.

[WL99] gives the input power Pi7 , the thrust/power ratio Tp, the specific impulse Isp

and the specific mass Mp for various existing electric propulsion systems. A representative

selection of these systems is reproduced in table 6.1. The thrust available from NT thrusters

is:

F = NT Tp Pn = T Pinput (6.2)
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where Pinput = NT Pin is the total input power to the propulsion system.

Vo

6i Vo

Figure 6-3: Low-Thrust Inclination Change

Since the maneuver is not instantaneous, the formula for inclination change 6V =

2 Vo sin(6i/2) is valid for short time scales only. Making the approximation that the orbit

remains circular at all points during the low-thrust maneuver, this gives:

di 1 dV
dt Vo dt

If the thrust F and the exhaust velocity g I1, are constant, then the mass flow rate M =

F/g Is, is constant and the total time for the maneuver can be estimated from the rocket

equation:

Vo As Minit

9 13P Mint - AT/g 1sp)

which finally yields:

AV e I = Vo jAimax|

ATelec = 1 - e 9 ISe I n
max Tp Pinput

(6.4)

Thus the time to maneuver is proportional to the spacecraft wet mass Minit and inversely

proportional to the power Pinput available for propulsion.

Spacecraft Mass Budget

The spacecraft mass budget is then the same as described in chapter 3. Recalling equation

3.5:

Mdry,tot = A
1-(f+ tfi+Efst) (e 7P -1)

Mlaunch = Mdrytot ( 1 + e - 1
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Figure 6-4 compares the mass increase, and the time for a given inclination change per

kg/kW of spacecraft, for the electric propulsion systems given in table 6.1 and for chemical

propulsion.

Figure 6-5 plots the total spacecraft dry mass versus the time to maneuver for a space-

craft similar to the Discoverer II baseline satellites, which had Mbase = 4, 400kg

payload radiating 4 kW of power, hence Pinpt ~ 10 kW. A spacecraft with chemical

propulsion would accomplish a = 200 change in less than a day and have a dry

mass of 6000 kg; a spacecraft with arcjets would maneuver in 195 days and have a dry mass

of 5000 kg; and a spacecraft with ion thrusters would maneuver in 571 days and have a dry

mass of 4470 kg. Thus without any increase in available power, the mass savings allowed

by electric propulsion come at the expense of very long maneuver times.

6.1.4 Modeling Utility per Cost

Building Blocks

The basic elements of the flexibility valuation take a special form here for two reasons: on-

demand refueling requires continuous decision points, and the decision model is to maximize

current utility instead of maximizing future value.

Uncertain parameter: theater dynamics The uncertain parameter is the latitude X =

0 of the current critical theater of action.

Bonds & al show that the historical occurrence of world conflicts has been similar to

a Poisson process, i.e. the probability that a contingency appears between the times

t and t + dt is of the form vc dt. Here we are interested in a radar constellation that

must constantly cover the most critical theater of action. A reasonable assumption

is that any new contingency has a certain probability to become the new theater of

action, so that the probability that the theater changes between t and t + dt is of the

form v dt where we will can v the hot spot frequency.

A new theater is relevant for the radar constellation only if it appears at a significantly

different latitude. Thus it is sufficient to define a finite number NH of hot spots,

each spot n representing a different region around the latitude On, and having the

probability PHn to contain the most critical theater. For the purpose of this study,

we will assume that the PHn are constant. If the theater is in spot n at t, then at t+dt

144



Dry Mass as a Function of Maneuverability
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Figure 6-4: Spacecraft Mass and Time for Inclination Change for Selected Electric Propul-
sion Systems. To know the number of days for a given aimax, multiply the value read on the plot
by the total mass of the spacecraft in kg and divide it by the power available for propulsion in kW.
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Figure 6-5: Spacecraft Mass versus Time for Inclination Change for Selected Electric Propul-

sion Systems in the Case Mbse = 4400 kg and Pp 1 t = 10 kW.

it has the probability (1 - v dt) to still be in n, and the probability v dt P/(1 - PHn)

to be in any other spot 1.

Modes of operation The possible modes of operation are the NH constellation configu-

rations Cn = (%n, Fn) optimized over each hot spot n.

Utility rate The utility rate is the ratio of time in view of the current configuration (n)

over the current theater latitude X:

u(")(X) X ,C

Decision points The decision points are here continuous: at each time t, the decision can

be made whether to maneuver to a new configuration (n). If the decision is to not

maneuver, then the next decision point occurs at t + dt. However, if the decision is to

maneuver and the time to perform a maneuver TM is finite, then there won't be any

other decision point until t + TM. This makes the system dependent on history, which
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is contrary to one of the framework assumptions made in chapter 4 (Markov process

assumption). This contradiction can be leveraged, and the system made dependent

on the current state of nature only, by defining a maneuver rate pu = 1/TM: the

probability to finish the maneuver between t and t + dt verifies dP = PyM dt.

Matrix of switching costs We saw that the main impact of maneuverability was mass.

Since the added mass is primarily made up a fuel and structures to support the

fuel, a reasonable approximation is to assume that the development and production

cost do not depend on maneuverability. The cost to initial operating capability is a

function of the number of satellites in the constellation and their maneuverability:

CIoc = f" (Nsat, Aimax). The dependence of the satellite mass on maneuverability

is given by equation 3.5. The dependence on number of satellites is made up of

three terms: constant development costs, launch costs proportional to the number of

satellites, and production costs subject to a learning curve factor B. So that finally:

A AVd

1 + e (e 9IsP - 1i

CIOC = CD + Nt C + Nsat Mbase CL (6.5)

1 - (efst + fp + fpfst) (e a - r

where CL is the launch cost per unit mass.

Switching modes of operation requires refueling. The servicing price is likely to depend

on the mass to be delivered, which is a function of the inclination change to be

performed. Let us assume that there is a constant servicing price Csm per unit

mass delivered. Then any result on servicing price per unit mass will be directly

comparable to launch prices per unit mass. The incremental velocity to maneuver

between configurations (m) and (n) is a function of their difference in inclination:

A V(mn) - 2 Vo sin (|Tm - Ta l/2) with chemical propulsion,

V ITM -YnlI with electric propulsion.

The mass of fuel to be delivered is then M 4J-3) = Mdry (enV/IsPg - 1), so that the
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servicing price to switch modes is of the form:

exp (AV(m-n)) _ 1
CA) V * Csm (6.6)

1-(Efst + fp + fp fst) (e gp -)

Decision model It makes sense that the initial decision between different designs be made

on a utility per cost basis. However, in a military framework it also makes sense that

as a theater location changes, the decision be to maximize the performance achievable

with the current system. The decision model therefore dictates to maneuver on-

demand to the new optimal configuration C = (i; F).

Value model

In this study the decision model thus takes of new form, which is to continuously optimize

performance instead of periodically maximize future value. Thus the decision depends on the

uncertain parameter and the current mode of operation, but not on the decision time. The

best method to estimate value in this case is therefore not a backwards iterative process.

A Markov model is more appropriate. Such a model presents the further advantage of

facilitating the introduction of a servicing rate ps and a probability of a crash PC.

At least five states are necessary to describe the constellation behavior:

1. The satellites have enough fuel for a maneuver and the constellation is optimized over

the current theater.

2. The satellites do not have enough fuel for a maneuver but the constellation is optimized

over the current theater.

3. The satellites have enough fuel for a maneuver and the constellation is not optimized

over the current theater.

4. The satellite do not have enough fuel for a maneuver and the constellation is not

optimized over the current theater.

5. Some satellites are failed, so that the constellation cannot meet the requirements.

The Markov process is illustrated on figure 6-6: the constellation stops being optimized

at a rate v, at which point it must maneuver with a rate pm, then be refueled with a rate
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Figure 6-6: Markov Model for a Maneuverable Radar Constellation

(1 - Pc) ps, which carries

are replaced at a rate 1 R.

satellites by a failure rate

maneuverable constellation

Am =

-v (-A)

0

V

0

0 (+A)

the risk of a failure with rate Pc /.s. Finally, failed satellites

If desired, it is also easy at this point to model the aging of

A; however this captures no fundamental difference between a

and a baseline constellations. The resulting Markov matrix is:

(1 - Pc )s

-v - ps (-A)

0

c

Pc Ps (+A)

0

AM

-pm (-A)

0

0 (+A)

(1 - Pc)is

0

0

ps(-A)

Pc As (+A)

AR

0

0

0

-A)

(6.7)

The vector of probabilities (Pi)i to be in each state i is given by solving the differential

equation:

P(0) = [1 0 0 0 0]; (6.8)

P(t) = Am P(t)

The final calculation of the mission value is summarized on table 6.2.
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Table 6.2: Summary of Thin Constellation Valuation Process

E{U}
E{C}

T+ To

TH

JMR e-' P5(t) dt

0

TH

pS e 2 4t +P(t) ) di

0

z HnPHm P(n+m)

n=1 nm PHn

NH

( -q(On)
n=1

NH

E (on, Cm)
n=1 mon

T H

(P1 (t) + P2(t)) dt

0

TH

J(P 3(t) + P4 (t)) dt

0

where:

Discounted number of replacements

Discounted number of servicings

Average cost to change configuration

Average utility rate if optimized configuration

Average utility rate if non-optimized configuration

Time spent with optimized configuration

Time spent with non-optimized configuration
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6.1.5 Results for the Baseline Case

Numerical Assumptions

Distribution of Potential Hot Spots Let us assume that there are ten hot spots around

the world, as shown in table 6.3. These hot spots are representative of any set of locations

within 0' and 48' latitude: the limitation to ten spots thus simplifies the study without

sacrificing any generality.

Table 6.3: Latitude of Hot Spots
Hot Spot Number n 1 2 3 4 5 6 7 8 9 10

Latitude On 48.510 450 420 40.50 33.50 320 31.90 300 13.8* 00
Probability Pn 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 6.4: Baseline Assumptions
Parameter Symbol Nominal Value Source

Mission horizon TH 20 yr Discoverer II
Required reaction time Rxn 15 min Discoverer II
Required availability Av 90% Discoverer II

Altitude ho 770 km Discoverer II
Min. grazing angle Emin 120(SAR)/ 60 (GMTI) Discoverer II
Min. nadir angle 77min 200 Discoverer II

Min. cone angle Omin 450 (SAR)/ 00 (GMTI) Discoverer II
Hot spot frequency v lyr- Adapted from [BMH+ 00]
Mean time to refuel pS 1 week Estimate from lit.

Mean time to maneuver m [1 day; 2 months] Parameter
Satellite's specific impulse sPC 320 s Chemical [WL99]

IspE 299 - 3400 s Electric [WL99]
Structures mass factor fst 0.2 Robust design

Propulsion dry mass factor f, 0.15 GRO [WCH88]
Learning curve factor B 0.926 95% slope

The satellites are launched with fuel for orbit insertion, station-keeping and de-orbiting

as if they where not to maneuver. Fuel for maneuver (maximum load) is filled right after

orbit insertion. After each maneuver the amount of fuel that has been used is refilled.

Chemical Propulsion: Instant Maneuver but Prohibitive Mass

If the location of the main theater of action change, it is critical that the radar satellite

be able to observe the new theater as fast as possible. Chemical propulsion offers the great
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Figure 6-7: Chemical Propulsion: IOC Cost as Function of Maneuverability

advantage of minimizing the time for an inclination change. This however comes at the

expense of an exponential mass increase.

Figure 6-7 shows the minimum cost of a constellation to IOC as a function of its maneu-

verability, assuming that the optimal number of satellites is chosen. This optimal happens

to be the minimum number of satellites required for each maneuverability, so that the

production costs are as expected a decreasing function of maneuverability. But while pro-

duction costs decrease linearly, launch costs increase exponentially with maneuverability as

a results of the exponential mass increase.

A very slight minimum of cost and maximum of utility per cost (see figure 6-8) is

observed for a maneuverability Aimax = 100. But the difference with zero maneuverability

is so slight that it allows no room for servicing price: whatever the price of servicing,

chemical maneuverability cannot be interesting for this radar constellation.

It is interesting to note that in this case, there is no value to refueling whatever the design

of a servicing infrastructure. This proves the interest of studying the value of servicing before

even attempting to model its cost.
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Electric Propulsion: High Maneuverability and but Very Long Maneuver

The exponential mass increase observed in the previous section is the direct effect of the

low specific impulse of chemical propulsion. With electric propulsion, the propulsion system

mass can stay within reasonable bounds, as we saw on figure 6-4. This cost advantage

however comes at the expense of a very long time to maneuver. Though a long maneuver

time is unacceptable in the context of war, it may be acceptable in the context of peacetime

surveillance. An upper bound on the value of servicing can be found by assuming that there

is no limit on the allowed time to maneuver and considering the various propulsion schemes

given in table 6.1.

Figure 6-9 shows that for a sufficiently high specific impulse, the impact of maneuver-

ability on spacecraft mass becomes negligible, so that the sum of production and launch

costs decreases with increasing maneuverability. In the case of free servicing, the optimal

design would be the highest possible maneuverability, Ajmax = 400. However, the higher

the maneuverability, the higher the total mass that must be delivered to the constellation

over the lifetime of the mission. As soon as servicing has a price, the optimal maneuverabil-

ity is thus lower. Considering the difference in cost and in utility between the maneuverable

cases and the non-maneuverable case, one can determine the maximum servicing price per

unit mass under which the optimal design is maneuverable.

This maximum is illustrated on figure 6.1.5 as a function of time allowed to maneuver,

153



IOC Cost with Electric Propulsion (BET)

Maimum W Prod
servicing Launch -

price

12 11 10 10 10 9 9 8 8
sats sats sats sats sats sats sats sats sats

1.6-

1.4-

1.2-

0.8

0.6-

0.4-

0.2-

0-
-5

Figure 6-9: Electric Propulsion: IOC Cost for Null Servicing Price

Design
for

Gobal Coverage

I 1 1
460 600

Days to Maneuver

Figure 6-10: Electric Propulsion: Threshold
Allowed to Maneuver

Servicing Price per Unit Mass versus Time

154

0 5 10 15 20 25 30 35 40 A ima [0]

Servicing
Price

[$ K / kg]

120-

100

75

50

20

Launch(

170 240



taking into account the different types of electric propulsion systems. Approximately the

same results are obtained whether considering utility per cost or cost alone. The maximum

servicing price is greater than five times the cost to launch to LEO (which is approximately

$10 K/kg) for any electric propulsion system but arcjets and resistojets. Thus, if the price of

servicing is kept close to the marginal servicing cost, an electric thin constellation is more

cost-effective than a global coverage, non-maneuverable constellation. In the case of ion

thrusters, the maximum servicing price is even an order of magnitude higher than typical

launch costs. However, this must be traded against maneuver time. The maneuver time

that makes electric propulsion optimal is of the order of a year for the baseline satellite's

mass and power. Given that no power is available for the payload during a maneuver, such

a long time is unacceptable in the critical context of radar coverage of a military theater of

action.

6.1.6 Conclusions

By introducing a Markov model of the dynamics of contingencies, this section successfully

expanded the framework to account for continuous decision times in the special case when

the decision is to always optimize performance. The trade of number of satellites versus

maneuverability was explored for a radar constellation for two types of propulsion systems.

While chemical propulsion offers the fastest maneuverability, its exponential mass increase

outweighs the advantages of servicing. Refueling proves much more promising for electric

propulsion systems, for which the maximum servicing price per unit mass can be as high

as an order of magnitude greater than launch costs to LEO. However, electric propulsion

systems require unacceptable times for a change in inclination.

These results suggest that refueling would have no value for a LEO radar constellation

unless revolutionary propulsion technologies, offering fast maneuver and high specific im-

pulse, were developed. Before drawing definitive conclusions, other options should of course

be explored, such as other types of maneuverability (not limited to inclination change of a

Walker Delta-pattern) or step-wise chemical inclination change (refueling after each step).

These studies are however outside the bounds of this research effort.

Instead, let us use this generalization of the framework to study another military case,

for which the incremental velocity for maneuvering is less problematic.
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6.2 Military Communications under Uncertain Contingency

Locations

The uncertainty in the occurrence and location of contingencies does not affect only radar

satellites. As the military deploy troops, their communications needs over the longitude of

the theater increase significantly. An answer to these needs is to lease capacity on available

commercial geostationary satellites [BMH+00]. However, commercial satellites can be used

only for information that requires a low level of security.

There is therefore a need for flexibility in the distribution of the capacity provided

by military satellites. This flexibility could be achieved by making geostationary military

satellites maneuverable, so that their distribution in longitude as a function of the distribu-

tion of contingencies. Changes in longitude require only small incremental velocities even

for a short allowed maneuvering time, thus solving the problem faced in the previous sec-

tion. Is this enough to make refueling of significant value ? This section proposes a basic,

first-order-of-magnitude model to estimate the maximum servicing price that would make

on-orbit servicing interesting for this case.

6.2.1 Satellite Design: Design-AV

Incremental Velocity for Phasing Maneuvers

Changing longitude by an angle Azb corresponds to a phasing maneuver, which can be

accomplished by altering the apogee of the orbit so that the slightly different period cancels

out the difference in phase. The required incremental velocity depends on the time ATmax

allowed to perform the maneuver and was given in chapter 3 t:

AVph (Ab, ATmax) = 2
V= 2 2- -4D2r 1

(ATmax A4'b
where 1 = Integer part of To + 27r

Figure 6-11 illustrates this function. It shows in particular that the velocity increment

is proportional to A-b/ATmax for ATmax > 7 days.

$And more details are provided in appendix B.1.2
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Figure 6-11: AV to Change the Longitude of a GEO Satellite as a Function of Time Allowed
to Maneuver

Fleet Maneuver Scheme

Suppose that capacity is required to be moved between two regions separated in longitude

by an angle nAo. There are two ways to maneuver the fleet of satellites, as illustrated on

figure 16:

1. Move one satellite by an angle not so as to minimize the number of satellites to be

refueled, or

2. Move each satellite to the nearest slot in the direction of the capacity move; the

satellites replace each other in a row so that each of them maneuvers the least far

possible. If satellites are placed every A4, this corresponds to moving n satellites by

an angle AD.

Previous results suggest that it is important to minimize spacecraft design-AV. However,

the incremental velocity required for station keeping of a GEO satellite with a design life

or 10 years is of the order of 500 m/s. Figure 6-11 shows that as soon as two days are

allowed for the maneuver, the incremental velocity for any longitude change is smaller than

700 m/s. It is therefore reasonable to design the satellites for A~max = -r and choose
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Figure 6-12: Possible Maneuver Schemes for a Military Communications GEO Fleet

maneuver scheme (1), which maximizes the communications availability during the time of

the maneuver.

The satellites can be assumed to be refueled after each maneuver, as well as every time

they have performed AVmax for station keeping. Their design-AV is therefore:

A V = max {AVn8 , A V (7r, ATmax)}

where AVinS is the incremental velocity required for orbit insertion if the satellites are

launched into geostationary transfer orbit. The mass budget is then the same as for the

chemical radar constellation considered in section 6.1.

6.2.2 Modeling Value

Building Blocks

The building blocks for the valuation process are very similar to the previous case. In

particular, on-demand maneuvering requires continuous decision points, and the decision

model is to maximize current performance instead of maximizing future value; the same

baseline principles lead to the same valuation method.

Uncertain parameter Assume that the total number of contingencies to be covered
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around the world is a constant No. The uncertainty lies in the distribution of these

contingencies as a function of longitude. It is practical to divide the globe in NR re-

gions and define the uncertain parameter as the vector X = (X 1 , ..., XNR) describing

the number of contingencies that lie in each region. We note that ENi Xk = Nc;

there are therefore NR - 1 independent random variables Xk. If at time t contingen-

cies have the same probability p = 1/NR to occur in each region, then the probability

that the distribution of contingencies be C = (X 1 , X 2 ... , XNR) is:

P { (X1, X 2 ..., XNR) pa (_ P)b Nc! (6.9)
NR

rl Xj!

NR-1

wherequad = Z Xi
k=1

Nr-1

and b = (NR-1)NC- Z kXNR-k
k=1

Modes of operation The fleet is made up of Nat military GEO satellites whose only

degree on freedom is their longitude. The possible modes of operation are the distri-

butions of the fleet over the NR regions: C = (ni, n2 ..., nNR) where nk is the number

of satellites attributed to region k.

Decision model As for the thin constellation case, the decision model is independent

of time: it says to maximize the achievable performance of the current system.

This is achieved by maneuvering into the optimal distribution of satellites nk =

I (Xk Nsat/NC) as soon as demand moves, under the constraint NRi nk = Nsat.

Decision times The decision process is continuous. This requires the definition of a ma-

neuver rate LM = 1/ATmax; and a contingency frequency ve as the rate at which

contingencies move; in other words, between t and t + dt there is a probability vc dt

that a contingency will move to a different region.

Utility The demand is expressed in terms of total capacity (data rate) required over the

world. The part of the demand that is not met by the maneuverable fleet will be met

by commercial satellite leases or use of other military systems. Therefore, the utility

of the system can be defined as the percentage of data transfer required that has been
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met over the lifetime of the mission. The utility rate at t is thus the percentage of the

data rate R(t) required that is provided at t.

Let R be the data rate provided by each satellite, and assume that several satellites

above the same region can be used at full capacity. The required capacity over a

region k is R(t) Xk /Nc. Therefore the utility rate of configuration C is:

1 NR R l(t) Xk
u(X, t) = min nk R, (6.10)

RZ(t) E mnNck=1

For a maneuverable constellation, nk = I (Xk Nat/Nc) as soon as the maneuver is

performed, so that:

U(X, t) = Vi(t) Po(t) + Un-(t) Pno(t) (6.11)

where Po(t) is the probability to be in an optimized configuration, which at t has the

expected utility rate:

V= P { (X1, ...XNR) min (X sat) ) (6.12)
Xk>O k=1

Z Xk=NC

and Pno(t) is the probability to be in a non-optimized configuration, which corresponds

to missing one satellite over one region:

__ R
uno(t) = U(t) - R (6.13)

Switching costs Is is convenient to assume as previously that the price to service is pro-

portional to the mass to be delivered, and look for a maximum in terms service price

per serviced kg. In this case the price to refuel after a change of longitude AD is:

exp (AV(A<bATma) _ I
C(AIG) = ""Mba sm = z(Ac) Mba"* Cs

1 - (efst + fp + fpfst) (e "I - )
(6.14)

where Csm is the servicing price per unit mass.

Contingencies that require a satellite in a region k to maneuver have equal probability
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Figure 6-13: Possible and Equally Likely Maneuvers

1/(NR - 1) to appear in any of the NR - 1 other regions. A satellite will always take

the shortest past to maneuver, so that the possible maneuvers are illustrated on figure

6-13. Given the choice of maneuver scheme, this means that the average fuel cost for

a maneuver is:

Cs = js Miase (6.15)

i x(kA+l) if NR=21±1

21-21 Zx(kA4) + 21 1 x(lA() if NR-=21
k=1

Markov model

The continuous decision process can be described by a Markov process very similar to the

one proposed in section 6.1. Thanks to the symmetry of the regions, the performance of the

fleet can be described by two states: (o) optimized configuration and (no) non-optimized

configuration. On average, a satellite will need to maneuver only every Nat/Nc changes in a

contingency location. Therefore transitions from (o) to (no) occur with rate v = Nsat Ic/Nc,

while satellites maneuver with rate pm from state (no) to state (o).

Satellites will maneuver one at a time. In order to take into account the effect of the

servicing rate ps, each state must be divided into (Nsat + 1) sub-states, where sub-state k

means k satellites need to be refueled. Finally, the failed state (f ) and the replacement rate

yR must be considered to account for a non-zero probability of catastrophic event PC.

The transitions in the Markov model are illustrated on figure 6-14, where Nsat = 2 for

161



0 1

Optimized
satellite
distribution

Non-optimized
satellite
distribution

Pcps
Pc s

F(1-Pc)ps (1-Pc)ps

Failed

V gM p M

Pcps

Figure 6-14: Markov Model for Maneuverable Milcom GEO fleet

the sake of clarity. The corresponding Markov matrix is finally (with p' = (1 - Pc)ps):

p'S

0

0 0

-v-ps Ms

0

pM 0

0 pl

0 0

Am =

0 0 -- ps 0 pM 0 0

v 0

0 v

0 0

0 -P.

0 0

v 0

p's 0 0

S- -M I's

0

\ 0 PC /s PC PS 0 Pc As PC [s

The discounted number of attempted servicings is:

TH N.,at

Nserv = Is J ert dt (Po,k(t) - Pno,k(t))

0 k=1

The discounted number of satellite replacements due to servicing catastrophic events is:

TH

Nrep = AR J
0

e-rt Pf(t) dt
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The final value is given by:

E{U}

E{C}

V

- fT P(t) f(t) dt + fT" Pno (t);U(t) dt

= C10 (Nsat + Nrep, A Vd) + Nserv CS (6.19)

Comparison with the Baseline Fleet

For a baseline constellation, which cannot maneuver, nk = Nsat/NR satellites are attributed

to each region permanently, so that the utility rate for a contingency distribution X is:

1
u6 (X,t) =R(t)

Nsat R
mn(NR

Xk R(t)

Nc)

The expected utility rate at t is:

Ub(t) =

Xk =O
ZXk=NC

P {(X1, ... XNR) I

NRE
k=1

mi NsatR

The value of this baseline mission is finally

E{U} =

E{Cb} =

Vb

Maximum Servicing Price

(6.21)Cloc(Nsat, AVd,b)

The maximum servicing price per unit mass T is the servicing price under which the value

of the maneuverable fleet is greater than the value of the baseline fleet:

V > Vb
E{U}

+=> E{C} < E{Cb}
{Ub}

+=> CIC(Nsat + Nrep, AVd) + Nserv TS M Cms < E{Ub} E{Cb}

hence:

(6.22)
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6.2.3 Results

Numerical Assumptions

Baseline fleet of satellites Let us consider as our baseline satellite fleet the Defense

Satellite Communication System (DSCS) satellites 5. The Air Force Space Command (AFSC)

currently operates Nat = 9 Phase III DSCS satellites in geostationary orbit, over NR = 5

main areas of coverage. The system is used for high priority command and control communi-

cations such as the exchange of wartime information between defense officials and battlefield

commanders. Each satellite is designed for 10 years, has a lift-off weight Mlaunch = 2615 kg

and an on-orbit weight Mbase = 1170 kg, from which we can infer that an upper stage

is used for orbit insertion, so that the design-AV of the baseline satellites is to provide

station keeping and end-of-life disposal only; for baseline satellites this is approximately

AVd,b = 600 m/s with a 20% margin. The cost of each unit is approximately C = $ 200 M,

which we can approximate as being equal to:

CU CP

1 - West + fp + fpfst) (e g'e -1

Baseline demand The overall demand is increasing with time at an approximate rate

1 Gbps/yr starting from a current value of 3 Gbps [BMH+00]. Given the definition of utility,

it is sufficient to define the demand in terms of a percentage compared to its present value,

so that:

7Z(t) = 1 + az t

with an = 1/3 yr 1 . We will further assume that the demand is exactly met by the current

satellite fleet, so that Nsat R = 1.

Dynamics of Contingencies Bonds & al [BMH+00] analyze the communications needs

of the military. They note on historical data that on average, 6.5 contingencies are occurring

at any time over the world, among which 2.9 have small communications needs (weight 1),

2.7 have medium communications needs (weight 4) and 0.9 have large communications needs

(weight 10). This corresponds to Nc ~ 10 concurrent small contingencies at any time.

6http://www.fas.org/spp/military/program/com/dscs_3.htm
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Table 6.5: Fleet of GEO Military Communication Satellites: Numerical Assumptions
Parameter Name Value Source
Number of contingencies NC 10 Adapted from [BMH+00]
Number of regions NR 5 DSCS satellites coverage
Number of satellites Nsat 9 DSCS satelllites
Contingency frequency vc 3/yr Adapted from [BMH+00]
Max time to maneuver ATmax 2 days Priority estimate
Mission horizon TH 10 yr DSCS design lifetime
Orbit insertion AV AvXs 0 m/s Use upper stage
Specific impulse Is, 320 s Chemical propulsion
Fuel fraction at launch 6 1 Not too heavy
Structures mass factor fat 0.2 Robust design
Propulsion dry mass factor f 1 0.15 GRO [WCH88]
Baseline unit cost Cu $200 M DSCS (web)
Cost of launch CL $ 30K/kg DSCS launchers
Risk-free interest rate r 7% Typical
Baseline satellite mass Mbase 1170 kg DSCS
Servicing rate Is 1/(7 days) Estimate
Probability of crash Pc 0.001 Estimate
Replacement rate sm 3/yr Estimate

They model contingencies as a Poisson process. Each contingency has a probability

p = 0.6 to end after three months (which would correspond to vo = 4) and a probability

1 - p = 0.4 to be extended for three additional months. This would correspond to an

expected contingency frequency:

uo= (- p)k pwo In(p) 3/yrvc o =: = - ~p /y
1-pk=1-

Table 6.5 summarizes the other baseline numerical assumptions.

Improvement in Utility

With a maneuverable constellation, the capacity of the fleet is almost fully exploited at

any time. With a baseline fleet on the other hand, some satellites are wasted over areas

with small number of contingencies, while others would be needed where contingencies

concentrate. Therefore the utility of the baseline fleet is smaller than the utility of the

maneuverable fleet.

Figures 6-15 and 6-16 illustrate the function Ub/U as a function of number of satellites,

number of simultaneous contingencies, and contingency frequency. For the baseline case,
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maneuverability enables a 20% improvement in utility. This number increases as the number

of satellites increases, due to the improved flexibility of the fleet. It decreases as contingency

frequency increases, due to finite time necessary to react to a contingency move. However,

these two effects are almost negligible. Much stronger is the sensitivity of the baseline

utility to the number of contingencies: the more numerous the contingencies requiring the

same overall capacity, the smaller the relative deviations from a uniform distribution of

contingencies over longitude, and therefore the smaller the capacity wasted by the baseline

fleet.

Maximum Servicing Price

Figures 6-15 and 6-16 also plot the maximum servicing price as a function of number of

satellites, number of simultaneous contingencies and contingency frequency.

For the baseline values, the maximum servicing price if $220 K/kg, which is more than

seven times the cost to launch to GEO. This shows that servicing would be significantly

interesting for this case as soon as the fleet of satellites pay only the marginal cost of

servicing.

The maximum servicing price T decreases at higher contingency frequencies because of

the increasing number of maneuvers necessary per year. For ve = 12/yr, the maximum

servicing price is of the order of the cost to launch to GEO: following the contingencies

becomes too expensive compared to the increase in utility.

T also decreases with increasing number of contingencies, as a result of the increasing

utility of the baseline constellation. As the distribution of contingencies becomes homoge-

neous, the need for maneuverability decreases. For the baseline vc = 3/yr, the maximum

servicing price remains however always an order of magnitude higher than the launch cost.

Sensitivity Studies

Sensitivity to time allowed to maneuver As more time is allowed to maneuver,

the spacecraft design-AV decreases and the maneuverable satellites become lighter and

therefore less expensive. Figure 6-17 (a) plots the sensitivity of T to ATmax, all other

parameters being equal to their baseline value. Although very interesting from this plot,

longer times to maneuver may not be acceptable from a military point of view, when security

is at stake. This is why A/.Tmax = 2 days was assumed as the baseline requirement.
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Figure 6-16: Utility Improvement and Maximum Servicing Price as a Function of Number
of Satellites
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Figure 6-17: Sensitivity of T to (a) Time Allowed to Maneuver (b) Demand Growth Rate
and Discount Factor

Sensitivity to demand growth and discount rate The utilities of both the baseline

and the maneuverable fleet are decreasing functions of the overall demand growth rate agz.

Since the utility of the maneuverable fleet is higher, its sensitivity to demand growth rate is

higher, which results in a maximum servicing price that decreases with increasing demand,

as shown by figure 6-17 (b).

This figure also illustrates the effect of the discount rate: as r increases, the cost of the

baseline fleet remains unchanged, while the servicing expenses of the maneuverable fleet,

which occur later in time, become cheaper. Therefore the maximum servicing price is an

increasing function of the discount rate r. However, the order of magnitude of T remains

the same over the range of reasonable risk-free interest rates.

Sensitivity to probability of a catastrophic event Figure 6-18 (a) shows that the

sensitivity of T to the probability of a crash, PC, is very small. This is due to the fact

that PC was taken into account only in the Markov model: the effect of a 1% probability

of crash is simply a 1% increase in costs, to account for replacements. The actual impact

of PC, which would be a temporary loss of communications over a region and the military

consequences thereof, are much more serious than what this figure suggests, but not easily

captured by a simple model.
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Figure 6-18: Sensitivity of T to (a) Probability of a Catastrophic Event (b) Dry Mass
Factors

Sensitivity to mass factors Finally, figure 6-18 (b) shows the sensitivity of T with

respect to the assumed dry mass factors fst and fp. As expected, the cost of maneuverability

increases with increasing dry mass factors, which leads to a decreasing maximum servicing

price. However, the design-AV of the maneuverable satellites is here very close to the

design-AV of the baseline satellites. As a result, baseline and maneuverable satellites are

affected in a similar fashion by the dry mass factors. Thus, the sensitivity of T to fst and

f, is linear and not exponential; the maximum servicing price varies by less than 40% over

the whole range of realistic mass factors.

6.2.4 Conclusions

This section showed that the maneuverability concept is very promising for a fleet of GEO

satellites. The maximum servicing price is an order of magnitude greater than the cost to

launch mass into geostationary orbit, which guarantees that servicing can be interesting for

realistic marginal infrastructure costs.

Sensitivity studies show that whenever broad assumptions on some parameters had to

be made, the same conclusions hold over the whole range of reasonable parameter values.

Only two parameters were shown to make a significant difference in maximum servicing

price. The first is the time allowed for a maneuver: doubling this time roughly doubles the

maximum servicing price. However, this parameter may not be a subject of trade in the
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framework of responding to military contingencies. The second is the contingency frequency,

which gives a measure of how often a satellite needs to maneuver. As this frequency doubles,

the maximum servicing price is roughly divided by two: when contingencies move too

fast, the costs of maneuverability outweigh its advantages. However, servicing remains

significantly interesting up to twice the baseline estimated contingency frequency.
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Chapter 7

Summary and Conclusions

7.1 Summary

The goal of this thesis was to develop of general way to estimate the value of on-orbit

servicing for space systems. In the introduction, we defined two possible research directions

to yield general results about the cost-effectiveness of on-orbit servicing and set out to

explore them both.

Expansion of the traditional approach Chapter 3 explored the first direction. It

expanded the traditional approach to on-orbit servicing by defining a method to estimate

servicing cost-effectiveness on a wide trade space of space missions and servicing infrastruc-

tures. It also developed the first equations to model the optimal maneuver scheme for a

fleet a servicer vehicles visiting a constellation of satellites.

A typical application of the model was then presented and used to illustrate the limita-

tions of the traditional approach to on-orbit servicing. This approach tends to underestimate

the value of servicing and to demonstrate cost advantages smaller than the cost uncertainty.

The analysis of these limitations served as a motivation to define a new research direction.

Definition of a new framework for the value of flexibility provided by on-orbit

servicing Chapter 4 laid out the foundations of this new approach. First, the value

of on-orbit servicing for space systems, defined as the maximum price a space mission is

willing to pay for being serviced, should exist independently of the design choices internal

to the servicing infrastructure. Second, on-orbit servicing would provide space systems with
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options to react to the resolution of uncertainty, and the value of this flexibility should be

taken into account.

Building and expanding on decision tree analysis and real options theory, a framework

to embed the value of flexibility into the valuation of space missions faced with uncertainty

was developed. The framework relies on the definition of a few building blocks, the most

important being a model of the uncertainty, a set of reachable operational modes, a sequence

of decision points, and a definition of mission value. Once these building blocks are set up,

the mission value can be obtained from a backwards iterative process similar to a decision

tree with infinite number of branches. This value embeds the value of flexibility by taking

into account the ability of decision makers to always optimize their decision using the latest

available information.

This framework accomplishes the main goal of the thesis: it defines a general method

to estimate the value of on-orbit servicing for space missions, taking the value of flexibility

into account. It also represents a new perspective to space missions decision making, in

which the value of flexibility is estimated as a tool to strategically manage external sources

of uncertainty.

The following chapters proved a solid validation of the framework. They also yielded

interesting information about the value of on-orbit servicing for two types of space systems.

Value of the compound option to abandon The framework was first used in section

5.2 to estimate the value of the option to abandon, which is available to all space missions

but has never yet been accounted for. The results show that traditional valuation methods

have been significantly underestimating the value of all missions with uncertain revenues,

creating a bias in favor of conservative projects. By recognizing the flexibility of decision

makers to shut off an unsuccessful mission, the proposed model shows that some projects

that would be deemed uninteresting by traditional valuation can actually have significant

value.

New decision making maps for the choice of a design lifetime requirement

Building on this case, section 5.3 proposed a new tool to decision making regarding the

choice of a design lifetime requirement when on-orbit servicing is available. It showed how

the option valuation framework can be used to produce two types of maps for commercial
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decision makers to manage the uncertainty in their revenues. If the price of on-orbit ser-

vicing is known, then the optimal design choice can be plotted in a market level/market

volatility map. If accurate estimates of the market forecast and market volatility are devel-

oped, then the optimal design lifetime can be plotted in a servicing price/market volatility

map. The proposed valuation framework can also be used as a guide for future on-orbit

servicing technology development, by defining the range of possible servicing prices that a

space mission should be charged.

Maximum servicing price for commercial space missions with uncertain revenues

The market level/market volatility map in the general case with constant market forecast

showed that the maximum servicing price for a commercial space mission is an order of

magnitude higher than the cost to produce and launch the serviceable mass, as soon as the

volatility in mission revenues is higher than about 40% .yr-4 . This proves not only that

on-orbit servicing has significant value for commercial space missions, but also that much

of this value resides in the flexibility it provides them with.

The servicing price/market volatility map for two realistic examples (Globalstar and

Iridium) showed that as soon as the servicing price is more than five times the cost to

produce and launch the serviceable mass, the main driver for the optimal design lifetime is

the market uncertainty. The optimal choice is the longest possible lifetime up to a minimum

uncertainty, at which serviceable designs become interesting.

Maximum servicing price for military space missions with dynamic distribu-

tion of contingencies By introducing a Markov model of the dynamics of contingencies,

chapter 6 expanded the framework to military missions in the case when the decision is to

continuously optimize performance.

For a low-Earth orbit radar constellation, the trade of number of satellites versus maneu-

verability was explored for two types of propulsion systems: chemical and electric. While

chemical propulsion offers the fastest maneuverability, its exponential mass increase out-

weighs the advantages of refueling. For electric propulsion systems on the other hand, the

maximum servicing price per unit mass can be an order of magnitude greater than the cost

to launch to LEO. However, electric propulsion systems require unacceptable times for a

change in inclination. Thus, the results suggest that refueling would have little value for a
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LEO radar constellation.

On the other hand, the maneuverability concept was shown to be very promising for a

fleet of GEO satellites as a means to continuously optimize their longitude over a dynamic

distribution of contingencies. The maximum servicing price per unit mass is an order of

magnitude greater than the cost to launch into geostationary orbit, which guarantees that

servicing can be interesting for realistic marginal infrastructure costs.

7.2 Recommendations for Future Work

In a way, this work has been the first step into new territory. This means that it is

still very incomplete. But also that it opens up a wealth of new questions and interesting

research directions.

Note on applying the framework This thesis proposed a new valuation process that

takes building blocks as input. We illustrated the use of this process by making assumptions

on the numerical forms of the building blocks. Although the valuation process can be used

as such, the numerical assumptions represent zeroth-order approximations only and would

need refinement. For the sake of generality, linear numerical assumptions were made about

the cost to design for a given lifetime, the cost to operate a system, and the relation between

mass and cost. In the real world, non-linear effects and discontinuities exist, that depend

on the particularities of the design. Using this framework on a real case study, the actual

mass and costs functions should first be derived in order to yield more accurate results.

Expansion to overcome the main limitations Several limitations of the proposed

framework could be the object of future development.

First, all the results we presented here assumed that uncertainty is external, follows a

Markov process, and is symmetric. The generalization to internal sources of uncertainty

is far from trivial. The generalization to non-symmetric sources of uncertainty, such as

revenues having a relatively higher probability to be lower than their forecast, is the easiest

step because it involves only the definition of a different probability density function. More

difficult but very interesting would be the application to processes that are not Markovian.

This would account for the fact that decision makers do not only rely on the latest available

information: they also learn from history.
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Second, while the case of a linear value function has been well defined, there remains

interesting work to do in the area of non-commercial missions. We demonstrated how to

expand the framework to account for continuous decision making in the case of military

space missions which optimize their instantaneous performance; this decision scheme made

it possible to use a Markov model. For scientific missions, which optimize their future utility

per cost ratio, a backwards iterative valuation process would be necessary, but made very

complex if decision points have to be continuous, or if the expected value of the ratio has to

be estimated (instead of the ratio of the expected values). Investigations into new models

and/or new numerical methods to solve this problem would be valuable.

Finally, all the applications studied in this work assumed that there was only one un-

certain parameter. Real space missions are however usually faced with a combination of

uncertain parameters, such as uncertain revenues and uncertain servicing price and random

failures. The generalization to such a case is conceptually easy as soon as theses sources of

uncertainty are independent. It however multiplies the complexity of the numerical analysis.

Further applications Future work should apply the proposed models to other types of

space systems. Of particular interest would be the study of two other important sources of

uncertainty: random satellites failures and technology obsolescence.

Random failures can be modeled by a constant failure rate. They require the definition

of a continuous decision process which will depend on the type of mission.

A typical assumption for the study of technological obsolescence could be that the

potential utility rate achievable with new technology increases as an exponential law (such

as Moore's law) with uncertain rate. This would be a good example of non-symmetric

uncertain parameter. The different modes of operation would correspond to technologies

made available in different years.

Market base for on-orbit servicing Thus, the application of the proposed framework

can be used to estimate the maximum servicing price that various types of space missions

would be willing to pay for the capability to be serviced. Combining this information with

an approximation of the number of space missions of each type that is expected in the

future would yield an estimation of the market base for on-orbit servicing.

This market base would represent valuable information for future technology and policy
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development regarding on-orbit servicing.

7.3 Conclusion

There is value in the options that on-orbit servicing would provide to space systems. By

not accounting for this flexibility, traditional valuation methods have been underestimating

the value of servicing.

This work proposed a general framework to take into account the value of the flexibility

to react to any source of uncertainty that can be modeled as external. It showed that options

can make up a significant fraction of total space mission value as soon as the uncertainty

is significant. Since they do not require to estimate the cost of any on-orbit servicing

infrastructure, these results are not plagued by the high servicing cost uncertainty.

The systematic application of this framework should prove very useful in identifying the

space missions for which on-orbit servicing would offer the most potentials. It should serve

as a guide for future on-orbit servicing technology development as to what maximum price

can be charged to various types of space missions. More generally, it can be used by space

missions as a new tool for decision making, with which the value of flexibility, seen as a

means to actively manage external sources of uncertainty, can be quantified.

The author wishes lots of fun to future graduate students carrying out research in this area.

She can be reached at elisabeth.lamassoure~polytechnique.org for any question.
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Appendix A

The Mathematics of Uncertainty:

Elements of Stochastic Calculus

The information in this appendix was directly adapted from [Shr97].

A.1 Definitions

Stochastic process A stochastic process X is a sequence of random variables. It can be

discrete: Xo, X 1 ,...X, or continuous: X(t).

Martingale property Let X(t) be a stochastic process et let us denote by E {YIZ} the

expectation of any random variable Y knowing the value of the random variable Z.

X is a martingale if

E {X(t + r) IX ([0; t])} = X(t) V t, r > 0 (A.1)

Knowing all the values taken by X during the interval [0; t], the expectation of X at

any later time is simply its latest known value X(t). In other words, martingales tend

to go neither up nor down.

Markov property In this thesis we assumed that uncertain parameters could be modeled

as Markov processes. Here is a reminder of the rigorous definition of a Markov process.

Let X be a stochastic process, h a function, and for 0 < to ti let Etox {h [X(ti)j}

be the expectation of h [X(ti)] given that X(to) = x. The Markov property says that
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Results of tosses: {t,h,h,t,t,h,t,t,h,t,h,h,ht,... }

Figure A-1: Example of Random Walk

whatever the initial condition X(O) = (:

E0' {h [X(ti)] |X(to) = x} = Etox {h [X(ti)J} (A.2)

In other words, if you want to estimate a function of X based on the observation

of the path of X over the interval [0; to], the only relevant information is the last

observed value X(to). The differences with the martingale property are that the

Markov property is valid for any function of X, and that it allows X to move up or

down.

A.2 Random Walks and the Brownian Process

A.2.1 Symmetric Random Walk

Suppose you toss a coin a infinite number of times and define the random variable X such

that:

Xo = 0

Xj+1
Xj + 1 if the result of the jth toss is heads,

Xj - 1 if the result of the jth toss is tails.

(A.3)

Then Xj is called a symmetric random walk process. This notion is illustrated by figure

A-1.
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The central limit theorem states that:

1

7=Xk -- + standard normal variable as k -- oc (A.4)

A.2.2 Brownian Process

Let n be an integer. For t > 0 of the form t = k/n, define

B(n)(t) = Mtn = 1 Mk

and for other values of t 2 0, define B(n)(t) by linear interpolation. The Brownian process

is the limit of B(n)(t) as n -- oc, in other words the limit of a random walk as the step of

the walk tends to zero.

More specifically, a random variable B(t) is called a Brownian motion if it satisfies the

following properties:

1. B() = 0

2. B(t) is a continuous function of t

3. B has independent, normally distributed increments; if you define 0 = to < ti < ... <
tn and Yk = B(tk) - B(tk-1), then:

* Yi, ... Yn are independent

* E{Yk} = 0 V k

e Var{Yk} = tk - tk-1 V k

Two important properties of the Brownian motion are that it is both a martingale and

a Markov process.

A.3 Measures of Uncertainty

A.3.1 First Variation

The first variation is a measure of the ups and downs of a function over an interval. It is

defined as follows. Let H = {to, ...tn} be a partition of the interval [0; T}, i.e. 0 = to < ti <
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= T. The mesh of the partition is defined to be

|TI|| = max (tk+1 - tk)
k

Then the first variation of a function f over the interval [0; T] is by definition:

n-1

FVo;T](f) = lim If(tk+1) - f(tk)I (A.5)
|Ull-0 k=O

The link of this definition to the amount f varies is even clearer in the case of a differentiable

function. If f if differentiable, then the first variation reduces to:

T

FV[o;T(f)= If'(t)l dt

0

A.3.2 Quadratic Variation

In a similar fashion, the quadratic variation of f is defined as

n-1

(f)(T) = lim E If(tk+l) - f(tk)12  (A.6)
||||-+0 k=0

It can be shown that for a differentiable function, (f) (T) = 0. But for a Brownian process:

(B)(T) = T (A.7)

The quadratic variation of f is a measure of the randomness in f. The above property

of the Brownian motion proves in particular that the paths of a Brownian motion are not

differentiable. In can be re-written informally:

dB(t) dB(t) = dt

A.3.3 Volatility

The squared sample absolute volatility of f over the interval [T1; T2] partitioned by {tO, ... tn}

is:

T 1  n [f(tk1 - f(tk)]2

T2 -j T1 f(t+
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In the case of a Brownian motion, this is equal to 1 whatever the choice of the interval

[T1; T2]. This property can be re-written (B)(T) = T = f 1 l dt. In other words, the

volatility of the Brownian motion is the rate at which its quadratic variation accumulates.

A.4 Basics of It6 Calculus

A.4.1 The It6 Integral

Let 6 be a function. Consider the integral I(T) = f6 6(t) dB(t): if B were a differentiable

function, then we would simply have I(T) = f6 6(t) B'(t) dt. This cannot work if B is a

stochastic process, because the paths of a stochastic process are not necessarily differentiable

(i.e., B'(t) is not necessarily defined).

The It6 integral is a generalization of the integral I(T) when B(t) is a Brownian motion.

Itd integral of an elementary process Let 0 = to ti < ... _ tn = T be a partition

of [0; T] and let 6(t) be a function that is constant on each subinterval [tk ; tk+1] ; we call

6(t) an elementary process. The It6 integral of such a process is defined as:

n

I(T) = 6(t ) [B(tk+l) - B(tk)] (A.8)
k=O

It6 integral of a general integrand Now let 6(t) be a process such that E {f6 62 (t) dt} <

oo. There is a sequence of elementary processes {On}ni such that:

T

lim E {J |S(t) - 6(t)|2 dt = 0 (A.9)
n-oo) j

10

The It6 integral of the general process 6(t) is defined by:

t t

J6(t) dB(t) = lim Jn (u)dB(u) (A.10)

0 0

Properties of the It6 integral include:

" Linearity: I(t) is linear with respect to 6(t)

* Continuity: 1(t) is a continuous function of t
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9 Martingale: I(t) is a martingale

R It6 isometry: E {I 2 (t)} = F {f 62(u) du

Quadratic variation of the It6 integral

(I)(t) = J 62 (u) du
0

Which means that the instantaneous absolute volatility of I is 62 (t). Informally, it can be

written as:

dI(t) dI(t) = 62 (t)

Important Example The example of the Brownian process illustrates how It6 calculus

differs from standard calculus:

T

B(t) dB(t) = 2 (T) - T (A.11)

A.4.2 It6's Formula

Let f(x) be a differentiable function. If B(t) were also differentiable, then the ordinary

chain rule would give:

f [B(t)] = f' [B(t)] B'(t)

which in differential notation corresponds to df (B(t)) = f'[B(t)] dB(t)

Since the Brownian process is not differentiable, the actual formula has an extra term,

which gives It6's formulas in differential form:

1
df [B(t)] = f'[B(t)] dB(t) + f"[B(t)] (A.12)

2

and in integral form:

f [B(t)] - f [B(O)] = t f' [B(u)] dB(u) + 1 ff" [B(u) du] (A.13)

f0 0
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A.5 Geometric Brownian Motion

The typical assumption for stocks, also used in real options and in chapter 5 of this thesis,

is to model the uncertain parameter as a geometric Brownian motion.

A geometric Brownian motion with drift a and volatility a is a process S(t) of the form:

S(t) = S(O) exp [aB(t) + p + 1 a 2) t] (A.14)

where yL and a > 0 are constant.

We can note that S(t) = f (t, B(t)) with f (t, x) = S(0) exp [a x + (pt + _I 2) t] so that

It6's formula gives:

dS(t) = y S(t) dt + a S(t) dB(t) (A.15)

which is equivalent to say that In [S (t)] is a Brownian process with drift i and volatility a.

Informally:

dS(t) dS(t) = a2 S 2 (t) dt
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Appendix B

Calculations of Velocity Budgets

B.1 Incremental Velocities for Various Maneuvers

B.1.1 Hohmann Transfer

A Hohmann transfer minimizes the incremental velocity to maneuver between two coplanar

circular orbits at the respective altitudes ao and a1 . It consists of two impulsive burns.

The first burn transfers the spacecraft to the elliptical orbit with apocenter and pericenter

distances ao and ai: the semi-major axis of the transfer orbit is at = (ao + ai)/2. The

second burn circularizes the orbit at a1 . The total incremental velocity is (see also [WL99]):

AVH
ao ao+ai a-.O+ ai ao+ai aI

where ya = G MEarth. Defining the ratio of altitude a = ao/ai and the baseline orbital

velocity V = fp/ao, this can be re-written:

A VH

AVH

V

2 2 2=Vo 2- -iV I +
1+a a 1+a a

1+ia ya yli-a

This is the final result used in 3.9.
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-AVi

Initial situation After one transfer orbit After k orbits

Figure B-1: Phasing Maneuver: Example

B.1.2 Incremental Velocity for Phase Change

Now consider a maneuver to a position in the same orbital plane at the same altitude, but

with by a difference in angular phase 4o E [-7r; 7r]. The maneuver must be performed in

less than a maximum allowed time ATma. This can be achieved by altering the orbital

semi-major axis, so that the difference in orbital period cancels out the phase. Four different

situations can be imagined, according to the sign of <bo and of the semi-major axis alteration.

Case 1 Let us first consider <bo > 0 and choose to raise the apocenter. Let the number

of orbits per unit time be no for the baseline altitude ao and nt for the transfer orbit

with semi-major axis at. The change in phase after one period in the transfer orbit is

A# = 21r no T - 27r = 27r (no/nt - 1). A phase change (o will therefore be obtained after k

orbits if:

-- = 1 - --4D + 1 (B.1)
nt k ( 27r)

The time to perform this maneuver is then k T = k To no/nt where To is the baseline orbital

period. The maximum allowed maneuver time therefore requires:

k<ATmax Ch 4oS2-1+--
-- T 2ir
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The maneuver is made up of two opposite, equal-magnitude impulsive burns. The total

incremental velocity is:

V ao at a0

= p 2 2-o 1
Vo at

But:

ao nt3

at no)

The minimal incremental velocity is obtained for at as close as possible to ao, i.e. for the

maximal possible number of orbits:

k I(ATmax +<b
k To 2ir /

where I(x) denotes the integer part of x. This finally gives:

= 2 2 -
Vo - i-' o/27r

(ATmax <bo

To 27r

Case 2 If the apocenter is raised to obtain <bo < 0, then k is now given by kA# = t<boI so

that equation B.1 becomes:

no I1|<ol-= -- +1ni k 27r

Similar calculations then yield:

AVph - 2
=2~~ 2--Vo 2 - - <bo/27r

with the same definition of 1.

Case 3 If the pericenter is lowered to obtain <bo > 0, then A4 = 27r - 27r no/nt so that

equation B.1 becomes:

-=1--
n 1 27r

189



which yields:
2

=2 2- t -i
Vo (1- 4o/27r

Case 4 Finally, if the pericenter is lowered to obtain <ko < 0, then:

no 1 |<o-=1--1-
nt k 27r

which yields

A_ ( +1 -
= 2 2 - -2 1

Vo 2 - <bo/27r)

The results can finally be summarized as follows:

Vph= 2 2_ - -2 1 (B.2)
Vo 1 - 4)o/27r)

1= I max + 21r (B.3)
To 27r

-1 if at > ao and <Do > 0

E = 1 if at < ao and <Do < 0 (B.4)

0 otherwise

Note on optimal maneuver For a given allowed time ATmax, the optimal maneuver

scheme is the one that minimizes AVph. For <Do > 0, this is obtained by lowering the

pericenter, while for (Do < 0, raising the apocenter is more interesting. In a real situation

however, the choice between these two options may not exist. For example, a spacecraft in

low-Earth orbit can not lower its pericenter too close to the Earth because of atmospheric

drag.

B.2 Velocity and Mass Budget for a Servicer Vehicle

The servicer maneuver scheme described in chapter 3 is reminded on figure B-2. We consider

a servicer vehicle with total dry mass Mileyrvicer able to carry a maximum cargo mass N Mc.

The servicer loads a cargo N MC at an altitude a1, performs a Hohmann transfer to the

satellites altitude ao to deliver a mass MC to the first satellite, performs phase changes to
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Phasing

Phasing

Loading

N satellites visited during each roundtrip
L roundtrips performed before refueling

Figure B-2: Schematic of Servicer Maneuver Scheme

visit N - 1 other satellites in the same orbital plane, then performs a Hohmann transfer

back to the depot altitude ai, where it loads more cargo and repeats the whole process

L - 1 times. We note h the total velocity increment for the Hohmann transfer and docking,

normalized by the exhaust velocity I8 ,g; and p the normalized total velocity increment for

the phase change, and docking.

The mass budget for such a maneuver scheme is not a direct application of the rocket

equation, because the dry mass of the servicer decreases as it delivers cargo to each satellite.

The following shows how to calculate the total required servicer fuel mass on a maneuver-

per-maneuver basis, staring from the last maneuver.

B.2.1 One Roundtrip to Visit N Co-Planar Satellites

Last Hohmann transfer After the very last Hohmann transfer, which requires the nor-

malized velocity increment h, the final mass is M "vir. Therefore the rocket equationdry

gives the fuel required for this last maneuver in the form:

M (eh - 1) M ** (B.5)

Phasing maneuvers Now consider the phasing maneuvers. The fuel mass Mf" requiredk+i

to visit (k + 1) satellites is the sum of tow terms:
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1. The fuel mass required to visit the next satellite corresponds to a normalized velocity

increment p. The total mass after this maneuver is the sum of the dry mass, the cargo

for the k next satellites, and the fuel mass to visit the k next satellites.

2. The fuel mass required to visit the last k satellites.

Therefore the rocket equation gives:

M **e= (eP - 1) (Msrvicer + k Mc + M[ul + Mf""'

Thus we have the induction relation:

Mue = (e - 1) Msrervicer + (eP - 1) k Mc + ep MfueI
k+1 dyk (B.6)

Define ak and bk such that

M = ak + bk MC

Then equations B.5 and B.6 are equivalent to:

ak+1

bk+1

= ePak + (eP - 1) and ao = eh - 1

= ePbk + (k + 1) (eP - 1) and bo = 0

(B.7)

A simple demonstration by induction gives:

ak ekh+h _

k-I

bk =(eP - 1) Z(k - 1) elp
l=1

bk can be expressed without a summation by the following considerations. Define

k--1 k _

f(x) = Z X=X
1=0
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Then

k-1

Z(k-l)x = kf(x)-xf'(x)
1=1

xk _1 (k - 1) xk+1 -k xk + x

X -1 (x - 1)2

which finally gives:

a =ekp+h - 1 Vk < N - 1

bk = ek_- ep -k Vk<N-1 
(B.8)

eP-i

First Hohmann transfer The fuel mass Mue required for one whole roundtrip of N

satellites is the sum of tow terms:

1. The fuel mass required to visit the first satellite corresponds to a Hohmann transfer

with normalized velocity increment h. The total mass after this maneuver is the sum

of the dry mass, the cargo for N - 1 satellites, and the fuel mass Mfue to visit theN-i

N - 1 next satellites.

2. The fuel mass M""{ required to visit the last N - 1 satellites.

Therefore the rocket equation gives:

MN" = (e-1 (Mjrvicer+(N- 1)M + M + Mf"_"

This corresponds to:

a=aN =e h aN-1 + (eh _ (N-I)p+2 h _B9

b=bN =eh bN-1 + N (eh - 1) = eNp-1 eh-N

The total fuel mass for one roundtrip is finally:

MRT = M -l = a Mservicer +bMc (B.10)1 N - dry

B.2.2 L Roundtrips

For a final mass Mervicer, the total fuel mass for the last roundtrip is given by equationdry

B. 10. The same relation is valid for any roundtrip, except that the final mass needs to be
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adjusted to include the fuel required for later roundtrips. Thus, the total fuel mass MR+

required for (k + 1) roundtrips is the sum of two terms:

1. The fuel mass required for the next roundtrip, after which the final mass will be the

sum of the dry mass and the fuel mass MRT required for the last k roundtrips.

2. The fuel mass the fuel mass MRT required for the last k roundtrips.

Therefore the rocket equation gives:

MRT = [a ( Mjervcer + MkT ) + b Mc] +M
k±1 -. dryk

which corresponds to the induction relation:

aRT Mservicer (+1) MRT (.1M+i = a Mdry"'' + b Mc + (a + 1)Mk (B. 11)

Define Ck and dk such that MRT = ck Mservicer + dk MC. Then equations B.11 and B.10

are equivalent to:

Ck+1 =(a-i-1)Ck+a and ci =a (B.12)

dk+1 =(a+1)dk+b and d1 =b

A simple demonstration by induction gives:

Ck = (a+ 1)k _1
(B.13)

k =a [(a +1)k

Using equation B.9 finally gives the total fuel mass MRT = Mservicer required for L

roundtrips:

fuervicer = A .Mdyvicer + B.Mc (B.14)

where A = exp [L(N - 1)p + 2Lh] - 1 (B.15)

exp [L(N - 1)p + 2Lh] - 1 eNp h N
and B = ex[N-1p2] 1Ke -1 (B.16)exp [(N - 1)p + 2h] - 1 eP - 1

This corresponds to the mass budget mentioned in chapter 3 (equation 3.15).
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