
TRANSACTION MANAGEMENT ON COLLABORATIVE

APPLICATION SERVICES

BY

KoON-PO PAUL WONG

BACHELOR OF SCIENCE IN ENGINEERING (HONORS)
CIVIL AND ENVIRONMENTAL ENGINEERING EN

UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN (1997)

MASTER OF SCIENCE
APPLIED MATHEMATICS

HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS (1999)

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2000

Copyright @ 2000 Koon-Po Paul Wong. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and
electronic copies of this thesis docient in whole or in part.

SIGNATURE OF
AUTHOR

DEP NT CIVIL AND EjAIRONMENTAL ENGINEERING

MY 2000

CERTIFIED
BY ,,

FENIOSKY ENA-MORA
Associate Professor, Department of Civil and Environmen al Engineering

Thesis Supervisor

APPROVED
BY

CHUSEITS INSTITUTE DANIELE VENEZIANO
Chairman, Departmental Committee on Graduate Studies

MAY 3 0 2000

LIBRARIES ENG

TRANSACTION MANAGEMENT ON COLLABORATIVE
APPLICATION SERVICES

By

Koon-Po Paul Wong

Submitted to the Department of Civil Engineering
on May 2000, in partial fulfillment of the

requirements for the degree of
Master of Engineering

Abstract
In most organizations today, product development is made by teams of designers working

collaboratively together in geographically distributed locations (e.g. an aircraft design).
These designers frequently interact with each other to share highly dynamic design data.

Such design environments demand a flexible and efficient transaction management

system for concurrency management of the complex and highly interactive transactions.

This study presents the important features of such a transaction management framework.

It forms an integral part of an ongoing collaboration project at MIT, called ieCollab

(Intelligent Electronic Collaboration), which aims at addressing coordination and

communication problems in collaborative application services.

ieCollab uses a collaborative ASP (Application Service Provider) architecture which

enables organizations to quickly deploy applications without the associated cost and

burden of owning, managing or supporting the applications or underlying infrastructure.

The collaborative ASP model is built upon the implementation of a distributed three-tier,

thin-client system architecture using CORBA (Common Object Request Broker

Architecture) and JDBC connectivity.

Our transaction management framework is based on the collaborative ASP model. Since

collaborative transactions are usually of long duration and represent highly interactive

modifications to a complex design, a more flexible and efficient transaction management

system would be considered which enables collaborative transactions to complete a

complex design without enduring long waits. Object-oriented database management
systems provide a means to model, coordinate, store and manipulate these complex

design as well as efficient concurrency.

This study presents a transaction management model on collaborative application

services using an object-oriented database environment, namely ObjectStore PSE Pro.

Key issues that have been emphasized include shared and grouped transactions among

users, deadlock prevention and detection, transaction checkpointing, comparison of

copying versus locking, nested transactions for better management, greater concurrency
by semantics-based concurrency control, and specifying protocols to support our model.

Thesis Supervisor: Feniosky Peia-Mora
Title: Associate Professor of Information Technology and Project Management

Acknowledgments

* I would like to express my deepest gratitude to my advisor, Feniosky Pefia-Mora, for
his support, comments and suggestions throughout the development of my thesis.
Feniosky has always inspired and motivated me. It has been a wonderful experience
to have him as my advisor.

* My thanks to all my teammates working in the ieCollab project, Teresa Liu, Nhi Tan,
Erik Abbott, Wassim El-Solh, Kaissar Gemayel, Hermawan Kamili, Saeyoon Kim,
Steven Kyauk, Ivan Limansky, Kenward Ma, and Alan Ng. Without any of them, our
project would never be able to develop.

* My special thanks to Erik Abbott who gives me a hand in developing the user manual
for the ieCollab project.

* And most importantly, I would like to thank my parents and my brother for their
constant support, love and encouragement. Their blessings have made this possible.

3

Table of Contents

1 Introduction... 7
1.1 M otivation .. 7
1.2 Introduction to ieCollab.. 8

1.2.1 Requirements .. 9
1.2.2 System Architecture... 9

1.3 An Example of Collaborative Product Development.......................11
1.4 Requirements of Transaction Management Framework in ieCollab... 15
1.5 Outline of this Thesis.. 16

2 Collaborative Application Service Provider (ASP)..............................18
2.1 W hat is an A SP?........................ 18
2.2 Thin-Client System Architecture.. 19
2.3 Introduction to CORBA... 20

2.3.1 System Architecture.. 21
2.4 Benefits of Implementing Collaborative ASP Model in ieCollab...... 24
2.5 Sum m ary.. 24

3 Database Connectivity.. 26
3.1 Introduction ... 26
3.2 JDBC Connectivity... 26
3.3 JDBC Interfaces.. 28
3.4 JDBC Architecture and its Advantages for Collaborative

Application Services... 30
3.5 Sum m ary... 33

4 Object-Oriented Database Management Systems (OODBMS).................. 34
4.1 Introduction - OODBMS..34

4.1.1 Characteristics of OODBMS..35
4.2 Requirements of a DBMS for Collaborative Applications Services.......39
4.3 Comparison of OODBMS and RDBMS..................................... 40
4.4 Advantages of OODBMS for Collaborative Application Services.........42
4.5 Sum m ary... 46

5 A Transaction Management Framework for Collaborative Application
Services.. 47
5.1 Introduction... 47
5.2 Basic Feature in Transaction Management.................................. 48
5.3 A Review of Traditional Transaction Management Frameworks and

their Limitations for Collaborative Application Services................. 50
5.4 A Transaction Management Model for Collaborative Application

Services .. 53
5.5 Transaction Management Functionalities for Collaborative Application

Services.. . 56
5.5.1 Grouped Transactions... 56
5.5.2 Specifying Protocols.. 57
5.5.3 Deadlock Prevention/Detection....................................... 58

4

5.5.4 Copying versus Locking.. 59
5.5.5 Checkpointing.. 61
5.5.6 Shared Transactions.. 61
5.5.7 Nested Transactions.. 62
5.5.8 Semantics-based Concurrency Control.............................63

5.6 Summary.. 64

6 Implementation Issues.. 65
6.1 Introduction.. 65
6.2 Advantages of ObjectStore PSE Pro for Collaborative Application

Services.. 67
6.3 Transaction and Concurrency Control...................................... 70
6.4 Transactions and Recovery.. 71
6.5 Persistence... 71
6.6 Runtime Schema Access/Definition/Modification......................... 72
6.7 Composite Objects... 72
6.8 Implementation Details of Persistent Java Objects......................... 72

6.8.1 Creating Sessions.. 73
6.8.2 Creating, Opening, and Closing Databases......................... 74
6.8.3 Starting Transactions.. 75
6.8.4 Storing Objects in a Database... 78
6.8.5 Accessing Objects in a Database..................................... 79
6.8.6 Deleting Objects.. 80

6.9 Summary... 82

7 Conclusions... 83
7.1 Sum m ary... 83
7.2 Future Transaction Management Research and Development............ 84

Bibliography...-........ 86

List of Appendices... 88

Appendix A - Requirement Specification vl.6..89
Appendix B - Design Specification v1.0..101

5

List of Figures

1-1 Layer and Connections of the System... 10

1-2 A Hierarchy of Transaction Managers...12

2-1 Distributed Presentation - Thin-Client System Architecture..................... 19

2-2 RPC structure.. 22

2-3 CORBA Architecture...23

3-1 JDBC interfaces.. 28

3-2 JDBC Driver and Connectivity.. 31

4-1 Makeup of an Object-Oriented Database..35

5-1 Linear Sequential Model for Software Engineering............................. 54

5-2 A Hierarchy of Groups..56

6

Chapter 1

Introduction

1.1 Motivation

In most organizations today, product development is done by teams of designers. For

instance, a large computer-aided design (CAD) project, such as aircraft design, typically

involves a group of designers working collaboratively together in geographically

distributed workstations to complete a complex design by closely interacting among

themselves and dynamically sharing design data and information. Such design

environments necessitate powerful data modeling, sharing and transaction management

tools, efficient communication protocols and a flexible framework for concurrency

management of highly interactive transactions.

Today's electronic tools in this field still mostly aim at the support of a single designer

only, leaving the organization of collaboration to some organizational level not directly

supported by the tools. Even though there exist tools to support concurrent use by several

7

members of a working group, concurrent operations are mostly controlled by

rudimentary, elementary mechanisms, i.e., by implicit or explicit "user locks".

This study presents the important features of supporting a collaborative transaction

management framework. It forms an integral part of an ongoing collaboration project at

MIT, called ieCollab (Intelligent Electronic Collaboration), which consists of a set of

object-oriented tools aimed at addressing coordination and communication problems in

collaborative application services.

1.2 Introduction to ieCollab

ieCollab is an Internet-based collaborative application service provider (ASP) for

communicating information and sharing software applications in a protocol-rich Java

meeting environment [Chen2000]. By helping create and manage virtual teams,

ieCollab's collaborative solution will offer organizations new ways to improve

communications, leverage off-site expertise, and reduce project costs and duration.

ieCollab is developed by building on over six years of patent-pending MIT research on

collaborative engineering projects with leading organizations from the manufacturing,

construction, and defense software markets.

8

1.2.1 Requirements

A common problem faced by all corporations at all levels today is that of software

application purchasing and maintenance. Many such organizations have turned to an ASP

that allows them to quickly deploy applications without the associated cost and burden of

owning, managing or supporting the applications or underlying infrastructure. However,

typical applications deployed by an ASP do not allow for collaborative data

manipulation, falling short of the needs for distributed teams to dynamically share ideas,

models, simulations, calculations and information via such applications as a result of the

distributed personnel. ieCollab's Internet-based meeting tools solve the problem of

personnel relocation with reliable forums for communications among geographically

distributed teams. The unique collaborative ASP model deployed by ieCollab will solve

the requirement for an ASP with the need for collaborative software.

1.2.2 System Architecture

The ieCollab system is built upon distributed objects on a multi-tiered architecture. It

comprises of three distributed layers: user services (front end user interface), business

services (service logic), and data services (back end database). The first layer is linked to

the second layer through CORBA (Common Object Request Broker Architecture)

connection and the second layer to database via JDBC connectivity. Figure 1-1 shows

the various layers and connections of the ieCollab system.

9

ieCollabUser CORBA JDBC
Interface Service ieCollab

Database

1s' Tier 2 Tier 3 Tier

User Services Business Services Data Services

Figure 1-1: Layers and Connections of the System

User-Interface Tier:

The user-interface layer is the layer of user interaction. Its focus is on efficient user

interface design and accessibility throughout an organization. The user interface layer can

reside on the user's desktop, on an organization's intranet, or on the World Wide Web

(Internet). The user-interface tier invokes methods on the business logic tier and thus acts

as a client of the business logic servers.

Service (Server) Tier:

The service, or business logic layer, is server-based code with which the client code

interacts. The business logic layer is made up of business objects - CORBA objects that

perform logical business functions such as transaction management, service usage of

users, frequency of access, and billing. These objects invoke methods on database tier

objects.

10

Database Tier:

The database tier is made up of objects that encapsulate database routines and interact

directly with the DBMS product. All the database operations are done by individual

methods. Each method that needs information from database opens connection to the

database and does appropriate queries to retrieve data. After the database operation is

done, connection to database would be closed.

1.3 An Example of Collaborative Product Development

Most large engineering projects, such as aircraft design, design of buildings, computer-

aided software engineering (CASE), or computer-aided manufacturing (CAM) are highly

collaborative in nature, i.e., they involve several participants in frequent interaction for

the achievement of a common goal. These collaborative projects require a flexible and

efficient transaction management system to manage the complex and highly interactive

transactions.

We will introduce our proposed framework for transaction management in ieCollab with

a simple example. As an illustration of collaborative product development, consider the

example of software development. Imagine a Software Product organization which is

divided into three divisions: Documentation, Software Engineering, and Maintenance.

Software Engineering has two sub-divisions: Development and Prototyping as shown in

Figure 1-2.

11

I
I

/

DI

4
Transaction manager for whole Software Product

Ptm organization (mediates requests from Documentation,
Software Engineering and Maintenance groups)

Transaction manager for whole Software Engineering
Etm (mediates requests from Development and Prototyping)

Transaction manager for whole Development (mediates

EVtm requests from individual developers)

Figure 1-2: A Hierarchy of Transaction Managers

12

We will give a narrative description of the desired transaction management. This

narrative maps directly to easily-implemented protocols for each of the groups.

In our example organization, Software Engineering releases documents to Documentation

and code modules to Maintenance. If Software Engineering subsequently modifies a

document, it must notify Documentation. Software Engineering cannot modify a code

module once it has been released to Maintenance. These policies are expressed in the top-

level protocol (for the whole organization), which includes the following rules:

* At the end of an operation by Software Engineering to modify a document d, email

Documentation that d has been modified.

" After the end of an operation by Software Engineering to release a module m, reject

any subsequent operation to modify m by Software Engineering.

Note that the first rule triggers a new request (email), and the second rule references the

history of prior operations to see if it contains the event "release operation ends

normally".

Within Software Engineering, Prototyping provides the Development group with

prototyped versions of many of the software modules which are to be produced by

Development and notifies Development when it has modified one of these versions. This

policy is expressed in the protocol of the Software Engineering group, which includes the

following rule:

13

e After the end of an operation by Prototyping to make available a module m, at the end

of each operation by a member of the Prototyping group that modifies m, notify the

Development group that m has been modified.

This rule checks a condition involving multiple events in the history of prior operations.

Within Prototyping everyone shares all objects; everyone collaborates on all aspects of

the prototypes, and anyone can test or release prototyped versions. No rules are required

to specify this policy. However, within Development, each designer or implementer

requires exclusive use of any object he or she is modifying. In addition, if anyone

changes the name of a module, the name must be changed in all programs that use that

module. These policies are expressed in the protocol of the Development group, which

might include the following rules:

" Between the beginning and the end of any operation by any member D of

Development to modify a module m, reject any operation on module m by any other

member of Development.

" Between the beginning and the end of any operation by any member D' of

Development on module m, reject any operation by any other member of

Development that modifies m.

" At the end of the rename operation to rename a module m, trigger a request to edit all

modules that use m to modify their calls to m.

14

This example demonstrates the need for considerable collaboration work in a software

development process. It highlights the rules necessary to be followed in order to achieve

the desired transactions. What are the underlying transaction features required to

supporting the above framework? These are enumerated in the next section.

1.4 Requirements of Transaction Management Framework in ieCollab

As illustrated in the previous example, a collaborative software development demands a

powerful and flexible transaction management framework to coordinate the concurrent

activities of multiple users at a time. Some of the principal requirements of the ieCollab

transaction management framework are enumerated below.

" Flexible and efficient data sharing capabilities in the forms of grouped and shared

transactions

" Nested transactions framework for task discretization

" Copying versus locking schemes

e Deadlock Prevention and Detection

" Effective protocols to handle conflicts or triggers among users

e Transaction checkpointing

" Semantic-based concurrency control to increase the level of concurrency

15

1.5 Outline of this Thesis

This chapter has introduced the primary objectives and scope of this study, which is to

develop a transaction management environment for supporting collaborative application

services as proposed in the ieCollab framework. The remainder of the thesis is organized

as follows:

* Chapter 2 provides the basic concepts of Application Service Provider (ASP) and its

thin-client system architecture for collaborative framework. It presents an overview

of CORBA technology, explains the requirements of CORBA to supporting our

collaborative ASP model and the benefits of implementing ASP model for such work.

" Chapter 3 outlines the concepts of JDBC connectivity which is used to access the

database layer from the middle-tier service logic. With a brief discussion of the JDBC

interfaces and its architecture, we examine the advantages of implementing JDBC

technology for our collaborative work.

" Chapter 4 introduces the characteristics of OODBMS, and their requirements for

supporting collaborative application services. By making comparison of OODBMS

and RDBMS, we address the advantages of using OODBMS in the transaction

management framework.

16

e Chapter 5 presents our transaction management model for collaborative application

services, and discusses some advanced transaction management functionalities

required to support the framework.

" Chapter 6 provides implementation issues of the database layer using Java-enabled

ObjectStore PSE Pro.

" Chapter 7 summarizes the project results and outlines an ongoing and future work.

17

Chapter 2

Collaborative Application Service

Provider (ASP)

Traditional enterprise applications are mostly self-contained monolithic programs which

have limited access to one another's procedures and data [ASP2000]. They are usually

cumbersome to build and expensive to maintain because some simple changes may

require the entire program to be recompiled and retested. These create a lot of hassles of

procuring hardware and installing software that a large software application requires.

With business operations now increasingly dependent on complex software applications,

IT managers are embracing a new approach - web-based ASP (Application Service

Provider) service - to ensuring cost-cut, secure, and business-critical applications.

2.1 What is an ASP?

Application Service Providers (ASPs) deliver and manage applications and computer

services from remote data centers to multiple users via the Internet or a private network

18

[ASP2000]. The applications delivered over networks on a subscription basis. This

delivery model speeds implementation, minimizes the expenses and risks incurred across

the application life cycle, and overcomes chronic shortage of qualified technical

personnel available in-house.

Large companies may decide to enlist an ASP to quickly deploy critical, enterprise

applications at an affordable cost, since the resource requirements for supporting these

systems have grown exponentially. Small and mid-sized organizations can deploy

enterprise applications that without an ASP would involve massive investments in

software, deployment time and IT personnel. These businesses can then benefit from the

efficiencies of integrated, enterprise applications that were previously not cost-effective

to develop and use.

2.2 Thin-Client System Architecture

Client - GUI Server - Service

Logic

Application

Network Layer

Presentation CORBA Presentation
Layer Technology Layer

Figure 2-1: Distributed Presentation - Thin-Client System Architecture

19

For our ASP model, we deploy a collaborative software application. Our collaborative

ASP system is built upon a distributed thin-client system architecture as shown in Figure

2-1. It composes of a presentation layer on the client side, and both application and

presentation layers on the server side. The client-server system is connected with the use

of CORBA technology. Since the client only implements the presentation layer, all

processing is done on the server side. This creates some advantages to the system: (1) it is

easy to port client to different architectures; (2) the client is decoupled from any changes

in the application.

2.3 Introduction to CORBA

CORBA (Common Object Request Broker Architecture) is a popular distributed object

model. It is emerged as a standard to simplify network programming and to realize

component-based software architecture.

The core of the CORBA architecture is the Object Request Broker (ORB) that acts as the

object bus over which objects transparently interact with other objects located locally or

remotely [Chungl998]. A CORBA object is represented to the outside world by an

interface with a set of methods. A particular instance of an object is identified by an

object reference. The client of a CORBA object acquires its object reference and uses it

as a handle to make method calls, as if the object is located in the client's address space.

The ORB is responsible for all the mechanisms required to find the object's

20

implementation, prepare it to receive the request, communicate the request to it, and carry

the reply (if any) back to the client. The object implementation interacts with the ORB

through either an Object Adapter (OA) or through the ORB interface.

2.3.1 System Architecture

CORBA is a distributed object framework which provides client-server type of

communications. To request a service, a client invokes a method implemented by a

remote object, which acts as the server in the client-server model. The service provided

by the server is encapsulated as an object and the interface of an object is described in an

Interface Definition Language (IDL). The interfaces defined in an IDL file serve as a

contract between a server and its clients. Clients interact with a server by invoking

methods described in the IDL. The actual object implementation is hidden from the

client. Some object-oriented progranmming features are present at the IDL level, such as

data encapsulation, polymorphism and single inheritance. CORBA also supports multiple

inheritance at the IDL level, and CORBA IDL can also specify exceptions.

In CORBA, the interactions between a client process and an object server are

implemented as object-oriented RPC-style communications. Figure 2-2 shows a typical

RPC structure. To invoke a remote function, the client makes a call to the client stub.

The stub packs the call parameters into a request message, and invokes a wire protocol to

ship the message to the server. At the server side, the wire protocol delivers the message

21

to the server stub, which then unpacks the request message and calls the actual function

on the object.

operation(

reply0

CLIENT Top layer SERVER

client stub Middle layer server stub

wire wire
protocol Bottomlayer protocol

Network

Figure 2-2: RPC structure [Chung1998]

The overall architecture of CORBA is illustrated in Figure 2-3. The top layer is the basic

programming architecture, which is visible to the developers of the client and object

server programs. The middle layer is the remoting architecture, which transparently

makes the interface pointers or object references meaningful across different processes.

The bottom layer is the wire protocol architecture, which further extends the remoting

architecture to work across different machines, with TCP socket as the de facto standard.

22

Server machine

Figure 2-3: CORBA Architecture [Chungl998]

As illustrated in the Figure above, the core of the CORBA architecture is the ORB that

acts as a channel connecting objects between the client and the server. Since our ASP

system is built upon thin-client system architecture, ORB plays an essential role for

accessing the remote application services on the server from client machines. In essence,

adopting CORBA architecture is vital to support our collaborative ASP model. In the

following section, we will provide the benefits of implementing ASP model for

collaborative framework.

23

Client machine

2.4 Benefits of Implementing ASP Model for Collaborative Work

There are several distinctive benefits of implementing ASP model for supporting our

collaborative framework in ieCollab. These are enumerated below.

* Operational freedom: by outsourcing application management, we can focus critical

resources on our core business function.

" Improved performance: ASPs can apply vast experience to implement best IT

practices for superior levels of availability, security, backup, disaster recovery, and

help desk (shadowing).

" Speed to market: the ASP already has the equipment, applications and expertise ready

to provide rapid market access.

" Financial flexibility: ASP model reduces fixed costs and lowers overall expenditures

for hardware, applications and management.

* Reduced risk: with no capital expenditure on software, hardware, and IT personnel,

we can "test" a new technology with minimal impact to our existing environment and

bottom line.

2.5 Summary

In this chapter we have presented the concepts of Application Service Provider (ASP)

service and its thin-client system architecture. We also have introduced CORBA

technology and overviewed its system architecture. This explains the need of CORBA for

24

supporting collaborative application services. Finally, we have examined the benefits of

implementing collaborative ASP model for our transaction management framework.

The next chapter outlines the concepts of JDBC connectivity which is used to access the

database layer from the middle-tier service logic. With a discussion of the JDBC

interfaces and its architecture, we examine the advantages of implementing JDBC

technology for our collaborative work.

25

Chapter 3

Database Connectivity

3.1 Introduction

Earlier in Chapter 1, we have described the layout of the ieCollab system which

composes of a three-tier system architecture. In order to access the database layer from

the middle-tier application server (server logic), database connectivity has to be

established. In this chapter, we will discuss the database connectivity with the use of

JDBC (Java Database Connectivity).

3.2 JDBC Connectivity

With the introduction of optimizing compilers translating Java byte codes into efficient

machine-specific code, the middle-tier service logic of the ieCollab system may

practically be implemented by Java. Java, being robust, secure, easy to use, easy to

26

understand, platform independent and automatically downloadable on a network, is an

excellent language basis for database applications. What is needed is a way for Java

applications to talk to a variety of different databases. JDBC is the mechanism for doing

this.

JDBC is a Java API (Application Programming Interface) for executing SQL statements

[Sun2000]. It consists of a set of classes and interfaces written in the Java programming

language. Using JDBC, it is easy to send SQL statements to virtually any database. One

can write a single program using the JDBC API, and the program will be able to send

SQL statements to the appropriate database.

Simply put, JDBC makes it possible to do three things:

1 Establish a connection with a database

2 Send SQL statements

3 Process the results

The following code fragment gives a basic example of these three steps:

Connection con = DriverManager.getConnection ("jdbc:odbc:wombat", "login",

"password");

Statement stint = con.createStatement(;

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table 1");

while (rs.nexto) {

int x = rs.getlnt("a");

27

String s = rs.getString("b");

float f = rs.getFloat("c");

}

3.3 JDBC Interfaces

As illustrated in the example from the previous section, the important relationships

between the interfaces are as shown in Figure 3-1 (with arrows showing functions and

lines showing other methods):

Figure 3-1: JDBC interfaces [Sun2000]

28

The JDBC API provides three interfaces for sending SQL statements to the database, and

corresponding methods in the Connection interface create instances of them. The

interfaces for sending SQL statements and the Connection methods that create them are as

follows:

1. Statement - created by the Connection.createStatement methods. A Statement object is

used for sending SQL statements with no parameters.

2. PreparedStatement - created by the Connection.prepareStatement methods. A

PreparedStatement object is used for precompiled SQL statements. These can take

one or more parameters as input arguments (IN parameters). PreparedStatement has

a group of methods that set the value of IN parameters, which are sent to the

database when the statement is executed. PreparedStatement extends Statement and

therefore includes Statement methods. A PreparedStatement object has the potential

to be more efficient than a Statement object because it has been precompiled and

stored for future use. Therefore, in order to improve performance, a

PreparedStatement object is sometimes used for an SQL statement that is executed

many times.

3. CallableStatement - created by the Connection.prepareCall methods.

CallableStatement objects are used to execute SQL stored procedures-a group of

SQL statements that is called by name, much like invoking a function. A

CallableStatement object inherits methods for handling IN parameters from

PreparedStatement; it adds methods for handling OUT and INOUT parameters.

29

The following list gives a quick way to determine which Connection method is

appropriate for creating different types of SQL statements:

e createStatement methods - for a simple SQL statement (no parameters)

" prepareStatement methods - for an SQL statement that is executed frequently

" prepareCall methods - for a call to a stored procedure

JDBC API deals with SQL conformance by allowing any query string to be passed

through to an underlying DBMS driver. This means that an application is free to use as

much SQL functionality as desired, but it runs the risk of receiving an error on some

DBMSs.

For complex applications, JDBC deals with SQL conformance in another way. It

provides descriptive information about the DBMS by means of the DatabaseMetaData

interface so that applications can adapt to the requirements and capabilities of each

DBMS.

3.4 JDBC Architecture and its Advantages for Collaborative

Application Services

Figure 3-2 illustrates JDBC connectivity using existing database client libraries:

30

Business Service
Layer

Java
application

JDBC API

Server Data Service
Layer

Figure 3-2: JDBC Driver and Connectivity

Using JDBC technology in database connectivity, it creates several distinctive advantages

for our framework as enumerated below:

1. Simplified Enterprise Development

The combination of the Java API and the JDBC API makes application development easy

and economical. JDBC hides the complexity of many data access tasks, doing most of the

"heavy lifting" for the programmer behind the scenes. Hence, it facilitates the

development of comprehensive programs for our distributed applications.

31

I

2. Zero Confi guration for Network Computers

With the JDBC API, no configuration is required on the client side. This is essential for

our thin-client system architecture as mentioned in the previous chapter. With a driver

written in the Java programming language, all the information needed to make a

connection is completely defined by the JDBC URL. Zero configuration for clients

supports the network computing paradigm and centralizes software maintenance.

3. Database Connection Identified by URL

JDBC technology exploits the advantages of Internet-standard URLs to identify database

connections. JDBC API identifies and connects to a data source, using a DataSource

object, that makes code portable and easy to maintain. As such, it can support data for our

geographically distributed applications across the Internet. In addition to this important

advantage, DataSource objects can provide connection pooling and distributed

transactions, essential for our collaborative framework.

JDBC technology generates substantial advantages in supporting our collaborative

transaction management framework as discussed above. JDBC connectivity makes it

possible to access the database layer from the application program (server). It is splendid

for database connectivity in ieCollab.

32

3.5 Summary

In this chapter we have discussed JDBC connectivity as a means to access the database

layer from the middle-tier server logic. We have also presented JDBC interfaces and its

architecture, and finally, provided the advantages of JDBC technology for supporting

transaction management framework.

The next chapter introduces the concepts of OODBMS which serves as the DBMS for

our framework. By making a detailed comparison between OODBMS and RDBMS, we

examine the advantages of using OODBMS to supporting collaborative application

services.

33

Chapter 4

Object-Oriented Database Management

Systems (OODBMS)

4.1 Introduction - OODBMS

An increased emphasis on process integration is a driving force for the adoption of

object-oriented database systems [Ishkawal993]. For example, the Computer Integrated

Manufacturing (CIM) area is focusing heavily on using object-oriented database

technology as the process integration framework. Advanced office automation systems

use object-oriented database systems to handle hypermedia data. Hospital patient-care

tracking systems use object-oriented database technologies for ease of use. All of these

applications are characterized by having to manage complex, highly interrelated

information, which is a strength of object-oriented database systems.

An initial area of focus of object-oriented database technology has been the Computer

Aided Design (CAD), Computer Aided Manufacturing (CAM) and Computer Aided

34

Software Engineering (CASE) applications. A primary characteristic of these applications

is the need to manage very complex information efficiently [Brownl991]. For example,

the manufacture of an aircraft requires the tracking of millions of interdependent parts

that may be assembled in different configurations. Object-oriented database management

systems (OODBMS) hold the promise of putting solutions to these complex problems

within reach of users.

4.1.1 Characteristics of OODBMS

Object-oriented database technology is a marriage of object-oriented programming and

database technologies. Figure 4-1 illustrates how these programming and database

concepts have come together to provide what we now call object-oriented databases.

Figure 4-1: Makeup of an Object-Oriented Database [McFarlandl999]

35

OODBMS provides all the database capabilities of a conventional database system

including: persistence, transaction management, concurrency control, system recovery

from crash, queries, security, and database integrity. As an object-oriented system, it also

supports the following additional facilities [Ahmed1991, Nahouraii 1991,

Silberschatz1998]:

1. Data abstraction

The concept of packaging the data with the operations on the data is called data

abstraction. The principle of data abstraction distinguishes the user of an object from its

implementor. The implementation of the object is not visible to the user of an object. The

users operate on the object by means of the operations which are made visible by the

implementor. The concept of data abstraction provides a significant benefit in that the

implementor can change the implementation of an encapsulated object without affecting

the applications using it.

2. Classification

Similar entity instances are classified into types (or classes). The relationships between

entity types and instances are known to the system and can be utilized to formulate

queries which span data and schema.

36

3. Generalization

Similar entity types can be generalized into supertypes which capture their similarities.

Existing types can be refined to create subtypes which inherit the properties and

operations of their supertypes and may have their own specific properties and operations.

4. Code reusability

Code reusability is to use any predefined routines that already exist on the system.

OODBMS provides a wide set of predefined types and their associate operations.

5. Data encapsulation

Encapsulation is the mechanism to implement the concept of data abstraction. It means to

enclose in or as if in a capsule. An object is said to encapsulate both its data (state

representation, attributes of the object are synonymous terms for data) and the operations

on the data. Stated differently, data plus the operations on the data are enclosed in an

object. Encapsulation describes the visibility of the data as well as the visibility of the

operations on the data.

6. Inheritance

The concept of inheritance allows the creation of a new class from an existing class but

perhaps with some changes (in terms of adding new operations and data, redefining

existing operations etc.). So, inheritance provides a very powerful mechanism that allows

the sharing of resources (data + operations) among classes.

37

7. Polymorphism

Polymorphism is defined as the ability of different objects belonging to different classes

to respond differently to the same message. Consider the example, assuming there are

two graphic objects: a square object and a triangle object. Sending a draw message to

these objects would invoke different "draw" operations.

8. Modeling power

The objects and their interrelationships can be aligned very closely to the real-world

objects and their interrelationships, making them ideal for simulation and design

purposes.

After all, the flexibility and power of object-oriented programming combined with

conventional database capabilities offer significant and wide spectrum of benefits in

designing and developing complex systems. Powerful features such as inheritance,

polymorphism, data encapsulation or code reusability enable us the creation,

coordination, storage and manipulation of complex, highly interrelated objects efficiently.

Next, we will discuss the requirement of a DBMS for our collaborative work. Then, we

will make a comparison of OODBMS and relational DBMS, and finally, explain why

OODBMS possess exclusive advantages for our collaborative work.

38

4.2 Requirements of a DBMS for Collaborative Application Services

A primary characteristic of some applications like Computer Aided Design (CAD),

Computer Aided Manufacturing (CAM) or Computer Aided Software Engineering

(CASE) is the need to manage a group of designers working collaboratively on

geographically distributed locations to complete a complex design by closely interacting

among themselves and dynamically sharing data. For example, the manufacture of an

aircraft requires the tracking of millions of interdependent parts that may be assembled in

different configurations. Such environments necessitate powerful data modeling, sharing

and transaction management tools, efficient communication protocols and a flexible

framework for concurrency management of highly interactive transactions. The essential

features of a database management system that are required for supporting such

applications may be summarized as follows:

e Complex information modeling power

" Flexible transaction framework

* Runtime schema access/definition/modification

e Data abstraction and encapsulation

e Classification and generalization

* Data sharing capabilities

e Database compatibility and extensibility

e Concurrency control

39

4.3 Comparison of OODBMS and RDBMS

Object-oriented DBMS (OODBMS) and Relational DBMS (RDBMS) are the two most

common DBMS in the market [Nahouraiil991]. We will discuss and compare each of

these below.

Relational database design is a process of trying to figure out how to represent real-world

objects within the confines of tables in such a way that good performance results and

preserving data integrity is possible. Object database design is quite different. For the

most part, object database design is a fundamental part of the overall application design

process. The object classes used by the programming language are the classes used by the

OODBMS. Because their models are consistent, there is no need to transform the

program's object model to something unique for the database manager.

A significant difference between object-oriented databases and relational databases is that

object-oriented databases represent relationships explicitly, supporting both navigational

and associative access to information. As the complexity of interrelationships between

information within the database increases, the greater the advantages of representing

relationships explicitly. Another benefit of using explicit relationships is the

improvement in data access performance over relational value-based relationships.

Relational systems are based on a simpler approach to data organization [Nahouraiil991],

the relation or table, which allows a considerably clearer distinction between a logical

40

and a physical data model. Relational systems offer a high degree of physical data

independence and include powerful languages, even though they have limited expressive

power. Physical data independence means that the physical storage of data is transparent

to the user and may in principle be changed without also changing the logical view of the

data. Relational languages are set-oriented (as opposed to record-oriented) and can thus

be non-procedural or declarative. Set-oriented processing means that the tables of a

relational database can be manipulated in their entirety by special operators; there is no

need to iterate tuple by tuple through the relation.

The declarative nature and limited power (compared to a programming language) of the

SQL language provides good protection of data from programming errors, and makes

high-level optimizations, such as reducing 1/0, relatively easy.

While database systems were mainly used in business and management applications

initially, it was recognized that advantages could be gained from databases in scientific,

technical, office and other fields as well. However, relational systems reach their

limitations in applications like CAD, CASE or CAM which are collaborative in nature.

OODBMS will be the best choice for these applications. We will enumerate the

advantages of OODBMS in the next section.

41

4.4 Advantages of OODBMS for Collaborative Application Services

Based on our discussion in the previous section, there are distinctive advantages of using

OODBMS to support our collaborative framework. We briefly enumerate these

advantages as follows [Brown1991, Ishkawa1993, Lausen1998, Nahouraii1991]:

1. Complex Objects

OODBMS is unique in that the information being maintained is organized in terms of the

real-world entities being modeled. This differs from relational database applications that

require a translation from the real-world information structure to the table formats used to

store data in a relational database. Normalizations upon the relational database tables

result in further perturbation of the data from the user's perceptual viewpoint. OODBMS

provides the concept of complex objects to enable modeling of real-world entities, which

gives a much better feel for the mechanics and behavior of our collaborative

environments.

2. Object Identity

OODBMS provides the concept of an object identifier (OID) as a means of uniquely

identifying a particular object. OlDs are system generated and never change, even across

application executions. Moreover, the OID is not based on the value stored within the

object. This differs from relational databases, which use the concept of primary keys,

which are based upon data stored in the identified row, to identify a particular row. The

concept of OlDs makes it easier to control the storage of objects (e.g. not based on value)

42

and to build links between objects (e.g. they are based on the never changing OID). It is

vital to our collaborative applications involving complex and highly interrelated objects.

3. Runtime Schema Access/Definition/Modipfcation

OODBMS makes use of a database resident representation of the schema for the

database. The existence of such a representation, and a means of accessing it, provide our

collaborative applications with direct access to schema information. Access to schema

information will be useful in building custom tools that browse the structure and contents

of a database, while modification and definition of the schema at runtime allows the

development of dynamically extensible applications. Since collaborative environments

are characterized by continual change, schema definitions are likely to be modified as

designers arrive at better understanding of their design. OODBMS is flexible and

provides extensive access and modification of schema.

4. Composite Objects

OODBMS provides the relationship mechanisms to connect composite objects.

Composite objects are groupings of inter-related objects that can be viewed logically as a

single object. Composite objects are used to model relationships that have the semantic

meaning is-part-of. (e.g. rooms are part of a house). The mechanisms provide a powerful

capability for our collaborative object design.

43

5. Distributed Client-Server Approach

As proposed in Chapter 1, ieCollab is composed of client-server distributed system

architecture. OODBMS typically executes in a multiple process distributed environment.

Server processes provide back-end database services such as management or secondary

storage and transaction control. Client processes handle application specific activities

such as access and update of individual objects. These processes may be located on the

same workstation or on different workstations. Typically a single server will be

interacting with multiple clients servicing concurrent requests for data managed by that

server. A client may interact with multiple servers to access data distributed throughout

the network. The distributed client-server approach will be essential for our collaborative

applications performing lots of data updates.

6. Concurrency

Optimistic concurrency control mechanisms are based on the assumptions that access

conflicts will rarely occur. Under this scenario, all accesses are allowed to proceed and, at

transaction commit time, conflicts are resolved. OODBMS has incorporated the idea of

optimistic concurrency control mechanisms for building applications that will have long

transaction times. Handling of conflicts at commit time cannot simply abort a transaction,

however, since one designer may be losing days or weeks of work. OODBMS provides

techniques to allow multiple concurrent updates to the same data and support for merging

these intermediate results at an appropriate time. Hence, it provides greater concurrency

for our framework.

44

7. Transactions

Transactions are the mechanism used to implement concurrency. Within a transaction,

data from anywhere in the database must be accessible. A feature found in many

OODBMS products is to commit a transaction but to allow the objects to remain in the

client cache under the expectation that they will soon be referenced again.

8. Impedance Mismatch

One of the main criticisms of relational database programming is the impedance

mismatch between the data manipulation language (DML), normally SQL, and the

application programming language. Relational database applications have an impedance

mismatch, in that database access via the query language is table-based while application

programming is individual value-based. Extra code and intellectual hurdles are required

to translate between the two. A presumed benefit of OODBMS is that the application

programming language and the DML are one and the same, hence eliminating the

problem of impedance mismatch.

In short, there are significant and wide spectrums of advantages of choosing OODBMS

for our collaborative transaction management framework.

45

4.5 Summary

In this chapter we have provided the characteristics of OODBMS, and their requirements

for supporting collaborative application services. Based on our comparison of OODBMS

and RDBMS, we notice the advantages of using OODBMS in the transaction

management framework.

The next chapter presents our transaction management model for collaborative

application services, and discusses some advanced transaction management

functionalities required to support the framework.

46

Chapter 5

A Transaction Management Framework

for Collaborative Application Services

5.1 Introduction

Today's software tools like CAD tools or software development provide only very

limited support for collaborative transaction management framework [deByl998]. A

major conceptual problem in the transaction management framework is to ensure

consistency criteria for the data concurrently processed by multiple users. Conventional

database technology already provides mechanisms to absolutely guarantee consistency

constraints by controlling the concurrent access of different users to shared data.

Unfortunately, existing transaction management concepts are not suitable for supporting

and controlling collaboration between users, because they are designed to fully isolate

users from each other. In this chapter, we develop a transaction management model for

collaborative applications in ieCollab environment that can support arbitrary

collaboration schemes according to application needs.

47

The basic requirements of a transaction management framework for collaborative

applications have been discussed in detail in Chapter 1. They are summarized here as

follows:

* Flexible and efficient data sharing capabilities in the forms of grouped and shared

transactions

e Nested transactions framework for task discretization

e Copying versus locking schemes

e Deadlock Prevention and Detection

* Effective protocols to handle conflicts or triggers among users

* Transaction checkpointing

* Semantic-based concurrency control to increase the level of concurrency

5.2 Basic Features in Transaction Management

The goal of transaction management is to maintain integrity of data while enabling

execution of multiple concurrent transactions by various clients. A transaction should

possess the following properties [Ahmed1991, Atluri2000, deBy1998, Elmagarmid1992,

Gray1993, Reuter1993]:

* Atomicity: A transaction should be done or undone completely and unambiguously.

In the event of a failure of any operation, effects of all operations that make up the

transaction should be undone, and data should be rolled back to its previous state.

48

* Consistency: A transaction should preserve all the invariant properties (such as

integrity constraints) defined on the data. On completion of a successful transaction,

the data should be in a consistent state. In other words, a transaction should transform

the system from one consistent state to another consistent state.

* Isolation: Each transaction should appear to execute independently of other

transactions that may be executing concurrently in the same environment. The effect

of executing a wet of transactions serially should be the same as that of running them

concurrently. This requires two things:

* During the course of a transaction, intermediate (possible inconsistent) state of the

data should not be exposed to all other transactions.

+ Two concurrent transactions should not be able to operate on the same data.

Database management systems usually implement this feature using locking.

* Durability: The effects of a completed transaction should always be persistent.

These properties guarantee that a transaction is never incomplete, the data in never

inconsistent, concurrent transactions are independent, and the effects of a transaction is

persistent. In order to implement all these properties, a transaction management system

should be deployed which will include the following basic features:

" Transaction scheduling, which is responsible for initiating, queuing, executing,

terminating or aborting transactions;

" Locking facilities, which controls the locking of items such as objects or classes to

guarantee exclusive use of a data item to a current transaction;

49

e Deadlock management, which detects and resolves deadlock between transactions;

" Concurrency control, which ensures that concurrently executing transactions

maintain database consistency;

e Recovery management, which provides facilities for database restoration from soft

and hard system crashes;

* Security control, which protects data from accidental misuse.

We will first provide a brief review of how these transaction management features have

been implemented in traditional database management systems and their limitations for

collaborative application services. Subsequently, we will present enhanced functionalities

required for supporting collaborative work.

5.3 A Review of Traditional Transaction Management Framework

and their Limitations for Collaborative Application Services

For our study of collaborative transaction management framework, we will briefly

discuss transaction management functionalities in traditional database management

systems and their limitations for supporting collaborative work.

Traditional transaction management was mainly developed for business data

processing/administrative applications [Reuterl993]. In such environments transactions

are assumed to be rather short (typically at most a few seconds). Transaction management

50

provides exactly one type of transactions which is flat and works directly on the data of

the database. Moreover, it ensures strict isolation with the consequence that transactions

are not allowed to exchange data.

The principal transaction management features provided for such systems are briefly

discussed below.

1. Nested and grouped transactions. Traditional database systems do not support the

idea of nested transactions, where a transaction is hierarchically sub-divided into sub-

transactions. They also do not support for grouped transactions, where multiple users

share data and perform operations as a single transaction unit.

2. Serializability. Given an interleaved execution, serializability requires us to find a

serial execution in which transactions read the same values. Serializability is based on

the assumption that individual concurrent transactions run ignorant to each other and

do not interact in the middle of their execution. This is however unsuitable for our

collaborative application transactions, because collaborative application is based on

the fact that unit of work must interact, so that the results are usable together.

3. Locking protocols. Traditional databases normally only provide three types of locks:

read, write and exclusive. Locking is generally not communicative, i.e. the system

does not inform the user of the lock status of the object (e.g. whether it is free, or

locked by someone, in which mode, etc.). Thus, a user may wait indefinitely for a

51

lock on an object without being informed in advance by the system of the lock status

of the object. Moreover, a user holding a lock on object is not informed if anyone else

is waiting for that object. Furthermore, traditional databases do not support the

notions of shared locks between collaborating users or allow two or more users to

update the same object by acquiring write locks on the object simultaneously.

4. Conflict handling. In traditional transaction management frameworks, conflict

handling is generally poor. Generally, in the event of deadlocks, one or more

transactions are arbitrarily aborted by the system without prior notification to the

clients involved. Since long collaborative transactions may represent a great deal of

work, an abort without notification may induce heavy cost.

Although the above functionalities are sufficient for financial and business applications,

since collaborative transactions are often of long duration, it is highly inappropriate for

such work because it inhibits data sharing, results in reduced concurrency and intolerably

long waits.

It is therefore necessary to make careful considerations for the design of a more flexible

and efficient transaction management system that allows users on collaboration to arrive

at a complex design without requiring to wait over a long duration.

52

5.4 A Transaction Management Model for Collaborative Application

Services

As discussed in the previous section, it has been found that the traditional transaction

management concept has limited applicability in collaborative work. For collaborative

applications such as CAD, CAM, office automation, publication environments or

software development environments, transactions are usually very complex, need to

access many data items and reside in the system for long duration. For example, a

software engineering project is usually performed jointly by different groups of people;

each person is responsible for a part of the project within his/her group. People of the

same group have to cooperate in order to achieve a good software development. One

means of cooperating is by exchanging information through shared data items. To do this,

people (or their corresponding transactions) need to access the shared data items

alternatively. People in the same group have to work collaboratively on a specific task.

This results in the notion of cooperating grouped transactions. The functional division of

a software engineering project is shown as a linear sequential model in Figure 5-1

[Pressman1997].

53

Figure 5-1: Linear Sequential Model for Software Engineering [Pressmanl997]

Software engineering is simplified into four sequential approaches respectively: software

requirement analysis, design, code generation and testing. Requirement analysis group

documents the requirements for both the system and the software. The design group then

translates requirements into a representation of the software that can be assessed for

quality before code generation begins. The code generation group performs a translation

form the design into a machine readable form. Finally, once code has been generated,

program testing can begin.

In software engineering environments, support is needed for long-lived transactions and

cooperative transactions. It is also desirable to be able to support various levels of

cooperation dependent on the particular environment.

We are going to present our model using nested active transactions with user-definable

correctness conditions. Users can define appropriate correctness conditions

[Elmagarmidl992] based on the following:

54

" Conflicts: Operations that are not allowed to execute concurrently.

" Patterns: Sequences of functions that must occur. For example, a pattern of edit-

compile-link-test may be required when editing a source code file.

e Triggers: Actions that are taken when a request begins or ends.

" Commit or Abort Semantics: Actions to be taken when a transaction ends.

Since user-definable correctness conditions are used, semantic-based concurrency

control can be user to increase the level of concurrency. It is also possible to allow a

higher degree of cooperation between different transactions, and to allow various levels

of cooperation. This also helps to support long-lived transactions.

To summarize our model for a collaborative environment, we will emphasize the

following issues:

" Grouped transactions are formed to facilitate data sharing among members within a

specific group.

" Members in a group work collaboratively by sharing data item and participate in

shared transactions.

* Nested active transactions are formed to represent specific groups of a project.

" Enabling users to define correctness conditions such as conflicts, patterns, triggers or

commit/abort semantics allow for greater flexibility.

" Semantic-based concurrency control is used to increase the level of concurrency and

allow high level of cooperation between transactions.

55

5.5 Transaction Management Functionalities for Collaborative

Application Services

In the previous section, we have briefly discussed our transaction management model for

collaborative application services. In this section, we will describe our proposed model

for transaction management [Atluri2000, Cellaryl988, deByl998, Reuterl993].

5.5.1 Grouped Transactions

In our model, users (and application programs) operate in the context of a group structure

as shown in Figure 5-2 - a hierarchy of groups. The top-most node of the hierarchy

represents the software product organization. The lowest node represents individual

groups on a specific task of a specific product in the product life cycle.

Figure 5-2: A Hierarchy of Groups

56

A group's protocol regulates the sharing of objects and concurrent operations by the

immediate members of that group, whether they are individual users or sub-groups. For

example, imagine a software product organization that is divided into two different

product teams, T1 and T2. The top level protocol might indicate that all operations on a

system s from Ti are to be rejected while s is being tested by T2, and vice versa. At the

next lower level, the protocol for Ti might allow two different members of Ti to test the

system concurrently, but not to modify the system while it is being tested. The protocol

for T2 might enforce different policies for interactions among its members.

Each group in the hierarchy has

1) a group-specific protocol,

coordinating with neighboring

keeps the protocols independent

interactions within one group.

a (local) transaction manager, which has two main parts:

and 2) a uniform capability (over all groups) for

transaction managers. This division of responsibilities

of each other and allows each protocol-writer to focus on

5.5.2 Specifying Protocols

In our model, transaction management is based on each organization's specification of

1) how concurrent functions can interleave; and 2) required procedural patterns. In other

words, the model supports a scheme in which the transaction manager does not have a

single, built-in notion of correctness, but rather is programmed to accept its own

57

application-specific protocols. Our goal is to accommodate the variety of protocols that

would be useful for our collaborative framework.

The protocols would be used to describe:

e Conflicts: Requests that are not allowed to execute concurrently because the

functions, the arguments, or both conflict. For example, no member of group G1 may

test a code module m while a member of G2 is editing m. Once the member of G2 is

finished editing, the member of G1 may be allowed to proceed.

" Patterns: Sequences of requests that must occur before a transaction may commit, or

before a request can be accepted. For example, immediately after linking a system, a

test suite must be executed to determine if that system still works. If the system were

linked, and the test suite were not executed, then other requests, including the request

to end the transaction (commit) would be rejected.

* Triggers: Additional requests that are submitted when a request begins or ends. For

example, before an update is performed to a system module, a copy is made to a

separate directory to isolate the released system from the experimental version; or

after a modification has been made and tested, the new code is merged back into the

release directory.

5.5.3 Deadlock Prevention/Detection

Deadlock is caused by a cycle of "wait-for" among requests. In the simplest case,

deadlock occurs when a request ri has exclusive access to (a lock on) an object ol and is

blocked because a sub-request awaits exclusive use of another object o2; at the same time

58

another request r2 has exclusive access to o2 and is blocked because a sub-request awaits

exclusive user of o1. Neither transaction can release its lock so that the other transaction

can be dequeued, and the two remain deadlocked.

A potential deadlock is detectable at the lowest common transaction manager for the

transactions involved. Queuing occurs at the same node at which locks are granted (i.e.

where usage would be tested in the history. This can only be at the node that controls the

requests of both transactions involved in deadlock. It is at this node that queuing is

performed and analyzed and potential deadlock is detected and dealt with.

The potential deadlock, then, is visible to a single node, which can autonomously

determine what response to take. The protocol of a transaction manager can prevent

deadlock by rejecting the request that would cause it.

5.5.4 Copying versus Locking

The transaction manager makes the objects accessible and yet restricts requests from

other member transactions that may interfere. Protocols accomplish this by ensuring that

some controlled copy of the object is accessed by the procedures referenced in the

transactions.

As an example, an object may have just one copy, shared by all users and groups in the

system (and therefore, controlled by the root node). This approach is often associated

59

with protocols that use histories to obtain the effect of locking. Alternatively, a protocol

may produce copies of objects for its children to share, thus providing "less public"

copies whose modifications are not seen by members of the larger group until made

available by the user's "checkpointing" those objects. Copies may exist at only some

lower levels in the hierarchy. Our model makes it easy to define protocols where different

groups use different nodes.

The "locking" approach avoids dangerous concurrent operations on the same copy of an

object. It queues or rejects requests that conflict with some request that is currently being

performed; the blocked request may be scheduled at a later time when it is no longer

dangerous. This approach eliminates the need to make multiple copies at the cost of

making transactions wait. There are cases in which the waiting approach is desirable,

particularly where there is no way to merge changes from multiple copies or where very

large objects are involved and therefore copying and merging is too costly.

The "copy" approach avoids dangerous concurrent operations on the same object by

replicating the state of the object (its representation) for each group member who

accesses the object. This approach is optimistic since it allows requests that are logically

conflicting to proceed simultaneously on their respective copies. It requires reconciliation

of changes to the locally cached copies with the next higher copy (e.g. replace, merge,

etc.) when each group member "checkpoints" the object (or commits) or otherwise

indicates that his or her modifications are complete.

60

5.5.5 Checkpointing

To checkpoint an object or a set of objects is to make the effects of a transaction's

operations on those objects permanent before they are committed. Transaction managers

can provide "checkpoint" functions that guarantee that in the case of the subsequent

failure of the transaction, those effects can be recovered.

The protocol for a group determines how the group reacts when one of the objects shared

by its members is checkpointed. For example, if the protocol has triggered creation of a

private copy for the requester, it might trigger an update to its master copy with the

updated values of the group's private (locally cached copy), in order to share that value

with other groups. Likewise, checkpointing may trigger messages to notify others that the

requester has completed modifications or tests.

5.5.6 Shared Transactions

Shared transactions represent a mechanism for enabling the greatest flexibility between

users. In our case, two or more users are involved in a single, atomic, multi-user

transaction. This enables unrestricted data sharing among multiple users instead of having

to cross transaction boundaries. For example, users involving in a shared transaction for a

particular task may all acquire shared write locks on the object concerned. Each user may

update the object locally, and each update sends notifications to other users who respond

61

to them properly. When the users agree on a common task, a stable version of the object

is passed back to the parent database for sharing with other users.

5.5.7 Nested Transactions

Nested transactions extend traditional transactions by applying concurrency control and

recovery concepts within transactions as well as among them. This permits safe

concurrency within transactions and allows transactions to fail partially, in a controlled

manner. Any transaction can have child transactions nested within it. Nested transactions

can, in turn, have their own child transactions. Therefore, there can be a whole hierarchy

of transactions associated with a given transaction.

A nested transaction is a set of partially ordered atomic read and write operations as well

as atomic transactions. This permits modular and concurrent composition of transaction

programs. For example, considering a bank account, a transfer transaction can be

composed by using the existing deposit and withdraw transaction programs. Furthermore,

since the deposit and withdraw transactions will operate on different objects, they can be

executed concurrently. Even if the internal transactions conflict with each other, the

execution atomicity of these transactions will be ensured y the synchronization

algorithms used to implement nested transaction execution. Nested transactions,

therefore, provide a modular approach to realize both intra-transaction and inter-

transaction parallelism.

62

5.5.8 Semantics-based Concurrency Control

One of the key requirements of a collaborative application environment is a flexible

concurrency control mechanism that allows a high degree of parallelism and data sharing

between concurrently executing transactions and maintains database consistency.

Semantics-based concurrency control provides a way to ensure database consistency as

well as great concurrency.

The idea behind semantics-based concurrency control is as follows. By abstracting from

the low-level details (i.e. the concrete implementation in the database), and by exploiting

the high-level semantics of data objects and operations, certain conflicts that might occur

between decompositions of the operations into elementary read/write sequences can be

ignored. The most commonly used approach to capture the semantics of data objects is to

specify commutativity relations among operations defined on single data objects.

Informally, two operations commute (do not conflict) if their effects on the state of the

object and their return values are the same regardless of their execution order. This

ensures that no transaction can observer a difference between both execution orders.

When a transaction requests the execution of an operation, this request can be granted if

the operation commutes with all other operations of uncommitted transactions. This

policy ensures the semantic serializability of concurrent transactions - not at the level of

disk page accesses but on the level of higher-level operations.

63

Semantics-based concurrency control does not support collaboration directly but it

achieves a high degree of concurrency. Thereby, it reduces the probability of long waits

or aborts which is important to our collaborative environment where transactions are

typically of long duration.

5.6 Summary

In this chapter, we have presented a model for collaborative application environment and

discussed the transaction management framework for facilitating coordination and

concurrency using OODBMS for such work. Key issues that have been emphasized

include shared and grouped transactions among users, deadlock prevention, transaction

checkpointing, comparison of copying versus locking, nested transactions for better

management, greater flexibility in concurrency by semantics-based concurrency control,

and specifying protocols to support our model. The limitations of traditional DBMS for

our collaborative environments have also been overviewed.

The next chapter will discuss the implementation of an OODBMS for our database layer

using ObjectStore PSE Pro.

64

Chapter 6

Implementation Issues

6.1 Introduction

One of the most challenging tasks in object-oriented database model is to implement a

robust persistence architecture, since object-oriented database model usually consists of a

large number of distinct object types, with complex internal structures and navigational

relationships between objects. In other words, good object-oriented designs are not "flat",

and they cannot be modeled easily using only simple, discrete data structures.

This chapter describes the implementation of persistent Java objects to our database layer

in ieCollab using an OODBMS, namely, ObjectStore PSE Pro [Exceloncorp2000] on a

platform Microsoft Windows NT. Workstation 4.0. Since ObjectStore PSE Pro directly

supports the Java programming language, it can essentially be hosted in any platform.

65

ObjectStore PSE Pro is particularly chosen as the OODBMS for our implementation

because of the following properties:

1. It is compact, portable, and administration-free.

2. It supports CORBA architecture and hence, is ideal for our three-tier, thin client

system architecture.

3. Some essential features provided include:

* 100% Pure Java - runs everywhere

* Pure object DBMS - stores Java data in native format, as objects

e Unlimited extensibility - stores any Java object type

e Seamless Java interface - manages data using native Java

e Data navigation - performs orders of magnitude faster than RDBMS

e Atomic transaction commit and rollback - ensures data integrity

* Transaction recovery - restores data from system crashes

e Rich query and JDK 1.2 collection support - enables data access with native Java

e Persistent garbage collection - keeps database compact

e Flexible transaction model - provides multiple threads

After giving a brief introduction of ObjectStore PSE Pro, in the following section, we

will enumerate some of the major advantages of implementing ObjectStore PSE Pro for

our collaborative transaction management framework.

66

6.2 Advantages of ObjectStore PSE Pro for Collaborative Application

Services

As mentioned in the previous section, ObjectStore PSE Pro is a pure Java, pure object

database for embedded database applications. There are several distinctive advantages of

implementing ObjectStore PSE Pro for our collaborative framework. These are

enumerated as below:

1. Superior Scalability

ObjectStore provides a distributed multi-tiered architecture that leverages replication and

caching of both data and services to meet unprecedented scalability demands. This is vital

to our distributed thin client system architecture in ieCollab. Distributed caches provide

local, in-memory data access to the various services and components that make up the

application, and both data and processing are distributed across each application tier. This

cuts down on repetitive and unnecessary network traffic, removes database server

bottlenecks, and allows scaling without adding expensive hardware.

2. Ease of Use

ObjectStore PSE Pro provides an easy to use interface for storing and retrieving Java

objects. We can define persistence-capable Java classes, and their fields and methods, in

the same way as transient Java classes. We use standard Java constructs to create and

manipulate both persistent and transient instances.

67

In addition, ObjectStore PSE Pro for Java API provides database features that allow us to

e Create, open and close databases

" Start and end transactions

e Store and retrieve persistent objects

3. Shorter time to market

ObjectStore enables rapid deployment by providing seamless support for object-oriented

development languages and ready-to-use object managers for managing rich multimedia

content such as audio, video, images, clipboard, text, and others which would be inherent

in our distributed applications in ieCollab. ObjectStore object managers provide a full set

of off-the-shelf, reusable extended data types for handling all those multimedia content.

We can easily extend these data types or define new data types, and they can encapsulate

their own methods to define the processing that goes with the data.

4. Increase productivity, decrease development cost

Storing objects in a flat file or RDBMS usually involves writing complex code to map the

application's object model to the sequential or relational model. In many cases, this

coding logic composes over half of the application's source code. ObjectStore eliminates

the need for complex mapping logic by directly binding to Java in order to make objects

persistent and store them in their natural representation - as objects, instead of rows and

columns. By drastically reducing the amount of code required to manage persistent

objects, ObjectStore improves application quality and performance, and reduces

68

development and maintenance costs. This facilitates our comprehensive development of

collaborative distributed applications for different market needs.

5. Standards

ObjectStore supports CORBA, JavaBeans, JDO, SQL standards (and others), hence it

will integrate seamlessly with our ieCollab computing infrastructure.

6. Built-in Support and Recovery Features

ObjectStore provides a full set of reliability and high availability options for delivering

fully continuous operation that ensures the integrity and reliability of data in our

applications.

* ObjectStore's nonstop features include automatic recovery, on-line backup, roll-

forward capability, failover, and replication.

" ObjectStore's failover support allows our client applications to automatically

reconnect to standby servers in the event of a primary server failure with no loss of

service.

" Replication can be used to provide shared access to data from our geographically

distributed applications, resulting in improved performance and resiliency from site

failures.

The following sections describe the application development issues of ObjectStore in our

collaborative transaction management framework. We will focus on issues regarding

69

transaction and concurrency control, transactions and recovery, persistence, runtime

schema access/definition/modification, and composite objects.

6.3 Transaction and Concurrency Model

ObjectStore PSE Pro provides a transaction implementation that supports a traditional

readers/single writer concurrency control policy for the access of individual objects. PSE

Pro supports four types of transactions: update, read-only, update non-blocking and read-

only non-blocking.

If the update mode is selected, the application is permitted to modify data within the

current transaction's open database. A write lock is requested, and if not used by another

session under the same Java VM, granted. The transaction request blocks until a write

lock is granted. The read-only transaction allows the application to read but not modify

data in the open database for the current transaction. If there are no sessions within the

same Java VM owning or waiting for an update lock, a shared read-lock is granted;

otherwise, the application blocks until a read-lock is available. An update non-blocking

transaction is similar to the update transaction, without the blocking. If a write lock is not

immediately available the transaction operation exceptions out. The read-only non-

blocking transaction is similar to the read-only transaction, without the blocking. If a read

lock is not immediately available the transaction operation exceptions out.

70

PSE Pro can support multiple sessions within the same Java VM process. Each session

can access the same database through a read-only transaction, and simultaneously engage

separate update transactions against different databases. Only one session at a time can

open an update transaction against a particular database.

6.4 Transactions and Recovery

PSE Pro can recover an application failure or system crash. If a failure prevents some of

the changes in a transaction from being saved to disk, PSE Pro ensures that none of that

transaction's changes are saved in the database. When we restart the application, the

database is consistent with the way it was before the transaction started.

6.5 Persistence

PSE Pro provides persistence on an object basis, through an enhanced form of Java object

serialization. The Java object type and safety properties are maintained in the serialized

form and serialization only requires per class implementation for special customization.

Objects are created as transient objects, and are promoted to persistent objects if they are

added to an existing persistent object.

71

6.6 Runtime Schema Access/Definition/Modification

ObjectStore database contents and object types can be retrieved during runtime either

through an inspection utility, or through API method calls. Information available

includes:

" Name of the database

" Name and number of each type of object in the database

e Total size in bytes occupied on the disk by each type of object

* Number of destroyed objects

6.7 Composite Objects

ObjectStore supports class attributes whose type are another class, thus supporting the

building of composite objects. Objects referred to by a persistent object are themselves

persistent, unless the reference was keyworded as transient. Delete and lock operations

apply to these persisted through reference objects.

6.8 Implementation Details of Persistent Java Objects

This section discusses the core concepts involved with writing a PSE Pro application. It

provides implementation details of persistent Java objects using ObjectStore PSE Pro

72

which serves as an example of Java data management in object-oriented database

environment for collaborative work.

Before we can create and manipulate persistent objects with PSE Pro, we must perform

the following operations:

" Create a session

" Create or open a database

e Start a transaction

6.8.1 Creating Sessions

To use ObjectStore PSE Pro, our application must create a session. A session is the

context in which PSE Pro databases are created or opened, and transactions can be

executed. Only one transaction at a time can exist in a session. PSE Pro allows us to

create multiple sessions and thus have multiple concurrent transactions in a single Java

VM process.

Any number of Java threads can participate in the same session. Each thread must join a

session to be able to access and manipulate persistent objects. To create a session we call

the Session constructor and specify the host and properties. The method signature is

public static Session create(String host,

java.util.Properties properties)

A thread can join a session with a call to Session.joino. For example:

73

/* Create a session and join this thread to the new session. */

session = Session.create(null, null);

session.joino;

PSE Pro ignores the first parameter in the createO method. We can specify null. The

second parameter specifies null or a property list.

6.8.2 Creating, Opening, and Closing Databases

Before we begin creating persistent objects, we must create a database to hold the objects.

In subsequent processes, we open the database to allow the process to read or modify the

objects. To create a database, we call the static createo method on the Database class

and specify the database name and an access mode. The method signature is

public static Database create(String name, int fileMode)

The initialize method in the UserManager class shows an example.

public static void initialize(String dbName)

{

/* Other code, including creating a session and joining thread to session*/

/* Open the database or create a new one if necessary. */

try {

db = Database.open(dbName, ObjectStore.UPDATE);

} catch (DatabaseNotFoundException e) {

db = Database.create(dbName, ObjectStore.ALLREAD I ObjectStore.ALLWRITE);

}

The initializeo operation first creates a session and then joins the current thread to that

session. Next initialize(tries to open the database. If the database does not exist,

DatabaseNotFoundException is thrown and is caught by initialize(, which then creates

74

the database. initialize(also stores a reference to the database instance in the static

variable db.

The Database.create() and the Database.open() methods are called with two

parameters. In both methods, the first parameter specifies the pathname of a file. In the

createo method, the second parameter is a UNIX-style protection number. In the openo

method, the second parameter specifies the access mode for the database, that is,

ObjectStore.UPDATE or ObjectStore.READONLY.

Shutting down

The UserManager.shutdowno method shows an example of how to close a database

and how to terminate a session.

* Close the database and terminate the session.

*/

public static void shutdownO {

db.closeo;

session.terminateo;

}

6.8.3 Starting Transactions

We create, destroy, open, and close a database outside a transaction. We access and

manipulate objects in a database inside a transaction. Therefore, a program must start a

transaction before it can manipulate persistent data. While the transaction is in progress, a

75

program can read and update objects stored in the open database. The program can

choose to commit or abort the transaction at any time.

Committing transactions

When a program commits a transaction, PSE Pro updates the database to contain the

changes made to persistent data during the transaction. These changes are permanent and

visible only after the transaction commits. If a transaction aborts, PSE Pro undoes (rolls

back) any changes to persistent data made during that transaction.

Purpose of transactions

In summary, transactions do two things:

e They mark off code sections whose effects can be undone.

e They mark off functional program areas that are isolated from the changes performed

by other sessions or processes (clients). From the point of view of other sessions or

processes, these functional sections execute either all at once or not at all. That is,

other sessions or processes do not see the intermediate results.

Creating transactions

To create a transaction, insert calls to mark the beginning and end of the transaction. To

start a transaction, call the begino method on the Transaction class. This returns an

instance of Transaction and we can assign it to a variable. The method signature is

public static Transaction begin(int type)

76

The type of the transaction can be ObjectStore.READONLY or

ObjectStore.UPDATE.

Ending transactions

PSE Pro provides the Transaction.commito method for successfully ending a

transaction. When transactions terminate successfully, they commit, and their changes to

persistent objects are saved in the database. The Transaction.aborto method is used to

unsuccessfully end a transaction. When transactions terminate unsuccessfully, they abort,

and their changes to persistent objects are discarded.

When an application commits a transaction, PSE Pro saves and commits any changes in

the database. It also checks to see if there are any transient objects that are referred to by

persistent objects. If there are, and if the referred-to objects are persistence-capable

objects, PSE Pro stores the referred-to objects in the database. This is the process of

transitive persistence, also called persistence by reachability.

The default commit operation makes all persistent objects inaccessible outside of the

transaction's context. After we commit a transaction, if we want to access data in the

database, we must start another transaction and navigate to the object again from a

database entry point. There are optional commit modes that allow us to retain the objects

so that you can access them outside of a transaction or in a different transaction.

77

6.8.4 Storing Objects in a Database

Objects become persistent when they are referenced by other persistent objects. The

application defines persistent roots and when it commits a transaction, PSE Pro finds all

objects reachable from persistent roots and stores them in the database. This is called

persistence by reachability and it helps to preserve the automatic storage management

semantics of Java.

Example of Storing Objects in a Database

For example, consider the subscribeNewUsero method below, which adds a new user to

the database.

public static int subscribe(String name, String email)

throws PersonalizationException

{
Transaction tr = Transaction.begin(ObjectStore.UPDATE);

/* First check to see if the user's name is already there. */

if (allUsers.get(name) != null) {

tr.abort(ObjectStore.RETAINHOLLOW);

throw new PersonalizationException("User already there: "+ name);

}
/* The user name is not there so add the new user;

first generate a PIN in the range 0.. 10000. */

int pin = pinGenerator.nextInt() % 10000;

if (pin < 0) pin =pin * -1;

User newUser = new User(name, email, pin);

allUsers.put(name, newUser);

tr.commit(ObjectStore.RETAINHOLLOW);

return pin;

}

78

The application checks whether the user name is already defined in the database. If the

name is defined, PSE Pro throws PersonalizationException. If the name is not already

defined, the application creates a new user, adds that user to the allUsers collection, and

commits the transaction. Since the allUsers collection is already stored in the database,

PSE Pro stores the new user object in the database when it commits the transaction.

6.8.5 Accessing Objects in a Database

After an application stores objects in a database, the application can use references to

these objects in the same way that it uses references to transient objects. An application

obtains initial access to objects in a database through navigation from a root or through

an associative query. An application can retain references to persistent objects between

transactions to avoid having to obtain a root at the start of each transaction.

Example of Using a Database Root

To access objects in a database, we must start a session, open the database and start a

transaction. Then we can obtain a database root to start navigating the database. For

example, in our earlier example of storing objects in a database, we obtain the "allUsers"

root to obtain User objects.

allUsers = (Map) db.getRoot("allUsers");

79

Example of Using References

Consider again the subscribe() method in our earlier example. The first part of this

method protects against storing a duplicate name by checking whether the user's name is

already in the database. For example:

/* First check to see if the user's name is already there. */

if (allUsers.get(name) != null) {

tr.abort(ObjectStore.RETAINHOLLOW);

throw new PersonalizationException("User already there: " + name);

}

Since the class variable allUsers references the allUsers collection, the application can

use the standard Java Map.getO method to check if the name is already stored. The same

code would work for a persistent or transient collection.

6.8.6 Deleting Objects

When we delete objects in PSE Pro, we must

" Disconnect objects from their relationships and associations

" Destroy the object so that it is removed from the database

Example of Deleting an Object

For example, to remove users from the database, the application calls the unSubscribeo

method.

public static void unsubscribe(String name)

throws PersonalizationException

{

80

Transaction tr = Transaction.begin(ObjectStore.UPDATE);

User user = (User) allUsers.get(name);

if (user == null) {

tr.abort(ObjectStore.RETAINHOLLOW);

throw new PersonalizationException ("Could not find user: " + name);

}

/* remove the user from the allUsers collection, and

* remove all of the users interests from the allinterests collection */

allUsers.remove(name);

/* finally destroy the user and all its sub-objects */

ObjectStore.destroy(user);

tr.commit(ObjectStore.RETAINHOLLOW);

}

First, our application ensures that the user exists in the allUsers collection. If the user

does not exist, PSE Pro throws an exception. Next, the application calls the remove(

method to remove the user from the allUsers collection. This disconnects the user from

the set of users, which means that this user is no longer reachable and can now be

removed from the database. Finally, to remove the user from the database, the application

calls destroyo on the User object.

The above examples demonstrate the implementation concepts of persistent Java objects

involved with writing a PSE Pro application which provides an overview of Java data

management of ObjectStore PSE Pro in object-oriented database for collaborative work.

81

6.9 Summary

In this chapter we have presented the implementation issues of ObjectStore PSE Pro for

supporting collaborative application services. The essential features and advantages of

ObjectStore PSE Pro create extensive values to our transaction management framework.

Core concepts involved with writing a PSE Pro application are discussed with concrete

examples provided to demonstrate the implementation issues of object-oriented database

environment using ObjectStore PSE Pro.

The next chapter summarizes our study for transaction management on collaborative

application services. It also outlines some open issues and directions for future research

and development.

82

Chapter 7

Conclusions

7.1 Summary

This study has provided a framework for supporting collaborative application services

using an object-oriented database management system, called ObjectStore PSE Pro. It

forms an integral component of an ongoing collaboration project at MIT, called ieCollab,

which aims at addressing coordination and communication problems among

geographically distributed teams in collaborative application services. A transaction

management model has been proposed with an emphasis on the following issues:

e Grouped transactions

* Shared transactions

" Semantics-based concurrency control

e Copying versus locking

* Nested transactions

* Specifying protocols

83

" Transaction checkpointing

" Deadlock Prevention and Detection

The limitations of traditional DBMS for supporting our collaborative work have also

been discussed.

Some of the significant advantages of implementing ObjectStore PSE Pro for our

transaction management framework and the application development issues of

ObjectStore have been addressed. Finally, the implementation details of persistent Java

objects using ObjectStore PSE Pro for Java data management are illustrated.

7.2 Future Transaction Management Research and Development

In our ieCollab project, a particular transactional framework was implemented where the

transaction model was fixed. Nevertheless, this kind of approach is not feasible if many

models are needed, since the system may not support different kinds of transaction

models.

A more complicated transactional framework, a kind of meta-level transactional

framework should support indeed requirements of different transaction models. It should

also support the specification of individual transactions obeying a particular model and

their execution. A requirement for such an environment, which goes clearly beyond a

simple framework, is the availability of tools to check the compatibility of different

84

transaction models. This is important in cases where the same computation can use

different models in different parts, or the same data can be accessed by transactions

obeying different transaction models. These issues are for further research.

In short, future research on transaction management frameworks is challenging and

requires high expertise and close cooperation of transaction management specialists,

software engineers, experts of formal specification approaches, and application

specialists. Although it is a difficult task, we expect to see the functioning and integrated

transaction management frameworks in the near future.

85

Bibliography

[Adyal994]

[Ahmedl991]

[ASP2000]

[Atluri2000]

Adya, A., "Transaction Management for Mobile Objects using
Optimistic Concurrency Control", M.S. Thesis, January, 1994,
Massachusetts Institute of Technology

Ahmed, S., "Transaction and Version Management in Object-
Oriented Database Management Systems for Collaborative
Engineering Applications", M.S. Thesis, January, 1991,
Massachusetts Institute of Technology

ASP Industry Consortium, http://www.aspindustry.corn, 2000

Atluri, V., Jajodia, S. and George, B., "Multilevel Secure
Transaction Processing", Kluwer Academic Publishers, 2000

Bell, D. and Grimson,
International Computer
Publishing Company, 1992

J., "Distributed Database Systems",
Science Series, Addison-Wesley

[Brown1991]

[Castano1995]

[Cellary1988]

[Chen2000]

[Chung1998]

[Dan1992]

[deByl998]

Brown, A., "Object-Oriented Databases: Applications in Software
Engineering", McGraw-Hill Book Company, 1991

Castano, S., Fugini, M., Martella, G. and Samarati, P., "Database
Security", Addison-Wesley Publishing Company, 1995

Cellary, W., Gelenbe, E. and Morzy, T., "Concurrency Control in
Distributed Database Systems", Studies in Computer Science and
Artificial Intelligence, Elsevier Science Publishers B.V., 1988

Chen, H., "ieCollab transaction management design specification
v1.0", March, 2000

Chung, P. E., Bell Laboratories, "DCOM and CORBA Side by
Side, Step by Step, and Layer by Layer", January 1998

Dan, A., "Performance Analysis of Data Sharing Environments",
An ACM Distinguished Dissertation 1991, The MIT Press, 1992

de By, R. A., Klas, W. and Veijalainen. J., "Transaction
Management Support for Cooperative Applications", Kluwer
Academic Publishers, 1998

86

[Bell1992]

[Elmagarmidl992]

[Freitas1998]

[Gray1993]

[Ishkawal993]

[Konduri 1999]

[Lausen1998]

[McFarland1999]

[Nahouraii1991]

[OD2000]

[Pressman1997]

[Reuter1993]

[Silberschatzl998]

[Exceloncorp2000]

[Sun2000]

Elmagarmid, A.K., "Database Transaction Models for Advanced
Applications", Morgan Kaufmann Publishers, Inc., 1992

Freitas, A. A. and Lavington, S. H., "Mining Very Large
Databases with Parallel Processing", Kluwer Academic Publishers,
1998

Gray, J., "The Benchmark Handbook for Database and Transaction
Processing Systems", Morgan Kaufmann Publishers, Inc., 1993

Ishkawa, H., "Object-Oriented Database System: Design and
Implementation for Advanced Applications", Springer-Verlag,
1993

Konduri, G., "A Collaborative Environment for Distributed Web-
based CAD", M.S. Thesis, February, 1999, Massachusetts Institute
of Technology

Lausen, G. and Vossen, G., "Models and Languages of Object-
Oriented Databases", Addison-Wesley Longman Ltd., 1998

McFarland, G., Rudmik, A. and Lange, D., DACS Technical Reports,
http://www.dacs.dtic.mil/techs/, January 1999

Nahouraii, E. and Petry, F., "Object-Oriented Databases", IEEE
Computer Society Press, 1991

Object Design Inc., "Embedding ObjectStore PSE Pro for Java,
The Pure Java, Pure Object Database", An Object Design
Technical Brief, 2000

Pressman, R. S., "Software Engineering, A Practitioner's
Approach", The McGraw-Hill Companies, Inc., 1997

Reuter, A. and Gray, J., "Transaction Processing: Concepts and
Techniques", Morgan Kaufmann Publishers, 1993

Silberschatz, A., Korth, H. F. and Sudarshan, S., "Database System
Concepts", 3 d Edition, WCB McGraw Hill, 1998

Produdct Overview, ObjectStore PSE Pro Enterprise Edition,
http://www.exceloncorp.com/, 2000

"JDBC Data Access API", http://iava.sun.com/products/jdbc/, 2000

87

List of Appendices

Appendix A - Requirement Specification vl.6.. 89

Appendix B - Design Specification vl.0...101

88

Appendix A

Requirements Specification
For ieCollab Version 2

Transaction Management

Specification Version 1.6

Requirement Analysis Team

Update from Version 1.5 by Bharath Krishnan, Alan Ng
Date: February 17, 2000
Participants on Modification

e online Session: Alberto Morin

e offline Session: Bharath Krishnan, Alan Ng

References and Links
(All references are stored at http://colaborate.mit.edu/1.120.html)

e Requirements Specification Version 1.2 for ieCollab Version 1 January 22, 2000

* Requirements Specification Version 1.0 for ieCollab Version 2 December 9, 1999

e Requirements Specification Version 1.1 for ieCollab Version 2 December 22, 1999

* Requirements Specification Version 1.2 for ieCollab Version 2 January 17, 2000

* Requirements Specification Version 1.3 for ieCollab Version 2 January 17, 2000

* Requirements Specification Version 1.4 for ieCollab Version 2 January 18, 2000

* Requirements Specification Version 1.5 for ieCollab Version 2 February 2, 2000

Outline
1. Introduction

1.1 ieCollab Versioning System .. 90

2 G eneral A rchitecture..90

3 System Specification
3 .1 O v erview .. 92
3.2 ieC ollab System E ntities ... 92
3.3 A ctors in U se C ases .. 94
3 .4 U se C ases ... 94

4 References .. 100

89

1. Introduction

This draft presents the system requirements of ieCollab version 2. A separate document describes

the system requirements for ieCollab Version1 [1]. This document specifies the functional

requirements of ieCollab version 2 and how it relates to version 1 system requirements. The

purpose of this document is to solicit input from other members of project to ensure that all parties

agree on the system requirements.

1.1 ieCollab Versioning System

The ieCollab system will be developed in several phases/versions. Each version focuses on a specific

functional component of the overall ieCollab system. The four versions/phases identified are:

* Meeting Management Environment (ieCollab Version 1):
Allows distributed users to setup and manage online meetings. This includes functionality to

keep track of meeting agenda, meeting participants, user profiles and meeting styles.

" Transaction Management (ieCollab Version 2):
Allows the ieCollab server to track users' usage of ieCollab's meeting management services

and charge fees on a per-transaction basis. Allows other A.S.P.'s to provide meeting
management services to their clients transparently.

* Collaboration Server (ieCollab Version 3):
Supports a set of interactive collaboration tools, such as chat tools, whiteboards, for group
communications. Users should be able to pay for the use of these collaboration tools on a

per-use basis as defined in the transaction management environment fromVersion 2.

* Application Server (ieCollab Version 4):
Allows multiple distributed meeting participants to work on the same documents

concurrently using third-party applications, such as CAD tools and spreadsheet applications.
Users should be able to pay for these third-party software on a per-use basis.

This document specifies the system requirements for ieCollab version 2, focusing on the

Transaction Management component of the system.

2. General Architecture

ieCollab version 2 will build upon the meeting management capabilities of the version 1. In addition,
this version will have the capability to function as a transaction based meeting server. The

architecture of which is briefly described below in Figure 1.

90

Figure 1: Architecture of ieCollab version 2

ieCollab will provide transparent meeting management services for other Application Service

Providers. Take for example a web calendar service like www.Anyday.com [2], which provides basic

calendar and scheduling services on the web. ieCollab will offer to handle all the meeting

management services for this A.S.P. in a transparent manner. Thus, the thin client interface to

ieCollab is replaced by the other A.S.P's web interface. When a user logs on to a meeting through

the A.S.P's portal, he will actually be connected to the ieCollab meeting server. This service is

charged on a transaction basis. The ieCollab server will keep track of usage of its services. Users will

then be billed for the time & applications they used.

91

3. System Specification

3.1 Overview

The use cases in this document focus on the transaction management component of the system. It is

important to note that the use cases presented in this document focus on the use cases of ieCollab as

a backend server, which provides transparent meeting management services to end users through

another A.S.P. server, such as AnyDay.com or Yahoo.com [3]. The use cases in this document add

to the use cases in the ieCollab Version 1 specification. The ieCollab will also be available through

ieCollab's own thin client at the same time.

ieCollab Version 2 has the following four functional components (in addition to the functionality in

Version 1):

* Set Service Pricing: allows the ieCollab Manager to define pricing schemes for ieCollab services.

e Create A.S.P. Account: allows the ieCollab Manager to establish an A.S.P. account with the

ieCollab server

* Create proxy account: allows an A.S.P. to establish an account on ieCollab on behalf of the

A.S.P.'s end users transparently; i.e., the personal information of the user present on the A.S.P. is

used by the A.S.P. to create the account.

e Track Service Usage: allows the ieCollab server to track usage of ieCollab services on a per-

transaction basis (please see use case description on transaction management for more details).

Steps in use cases are grouped into two categories: steps in A.S.P. Server and steps in ieCollab

server. Only steps in the ieCollab Server category are considered part of the ieCollab system.

Although the A.S.P. Server is an external entity, we specify its corresponding steps in each use case

to show how the end user's requests are mapped to ieCollab service requests through the A.S.P.

server.

3.2 ieCollab System Entities

To facilitate explanation of the use cases, we describe the following ieCollab system entities and their

relationships:

3.2.1 User: a user can be either a Normal User (as mentioned in Version 1 specification [1]) or an

A.S.P. User who uses ieCollab via an A.S.P. server. Each user who has an ieCollab User Account is

identified by a unique user login name. If the user opts for meeting services through an A.S.P., the

A.S.P. will use the user's login name and other data in its database to create the ieCollab account for

that user. A user has the following attributes:

* full name

e login name (unique)

* password

* broker identifier

* a list of workgroups the user is in

* a list of scheduled meetings

92

" a list of preferred meeting templates

e an account profile

The broker identifier specifies the A.S.P. server (such as Yahoo.com or AnyDay.COM) through
which the user is using ieCollab. Each user has only one broker. The broker of a user has the right

to retrieve and store user profile and meeting setup on behalf of the user.

3.2.2 A.S.P. Server: an A.S.P. Server who has an ieCollab A.S.P. Server Account is identified by a
unique server login name. This account is used by the A.S.P. server manager. An A.S.P. server
account has the following attributes:
* an A.S.P. name
e login name (unique)
e password
* an account profile

3.2.3 Account Profile: each account profile has the following:

* an account owner
e a pricing agreement
e payment method (usually credit card, could also be a monthly payment)

" billing address
* a list of transactions and invoices

* The GUI definition (When we allow each user a customizable user interface)

The account owner is either a User or an A.S.P. server. (i.e. the A.S.P. Server manager)

3.2.4 Meeting: each meeting has the following:

* a unique meeting ID
* a scheduled date/time
e default meeting template
e agenda

e security level

e A work group (As defined in the Version 1 specification [1])

For more details, please see version 1 specification [1].

3.2.5 Workgroup: A workgroup consists of a list of users and their roles in the group. Multiple
meetings can use the same workgroup to define its participant list. Users of a workgroup are also

called Workgroup Members. Each workgroup can have one Workgroup Leader and has a unique
workgroup ID. For more details, please see section 2.4.2 of the Version 1 specification [1].

3.2.6 Transaction: for each transaction, ieCollab server will record the following:

* date/time of transaction
" principals involved
e usage

93

The principal of a transaction is the party that initiates the service request and is responsible for

paying for the transaction. For example, if a user uses ieCollab directly without going through a 3rd

party A.S.P., the user is recorded as the principal. If a 3rdparty A.S.P. server requests for ieCollab

services on behalf of its users, the A.S.P. server can identify itself as the principal of the transaction.

Usage is defined by the types of services and quantities of services used. Quantity of a service can

be defined by a combination of the following parameters: time duration of service, frequency of
access, bytes transferred, bytes of information stored at the server, number of participants in a

meeting. An I.S.P revenue model can be used. This includes a standard monthly subscription fee and

an hourly charge. The exact rates for various services we offer in future can be decided by the sales
management group.

3.2.7 Meeting Template: please see version 1 specification [1].

3.2.8 Meeting Agenda: please see version 1 specification [1].

3.3 Actors in Use Cases

3.3.1 A.S.P. Server Manager
This is the super-user of the A.S.P. server.

3.3.2 A.S.P. User
This is an end-user who is using the A.S.P. server. Although the user may use the ieCollab services

through the A.S.P. server, the use of the ieCollab server is transparent to the end user.

3.3.3 ieCollab Manager
This is the ieCollab service manager, who sets usage and pricing policies.

3.4 Use Cases

3.4.1 Use Cases for ieCollab Manager

ieCollab
Create ieCollab Manager
A.S.P. Account

Figure 2: Use cases for ieCollab Manager

3.4.1.1 Setup Pricing Policy

This use case is started by the ieCollab Server Manager. It allows the manager to specify pricing
policies for ieCollab services. For each service type, the ieCollab Server Manager can specify the
unit definition for measuring service usage, and price per unit. The following service types are

94

provided in Version 2: create/query/update user account and info, create/query/update meetings,
create/query/update workgroups, and start/join meetings. As more features are added to ieCollab

Version 3 and 4, more service types may be provided.

Service usage maybe measured in terms of:

e time duration of service
e frequency of access

* number of queries performed

e bytes transferred
* bytes of information stored
* number of participants in a meeting.

For each service type, the ieCollab Server Manager must specify which type of measurement will be
used, and the price per unit of service usage.

3.4.1.2 Create ieCollab A.S.P. Account

An ieCollab Manager must setup an A.S.P. server account for the A.S.P. with ieCollab before the
A.S.P. users can use the ieCollab services. To create an A.S.P. Account, the following information
must be provided: name of A.S.P., login name, password, contact name/address, and billing
information as specified by the contract between A.S.P. and ieCollab.

3.4.2 Use Cases for A.S.P. User

A.S.P. Server ieCollab Server

<<uses>>
Use Meeting Service Process Service Request

Extension Points Extension Point Update
A S. P. Choose service type etemine PServUsage

User Determine Service Tvve Meter

Figure 3a: Use Cases for A.S.P. User (Process Transaction)

95

Add Create
Meeting Proxy This use case

A.S.P. ervice Acount belongs to the

User AS. server
Manager

Figure 3b: Use Cases for A.S.P. User (Add Meeting Service)

3.4.2.1 Process Transaction

This use case is started by an A.S.P. User when requesting to use meeting service. The A.S.P. User's

request will trigger the A.S.P server to send a service request to the ieCollab server. The service

request will contain the A.S.P. user's login name and password, type of service requested, and other

necessary data for completing the request. It is to be noted that the A.S.P. server acts on the behalf

of the user. Any reference in this section to the A.S.P. server should be construed as the A.S.P.

server acting on behalf of the user. The ieCollab server will process the service request as a

transaction. The following steps are included in the Process Transaction use case:

e Process Service Request: There are several extended use cases based on the service types. The

three main categories of sub use cases are: Account and User Profile Management, Workgroup

Management, and Meeting Management. These are explained in section 3.4.2.1.1

" Update Usage Meter: Logging and tracking an A.S.P. server's or individual A.S.P. user's usage

of ieCollab services

3.4.2.1.1 Sub Use Cases in Process Service Request

The following use cases are extended from the Process Service Request use case:

3.4.2.1.1.1 Account and User Profile Management: this use case includes Creating, Updating, and

Querying of ieCollab User Accounts and User Profiles. ieCollab allows an external A.S.P. server to

perform the following types of requests:

* Query User Profile: given a user login name, ieCollab server retrieves and returns that user's

user profile.

* Store User Profile: given a user login name and a user profile, ieCollab server stores the user

profile for that user.

3.4.2.2 Workgroup Management

This use case is triggered when the A.S.P user requests to Create/Modify Workgroup through the

A.S.P server. This use case corresponds to the Workgroup Management use case in ieCollab Version

1 specification. Readers should refer to Version 1 specification [1] for details of this use case.

As an interface to its workgroup management, ieCollab allows an external A.S.P. server to perform

the following types of requests:

96

* Query Workgroup: query workgroups based on workgroup IDs. This ID is a unique identifier

for the workgroup.

* Store Workgroup: given a workgroup identifier, store a workgroup setup information. Please

see section 3.2 for a detailed specification of a workgroup.

3.4.2.3 Meeting Management
This use case is triggered when the A.S.P user starts a Meeting Call through the A.S.P server. Note

that ieCollab server expects the A.S.P server to capture meeting selection. This use case corresponds

to the Meeting Management use case in ieCollab Version 1 specification. Readers should refer to

Version 1 specification [1] for details of this use case.

ieCollab allows an external A.S.P. server to perform the following types of requests.

* Query Ongoing Meetings: this will cause ieCollab server to return a list of ongoing meetings
currently at that ieCollab server.

* Query Meeting: given a meeting identifier, ieCollab server will return the meeting setup

associated with that meeting. Please see section 3.2 for a detailed specification on the attributes

of a meeting entity.

* Store Meeting: store meeting setup information under the specified meeting identifier. Please

see section 3.2 for a detailed specification on the attributes of a meeting entity.

* Start Meeting: given a meeting specifier and a user ID, ieCollab will start a meeting using the

meeting setup associated with the meeting identifier. All meeting state (current participants and

their locations, meeting logs, communication channels among participants) will be maintained at

ieCollab server.

* Join Meeting: given a meeting specifier and a user ID, ieCollab will connect the user to the

specified meeting. An error status will be returned if no on-going meetings correspond to the

meeting specifier. An access denied message will be returned if the user ID is not permitted to

join that meeting.

3.4.2.4 End Transaction
A.S.P. Server ieCollab Server

A.S.P.
User Report/ Log A.S.P. user

Usage & logout
invoice'

Figure 4: Use Cases for A.S.P. User (End Transaction)

97

The transaction is considered terminated when the A.S.P. user terminates the use of the ieCollab's

meeting service. ieCollab will report the final service usage and invoice back to the A.S.P. server, and

the A.S.P. server may decide to logout of the ieCollab server at the end of the transaction.

3.4.3 Use Cases for A.S.P. Server Manager
A.S.P. Server

Create Proxy Account

A.S.P.
Server

Manager

ieCollab Server

Figure 5: Use Cases for A.S.P. Server Manager (Create Proxy Account)

3.4.3.1 Create a proxy account

This use case is used by the A.S.P. server manager when the A.S.P. user opts for meeting
management services. The process of creating an ieCollab account is automated by this use case. In

other words, the A.S.P. uses the user profile for the user it has in its database to create an account

for the user on the ieCollab server.

3.4.3.2 A.S.P. Login: An A.S.P. server can log itself in the ieCollab server by providing a valid

ieCollab A.S.P. account name and password. Once an A.S.P. server logs in, it can request various

ieCollab services, such as to create new user accounts, store/retrieve user profiles and meeting

98

setups on behalf of its A.S.P. users. This step applies to A.S.P.'s which have a pre-established

ieCollab A.S.P. accounts, which includes the pricing agreement and payment information.

3.4.3.3 Create User Account: An A.S.P. server can create an ieCollab user account on behalf of a

user transparently. In order to do so, an A.S.P. server must log itself into ieCollab server first by
providing a valid login name and password. After the A.S.P. server has been authenticated, it must

then specify the user's name, login name, and selected password. In response, the ieCollab server

must then create an ieCollab user account using the given information, and mark the A.S.P. server as

the broker of the user.
A.S.P Server

2
A.S.P.
Server

Manager

ieCollab Server

Figure 6: Use Case for A.S.P. Server Manager (Get User/ Workgroup/ Meeting Information)

3.4.3.4 Get user/ workgroup/ meeting information
This use case is used by the A.S.P. server to get information from ieCollab about its users so that its

own databases can be updated. An example would be an A.S.P which provides calendar services.

The A.S.P Manager would then be able to automate the following task: Get meeting schedule

information for users, update the calendar database so that the user's calendar would reflect the

scheduled meeting.

99

References

[1] Moran A. "ieCollab Version 1 specification 1.4". 2000

[2] http://www.AnyDay.com February 3, 2000

[3] http://www.yahoo.com February 3, 2000

100

Appendix B

ieCollab Transaction Management

Design Specification V 1.0

Updated by: Hao Chen
Date: 3/1/2000
Participants on Modification:

* offline Session
Wassim Solh, Manuel Alba, Hao Chen, Sugata Sen, Anup Mantena

References and Links
Requirement Specifications for ieCollab Version 1 and 2
IeCollab version 1 Design Document vO .9, February 19, 2000
IeCollab version 1 Design Document vO .5, February 10,2000
Design Document v0.2, January 25, 2000
Design Document vO.1, December 1, 1999

Outline

1. Introduction ..- - -. ----------------.......... 102
1.1. Purpose - -... ---------------................ 102
1.2. Scope ..- -. ----------------------................. 102
1.3. M odifications -----------------............ 102

2. System A rchitecture..-----------------------.......... 102
3. D atabase A rchitecture ...---------......-. 105
4. Program A rchitecture ..----..------------- -... 106

4.1. Client / Server Interface 106
4.2. Basic Data Structures M apped to Java .. 108
4.3. Adm inistration Classes... 109
4 .4 . C ollabC lient C lass..--.....---- 111
4 .5. C ollabServer C lass ...---------- 113
4 .6. C ollabU ser C lass ...---------..--- 114

5. U se Cases and Sequence D iagram s.. 118
5.1. Server C onnection ------......-- 119
5.2. Broker Account Administration ... 119
5.3. U ser M anagem ent: .. . 120
5.4. Transaction M anagem ent: ... 121

6. C onclusion ...- -. -----.-.... --.. --------------.................... 123

7. G lossary ------------.... -..... -------------..................... 123

101

1. Introduction

1.1. Purpose

The purpose of this document is to describe the methodology for the implementation of basic
architecture and the Transaction Management of ieCollab as specified by the final Requirements
Analysis documentation.

1.2. Scope

This document presents the design of the basic architecture, account management, user
management, and transaction management tools of ieCollab version 1. It identifies the classes to
implement and interactions between classes. The design of the ieCollab system is based on
three-tier design concept, and Corba technology (see glossary).

Separate documents present the specifications for:
* Meeting Management (Version 2)
* Collaboration Server (Version 3)
* Application Server (Version 4)

1.3. Modifications
Major modifications from the previous version include:

1) Deleted of DBInterface class so that all the objects can interact with database directly and
reduced bottleneck.

2) Added Corba service to ClientWindow so that the server can call back to some functions
on the client.

3) Moved some methods from CollabUser to Workgroup and Meeting so that client can
interact directly with those objects.

4) Integrated database diagram to this file.
5) Provided IDL for client/server interface definitions.

2. System Architecture

The ieCollab system comprises of three layers: user services (front end user interface), business
services (business logics), and data services (back end database). The fist layer is linked to the
second layer through Corba connection and the second layer is connected to database via JDBC.

102

Figure 2 shows the basic system objects of ieCollab. On the user layer, an object of CollabClient
class is responsible for basic UI functions. CollabClient opens other dialogs or windows to
display information and get user inputs.

On the server side, before a client logs into the ieCollab system, a CollabServer object takes care
of the interactions between the client and our server. After a user logs in to the system, a
CollabUser object will be created for the user. Then, the client can require some general services
and user account services through this CollabUser object. If the user needs services related to

Workgroup and Meeting objects, references to specific Workgroup and Meeting object can be
obtained by using getWorgroupRef(ID) and getMeetingRef(ID) and providing WorkgroupID or
MeetingID as a parameter. After the client side gets the reference to the Workgroup or Meeting
object, the client can use the methods provided by that object, such as getMemberListo, etc.

All the database operations are done by individual methods. Each method that needs information
from database opens connection to the database and does appropriate queries to retrieve data.
After the database operation is done, connection to database should be closed. Some of the
complex database operations can be put on the database by using stored procedures. The use of
stored procedure can improve database performance.

Figure 1. Layers and Connections of the system

Corba JB
Collab~ient __ ____ > leCollab)__ leCollab

Database

103

Figure 2. System Architecture

User Layer
(Client)

Business Layer
(Server)

Data Layer
(Database)

104

3. Database Architecture

Figure 3. Database Diagram

Accouty

9 Accountflan

~MOttAtM80

Year~tlsg

Brokrs
V BrokeriD e

V Opg'iD

-s fAcountID
Passlwwrd

seiii

.s r
.....10 Acco.unt. .

OEmMre
Passw ord....

Workgroups
Grv'upI
CreatoiU20

t~CreaanTne f
GmupName
GmDsctiNaf

Mtings

MetarUTD

Treate ID

UsageTransacton
_________ Trasactd

rserD
firoker10

Erdrn

BrkeProfie

SBrvoker1D
BrooerMN

gBeosddre

SBalnk~
<BaikACount

ZCdes
WMI

cty

&ni

AccuntTrmnactions
SID

Ps"It

-Ad-n-Account
VifmraD

Charer D _

AdrMrtiame
U~srnauf

~GrupMetmes
- use.rrv

Rot

Mee.tingTemplat.
i? TempteD

T9a

etngMembers
A00 Mfttvig __:___Meetingh~elDSUserID

GruplDc
0AgendaD

MeetriglD
Statlfm

<Suct

lastodim

1-1

105

Meetgtog

StrtTntErd m9e

4. Program Architecture

4.1. Client / Server Interface

The following IDL file defines the interfaces for client/server interaction

module CollabApp
[

interface CollabClient;
interface CollabServer;
interface CollabUser;
interface Workgroup;
interface Meeting;

//******** Basic Data Structures *

struct ListItem
[

long ID;
string Name;

};

struct UserPubInfo
[

long UserID;
string UserName;
string FirstName;
string LastName;
string City;
string State;

struct UserProfile
[

string FirstName;
string MI;
string LastName;
string StreetAddress;
string City;
string State;
string ZipCode;
string Telephone;
string Email;

struct BrokerProfile
I

106

string BrokerName;
string ContactPerson;
string BillAddress;
string Telephone;
string BankName;
string BankAccount;

};

typedef sequence<string> namelist;
typedef sequence<long> idlist;
typedef sequence<ListItem> displist;

// ******Interfaces ********

interface CollabClient

[
string sayHello(;

void RefreshWGlisto;
void RefreshMGlisto;
void RefreshHMGlisto;
void RefreshInvitedMGlisto;

interface CollabServer

[
string sayHello(;

long Register(in string Username, in string Password,
in UserProfile Profile);

CollabUser Login(in string Username, in string Password,
in CollabClient refClient);

CollabUser LoginBroker(in string Username, in string Password,
in long BrokerID, in string BrokerPassword,
in CollabClient refClient);

interface CollabUser

string getID(;
string getUsernameo;
displist getMyWorkgroupListo;
displist getMyMeetingListo;
displist getMyHistoryMeetingListo;
displist getMyInvitedMeetingListO;

107

displist getAllUserListo;
displist getLoginUserListo;
displist Search Users(in string Searchstring);
UserPubInfo getUserPubInfo(in long UserID);
UserProfile getProfileo;
long UpdateProfile(in UserProfile Profile);
boolean Logouto;

displist getAllWorkgroupso;
displist Search Workgroups(in string str);
Workgroup getWorkgroupRef(in long WorkgroupID);
long Create Workgroup(in string WorkgroupName, in string Description);

long Delete Workgroup(in long WorkgrouplD);

displist getAllMeetingso;
displist SearchMeeting(in string str);
Meeting getMeetingRef(in long MeetingID);
long CreateMeeting(in string MeetingName, in string Description);
long DeleteMeeting(in long MeetingID);

4.2. Basic Data Structures Mapped to Java

Class ListItem

[
int ID;
String Name;

};

class UserPubInfo /the public information of a user

[
long UserID;
String UserName;
String FirstName;
String LastName;
String City;
String State;

}

class UserProfile

String FirstName;
String MI;
String LastName;
String StreetAddress;
String City;

108

String State;
String ZipCode;
String Telephone;
String Email;

I

class BrokerProfile

{
String BrokerName;
String ContactPerson;
String BillAddress;
String Telephone;
String BankName;
String BankAccount;

}

4.3. Administration Classes

The administration tool is a separate tool for system administrators to create new broker
accounts, edit accounts, and add credits to accounts. The administration tool is for internal use
and will not be distributed to clients.

Figure 4. Classes for Administration Tools

AdminWindow

AccountlD
EBrokerlD

AdminName
*Password
*DBConnection

*Login()
IfgetDBConnection()

AccountProfile

*refAdminWindow
*UserName
*Password
*BrokerName
*ContactPerson
*BillAddress
*BankName
*BankAccount

*CreateAccount()
*DisplayAccounto
*UpdateAccount0

AccountCredit

ErefAdminWindow
*CurrentCredit
ECreditAdded

*DisplayCredit()
*UpdateCredit()

109

class AdminWindow
{

//*********Atributes ****************

private long AccountID; /ID of Current Account
private long BrokerID;
private String AdminName;
private String Password;
private Connection DBConnection;

//********* Constructor *

public AdminWindow()
[

/Show a Login Dialog
}

public Boolean Login(String username, String Password)

[
//check login information
// setup DBConnection to database if login succeed

}

public getDBConnection ()
[

/return this.DBConnection
}

}

class AccountProfile
[

/I*********Atributes ****************

private AdminWindow refAdminWindow;

private String UserName; // ID of Current Account
private String Password;

public int CreateAccount()
[

// Use current display information to create an account
I/ return error code

}

public void DisplayAccunt(AccountID)

// refAdminWindow.getDBConnection() and query database
//Display in the window

110

I

pubic int UpdateAccount (String Username, String Password,.)

[
// Write Account Information to database
//Retrun Error Code

}

}

class AccountCredit
[

//*********Atributes ****************

private AdminWindow refAdminWindow;

private float CurrentCredit;
private float CreditAdded;

public void DisplayCredit(AccountID)

[
//AdminWindow.getDBConnection and query database
//Display in the window

}

public int UpdateCredit()

[
// Confrm()
// Writeto Database
// return error code

}

private boolean Confrm()

[
//Retrun 'true' if confirmed by a dialog

}

4.4. CollabClient Classes

See user interface definition document.

111

Figure 5. CollabServer and CollabUser Classes

CollabServer

private static ORB orb

public CollabServer()

public ORB getORB({return this.orb;}
public String sayHello(

public long Register(String Username, String
Password, UserProfile Profile)

public CollabUser Login(String Username, String
Password, String strCollabWindow)

public CollabUser Login(String Username, String
Password, long BrokerlD, String BrokerPassword,
String strCollabWindow)

private void StartTimer()

private void CheckUserso

CollabUser

private static Listltem[] LoginUlDList;

private static HashMap UserRefMap;

private long UserlD;
private String Username;
private long BrokerlD;
private long TransactionlD;
private CollabWindow refCollabWindow;

private Listltem[] myWorkgroupList;
private Listltem[] myMeetingList;
private Listitem[] myHistoryMeetingList;
private Listltem[] mylnvitedMeetingList;

public CollabUser(long UserlD, long BrokerlD, String
strCollabWindow)
public CollabUser(long UserID, long BrokerlD, String
strCollabWindow)

public String getID({return this.UserD;}
public String getUsername({return this.Username;}
public Listltem[] getMyWorkgroupListo
public Listltem[] getMyMeetingListo
public Listltem[] getMyHistoryMeetingList()
public Listltem[] getMylnvitedMeetingListo

static public CollabUser getUserRef(long UserID)
public Listltem[] getAllUserListo {
public Listltem[] getLoginUserListo {
public Listltem[] SearchUsers(String str)
public UserPublnfo getUserPubinfo(long UserID)
public UserProfile getProfileo
public long UpdateProfile(UserProfile Profile)
public boolean Logouto

public Listltem[] getAllWorkgroupso
public Listltem[] SearchWorkgroups(String str)
public Workgroup getWorkgroupRef(long WorkgrouplD)
public long CreateWorkgroup(String
WorkgroupName,String Description)
public long DeleteWorkgroup(long WorkgrouplD)

public Listltem[] getAllMeetingso
public Listltem[] SearchMeeting(String str)
public Meeting getMeetingRef (long MeetinglD)
public long CreateMeeting(String MeetingName, String
Description)
public long DeleteMeeting(long MeetingID)

private boolean ResolveWindow(String str)

112

4.5. CollabServer Class

class CollabServer
f

*********Atributes *****

private static ORB orb;

//********* Constructor *

public CollabServer()

[
//set up all attributes; StartTimer()

I

//********* Attribute Access ****************

// For server use, Don't put this method in IDL
public ORB getORB() [return this.orb;]

//********* Public Methods ****************

public String sayHello()

[
return "Hello!";

I

public long Register(
String Username, String Password, UserProfile Profile)

[
/check and put info. to Account, Users, User Profile tables
/return a new UserID;

}

public CollabUser Login(String Username, String Password, CollabClient refCollabClient)

[
// Check login information and create CollabUser object
/return a reference to a Collab User object if login succeeds.

}

public CollabUser LoginBroker(String Username, String Password,
long BrokerID, String BrokerPassword, , CollabClient refCollabClient)

[
//Brokers use this method by passing the broker's login info.
// Check login information
//create CollabUser object
//using CollabUser(long UserID, long BrokerID, CollabClient refCollabClient)

/return a reference to a Collab User object if login succeeds.

}

//**** Private Methods ****************

113

private void StartTimer()

[
/Start a timer that calls the CheckUsers method regularly
/to find out whether the users are still linked.

I

private void CheckUsers()
[

//go through CollbUser.LoginUserList and call CheckClientLink
// of each Collab User object

}

}

4.6. CollabUser Class

class CollabUser

[
private static ListItem[] LoginUserList; //Store the list of all login users' IDs and names.

private static HashMap UserRefMap; I/Map UserID to refCollabUser if the user is online

//********* Atributes *************

private long UserID;
private String Username;
private long BrokerID;
private long TransactionID; I/ID of current transaction
private CollabClient refCollabClient; // reference to client's window in order to callback

private ListItem[] myWorkgroupList; //A list of workgroup IDs and names the user is in

private ListItem[] myMeetingList; //A list of meeting IDs and names the user is in

private ListItem[] myHistoryMeetingList;//A list of meeting IDs and names the user has been in

private ListItem[] myInvitedMeetingList;// meeting IDs and names the user has been invited

//********* Attribute Access *

public String getID() [return this. UserID;}
public String getUsername() (return this. Username;]

public ListItem[] getMyWorkgroupList() [return this.myWorkgroupList;}
public ListItem[] getMyMeetingList() [return this.myMeetingList;}
public ListItem[] getMyHistoryMeetingList() [return this.myHistoryMeetingList;}
public ListItem[] getMyInvitedMeetingList() [return this.myInvitedMeetingList;]

//********* Constructor ****************

public CollabUser(long UserID, long BrokerID, CollabClient refCollabClient)

[
/ Initialize object
// Create new transaction
//set refCollabClient

114

/set up all attributes:

}

//********* Public Methods ****************

public boolean CheckClientLink()

[
//call refCollabClient.sayHello() to see if the client is still there.
/return 'true' if still linked.

}

/For server use, not in IDL

public static CollabUser getUserRef(long UserID) [
return Collab User. UserRefMap.get(UserID);

I

public static ListItem[] static-getLoginUserList() {
return CollabUser.LoginUserList;

I

public static Listltem[] staticgetAllUserList() {
/Query database and return a list of all users registered;

}

public static ListItem[] staticSearchUsers(String str) [
// Query database and return a list of users that meet the search String;

1

/Implementations for IDL

public Listltem[] getLoginUserList() [
return static-getLoginUserListo;

}

public Listltem[] getAllUserList() {
return static-getAllUserListo;

I

public ListItem[] getLoginUserList() [
return CollabUser.static-getLoginUserList;

1

public ListItem[] SearchUsers(String str) [
return Collab User. static_ Search Users(String str);

1

public UserPubInfo getUserPubInfo(long UserID) [
// Query database or use reference to an online user to
/return UserPubInfofor a specific user;

115

I

//********* Methods for User Management *

public UserProfile getProfile()

[
/return the user's Profile

}

public long UpdateProfile(UserProfile Profile)

[
/put new Profile info into database
// return error code.

}

public boolean Logout()

[
II Update transaction logout time, user's usage info, and broker's usage info.

II remove user from LoginUserList and disconnect ORB.
// return 'true' if succeed.

}

//********* Methods for Workgroup Management *

public ListItem[] getAllWorkgroups()

[
//return Workgroup.allWorkgroupList

I

public ListItem[] SearchWorkgroups(String str)

[
/return workgroups that contain str in description

1

public Workgroup getWorkgroupRef(long WorkgroupID)

{
1/ return a Workgroup reference

}

public long Create Workgroup(String WorkgroupName,String Description)

[
// a user creates a new work group
I/ return error code

}

public long Delete Workgroup(long WorkgroupID)

/ call Workgroup.DeleteWG(this,WorkgroupID)

116

/return error code
}

//********* Methods for Meeting Management *

public ListItem[] getAllMeetings()

[
/return Meeting.allMeetingList

I

public Listltem[] SearchMeeting(String str)
[

// return meetings that contain str in description
}

public Meeting getMeetingRef(long MeetingID)

{
// return a Meeting reference

}

public long CreateMeeting(String MeetingName,String Description)

[
// return error code

}

public long DeleteMeeting(long MeetingID)

[
//call Meeting.DeleteMG(this, WorkgroupID)
/return error code

}

//********* Private Methods ****************

private boolean Resolve Window(String str)

[
//Destringify the str and get the reference to CollabClient.
// return 'true' if succeeded.

}

private boolean DisconnectORB()

[
//disconnect this object with orb so that system can garbage collect it.
/return 'true' if succeeded.

}
}

117

5. Use Cases and Sequence Diagrams

Use cases for ieCollab include server connection, login, update profile, workgroup management,
meeting management, logout, and account administration. Design for workgroup and meeting
management is a large part and is included in a separate document.

Figure 6. Main Use Cases

Sener Connection

Login

User

ASP

Account Administation

Logout

118

5.1. Account Administration

System administrator creates records in the database for a new broker or updates account for a
broker. Need to implement with user interface.

Create Account

Update Account

Add Credit

Figure 7. Account Administration Diagram

AdminWindow AccountProfile : AccountCredit

I Login()

If Login Succeeds

If Login Fails, Exit

CreateAccount()

UpdateAccount()

DisplayCredit() UpdateCredit()

5.2. Server Connection

When a CollabClient object is started on the client side, it should resolve the reference to the
CollabServer object. This is done by a Corba reference resolution. We recommend use

119

stringified object resolution (see demo code) if we are going to implement the client UI with
applets.

The stringify/destringify process is: 1) when the server object is started, it create a string that
represents the object. 2) the string is passed to the client applet using parameters. 3) the client
gets the object reference by transforming the string back to object.

5.3. User Management:

Registration

A user opens a registration window and fills in the information needed. When the user presses
the registration button, the information is first checked to make sure that basic information
provided and the confirmation password matched. Then, the information is send to the register
method of the CollabServer object. CollabServer will check the information the user provided
with the database. Success is returned when the registration go through the check and recording
to the database. Failure is returned then username is occupied or there is another problem.

User Profile update

This use case is very similar to registration. The client window need to first get the existing user
profile to the client side and then send the information to CollabUser:UpdateProfileo.

120

Figure 8. Registration Sequence Diagram

: RegistrationWindow
CollabWindow

Openo

CollabSerer

CheckFields()

3ubmit()

C Register()

Check with database

If Failed Put record into database

ErrorMessage()

If Suceeded

Close()

5.4. Transaction Management:

Login for individual users

When a user press login button, CollabClient sends the username and password information to

the CollabServer object. CollabServer in turn checks the database to see if the login information

is correct. If the login failed, an error message is returned. Otherwise, CollabServer creates a

CollabUser object for the user and CollabUser provides all the interfaces for the user to further

interact with the ieCollab system; at the same time, the constructor of CollabUser creates a new

transaction record in the database.

Login for users through brokers

When a user login through brokers, the broker application sends the username and password

information of the user and the BrokerID and BrokerPassword information to the CollabServer

object. CollabServer in turn checks the database to see if the login information of both the user

and the broker is correct. If the login failed, an error message is returned. Otherwise,

121

CollabServer creates a CollabUser object for the user; at the same time, the constructor of
CollabUser creates a new transaction record in the database.

Figure 9. Login Sequence Diagram

: CollabSer er : CollabUser
CollabWindow

Presss Login Button

Login (Usemame,P s

If Failed

LoginErrorMessage()

word)

Check with Databa:e

If Succeeded, Crea e CollabUser
object

Create new Transaction
in database, record login time

122

Logout

When the user press logout button, CollabClient or a broker application calls CollabUser to log
out. CollabUser then update database: 1) record transaction end time. 2) calculate usage for this
transaction. 3) record usage in user's account. 4) if necessary, record usage to the broker's
account. When the database is updated, the CollabUser object should disconnect with the system
ORB so that the garbage collector can delete this object. Usage information will be returned to
the client window and displayed. The refCollabUser on the client side should also be reset.

Figure 10. Logout Sequence Diagram

CollabWindow
: CollabUser

Logout()

L Create Database Record, retrieve usage
::IIIZ Disconnect from orb
Display Usage
Reset refCollabUser

6. Conclusion

This design document describe the implementation of database, transaction manage, account
administration, and the delegation to workgroup and meeting management functions.

7. Glossary

* Three-tier architecture - user interface (client), process management (server), and data
management (database interface). For more details, take a look at:
http://www.sei.cmu.edu/str/descriptions/threetier.html

* CORBA. As object-oriented software design is developing, technologies have matured and
been able to support distributed object operations. This makes software development much
easier and provides clear interfaces for other applications. CORBA and COMI/DCOM are
two widely used technologies. COM is mainly implemented on Windows, while CORBA is

123

implemented on various platforms and languages. They can still interact with each other. For
more information, take a look at:
http://www.devdaily.com/Dir/Java/Articles and Tutorials/CORBA/

Objjo-string and string_to-obj are the major functions used to stringify/destringify objects.

* IDL. The OMG Interface Definition Language is the language used to describe the interfaces
that client objects call and object implementations provide. An interface definition written in
OMG IDL completely defines the interface and fully specifies each operation's parameters.
An OMG IDL interface provides the information needed to develop clients that use the
interface's operations. Clients are not written in OMG IDL, which is purely a descriptive
language, but in languages for which mappings from OMG IDL concepts have been defined.
The mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language.
http://www.infosys.tuwien.ac.at/Research/Corba/OMG/idlsyn.htm#307

JDK1.2.2 is needed for the Corba capabilities. An IDL file should be compose to indicate
the interfaces that the client need to know about the server. Reference:
http://java.sun.com/docs/books/tutorial/idl/index.html

Corba classes implement the interfaces generated by IDL compiler: idltojava by from Sun.

* JDBC: for detail, look at http://java.sun.com/docs/books/tutorial/jdbc/index.html

124

