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Abstract

Current computer-based design tools for mechanical engineers are not tailored to early
stages of design. Most designers use pencil and paper at first, and input their design
into CAD systems only after it is nearly complete. The tradeoff between the ease
of drawing and the precision of a CAD tool is too great for engineers who are just
sketching out rough designs. This thesis presents a tool that is specifically geared
toward the earlier stages of design. Our system interprets and represents sketches
as the user sketches them, then allows the user to simulate her system using a two-
dimensional kinematic simulator. This thesis introduces a method for translating
a sketch into the designer's intended mechanical devices, despite ambiguities in the
sketch.
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Chapter 1

Introduction

1.1 A Design Tool Worth Using

Engineers first sketch their designs using pencil and paper. Only after their design

is relatively stable do they take the time to input their system into computer aided

drafting (CAD) tools. The reason for the delayed use of CAD tools is simple: com-

puters are too difficult to use for the payoff that they provide at this stage. Consider

writing a report using a computer. For the trained typist, typing is no more diffi-

cult than writing (some would say that it is simpler and faster), and the computer

provides a world of payoffs for the writing of the document: clean representation,

ability to edit without having to rewrite the whole report, spell checking, and so on.

But while computers are especially good at representing and working with textual

input, they are rather bad at working with drawings. There are freehand drawing

programs that allow the designer to edit and save her drawings, but these benefits

are not compelling enough to persuade the user to abandon pencil and paper.

This thesis takes one step toward creating a tool powerful and natural enough

to be used from the beginning stages of mechanical design. Our long term vision is

a system that would allow the engineer to draw as freely as she draws with a pen

and paper, but that would watch her as she drew, understanding her sketch as she

worked. At any time she wanted, the engineer would be able to stop drawing and

simulate the system as it was drawn to get a feel for how all the parts of the system

15



worked together. Along the way the computer would monitor her design decisions

and ask her to explain parts of the system that might be confusing or design decisions

that might not be obvious to another engineer. Finally, when she was done with her

drawing and satisfied with her design, she would press a button, and the computer

would automatically input the major pieces of her design into the CAD tool of her

choice. She would only have to fix minor details that were not obvious in her drawing.

The computer system would have all the knowledge of another designer and would

not need constant help to work with the engineer's sketch.

We took a first step toward accomplishing this vision by creating a program called

ASSIST (A Shrewd Sketch Interpretation and Simulation Tool) that understands a

user's sketch while she draws. To build this system we had to answer several questions:

What should the system do if it does not know what the user is drawing? How should

it indicate its confusion? When should it choose an interpretation and when should

it just let the user draw? Answering these and other questions was fundamental to

building a sketch system that allows the user to express herself as freely as she does

when sketching with pencil and paper.

Our system provides a natural and powerful environment for mechanical engineer-

ing sketches. The user can draw naturally while the system interprets and represents

her strokes as a mechanical system. At any time in the drawing process, the user

can see a simulation of her design by tapping the run button. Figure 1-1 shows a

Run

-i - -------.. ..

Figure 1-1: The user draws the sketch of the circuit breaker (left). When she clicks
the run button, she sees a simulation of her sketch (right).
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session in which the user has drawn a circuit breaker in ASSIST (left) and sees the

simulation (right). During the drawing process she did not have to explicitly identify

any of the parts in her system; as she sketched, ASSIST recognized the pieces of her

sketch by their form and context. She also did not have to enter her system into

the simulator; when she tapped the run button, the system automatically input her

design into two-dimensional mechanical simulator.

1.2 The Importance of a Sketch

Sketching is an important component in early design. Almost all mechanical designers

begin their designs by sketching their ideas out before moving to the computer for

two reasons: engineers often want to express their ideas quickly and naturally, and

sketches give them a rough visual representation of how their system will look. The

indispensable nature of sketching throughout the design process is what motivates

the development of a tool that helps designers sketch on the computer instead of just

on paper.

Engineers make several drawings in the course of the design process, ranging from

informal sketches to formal drafting. Drawing is not just an artifact of the design

process, in fact, it has been shown to be essential at all stages of the design process

(Ullman et al., 1990). In the early stages of design, engineers typically draw rough

sketches on paper or on a white-board. This stage of the drawing can further be

broken down into two types of marks: graphic representations such as drawings of

mechanical parts, and support notation such as textual notes and dimensions (Ullman

et al., 1990). The work presented here focuses on graphic representations made in the

first stages of mechanical design. However, we recognize the importance of including

a method to allow people to annotate their sketches as they design. Such a method

is the subject of work being pursued in (Oltmans, ).

Sketching is also useful in other design areas such as architecture or graphical

interface design. Other research has acknowledged the importance of informal sketch

recognition and it is an area of active work (Landay and Meyers, 1995; Stahovich,

17



1996; Gross, 1996). While each project's focus is slightly different, the long term

goal of each is the same: to build a tool that supports the design process from the

earliest design stage to the manufacturing of the finished product. CAD tools have

been confined to the end stages of the design process because people are unwilling

to sacrifice the utility of sketching freely that is so important in early design. Until

recently, the only way they could get this ability was with pencil and paper.

1.3 The Benefits of a Computer in Early Design

Although paper provides a natural and uninhibiting interface, it has its limitations.

Paper allows the user to record designs, but does not allow the designer to work with

the design as a mechanical system. Also, to edit a design, the user must cross out,

erase, or redraw the part she wishes to change. A computer tool for early design

potentially has many advantages over paper: the user would not be forced express

the ideas twice by first sketching on paper and then transferring the design to the

computer, it would be easier for the user to edit the design on the computer, the

computer could record the changes made to the design as the user worked, and the

computer could simulate the user's design as she developed it.

1.3.1 An Interface to Existing Tools

A sketch based design tool provides a more natural interface to existing CAD tools.

Menu-based CAD tools lock the user into choosing and placing parts. When the user

wants to add a spring to a piece of the drawing, she must go to the menu, choose

a spring, and then place it in her drawing, instead of just drawing a spring where

she wanted it in the first place. The menu-based interface breaks up the designer's

thought process in a way that sketching on paper does not.

A sketch based interface would also save the user the overhead of having to enter

the design into the computer after she had sketched it on paper. If the computer

could translate the user's sketch directly into a format that CAD tools understand,

the user would only have to input the details that were not explicit in her sketch.

18



1.3.2 Design Rationale Capture

Design rationale capture is an important topic in mechanical design. We believe that

having the ability to sketch a design on the computer would make it easier to capture

design rationale over the full course of the design.

Design rationale is useful so others can understand the finished product when

the engineer is not around to explain it. Engineers come and go, and projects often

get passed on from one person to the next. When a new designer comes to work

on a system she does not understand, she faces a large time overheard to simply

understand the original system. Moreover, not understanding what design decisions

were made, she is liable to make the same mistakes as the previous designer. Design

rationale capture is also useful to the designer herself. After several months or years

of working on the same project, a designer tends to forget why she made the decisions

she did, or how certain parts of the system work.

However, as useful as recording design rationale may be, it rarely seems worth

the effort to the designer. Engineers often design first, thinking they will return and

document later. Unfortunately, after the design is complete the designer often has

forgotten important decisions that were made during the design, or simply fails to

provide a complete record of the process. After all, design rationale is often generated

for someone else, and the designer herself has little to gain from investing the effort

to record it in detail. Thus, documentation often ends up incomplete or missing

altogether.

Bringing the computer into the early stages of the design process is a first step

toward design rationale capture because the computer would, at a minimum, be able

to record changes to the design over the full course of its development. Many of

the important decisions and changes to the design are made before the user begins

using CAD tools. With a natural sketch-based computer design tool, the designer

could work directly on the computer from the early stages of design. Although ideally

we would like to capture the reasoning behind the changes, a program that simply

recorded what changes were made to the design would be helpful to someone else
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trying to make sense of the finished product.

1.3.3 Simulation in Early Design

Another advantage to working on the computer in early design is that the user would

be able to simulate her design at any time during its development. Currently, engi-

neers wait until the end the the design process to simulate their systems. In early

design, the designer must trust that the mechanics will work the way she thinks they

will. When a design is changing often, it is not worth the effort to enter it into a

simulation program to see how it runs. On the other hand, if the user were to sketch

directly into a system that interpreted her design, the user would be able to simulate

her sketch at any point in the design process and go right back to sketching.

1.4 Challenges in Sketch Interpretation and Dis-

play

As noted earlier, computers are used primary at the end stages of design because

they are good at formally representing mechanical devices. However, they are not

good at interpreting sketches of such devices and translating them into a format that

can be used in fabrication or simulation. CAD and simulation tools force the user to

explicitly identify each mechanical part as she adds it to her design by providing her

with fixed menus of parts from which to choose. In other words, to "draw" a gear,

the user must pick the symbol for "gear" from a table or list and then adjust the size

and placement of the part within the design.

On the other hand, a sketch based tool should be able to identify the mechanical

parts in the user's drawing by the way she draws them and the context in which

they appear. Unfortunately, recognizing the user's sketch is not easy; the system

must recognize patterns in the user's sketch as mechanical parts and must be able to

resolve ambiguities in the sketch. The system also needs to express its interpretation

naturally to the user. Finally, the system needs to handle misinterpretation elegantly.

20



1.4.1 Pattern Recognition

The first challenge in building a system to understand sketches is recognizing the

meaningful patterns in the drawing. This task in itself is not trivial because each

time engineers sketch mechanical parts, they sketch them slightly differently. There-

fore, pattern matching templates must be flexible enough to allow for some variation

between sketches, but constrained enough not to accept incorrect patterns.

1.4.2 Ambiguity

In addition, a sketch is inherently ambiguous as the user is drawing; the same pattern

in the drawing could represent more than one mechanical part. For example, as the

engineer sketches each line, the computer cannot be sure if the line is a rod, a string

or part of some larger piece that is currently being drawn.

There are two steps to handling ambiguities in a sketch: detecting the ambiguities,

and resolving them. To detect ambiguities the system must be able to detect when

there could be more than one interpretation for a stroke or group of strokes in the

drawing. To resolve the ambiguities in the sketch, the program must be able to decide

at what point it has enough information to determine the correct interpretation for

a given stroke or set of strokes.

Determining the optimal level of aggressiveness in resolving ambiguities has its

tradeoffs. On the one hand, if the program is too aggressive in its interpretation, it

will annoy the user by jumping to incorrect conclusions about the interpretation of

the drawing before the user has a chance to finish her drawing. On the other hand, if

the system waits too long to decide on the interpretation and makes an interpretation

mistake, it forces the user to correct interpretations of strokes in part of the drawing

she is already finished with. The user will not want to be interrupted much later in

the drawing process to correct a mistake that was made long ago.
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1.4.3 Display

Another issue to building a natural interface is the manner in which the program

expresses its interpretation of the drawing to the user.

Some programs leave the user's sketch untouched but display the interpretation

for each part in a section of the screen beside the drawing surface (Gross, 1996). An

advantage of this method is that it does not change the user's strokes in the sketch.

A disadvantage is that it forces the user to look away from her sketch to make sure

the system has the correct interpretation for her strokes.

An alternative method is to modify the user's strokes as she draws, displaying the

system's feedback directly on the drawing surface. This method does not force the user

to look away from the sketch to see the system's interpretation of the drawing. But

if the system changes the user's strokes significantly, the user may become irritated

by the changes to her sketch.

1.4.4 Misinterpretation

Handling error correction elegantly is another difficulty in creating a usable interface.

Any computer program will make mistakes in interpreting a user's sketch, due to

ambiguities in the drawing or miscalibration of the recognition engine. Ideally, the

user should become aware of any misinterpretations quickly, and should be able to

correct them intuitively and easily; the error correction should not interrupt the

user's train of thought. Users should always understand what has gone wrong in the

interpretation and be given a way to fix the problem quickly. If the system makes

too many errors or if the errors are too difficult to correct, the interface becomes

cumbersome, and the user will resort to designing on paper.

1.5 Contributions Toward a Natural Interface

This thesis presents the following contributions to the task of creating a natural

sketching environment:
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" A general architecture for representing and resolving ambiguities in a sketch.

" A drawing program (ASSIST) that uses a knowledge base including knowledge

of drawing style, mechanical engineering design and visual perception to resolve

ambiguities in mechanical engineering sketches.

" A link from the drawing program to a simulation program to give designers a

way to simulate their designs as they sketch them.

" An evaluation of the program's interface through user studies.

1.5.1 Overview of the Solution

ASSIST allows the user to draw and edit simple mechanical systems using a fixed

library of parts, then simulate them. As the user draws the system recognizes me-

chanical objects in the sketch and replaces the user's strokes with icons that represent

the recognized part (Figure 1-2). The icons are scaled to best fit the user's sketch and

Figure 1-2: The top portion of the circuit breaker depicted in Figure 1-1 as the user
drew it (left), and displayed by the system (right).

color coded to help the user understand the system's interpretation for her sketch -

mechanical bodies are blue, rods are black, and all other mechanical parts are pink.
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Editing is done through a series of gesture commands. The user does not have to

explicitly change between "edit mode" and "drawing mode"; the system is capable

of interpreting which strokes are edit strokes and which strokes are drawing strokes,

even though they are visually identical. A user can select a region of her drawing by

drawing a circle around it (Figure 1-3). Selected objects appear red. Once selected,

Jr~a!Recgnizr Svtem ME3

Run

ITAGAj DEBUG

Figure 1-3: The user selects the bottom portion of the sketch.

the objects can be moved by dragging them with the pen or deleted by drawing a

line through them (Figures 1-4, 1-5). To simulate her design, the user taps the run

button (Figure 1-6).

ASSIST evaluates the user's sketch after each stroke she draws, applying a three

step process to incorporate the new stroke into the drawing: recognition, reasoning,

and resolution (Figure 1-8).1 In the recognition step, ASSIST generates all possible

interpretations for the user's last stroke by matching the most recent stroke and the

'A stroke is defined by the points traced beginning when the user puts her pen on the tablet,

and ending when she lifts it up.
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Figure 1-4: The user deletes the selected items by drawing a line through them.

strokes near it to a series of templates. In the reasoning step, the system applies

knowledge of mechanical engineering, drawing style and human object perception to

determine the most likely interpretation for the last stroke drawn. In the resolution

step, it finds the highest scored interpretation and displays that interpretation to

the user. Although only one interpretation for each stroke is shown to the user, the

system maintains other interpretations for the stroke internally.

Consider what the system does as the user draws a square. The user has drawn

three of the four lines in the square. Each side is represented as a separate line on

the canvas (Figure 1-7). When the user adds the fourth line, the system must decide

how to represent the strokes on the screen. The interpretations generated in the

recognition step are 4 lines, 4 rods, a square, or a square body.2 In the reasoning

step, the system then ranks these interpretations by assigning each interpretation a

numerical score. Then in the resolution step, the system sees that the interpretation

2A square is a geometric shape that may be used to create other mechanical parts, such as a

motor. A square body is a solid body in a mechanical system

25



Run

Figure 1-5: The remaining items in the sketch, after the deletion.

"square body" got the highest score and displays a blue square on the screen (Figure 1-

9).

1.6 Structure of this Thesis

Chapter 2 presents the model we used in building our interface. Chapter 3 presents

the heuristics we use in recognizing mechanical sketches. Chapter 4 presents ASSIST's

interface and describes how it was built out of the ideas from the first three chapters.

Chapter 5 details the three step recognition process ASSIST uses to interpret the

user's sketch. Chapter 6 presents results from the user study performed to evaluate

ASSIST's interface. Chapter 7 describes related work in sketch recognition and me-

chanical drawing interpretation. Finally, Chapter 8 presents possible extensions to

ASSIST.
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Figure 1-6: To simulate the sketch, the user taps the run button.

Figure 1-7: The first three lines of a square, displayed by ASSIST.
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Recognition: Determine all possible interpretations
for the stroke

This shape could be...
1. A square that will be used

in another object (e.g. a window)
2. Four rods
3. Four lines that will be

used for something else
4. A square body

Reasoning: Rank the generated interpretations
relative to one another

I know that...
1. Four lines appearing in this formation

are usually interpreted as a square
2. Mechanical interpretations are preferable

to abstract ones.
3. All four lines were drawn consecutively

Resolution: Find the highest scored set of
interpretations

When we combine the above evidence, the most
likely interpretation for the strokes is "square body"

Figure 1-8: An overview of the recognition algorithm used by ASSIST.

Figure 1-9: A square body, displayed by ASSIST.
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Chapter 2

Creating a Natural Drawing

Environment

When people sketch with a pencil and paper, they know exactly what to expect. They

are so accustomed to pencil and paper they often do not know how to describe what

it is that makes sketching so simple and natural.

One of our main goals in developing a natural sketching system was to determine

what people expect from an interactive sketch system. Obviously, we could create

a natural environment by letting people sketch on paper and then scanning their

sketches into the computer, or even simply by recording the strokes people make as

they sketch on paper, as for example is done by the CrossPad. But this type of

sketching does not permit any sort of interaction between the system and the user.

To develop a natural interactive sketching environment we examined the task from

two angles: how do people draw on paper, and how do we get the computer system to

recognize what the person is drawing? In practice (if not in principle), any recognition

system trades off between freedom and power. A system that allows the user to draw

freely may misinterpret pieces of the drawing. On the other hand, a system that

forces the user to pre-specify every part that she is going to draw and precisely how it

will be drawn rarely makes a mistake, but constrains the user's drawing techniques.

To find a natural balance between freedom and power we chose a real-world model

to imitate. To provide the computer with recognition power yet preserve most of
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the freedom of drawing on paper, we examined how a person witnessing the drawing

session would understand the strokes being drawn. A computer program that behaves

as intelligently as an informed person watching the drawing process would feel natural

to the user. The more intelligent the program (and the person), the better.

With this model in mind, we considered the behavior of the designer as well as

the behavior of the observer. What does the designer expect from both the sketching

surface and the observer? What process does the observer use in order to understand

what the designer is drawing? When is it natural and acceptable for the observer to

interrupt in order to ask a question of the designer? Answering these questions will

give us a behavioral foundation upon which to base our sketch system.

2.1 How a Person Draws on Paper

To understand how to create a natural drawing environment, we first consider how

a person draws on paper. We would like to change the user's behavior as little as

possible, so we examined what makes drawing with pencil and paper feel natural.

Paper offers its user a total freedom of expression in the sketch. When a person

draws with paper, everything she draws is represented on the page exactly as she

draws it. Drawing on paper is also unrestrained in that there are only two modes of

interaction: the user can add pigment to the page, or remove it.

Even though drawing on paper is unrestrained, there are some patterns to the way

people sketch. First, in mechanical engineering sketches people use a relatively fixed

set of icons to represent mechanical parts (Artobolevsky, 1976; Muzumdar, 1999).

Second, people tend to draw strokes in a constrained order, finishing one part of their

sketch before moving on to another part. For example, consider the different ways a

person could sketch the system in Figure 2-1. She, of course, is free to draw the lines

in any order, but in general she will not. The drawing order in part (c) seems absurd

and would likely never occur in practice.
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Figure 2-1: A simple illustration of sketching order. Consider the simple system in
part (a). Part (b) labels a reasonable version of the order in which the first 10 strokes
of the system were drawn. In contrast, part (c) shows a stroke ordering we would
probably never observe.

2.2 Interpreting a Sketch

The goal of this thesis was to make the computer system behave as a human observer

does while witnessing and understanding a sketching session. In this section we

present two challenges in interpreting a sketch: level of interpretation and ambiguity

in the sketch. We then examine how a human observer deals with these challenges

when interpreting a designer's sketch as she draws it.

2.2.1 Levels of Interpretation

When an observer witnesses a drawing session, he can have different levels of under-

standing for the strokes on the page. He might see strokes, shapes, or mechanical

objects, depending on his expectations and prior knowledge.

Naive drawing programs such as Microsoft@Paint are only capable of representing
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graphics and drawings in terms of pixel representations and have no understanding

of the drawings beyond that. This level of understanding is clearly unobtrusive and

simple to implement, but also completely useless in helping the designer work with

the drawing as a mechanical system.

A helpful observer recognizes the pieces of the drawing as mechanical parts and

has a notion of how they fit together. CAD and simulation tools represent diagrams

in terms of mechanical parts, but they cannot abstract these representations from low

level sketch input. They require the user to input her system through a fixed menu

of mechanical objects (Figure 2-2). Such programs can best be viewed as observers

who can understand a mechanical system but must be told explicitly what parts are

in the system as they are added. A sketch-based program, on the other hand, should

!@ Working Model 2D - [Untited1] BIi

Figure 2-2: A typical menu-based interface. The user is constrained to select from
among the menu items displayed.

be able to interpret a sketch as a mechanical system directly, without having to be

explicitly told what is being drawn.
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2.2.2 Ambiguities in the Drawing

Another issue in sketch interpretation is ambiguities in the drawing. When a designer

is sketching on paper, she knows exactly what she wants to draw. In other words,

she knows which strokes belong to which mechanical parts, and she knows what is

missing from the drawing. She has knowledge of what she intends to draw before

she even starts sketching. An observer, on the other hand, could become confused at

different stages of the drawing process because he does not know what the designer

will draw next.

Consider the case where the designer is drawing a ball and socket mechanism

(Figure 2-3a). She knows what the end product will look like (Figure 2-3b), so when

she draws the first part of it she does not even consider that there could be other

interpretations for the group of strokes she has drawn. However, the group of strokes

(a)

0-
(b) (c)

Figure 2-3: An example of ambiguity in the drawing. The bold strokes in (b) and
(c) are identical to the strokes in (a). When (a) is drawn, an observer cannot know
whether the device will become a ball and socket as in (b), or a set of gears, as in (c).

could also represent the first part of an interlocking gear mechanism (Figure 2-3c). An

observer watching the designer has no way of knowing which mechanism the designer

is drawing from the strokes that are drawn. Both images begin with identical strokes
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but diverge into conceptually distinct entities.

2.2.3 How the Observer Recognizes the Sketch

The observer's task is to make sense of the sketch without prior knowledge as to

what is being drawn. As he watches the drawing processes, he continually makes

sense of the strokes on the page as new strokes get added. He may choose to delay

recognition of some strokes, or alternatively he may choose to make a guess as to

the interpretation of what has been drawn. If he chooses an interpretation for a

piece of the drawing that is incomplete, he expects the user to complete the drawing

according to his interpretation. For example, if an observer chooses to interpret the

drawing in Figure 2-3a as the beginning of a gear, he expects the designer to add in

the other lines attached to the circle. If the designer instead completes the drawing

as in part (b), the observer has to recognize that his first interpretation was incorrect

and replace it with the ball and socket interpretation. Although the observer has a

good idea about which parts the designer might draw, at a given point it may be

ambiguous as to which part the user is actually drawing. In this section we explore

how an observer resolves inherent ambiguities in a mechanical sketch as the designer

draws and how a computer system can resolve these same ambiguities to recognize

the mechanical parts depicted by the user's sketch.

Fluid Interpretation

In order to understand a designer's sketch, the observer must have a flexible and fluid

interpretation of the sketch, i.e. he must not lock himself into his first interpretation.

Imagine an observer who, at the first glance of Figure 2-3, decided that the user was

trying to draw a gear. What if this interpretation turns out to be incorrect? An

intelligent observer can detect when an interpretation guess must be rejected and a

new interpretation considered. This fluidity of interpretation is essential to produce

the correct interpretation of sketches that pass through phases of ambiguity.

A knowledgeable observer will also be able to detect when the drawing is ambigu-
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ous. For example, the first stroke the user draws has no context, and therefore is

probably only a small piece of a larger structure. An observer has no way of knowing

what the structure is, and probably waits before trying to interpret this stroke. When

the observer detects ambiguity, he expects that any interpretation he makes could be

incorrect, and considers his interpretation tentative until he is more sure that it is

correct.

When to Commit to an Interpretation

Having a fluid or delayed interpretation of the drawing is not enough on its own. The

observer also needs to be able to detect when he has enough information to believe

his interpretation of the sketch. People are capable of deciding that they have enough

information to interpret parts of sketches, even when they are incomplete.

Deciding when there is enough recognition context is a difficult problem, especially

in the case of low-level structures. Consider the case of circular bodies. When can

the observer be sure that the user has drawn a circular body, and that the circle is

not part of a pulley that has not yet been completed? Because circles are low-level

structures, it is likely that they will soon be used to construct other mechanical parts.

But after some period of time, if a circle has not been used in a higher-level structure,

the observer can assume that the circle is not going to be used in another piece of

the drawing and can consider that circle a body.

Our system has to be more aggressive than a human in committing to interpre-

tations for pieces of the drawing because it relies on feedback from the user to help

maintain correct interpretations for each piece of the sketch. A human observer can

always wait for more information. Similarly, if the system waits for more information

it will probably have a better shot at determining the correct interpretation. Un-

fortunately, more information tends to slow our system's recognition process. More

strokes in the sketch give rise to more interpretations to be considered and our rea-

soning engine takes a longer time to come up with an interpretation. For humans,

on the other hand, more information tends to lead to faster recognition (Biederman,

1987). One reason for this is that the brain is capable of parallel processing, and might
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therefore process several interpretations for the image at once (Kolb and Whishaw,

1996), while ASSIST must consider each stage of the recognition and disambiguation

process sequentially. Also, there is strong psychological and biological evidence for

top down processing in the brain, that might activate certain interpretations based

on expectation (Kolb and Whishaw, 1996; Palmer, 1975; Ullman, 1996). Our system

has limited top down processing and must therefore consider each interpretation when

deciding on a representation for the sketch.

Making an Intelligent Interpretation

In order to make a correct interpretation, the observer must not only decide when to

interpret the sketch, he must have knowledge about what interpretations are preferred

over others. Simply put, to be able to interpret a drawing, a system needs to know

what it should expect. The more a system knows, the better it will be at interpreting

what the user draws. For example, it needs to know that when it sees four lines

connected to form a square, they probably represent a square body, not four rods.

There is nothing that says they have to be part of a square, but most people would

expect them to be, so an intelligent system should also.

To help our system correctly interpret ambiguous sections of the sketch, we built

in knowledge about which interpretations are preferred over others. For example, a

small circle drawn on top of a rectangle (Figure 2-4) could have several interpretations.

Do the lines actually form a rectangular body, are they four separate rods, or will

Figure 2-4: A block with a pin joint in the upper right corner.

they be used with subsequent strokes in yet another mechanical object? Is the small
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circle a circular body or a pin joint?' The most likely interpretation is that this is

a block that will be connected to another body by the pin joint in its upper right-

hand corner. The system needs knowledge of the domain in order to come to this

conclusion. The following rules apply to this simple example:

o Mechanical bodies are preferred to abstract shapes.

o Bodies are preferred over rods.

o Pin joints are preferred over circular bodies if they appear in conjunction with

a mechanical body.

These rules are only a small subset of the total body of rules the system needs to

reason about ambiguities in arbitrary mechanical drawings. Chapter 5 discusses the

knowledge we built into our system in more detail.

2.3 Interaction with the User

Another problem in building an interactive sketching system is determining how to

interact with the user. In our system, we use the display as the primary point of

interaction. The advantage to this method is that the user does not have to look

away from her sketch to receive feedback from the system. The disadvantage is that

the feedback could easily interfere with the design process.

2.3.1 Expressing Confusion

When the computer gets confused as to the interpretation of the sketch, it should ask

the designer questions. As long as it asks natural questions every once in a while, the

designer will not become too frustrated with having to answer them.

Our system keeps from getting confused by displaying its interpretation of the

sketch periodically as the user sketches. Displaying the interpretation is like asking

'A pin joint is a pivot joint linking two bodies, or one body and the background. It is depicted
in our system by a small circle.

37



the implicit question, "This is what I think. Am I right?" As long as the system is

correct, the user simply continues to sketch, uninterrupted.

When the system is incorrect, or unsure as to the correct interpretation, it gives

the designer a quick, easy way to help it. First, it lets the designer know which part of

the drawing it does not understand by displaying an icon for each piece of the drawing

it has interpreted. When the system gets a wrong interpretation, it is apparent to

the user because the system displays the wrong icon for her strokes. It then tells

the designer all the interpretations it does have for her sketch by displaying the full

list of interpretations for the misinterpreted part and allowing the user to choose the

correct interpretation. The system never hides information from the designer. The

user knows immediately how to correct the system's mistake.

2.3.2 Aggressive vs. Passive Recognition

Because the display is our feedback mechanism, another area to consider is how

aggressively the system displays its recognition. Each stroke the the user draws could

have several interpretations. As an extreme example, consider the case of each line

that the user draws. Each line could possibly be a rod. How does the system know

that the first line that the user draws is not a rod? It can't be sure. Given the same

situation, a human observer would not be sure either. It might make sense for the

system to consider each line as a rod until it has information that causes it to believe

otherwise. However, we do not want to bother the user with this distinction at this

point. Imagine a system with an aggressive display that printed the word "rod" next

to each straight line immediately after it was drawn. This display style would not only

distract the user, but also force her to give feedback to fix the incorrect assessment

where none is necessary, because the system will fix its interpretation of the line as

soon as more information is available.

In other words, a system should not be too aggressive in its display. It should be

aware of the shapes that can be used to form more complex objects (e.g. rectangles,

lines, and circles) and hold off on interpretation until it is sure the user will not alter

that section of the sketch. A good principle is to only tentatively recognize low-level
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structures until the user moves to a new location in the sketch. When the user moves

to a new region in the sketch, the system can then be fairly certain as to the identity

of the previous set of strokes and can employ a more aggressive interpretation and

display strategy. This notion is based on the drawing order heuristic presented in

Section 2.1. When a user moves to a new region of the drawing we assume that she

has finished a coherent, interpretable structure in the section of the drawing she left.
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Chapter 3

The Problem of Recognition

Probably the most important part of creating a natural sketching interface is having

a flexible but accurate recognition engine. The fewer mistakes the system makes,

the less the user will have to pause in his work to correct the system's mistakes. In

practice, we cannot build a system that makes no mistakes, but we strive to make as

few as possible.

Inherent ambiguities in mechanical sketches make recognition difficult. Because

we cannot be totally sure at any point that we have all the information we need to

recognize a given part of the drawing, we must be flexible in our interpretation. If

there exists more than one interpretation for a given stroke, we should keep track of

that fact.

The problem of recognition can be broken down into two major conceptual parts:

recognizing all possible interpretations, and deciding which is the most likely inter-

pretation for the given context. In this chapter, and in the thesis in general, I am

concerned primarily with the latter problem. While it is important to recognize all

possible interpretations correctly, deciding which one to display to the user is piv-

otal to creating a sketching environment that displays an understanding of the user's

sketch. A system that always presents a plausible but not contextually relevant in-

terpretation is tedious and frustrating.
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3.1 Sketch Recognition vs. Language Recognition

From our viewpoint, sketch recognition can be seen as a language recognition problem.

Spoken language is made up of a relatively small set of sounds, called phonemes. 1

Phonemes combine in unique ways to form morphemes, that in turn form words.

Similarly, we work under the assumption that basic geometric shapes (lines, circles,

polygons, etc.) combine to form low-level pieces of mechanical drawings (such as

bodies, pin joints, gears and springs) that in turn combine to form larger systems.

The conventions for combining the low-level parts into more complex structures define

the grammar of mechanical engineering sketching.

The idea that visual image processing is done by recognizing and combining low-

level primitives is not new. Biederman argues that there are 36 visual primitives

(geons), equivalent to phonemes in speech, that make up all distinguishable visual

images (Biederman, 1987). On the neurological level, there is strong evidence that

the brain reconstructs images by extracting features rather than dealing directly with

raw patterns of light.2 Even in the retina, there are cells that respond to patterns of

light such as lines at different orientations (Kolb and Whishaw, 1996). It is widely

accepted that the visual system does a large amount of feature extraction before

images even get to the brain.

We can draw several parallels between the difficulties in building a spoken lan-

guage recognition system and the difficulties we face in building a mechanical sketch

recognition system. The most notable way in which our view of sketch recognition

parallels speech recognition is that both are primarily concerned with resolving am-

biguity. In their book on speech recognition, Jurafsky and Martin state, "most or

all tasks in speech and language processing can be viewed as resolving ambiguity"

(Jurafsky and Martin, 2000). In low-level language recognition, it is often hard to

distinguish between different phonemic sounds. In speech processing, as in sketch

recognition, knowledge of the domain is essential to resolve these ambiguities. Speech

'For example, English is made up of around 40 phonemes
'For early results in this area see (Corning and Balaban, 1968).
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recognition systems often use a dictionary and a grammar to help a computer system

resolve ambiguities at the lowest level. Our recognition system contains rules about

the mechanical parts it should expect and rules about how those mechanical parts

are likely to combine.

The process of sketch recognition is also like speech recognition in that it has a

strong temporal component. Phonemes can only combine with temporally adjacent

phonemes to form other words. It makes no sense to ask whether the third and

tenth phoneme in a signal can be part of the same word unless the fourth through

ninth are also included in the same word. Similarly, because sketches are temporally

constructed visual images, temporal data can help the system extract and combine

the visual features. Photographic images, on the other hand, convey only spatial

information; the order that the items in the scene appeared does not matter. Low-

level visual features are typically difficult to extract (see (Mahoney, 1987)) and it is

often simpler, faster and more accurate interpret high-level images such as faces or

people directly from pixel data.

3.2 Combining Multiple Sources of Evidence

Our approach to resolving ambiguity in sketches is to combine multiple sources of

evidence within the drawing. ASSIST combines pattern matching with rules about

mechanical engineering and drawing style to produce its interpretation for the sketch.

3.2.1 Pattern Matching

ASSIST recognizes elements in the user's drawing by applying a series of pattern

matching recognizers to the sketch after each stroke the user draws. When a recog-

nizer detects the pattern it is tuned to detect, it creates an instance of that inter-

pretation. Note that the system generates several interpretations for each stroke the

user draws, so it must still choose the correct interpretation for the stroke. However,

it is important not to miss a feasible interpretation because the system cannot choose

an interpretation that is not created by the recognizers.
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3.2.2 Temporal Evidence

The system uses temporal information in the sketch to help determine the correct

interpretation for a group of strokes. Imagine trying to decide whether or not an "X"

is an anchor.3 If the user draws the two strokes continuously, there is evidence that

it is. If, on the other hand, the user draws one stroke of the "X" first, moves to a

different part of the drawing and draws something else, and then comes back to finish

the "X", we can conclude that the "X" is probably not an anchor.

On the other hand, we must be careful not to let temporal evidence dominate the

recognition process. In practice, we found that there are times when people actually

sketch two objects in parallel. Consider the example in Figure 3-1, which depicts a

set of blocks of equal shape and size. People sometimes drew the four horizontal lines

before drawing any of the four vertical lines. This goes against our heuristic that

X X
Figure 3-1: Two rectangular bodies. People use different stroke order when drawing
the bodies.

people draw all of one object before moving on to another object. In this case, spatial

evidence should dominate and the system should turn the strokes into blocks instead

of leaving them as rods.

3.2.3 Simpler is Better

Another set of knowledge rules deals with the complexity of interpretations. The

fewer parts that can be fit to a set of strokes, the more likely that interpretation

is. One rule illustrating this point is the spring rule (Figure 3-2). When the user

draws the stroke on the left, in addition to recognizing the stroke as a spring (center),

the system will also try to segment the line that makes up the spring into its linear

components and interpret them as rods, or as lines that can be combined later with

3 An anchor fixes a body to the background, regardless of what forces are applied to the body. It

is depicted by an "X" in ASSIST.
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Figure 3-2: The user draws a spring (left). The system interprets the stroke as both
a spring (center) and as a series of lines or rods (right).

other strokes to form other mechanical objects (right). The interpretation of the

stroke as separate lines is probably incorrect. If the system can interpret one stroke

as one part, it will because people rarely draw multiple objects with a single stroke.

3.2.4 Specificity Rules

The recognizers in the first step of the interpretation process have different scopes of

recognition-some recognize a wide range of strokes, while others apply only in a more

specific context. In the reasoning step, the system prefers interpretations produced

by recognizers with more specific domains. For example, if we know that the circle

recognizer considers all closed loops drawn with a single stroke to be circles, then we

know it will fire any time the user selects objects by drawing a circle around them.

Therefore the selection recognizer is more specific than the circle recognizer, because

only a subset of all circles are selections, but all selections are circles. In this case,

the system prefers the interpretation "selection" over the interpretation "circle."

3.2.5 User Feedback

Finally, an important part of recognition comes from user feedback. When the system

recognizes a part incorrectly, it is up to the user to correct its interpretation. For
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instance, suppose the user draws two crossed rods, and the system misinterprets the

rods as an anchor. The user then expresses to the system that it misinterpreted her

drawing. She informs the system of the correct interpretation, and proceeds with her

sketch. At this point, the system can be sure that the two crossed rods cannot be

an anchor, even though visually it may be feasible. We must be sure that the system

does not present the user with options she has already explicitly ruled out.

In addition, the system maintains the interpretations displayed to the user by not

choosing an interpretation that conflicts with the interpretations already displayed.

Consider a polygonal body, for example (Figure 3-3a). When the system recognizes

(a) (b)

(c)

Figure 3-3: A polygonal body, displayed by ASSIST (a). When the user draws the
line in (b), it would be surprising if the system displayed the interpretation in (c)
because the user has already seen the body as a whole.
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the body (Figure 3-3b), it displays a single object to the user. But, the sides of the

body can still be interpreted separately and when a user draws a line through the

side of the body, the system recognizes an anchor. However, because the user already

saw her strokes displayed as a polygonal body, it is surprising to see the polygon

broken apart and the anchor formed (Figure 3-3c). We avoid this sort of unexpected

interpretation in our system.
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Chapter 4

The Sketching Interface

4.1 The Original Recognition System

ASSIST is built upon the work of Luke Weisman and Manoj Muzumdar. They began

work on the recognition and representation problem by building a recognition and

representation method that could be used across multiple domains (Weisman, 1999;

Muzumdar, 1999). They constructed a system, RecSystem (Recognition System),

that could recognize and represent a variety of low-level geometric shapes. It also

provided the user with a method of interacting with these shapes through gesture

commands.

On top of this basic recognition capability, they built several context-sensitive

recognition applications. One extension of the base system aided the user in design-

ing finite state machines by interpreting circles as nodes and lines as edges between

the nodes. When nodes were moved around the page, the edges followed. Another

application allowed the user to draw floor plans for a house. A third application

allowed the user to sketch mechanical parts from among a set of predetermined parts

that the system could recognize, defined in (Muzumdar, 1999). After each stroke the

user drew, the system evaluated how that stroke, together with other parts in the

sketch, could be fit together to form one of the parts in its recognition library.
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4.1.1 RecSystem's Interface

RecSystem functioned in the style of many graphical editing tools. The user could

both undo and redo her actions. She could also select different pieces of her drawing

and move them around. However, instead of using a menu-based system, RecSystem

used a gesture interface. To select an object, the user clicked on (or tapped) the

object she wanted to select. Then she could drag it across the screen by holding

down the mouse button and dragging (or dragging her pen across the screen) and

finish the move by letting go of the mouse button (or lifting her pen). Users could

delete objects by clicking on them twice. RecSystem also provided additional gesture

commands to copy and rotate objects.

RecSystem also allowed users to interact with it through voice commands. Simple

grammars were built to recognize commands such as "delete this", "help" and "exit".

The voice recognition provided the user with a more natural way to tell the computer

to perform certain tasks.

4.1.2 Recognition in RecSystem

RecSystem was designed to be a highly modular system in which it was easy for a user

to add new recognition modes. It had a straightforward algorithm for recognizing a

user's sketch based on a series of user-defined recognizers. For example, the recogniz-

ers in a basic geometric recognition mode might include recognizers for lines, circles,

polygons, squares and ellipses. The recognizers could be defined by any algorithm

(e.g. pattern matching, neural networks, etc.), and upon recognition were required to

return an object of the type that they recognized.

RecSystem used a winner-take-all recognition strategy. When a recognizer saw a

stroke on the surface that it recognized, it picked up that part, and replaced it with a

new interpretation. Therefore, there could only be one interpretation for each stroke

the user drew.

The greedy recognition strategy used in RecSystem also meant that the ordering of

the recognizers was important. If the user drew squares such as the ones in Figure 4-1,
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the recognizers would each have a chance to look at them and try to recognize them.

A well-defined square, such as the one on the left, would probably be recognized as

Figure 4-1: Two examples of how one might draw a square.

a square and nothing else. However, the shape on the right might either be a square

or a circle. Therefore, the ordering of these recognizers was essential. If the square

recognizer fired first, the stroke was recognized as a square. On the other hand, if the

circle recognizer fired first, the stroke was recognized as a circle, and never had the

opportunity to be recognized as a square.

4.1.3 Limitations to RecSystem

Although RecSystem did provide the ability for users to sketch simple mechanical

parts, its functionality as a natural drawing environment was limited. RecSystem

was designed primarily with simpler applications in mind. It was an excellent and

natural environment for drawing finite state machines, for example, largely because of

the symbolic nature of the drawing process. Finite state machines are highly restricted

graphically. There is a limited number of objects one draws when working with finite

state machines including nodes, edges, and labels, and hence little opportunity for

any ambiguity. With the correct ordering of recognizers, the parts of the finite state

machine can all be recognized quickly and correctly.

But RecSystem's aggressive and permanent recognition style did not lend itself

to more complicated sketching environments. Recall the example from Figure 2-3

(shown in Figure 4-2). RecSystem's aggressive style of recognition and replacement

did not give it the opportunity to represent both of the images in Figure 4-2. As the
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(a)

(b) (c)

Figure 4-2: A reproduction of Figure 2-3. The strokes in (a) become part of a ball
and socket (b) or a set of gears (c).

user drew, the system had either to commit to making the circle and line into the ball

of a ball and socket device (in which case it would never be recognized as a gear), or

leave its representation as a line and circle, in which case it could be recognized as a

gear but would never be recognized as a ball and socket.

The system's permanent recognition approach produced even more basic difficul-

ties: RecSystem was, for example, incapable of recognizing rods. To recognize a rod,

it would have to consider all lines to be rods and once lines were recognized as rods

they could not be recognized as lines that composed other objects. In short, the

system could either consider all lines to be rods, or never consider any line to be a

rod. It had no way of allowing both interpretations.

4.2 A Shrewd Sketch Interpretation and Simula-

tion Tool: ASSIST

To study how to implement a natural sketching environment, we extended RecSystem

into a new system: ASSIST. ASSIST includes most of the functionality of RecSystem
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and is much more flexible in its internal recognition structure.

ASSIST is an extended version of RecSystem with a mechanical engineering

sketching domain. We built the system according to the specifications for a natu-

ral drawing environment outlined in the first section of this document. It eliminates

most of RecSystem's recognition limitations and provides the user with a natural

sketching environment, with the power to resolve ambiguity in mechanical sketches

composed of a predefined library of parts. In addition, it allows users to simulate

their designs at any time during their sketch.

4.2.1 An Example

Consider the drawing of a simple car on a hill shown in Figure 4-3. The user begins by

Run
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Figure 4-3: A car on a hill, as drawn in ASSIST.

drawing the body of the car. As the user completes the polygon, the system displays

its recognition by replacing the lines with a blue polygon. Next the user adds the

wheels of the car, which also turn blue as they are recognized as circular bodies. The

user attaches the wheels to the car with pin joints, that connect wheels to the car

and allow them to rotate. The user then draws a surface for the car to roll down, and

anchors it to the background (anything not anchored can fall). Finally, the user adds

gravity to the world by placing a force (arrow) pointing downward, not attached to
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any object in the drawing. The user then sees his system in action by tapping on the

run button (Figure 4-4).

Iii) Working Model 2D - [Untitled1]M 3 3l

-J

Figure 4-4: The simulation of a car rolling down a hill.

The first thing to note about the interaction with ASSIST is that the user drew

his whole system without interruption. The system knew enough to get the correct

interpretation in the face of ambiguities. For example, it was able to distinguish

between the wheels and the pin joints, even though visually they are both circles,

by examining the context in which the strokes appeared and applying the heuristics

outlined in Section 3.2. When the user drew the first circle, the system determined

that it was too large relative to the size of the car body to be a pin joint. When the

user drew the pin joint, the system applied its knowledge that a small circle drawn

on top of two bodies is more likely a pin joint than a body. Because the system

correctly and automatically interpreted the pieces in the user's sketch, drawing with

the system was as easy as drawing on paper, and more natural than having to input

the same system directly into the simulation program.

ASSIST also provides a natural way for the user to make modifications to the

drawing. Say the user wants to move the wheels of the car further apart. He circles
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the wheel and the joint and the system highlights both pieces (Figure 4-5).1 He then

Run

Figure 4-5: The user selects the wheel and joint for editing.

drags them by putting his pen on one of the highlighted objects and dragging it to

the new position (Figure 4-6). Correcting the system's interpretation errors is also

a simple process. Imagine that in drawing one of the wheels of the car (Figure 4-7),

the system things that the user is drawing a pin joint instead of a circular body.

The user immediately realizes the misinterpretation because his stroke turns into a

small pink circle instead of a blue circle (Figure 4-8). He can can correct the system's

interpretation by clicking the "Try Again" button. The system presents the user

with a menu from which to choose the correct interpretation (Figure 4-9). Finally,

the system offers the user a simple way to delete parts in his system. To delete any

object or group of objects the user simply selects them by circling the objects he

wants to delete and deletes them by drawing a line through them.

Another feature to ASSIST's interface is that it offers a quick and natural interface

to the simulator as illustrated when the user pushed the run button (Figures 4-3, 4-

4). If the user wants to test what happens when the car collides with various objects

lNote that the selection is ambiguous and could also be interpreted as a circular body. The

system represents the stroke as a selection because the selection recognizer is more specific than the

circular body recognizer. (See Section 3.2.4.)
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Figure 4-6: The user moved the wheel to the left.

in the drawing he can add them into the original sketch and then hit the run button

again. He can work back and forth, adding new objects and seeing how they affect

the original mechanical system.

4.2.2 The Power of Simulation

The work presented in this thesis tackles a subset of the overall problems in creating

a complete sketching tool that can be interconnected with preexisting mechanical

design tools. To more accurately simulate the sketch we would need a description

of the sketched system's behavior. There are behavioral ambiguities inherent in the

sketch. For example, consider the system in Figure 4-10. The drawing does not

completely constrain the behavior of the device: depending on the strength of the

force and the length and stiffness of the spring, the block may move left, move right,

or stay still. Additionally, if the block does not exactly fit against the sides of the

tube, or the force is slightly off-center, the block could twist and get jammed inside

the tube. ASSIST cannot determine the intended behavior from the sketch alone,

and displays a literal interpretation of the sketch, with default values for parameters

such as spring constants and magnitudes of forces.

Although our simulation of the user's sketch may differ from the intended behavior,
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this is what the user drew

Figure 4-7: The user tries to draw a wheel.

we felt that it was important to get a connection between sketch and simulation into

the system from the start. In order to provide the user with simulations of his system

at any point during the sketching process, we linked ASSIST with an off-the-shelf

simulation program called Working Model 2D by Knowledge Revolution, Inc.

Working Model has an interface typical of most design programs: it forces users to

choose from a menu of parts. The users then uses the mouse to indicate the position

and size of the part on the screen. Once the user has created a mechanical structure,

he can then see how it runs.

Conveniently for us, Working Model also allows the user to write scripts to specify

the objects and constraints in the mechanical system. ASSIST's ability to recognize

mechanical parts and their relations enables it to create an internal representation

of these parts and relations, which it is then able to translate into Working Model's

script language. From the user's point of view, she has the ability to simulate her

sketch by simply clicking the run button; the result is a simulation of the sketch in

the Working Model window.

The connection between the two programs is not seamless, and has some draw-

backs. First, the simulation appears in a completely separate application. Ideally we

would like the simulation to actually control the user's drawing, and not replicate it
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this is what the system interpreted

fringJ DEBUG

Figure 4-8: The system misinterprets the user's stroke as a pin joint.

elsewhere. Second, the device properties that are not obvious in the sketch (e.g. the

strength of a force, the spring constant, etc.), are set to default values in working

model. Therefore, the simulation may not behave as the user would expect.

Our motivation for linking ASSIST with the simulator was not to produce a fully

functional system, but to illustrate the direction we hope this work will follow and to

compare a sketch-based interface to a menu-based one. ASSIST's ability to substitute

for existing interfaces to sketch programs illustrates an important property of the

system.

4.2.3 The Part Library

In order to create a useful mechanical design sketching tool, we came up with a

set of icons that are typically used in mechanical design sketches. Fortunately, the

set of icons used by mechanical engineers in sketching seems to be fairly consistent.

Muzumdar added a basic set of mechanical icons to the RecSystem (Muzumdar,

1999). We have modified this set slightly; ASSIST currently recognizes the following

mechanical parts:

* Rods
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Uninterpreted Stroke

above. I wish to redraw this object. I
Figure 4-9: The Try Again dialog box.

Figure 4-10: An ambiguous system. Depending on the length of the spring, the spring
constant, and the strength of the force, the system will behave differently

" Circular and

* Forces

* Pin Joints

" Springs

Polygonal Bodies

* Dampers

* Pulleys
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* Anchors 2

4.3 Managing Multiple Interpretations

One of the greatest challenges to creating a natural sketch-based interface is inter-

preting and representing the user's strokes as mechanical parts. Given any collection

of strokes, there could be many interpretations for the strokes. While it might be

better to leave the ambiguities uncommitted for a short period to time, we want to

eventually commit to an interpretation without always asking the user to resolve the

ambiguities. Our system is able to handle simple ambiguities (e.g. Is this stroke a

circle or a square?) as well as resolve more complicated ambiguous situations in which

the decisions made about one part can affect the decisions about other parts. For

Figure 4-11: Two equally valid interpretations for the five strokes on the left.

example, the right side of Figure 4-11 shows two interpretations for the five lines on

2An anchor is used in Working Model to fix a body to the background. It is used in ASSIST to
denote any fixed body.
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the left. In the first interpretation (top), two of the lines form an anchor and the other

three are left as lines to be used in other mechanical parts. In the second, four of the

lines form a square body and the other is interpreted as a rod. Both of these inter-

pretations are equally valid. This section explores the knowledge about mechanical

drawings and people's drawing styles ASSIST uses to organize and maintain multiple

interpretations of a user's sketch.

4.3.1 Avoiding User Confusion

It is crucial that the user not be confused or surprised by the interpretations the

system has for the strokes on the page. For this reason, our system gives the user

feedback about its interpretation after each stroke he draws. When the designer lifts

his pen, the system considers the stroke, fits it into the drawing, and then displays its

guess about the interpretation of the drawing in light of the new stroke. At this point

the user can either agree with the system's interpretation, or can tell the system to try

another interpretation. This way the user is always aware the system's interpretation.

We decided to build the system with a constant interaction between the system

and the user, to keep the user's expectations from becoming too far removed from

the system's interpretations. Alternatively, we could have chosen to wait until the

user was done drawing (or at least for a notable pause) to run the interpretation

process. This method has the advantage that the user would not have to deal with

the system's interpretations after every stroke. However, errors under this scheme

would be more difficult to deal with. With the current model, when the system

obviously misinterprets the user's stroke (for example, the system fails to recognize

two crossed lines as an anchor), the user can immediately fix the error and continue

drawing. On the other hand, a delayed interpretation scheme would force the user to

go back and fix interpretation errors after he had already finished part of a drawing.

We also rely on the user's implicit feedback to help rule out incorrect interpretations

for the user's strokes. If we did not have the feedback after every stroke, the space of

interpretations would grow very large.
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4.3.2 Pruning the Number of Interpretations

Our system uses knowledge of likely and unlikely behavior to prune the space of pos-

sible interpretations. The system first rules out any interpretations that are visually

in conflict with the interpretations displayed on the screen. Imagine the user selects

several objects on the page by circling them, as in Figure 4-12. The user's stroke

1.~~~ ~ ~ ~ Mx cgiFSse O

Figure 4-12: The user selects the bottom portion of the sketch. (Reprint of Figure 1-3)

is interpretable in three different ways: as a selection, as a circle, or as a circular

body. Based on the knowledge described in Section 3.2, the selection interpretation

is chosen as the best interpretation, and only that interpretation is shown to the user.

If the user indeed meant to select these objects, he will continue sketching, implicitly

accepting the interpretation of his last stroke as a selection.

If the user continues without correcting the system's interpretation, the system

concludes that it has a correct interpretation for the strokes, and rules out any pos-

sibilities that this interpretation makes unlikely or impossible. In this example, the

system can rule out the idea that this stroke is a circle or a circular body, because
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these interpretations do not fit with what the user has seen and accepted as the

correct interpretation.

Now imagine what would happen if we did not do this pruning. The system would

keep the interpretation of the selection as a circle and try to combine it with future

strokes to create new interpretations. Without pruning, the system might decide after

future strokes that this circle is actually the wheel in a pulley. Imagine the user's

surprise when a stroke he thought was a selection turns into a pulley a few strokes

later.

In this example, pruning helps our system control the number of interpretations

for the strokes in the sketch. However, pruning has one main disadvantage: it requires

the system to display its interpretations to the user after every stroke. The system

relies on implicit user feedback (i.e. the user does not reject the system's interpretation

for her stroke) to determine the correctness of its interpretations. Without this user

feedback, the system would not be certain enough about its interpretation to be able

prune other interpretations.

4.4 Correcting Interpretation Errors

Although our goal is to create a system that interprets drawings correctly on the

first try, the inherent ambiguities in the drawing make this impossible. In light of

this, ASSIST keeps track of many interpretations for each set of strokes. If the user

draws a stroke and the program selects the wrong interpretation, the user can ask the

program to choose another interpretation. The program will present a list of possible

interpretations and ask the user to choose the correct one (Figure 4-9). If the correct

interpretation is not on the list, the user indicates that the computer did not get the

right interpretation and redraws the stroke.
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4.5 Level of Aggressiveness

Another interface issue we explored was the level of aggressiveness the computer

takes when recognizing a part of the user's sketch. Some of the issues involved were

mentioned in Section 2.3.2. When is the right time to accept a recognition for a

particular stoke or group of strokes? When should the computer display its best

guess and when should it wait for more information?

Our system uses a high but variable level of aggressiveness in recognizing parts.

It tries to recognize each stroke as a mechanical object; however, it is able to change

its interpretation for strokes that have already been drawn as more strokes are added.

For example, the system recognizes the first few lines the user draws as rods; however,

as soon as a polygon is completed, it reevaluates the group of strokes to incorporate

them into a polygonal body.

4.5.1 The Advantages of Aggressive Recognition

There are several reasons we chose an aggressive recognition style for our system.

First, it provides the user with constant feedback on the recognition of the sketch,

keeping the user informed about the system's interpretation. Because the user always

sees the system's view of the sketch, the system can use his explicit and implicit

feedback to keep the system's interpretation of the sketch on track.

A second reason we chose aggressive recognition is because the system is flexible

enough to update its interpretations when it receives more information from the user.

Because the system maintains alternative interpretations and is capable of revising its

interpretation as the user adds to the sketch, it does no harm to tentatively recognize

objects, even if it is likely that their interpretations will change, as long as the system

does not force the user to correct the aggressive interpretation.

Finally, we chose an aggressive recognition style because our recognition system

does mostly data-driven processing. Because we recognize after every stroke, it is

natural to display the results of that recognition after every stroke.
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4.5.2 The Disadvantages of Aggressive Recognition

The major disadvantage of aggressive recognition is that the system must interpret

the sketches as it is at any moment, without the added context provided by the

drawing yet to come. If the system were to wait longer in finalizing its recognition,

it might produce a more accurate interpretation to display to the user and the user

would not have to deal with so many misinterpretations.

Second, as we will discuss further in Chapter 6, some people find it distracting to

have to wait for and respond to the system's interpretation after each stroke. Our goal

was to produce a tool whose interface would be as close to paper as possible. Even

when a person draws with someone looking over his shoulder, he does not want to be

interrupted after every stroke to make sure the observer has the correct interpretation.

It might be more natural for the system to display its interpretation less often, even

if there are a few more mistakes. In addition, people are reluctant to wait for their

strokes to be recognized. Even though the recognition process usually takes less than

a second, there is enough of a lag that it is not the smooth fluid process of sketching

on paper.

In future versions of the system we will experiment with different levels of recog-

nition to resolve these problems.
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Chapter 5

The Underlying Structure of

ASSIST

In the previous chapters we outlined the techniques we used to produce a natural but

powerful sketching environment. In this chapter we explain the low-level mechanisms

that we use to create this interface.

5.1 The Structure of RecSystem

To create ASSIST, we augmented RecSystem's recognition system to produce more

flexible interpretation of the drawing and more natural interaction with the user. To

understand how ASSIST works, one must first understand how RecSystem works,

and then understand the alterations made to the original framework.

5.1.1 The Basic Model

RecSystem's recognition model was designed to be extremely modular. The idea was

to make the system simple to extend by writing and adding recognizers for any new

object that the system should recognize.

To illustrate RecSystem's basic recognition model, consider the example in Fig-

ure 5-1 in which the user is completing a square. Assume the user is working in a
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the user draws this stroke

line line

line

Figure 5-1: The user completes a quadrilateral.

Recognizer Input Type Output Type

Line Recognizer squiggle line

Polygon Recognizer line polygon
Rectangle Recognizer polygon rectangle
Circle Recognizer squiggle circle

Table 5.1: Recognizers in a simple environment.

simple world that uses the recognizers listed in Table 5.1. The recognition process is

summarized in Table 5.2. The user already has drawn three strokes that have been

interpreted lines. When the user draws the final stroke in the square, the system

creates an object called a "squiggle" that represents the stroke as a series of graphical

points. The system then passes the squiggle as input to the recognizers in the system.

When the system recognizes the stroke as a line, it replaces the squiggle with the line.

Note that the stroke is no longer represented in terms of its pixels, but in terms of

the end points of the line. Next the system recognizes the four lines as a polygon,

Current Recognizer Action Objects on Surface

None Squiggle added to surface line, line, line, squiggle
Line Recognizer Replaces squiggle with line line, line, line, line
Polygon Recognizer Replaces lines with polygon polygon
Rectangle Recognizer Replaces polygon with rectangle rectangle
Circle Recognizer None rectangle

Table 5.2: An illustration of the RecSystem recognition process. The item in bold is
the interpretation that includes the last stroke the user drew.
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and replaces the lines with a polygon. Finally, the system recognizes the polygon as

a rectangle and replaces the polygon with the rectangle. Recognition ends because

none of the recognizers can fire, and the interpretation "rectangle" is presented to the

user.

5.1.2 The Recognition Process

There were two major components to RecSystem's recognition process: the surface

and the recognizers. Recognizers took turns looking at the interpretations for the

strokes on the surface, and replacing them with more complex interpretations. The

interpretation left on the surface at the end of the recognition process was the inter-

pretation the user saw.

RecSystem's recognizers conformed to a particular structure to work correctly

within the system. First, each recognizer had to specify the input type it recognized.

For example, the line recognizer recognized squiggles, while the square recognizer

looked for rectangles to turn into squares. A recognizer got a chance to fire only when

its input type was the current interpretation for the last stroke drawn. For example, if

the last stroke drawn had been recognized as a circle, the rectangle recognizer would

never fire because it required a polygon, not a circle, as input. A recognizer examined

both the interpretation that triggered it and surrounding strokes on the surface. If

it recognized a stroke or group of strokes as a new interpretation, it replaced the old

stroke or strokes with the newly recognized object. For example, when the polygon

recognizer recognized a polygon, it removed the lines that formed the polygon, and

replaced them with the single polygon.

The recognizers were stored in an ordered list. Each time a new stroke was drawn,

the list was traversed in order, with each recognizer getting a chance to look at the

objects on the surface. If the recognizer fired, it replaced the current recognition of

the last stroke with a new recognition. Subsequent recognizers saw only the latest

interpretation for the object.
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5.2 ASSIST: Overview

The RecSystem's main limitation was that it had only one interpretation for each

stroke the user drew. ASSIST, generates all interpretations for each stroke, and

keeps track of many possible interpretations for the sketch. Only the most likely

interpretation is displayed to the user, but the other interpretations are stored for

possible future use. For example, what is at first considered to be a circular body can

turn into a pulley as soon as more context is added. Because the pulley recognizer

takes circles as input, and not circular bodies, the circle interpretation is stored for

future recognition.

In the next few sections we examine the major components of ASSIST in more

detail: widget pools, recognition, reasoning, and resolution.

5.3 Widget Pools

In RecSystem the interpretations for the user's strokes were stored in a single data

structure called the surface. ASSIST uses multiple data-structures called widget pools

to store all the interpretations for the user's strokes. A widget pool is a collection of

interpretations for the strokes in the sketch. ASSIST has three different widget pools

and all interpretations exist in one or more of them: the main pool, the surface pool,

and the recognize pool.

All interpretations are stored in the main widget pool. When a recognizer in-

terprets a stroke, instead of removing the old interpretation from the surface and

replacing it with a new interpretation as was the case in RecSystem, the recognizer

simply adds the new recognition to the main widget pool.

The surface pool contains all the interpretations that the user sees. When the

system chooses the best interpretation for the strokes the user has drawn, the system

places that interpretation in the surface pool. Unlike the main widget pool, there can

only be one interpretation for each stroke in the surface pool.

The recognition pool contains the interpretations that the recognizers can use in
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recognition. Because of the large number of interpretations that may be generated

by all of the recognizers, the main widget pool becomes large quickly. Only interpre-

tations of strokes that are temporally or spatially close to the last stroke drawn are

put into the recognize pool. The recognize pool is rebuilt each time the user draws a

new stroke.

5.4 Recognition

The recognition step in ASSIST is very similar to the recognition process in the

original RecSystem. The system still includes recognizers almost identical to those

described in Section 5.1.2. However, unlike RecSystem's recognizers, ASSIST's rec-

ognizers do not remove previous interpretations from the system. Instead, they link

their new interpretation to the old one and add their new interpretation to the wid-

get pool. When recognition is complete, the interpretations for each stroke can be

represented in terms of a recognition graph. Figure 5-2 shows the recognition graph

for a square.

A second important difference from RecSystem is that ASSIST's recognizers are

not allowed to modify the display directly. They can only create instances of new

interpretations and add them to the widget pool. The correct interpretation is not

chosen until the resolution step, and we do not want to change the display until we

have chosen an interpretation for the stroke. If recognizers were to take action, they

would have to undo their action if their interpretation for the stroke turned out to be

incorrect.

5.5 Reasoning

In the second stage of the recognition process, the system scores each interpretation

for the last stroke drawn. The goal is to order interpretations in order of likelihood:

the most likely interpretation should receive the highest score, the second most likely

interpretation should receive the second highest score, and so on.
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Figure 5-2: A simple recognition graph for a square. The parents are higher in the
figure, and the lines connect parents and children. Each of the user's raw strokes are
recognized as lines. Then the lines together are recognized as a quadrilateral, the
quadrilateral is recognized as a rectangle and the rectangle is recognized as a square.

Ranking interpretations is not a straightforward process; there are several com-

peting factors that make an interpretation more or less likely. We may know that

most of the time four lines drawn in a square formation will form a square body.

However, sometimes they might all be used in separate mechanical parts, and just

happen to be arranged in a square.

We make a division between general rules for ranking interpretations (e.g. four

lines usually form a square body) and rules that apply to specific instances of objects

in the sketch, regardless of their interpretation (e.g. objects that have been on the

surface for a longer time are more likely to be correct). We call these two types

of rules categorical rules and situational rules, respectively. Categorical rules rank

interpretations relative to one another based on heuristics about which interpretations
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are more likely in which contexts, before the user has had a chance to provide feedback

on the interpretation. For example, a small circle drawn on top of a mechanical body

is probably a pin joint, not a circular body. Situational rules apply implicit and

explicit feedback from the user to interpretations that have drawn on the screen.

For example, the longer a rectangular body has been on the screen, the stronger its

interpretation becomes, because it becomes more likely that the rectangle is meant

as a body and that the user will not turn it into anything else.

5.5.1 Reasoning Heuristics

In addition to the major division between categorical and situational rules, we used

a number of heuristics in the reasoning engine.

Occam's Razor

Occam's Razor states that the simplest explanation is usually the best one; in keeping

with this, the system tries to determine the simplest interpretation for a given set

of strokes. As one example, it favors interpretations that indicate whole pieces over

interpretations including rods or line segments. In general, the fewer parts the system

can fit to a given set of strokes, the better.

Preference for Mechanical Parts

Because we assume that our context is mechanical engineering, the system tries to fit

a mechanical interpretation to every stroke or group of strokes the user draws. For

example, if it has the option of interpreting a stroke as a circle or interpreting it as a

pin joint, it will choose a pin joint.

Temporal Grouping Preference

While time data alone is not enough to tell us which strokes should be grouped into

one object, it does help. First, we observed that most people tend to draw objects

with successive strokes. They rarely start drawing one thing, move to another piece in
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the drawing, and then come back to the first piece. Furthermore, when people pause,

they tend to do so between objects. Interpretations that include only temporally

proximate strokes are preferable to those that use strokes that are spaced out over

time.

Preference for More Constrained Interpretations

As mentioned earlier, not all recognizers are created equal. In general, the more

limited the domain of a recognizer, the more likely it is that its interpretation is

correct. Some objects always have more than one interpretation. For example, a pin

joint is a small circle, and therefore can always be interpreted as a circular body.

Because we know that all pin joints will be recognized as circular bodies, but not all

circular bodies are recognized as pin joints, we rank the interpretation of "pin joint"

higher than the interpretation of "circular body."

Always Remember the User

The above heuristics were mainly used to develop the categorical rules. To develop

the situational rules we focused on the system from the perspective of the user. A user

affects the interpretation process through both implicit and explicit feedback. Implicit

feedback involves accepting an interpretation by not rejecting it and continuing with

the drawing. Explicit feedback involves actively rejecting the system's interpretation,

either by deleting the object or by using the Try Again button.

Implicit feedback produces interpretations that may be incorrect. For example,

when the user draws a line, we often choose to call it a rod. Most of the time the user

will add more strokes, causing the system to recognize the set of lines as something

else. Therefore, the system must not commit immediately to the interpretation of the

line as a rod. However, if the user leaves that line there and goes to work in another

part of the drawing, we may gradually increase the strength of the interpretation,

because the user does not seem to want to add more strokes to that portion of the

drawing.

Explicit feedback on the other hand produces a firm interpretation for a stroke. If
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the user explicitly rejects the system's interpretation, the system can be sure that its

first guess was definitely incorrect interpretation. It should remove that interpretation

from its current list of possibilities.

5.5.2 Ranking the Interpretations

We have discussed two different types of rules to rank interpretations for strokes in the

sketch: contextual and situational. To combine the two sources of evidence we trans-

late the evidence from both the contextual and situational rules into a numerical score

for the interpretation and then add them together. The higher an interpretation's

total score, the more likely that interpretation is.

Each interpretation has two numeric scores that rate its strength: a relative score

and an absolute score. The relative score is determined by the output of the contextual

ranking rules. Its value is an integer from 0 to 10; we explain below how this score

is determined. The absolute score is determined by the situational ranking rules; its

value is an integer from -11 to 11. The absolute score dominates the relative score

because we want user feedback to dominate general ranking heuristics.

Scoring Relative Interpretations

Although we want the relative score of an interpretation to be numerical so it can be

combined with the absolute score, the contextual reasoners give us only relative rank-

ings of the interpretations. Contextual reasoners do not assign numerical scores to

the interpretations because the numerical value changes depending on the contextual

rules we add to and remove from the system. For example, consider a system that

contains a circle recognizer and a pin joint recognizer. In general, the interpretation

"pin joint" is preferred over the interpretation "circle" because a pin joint is a me-

chanical part. If the reasoner gave the interpretations scores directly (by assigning a

0 to "circle" and a 1 to "pin joint", for example), it would be difficult to incorporate

other interpretations. If we added a recognizer for circular bodies, and wanted to

incorporate the knowledge that the interpretation "circular body" is preferred over
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"circle", but "pin joint" is preferred over "circular body," we would have to adjust

the scores given in the previous system to incorporate this new knowledge. Therefore,

we need a consistent way to transform relative rankings into numerical scores that

can change based on which interpretations are present.

The system scores the interpretations by ordering them using a series of graph

algorithms (Figure 5-3). The system builds a directed graph with one node for each

circle 1 uninterpreted
stroke

Interpretations:
circle
circular body
pin joint
uninterpreted stroke 1

Rules: pin 3 circular
1. Any interpretation is more likely joint body

than no interpretation
2. Bodies are more likely

than geometric shapes

3. Pin joints are more likely
than circular bodies

10 7 4 0

pin circular .: circle uninterpreted
joint - body stroke

Figure 5-3: The interpretation ordering algorithm. The edges in the graph are labeled
with the number of the rule that created them. The relative scores assigned to the
interpretations are shown above the nodes at the bottom.

interpretation. The links in the graph represent the relative likelihood of the inter-

pretations. That is, for two interpretations A and B in the graph, there is a link from

A to B if A is a more likely interpretation than B.

The graph is then processed to produce a total ordering of the interpretations.

First the system removes cycles in the graph by finding the strongly connected compo-

nents and collapsing them into single nodes. Cycles in the graph imply contradictory
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rules, for example, one rule that states interpretation A is better than interpretation

B and another that says that B is better than A. In this situation, the interpretations

in the cycle are ambiguous according to our rules and they are given the same relative

strength.

Next the system does a topological sort of the graph, sorting the interpretations

from most likely to least likely. This would be a straightforward step if it were not for

the fact that the topological sort may be under constrained, producing a number of

valid orderings for the interpretations. For example, if the second rule in Figure 5-3

is removed, the graph can be sorted two different ways, shown in Figure 5-4. We fix

Figure 5-4: Two results from topological sort on an interpretation graph. The results
are combined to form the graph on the bottom.

this problem by assigning equal scores to any nodes that were not ranked relative to
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one another, either directly or through other connections.

Once it has a total ordering for the interpretations, the system assigns scores to

the interpretations based on this ordering. It evenly distributes the scores from 0 to

10 over the interpretations. For example, if there are three interpretations in the list,

they are given scores of 10, 5 and 0 from most to least likely. If there are more than

eleven interpretations to score, the top ten interpretations are assigned scores of 10

through 1, and the remaining interpretations are grouped and all given a score of 0.

Scoring Absolute Interpretations

An interpretation's absolute score is simpler to maintain directly as a numerical value

because situational rules simply strengthen or weaken an interpretation, rather than

ranking it relative to other interpretations. All interpretations start with a default

absolute score of 0; their ranking is wholly determined by their relative score. After

an interpretation has been displayed, situational rules can affect its absolute strength

in four ways: strengthen by 1, weaken by 1, set to 11, or set to -11. An interpretation

is strengthened by 1 when it is left on the surface by the user for a set period of time.

An interpretation is set to 11 or -11 when it is either explicitly accepted or explicitly

rejected by the user through use of the Try Again dialog box. So far, none of our

situational rules weaken an interpretation by 1, but we built this functionality into

the system for future rules to use.

Note that situational rules can cancel each other out. If one rule increases an

interpretation's absolute score by 1 at the same time another sets it to -11, the

strengthening will likely have no effect on the strength of the interpretation. In this

case, it is likely that the low score should dominate, so the fact that the two actions

contradict one another does not matter. However, it would be a problem in the case

where one rules sets the absolute score to -11, while another sets it to 11. In our

system, this situation never arises, because extreme score alterations are only caused

by explicit user feedback, and it will never be the case that a user both accepts and

rejects the same interpretation for a stroke.

78

F



5.6 Resolution

The last step in the recognition process is to choose the best interpretation for the

group of strokes the system is considering. We define the "best" interpretation for

each stroke to be the highest scored interpretation that is also consistent with the

interpretations made for other strokes.

To determine how this works, we examine what it means to have a consistent rep-

resentation for each group of strokes. As the recognizers act on each new stroke, they

not only add interpretations for the last stroke drawn, but also provide new interpre-

tations for strokes already on the surface. For example, when the user completes a

square, the strokes that were previously interpreted as lines are incorporated into the

square. The system must choose a consistent interpretation for each stroke to display

to the user, and this can be complicated because a node in the recognition tree can

have multiple parents. Consider the recognition tree in Figure 5-5. If we choose to

represent stroke A as a rod, then we cannot choose to represent stroke B as an edge

of a square, because stroke A would have two representations: a rod and the edge of

a square. Thus, A's representation would be inconsistent with B's.

To make sure we get only one interpretation for each stroke, ASSIST uses a process

of choice and elimination, using a greedy algorithm to choose the highest scored

interpretation. The algorithm works as follows:

1. Choose the interpretation with the highest score.

2. Eliminate all interpretations that are made impossible by the choice made in

step 1.

3. Repeat steps 1 and 2 until no more interpretations remain.

Consider the example in Figure 5-6. The rod on the left has the highest score,

therefore it will be chosen as a correct interpretation for stroke A. Choosing that inter-

pretation eliminates the interpretations of quadrilateral, rectangle or square, because

stroke A is needed in any of these interpretations. The system chooses to represent all
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A B

Figure 5-5: A recognition graph for four strokes.

the other strokes as rods as well because they have the highest scores of the remaining

interpretations.

The resolution step makes it simple to correct interpretations for strokes. When

the system misinterprets a stroke and the user taps the the Try Again button, the

system sets the absolute score of the rejected interpretation to -11 and sets the ab-

solute score of the newly selected interpretation to 11. Then the system reruns the

resolution step to choose the new interpretations to display to the user.

One detail to note is that this method does not always give us a globally optimal

solution. Occasionally a very highly ranked interpretation will cause the system to

rule out other interpretations that would have produced a better interpretation of

the sketch as a whole. We use a greedy algorithm despite this limitation because it

runs quickly and still works well in practice. Because ASSIST is interactive, it cannot
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Figure 5-6: A recognition graph for four strokes with scores.

afford to calculate a globally optimal solution. Furthermore, the scores are not exact,

so the greedy solution is sufficiently precise.
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Chapter 6

User Studies

Because we built a natural interface, a critical part of our evaluation of the system

was user testing. Only other people could tell us how successful we had been in our

efforts to build a natural and powerful system.

We had test subjects sketch both on paper and using ASSIST. We observed their

behavior and asked them to explain their experience with the system, describing in

what ways it felt natural, and what was awkward about using it. We focused on

qualitative results, rather than collecting quantitative statistics because this system

was a first version of a novel interface design and we were not looking for subtle

reactions or minor improvements.

6.1 Procedure

We tested the system on eleven people from within the AI Laboratory at MIT, two

of whom had mechanical engineering design experience. The subjects were all asked

to perform the same tasks. They were first asked to draw a number of mechanical

systems on paper (Figures 6-1, 6-2, 6-3, 6-4), so that they had a point of comparison

between paper and ASSIST, and so that we could observe any differences in behavior

they displayed between drawing on paper and drawing with ASSIST. After they had

drawn on paper, we gave them a quick (3 minute) explanation of how to use ASSIST

and then told them to draw the same systems they had drawn on paper. Subjects
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Figure 6-1: The two warmup examples.

sketched in ASSIST using a Wacom PL-400 tablet. The tablet is an active matrix

LCD display that allows users to sketch and see their strokes appear directly under

the pen.

We made it clear that ASSIST was meant to be an early stage design tool, not a

tool designed to produce flawless output. Subjects were shown computer generated

images of the system we asked them to draw, but they were told not to worry about

exact replications. We told them to put the parts in the correct relative location to

one another and not to worry about the details.

After they had sketched using ASSIST, we asked them a series of question (Ta-

ble 6.1). Our goal was to get them to articulate what they found natural about

ASSIST and what they did not. The first few questions determine the mistakes the

system made and how tolerant users were of these mistakes. The last two questions

are open ended in order to get at issues that had struck the users over the course of

their sketching session.
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Figure 6-2: A scale.

1. How often did you feel the system got the correct interpretation for your strokes?
2. When the system misinterpreted your stroke, how reasonable was its misinterpretation?
3. How clear was the system's interpretation for your strokes?
4. How easy was it to modify the drawing?
5. Compare using this system to drawing on paper.
6. Compare using this system to using a menu-based interface.

Table 6.1: Questions we asked the subjects.

6.1.1 Test Examples

We chose examples that were more complex than toy examples, but that could still be

simulated by Working Model because we wanted to make sure the users got a realistic

feel for the simulation part of the system. The examples show a range of parts the

system was able to handle. Figure 6-1 shows the two warm-up examples, designed to

get the user familiar with using the tablet and to give them a feel for working within

ASSIST. The top mechanical system depicts two bodies linked by a rod across a third

fixed body. When this sketch is simulated, the top body rolls along the rectangular

body that is anchored to the background, and the bottom body swings back and forth.

The bottom mechanical system consists of a rectangular body connected to a circular
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Figure 6-3: A Rube-Goldberg machine.

body with a rod, and to the background with a spring. Figure 6-2 is a scale. We

chose this example to test the system's ability to handle overlapping shapes. There

are many areas in this drawing where the system might have become confused due

to the interactions between lines on the page. The next example is a diagram of a

Rube-Goldberg machine (Figure 6-3). It contains a large number of parts that fit

together to form a functional machine. Finally, the last system (Figure 6-4) is a rigid

body representation of a circuit breaker. We choose this example because it is an

example of a simple but realistic mechanical system.

6.2 Results

In this section, we list the features that make the system easy to use and the im-

provements that will make future versions of the system more natural.
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Figure 6-4: A circuit breaker.

6.2.1 Drawing Style

The first observation we made concerning drawing in ASSIST was that the learning

curve for our system was small. People were able to sketch the sample mechanical

systems and have the computer recognize them with only a short training period.

While they had to slightly modify the way they drew certain objects, such as polygons

and springs, for the most part they were either able to use their natural drawing style,

or learn quickly and easily the small changes that the computer required to recognize

their drawings.'

Some people also explicitly noted what made the system feel natural: they did not

have to be in a specific mode to draw a specific piece of the sketch. One of the most

natural parts about drawing on paper is that a person can draw anything he wants

just by adding strokes to the piece of paper. Our system preserves this freedom. The

user does not have to switch to "spring mode" to draw a spring. He draws one and

the system understands what he means without him having to tell it.

On the other hand, the system does limit the user's style in some ways due to

the hardware and the software. First, we found that some people had a hard time

getting comfortable with the hardware. Pen based hardware that allows people to

'Another member of our group is currently working to improve low level recognizers so that they

are more accurate with less constrained drawing styles.
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draw on computers is relatively new, and while roughly the same size as paper, the

tablet is obviously much more cumbersome. Some people reported that they could

not rotate it the way they would like to; others were afraid to put their hand down

on the tablet as they would on paper, causing their drawing style to be slightly more

constrained. Finally, the design of the computer pen we used was problematic for

some: it has a button on its side that sends a signal to the computer, which in our

case, interfered with the signal that is sent by simply placing the pen on the tablet.

Because of the placement of the button, many people pressed it without meaning to,

producing unexpected behavior from the system.

Some subjects were more careful about drawing with ASSIST than they were on

paper. We told people that the drawings they produced did not have to be perfect

copies of the drawing we showed them, rather that we just wanted them to produce a

rough sketch. On paper, people seemed content to allow the drawings to be imperfect

copies of the versions we showed them. However, when they moved to the computer

some subjects became more concerned with making the drawing look neat.

We hypothesize two reasons for this behavior. First, people associate computers

with precision, and therefore might be tempted to try to make any computer-produced

drawing clean. Second, our system gives the user feedback by changing the user's

strokes as he draws. In effect, the system cleans up the strokes in displaying an iconic

representation for them. On paper strokes stay exactly the same as the user draws

them; however, because the computer cleans up the drawing a small amount, the

subjects might have felt the need to make the drawing perfect.

6.2.2 Stroke Interpretation

Because our system interprets the user's strokes as he draws, the user is forced to

deal with the system's interpretations. We examined how well the system interpreted

the user's drawings and how correcting the system's mistakes affected the behavior

of the user and the naturalness of the system.

All users felt that the system got the correct interpretation for their strokes most

of the time. We observed two types of errors the system made: incorrect choice of
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representation and missed interpretation. First, the system sometimes has the correct

interpretation among the many interpretations it has for a stroke, but make the wrong

decision as to which interpretation is correct. In this case the user can use the Try

Again function to tell the system which of its interpretations is correct. Second, the

system can misinterpret a stroke by not generating the correct interpretation at all.

In this case the user has to erase and redraw the stroke. We found that most of the

errors were due to the fact that the system never got the correct interpretation for

the stroke. For example, in the sketch in Figure 6-5, the system failed to interpret the

crossed lines as an anchor in the recognition step. We conclude that our reasoning

Figure 6-5: The system fails to recognize the two crossed strokes as an anchor in the

recognition step.

is able to choose the correct interpretation when it is present, but we must work on

building more robust low-level recognizers for future versions of the system.

In addition to observing the types of errors the system made, we also observed

users' error correction behavior. The Try Again button was designed to give users

a simple way to correct the system's interpretation of a stroke or group of strokes.

However, in general users did not use the Try Again button, but instead deleted the

misinterpreted stroke and redrew it. We pose two explanations for this behavior.

First, the Try Again button was not usually helpful because, when the system got

the correct interpretation for the object in the drawing it tended to choose that object

to display. Thus, the correct interpretation in the cases where the system missed was

not usually in the interpretation list. Second, hitting "Try Again" is not an option

on paper, so it is not an option that occurs naturally to the user.

Many users also expressed frustration with not being able to modify parts of

objects. They noted that on paper they could erase parts of strokes, while in ASSIST
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they were forced to erase whole objects. In future versions of this system we will to add

this behavior by exploiting the signal produced by the eraser end of the pen. We will

also explore the effect partial stroke deletion has on recognition and representation.

For example, when the user erases part of a box, at what point is it no longer a box

anymore?

Finally, the fact that the users knew that their strokes were being interpreted as

they drew led some subjects to be more tentative in their drawing. A few reported

the disconcerting feeling that they felt that someone was watching them and therefore

were more cautious with what they drew. Also, they were not always confident about

the computer's interpretations and were sometimes wary because they were not sure

of the interpretation consequences of their strokes.

6.2.3 Visual Feedback

We also explored the naturalness of the visual feedback the system gave to the user.

Recall that the goal of providing the user with visual feedback was to give him an

idea of the system's interpretation of his drawing. We found that the visual feedback

in ASSIST gave the user an unambiguous idea of how the system had interpreted the

sketch. In fact, the feedback may have been too intrusive, distracting the user as he

drew and making the system feel less natural than it might have.

Every user reported that they were always clear on what interpretation the system

had for their stroke, thus we have succeeded in always keeping the user informed.

According to subjects, the system rarely made a totally surprising interpretation for

their strokes, and when it did, subjects reported being aware immediately.

On the other hand, some users said that the way the system gave its feedback

was somewhat distracting. When the system recognizes a stroke that a user draws,

it replaces the recognized stroke or group of strokes with an icon that represents the

interpretation it has made. While this icon is fitted to match the strokes the user

has drawn as closely as possible, it still does some modification of the user's strokes,

appearing to clean up the user's drawing slightly. This behavior bothered some people

because they felt that they no longer had total control of the strokes they were putting
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on the page. They reported that it was very difficult to have any sort of precision,

because they were never quite sure how the details of their stroke would end up.

We conclude from this reaction that we should find another way to give the user

clear visual feedback. We aim for a method that is just as clear, but that does

not actually modify the strokes the user puts on the page. Instead of changing the

user's strokes, we might simply change their color, or we might display the system's

interpretation for the stroke in a lighter shade over the user's original stroke.

6.2.4 ASSIST as More Than Paper

It was our goal to capture in ASSIST what is natural about drawing on paper. At the

same time, we must not limit ourselves to the paper and pencil metaphor. The com-

puter allows additional actions such as rotate or copy that paper does not. Although

we are trying to build a paper-like interface, building additional, non-paper-like power

into the system can improve the system's usability. Users described what they felt

made the system better than paper, and what they would like to see in future versions

of the system.

First, people liked the power that the system brought to the drawing process in the

realm of mechanical engineering. Subjects found the ability to simulate the drawings

to be quite appealing. Some also expressed interest in having semantic information

displayed in the drawing. For example, shading all bodies that are rigidly fixed to

the background.

People also liked the idea that the system could be a more complete editing tool.

For example, although paper does not give users the ability to cut and paste or

rotate their images, most people said that these features would not take away from

the naturalness of the interface, but simply add power that they have already come to

expect from a computer program. Also, people liked the idea that ASSIST was able

to clean up their drawings, even though they would have preferred for this cleanup

to take place after they were done drawing. Several subjects expressed interest in a

more controlled way to clean up their drawings. They wanted their strokes to be left

rough at first, with the option to go back and touch up the drawing later.

91



6.3 Summary of Study Results

The following were the main results we found from the study and their implications

on the system's interface design.

* The system's interpretation mistakes were most often due to the system missing

an interpretation rather than choosing the wrong interpretation for the stroke,

implying that our low level recognizers need to be improved so that the correct

interpretation is made at the base level.

* The feedback we gave the user was clear, but intrusive in the drawing process.

In future versions of the system, we will incorporate a method of feedback that

does not modify the user's strokes.

" The learning curve for our system was extremely low.

" The aggressive recognition was effective, but slightly too aggressive. In future

versions we might wait to interpret strokes until the user has drawn a larger

piece of the sketch.

" We should give people the power to clean up their drawings (e.g. snap lines to

a grid, lock lines into polygons, etc.) because people expect this power from a

computer system.
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Chapter 7

Related Work

Our work has been influenced by work in sketch interpretation and in mechanical

system simulation.

Similar work in sketch interpretation can be found in the Electronic Cocktail

Napkin project by Mark Gross and Ellen Yi-Luen Do (Gross, 1995; Gross, 1996;

Gross and Do, 1996). They built a system that employs a bottom-up recognition

method similar to ours. Their system also has a method for representing ambiguity

in the user's sketches, and is capable of refining its interpretations of the user's stokes

after the appropriate context has been set into place.

Our system differs from theirs in that it takes a more aggressive approach to am-

biguity resolution, and therefore can interpret more complicated interactions between

parts. The Electronic Cocktail Napkin is capable of recognizing ambiguity and stor-

ing it internally, as our system does. However, in order to resolve this ambiguity,

the user must either inform the system explicitly of the correct interpretation of the

stroke, or the system must find a specific higher-level pattern that would provide the

context to disambiguate the interpretation of the stroke. Our system, in contrast,

takes into account not only drawing patterns but also knowledge of drawing style and

user expectations.

A second sketch recognition system is the SILK (Sketching Interfaces Like Krazy)

system by James Landay (Landay and Meyers, 1995). SILK is a recognition system

that allows the user to sketch out rough graphical user interface designs, and then
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transform them into more polished versions as the design becomes more stable.

SILK also addresses the notion of ambiguity in the sketch, but is limited to its

handling of ambiguity of single parts, e.g. is this group of strokes a radio button

or a check box? Whether a group of strokes is a check box or a radio button does

not affect the interpretation of the other strokes in the sketch. In contrast, our

system can resolve compound ambiguities. That is, whether a stroke is a rod, or

the side of a box affects how the other lines that would have made up the box can

be interpreted. Thus, SILK can simply keep track of ambiguities and allow the user

to specify her interpretation later, while ASSIST uses knowledge of the domain to

resolve ambiguities as the user sketches.

A theoretical motivation to our work was provided by work by Eric Saund and

Tomas Moran. Saund and Moran outline several goals in interpreting ambiguous

sketches (Saund and Moran, 1994; Saund and Moran, 1995). Our work implements

many of the multiple representation and disambiguation techniques suggested in their

work.

We have also been motivated by work in mechanical system behavior analysis,

especially in the field of qualitative behavior extraction and representation (Sacks,

1993; Stahovich et al., 1997). An important part of our system will be to interpret

the behavior of the systems that people draw so we can transfer them intelligently to

the next stage of the design process (i.e. a CAD program) and interact intelligently

with the designer as he is sketching out his design.

A good example of work in this area is Tom Stahovich's SketchIt system (Sta-

hovich, 1996). SketchIt attempts to understand the mechanical relationships between

parts in a sketch. When people sketch, they draw approximations of the actual sys-

tem they are designing. Stahovich aims to extract the important design constraints

from the designer's rough sketch. While Stahovich's goal is also to create a sketch

based interface for the early stages of mechanical design, he focuses on the relation-

ship between the device behavior and the recognition of the sketch, rather than on

creating a natural sketching interface or noticing and resolving visual ambiguities in

the sketch.

94



Chapter 8

Future Work

The work presented here is a first step toward creating natural and powerful sketch

based interfaces for mechanical systems. It can be expanded and improved in many

directions, from improving the base level recognition to adding behavioral intuition

to produce more natural simulations of the user's sketches. In this chapter we present

some directions for future work that will make for a more intuitive system.

8.1 Low Level Recognizers

ASSIST used an algorithm for separating strokes into line segments that was based

only on the pixel data of the stroke. A more robust algorithm would incorporate

stroke speed data to divide a user's stroke into line segments. When people draw

polygons, they tend to slow down in the corners. This data, when combined with the

pixel data makes for robust recognition of line segments. Currently recognition of line

segments from single strokes is the weakest part of the low-level recognition system.

A member of our group is already working on improving the base level recognition of

single stroke, multiple line segments.

Our system relies mainly on bottom-up processing to make interpretations. It uses

top-down pattern recognizers to fit strokes together, but the top-down processing only

serves to organize all the low-level information, rather than prune it or merge it. For

example, when the user draws a square using four strokes, the system has no problem
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recognizing it as a square. If, on the other hand, the user draws a square using eight

strokes, over-tracing parts of previously drawn strokes with each new stroke, the

system will not recognize the shape as a square. It has no way of collapsing strokes

into sides; it assumes that all strokes are equally important and that they contribute

a significant amount to the object they are a part of. We want our system to be able

to detect higher level shapes regardless of the strokes used to draw the shapes.

8.2 Sketching Using the Computer as a Tool

We discovered during user testing that people did not want the system to behave

exactly like paper-they wanted the benefits of the computer combined with the

naturalness of paper.

People were interested in the idea of a sketch program on the computer because

they imagined a sketch-based recognition program as a first level to an interface that

would improve the user's drawing incrementally as he worked. In an ideal scenario, a

person sketches exactly as he would on paper. As he sketches the computer does not

touch his strokes, rather just recognizes them. When he finishes, the system replaces

his drawing with cleaned up version, with all the parts neatly aligned. Because it is

distracting to have this realignment happening in the initial stages of sketching, the

clean-up process should be delayed until the user is done sketching.

Next, the editing in ASSIST needs to be expanded for it to be a useful tool in

practice. It would be nice to have the best of both drawing on paper and editing

on the computer. When people want to modify part of a sketch, they often want to

erase as they would on paper. At the same time, they want to use features such as

copy, paste and rotate to edit their sketches. Adding such features would make the

computer less like paper, but would likely not limit the natural feeling of the interface.
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8.3 Learning and Adaptation

Another area we would like to focus on involves adapting to an individual's use of the

system. The system should be flexible and extendable, not only learning a specific

user's style, but also learning novel patterns that it had not seen before.

Each user has his own style of drawing. The system should learn to expect each

user's style, making the system more robust at recognizing a user's strokes. We have

embedded into the system a certain amount of knowledge about mechanical system

drawing. However, we cannot not predict the drawing styles of individuals. While

the system is natural to some, many of the test subjects found some of the icons to

be slightly restricting. For example, many people had trouble getting the system to

recognize a spring because they drew it in a way the system did not expect. The

system should be able to learn what to expect from specific users.

Learning can also be applied at the reasoning level. A priori, we cannot account

for all the drawing heuristics that people use. For example, we stated that one of

our heuristics was that people draw all of one object before moving onto the next.

However, we found that some people's drawing pattern does not fit into this style.

When drawing aligned bodies such as the ones in Figure 3-1, some subjects drew

all the horizontal lines before drawing any of the vertical lines. The system should

be able to learn this type of behavior, even though it goes against one of its initial

heuristics.

Another way that the system should be able to learn is by learning new objects to

recognize. This idea was implemented by Gross (Gross, 1996) and suggested in the

context of RecSystem by Weisman (Weisman, 1999).

8.4 Adding Intelligent Behavior

Finally, we would like to improve ASSIST from a mechanical engineering standpoint.

Currently we have a system that recognizes mechanical sketches. However, once it

recognizes pieces of the sketches, it can only naively work with the system. We want
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to incorporate a more intelligent interpretation of the behavioral aspects of the sketch

so that it can be used for design rationale capture and take a more active role in the

design process.

To illustrate the point about behavior, consider the circuit breaker example (Fig-

ure 6-4). A person looks at the example and "sees" the expected behavior: the force

on the latch pushes it downward, the spring attached to the lever at the top pulls it to

the right until it hits the plunger and sits at rest until someone resets it. Now contrast

this view of the behavior with the literal interpretation using Working Model: the

force pushes down on the latch, but the system does not know it is only supposed to

be applied for a short period of time, so the lever oscillates up and down. The spring

attached to the latch at the top is assumed to be at rest, so it does not pull the lever

out to hit the plunger. The plunger does not fit tightly into the "wall", and bounces

around when hit.

A first step towards behavioral intelligence is an annotation method being devel-

oped by another member of our group. His goal is to allow the user to inform the

system of the behavior through speech and gesture information. For example, a user

might draw the system in Figure 8-1 and say "The block pushes the ball forward until

it rolls down the ramp and off the other side" (Oltmans, ). The system would then

X
Figure 8-1: An example used in describing annotations.

know how to set the length and constant of the spring to get the system to produce
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the desired behavior. We can draw on work in literal and qualitative simulation to

help our system understand more about intuitive behavior.
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Chapter 9

Conclusion

Engineers currently do not use computers in early design because the iconic interface

of CAD and simulation tools do not allow them to record their ideas quickly and

naturally. To be useful in early design, computers must allow the designer to sketch

as she does on paper and provide her with benefits, such as the ability to simulate

her system, that she does not have on paper.

Our goal is to create an assistant that can understand the engineer's design as

she sketches freely. A necessary first step is to get the computer not just to represent

ambiguities in the drawing, but to resolve them as quickly and easily as humans do.

We created a natural sketching interface by building a program that would recognize

a designer's mechanical sketch more or less the way a human observer would. Our

program allows the user to sketch mechanical systems and then simulate these systems

using a two dimensional kinematic simulator. We also presented a general framework

in which to incorporate domain-specific knowledge to resolve ambiguities in a user's

sketch. Instead of simply recognizing and storing ambiguities, our system combines

user feedback and knowledge of mechanical engineering design, and properties of

sketching to present the user with the most likely interpretation for her sketch.

This work provides a base upon which future applications can be built, bringing

us one step closer to the vision of a computer tool for the entire design process - a

tool that engineers would be willing to use instead of sketching on paper, instead of

in addition to it.
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