
Ultrasonic Waves in Solids Radiated from

an Elliptically Loaded Source

by

Quanlin Zhou

M.S., Mechanics, Peking University (1996)

B.S., Mechanics, Tianjin University (1993)

Submitted to

the Department of Civil & Environmental Engineering

in Partial Fulfillment for the Degree of Master of Science

at the

Massachusetts Institute of Technology

July 2000

@ 2000 Massachusetts Institute of Technology

All rights reserved

Signature of A uthor ........................ (............................................................
Department of Civil & Environmental Engineering

Julv. 2000

C ertified by ...............................

Shi-Chang Wooh

Associate Professor of Civil & Environmental Engineering

Thesis Supervisor

A ccepted by ............................. ....... ............... ....................................................

Daniele Veneziano

Chairman, De artment Committee on Graduate Students
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

SEP 1 5 2000 BRE
LIBR EARKER
LIBRARIES



Ultrasonic Waves in Solids Radiated from

an Elliptically Loaded Source

by

Quanlin Zhou

Submitted to

the Department of Civil & Environmental Engineering

on July 31, 2000 in partial fulfillment of the

requirements for the Degree of Master of Science

Abstract

This thesis focuses on the directivity analysis of laser-generated ultrasound originated
from a surface modified by water or other liquids. An improved mathematical model is de-
veloped to take into account the wet surface condition, which is described by an elliptical
distribution of loads in the radiation source. Both circular and line sources are considered.
The solutions for these sources are obtained by using Fourier and Bessel-Fourier trans-
forms, respectively, and the transform integrals are evaluated asymptotically. The differ-
ences between the new model and the conventional constant loading model are discussed
by comparing the directivities. The theoretical models are experimentally verified using
a Nd:YAG pulsed laser as a source illuminated on wet and dry surfaces, the directivities
are experimentally obtained by a laser interferometer and piezopolymer transducer. Ex-
periments are carried out for various frequencies and source beam size. The experimental
results are in good agreement with the theoretical predictions. The influence of source
beam size, frequency and the elliptical parameter are discussed.
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Chapter 1

Introduction

1.1 Nondestructive evaluation and its methods

Nondestructive evaluation (NDE) is a common tool used in modem industry and scientific

research for detecting flaws in materials. It has been almost exclusively used to detect

macroscopic discontinuities in structures after they have been in service for some time [1].

Several advantages have made NDE a very popular approach for flaw detection. The most

attractive advantage of NDE is that it can help keep the integrity of the structures or com-

ponents, so that the properties and performance of the objects under examination are not

damaged. The diversity of NDE methods is another advantage of NDE. An inspector can

choose from various NDE methods according to its cost, safety, reliability and other fea-

tures. Nowadays, NDE is widely employed in many application areas such as material

characterization, visual inspection, welding, flaw detection and so forth.

Many different standard NDE approaches [2] exist, for example, as listed below:

1. Radiographic Testing uses a form of penetrating radiation, such as X-rays, Gamma

or neutron rays, to evaluate the physical integrity of structures and materials. It can

be used to detect internal flaws on a wide range of geometries and materials. Its

10



Chapter 1

disadvantages include high cost and that its incapability of detecting tight laminar

flaws or very tight cracks.

2. Computed Tomography is a method that uses computer to reconstruct the two-dimensional

image of the cross section of an object. It can be achieved by using several different

types of energy such as ultrasound, electrons, etc.. Its advantages and disadvantages

are similar to those of Radiographic Testing, but it is applicable to three dimensional

cases.

3. Magnetic Particle Testing detects surface or near surface discontinuities by finding

the distortion of the magnetic fields associated with such discontinuities. The proce-

dure is easy to implement. Also the required instrument is portable. But it is limited

to ferromagnetic materials and near surface flaw detection only.

4. Infrared Imaging identifies material defects by detecting minute temperature differ-

ences of objects. This technique can realize non-contact and real-time detections.

But the detection may be sensitive to the ambient temperature situations and the sur-

face conditions of objects.

5. Liquid Penetrant Testing detects surface discontinuities in metallic and selected non-

metallic materials by applying the penetrant to the surface. This procedure is of low

cost and easy to implement. But it is limited to the surface flaws and the flaw depth

is hard to estimate.

6. Eddy Current Testing takes advantage of the eddy currents, induced by placing an

energized conducting coil near the surface of metallic material. The discontinuities

of objects can be found by detecting the distortions of the magnitude and phase of the

induced current. This procedure is easy to be automated and the required instrument

is portable. But it is very sensitive to the geometric conditions and the results are

difficult to be interpreted.

Introduction Page 11



7. Ultrasonic Testing employs ultrasonic waves to detect surface or internal defects.

Ultrasonic waves are the elastic waves generated above the audible range (typically

20 kHz). Compare with other NDE methods, the significant advantage of ultrasonic

techniques is relative inexpensiveness. This method is best at crack detection and

sizing, and its procedure may be automated. The limitation of ultrasonic testing is

that it generally requires couplants in detection.

This paper presents some results on ultrasonic testing techniques which are among the

prominent approaches for NDE.

1.2 Ultrasonic Testing

Ultrasonic techniques have made great development in the past 50 years because of the

good properties of ultrasound in various mediums [1, 3-5]. First, due to the high frequency

and short wavelength of ultrasound (the frequency range normally employed in ultrasonic

nondestructive testing is from 100 kHz to 50 MHz), ultrasound can be reflected from very

small surfaces such as internal defects. Consequently, it can detect internal and surface de-

fects, evaluate microstructures, mechanical properties, as well as microscopic and macro-

scopic discontinuities in solid materials and structures. Second, ultrasonic testing can be

used in testing relatively thick metallic samples, such as aluminum, because an ultrasonic

beam travels with little loss through homogeneous materials. Third, a very promising fea-

ture of ultrasonic testing is its fast response which permits rapid and automated testing.

Fourth, compared with other NDE methods, ultrasonic testing has better performance in

locating defects and estimating the size of defects. However, the limitation of ultrasonic

testing has to be mentioned here. Good geometry of tested objects is preferred in ultrasonic

testing because it may be difficult to test an object with irregular shapes. Furthermore,

the detection results are somewhat affected by the features of internal defects. Irregular

boundary of the internal defects may give a result which is hard to be interpreted.

Chapter 1 Introduction Page 12



Typically, ultrasonic testing is conducted in through-transmission and pulse-echo mode

with pulsed or continuous waves. In through-transmission mode, ultrasonic energy is trans-

mitted through the test objects. This mode can be used in the characterization of materials

such as the thickness measurement, and to detect internal defects if the size of the defect

is larger than the wavelength of transmitted ultrasound. The principle of pulse-echo mode

is to send ultrasound into objects and receive the echos reflected from discontinuities. This

technique is one of the most widely used and versatile of ultrasonic testing for NDE, which

can be used to locate discontinuities and measure the depths.

There are several means to generate and receive ultrasound:

1. Piezoelectric transducer (PZT) is the most popular way to generate and receive ul-

trasound. The principle is that, when a piezoelectric transducer is subjected to a

high frequency voltage, it generates a high frequency vibration which results in an

ultrasound wave in the object. And conversely, when a PZT is subjected to stress, a

corresponding voltage is generated between its two surfaces.

2. polyvinylidene fluoride (PVDF) is another ultrasonic source, which has the same

feature as piezoelectric materials, but is more sensitive to mechanical stresses and

operates over a broader frequency range.

In general, these two kind of transducers require couplant to get better propagation

between two media. Due to the limitation of couplant, non-contact ultrasonic trans-

ducers are investigated.

3. Electromagnetic acoustic transducer (EMAT) is a non-contact transducer. The prin-

ciple of an EMAT transmitter is that, when a current is induced to flow in the surface

of the sample by means of a coil close to the surface, a solenoid at the surface gen-

erates a magnetic field perpendicular to the flow of current, so that a force is exerted

on the material carrying the current. This localized stress field acts as an ultrasonic

Chapter 1 Introduction Page 13



source. In the EMAT receiver, the magnetic field is arranged so that movement of the

surface causes an EMF to be induced in sensing coil.

4. Laser can also be used to generate ultrasound. Its particular advantage is the non-

contact ultrasonic testing. The principle of laser-generated ultrasound is that, when

a laser beam is induced on the surface of a sample, the localized heating produced

by the laser generates the thermoelastic stresses and strains that act as an ultrasonic

source. Besides, laser can also be used ultrasonic detection. One of the laser ul-

trasound detection techniques is laser interferometry. The optical interferometry be-

tween a reference laser beam and the laser reflected from or scattered by a surface

subject are used to detect ultrasonic displacements.

1.3 Directivity patterns of laser-generated ultrasound

Recently laser has captured increasing attention. Non-contact generation and detection

is an apparent advantage of laser over the contact transducers. In addition, laser can be

used over a sufficiently wide temperature range which is beyond the reaches of most ultra-

sound techniques. Also laser is a broad-band ultrasound source while many conventional

transducers have a relatively narrow bandwidth. Furthermore, laser beams can be made

extremely small to give good access in confined spaces, but conventional transducers are

limited by their sizes in such applications. Due to the advantages of laser ultrasonics, it has

been used in diverse fields such as spectroscopy, metrology, inspection, communications,

fusion research, weapons systems and surgery and so forth.

One of the important aspects of laser-generated ultrasound is its directivity pattern.

Directivity pattern of ultrasound describes the spatial distribution of power of an ultrasound

beam as a function of propagation angles. Therefore, only with a profound understanding

of directivity can one apply laser-generated ultrasound technique correctly and effectively,

which is the focus of this study.
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Considerable efforts have been invested in the research of directivity patterns of ul-

trasound. The earliest work was done by Miller and Pursey [6] in the 1950s, where they

studied the displacement field at an arbitrary point in a semi-infinite isotropic solid due to

prescribed periodic stresses on the free surface. Although laser ultrasound technique was

not discussed in this paper, it has been later the foundation of many researches on directiv-

ity. In the 1980s, many researchers investigated the generation of acoustic waves in metals

by pulsed laser irradiation for various laser power densities [7-14]. Among these work,

Scruby et al. [7] first conducted a comprehensive study of the use of laser for generating

ultrasound. Hutchins et al. [9] carried out several experiments of directivity measurements

to verify the theoretical prediction from Ref. [6]. They concluded that, for irradiation of a

free metal surface by laser beams of low power density, the acoustic source formed by ther-

mal expansion is characterized principally by stresses parallel to the metal surface; while

in the presence of material ablation at higher power densities, stresses normal to the metal

surface become the dominant source characteristic due to momentum transfer from ablat-

ing particles. Also he indicated that for small or thin laser beams, the experimental results

were in good consistency with the theoretical prediction, but the results deteriorate with

increasing source diameters. Rose [12] later pointed out that the point source derived by

Scruby et al. [7] was somewhat speculative in thermoelastic regime. He proposed a point-

source model, Surface Center of Expansion (SCOE), for laser-generated ultrasound, which

better represents the tangential surface traction on a target. Later, several researchers have

made more progress in the directivity analysis in thermoelastic regime. Zhang et al. [16]

considered the thermal diffusion in laser-generated ultrasound, and found that the thermal

diffusion has certain influence on the longitudinal directivity pattern. Wu et al. [17] further

studied the directivity of laser-generated ultrasound in solids by solving thermoelastic wave

equations, and concluded that thermal diffusion, optical absorption, ultrasonic frequency,

and the diameter of source all have effects on the directivity. Hopko and Ume [18] studied

the development of longitudinal directivity patterns from ablation to thermoelastic regime.

At the same time, a point-source representation for laser-generated ultrasound in an elastic,
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transversely isotropic half-space was developed by Hurley et al. [19]. Recently, Bern-

stein et al. [20] proposed a simplified laser line source model in aluminum which assumes

no thermal conduction, and concluded that the amplitude directivity of a laser line source is

identical to that of a point source in the plane perpendicular to the line axis while the tem-

poral dependence differs. Besides the study in metals, many researchers also investigated

laser-generated ultrasound in non-metals materials for different ultrasonic sources [21-23].

A very important aspect of directivity analysis is the surface condition of objects.

The ultrasonic source can be divided into three categories: thermoelastic, ablated and

modified surface sources. Past researches were focused on the thermoelastic and ablated

sources that create uniform distributed loads on a free surface as shown above, while few

works [9-11,24], mainly experimentally, have been done for modified surface sources. But

in many important circumstances, the surface is modified by water, oil or other liquids.

Such modifications may be the results of uncontrollable conditions, or due to the deliberate

effort to obtain better outcomes. One example for the latter case is the detection of defects

in a specimen. By spraying water drops on the surface of the specimen, one can expect

better results. As a result of surface modification, the stress distribution on the modified

surface will be affected by the momentum transfer from the liquids, and then may not be

necessarily uniform. My experiments, which will be introduced in Chapter 3, show that

the directivity patterns on modified surfaces are different from those of free or uniformly

ablated surfaces.

This paper proposes an elliptically distributed radiation source as the boundary condi-

tion on a surface, which represents the condition where the object surface is modified by

water or other liquids. For the acoustic source, we are only interested in the power range

where ablation occurs for dry surfaces. It had been observed, in past research, the direc-

tivity profiles of modified surfaces are qualitatively close to those of ablated surfaces. This

conclusion is frequently used in predicting the directivities of modified surfaces. However,

the theoretical results developed in this thesis indicate that apparent difference between the

two cases, The Fourier or Fourier-Bessel Transform and the asymptotic method are applied
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in the analytical derivation. Comparison is made between this source and ablation source

for which existing theoretical results are available. It turns out that the directivity is de-

termined by J2 (x)/x 2 (where J2(x) is the second order Bessel function) for the elliptical

distribution source, while Ji (x)/x (Ji (x) is the first order Bessel function) determines the

directivity in constant loading source. Several experiments are carried out to verify this

model. Chapter 2 discusses the theoretical derivation of the elliptical distribution model,

and the comparison between this model and the constant loading which corresponds the

ablated source. Chapter 3 discusses the experimental setup and directivity measurements

using laser-generated ultrasound. Chapter 4 includes the discussion and conclusions.



Chapter 2

Directivity Analysis

2.1 Definition of directivity pattern

In general, when an object is excited by an acoustic source on the surface of a solid, as

shown in Fig. 2-1, the sound pressure at point B varies with radiation angle 6, given the

Excitation source

,pq

0 r

B (x, z)

Figure 2-1: The coordinate plot when an acoustic source excites on a specimen.
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fired distance r from the excitation origin. The sound pressure plotted as a function of

radiation angle indicates the directional dependence of the ultrasound propagation. This

dependence is referred to as the directivity pattern of the corresponding radiation source.

Since our research focuses on the laser-generated ultrasound, the directivity analysis is

focused on the field of laser ultrasonics.

2.2 Source loading

Acoustic sources generated by laser irradiation can be categorized into two main sources

based on the illumination shape: circular and line sources, as shown in Fig. 2-2. Circular

sources produce waves with spherical symmetry, and thus the directivity patterns are spher-

ically symmetric. A point source is a special case of circular sources, where the radius of

the source approaches zero. It is generally assumed that a circular source consists of an

assembly of infinitely large number of point sources over its area. By focusing the incident

laser beam with a cylindrical lens to form an illuminated line segment, we can get a line

source that produces two-dimensional waves with cylindrical symmetry.

Furthermore, from the perspective of excitation mechanism of laser-generated ultra-

sound, acoustic sources can be classified into two types, as shown in Fig. 2-3, depending

(a) (b)

2a

Figure 2-2: Laser loading geometries: (a) circular loading, (b) line loading.
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on the source intensity: ablation sources driven by spatially uniform normal stresses, and

thermoelastic sources produced by uniform surface shear stresses on the illuminated area

of the free surface. Thermoelastic sources can be created by the irradiation of the surface

with a pulsed laser, whose incident optical power densities is below that required for mate-

rial ablation and subsequent plasma formation. In this case, a significant thermal diffusion

takes place in the sample within the time duration of the laser pulse. Compared with the

shear stresses caused by thermal expansion acting in the direction parallel to the sample

surface, normal stresses are negligible. A thermoelastic source can thus be represented as

a point dilation (center of expansion) at the surface.

As the incident power density increases, the surface temperature increases till the melt-

ing point of the sample is reached. By further increasing the power density, evaporation

and ablation are resulted on the sample surface. A laser source with such power density

is called the ablation source. In this case, the thermoelastic stresses are so small that they

can be neglected, and ablation is represented as a time-varying force acting normal to the

surface.

If the surface condition of an object is modified by water or other liquids, the mo-

mentum transfer from the evaporation of liquids under the laser irradiation becomes the

acoustic source, whose directivity pattern was thought to be close to that of the ablation

source [9-11]. However, the ablation source is caused by spatially uniform normal stresses

due to the material ablation, while the stresses caused by the liquid evaporation is not nec-

(a) (b)

Figure 2-3: Laser excitation sources: (a) ablation source, (b) thermoelastic source.

Chapter 2 Directivity Analysis Page 20



essarily spatially uniform. This yields the difference of the directivity patterns between

these two sources.

The following sections provides the theoretical derivation of the directivity patterns for

the surface modified source by solving wave propagation equation. The results of ablation

sources are included as a comparison.

2.3 Basic equations of propagation and boundary condi-

tions

The equation of motion in elastic isotropic solids is expressed in vector form as

192U
(A + 2p)VV - u - pV x V x u = p , (2.1)

Ot2

where u is the displacement vector, p the mass density, A and p the Lame constants of the

medium, and V is the gradient operator. This equation may be solved for the displacements

but the boundary condition are prescribed in terms of stresses. For a circular laser source

of radius a or a line source of width 2a illuminated on a half space, the surface traction can

be generally expressed as a time harmonic function:

Tpqx)ej',for Ix I < a
Tpq(x, t) = (2.2)

(0 for |x| > a ,

where x is either the distance for a line source, or the radial distance R for a circular source,

of a point on the surface from the center of the excitation source, w the excitation frequency,

j the unit imaginary number, p and q are the indices to denote the coordinates. By solving

Eq. (2.1) with the boundary conditions (2.2), we may obtain the transient solutions, but we

are only interested in the steady-state solutions in this paper, so that we are only considering

the traction amplitude Tpq (x).
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b b

R R
a 0 a a 0 a

(1) (II)

Figure 2-4: The loading distribution on the free surface: (I) the constant stresses; (II) the
elliptical distribution.

We will consider two different loading conditions, ideally representing dry or wet sur-

faces (Case I and II). The normal traction Tzz for dry surfaces are typically modeled as a

constant loading of magnitude b over the illuminated area, while the shear traction Tz, are

assumed to be zero everywhere, i.e., the traction amplitudes are

Tzz(x) = b, and Tzx(x) = 0 , (2.3)

where Tx (x) can be either TzR (R) for a circular source, or Tx (x) for a line source.

In order to deal with wet surfaces, we may propose an alternative expression:

Tzz(x) = b 1 - ,2 and Tzx(x) = 0. (2.4)

This condition represents an elliptical distribution of traction with an aspect ratio of b/a,

as shown in Fig. 2-4. This assumption may be validated by the following reasons. When a

laser beam hits a wet surface, it is likely that the water evaporates rapidly. The evaporated

water particles at the center will possibly cause greater reaction force in the direction nor-

mal to the surface. On the other hand, the water molecules near the illumination boundary
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are surrounded by other neighboring molecules, so that the reaction forces may be nonuni-

formly distributed within the source area. By considering the specific heat of water, heat

transfer and friction forces between the water molecules, we may assume that the reaction

forces at the boundary are significantly smaller than that of the center of the source. We

chose an elliptical distribution because it is handy for mathematical manipulations as will

be shown later.

2.4 Circular source excited by normal stresses (radius =

a)

In this section, we will consider Case II for circular source first. The wave propagation

equation, combined with the elliptical distribution boundary condition, is solved using the

Fourier-Bessel transform and asymptotic method [6]. Case I will be shown later.

2.4.1 The elliptical distribution model

Since the elliptical loading for the circular source is axisymmetric, the problem can be best

formulated in cylindrical coordinates (R, 4, z). This becomes a two dimensional problem

since the displacement components uO and its derivatives with respect to # vanish. Defining

1 O(RuR) OuzV OR= + z = (2.5)
R aR az'

and

Vxu ( aUR a'' io = WiO . (2.6)
9z aR/
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and substituting these equations into Eq. (2.1), we get the equations of motion in the R and

z directions as

OA 09W
(A + 2p)- + pt + pW2 UR = 0,

OR az

SA y 0( RW) 2(A + 2p) pa + pW 2z = 0,
az R OR

(2.7)

(2.8)

where UR and uz are the time harmonic displacements in the R and z directions respec-

tively, and is is the unit vector in the <p direction. Substituting Eqs. (2.5) and (2.6) into the

derivatives of these equations yields

10 R)A
R BR R]

1 O(RW)
R OR

02A+ -k2A=L
az

2

a2 W
±z2

where kL and kT are the wavenumbers of the longitudinal and shear waves, respectively:

kL = w , and kT = W ~
A+ 2p p

(2.11)

These are the governing equations of the problem.

The boundary conditions require the expressions for the stresses in terms of displace-

ments which can be obtained from the Hook's Law

o-zz = AA + 2pt , (2.12)
09z

(2.9)

(2.10)
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+ = 0
($ =# R 8th

6ozr =P a R

(2.13)

(2.14)+OU19ZR

or in explicit forms the normal and shear stresses are

2 0
ROR R Oz

p W 2 11

A2 UzR R R

1 O(RW) 02 W

R OR 5 0z2 -2()kL ORO

In order to eliminate R from these equations, we use the Fourier-Bessel transform

method. The Fourier-Bessel transform of a function f (R) is defined as

fm () = f (R)RJm(CR)dR , (2.17)

and its inverse transform pair is written as

f (R) = fm (C) Jm((R)d( (2.18)

where Jm is the Bessel function of the m-th order and ( is the variable of integration. For

example, the zero-order transform of o-z can be written as

00

pw2

p2 zz=

k2(k 2- 2k)
kT R

R
( kT 

L 4 02 A
Oz 2

(2.15)

(2.16)
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Substituting Eq. (2.4) into (2.19) and using the property of the Bessel function

d[x~m Jm(x)] = ±m JmT(X),
dx

the transform of ozz can be obtained as

2bJ 2 ((a)

And the transform of O'zR is

&zR1 0.

Similarly, the transforms of Eqs. (2.7), (2.8), (2.9), (2.10), (2.15) and (2.16) yield

UR1 --
pw2

y
pw2

dz 2 - (

d2W1

dz2

dW-

dz

k d( dA

Lk 2dz

+ 2C dz

ky )

kL

-- c J1

k (
k+ kT (2.27)2 k 4dd2A0

p2 kzz = k Z d2

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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-2 2 k dAo
kL dz

Solving Eqs. (2.25) and (2.26), we get far-field solutions

nO = Ae-z ( 2 -k2) and V1 = Be-z (C2
-kT).

which have finite values for large z. The constant A and B are determined by substituting

Eqs. (2.21) and (2.29) into Eqs. (2.27) and (2.28) yields

2bpw2 kikL - 2 2) J2 ((a)e-zc 2 -k2
Z O p2k22G(C()A0 A T

Abpw 2 V2 -2

p2 G(()

(2.30)

(2.31)

where

G(() = (22 - 4 kL(2 - kg) (2.32)

Plugging these solutions into Eqs. (2.24) and (2.23) results in the transforms of the dis-

placement components

zo=2 2 - kL J2(Ca) 2(2 -~ 2k
I~t2G(()

UR1 ~S2bJ 2 (a) 2 _ 2
pC (G (C)

+ (k - 2( 2),-z Nc2_k,2

c2-k 2 -z TC 2 -k

(2.33)

(2.34)

2
pw2

2 zR1

Sd2 W 1

dZ
2 +(2 W, (2.28)

(2.29)
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To obtain the displacement components, we apply the inverse Fourier-Bessel Transform

defined by Eq. (2.18) to the above equations:

_ 2-k 2 (Ca 2 -z 2

(G(() 22 zr-ku = {
yZ J / o 0

+ (k - 2( 2 )e-z 2 Jo((r)d ,

(2.35)

UR b /0 J2((a) {2 T
2)( (2 2) - z -T-k2 2L - ke + (kk T - 2(2)e-z 2k}J (3)d(

(2.36)

By using the asymptotic method [6], the integrals

100 =je~ZC 2 -m 2 Jo(RC

and

I2 = fo e-z '(2_m
2 J1( (2X(()d(

can be evaluated asymptotically for large positive values of z and R as

j ejmr cos OX(m sin 9) + O(r~2 )
r

and

12 = - e 3 "" cos 0 sin OX(m sin 0) + O(r- 2)r

where m = 1 or k, x(() is an even function of ( and analytic at the origin, and

z = rcos6 and R=rsin6.

(2.37)

(2.38)

(2.39)

(2.40)
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Then uz and UR can be asymptotically evaluated as

j 2b cos O 2kT k sin 2 0- k 2J 2 (kTa sin 0)
uz = pr G(kT sin9) c

i cos 0(k2 - 2k2 sin 2 0) J2 (kLa sin 0)-jL
G(kL sin 0) sin2 9

(2.42)

j2bcos9 f
UR -pr

2kT cos 0 /k? sin 2 9- kL J2(kTa sin 0 ,kTr

G(kT sin 0) sin 9

j(k2 - 2k 2sin2 0)J 2 (kLa sin )
G(kL sin 0) sin 0

To obtain the radial and tangential displacement components of the field we introduce the

new variables, UaL and U,, and use the relation

Ua = UZ COo 0 + URsinO ,

UT = URCOsO - u2sin9 ,

(2.44)

(2.45)

to get the field in polar coordinates:

Uf (r,0) = 2 e-ikLr

U(r ) = 2a

J2  ) U (0),

J2 ) UOT (0) .

(2.46)

(2.47)
e-jkTr

where

(L = kLa sin 0 and T= kTa sin, (4

(2.43)

-jkLr}

Chapter 2 Directivity Analysis Page 29

(2-48)



J2( ) is the second order Bessel function, UL (0) and UJL (0) are the far-field amplitudes of

the compression wave radiated from a point source [9]

U-(k) = (k - 2k2 sin 2 0) cos 0 (2.49)
G(kL sin 0)

U -j3 k sin 2 0 - k2 sin 20 (2.50)

G(kTsin 0)

2.4.2 The constant loading model

The case of constant stresses was derived by Miller [6]. The displacement amplitudes of

the longitudinal and shear waves are:

Uf (r, 0) = U) () (L), (2.51)
Ua7 (y )( r ( 0

U(r, 0) a 2 b jkTr)). (2.52)
ay r ( (U

As described by Hutchins [9], the term a2 b/p is the effective source strength and e-kr/r

represents the propagation of spherical wavefronts (longitudinal) from a point source whose

directivity is determined by Ug (0). These values are then modified by the Ji ( ) / term,

which is simply the factor taking into account the finite dimension of the circular source by

assuming that the area consists of an assembly of infinitely large number of point sources

over its area.

2.4.3 Directivity patterns of the two cases

It is interesting to note that the displacements of the two models have similar patterns

Ji() J2( )except that they are modified by different factors and 2. By normalizing the
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displacements UL and UT defined in Eqs. (2.51) and (2.52) for Case I, and Eqs. (2.46) and

(2.47) for Case II, the far-field directivities can be respectively obtained as

HL(6) J1(L) HL (2.53)
sin 0 (0)

Hij(0) = Jl(W H T (6) (2.54)
sin 0

for Case I, and

HL(J) = H(6) , (2.55)
a2()=sin2 0 0

HL () =sin0 H(o) (2.56)
sin 2 0

for Case II, where HJ'(0) and HT(O) are the far-field directivities of point sources

(k2 - 2k2 sin 2 9) cos O
HOk()= T L (2.57)

G(kL sin 0)'

and

(k 2sin
2 0 - k2 )1 /2 sin 2(

HOT(0) = . (2.58)
G(kT sin 0)

Obviously, the directivities are the functions of a, 0 and wavenumbers.

As a comparison, the two directivity patterns are plotted together for some fixed a and

certain frequencies. See Fig. 2-5 and 2-6 for the directivities at various a and 1 MHz

frequency, and Fig. 2-7 and 2-8 for 5 MHz. It is observed that the difference between the

two models is small at small a and low frequencies, but at larger a and higher frequencies,

their difference is getting significant.
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Figure 2-5: Directivities of longitudinal waves from the two models at 1 MHz and various
a: solid line represents the elliptical distribution model and dash line the constant loading
model.

Chapter 2 Page 32

4 0.01
30 60 90 0 30 60

a = 1.0mm a = 1.5mm
1.0

'1, 0.8

0.6

1.0

0.8

0.6

0.4

0.2

0.0



Directivity Analysis

a = 0.0mm

30 60

a = 1.0mm

30 60

1.0

0.8

0.6

0.4-

0.2

-- 0.0 -
90 0 30

a = 0.5mm

60 90

a = 1.5mm
1.0

0.8

0.6

0.4

0.2

0.0
90

a = 2.0mm

0 30 60 90

a 3.0mm

1 0

0.8

0.6

0.4-

0.2 -

0.0

0 30 60 90

a = 2.5mm

0 30 60 90

a = 3.5mm
1.0

0.8

0.6

0.4

0.2

9030 60
Angle, 0, (degree)

0.0 --
0 30 60

Angle, 0, (degree)
90

Figure 2-6: Directivities of shear waves from the two models at 1 MHz and various a: solid
line represents the elliptical distribution model and dash line the constant loading model.
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Figure 2-7: Directivities of longitudinal waves from the two models at 5 MHz and various
a: solid line represents the elliptical distribution model and dash line the constant loading
model.
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Figure 2-8: Directivities of shear waves from the two models at 5 MHz and various a: solid
line represents the elliptical distribution model and dash line the constant loading model.

Chapter 2 Page 35

90 0

- 1.0 -

0.8

0.6

0.4

0.2

- 0.0 -
90 0

1.0

0.8

0.6

0.4

0.2

00

0

--- .



Chapter 2 Directivity Analysis Page 36

2.4.4 The Comparison of the Two Models

The difference between the directivities of the two models is that the directivity of the

constant loading model consists of the first order Bessel function, whereas that of the new

model consists of the second order Bessel function. In order to show the difference clearly,

we denote

L J(kLasin0) and - J 2 (kLa sin 0) (2.59)
- kLa sin 0 2 k 2 a2sin 2 o

for longitudinal waves, and

T _____ J,(_ in0 n J2 (kTa sin 0) (2.60)
_ J1(kTasin0) ad (k2a2sin 2 0)
S (krasin0)2 kasi2g

for shear waves. From Eqs. (2.51), (2.52), (2.46) and (2.47), it can be observed for 0 = 0'

that the longitudinal and shear displacements of Case I are exactly four times greater than

those of Case II. It can also be observed that the maximum of 4, , 4, 4y occur at

0 = 00. In order to make a fair comparison, it is necessary to use the same displacement

magnitudes at 0 = 0' for both cases. To do this, we introduce the ratios

7 = and - = - . (2.61)
71 71

Figure 2-9 shows the ratio L as the function of 0 in aluminum for various a and fre-

quencies. It can be observed from these curves that, for a larger a and larger frequency, L

changes more significantly than that of smaller a. 7T is plotted as the function of angle 0

for various a and frequency in Fig. 2-10. It shows that,at large a and high frequency, 7T

changes dramatically and more sharp side lobes appear.

To see the deviation of the two models more clearly, we define

E =| 4yf -'T | and e =(2 4.-6y2 (2.62)
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Figure 2-9: The ratio 7L as the function of 0 in aluminum for various a and frequencies.
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Figure 2-10: The ratio 1 T as the function of 0 in aluminum for various a and frequencies.
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as the absolute deviation. See Figs. 2-11 and 2-12 for eL and E , respectively, for various a

and frequencies. Similarly, define

e j 1 -Y L and e (2.63)

as the relative deviation. The corresponding plots are shown in Fig. 2-13 and 2-14 as the

functions of angle 0 for various a and frequencies. The plots show that, at small a and

low frequency, L and ET changes lightly when angle 0 varies, but at larger a and higher

frequency, more and more sharp side lobes appear at certain angles indicating that CL and

eT is changing significantly. This phenomenon shows that the difference between the two

models is becoming more significant at large a and high frequency.

The cumulative absolute deviations are defined as

Lj eLd and 2 TdO . (2.64)
30 f0

and shown in Fig. 2-15 as a function of a at different frequencies. The cumulative relative

deviations are defined as

rC = |14-2L '|Id and T |4--YT IdO. (2.65)

Figure 2-16 shows the curves of i as the function of a and f.

2.5 Line source excited by normal stresses (width = 2a)

Line source is another important acoustic sources generated by laser radiation. It is known

that the directivity patterns of line sources are different from those of circular sources.

Therefore, we present the directivity analysis for the elliptical distribution model for line

sources in this section.
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Figure 2-11: The relative difference JL as the function of 6 in aluminum for various a and
frequencies.
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Figure 2-12: The relative difference e as the function of 0 in aluminum for various a and
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Figure 2-13: The relative difference eL as the function of 0 in aluminum for various a and
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Figure 2-14: The relative difference E T as the function of 6 in aluminum for various a and
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Figure 2-15: The cumulative absolute deviation ea as the function of a and f in aluminum:
(a) longitudinal wave, (b) shear wave.
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Figure 2-16: The cumulative relative deviation i, as the function of a and f in aluminum:
(a) longitudinal wave, (b) shear wave.
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Chapter 2

Similar to the circular source, line source is also considered for the difference between

the two cases: constant loading (case I) and elliptical loading (case II). Case II is first

derived using the Fourier transform and asymptotic method.

2.5.1 The elliptical distribution model

The difference between circular and line sources lies in the distribution of the produced

waves. Circular sources produce waves with spherical symmetry, while line sources pro-

duce two-dimensional waves with cylindrical symmetry. Therefore, the wave propagation

equation for line sources is solved in Cartesian coordinates (x, y, z), with the z-axis nor-

mal to the surface and x-axis normal to the axis of the line strip. uY becomes zero due to

the uniform loading along the y-axis, and therefore all the derivatives with the respect to y

vanish.

Following the same procedure for the circular source, we obtain

O(u2) Our
A=V -u= + , (2.66)

OX OZ

WiY V x u = - ix) . (2.67)

Then the wave propagation equation becomes

&A &W
(A + 2p) 1+ a +Ppw2 ux= 0, (2.68)

aA a(W)
(A + 2p) O - + pw 2 uZ= 0, (2.69)

az 9X
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so that

82 A 02 A
2+ z2X2  aZ2

a2w a2w

+kLA=0,

+ + kW =.
1x 2 Oz 2

The stress boundary conditions are

0zz= AA

Ocyz=[ (Ouy
Oz

+ 2p z ,
Oz

= 0 ,

ozo= 1 -z

or can be expressed in terms of the potentials as

pw 2

2 ~zz
a 2 W k2(k2 - 2k2) 0 2A

2xaz kx2

pw2 02 W 02W (kT
A 2 O-zx= Ox 2 Oz 2 kL

kT 4

k L)

02 A

19Z 2

02A

axaz

Now Fourier transform is used to eliminate x from these equations. The Fourier transform

of a function f (x) and its inverse transform are commonly defined as

(2.77)f() = f (x)e-jCxdx,
J-oo

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)
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(2.78)

So the Fourier transform of the boundary condition (2.4) is obtained as

4b
&zz = 4 (sin (a - a( cos (a)

a2(3
(2.79)

By performing Fourier transform on Eqs. (2.68), (2.69), (2.70), (2.71), (2.75) and (2.76),

the Fourier transforms of the potentials are obtained as

4bpw kL (kT -2 22)
2 bp2k 2(k - 2(sin (a - a( cos Ca)e-z C2 _k 2

8bpw2 V2 -2

TV = bp - (L (sin (a - ac cos (a)e ezV 2 -kr.
a2yP2(2G(( )

(2.80)

(2.81)

So that the transforms of the displacement components are

-z = 4b 2 - k (sin ca
a p~G(()

fx 4 . b (sin(a
j a2 p( 2G(C)

- a cos (a) 2(2e-z 2 -_;k + (k2 - 2C2)

- a( cos (a) 2

-z 2~2

(2.82)

(C2 - k2)(( 2 _ k)e 2_k + (k - 22)-z c2_

(2.83)

Applying the inverse Fourier transform to the above equations, we can obtain the displace-

ment components as

1 f
uz = ' 100 fizeCxdC ,8

27 _"o

and
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f 
027r1-00 f (C)ejCxdC .
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(2.85)ux = +11'txeJ~xd( ,
27 _

The integration in these equations can be evaluated using the asymptotic method which is

described in the previous section. The displacements are then obtained as

- - -aCOS 2 2k ksin 2

apu 'r1 G(kT Sin 0)

jk' 2 cosO(k 2 - 2k2 sin 2 0)

sin2 OG(kL sin 9) (
sin(kTa sin 0) Cos(kTasin0) ejkTr

kTasin 0

sin(kLa sin 0) cos(kLasin)
kLa sin 0

e-jkLr}

(2.86)

2be 4 cosO V2 2kTco
ap wr si

jkT 2(k' - 2k2 sin2 9)
sin G(kL sin 0)

S 0 jk Tsin2 - k
n 9G(kT sin 0)

(sin(kLa sin 0)

kLa sin 0
-cos

sin( kra sin 9)
+ cos(kTa sin 0) ejkTr

kTa sin 0

'k-jkLrkLa sin 0)) e }

(2.87)

By using the relation

Ula = uz cos 0 + u. sin 0 ,

Ul u cos 0 - uz sin 0 ,

(2.88)

(2.89)

and the notation in Eqs. (2.48), the radial and tangential displacement components of the

field are obtained as

21

7rkL 2

s(51lL)
U ()L (2

2bei
Uz =
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(S &l(T)

(s in(() - COS(w)) U' (0) ,

Page 50

(2.91)

where U0" (6) and UJ (0) are the far-field amplitudes of the compression wave radiated from

a point source, as shown in Eqs. (2.49) and (2.50).

2.5.2 The constant loading model

For the case of constant loading, the displacement amplitudes of the longitudinal and shear

waves are derived as [6]

U/(r, 6) = abe( 4L,)

U0(r,6) abei( _ kTr

p

2 sin (')UOL (0)
V 7r k L L

2 sin(gT)UT(0)
V werkT &T

2.5.3 Directivity patterns of the two cases

Still the displacements of the two models for the line source show the similar patterns

except for the modification terms: sin( T) and
Cr

1 (Sin((L) COS(&L))- To see the dif-
SL \ L/

ference, the displacements U/n and U1 are normalized and the far-field directivities are then

obtained as

H, 1 (0) = sinL) HL (0) , (2.94)
si 0

H, 1)=sin(&T) HT(6)Hal1(O) sin 0
(2.95)

Chapter 2
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i(5kr) V r2 1

VrkT T
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(2.93)
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for Case I, and

H' 2(6) = (Si( L) CO((L)) HL (0) , (2.96)

H72 (S) = 2O ( ) os( ) HT(O) (2.97)
a2() sin2 0 & O t )H

for Case II, where HL (0) and HJ'(0) are the far-field directivities of point sources shown

in Eqs. (2.57) and (2.58).

The directivity patterns for the two cases are plotted for various a and certain frequen-

cies, as shown in Figs. 2-17 and and 2-18 for the directivities at various a and 1 MHz

frequency, and Figs. 2-19 and and 2-20 at 5 MHz frequency. The difference between the

two models for the line source is clearly shown in the directivity plots. The trend is similar

to the case of circular source: the difference increases between the two models when the

width of laser line source 2a increases, and when frequency increases. ,
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Figure 2-18: Directivities of shear waves for line source at 1 MHz and various a: solid line
represents the elliptical distribution model and dash line the constant loading model.
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Chapter 3

Experimental Directivity Measurements

This chapter discusses several directivity measurements on an aluminum standard specimen

under different laser radiations. The directivity of an acoustic source can be experimentally

obtained by measuring the displacements at different propagation angles, and plotting them

as a function of angle 0. A high-power pulsed laser is used to generated ultrasound in the

sample. Two types of reception sensors are used. A high-power continuous wave (cw) laser

system detects the surface displacements induced by the laser-generated ultrasound. The

other is a PVDF transducer which also measures the surface displacements. The PVDF

transducer has a center frequency at 5 MHz, so it is chosen to measure the displacements at

a higher frequency. In contrast, the cw laser can only measure the displacement at relatively

low frequencies around 1 MHz, due to the usage of the low-pass filter.

The experiments are focused on circular laser sources.

3.1 Beam Propagation Cases

Figure 3-1 shows an acoustic ray propagating at an angle 0 in a bounded medium, orig-

inated from a laser source point 0 and observed at a point A on the surface. In solid

mediums where both normal and shear stresses can occur simultaneously, both longitudi-
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uY

ux x

A

h

Generation Laser

Figure 3-1: An acoustic ray propagating in a bounded medium, originated from a laser
source point 0 and observed at Point A.

nal and shear waves may be propagating in the same direction (at different velocities). In a

comprehensive analysis, the conversion of wave modes at the interfaces where an oblique

incident wave reflects off could be taken into account. But for simplicity, the preliminary

study considers only the simple cases shown in Fig. 3-2.

Neglecting the effects of multiple reflections and mode conversions, four different sce-

narios should be considered, which include the measurements of: (I) normal displacement

of L-wave, (II) normal displacement of T-wave, (III) transverse displacement of L-wave,

and (IV) transverse displacement of T-wave at Point A. One of the ways to measure the

normal and transverse displacement components is to use longitudinal and shear piezo-

electric transducers. However, a laser-based detection system can indicate only the normal

displacements so that Scenarios III and IV become out of our concerns. However, for

completeness, all four cases are included in the analysis. The corresponding vertical and

horizontal components of displacement amplitudes (UL, UT, UL, UT ) are written respec-

tively in Fig. 3-2 as a function of the location of observation (x) and the specimen thickness

Detection

Specimen
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Case I

UL -- UL h
(h2 + x 2 ) 0.5

Case II

Laser
source

UT UT xy (h2 + X2)0.5

u r L-wave

u ( uL xx (h2±+x2 )0 .5

Case IV

U Tx UT -UT h
(h2 + x 2 )0 .5

Figure 3-2: Four different detection scenarios measuring normal and transverse displace-
ment amplitudes of longitudinal and shear waves traveling at an angle 0.
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(h). The displacement amplitudes UL and UT can be determined from Section 2 by con-

sidering the illumination shape and strength of the laser beam. For example, the normal

displacement amplitudes for a circular source of radius a for the elliptical distribution case

can be written as

Uf(r, 0)

Ui (r, 0) =

Ua(r, 0)

and

2a 2b

2a 2b

a2b)

m 
b

e-kLr)

,r

e-ikTr)

ik(-kTr)

(3.1)

(3.2)

(3.3)

(3.4)

for the constant loading case, respectively.

3.2 Instrumentation

3.2.1 Generation of Ultrasound

o Pulsed laser: a New Wave MiniLase laser system is used for generation of ultra-

sound. The laser type is flash lamp pumped, Q-switched, water cooled, Nd:YAG

laser. Table 3.1 shows the specifications of the laser source.

In the experiments, the surface of the specimen is moisturized by water. When the

laser beam passes through the water, the water is evaporated within a small region. In
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Parameter Value
Wavelength (A) 1064 nm
Pulse width 6-8 ns
Energy level 90 mJ
Beam diameter (2a) 3.75 mm
Maximum pulse repetition rate 10 Hz

Table 3.1: Specifications of the pulsed laser system.

the mean time, a high-amplitude stress wave, usually called shock wave, radiates from

the evaporated region. The stress wave acts as the ultrasound source. In this case, the

ultrasound is generated by the momentum exchange between the water and the specimen

instead of the heat expansion in the specimen itself. So the directivity patterns of laser-

generated ultrasound for wet and dry surfaces may be different from each other.

3.2.2 Reception of Ultrasound

* Continuous wave laser: a solid-state diode-pumped, frequency-doubled Nd:Vanadate

(Nd:YVO 4) cw laser (Verdi V-8) is used to detect the surface displacements on the

specimen. Its parameters are specified in Table 3.2.

Parameter Value
Wavelength (A) 532 nm
Output power <8 W
Beam diameter (2a) 2.25 mm±10%
Beam divergence 0.35 mrad±10%

Table 3.2: Specifications of the Verdi V-8 laser system.

A photo-emf detector was installed together with the cw laser to convert the mechan-

ical signals into electrical signals. The principle of the photo-emf detector is based

on a reference-beam interferometer with the measurements of the nonsteady state
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photo-electromotive force. See Fig. 3-3 for the schematic diagram of photo-emf re-

ceiver. The cw laser is first divided, by a beamsplitter, into a reference beam and a

probe beam which is directed to the specimen. The light reflecting or scattering from

the specimen is then collected as the signal beam and delivered to the photo-emf de-

tector. At the same time, the reference beam is also directed into the detector. If the

sample surface is deformed due to an ultrasonic excitation, a phase change will be

introduced onto the signal beam. As the result of the interference between the two

beams, this phase change induces a transient shift in the lateral position of the fringe

pattern on the photo-emf detector. This lateral shift produces an electrical signal that

is proportional to the instantaneous surface displacement at ultrasonic frequencies.

The surface displacement on the order of 0.1-10 nm can be detected by this detector.

Various output gain settings allow the observation of output signals in a convenient

voltage range for display on an oscilloscope or for digitizing in an electrical proces-

sor.

Plane-wave
reference

PI-EMF'
detector

3L

Workpiece

Source laser

Figure 3-3: The schematic diagram of photo-emf detector.
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* PVDF transducers: a PVDF transducer with the size of 10mmx 10mm is employed

to measure the surface displacements of the specimen. PVDF transducer is made

from a kind of piezoelectric polymer material, which is a plastic material with groups

of molecules linked as orderly crystallites. The crystallites form in an amorphous ma-

trix of chemically similar, but differently structured material. The relative population

of crystallites strongly effects the piezoelectric behavior of the material. Polyvinyli-

dene fluoride is a popular piezoelectric polymer material to make sensors.

3.2.3 Other instrument

" Oscilloscope: Tektronix TDS 210 two channel digital oscilloscope is used to record

the waveforms. In the experiments, oscilloscope trace is triggered by the laser pulse

via external trigger. The selection of resolution depends on the time-of-flight of

signals in every experiment.

" Function Generator: HP 33120A function generator / arbitrary waveform generator

is used to calibrate the photo-emf detector system.

* Sliding table: the resolution of this table is 0.0254 mm. It provides the measurement

of the profile of the surface displacements.

* Plano-convex lens: the effective focal length is 100 mm. This lens is used to focus

or enlarge the pulsed laser beam to different sizes.

3.2.4 Specimen

* Aluminum block: 32 mm thick. Figures 3-4(a) and (b) respectively show the wave-

forms obtained at two different locations x (corresponding to the propagating angle

0 = 0' and 45'). In Fig. 3-4(a), the largest peak appears at t ~ 5.12ps. This is the

longitudinal wave propagating directly in the direction normal to the surface of the

specimen. At another angle 6 = 45' (Fig. 3-4(b)), the longitudinal wave arrives at a
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(a) 0 = 0
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5 10 15
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Figure 3-4: Waveforms obtained at two
specimen (h = 32 mm).

different locations (6 = 00, 450) on the aluminum
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later time: t a 7.24ps since this wave travels a longer distance. On the other hand,

there is a large peak standing at t ~ 14.41ps. This is a shear wave propagating at

45'. Note the enormous amplitude of this wave.

By knowing the longitudinal and shear wave speeds CL = 6250 m/s and CT

3140 m/s, we can precisely predict the arrival times tL and tT of each mode. In

the experiments, the out-of-plane displacements are measured for different locations

and plotted for both modes. The corresponding directivities are computed.

3.3 Experimental Setup

According to the discussion in Sec. 3.1, the experimental setup is installed as shown in

Fig. 3-5. The experiments are performed in the following procedure: the Nd:YAG pulsed

laser strikes normally at a point A (Fig: 3-1), ultrasound is generated and radiated into the

sample. At the same time, the cw laser aiming at a fixed point 0 on the other side of the

surface, or the PVDF transducer attached at 0, measures the displacements of the point. By

varying the angle of propagation 0, the position of the pulsed laser source is off-centered

by the distance x, which is controlled with the sliding table. Specifically, we are only

concerned about measuring the out-of-plane displacements U, introduced by longitudinal

and shear waves as:

UL UL cos, UL = ULsin6 (3.5)

U= UT sin0,UT = UT cos 0. (3.6)

The detected mechanical displacements are then converted to the electrical signals, which

is retrieved and shown in the oscilloscope. By measuring the corresponding peak-to-peak

amplitude of the longitudinal and shear waves at various angles, the directivities can be

constructed. The results are shown and discussed in the next chapter.
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(a)

Pulsed laser

Pulsed laser

Specimen

(b)

PVDF transducer

Oscilloscope PC

Specimen

Figure 3-5: The experimental setup for the measurement of displacements: (a) CW laser,
(b) PVDF transducer.
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3.4 Spectral Analysis

For a signal retrieved with the cw laser system, a representative frequency should be chosen

when the outcomes are compared to the theoretical results. This is due to the broad band-

width of the ultrasound generated by the pulsed laser. Therefore, spectral analysis is carried

out on the waveforms prior to the displacement measurements. The signals are retrieved

under the condition that the pulsed laser beam was focused to be 1 mm, the sample surface

moisturized by water, and several low-pass filters, such as 2, 5 and 10 MHz, are used. The

waveforms and the corresponding Fourier transforms are shown in Fig. 3-6, respectively. It

is noticed that the center frequency of all the waveforms are around 1 MHz. So 1 MHz is

chosen to calculate the theoretical directivity which is then compared to the experimental

results.
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Figure 3-6: The spectral analysis of waveforms retrieved from cw laser.
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Chapter 4

Results and discussion

4.1 Experimental results

With the apparatus described in the previous chapter, the ultrasonic directivity patterns at

1 and 5 MHz are determined and compared with the theoretical results. These results are

obtained by either the detection laser or PVDF transducers. Under all circumstances, the

sample surface on the generation laser side is moderately moistured by water.

First, several experiments are performed to measure the out-of-plane displacements for

various pulsed laser beam sizes (2a), using the cw laser as the detection sensor. The plots of

the measured out-of-plane displacements U' and U' vs. the propagation angle 0 are shown

in Fig. 4-1 for longitudinal waves, and Fig. 4-2 for shear waves. In these figures and the

following directivity plots, solid lines represent theoretical results, and dashed lines show

experimental outcomes. The theoretical plots corresponding to the constant loading (case I)

are on the left side in the figures, while the plots corresponding to the elliptical loading

(case II) are on the right side. According to the spectral analysis introduced in Section 3.4,

1 MHz is chosen as the frequency of interest to determine the theoretical directivity plots.

For longitudinal waves, the out-of-plane displacements reaches the maximum at 0 = 0

for all chosen a, and then monotonously drops while the propagation angle 0 increases.
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Figure 4-1: The measured out-of-plane displacements (UL) as a function of propagating
angle 0 for the aluminum specimen on the wet surface for various beam sizes (2a): I. con-
stant loading, II. elliptical distribution. Solid line - theoretical plots at 1 MHz frequency;
dash line - experimental measurements.
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stant loading, II. elliptical distribution. Solid line - theoretical plots at 1 MHz frequency;
dash line - experimental measurements.
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These plots of the experimental and theoretical results show relatively small difference

for the two models which is predicted in the theoretical discussion. For shear waves, the

maximum UT is measured experimentally at 0 1 40' for various a, which is consistent

with the theoretical plots of either constant loading or elliptical distribution models. The

overall trend of each experimental plot is also observed to be in good agreement with the

both theoretical results. This set of experiments are performed when a is increased up to

2 mm. Due to the limitation of the pulsed laser system, we can not further increase the

beam size (which will significantly decrease the power density of the laser beam so that the

signal-to-noise ratio is very low).

Figures. 4-3 and 4-4 respectively show the directivity patterns for longitudinal and shear

waves, with PVDF transducer as the ultrasonic reception sensor. When constructing the

theoretical directivity plots for both models, 5 MHz, which the center frequency of the

transducer, is selected as the frequency of interest. Couplant is applied to stick the PVDF

onto the sample surface. Similar trend of the change of the displacement amplitudes is

shown, for example, the monotonously decreasing of the amplitudes and the highest values

shows at 0 = 00. But it is interesting to note that the experimental results is in a better

agreement with those of elliptical distribution model. Same results are observed for shear

waves. When 2a = 1mm, the maximum of U appears at 0 400, which verifies the

theoretical prediction from both models, but it seems that elliptical distribution model is a

better prediction in this case. The maximal UT shifts to 0 e 16' for the elliptical model

when 2a = 2mm, and keeps at 0 ~ 400 for the constant model. Experimental results show

a big peak at small angle 0 = 160, which obviously matches the results of the elliptical

model. Since the PVDF transducer is less sensitive than the cw laser, the experimental

results couldn't been obtained for larger a such as a = 2mm due to the relatively low

power density of the pulsed laser.
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Figure 4-3: The measured out-of-plane displacements (UL) as a function of propagating
angle 0 for the aluminum specimen on the wet surface for various beam sizes (2a): I. con-
stant loading, II. elliptical distribution. Solid line - theoretical plots at 5 MHz frequency;
dashed line - experimental measurements.
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stant loading, II. elliptical distribution. Solid line - theoretical plots at 5 MHz frequency;
dashed line - experimental measurements.
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4.2 The influence of the beam size a

The directivity analysis shows that the directivity patterns of a certain radiation source is

influenced by the source size a. It has been shown in Figs. 2-5 and 2-6 that the difference of

the directivities between the constant loading and elliptical distribution cases is very small

for small a at 1 MHz, and gets larger when a increases. This is verified in the experiments

using cw laser system, when a is small such as 0.5, 1 and 1.5 mm, the experimental results

match either of the two theoretical results well; but when a = 2 mm, the larger difference

easily distinguishes the two models, and the experimental result is obviously closer to that

of elliptical distribution case.

This phenomenon is also observed when the PVDF transducer is used. The directivity

patterns change significantly as a increases. This is indicated by the shift of the maxi-

mal U'. Compared the two models, it is noted that the directivity patterns can be better

predicted by the elliptical distribution model when a increases.

4.3 The influence of the frequency f

Besides the influence of a, the frequency f of ultrasound also play an important role in the

determination of the directivity patterns. Comparing Fig. 2-5 with Fig. 2-7, or Fig. 2-6 with

Fig. 2-8, for a fixed a, larger differences between the constant loading model and elliptical

distribution model are observed at 5 MHz, which can easily identify the two models. To

see the difference experimentally, we can compare the two sets of experiments performed

using the cw laser and PVDF transducer, respectively. By fixing a, the experimental plots

at 5 MHz show an identifiable and better agreement with those of the elliptical model. See

Figs. 4-3 and 4-4.
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4.4 The influence of b

In the theoretical derivation of the elliptical distribution model, the ratio b/a describes the

characteristics of the stress loading condition on the surface. For a fixed a, a large value of b

implies higher reaction forces, resulting in high signal intensity, and vice versa. However, it

is important to note that the value b does not make any influence on the directivity patterns.

It is because of the following reasons. Consider two different values of b, say b1 and b2, as

shown in Fig. 4-5. In these cases, the load magnitudes at two random positions R1 and R2

for b1 and b2 are respectively given as

R R
Ozz(R 1 , bi) = b 1 - "17RA, = b1 1 - , (4.1)

a2 a2

O-zz(Ri, b2 ) =b 2 1 - , u-z(R 2 b2 )= b2  1-2) . (4.2)
a2 a2

Noting that the construction of directivity is based on Huygen's principle, the directivity

is dependent on the distribution (shape) of loading, which can be described by considering

aR1

bi)

oz(R2, b2)

R

a

Figure 4-5: The influence of b
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the values at two arbitrary points. In our case, the magnitude between the two points R1

and R 2 can be written as

Szz (R1,I bi) -o-zz (R2, bi) -b1 43
Ozz(RI1 , b2) o zz(R 2, b2) b2

Since this ratio is a constant, the parameter b does not make any contribution to the directiv-

ity. Mathematically, this phenomenon can be explained from Eq. (2.19) where the constant

b is an independent variable of integration, i.e.,

at2

6-zzo = bj(1 - 2 -)R Jo(CR)dR .
o a

Therefore, the directivity patterns are dependent only on the loading dimension a and

wavenumbers kL and kT. It may be difficult to determine the absolute value of b experi-

mentally, but this analysis makes it unnecessary to do that. This is our advantage, but it

should be noted that this simplicity is resulted from the fact that we considered an ideally

elliptical distribution. For different distributions, the directivity may be dependent on b.
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Chapter 5

Summary and Conclusion

A new mathematical model, namely elliptical distribution model, is proposed in this the-

sis to predict the situation where the sample surface is modified by water or other liquids.

The conventional constant loading model, which is derived from unmodified surface con-

dition and is believed by other researchers to be applicable to the modified surface con-

dition, is also presented as a comparison. The theoretical results, as well as experimental

outcomes, indicate that although the two models are roughly close qualitatively in some

circumstances, significant differences can exist when accurate results are desired.

Mathematically, the elliptical distribution model is more sophisticated than the constant

loading model. The former involves more computational steps than the latter. Specifically,

during the derivation of the elliptical model, higher order terms have to be kept in the

expansion of Bessel functions. However, the complication of the elliptical distribution

model does not compose a problem for its application. In fact, once the symbolic formula

is obtained, for either model it takes very little time to calculate a specific directivity pattern

given the corresponding parameters.

On the other hand, the experimental results show that the elliptical distribution model

provides more accurate prediction for the directivity of modified surfaces than the constant

loading model. The performance of the two models depends on the radius of the laser beam
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and ultrasound frequency range. Particularly, the advantages of the elliptical distribution

model are more prominent in the following situations. First, the size of the radiation source

2a is large. When the radius is small, the difference between the two models is negligible.

However, the difference becomes more obvious when the radius increases. Second, the

frequency of laser-generated ultrasound is high. The discrepancy between the two models

is evident when the ultrasound frequency reaches 5 MHz. In both cases, the elliptical model

agrees better with the experiment results.

One more interesting observation is that according to the mathematical derivation of the

elliptical model, the power density of the pulsed laser beam doesn't make any contribution

to the directivity. This conclusion is very important for the experimental measurement of

the directivity. Experimentally, the directivity is measured in a point-by-point manner. It

takes quite long time, with the average of three hours, to obtain a completed directivity

plot. In practice, it is very difficult to keep a constant power density level for such a long

time period due to the outside disturbances. But since the directivity is independent of the

power density level, one can be assured that the directivity pattern obtained is a valid one.

The variation of the power density level is not a factor for the measurement.

In conclusion, the elliptical loading model provides a better tool for the analysis of the

directivity of laser generated ultrasound with modified surfaces.
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