
A Self-Configuring Resolver Architecture for

Resource Discovery and Routing in Device

Networks
NsMASSACHUSETTS INSTITUTE

OF TECHNOLOMY
by S

William Adjie-Winoto JUN 2 2 2000

B.S., Electrical Engineering and Computer Science LIBRARIES

Cornell University (1998)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000 ,

© Massachusetts Institute of Technology 2000. All rights reserved.

A u th or ---......
Department of Electrical Engineering and Computer Science

May 19, 2000

Certified by.....
Hari Balakrishnan

Assistant Professor
Thesis Spervisor

Accepted by.........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Self-Configuring Resolver Architecture for Resource

Discovery and Routing in Device Networks

by

William Adjie-Winoto

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2000, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Network environments of the future will be characterized by a variety of mobile and

wireless devices in addition to general-purpose computers. Such environments display

a degree of dynamism not usually seen in traditional wired networks due to mobility
of nodes and services, rapid fluctuations in performance, and node failures. This

combination of heterogeneity and dynamism makes it hard for applications to discover

the network locations of services that best satisfy their needs.
This thesis presents a communication system that allows network applications

to send messages by describing the attributes of the intended destinations for their

messages, rather than by explicitly listing the network locations (e.g., IP addresses)

of the message destinations. Senders are thus relieved from having to know in priori

the destination network locations, and receiver nodes are determined during message
delivery time by the system, allowing them to be mobile, grouped, or dynamically

adapted to different nodes (based on load, failures, or other measures). We build

this communication system in INS, an Intentional Naming System, using expressive

names to describe the attributes of the intended destinations for a message. The

system is designed to be responsive and adaptive, easily configurable, and robust.

We describe the INS architecture, the discovery and routing mechanism, and the

distributed self-configuring protocol used by INS name resolvers. We describe our

Java-based implementation and several applications developed using this system.

Thesis Supervisor: Hari Balakrishnan
Title: Assistant Professor

2

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Hari Balakrishnan,

for the guidance, advice and kindness he provided during the years I worked with

him. His enthusiasm for research and excellent writing and presentation skills have

been a constant source of motivation and inspiration. He has been an ideal advisor

a student could hope for. I have very much enjoyed pursuing my graduate research

with his guidance.

I thank Professor Nancy Lynch for her comments and suggestions aiding my de-

sign of the self-configuration algorithm in this thesis. I am grateful to Stephen J.

Garland and Professor John Guttag for providing insight and helpful feedback on the

development of the system.

I would like to thank the members of the Networks and Mobile Systems group.

Elliot Schwartz, Anit Chakraborty and Jeremy Lilley were my cohorts in developing

and implementing an Intentional Naming System. Bodhi Priyantha provided useful

and insightful comments and discussions on the self-configuration algorithm for the

system. I am glad that I had the opportunity to share my days (and nights) in the

lab with them, discussing academic and otherwise and making LCS a fun place to

work. I would like to acknowledge the other members of the group: Suchitra Raman,

Deepak Bansal, Allen Miu, David Andersen, Alex Snoeren, David Evans, Dorothy

Curtis, John Ankcorn and Srinivasan Seshan. They were always an endless source of

valuable information, answers and suggestions.

Some of the text in this thesis, especially parts in Chapters 2 and 5, were taken

from the previous paper that I wrote as co-author with Elliot Schwartz, Hari Balakr-

ishnan, and Jeremy Lilley, and appeared on the 17th ACM SOSP [1].

My research was primarily supported by a grant from the Nippon Telegraph and

Telephone Corporation (NTT).

Finally, I would like to express my sincerest gratitude to my parents and family

for providing me with this opportunity and for loving and supporting me for all these

years.

3

Contents

1 Introduction 8

1.1 M otivation . 8

1.2 Intentional Naming System (INS) . 10

1.3 Related Work . 13

1.4 R oadm ap . 17

2 Design of INS Architecture 18

2.1 Design Criteria . 18

2.2 INS Architecture . 19

2.2.1 INS Service Model . 20

2.2.2 INS Resolver Network . 24

2.3 Name Language for Intentional Names 25

2.4 Scalability . 27

3 Discovery, Routing and Forwarding in INS 29

3.1 Name Discovery . 29

3.2 Routing Protocol . 33

3.3 Soft-State Discussion and Optimizations 36

3.4 Message Forwarding: Anycast and Multicast 40

3.4.1 Intentional Anycast . 41

3.4.2 Intentional Multicast . 43

3.4.3 Optimizations . 45

4

4 Self-Configuring Resolver Network 47

4.1 Spanning Tree Algorithm: Overview 48

4.2 The Relaxation Protocol . 52

4.2.1 Exam ples . 54

4.2.2 Conditions . 58

4.2.3 A nalysis . 62

4.3 Messaging in the Relaxation Protocol 65

4.4 Failures and Healing Mechanisms . 70

4.5 Sum m ary . 72

5 Applications 74

5.1 INS Application Interface . 74

5.2 Floorplan: a Service Discovery Tool 76

5.3 Camera: a Mobile Camera Service 78

5.4 Printer: a Load-Balancing Printer Utility 81

6 Implementation 83

6.1 INS Message Format . 83

6.2 INS Resolver Node Architecture . 85

6.3 Implementation Components . 90

6.4 Evaluation . 91

6.4.1 Name Discovery Performance 92

6.4.2 Routing Performance . 92

7 Conclusions 97

5

List of Figures

1-1 Intentional Naming System and its applications

2-1

2-2

2-3

2-4

2-5

3-1

3-2

3-3

3-4

3-5

3-6

3-7

IN S architecture .

An example of an intentional name in name-specifier format

Graphical view of an example name-specifier

An intentional name in XML

Another example of intentional name in XML.

Soft-state name update processing

Name resolution to a next-hop route

Optimization for soft-state name information

Modified name update processing to handle soft-state and

Intentional anycast and intentional multicast forwarding

Pseudocode for intentional anycast.

Pseudocode for intentional multicast.

11

. 21

. 26

. 26

. 27

. 27

. 32

. 35

. 37

hard-state. 38

. 41

. 42

. 44

4-1 Illustration of a relaxation operation

4-2 An example of a spanning tree construction and its evolution toward

a minimum spanning tree .

4-3 A path traversed by a probe message

4-4 An example of two relaxations interacting in such a way that the result

is not a tree .

4-5 An example of two concurrent relaxations interacting in such a way

that results in a cycle .

6

51

53

54

55

56

4-6 Another example of two concurrent relaxations interacting in such a

way that the result is not a tree .

4-7 Examples of two concurrent relaxations that do not violate any tree

property

4-8 Illustration used in the analysis of spanning tree algorithm

4-9 Messages for relaxation protocol .

Floorplan application screenshot

Camera application screenshot

Printer application screenshot

INS message format

INR node architecture

A name-tree data structure for storing and

Java classes in the INR implementation . .

Java classes for name-tree implementation

Name discovery performance result

Routing performance result

.

looking up names

57

58

64

67

77

79

81

84

85

89

94

95

95

96

7

5-1

5-2

5-3

6-1

6-2

6-3

6-4

6-5

6-6

6-7

Chapter 1

Introduction

1.1 Motivation

Network environments of the future will be characterized by a variety of mobile and

wireless devices in addition to general-purpose computers. Such environments display

a degree of dynamism not usually seen in traditional wired networks due to mobility

of nodes and services, rapid fluctuations in performance, and node failures.

To understand the various issues involved, consider the following scenario. A user

walks into a new building on a campus and discovers the map of the region. He

easily retrieves the information of available services that are accessible to him and

has them displayed on the map. As he moves around, the map gets updated and

new services are discovered. In addition, he easily gains access to and communicates

with those available resources. For example, he can send a print job to the closest

(based on geographic location) and least-loaded printer, retrieve files from a repli-

cated server based on the network performance and server load with automatic fail

over mechanism, discover and interact with people in the region that are reachable

for communication, or retrieve the current image from all the mobile cameras in a

particular region of the building (to find an empty meeting room, for example).

Various network applications require the ability to seamlessly handle node mo-

bility, service location and dynamic services, respond to performance variations such

as network latency, server load, or any other application-specific performance fac-

8

tors. Network applications may also desire information or functionality from dynamic

groups of services, of which group memberships are dynamically changing based on

the specific information that the services provide and the clients require.

This combination of heterogeneity and dynamism makes it hard for applications to

discover the network locations of services that best satisfy their needs. Applications

often know the services they are looking for or providing (i.e., their intent), but do

not always know the best network locations to find or deliver them.

There is usually no pre-configured support for describing, locating, and gaining ac-

cess to available services in heterogenous, mobile networks. While providing network

connectivity over mobile communication has been extensively researched [6, 39], the

functionality of resource discovery and service location are only recently beginning

to receive attention in the research community. We believe that this is an important

problem to solve - as diminishing hardware costs make it inexpensive to network all

sorts of devices, the cost of deploying and running such a network infrastructure will

be dominated by software and service management.

Based on our target environment and applications, we propose a design of a net-

work communication system that allows applications to send messages by describing

the attributes or characteristics of the intended destinations for their messages, rather

than by explicitly listing the network locations of the message destinations. Senders

are thus relieved from having to know in priori the destination network locations, and

receiver nodes are determined during message delivery time by the system, allowing

them to be mobile, grouped, or dynamically adapted to different nodes (based on the

load status, node-failure condition, or other measures).

We build this communication system in INS, an Intentional Naming System, us-

ing an expressive name to describe the attributes of the intended destinations of a

communication message. This name is called intentional name and uses a flexible and

expressive naming scheme and query language to handle of a wide variety of services,

devices and applications and to allow application-specific attributes as part of the

name. As a resource discovery system, INS accounts for performance metrics, failure

conditions, or any other metrics under application control. INS performs routing

9

and forwarding of messages among INS name resolvers for better responsiveness to

mobility and dynamic conditions.

1.2 Intentional Naming System (INS)

The main contribution of this thesis is the design and implementation of an Intentional

Naming System with the following properties:

" INS allows network applications to gain access to and communicate with ser-

vices by specifying their attributes, rather than by specifying where to find

them. INS applications can therefore seamlessly handle node mobility and ser-

vice dynamism, and take advantage of a flexible group communication service

using an expressive name as the group handle1

" INS uses a novel distributed self-configuring algorithm that enables its name

resolvers to configure themselves into an overlay network that is adaptive and

self-improving based on network latency metrics.

Routing and forwarding of messages in INS is based on intentional names, which

describe the attributes of the intended destination end-nodes. In doing so, INS inte-

grates name resolution and message routing, operations that have traditionally been

kept separate in network architectures. By performing the forwarding decision based

on the destination name of the message, Intentional Name Resolvers (INRs) make

the binding between the name and network location(s) at the message delivery time,

rather than at request resolution time. We call this delivery late binding. INS late

binding delivery is "best-effort" since INS provides no guarantee on reliable message

delivery. This integration of name resolution and message routing leads to a general

method for performing application-level routing using names.

An important characteristic of our target network environment is the dynamism

of end-nodes, which includes node mobility and service dynamism. Node mobility

'Note that we do not rely on any pre-installed support (e.g., Mobile IP [39] or IP Multicast [15])
in INS.

10

Intentional Naming System

INR

INR

Client describes INR
attributes of required INR

services
Self-configuring
resolver network

Figure 1-1: Intentional Naming System with its self-configuring network of name
resolvers (INRs) allows applications to communicate by describing the attributes of
the required services. INRs forward the message to the appropriate service nodes
that satisfy the given attributes, allowing the applications to seamlessly handle node
mobility and service dynamism.

occurs when the network location (e.g., IP address) of a node changes due to physical

mobility or changes of the network interfaces used (e.g., from a wired Ethernet to

a wireless radio frequency network). Service dynamism occurs when the end-node

mapping to a service changes because of a change in the service availability (fail-

over), or because of a change in the "optimality" of a service, such as server load

(load balancing), or any other metrics under application control.

By allowing applications to specify a destination intentional name (rather than

destination network locations) for their messages, INS provides a "level of indirection"

useful for the applications to seamlessly continue communicating with end-nodes al-

though the mapping from the name to network locations of end-nodes may change

during the session.

Late binding delivery offers two basic types of message delivery service. An ap-

plication may request that a message be delivered to the "optimal" service provider

that satisfies a given name. The metric for optimality is under application control

and has application-specific semantics that may correspond to certain measures, such

11

as its current load. This kind of message delivery that forwards only to the best one

is called intentional anycast. An application may also request that the message be

delivered to all service nodes that satisfy a given name, in a message delivery method

called intentional multicast. Intentional multicast enables data distribution, in which

a sender pushes its data to all interested clients (identified by their intentional names)

and clients advertise themselves as being interested in receiving the data. These two

types of late binding delivery services allow INS to achieve application-level anycast

and multicast.

In keeping with the end-to-end principle [48] and based on the difficulties expe-

rienced in deploying IP extensions (e.g., IP multicast [15], guaranteed services [13],

active IP networks [58]), we provide the INS service as an overlay network over IP

unicast, leaving the underlying network-layer addressing and IP routing architecture

unchanged. INS handles network mobility and performs application-level intentional

anycast and multicast over IP unicast; thus, the only network layer service that INS

relies upon is IP unicast, which is ubiquitously available.

Another reason for leaving the core infrastructure unmodified is that often network-

layer service alone does not completely satisfy the requirements of network applica-

tions at hand. Performing anycast delivery based on a specific network-layer metric

such as hop-count or network latency alone, is ineffective from the point of view of

many applications because it does not optimize the precise metric that applications

require. For example, anycast delivery based on network-layer metric cannot locate

the least-loaded printer, nor can it fail-over a failing service to another service node

that advertises the same attributes. To enable anycast based on a metric that appli-

cation cares about, INS allows an advertisement of an application-specific metric to

be associated with a service name.

INS uses a decentralized network of INRs to discover names and route messages.

INRs use soft-state [12] periodic advertisement from services, allowing applications

to come and go without any explicit registration and deregistration. This design

gracefully handles failures of end-nodes and services. Routing information for the

overlay topology is treated as soft state, enabling network partitions and node failures

12

to be detected in a timely fashion.

In constructing and maintaining the overlay network, INRs use a novel distributed

self-configuration algorithm that forms an adaptive spanning tree amongst resolvers.

Existing distributed algorithms that construct a spanning tree are not generally well

suited to the INS operating environment because of the degree of dynamism due

to node mobility, with nodes joining and leaving the system, and variations and

fluctuations in network performance and reliability in this environment. The INS

self-configuration algorithm adapts its topology to handle failures and performance

variations in a scalable fashion, and attempts to evolve into a minimum spanning tree

in the absence of change. The main feature of the algorithm is its capability to evolve

any tree into an optimal tree in a distributed manner by using relaxation operations

that asynchronously adapt the neighbor relationships between INS resolvers. Other

distributed algorithms that construct an optimal spanning tree do not generally offer

capability to relax neighbor relationships once the tree is completely constructed,

which means that after the initial construction of the tree, changes of link metrics

will require a significant amount of recomputation for the graph.

An important feature of our architecture is its incremental and easy deployment

in the Internet, without modifying the existing Internet service model. INS service

model is capable of performing application-level multicast and anycast delivery to

mobile and dynamic nodes without requiring mobile IP, IP multicast, or any other

IP extensions. INS is intended for dynamic networks on the order of several hundred

to a few thousand nodes, many of which could be mobile (e.g., inside a single admin-

istrative domain, building, office or home network). For a higher number of nodes,

multiple disjoint INS overlay networks can be formed and used to handle different

sets of namespaces.

1.3 Related Work

INS, to our knowledge, is the first system that integrates name resolution and routing,

allowing sender applications to send messages by only describing the properties of the

13

intended destinations (in an intentional name), requiring no knowledge of network

locations of the destinations.

Since INS borders on many different areas, there exists a wide variety of related

work. The areas that contain work that relates to INS are as following:

Naming and resource discovery systems. Several other network naming sys-

tems have been developed. The Internet Domain Name System (DNS) [34], provides

mapping from hostnames to IP addresses. X.500 distributed directory by the CCITT

(now the ITU-T) [7, 44] facilitates the discovery of resources by using a single global

namespace with decentralized maintenance. Both DNS and X.500, as well as sev-

eral classical literature on naming in distributed systems (e.g., Grapevine [4], Global

Name Service [30], etc.) are all naming systems that provide a name lookup direc-

tory service that returns a network location. They differ from INS - in addition to

providing a standard name directory service, INS performs message routing and for-

warding based on intentional names, incorporating late binding for application-level

anycast and multicast delivery. INS resolver network is tuned for dynamic and mobile

networks with little pre-configured infrastructure.

There has been some recent activity in service discovery for heterogeneous net-

works of devices. Sun's Jini [29] provides a framework for spontaneous distributed

computing by forming a "federation of networked devices" over Java RMI (Remote

Message Invocation). Jini does not address how resource discovery will work in a

dynamic environment or when services fail. Jini can benefit from INS as its resource

discovery system. INS handles dynamism using late binding, provides intentional

anycast and multicast services, and has self-configuring resolvers. Other architec-

tures for object oriented distributed computing are OMG's CORBA [36] and ANSA

Trading Service [16], where federated servers resolve client resolution requests.

Universal plug-and-play [55] uses a subset of XML to describe resources provided

by devices and can benefit from INS as a discovery system. The Service Location

Protocol (SLP) [57, 24, 40] facilitates the discovery and use of resources in a hetero-

geneous network using centralized Directory Agents. The Berkeley Service Discovery

14

Service (SDS) [14] extends this concept with secure, authenticated communications

and a fixed hierarchical structure for wide-area operation. Unlike SLP and SDS, INS

offers late binding with self-configuring resolvers, and does not rely on IP multicast

to perform discovery. IBM's "T Spaces" [31] allow network applications to communi-

cate by performing queries over a lightweight database that maintains tuple mappings.

This system is optimized for relatively static client-server applications rather than for

dynamic peer-to-peer communication and uses a central database.

ActiveNames [56] allows applications to define arbitrary computation that exe-

cutes on names at resolvers. INS differs from ActiveNames in the way that INS does

not require mobile code, relying instead on late binding to achieve responsiveness and

flexibility. In addition, INS implements a self-configuring resolver network based on

network performance.

Network-layer routing and forwarding. Mobile IP [39], anycasting [38], and IP

multicast [15] are network-layer routing schemes that allow node mobility, anycast

delivery, and group communication respectively. INS achieves a similar goal by using

different approaches, not modifying the existing IP network infrastructure. INS offers

a richer semantics by using a name as a handle for communication instead of a network

address. A network group can be created on the fly more easily by wildcarding

or ignoring certain parts of the name. Overhead of looking up a name during the

forwarding in INS can be higher than the overhead of the other schemes, but as we

will show in Section 3.4, an optimization by associating a label to a destination name

and maintaining a cache of active labels for the forwarding can reduce much of the

overhead of a name lookup.

In several early-developed network protocols (e.g., AppleTalk, NetBIOS) appli-

cations use name as their addressing scheme and the protocol on the node resolves

the name into its corresponding network location before the packet is sent out, al-

lowing changes of network locations to be transparent to the applications. These

protocols, however, do not handle group communication and thus require each name

to be unique. They utilize a large number of network broadcasts for name discovery

15

and do not scale well beyond local area networks.

Generic application-layer services. Information Bus [37] shares a similar idea

of abstracting the network locations of end-nodes and allowing applications to com-

municate by describing the subject of the desired data, without knowing who the

providers are. Its target environment however is different. INS targets node mobility,

group communications and dynamic environments beyond local area network and as

such INS implements decentralized name resolvers running routing protocol and self-

configuration protocol for the overlay network. Other projects similar in flavor include

Salamander [33] and SmartSockets [54]. They have statically configured resolvers and

topology. INS utilizes a self-configuring protocol to keep its overlay network adaptive

and self-improving based on network performances.

More recent projects that explore application-level multicast delivery include Yall-

cast [21], End-system multicast [10], RMX (Reliable Multicast ProXies) [9] and RE-

UNITE [52]. They offer wide-area multicast delivery service by tunneling multicast

messages through IP unicast paths, which form the whole or some part of their multi-

cast trees. Application-layer anycasting [3] introduces the idea of performing anycast

delivery on the application layer.

Cisco's Distributed Director [11] resolves a URL request to the IP address of the

"closest" server, based on some mapping function that accounts for among others

client proximity and client-to-server network latency. Unlike INS, Distributed Direc-

tor is not a general framework that integrates resolution and routing, and its resolvers

are independent, in contrast to the cooperating INS resolvers that form an overlay

network.

Intentional naming in other contexts. An early proposal for intentional naming

was described in a paper by O'Toole and Gifford [35] and its application for file

retrieval in the Semantic File Systems [23]. The Discover system [51] is a document

discovery system that forwards a query to the server containing the result. Jacobson

in [28] makes the case for intentional naming in the context of multicast-based self-

16

configuring Web caching. Estrin et al. [27] in the context of sensor networks suggest

a diffusion-based approach to data dissemination using data attribute to instantiate

forwarding state at sensor nodes.

As a closing perspective, if we look at different switching technologies, networking

has evolved from circuit switching that has a fixed path between end points of com-

munication, to packet switching that allows a dynamic path but fixed end points for

the communication. With late binding, INS allows not only a dynamic path (based

on the underlying packet switching network), but also dynamic end points for the

communication.

1.4 Roadmap

The rest of this thesis is organized as follows. We describe the design criteria of INS

and our design of INS architecture in Chapter 2. We discuss the distributed name

discovery and routing protocols used by INS and the message forwarding schemes,

intentional anycast and intentional multicast, in Chapter 3. We describe our dis-

tributed algorithm and protocol for constructing a self-configuring overlay network

in Chapter 4. The algorithm is used to form the INS resolver network and is general

enough to be applicable to other networking systems that require an adaptive overlay

topology that optimizes network performance. INS functionality and interfaces that

are provided to the applications, as well as several applications that we have devel-

oped using INS, are described in Chapter 5. Then we turn to our implementation of

INS name resolver, describe the INS message format and present several evaluation

results in Chapter 6. We then conclude with a summary in Chapter 7.

17

Chapter 2

Design of INS Architecture

INS allows network applications to communicate and access services by specifying

what their needs are, rather than where to find them. INS allows applications to

seamlessly handle node mobility and service dynamism and provides a flexible group

communication service using an intentional name as the communication handle. In

Section 2.1 we present our design criteria for an Intentional Naming System. Section

2.2 describes our design of the INS architecture. We show some examples of possible

naming languages used by INS in Section 2.3. Scalability issues are discussed in

Section 2.4.

2.1 Design Criteria

We identify the following design criteria for INS based on our observations of target

environments:

Responsiveness. Since INS is operating in a mobile and dynamic environment, it

must adapt quickly to node and service mobility, performance fluctuations, and any

other factors that can cause a change in the "best" network location of a service. INS

must be responsive to handle dynamic name-to-address mappings that may change

rapidly.

18

Self-configuration. The construction of the resolver network must take place in a

fully distributed fashion, requiring no manual set-up or configuration. INS resolvers

should self-configure, optimizing the network performance between them. The INS

overlay network topology must adapt to network performance and evolve toward an

optimal topology in a scalable fashion. The system should allow services and clients

to join and leave the system without any manual registration and de-registration.

Calculations of overlay paths for message delivery between applications should be

dynamic and require no global knowledge of the overlay. The deployment of the

system should avoid supplanting, and should minimize modification to, the underlying

network infrastructure.

Robustness. The resolver architecture must avoid a single point of failure and is

capable of recovering from inconsistencies in the internal state of the resolvers. The

overall system must be resilient to application failures, such that failures of services

and clients will not collapse the whole system. INS must be able to detect network

partitions and node failures and recover from them in a timely fashion.

Allowing resource discovery and routing in heterogenous networks, INS employs an

expressive name to describe the attributes of the intended destinations of a message.

The name should be extensible by applications to include their own semantics as

part of the names. For the exact format of a name language we leverage existing

naming scheme and query language, such as name-specifier [50], or XML (Extensible

Markup Language) [5]. It is an objective to design the resolver architecture to be

largely independent of any specific name and query language used, such that different

languages may be used as needed and future extensions to the system may allow inter-

operability of different name and query languages.

2.2 INS Architecture

INS architecture consists of INS applications and Intentional Name Resolvers (INRs).

INS applications may be services or clients: services provide functionality or data and

19

clients access and use them. INRs route client requests to the appropriate services,

implementing simple distributed protocols that may be implemented even on com-

putationally impoverished devices. Any device or computer can potentially act as a

resolver, and a network of cooperating resolvers provides a system-wide resource dis-

covery service. INRs form an application-level overlay network, through which they

exchange name information and maintain lazy-consistent cache of name information.

There is a well known entity in the system, a Domain Space Resolver (DSR) that

maintains a list of currently active INRs in the system. DSR can be thought of as

an extension to a DNS server for the administrative domain in which we currently

are, and may be replicated for fault-tolerance. DSRs support queries that return the

currently active INRs in the system.

2.2.1 INS Service Model

An application that would like to join the INS system communicates with one of

the available INRs in the system. The list of available INRs can be obtained by

contacting the DSR. Although potentially an application can attach to any available

INR, it is beneficial for an application to attach to an INR to which it has the

best connection (e.g., the one with the shortest round trip latency). An application

advertises its names to an INR, describing its intent of being a client or provider

for some services. The advertisement is in the form of an intentional name, which

describes the attributes of the information they are providing (if a service) or seeking

(if a client). An application can become a client of some services and a provider for

other services at the same time.

Services, when advertising their names, can include an application-specific metric

to be associated with the name. This metric will be used by INRs to select the

"best" service node when multiple service nodes satisfy a given query. Applications

can discover/interact with one another in the following ways:

An application can discover whether names having particular attributes (which

correspond to some services/clients) exist in the system, by sending a request contain-

ing a query expression to an INR. Because name information is disseminated through

20

ServiceClient using intentional anycast

Client using
intentional multicast

name + data 8 set of names

INR network queryINR network
name 5

4-' network locations Client discovering a name

<>6 data _ _

Client using early binding Service DSR

Figure 2-1: The architecture of an Intentional Naming System. The upper-left corner

shows an application using intentional anycast: the application sends an intentional

name and the data to an INR (1), which tunnels to the INR closest to the destina-

tion that has the least metric (2), which then forwards to the destination (3). The

middle-left shows an application using intentional multicast: the application sends an

intentional name and the data to an INR, which forwards it through the INR network

to all of the destination applications. The lower-left corner shows an application using

early binding: the application sends an intentional name to an INR to be resolved
(4), receives the network location (5), and sends the data directly to the destination
application (6). The lower-right corner shows an application discovering names sends

a query to an INR (7), receives a set of names that match the name in query (8).
DSR (Domain Space Resolver) is a well-known entity in the system than maintains
a list of currently active INRs in the system.

the INR network in a timely manner, a new service becomes known to other resolvers

and through them to the clients.

Applications can use two late binding options - intentional anycast and inten-

tional multicast - to handle dynamic situations. In late binding, the source appli-

cation sends to an INR the message content (payload) together with an intentional

name describing the properties of the desired destinations for the message content.

The INR forwards the message and the associated payload directly to the end-nodes

that match the destination name.

21

If the application requests intentional anycast, the INR selects exactly one of the

end-nodes in its list that has the least metric and tunnels the message to the INR

closest to that end-node, which in turn forwards it to the end-node. The closest

INR is the INR to which the end-node attaches and advertises its names. In INS the

metric determining the best end-node does not reflect a network-layer metric such

as hop-count used in network-layer anycast [38]; rather, INS allows applications to

advertise arbitrary application-specific numeric metrics such as average load.

In intentional multicast, INRs forward the message along the spanning tree overlay

network to all the end-nodes satisfying the properties described in the destination

intentional name of the message. Each INR knows its next-hop INR for the message

delivery because of the routing protocol that is run on all INRs. INRs, in addition to

exchanging information about names they know about, also send updates for routing

information for each name, such that INRs know the shortest overlay route to get to

every name in the system.

Since intentional multicast delivers to all the end-nodes that have their names

matched, identical names that are announced by different applications need to be

distinguished and recorded. INRs differentiate identical names advertised by different

applications by associating a unique ID, the application's ID (App-ID), with each

name. Every application is given an App-ID, which is constructed by concatenating

the IP address of the node, the port number, and the start time of the application.

The port number is used as part of the ID because multiple INS applications may

reside at a single IP address but each using a different port number.

Each application is supposed to retain its App-ID for the duration of its lifetime,

even in the case of mobility. That is, even though an application may obtain a new

IP address because of its network mobility, it should retain and use its old App-ID.

The start time, which is used as part of the App-ID, ensures that the ID stays unique;

that is, if at the time being a different application comes up and takes the place of

its old IP address and port number, the start time of this new application will be

different, thus producing a different ID. This unique App-ID allows INS to handle

node mobility seamlessly.

22

In the intentional anycast delivery, a sender has a choice of whether to include the

App-ID of the destination name. If it does, INRs that receive the message will forward

the message only to the destination name with the given App-ID. This is useful when

a sender wants to maintain persistent communication to the same end-node under all

conditions. If the sender does not include any App-ID for the destination name, INRs

will select an optimal one based on the application-advertised metric and forward the

message to that optimal end-node.

In addition to explicit name advertisements from applications, INRs also learn

about new names by passively observing the headers of the messages they receive.

When an INR receives a message from an application A that contains a destination

name d-name and a source name s-name, in addition to forwarding this message

toward the destination nodes matching d-name, it also adds to its name table' the

necessary information about s-name, noting that the originator of s-name is appli-

cation A. The INR can then distribute this new name information to other INRs in

the system. This learning, called inference, enables INRs to forward any response

from services back to the requesting clients without requiring the clients to explicitly

advertise themselves (as clients). This inference mechanism is similar to that used by

the learning bridges [41].

In addition to the late-binding delivery service, INS offers an early binding service

that allows an application to lookup a destination name and obtain the corresponding

network locations by sending to an INR a request for early-binding information of a

particular name. Receiving the request, the INR returns a list of early-binding records

corresponding to the name with each record consisting of an IP address, a port number

and an additional set of [port-number, transport-type] pairs. Example of possible

transport types in the additional set are HTTP [2], RTP [49], TCP [42], etc. This

service model is useful when services and clients are relatively static. Early binding

is similar to service provided by other naming systems, such as the Internet Domain

Name System (DNS) [34]. In the case when multiple network locations satisfy a given

'We use the term name table to refer to a conceptual data structure used to store the correspon-
dence between names and their associated information.

23

request, INRs return the network location that has the least application-advertised

metric. This early binding service of INS is richer than the round-robin service of

DNS, which does not account for any performance or failure conditions.

INS uses a decentralized network of INRs to discover names and route messages.

INRs use soft-state [12] periodic advertisement from services, allowing applications to

join and leave the system without any explicit registration and deregistration. This

design gracefully handles failures of end-nodes and services. Routing information for

the overlay topology is also treated as soft state, allowing network reachability and

partition to be detected in a timely manner.

2.2.2 INS Resolver Network

INRs form a resolver network to exchange name and routing information, and to for-

ward messages during intentional multicast delivery. The resolver network is formed

as an overlay network over IP unicast, leaving the underlying network-layer address-

ing and IP routing architecture unmodified. In our current design, INRs self-organize

into a spanning tree topology, providing loop-free connectivity. A list of active INRs

is maintained by the Domain Space Resolver (DSR).

When a new INR joins the system, it contacts the DSR to obtain a list of currently

active INRs. The new INR then picks one INR from the list to which it has the

smallest round-trip latency and establishes a neighbor relationship (or peers) with it.

If each INR does this, the resulting topology is a spanning tree.

Despite the local decision made by each new INR joining to minimize the latency,

the resulting spanning tree will not in general be the minimum one. Hence, a new INR,

after peering with an existing one, enters a relaxation phase, where it participates

with other INRs in the system to adapt the neighbor relationships between INRs to

evolve the spanning tree into a minimum one.

The algorithm for constructing and maintaining the INS MST topology is thus

different from some existing algorithms [22, 25, 26] that construct a MST. The INS

spanning tree algorithm is distributed and produces a spanning tree that is self-

improving (based on the current latency metrics) toward an optimal spanning tree

24

(MST). The algorithm is distributed requiring no knowledge of global topology. The

spanning tree is adaptive and self-improving, such that in the case where the measured

round-trip latency between INRs change, the graph will adapt and turn itself back

into a new MST based on the new latency metrics. The algorithm gracefully handles

message losses; this is in contrast to some other algorithms (e.g. in [22]) that construct

a MST by iteratively merging smaller components into a bigger one, in which case

message losses may very well prohibit the tree construction. INS overlay topology

is also in contrast to other overlay networks that maintain pre-configured, static

neighbors such as the MBone [18] or the 6Bone [19].

The DSR can be implemented as an extension to a DNS server for the admin-

istrative domain, or may be assigned a well known DNS name in the domain (e.g.,

dsr.lcs.mit.edu). Detail implementations of a DSR can be found in [32].

2.3 Name Language for Intentional Names

An intentional name conveys the intent of an application in providing or accessing

services. INS uses a simple language based on attributes and values for its names.

Intentional names must be expressive, allowing applications to include attributes and

values specific to them as part of the name. They should be extensible to describe a

rich variety of network resources.

An example of an intentional name in the INS name-specifier format is shown in

Figure 2-2 with its graphical view in Figure 2-3 [50]. This name refers to a cam-

era service located in the oval-office of whitehouse (with resolution 640x400 and gif

format) having a DNS name of bill.whitehouse.gov.

Alternatively, XML (Extensible Markup Language) [5] can be used to describe

an intentional name. XML uses application-defined tags as "meta-data", allowing

expressive names. One way to represent the previous intentional name in XML format

is shown in Figure 2-4. Figure 2-5 shows another example of an XML expression

that refers to any class or all classes in which both Jeff and Susan enroll. This

XML expression is not directly mappable to the INS name-specifier format because

25

Figure 2-2: An example of an intentional name in name-specifier format. This name-
specifier describes an object in the oval-office that provides a camera service (with
640-by-400 GIF images) and has a DNS name of bill.whitehouse.gov.

city service dns

washington amera bill.whitehouse.gov

building format x-res y-res

whitehouse gif 640 400

wing

west

room

oval-office

Figure 2-3: A graphical view of an example name-specifier shown in Figure 2-2 (from
[50]).

it contains duplicate tags.

The query language currently supported in INS includes exact matches of at-

tributes and values and wildcard (*) matches (which will match any values). The

language also allows omissions of don't-care attributes.

We note that a detailed discussion of the INS name-specifier name and query

language can be found in [50]. We also note that query languages that are available

for XML include XML-QL [17], XQL [46], Quilt [45] and XSet [59].

The INS resolver architecture and protocols are designed to be decoupled from

any specific name and query language and the architecture allows usage of features

provided by each different name and query language. Of course, services described in

one language may not be directly mappable to other languages, but future extension to

26

[city = washington
[building = whitehouse

[wing = west

[room = oval-office]]]]

[service = camera
[format = gif]

[x-res = 640]
[y-res = 400]]

[dns = bill.whitehouse.gov]

<c ity>washington

<building>whitehouse
<wing>west

<room>oval-office</room>

</wing>

</building>

</city>
<service>camera

<format>gif</format>
<x-res>640</x-res>
<y-res>400</y-res>

</service>
<dns>bill.whitehouse.gov</dns>

Figure 2-4: An intentional name in XML that is equivalent to the name-specifier
shown in Figure 2-2.

<class>
<name>Jeff<grade>A</grade></name>
<name>Susan<grade>B+</grade></name>

</class>

Figure 2-5: Another example of intentional name in XML. This name refers to any
class or all classes in which both Jeff and Susan enroll.

the system may incorporate some language inter-operability conversion. Our current

implementation uses the name-specifier format and query language.

2.4 Scalability

INS is intended for dynamic networks on the order of several hundred to a few thou-

sand nodes, many of which could be mobile (e.g., inside a single administrative do-

main, building, office or home network). In general, load processing (for query) and

size of name table are two constraints that can limit the number of nodes that join the

system at any particular time. To handle excessive loads from applications in name

query and/or message forwarding, we allow new INRs to be spawn to join the INS

resolver network. Of course, mechanisms to distribute existing loads or new loads

among INRs are needed for the load balancing. The size of the name table grows

27

proportional to the number of services running in the system, such that there is a

particular upper limit for the size of name table where looking up a name from the

table becomes prohibitive, due to the name lookup processing. To handle dynamic

networks with a larger number of names, INS allows multiple overlay resolver net-

works to be formed, each with its own (disjoint) namespace. For example, we may

partition services in the system based on geographic locations of services, or perhaps

based on the accessibility of services (e.g., partitioning into public, group, and per-

sonal services). In this scheme, since namespaces are disjoint, applications in one INS

overlay network are not able to discover names in another overlay network, unless of

course it knows the exact INS overlay network to join to find the required services -

i.e., there is no discovery mechanism between disjoint overlay networks. Applications,

of course, can join multiple INS networks to access services on those networks. The

current version of INS does allow clients and services to join multiple INS overlay net-

works. In addition, the system allows name discovery across multiple disjoint overlay

networks and inter-communications between disjoint overlay networks; techniques to

scale the INS in the local- and wide-areas are described in [32].

28

Chapter 3

Discovery, Routing and Forwarding

in INS

Intentional name resolvers (INRs) replicate, creating a decentralized name resolution

architecture, and form an overlay network among themselves, over which updates of

valid names and routing information flow. Section 3.1 describes a distributed name

discovery protocol used by INRs to disseminate and maintain up-to-date name in-

formation. The routing protocol run by INRs to determine the route on the overlay

to each name in the system is discussed in Section 3.2. In Section 3.3 we discuss

the desirable properties of soft-state name and routing information and present some

possible optimization methods to lower the bandwidth consumption incurred by pe-

riodic refreshes of soft-state. Based on the name and routing information that they

have obtained, INRs perform forwarding of messages based on intentional names,

offering two basic types of late-binding delivery: intentional anycast and intentional

multicast. Message forwarding is discussed in Section 3.4.

3.1 Name Discovery

Services periodically advertise themselves to describe what they provide to one of

the available INRs in the system, usually to the local INR to which they have the

best connection. Each INR listens to these periodic announcements to discover ser-

29

vices running at different end-nodes. To make sure this service information available

for system-wide resource discovery, each INR that receives a new name information

propagates the information to all other available INRs in the system through the INR

network.

The name discovery protocol treats name information as soft-state [12, 43], associ-

ated with a lifetime. Such state is kept alive or refreshed whenever newer information

becomes available and is discarded when no refresh announcement is received within

a lifetime. Rapid changes due to node mobility quickly propagate through the system

and new information automatically replaces outdated information. Using a soft-state

mechanism for name information has two important consequences:

* Clients and services may join and leave the system without any explicit regis-

tration and de-registration, because new names are automatically disseminated

and expired names automatically eliminated after a timeout. Of course ad-

vertisers may also explicitly remove outdated names that they have advertised

before they time out.

e Soft-state information improves the robustness of the system against application

failures. Any incorrect information associated with a name will be refreshed in

the next cycle of periodic advertisements. Moreover, since names originate from

and are refreshed by the applications that advertise them, soft-state introduces

a notion of fate sharing [12] between names and the corresponding services -

if a node providing a service crashes, it will also cease to announce that service

and hence all its names will expire after a lifetime, preventing the system from

announcing outdated name information.

INRs disseminate name information between each other using the name discovery

protocol that includes periodic updates and triggered updates to their neighbor INRs.

Each name update contains the following information, called its name-record, about

a name:

e The IP address and the port number of the end-node announcing this name,

and a set of [port-number, transport-type] pairs. The set of port-number and

30

transport-type (e.g., HTTP [2], RTP [49], TCP [42], etc.) are returned to the

client to allow it to implement early binding.

* An application-advertised metric for intentional anycast delivery and early bind-

ing. This metric may reflect any property that the service wants anycast routing

on, such as current or average load. This metric is used to determine the optimal

service node that satisfies a given request, providing a metric-based resolution

that is richer than standard round-robin techniques.

" A unique identifier of the application announcing the name, called the App-ID,

used to differentiate identical names that originate from two different applica-

tions on the same node. App-ID is created by concatenating the IP address,

the port number and the start-time of the application.

" An identifier of the INR closest to the application announcing the name, i.e.,

the INR to which this application announces the name to. This identifier of

an INR is called INR-ID. The use of the INR-ID of the closest INR in a name

update to allow some optimizations in the routing and forwarding operations is

discussed later in this chapter.

INRs use periodic name updates to refresh entries in neighboring INRs and to

reliably disseminate name information. Triggered updates occur when an INR receives

an update from one of its neighboring INRs or from an application that contains new

information (e.g., a newly discovered name) or information that is different from the

one previously known (e.g., due to node mobility a different INR-ID may be associated

with a name).

Figure 3-1 shows the pseudocode used by INRs to process a soft-state name up-

date. First, the INR checks what type of update it is. If the update is to merge a

name, it adds or updates the name information in its name table accordingly. The

INR-ID field in the name update is the ID of the INR to which the application an-

nounces its name. Hence, if the update is coming directly from an application, that

INR-ID should be set to my-INR-ID. After that, the INR also sends a triggered up-

date to all its neighbors (except the neighbor from where the update came). If the

31

if receive a name update (Name, App-ID, Metric, Early-binding,

INR-ID) from n

let r be the result of looking up from name table for

Name announced by App-ID

if (name update is to MERGE the name)

if (r = null) or
(some information in name update is different from r)

if (n is a neighbor INR)

merge the following record: (Name, App-ID, Metric,

Early-binding, INR-ID) to name table

else if (n is an application)

merge the following record: (Name, App-ID, Metric,

Early-binding, my-INR-ID) to name table

associate the record with a lifetime

propagate name update to all neighbors, except n

else if (name update is to REMOVE the name)

if (r != null)

remove the record containing both Name and AppID from

name table

propagate name update to all neighbors, except n

Figure 3-1: Soft-state name update processing

update is to remove a name, the INR simply removes the name and its name-record

and propagates this update to its neighbors (except the neighbor from where the

update came). The code assumes that there is another process that sends periodic

refreshes of valid names to appropriate neighbors.

Here, we use the term name table to refer to a conceptual data structure used to

store the correspondence between names and name-records. The actual implementa-

tion of a name table is usually a tree (rather than a table) (e.g., a name-tree in [50])

to speed up the name lookup process.

When clients make name resolution requests, INRs resolve them using the infor-

mation obtained from service advertisements and neighboring INRs' name updates.

In addition to sending name resolution requests, clients can send a query expres-

sion to discover whether names with particular attributes exist in the system. This

32

mechanism is useful for clients to bootstrap in a new environment.

3.2 Routing Protocol

In addition to maintaining up-to-date name information, INRs maintain the overlay

routing information to get to every name in the system. INRs use this information

for intentional multicast forwarding to determine the appropriate next-hop INR when

multicast messages arrive. Intentional anycast, on the other hand, does not require

this information since it tunnels the message and does not forward the message across

the INR network.

One possible way of obtaining the next-hop information of the overlay route toward

a name is by simply observing the direction from where the name update (sent by the

name discovery protocol previously discussed) is coming from, since that direction

must be the one toward the source of the name. This is equivalent to running a

routing protocol for each name. We observe, however, that many names share a

single route - in particular, all names that are originally disseminated by a given

INR have the exact same route on the overlay network in getting to other INRs in

the system (since routes are based on the topology of the overlay). This suggests that

performing routing on a per-INR basis is a natural approach, rather than routing

on a per-name basis, thereby reducing the number of updates that need to be sent

when the overlay topology changes. This approach is beneficial since the INS overlay

topology is dynamic and adaptive to network performances (discussed in Chapter 4),

which may change from time to time depending on the network status. We note that,

as discussed in Chapters 4 and 6, topology change occurs only when there is some

considerable performance benefits gained as the result.

Using this approach, in addition to running a name discovery protocol, INRs run

a routing protocol that sends updates about overlay routes to reach different INRs

in the system. The number of route updates is proportional to the the number of

available INRs, and not to the number of names in the system. While the name

discovery protocol disseminates the information associated with a given name (i.e.,

33

the name-record of the name) by using a name update, routing protocol disseminates

the availability of a route on the overlay INR network to reach a given INR that

disseminates a given name, by using a route update.

Each route update contains routing information for an INR-ID, consisting of the

next-hop INR and the hop-count metric for the route toward the INR-ID. Since the

topology of the INR network is a tree, a flooding of a route update initiated by an INR

is enough to determine the path to the INR. Next-hop INR of the route is determined

simply by observing from where the route update message is coming'.

INRs treat the routing information (i.e., overlay paths to reach different INRs

in the system) as soft-state. Similar to the soft-state name information, soft-state

routing information requires periodic refreshes to prevent valid routes from expiring.

Thus, each INR periodically initiates a flooding of a route update to the INR network

to refresh its route.

Treating routing information as soft-state improves the robustness of the system

against network partition and INR-node failures. That is, network reachability and

INR-node failures will be detected in a timely manner. Without having periodic

soft-state refreshes, detecting whether certain routes are still valid may not always

be possible without requiring knowledge of global INR network topology. Aliveness

of an INR can be detected in a timely manner only if there are periodic refreshes to

validate its availability. Moreover, soft-state routing reduces the complexity of the

overlay routing machinery; INRs build their routing table simply by listening to the

route update messages passing by, rather than by requiring transactional operations.

A routing table is used to store the correspondence between an INR-ID and its

route on the overlay network (i.e., the next-hop INR toward that INR-ID). Figure

3-2 shows the relationship between a name table and a routing table for the process

of resolving a name to its next-hop INR (performed during intentional multicast

forwarding). Determining the next-hop INR for a name requires first looking up the

'Hop-count metric in the route update is hence not necessary for determining route, but is
included because the overlay topology management makes use of this information to perform a quick
healing when a network partition occurs (discussed in Section 4.4).

34

name metric 'INR-ID -+ Next-hop INR
-Early binding information

(IP address, INS port
number, a set of [port,
transport-type] pairs)

INR-ID of the INR to
which the application
announces the name

Figure 3-2: Name resolution to a next-hop route. Each entry in the name table

provides information about a name, including application-controlled metric, early

binding information, App-ID and INR-ID for the name. Each entry in the routing
table provides the next-hop route information for INR-ID. Resolving a name to its

corresponding next hop INR needs first a lookup in the name table to retrieve the

associated INR-ID of the name, and then a lookup in the routing table to determine

the next hop INR for that INR-ID.

name from the name table, which returns the INR-ID associated with the name (i.e.,

the INR-ID of the INR closest to the application announcing the name), followed by

looking up that INR-ID from the routing table to determine the next-hop INR of the

route. The implementation uses an optimization that removes the second lookup by

incorporating "pointers" from entries in the name table to the entries in the routing

table (see Section 6.2).

Mobility. INS name discovery and routing protocols keep track of changes due

to network mobility and physical mobility. Because of node mobility, clients and

services may change their network locations and may attach to a different INR after

the mobility. Since applications periodically refresh their advertised names, INRs can

track any changes that occur due to mobility. If an application's IP address and/or

port number change because of mobility, INRs quickly update the information in

their name table accordingly. However, if the mobile application now acquires a new

IP address (and perhaps a port number), the INRs need to distinguish between an

35

Looking up a name from name table
returns its name-record.

Its name-record:
- App-ID of the application

announcing the name
- Application-controlled

Looking up an INR-ID
from routing table
returns its next-hop INR.

existing application from before the mobility and a new application coming up that

happens to announce the same names. INRs distinguish each application from its

unique App-ID 2 ; a mobile application will retain its App-ID in the event of mobility

and this ID is sufficient for INRs to discern whether the name refresh comes from a

pre-existing mobile application or a new one joining.

If a mobile application with App-ID id1 attaches to a different INR after the

movement and sends a name refresh from its new location to the INR, the INR notices

that the name refresh from idi is now sent directly to it, indicating the application

node has moved and attached to it. Thus, the INR floods a triggered name update

letting others know about this new route to App-ID id1.

3.3 Soft-State Discussion and Optimizations

Name discovery protocol treats name information as soft-state, associated with a

lifetime. Such state needs refreshes to prevent it from expiring. This is in contrast

to the hard-state information, which has no timeout and never expires; an explicit

removal operation is required to remove hard-state information.

Soft-state names offer the benefits of robustness and fate sharing, allowing appli-

cations to join and leave the system without explicit registration and de-registration.

This is very useful in the system where intentional names change rapidly, coming

and going in a short interval. However, in the system where only a fraction of the

names actually change, benefits of soft-state come at the cost of having to send name

updates periodically, including the ones that have not changed, just to prevent them

from expiring. One way to minimize the number of name periodic updates, while

still attaining the benefits of fate sharing and implicit registration/de-registration,

is to split the maintenance state into soft-state between applications and their cor-

responding first-hop INRs3 (i.e., periodic advertisements), and hard-state between

2 An App-ID is constructed by concatenating the IP address of the node, the port number, and

the start time of the application (discussed in Section 2.2).
3 A first-hop INR is the INR to which an application attaches for name advertisements, queries,

and other INS services.

36

INR

Incremental updi

Periodic

R network

Service

Figure 3-3: Minimizing number of name updates between INRs by splitting state
maintenance of names into soft state (between applications and their first-hop INRs)
and hard states (between INRs). Applications periodically advertise themselves and
INRs send hard-state incremental updates (i.e., send only what has changed - not
periodically) between each other.

INRs (using incremental updates). This means that only the first-hop INR maintains

a lifetime of name information and other INRs never expire the information unless the

first-hop INR tells them so. That is, other INRs follow whatever information the first-

hop INR has for that name using incremental updates. Incremental updates mean to

send only the name-records that change and using hard-state means to remove only

when there is an incremental update to explicitly remove the name.

Figure 3-3 shows this optimization and Figure 3-4 shows the optimized algorithm

for name-update processing. In this algorithm, some names are soft-state and some

are hard-state. Names that are received directly from application advertisements are

soft, but the ones received from neighbors are hard-state. The code assumes that

there is another process that monitors which soft-state names have expired and then

sends incremental updates to neighbors to remove those expired names.

In this design, the responsibility for maintaining the up-to-date mappings of a

name is delegated to the first-hop INR, and the name updates between INRs are

37

--- Soft-state
periodic
advertisement

-- * Hard-state
incremental
update

if receive a name update (Name, App-ID, Metric, Early-binding,

INR-ID) from n

let r be the result of looking up from name table for

Name announced by App-ID

if (name update is to MERGE the name)

if (r = null) or
(some information in name update is different from r)

if (n is a neighbor INR)

merge the following record: (Name, App-ID, Metric,

Early-binding, INR-ID) to name table

make the record never expire

else if (n is an application)

merge the following record: (Name, App-ID, Metric,

Early-binding, my-INR-ID) to name table

associate the record with a lifetime

propagate name update to all neighbors, except n

else if (name update is to REMOVE the name)

if (r != null)

remove the record containing both Name and App-ID from

name table

propagate name update to all neighbors, except n

Figure 3-4: Modified name update processing to handle soft-state and hard-state.

reduced. However, this approach introduces a new problem. Since name information

in the non-first-hop INRs is stored as hard-state, when a network partition that splits

the overlay network into multiple disconnected components occurs, how do we know

which names are still valid and which are not? Using a soft-state mechanism, names

that are unreachable will eventually time out and get removed, but there is no timeout

mechanism for the hard-state case. How do we know which names are no longer valid?

The answer to this question lies in observing the network reachability information.

This information is still soft-state because of the soft-state (overlay) routing infor-

mation maintained by the routing protocol. By correlating name table and routing

table, the name discovery protocol can determine which names are no longer valid.

That is, if the route entry for some INR-ID is no longer valid in the routing table,

38

then it must be that all names that have that INR-ID associated with them are no

longer valid either in the name table.

The routing table may display transients during changes in the overlay topology.

This might be a problem in the case when the partition occurs only for a brief pe-

riod (such that the connectivity is restored before the route entries time out), but

during that brief period of disconnectivity an explicit name removal update starts

being flooded (but does not get to the disconnected INRs). Those INRs that are in

temporary isolation never know about the name removals and correlating with the

routing-table entries, which have never timed out as yet, is not helpful. How can

INRs synchronize their name tables? One simple solution used here is that to keep

any deleted names for a short period of time to ensure that INRs in some partitioned

component have already removed unreachable names. If connectivity is restored be-

fore the routes time out, then by keeping deleted names for a while, the INR can

inform the newly connected component of the explicit name removal.

Another logical question following the above discussion would be "is it also possible

to use hard-state (overlay) routing information to reduce the number of periodic

updates for the routes?". The answer to this is not obvious, and it is not clear

whether it is either possible or even desirable! Hard-state routing information imposes

a difficult synchronization process for routing tables when a network partition occurs.

Using soft-state routing information, routes that are unreachable will eventually time

out and get removed. However, when there is no timeout for route information (as

with hard-state), an INR cannot be sure which routes are supposed to be removed

when the partition occurs without having the knowledge of the global overlay network

topology. Each INR in its distributed view of the network topology knows only

the directional vector toward an INR. This directional information, however, may

have transients when the overlay topology changes, during which the information

is not accurate. Hence, relying solely on the directional vector information for a

route to determine whether that route is supposed to be removed is neither robust

nor accurate. Since everything is permanent in the hard-state case until an explicit

"cremove"7 message arrives, incorrect information may persist in an INR for a long

39

period of time, thus reducing the responsiveness and robustness of the system.

Supposedly, we allow some inaccuracy of routes that is caused by network parti-

tions, but require that as soon as the partition is healed all routing information must

be synchronized. This relaxed requirement is often impractical, but even with this

relaxed requirement, it can be shown that synchronizing routing tables after a par-

tition is healed requires complex message logging and sequence numbering for each

update, or otherwise special refresh messages need to be formed, by having all the

INRs each broadcasts its availability again right after the connectivity is restored.

Of course, allowing inaccuracy of routing information during network partition is not

as robust. Hence, INS routing protocol prevents this situation and uses soft-state

periodic refreshes for routing information.

To conclude the soft-state discussion, INS splits name information into soft-state

names (between applications and their first-hop INR), and hard-state names (be-

tween INRs). This mechanism allows the system to attain the benefits of implicit

registration/de-registration and fate-sharing properties with less network bandwidth

consumption used for name updates between INRs. Hard-state names between INRs,

however, introduce a difficulty in detecting unreachable names due to network par-

titions that split the INR network. The soft-state (overlay) routing information is

the answer to detecting unreachable INRs, and thus detecting unreachable names

disseminated by those INRs.

3.4 Message Forwarding: Anycast and Multicast

The central activity of an INR is to resolve an intentional names to their corresponding

network locations. When a message arrives at an INR, the INR performs a lookup

on the destination name in its name table to obtain the corresponding name-record

of the name. By integrating name resolution and message routing in the late binding

process, INS enables clients and services to continue communicating even if the name-

to-location mappings change during the session.

Late binding offers two basic types of message delivery: intentional anycast and

40

ServiceClient using intentional anycast

INR

name + data

Client using intentional multicast

Service

Figure 3-5: Intentional anycast and intentional multicast forwarding.

intentional multicast. Figure 3-5 shows the message forwarding performed by INRs

in each type of delivery.

3.4.1 Intentional Anycast

In intentional anycast, when multiple end-nodes satisfy a given name request, the

INRs forward the message only to the optimal one. Optimality is based on the

application-advertised metric that is included when the application advertises its

name. This metric is under application control, such as its current load. An ap-

plication requesting intentional anycast sets the Delivery flag to any and includes

an intentional name describing the attributes of the intended destinations for the

message in the message header, and then sends the message to an INR. The INR

performs anycast forwarding of the message using the pseudocode shown in Figure

3-6. To make the pseudocode more readable, several simplifications have been made,

in particular, the handling of null result and the details of the inference mechanism

are not shown.

First, the INR learns by inference about the source name of the message. It

41

anycast packet p that is received from n

perform inference on the source name of p

let nrset = the set of name-records returned by the look up
process in looking up name table for destination name of p

if (n is an INR)

let filtered-set = all name-records in nrset that have
INR-ID equal to my-INR-ID

else if (n is an application)

let filtered-set = nrset

let best-record = name-record in filtered-set that has the
least metric

if (INR-ID in best-record = my-INR-ID)
forward p to the application with App-ID in the best-record

else

forward p to the INR with INR-ID in the best-record

}

Figure 3-6: Pseudocode for intentional anycast.

then looks up all the end-nodes that satisfy the destination name of the message and

picks the one that has the least metric. Before selecting the optimal one, it performs

a filtering to prevent the tunneled message from circling around different last-hop

INRs due to rapid changes of metrics determining the optimal end-node. Then, if the

INR is already the one closest to that optimal end-node, it forwards directly to the

end-node; otherwise, it forwards to another INR that is closest to it.

Intentional anycast performs anycast delivery based on the service-advertised met-

ric, i.e., a metric under application control. This is in contrast to IP-level anycasting,

which selects a route based on a network-layer metric, such as hop count or network

latency, which may not optimize a metric useful to applications.

The decision to forward a message first to the INR closest to the end-node, rather

than forwarding it directly to the optimal end-node is due to the dynamic metric of

the network. In a number of cases, this method improves the responsiveness of the

system, since changes to the name information are usually tracked more rapidly by

the closest (local) INR rather than the one farther away; i.e., an INR usually has

42

more up-to-date information about its directly connected end-nodes. The benefits of

this are more apparent when the INRs span a wide-area heterogeneous network.

3.4.2 Intentional Multicast

In intentional multicast, when multiple end-nodes satisfy a given name request, the

INRs forward the message to all those end-nodes. An application requesting inten-

tional anycast sets the Delivery flag to all and includes an intentional name describing

the attributes of the intended destinations for the message in the message header, and

then sends the message to an INR. The INR will perform the multicast forwarding of

the message using the pseudocode as shown in Figure 3-7. Again, to make the pseu-

docode more readable, details of the handling to null result and the exact inference

on source name are not shown.

First, the INR learns about the source name of the message using inference. It

then looks up all the end-nodes satisfying the destination name of the message and

forwards the message along the overlay spanning tree of the INR network to all end

nodes satisfying the destination name. The alreadySentTo set is used to aggregate

paths that are common to some of the end-nodes, such that the message is sent only

once across that common path (instead of multiple times equal to the number of

end-nodes sharing that common path).

Forwarding messages along the overlay tree of the INR network with the afore-

mentioned overlay path aggregation enables aggregations of message forwarding on

the physical links to some degree as well. However, the actual gain is in the "aggrega-

tion" of network latency, since INS optimizes its overlay topology based on a network

performance metric, in particular the network latency, and not on how aligned it is

to the underlying network topology (details of the overlay topology are discussed in

Chapter 4). What this means is that local replications of a message by the INR closest

to the matched end-nodes in most cases incur less delay than re-sending the message

again from the source. Similarly, INR replicating a message to neighbor INRs in nor-

mal cases incurs less delay than the neighbor INRs requesting the message directly

from the source INR again. Intentional multicast enables a data distribution mecha-

43

multicast a packet p that is received from n

{
perform inference on the source name of p

let nrset = the set of name-records returned by the look up
process in looking up name table for destination name of p

alreadySentTo = {}

for each record r in nrset

if (INR-ID in r = my-INR-ID)
forward p to the application with App-ID in r

else

let nexthop = the next hop INR for overlay route toward
INR-ID in r (found by looking up routing table)

prevent sending it back to where we receive it from

if (nexthop == n) continue

; send to a nexthop only once
if (nexthop is in alreadySentTo) continue

add nexthop to set alreadySentTo

forward p to nexthop

}

Figure 3-7: Pseudocode for intentional multicast.

nism where a source pushes its data toward all interested clients and clients advertise

themselves as being interested in receiving the data by specifying their intentional

names.

Intentional multicast uses an intentional name as the group handle, providing

a high degree of flexibility to handle dynamic group communication. By composing

different attributes and values as part of the name, a new group is created "on the fly"

without having to perform address allocation in advance as is the case for IP multicast

[15]. Some example applications, such as retrieving data from all temperature sensors

that currently read a sub-zero temperature within a particular region, requires the

ability to handle dynamic groups responsively, since the members of the group are

directly dependent on the exact information the clients are seeking (i.e., sub-zero

temperature in this example) and the current data the services supply (i.e., current

44

temperature degree that each sensor reads). Furthermore, the flexibility in composing

a new group enables more than just receiver-initiated group communication.

3.4.3 Optimizations

In general, looking up a name incurs a higher overhead than looking up a fixed-length

number or label. One possible optimization to reduce the amount of name-lookup

overhead in the forwarding hop-by-hop across overlay network for intentional multi-

cast delivery is to associate a fixed-length label to each destination name of multi-

cast messages. Similar to Multi-Protocol Label Switching (MPLS) [47] in lieu of IP

lookups, label switching in INS speeds up a name lookup process on the downstream

INRs. Only the first-hop INR that receives a message from an application needs to

lookup a name to find the associated label, which will then be inserted back into the

message for downstream INRs to immediately use it in determining its next-hop INR.

Here, each INR maintains a cache of labels for forwarding (i.e., a routing table for

labels). The same name-to-label mappings must be used among all INRs to enable

this, implying that some label distribution mechanism must be employed. Using the

above forwarding scheme however, no explicit label distribution is necessary. When

the first-hop INR inserts a label back into the message during message forwarding for

use by downstream INRs, the label is indirectly being distributed. That is, when the

first-hop INR receives a message from an application, it checks whether there exists

a label for the destination name already in the cache. If it does not exist, it creates a

new label for the name, appends the label to its cache of labels, and inserts the label

back into the message. Downstream INRs that forward the message will then use the

same name-to-label mapping as the one inserted in the message if no such label exists

yet in their caches of labels.

This optimization reduces the overhead of using a name as a group communication

handle. By creating an "internal address" for the group on which the routing and

forwarding of messages within INR network are based on, INRs remove much of the

overhead of looking up name, while at the same time allowing applications to still an

expressive and flexible handle for communication.

45

In this chapter, we have described the algorithms and protocols used by INS

name resolvers to disseminate name and routing information. We explored the ben-

efits of soft-state names and soft-state overlay routing information. In addition, we

introduced an optimization to gain the benefits of soft-state with much less network

bandwidth consumption, i.e., by splitting the state maintenance of names into soft-

state (between applications and their closest INRs) and hard-state with incremental

updates (between INRs). The soft-state overlay routing information ensures that

network partition and INR-node failures are detected in a timely fashion. Finally,

we described the INS message forwarding schemes, which include intentional anycast

and intentional multicast. We presented an optimization to reduce the overhead of

looking up a name during message forwarding by associating a fixed-length label to

the destination name of multicast messages and performing forwarding decision based

on the label.

46

Chapter 4

Self-Configuring Resolver Network

INS uses a decentralized network of cooperating name resolvers to provide a system-

wide resource discovery service. INRs form a resolver network to exchange name

and routing information, and also to forward messages during intentional multicast

delivery. The resolver network is formed as an overlay network over IP unicast, leaving

the underlying network-layer addressing and IP routing architecture unmodified. In

our current design, INRs self-organize into a spanning tree topology, providing loop-

free connectivity.

Since updates and multicast messages will flow along this spanning tree, its "links"

should be aligned to the paths having good network performance, such as low net-

work latency paths. In other words, the peering (neighbor relationships) between

INRs should be aligned to optimize network performance. Existing distributed algo-

rithms that construct a spanning tree are not generally well suited to our operating

environment because of the degree of dynamism due to node mobility, nodes joining

and leaving the system, and variations and fluctuations in network performance and

reliability in this environment. INS uses a novel distributed self-configuring algo-

rithm to keep the spanning tree of the resolver network adaptive to optimize network

performance in a scalable fashion, and self-improving such that it eventually evolves

into a minimum spanning tree in the absence of mobility. The main feature of the

algorithm is its capability to evolve any tree into an optimal tree in a distributed

manner by using relaxation operations that incrementally and asynchronously adapt

47

the neighbor relationships between INRs.

Although the self-configuring algorithm presented here is for constructing and

maintaining an adaptive spanning tree of the INS resolver network, the algorithm is

general enough to be applicable to other systems that desire an adaptive and self-

improving network topology that evolves toward optimality.

In Section 4.1 we give an overview of the algorithm, including some assumptions

used by the algorithm and an example showing how the algorithm evolves any span-

ning tree into a minimum spanning tree using relaxation operations. Section 4.2

describes the detailed algorithm for relaxation operations, including several condi-

tions to regulate concurrent relaxation operations and some analysis. Section 4.3

discusses the messages used in relaxation and some optimization to speed up INRs

in adapting routing information due to topology changes. When a node or link fail-

ure occurs, INRs heal the spanning tree by using a healing mechanism presented in

Section 4.4.

4.1 Spanning Tree Algorithm: Overview

To propagate updates and forward data to services and clients, the INRs must be

organized as a connected network. Our self-configuring algorithm constructs a span-

ning tree in a fully distributed fashion based on metrics that reflect the INR-to-INR

round-trip latency, and continually modifies the tree to optimize the latency metric.

The spanning-tree algorithm includes a mechanism by which INRs can detect which

parts of the tree are sub-optimal and hence can be improved. This mechanism of

improving the tree by detecting and replacing a sub-optimal peering between INRs

with a better one is called relaxation. Unlike our relaxation-based approach, other

distributed algorithms that construct a MST do not generally offer the capability

to relax neighbor relationships once the tree is completely constructed, which means

that after the initial construction of the MST, changes of link metrics will require a

significant amount of recomputation to obtain a new MST.

A list of active INRs is maintained by a well-known entity in the system, called

48

the Domain Space Resolver (DSR). As discussed in Section 2.2, DSR supports a

query that returns a list of currently active INRs in the system. Before discussing the

algorithm, we would like to mention our assumptions about the underlying graph.

Assumptions. The algorithm uses the following assumptions about the overlay

graph across which the spanning tree of resolver network is constructed:

" The underlying graph is a fully connected graph (in normal cases, when no

network partition occurs), since the INS resolver network is formed as an overlay

network.

" Each INR has a unique ID, the INR-ID (discussed in Section 2.2). In the

subsequent discussion we use the term node to mean an INR node.

" A link in the overlay graph is a network path between overlay nodes, which may

consist of multiple physical-layer links. We use the term tree links for links that

are part of the spanning tree, and non-tree links for other links in the graph

that are not part of the spanning tree.

" Tree links are reliable. However, since routing information may be in transient

state when overlay topology changes, packets sent across multi-hop links may

not always get delivered to destinations. Tree links are assumed to be bidirec-

tional and FIFO. For non-FIFO links, we can easily add a sequence number to

achieve FIFO. (The implementation uses a long-lived TCP connection between

nodes for the tree links.) Non-tree links are not reliable.

* Each link has a metric (cost), which reflects the INR-to-INR round-trip la-

tency. Since network latency performance may fluctuate, link metrics in this

environment are dynamic.

The algorithm works in (asynchronous) stages. First, a spanning tree is con-

structed amongst the INRs based on the local minimization decision performed by

each INR when it joins the system. Then, the relaxation protocol of the algorithm

evolves the constructed spanning tree into an optimal one.

49

Initial construction of a spanning tree. When a new INR joins the system,

it contacts the DSR to obtain a list of currently active INRs. The new INR then

conducts a set of INR-pings' to the currently active INRs and picks the one to which

it has the smallest round-trip latency and establish a neighbor relationship (or peer)

with it. If each INR does this, the resulting topology is a spanning tree. Because

the list of active INRs is maintained by the DSR and all INRs obtain the list from

the DSR, race conditions are avoided and one can impose a linear order amongst the

active INRs based on the order in which they contacted the DSR. Each INR on the

list, except the first one, has at least one neighbor ahead of it in the linear order, and

the resulting graph is clearly connected by construction. Furthermore, each time a

node arrives after the first one, it peers with exactly one node, creating n-1 links in

an n-node network. Any connected graph with n nodes and n-1 links must be a tree,

which implies that this initial construction leads to a spanning tree.

Evolving toward optimality using relaxations. Of course, despite each INR

making a local minimization decision from the INR-pings, the resulting spanning tree

will not in general be the minimum one. Hence, a new INR, after peering with an

existing one, enters a relaxation phase, where it participates with other INRs in the

system to adapt the neighbor relationships to evolve the spanning tree to a minimum

one.

The idea of the relaxation is to replace a high-cost link with a lower cost-link with-

out disconnecting the graph. An INR can probe for the existence of a better spanning

tree by sending a PROBE message along the current tree path to some destination. The

PROBE message discovers the highest-cost link of the path it has traversed. The other

end of the path, which receives this PROBE message, knows about the bottleneck (i.e.,

the highest-cost link) of the path and can decide whether it can improve the tree by

comparing the cost of the bottleneck with the cost of a direct link between the source

of the PROBE message and itself (see Figure 4-1). If the cost of direct link is better

1The experiments conducted by the INRs to obtain the INR-to-INR latency metric are called
INR-pings, which consist of sending a small message between INRs and measuring the time it takes
to process this message and get a response.

50

A A
(a) (b) (c)

Figure 4-1: Illustration of a relaxation operation. (a) Node A sends a PROBE message
to B along the current tree path to discover the highest-cost link of the path. (b)
Node B receives this message, compares the highest cost with the cost of direct link
between A and B, and finds that direct link between A and B has lower cost. (c) Node
B replaces that highest-cost link with a direct link between A and B. This results in
a new spanning tree with better cost overall.

than the bottleneck cost, it replaces the bottleneck link with a direct link between

the source of the PROBE message and itself. This replacement is called a relaxation

operation.

Since the graph is fully connected (in normal cases, when no network partition

occurs), a node can compare any of its non-tree links for possible relaxations, and

hence a node can select any node in the graph as its destination for a PROBE message.

Potentially, multiple nodes may select different destinations and send their PROBE

messages at the same time; thus, multiple concurrent relaxations may occur. Section

4.2 describes the relaxation operation in more detail, describing how concurrent re-

laxations may violate tree properties and how to overcome this. Relaxation gracefully

handles message losses as well. Message losses will not harm the connectivity of the

graph; they may slow down the evolution toward optimality, but no degradation of

the tree will occur due to those losses. This is in contrast to other distributed algo-

rithms (e.g., the one in [22]) that construct a minimum spanning tree by iteratively

merging smaller components into a bigger one, in which case message losses may stall

the construction of the tree.

Example. Figure 4-2 shows an example of five nodes joining the graph one by one.

Node 1 is the first one joining the system. Then node 2 comes in, and since node

1 is the only available, it peers with node 1. Node 3 comes in and peers with node

51

A

2 since the link metric between 2 and 3 is smaller than the link metric between 1

and 3. At this point, the local minimizations performed by each node still result in

an optimum tree. Next, node 4 comes in and peers with a node whose link metric

to it is the lowest, i.e., node 3. The resulting tree happens to be an optimum tree

already - thus any relaxation operations cannot improve the tree. Finally, node 5

comes in and peers with node 2 because of the same local minimization as before. At

this point, however, the resulting spanning tree is not an optimum one because node

5 "bridges" several previously higher-cost links; in particular, replacing both links

(1, 2) and (2, 3) with links (1,5) and (4,5) will result in a better tree. Hence, the

relaxation operations performed by the nodes can improve the tree. At some point

either node 4 or node 5 sends a PROBE message. The figure shows the case where

node 4 sends a PROBE message to node 5. Node 5 receiving this probe knows that link

(2,3) has the maximum cost among links on the tree path between 4 and 5. Node 5

then compares this maximum cost (i.e., 18) with the cost of the link between 4 and

itself (i.e., 8) and finds the latter is better. Hence, it replaces link (2,3) with link

(4,5). Similarly, at some point there will be a probe from 5 that will reach node 1 (or

a probe from 1 to 5). Either one will detect link (1,2) as the maximum-cost link of

the tree path between 1 and 5 and find direct link (1,5) is better. Hence, link (1,2)

is replaced with link (1,5). The resulting tree is a minimum spanning tree and hence

no other relaxation can improve the tree. The order of the relaxation operations in

this scenario is only an example; of course, replacement of link (1,2) with link (1,5)

may also occur before the other replacement.

4.2 The Relaxation Protocol

After peering with an existing node in the graph, a new node enters a relaxation

phase, in which from time to time it probes for the existence of a better spanning

tree. A node may select a destination for its PROBE in some controllable way, or it

may flood the message to compare all of its non-tree links for relaxations.

In the description that follows, we assume that a node floods its PROBE message

52

0
(a)

(d)

(g)

10b

(b)

1 820

(c)

(e) (0)

(h) (i)

Figure 4-2: An example of a spanning tree construction and its evolution toward a
minimum spanning tree. The links in bold are tree links, while dotted-lines represent
non-tree links. Five nodes join the system one by one (a, b, c, d, e) and each
performs local minimization in selecting another node to peer with. All those local
minimizations result in an optimal tree until the fifth node peering, in which case a
better tree may still be attained. The relaxation operations performed by the nodes
in the system evolve the tree (in (e)) into a minimum spanning tree (in (i)).

for faster evolution toward optimality. In the relaxation phase, every node sends and

listens to periodic PROBE messages. This probe message contains information about

the highest-cost link of the path that it has traveled through. The purpose of PROBE

messages is to determine the largest-cost link along the path between two nodes. By

comparing this cost with the cost of a direct link, the nodes determine if a more

optimal tree can be obtained.

A node i that receives a probe message originated by a node s can determine

the highest cost link of the path between s and i (see Figure 4-3). Suppose the link

between nodes a and b is the highest-cost link of the path. Upon receiving a probe,

53

PROBE

Figure 4-3: A probe message flowing from node s to node i through bottleneck (a,b).
A line with diamonds at the end-points indicates a link, while a line without diamonds
indicates a path.

node i calculates whether it can improve the optimality of the tree by replacing link

(a, b) with the direct link between i and s. If doing so improves the tree, it starts a

relaxation experiment.

Node i starts a relaxation experiment by sending a REPLACE-RQ message to node

b along current overlay tree path to remove link (a, b) from the spanning tree. In this

case, we say that node i initiates an experiment and the experiment starts at the

time the REPLACE-RQ message is sent out. The experiment ends when the link (a, b)

is removed (for a successful experiment), or when node i receives a failure notification

(for a failed experiment). An experiment path is defined to be the path from node i

to node s using the edges of the current spanning tree.

Two experiments are defined to be concurrent if one experiment starts before the

other ends. Two experiment paths are said to be overlapping if they share a common

fragment. There are a number of conditions to be followed to prevent concurrent

experiments from interacting in a way detrimental to the tree property (e.g., resulting

in a disconnected graph or a cycle). Before describing these conditions, let us look

at several examples in which two experiments interact in a way that violates the tree

properties at the end.

4.2.1 Examples

Example 1. This example shows a case in which two experiments interact in a

way that produces a disconnected graph with a cycle in one component. Figure 4-4

shows node s sending a PROBE message to node i flowing across the maximum-cost

link (a, b). Node i receives the probe and determines that replacing link (a, b) with

its link (i, s) will improve the tree. However, before node i sends out its REPLACE-RQ

54

PROBE

(a) (b)

max

(c) (d)

Figure 4-4: An example of two relaxations interacting in such a way that the result
is not a tree. A line with diamonds at the end-points indicates a link, while a line
without diamonds indicates a path. (a) Node s sends its PROBE to node i. (b) Before
i sends its REPLACE-RQ to node b, the path changes as shown due to some other
relaxation initiated by a different node. (c) Node i sends a REPLACE-RQ to b through
the new path. (d) Link (a, b) is replaced with link (i, s), but this new graph is not a
tree.

message to node b to break the link (a, b), a second experiment changes the tree path

between nodes i and s such that the path from i to s is not through nodes a and b

anymore (part (b) of the Figure). Node i, however, is not aware of this path change,

and hence still sends its REPLACE-RQ message to node b. The result is that link (a, b) is

replaced by link (i, s) (part (d) of the Figure), producing a disconnected graph with a

cycle in the component containing i and s. These two experiments are not necessarily

concurrent (by definition of an experiment), because an experiment is defined to start

when node i sends its REPLACE-RQ message and in this example the other experiment

that changes the path to the one shown in part (b) of the Figure may finish before

the REPLACE-RQ from i is sent out.

The next two examples show cases in which two experiments if run concurrently

may produce a disconnected graph and/or a cycle.

Example 2. This example (Figure 4-5) shows a case in which two concurrent ex-

periments happen to disconnect the same maximum-cost link, but each adds its own

55

REPLACE-RQ'

max

REPLACE-RQ

(a) (b)

(c)

Figure 4-5: An example of two concurrent relaxations interacting in such a way that
results in a cycle. (a) Node i receives a PROBE from s and node i' receives a PROBE
from s'. (b) Both i and i' send their REPLACE-RQ to node b. (c) The result is that
link (a, b) is removed from the tree but two new links, (i, s) and (i', s'), are added,
producing a cycle.

new link to tree. Since only one link is removed from the tree and two new ones are

added, the result contains a cycle involving both the new links.

Example 3. This example (Figure 4-6) shows a case in which two concurrent ex-

periments have overlapping experiment paths. But unlike the case in Example 2,

each experiment identifies a different maximum-cost link. This happens because link

metrics are dynamic (reflecting the INR-to-INR round-trip latency in INS); link (a, b)

may at one time have a higher cost than the cost of link (a', b'), but the situation may

be reversed at some later point in time . Hence, node i replaces link (a, b) with (i, s),

and node i' replaces link (a', b') with (i', s'), producing a disconnected graph and a

56

PROBE

PROBE'

(a) (b)

(c)

Figure 4-6: Another example of two concurrent relaxations interacting in such a way
that the result is not a tree. (a) Node i receives a PROBE from s and identify link

(a, b) as the maximum-cost link to be replaced. Node i' on the other hand receives a

PROBE from s' and identify link (a', b') as the maximum-cost link to be replaced. (b)
Node i sends a REPLACE-RQ to node b, while node i' sends a REPLACE-RQ to node b'.

(c) The result is that link (a, b) is replaced by (i, s) and link (a', b') is replaced by

(i', s') producing a disconnected graph and a cycle in the component containing both

i and i'.

cycle in the component containing both i and i'.

In general, two concurrent experiments will violate the tree property if they are

replacing links that both lie on the common fragment of their overlapping experiment

paths. However, if only one of the replaced links is from the common fragment and

the other is from a different fragment, or if none of the replaced links is from the

common fragment, then the result will be another spanning tree (see Figure 4-7). For

more than two concurrent experiments, the same property applies. That is, if more

than two concurrent experiments replace links that all happen to fall in the common

fragment of their overlapping experiment paths, they will not produce a spanning

tree.

57

(a) (b)

Figure 4-7: Examples of two concurrent relaxations that do not violate any tree
property.

4.2.2 Conditions

There are four conditions to be met for an experiment to successfully replace a link

without violating the tree properties:

C1. Since the path along which a PROBE traverses may change by the time node

i (which receives the PROBE) starts a relaxation experiment (shown by Example 1

above), node i must verify that the overlay tree path from i to s is still valid before

the actual link replacement occurs. A path from i to s is valid if the link (a, b) replaced

in an experiment is an intermediate link on the path from i to s. In other words, if

the path is valid, disconnecting link (a, b) will produce two disconnected components,

one containing i and a, and the other containing b and s.

One way to ensure a valid path for an experiment is to enforce the REPLACE-RQ

message to travel from i to s through exactly the same path as the path through

which the PROBE that induced the experiment traveled. A possible mechanism for

this is to use "source routing"; that is, each intermediate node that forwards the

PROBE message appends its ID to the message. At the end, the PROBE contains a

list of all intermediate nodes in the order they forwarded it, which can be used by

node i to source-route the REPLACE-RQ message back to node s through link (a, b).

An intermediate node between i and s forwards the REPLACE-RQ message to its next

hop based on the source-routing information. If the source-route contains a link that

is no longer a valid tree link (i.e., it has already been removed from the tree by

58

another experiment), the immediate node of that link fails the experiment by sending

a REPLACE-FAIL to i.

Using source routing to verify whether a path is valid for an experiment works

well, but we can actually relax the requirement further, such that the REPLACE-RQ

does not have to travel through the exact same path as the PROBE message. The path

is valid as long as the REPLACE-RQ message travels through a path that meets the

following two requirements:

(I) The tree path between i and b does not pass through node a (i.e., node a is not

an intermediate node between i and b).

(II) The tree path between a and s does not pass through node b (i.e., node b is not

an intermediate node between a and s).

We can understand these two requirements because a path for the experiment is

valid only if disconnecting link (a, b) produces two disconnected components - one

containing i and a, and the other containing b and s (see Figure 4-3). Node i can verify

the validity of the path by sending a path-verification message along the experiment

path from i to s with each intermediate node participating in enforcing the above two

requirements. This path-verification message can be piggybacked on the REPLACE-RQ

message. Section 4.3 will further discuss the messages used for path verification of an

experiment.

C2. Because link metrics of the graph are dynamic, upon receiving a REPLACE-RQ

to replace link (a, b), node b has to examine first whether the link (a, b) indeed has a

cost higher than the cost of its replacement link.

The rest of the conditions are to regulate concurrent experiments. There are

several ways to prevent concurrent experiments from violating a tree property. One

option is of course to completely disallow concurrent experiments so that the cases

in examples 2 and 3 above will not occur. A better option is to allow concurrent

experiments to continue as long as their experiment paths do not overlap, i.e., each

59

tree link can be part of at most one experiment path. If two or more experiment

paths overlap, then only the first one will continue and the other stops.

This option does work, but as it turns out, we can actually relax the requirement

further to allow concurrent experiments with overlapping experiment paths to con-

tinue as long as they follow the following two requirements, C3 and C4. We know

that two concurrent experiments may violate a tree property only if they both replace

links on the common fragment of their overlapping experiment paths. Condition C3

below is to regulate the case in which they all try to replace a single maximum-cost

link. C4 is to regulate more general cases in which they all try to replace different

links but all those links happen to fall in the common fragment of their overlapping

experiment paths.

C3. Concurrent experiments may all try to replace a single maximum-cost link

(a, b). Without any conditions to regulate them, they may end up producing a cycle

(as shown in Example 2 above). To avoid such race conditions, the immediate nodes

of the link to be replaced must filter and arbitrarily select one of the experiments to

be the winner for the link replacement. In particular, upon receiving a REPLACE-RQ

message, node b needs to check whether node a is also in the middle of some other

experiment that is also trying to remove link (a, b). If both a and b are involved

in concurrent experiments from two different experiment initiators, and both try to

remove the same link (a, b) from the tree, then both a and b have to agree on a single

experiment that will win the replacement. The protocol arbitrarily selects the one

that has the best replacement among those concurrent experiments for the link.

C4. Every experiment needs to perform a path verification as indicated by C1.

However, this process of verification is not instantaneous; it takes the propagation

delay of the path-verification message, therefore, concurrent experiments with over-

lapping experiment paths may influence the validity of one verification. That is, one

fragment of the path may have been verified to be valid, but before the whole path

is verified, the verified fragment suddenly changes because of some other concurrent

60

experiments replacing some links on that fragment. Here, we have the option of either

starting the verification process over if the verified path has changed, or using another

mechanism to regulate these types of concurrent experiments. We choose the later

approach in our algorithm.

In our scheme, each link keeps track of the experiments going across it. If a link

sees the path-verification message of an experiment, it adds this experiment to the set

of experiments having access to the link (this verification message indicates that the

link is part of the experiment path). Two or more experiments may simultaneously

access a single link. Removing a link, however, requires that no other experiments

are currently accessing the link, i.e., exclusive access is necessary for link removal. A

link indicates that it has been exclusively accessed by an experiment by setting its

exclusive-access flag.

Using the above policy, selected concurrent experiments are allowed to proceed

concurrently, but others are not. An experiment that needs to remove some link that

has been accessed by some other experiments will fail. Similarly, an experiment that

needs to access a link that has been exclusively accessed by another experiment will

find that its path-verification fails.

Another complexity this policy introduces occurs when two concurrent experi-

ments with overlapping experiment paths send their path verification messages from

two opposite directions. If both experiments try to replace two different high-cost

links that both lie on the common fragment of their overlapping experiment path,

both experiments may fail. However, the next probe message will determine either

one of the links to be the highest-cost link of the common fragment (thus, both ex-

periments try to remove that single link and either experiment will succeed based on

C3), unless of course the metrics change faster than the time needed to propagate

the path-verification message across the experiment path. In the latter case, there

is no definite better spanning tree within that short interval for the tree to converge

toward. This additional complexity of messages coming from two opposite directions

happens only when metrics are dynamic (which is the case in our environment), and

will not happen with static metrics.

61

Summary. In summary, after a node i receives a probe message generated by node

s and detects that it can improve the tree by replacing the highest-cost link (a, b) of

the path from s to i with its immediate link (i, s), i starts a relaxation experiment to

replace it. First, node i verifies the validity of the current tree path from i to s (con-

dition Cl) by sending a path-verification message along the path. While forwarding

the message to b, each intermediate node checks whether it is the "node a" of the

experiment (i.e., the downstream end-point of the link to be replaced) following the

first condition of C1. In addition, it records which of its immediate tree links that is

part of the experiment-path (C4). Upon receiving the message, node b performs dy-

namic link check (C2) and examines whether node i can gain exclusive access to link

(a, b) (C4) by negotiating with node a (C3). If node i succeeds, the path verification

continues for the path from a to s. As before, each intermediate node checks whether

it is the "node b" of the experiment following the second condition of C1 and also

records which link is part of the experiment path (C4). If the path verification is

successful all the way through s, a notification is sent back to node i, and i can then

replace link (a, b) with link (i, s). This notification also informs all the intermediate

nodes that the path verification is complete, so that they can remove the experiment

from the sets of experiment currently accessing their links.

4.2.3 Analysis

In this section we informally describe our analysis of the algorithm, in particular,

the number of relaxation operations required to evolve a spanning tree, in its worst

case, into a minimum spanning tree (MST). Since the link metrics are assumed to be

dynamic, there will be no definite MST if the metrics are always changing before the

tree converges to a MST. Hence, the following analysis assumes that there is some

steady-state period, in which metrics do not change, that is long enough for the tree

to converge. In other words, we assume the link metrics to be static for the duration

of this steady-state.

We show that it takes at most E relaxation operations to turn any spanning tree

into a MST, where E is the number of overlay links in the graph. Since the graph is

62

normally fully connected, the number of edges is in the O(n2), where n is the number

of nodes in the graph. What this means is that it will take at most 0(n2) relaxation

operations to turn any tree into a MST after the last link-metric changes.

To show that it takes at most E relaxation operations to turn any spanning tree

into a MST, we need to show that in the steady-state after a link is removed (replaced)

from the tree, it will never be added to the tree again. We show this by contradiction.

Since the metrics can be treated as static during the steady-state, the following will

hold:

The only reason a link (a, b) is removed from the tree is because a node i receives

a probe from some other node s that identifies link (a, b) as the highest-cost link of

the path between s and i, and i has a better link to replace (a, b). After link (a, b)

is replaced by link (i, s), there exists a new path that connects a and b through link

(i, s). Let's call this path p(a,b) (see Figure 4-8 part (a)). Since link (a, b) is removed,

all the links on the path P(a,b) must have costs less than or equal to the cost of the

(now non-tree) link (a, b) (by construction, the relaxation operation always removes

the highest-cost link).

Suppose link (a, b) gets added again at some later time. We have two cases

depending on whether P(a,b) has been transformed into some new path or not by

the time link (a, b) gets added again.

" Case 1: No changes on the path P(a,b) by the time link (a, b) is added. Since link

(a, b) gets added again, there must be a link e' on P(a,b) that has a cost higher

than the cost of link (a, b) causing link (a, b) to be favored over e'. However,

this is a contradiction since link (a, b) was removed because all links on P(a,b),

including e', have costs less than or equal to the cost of link (a, b).

* Case 2: By the time link (a, b) gets added again, another relaxation has replaced

some link (a', b') on the path P(a,b) with another link (i', s') causing p(a,b) to be

transformed into some new path Pnew(a,b), which connects a and b through (i', s').

Figure 4-8 part (b) shows one possible path for Pnew(a,b). It can be shown that

all links on Pnew(a,b) also have costs less than the cost of the (non-tree) link

63

Figure 4-8: An illustration used in the analysis of spanning tree algorithm. (a) After
node i replaces link (a, b) with its link (i, s), a new path p(a,b) connects a and b
through link (i, s). (b) Path P(a,b) is transformed into Pnew(a,b) by another relaxation
that replaces link (a', b') with a new link (i', s').

(a, b): the second relaxation replaces (a', b') only if (a', b') is the highest-cost

link of the second relaxation's experiment path. Equivalently, all links on the

second relaxation's experiment path must have costs less than or equal to the

cost of (a', b'), which is less than or equal to the cost of (a, b) (since (a', b') is on

P(a,b)). Hence, all links on the new path Pnew(a,b) (consisting of some/all links

of P(a,b), and link (i', s') and perhaps some/all links of the second relaxation's

experiment path) will also have costs less than or equal to the cost of link (a, b).

Since link (a, b) gets added again, there must be a link e' on Pnew(a,b) that has

a cost higher than the cost of link (a, b), causing link (a, b) to be favored over

e'. However, this is a contradiction since all links on the Pnew(a,b), including e'

have costs less than or equal to the cost of link (a, b).

Since once a link is removed from the tree, it will never be added again, the tree

monotonically converges to a better tree. Since there are E links in the graph, we can

perform at most E relaxation operations, implying that a minimum spanning tree

will be attained using at most E relaxation operations.

64

(b)(a)

4.3 Messaging in the Relaxation Protocol

Probing. Initially, after peering with an existing node in the initial spanning tree

construction, a node is in a probing mode. In this mode, a node sends and listens to

periodic PROBE messages. It sends a PROBE message to all of its neighbors, which in

turn forward the message to all their neighbors except to the neighbor from which

they receive the message. While forwarding a PROBE originated by a node s, an

intermediate node includes information about the highest-cost link of the path that

the PROBE has traveled so far.

We use the notation PROBE(s, (a, b):Cab)

for a PROBE originated by node s, with the highest cost link seen so far on the path

being (a, b) with cost metric Cab. Initially, node s itself sends PROBE(s, ():0) to its

neighbors.

The actions of a node i that receives a PROBE(s, (a, b):Cab) from its neighbor j are

as follows:

(1) First, i determines the highest cost link (a', b') of the path from s to i by

comparing whether the cost of the tree link between i and j is greater than the

highest cost information contained in the PROBE message. The new highest-cost

link of the path is (a, b) if Cab > Cij and (j, i) otherwise. Let's call this new

highest-cost link (a', b').

(2) Then, i determine whether it can improve the optimality of the spanning tree,

by comparing Caib' with Ci, (i.e., the cost of the non-tree link between i and

s). If the tree can be improved (i.e., Ci, < Caib'), i performs step (4) below

(skipping step (3)). Otherwise, it performs step (3) only.

(3) Node i forwards the PROBE message with the new highest cost link information

as calculated before, i.e., PROBE(s, (a', b'):Ca'b'). After forwarding, node i listens

for other PROBE messages (and does not perform any of the steps below).

(4) However, if node i knows that it can improve the tree, it starts an experiment

to replace the highest-cost link of the path (a', b') with a new link (i, s), and it

65

sets its mode from probing to experiment. The communication messages for an

experiment are described in the subsequent paragraphs and are shown in Figure

4-9.

Relaxation experiment. When a node i starts an experiment to replace a high

cost link (a, b) with a lower cost link (i, s), it sends out a REPLACE-RQ((a, b):Cab,

(i, s):Ci,) message to node b along the current overlay tree. This message is also

used for path verification; intermediate nodes that forward the message participate

in verifying that the experiment path of the experiment is valid, conforming to the

condition C1. To verify that the path between i and b does not go through a, ev-

ery intermediate node between i and b, before forwarding the REPLACE-RQ message

toward b, checks whether the "node a" of the experiment is itself. If it is, then the

first condition of C1 is violated and hence the intermediate node fails the experi-

ment by sending a REPLACE-FAIL((a, b):Cab, (i, s):Ci,) back to node i along the tree.

Otherwise, it forwards the message to the next-hop node toward b.

In addition to performing path verification for the experiment, every intermediate

node also keeps track of which experiments are currently accessing its tree link(s).

This step is to follow requirement C4. That is, if an intermediate node receives a

REPLACE-RQ((a, b):Cab, (i, s):Ci,) and is supposed to forward the message across a

link 1 (toward b), the node first has to check whether another experiment is currently

having an exclusive access to link 1. If another experiment does, it fails the exper-

iment initiated by i. Otherwise, it adds the experiment initiated by i to the set of

experiments currently having a shared access to link 1. All intermediate nodes per-

form the same forwarding behavior as above until the REPLACE-RQ message reaches

node b.

A REPLACE-FAIL message, which is sent when an experiment fails, will remove

the experiment from the set of experiments having shared access to the link on the

intermediate nodes. Node b, upon receiving this message, checks whether the cost

of the its link (a, b) to be replaced is indeed worse than the cost of the replacing

link (i, s), since costs may change dynamically (C2). If condition C2 is met, node

66

(1) REPLACE-RQ
p (2) DORMANT-RQ

& (3) CONFIRM-REPLACE

DORMANT- CONFIRM-OK/FAIL (4)
OK/FAIL (5) 4

REPLACE-OK/FAIL (6) 4

(9) REPLACE-DONE

(7) CONNECT-RQ

CONNECT-OK/FAIL (8)

Figure 4-9: Messages for relaxation protocol. The order of messages is noted; however,
the first intermediate node that detects the experiment path to be invalid intercepts
the handshake and notifies node i of the failure immediate using the appropriate fail
message.

b communicates with node a to avoid the concurrency problem where both a and b

receive multiple requests from different experiments to break link (a, b) at the same

time (C3). Node b sets the status of the link (a, b) to in-progress and sends out a

DORMANT-RQ to a. Setting the link status to in-progress is equivalent to acquiring

exclusive access to the link. If multiple requests received, a and b arbitrarily select

the experiment that has the most optimal replacement to be the winner (C3).

Suppose experiment initiated by i is the winner. Node a then sets the status of

link (a, b) from its side to in-progress and continues the path verification by sending

a CONFIRM-REPLACE message to s along the current tree. As before, in conforming to

condition C1, all intermediate nodes that forward this message have to participate

in verifying that the path between a and s does not go through b. Hence, every

intermediate node between a and s, before forwarding the CONFIRM-REPLACE message

toward b, checks whether the "node b" of the experiment is itself. If it is, then

the C1 is violated and it fails the experiment by sending a CONFIRM-FAIL((a, b):Cab,

(i, s):Ci,) back to node a along the tree, which in turn informs b, causing it to send a

REPLACE-FAIL to i. Otherwise, each intermediate node forwards the message to the

next-hop node toward s.

67

4 PROBE

Similar to a REPLACE-FAIL message, CONFIRM-FAIL will remove the experiment

from the set of experiments having a shared access to the link on the intermediate

nodes.

Upon receiving a CONFIRM-REPLACE((a, b): Cab, (i, s):Cj,), node s replies with a

CONFIRM-OK((a, b):Cab, (i, s) :Ci,) sent to node a across the overlay network. This

CONFIRM-OK will flow through the same path as CONFIRM-REPLACE has traveled since

the links on this path have been accessed by the experiment and no disconnection

can happen to those links. The CONFIRM-OK message tells the intermediate nodes

that they can now remove this experiment initiated by i from the set of experiments

accessing the link (experiment by i is not using that link for its path verification

anymore).

Upon receiving a CONFIRM-OK message, node a sets the status of link (a, b) from

in-progress to dormant, and sends a DORMANT-OK to b. Node b also sets the link status

from its side to dormant and sends a REPLACE-OK message to node i along the tree

path. Similar to the CONFIRM-OK message, REPLACE-OK causes the intermediate nodes

between b and i to remove the experiment initiated by i from the set of experiments

accessing the link.

Once it receives the REPLACE-OK, node i performs a handshake to node s to estab-

lish a neighbor relationship, by sending a CONNECT-RQ to and waiting for a CONNECT-OK

from s. Once neighboring is established, node i sends a REPLACE-DONE((a, b):Cab,

(i, s):Ci,) to node b along current tree path to inform b that it can safely remove the

link (a, b) now and remove any state information associated with this experiment.

Why do we need a dormant state with REPLACE-DONE at the end, rather than

having node a and b remove link (a, b) right away after receiving the CONFIRM-OK?

The dormant state is needed to handle retransmissions; suppose that a REPLACE-OK

message is lost on the way, and link (a, b) has been disconnected while link (i, s) is

not yet established due to REPLACE-OK not getting to i. Node i at some later time

re-transmits a request. Node b will fail the request. At this point, node i will never

establish the link (i, s) as a replacement for (a, b) and the resulting graph is discon-

nected. Hence, nodes b and a need to maintain some state (here, by dormant state)

68

before the new link is successfully established. The above algorithm incorporates

timeout with retransmit mechanism for REPLACE-RQ, CONFIRM-REPLACE, REPLACE-OK,

and CONNECT-RQ.

Our algorithm also incorporates a lifetime for shared/exclusive access, such that

access to a link (either shared or exclusive) can not exceed a certain time period. This

mechanism is to prevent some failing node from stalling other experiments, thereby

improving the robustness of the system.

Routing optimization for relaxation. When the spanning tree changes due to

some relaxation operations, the routing information will be in some transient. By

using soft-state routing information, nodes are able to obtain the new routes easily

just by listening to and propagating periodic route update messages that flow through,

and after some period will have all entries of their routing table reflect the new routes.

In addition to this waiting for the periodic updates to come by, nodes involved the

relaxation experiment can actually perform some optimization in distributing the

new route information, since they have enough information about which routes are

changed (i.e., routes that are originally through (a, b) are changed to go through the

new link (i, s)). One way to enable this optimization is as following:

The end-points of the link to be removed (i.e., node a and b) can deduce from its

routing table which nodes will be in a different component if link (a, b) is removed.

Node a and b then send the information about these nodes to node s and i respectively.

Node s receiving this information updates its routing table such that routes to all these

nodes (which will be in different component when link (a, b) is removed) are set with

next-hop to node i, and also floods a route update to all its neighbors (except to

i) about the new routes to all those nodes. Similarly, node i will perform the same

based on the information it receives from node b.

69

4.4 Failures and Healing Mechanisms

This section discusses several mechanisms used to heal the spanning tree when a node

terminates (either on purpose or not) and when a link fails. Planned termination is

easier to heal since the terminating node, right before it quits, can post a notification

to all its neighbors about its intent to quit. Unplanned terminations (failures) need

a more complex healing mechanism.

Planned termination. If a node plans to quit, it posts a QUIT message to all of its

neighbors, containing the notification that it is about to terminate, and waits for their

replies before dropping the connections to all its neighbors. The QUIT message also

contains a list of neighbors it currently peers with, of which information will be used

by the surrounding neighbors to quickly heal around the spanning tree by forming

another spanning tree just among the neighbors of the quitting node themselves. The

resulting (overall) spanning tree is not generally an optimal one, but this healing

quickly restores the tree connectivity and the relaxation operations that are running

on the background eventually turn the tree back into a new optimal tree.

Unplanned termination. Now suppose that a node fails (crashes) and thus it has

no way of posting a QUIT message to its neighbors before it terminates. Without the

QUIT message, the surrounding neighbors of the terminating node eventually detect

the node termination because of the soft-state routing information which will time

out after a lifetime. Even though the surrounding neighbors do not have an explicit

list of neighbors of the terminating node, they can deduce the information from their

routing table (assuming the routing table is in steady state) which nodes are two-

hop away in the direction of the terminating node. They can then heal around the

spanning tree as before.

The tricky part now is that only from this soft-state information, a node will not

be able to differentiate whether the other node actually terminates, or only the link

to that node goes down, in which case that node may still have connections to some

of its other neighbors. In the latter case, forming a spanning tree with all two-hop

70

away nodes in the direction of the unreachable node is not a solution since it may end

up producing a cycle. The algorithm incorporates two types of healing mechanisms

for this:

" Quick healing, which is used to quickly heal a link failure or a node failure.

If quick healing can not successfully heal the whole graph (i.e., there are some

nodes that are still disconnected), incremental healing will be used.

" Incremental healing, which is used after quick healing to ensure all nodes are

connected, or when the quick healing method can not be applied.

Quick healing. In the quick healing, the following steps must be taken by a node

i that detects an unreachability to its neighbor j:

(i) Node i queries all neighbors of j for information whether any of them can still

reach node j. If i finds any such node, it peers with it. Otherwise, it asks all

neighbors of j to form a spanning tree among themselves to heal around the

connectivity. This last step of creating a spanning tree among themselves is

taken only if i has successfully contacted all neighbors of j and finds that none

of them can reach j. If, on the other hand, i is able to contact only a subset of

them (due to possible link failures between i and some of j's neighbors), step

(ii) below is taken first.

(ii) Node i sends out a second round of queries to all neighbors of j to find whether

any of them has successfully found and peered with another neighbor of j that

can reach j. If i finds any such node, it peers with it. Otherwise, as the last

step, node i asks all reachable neighbors of j to form a spanning tree among

themselves to heal around the connectivity.

After performing the above step, node i figures out whether there are some other

nodes that are still unreachable, in which case it enters the incremental healing mode.

71

Incremental healing. When a node detects the existence of some unreachable

nodes (by comparing the entries of its routing table with a list of available nodes in

the system from the DSR), and it can not use the quick healing to heal the connectivity

of the spanning tree, it initiates an incremental healing. It broadcasts a query to find

out whether any node in its component can reach any of those nodes to which it has

no connectivity (i.e., whether any outgoing link of its component can connect to any

of those nodes). Similar to the slotting and damping mechanism used in [53, 20], the

node waits for a random time before sending the query and refrains from sending the

query if it sees another incremental-healing query from a different node.

If multiple nodes reply with a positive answer about the links to connect to any of

those nodes, it selects the link with the least cost and asks the immediate node of the

link to add the link into the spanning tree. Since potentially the other component is

also performing the same search and finds a connecting link, but possibly a different

one (due to dynamic metrics, relaxation interference, or other causes), a cycle may be

formed. Hence, after adding a new link to the tree, the component waits for a period

of time (in the order of the diameter of the network in time) to find out if there are

still some other unreachable nodes and also to detect any cycle in the graph. Cycle-

detection operation can be performed easily by sending the same relaxation's PROBE

message; if a node receives its own probe we know a cycle exists. To get back into a

spanning tree, we need to remove a link from the cycle - the maximum-cost link of

the cycle, of which information is contained in the PROBE. Similar conditions to the

ones for relaxation can be applied to regulate concurrent cycle-detection operations.

After waiting for some period, if a node still finds some unreachable nodes, it initiates

another incremental healing operation as before.

4.5 Summary

In this chapter, we have described the self-configuring algorithm used by the INS name

resolvers to configure themselves into a spanning tree topology that is adaptive and

self-improving based on network latency metrics. Although the algorithm presented

72

was for constructing and maintaining the INS resolver network, the algorithm was

general enough to be applicable to other systems that desire an adaptive and self-

improving network topology. The algorithm works in stages. First, a spanning tree is

constructed amongst the nodes based on the local minimization decision performed by

each node when it joins the system. Then, the relaxation protocol of the algorithm

improves the tree to eventually attain a minimum spanning tree. The algorithm

allows concurrent relaxations to proceed as long as they satisfy several conditions

described. Messages used in the relaxation protocol were also described. Finally,

this chapter discussed the healing mechanisms used to overcome node failures and

network partitions, which include quick healing and incremental healing.

73

Chapter 5

Applications

This chapter describes how applications use INS and presents three demonstration

applications that we have developed leveraging INS supports for resource discovery,

mobility, and group communication. In Section 5.1 we describe the features and

functionality of INS that are provided to clients and services as part of the INS service

model. Section 5.2 presents Floorplan, a graphical service discovery tool; Section 5.3

presents Camera, a mobile camera service; and Section 5.4 presents Printer, a load-

balancing printer utility.

5.1 INS Application Interface

INS provides interfaces that enable applications to take advantage of features such as

transparent node mobility, service dynamism, and flexible group communication by

using an intentional name as the communication handle. Several basic functions for

advertising and querying names to a name resolver are provided:

* Services can periodically advertise their soft-state name information to an INR,

which will be disseminated to the other INRs in the system. Services, when ad-

vertising their name, can include an application-specific metric to be associated

with the name, which is used by the INRs to select the "best" location when

multiple service nodes satisfy a given query.

74

* Services can explicitly update or remove name information they have previously

advertised, without having to wait for the name to time out. This is useful for

example, when a service physically moves to a different location and it wants its

new location attribute to be reflected immediately. In general, when an attribute

in a service description or an application-specific metric for it changes such that

it causes a change in the "best" network location of a service, the service wants

to update its name and any information in its name-record immediately.

" Clients can discover whether names containing particular attributes (which cor-

respond to some services/clients) exist in the system, by sending a request con-

taining a query expression to an INR. Because name information is disseminated

through the INR network in a timely manner, a new service becomes known to

other resolvers and through them to the clients.

Clients and services can request a late-binding delivery service for their messages,

by sending a destination intentional name (describing the attributes of the intended

destinations) together with the data to an INR. The INR determines the appropriate

destination nodes that satisfy the given name and performs the rest of the delivery,

which may involve other INRs in the process. Clients and services that use late

binding can choose to send their messages by either intentional anycast or intentional

multicast by setting the Delivery bit-flag in the message header (message format is

discussed in Section 6.1).

There are some optional functions that enable clients to select whether to allow

an INR to infer the source name of the message. If inference is enabled, the INR that

receives the application's message will infer from which application node the source

name is and record the information in the name table. The INR then disseminates

the information to the other INRs using a triggered update, if the information is new

or different. This inference enables INRs to forward any response from services back

to the requesting clients without having the clients explicitly advertise themselves.

In the intentional anycast delivery, applications have an option to specify the

application ID (App-ID) of the destination name in the message header, causing the

75

INRs that receive the message to forward the message only to the destination name

with the given App-ID. This is useful when a sender wants to maintain persistent

communication to the same end-node under all conditions.

Late-binding deliveries - intentional anycast and intentional multicast - use

names as communication handles, providing a "level-of-indirection" that enables

clients to continue communicating with end-nodes, even if the name-to-address map-

pings change while a session is in progress.

In addition to the late-binding delivery service, INS offers an early binding ser-

vice, which allows an application to lookup a destination name and obtain the cor-

responding network locations. To use this service, an application sends to an INR a

request for early-binding information of a particular name. Receiving the request, the

INR returns a list of early-binding records that match the given name. Each record

consists of an IP address, a port number and an additional set of [port-number,

transport-type] pairs. This service model is useful when services and clients are

relatively static.

INS service model allows clients and services to join and leave the system without

any explicit registration and de-registration. The soft-state mechanism used by INRs

in storing names facilitates the management of up-to-date names.

The details of INS API implementation for clients and services are described in [8].

The API functions for creating and manipulating intentional names in name-specifier

format are described in [50].

5.2 Floorplan: a Service Discovery Tool

Floorplan is a service discovery tool that shows how various location-based services

can be discovered using the INS. As the user moves into a new region, a map of that

region pops up on the user's display as a building floorplan. Floorplan learns about

new services by sending a query expression to an INR about all services in the current

region. The INR then replies with the query result containing all the services in that

region. Floorplan uses the location and service attributes contained in the returned

76

Figure 5-1: A screenshot from Floorplan. It starts by displaying the MIT map with
a circle by NE43 to indicate that a service has been discovered there. Clicking on the
circle brings up a zoomed-in map of building NE43. Clicking on the circle by the 5th
floor brings up a floorplan of the 5th floor. The floorplan shows all services that have
been discovered: cameras in room 503 and 504, three printers in the lounge and one
in room 537, and a TV stream broadcaster in room 518. Clicking on a service icon
accesses or requests functionality from that service.

names to deduce the location and the type of each service and display the appropriate

icon. Figure 5-1 shows a screenshot from Floorplan.

Using INS for discovering resources allows Floorplan to specify what information

or functionality it is looking for, rather than where to find it. Floorplan, when it

starts, obtains the map of the region by describing to an INR the properties of the

map it requires. The INR then forwards the request to the optimal service node (i.e.,

optimal map server) that has the map information satisfying the given properties.

By using INS late-binding in requesting the desired map, Floorplan does not need to

know the network location of the map server. In addition, late binding also provides a

useful abstraction for the map server design, allowing the map server to be replicated

77

M~loorplan: [oganization-mit[building=ne43[floor=Sl]] |BR[IE31

for automatic load-balancing and transparent fail-over of a server. Since INRs are

the ones that determine the appropriate service nodes that have the requested map,

the map server service can also be designed as a network of distributed local map

servers that cooperate to provide a system-wide map service, rather than having all

replicated map servers keep the same amount of information.

In our implementation, Floorplan sends a request using the following intentional

name: [service=map [entity=server]] [location], where location is the region of

which map is requested.

In response, the map server sends the requested map back to the requesting Floor-

plan instance, using the requestor's intentional name to route the message, allowing

the requestor to be mobile (e.g., because the user using the Floorplan moves around

exploring the region).

As services are announced or timed out, new icons are displayed or removed. Click-

ing on an icon invokes the appropriate application for the service the icon represents.

The implementation of Floorplan deployed in our building allows users to discover a

variety of services including networked cameras (Section 5.3), printers (Section 5.4),

and real-time video stream for TV channel broadcast and music jukebox. These

service providers advertise intentional names specifying several of their attributes, in-

cluding their location in the building. For example, a camera in Room 510 advertises

the following intentional name:

[service=camera [entity=transmitter] [id=al] [room=510].

If a service moves to a different geographic location, it refreshes the location value

in its intentional name to reflect the new location, causing the Floorplan to update

and move the icon of the service correspondingly to the new location on the user's

display.

5.3 Camera: a Mobile Camera Service

We have implemented a mobile camera service, Camera, that uses INS. There are

two types of entities in Camera: transmitters and receivers. A receiver requests

78

Figure 5-2: A screenshot from Camera. The display shows the latest image that
has been received. Clicking the "Update" button will request the latest image from
the camera, used in the request-response mode. The "Subscribe" and "Unsubscribe"
buttons are for subscription-style interaction, where the camera sends an image using
intentional multicast destined to all subscribers.

images from the camera the user has chosen (in Floorplan) by sending requests to

an intentional name that describes it. These requests are forwarded by INRs to a

Camera transmitter, which sends back a response with the picture.

There are two possible modes of communication between camera transmitters and

receivers. The first is a request-response mode, while the second is a subscription-

style interaction that uses intentional multicast for group communication. In the

request-response mode, a receiver sends an image request to the transmitter of interest

by appropriately naming it; the corresponding transmitter, in turn, sends back the

requested image to the receiver. To send the image back to only the requester, the

transmitter uses the id field of the receiver that uniquely identifies it. Camera uses

this to seamlessly continue communicating in the presence of node or camera mobility.

One possible value for the id is the application ID, App-ID (discussed in Section 2.2).

For example, a user who wants to request an image from a camera in room 510

can send out a request to INRs with destination name-specifier:

[service=camera[entity=transmitter]] [room=510]

and source name-specifier:

[service=camera[entity=receiver] [id=rl] [room=510]

The transmitter that receives this request will send back the image with the source

and destination name-specifiers inverted from the above. The room attribute in the

destination name-specifier refers to the transmitter's location; the id attribute allows

79

the INRs to forward the reply to the interested receiver.

When a mobile camera moves to a different network location, it sends out an

update to an INR announcing its name from the new location. The name discovery

protocol ensures that outdated information is removed from the name-tree, and the

new name information that reflects the new network location comes into effect. The

camera may also explicitly remove the old name before it expires. Thus, any changes

in network location of a service is rapidly tracked and refreshed by INRs, allowing

applications to continue.

In addition to such network mobility, INS also allows applications to handle service

mobility. Here, a service such as a mobile camera moves from one location to another,

and its network location does not (necessarily) change. However, its intentional name

may change to reflect its new location or any new properties of the new environment

it has observed, and it may now be in a position to provide the client with the

information it seeks. With intentional names, such application-specific properties

such as physical location can be expressed and tracked.

Camera uses intentional multicast to allow clients to communicate with groups of

cameras, and cameras to communicate with groups of users. It takes advantage of the

property that an intentional name can be used not only for rich service descriptions,

but also to refer to a group of network nodes that share certain properties that are

specified in their names. For example, a client can request current image from all

mobile cameras in the west wing of the buildings. Since there can be a different

subset of cameras that happen to be in the west wing at every instant of time, INRs

responsively determine the appropriate camera nodes during the message delivery by

using late binding.

To enable the subscription-style feature, the Camera transmitter sends out an

image destined to all users subscribing to its images by setting the Delivery bit-flag

to all. For example, a camera transmitter located in room 510 sends out its images

to all of its subscribers at once using the following destination name-specifier:

[service=camera [entity=receiver] [id=*]] [room=510]

and set the Delivery bit-flag to all. The use of wild card [id=*] refers to all sub-

80

CU- LPR CI n pstam @ rom53

Figure 5-3: A screenshot from Printer. The display shows the jobs currently in the
printer queue for the named printer (pastrami). "Submit job to pastrami" will submit
a new job to the printer named pastrami, while "Submit job to room 537" will submit
a new job to the least-loaded printer in room 537. It uses the INS intentional anycast
feature to discover the "best" printer node (Printer advertises a better metric for a
less loaded printer).

scribers, regardless of their specific IDs. Using INS late-binding service, camera ap-

plications handle node mobility and enable flexible group communication.

5.4 Printer: a Load-Balancing Printer Utility

The printer client application starts when the user clicks on a printer icon on the

floorplan display. The printer client application has several features. It can retrieve

a list of jobs that are in the queue of the printer, remove a selected job from the

queue provided the user has permission to do so, and allow the user to submit files

to the printer. Job submissions to Printer can be done in two ways, one of which

uses intentional anycast to discover the "best" printer according to location and load

characteristics.

The first submission mode is the straightforward "submit job to name," where

the name is the printer's complete intentional name. The second mode, which is one

we find useful in day-to-day use, is to submit a job based on the user's location and

load status. The printer servers, which are proxies for the actual printers in our im-

plementation, change the metrics that are periodically advertised to the INRs taking

into account the error status, number of enqueued jobs, the length of each one, etc.

The INRs forward jobs to the currently least-loaded printer based on these advertise-

81

ments, and inform the user of the chosen printer. Advertising a smaller metric for

a less loaded printer and using intentional anycast allows Printer to automatically

balance their load.

For example, to submit a file to the least-loaded printer in room 517, the printer

client sends the file with the following destination name:

[service=printer [entity=spooler] [name=*]] [room=517]

and sets the Delivery bit-flag to any. Note that the name of the printer is wildcarded

on purpose. Using intentional anycast, INRs automatically pick the route that has

the best metric for the specified printer name-specifier, which corresponds to the

least-loaded printer in room 517.

Another feature, which increases the robustness of the Printer application, is to

have automatic fail-over mechanism for printers in the same room. Suppose one of

the printers in room 517 fails. Soft-state name information used by INRs ensures that

the intentional name of the failing printer will be eliminated after a lifetime. Hence,

any subsequent requests to send a print job to a printer in room 517 (using the same

destination name as before) will be transparently re-routed to the non-failing printer

in room 517. Using intentional anycast to the "best" printer in the room, clients

transparently handle printer failures and receive automatic fail-over availability.

82

Chapter 6

Implementation

In order to demonstrate the utility of INS, we have implemented INS name resolver

(INR), evaluated and tested it. Our implementation supports all features of INS

service model, including late-binding delivery (intentional anycast and multicast),

early-binding service, name advertisements and queries, and uses a distributed self-

configuring protocol for the construction and maintenance of the INS resolver network.

Our current INR implementation is in Java, to take advantage of its cross-platform

portability and modularity. Clients and services, however, are not constrained to be

written in Java. We have tested this implementation using a number of applications,

including those described in Chapter 5.

In Section 6.1 we show the INS message format that is used by both applications

and INRs. Section 6.2 describes the architecture of an INR in our modular imple-

mentation, with description of functionality for each module. We present our Java

classes that compose each module of an INR in Section 6.3. Section 6.4 evaluates the

performance of our implementation.

6.1 INS Message Format

Figure 6-1 shows the INS message format. The version field indicates the version

of INS protocol used. The hop-count field limits the number of hops a message can

traverse in the overlay. It is initialized by the sender to some value and decremented

83

version hop count pointer to source name

pointer to destination name pointer to options

pointer to data D A unused

source name

destination name

options (if any)

data

Figure 6-1: INS message format.

by one by every INR that forwards the message. Because intentional names are of

variable length, the header contains pointers to the source name, destination name,

options, and data. INRs do not process application data.

The Delivery big-flag (D) is used to determine whether intentional anycast or

intentional multicast is used in the message forwarding. The Application bit-flag (A)

is used to indicate whether the sender of a message is an application or another INR.

This bit-flag is used among others to learn the source name by inference if the source

name is from an application.

The option field is used for several options in the late-binding delivery. Option

field contains a sequence of options, each with the following format:

kind length option-data

Two options are currently provided to applications: (i) an option to enable/disable

INR performing inference about the source name of the message, and (ii) in the inten-

tional anycast delivery, applications may specify an optional application ID (App-ID)

of the destination name in the message, causing the INRs that receive the message

to forward only to the destination name with the given App-ID.

Control messages in INS use the same message format. Control messages are iden-

tified by their destination names containing attribute control-msg. This attribute

is reserved for INS control messages, such as name and route updates, overlay tree

84

8 15 16 24 310

Intentional
anycast, multicast

i aDie

------- -- --- -- -- -- --- -

TCP/UDP Incoming message

Figure 6-2: INR node architecture.

probing and relaxations, as well as control messages to/from applications for name

advertisements, name queries and early binding requests. The following section de-

scribes each type of control messages in more detail in the context of each module of

an INR.

6.2 INS Resolver Node Architecture

INRs communicate with one another, forwarding application messages via UDP and

exchanging name updates and route updates via long-lived TCP connections that are

established during the spanning-tree construction of the resolver network.

INR is structured and implemented in a modular fashion. Figure 6-2 shows the

structure and modules of an INR, which include the following:

* Name-tree, a data structure that stores the mapping between a name and its

corresponding name-record. Each name-record contains all associated informa-

tion for a name, including the App-ID of the application announcing the name,

the application-advertised metric, the early-binding record, and the INR-ID of

85

the INR to which the application attaches. Since name-tree is dependent on the

exact name language used, different languages may use different data structures

for the maintenance of names. Current implementation uses name-specifier for-

mat and implements the name-tree as shown in Figure 6-3 [50]. Looking up a

name in the name-tree will return its corresponding name-record.

" Routing-table, a data structure that stores the routing information to get

to every active INR in the system through the overlay network. The table

maintains a mapping between INR-ID and the next-hop INR for the route

toward INR-ID.

" Neighbors and non-neighbors, data structures that maintain the informa-

tion about current neighbors that the INR-node peers with and the rest of the

currently active INRs in the system. An INR obtains a list of active INRs

in the system from the DSR. Neighbors are selected and maintained by the

OverlayManager.

" RouteManager, a module that implements the name discovery and routing

protocols. It has a reference to the name-tree and routing-table data structures.

The name discovery protocol maintains the names in the name-tree using soft-

state and hard-state mechanisms as described in Section 3.3. That is, periodic

advertisements from applications are stored as soft-state, while incremental up-

dates from neighbor INRs are stored as hard state. Name discovery protocol

employs a dedicated thread that periodically checks for the expiration of soft-

state names and then sends an incremental update to neighbors to remove

any expired names that it found. Routing protocol processes route updates

and periodically disseminates updates to refresh the routing-table entries of the

neighboring INRs. Routing protocol employs a dedicated thread for the periodic

refreshes. Since RouteManager is a handler for name-update and route-update

control messages, during its initialization it registers itself to the name-tree as

the handler for those control messages.

86

" OverlayManager, a module that implements the self-configuring spanning

tree. When the INR-node starts, OverlayManager contacts the DSR to retrieve

the list of currently active INRs in the system and selects the best INR to

peer with based on the INR-to-INR round-trip latency. NetworkMonitor in the

INR is the one responsible for obtaining measurements of network performance,

including the network latency to other INRs. After peering with an existing

active INR for the initial construction of the spanning tree, OverlayManager

enters a relaxation mode, in which it listens to and sends out periodic PROBE

messages to/from neighbors. OverlayManager is the one that keeps the span-

ning tree adaptive and self-improving using the relaxation protocol; it handles

the relaxation messages specified in Section 4.3. In performing relaxations,

OverlayManager incorporates some hysteresis with thresholds, such that it re-

places a high-cost link with a lower-cost link only if the benefit obtained by this

replacement exceeds a certain threshold.

" AppManager, a module that serves clients and services. It handles name ad-

vertisements and queries from applications and replies to early-binding requests

from applications. Name advertisements from applications will be stored by the

AppManager to the name-tree as soft-state names.

" NetworkMonitor, a module that determines the network performance, partic-

ularly the round-trip latency, to all other active INRs in the system. It responds

and performs the INR-ping experiments, of which measurements are used by

the OverlayManager during the initial construction of the tree and from time

to time when it is in the relaxation mode.

* Forwarder, a module that decides where to forward an incoming message. It

bases its forwarding decision on the name-tree data structure. When an in-

coming message is received, Forwarder looks up the name tree to retrieve its

name-record. The name-record contains the information of where to forward the

message to. If the message is a control message, the name-record contains the

information of which module is responsible for that control message, and hence

87

the Forwarder passes up the message to that module. Otherwise, if the message

is for another application, it checks the Deliver flag to determine either inten-

tional anycast or intentional multicast forwarding to be used. Intentional any-

cast forwarding follows the algorithm in Figure 3-6, while intentional multicast

follows Figure 3-7. Hence, in intentional multicast after obtaining the matched

name-records, the Forwarder needs to look up the routing table to determine

the next-hop INRs it should forward the message to. The "pointer" mechanism

implemented avoids this second lookup of routing-table, i.e., by creating a new

field in the name-record that stores the "pointer" to the routing-table entry cor-

responding to the next hop INR toward the name. The Forwarder decrements

the hop count field in the message header before forwarding the message to the

application node or to another INR node.

e Communicator, is a module that abstracts away the socket implementations

to neighbors and non-neighbors. It also implements MobilitySocket that au-

tomatically re-binds the sockets whenever changes to its IP address are detected.

Four modules of an INR: RouteManager, OverlayManager, AppManager, and

NetworkMonitor, are handlers to INS control messages. Each handles different types

of control messages corresponding to its functionality. RouteManager handles control

messages that have a destination name containing the following attributes and values:

* [control-msg=name-update]: This control message is for name update, used

by the name discovery protocol to maintain consistent name information among

INRs in the system.

" [control-msg=route-update]: This control message is for route update, used

by the routing protocol to refresh network reachability in the overlay network

to other INRs in the system.

OverlayManager handles all control messages for spanning tree construction and

relaxation protocol. These control messages, including the ones shown in Figure 4-9,

have a destination name containing the attribute and value [control-msg=overlay].

88

Figure 6-3: A name-tree data structure for storing and looking up names in name-
specifier format to retrieve its name-record (from [50]).

Communication between applications and AppManager uses the following control

messages:

" [control-msg=announcement], used by applications to advertise a new name

together with its name record to an INR, or to update the information in its

name record (e.g., changes of application-advertised metric), or to explicitly

remove names they previously advertised.

" [control-msg=discovery], used by applications to query for names in the

system; the query is dependent on the name language used and current imple-

mentation supports exact matches and wildcard entries, allowing omissions of

don't-care attributes.

* [control-msg=early-binding], used by applications to request the early-

binding records of a name.

NetworkMonitor handles control messages that relate to the network performance

89

M

measurements, in particular, the INR-ping messages, which have a destination name

containing [control-msg=ping].

In summary, a message that arrives on an INR node will be received by the

Communicator module from the network-layer (UDP/TCP) handler. Communicator

passes up the message to the Forwarder, which will lookup the name to retrieve its

name-record. If the message is an INS control message, the name-record indicates

which handler (i.e., RouteManager, OverlayManager, AppManager, or NetworkMoni-

tor) the message is for. Otherwise, based on the type of delivery - intentional anycast

or multicast - Forwarder forwards the message using the information contained in

the name-record. Forwarder decrements the hop count field in the message header

and passes down the message to the Communicator, which will then forward to the

application node or to another INR node.

6.3 Implementation Components

Our Java implementation is developed following the modular design of an INR as

shown in Figure 6-2. All the modules and data structures are each implemented by

one or more Java classes. Figure 6-4 shows a list of classes that implement an INR.

The classes that make up the RouteManager modules are RouteManager, Name-

Update, RouteUpdate, and Route UpdateThread. RouteManager class implements the

name discovery and routing protocols, which perform the processing of name updates

and route updates respectively. NameUpdate class is used for incremental updates be-

tween INRs and periodic advertisements from applications, while RouteUpdate class

is used to disseminate and refresh routing information to neighboring INRs. Route-

UpdateThread is a dedicated thread that sends periodic route refreshes to neighbors.

The classes that make up the OverlayManager module are OverlayManager and

DSRManager. DSRManager class implements the communication protocol to a DSR,

including retrieving the list of currently active INRs in the system. This list is then

used by the OverlayManager class to constructs an initial spanning tree. OverlayMan-

ager implements the self-configuring spanning tree algorithm; it performs relaxation

90

operations to evolve the spanning tree into an optimal one.

AppManager class implements the AppManager module, while NetMonitor imple-

ments the NetworkMonitor module. RouteManager, OverlayManager, AppManager,

and NetMonitor classes implement the handling of INS control messages, and are all

sub-class of the IHandler class.

Communicator module is composed of the Communicator class that uses the Mo-

bilitySocket class for its socket implementation, and the Message class that is used

for communication with the Forwarder class.

The classes that make up the Forwarder module are Forwarder class that im-

plements intentional anycast and intentional multicast forwarding, and UDPFor-

wardThread and TCPForward Thread classes that wait for messages being passed up

by the Communicator class.

Neighbors and non-neighbors data structures use the following classes: Neigh-

bors, Node, and NodeSet. Routing-table is implemented as a hash table using the

RouteTable and the RouteEntry classes. Name-tree uses the NameRecord class as

well as a number of classes from [50] (shown in Figure 6-5) to implement a data

structure that stores and looks up intentional names in name-specifier format.

6.4 Evaluation

In this section, we evaluate the performance of our INS implementation, in particular

the responsiveness in handling change and dynamism in services and nodes, and the

performance of the message routing and forwarding for late-binding service. These

experiments were all conducted using off-the-shelf Intel Pentium II 450 MHz com-

puters with a 512 kb cache and 128 Mb RAM, running either Red Hat Linux 5.2 or

Windows NT Server 4.0, with our software built using Sun's Java version 1.1.7. The

network nodes were connected over wireless RF links ranging between 1 and 5 Mbps.

91

6.4.1 Name Discovery Performance

We evaluated the responsiveness of our INS implementation to change and dynamism

in services and nodes by measuring the performance of the name discovery protocol.

We measured the performance of INS in discovering new services, which advertise

their existence via intentional names. Figure 6-6 shows the average discovery time of

a new name as a function of n, the number of hops in the resolver network from the

new name.

When an INR observes a new name from a service advertisement, it processes the

update message and performs a lookup operation on the name-tree to see if a name

with the same App-ID already exists. If it does not find it, it adds the name into its

name-tree and propagates an update immediately to its neighbors. Thus, the name

discovery time in a network of identical INRs and links, Td(n) = n(T + Tm + Tup + d),

where T is the lookup time, Tm is the time to merge a new name into the name-tree,

Tu, is the update processing time, and d is the one-way network delay between any

two nodes. That is, name discovery time should be linear in the number of hops. The

experimental question is what the slope of the line is, because that determines how

responsive INS is in tracking changes.

In our experiments the structure of the name-tree on each INR was relatively

constant except for those merge operations, since we were not running any other

applications in the system during the measurements. Thus, the lookup and merge

times at one INR and the others were roughly the same. As shown in Figure 6-6,

Td(n) is indeed linear in n, with a slope of less than 10 ms/hop. This implies that

typical discovery times are only a few tens of milliseconds, and dominated by network

transmission delays.

6.4.2 Routing Performance

In addition to the discovery experiment, we also measured the performance of the

message routing and forwarding by an INR. For these experiments, we sent a burst of

one hundred 586-byte messages, gathered from the Camera application, between 15-

92

second periodic update intervals. The source and destination names were randomly

generated, on average 82 bytes long. The results are shown in Figure 6-7.

For the case in which the sender and receiver are on the same node, the processing

and routing time varies somewhat with the name-tree size, from 3.1 ms per message

with 250 names to 19 ms per message with 5000 names. This is partially due to the

speed of the name-tree lookups, but is also an artifact of the current end-application

delivery code, which happens to vary linearly with the number of names. We observe

a flatter line when examining the data for messages destined to a remote INR. For the

most part, the next-hop processing time with several thousand names in the name-

tree is between 9 ms and 10 ms per message during the burst . In this case, name-tree

lookups still occur, but the end-application delivery code is not invoked. This gives

a better indication of the pure lookup and forwarding performance.

In this chapter, we have described our INS implementation. We showed the format

of the INS message and the architecture of an INR node in our implementation.

The INR node is designed in modules with a well-defined function for each. We

described the Java classes that made up each module of an INR. Finally, we presented

experiments that evaluated the performance of the name discovery protocol and the

performance of the message routing and forwarding in INS late binding.

93

Java class I Used by INR module [Lines
AppManager
Communicator
DSRManager
Forwarder
HostRecord
IHandler
Message
MobilitySocket
NameRecord
NameUpdate
Neighbors
NetMonitor
Node
NodeSet
OverlayManager
Packet
Resolver
RouteEntry
RouteManager
RouteTable
RouteUpdate
RouteUpdateThread
TCPForwardThread
UDPForwardThread

AppManager
Communicator
OverlayManager
Forwarder
Early-binding information
All handlers
Communicator, Forwarder
Communicator
NameTree
RouteManager
Neighbors
NetworkMonitor
Neighbors
Neighbors
OverlayManager
INS message
Entry (main) module
Routing Table
RouteManager
Routing Table
RouteManager
RouteManager
Forwarder
Forwarder

Conversion (auxiliary class) 87
LoggedPrintStream (auxiliary class) 180
MutableBoolean (auxiliary class) 15
SendWithRetransmit (auxiliary class) 69
MultipleOverlays (auxiliary class) 865
Total 9150

Figure 6-4: Java classes in the INR implementation and their use in the INR module.
The last column gives the number of lines of the source code, including comments
and whitespace.

94

447
409
416
502
273

33
38
70

673
238

66
310
372

71
2124

439
375
138
574
68
68
47

159
24

Java class Used by INR module Lines
NameTree Name-tree 140
AttributeNode Name-tree 123
ValueNode Name-tree 299
NameRecordSet Name-tree 274
Total _ 836

Figure 6-5: Other Java classes from [50] that are used to implement a name-tree.
The last column gives the number of lines of the source code, including comments
and whitesDace.

Name discovery performance

90 -

E
~70

E
60 -

50 -

40 -

30 -

E20-
01

0-
0 1 2 3 4 5 6 7 8 9 10

Number of hops

Figure 6-6: Discovery time of a new network name. This graph shows that the time
to discover a new network name is linear in the number of INR hops.

95

Time to route 100 messages

2000

E 200 - ---- --- - - --- -- -- -----1600 -

1200-

80- local destination

400 - - -remote
destination

0-
0 1000 2000 3000 4000 5000 6000

Names in the name-tree

Figure 6-7: Processing and routing time per INR for a 100-message burst, in the
intra-INR and inter-INR cases.

96

Chapter 7

Conclusions

The combination of heterogeneity and dynamism in the future network environment

makes it hard for applications to discover the network locations of services that best

satisfy their need. Applications often know the services they need, but do not always

know where to find them. In this thesis, we presented an Intentional Naming System

(INS), which allows network applications to gain access to and communicate with

services by specifying their attributes, rather than by specifying where to find them.

INS applications can therefore seamlessly handle node mobility and service dynamism,

and take advantage of a flexible group communication service using an expressive

name as the group handle.

INS uses a simple naming language based on attributes and values to achieve

expressiveness, allowing applications to describe a wide variety of devices and services.

INS is designed to be responsive, easily configurable, and robust.

To achieve responsiveness to mobility and performance changes, INS integrates

name resolution and message routing in an operation called late binding. Late binding

offers two forms of delivery: intentional anycast and intentional multicast. Intentional

anycast forwards a message to the best node satisfying a query while optimizing an

application-controlled metric, and intentional multicast forwards a message to all

nodes satisfying a query.

INS uses a novel distributed self-configuring algorithm that enables its name re-

solvers to configure themselves to form a resolver network without any manual con-

97

figuration. The algorithm constructs a spanning tree in a fully distributed fashion

based on the INR-to-INR round-trip latency, and continually modifies the tree to

optimize the latency metric. The algorithm includes a mechanism by which INRs

can improve the tree and evolve it into an optimal tree, i.e., by using the relaxation

protocol, which incrementally and asynchronously adapts the neighbor relationships

between INRs.

INS uses soft-state periodic service advertisements and soft-state routing informa-

tion between replicated resolvers to achieve robustness. This choice allows a design

where applications can join and leave the system without explicit registration and

de-registration. Soft-state improves the robustness of the system against internal er-

rors and inconsistency, as incorrect information will be refreshed in the next cycle

of updates, and node failures and network partitions can be detected in a timely

manner.

Based on our experience in using INS, we believe that using intentional names with

late binding is a useful way of discovering resources in dynamic, mobile networks, and

simplifies the implementation of applications. We emphasize that INS allows appli-

cations to efficiently track dynamic data attributes, because the choice of attributes

to use in names is completely under application control. We therefore believe that

INS has the potential to become an integral part of future device and sensor networks

where decentralized, easily configurable resource discovery is essential.

98

Bibliography

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and

implementation of an intentional naming system. In Proc. 17th SOSP, pages

186-201, December 1999.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol-

HTTP/1.0. Internet Engineering Task Force, May 1996. RFC 1945 (http:

//www. ietf . org/rfc/rfc1945.txt).

[3] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, V. Shah, and Z. Fei. Application

Layer Anycasting. In Proc Infocom '97, pages 1388-1396, April 1997.

[4] A. Birrell, R. Levin, R. Needham, and M. Schroeder. Grapevine: An exercise in

distributed computing. Comm. of the ACM, 25(4):260-274, April 1982.

[5] T. Bray, D. Hollander, and A. Layman. Namespaces in XML. http: //www.w3.

org/TR/1998/WD-xml-names-19980327, March 1998. World Wide Web Consor-

tium Working Draft.

[6] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A Performance Com-

parison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In Proc.

A CM/IEEE MOBICOM, pages 85-97, October 1998.

[7] CCITT. The Directory- Overview of Concepts, Models and Services, December

1988. X.500 series recommendations, Geneva, Switzerland.

99

[8] A. Chakraborty. A Distributed Architecture for Mobile Location-Dependent Ap-

plications. Master of Engineering Thesis, Massachusetts Institute of Technology,

June 2000.

[9] Y. Chawathe, S. McCanne, and E. Brewer. RMX:Reliable Multicast in Hetero-

geneous Networks. In Proc. IEEE INFOCOM, March 2000.

[10] Y. Chu, S. Rao, and H. Zhang. A Case For End System Multicast. In Proc.

ACM Sigmetrics, June 2000.

[11] Cisco-Web Scaling Products & Technologies: DistributedDirector. http://

www.cisco.com/warp/public/751/distdir/, 1998.

[12] D. Clark. The Design Philosophy of the DARPA Internet Protocols. In Proc.

ACM SIGCOMM, pages 106-114, August 1988.

[13] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an

Integrated Services Packet Network: Architecture and Mechanisms. In Proc.

A CM SIG COMM, pages 14-26, August 1992.

[14] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An Architecture

for a Secure Service Discovery Service. In Proc. A CM/IEEE MOBICOM, pages

24-35, August 1999.

[15] S. Deering and D. Cheriton. Multicast Routing in Datagram Internetworks and

Extended LANs. ACM Transactions on Computer Systems, 8(2):136-161, May

1990.

[16] J. P. Deschrevel and A. Watson. A brief overview of the ANSA Trad-

ing Service. http://www.omg.org/docs/1992/92-02-12.txt, February 1992.

APM/RC.324.00.

[17] A. Deutsch, M. Fernandez, D. Florescu, Levy A., and D. Suciu. A Query Lan-

guage for XML. http: //www.research.att.com/~mff/files/final.html.

100

[18] H. Eriksson. Mbone: The multicast backbone. Communications of the ACM,

37(8):54-60, 1994.

[19] B. Fink. 6bone Home Page. http://www.6bone.net/, January 1999.

[20] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang. A Reliable Mul-

ticast Framework for Light-weight Sessions and Application Level Framing. In

Proc. A CM SIGCOMM, Boston, MA, September 1995.

[21] P. Francis. Yallcast: Extending the Internet Multicast Architecture. http:

//www.yalicast . com/, September 1999.

[22] R. G. Gallager, P.A. Humblet, and P. M. Spira. A distributed algorithm for

minimum-weight spanning trees. ACM Transactions on Programming Languages

and System, 5(1):66-77, January 1983.

[23] D. Gifford, P. Jouvelot, M. Sheldon, and J. O'Toole. Semantic File Systems. In

13th ACM Symp. on Operating Systems Principles, pages 16-25, October 1991.

[24] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol,

Version 2, June 1999. RFC 2608 (http://www.ietf .org/rf c/rf c2608.txt).

[25] M. R. Henzinger and V. King. Maintaining minimum spanning trees in dynamic

graphs. In Proc. 24th International Colloquium on Automata, Languages, and

Programming (ICALP), pages 594-604, 1997.

[26] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and

biconnectivity. In Proc. ACM Symposium on Theory of Computing (STOC) 98,

pages 79-89, May 1998.

[27] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable

and Robust Communication Paradigm for Sensor Networks. In Proc. A CM/IEEE

MOBICOM, August 2000.

101

[28] V. Jacobson. How to Kill the Internet. Talk at the SIGCOMM 95 Middleware

Workshop, available from http: //www-nrg. ee . bl. gov/nrg-talks .html, Au-

gust 1995.

[29] Jini (TM). http: //java.sun. com/products/jini/, 1998.

[30] B Lampson. Designing a Global Name Service. In Proc. 5th A CM Principles of

Dist. Comput., pages 1-10, August 1986.

[31] T. Lehman, S. McLaughry, and P. Wyckoff. T Spaces: The Next Wave. http:

//www. almaden. ibm. com/cs/TSpaces/, 1998.

[32] J. Lilley. Scalability in an Intentional Naming System. Master of Engineering

Thesis, Massachusetts Institute of Technology, June 2000.

[33] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander: A Push-based

Distribution Substrate for Internet Applications. In Proc. USENIX Symposium

on Internet Technologies and Systems, pages 171-181, December 1997.

[34] P. V. Mockapetris and K. Dunlap. Development of the Domain Name System.

In Proceedings of SIGCOMM '88 (Stanford, CA), pages 123-133, August 1988.

[35] J. 0' Toole and D. Gifford. Names should mean what, not where. In 5th ACM

European Workshop on Distributed Systems, September 1992. Paper No. 20.

[36] Object Management Group CORBA/IIOP 2.3. http://www.omg.org/corba/

corbaiiop.html, December 1998.

[37] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus (R) - An

Architecture for Extensible Distributed Systems. In Proc. ACM SOSP, pages

58-78, 1993.

[38] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service, November

1993. RFC 1546 (http://www.ietf.org/rfc/rfc1546.txt).

[39] C. Perkins. IP Mobility Support, October 1996. RFC 2002 (http: //www. ietf .

org/rfc/rfc2002.txt).

102

[40] C. Perkins. Service Location Protocol White Paper. http: //playground. sun.

com/srvloc/slp-white-paper.html, May 1997.

[41] R. Perlman. Interconnections: Bridges and Routers. Addison Wesley, Reading,

MA, 1992.

[421 J. B. Postel. Transmission Control Protocol. Internet Engineering Task Force,

September 1981. RFC 793 (http://www.ietf.org/rfc/rfc0793.txt).

[43] S. Raman and S. McCanne. A Model, Analysis, and Protocol Framework for Soft

State-based Communication. In Proc. A CM SIGCOMM, pages 15-25, September

1999.

[44] J. Reynolds. Technical Overview of Directory Services Using the X.500 Protocol,

March 1992. RFC 1309 (http://www.ietf.org/rfc/rfc1309.txt).

[45] J. Robie, D. Chamberlin, and D. Florescu. Quilt: an XML Query Language.

http://www.w3. org/XML/Group/2000/03/Quilt/, March 2000.

[46] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL). http: //www.

w3.org/TandS/QL/QL98/pp/xql.html, September 1998.

[47] E. C. Rosen, A. Viswanathan, and Callon R. Multiprotocol La-

bel Switching Architecture. http: //www. ietf . org/internet-drafts/

draft-ietf-mpls-arch-06.txt, August 1999. Internet Draft, expires February

2000.

[48] J. Saltzer, D. Reed, and D. Clark. End-to-end Arguments in System Design.

ACM Transactions on Computer Systems, 2:277-288, Nov 1984.

[49] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real- Time Applications. Internet Engineering Task Force, Jan 1996.

RFC 1889 (http://www.ietf.org/rfc/rfc1889.txt).

[50] E. Schwartz. Design and Implementation of Intentional Names. Master of Engi-

neering Thesis, Massachusetts Institute of Technology, June 1999.

103

[51] M. Sheldon, A. Duda, R. Weiss, and D. Gifford. Discover: A Resource Discovery

System based on Content Routing. In Proc. 3rd Intl. World Wide Web Conf.,

April 1995.

[52] I. Stoica, T. S. Eugene, and H. Zhang. REUNITE: A Recursive Unicast Approach

to Multicast. In Proc. IEEE INFOCOM, March 2000.

[53] W. T. Strayer, B. J. Dempsey, and A.C. Weaver. XTP: The Xpress Transfer

Protocol. Addison-Wesley, Reading, MA, 1992.

[54] Rapid Infrastructure Development for Real-Time, Event-Driven Applications.

http://www.talarian.com/collateral/SmartSocketsWP-1.html, 1998.

[55] Universal Plug and Play: Background. http://www.upnp.com/resources/

UPnPbkgnd.htm, 1999.

[56] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Active Names: Flexible

Location and Transport of Wide-Area Resources. In Proc. USENIX Symp. on

Internet Technologies & Systems, October 1999.

[57] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service Location Protocol,

June 1997. RFC 2165 (http://www.ietf .org/rfc/rfc2165.txt).

[58] D. Wetherall. Active network vision and reality: lessons from a capsule-based

system. In Proc. 17th SOSP, pages 64-79, December 1999.

[59] Y. B. Zhao. XSet. http: //www. cs. berkeley. edu/~ravenben/xset/.

104

