
Denotational Proof Languages

by

Konstantinos Arkoudas

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JVNay 2000

@ Massachusetts Institute ofTechnology 2000. All rights reserved.

r',

Author

Departkent
...

of E crcal Engineering and Computer Science
May 19, 2000

fl-N J "C'

C ertified by
Olin Shivers

Research Scientist
Thesis Supervisor

Accepted by....................
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOG3Y

JUN 2 2 200

LIBRARIES

1 //

3

Denotational Proof Languages

by

Konstantinos Arkoudas

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2000, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Abstract

This dissertation introduces denotational proof languages (DPLs). DPLs can be used

to express and check (validate) formal proofs. DPL proofs are typically readable,
writable, compact, and easy to check. Syntactically, DPL proofs are generated by
context-free grammars in such a way that the text of the proof reflects its logical
structure. Semantically, the formal meaning of a DPL proof is specified relative to a
given assumption base, which is a set of premises, i.e., a set of propositions that we
take for granted for the purposes of the proof. The key idea is that if a DPL proof is
sound, then its meaning (denotation) is the conclusion established by the proof; if the
proof is unsound, then its meaning is error. To obtain that meaning, we evaluate the

proof in accordance with the formal semantics of the language. Evaluation will either
produce the advertised conclusion, which will verify that the proof is sound, or else it
will generate an error, which will indicate that the proof is unsound. Thus in DPLs

evaluation is tantamount to proof checking.

We illustrate the core ideas by introducing CNAD, a simple DPL for classical first-
order logic with equality. We develop the theory of CND in detail, prove its soundness
and completeness, present dozens of sample proofs, and develop a number of proof
optimization procedures that remove redundancies and unnecessary "detours". We
also discuss CND as a formal analysis of the concept of deduction, and compare it with

previous formalizations such as Hilbert calculi, sequent systems, and proof trees. We
then introduce the Ap-calculus, a terse formal system that can be viewed as a unifying
framework for DPLs, much as the A-calculus can be seen as a unifying formal framework

for functional programming languages. The Ap-calculus allows for proof abstraction
via methods. Methods are to proofs what procedures are to computations. They are

essential for task decomposition and complexity management in proof engineering.
Methods are made possible by a careful integration of computation and deduction:
the Ap-calculus can be used both for programming and for proofs. More interestingly,

4

we show how methods, when combined with recursion, pattern matching, etc., can be
used for proof search and theorem proving. We work out the rudiments of the theory
and metatheory of the Ap-calculus, and present several examples of AP systems.

We also introduce the concept of credible computation. In the Ap-calculus it is
possible to express an algorithm as a method so that the output is not just a result,
but a theorem to the effect that the result holds. For instance, a unification proce-
dure expressed as a method produces theorems of the form E : 0, asserting that the
substitution 0 is a most general unifier of the set of equations E. The advantage of
this scheme is that the results are guaranteed to be sound, as long as the primitive
methods are sound. Intuitively, a method does not simply compute-or generate-a
result; it also justifies the result. More precisely, it proves that the result is correct.
Thus every time we obtain a result by a method, instead of a regular function, we
can be assured that the result follows logically from our primitive axioms and meth-
ods. This greatly enhances the credibility of the result. We view this methodology as
an attractive alternative to full program verification: instead of statically proving a
program correct once and for all (which is generally very hard in realistic situations),
we express our algorithms as methods instead, which ensures that individual results
produced by method calls are dynamically justified as they are being generated. This
does not guarantee full correctness, but it does provide credibility.

Acknowledgments

It is clich6 and often a bit of an exaggeration to start off the acknowledgments with a
phrase like "This work could have never been completed without ... ". I plead guilty to

being cliche, but there is not an iota of exaggeration here: this work could not have
even started without the support of my parents. Their unrelenting faith in my ability,
amply manifested in their initial decision to let me move to another continent by myself
while still in my teens; their laissez-faire attitude when it came to choosing my major
and flirting with odd-bird subjects such as Logic and Philosophy; their infinite patience
in the face of a student career that spanned three White House administrations; for
all that I am eternally in their debt. Oh yes, the frequent checks that would arrive in
the mail to make sure that I was never out of pocket money didn't hurt either.

Along with my parents I must mention my grandparents, both of whom passed
away in the last two years. They were simple people, but they valued education more
that anything else and instilled in me much of their love for learning. My grandfather,
in particular, although I saw him very few times since I first left Greece, was always a
source of inspiration and a guide in anything that really matters. He was the gentlest,
kindest, truest person I have ever known, and I would give anything to be able to
thank him in person for having been such a great influence in my life. I can't, so it

will have to stay in writing: E'Evxapturw 7rair7rov.

Then there is my advisor and friend, Olin Shivers. I remember the first time I met
Olin, on the fourth floor of the AI Lab, about five years ago. It was rather late one
night, well into the Spring semester. I was working in room 413 when I heard "Rip
this joint"-the second song from my all-time-favorite Stones album, Exile on Main
Street-blasting out from a few doors down. Curiosity piqued, I walked over and struck
up a conversation. Soon he was explaining O-CFA to me and telling anecdotes about
Al Newell, his advisor at CMU, to the sound of "Tumbling dice" in the background. A
few weeks later I had signed up to work with him in his newly formed Express project.
I thought that a young and charismatic research scientist who was knowledgeable and
passionate about both the theory and the practice of programming languages was a
good bet. Throw in an incredible sense of humor and a taste for Keith Richards riffs,
and I figured that was about as good as it could possibly get.

6

Several years later, I'm glad to report that I was right. Olin gave me ample freedom
to work on pretty much anything I wanted in any style I wanted. Not only did he
provide unconditional financial support (even during that protracted initial period
when I was looking around for topics and not being very productive), but he was
also there for me during some difficult times in ways that go over and above the call
of an advisor's duty. I have learned a great deal from him, ranging from simple little
things like the benefits and quirks of s-expression syntax and continuation-passing style
to much more lasting lessons about the responsibilities and rewards of research and
scholarship.

I would also like to thank my previous advisor, David McAllester, for his help and
support during my first two years at MIT. David's scholarship and commitment to
excellence have remained a source of inspiration. Several other reseachers have provided
useful feedack and food for thought. First, the members of my thesis committee, Dana
Scott, Martin Rinard, and Tom Knight. Amy Felty provided input and suggestions
at an early stage of this work, along with Frank Pfenning, David Espinosa, Greg
Morrisett, and David MacQueen. Special thanks to Dana Scott for being on my thesis
committee and for facilitating dialogue with the LF community. Nancy Lynch and
Steve Garland made some presentation suggestions that found their way into the final
version. Thanks to Charles Stewart for bringing Parigot's A-calculus to my attention.
Last but not least, I would like to express my special gratitude to Darko Marinov for
many stimulating thoughts and discussions, and for being the first serious Athena
hacker.

Next, I would be amiss not to mention the teachers who inspired me to go on to
graduate school. Three teachers stand out from my college days: Robert McNaughton,
who taught me about computability, uncomputability, complexity, and the metatheory
of ZF; Selmer Bringsjord, who taught me logic and philosophy; and Dave Musser,
who taught me formal programming language semantics. All three were instrumental
in my development as a computer scientist. Going back further, I could not fail to
acknowledge the debt I owe to the teacher who first taught me English, Eleni Matsakou,
the same person who taught me French so I can read Camus from the original, the
same person who used to make J. J. Cale and Neil Young tapes for me when I was just
a 12-year-old boy growing up in a provincial town in North Greece. Whatever pittance
of good taste I might possess today, most of it can be traced directly to her influence.

Finally, I would like to thank Marilyn Pierce and everybody else at the EECS
offices on the fourth floor of NE38. Administrators often tend to create more problems
than they solve. Marilyn, by contrast, was always there to help solve problems. Several
times she could have easily chosen to shrug her shoulders and say something like "Sorry,
you missed the deadline". Instead, she always did everything in her power to minimize
the amount of bureaucratic grief I would have to endure, and to make things happen.

Contents

1 Background
1.1 Motivation and history
1.2 Introduction .

1.2.1 Problem statement .
1.2.2 Problem clarification and brief contrast with previous work .
1.2.3 Concrete solution and subsequent abstraction
1.2.4 Thesis statement and discussion .
1.2.5 Road map

1.3 Notation

2 A comparative example
2.1 A toy logic for a fragment of arithmetic
2.2 The proof in LF

2.2.1 An overview of LF
2.2.2 Encoding TL in LF

2.3 The DPL proof

3 Fundamentals
3.1 Formalizing classical reasoning as a DPL

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5

Arguments and the nature of deduction . .
Inference rules and the general form of dedu
Proof checking (linear case)
Arriving at a formal syntax and semantics
Non-linear case: assumption scope

11
11
14
14
17
18
19

. 22

. 23

25
. 25
. 28
. 28
. 34
. 47

55
. 55
. 55
ctions 58
. 60
. 62
. 64

4 CAD
4.1 Syntax .
4.2 Evaluation semantics .
4.3 Basic CAN D theory .

71
. . . . 71
. . . . 74
. . . . 77

8 CONTENTS

4.4
4.5
4.6
4.7
4.8
4.9

Examples
Proof equivalence
M etatheory
Variations
Composition graphs and multigraphs
Towards proof programming in functional style

5 Proof optimization
5.1 Background
5.2 Contracting transformations . .

5.2.1 Redundancies
5.2.2 Repetitions
5.2.3 Claim elimination

5.3 Restructuring transformations
5.3.1 Scope maximization .

Left-linear compositions
Hypothetical deductions

5.3.2 Global transformations of
5.4 Examples

.......

.

.

.

.

.

.

.

.
hypothetical deductions .
.

6 First-order reasoning in CNAD
6.1 Syntax

6.1.1 Terms, formulas, and deductions over logic vocabularies
6.1.2 Substitutions for formulas and deductions

6.2 Evaluation semantics .
6.3 Exam ples .
6.4 T heory .
6.5 Tarskian semantics .
6.6 M etatheory .

6.6.1 Soundness .
6.6.2 Completeness .

7 CNFD as a formal analysis of classical reasoning
7.1 Deduction and the nature of formal analysis
7.2 A critique of previous formalizations of deduction

7.2.1 FRH systems .
7.2.2 Sequent systems .
7.2.3 Proof trees .
7.2.4 Quantifier reasoning

81
91
96

103
105
110

115
115
117
117
120
127
128
128
128
130
138
146

153
153
153
155
158
165
174
236
243
243
246

257
257
264
264
265
270
279

8 CONTENTS

CONTENTS 9

8 The Ap-calculus
8.1 Syntax .
8.2 Sem antics .

8.2.1 Core semantics
8.2.2 Semantics of constants

8.2.3 Semantics of special deductive forms . .

8.3 Remarks .
8.4 Basic Ap theory

8.5 Basic Ap metatheory

8.6 Conventions and syntax sugar
8.6.1 Notational conventions
8.6.2 let and dlet
8.6.3 Recursive deductions and computations .

8.6.4 Conditionals
8.6.5 Conclusion-annotated form
8.6.6 Pattern matching

8.7 Interpreting the Ap-calculus
8.8 A simple example

283
. 283
. 286
. 287
. 288
. 292
. 293
. 294
. 296
. 302
. 302
. 302
. 303
. 305
. 307
. 307
. 310
. 317

9 Examples of A systems
9.1 Ap-Ho, a Hilbert calculus .

9.2 The arithmetic calculus: numerical computation as theorem pr

9.3 Recursive methods .

9.4 Natural deduction in the Ap-calculus, propositional case . . .

9.5 A sequent calculus for natural deduction as a pure Ap system

9.6 Unification as deduction .

9.6.1 Unification via transformations

9.6.2 Deductive formulation

9.6.3 The unification calculus as a Ap system

9.7 Natural deduction in the Ap-calculus, predicate case

9.7.1 D efinition .

9.7.2 M etatheory .

9.7.3 The importance of term and formula constructors . . .

9.7.4 Syntax sugar .

9.7.5 Exam ples .

9.7.6 Ap-CNVD 1 as a foundation for first-order theories . . .

D

325
. 325
ving . . 327
. 336
. 340
. 353
. 362
. 362
. 367
. 370
. 378
. 378
. 381
. 384
. 386
. 389
. 398

9CONTENTS

10 CONTENTS

A Herbrand terms 401
A .1 Basic concepts 401
A.2 Substitutions 404

A.2.1 Composing substitutions . 405
A.2.2 Comparing substitutions 405

A.3 Patterns and matching . 406
A .3.1 Renam ings . 407

B CND 409
B.1 Propositional CND . 409
B.2 Predicate C VD . 412

B .2.1 Form ulas . 412
B.2.2 Deductions . 413

Chapter 1

Background

1.1 Motivation and history

The original motivation for this work was practical: it came from software engineering.
Olin Shivers and I had been thinking for a while about a programming environment in
which the programmer could make and prove local assertions about this or that piece
of code: that a certain parameter can be allocated on the stack, that an array index is
never out of bounds, that a function is tail-recursive, or even more involved properties,
say that a function is associative. Statements of this sort, along with their proofs,
would clearly constitute valuable information about various aspects of the program's
run-time behavior. And if these properties were desired to be invariant, then every
time the code changed the proofs would have to be accordingly modified to ensure that
the assertions were still valid.

Besides serving as good formal documentation, this programmer-provided informa-
tion could also be used by a smart compiler for optimization purposes (allocate this
variable on the stack rather than on the heap; leave out array-bounds checking code
from this loop; and so on). Note that we were not concerned with program verification,
i.e., with proving that a program is totally correct with respect to a given specification,
a task that we regarded as too ambitious to be practical. We were only envisioning an
environment in which the programmer could supply the compiler with little pieces of
information about certain aspects of its behavior, along with proofs to guarantee that
the supplied information was correct.

For this to be possible, of course, the compiler must be able to understand the

supplied information and to check that the proofs are sound. More specifically, the
programmer-compiler dialogue must transpire in a mutually understood formal vocab-
ulary; the proofs must be written in a language that the compiler can interpret; and
the assertions must follow from certain axioms postulated by the compiler, for the

compiler can only accept the logical consequences of some premises if it can accept
the premises themselves. In short, the compiler (or some other trusted agent) must
publicize a theory that axiomatizes whatever aspects of the programming language are
of interest. The programmers would then be able to make and prove formal statements
in that theory. Thus we come to the subject of what we have dubbed proof engineering:
working with formal theories, and, in particular, developing, checking, and maintaining
formal proofs.

Developing a research language and compiler was not a challenge, but not so for
the formal framework in which to set up the necessary infrastructure. In what formal
notation would the theories and the proofs be expressed? First-order logic, modal
logic, higher-order logic, a quantifier-free equational logic in the style of Boyer-Moore?
There were many options available, and a number of real-world implementations of
systems that could be used: HOL, LF, Isabelle, PVS, Boyer-Moore, just to mention a
few. Thus I decided to go about familiarizing myself with these systems in order to
arrive at an educated decision. I had a fairly strong background in logic, so I wouldn't
have to spend any time actually learning about logic and theories and so on; it was
just a matter of reading up on the user manuals.

After a few months of research I felt that I had reached an impasse. On one hand,
type-based systems of the Automath variety, although remarkably ingenious in many
respects, seemed to require a lot of machinery-such as higher-order abstract syntax,
dependent types, kinds, etc.-that is specific to that methodology and peripheral to
the usual concerns of the proof engineer. Say that an engineer has a proof that a given
circuit performs binary addition correctly, and simply wants a good formal notation in
which to express and check that proof. It is not clear why he' should have to master
higher-order abstract syntax, dependent types, etc., for such a simple task. In fact
it is not even clear that he could master all that machinery, realistically speaking;
the concepts in question are far from easy, and their solid understanding demands a
significant effort-a substantially greater effort than, say, learning a new programming
language. I felt that this might well put such systems out of the reach of average
engineers, even those who were good in run-of-the-mill formal reasoning. It was very
important to us to craft a system that had a realistic chance of being used in practice
by engineers and scientists who could simply read and write mathematical proofs.

More importantly, proofs in those systems seemed to carry an inordinate amount of
type information that made them large and difficult to read and write. The size factor
has a particularly adverse impact in applications such as PCC [52], where compactness
is essential. One might object that perhaps these are simple presentation issues that
could be ameliorated by simple notational changes and desugarings, but deep issues
such as the undecidability of type checking in the presence of dependent types make

'Throughout this document, "he" should be read as an abbreviation for "he or she".

12 Background

this far from obvious. Necula and Lee [53], for example, spend about 70 pages on the
subject of reducing the size of LF proofs. Their transformations are quite involved,
and the resulting proofs, although substantially smaller than the original, are still
large, and even less readable than the original (due to the use of "place-holder" terms
that increase compactness but devastate readability). Thus it appears that there is
no easy way to take type-based proofs and readily recast them in a compact, readable
form. Accordingly, DPLs take an altogether different approach: they completely do
away with the idea of reducing proof checking to type checking, opting instead to
hide many of the details that are necessary for proof checking into an underlying
semantic framework, using the abstraction of assumption bases. This not only achieves
clarity and succinctness, but also results in a more natural cognitive model of proof
construction and checking.

On the other hand, systems such as the Boyer-Moore prover seemed to rely heavily
on a number of Lisp-like tricks and heuristics. That might well be appropriate for
their use as proof assistants, but is not suitable for our purposes (see our remarks in
the next section on the difference between "precise" and "formal"). More importantly,
however, instead of proof presentation and checking they were more focused on the

(semi-)automatic verification of conjectures, a task on which some of them were quite
effective (chiefly thanks to the heuristics): the user enters the proposition P he wishes
to establish, and the system sets out on an attempt to verify that P indeed holds,
perhaps with some occasional guidance from the user along the way. That is also more
or less the case for systems such as HOL and PVS: they are theorem provers more than
they are proof languages.

What we wanted was a small but powerful formal language in which to write down
proofs in a lucid and structured style; it should have an exceptionally clean and simple
syntax and semantics, and it should be extensible and programmable, so as to allow for
abstraction and perhaps also for proof search (theorem proving). I could not find any
such system out there, so I set out to design one myself. I started out by persistently
thinking, for months, about what it is that makes the natural-deduction proofs we see
in math textbooks and articles "natural"; and about how humans actually check such
proofs in practice. In a nutshell, the answers that eventually emerged were: assumption
and eigenvariable scope, and proof composition.

Once those ideas were properly formalized (and that took many iterations), it
became fairly clear how to fit them together in a uniform, simple semantic framework.
I put it all to the test by building an implementation. The resulting system was
called Athena. It was the first implemented denotational proof language, for classical
first-order logic; it included a higher-order strict functional programming language in
the tradition of Scheme. Before long there were niceties such as polymorphic multi-
sorted universes, recursive data types, equational reasoning (term rewriting), inductive

131.1 Motivation and history

reasoning, definitional extension, etc. The resulting system was remarkably simple; its
formal syntax and semantics still fit in a couple of pages. It has been used to write a
provably sound Prolog interpreter, to encode parts of ZF, and for other purposes.

The abstraction leap from Athena to denotational proof languages was not difficult;
it began to take place even before Athena was implemented. The main common ideas
were the hiding of the "assumption base", proof composition, and the separation and
integration of computation and deduction. The end result was the A-calculus (not
to be confused with Parigot's calculus of the same name [55], or with any previous
uses of "p" as a minimalization operator). Denotational proof languages can be seen
as "syntax sugar" for the Ap-calculus, much in the same way that most functional
programming languages can be seen (at their core, at least) as syntax sugar for the
A-calculus.

It is noteworthy that all of this research was initially regarded as a tangent to be
truncated as soon as possible in order to resume work on the programming project.
Of course the issues turned out to be interesting and foundational and engaging, and
the challenges far from trivial, so the tangent eventually turned into my dissertation.
But the original plan remains in effect: the ultimate goal is to take all this research
and apply it to software engineering. That is the main future direction of this work.

1.2 Introduction

1.2.1 Problem statement

The problem that we originally set out to tackle is, in part, this: to develop a formal
language for expressing proofs in machine-checkable form. (By "proofs" we mean proofs
in classical-though perhaps multi-sorted-first-order logic, which is adequate for most
purposes.) Several systems claiming to provide that were already available, so the
problem was not simply to develop "a language for expressing proofs in machine-
checkable form"; there were additional constraints. We required that the language
must have the following features:

1. It should have built-in support for natural deduction. In particular, the lan-
guage should provide mechanisms and linguistic abstractions that capture infor-
mal mathematical reasoning as closely as possible.

2. It should be as readable and writable as possible, so as to have a realistic chance of
being usable by the average engineer who is familiar with mathematical reasoning
(i.e., with reading and writing proofs) but may not be an expert in mathematical
logic.

14 Background

3. It should have a formal syntax and semantics. By "formal" we do not simply
mean precise. The Boyer-Moore system [8], for example, comes with a fairly
precise description of what will happen when this or that command is entered,
but does not have a formal semantics in the sense of denotational [65, 66, 32]
operational [58], evaluation [40, 15], or axiomatic [26, 38] semantics. An analogy
from programming languages might help. By natural language standards, the
original defining report of Pascal was eminently clear and careful-but did not
put forth a formal semantics. After sufficient time and scrutiny it turned out that
it contained several "ambiguities and insecurities" [70]. By contrast, languages
such as ML have formal semantics that prescribe the meaning of all possible
constructs thoroughly and unambiguously.

4. It should have a formal theory of observational equivalence for proofs, providing
rigorous answers to questions such as: what does it mean for two proofs to be
equivalent? When can one proof be substituted for another, i.e., under what
conditions can one proof be "plugged in" inside another proof without changing
the latter's meaning? When is one proof more efficient than another? What
kinds of optimizations can be performed on proofs? When exactly is it safe to
carry out such optimizations? And so on. Again we emphasize the distinction
between precise and formal.

5. It should have a fully worked out metatheory. In particular, the language should
be proved sound, and if possible, complete. Soundness is clearly important in
order to make it impossible for the user to prove something that does not in fact
hold. Completeness is also important in order to ensure that if something does
hold then there exists a proof for it.

6. It should offer abstraction mechanisms for composing new inference rules from
existing ones, breaking up large proofs into smaller pieces, formulating and using
lemmas, etc.

7. It should provide for intuitive and efficient proof checking. Once a user has
written a proof, he should be able to have the machine check it efficiently and
either announce that it is sound or indicate the source of the error. Preferably,
the user should understand how the machine checks the proof. For this to be
the case, the proof-checking algorithm should be similar to the method that a
human would use to check a proof.

8. It should provide for efficient representation of proofs. Because formal reasoning
deals with large amounts of details, formal proofs are likely to get very large. For

151.2 Introduction

this reason, we should desire the proofs to be as compact as possible-though
not to the point where that would compromise readability and writability.

9. It should provide for theory development and management. It should allow the
user to introduce new vocabularies, define new symbols in terms of primitives,
postulate axioms, import and export symbols and theorems from other theories,
and so on.

We single out two items from the above list as being of the highest priority: read-
ability/writability and a formal semantics. The former is indispensable if the language
is to have any chance of being productively used by non-experts for non-trivial projects.
We think it obvious that readability and writability depend largely on whether the lan-
guage is able to express informal mathematical reasoning in a fluid style. If it reads
more or less like a mathematics journal, it will be readable and writable.

Finally, a formal semantics is invaluable if proofs are to be subjected to rigor-
ous analysis. A brief look at the history of programming languages will make for a
compelling analogy. Michael Gordon in his book "The denotational description of
programming languages" [32] points out that "When reasoning about programs one
is often tempted to use various apparently plausible rules of inference." He then goes
on to point out that what looks intuitively plausible might well be wrong, and that a
formal semantics is a great safeguard against specious intuitions. The same holds true
for proofs-in fact more so than for programs, because proofs are even more subtle
than programs. When we reason about proofs we are often tempted to draw conclu-
sions that seem plausible but are in fact wrong. A formal semantics is an absolute
necessity for thinking about proofs rigorously (and correctly!). We close this section
by completing the above quote by Gordon:

When reasoning about programs one is often tempted to use various appar-
ently plausible rules of inference. For example, suppose at some point in a
computation some sentence, S[E] involving one expression E, is true; then
after doing the assignment x ::= E one would expect S[x] to hold (since
x now has the value of E). Thus if "y is prime" is true before doing the
assignment x ::= y then "x is prime" is true after it (here E is y and S[E]
is "E is prime"). Although at first sight this rule seems to be intuitively
correct it does not work for most real languages. [...] It has been shown
[Ligler] that for Algol 60 the assignment rule discussed above can fail to
hold in six different ways.

A formal semantics provides tools for discovering and proving exactly when
rules like the above one work; without a formal semantics one has to rely
on intuition-experience has shown that this is not enough. For example,

16 Background

the designers of EUCLID hoped that by making the language clean and
simple the validity of various rules of inference would be intuitively obvious.
Unfortunately when they came to actually write down the rules they found
their correctness was not at all obvious and in the paper describing them
[London et al.] they have to point out that they are still not sure the
rules are all correct. If EUCLID had been given a formal semantics then
whether or not a given rule was correct would have been a matter of routine
mathematical calculation.

1.2.2 Problem clarification and brief contrast with previous
work

We stress that the main task we are discussing here is that of presenting proofs, not
discovering them. None of the currently available systems seemed to meet all of the
above criteria. Systems such as HOL [33], PVS [54], Boyer-Moore [8], LP [28], and even
Isabelle [57], are theorem provers-or at least "proof assistants" -rather than proof
languages. That is, their main purpose is to help the user discover a proof for the result
that they wish to establish.2 By contrast, as we pointed out above, our concerns begin
after a proof has already been discovered. Our concern is with the user who already
has a proof of something on paper (or in his mind), or at least a proof outline, and
wishes to transcribe this into a formal, detailed notation that is lucid, has a precise
meaning, preserves the structure of the informal argument, and can be checked by
machine. The distinction can be illuminated with another analogy from programming:
contrast program synthesis, the task of discovering or "extracting" an algorithm from
a given specification, versus programming, the task of expressing an algorithm in a
formal notation-i.e., in a programming language-that is lucid ("high-level"), has a
precise meaning, and can be executed by machine. Proof languages of the sort we set
out to develop stand to theorem provers and proof assistants in a similar relationship
that programming languages stand to program synthesis tools.

There have also been attempts at proof presentation and checking proper, but they
fall short on most of the criteria we listed above. Lamport [45], for instance, proposes
a methodology for writing proofs, but his system is informal and the resulting proofs
are not in machine-checkable form. There is no formal language, no theory of proof
equivalence and optimization, no soundness guarantee, etc. Proofs written for the
Mizar system [64], developed in Poland, are indeed machine-checkable, but do not
satisfy most of our other requirements (e.g., a formal semantics or metatheory). Ontic

2 0r in some cases simply verify that the result holds: the user enters a conjecture and the system

computes away and eventually comes back with a positive or negative verdict ("yes, the conjecture

holds", or "I'm not sure"). Resolution theorem provers are of this flavor.

1.2 Introduction 17

[51] is another proof-verification system, but is based on formal ZF set theory and
experience indicates that it is impractical to reduce all mathematical reasoning to the
ZF axioms. Also, as far as we know, there has been no formal metatheory (soundness,
completeness, etc.) for Ontic. The systems with the most similar goals to ours are those
stemming from Automath [9, 10], and include Nuprl [16], the Calculus of Constructions
[19, 18], and, most notably, LF [36]. These systems are largely based on the A-calculus
augmented with dependent types and kinds. They meet some of our criteria but do
not do as well on others, most notably readability and writability, and efficient proof
representation and checking. A more thorough discussion of LF, in particular, can be
found in Chapter 2.

1.2.3 Concrete solution and subsequent abstraction

The proof language that we proceeded to develop was called Athena. It was just
what we said we were looking for: a formal language for expressing classical natural-
deduction-style first-order proofs in machine-checkable form that enjoyed all of the
required properties-especially readability and writability. We implemented the lan-
guage and went on to experiment with it: we began to develop theories in it such as
ZF, accumulate lemma libraries, and so on. The language was also successfully used
by another research group at MIT investigating correctness proofs for compiler trans-
formations [62]. But long before the implementation stage we had already started to
realize that the main ideas behind Athena are applicable to a wide variety of logics:
zero-order, higher-order, modal, intuitionist, equational, temporal, dynamic, program
logics, and so on; and more interestingly, that these ideas could capture different proof
styles: natural deduction as well as linear, "Frege-style" deduction.

Thus we started designing similar proof languages for different logics and experi-
menting with them. Eventually it became clear that these languages had sufficiently
many things in common to constitute a natural family of languages, and thus to allow
for a profitable abstraction leap. We called these languages "denotational proof lan-
guages" (DPLs), for reasons that will become clear in due course, and proceeded to
study their properties in an abstract setting. We could have chosen to present Athena
instead, as as a specific solution to the problem we described earlier. We felt that doing
so would miss the big picture, so we decided to present the general theory of DPLs
here and relegate the description of Athena to a technical report and a user manual.

As a sidelight, we should mention here an unexpected discovery that was made along
the way: DPLs allow not only for proof presentation, but also for proof discovery, i.e.,
for theorem proving. In particular, methods, which are abstractions of proofs, allow for
very powerful proof search mechanisms when combined with recursion and conditional
branching. This means that DPLs can also be used as theorem provers, like HOL or

18 Background

PVS or Isabelle. We will discuss proof search in the DPL setting when we come to
study the Ap-calculus, and we will present several examples of simple theorem provers
for different logics. But by and large we will downplay this theme in order to stay
focused on the subject of proof presentation and checking, where we believe our main
contribution lies. While we think that the prospect of automatic proof search in DPLs
is very promising and raises many interesting issues, we will only scratch the surface
in this dissertation; the subject deserves to be pursued and treated on its own in a
seperate document.

1.2.4 Thesis statement and discussion

Thesis statement

Our main thesis is that logics should be defined and implemented as DPLs; and that
formal proofs should be written in such DPLs. We maintain that this should be the
case not only for the practical task of implementing a logic on the computer so that
proofs can be mechanically entered and checked, but also for the more theoretical
purpose of formulating, presenting, and studying the logic, as might be done in journal
articles, monographs, textbooks, lectures, private studies, etc. As justification we will
shortly cite several advantages of DPLs. But before we do so we will first try to address
the question that is most likely to come up at this point: What is a DPL? In other
words, what makes a DPL a DPL?

General characteristics of DPLs

The technical answer is: a DPL is a A system, or, more liberally, a language that
can be desugared into a Ap system. The precise definition of a AP system will be
given in Chapter 8, and several examples will appear in Chapter 9. For now the best
we can do is mention some general common traits of DPLs. Syntactically, the main
characteristic is that proofs are recursively generated by context-free grammars in such
a way that the text of the proof reflects what the proof actually does. Semantically,
the main characteristic is that every proof has a precise meaning (or denotation; hence
the name "DPL") that is formally prescribed by the semantics of the language. More
importantly, the semantics are invariably based on the abstraction of assumption bases.
In particular, the meaning of a proof is always specified relative to a given assumption
base, which is a set of premises, i.e., a set of assertions that are taken as given. Intu-
itively, the meaning (denotation) of a proof D is the conclusion that D purports to
establish, provided that D is not flawed. If D is erroneous then its meaning is error.
To obtain that meaning, we evaluate the proof in accordance with the formal semantics
of the language. The evaluation will either produce the conclusion of the proof, thus

1.2 Introduction 19

verifying its soundness, or else it will generate an error, indicating that the proof is
not sound. Thus we have the DPL slogan

Evaluation = Proof Checking.

Note the parallel again with programming languages. There, the abstract syntax
tree of an expression E such as (* 2 (+ 3 5)) represents a computation. The formal
semantics of the language assign a unique meaning to every E, representing the result
of the computation (say, the number 16 for the foregoing expression). To obtain that
result, we carry out the computation by evaluating E. In a DPL, the abstract syntax
tree of a proof D represents a logical derivation. The formal semantics of the DPL
assign a unique meaning to every D, representing the conclusion of the derivation. To
obtain that conclusion, we evaluate D.

Advantages of DPLs

Below we list what we consider to be the main advantages of DPLs. For most of these
we cite parts of the document that provide relevant support.

" They are readable and writable: DPLs avoid much of the notational and con-
ceptual machinery that comes with general-purpose frameworks such as LF or
Isabelle, e.g., higher-order abstract syntax, dependent types and kinds, higher-
order unification, etc. DPL deductions are concise, easy to understand, and easy
to write. The reader is invited to look at some of the many deductions we list in
Chapter 6; we think he will find the notation perspicuous and succinct. Then he
is urged to try to express the same deductions in the formal system of his choice
and compare. We present a couple of such comparisons ourselves (in particular,
see Chapter 2 for a comparison with LF).

" They afford a high level of abstraction: Owing to the semantics of assumption
bases, DPLs make it possible to transcribe proofs at a very high level of abstrac-
tion. In addition, DPLs can provide methods, which can be used to abstract
away from concrete deductions over any number of parameters (possibly even
other methods) just as easily as functions can abstract concrete computations
in higher-order functional programming languages. The reader should examine
some of the methods listed in Section 9.4 that abstract away from the concrete
deductions shown in Section 4.4.

e They are easy to reason about: See the sections on the theory of CA/1, for
instance (Chapter 4 and Chapter 6).

20 Background

" They are easy to optimize. See Chapter 5 for an array of aggressive proof opti-
mizations that go beyond the customary notion of normalization found in proof
theory.

" They are easy to learn: For instance, any mathematician (or anyone familiar with
classical first-order reasoning) should be able to pick up and start using CNfD in
a day or two.

" They are easy to implement: Using automated lexical analysis and parsing tools
such as Lex and Yacc and standard interpreter techniques, a typical DPL can be
implemented in a few days.

* They provide intuitive and efficient proof checking: To understand how a proof
is checked in a system such as LF or Isabelle one needs to understand general-
purpose constraint-solving algorithms for checking dependently-typed terms. By
contrast, in a DPL the proof-checking algorithm is precisely what the users them-
selves have been using all along-implicit manipulation of the assumption base.

" They are programmable: Methods can not only capture forward proof patterns;
they can also express backwards proof search in a very natural style. Different
"tactics" can be coded easily, without the need to maintain a stack of goals
or pass around validation functions, and without the need for a type system.
Soundness is automatically guaranteed by virtue of the semantics of assumption
bases. See, for instance, the theorem prover we present in Section 9.5.

" They are compact: Compare, for instance, the sample DPL proofs in Chapter 2
with their LF equivalents.

Some of these advantages, such as ease of implementation and programmability,
are especially important for the task of implementing a logic on a computer and for
mechanically checking and/or discovering proofs; others, such as the facilitation of
methatheory and proof theory, pertain to the more abstract task of setting up, pre-
senting, and studying a logic; and others, such as readabily and writability, apply to
both.

We will provide support for our claims by presenting and studying in detail several
sample DPLs. Although we will also discuss DPLs for non-classical logics, our main
focus will be classical first-order logic. All of the important issues surface in the
first-order case; the extensions that are necessary for, say, a higher-order DPL, are
straightforward.

211.2 Introduction

Secondary thesis statement

A subsidiary claim we would like to make is that one particular DPL, CND, which
models natural first-order deduction, is, to our knowledge, the best formal analysis
of classical mathematical reasoning to date. In order to support this claim we will
discuss the nature of formal analysis in general, and then show that most popular
formalizations of deductive reasoning so far have several drawbacks which our analysis
avoids. The reader who is not interested in foundational issues may skip this part of
the thesis.

1.2.5 Road map

We start out in Chapter 2 with a preview: a comparative example with LF.
In Chapter 3 we present the main ideas behind our approach by showing, incre-

mentally, how to arrive at a formal DPL syntax and semantics for simple propositional
logic.

In Chapter 4 we take the basic intuitions introduced in the previous chapter and
develop them formally: we introduce and study CND, a denotational proof language
for "classical natural deduction" (for propositional logic). We put forth a formal the-
ory of equivalence for CN/D deductions, and study its proof theory. We develop its
metatheory, proving that it is sound and complete, and we consider some alternative
semantics for it. We end the chapter by motivating the need for a "functional deduction
language", paving the way for the Ap-calculus.

In Chapter 5 we formulate and study optimization procedures for CND.
In Chapter 6 we extend CAND to predicate logic. We present a variety of sample

deductions and argue that they faithfully capture the structure of informal mathemat-
ical arguments. We develop the theory of first-order CA/D and prove that the language
is sound and complete.

In Chapter 7 we consider CNVD as a formal analysis of deduction and compare it
to previous formalizations.

In Chapter 8 we show that DPLs can be understood as a class of languages based
on a uniform theoretical framework, the Ap-calculus, a formal system that integrates
computation and deduction. Specifically, much in the same way that different func-
tional languages can be seen as "syntax sugar" for the A-calculus, we will show that
various DPLs ("Ap systems"), including CAND, are essentially syntax sugar for the
Ap-calculus.

We conclude in Chapter 9 with several examples of Ap systems.

22 Background

1.3 Notation 23

1.3 Notation

The following list outlines some notational conventions that will be used throughout
this document:

Numbers We write N for the set of natural numbers, and N+ for the set of non-zero
natural numbers. For any S C N, the expression min(S) denotes the smallest
number in S; and for finite S C N, max(S) denotes the largest number in S.

Conditionals We write E - Ei, E2 to mean "If E then E1 , else E2". Thus if E is
an expression that can take one of two possible values, one of which is regarded
as "true" and the other as "false", then the expression E -- E1, E2 denotes the
value of E1 if the value of E is true, and the value of E 2 otherwise.

Functions The value of a function f : A -> B for a certain element a E A is denoted
by f(a). Occasionally we use A-notation for functions, e.g., A n E N. n + n for
the doubling function on the natural numbers.3 The operation of function com-
position is denoted by -, so that for any fi : A - B and f2 : B -> C, the function

f2 - fi : A -* C is defined as

f2 - fi = A x E A. f2(fi(x)).

Moreover, for any f : A - B and elements a E A, b E B, we write f[a - b] for
the function A x : A .x = a -> b, f (x). We might also write

f [ai - bi, . .. , a. 1->* bn]

as an abbreviation for f [ai '-* b1] ... [an '-- ba]. For A' C A, the expression f [A'

denotes the restriction of f to A'.

Pairs and lists We write (x, y) for the ordered pair with x and y as the left and
right elements, respectively. For any p = (x, y) we set 1(p) = x and r(p) = y, so

that p = (l(p), r(p)). By a list we will mean a finite sequence of objects, i.e., a
function from an initial segment of N+ to some finite collection of objects. For
any n E N+, an expression of the form [ai,... ,an] represents the list

I : {1,... , n} ->{Ja1,... , an}I

such that 1(i) = ai for i = 1,... ,n. The empty list is denoted by []. We write
a::l for the list obtained by adding (concatenating) the element a in front of the

3 This could in principle cause some confusion since we are also using A as part of several object
languages, but in practice the context will always make our intentions perfectly clear.

24 Background

list 1; and 11 E 12 for the result of appending (joining) 11 and 12. We write 11 E: 12
to indicate that 11 is a prefix of 12; and 11 12 to indicate that 11 is a proper prefix
of l 2 (i.e., 11 E 1 2 iff 11 El 2 and li #12).

Herbrand terms Appendix A covers the basic theory of Herbrand terms and fixes
some associated terminology and notation that is used in several parts of the
document.

Additional notational conventions will be introduced in the sequel as the need
arises.

Chapter 2

A comparative example

This chapter presents a sample proof in a denotational proof language, in order to give
the reader a preview of the basic themes. For comparison purposes the proof is also
presented in LF, exactly as it appears in a paper by Necula and Lee [53] (the example
is taken from that paper). The bulk of the chapter is devoted to an overview and
critical discussion of LF, for the benefit of the readers who are not familiar with it.

2.1 A toy logic for a fragment of arithmetic

Necula and Lee [53] present a toy logic for deriving elementary arithmetic facts. We
will refer to this logic as TL.

TL has two main syntactic categories, expressions e and propositions P, with the
following abstract syntax:

e ::= x 10 1 s(e) I e1 + e2 | e1 - e 2

P ::= true I e1~ e2 | ei 6e2 | Pi ̂ P2 | Pi -> P2 | (Vx) P

where x ranges over a countably infinite set of variables. Expressions are meant to
denote integers, where we intuitively interpret s, +, and - as the successor, addition,
and subtraction functions, respectively. A proposition is either the constant true, or
an equality ei ~ e2 or inequality ei # e2 , or a conjunction, implication, or universal

quantification. Free and bound occurences of variables are defined as usual. We write
FV(P) for the set of variables that occur free in P, and for a set of propositions T,
FV() for the set of variables that occur free in some member of T. Propositions that
differ only in the names of their bound variables are identified. We write P[e/x] for
the proposition obtained from P by replacing every free occurence of x by e (taking
care to rename bound variables so as to avoid name clashes).

26 A comparative example

Figure 2.1: Inference rules for a fragment of predicate logic.

There are two sets of inference rules. One deals with standard predicate logic,
featuring introduction and elimination rules for the two connectives and the quantifier;
the other pertains to arithmetic, comprising rules that capture some basic properties
of addition, subtraction, and equality.

Necula and Lee present the TL rules in tree form. Because of the severe defects
of proof trees as a formal model of natural deduction, especially in connection with
assumption introduction and discharge and with eigenvariable conditions of quantifer
rules (see our critique of proof trees in Section 7.2.3), it would be inordinately cumber-
some and pedantic to give a rigorous definition-in the lines of the "proof expression"
language in Section 4.1 of "A framework for defining logics" [36], or Section 1.2, Part
B of Prawitz's monograph [59]-of TL in a proof-tree format. Accordingly, Necula
and Lee give an informal account, using ellipses in their formulation of the inference
rules and altogether evading the issue of using markers to tag assumption occurences
and discharges and the role of parameters in quantifier reasoning. The drawback of
an informal presentation of the object logic's proof theory is that the adequacy the-
orem for deductions cannot be formally stated and proved. (The reader should not
be troubled if he does not understand this paragraph; he should come back to it after
finishing the chapter.) In order to avoid the complications of proof trees without sac-
rificing precision, we chose to present TL in sequent style.1 The provability relation

1Sequents have their problems too (see Section 7.2.2), so ideally we would present TEL as a DPL
right from the start, without bothering either with proof trees or with sequents. But the purpose of
this chapter is to present an introductory example, so we need to lay some initial groundwork.

26 A comparative example

2.1 A toy logic for a fragment of arithmetic 27

[ref]
TWHe-e

4'Hei e2 ' F e2 -e 3 [tran]
' H el ~~ e3 F F e + 0 ~ e

T 'e2 [+cong] 4ei H e2 eze e2
el - e1~ 2 - '2

[com] [inv]
IF Fe-e~0

4 H (el + e2) + e3 e + (e2 + e3)

4 H (e1 + e2) - e3 e + (e2 - e3)

[+assoc]

[+-assoc]

Figure 2.2: Inference rules for a fragment of arithmetic.

H defined by our sequent presentation is extensionally identical to that defined by the
tree presentation of Necula and Lee. However, the styles are different (sequents versus
trees), and it should be kept in mind that the LF declarations we introduce later in
this chapter are meant to encode TL proof trees. Therefore, the reader should consult
the tree-based formulation of TL given in the cited paper; the sequent formulation we
give here is only meant as an alternative, mathematically precise presentation of the
logic, to complement the informal presentation of Necula and Lee.

The rules establish judgments of the form T H P, where T is a set of propositions. A
judgment of this form asserts that the proposition P is provable from the propositions
in T. The standard predicate-logic rules are shown in Figure 2.1. The arithmetic rules
appear in Figure 2.2.

The proposition of interest in this chapter is:

(Vei) (Ve 2) (Ve3) ei e2 + e3 = ei - e3 ' e2 (2.1)

For an immediate comparison, the reader may contrast the LF proof of 2.1, shown in
Figure 2.4, page 45, with an equivalent DPL proof shown in Figure 2.9, page 54. In
what follows we will discuss these proofs in more detail, first for LF and then for the
DPL.

4 ' eI e2

SH e2~e
[SYMI

4 He1 ~e2

[id]

SH e1 + e' e2 + e'2

4 H e1 + e 2 e2 + el

[-cong]

272.1 A toy logic for a fragment of arithmetic

2.2 The proof in LF

It is necessary to give some background on LF before we present the proof of 2.1.
While a detailed presentation of the system is beyond the scope of this chapter, we
will discuss the main ideas in the next section.

2.2.1 An overview of LF

LF is a type theory: on one hand we have a well-defined set of terms and on the other
we have a well-defined set of types, where the former are related to the latter via typing
judgments of the form

F H- M : A (2.2)

asserting that relative to the signature E and the context F (to be defined shortly), the
term M has type A. As a formal system, LF is no more and no less than a collection
of rules that specify exactly when such judgments hold. (There are rules for deriving
judgments of a few other forms as well, e.g., F Hr A : K, asserting that the kind of A
in F and E is K, but for our purposes the most important judgments are those of the
form 2.2.)

Specifically, the abstract syntax of LF is:

Kinds K ::= type | U1x : A.K
Types A ::= a aM1 ... M x : A1.A 2
Terms M ::= c x Ax: A.M M 1M 2

Contexts F ::= F,x : A
Signatures E ::= ,a: K E,c: A

where a single dot - represents an empty context or signature. The core of the system
is the layer of terms M, which constitutes a typed A-calculus in the style of Church
(where A-bound variables are explicitly typed). By a phrase we will mean either a
term M, or a type A, or a kind K.

In the simplest case, a signature E introduces a set of types a (say, int: type,
prop:type), and a set of typed constants c (say, 0:int, or true:prop, add: int ->
int -> int.)2 The formal theory of LF comprises a set of rules which prescribe when
certain judgments hold, most notably, typing judgments of the form F I-E M : A. For
instance, if E included the foregoing constants then we would be able to show

x: int HE (add x 0) : int
2 Strictly speaking there are no types of the form A1 -- A 2 , but (for reasons we will explain later)

such a type is viewed as syntax sugar for the type Ix : A1 .A 2 where x does not appear inside A 2.

28 A comparative example

where we write (add x 0) as an abbreviation for the curried application ((add x) 0).
We will write Terms(A) for the set of all terms that can be shown to have type A

(relative to some signature E and context F).
Now proof representation and checking enter the picture as follows: proofs are rep-

resented as terms, and proof-checking is reduced to to type-checking. This is possible
because the system is rich enough to encode the syntactic categories (expressions, for-
mulas, etc.) and deductions of almost any given object logic L as typed LF terms (in
our running example the object logic will be TL). Roughly, the general procedure is
this: for each class C of entitites of L that we wish to represent (C could be the class of
formulas of L, the class of deductions of L, etc.) we introduce an LF type Ac, the idea
being that the various elements of C will be represented by LF terms of type Ac. Thus
the representation scheme can be seen as a computable mapping [-] : C -- Terms(Ac)
which assigns to each object s E C an LF term [s] of type Ac. Initially of course the

type AC will be empty, so in order to be able to build terms of this of type we must
introduce constructors (constant functions symbols) with range Ac. These are usually
given in curried form, so the typical signature of such a constructor will be

f : -.-.- - -.. -- + . - - Ac. (2.3)

We might say that such constructors "populate" or "generate" the type Ac.
How do we know how many such constructors to introduce and exactly what sig-

nature should each have? There is no algorithm for answering this question (and in
fact it is here where the LF user has to employ creativity and heuristics), but the main
guideline is this: we look at how the objects of C are constructed in , and for each way
of building such an object we introduce an LF constructor of the form 2.3 that mimics
the relevant production method. Thus we need to examine the structure of C. Often C
will be an inductive closure of some sort, i.e., a minimal subalgebra generated by some
initial basis, so the idea is to make AC into a similar algebra by introducing appropri-
ately typed constructors, and for the representation mapping [-] : C -* Terms(Ac)
to be a morphism (ideally we would like an isomorphism but LF is too rich to allow
this: the set Terms(Ac) will be overpopulated, i.e., it will properly contain the set of
images of [-]; see the relevant remark in page 38).

Simple LF types are usually sufficient for representing the syntactic categories of
the object language, although the associated constructors often need to be higher-order

(receiving arguments of functional types) in order to deal with variable-binding con-
structs such as quantifiers (see the discussion of higher-order abstract syntax below).
But the class of the deductions of L must almost invariably be represented by a type
family, which can be viewed as an LF type indexed by terms. As a general example of

this idea, outside of LF, consider the type String, which can be intuitively understood
as the set of all finite sequences of symbols drawn from some alphabet. If we parti-

292.2 The proof in LF

30 A comparative example

tion these sequences according to their length then we may consider "types" such as
String(5), which contains the strings of length 5, String(O), which contains the (only)
empty string, and so on. In this light we can regard String as the type family

{String(n) I n E N}.

That is, we view String as being indexed by natural numbers, or, more formally, as
a function that maps a given number (say 5) to a particular type (String(5)). Alter-
natively, we might say that String is a "type constructor". In LF we can introduce
such type constructors with declarations like string: int -> type. Then a phrase
such as (string 5) denotes a particular type. This adds a new degree of complex-
ity to the type system. In the simply typed A-calculus, types have a very simple
structure: a type T is either a primitive or of the form T1 -+ T2 , for arbitraryT 1 , T2 .

But now types can be obtained from various constructors of different signatures, so
we need to specify exactly which types are to count as valid in order to weed out
nonsense like (string true nil)-much in the same way that in the simply typed
A-calculus we have to specify which terms are well-typed in order to rule out non-
sense like (append A x .x). This the role of kinds. We say that the kind of string is
int -> type, and we specify that if a term M has type int then (string M) is a
valid type.3 Thus kinds classify types in the same spirit in which types classify terms.

By viewing a conventional type T as a type family indexed by certain objects, it
becomes possible to assign much more informative types to functions operating on
T. For example, consider the binary function add, which takes a character c and a
string s and produces the string obtained by inserting c in front of s. Normally we
would express the type of add (in curried form) as Char -- String -+ String. Under
the type-family viewpoint we can say more, namely, that add has the type

Char -+ String(n) --> String(n + 1) (2.4)

which is clearly a much more refined description.
Function types such as 2.4 are called dependent, because the exact type of the result

depends on the value of n. Admitting dependent types into a type system clearly results
in increased descriptive power, but usually there is a price to be paid: type-checking
ceases to be decidable. LF and other similar systems manage to preserve decidability
by requiring all the necessary information to appear explicitly as part of the type, but
we argue that this comes at the expense of readability. Decidability is salvaged, but
the notation becomes cumbersome-nothing ever comes for free. In particular, a type

3Note that this introduces a mutual recursion in the specification of valid terms and valid types:
whether a term M is valid may depend on whether a type A is valid, and whether a type is valid may
depend on whether a term is valid.

30 A comparative example

2.2 The proof in LF 31

such as 2.4 is written out in more detail by explicitly adding the parameter n up front
as an additional argument, bound by the dependent function type constructor H:

Uln : int. Char-+ String(n) -+ String(n + 1). (2.5)

We stress that in the above expression n is a bound variable.
Thus now add is a function of three arguments: a number, a character, and a string.

Applying add to, say 5, results in a function whose type is obtained from the body
of 2.5 by replacing every free occurence of n by 5:

Char -+ String(5) -> String(5 + 1).

But the expressions 5 + 1 and 6 obviously have identical values, so we should be able
to "reduce" the above type to

Char-> String(5) -+ String(6).

This illustrates a major complication brought about by dependent types: evaluation. If
two expressions E1 and E 2 have the same value (are reducible to the same normal form,
in more operational terms) then we clearly ought to regard types like String(E1) and
String(E2) as identical. Unfortunately, deciding whether two expressions are reducible
to a common normal form is undecidable in any Turing-complete language. This entails
that if the language is Turing-complete, as most practical programming languages are,
then type checking will be undecidable if we admit dependent types. However, LF is
based on the simply typed A-calculus, which is well-known to be Turing-incomplete
(the universal recursion operators of the untyped A-calculus, in particular, are not
expressible because the required self-application is not typable). Therefore, like the
simply-typed A-calculus, LF is "normalizing": every valid phrase (term, type, or kind)
can be reduced to a unique normal form (in fact every valid phrase can be converted to
a slightly stronger "canonical form", which is important for establishing the adequacy
of LF representations). This means that we can effectively decide whether two types
are equal ("definitionally equal", in LF terminology) by reducing each to its canonical
form and checking that the results are identical (up to a-conversion).

Typically, we classify the deductions of L on the basis of their conclusions, so
assuming that the conclusion of a deduction D is always a formula F of some sort,4

we consider types of the form Deduction(F)-the type of all deductions that derive F.
Thus we view the class of deductions of L as the type family

{Deduction(F) | F E Formc}

40r, more generally, a judgment of some sort.

where we write FormC for the set of formulas of L. Of course on the assumption that
L is consistent, i.e., that not all formulas are deducible, some of these types will be
empty. For instance, if L is classical logic then the type Deduction(P A -P) will be
uninhabited, since there are no deductions of P A -P.

Hence, assuming that we have already encoded the formulas of L as terms of a type
formula, we can introduce a type family for the deductions of L with a declaration
such as deduction: formula -> type. The next step is to populate this type, i.e., to
introduce constructors that can build deductions, namely, terms with types of the form
(deduction [F). As we mentioned earlier, to do this we must look at how deductions
are built in L and try to introduce LF constructors that mimic those production
methods. Now in the proof-tree model a deduction D is built by applying an inference
rule R to a list of deductions D 1, . . . , D, where this list might be empty (n = 0) if
the rule R is an axiom (those are the base cases of the construction, i.e., the leaves
of the proof tree5), and where the conclusions of D 1, . . . , D,, are the premises of R.
So for each inference rule R of L we need to introduce an LF constructor fR that
takes n > 0 deductions of formulas F1, ... , F, as inputs, and produces a deduction of
whatever conclusion is obtained by applying R to the premises F1,... , F,. A typical
example is given by the rule of "A-introduction" in customary logic, which, in proof-
tree terms, takes a deduction of a formula F and a deduction of a formula G and
produces a deduction of F A G. Thus, assuming that in our encoding of formulas
we have introduced a constructor and: f ormula -> f ormula -> f ormula that builds
conjunctions, we can encode the said rule with a constructor and-intro declared as

and-intro: (deduction F) -> (deduction G) -> (deduction (and F G)) (2.6)

Then, assuming a declaration true: f ormula and that we have an axiom for introduc-
ing true, say

true-intro: (deduction true)

the following term would represent a deduction of true A true:

M = (and-intro true-intro true-intro)

where the reader can verify that the type of M is (deduction (and true true)).
Unfortunately, as we discussed above, we cannot introduce and-intro with a sim-

ple declaration of the form 2.6;6 we have to add the variables F and G as explicit
5Leaf nodes might also be assumptions, or in the LF world, proofs of assumptions; thus an assump-

tion F will be represented by a free variable x : Deduction(F). Note here the underlying constructive
connotation whereby we do not simply assume that the premises are true but rather that we have
proofs of them.

6 In an implementation of LF, such as Elf, we might be able to introduce rules in schematic form
such as 2.6 and let the system try to reconstruct the full type 2.7. However, this reconstruction

32 A comparative example

33

arguments, bound by H, just as we had to do with the variable n in the case of add,
in 2.5. Thus we must declare:

and-intro : HF : f ormula. HG : f ormula.

(deduction F) -> (deduction G) -> (deduction (and F G))

in order to ensure decidable type-checking. Thus A-introduction is now a rule of four
arguments, which is rather unintuitive given that we usually think of this rule as bi-
nary. In fact dependently typed inference rules with an excessive number of arguments
is a general characteristic of LF that adversely impacts the size and readability of
deductions because of the plethora of information that must be supplied every time
a rule is applied; Figure 2.4 is a case in point. This marks a fundamental difference
with DPLs. In a DPL, an inference rule such as A -introduction would be binary, and
furthermore, it would operate on formulas rather than deductions: given F and G as
arguments, it would produce F A G. Soundness is ensured simply by checking that the
premises F and G are in the assumption base. This is simpler, more intuitive, and
results in smaller, cleaner deductions, as manifested in Figure 2.9.

So the idea is that by introducing a signature E containing types such as formula,
type families such as deduction, and appropriate constructors populating these types,
we can define a representation mapping [.] from the formulas and deductions of L to
LF terms of the corresponding types such that:

For every formula F of L there is a context IF, effectively obtainable from F, such
that

F E [F] : formula.

And for every deduction D of L that derives a formula F from a set of n > 0 assump-
tions IF = {F 1,... , Fj, there is a context FD,q,, effectively obtainable from D and I,
such that

FD,* E D] : (deduction [Fj).

As we mentioned earlier, we would like converse statements to obtain as well, e.g.,
that for every LF term M of type f ormula there is a unique F such that [F = M, but
this is complicated by the notions of definitional equality and Orl-interconvertibility.
We will discuss these issues in more detail soon, but for now we simply observe that
if we have arrived at such a signature E and representation mapping [-], then a
proof-checking problem of the form "Does D derive F from I?" may be alternatively
posed as "Does the typing judgment FD,,P KE [D : (deduction [F]) hold?". This

problem is undecidable so, in general, we have to introduce the rules in the long-hand form of 2.7.
In any event, the essential point remains that the rule must be represented by a constructor of four
arguments, regardless of whether the user indicates this explicitly or whether the system infers it.

2.2 The proof in LF

34 A comparative example

constitutes an effective problem reduction thanks to the fact that type checking in
LF is decidable. Therefore, we can mechanically decide whether a judgment such as
FD,W - [Dj : (deduction [F]) holds, and hence, by the above reduction, determine
whether D is indeed a deduction of F from T.

There is no algorithm for obtaining the desired signature and representation map-
ping. There is only a set of heuristics deriving from previous experience; the users
must examine how certain well-known logics have been encoded in LF and adapt those
techniques to their own needs. We illustrate below using the logic TL as a concrete
example.

2.2.2 Encoding TL in LF

Encoding abstract syntax

TL has two syntactic categories, expressions and propositions, so we introduce corre-
sponding types

exp:type
prop:type

for each. First we will encode expressions. Recall that the abstract syntax of expres-
sions is

e ::= x |0 1 s(e) I e1+ e 2 ei - e 2

so there are five cases to consider. It is a general and essential characteristic of LF
that the variables of the object language are directly represented by LF variables, so
we do not have to do anything special to encode expressions of the form x. For the
remaining four cases we introduce the following constructors:

0 : exp
s : exp -> exp

+ : exp -> exp -> exp

- : exp -> exp -> exp

We can now define the representation mapping [-] from TL expressions to LF terms
of type exp as:

[1] = x(2.8)

[] =0 (2.9)

[)= (S [e]) (2.10)

[ei + e2] = (+ [e1j e2 l) (2.11)

[ei - e2 = (- [el1 [e2]) (2.12)

34 A comparative example

2.2 The proof in LF 35

Thus, for example, the expression 0 + s(x) is represented by the (open) LF term
(+ 0 (s x)). It is easy to show that relative to the context x : exp, this term has
type exp. Note that the two occurences of x on the two sides of equation 2.8 stand for
different things: a TL variable on the left side and an LF variable on the right.

We continue with propositions. Their abstract syntax is given by

P ::= true I ei ~ e2 I Ci 6e2 | Pi ̂ P2 | Pi -> P2 | (Vx) P

so there are six alternatives to consider. We introduce a constructor for each possible
case:

= : exp -> exp -> prop

<> exp -> exp -> prop

true : prop

and : prop -> prop -> prop
impl : prop -> prop -> prop

forall: (exp -> prop) -> prop

With this signature we can define the representation mapping [] from TL proposi-
tions to LF terms of type prop as follows:

[true] = true

[e a e2] = (= [e1] [e2])

[ei # e2] = (<> eil [e2])
[P1 A P2] = (and [P1] [P2])

[P => P2] = (impi [P1] [P2])

(Vx)P] = f orall (A x : exp. [P])

The first five cases are similar and straightforward, but the treatment of universal
quantifications has a distinct flavor due to the higher-order type of the constructor
f orall. This is a typical example of a general methodology that advocates the use
of the simply typed A-calculus for encoding the abstract syntax of an arbitrary object
language. This methodology, which goes back to Church and his formulation of type
theory [14], is known as higher-order abstract syntax, and its key idea is to directly
represent a variable x of the object language by a variable of the same name x in the
A-calculus. Then bound variables in the object language become bound by As in the
A-calculus. In our case, consider the proposition (V x) x ~ x, where the variable x is
bound by the quantifier V. This proposition is represented by the term

f orall (A x : exp. (= x x))

36

whose type, as the reader will verify, is prop, and where x is bound by a A. In general,
the idea is to represent every syntactic construct in the object language that binds
variables (quantifiers, lets, patterns in function definitions, etc.) by a higher-order
constant in the A-calculus . For example, if our object language contained existential
quantifications (3 x) P as well, then we would represent those with a higher-order
constructor exists of type

exists:(exp -> prop) -> prop

and then a formula such as (3 y) y # 0 would be represented by the term

exists (A y : exp. (<> y 0)).

Thus all variable-binding mechanisms of the object language are modelled by the one
and only variable-binding mechanism of the typed A-calculus: A-abstraction.

This scheme has two main advantages. First, a-equivalence at the object level is di-
rectly reflected at the A-calculus level: if two syntax trees of the object language are al-
phabetic variants then the A-calculus terms that represent them will also be alphabetic
variants. Consider, for example, the propositions (V x) x ~ x and (V z) z z. These are
represented by the terms f orall (A x : exp. (= x x)) and f orall (A z : exp. (= z z)),
which are clearly a-equivalent. Secondly, syntactic substitution in the object language
(the operation of replacing every free occurence of a variable by some syntactic ob-
ject in a way that avoids variable capture) can be achieved by -reduction in the
A-calculus. For example, in predicate logic the inference rule of universal specializa-
tion requires that we replace every free occurence of a variable x in the body P of
a theorem of the form (V x) P by some given expression e; care must be taken to
ensure that the replacement does not accidentally bind any variables occuring in e.
In the LF encoding given above the theorem (V x) P would be represented by the
term f orall (A x : exp. [P), so the said substitution can be properly carried out by
applying the abstraction A x : exp. [P] to the term [ej. In this way many tedious syn-
tactic manipulations at the object language level get relegated to the representation
framework-the A-calculus.

On the other hand there are certain disadvantages. First, although we can usually
reason inductively about abstract syntax at the object level, we cannot do so at the
A-calculus level on account of the higher-order constructors. On a related note, ma-
nipulating higher-order syntax trees via operations such as pattern matching and uni-
fication is difficult, since higher-order unification and matching are intractable (either
undecidable or computation-intense). By contrast, a first-order syntax representation
lends itself to expressive patterns and efficient matching, which are invaluable in prac-
tice for writing derived inference rules ("methods", in DPL terminology) and theorem

A comparative example

2.2 The proof in LF 37

provers. For instance, in Athena it is possible to match propositions against patterns
such as

(forall x (= x x))

or even
(forall [x y] (if (not P) (exists z Q).

The first pattern would match propositions such as (V z) z = z or (V u) u = u (resulting
in the bindings x F-+ z and x '-* u, respectively), but not, say, (3 y) R(y) or (V x) x = y;

while the second pattern would match a proposition such as

(V u) (V w) [,-1R(u, w) ->. (3 v) R (w, v)]

with the bindings x '-+ u, y '- w, P '-4 R(u, w), z '-* v, Q - R(w, v). There are two

advantages here: First, the patterns are succinct and perspicuous; the presence of As

and types would clutter them. Second, matching such patterns is very efficient; not so
for higher-order patterns.

As another example consider metaprogramming, where we need to represent pro-

grams as first-class objects and then reason about and manipulate those objects. One

thing we might want to do is determine whether an object represents a tail-recursive

program. If our representation is first-order then we can do this fairly easily by match-

ing the encoded program against a standard tail-recusion pattern; but if our encoding
uses higher-order abstract syntax, this task will not be as easy.

The most important drawback for our purposes, however, is that higher-order ab-

stract syntax quickly becomes unreadable. This is so not only on account of the

unwieldy appearance of higher-order encodings (see our remarks below on size), but

also because, in our experience, people seem to fundamentally think of a quantifier

such as V as a binary constructor that "takes" or "expects" two things, a variable x

and a proposition P, resulting in (V x) P; this seems more natural than viewing it as

a unary constructor that expects a A-abstraction. Of course these are not problems if

we intend the syntax to be manipulated by machine rather than by humans, but they

are critical considerations when it comes to expressing proofs in a lucid form for the
benefit of human readers (and writers).

Finally, another related problem is size: every variable-binding construct in the

object language requires a constructor and at least one A-abstraction of the form

A x : A. M. In a first-order representation both the A and the type A are unnecessary.

Consider, for example, the proposition (V x) (] y) x # y. A first-order representation of

this proposition such as

(forall x (exists y (<> x y)))

372.2 The proof in LF

(2.13)

f orall

x exists

x y

Figure 2.3: A first-order syntax tree representing the proposition (V x) (I y) x # y.

carries no redundant information whatsoever. That is, every node of the syntax tree
of 2.13, shown in Figure 2.3, is essential in determining the identity of the encoded
proposition. When we contrast 2.13 with the higher-order representation

(f orall (A x : exp. (exists (A y : exp. (<> x y)))))

we see that the underlined data are extraneous. Thus, in general, a proposition that
is stored in memory as a first-order syntax tree and has n nodes representing variable-
binding constructs will require at least 2n extra nodes when stored as a higher-order
syntax tree. This not only has a negative effect on perspicuity but is also a source
of inefficiency, especially for applications that require storing and manipulating large
proofs.

In summary, a framework which uses first-order syntax but makes provisions for
streamlining bound-variable issues would appear to get the best of both worlds.

Finally, let us consider the adequacy of this representation. As we mentioned earlier,
we would like [-] to provide a bijection, so that the following result would hold (where
E is the signature given above): for every expression e of TE with variables x1,... ,
we have

xi : exp, ... , zn : exp Kr [e] : exp

and for every LF term M such that F r- M : exp there is a unique expression e whose
variables occur in the domain of F7 and such that [e] = M. Similarly, we would like
to have: for every proposition P with free variables x1 , . . . , Xn we have

xi : exp, ... , x. : exp F- [P] : prop

and for every LF term M such that F FI- M : prop there is a unique proposition P
whose free variables occur in the domain of F and such that [P] = M.

7 By the domain of a context F = yi : A 1 ,... , yk : Ak we mean the set {Yi,... ,y}.

38 A comparative example

2.2 The Proof in LF 3

Unfortunately, the converses of both of these assertions fail. For expressions, con-

sider the closed term M = ((A x : exp .x) 0). While we obviously have 0 V-E M : exp,
a cursory inspection of the defining equations 2.8-2.12 will show that M is not the

image of any expression, i.e., there is no e such that [e] = M. It is here where

definitional equality and canonical forms enter the picture. Although M is not the

image of any expression, there is a term M' that is definitionally equal to M, i.e.,
inter-convertible using /3,q reduction, written M = M', that is the image of some

(unique) e. This term of course is M' = 0, which is the image of 0. M' is the canon-

ical form of M, obtained from the latter via a single 3 -reduction. For propositions,
consider the term M = f orall (= 0). The term (= 0) has type exp -- prop, thus

we have 0 F-s M : prop; yet it is readily verified that M is not the image of any

proposition P under the mapping [1-]. However, the canonical form of M, namely

M' = f orall A x : exp. (= 0 x), obtainable from M through q-conversion, is the im-

age of the (unique) proposition P = (Vx) 0 x. (Note that we require the canonical
form of a term of type exp -- prop to be of the form A x : exp. N, where N is again

canonical).
Once again the computability of canonical forms by virtue of strong normalization

plays a critical role.8 In general, we can show:

xi : exp, ... , xn : exp FE [e] : exp for all e with variables x1, ... , x,,; and whenenever

F F-, M : exp and M is in canonical form, there is a unique e whose variables appear
in F with type exp and such that [e] = M.

Likewise,

xi : exp, ... , x, : exp KE [P] : prop for all P with free variables x1, . . . , x,; and

whenenever F FK M : prop and M is in canonical form, there is a unique P whose

free variables appear in F with type exp and such that JP] = M.

An alternative way of stating the converses of such results is the following:

If F HE M : exp then there is an expression e whose variables appear in F with type

exp and such that [e] and M are definitionally equal (/3iq-interconvertible).

and likewise for propositions.

Encoding proofs

We introduce a type family of proofs, indexed by propositions:
8 In the original formulation of LF the notion of canonical forms was based on #-reduction only. The

incorporation of rq-reduction, which greatly facilitates the studying of LF's representational adequacy,
was made possible by later work.

39

40 A comparative example

pf: prop -> type

Next we need to introduce constructors representing the inference rules of TL. The
following declarations model the rules of Figure 2.1:

true_i
and-i
andel
ander
impli
impl_e
all_i
all_e

pf true
UP:prop. HQ:prop.pf P -> pf Q -> pf (and P Q)
HP:prop.HQ:prop.pf (and P Q) -> pf P
HP:prop.HQ:prop.pf (and P Q) -> pf Q
HP: prop. HQ: prop. (pf P -> pf Q) -> pf (impi P Q)
HP:prop.HQ:prop.pf (impi P Q) -> pf P -> pf Q
HP:exp -> prop. (le:exp.pf (P e)) -> pf (forall P)
FIP:exp -> prop.fle:exp.pf (forall P) -> pf (P e)

The second set of constructors encode the arithmetic rules shown in Figure 2.2:

ref : le:exp.pf (= e e)
sym : flei:exp.He2 :exp.pf (= ei e2) -> pf (= e 2 ei)
tran : Hei:exp.Ue2 :exp-He 3 :exp.pf (= ei e2) -> pf (= e2 e 3) -> pf
id : He:exp.pf (= (+ e 0) e)
com : Hei:exp.Ue2 :exp.pf (= (+ el e2) (+ e2 el))
inv : He:exp.pf (= (- e e) 0)
+cong : Hei: exp. Ue2: exp. He3: exp .He4 : exp.

pf (= ei e2) -> pf (= e3 e4) -> pf (= (+ ei e3) (+ e2 e4))
-cong : He :exp.1He2:exp.He3:exp.He4 :exp.

pf (= ei e 2) -> pf (= e3 e4) -> pf (= (- el e 3) (+ e 2 e4))
+assoc : Hei:exp.He2 :exp.He3 :exp.pf (= (+ (+ ei e2) e3) (+ ei (+ e2
+-assoc: Hei:exp.fe 2 :exp.He 3 :exp.pf (= (- (+ el e 2) e3) (+ el (- e 2

(= ei e3)

e3)))
e3)))

Most of these should be self-explanatory after the background of Section 2.2.1. The
interesting cases are impl-i, all_i, and all_e, which we will discuss below. However,
we should first mention that if a precise definition of TL deductions as proof trees were
available then we could, at this point, use the above declarations to formally define the
representation image [D] of any given proof tree D, and proceed to state and prove
an adequacy theorem for the representation of deductions akin to the adequacy result
for expressions and propositions in page 39. In practice this is important in order to
guarantee that the (canonical) terms of type pf [P] coincide with the object proofs
of P. For an example of how this may be done rigorously the reader is referred to the
defining LF document [36].

The constructor impli. embodies the following rule for introducing conditionals:
if we have an effective method (function) for transforming a given proof of P into a

40 A comparative example

2.2 The proof in LF 41

proof of Q, then we may infer P = Q. (This is precisely Heyting's original constructive
interpretation of implication.) Thus the higher-order signature of iml-i:

impl-i: (pf P -> pf Q) -> pf (impl P Q)

or, after adding the schematic variables P and Q as explicit parameters:

impl-i : HP:prop.HQ:prop. (pf P -> pf Q) -> pf (impi P Q).

As an example, here is a proof of the implication P A Q => P A P (for any P, Q):

impl-i (and [[Q])
(and [P] [P])
(Ap:pf (and [P] [Q]I).

(andi P]i

(and-el []Q]p)
(and-el []Q]p))

The reader will verify that the type of this term is

(impl (and [P] [Q]) (and [P] j[P)).

The LF proof should be contrasted with the following DPL proof:

assume P A Q
dlet 1 = !left-and P A Q

!both 1 1

The constructor alli encodes the following informal rule for introducing universal
generalizations (V x) P: if we have a function fp which can map any given individual
a in the universe of discourse to a proof of P(a), then we may infer (Vx) P. Of course
the universe of discourse varies according to the interpretation at hand, so we resort to
syntactic means: we require the function fp to map any given expression e to a proof
of P[e/x]. Hence the signature of all-i:

all-i: Ile:exp.pf (P e) -> pf (all P). (2.14)

Here we reap the LF benefit of relegating substitution at the level of the object lan-

guage to / -reduction in the A-calculus. Recalling that the body P(x) of a universal
generalization is represented by a A-abstraction of the form M = A x : exp. [P], we see

42 A comparative example

that [P[e/x]] is simply (M [e]). Hence, assuming that the variable P in 2.14 stands
for the body of a universal quantification, and is thus of type exp -> prop, we see
that all-i is a unary constructor whose argument is precisely the function fp discussed
above, of dependent type U e : exp . pf (P e) (give me any expression e and I will
give you a proof of (P e)) and whose result is a proof of the universal quantification
(all P). Of course P is free in 2.14 so we need to bind it with f, resulting in

all-i : HP:exp -> prop.(He:exp.pf (P e)) -> pf (all P).

As an example of using this rule, here is a proof of (V x) x x:

all-i (Ax:exp. (= x x)) (Ae:exp. (ref e)). (2.15)

To see that the type of this term is indeed pf (forall (Ax: exp. (= x x))), we must
consult the LF rules for typing abstractions A x : A. M and applications M N, which
are variations of the usual rules of the simply typed A-calculus in order to account for
dependent types. First, the rule for abstractions is

F,x : A F- M : B [abs]

F -E Ax : A.M : x : A.B

where A is any valid type. The dual rule for typing applications of dependently typed
functions is more interesting:

FKEM:Hx:A.B F FN:A [app]

F KE M N : B[N/x]

Thus, if M is a function of x : A, and the type of its result is also a function of the
value of x, B(x), then applying M to an argument N (of the right type A) will result in
a value of type B[N/x]. Of course if the type B does not depend on the value of x, as
would be the case if x does not occur free in B, then the type 17 x : A. B degenerates to
the non-dependent type A -- B, and since B[N/x] is then B, the above rule becomes
the usual typing rule for applications

F -E M : A--* B F Hr N : A

F F- M N : B

while [abs] becomes the usual typing rule for abstractions:

F,x : AHEM: B

IFHE A x : A. M : A -+ B

42 A comparative example

2.2 The proof in LF 43

That is why it is not necessary to introduce types of the form A -> B as primitives;
such a type can be seen as syntax sugar for UI x : A. B for any x that does not occur
in B (note that this desugaring is uniquely defined up to a-equivalence).

Now we must use the rules [abs] and [app] to show that the type of 2.15 is

pf (forall (Ax:exp.(= x x)))

where the reader will recall that 2.15 is an abbreviation for the curried application

((all-i M 1) M2), where M 1 = (A x : exp. (=x x)), M2 = (A e : exp. (ref e)).

Using [abs] and the foregoing desugaring of -- , the type of M1 is readily seen to
be exp --+ prop. Therefore, using [app], we conclude that the type of (all-i M1) is
(1 e : exp. pf (Mi e)) -* pf (all M1), i.e.,

(all-i M 1) : (e : exp. pf ((A x : exp. (= x x)) e))-- (2.16)
pf (all (Ax:exp.(= x x).

Now using [abs], [app], and the given type of ref, we see that the type of M2 is
H e : exp. pf (= e e):

M2 : l e : exp .pf (= e e). (2.17)

Next we must type ((all-i M1) M2) using [app], 2.16, and 2.17, but we run into a
problem: as can be seen from 2.16, (all-i M1) expects an argument of type

l e : exp. pf ((A x : exp. (= x x)) e) (2.18)

whereas M 2 has type

Ile : exp. pf (= e e). (2.19)

Thus it appears that we have a type mismatch, and that the application cannot go
through.

However, the day is saved by the notion of type inter-convertibility that we moti-
vated earlier: the terms ((A x : exp. (= x x)) e) and (= e e) are convertible to the
same normal form via /-reduction, hence the types

pf ((Ax:exp.(= x x)) e) and pf (= e e)

are equivalent, just as the types String(EI) and String(E2) are equivalent whenever
E1 and E2 have the same value. Hence 2.18 and 2.19 are identical types and the

application ((all-i M1) M2) can be successfully typed, resulting in the desired
pf (forall (Ax:exp. (= x x))). Contrast 2.15 with the DPL proof

432.2 The proof in LF

pick-any x
!ref x

Finally, the constructor all-e acts as an inverse to all-i, specializing a universal
quantification to a given expression. In LF this inverse relationship is conveniently
captured by the corresponding inverse relationship between A-abstraction and appli-
cation. Note that the type of the result of all-e is pf (P e), obtained by applying
P to e. The usual provisos for avoiding variable capture are thus automatically ob-
served. As a last example illustrating this rule, here is a proof of the proposition
(Vx) x ~ 0 =-s(0) 1 0:

impl-i (forall (Ax:exp.(= x 0)))
(= (s 0) 0)
(Ap:pf (forall (Ax:exp.(= x 0))).

(alle (forall (Ax:exp.(= x 0)))
(s 0)

p))

Contrast this with the corresponding DPL proof:

assume P = (V x) x % 0 in
!specialize P s(O)

We are now ready to present the LF proof of 2.1; it appears in Figure 2.4.

Reducing the size of LF proofs

We mention in closing that in their cited paper Necula and Lee proceed to introduce an
"implicit representation" for LF proofs, in which many types and terms are replaced
by an unknown "place-holder" phrase *. Figure 2.5 shows the proof of Figure 2.4
in implicit form. Their goal is to cut down the size of proofs and speed up their
validation by eliminating redundant components from LF representations. Clearly,
size is an important factor for applications such as proof-carrying code [52], where
large proofs may be shipped over a network; proof-checking speed is also an important
consideration.

The idea is to transform a proof M into a "special" term M containing place-
holders, and then manipulate M instead of M. This scheme involves two transforma-
tions, which may be viewed as inverses of each other:

(i) One is an encoding transformation, which takes a given LF term M and produces
a compactified pseudo-term M ("pseudo" because it contains special place-holder

44 A comparative example

2.2 The proof in LF 45

all-i (Aei exp.

all (Ae2 : exp.
all (Ae3 : exp.

impl (= ei (+ e2 e3))
((- ei e3) e2)))

(Aei exp.

all_i (Ae2 : exp.

all (Ae3 : exp.
impl (= ei (+ e2 e3))

(= (- ei e3) e2)))
(Ae2 : exp.

all-i (Ae3 exp.
impl (ei (+ e2 e3))

(= (- ei e3) e2))
(Ae3 exp.

(impli (= ei (+ e2 e3))
(= (- ei e3) e2)

(Au : pf (= ei (+ e2 e3)).
(tran (- ei e3)

(- (+ e2 e3) e3)
e2

(-congr ei
(+ e2 e3)

e3
e3

U
(ref e3))

(tran (- (+ e2 e3) e3)
(+ e2 (- e3 e3))

e2

(+-assoc e2

e3

e3)

(tran (+ e2 (- e3 e3))
(+ e2 0)

e2

(+congr e2
e2

(- e3 e3)
0

(ref e2)
(inv e3))

(id e2)))))))))

Figure 2.4: The LF proof of 2.1.

alli *
(Aei :

alli *

(Ae2
all_i *

(Ae3
(impl_i * *

(Au
(=tr * * *

(-congr * * * *

U

(=id *))
(=tr * * *

(+-assoc * * *)

(=tr * * *

(+congr * * * *

(=id *)

(+inv *))

(+id *))))

Figure 2.5: Necula and Lee's implicit representation of the same proof.

tokens, which are not, strictly speaking, part of LF). This transformation is akin
to type-erasure embeddings of the terms of the simply typed A-calculus into the
terms of the untyped A-calculus.

(ii) The other is a decoding transformation that takes a pseudo-term M and a claimed
type A and retrieves M provided that M has type A; otherwise the transformation
fails. Thus the reconstruction of M is interwoven with its validation: we can
reconstruct M from M iff M has the advertised type A.

This of course means that we can check whether a given M has type A by first
computing a pseudo-term M for it and then attempting to reconstruct M from M and
A.

For part (i) of the above process, we note that for any given M there are several

different pseudo-terms M encoding it, some more compact than others, or more con-
ducive to part (ii) than others. Accordingly, there are several different ways of choosing

M, each with its own advantages; Necula and Lee present three different encoding al-
gorithms. Of course the most important requirement is that M should be in a form
that allows part (ii) to be carried out mechanically.

46 A comparative example

(e 2 + e 3) - e3 e e2 + (e 3 - e3)

For our purposes the issue is rather peripheral since pseudo-terms are meant to
be produced and manipulated by machine, not by humans (it is clear from Figure 2.5
that such terms are neither readable nor writable). Nevertheless, we make the following
observations:

" The complexity of the encoding and decoding process is super-exponential. The
reconstruction algorithm, in particular, is heavily reliant on higher-order unifica-
tion. However, Necula and Lee report satisfactory size and speed improvements
over regular LF proofs.

" Even optimally compact pseudo LF terms are still larger than regular DPL proofs.
For instance, the abstract syntax tree of the pseudo-term shown in Figure 2.5 has
more nodes than the abstract syntax tree of the DPL proof of Figure 2.9. This
is mainly because of the As: the heavily higher-order types of LF constructors
result in a large number of explicit A-abstractions as arguments. In addition, the
excessive number of arguments required by dependently typed inference rules (see
page 33) results in a large number of place holders. Thus it appears that regular
DPL proofs are always at least as efficient-and usually more so-as the most
optimized pseudo-LF proofs; while, more significantly, they enjoy this efficiency
without sacrificing readability, which is not the case for pseudo-LF proofs.

2.3 The DPL proof

Let us first see how we might go about proving 2.1 informally. We want to show that

if ei ~ e2 + e3 then e1 - e3 ~ e2 , for arbitrary ei, e2 , and e3. Accordingly, let any ei,
e2, and e3 be given, and suppose that the equality

e1 e2 + e3 (2.20)

holds. If we subtract e3 from both sides of this equality, we get

ei - e3 - (e 2 + e3) - e3. (2.21)

(Actually this cannot be done in one step using the rules of TE, but it can be done in
two: from [ref] we get e3 ~ e3, and then by applying [-cong] to the assumption 2.20
and es _ e3 we get 2.21.)

Now from the associativity rule [+-assoc] we have

47

(2.22)

2.3 The DPL proof

so applying the transitivity rule [tran] to 2.21 and 2.22 gives

ei - e3 ~ e2 + (e3 - e3). (2.23)

Thus if we could only prove the equality

e2 + (e3 - e3) _ e2 (2.24)

then one final application of transitivity to 2.23 and 2.24 would yield the desired
ei - e3 ~ e2.

This is top-down problem decomposition similar to the "successive refinement"
technique of structured programming: when we need to write a procedure f to solve a
given problem, express f in terms of a small number of auxiliary procedures fi, . . . , f"
that have the appropriate input/output behavior but may have not been implemented
yet. Thus at this stage of the problem-solving process we are viewing each fi as a
"black box": we specify-or rather postulate-exactly what fi is supposed to do, but
we say nothing about how that might be done. This state of affairs can be depicted
as a tree with f at the root and fi, . . . , fn as the children. Then on the next iteration
we expand this tree by repeating the same process with each child fi, until eventually
all the required black boxes at the leaves are primitives offered by the language and
thus do not need to be implemented.

Likewise, we have now reduced the original problem to the following task: given
any e2 and e3 , prove the equality e2 + (e3 - e3) ~ e2 . This is easily done as follows:
From reflexivity, we get

e2 e2 (2.25)

while [inv] gives

e3 - e3 2 0 (2.26)

and so applying [+cong] to 2.25 and 2.26 results in

e2 +(e 3 - e 3) ~ e2 +0. (2.27)

But, from [id], we have

e2 + 0 m e2 (2.28)

and therefore transitivity on 2.27 and 2.28 produces the goal e2 + (e3 - e3) e e 2 . Let
us refer to the equality e2 + (e 3 - e3) ~ e2 as lemma M.

48 A comparative example

2.3 The DPL proof 49

Prove: (Vei) (Ve 2) (Ve3) ei ~ e2 + e3 = ei - e3 ~e2

pick any ei, e2, e3
assume (1) el ~ e2 + e3

Then: (2) e 3 e e 3 from

(3)
(4)

(5)
(6)

(7)

ei - e 3 ~ (e2 + e3) - e3

(e 2 + e3) - e3 e e2 + (e 3

el - e3 ~ e2 + (e3 - e3)

e2 + (e 3 - e3) ~ e2

ei - e3 ~ e2

from

- e3) from

from

from

from

[ref]

(1), (2), and [-cong]

[+-assoc]
(3), (4), and [tran]

lemma M

(5), (6), and [tran]

where lemma M proves e 2 + (e 3 - e3) ~ e2 for any given e 2 and e 3 as follows:

Prove: e 2 + (e 3 -e 3) ~ e2

(1) e2 ~~ e 2

(2) e3 - e3 0
(3) e 2 + (e 3 - e 3) e2 + 0
(4) e2 + 0 ~ e2

(5) e 2 + (e 3 - e3) e2

from [ref]
from [inv]

from 1, 2, and [+cong]

from [id]

from 3, 4, [tran]

Figure 2.6: Structure of the informal proof of 2.1.

The structure of this informal proof can be more succinctly depicted as shown in
Figure 2.6. Now contrast Figure 2.6 with the DPL proof that appears in Figure 2.7.
We believe that the DPL proof preserves the structure of the informal argument to
such an extent that anyone who can make sense of the informal proof can also follow
the DPL proof, even if they do not know anything about DPLs. We believe that the
same cannot be said for the LF proof; someone who understands the informal proof
shown in Figure 2.6 but does not know anything about LF will not be able to make
sense of the LF proof in Figure 2.4. (In fact it might be argued that even people who
are familiar with LF would not be readily able to follow Figure 2.4.)

We will not explain the DPL proof here in detail. Every aspect of it will be thor-

oughly discussed in the sequel. We want to draw attention, however, to the similarity
between DPL proofs and functional programs. To a large extent the DPL proofs shown
here read like Scheme or ML programs. This is a general characteristic of DPLs, and

it is not limited to appearances; it extends to semantics. DPL proofs can be evaluated

much in the same spirit that functional programs are evaluated. This kinship is one of

the reasons why we expect DPLs to appeal to programmers; learning and using a DPL
can draw on intuitions that almost all programmers have, even those who use untyped

492.3 The DPL proof

pick-any ei, e2, e 3
assume Pi = ei e2 + e3

diet P 2 = e3 m e3 by !ref e3
P3 = ei - e3 (e2 + e3) - e 3 by !-cong Pi P 2

P4 = (e2 + e3) - e3 e2 + (e3 - e 3) by !+-assoc e2 e3 e3
P5 = ei - e3 m e2 + (e 3 - e 3) by !tran P3 P4

P6 = e2 + (e3 - e3) e 2 by !M e2 e3
in

ei - e3 ~ e2 by !tran P5 P6

where

M= y e2, e3 -
diet Pi = e2 ~ e2 by !ref e2

P2 = e3 - e3 0 by !inv e3

P3 = e2 + (e 3 - e 3) ~ e2 + 0 by !+cong Pi P2

P4 = e2 + 0 e2 by !id e2
in

e2 + (e3 - e3) e2 by !tran P3 P4

Figure 2.7: A DPL proof of 2.1 in conclusion-annotated form.

languages.

In fact the DPL methodology for developing proofs is very akin to the top-down
decomposition methodology for programming that we dicsussed above. When a DPL
user faces the task of proving a complex proposition P, he sets out to express the
proof in terms of inference rules ("methods") M 1,... ,M which have the desired
premise/conclusion behavior (such that their given composition yields the goal P) but
may not be primitive rules of the underlying logic. Then he proceeds to implement
each Mi by expressing it in terms of other "black-box" methods, and so on until all
methods at the leaves of the decomposition tree are primitive inference rules.

The auxiliary methods at the internal nodes of this tree are what many authors call
"derived inference rules", because they are ultimately expressible in terms of primitive
rules. The abstraction power that they afford is an indispensable tool for managing
conceptual complexity; it allows us to break up large proofs into simpler modular
components, resulting in smaller, cleaner, and reusable units of reasoning. We quote
from Manna [47]:

In order to be able to write shorter deductions for wwfs in practice, it is
most convenient to have a library of derived inference rules. Each such rule
can be given an effective proof in the sense that we can show effectively how
to replace any derived rule of inference whenever it is used in a deduction by

50 A comparative example

an appropriate sequence of wffs using only the "primitive" rules of inference
and axioms.

A prime example of a derived inference rule is one that derives our "lemma M",
i.e., the equality e2 + (e3 - e3) ~ e2, for any given e2 and e3 . Although TL does not offer
any one single rule for establishing such an equality directly, we know from Figure 2.6
that the equality can be derived by an appropriate composition of TL primitives. In
DPL style this derivation may be expressed as the following deduction D, where e2

and e3 are any two particular expressions:

diet P1 = e2 ~ e 2 by !ref e2

P2 = e3 - e3 ~ 0 by !inv e3

D P3 = e2 + (e3 - e3) ~ e2 + 0 by !+cong Pi P 2 (2.29)
P4 = e2 + 0 ~ e2 by !id e2

in
e 2 + (e 3 - e 3) ~ e2 by !tran P 3 P 4

It is clear that D in no way depends on the specific values of e2 and e3 , and in that
sense it represents a proof schema: by instantiating e2 and e3 with various specific
expressions we obtain various specific proofs. There are, of course, infinitely many
choices for e2 and e3. In the DPL world we can immediately turn such a schema into a
reusable module by parameterizing over e2 and e3 via the method abstraction operator
p, arriving at a method M = P e2, e3 . D that can be applied to any given expressions

e2 and e3 to derive the equality e2 + (e 3 - e3) e C2. For instance, the application of M

to 0 and s(0) would look like (!M 0 s(0)) and would result in 0 + (s(0) - s(0)) _ 0.
Thus for all practical purposes we can now treat M as an indivisible, atomic inference
rule. Every time we use it, of course, it will actually be "expanded out" into a series
of applications of primitive TL rules, but the expansion will occur automatically by
the DPL implementation; all the user has to do is write (!M 0 s(0)). This is similar
to A-abstraction in programming. When we define a cubing function

C=Ax.(* x (* x x))

we can subsequently use C as if it were a primitive of the language. Of course every time
we apply C to an argument, the application will be expanded out into two successive
multiplications, but this is an implementation issue that can-and should-be ignored
by the clients of C, who can more profitably view C as a black box that is completely
determined by its input-output behavior.

Derived inference rules such as the above that are obtained from concrete proofs
through schematic abstraction can also be formulated in LF-like systems through A-
abstraction. However, there is an essential difference: DPL methods have dynamic

512.3 The DPL proof

evaluation semantics (they are "executable"), whereas in the LF world proofs are
static-there is no notion, for example, of an inference rule recursively calling itself.
(In fact, as we mentioned earlier, the absence of unbounded recursion is of paramount
importance for LF and similar systems. It must be stressed that the A-calculus in
LF is used purely for representational purposes-for encoding formulas, proofs, and
so on; not for writing loops, conditionals, etc.) Owing to the power afforded by their
ability to iterate, branch conditionally, etc., DPL methods go far beyond schematic
abstraction. For example, it is straightforward in a DPL such as Athena to write a
method that replaces every subformula Bold of a given formula A with a formula B,
that is provably equivalent to Bold. This can be written as a method that takes A,
Bold, and Bnew as arguments, and provided that the equivalence of Bold and Bne, holds
(the biconditional Bold 4* Bnew is in the assumption base), goes on to derive the formula
obtained from A by replacing every occurence of Bold by Bnew. The method is recursive
and proceeds by induction on the structure of A; it takes a few lines and is remarkably
perspicuous. In fact in Section 9.4 we present this particular method in full detail,
along with several other concrete examples. Expressing the same derived inference
rule in a system such as LF would be much more complicated, requiring declarations
with not just dependent types, but also with dependent kinds.

The DPL deduction in Figure 2.7 is expressed in conclusion-annotated form, whereby
the conclusion of each method application is explicitly attached to the application with
the keyword by. For instance, instead of

modus-ponens P =: Q, P (2.30)

we write

Q by modus-ponens P =: Q, P. (2.31)

When the application is valid (i.e., successfully produces the conclusion Q), then 2.30
and 2.31 are perfectly equivalent: both of them yield the same result-Q. The dif-
ference is stylistic: 2.31 is more verbose, but provides more documentation and is
arguably more readable than 2.30. Whether one writes in conclusion-annotated form
or in the style of 2.30, which we may call direct, depends on one's goals (is it deemed
desirable to have as much documentation as possible?) and personal taste. DPLs can
accomodate both. The DPL proof of Figure 2.7 expressed in direct style appears in
Figure 2.8.

Next, by inlining the method M and by expanding the dlets of Figure 2.8 into
nested method applications, much in the same fashion in which one might expand a
let in ML or in Scheme into nested function applications, we arrive at the DPL proof
shown in Figure 2.9. The process is quite similar to casting the Scheme code

52 A comparative example

2.3 The DPL proof 53

pick-any ei, e 2 , e 3
assume Pi ei ~ e2 + e3

diet P 2 = !ref e3
P3 = !-cong Pi P2

P 4 = !+-assoc e2 e3 e3
P5 = !tran P3 P4

P6 = !M e2 e3
in

!tran P 5 P6

where

M= X, y.
dlet Pi = !ref x

P2 = !inv y
P3 = !+cong Pi P2

P4 = !id x
in

!tran P 3 P 4

Figure 2.8: A DPL proof of 2.1 in direct style.

(define (double 1)

(append 1 1))

(let ((a (* 2 pi))

(rev-lst (rev 1st)))

(g a (double rev-lst)))

into the alternative form

(g (* 2 pi)

(append (rev 1st)

(rev 1st)))

The main virtue of the proof of Figure 2.9 over that of Figure 2.8 is brevity, which

is also the main advantage of the second piece of Scheme code over the first. The

disadvantage in both cases is decreased modularity, as the reasoning behind the lemma

M (or the computation behind double) is not abstracted away and separated into a

distinct package. Concerning readability, we would argue that the proof in Figure 2.8

is more structured and lucid, although others could argue that the succinctness of the

proof in Figure 2.9 makes it more readable. It is a testament to the versatility of DPLs

that they readily support such a rich variety of styles. Furthermore, the affinity that

532.3 The DPL proof

54 A comparative example

pick-any ei, e2 , e 3
assume P = ei e2 + e3

(!tran (!tran (!-cong P (!ref e 3))
(!+-assoc e2 e3 e 3)

(!tran (!+cong (!ref e 2) (!inv e3))
(!id e2)))

Figure 2.9: A more succinct DPL proof of 2.1.

these styles bear to corresponding programming styles-an affinity largely stemming
from a symmetry between the semantics of method abstraction and application on the
one hand and functional abstraction and application on the other-corroborates our
contention that proof engineering in DPLs is very similar to software engineering in
functional programming languages.

Chapter 3

Fundamentals

In this chapter we introduce the basic ideas behind our approach in a piecemeal fashion,
by showing how one might arrive at a DPL for propositional logic. Although the style
is elementary and the pace slow, most of the key insights originate in this setting. For
this reason we believe that even readers with an advanced background would benefit
from reading this chapter.

3.1 Formalizing classical reasoning as a DPL

3.1.1 Arguments and the nature of deduction

A deduction is what one gives in order to prove that an argument is valid. An argument
consists of two things: a set of propositions known as the premises, and a single
proposition known as the conclusion. The conclusion is supposed to be a logical,
necessary consequence of the premises. If that is indeed the case, we say that the
argument is logically valid, or simply valid. Differently put, an argument is valid if it
is impossible for the premises to be true without the conclusion also being true. Note
that nothing is said here about the truth of the conclusion or about the truth of the
premises in isolation. All we are saying is that if the premises are in fact true, then
the conclusion must also, necessarily, be true. Accordingly, if we accept the premises
of a valid argument then we are logically compelled to accept the conclusion as well.
Here is an example of a valid argument:

Premise 1: Either I am the Pope or the moon is made of cheese.
Premise 2: I am not the Pope.

Conclusion: The moon is made of cheese.

56 Fundamentals

The argument is valid because the conclusion cannot possibly be false if the premises
are true. It is an instance of the following general valid argument "schema":

Premise 1: P V Q
Premise 2: -P

Conclusion: Q

If at least one of P and Q holds, and P does not hold, then Q must hold.
As the example illustrates, validity by itself does not make a good argument. A

valid argument might still lead us to a false conclusion. We also need veracity. An
argument is veracious if its premises are true.1 That is clearly not the case with the
above example, the first premise having a rather serious flaw: the disjunction of me
being the Pope or the moon being made of cheese does not hold, as in fact neither
is the case. Therefore, a good argument must be both valid and veracious. Veracity
guarantees that we start off from true premises; validity guarantees that the conclusion
we reach will also be true.

Although necessary, the combination of validity and veracity is still not always
sufficient for a good argument. A third requirement is epistemological: the premises
must not simply be true, but we must have adequate justification for believing them
to be true. Otherwise they are themselves in need of argument. From a logical point
of view, however, our only concern is validity, that is, the question of whether the
conclusion follows from the premises. Veracity and epistemic merit are to be decided by
specialists in the field of the argument. By contrast, validity is established exclusively
through logical considerations, by way of deduction.

Now judging from our foregoing example the reader might well wonder whether
deduction is really necessary for establishing the validity of an argument. Is it not
obvious just by immediate inspection whether or not the conclusion is logically entailed
by the premises? In the case of the said example, the answer is yes, it is obvious, and
no proof of any kind is really needed. But for most arguments deciding validity is far
from trivial. As an example, consider the argument whose premises and conclusion
are the axioms of number theory and Fermat's theorem, respectively; or the axioms of
ZF set theory and the continuum hypothesis; or some indubitable logical truths and
the existence or non-existence of God; and so on. The validity or invalidity of such
arguments is anything but obvious. Demonstration is necessary; the conclusion must
be deductively derived from the premises. In fact we need not look at exotic examples

'In traditional logic, a valid argument with true premises is called sound. We instead separate
the truth of the premises from the issue of validity altogether, and reserve the term "sound" for
more a technical use in connection with inference rules and deductions (which is more in line with
contemporary practice in mathematical logic). Hence our use of the term "veracity".

to appreciate this point. Consider a much simpler argument: 2

Premise 1: Students who work hard get good grades.
Premise 2: Students who do not work hard enjoy college.
Premise 3: Students who do not get good grades do not enjoy college.

Conclusion: All students get good grades.

The argument is valid, though this is not easily realized at first glance. Here is the
proof: Pick any student S. Now either S works hard or not. If he does, then he gets
good grades (by the first premise). If he does not, then he enjoys college (by the second
premise). But the third premise implies that students who enjoy college must get good
grades-for otherwise they would not enjoy college. Hence if S does not work hard he
must get good grades. In any case, S gets good grades. Q.E.D.

We should do well to realize, however, that the conceptual complexity of subtle
arguments is an empirical issue of psychology, having nothing to do whatsoever with
the relation of logical consequence. That relation either obtains between the premises
and the conclusion or it does not. The question is how easily we can come to discover
which is the case. Fermat's theorem follows from the axioms of number theory just
as necessarily as the conclusion 1 = 0 follows from 0 = 1. That is, the statement
"if 0 = 1 and = is a symmetric relation then 1 = 0" is just as much of an analytic

truth as the statement "If the axioms of number theory and elementary logic hold then
Fermat's theorem holds". Metaphysically, both statements are equally trivial truths.
They could not possibly be false. Were we omnipotent beings we would immediately
"see" that Fermat's theorem follows from the basic assumptions of number theory just
as we "see" that the conclusion 1 = 0 follows from 0 = 1 and the usual conception of
equality. But we are not omnipotent, and that is why deduction is indispensable. The
logical links between the premises and the conclusion might be years of light apart, a
distance which a human mind could not possibly perceive with one mental glance. A
deduction will patiently guide us from the premises to the conclusion by putting all
the links together in a step-by-step fashion that humans can follow.

You might have noticed that we have glossed over the notion of "logical conse-
quence", or "follows logically from". We have been taking it for granted, without
bothering to specify exactly when a proposition P is to count as a logical consequence
of a set of propositions 3 (symbolically written as # 1= P). We have explicated the
notion somewhat by saying that 3 |= P holds if it is impossible for the propositions in
/ to be true without P also being true, but this will clearly not do as a formal analysis
since it presupposes the concepts of truth and possibility. In fact a perfectly precise
definition of logical consequence, resting on the notion of interpretation, is possible,

2This is a modification of an example of Kalish and Montague [41].

573.1 Formalizing classical reasoning as a DPL

and represents a major achievement of modern formal logic. But we will not go into
the details here. We will assume that the reader has come across such a definition
before. If not, an intuitive understanding of these ideas will suffice for our present
purposes.

3.1.2 Inference rules and the general form of deductions

To sum up, a deduction is a chain of inferences adduced for the purpose of proving that
an argument is valid.3 The deduction takes the premises of the argument for granted,
i.e., it treats them as working assumptions that hold by supposition. In DPL parlance,
the set of assumptions that are taken as given is called the assumption base. The
deduction proceeds in a piecemeal fashion through the application of inference rules.
A sequence of steps are made, each of which establishes some intermediate conclusion
by applying an inference rule to some of the assumptions and/or previously generated
intermediate conclusions, until we finally reach the desired conslusion. Thus we may
schematically depict the general skeleton of a deduction as follows:

Line Conclusion Justification

1. P
2. P2 ...

n. P .

Here each P is either an assumption (i.e., a member of the assumption base), or an
intermediate conclusion; P, is the final desired conclusion. The justification of each P
typically consists of an application of an inference rule to some previous intermediate
conclusions and/or assumptions. A typical inference rule is "left and-elimination":
given a conjunction A A B, we infer A. Another one with a more time-honored name is
Modus Ponens: given the conditional P => Q and P, we infer Q. Thus the justification
for P4 , for instance, might read "Modus Ponens on P2 and P3". Of course if P is an
assumption then it needs no justification; it holds by supposition.

A requirement of paramount importance is that the inference rules must be sound,
i.e., they must be such that if their arguments are true then the result must also
be true. A deduction can be accepted as conclusive evidence for the validity of an
argument if and only if it uses sound rules. If it does then, on the assumption that
the premises hold, a simple induction will show that every P holds too, including the
desired conclusion P. For the basis step, Pi must be true because it is either a premise

3 This linear view of a deduction as a "chain" will be seen to be inadequate, but it is a good first
approximation for our purposes.

58 Fundamentals

or the result of applying a rule to some premises; and since the premises are assumed to
be true and the rule is sound, the conclusion P1 must be true. For the inductive step,
consider proposition Pi+1, and assume that all preceding propositions are true. Then
because P+1 is derived by applying a sound rule to true propositions, it must itself be
true. Hence the assumption that the premises are true implies that all propositions

P1,... , P, in the deduction are true, including P,; which is to say precisely that the
argument is valid: if the premises are true, so is the conclusion.

But if an unsound rule is used, say on line i, then we have no reason for accepting

Pi, because, by definition, the result that is generated by an unsound rule may well be
false even if the arguments to the rule are true. And if P is false and is subsequently
used to derive other propositions that eventually lead to the conclusion Ps, we clearly
cannot consider the latter to be established, even on the assumption that the premises
hold.

Now the cognitive value of a deduction stems from the simplicity of the primitive
inference rules. Imagine a deduction system with a primitive inference rule that allowed
us to derive Fermat's theorem from the basic assumptions of number theory. Then we
could "prove" Fermat's theorem with an one-line deduction: the application of this
rule to the axioms of number theory. Clearly, such a proof would be unacceptable. 4

The soundness of an inference rule must be readily intelligible, if not patently obvious;
the rule must produce a conclusion that clearly follows from the arguments.

Note that each line in a deduction may be thought of as a mini argument by itself,
for the application of an inference rule may be seen as an argument: the premises
are the arguments to the rule, and the conclusion is the result that the rule produces.
For instance, suppose that the third line obtains the conclusion B by applying Modus
Ponens to some previous propositions A => B and B. This can be thought of as the
argument

Premise 1: A = B
Premise 2: A

Conclusion: B

This is what a deduction does then: it breaks up a potentially intricate argument
into a series of simple little arguments, the conclusion of each serving as a premise
to some subsequent little argument. If each of the little arguments is self-evidently
valid, and if every one of its premises is either a premise of the original argument or

40f course once Fermat's theorem has already been proven then it might be used as a lemma, i.e.,
as a derived inference rule. However, this would simply serve as a convenient abbreviation for the

long-winded proof that we have already discovered. Every proof using derived inference rules can

be expanded to a proof that uses only primitive inference rules, and those rules must be short and

simple.

593.1 Formalizing classical reasoning as a DPL

the conclusion of some previous "little argument", then by induction we may conclude
that the final result is a logical consequence of the premises. The requirement that
each little argument be valid amounts to requiring every inference rule to be sound;
the requirement that each little argument be self-evidently valid amounts to requiring
the soundness of every inference rule to be readily apprehensible.

3.1.3 Proof checking (linear case)

Let us now turn our attention to the task of checking a deduction-verifying that
it soundly produces some particular conclusion. It is well-known that this problem
is efficiently solvable, so in that respect the following discussion will not be saying
anything new. Our purpose is simply to formulate and solve the problem in a way that
will provide a smooth introduction to the main ideas behind our approach. In general
terms the problem can be stated as follows. We are given:

1. An initial set of premises /3-an initial assumption base, in DPL lingo. The
elements of # will serve as working assumptions; they hold by supposition.

2. A deduction D of the form (I).

The question is: Does D successfully derive a conclusion that is logically entailed by
/? If yes, what is that conclusion?

If we have a mechanical way of solving this problem then we can use it to determine
whether a given deduction successfully produces a conclusion at all, or whether it makes
an error of some kind instead. And, more importantly, if it does produce a conclusion,
whether that is the desired conclusion (with respect to some given argument). So
if someone presents us with a deduction D which he claims as proof for a certain
argument with a set of premises / and conclusion P, we can settle his claim by using
the algorithm.

Before we continue the reader should observe that our formulation of the problem
has separated the assumption base from the deduction. This separation runs counter
to most existing treatments of the subject, where a deduction is always hardwired to a
specific set of premises. By sequestering the two we become free to speak of the mean-
ing of a deduction relative to an arbitrary set of premises, and to check a deduction
with respect to any given assumption base. Of course insofar we have constructed the
deduction in order to establish a particular argument, the intended initial assumption
base will consist of that argument's premises. But the insight behind DPLs is that,
in general, the meaning of a deduction should be a function over assumption bases;
it ought to be determined relative to a given assumption base. It turns out that this
viewpoint pays handsome conceptual dividends and paves the way for some very el-
egant formal semantics. In some respects it is similar to the Tarskian conception of

60 Fundamentals

the meaning of a sentence as being relative to a given interpretation of the sentence's

symbols. Of course we tend to think of the meaning of a sentence as fixed, because we

usually have in mind a specific interpretation of the underlying vocabulary. But it is

only by abstracting over all possible interpretations that we are able to arrive at the

right formal semantics for satisfaction; from there all the other pieces (logical conse-

quence and equivalence, validity, truth, etc.) fall together. In a sense, these advantages

are replicated in the theory of DPLs. For instance, we become able to formally define

(observational) equivalence for two deductions D1 and D 2 by quantifying over assump-

tion bases: Di D 2 iff for all 0, the meaning of Di relative to / is identical to the

meaning of D 2 relative to /.

Let us continue with the checking problem. We will assume that there is a finite

number of sound inference rules; that each rule takes a fixed number of propositions as

inputs and produces a unique proposition as a result; that we can effectively determine

whether a given list of propositions constitutes legitimate input to some rule; and if

so, that we can effectively generate the rule's output for that particular input. These

requirements are trivially satisfied by all common inference rules. Modus Ponens, for

example, takes two propositions Pi and P2 as "inputs"; these are considered legitimate

iff they are of the form P =-> Q and Q, respectively; and in that case the resulting

"output" is the proposition Q. Finally, we will assume that every entry in the "Jus-

tification" column of a deduction is either of the form Rule P1,... , Pk, signifying the

application of Rule to the argument list P1, ... , Pk; or some label (such as "Assump-

tion") signifying that the conclusion of that line is a premise (i.e., in the assumption
base).

The deduction-checking algorithm consists of one simple loop: we visit each line

i = 1, ... , n in turn. If the conclusion P is claimed as a premise, we check to see

whether it is an element of /; if it is not, we report an error, otherwise we continue

with the next line. On the other hand, if P is obtained by applying a rule R to a list

of propositions Q1, . . . , Qk, we check to make sure that

(a) the list Q1, . . . , Qk is appropriate input to the rule R, and that the conclusion
Pi is indeed the result of applying R to Q1, ... , Qk; and that

(b) each Qj, j = 1, . .. , k, is either a premise (a member of /) or one of the previous

i - 1 intermediate conclusions, P1, ... , P_ 1.

If either condition fails, we report an error; otherwise we move on to the next line. If we

finish all n lines without an error, then we announce that the deduction does produce

a conclusion, namely, Pn: the conclusion of the last line. In view of the soundness of

the inference rules, our inspection guarantees that the conclusion P,, follows logically
from the premises, i.e., that / | P,. This follows by induction on n, as we explained

earlier: we have / - Pi for every i = 1,... ,n.

613.1 Formalizing classical reasoning as a DPL

If we make the simplifying assumption that the basic "units" of work in this al-
gorithm are steps (a) and (b) above, then the worst-case complexity is O(n 2); in
particular, n(n2l). The i - 1 part of step (b) is responsible for the quadratic factor: for
each argument Qj, we might have to check all previous propositions to see whether Q3
is one of them. A more efficient way to check the deduction suggests itself: after P has
been successfully verified, add it to the assumption base and then continue with the
next line. Thus each P that has been successfully verified becomes a new premise, a
new working assumption; more properly, it becomes a lemma. Step (b) is thus reduced
to checking that each argument to the rule is in the current assumption base. It should
be clear, again by inductive reasoning, that the modification is sound.

This "optimization" capitalizes on the aforementioned separation between the as-
sumption base and the deduction, and its importance extends well beyond efficiency.
The main benefit is conceptual: it helps to bring out the recursive structure and com-
positionality of deductions. We tend to think of a deduction as a block, but in fact it
is more profitably viewed as a complex object that is recursively built up from simpler
deductions through composition. Specifically, the original deduction D (the input to
the algorithm) can be seen as a sequence of lines

D = L1; ... ; Ln

where the various lines are joined together by a composition operator ";". Now split
this deduction at any point i E {1, ... , n}. The key observation is that the remaining
suffix Li ,... , L,, is itself a deduction, call it Di. What is the relationship between
D and Di? Simple: Di is sound with respect to # U {P 1, . . . , P} whenever D is sound
with respect to 13, where P 1, . . . , P are the conclusions of lines 1, ... , i, respectively.

3.1.4 Arriving at a formal syntax and semantics

Let us make these intuitions more precise. First we notice that it is possible to give a
recursive description of the structure of a deduction as follows: a deduction is either
an application of an inference rule to a list of propositions; or a single proposition by
itself (claimed as a premise); or a non-empty sequence of deductions. Let us call the
first two kinds of deductions primitive, and the third kind of deductions composite;
and let us use the letter M for primitive deductions and the letter D for composite
deductions. We thus arrive at the following abstract syntax:

D ::= M M; D (3.1)

where

(3.2)

62 F'undamentals

M ::= P I Rule P1, .. . , P,

Now it turns out there is a very elegant way to attach a semantics to this syntax
so that a deduction D is meaningful iff it is sound; and if it is meaningful, its mean-
ing (denotation) is the conclusion it produces. Theoretically, this is a very natural

formalization of deduction. Practically, it has the useful consequence that evaluat-
ing a given deduction-i.e., obtaining its meaning-results either in error or in the

conclusion produced by it. Thus evaluation becomes tantamount to proof-checking.
Let us work out a full "toy" formal semantics as an illustration. It will simplify the

presentation to assume that there are only two inference rules: modus ponens (from
P = Q and P infer Q), and left and-elimination (from P A Q infer P). Everything we
do can be straightforwardly extended to any finite number of rules; no new ideas are
involved in such an extension. Thus we complete the abstract syntax above with the
clause

Rule ::= modus-ponens I left-and

The style of our formal semantics will be denotational. Let Ded be the syntactic
category of deductions, as generated by clause 3.1, and let PrimDed be the syntactic
category of primitive deductions, as generated by clause 3.2. Further, let B be the
domain of all assumption bases; let Prop be the set of all propositions (this does not
need to be precisely defined for our purposes); and let error be some special token,
distinct from all propositions. We give two meaning functions M and D with (curried)
signatures

M : PrimDed --+ B -+ Prop U {error}

and
D : Ded --+ B -+ Prop U {error}

Thus, intuitively, the meaning function D takes a deduction D and an assumption
base 13 and produces either a proposition P or error. In more proper curried terms: D
maps a given deduction to a function that takes an assumption base and gives either
a proposition or error. The signature of M is likewise read. Since termination is
guaranteed, no bottom elements are necessary.

We define M and D with a number of clauses, one for each form of M and D. As

usual, recursion at the syntactic level is reflected by recursion at the semantic level.
The clauses are shown in Fig. 3.1. To keep the equations clean, we do not explicitly
enumerate all the cases that lead to error. Rather, we tacitly assume that any "input"
to the functions M and D that does not match the left-hand side of one of the equations
produces error. Thus, for example, we have

M [modus-ponens P A Q] # = error

and M [P] 3 = error for any 3 that does not contain P. Moreover, we assume that

errors are propagated in the obvious way; for instance, in the right-hand side of the

633.1 Formalizing classical reasoning as a DPL

M P]JU{P} = P
M[left-andPAQ]#Uf{PAQ} = P

Mflmodus-ponens P = Q, P] / U {P = Q, P} = Q
D [M] # = M[M] #

D[M;D] # = D [D] Uf{M[M] #}

Figure 3.1: Denotational semantics of simple deductions.

equation for D, if the value of the sub-expression M [M] # is error, then the value of
the entire expression is error.

The equations of Fig. 3.1 can be directly transcribed into an evaluation algorithm.
That algorithm will be precisely the deduction checking algorithm we discussed above.
This means that the semantics of the language capture exactly what it means for a
deduction to be sound, and reinforces the slogan

Evaluation = Proof Checking.

Fig. 3.2 offers an alternative presentation of the semantic equations that makes
explicit the dependence of a deduction's meaning on an assumption base. Thus the
equations of Fig. 3.2 make it clear that the meaning of a deduction should be under-
stood relative to a given set of premises.

3.1.5 Non-linear case: assumption scope

The linear view of deductions we have been painting is not accurate. Oftentimes one of
the intermediate conclusions P established in the course of a deduction is derived not

M[PI A/.P E #?->P, error

M[left-and P AQ] = A.PAQ E # ?->P, error

Mmodus-ponens P 4 Q, P = A03. {P #>Q, P} C /3? -> Q, error

D [M] = A /. M[M]/ 3

D [M;D] = AO. D[D]# U {M[M] #}

Figure 3.2: Alternative formulation of the denotational semantics.

64 Fundamentals

by the straightforward application of some inference rule but rather by provisionally
postulating some proposition Qi (the "hypothesis") and then showing that if the latter
holds then some other proposition Q2 holds as well (the hypothetical conclusion). The
idea is that the derivation of Q2 from Q1 is sound justification for inferring P. We
call these hypothetical deductions. Hypothetical deductions arise in two very important
cases:

* in establishing conditionals, i.e., propositions of the form P =* Q; and

" in establishing negations, i.e., propositions of the form -P.

We discuss each in turn and show how each can be accomodated in our model by appro-
priately extending the abstract syntax and denotational semantics we have developed
for linear deductions.

The customary method for establishing a conditional P => Q is this: we assume
P and proceed to infer Q; upon deriving Q (with the aid of the hypothesis P), we
derive the implication P =* Q and tacitly retract P from the current set of working
assumptions. As a very simple example, consider proving the conditional

Even(n) => Even(n + 2)

where n ranges over the integers and the predicate Even is defined as

Even(n) =def (3k)n = 2k.

We reason as follows:

Assume that n is even. Then, by definition, we must have n = 2k for some
number k. Therefore, n+2 = 2k +2 = 2(k + 1), which proves Even(n+2).
Q.E.D.

This mode of reasoning can be readily analyzed in terms of assumption bases. The
general case is as follows: we are proceeding along a deduction linearly, by sequentially
applying inference rules, and then we get to a point where we need to establish an
intermediate conclusion of the form P =* Q. Now there may be a way to get this
conclusion the simple way, by applying an inference rule. For instance, one of our
previous intermediate conclusions might be of the form Q3 A (P => Q). In that case
a simple application of and-elimination will suffice. But if we cannot derive P == Q
through a rule, then what we commonly do, as we saw above, is add the hypothesis P
to our current assumption base 3 and construct a deduction D' that derives Q from
this enlarged assumption base, 13 U {P}. Upon deriving Q, we conclude P => Q and
continue along with 3 as our assumption base again, having thus "discharged" the

653.1 Formalizing classical reasoning as a DPL

hypothesis P. To prove that this method is sound, we need to show that / logically
implies the conclusion produced by the method, namely P =* Q. But this can be easily
done inductively: Assuming that D' is sound, we have 3 U {P} |= Q, which in turn
implies 0 |= P =* Q, by the definition of - and the semantics of the connective = .
Note that D' might itself contain other hypothetical deductions, which may themselves
contain hypothetical deductions, and so on.

We have thus given a natural explanation of hypothetical reasoning in terms of the
recursive structure of deductions (notice in particular the role played by the subdeduc-
tion D' that derives Q) and the semantic abstraction of assumption bases. In this light
we see that the assumption base, far from being static, grows and shrinks dynamically
in the course of a deduction. The expansions and contractions correspond precisely
to assumption introductions and discharges and match up symmetrically. Now this
is paradigmatic context-free behavior; it is intuitively reminiscent of the epitomy of
context free languages: a'b" (or (n)", if you will). Indeed, it turns out that context-
free block structure is ideal for capturing this behavior syntactically; and this is one of
the greatest advantages of DPLs. Semantically, the intuitive manipulation of assump-
tion bases we described above (insert the hypothesis upon entering the body of the
hypothetical deduction,. retract it at the end) confers just the right meaning to the cor-
responding block-structured syntax. Recursion carries this harmonious arrangement
to arbitrarily deep levels of nesting. Thus it comes about that the introduction and
discharge of assumptions, traditionally one of the most troublesome aspects of formal
deduction, is taken care of automatically-and elegantly-by the syntax and semantics
of the language. Moreover, this results in an accurate formal model of the way in which
humans perform hypothetical reasoning in practice.

To make things precise, let us account for hypothetical deductions by extending
the abstract syntax 3.1 as follows:

D ::= M | DI; D 2 I assume P in D (3.3)

where primitive deductions M remain as before. Intuitively, this grammar says that a
deduction is either

" a primitive deduction (namely, a claim P or an application of an inference rule
to a list of propositions); or

" a composite deduction D 1; D 2 , whereby Di is followed by D 2 ; or

" a hypothetical deduction of the form assume P in D, consisting of an assump-
tion P (the hypothesis), and a body D.

Note that the grammar 3.3 is now ambiguous. For instance, it is not clear whether
a deduction of the form assume P in D1 ; D 2 represents a hypothetical deduction

66 Fundamentals

with body D1 ; D 2 , or a composite deduction with assume P in D1 and D 2 as first
and second components, respectively. We will remove any such ambiguities by using
begin-end pairs.

The denotational semantics for the new language are more or less the same as
before. We need only add a new clause giving the meaning of hypothetical deductions:

D [assume P in D] 3 = P =. D [D] # U {P} (3.4)

and slightly modify the composition rule to account for the new syntax (D1; D 2 rather
than M; D):

D [D1 ; D2] 3 = [D2] # U {D[D1]J3} (3.5)

The important point is that in equation 3.4, the deduction D-the body of the hypo-
thetical deduction-is evaluated in the assumption base 3 augmented with P. Thus
the meaning of the entire assume P in D deduction with respect to a given / is the
conditional whose antecedent is the hypothesis P and whose consequent is the meaning
of the body D with respect to 3 U {P}.

As another example, suppose we have two more primitive inference rules, a unary
rule right-and, acting as the obvious analogue of left-and, and a binary rule both,
which takes two propositions P and Q in the current assumption base and returns the
conjunction P A Q (i.e., both is an introduction rule for the connective A). Hence
the denotational clause for both is:

M [both P, Q] # U {P, Q} = P A Q.

Then here is a deduction that proves the conditional P A Q => Q A P, for arbitrary P
and Q:

assume P A Q in
begin

right-and P A Q;
left-and P A Q;
both Q, P;

end;

Call this deduction D. The diligent reader will formally verify that the denotational
semantics we have given ensure the equality

D D 0 = P A Q -->Q A P

for any choice of P and Q.

673.1 Formalizing classical reasoning as a DPL

The second kind of hypothetical reasoning arises in connection with reasoning by
contradiction. Suppose we wish to establish -P, the negation of some proposition P.
This is often done by showing P to be inconsistent with our current premises: we add
P to our premises and derive a contradiction. Upon establishing the contradiction we
conclude -,P and tacitly retract P from the current set of working assumptions. As
an example, consider the following argument:

Premise 1: Mathematicians are intelligent.
Premise 2: Intelligent people do not get arrested.
Premise 3: Alfred is a mathematician.
Premise 4: The murderer was arrested.

Conclusion: The murderer was not Alfred.

Here is a deduction showing that the conclusion follows from the premises: Suppose,
by way of contradiction, that the murderer is Alfred. Then by the fourth premise we
conclude that Alfred was arrested. But Alfred is a mathematician (third premise),
hence by the first premise we may conclude that Alfred is intelligent. Accordingly,
by the second premise we infer that Alfred was not arrested. But now we have a
contradiction: we have concluded both that Alfred has been arrested and that he has
not. Therefore, our assumption that Alfred is the murderer is inconsistent with our
premises and must be rejected. We conclude that the murderer was not Alfred.

The reader at this point might be able to guess how our model can capture such
reasoning. First we augment the abstract syntax of deductions with one extra produc-
tion:

D ::= M | DI ; D 2 | assume P in D I suppose-absurd P in D (3.6)

Informally, a deduction of the form suppose-absurd P in D is evaluated as follows
(in the context of a given 0): we insert P in / and proceed to evaluate the body D.
If the conclusion of D in # U {P} is an absurdity (namely, the propositional constant
false), then we return the negation -,P; otherwise we report an error. More precisely,
we assume we have a binary primitive inference rule absurd that takes two propositions
of the form P and -P as inputs and returns the proposition false; any other input to
absurd results in error. Thus we have

M [absurd P, -,P] = false.

Then the formal semantics of the suppose-absurd construct can be defined as follows:

D [suppose-absurd P in D] # = D [D] U {P} = false ? --+ -P, error. (3.7)

With these semantics, here is a deduction that derives the conditional P => ->iP:

68 Fundamentals

3.1 Formalizing classical reasoning as a DPL 69

assume P in
suppose-absurd -P in

absurd P, -P

In the sequel we will see that the ideas we have sketched here can be naturally
extended to full first-order reasoning, and indeed to various other logics.

Chapter 4

CArD

In this chapter we introduce CAND, a DPL for classical propositional logic. We present
its syntax and semantics, develop its theory, including several notions of formal proof
equivalence and the relations amongst them, give several examples of proofs written
in it, and show that it is sound and complete. We close the chapter by studying
proof composition in a general setting, and by discussing what would be involved in
augmenting CA/D with an abstraction mechanism. CA/D will be extended to predicate
logic in Chapter 6.

4.1 Syntax

We use the letters P, Q, R,..., to designate arbitrary propositions. Propositions are
built from the following abstract grammar:

P ::= A | true | false | ,P | P A Q | P V Q | P ->Q | P 4 Q

where A ranges over a countable set of atomic propositions ("atoms") which we need
not specify in detail. The letters A, B, and C will be used as typical atoms. Parentheses
will be used as necessary to disambiguate parsing.

The deductions of CAD have the following abstract syntax:

D ::= P I Prim-Rule P1,... , P I assume P in D I D1 ; D 2

where Prim-Rule ranges over a collection of primitive inference rules such as Modus
Ponens. The decision of exactly which rules to choose as primitives has bearing mostly
on the metatheoretical properties of the language (soundness and completeness in
particular). For instance, if we take as a primitive rule one that derives P A Q from P,
we will clearly have an unsound language; and if we leave out certain rules such as 4= -
elimination, then we will have an incomplete language. The rules shown in Figure 4.1

72 CA(D

modus-ponens
modus-tollens
double-negation
both
left-and
right-and
left-either
right-either
constructive-dilemma
equivalence
left-iff
right-iff
absurd

(=*-elimination)
(,-introduction)
(,-elimination)
(A-introduction)

(A-elimination)

(A-elimination)
(V -introduction)
(V -introduction)
(V -elimination)
(= -introduction)

(4=M -elimination)
(4 -elimination)
(false-introduction)

Figure 4.1: Primitive inference rules

will allow for a sound and complete natural deduction system, as we will prove later.
We will occasionally write mp, mt, dn, and cd as abbreviations for modus-ponens,
modus-tollens, double-negation, and constructive-dilemma, respectively.

The reader will notice one omission from Figure 4.1: an introduction rule for #.

This has traditionally been the most troublesome spot for classical deduction systems

(see Section 7.1). As we will see shortly, in CNAD conditionals are introduced via
the language construct assume, in a manner that avoids most of the usual problems.
Moreover, although we have listed modus-tollens as an introduction rule for negation,
in practice negations in CA/D are usually introduced via deductions of the form

suppose-absurd P in D (4.1)

that perform reasoning by contradiction. Such deductions are not taken as primitive
because their intended behavior is expressible in terms of assume, primitive inference
rules, and composition. In particular, we define 4.1 as an abbreviation for the deduction

assume P in D;
,false;
modus-tollens P = false, -,false

Part (b) of Lemma 4.2 below will show that this desugaring gives the expected seman-
tics (as discussed in Chapter 3).

Prim-Rule

CNrD72

4.1 Syntax 73

A deduction will be called a claim if it is of the form P; 1 a primitive (or atomic)
deduction if it is of the form Prim-Rule P1, ... , P,,; a hypothetical or conditional de-
duction if it is of the form assume P in D; and a composition (or sequence) if it is of
the form D1 ; D2. In a hypothetical deduction of the above form, P and D are called
the hypothesis and the body of the deduction, respectively. The body represents the
scope of the corresponding hypothesis. A deduction will be called non-trivial iff it is
not a claim (thus claims are viewed as trivial deductions). We define SZ(D), the size
of a deduction D, by structural recursion:

SZ(P) = 1
SZ(Prim-Rule P1,... ,Pn) = n+1

SZ(assume P in D) = SZ(D) + 1
SZ(Di; D 2) = SZ(D1) + SZ(D 2)

Note that the grammar we have given above specifies the abstract syntax of the
language; it cannot serve as a concrete syntax because it is ambiguous. For instance,
it is not clear whether

assume P A Q in true; left-and P A Q

is a hypothetical deduction with the composition true; left-and P A Q as its body, or
a composition consisting of a hypothetical deduction followed by a primitive application
of left-and. We will use begin-end pairs or parentheses to resolve any such ambiguity.
We also stipulate that the composition operator ; associates to the right, so that
D1 ; D 2; D3 will stand for D1 ; (D 2; D3). This is an important convention because we
will prove later that, unlike its counterpart in imperative programming languages, the
said operator is not associative (in a sense of associativity that will be made precise
in Section 4.5).

Occasionally it is expedient to adopt a two-dimensional view of deductions, treat-
ing a given D explicitly as an abstract syntax tree and using a tree-like positional
notation for identifying different parts of it (similar to that used for Herbrand terms,
see Section A.1). In such a scheme the "position" of a part of D is represented by a
(possibly empty) list of positive integers describing the path that one must traverse
in order to get from the root of D to the part in question. This idea is made precise
in Section B.1. Appendix B also contains definitions of a few other notions such as

'Claims need not form a separate syntactic category; they could be subsumed by primitive deduc-
tions by introducing a unary inference rule claim which returns its argument if the latter is in the
assumption base and fails otherwise (in fact in the Ap-calculus that must be so by necessity, since a
proposition by itself is an expression, not a deduction). We treat claims separately here for exposition
purposes.

734.1 Syntax

subdeductions, threads, and the relation of dominance. These concepts will not be
needed in this chapter, but will be used in the next one.

4.2 Evaluation semantics

As we explained in the previous chapter, the purpose of a deduction is to establish
a certain conclusion on the basis of some given assumptions known as premises. Ac-
cordingly, specifying the semantics of our language amounts to specifying exactly what
conclusion-if any-a given deduction D is capable of producing relative to a given set
of assumptions. This last phrase, "relative to a given set of assumptions", is central to
our approach. Just as a program in a language such as Pascal or ML is always executed
relative to a given store, which can be understood as a description of the contents of
the computer's memory, a deduction in a denotational proof language such as CAD
is always evaluated relative to a given assumption base, which can be understood as a
set of propositions that we are taking as "given", i.e., as premises. In what follows we
will use the term "assumption base" synonymously with "finite set of propositions".2
We will use the letter 3 to represent assumption bases, and the letters <D and XI for
arbitrary-possibly infinite-sets of propositions.

We will present the semantics of CAD in the style of Kahn [40]. The evaluation
judgments will be of the form # H D e-- P, which may be read as follows: "In the
context of #, D yields the conclusion P", or, more operationally, "from 3 we can prove
that D derives P". The semantic clauses are partitioned into two groups: those dealing
with compound deductions and claims, shown in Figure 4.2, and those dealing with
primitive deductions, shown in Figure 4.3.

We say that the judgment / I- D -- + P is derivable iff there exists a derivation of it,
namely, a finite sequence of judgments

#1 Di --+P 1 , ... , O Dn - Pn (4.2)

such that , = 0, Dn = D, P = P, and where each judgment /i H Di -- + Pi is either
an instance of one of the axioms [R1], [R2], or [R3]; or an instance of one of the
axioms for primitive deductions shown in Figure 4.3; or else follows from previous
judgments through [R4] or [R5]. We indicate that / F- D -'- P is derivable by writing

2The use of finite sets is not essential; all of our subsequent definitions and results could also be
obtained for infinite assumption bases. However, the use of finite assumption bases simplifies some
technical issues, especially in the first-order setting. At any rate, for the purpose of mechanically eval-
uating deductions we could not consider arbitrary assumption bases anyway; we would have to restrict
attention to recursive assumption bases (those with a computable decision problem), since we must
be able to tell in a finite amount of time whether a given claim is a member of a certain assumption
base. Working with finite assumption bases ensures this a priori, and facilitates implementation.

74 CNVD

[R1] [R2]
I true-~> true -,false >--* -false

[R3] # U {P} F D -~ Q [R4]
#U { P}HP~> P /3Hassume P in D->- P Q

#3 D1~>- Pi U { P1} I D2 ~>- P2 [5
/ HD 1 ; D 2 >-* P 2

Figure 4.2: The semantics of CH29.

[-CAro /3 [- D -"-~ P, or simply # F- D -- P. For an arbitrary set of propositions (J, we

write D -CgD P to mean that there is a deduction D and a subset # C 4J such that
/ F- D -- P. If 1 F-CorD P we say that P is provable (or "deducible", or "derivable")

from D. Our first result can be proved by structural induction on D (it also follows as
a corollary of Theorem 4.7 or Theorem 4.8 below):

Theorem 4.1 (Uniqueness) If #1 F- D -- Pi and 02 F- D -- P2 then Pi = P2 .

The following captures the essence of hypothetical deductions and reasoning by contra-
diction (based on the desugaring of suppose-absurd given in the previous section):

Lemma 4.2 (a) If U{P} F- D -- Q then F- assume P in D -~ P = Q; and (b) if
/ U {P} F D - false then /3 F- suppose-absurd P in D i--* -P.

The reflexivity lemma below is a direct consequence of [R3]. Monotonicity is im-
mediate too. The dilution result also expresses a form of monotonicity, but it makes
a different assertion from Lemma 4.4. The latter holds trivially, by the definition of
4c F-Cg' P. By contrast, Lemma 4.5 makes a stronger statement: it says that if a

particular deduction D yields a conclusion P in the context of some /, then that will
remain the case even if we "dilute" / with any number of additional propositions. This
can be proved by an induction on the length of the derivation of / F- D -~ P.

Lemma 4.3 (Reflexivity) (-cgro P for all P E 4.

Lemma 4.4 (Monotonicity) If 4 -Cgo P then 4 U IF F-CAr-D P.

Lemma 4.5 (Dilution) If 3 F- D -> P then # U 0' F- D ->- P.

4.2 Evaluation semantics 75

U {P * Q, P} Fmodus-ponens P > Q, P Q
U {P > Q, -,Q} F modus-tollens P > Q, -,Q -,P

3 U {-,-,P} double-negation -,--,P -'. P

3 U {P 1 , P2 } F-both P1, P2 -- + P A P 2

U {P1 A P2} Fleft-and P1 A P2 --+ P1

U {P 1 A P2} right-and Pi A P 2 - P2

3 U {P 1 } F- left-either P 1, P 2 --+ P V P2

U {P 2} F- right-either P1, P 2 -- + Pi V P2

3 U {P 1 V P2 , P * Q, P2 * Q} F- constructive-dilemma P1 V P2 , P1 * Q, P2 4 Q " Q
3 U {P 1 * P2 , P 2 =* Pi} F- equivalence P1 > P2 , P 2 => P -,-+ Pi < P 2

U {P 1 < P2} F left-iff P1 # P2 --+ P1 => P2

3 U {P1 < P2} F- right-iff P1 < P2 - P 2 => P
3 U {P, -,P} F- absurd P, -,P -- + false

Figure 4.3: Axioms for primitive deductions.

The "big-step" evaluation semantics we have given here offers clarity and generality
by avoiding the specification of details, but as a result it is not sufficiently operational.
In particular, it gives little insight as to when a judgment # F- D -- > P fails to be deriv-
able. A more algorithmic semantics is given by the interpeter Eval, shown in Figure 4.4
in pseudo-ML notation, which, owing to Theorem 4.7 below, may be seen as an imple-
mentation of the formal semantics. Eval uses an auxiliary function do-prim-rule which
can be found in Section B.1. The call Eval(D, /) evaluates D in the assumption base
#, either resulting in a proposition P (the conclusion of D) or in error. Termination
is assured:

Theorem 4.6 (Termination) Eval always terminates. In particular, the recursion
tree spawned by a call Eval(D, 0) has size 6(n), where n is the size of D. Accordingly,
a deduction is evaluated in time linear in its size.

Proof: By structural induction on D. U

The following result relates the interpreter to the formal semantics; it can be proved
by induction on the structure of D:

Theorem 4.7 (Correctness of Eval) For all P and D,

3 - D~ -P iff Eval(D,0) = P.

Hence, by termination, Eval(D, /) = error iff there is no P such that /3 H D ~>+ P.

76 CND

4.3 Basic CN1D theory

Eval(D, 3) = ev(D)
where

ev(P) = P E 13 U {true, -ifalse} -* P, error

ev(Prim-Rule P1, . .. , P) = do-prim-rule(Prim-Rule, [P1,... , P], 3)

ev(assume P in D) = let Q = Eval(D,/3 U {P})
in

Q = error --+ error, P => Q
ev(DI; D 2) = let Pi = Eval(D1, /)

in
P = error--* error, Eval(D2, # U {P 1})

Figure 4.4: An interpreter for CND.

4.3 Basic C f'D theory

We will say that a deduction is well-formed iff every primitive subdeduction of it has
one of the forms shown in Figure 4.3. Thus, loosely put, a deduction is well-formed iff
the right number and kind of arguments are supplied to every application of a primitive
rule, so that, for instance, there are no applications such as modus-ponens A A B, B
or left-and true. Clearly, "type-checking" a deduction to make sure that it is well-
formed is a trivial matter; in particular, it is not necessary to maintain and manipulate
an assumption base, i.e., to keep track of intermediate conclusions, hypotheses, etc. In
other words this is a purely syntactic concept-having nothing to do with assumption
bases-and we could have introduced it in the previous section via a simple type system
establishing judgments of the form F-w D ("D is well-formed"); we present such a type
system in Appendix B.1. From here on we will only be concerned with well-formed
deductions, unless we explicitly say otherwise.

The conclusion of a well-formed deduction D, denoted C(D), is defined by structural
recursion: the conclusion of a claim is the claim itself; the conclusion of a primitive
deduction can be defined by enumerating the various cases as in Figure 4.3 (e.g., the
conclusion of a deduction of the form modus-ponens P =* Q, P is Q, the conclusion of
a deduction of the form double-negation -,-P is P, etc.-consult the appendix for an
exhaustive enumeration); the conclusion of a hypothetical deduction assume P in D'
is P => C(D'); and the conclusion of a sequence D1 ; D2 is the conclusion of D 2.

Clearly, this definition can be used as a recursive algorithm for computing C(D).
Computing C(D) is quite different-much easier-than evaluating D. For example, if
D is of the form D 1, D 2,... , D99 , Dioo, we can completely ignore the first ninety-nine

77

CND

deductions and simply compute C(D100), since, by definition, C(D) = C(D100). The
catch, of course, is that D might fail to establish its conclusion (in a given assumption
base); evaluation is the only way to find out. However, it is easy to show (Theorem 4.8
below) that if 3 F D -- P, then P = C(D); thus, in terms of the interpreter, either
Eval(D, #) = error or Eval(D, /) = C(D), for any D and /. Loosely paraphrased: a
deduction succeds iff it produces its professed conclusion.

Theorem 4.8 If H F D -u- P then P = C(D).

Proof: We will use strong induction on the length n of the derivation of the judgment
/ H D -- + P. When n = 1 the judgment must be an instance of [R1], or [R2], or
[R3], or one of the axioms for primitive deductions shown in Figure 4.3. In any case
a straightforward inspection will show that the result holds. For the inductive step
assume that n > 1, where / H D -* P is the last (nth) element of the derivation, and
that the result holds for all judgments that can be derived in fewer than n steps. We
proceed with a case analysis of the rule by which the judgment # F D -- * P is obtained:

[R4]: In that case D is of the form assume Pi in D' and we must have P = P1 =:-. P2,
where the judgment 3U{P 1} F D' -- P2 is derivable in fewer than n steps. Hence,
by the inductive hypothesis,

P 2 = C(D'). (4.3)

Now C(D) = Pi = C(D'), so, from 4.3, C(D) = P1 = P2 , i.e., C(D) = P.

[R5]: In that case D is of the form D1 ; D2 and P = P2 , where the judgments

/ 3 D -- Pi and / U {PI} H D2 " P2

are derivable in fewer than n steps. Inductively, P2 = C(D 2). But C(D) = C(D2),
hence C(D) = P2 = P.

This completes the case analysis and the induction.

Corollary 4.9 For all D and 0, either Eval(D,/3) = error or Eval(D,#3) = C(D).

Next we define the set of free (or strict) assumptions of a deduction D, denoted
FA(D), as shown in Figure 4.5, where we assume that

Prim-Rule g' {left-either, right-either}

in 4.8. We say that the propositions in FA(D) are strictly used in D.

78

FA(true) = FA(-,false) = 0 (4.4)

FA(P) = {P} (for P V {true, -false}) (4.5)

FA(left-either P1, P2) = {P 1} (4.6)

FA(right-either P1, P2) = {P 2 } (4.7)

FA(Prim-Rule Pi,... , P) = {P1,... , P} (4.8)

FA(assume P in D) = FA(D) - {P} (4.9)

FA(D1; D2) = FA(Di) U (FA(D 2) - {C(D1)}) (4.10)

Figure 4.5: Definition of FA(D).

Note that the computation of FA(D) is not trivial, meaning that it cannot proceed

in a local manner down the abstract syntax tree of D using only a fixed amount of mem-

ory: a variable amount of state must be maintained in order to deal with clauses 4.9

and 4.10. The latter clause, in particular, is especially computation-intensive because

it also calls for the computation of C(D 1). The reader should reflect on what would be

involved in computing, for instance, FA(D) for a D of the form D1; ... ; Di0o. In fact

we will see shortly that evaluating D in a given 3 can be reduced to the computation

of FA(D).

Theorem 4.10 For any well-formed D, # I- D -* C(D) iff # D FA(D).

Proof: We first prove that # 2 FA(D) whenever 0 H D -- > C(D) by strong induction

on the length n of the derivation of the latter judgment. When n = 1 the judgment

must be an instance of [R 1], or [R 2], or [R 3], or one of the primitive deduction axioms

listed in Figure 4.3, and / 2 FA(D) can be readily verified. When n > 1 we distinguish

the same cases as in the proof of Theorem 4.8:

[R4]: In that case D is of the form assume P in D' where C(D) = P ->Q and the

judgment / U {P} I- D' -- * Q is derivable in fewer than n steps. Now FA(D) =

FA(D') - {P}, so we need to show

FA(D') - {P} C 0. (4.11)

From the inductive hypothesis,

/ U {P} 2 FA(D').

794.3 Basic CND theory

(4.12)

Pick any R E FA(D') - {P}, so that R E FA(D'), R # P. From 4.12,

RE#U{P}

i.e., either R 3 or R = P. Since the latter is impossible, we must have R E /.
We have thus shown that R E / whenever R E FA(D') - {P}, which proves 4.11.

[R5]: In that case D = D 1; D 2 where C(D) = P2 and the judgments 3 I- Di -"+ Pi
and 3 U {P1} I D 2 -- P2 are derivable in fewer than n steps. Here FA(D) =

FA(D 1) U [FA(D 2) - {P1}] (since P = C(D1)), so we need to show

FA(D 1) U [FA(D 2) - {P 1}] C 0. (4.13)

By the inductive hypothesis we have

FA(D 1) C /, FA(D 2) C # U {P 1}

and from these 4.13 follows directly.

The converse direction-that # H- D -- * C(D) whenever FA(D) C /-can be proved by
induction on the structure of D. U

Accordingly:

Corollary 4.11 For well-formed D, Eval(D, /) = C(D) iff FA(D) C /. Equivalently,
Eval(D, /) = error iff there is some P E FA(D) such that P g /.

The above corollary captures the sense in which evaluation can be reduced to the
computation of FA: to compute Eval(D, #), for any given D and /3, simply compute
FA(D) and C(D): if FA(D) C 0, output C(D), otherwise output error. Intuitively, this
reduction is the reason why the computation of FA(D) cannot be much easier than the
evaluation of D in a given assumption base.

It is now straightforward to prove Lemma 4.13 below, which is a useful technical
tool and which formalizes the intuition that, in evaluating a deduction D in an assump-
tion base 0, it is only those propositions which are strictly used in D whose presence
in # matters; the presence-or absence-of other propositions is irrelevant. More pre-
cisely, let us say that two assumption bases #1 and /2 agree on a set of propositions
1, written 31= > #2, whenever

VP E D, P E 1 iff P E # 2

or equivalently, iff /1 n '1 = #2 n 4. The following lemma captures the essential
properties of this relation:

80 CNVD

4.4 Examples

Lemma 4.12 =, is an equivalence relation which partitions the set of all assumption
bases into 2|*' equivalence classes. Each of those contains a unique subset of D, which
may be taken as a representative of the equivalence class. Furthermore: (a) if #1 -=D /32

then 31 =T #2 for all T C 1 ; (b) if #1 /3 4 #2 then #31 U # / 42 U ; (c) if #1 - #2
then #1 U T =4uT #2 U I.

Lemma 4.13 (Strictness Coincidence Lemma) If #1 =FA(D) /2 then

(VP) [3 1 D - P iff 2 F D -- + P].

Equivalently, if #13 =FA(D) 32 then Eval(D, #1) = Eval(D,32).

Proof: By virtue of #1 =FA(D) /2 it follows that #1 2 FA(D) iff #2 2 FA(D). There-

fore, from Corollary 4.11, if #1 D FA(D) then

Eval(D, #1) = C(D) = Eval(D,# 2)

otherwise Eval(D, #1) = error = Eval(D, /2).

4.4 Examples

In this section we present a variety of sample CN/D deductions. The first set of exam-
ples consists of deductions which derive their conclusions from no premises whatsoever.
Accordingly, these deductions can be successfully evaluated in the empty assumption
base.3 Their results are called "tautologies", or "logically valid", because it is impos-
sible for them to be false. This comes about as a result of the soundness of CAD,
which we will prove in Section 4.6: if a deduction D produces P in an assumption
base 0--i.e., if /3 H D -- + P-then P is a logical consequence of /, written 3 |= P. This
means that it is impossible for the members of / to be true without P also being true.
But if / is the empty set then there are no members to speak of, and the preceding
statement entails that it is impossible for P not to be true.

The reader is invited to read a few of these-contrasting them with their analogues
in other systems-and tackle the rest on his own.

3 Such deductions are sometimes called "categorical" [61]; but it is more customary to reserve the
term "proof" for them. I.e., a proof of a proposition P is a deduction that derives P from the empty
set of premises. And the term "theorem" is reserved precisely for those propositions-those that are
deducible from the empty set of premises. In this document we use the terms "proof" and "deduction"
interchangeably; and we usually speak of a theorem with respect to a given set of propositions, e.g.,
"P is a theorem of 0", meaning that P is deducible from 0.

81

82 CAND

IP ,,P

Proof:
assume P in

suppose-absurd -,P in
absurd P, -,P

(P -Q) -> [(Q

Proof:
assume P =* Q in

assume Q = R in
assume P in

begin
modus-ponens P -> Q, P;
modus-ponens Q = R, Q

end

Proof:
assume P => (Q => R) in

assume Q in
assume P in

begin
modus-ponens
modus-ponens

end

Proof:
assume P > (Q -> R) in

assume P A Q in
begin

P (Q -> R)I P;
Q ->R, Q

=* R) => (P -> R)]I

[PQ =(Q R)] -> [Q -:> (P -=>R)

>(Q -> R)] -> [(P A Q) -> R

4.4 Examples 83

left-and P A Q;
modus-ponens P = (Q => R), P;
right-and P A Q;
modus-ponens Q = R, Q

end

Proof:
assume (P A Q) =* R in

assume P in
assume Q in

begin
both P, Q;
modus-ponens (P A

end
Q) = R, P A Q

Proof:
assume P =* Q in

assume -,Q in
modus-tollens P = Q, -,Q;

Proof:
assume ,Q -,P in

assume P in
begin

suppose-absurd ,Q in
begin

modus-ponens ,Q = ,P, ,Q;
absurd P, -,P

end;

[(P A Q) == R] == [P =* (Q =* R)]I

(P =* Q) == (,-- Q ,P

4.4 Examples 83

84 CKD

double-negation ,,Q
end

(P V Q) (Q VP)

Proof:
assume P V Q in

begin
assume P in

right-either Q, P;
assume Q in

left-either Q, P;
constructive-dilemma P V Q, P =: Q V P, Q = Q V P

end

(-,P V Q) (P 4Q

Proof:
assume -,P V Q in

assume P in
begin

suppose-absurd -,Q in
begin

assume -P in
absurd P, -,P;

assume Q in
absurd Q, -,Q;

constructive-dilemma -,P V Q, -,P = false, Q # false
end;

double-negation ,,Q
end

84 CND

I ,(P V Q) =: (-,P /\ -,Q) I

4.4 Examples 85

Proof:
assume -,(P V Q) in

begin
suppose-absurd P in

begin
left-either P, Q;
absurd P V Q,-,(P V Q)

end;
suppose-absurd Q in

begin
right-either P, Q;
absurd P V Q,-(P V Q)

end;
both -,P,,Q

end

(-,P V -,Q) -,(P A Q)

Proof:
assume -,P V -,Q in

suppose-absurd P A Q in
begin

left-and P A Q;
right-and P A Q;
assume -,P in

absurd P,-P;
assume -,Q in

absurd Q,-Q;
constructive-dilemma -P V -Q, -P = false, -Q = false

end

(,PAIQ) ',(P V Q)

Proof:
assume -P A -,Q in

begin

854.4 Examples

86 CAFD

left-and -,P A -,Q;
right-and -,P A -,Q;
assume P in

absurd P,-,P;
assume Q in

absurd Q, -,Q;
suppose-absurd P V Q in

constructive-dilemma P V Q, P =* false, Q = false
end

Pe[P A (P VQ)]

Proof:
assume P in

begin
left-either P, Q;
both PPVQ

end;
assume P A (P V Q) in

left-and P A (P V Q);
equivalence P = [P A (P V Q)], [P A (P V Q)] P

[(P A Q) V (-,P A -,Q)] (P eQ

Proof:
assume (P A Q) V (-,P A -,Q) in

begin
assume P A Q in

begin
left-and P A Q;
right-and P A Q;
assume P in Q;
assume Q in P;
equivalence P =e Q, Q =:> P

end;
assume -P A -,Q in

86 CNrD

874.4 Examples

begin
left-and -,P A -,Q;
right-and -,P A -,Q;
assume P in

begin
suppose-absurd -,Q in

absurd P, -,P;
double-negation -,-,Q

end;
assume Q in

begin
suppose-absurd -P in

absurd Q,-,Q;
double-negation --,--P

end;
equivalence P =: Q, Q => P

end;
constructive-dilemma (P A Q) V (-,P A --,Q),(P A Q) = (P < Q),

(-,P A -,Q) =* (P - Q);
end

The second set of examples comprises deductions that derive a certain conclusion P
from a set of given premises P1, . . . , P. Such a deduction can be successfully evaluated
in any assumption base that contains the premises. Here we use the primitive assert,
which is not part of CAD proper but is rather a "top-level directive" that would be
useful to have in an implementation (similar, say, to define in a Scheme environment).
The effect of assert is to insert a given proposition into the current assumption base.
Therefore, to verify the claim that D produces a conclusion P from premises P1,... , P,
we use assert to add the premises P1,... , P, into the current assumption base and
proceed to evaluate D.

Premise 1: P V (Q A R)
Premise 2: (P = S) A (S R)

Conclusion: R

Proof:
assert P V (Q A R);

88 CKD

assert (P => S) A (S =- R);
left-and (P > S) A (S > R);
right-and (P =* S) A (S =* R);
assume P in

begin
modus-ponens P S S, P;
modus-ponens S -- R, S

end;
assume Q A R in

right-and Q A R;
constructive-dilemma P V (Q A R), P = R, (Q A R) -> R

Premise 1: -P -'> Q
Premise 2: Q = P

Conclusion: P

Proof:
assert -,P =>Q;
assert Q => P;
suppose-absurd -,P in

begin
modus-ponens -,P =' Q, -iP;
modus-ponens Q = P, Q;
absurd P, -,P

end;
double-negation -,-,P

Premise 1: (P A -Q) => R
Premise 2: R => Q

Conclusion: P -> Q

Proof:
assert (P A - Q) = R;
assert R -> Q;
assume P in

begin

88 CNVD

4.4 Examples 89

suppose-absurd Q in
begin

both P,-Q;
modus-ponens (P A , Q) => R, P A - Q;
modus-ponens R => Q, R;
absurd Q,- Q

end;
double-negation ,, Q

end

Premise 1: [P A (Q V R)] => (Q A R)

Conclusion: P => (Q =* R)

Proof:
assert [P A (Q V R)] = (Q A R);
assume P in

assume Q in
begin

left-either Q, R;
both P, Q V R;
modus-ponens [P A (Q V R)] ' (Q A R), P A (Q V R);
right-and Q A R

end

Premise 1: (P1 V P 2) = (P3 A P4)
Premise 2: (P4 V P) z P6

Conclusion: P1 =* P6

Proof:
assert (P1 V P2) # (P3 A P4);
assert (P4 V P5) = P6 ;

assume Pi in
begin

left-either P1 , P 2 ;
modus-ponens (P1 V P2) => (P3 A P4), P V P2 ;
right-and P3 A P4 ;

894.4 Examples

90 CN'D

left-either P 4 , P5 ;

modus-ponens (P4 V P5) = P, P4 V P5

end

The next lemma will come handy in the completeness proof:

Lemma 4.14 We have:

(a) cAI-DP iff 4 cgv- ,,P

(b)) cNi P A Q iff HcND P and &HCNDQ;

(c) if (cgv P or (CgvQ then (Hcgv P V Q;

(d) if D FcNDP => Q and -cDP then D cgVDQ;

(e) @ &cro P Q iff (cND P > Q and D > P;

(f) if (cD ,- P and v ,CD-Q then HCND ~'(P V Q).

Proof: For (a), suppose 'cD o HCgr P, so that 3 H D->-* P for some 1 G 1. Letting

D= D; suppose-absurd -P in absurd P, -,P

we get
D's->+ -- P

and thus 4 Hcgp -- P. For the converse, if FD -c -,-P then 3 H D -- > -- 'P for some

D and 3 C (, so

3 H D; double-negation -,-,P -~> P

and thus (J HCKD P. Similar reasoning using the primitive rules both, left-and,
right-and, left-either, right-either, mp, equivalence, left-iff, and right-iff, will
establish (b), (c), (d), and (e). For (f), suppose that '1 H CJrD -c'P and 1 H-cuD ,'Q.
From (b), we get (HCKD -P A -Q, so that

SF D~ -,P A -,Q

for some D and 3 4 1. Now let D' be the deduction of (-,P A ,iQ) ,(P V Q) given

above. Set

D" = D'; D; modus-ponens (-,P A ,Q) -,(P V Q), -P A -,Q.

Now
" -D"+ -(P V Q)

hence (D Icuo- ,1(P V Q).- 0

4.5 Proof equivalence

Let us say that two deductions Di and D 2 are observationally equivalent with respect
to an assumption base #, written Di e- D 2 , whenever

SF- D1 -+ P iff #-D 2 --+ P (4.14)

for all P. For instance,

Di = left-either A, B and D2 = right-either A, B

are observationally equivalent with respect to any assumption base that either contains
both A and B or neither of them. We clearly have:

Lemma 4.15 D1 g D 2 iff Eval(D1, 3) = Eval(D2, 3).

Thus D1 and D 2 are observationally equivalent in a given / iff when we evaluate them
in # we obtain the same result: either the same conclusion, or an error in both cases.

If we have D1 D 2 for all # then we write Di ~ D2 and say that D1 and D2 are

observationally equivalent. For a simple example, we have

left-iff A < A e right-iff A 4 A

as well as

left-and A A B; right-and A A B;
right-and A A B; ~ left-and A A B;
both B, A both B, A

The reader will verify that is an equivalence relation.
With this framework in place, we can now precisely formulate and prove statements

such as our earlier assertion that "composition is not associative":

Theorem 4.16 D1 ; (D 2; D3) # (D1; D2); D 3 -

Proof: Take Di = double-negation -A, D 2 = true, D 3 = A, and consider any
that contains --- A but not A. 0

We note, however, that composition is idempotent (i.e., D ~ D; D) and that associa-

tivity does hold in the case of claims: P1 ; (P2 ; P3) o (PI; P2); P3 . Commutativity fails

in all cases. A certain kind of distributivity holds between the constructor assume
and the composition operator (as well as between suppose-absurd and composition),
in the following sense:

914.5 Proof equivalence

Lemma 4.17 assume P in (D1 ; D2) D1; assume P in D 2 whenever P ' FA(D 1).

This lemma will form the basis for our "hoisting" transformation in the next chapter.
Further, we note that 0 is compatible with the abstract syntax constructors of CND:

Lemma 4.18 (Compatibility) If D ~ D' then

assume P in D - assume P in D'.

In addition, if D1 % D' and D2 ~ D' then D1; D2 m D'i; D'.

From Lemma 4.15 it is clear that the relation ~_ is decidable: to determine whether
D1 -03D2, we evaluate each deduction in /3 and compare the results for equality. But
in fact even the more general relation - is decidable, because even though ~ is de-
fined by quantification over all assumption bases, the Strictness Coincidence Lemma
(Lemma 4.13) entails that only the finitely many propositions which are strictly used
in Di and D2 are relevant in the decision. Theorem 4.20 below indirectly furnishes an
algorithm for deciding observational equivalence.

For well-formed deductions, a necessary-but not sufficient-condition for obser-
vational equivalence is conclusion identity:

Lemma 4.19 C(D1) = C(D 2) whenever Di ~ D 2.

Proof: Set # = FA(D 1) U FA(D 2), so that # D FA(D 1), / 2 FA(D 2). By Corol-
lary 4.11,

Eval(D1,#) = C(D1) (4.15)

and

Eval(D2, 3) =C(D 2). (4.16)

But Eval(D1,/3) = Eval(D2 ,/3) by the supposition Di D2, hence C(D1) = C(D 2). E

Note that this does not hold for observational equivalence in the context of a particular
assumption base #: we may have D1~1 D2 even if C(D1) / C(D 2) (this will be the case
if evaluating both deductions in /3 results in error). Also, as the counter-example in
the proof of Theorem 4.16 showed, C(D1) = C(D 2) does not suffice for Di e D2. The
problem lies in differences of strict (free) assumptions; the following result shows that
C(D1) = C(D 2) in conjunction with FA(D 1) = FA(D 2) is sufficient for observational
equivalence:

Theorem 4.20 D1 ,D2 iff C(D1) = C(D 2) and FA(D 1) = FA(D 2). Accordingly,
observational equivalence is decidable.

92 CND

Proof: First we show that if C(D1) = C(D 2) and FA(D 1) = FA(D 2) then Di ~ D 2 -

Pick any /: either / 2 FA(D 1) = FA(D 2) or not. If so, then by Corollary 4.11,

Eval(D1, /) = C(D1) and Eval(D2, 3) = C(D 2)

hence
Eval(D1, #) = Eval(D2, /)

by the supposition C(D1) = C(D 2). On the other hand, if/3 FA(D 1) = FA(D 2) then

Eval(D1, /) = error = Eval(D2, /).

Therefore, Eval(D1, #) = Eval(D2, /3) for all #, which is to say Di ~ D2 .
Conversely, suppose Di D2 . Then C(D 1) = C(D 2) by Lemma 4.19. Moreover, by

supposition,

Eval(D1, FA(D 1)) = Eval(D2, FA(D 1)) (4.17)

and

Eval(Di, FA (D 2)) = Eval(D2 , FA(D 2)). (4.18)

By Corollary 4.11, Eval(D1, FA(D 1)) = C(D1), hence from 4.17,

Eval(D2, FA(D1)) = error.

Therefore, by Corollary 4.11,

FA(D 2) C FA(D 1). (4.19)

Likewise, Eval(D2, FA(D 2)) = C(D 2), hence, from 4.18, Eval(Di, FA(D 2)) # error, and
thus we must have

FA(D 1) C FA(D 2). (4.20)

From 4.19 and 4.20 we get FA(D 1) = FA(D 2).

Relaxing observational equivalence

Observational equivalence is a very strong condition. Oftentimes we are only interested
in replacing a deduction D1 by some D2 on the assumption that D1 will yield its
conclusion in the intended / (i.e., on the assumption that its evaluation will not lead
to error), even though we might have Di 6 D 2. To take a simple example, although

934.5 Proof equivalence

we have P; D # D (pick D to be the claim true and consider any / that does not
contain P), it is true that in any given assumption base, if P; D produces a conclusion
Q then so will D. (In fact this observation will be the formal justification behind an
"optimization" we will introduce later for removing redundant claims.) We formalize
this relation as follows.

We write D1 >->, D 2 to mean that, for all P,

if / 3 D 1 ~ -P then / 3 D2 -+P.

That is, D1 >-+4 D 2 holds if Eval(D1, /) = Eval(D2, 3) whenever Eval(Di,) = D),
or, equivalently, whenever Eval(D1,3) # error. And we will write D1 >-- D 2 to mean
that Di >-->o D 2 for all /.

Clearly, >-- is not a symmetric relation: we vacuously have

suppose-absurd A in A >-> true

but the converse does not hold. However, >-+ is a quasi-order (reflexive and transi-
tive), and in fact, as the reader will verify, ~ is the contensive equality generated by
the weaker relation's symmetric closure. (Observe that this also follows from Theo-
rem 4.20 and Theorem 4.23; alternatively, Theorem 4.20 could have been established
by independent proofs of Lemma 4.21 and Theorem 4.23).

Lemma 4.21 >-4 is a quasi-order whose symmetric closure coincides with~. Accord-
ingly, Di 1 D 2 iff Di >-+ D2 and D2 >--> D1 .

It will be useful to note that >--> is compatible with the syntactic constructs of CNI/D:

Lemma 4.22 If D1 >-- D' and D 2 >-> D' then

(a) assume P in D1 >-> assume P in D';

(b D1; D2 >-4 D'; D'.

Proof: Pick any assumption base 0 and proposition Q. For (a), supposing that

F- assume P in D1 -- Q,

Q must be of the form P =4 P', where / U {P} F D1 >- P'. Since D1 >-> D', we have

/ U{P} F- DI s- P'

hence, by the semantics of CND,

/ 3- assume P in D'>-+ (P = P') = Q.

94 CNrD

For (b), if / F D1 ; D2 ---*Q then there is a Pi such that

#HD 1 ->- P1 (4.21)

and

3 U {P1} [- D2-+ Q (4.22)

Since D1 >--> D' and D 2 >-+ D', 4.21 and 4.22 imply, respectively, that 3 I D'~> P and

U {P1 } H D'-+ Q.

Hence, by the semantics of composition we get # I- D'; D'-+ sQ. U

Reasoning similar to that used in the proof of Theorem 4.20 will show:

Theorem 4.23 D1 >--> D 2 iff C(D1) = C(D 2) and FA(D 1) 2 FA(D 2). Therefore, the
relation >-+ is decidable.

Finally, let us define a last equivalence relation = on (well-formed) deductions as
D1 =_ D 2 iff C(D 1) = C(D 2). This is the weakest of all three relations, and the easiest
to compute. It is instructive to contrast the relations e, >-+, and = in the following

light: Suppose we are "optimizing" a collection of deductions in the same spirit that a
compiler might optimize a source program, and we are considering the replacement of
a certain D1 by another (hopefully more efficient) deduction D2. Which of the three
relations should we wish to obtain between D1 and its replacement D 2? Questions of
this sort have practical import for implemented DPLs.

For the replacement to be perfectly safe we should insist on observational equiva-
lence. For Di - D2 means that the two deductions behave identically in all contexts,
i.e., in all assumption bases. For any /, if Di fails in # then D2 will fail in / as well;
while if D1 produces a conclusion P in /, then D2 will produce that same conclusion
in 3. Hence the replacement preserves the semantics completely.

If we only have Di >-> D2 then the replacement will be safe provided that D1 does
not fail in the intended assumption base. This, of course, depends on what the in-
tended assumption base is. For instance, suppose Di = A; right-and A A B and
D2 = right-and A A B, so that D1 >-> D2 . Now if the specification of Di stipu-
lates that we may only take A A B as a given premise, i.e., that A A B is the only
proposition whose presence in the assumption base we can take for granted, then re-
placing D1 by D2 does not completely preserve the semantics, because, for instance,
Eval(DI, {A A B}) = error whereas Eval(D2 , {A A B}) = B. However, the replace-
ment is certainly conservative in the sense that D2 preserves the conclusion of Di

954.5 Proof equivalence

and does not introduce any additional free assumptions. That is always the case by
virtue of Theorem 4.23: if D1 >-4 D2 then D1 - D 2 (conclusion is preserved), and
FA(D 1) D FA(D 2) (no additional free assumptions are introduced). In that sense, re-
placing D1 by D 2 is a safe transformation, and can be confidently carried out whenever
we are assured of the correctness of D 1, or conditionally carried out on that explicit
assumption.

Finally, if we only have Di = D 2 then the replacement is not safe in any context,
even if we take the correctness of D1 for granted. The reason is that D 2 might introduce
free assumptions which do not occur in D 1. For instance, for D1 and D 2 as in the last
paragraph, we have D 2 -= D 1, yet replacing D2 by D1 is clearly unsafe.

We summarize the results of this section as follows:

Theorem 4.24 We have ~ D >- D =. That is, D1 ~ D 2 implies D1 >- D2, and
D >- D 2 implies D1 = D 2. Moreover, these inclusions are proper: D1 >-> D 2 does
not imply D 1 ~ D2 , and D1 - D2 implies neither D1 D2 nor D1>-> D 2 . However,
D1 _ D2 in tandem with FA(D 1) ; FA(D 2) implies D1 >-* D 2, and D1 - D 2 in tandem
with FA(D 1) = FA(D 2) implies D1 -D 2 -

4.6 Metatheory

We will view the set of all propositions as the free term algebra formed by the construc-
tors -,, A, etc., over the set of atoms (treating the latter as variables). Any Boolean
algebra B, say the one with carrier {0, 1}, can be seen as a {true, false, -,, A, V, ->, >}-
algebra with respect to the expected realizations (AB(x, y) = min{x, y}, VB(x, y) =
max{x, y}, false1 = 0, etc.). Now by an interpretation I we will mean a function from
the set of atoms to {0, 1}. We will write Z for the unique homomorphic extension of
I to the set of all propositions. Since Z is completely determined by I, we may, for
most purposes, conflate the two.

If I(P) = 1 (I(P) = 0) we say that I satisfies (falsifies) P, or that it is a model of it.
This is written as I = P. We call P satisfiable if it satisfied by some interpretation;
a tautology (or valid) if it is satisfied by all interpretations; and unsatisfiable (or a
contradiction) if it is not satisfied by any interpration. If I |= P for every P E l
then we write I |= 1 and say that I satisfies (or is a model of) 4. We regard the
empty set of propositions as (vacuously) satisfied by every interpretation. We will call
4 satisfiable or unsatisfiable according to whether or not it has a model. We write

1 |= 42 to indicate that every model of (1 is also a model of (D2. If this is the case we
say that the elements of 42 are logical consequences of (or are "logically implied by")
the propositions in 4b1 . A single proposition P may appear in place of either I1 or ID2
as an abbreviation for the singleton {P}.

96 CNVD

The following lemma is a direct consequence of the above definitions:

Lemma 4.25 If 4 U {P1} b- P2 then D |= P1 => P2 .

Theorem 4.26 If # F- D-- P then # |- P.

Proof: By induction on the structure of D. When D is a claim or a primitive de-
duction, the supposition that the judgment # I- D -- P is derivable means that the

judgment in question is either an instance of [R1], or [R2], or [R3]; or an instance of

one of the primitive-deduction axioms of Figure 4.3. In any of these cases it is readily
verified by inspection that | j= P.

When D is a hypothetical deduction of the form assume Pi in D', the supposition
-D~> P means that P = P1 * P2 and f U {P 1} H D'--> P2. By the inductive

hypothesis, # U {P1} = P2. Therefore, by Lemma 4.25, / |= P1 P P2 , i.e., / |= P.
Finally, when D is a composite deduction D 1; D2 , we must have D1 -- > P1 and

SU {P 1} F- D2 -+ P2

where P = P2 . Inductively,

Pi (4.23)

and

/ U {P1} b= P2 = P (4.24)

so the desired # = P now follows from 4.23 and 4.24 by the transitivity of 1-.

We immediately get:

Corollary 4.27 (Soundness) If 4 F-CuD P then 4 |= P.

Next we consider completeness. A set of propositions 4 will be called saturated iff
for all P and Q:

* P E JD iff ,P V D. That is, exactly one of the couple {P, -P} is in (D.

* PAQ E D iff both P E D and Q E D.

* PVQ Eiff PEDorQE 4.

* P#>Q E (iffQ E 4 whenever PE (D.

974.6 Metatheory

* P<-*Q E 4 iff P E D iff Q E 4.

Lemma 4.28 Saturated sets are satisfiable.

Proof: Let 4) be a saturated set of propositions and let I4 be an interpretation that
maps an atom to 1 if that atom is in 4), and to 0 otherwise. Now pick an arbitrary
proposition P. A straightforward induction on the structure of P will show that
I = P iff P E 4. It follows that Ip is a model of 4). M

Let us say that a set D is inconsistent if 4D F-c,-T false. If that is not the case, we will call
D consistent. The following provides an alternative characterization of inconsistency:

Lemma 4.29 D is inconsistent iff 4 F-c.,v P for every proposition P, i.e., iff "every-
thing is provable from 4".

Proof: If D is inconsistent then D Hcgo false, i.e., there is a D such that

/3 F- D -+-- false (4.25)

for some C (D. Pick any proposition P and let D' be the deduction

D;
suppose-absurd -,P in

false;
double-negation -,-,P

From 4.25 and the semantics of CND it follows that / F D'-+ P, and thus (D F-CNrD P.
The converse direction is trivial. U

Another useful description is the following:

Lemma 4.30 4 is inconsistent iff there is a P such that 1 '-CD P and 1 'CED ,P.

Proof: One direction follows from Lemma 4.29. In the converse direction, sup-
pose there is a P such that 4 F-cgo P and 4 F-CArD -P, so that /1 F- Di s+ P and
02 F- D2 "-+ -,P for some deductions D 1, D 2 and subsets #1, 02 of 4. Letting # = # 1U0 2,
the Dilution Lemma gives

SF- Di - P and F- D 2 -\+ -- P. (4.26)

Setting
D = D1 ; D2 ; absurd P,-,P

4.26, [R5], and the Dilution Lemma give / F- D --+ false, therefore (D F-CVrD false and 4
is inconsistent. 0

98 CNrD

4.6 Metatheory 99

Lemma 4.31 If l U {P}H cgo Q then,# U {P} D -si Q for some D and 0 C 4b.

Proof: The supposition P U {P} HcgD Q means that there is a D and a #0 C (D U {P}

such that

0 D~ -Q. (4.27)

Set / = #0 - {P}, so that / C 4b. There are two possible cases: either P E #0 or

not. In the first case we have 3 U {P} = #o, thus 4.27 yields # U {P} I- D -'- Q. On

the other hand, if P V #o then / = #o and 4.27 becomes 3 I- D -- Q; so, by dilution,
U {P} F D-+ Q.

Lemma 4.32 If <D U {P1} EcKv P2 then D F-CD P1 -> P2 .

Proof: Immediate from Lemma 4.31 and Lemma 4.2.

0

0

Lemma 4.33 If 4 U {P} HcA,-D Q and <D U {P} HCD -,Q then (D Hcgv -P.

Proof: By Lemma 4.31, the suppositions Q U{P} cgo Q and <DU{P} Ecv -,Q mean

that there are deductions D 1, D 2 and subsets #13 C <D, /32 C <b, such that

#1 U {P} F D 1 -Q and 02 U {P} - D 2 ~> ,i.

Thus the Dilution Lemma gives

and

Now set

(4.28)

(4.29)

31 U /32 U {P} D s-> Q

1 U /32 U {P} D22---+ -,Q.

suppose-absurd P in
begin

D1;
D2 ;
absurd Q, -,Q

end

By 4.28, 4.29, and the semantics of CND we get

/1 U #2 H D - P

thus (Dc' ,-P.

The following will come handy in the completeness proof:

0

994.6 Metatheory

100 CAFD

Lemma 4.34 (HCpJD P iff 4b U {,P} is inconsistent. Equivalently, 4 Hcvg' -P iff
(U {P} is inconsistent.

Proof: If (Fcj, P then, by monotonicity, <b U {,P} - cAFD P, while, by reflexivity,

4(U {-'P} -EcrE ,P-

Therefore, 1 U {-P} is inconsistent. Conversely, if <b U {-P} is inconsistent then

SU f{,P} cgo Q and (U {,P}H cgo ,Q

for some Q, hence, by Lemma 4.33, D HcgN ,,P, and thus @ F-CVrD P by Lemma 4.14.
The second equivalence is proved in a similar manner. M

If <b is consistent and is not properly contained in any consistent XI then we will
say that 4 is maximally consistent. In other words, <b is maximally consistent iff for
every proposition P that is not in 1, the set 1 U {P} is inconsistent.

Lemma 4.35 Maximally consistent sets are deductively closed, i.e., if <b is maximally
consistent and 4b cArD P then P E).

Proof: Suppose (D is maximally consistent and 4 F-cvD P. If P §' 1 then <D U {P}
is inconsistent, thus 4 Hcgo -P by Lemma 4.34, and since we also have (D HcND P,
<b must be inconsistent-a contradiction. Consequently, we must have P E <b.

Theorem 4.36 Maximally consistent sets are saturated.

Proof: Suppose that 4 is maximally consistent. We verify each of the five requisite
properties:

(a) P E <b iff ,P V 4: If both P E @ and ,P E <b then 4 EcVo P and (EcMD ,P,
contradicting our assumption that <D is consistent. On the other hand, suppose
that neither P E <b nor -P C <b. Then <b U {P} is inconsistent (since <b is
maximally consistent), hence lb Hcg-or -,P (Lemma 4.34), hence -P E (b (since
<b is deductively closed, Lemma 4.35), contradicting our assumption that -,P
<D. Therefore, exactly one of P, -P must be in <b.

(b) P A Q E <b iff P E (b and Q E <b: Suppose P A Q E <b. Then D CVD P A Q, and
Lemma 4.14 yields <b F-cg' P and <b Fc-D Q. But <D is deductively closed, so
P E <b and Q E <b. Conversely, suppose P E <D and Q E (b. Then <b F-cg P and
D F-CvED Q, thus <b F-CVrD P A Q by Lemma 4.14, and P A Q E <b by Lemma 4.35.

100 CND

(c) P V Q E (D if P E D or Q E <b: In one direction, suppose P E D. Then

(cV-D P

and, by Lemma 4.14, 1 Hcgo P V Q, so P V Q E 4 since D is deductively closed.
A symmetric argument will show that P V Q E 4D whenever Q E 4. In the
converse direction, suppose P V Q E <D while neither P E 4) nor Q E (D.
Then -P E 4, -Q E (D (by part (a)), hence 4) HcgV -P, o F-CVD -iQ, hence

-cV ,P A -Q and 41 +CD -(P V Q) by Lemma 4.14. But we also have

4D F-cgj, P V Q (since we are assuming P V Q E <b), hence D is inconsistent, con-

tradicting our assumption to the contrary. Therefore, one of P E 4D, Q E <b must
hold.

(d) P =>Q E (1 iff Q E 4 whenever P E D: Suppose first that P # Q E D, so that
D-cgv P ->Q. Then if P E D, 4 +cvD P and

(D _X

by Lemma 4.14, so Q E <b by Lemma 4.35. Conversely, suppose Q E 4 whenever

P E <b, and yet P => Q (D. Then 4 U {P} contains Q, hence 4 U {P} HCAD Q,
and D cAr-D P - Q by Lemma 4.32. Thus P =* Q E <b by Lemma 4.35, and we
have a contradiction.

(e) P 4 Q E <b iff P E iff Q E 4: Suppose P 4 Q E <4. Then

D-CK P 4 Q and (a)4 CVD P = Q, (b) F-cD Q = P

(by Lemma 4.14), so if P E (D then 4D F-cArD P and 4D F-cgo Q (from (a) and
Lemma 4.14), thus Q E <D by Lemma 4.35. By parity of reasoning with (b), if
Q E <b then P E 1b. Therefore, P E 4) iff Q E <b. Conversely, suppose that P E 4
iff Q E <b. By (4), we get P * Q E <D and Q =- P E <b; hence D -cgv P * Q,
4 HCgD Q => P, and Lemma 4.14 gives <b F-CArD P #= Q. Thus, by Lemma 4.35,
P < Q C (D.

Both the case analysis and the proof are now complete.

Lemma 4.37 (Lindebaum's Lemma) Every consistent set <b is contained in some

maximally consistent set I.

Proof: Suppose that <b is consistent. We will demonstrate the existence of a max-
imally consistent set <b* such that <b* D 4. First, let P1 , P2, P3,... be an arbitrary

1014.6 Metatheory

102 CAD

enumeration of all propositions (so that every proposition appears at least once in this
list). Define a sequence of sets (Do, 1i,<)2,... as:

(j U {Pi+1} if 41i U P+I is consistent

4)j otherwise

and set

*= U 4cp.
iEN

The reader will verify that

(a) 4i g Gi+j for all i, j E N; and

(b) every Ii is consistent, i E N.

We will now prove that V* is maximally consistent. For consistency, suppose, by
way of contradiction, that V is inconsistent, so that # D -- false for some D and

3 = {Q1, ... , Qk} G 4*.

Since V*= 41o U I U (2 U -.. , foreachj = 1,..., kwe must have

Qj E CDii (4.30)

for some ij. Set n = max{ii,... ,ik}. From (a) and 4.30 it follows that Q3 E <bDn
for every j = 1,... , k, which is to say 13 C (D. But this means that (Dn F-CrD false,
contradicting (b), the fact that every Ci is consistent. Therefore, * must be consistent.

Next, let Q be any proposition not in b*. Then Q 1 Ti for all i E N. Now since
every proposition appears in the list P1, P2 , P3,..., we must have Q = Pn+1 for some
n E N. If 4), U {Q} were consistent we would have Q E (1n+1, but Q ' <Dn+1, hence
<Dn U {Q} is inconsistent; and since _ C (D*, V U {Q} is inconsistent. This shows that
<D* is maximally consistent and concludes the argument since V D 41<. U

Theorem 4.38 Consistent sets are satisfiable.

Proof: If <D is consistent then, by the previous lemma, there is a maximally consistent
T such that <D C T. By Theorem 4.36 and Lemma 4.28, there exists an interpetation
that satisfies every member of xI, and thus every member of <D as well, therefore <D is
satisfiable. 0

4.7 Variations 103

Figure 4.6: Alternative semantics for CNVD.

Theorem 4.39 (Completeness of CNVD) If (D 1= P then 4 Hcgo P.

Proof: If (D j= P then (D U {-P} is unsatisfiable, hence by Theorem 4.38, 4D U {-P}
is inconsistent. Therefore, by Lemma 4.34, (D cgo P.

Corollary 4.40 Every tautology is a theorem of CAD, i.e., 0 HcD P whenever |= P.

4.7 Variations

A number of variations on the core semantics are possible. For instance, one might

argue that the reason why associativity fails for deduction composition is that our

language is not sufficiently imperative. Semicolons and begin-end pairs aside, we are

essentially taking a functional viewpoint:4 we are treating a deduction D as something
to be evaluated in a given assumption base, in order to produce a proposition. So,
denotationally, the meaning of D is a function from assumption bases to propositions.

CAD deductions are thus analogous to side-effect-free expressions in imperative pro-

gramming languages, the meaning of such an expression being a function that takes a

state and produces a value (the analogy relating states to assumption bases and values
to propositions).

One might take a more imperative approach by viewing a deduction D as something
to be executed-rather than evaluated-in a given assumption base. Denotationally,

4 This will be borne out in the sequel by the ease with which we will be able to desugar CND into

side-effect-free Ap-calculus.

[AR 1]
(31-P~-> (P,/3U{P})

for any P E / U {true, -false}

U {P} D D~> (Q, 13') [AR 2]
F /assume P in D ~> (P ->Q, 0 U {P Q})

/D 1 ~ -- +(P1, # 1) # 13 D2 ~ .- (P 2 , 2) [AR 3]
-D1; D2~>- (P2, /32)

1034.7 Variations

the meaning of D would then be a function that takes an assumption base / and
produces a pair (P, 0') consisting of a proposition P (the conclusion of D) and another
assumption base /'. Insofar as such a sheme is to be of practical value for customary
logic, the assumption base #' should incorporate some or all of the propositions that
were derived in the course of D, in addition to the final conclusion P. But although
the practical intention behind such semantics would be for the final assumption base
/3' to be a superset of the original /, this is not necessary in theory, as one might
conceive of situations such as arising in non-monotonic logics where 0' does not properly
contain 0. Under this viewpoint, then, deductions may be regarded as analogous to
expressions with side effects in imperative programming languages, the meaning of
such an expression being a function that maps a given state to a pair comprising a
value and a state.

We propose such a semantics in Figure 4.6. The semantic judgments are now of
the form / H D '-* (P,/'), to be read as "executing D in 13 results in P and /"'. The
axioms for primitive deductions are straightforward and we omit them. For example,
the axiom for both would be

/ U {P, Q} H both P, Q # (P A Q, 0 U {P, Q, P A Q}).

The deducibility relation Hcgo would now be defined thus: /3 HCAD P iff there are
D and /3' such that 3 F D -o- (P, /'). Likewise, we may define # HcVo /' iff there are
D and P such that # F D -'* (P,/'). Both the soundness and the completeness proofs
we gave in Section 4.6 would go through with minor modifications for the former
relation. A stronger soundness result can be obtained via the second relation by
showing that /3 M /' whenever # Hcg-r #'. This subsumes the conclusion's soundness
(i.e., that / [= P whenever / Hcg'o, P), since we have P E /' whenever # H D - (P, /').
Further, we can prove that assumption bases grow monotonically during evaluation in
the following sense:

if / 3cKD 0' then C p3'.
Observational equivalence with respect to a fixed /3 would be defined in essentially

the same way: D1 D2 iff, for all P and /',

SF D - (P, 3') iff /3D 2 -- (Pi').

General observational equivalence ~ is defined as before, by universally quantifying
over the subscripted 0. Composition would then be provably associative:

D 1; (D2; D3) ~%_ (D 1; D2); D3.-

For evidence of this equality, the reader should try evaluating the two deductions of
our earlier counter-example

Di = double-negation --- A; begin true; A end

104 CNrD

and
D2= begin double-negation -- ,A; true; end; A

in the assumption base {,-iA}. Unlike before, the end results in both cases will now be
seen to be identical: the pair (A, {,--A, A, true}). The reader should try to determine
whether other identities continue to hold, e.g., whether it is still the case that

assume P in (D1; D 2) . D1 ; assume P in D 2

whenever P g FA(D 1). Finally, we remark that a straightforward analogue of the
Strictness Coincidence Lemma is obtainable under these semantics, and that the deci-
sion problem Di ~ D 2 remains effectively solvable.

Other variations are possible; for instance, hypothetical deductions could be instru-
mented to convey more information as follows:

U{P} HD D (Q, ')
3 F- assume P in D->- (P -Q,{P =Q | Q E 0'})

It seems, however, that the two most natural semantic models are the ones discussed
in this chapter (Figure 4.2 and Figure 4.6). In particular, most of the nice properties
obtainable for these two models are delicate in that they appear to be highly sensitive
to modifications (e.g., with the above semantics for hypothetical deductions it would
no longer be true that

assume P in (DI; D2) - DI; assume P in D 2

whenever P g FA(D 1)). The choice between the various alternatives is likely to affect
the experience of writing deductions in the language, as well as the proof theory of
the language, and raise unique implementation issues (for instance, the semantics we
have proposed in this section are clearly more expensive to implement than the earlier
version); but the important metatheoretical properties-compactness, soundness, and
completeness-should be left intact. A less fundamental change but one with a dra-
matic practical impact results from the incorporation of naming, which leads to two

distinct notions of scope-assumption scope and variable scope-and paves the way
for deductive abstraction via methods and higher-order "proof programming". These
issues will be explored in Chapter 8.

4.8 Composition graphs and multigraphs

In this section we study the idea of proof composition (exemplified in CND via the

operator ;) in an abstract setting. The concepts we introduce here will pertain to some

10548 Composition graphs and multigraphs

of the optimizing transformations we consider in the next chapter, but they are also of
interest in their own right.

For the sake of generality our discussion will not employ any CAD-specific concepts.
Rather, we will assume we have two abstract notions of sentence and proof. We will
not be interested in analyzing these notions as we did for CA/D; rather, we will take
them as given. All we will assume is the existence of two computable functions: for
each proof 0, Strict(O) will return a set of sentences (intuitively, the sentences which
are strictly "needed" or "used" in D); and Con(O) will return a sentence which we
will call the conclusion of D. We will use the letters s, t, u, v for sentences and D for
proofs. The analogy that should be kept in mind in connection with CAD is:

sentence u proposition P
proof 0D deduction D

Strict(O) FA(D)
Con(O) C(D)

By a proof composition we will mean simply a finite sequence C = 1, ... ,,.
For any such composition, we define a directed graph (VC, -*c) where Vc is the set of
nodes and -* C Vc is a binary relation on Vc:

n

Vc = U [Strict(Oj) U { Con(j)}]

--*c = U U (Con(i> , u>)
i= 1 _uEStrict(:Di)

Thus the nodes are sentences and the relation -* hooks conclusions to premises.
Implicit in the above equations is an algorithm for constructing -*c, namely, for
i = 1, ... , n compute the set Strict(O), and for each u in that set add the pair
(Con(O), u) to -*c. We will call -*c the dependency kernel of C, and if u -*c v we
will say that u depends on v (in C). Finally, we define the dependency relation (or
"dependency graph") of C, denoted -*', as the transitive closure of -*. If u -*' v we
will say that u transitively depends on v. Whenever it is immaterial, the subscript C
will be dropped.

For a CAD example, and with the aforementioned analogy in mind, consider the
composition

double-negation ,,A;
modus-ponens A -> B A C, A;
left-and B A C;

106 CNrD

,,A

A A=>BAC

BAC

B C

CAB

Figure 4.7: The dependency kernel of an CNDT' composition.

right-and B A C;
both C, B

which derives C A B from A =4 B A C and -,-,A. If we construct the dependency kernel
of this composition in stages, here are the pairs that would be added at each step:

(A,, ,i-A)
(B A C, A = B A C),(B A C, A)

(B,B AC), (C,BA C)
(C A B, B), (C A B,C)

Graphically, the resulting relation -* is shown in Figure 4.7.
The - c-minimal elements will be called the premises of C. That is, u E Vc is a

premise of C iff there is no v such that u - c v, i.e., iff u is not derived from other
sentences. Nodes which are not premises will be called intermediate conclusions, or
lemmas. On the assumption that Strict(Z)) is always non-empty, -* will always have at
least one intermediate conclusion. The same is not true for premises, if -* has cycles.
For example, the dependency kernel of D1; D 2, where Di = double-negation -- ,A
and D 2 = suppose-absurd -,A in absurd A, --,A is

A

which has no premises because A and -,--A are derived from each other.

1074.8 Composition graphs and multigraphs

Clearly, we should desire -* to be acyclic. This is tantamount to requiring _*+ to be
irreflexive; and since -*+ is also transitive (by definition), and assymetry is entailed by
the combination of irreflexivity and transitivity, we conclude that -* is acyclic iff -+
is a strict partial order. In that case, then, the graph of _*+ is a Hasse diagram, i.e., a
dag. If we think of premises as axioms then the absence of cycles has the aesthetically
pleasing consequence that every intermediate conclusion ultimately depends on some
axiom. Formally: for every lemma u there is an axiom (premise) v such that u _ + v.

Another requirement related to the utility principle of C.A/D (Section 5.2) is that
_+ should be connected. Maximally connected subgraphs of --* represent extraneous

threads of deduction that are unrelated to one another. In fact we will replace the
connectivity requirement by a stronger condition: -+ should be pointed, i.e., it should
have a top (greatest) element. Clearly, this condition implies connectivity. Intuitively,
it means that the composition has a unique goal (conclusion), and that every premise
and intermediate conclusion is used in order to arrive at that conclusion.

In summary, let us call a composition C proper iff -** is a strict partial order with
a top element. Observe that proper compositions are themselves composable: we may
view a proper C = 01, . . . , 0,, as a proof, by definining Strict(C) as the set of premises
of C, and Con(C) as its top element.

Dependency graphs carry enough information to be useful for a number of simple
analyses of proof compositions, but their low level of granularity-which is the source of
their simplicity-makes them unsuitable for answering some interesting questions. For
instance, dependency graphs cannot capture the idea of repetitions. As an example,
the dependency graph of the composition

left-and A A B; double-negation -- ,A

is AAB

A

This is a pointed strict poset, and for all we know it could represent a single-element
composition C = D1 with Strict(Di) = {A A B, -,--A} and Con(Di) = A. There is no
way to tell that the underlying composition consisted of two deductions, each with one
premise and both with the same conclusion. As another example, consider the compo-
sition D = D1 ; ... ; D100 , where Di = double-negation -i-iA for i = 1,... , 100. The
dependency graph of this composition is simply

108 CNrD

4.8 Composition graphs and multigraphs

which clearly does not express the multiple replication of effort present in D.
Another problem with dependency graphs is that they are adirectional, in that they

fail to capture the left-to-right directionality of compositions. For example, both

double-negation -- ,A; both A, A

and
both A, A; double-negation -- A

have the same dependency graph:

,,-A

A

I
AAA

This can be an advantage if we wish to discover the essential dependencies without

regard to precedence, but oftentimes we want the ordering of a composition to be

reflected in its graph.
We can ameliorate these shortcomings by enriching the basic model with a finer

level of detail. One way to do this is to work with certain kinds of multigraphs instead of

simple graphs. In particular, we may label each dependency edge with the (index of the)
deduction of which it is a part. Formally, we define the dependency multigraph of C =
D 1,... , Dn as a pair (Vc, Ec), where VC is as before and Ec c Vc x VC x {1,I_ , n}

is a ternary relation of triples (u, v, i), where i can be seen as a label for the pair (u, v).

The definition is:

E = [U (Con(Di), vi)
i=1 Lv6Strict(Dj)

We write u Oi v to mean that (u, v, i) E 4. Thus now we may have u Ej v and u Oj v

for i -/ j, whereas before we either had u -* v or not. Specifically, the relation between
-* and 0 is: u - v iff u 0i v for some i E {1,... , n}.

As an example, constructing the dependency multigraph of

left-and A A B; double-negation -,-,A

in two stages would result in

{(A, A A B, 1), (A, ,,-'A, 2)}

which may be depicted graphically as

109

AAB

A

indicating that A is derived from A A B via the first deduction, and also from -,-,A
via the second deduction. Likewise, the dependency multigraph of D1 ; ... ; Dioo with
each Di = double-negation -,--A would be

1 . -100
A

while those of
double-negation -,--,A; both A, A

and
both A, A; double-negation -,-,A

would respectively be

1 12
A and A
12 1

AAA AAA

We can now modify our definition of proper deductions by requiring (a) i = j
whenever u Oi v and u EE v; and (b) i > j whenever ui e1 U2 Es u3 . Enforcing (a)
and (b) would be one way of addressing the issues of repetitions and directionality,
respectively.

4.9 Towards proof programming in functional style

As it stands currently, CNfD delivers on almost every requirement we singled out in
the introduction (restricted to the admittedly narrow domain of propositional logic):
it is readable and writable, it has a formal syntax and semantics that support a rig-
orous theory of proof equivalence and optimization (to be developed in the upcoming
chapter), it provides intuitive and efficient proof checking, and has a fully worked out
metatheory. The one-important-omission is an abstraction mechanism that would
allow for parameterized proofs and task decomposition. We will develop such a mech-
anism in the general setting of the Ap-calculus in Chapter 8, and will adapt it to CN/D
in particular in Section 9.4, so there is no need to duplicate that effort here. What we

110 CNrD

will briefly do below is outline some of the major issues involved in that endeavor, so
that the reader will be able to appreciate the main challenges.

It is clear that the first step towards an abstraction mechanism must be to in-
troduce naming. In the setting of CND, a first approximation to this step is allow-
ing propositions to contain variables. Let us assume that we have an infinite supply
of propositional variables p, q, r,..., that can be be used to range over propositions
(these variables must be distinct from the atoms A, B, C,...). We can now define
propositional expressions, or simply expressions, as follows:

E ::= p I A I true I false I E I E1 A E 2 I Ei V E 2 I E1 =>E 2 I Ei 4 E 2 .

Examples are p = --,A, q, (B A -p) V r, etc. Thus propositional expressions have the
same structure as propositions, but variables are also allowed at the base level. We
will continue to use the upper-case letters P, Q, R, . . . , for propositions, which are
defined simply as ground propositional expressions (i.e., such that do not contain any
variables).

We may now define deductions with the following abstract syntax:

D ::= E I Prim-Rule E1, . . . , E, I assume E in D I let p = Di in D2

Deductions of the form E serve as claims; those of the form Prim-Rule Ei, ... , E"

and assume E in D are again atomic and hypothetical deductions, respectively; while
composite deductions are now of the form let p = D1 in D 2.

When faced with the task of giving an evaluation semantics for this language it
becomes apparent that the basic judgments can no longer be of the form # I- D -- + P.

The complicating factor is naming, i.e., the presence of variables. Suppose, for instance,
that our deduction is the simple claim p. Clearly, we have no way of telling whether
this claim holds (in the context of a given i) if we do not know what proposition
p stands for. What is missing is the notion of lexical environments. In this case, an
environment p can be understood a computable function that maps each variable either
to a proposition or to a special "unbound" token.

The new semantic judgments are of the form p, # F- D ---+ P, to be read "In environ-

ment p and assumption base 3, deduction D yields the conclusion P". These judgments
are defined in Figure 4.8. An auxiliary type of judgment p - E <-> P is used, which

signifies that in the context of the environment p, E denotes the proposition P. These
judgments are defined via the rule

p [-p r-> P
whenever p(p) = P

1114.9 Towards proof programming in functional style

[F2] [F2]
p, # I- true -- + true p, 0#- -false -+ ,false

p - E -- P [F3] pF-E-*P p,#Uf{P} D-~>Q [F4]
p,/3 U {P} E--+ P p, # / assume E in D -- + P => Q

p, 1- D1 ~ -P p[p - P], # U {P} I D 2 + Q [F5]
p, # let p = Di in D2~-+ Q

Figure 4.8: A first semantics for a functional-style proof language.

and rules of the form

p Ei+ P1 p E 2 -+ P2

p - E1 A E 2 -+ Pi A P2

(with similar rules for -,, V, etc; the constants true and false evaluate to themselves).
Also, the rules for primitive deductions are straightforward and not depicted in Fig-
ure 4.8; we present Modus Ponens as an example:

p F E1 <-+ P * Q p H E 2 -+ P

p, # U {P =* Q, P} H modus-ponens E1 , E 2 -,-+ Q

As presently formulated, this language is far from being a functional-style "proof-
programming language". In the world of programming, functional languages are char-
acterized mainly by the first-class presence of As, i.e., by possibly anonymous functional
abstractions which can be passed around and manipulated in a higher-order manner.
Presently we have no comparable notion of abstraction and application. Indeed, it is
not even clear what form such notions would take in a deductive setting, and how they
would mesh with assumption-base semantics. So, as it stands, this language is essen-
tially CAD in a slightly different guise: the composition operator ; has been replaced
by let.

However, we have taken the important first step of introducing variables, which
can serve as parameters. That clears up the road for abstraction by parameterization,
which is exactly what the A achieves in the case of computation. We quote from Liskov
and Guttag [35]:

Abstraction by parameterization allows us, through the introduction of
parameters, to represent a potentially infinite set of different computations

112 CNrD

4.9 Towards proof programming in functional style

with a single program text that is an abstraction of all of them. Consider
the program text

x * x + y * y

This describes a computation that adds the square of the value stored in a
particular variable x to the square of the value stored in another particular
variable y. The lambda expression

Ax, y : int.(x * x + y * y)

on the other hand, describes the set of computations that square the value
stored in some integer variable x, which we shall temporarily refer to as
x, and add it to the square of the value stored in another integer variable,
which we shall temporarily call y.

In a similar vein, consider a deduction containing variables:

assume p A q in
left-and p A q

This can be viewed as a deduction schema respresenting the infinite set of deductions
which are obtainable by instantiating p and q with particular propositions. In this
case, no matter what propositions we assign to p and q, the end result of the deduction
will always be the tautology p A q => p. We introduce the letter y as the deductive
counterpart of A. Thus if D is a deduction possibly containing variables pi, ... ,P,

then

ppi,.. ,Pn. D

will be a deduction abstraction, called a method, that parameterizes D over these
variables.

Several questions are immediately raised. At the language level, in the abstract
syntax, what kind of things will methods be? Right now there is only one syntactic
category, that of deductions D. But methods are not deductions, they are abstractions
thereof. A deduction is something that can be evaluated to produce a proposition (its
conclusion), or maybe fail; but the evaluation of a method will clearly not produce a
proposition, just as the evaluation of a A-abstraction does not produce a number or a
string. Dually, what kind of things will methods be at the semantic level? So far we
only have one kind of data value-propositions. Evaluation always either produces a
proposition or fails. But what kind of data value will be produced by evaluating, say,

y p, q . assume p A q in left-and p A q?

113

And will methods be denotable values? That is, will a method be able to take another
method as an argument? If so, variables ought to range over propositions and methods,
not just propositions. More importantly, we still don't have a dual notion of method
application. How are methods to be applied? Could a method application produce
another method? Should a method be able to call itself recursively? Should primitive
deductions be subsumed by method applications?

There are many other issues. There is no conditional branching, for instance. A
method for applying De Morgan's laws, for example, must be able to check whether
its input formula has the right form and act accordingly. We cannot write such a
method presently. Another problem is that the naming mechanism provided by the
let is too rigid, in the sense that a name can be attached only to a proposition that
has been deductively derived. This is dictated by the syntax of the language: a let
binding is of the form p = D, and thus a variable (p) may only become bound to the
result of a deduction (D). But this is often impractical, and is also not a good model
of the way people present proofs in practice. Suppose, for instance, that # contains
-,(A V B) =: C and -,(A V B), and nothing else. Then I should be able to evaluate

let p = A V B
in

modus-ponens -p =* C, -'p

in 3 and obtain the conclusion C. But presently this would fail because in evaluating
the binding p = A V B the proposition A V B would be interpreted as a claim, and
since A V B V /, an error would occur.

We will resolve all of these issues in the general setting of the Ap-calculus. In
closing, however, one might ask why not use the customary notions of abstraction
and application instead of inventing new ones. The answer is simple: soundness.
Here is a perfectly good customary abstraction: f = A p. -'p. Here is a perfectly
good application: f(true). The result: -,true. What went wrong? The point is that
everything that is provable is also computable, since proving is an effective process, but
not vice versa. We have to block out those computations-effective processes-that
do not represent logical derivations. If we adopted the regular notions of abstraction
and application, we would have to resort to some kind of type system in order to
enforce this separation. We oppose that approach because we believe that proofs and
programs are sufficiently distinct to warrant a sharp differentiation at a fundamental
language level (i.e., at the level of the underlying syntax and semantics), rather than
at the more superficial level of a type system. The core thesis of this document is that
such a differentiation is not only possible, but can be effected in a way that is both
theoretically elegant and of practical value.

CN'VD114

Chapter 5

Proof optimization

5.1 Background

In this chapter we put forth an optimization procedure for CA/D deductions. The
subject is clearly related to proof-tree normalization in the sense of Prawitz [59] (or
alternatively, cut-elimination in sequent-based systems [29, 23]), but there are some
important differences. First, Prawitz normalization is much easier than CND optimiza-
tion. In the intuitionist case, the Curry-Howard correspondence means that Prawitz
normalization coincides with reduction in the simply typed A-calculus. Accordingly,
the normalization algorithm is particularly simple: keep contracting as long as there
is a redex (either a 0-redex or one of the form l((ei, e2)), r((ei, e2)), etc.). Strong nor-
malization and the Church-Rosser property guarantee that eventually we will converge
to a unique normal form. In the classical case, there is some pre-processing to be done

(see Section I, Chapter III of Prawitz's book [59]) before carrying out the reductions,
but they are minimal. The CND transformations we consider in this section are also
strongly terminating, but they are much more involved.

One reason for the discrepancy is that the analysis of CAD deductions is compli-
cated by the presence of scope and composition: because assumptions and intermediate
conclusions can have limited and arbitrarily nested scopes, it is not possible to carry

out contractions in a local manner; the overall surrounding context must usually be
taken into consideration. Further, the result of one transformation might affect the

applicability or outcome of another transformation, so the order in which these occur
is important. By contrast, in a proof tree contractions can take place locally, and in an

arbitrary order. Secondly, our optimizations are more involved because they are more

ambitious and produce sharper results. Prawitz's notion of normal form is very weak
from the viewpoint of proof optimality. That is, it does not capture proof optimality
well: a proof might be in normal form and yet be flagrantly redundant. A typical

116 Proof optimization

example is

AAB AAB

A A

AAA

The redundancy here is the duplicate derivation of A from A A B. Yet the proof is
in Prawitz normal form, so if we conflate normalization with optimization-as is usu-
ally done [59, 34]-then we ought to identify the above proof as optimal, a curious
view in light of the glaring duplication of effort. The defect ultimately stems from a
more fundamental problem, the fact that proof trees (or, through the Curry-Howard
correspondence, A-calculus terms) are fundamentally misguided as a formal model of
deduction (see Section 7.2.3).1 In contradistinction, it will be seen that our opti-
mization procedure goes beyond Prawitz's transformations by aggresively eliminating
additional sources of redundancy, often resulting in dramatically simpler deductions.

Our optimization procedure consists of a series of transformations, which fall into
two groups:

* restructuring transformations; and

" contracting transformations, or simply contractions.

Contracting transformations form the bedrock of the optimization process: they remove
extraneous parts, thereby reducing the size and complexity of a deduction. Restruc-
turing transformations simply rearrange the structure of a deduction so as to better
expose contraction opportunities; in some cases they might even temporarily increase
the size of a deduction. 2 Differently put, restructuring transformations constitute a
kind of pre-processing intended to facilitate the contracting transformations.

Specifically, our optimization procedure normalize is defined as follows:

normalize = contract - restructure (5.1)

where - denotes ordinary function composition and

contract = &- . it (5.2)

'We have already seen how this problem rears its head in LF, which is based on a proof-tree view
of deduction.

2Any gratuitous expansions, however, will always be eliminated by subsequent contractions. In
particular, we can prove that the size of the end result of the optimization procedure will never be
larger than that of the original.

while

restructure = inter-leave(9MJ6, [2 3, % 2, 2 1]). (5.3)

The interleaving function is defined as:

inter-leave(g, L) = compose *(L)
where

compose*([]) = g
compose*(h::L') = g . h - compose*(L')

We will continue to define functions in this informal notation, using pattern matching,
recursion, etc., in the style of languages such as ML, Haskell, or Miranda. Any reader
moderately familiar with a programming language of this kind should be able to make
sense of our definitions.

In the next two sections we will discuss each group of transformations in turn: first

the contractions i, q3, and it; and then the restructuring transformations 9X6, 2 1,
22, and 23.

5.2 Contracting transformations

Informally, our contracting transformations will be based on two simple principles:

Utility: Every intermediate conclusion should be used at some later point as an argu-
ment to a primitive inference rule.

Parsimony: At no point should a non-trivial deduction establish something that has
already been established, or something that has been hypothetically postulated.

These principles are in turn based on the notions of redundancies and repetitions, which
we will now study in detail.

5.2.1 Redundancies

Intuitively, a deduction contains redundancies if it generates conclusions which are not

subsequently used. For all practical purposes, such conclusions are useless "noise".

We will see that they can be systematically eliminated. Redundancy-free deductions
will be called strict. As a very simple example, the following deduction, which proves
A A B = A, is not strict:

assume A A B in begin right-and A A B; left-and A A B; end

1175.2 Contracting transformations

118 Proof optimization

Figure 5.1: Definition of strict deductions.

The redundancy here is the application of right-and to derive B. This is superfluous
because it plays no role in the derivation of the final conclusion. We formally define
the judgement Istrict D, "D is strict", in Figure 5.1. Verbally, the definition can be
phrased as follows:

e Claims and primitive deductions are always strict.

" A hypothetical deduction is strict if its body is strict.

" A composite deduction D1 ; D2 is strict if both D1 and D 2 are strict, and the
conclusion of D1 is strictly used in D2 .

The last of the above clauses is the most important one, since composition is the
mechanism for linearly ordering the derivations of the various intermediate conclusions.
Note that we require that C(D1) be strictly used in D 2. Accordingly, the deduction

left-and A A B; assume A in both A, A

is not strict: the derivation of A via left-and is extraneous because the only subse-
quent use of A, as a premise to both inside the assume, has been "buffered" by the
hypothetical postulation of A.

We will now present a tranformation algorithm it that converts a given deduction
D into a strict deduction D'. We will prove that Strict D', and also that the semantics
of D are conservatively preserved in the sense that D >-+ D'. The transformation is
defined by structural recursion:

" (assume P in D) = assume P in U (D)

" (D1; D2) = let D' U (D1)
D1 =U (D 2)

in

C(1) FA(D) D'iDR; D
JA(D) = D

118 Proof optimization

5.2 Contracting transformations 119

We have:

Theorem 5.1 (a) it always terminates; (b) it (D) is strict; (c) D >-* U (D).

Proof: Termination is clear, since the size of the argument strictly decreases with each
recursive call. We prove (b) and (c) simultaneously by structural induction on D.

The base cases of claims and atomic deductions are immediate. When D is of the
form assume P in Db, we have

U (D) = assume P in U (Db). (5.4)

By the inductive hypothesis, it (Do) is strict, hence so is U (D), by the definition
of strictness. Further, we have Db -+ it (Db) by the inductive hypothesis, hence by
Lemma 4.22 we get

assume P in Db >-> assume P in U (Db)

which is to say, by virtue of 5.4, that D - U (D).
Finally, suppose that D is a composite deduction D1 ; D2 and let D' = U (D 1), D' =

it (D 2). Either C(D') E FA(D') or not. If yes, then U (D) = D'; D', and strictness fol-
lows from the inductive hypothesis and our supposition that C(D') E FA(D'), accord-
ing to the definition of Hstrict; while D >-> it (D) in this case means D1; D 2 >-> D'; D',

which follows from the inductive hypotheses in tandem with Lemma 4.22. In con-
tradistinction, suppose that C(D') ' FA(D'), so that JA(D) = D'. Since D =

D1 ; D2 >- D'; D' follows from the inductive hypotheses and Lemma 4.22, if we can
show that D'; D' >-* D' then D >-+ D' = U (D) will follow from the transitivity of >->

(Lemma 4.21). We can show D'; D' >-+ D' by using the Strictness Coincidence Lemma
(Lemma 4.13). Suppose, in particular, that 3 F- D'; D'~> Q, for arbitrary # and Q.
By definition, this means that #3- D'-- P and

)3 U{P} H- D > Q (5.5)

for P = C(D'). It follows from the assumption P = C(D') V FA(D') that

U {P} =FA(D') 13

so from 5.5 and the Strictness Coincidence Lemma we infer # H- D'- Q. We have
thus shown that for any /3 and Q, if 3- D'; D'>- Q then H- D> -Q, which is to
say D'; D' >-> D'. It follows from our earlier remarks that D = D1 ; D 2 >-> D' = it (D).
This completes the inductive argument.

As an illustration, suppose we wish to use the algorithm to remove redundancies
from the deduction

D1 ; D 2; both A, B; left-either A, C (5.6)

where C(D1) = A, C(D 2) = B. Assuming that D1 and D 2 are already strict, the
interesting reduction steps taken by the algorithm, in temporal order, may be depicted
in the following loose form (where we use the arrow => to represent a reduction step):

1. both A, B; left-either A, C => left-either A, C (as A A B ' FA(left-either A, C))

2. D2 ; left-either A, C ==> left-either A, C (as C(D2) = B g FA(left-either A, C))

3. D2 ; both A, B; left-either A, C -- > D2 ; left-either A, C (from 1)

4. D2 ; both A, B; left-either A, C -'left-either A, C (from 2 and 3)

5. D1 ; D2 ; both A, B; left-either A, C ==> D 1 ; left-either A, C (from 4)

Thus the original deduction becomes reduced to D1 ; left-either A, C.

5.2.2 Repetitions

The principle of utility alone does not warrantee that a deduction will not have super-
fluous components. For instance, consider a slight modification of example 5.6:

D 1; D 2; both A, B; left-and A A B (5.7)

where again C(D1) = A, C(D 2) = B. The difference with 5.6 is that the last deduction
is left-and A A B instead of left-either A, C. In this case algorithm it will have no
effect because the deduction is already strict: D1 establishes A; D2 establishes B; then
we use both A and B to obtain A A B; and finally we use left-and A A B to get A.
Thus the principle of utility is observed. The principle of parsimony, however, is clearly
violated: the left-and deduction establishes something (A) which has already been
established by D 1. For that reason, it is superfluous, and hence so are the derivations
of B and A A B.

This example illustrates what Prawitz called a detour the gratuitous application of
an introduction rule followed by the application of a corresponding elimination rule that
gets us back to a premise which we had supplied to the introduction rule. The reason
why these are detours is because elimination rules are the inverses of introduction
rules. Prawitz enunciated this intuition with an informal statement that he called "the
inversion principle". Figure 5.2 shows the form that Prawitz's detours take in CN/D
for each of the five connectives. For A, V, and * there are twin detours, which we

120 Proof optimization

5.2 Contracting transformations 121

Di; // proves P

suppose-absurd -,P in

D2;

double-negation -,,P;

(a) Detour for ,.

D1; // proves P

D 2 ; // proves Q

both P, Q;

left-and P A Q;

(b) Detour for A.

{D1; // proves Q}

D 2; // proves P

assume P in
D 3 ; // proves Q

modus-ponens P 4 Q, P;

(c) Detour for =>.

D1 ; // proves P

left-either P, Q;

assume P in
D 2 ; // proves Q'

assume Q in
D 3 ; // proves Q'

assume P in
D1; // proves Q

assume Q in
D 2; // proves P

equivalence P > Q, Q =* P;

left-iff P - Q;

constructive-dilemma P V Q, P #* Q', Q =* Q';

(d) Detour for V. (e) Detour for #.
IU

Figure 5.2: Prawitz-type detours for CfD.

do not depict here, where right-and, right-either, and right-iff take the place of
left-and, left-either, and left-iff, respectively. Furthermore, the detour contained in
each of the threads shown in Figure 5.2 is insensitive to the ordering of most of the
thread's elements: for instance, in thread (b) we may be able to swap D1 and D 2,
but this would not affect the detour; in (c) we might put D1 immediately before the
modus-ponens, but we would still have the same detour; and so on. So the threads
of Figure 5.2 should be understood up to some permutation of the depicted elements
(of course one ordering constraint that must always be respected is that elimination
rules should come after introduction rules). Finally, D1 in (c) is optional, indicated by

5.2 Contracting transformations 121

the braces around it; we would still have essentially the same detour in the absence of
D1 .

It is important to realize that Prawitz's reductions are not readily applicable in
CA/D. Detours may not be freely replaced by their obvious contractions; the greater
context in which the subdeduction occurs will determine whether the replacement is
permissible. For example, the boxed subdeduction below represents a detour, but we
may not blindly simplify it because C(D 2), or C(D1) A C(D 2), or both, might be needed
inside D':

--- ;D 1 ; D2 ; both C(D1), C(D 2); left-and C(D1) A C(D 2) ; D'

What we can do, however, is replace the inference left-and C(D 1) A C(D 2) by the
trivial claim C(D1). A subsequent strictness analysis will determine whether C(D 2)
and/or C(D1) A C(D 2) are needed at any later point. If not, then we can be sure that
the deductions D 2 and both C(D 1), C(D 2) were indeed a detour, and algorithm U will
eliminate them. We will see that this simple technique of

1. replacing every deduction whose conclusion P has already been established by
the trivial claim P, and then

2. removing redundancies with our utility analysis

will be sufficient for the elimination of most of the detours shown in Figure 5.2. The first
step can result in a deduction with various trivial claims sprinkled throughout. This
is mostly a cosmetic annoyance, but a simple contracting analysis that we will present
shortly will eliminate all extraneous claims. That analysis will always be performed
at the end of all other transformations in order to clean up the final result. We now
present an algorithm 93 for performing the first step of the above process:

93(D) = RR(D, 0)
where

RR (D, I) = C (D) E- 4b -+ C (D),
match D

assume P in Db -+ assume P in RR(Db, (U {P})
D1; D2 -> let D' = RR(D1 , 4)

in
D'; RR(D 2, (U {C(D)})

D -+ D

The following lemma will be necessary in proving the correctness of this transformation.

122 Proof optimization

Lemma 5.2 If H F RR(D, 4) -~* Q then # U {P} H RR(D, 4 U {P}) -- Q.

Proof: By structural induction on D. When D is a claim P then for all T,

RR(D, T) = P1

so the assumption # H RR(D, D) -> Q is tantamount to

/ 3 P1 ->- P1. (5.8)

On that assumption, we need to prove that

/ U {P} H RR(D, D U {P})~ Q = Pi

i.e., # U {P} F P1 -- P1. But this follows directly from 5.8 by the monotonicity lemma.
Next, suppose that D is an atomic deduction. We distinguish two cases: either

C(D) E 4 or not. In the former case we have RR(D, 4) = C(D), so the assumption
/ 3 RR(D, 4) - Q = C(D) means that

, / C(D)->- C(D). (5.9)

Now since we are assuming C(D) E I), we have C(D) E 4 U {P}, hence

RR(D, (D U {P}) = C(D)

so we need to show that 13 U {P} F C(D) ->-* C(D). But this follows from 5.9 via mono-

tonicity. By contrast, if C(D) V 4 then RR(D, D) = D, so we are assuming that

D ~>- C (D) (5.10)

and we need to show that

U {P} H RR(D, @ U {P}) -~,> C(D). (5.11)

Now there are two subcases, namely, either C(D) = P or not. If C(D) = P then

RR(D, 4 U {P}) = P

and 5.11 follows from reflexivity. If C(D) # P then RR(D, P U {P}) = D (since then
C(D) V (D U {P}), so 5.11 is tantamount to / U {P} H D - C(D), which follows from
5.10 by monotonicity. This completes both case analyses.

When D is of the form assume Pi in D 1, the assumption / H RR(D, 4) -~>+ Q
translates to

/ H assume P in RR(D 1 , D U {P 1}) -~- P1 =: P2

1235.2 Contracting transformations

(5.12)

124 Proof optimization

where

U {P 1} F- RR(D 1 , <D U {P 1}) -+ P2 . (5.13)

Now RR(D, (D U {P}) = assume Pi in RR(D1 , D U {P, P1}), so what we need to show
is

#3 U{P} F assume P in RR(D 1j, < U {P, P1I})- P1 = P2.
There are two cases: (a) P =P,
and monotonicity, since 4 U {P1}
hypothesis, 5.13 entails that

and (b) P # P1. In (a), the result follows from 5.12
= <D U {P, P1. If (b) holds, then, from the inductive

f3U {P} U {P 1} F- RR(D 1 U {P1 } U {P})s P 2

and hence

3U {P} F- assume P in RR(D 1j, D U {P, P1})~+ Pi > P2

which is exactly what we wanted to show.
Finally, suppose that D is of the form D1 ; D2 and that F RR(D, 1) -+-- Q, which

is to say

(5.14)

where

DI = RR(D1, <b)

DI = RR(D 2 ,<U{P1 })

#F- D' s+ Pi

(5.15)

(5.16)

(5.17)

and

U {P 1 }F- D'-+ Q.

We need to prove # U {P} F- RR(D, D U {P}) s+ Q, i.e.,

U {P} F- D1'; D'-s Q

(5.18)

(5.19)

where

Di = RR(Di, @ U {P})

124 Proof optimization

D'; D'-,~+ Q

(5.20)

5.2 Contracting transformations 125

and

D'2 = RR(D 2, (U {P} U C(D1)). (5.21)

On the basis of 5.15 and the inductive hypothesis, 5.17 implies that

U {P} F RR(D 1 , U {P})~ -- P1

i.e.,

SU {P} H D1'- Pi

so that

C(D'i) = P1.

Likewise, by virtue of 5.16 and the inductive hypothesis, 5.18 implies that

U {P} U {P 1 } F RR(D 2 , U {P 1 } U {P}) -~ Q.

From 5.21 and 5.23 we get D' = RR(D 2, (D U {P} U {P 1}), so

U{P} U {P1 } H D'> Q.

Finally, 5.19 follows from 5.22 and 5.25, hence

U {P} I RR(D, D U {P})~ Q.

from 5.24,

(5.25)

This completes the induction. N

Theorem 5.3 D >->+U (D).

Proof: We will prove that D >-+ RR(D, 0) by induction on D. When D is a claim or

a primitive deduction, RR(D, 0) = D, so the result is immediate since >-+ is reflexive.

When D is of the form assume P in Db,

RR(D, 0) = assume P in RR(Db, {P})

so in order to show D >-4 RR(D, 0) we need to prove that if

/ assume P in Db-- P->Q (

(5.22)

(5.23)

(5.24)

1255.2 Contracting transformations

(5.26)

126 Proof optimization

then

0 F assume P in RR(Db, {P}) --+ P => Q. (5.27)

On the assumption that 5.26 holds, we have

U{P} F- Db Q. (5.28)

By the inductive hypothesis, Db >-+ RR(Db, 0), so from 5.28 we get

SU J{P} H RR(Db, 0) - Q

and by Lemma 5.2, 0 U {P} F- RR(Db, {P}) -+- Q. Therefore,

SF assume P in RR(D, {P}) -+ P Q

which is the desired 5.27.
Finally, suppose that D is of the form D1; D2 and that # H D1 ; D 2 -- * Q, so that

0 / D 1 -+ P (5.29)

and

U {P} H D2 s+ Q. (5.30)

We have RR(D, 0) = D'; DI, where

D' = RR(D1 , 0)

and

D'= RR(D 2, C(D')).

From the inductive hypothesis, D1 - RR(D1 , 0), hence from 5.29,

3RR(D1, 0) -+ P

(5.31)

(5.32)

(5.33)

so from 5.31,

13 D' -+ P (5.34)

and

C(D') = P. (5.35)

127

Likewise, D2 >-- RR(D 2 , 0), so from 5.30,

3 U {P} H RR(D 2, 0) ~> Q

and from Lemma 5.2,
3 U {P} H RR(D 2, {P}) Q

which, from 5.32 and 5.35 means

SU {P} H DI Q. (5.36)

Finally, from 5.34 and 5.36 we infer that # - D'; D' ~> Q, and from this we may
conclude that D >-- RR(D, 0) = D'; D'

5.2.3 Claim elimination

The third and final contracting transformation we will present is particularly simple: it
eliminates all claims in non-trailing positions. It is readily verified that all such claims
are superfluous. For example, the claim B in

D = dn -- ,A; B; both A, A

can be removed because D >-- dn -,-,A; both A, A.
Claims in trailing positions cannot in general be removed, since they serve as con-

clusions. One exception, however, occurs when the claim P is the last element of a
thread whose immediately preceding element concludes P. In those cases P can be
removed despite its trailing position. An example is

dn --,A; both A, B; A A B.

Here the trailing claim A A B can be weeded out because it is derived by the immedi-
ately dominating deduction both A, B.

The following algorithm removes all claims in non-trailing positions, as well as all
extraneous trailing claims of the sort discussed above:

t(D) =
match D

assume P in Db -> assume P in T(Db)
D 1; D 2 --+ let D' = E(DI)

DI = (t(D2)
in

claim?(D') -* D', claim?(D') and C(D') = C(D') -+ DI, D'; D'

5.2 Contracting transformations

128

where claim?(D) returns true iff D is a claim. We have:

Lemma 5.4 (a) P; D >-+ D, and (b) D; P >- D whenever C(D) = P.

Using this lemma, a straightforward inductive argument will show that D >-4 C(D).
Termination is immediate.

Theorem 5.5 T always terminates. Further, D >- t(D).

5.3 Restructuring transformations

5.3.1 Scope maximization

The most fundamental restructuring transformation is scope maximization. Intuitively,
this aims at making the conclusion of a subdeduction visible to as many subsequent
parts of a deduction as possible. Scope can be limited in two ways: with bracketing
(begin-end pairs), and with hypothetical deductions. We examine each case below.

Left-linear compositions

The first factor that can affect conclusion visibility is left-linear composition, namely,
deductions of the form (D1; D2); D3 , where the conclusion of D1 is only available to
D2. Such deductions are rare in practice because the natural threading style in CND is
right-associative (which is why composition associates to the right by default). When
they occur, left-linear compositions can complicate our parsimony analysis. Consider,
for instance, D = (D1; D2); D3 where C(D1) = C(D 3). Algorithm 93 might well find D
to be repetition-free even though, intuitively, it is clear that D 3 unnecessarily duplicates
the work of D 1. The problem is the limited scope of D1 : as long as D 2 does not replicate
the conclusion of Di and D3 the conclusion of D1; D2, i.e., the conclusion of D2, then
D will be deemed repetition-free. The problem can be avoided by right-associating
D, thereby maximizing the scope of D1. The algorithm 91Z that we present below
converts every subdeduction of the form (D1; D2); D3 into Di; (D 2 ; D3). Our proof
that this is a safe transformation will be based on Lemma 5.6 below. The proof of the
lemma is straightforward and omitted, but the intuition is important: in both cases
D1 is available to D2, and D2 to D3, but in D1; (D2; D3) we also have D1 available to
D3. So if (D1; D2); D3 goes through, then certainly D1; (D2; D3) will do so too.

Lemma 5.6 (D1; D2); D3 >-4 D1; (D2; D3).

Specifically, let us say that a deduction D is right-linear iff D(u - 1) # ; for all
u E Dom(D) such that D(u) = ;. That is, D is right-linear iff it has no subdeductions
of the form (D1; D2); D3. The following is immediate:

Proof optimization

129

Lemma 5.7 (a) If D is right-linear then so is assume P in D. (b) If D1 and D 2

are right-linear and D1 is not a composite deduction, then D1 ; D2 is right-linear.

Algorithm 912 will transform any given D into a right-linear D' such that D >--> D':

9%2(assume P in D) = assume P in 9M12(D)

match D,

2(Di; D,) = D1; D2 -* 2(D1; (D 2; D,))

-> 2(Di); 91(D,)

NZ(D) = D

For our termination proof, let us write SZ(D) to denote the size of D, and let us

define a quantity LSZ(D) as follows: if D is of the form D1 ; D 2 then LSZ(D) = SZ(Di);

otherwise LSZ(D) = 0. It immediately follows:

Lemma 5.8 (a) LSZ((Di; D 2); D 3) < LSZ(D1; (D2 ; D 3)).

(b) SZ((Di; D 2); D 3) = SZ(D1; (D 2; D 3)).

Theorem 5.9 2 always terminates.

Proof: We claim that with each recursive call, the pair (SZ(D), LSZ(D)) strictly
decreases lexicographically.3 This can be seen by checking each recursive call: in the
recursive calls of the first two lines, the size of D strictly decreases. In the recursive call
912(D1; (D 2 ; D,)) the size does not increase (Lemma 5.8, part (b)), while the quantity
LSZ strictly decreases ((Lemma 5.8, part (a)). Finally, in both recursive calls in the
next line, the size strictly decreases.

Theorem 5.10 92(D) is right-linear. Furthermore, D >-+ N2(D).

Proof: Let us write Di -.< D 2 to mean that the pair (SZ(D1), LSZ(D1)) is lexico-

graphically smaller than (SZ(D2), LSZ(D 2)). We will use well-founded induction on
the relation -, i.e., we will show that for all deductions D, if the result holds for every

D' such that D' -< D then it also holds for D. We proceed by a case analysis of an

arbitrary D. If D is a claim or a primitive deduction then 12(D) = D and the result

follows immediately. If D is a hypothetical deduction with hypothesis P and body D'

then N2(D) = assume P in 912(D'). Since D' -< D, the inductive hypothesis en-

tails that N2(D') is right-linear and that D'>--> 92(D'). The result now follows from
Lemma 5.7 and Lemma 4.22.

3Using the lexicographic extension of < to pairs of natural numbers: (ni, n 2) is smaller than
(n',n') iff n 1 < n'1 or else ni = n' and n 2 < n'2 .

5.3 Restructuring transformations

Finally, suppose that D is of the form Dj; Dr. Then either D1 is of the form D1 ; D 2 ,
or not. In the first case we have

912(D) = 92(D1; (D 2; D,)) (5.37)

and since D = (D1; D2); D, >- D1 ; (D 2; D,), we conclude inductively that

(i) N2(D1; (D2 ; D,)) is right linear, and

(ii) D1; (D2; D,) >->+ RZ(D 1; (D2; D,)).-

Thus the conclusion that 912(D) is right-linear follows from (i) and 5.37, while

D >-> 912(D) = 912(Di; (D 2; D,))

follows from (ii) and the transitivity of >-4, since D >- D1 ; (D 2; D,) from Lemma 5.6.
If D is not of the form D1 ; D 2 then

912(D) = 9%2(D); 912(D,) (5.38)

and since D, -< D, D, -< D, the inductive hypothesis entails that (i) 9U2(D) and
9i2(D,) are right-linear, and (ii) D1 >-> N2(Dj), D, >- 92(D,). Because D, is not
a composite deduction, neither is 912(D) (a necessary condition for 912(D) to be
composite is that D be composite), hence it follows from part (b) of Lemma 5.7 and 5.38
that 92(D) is right-linear. Further, D >-> 912(D) follows from (ii) and Lemma 4.22.
This concludes the case analysis and the inductive argument.

Hypothetical deductions

The second case of undue scope limitation arises in hypothetical deductions. Consider
a hypothetical deduction with body Db and hypothesis P. If D is a subdeduction of
Db then its scope cannot extend beyond Db. But this need not be the case if D is
not strictly dependent on the hypothesis P. If there is no such dependence, then D is
unnecessarily restricted by being inside Db. Its scope should be maximized by hoisting
it outside Db. As a simple example, consider

assume B in
begin
double-negation -- ',A;
both A, B
end

130 Proof optimization

Here the subdeduction double-negation -,--A makes no use of the hypothesis B, and
therefore it is appropriate to pull it outside, resulting in

double-negation -- ,A;
assume B in

both A, B

This deduction is observationally equivalent to the first one, and has a cleaner structure
that better reflects the various logical dependencies. Besides increased clarity, hoisting
will greatly facilitate our repetition analysis later on. Repetitions are much easier to
detect and eliminate when they are in the same scope. Consider, for instance, the
deduction

assume B in
begin

double-negation ,,A;
both A, B

end;
left-and A A C;
both A, B = A A B

In view of double-negation -- ,A, the deduction left-and A A C is superfluous, but
this is not easy to determine mechanically because the former deduction lies inside
the scope of the hypothesis B. More importantly, neither deduction can be safely
eliminated as things stand, even though it is clearly extraneous to have both of them. If
we eliminated the double-negation then the assume might fail; while if we eliminated
the left-and, the composition might fail. But if we hoist the double negation outside
of the assume, resulting in

double-negation -,-,A;
assume B in

both A, B;
left-and A A C;
both A, B = A A B

then the repetition becomes much easier to detect, and the left-and can be confidently
eliminated.

In what follows we will be dealing with lists of deductions [D1, ... , D]. We will

use the letter A for such lists, and the symbol - for list concatenation. For a non-empty
list A = [D1 , ... , D], n > 0, we define 2 as the thread D1 ; ... ; D". The following

will come handy later:

1315.3 Restructuring transformations

let (DI, D1, A1) = H(D1 , 4)

(D', D2, A2) = H(D2, (1)H(D1; D2, 4)) = iin
(D'; D', (2, Ai - A 2)

H(D, @) = FA(D) n = 0 -+ (C(D), @, [D]), (D, ' U {C(D)}, [])

Figure 5.3: The kernel of the hoisting algorithm.

Lemma 5.11 A1 - A 2 = A 1 ; A2

We adopt the convention that when A is empty the expresssion K; D stands for D.
The algorithm H in Figure 5.3 examines a right-linear thread D = D 1; ... ; Dn (we

make the simplifying convention that we might have n = 1, in which case D1 will not
be composite, since we are assuming that D is right-linear) and pulls out every Di that
is not transitively dependent on a set of assumptions JD. Each hoisted Di is replaced
in-place in D by the claim C(Dj). Specifically, H(D, D) returns a triple (D', T, A),
where

" D' is obtained from D by replacing every Di that does not transitively depend
on 4) by C(Dj).

" T D 4b is monotonically obtained from 4 by incorporating the conclusions of
those deductions Dj that do depend (transitively) on 4. This is essential in
order to handle transitive dependence.

" A is a list [Di, , Dik], 1 5 ij < n, j = 1, ... , k > 0, of those deductions
that do not depend on (D. The order is important for preserving dominance
constraints: we have ia < ib for a < b, since, e.g., D5 and D8 might not be
dependent on D, but D8 might depend on D5 . Accordingly, A should respect the
original ordering.

As Theorem 5.15 will prove, the idea is that we will have D >-+ A; D'. The thread
D1; ... ; Dn should be thought of as the body of a hypothetical deduction with hypoth-
esis P, and (D should be thought of as {P}. Then if H(D1; . . . ; Dn, () = (D', XI', A),
D' will be the new body of the hypothetical deduction, and the thread 2 will comprise
the hoisted deductions, with a dominance relation that respects the original ordering
1, ... , n.

Lemma 5.12 Let (D 2, (2, A) = H(D1 , Di). Then #1 n FA(D) = 0 for every D C A.

132 Proof optimization

Proof: By induction on D 1. Suppose first that D1 is not composite. There are two
cases: either FA(D 1) n <i = 0 or not. If not then A = [] so the result holds vacuously.
If FA(D 1) n 41) = 0 then A = U(D 1) so the result holds by supposition. Finally,
if D1 is of the form Di; D, then A = A, - Ar, where H(Di,<D1) = (D',1D,Aj) and
H(Dr,, <i) = (DI4, < Ar). Inductively,

VD E Al, 1 n FA(D) = 0 (5.39)

and

VD E Ar,i n FA(D) = 0 (5.40)

Since <Di C (I, 5.40 entails

VD E Ar,<i n FA(D) = 0 (5.41)

The result now follows from 5.39 and 5.41 since A = Ai-Ar, and the inductive argument
is thus complete.

We will also need the following two results, whose proofs are simple and omitted:

Lemma 5.13 If C(D) 0 FA(Dj) for i = 1, ... , n then

D; D1; ... ; Dn; D' --+ D1; . . . ; Dn; D; D'.

Lemma 5.14 P; D1; ... ; D,; D - D1;... ; Dn; P; D.

Theorem 5.15 If D is right-linear and (D', IF, A) = H(D, <b) then D >-4 A; D'.

Proof: By induction on D. Suppose first that D is not a composition. Then either
FA(D) n <b = 0 or not. If not, then D' = D and A = [], so the result is immediate. If
FA(D) n (D = 0 then D' = C(D) and A = [D], so again the result follows directly.

Suppose next that D is of the form D1; D 2. Then, letting

Di <bi, A1) = H(D1 , <D) (5.42)

and

(D', <b2, A2) = H(D2, <bI) (5.43)

we have D' = D'; D' and A = A1 -A2, so we have to show

D >-A 1 - A 2; D'; D'24

5.3 Restructuring transformations 133

(5.44)

134 Proof optimization

From 5.42, 5.43, and the inductive hypothesis, we have

(5.45)

and

(5.46)

Therefore,

D =D1 ; D 2>- A; D';A 2 ; D (5.47)

Now since we are assuming that D is right-linear, Di cannot be composite, hence
again we distinguish two cases: FA(D 1) n (D = 0, or not. If the latter holds then
D' = D 1 ,1l = D U {C(D 1)}, and Ai = []. Now by 5.43 and Lemma 5.12 we have
that, for every D, E A 2, Di n FA(DX) = 0, and since C(D1) E I1, this means that
C(D1) g FA(DX). Hence, from Lemma 5.13,

and thus

A; D';A2 ; D >- 1 ; A 2 ; D'; D'. (5.48)

On the other hand, if FA(D 1) n (= 0 then D' = C(D1), so by Lemma 5.14 we have

D';A2; D' >- Y2; DI; D'2

and hence 5.48 follows again. Thus we have shown that in either case 5.48 holds, and
since A1 - A2 = 1 - 2, it now follows from 5.47, 5.48, and the transitivity of >-* that

D>- A1 - A2; D'i D2

which is 5.44, exactly what we wanted to show. This completes the induction.

1.
2.
3.
4.
5.

M

As an illustration of the algorithm, let D be the deduction

modus-ponens A => C A B, A;

double-negation -- ',B;
left-and C A B;
right-either C, B;
both C, C

Proof optimization134

and consider the call H(D, {A}). Let Da-De refer to the deductions in lines 1-5,
respectively. Since D is composite, the first clause of the algorithm will be chosen,
so the first recursive call will be H(Da, {A}), which, since Da is not composite and
FA(Da) n {A} f 0, will yield the result (Da, {A, C A B}, []). The second recursive
call is H(Db; Dc; Dd; De, {A, C A B}). This in turn gives rise to the recursive calls
H(Db, {A, C A B}), which returns

(B, {A, C A B}, [double-negation ,,B])

and H(Dc; Dd; De, {A, C A B}). The latter will spawn H(Dc, {A, C A B}), which will
return (Dc, {A, C A B}, []), and H(Dd; De, {A, C A B, C}). In the same fashion, the
latter will spawn H(Dd, {A, C A B, C}), which will return

(Dd, {A, C A B, C}, [right-either C, B])

and H(De, {A, C A B, C}), which will produce (De, {A, C A B, C, C A C}, []). Moving
up the recursion tree will eventually yield the final result (D', X', A), where D' is the
deduction

1.modus-ponens A => C A B, A;
2.B;
3.left-and C A B;
4.C V B;
5.both C, C

T is the set {A, C A B, C, C A C}, and A is the list

[double-negation -,--,B, right-either C, B].

Thus 2K; D' is the deduction

double-negation -,-iB;
right-either C, B

modus-ponens A => C A B, A;
B;
left-and C A B;
C V B;
both C, C

The horizontal line demarcates the hoisted deductions from D'.
If D were the body of a hypothetical deduction with hypothesis A, then the result

of the hoisting would be
A; assume A in D'

namely,

5.3 Restructuring transformations 135

double-negation -- ,B;
right-either C, B;
assume A in

begin
modus-ponens A = C A B, A;

B;
left-and C A B;
C v B;
both C, C

end

A subsequent contracting transformation to remove claims (algorithm () would result
in

double-negation -,,B;
right-either C, B;
assume A in

begin
modus-ponens A => C A B, A;

left-and C A B;
both C, C
end

The hoisting transformation should be applied to every hypothetical deduction
contained in a given D. This must be done in stages and in a bottom-up direction
in order for hoisted inferences to "bubble" as far up as possible (to maximize their

scope). Specifically, let D be a given deduction. The hoisting will proceed in stages
i = 1, ... ,n, .. ., where we begin with Di = D. At each stage i we replace certain

candidate hypothetical subdeductions of Di by new deductions, and the result we

obtain from these replacements becomes Dj±i. We keep going until we reach a fixed
point, i.e., until Djai = Di.

At each point in the process every hypothetical subdeduction of Di is either marked,
indicating that its body has already been processed, or unmarked. An invariant we will

maintain throughout is that a marked hypothetical subdeduction will never contain

unmarked hypothetical deductions; this will be enforced by the way in which we will

be choosing our candidates, and will ensure that hoisting will proceed in a bottom-

up direction. Initially, all hypothetical subdeductions of Di = D are unmarked. On

stage i, an unmarked hypothetical subdeduction of Di is a candidate for hoisting iff

it is as deep as possible, i.e., iff it does not itself contain any unmarked hypothetical

Proof optimization136

5.3 Restructuring transformations 137

subdeductions. For each such candidate De = assume P in Db occuring in position
u E Dom(D), we compute (D', T, A) = H(Db, {P}), and we replace De in position u
of Di by A; assume P in D', where the assume is now marked to indicate that its
body D' has been combed bottom-up and we are thus finished with it-it can no longer
serve as a candidate. Note that because all candidate subdeductions of Di are pairwise
disjoint (i.e., none of them is contained in another candidate), these replacements
could in principle occur in parallel. The deduction we obtain from Di by carrying
out these replacements becomes Di+1 . One pitfall to be avoided: the replacements
might introduce left-linear subdeductions into Di+ 1 . Algorithm H, however, expects
its argument to be right-linear, so after the replacements are performed we need to
apply 91,2 to Di+ 1 before continuing with the next stage.

Algorithm Hoist below replaces every candidate hypothetical subdeduction of a
given D in the manner discussed above and marks the processed subdeduction:

Hoist(D) = match D
assume P in Db

Is every assume within Db marked? -

let (D, _,A) = H(Db, P)
in

A; assume P in D',
assume P in Hoist(Db)

D1; D 2 -- Hoist(D1); Hoist(D2)
D - D

We can now formulate our final scope-maximization transformation as follows:

9M6(D) = FP(9%,2(D))
where

FP(D) = let D' = 912(Hoist(D))
in

D' = D - D, FP(D')

That 9M6 always terminates follows from the fact that Hoist does not introduce any
additional hypothetical deductions, and either outputs the same result unchanged (a
fixed point) or a deduction with at least one more hypothetical deduction marked.
Since any deduction only has a finite number of hypothetical subdeductions, this means
that 9X6 will eventually converge to a fixed point. Further, D >-> M6(D) follows from
the corresponding property of 9i2, from Theorem 5.15, and from the transitivity and
compatibility of the >--+ relation. Finally, Lemma 5.12 gives:

Theorem 5.16 (a) 9MG always terminates;

(b) M6(D) is right-linear;

(c) D >- 9M6(D);

(d) the proof-composition graph of the body of every hypothetical deduction of 9RE6(D)
is proper, i.e., connected, pointed, and acyclic.

5.3.2 Global transformations of hypothetical deductions

The hoisting algorithm is a focused, local transformation: we delve inside a given
deduction D and work on subdeductions of the form assume P in Db, taking into
account only the hypothesis P and the body Db. We do not utilize any knowledge
from a wider context. More intelligent tranformations become possible if we look

at the big picture, namely, at how P and Db relate to other parts of the enclosing
deduction D. In this section we will present three such transformations, %1, %2, and

23. All three of them perform a global analysis of a given deduction D and replace
every hypothetical subdeduction D' of it by some other deduction D" (where we might
have D" = D'). These transformations expect their input deductions to have been

processed by 9MG, but their output deductions might contain left-linear compositions
or hoisting possibilities that were not previously visible. It is for this reason that

their composition must be interleaved with the scope-maximization procedure 9M6, as
specified in 5.3.

The first transformation, %1 , targets every hypothetical subdeduction of D of the

form D' = assume P in Db whose hypothesis P is a free assumption of D, i.e., such
that P E FA(D). Clearly, D can only be successfully evaluated in an assumption base

that contains P (Corollary 4.11). But if we must evaluate D in an assumption base
that contains P then there is no need to postulate P hypothetically and hide Db behind
that hypothesis; we can pull Db outside. Accordingly, this analysis will replace D' by
the thread D" = Db; assume P in C(Db). Thus the final conclusion is unaffected (it
is still the conditional P => C(Db)), but the scope of Db is enlarged. Specifically, we

define:

%i(D) = T(D, FA(D))
where
T(assume P in Db,)) = let D' = T(Db, 4)

in
PED -+ D',; assume P in C(D'), assume P in D'

T(DI; Dr,) = T(Di, 4); T(Dr,)
T(D, D) = D

Proof optimization138

Note that we first process Db recursively and then pull it out, since Db might itself
contain hypothetical deductions with a free assumption as a hypothesis. As an example,
if D is the deduction

assume A in
begin
both A, A;
assume B in

both B, A A A
end;

both A, B

where both conditional deductions have free assumptions as hypotheses (A and B)
then %1 (D) will be

both A, A;
both B, A A A;
assume B in

BAAAA;
assume A in

B -> B A A A A;
both A, B

The two remaining transformations turn not on whether the hypothesis of a con-
ditional deduction is a free assumption, but on whether it is deduced at some prior
or subsequent point. For the second transformation, 22, suppose that during our
evaluation of D we come to a conditional subdeduction D' = assume P in Db whose
hypothesis P either has already been established or else has already been hypothetically
postulated (i.e., D' is itself nested within an assume with hypothesis P). Then we
may again pull Db out, replacing D' by the composition D" = Db; assume P in C(Db).
(More precisely, just as in 21, we first have to process Db recursively before hoisting
it.) Thus we arrive at the following algorithm:

2 2 (D) = T(D, 0)
where
T(D, D) = match D

assume P in Db
P (b --+ let D' = T(Db, O)

in

D'; assume P in C(D'),
assume P in T(Db, 4 U { PD

5.3 Restructuring transformations 139

D 1; D 2 - let D'= T(Di, <)

in
Di; T(D2, 1 U {C(D 1)})

D-* D

As a simple example, if D is the deduction

dn -,--,A;
assume A in

both A, B;
both AA B,A#* A A B

then

dn -- ',A;
both A, B;

%2(D) = assume A in
A A B;

both AAB,A= .A A B

The reader will notice a similarity in the structure of algorithms J and 2 2 . Both of
them proceed in a top-down manner, cumulatively recording all intermediate conclu-
sions established along a thread, as well as hypotheses postulated by nested conditional
deductions. In fact in a practical implementation of our optimization procedure the two
algorithms should be combined and performed in lock-step in the interest of efficiency.
There are other transformations that could also be combined and other modifications
that could be made that would result in a more efficient implementation of normalize
than the one suggested by definitions 5.1, 5.2 and 5.3. These particular definitions were
given for their conceptual benefits-especially because they separate the contracting
from the restructuring transformations-in order to help the reader to better under-
stand the overall process. A practical implementation of normalize should achieve the
extensional behavior specified by the above equations, but in a more efficient man-
ner. Finally, the third transformation, 23, determines whether the hypothesis P of
a conditional deduction D' = assume P in Db is deduced at a later point, or, more
precisely, whether it is deduced somewhere within a deduction dominated by D', as in
the following picture:

D' = assume P in Db;

D"1; (Deduces P)

To motivate this transformation, consider the following deduction:

Proof optimization140

(1) assume -,-,A in
begin
dn -,-,A;
both A, B

end;
(2) left-and -,--,A A C;
(3) modus-ponens --iA =* A A B, -,-,A

This deduction illustrates one of the detours we discussed earlier, whereby Q is
derived by first inferring P =: Q, then P, and then using modus-ponens on P =* Q
and P. The detour arises because the hypothesis P is in fact deducible, and hence
there is no need for the implication P =* Q and the modus-ponens. We can simply
deduce P and then directly perform the reasoning of the body of the hypothetical
deduction.

We note that unlike the cases discussed in connection with 22 and 21, here we
cannot hoist the body of (1) above the assume (and insert in its place the claim
A A B), because the said body strictly uses the hypothesis -'-'A, which is neither a
free assumption of the overall deduction (which would be the province of 2(1) nor is
it deduced prior to its hypothetical postulation in (1) (which would be the province
of 22). Rather, --,A is deduced after the conditional deduction where it appears as
a hypothesis. So what 23 will do is the following: it will insert a copy of the body of
the conditional deduction (1) immediately after the hypothesis -'-'A is subsequently
deduced, i.e., immediately after (2), resulting in:

(1) assume --,A in
begin

dn ---,A;
both A, B

end;
(2) left-and -,-,A A C;
(3) dn -,-,A;
(4) both A, B;
(5) modus-ponens -- ,A =: A A B, -- A

(in fact we have to insert the body of the hypothetical deduction as is, including the
begin-end brackets, which will result in a deduction that is not right-linear. However,
a subsequent pass of 9RS will make the deduction right-linear and the begin-end pair
will be eliminated, resulting in the above; see the remark on page 138 in reference to
the interleaving of 906). This increases the size of the deduction, but as we will see
shortly the increase is temporary. First the reader should observe that this is a safe

5.3 Restructuring transformations 141

transformation, because, by virtue of the monotonic evaluation of threads, everything
that the body of (1) might require in the way of free assumptions is also available at
the point where the copy is inserted, including the proposition -'-A.

Now after the transformation has taken place, our parsimony analysis 93 will detect
that (5) derives the same conclusion as the preceding (4), and will thus replace it by
the claim A A B. A subsequent utility analysis will reveal that the conclusion of (1)
is no longer used, and will thus eliminate (1). Finally, our claim-removal procedure
E will also remove the trailing claim A A B (it is extraneous, since it is immediately
preceded by a deduction which infers it), resulting in the detour-free

left-and -,-,A A C;
dn -- ,A;
both A, B

In general, 23 determines whether a hypothesis P of a subdeduction

D'= assume P in Db

is derived by a deduction D" rooted at a position u that is dominated by D'. If so, it
must then decide whether to replace D" by the composition D"; Db. Because such a
replacement will increase the size of the overall deduction, we must take care to avoid
it unless we can be certain that the preceding assume will be subsequently eliminated
by the contracting analyses, as in the above example. Clearly, one case where the
copying is not necessary occurs when P is not used as an argument to an offending
modus-ponens. In such a case there is no detour to speak of, since a detour exists
only if the derivation of P is followed up by a modus-ponens detachment of C(Db).
As an example, consider the following variation of the previous example:

(1) assume -- ,A in
begin

dn -,-,A;
both A, B

end;
(2) left-and -,-,A A C;
(3) both ,,-'A,--A > A A B

Here there is no detour, and hence no need for inserting the body of (1) right after
the hypothesis --,A is derived at point (2). Nevertheless, it is interesting to note that
even if we did perform the copying, resulting in

Proof optimization142

5.3 Restructuring transformations 143

(1) assume -,--,A in
begin

dn -,-,A;
both A, B

end;
(2) left-and --,A A C;
(3) dn -,-,A;
(4) both A, B;
(5) both ,,-'A,--,,A A A B

the subsequent utility U transformation would eliminate both (4) and (3), since their
conclusions are not needed by (5), and would thus finally reproduce the original

assume -- ,A in
begin

dn ,,A;
both A, B

end;
left-and -,-,A A C;
both --,A, -,-,A == A A B

However, this is wasted effort, and we prefer to simply avoid the copying in the first
place if we conclude that there is no detour.

But now observe that there might be no detour even if the derivation of P is followed
by a modus-ponens detachment of C(Db). This will be the case if the conclusion of
the assume, namely P z= C(Db), has additional uses over and above its role in the
detachment of C(Db). As an example, consider the deduction

(1) assume -,-,A in
begin

dn -,-,A;
both A, B

end; (5.49)end;
(2) left-and -- A A C;
(3) modus-ponens --,A ==> A A B, -,-,A;
(4) both A A B,--,,A A A B

Here we do have the requisite modus-ponens in (3), following the derivation of -- ,A
in (2), and this would appear to indicate a detour. However, there is actually no

detour because the conclusion of the hypothetical deduction (1) is also used in (4) as
an indispensable part of the final conclusion. This means that we could not possibly
eliminate (1); it is essential, not a detour. Indeed, here is what we would obtain if we
went ahead and performed the copying:

(1) assume -- ,A in
begin

dn -,--,A;
both A, B

end;
(2) left-and ,,A A C;
(3) dn -- ,A;
(4) both A, B;
(5) modus-ponens -- A =* A A B, --,,A;
(6) both A A B,--,,A A A B

Now the parsimony analysis would admittedly eliminate (5), resulting in

(1) assume --,A in
begin

dn -- ,A;
both A, B

end;
(2) left-and -- A A C;
(3) dn --,,A;
(4) both A, B;
(5) both A A B,-,-A A A B

But now note that the utility analysis would not be able to eliminate (1), and rightly
so, precisely because its conclusion is used in the final inference (5). Thus we would
be left with a net size increase.

Of course this is not to say that deduction 5.49 is optimal. The proper way to write
it is

left-and -,-A A C;
dn --,A;
both A, B;
assume -- ',A in

AAB
both A A B,--,A A A B

Proof optimization144

which is slightly more efficient (it avoids the modus-ponens). However, because the
conclusion of the assume is essential, 5.49 does not have the same kind of detour as
the deduction in page 141.

In general, consider a thread of the form

assume P in Db; (5.50)
D

(where D might itself be a thread), and let C(Db) = Q. We will say that the hypo-
thetical deduction assume P in Db is a detour in D iff every strict use of P =* Q in
D (with the exception of certain trivial claims)

(a) occurs in a primitive deduction of the form modus-ponens P =* Q, P; and

(b) is dominated by a deduction Dp with C(Dp) = P.

The following function takes a deduction D and a conditional P => Q and determines
whether the above two conditions hold:

detour?(D, P z=> Q) = g(D, 0)
where
g(D,b) = match D

R- [R # (P = Q)- true,false]
Prim-Rule P1,... , P -- [(P => Q) V FA(D) -+ true, h(D, b)]
assume P1 in Di -[P1 = (P =* Q) -- true, g(DI, b)]
D1 ; D 2 -+ [g(D 1, b)- (C(D1) = P g (D2, 1), g(D2, b)),

(claim?(D1) -+ g(D 2 , b), false)]

where h(D, b) returns true if D is of the form modus-ponens P = Q, P and b = 1,
and false otherwise. The bit b is used to keep track of whether we are within the scope
of a deduction Dp with conclusion P, as required by (b). Also note that in the case of
assume Pi in D 1, if P = (P # Q) then, by the preceding analysis (2 2), the body D1
must be a single claim, since we are assuming that D is dominated by a hypothetical
deduction with conclusion P =* Q (see 5.50).

If detour? yields a positive verdict then we may go ahead with the copying, confi-
dent that the corresponding hypothetical deduction will ultimately be removed by the
contracting transformations. Thus we can now express 23 as shown below. One final
complicating factor is that one and the same proposition P might be the hypothesis
of several different conditional subdeductions, so when P is later deduced we need to

5.3 Restructuring transformations 145

insert local copies of the body of every conditional deduction that has P as its hy-
pothesis, provided of course that these hypothetical deductions are indeed detours (as
determined by detour?). Specifically:

2 3 = T(D, [])
where
T(D, L) =

match D
Di; D2 -let (A, M) = find(C(Di), L)

in
match D1

assume P in Db
let M' = detour?(D2,P =>C(Db)) and NT(Db)-- (P,Db)::M,M
in

(assume P in T(Db, L)); K; T(D 2 , M')
D' -_+ D'; 2K; T(D2, M)

D' -_ D'
and
find(P, L) = f(L, [], L)
where

f ([], A, M) = (A, M)
f((Q, D)::L', A, M) = P = Q -+ f (L', D::A, remove((Q, D), M)), f (L', A, M)

while

" remove(x, L) removes all copies of an element x from a list L;

" NT(D) = not(claim?(D)),i.e., true if D is a non-trivial deduction and false

otherwise.

A more efficient implementation could be obtained by combining detour? and 2(3.

5.4 Examples

In this section we illustrate normalize with some simple examples of the "detours"
shown in Figure 5.2. We begin with a couple of examples of detour (c):

Proof optimization146

5.4 Examples 147

dn -,-,A;
assume A in

D = botuh A B- restructure
both A, B;

mp A=>AABA

dn -,-,A;
both A, B; dn -,-,A;
assume A in U both A, B;

AAB; AAB
AAB

dn -,-A;
both A, B;
assume A in

AAB;
mp A => A A B, A

dn -,-,A;
> both A, B

An alternative form of the same detour is obtained by swapping the order of dn
and assume in the above deduction. We see that normalize handles this with the
same ease:

assume A in
both A, B;

D = dn -,-,A;
mp A => A A B,

assume A in
both A, B;

dn -,-,A;
both A, B;
AAB

restructure
A

dn -- ',A;
- both A, B;

AAB

assume A in
both A, B;

dn -,-,A;
both A, B;
mp A=>AAB,A

dn --,,A;
both A, B

We continue with detour (a), based on negation. Letting

5.4 Examples 147

left-and A A B;

D -suppose-absurd -,A in
absurd A,-A;

dn -,-,A

and recalling our desugaring of suppose-absurd into a composition of assume and
Modus Tollens, we have:

left-and A A B;

begin
assume -A in

absurd A,-A;
D = -false;

mt -,A =4 false, -,false
end;
dn -,-,A

left-and A A B;
assume -A in

absurd A,-,A;
-,false;
mt -,A == false, -,false;
A

restructure

left-and A A B;

assume -A in
absurd A, -,A;

-false;
mt -,A = false, -,false;
dn -,-,A

q3

i : left-and A A B; E left-and A A B
A

A trickier variant of essentially the same detour is shown in the next deduction:

suppose-absurd -,A in
begin

left-and A A B;
absurd A,,IA

end;
dn -,-,A

Here normalize will operate as follows:

Proof optimization148

5.4 Examples 149

begin
assume -A in

begin
left-and A A B;
absurd A,,_A

end;
-false;
mt -,A => false, -false

end;
dn -,-,A

restructure

left-and A A B;
assume -,A in

begin
A;
absurd A,,'A

end;
-,false;
mt -A => false, -,false;
dn -,-,A

left-and A A B;
assume -A in

begin
A;
absurd A, ,'A

end;
-,false;
mt -,A => false, -'false;
A

it left-and A A B;
A

C , left-and A A B

Next we illustrate a disjunction detour. Let

dn -,,(A 1 A B);
left-either A1 A B, A2 A B;
assume A1 A B in

D= right-and A 1 A B;
assume A2 A B in

right-and A 2 A B;
cd (A 1 A B) V (A2 A B), (A1 A B) =- B, (A2 A B) -> B

We have:

-3

5.4 Examples 149

150 Proof optimization

D restructure

dn -,-(A1 A B);
left-either A 1 A B, A 2 A B;

right-and A1 A B;

assume A1 A B in
B;

assume A 2 A B in

right-and A 2 A B;

cd (A 1 A B) V (A2 A B), (A 1 A B) = B, (A2 A B) => B

dn -,-,(A1 A B);
left-either A1 A B, A2 A B;
right-and A1 A B;
assume A1 A B in

B;
assume A2 A B in

right-and A2 A B;
B

dn -,-,(A1 A B);
right-and A1 A B;
B

-4

-f4

dn ,,(A 1 A B);
right-and A 1 A B

A variant of this detour is contained in

assume A 1 A B in
right-and A1 A B;

assume A 2 A B in
D = right-and A 2 A B;

dn ,,(A 2 A B);
right-either A1 A B, A 2 A B;

cd (A 1A B) V (A2 A B), (A A B) -* B, (A2 A B) -> B

In this case we have:

Proof optimization150

5.4 Examples 151

D restructure

assume A 1 A B in
right-and A 1 A B;

assume A 2 A B in
right-and A 2 A B;

dn -,-,(A2 A B);
right-and A 2 A B;

right-either A 1 A B, A 2 A B;
cd (A 1 A B) V (A2 A B), (A 1 A B) =* B, (A 2 A B) = B

assume A1 A B in
right-and A1 A B;

assume A 2 A B in
right-and A 2 A B;

dn -,,(A 2 A B);
right-and A 2 A B;
right-either A 1 A B, A 2 A B;
B

dn --,-,(A 2 A B);
right-and A 2 A B;
B

dn -,-,(A2 A B);
right-and A 2 A B

We close with a biconditional detour. Let D be the following deduction:

assume A A B in
begin

left-and A A B;
right-and A A B;
both B, A

end;
assume B A A in
begin

right-and B A A;
left-and B A A;
both A, B

end;
equivalence A A B =:> B A A, B A A = A A B;

left-iff A A Bo>B A A

We have:

-4

5.4 Examples 151

D Q3 - restructure

assume A A B in
begin

left-and A A B;
right-and A A B;
both B, A

end;
assume B A A in

begin
right-and B A A;
left-and B A A;
both A, B

end;
equivalence A A B => B A A, B A A -> A A B;

A A B => B A A

assume A A B in
begin

left-and A A B;

right-and A A B;
both B, A

end

Chapter 6

First-order reasoning in CNf'D

In this chapter we extend CNVD to first-order logic with equality. The propositional
framework of Chapter 4 is augmented with new syntactic constructs and evaluation
semantics that faithfully capture the forms of quantifier reasoning encountered in math-
ematical practice. We give a variety of examples that demonstrate the readability and
writability of the language, and the extent to which formal CAD proofs preserve the
structure of informal mathematical arguments. We then develop the theory of first-
order CAD deductions in detail, formulating a number of notions and proving several
results about the language (conclusion uniqueness, decidability of observational equiv-
alence, etc.). We also show how these results allow the optimization procedures we
developed for propositional CA/D to carry over directly to the first-order setting with-
out modification. Finally, we work out the Tarskian semantics of predicate CAD and
prove that the language is sound and complete for first-order logic with equality.

6.1 Syntax

6.1.1 Terms, formulas, and deductions over logic vocabularies

Let a logic signature Q = (C, F, R) be given, consisting of a set of constant symbols C,
a set of function symbols F, and a set of relation symbols R, with each symbol in F
and R having a unique positive integer associated with it and known as its arity. We
will assume that these three sets are countable and pairwise disjoint. We also assume
that there is a countably infinite set of variables V, disjoint from C, F, and R.1 The
pair (Q, V) will be called a logic vocabulary. The equality symbol '=' is reserved and
has a special status: we stipulate that it can only occur in a signature as a binary

'Of course we also require disjointness from logical symbols such as A, V, etc., as well as punctuation
marks such as the comma and parentheses.

relation symbol. We speak of a signature with equality (or without equality) according
to whether or not the symbol = is one of the relation symbols. We will use the letters
a, b, and c as typical constant symbols; f, g, and h as function symbols; M, P, Q, and
R as relation symbols; and x, y, z, u, v, and w as variables. We will use f" (Rn) to
range over function (relation) symbols of arity n.

Note that the constant and function symbols of a logic signature determine a unique
term signature (in the sense of Appendix A, page 401). Indeed, a logic signature is just
a term signature augmented with relation symbols. Thus, whenever it is convenient
to do so, we will ignore the relation symbols and treat a given Q as if it were a term
signature. Accordingly, the set of terms over Q and V, denoted Terms(Q, V), is defined
as usual: all constant symbols c and variables x are terms; and if t 1, . . . , t are terms
then so is f"(ti,... , tn)-nothing else is a term. The letters s and t will range over

terms. See Appendix A for details.
Next, (Q, V) -formulas (or simply "formulas" when the vocabulary (Q, V) is imma-

terial) are defined by the following abstract grammar:

F ::= R"(t1,... ,tn) | true | false I ,F | F A G I F V G | F =G I F <-G I (Vx)F I (3x)F

where R" ranges over the n-ary relation symbols of Q and t1, . . . , tn are terms over Q
and V. Thus formulas have the same structure that propositions did before, only now
the atoms are specified in detail: they are expressions of the form R(ti, . . . , t,). In
addition, there are two new kinds of formulas, universal and existential quantifications,
of the form (V x) F and (-: x) F, respectively. As before, we will use parentheses (as
well as square brackets) to disambiguate parsing; and we will use the letters F, G, and
H to denote formulas. For some relation symbols (such as the equality symbol) we
will use infix notation. We write Form(Q, V) for the set of all (Q, V)-formulas. By an
(Q, V)-assumption base (or simply an "assumption base" when it is not necessary to
mention (Q, V)) we will mean a finite subset of Form(Q, V). As before, we will use the
letter # to range over assumption bases. The letters <D and I will be used for arbitrary
(possibly infinite) subsets of Form(Q, V).

Free and bound variable occurences, subformulas, etc., are defined as usual (see
Section B.2.1 for details). We write FV(F) (BV(F)) for the set of all variables that
have free (bound) occurences in F; and we write Var(F) for the set of all variables
that occur in F. For arbitrary <p C Form(Q, V) we set

FV(<b) = U FV(F).
FE4b

The class of CA/D deductions is now parameterized over a logic vocabulary, and
thus we speak of "(Q, V)-deductions" (of course in practice we drop the reference to

First-order reasoning in CND154

(Q, V) when it is not needed). The abstract syntax of (Q, V)-deductions has the same
basic structure as before, augmented with four new constructs:

D ::= F Prim-Rule F 1, . . . , F,| assume F in D I D1 ; D 2

| specialize (V x) F with t ex-generalize (3 x) F from t
pick-any x in D I pick-witness x for (3y)F in D

where F, t, and x range over Form(Q, V), Terms(Q, V), and V, respectively, while
Prim-Rule ranges over the collection of inference rules specified in Figure 4.1. Deduc-
tions of the form F are called claims; we will also refer to them as trivial deductions.
A hypothetical (or conditional) deduction is one of the form assume F in D; we say
that D is the scope of the hypothesis F. Deductions of the form D1 ; D 2 are called
composite, or simply "compositions". The terminology for the remaining cases is:

specialize (Vx) F with t : universal instantiations (V-elimination)
ex-generalize (3 x) F from t : existential generalizations (3-introduction)

pick-any x in D : universal generalizations (V-introduction)
pick-witness x for (3 y) F in D : existential instantiations (3-elimination)

In the last two forms we refer to D as the scope of the eigenvariable x. Subdeduc-
tions, deduction size, well-formed deductions, etc., are defined as expected (rigorous
definitions can be found in Appendix B). Unless we indicate otherwise, the term "de-
duction" should be understood to mean "well-formed deduction". We write EV(D)
for the set of all eigenvariables of D (i.e., the set of all variables x that occur within
a subdeduction of D of the form pick-any x -.. or pick-witness x ...), and Var(D)
for the set of all variables that occur in D.

Deductions of the form Prim-Rule F1, . . . , F, universal specializations, 2 and exis-
tential generalizations will be called primitive (or atomic) deductions; all other non-
trivial deductions are called compound, or complex. Deductions "by contradiction", of
the form suppose-absurd F in D, are introduced as syntax sugar in the same man-
ner as before (see Section 4.1). We write Ded(Q, V) for the set of all (Q, V)-deductions.

6.1.2 Substitutions for formulas and deductions

For any (Q, V)-substitution 0, we define a function 00 : Form(Q, V) -> Form(Q, V) as
follows:

64 (R(ti, . tn)) =R(-O(ti), ... , 5(tn))

2We will use "specialization" and "instantiation" synonymously.

6.1 Syntax 155

[A1] F G [A2]
F aF ,-F --,G

F 1 ~aG 1 F 2 ~aG 2 Ix -+z}F ly -*z}G [A 4]
a 2) [A13] (Qx)F~a(Qy)G

(F1 o F2) ~a(G1 o G2) [A1(x)F-(QyG
(f for Q E {V, 3}, provided
for o E {/\,V,->,}. z occurs neither in F nor in G.

Figure 6.1: Definition of the alphabetic equivalence relation ~

00(-,G) = ,0(G)
00(F o G) = 6O(F) o 6O(G)

01((Qx)G) = (Qx)9[x -+x]O(G)

for o E {A, V, ->, '}, Q E {V, 1}. We refer to 6(F) as the result of applying 0 to F.
To simplify notation, we will usually write 0 F as an abbreviation for 6O(F). For a set

of formulas <b we write 0<D as a shorthand for {0(F) I F E (b}.

A substitution 0 = {xi - ti,... x, - tn} can be safely applied to a formula

F if no xi occurs free in a subformula of F of the form (Q x) G (for some quantifier

Q), where x E Var(ti). This can always be ensured by consistently renaming the

bound variables of F so as to obtain an alphabetic variant of F whose bound variables

are disjoint from Var(ti), i = 1, ... ,n. Two formulas are alphabetic variants-or

alphabetically equivalent-when they differ only in the names of their bound variables.

The relation of alphabetic equivalence is denoted by ~; it is precisely defined in

Figure 6.1. The reader will verify that ~ is an equivalence relation. From now

on alphabetically equivalent formulas will be identified. That is, two formulas will
be considered identical iff they are alphabetic variants. Thus we will essentially be

working with equivalence classes of formulas. The following simple result will come

handy later:

Lemma 6.1 If y V Var(F) then (Q x) F ~, (Q y) {x -4 y} F (for Q E {V, E}).

Proof: Consider any variable z that does not occur in F. Since y does not occur in F,

Lemma 6.17 below entails the identity {y '- z} {x F-> y} F = {x F-+ z} F. Therefore,
by [A1],

{x > z} F ~0 {y - z} {x - y} F

and by [A4], (Q x) F (Q y) {x - y}F

First-order reasoning in CND156

0

6.1 Syntax 157

O*(F)

0* (Prim-Rule F1, ... , F,)

0*(specialize F with t)
0*(ex-generalize F from t)

O*(assume F in D)

*(D1; D 2)

O*(pick-any x in D)

O*(pick-witness x for F in D)

= OF
= Prim-Rule 0 F 1 ,... ,0 F

= specialize O F with 0(t)

= ex-generalize 0 F from 0(t)

= assume OF in 0*(D)

= O*(D1); 6*(D2)
= pick-any x in 0[x '-* x]*(D)

= pick-witness x for OF in 0[x -4 x]*(D)

Figure 6.2: Definition of 0*(D).

Finally, for any (Q, V)-substitution 0 we define a function

0* : Ded(Q, V) -* Ded(Q, V)

as shown in Figure 6.2. We refer to 0*(D) as the result of applying 0 to D. As we did
with applications of substitutions to formulas, we will write 0 D as an abbreviation for
0*(D). Intuitively, 0 D is obtained by replacing every free occurence of all variables x
in D by 0(x). Note that in deductions of the form

pick-any x in D' (6.1)

and

pick-witness x for F in D' (6.2)

the eigenvariable x is considered bound, and thus there are no free occurences of it to be
replaced. Accordingly, when we come to apply 0 to the body D', we "mask" whatever
value 0 prescribes for x by extending 0 with the binding [x '-* x], which ensures that
all free occurences of x inside D' will remain unchanged. (Observe, however, that in
existential instantiations of the form 6.2 the scope of x does not include F; that is why
in the definition in Figure 6.2 we apply 0-rather than 0[x * x]-to F.)

The fact that eigenvariables are bound and have scope also raises the specter of
variable capture. Consider again a deduction of the form 6.1 or 6.2 and suppose that
a variable y / x occurs free in D', where x has occurences in 0(y). Then if we apply 0
without precaution and replace y inside D' by 0(y), the said occurences of x will become

6.1 Syntax 157

captured. A condition that rules out this possibility is the following: no eigenvariable
should occur in 0(y), for all y C Supp(0). Accordingly, we will say that a substitution
0 is safe for a deduction D iff

Ran Var(0) n EV(D) = 0. (6.3)

In fact this condition is coarser than necessary, but has the advantage of simplifying
certain proofs. Later on we will see that deductions that differ only in the names of
their eigenvariables are essentially identical (observationally equivalent), and hence we
can always rename the eigenvariables of a deduction to our liking. For this reason we
may tacitly assume that any substitution 0 is safe for a given D: we simply rename
the latter's eigenvariables away from Ran Var(0). But until we get to that point we
will need to use the notion of safety given by 6.3.

6.2 Evaluation semantics

Before delving into the formal semantics we will discuss the evaluation of the new
constructs informally. Let us first consider the two new primitive rules, universal
specializations, of the form

specialize (Vx) F with t (6.4)

and existential generalizations, of the form

ex-generalize (] x) F from t. (6.5)

For 6.4, if the formula (V x) F is in the assumption base, then the result is the formula

{x '-4 t} F; it is an error if (V x) F is not in the assumption base. It should be intuitively
clear that this is a sound rule. For 6.5, if the formula {x '-* t} F is in the assumption
base (so that t is a "witness" for the existential claim (2x)F), then the generalization
(]x)F is returned; otherwise an error occurs. It should be clear that this rule, too, is
sound (we will formally prove the soundness of both rules in Section 6.6).

Next, let us see how pick-any (V-introduction) and pick-witness (]-elimination)
work. To evaluate a deduction pick-any x in D in some assumption base 3, we
simply evaluate D in 0, in a context in which x refers to an arbitrary individual.
If D produces a formula F, then the result of the whole deduction is the universal
generalization (Vx)F. It should be clear that if x does not occur free in any member of
0 then it already refers to an "arbitrary individual" and we do not have to do anything
special: we just evaluate D in 0, and if that results in some F, we return (Vx)F. In

First-order reasoning in CND158

general, however, x might occur free in 0, and in that case this method would be
unsound. For instance, evaluating

pick-any x in x = 0

in an assumption base that contained the formula x = 0 would result in (Vx)x = 0.
There are several ways to formally enforce the requirement that x be "arbitrary",

although we will eventually see that the most elegant and efficient solution requires
a more sophisticated syntax and semantics such as found in the Ap-calculus (see Sec-
tion 9.7). But there are alternatives in the present setting as well, two of which are:

1. To evaluate pick-any x in D in /3, evaluate D in the subset of 3 comprised by
those formulas which do not contain free occurences of x. Thus we explicitly
"block out" any special knowledge we might have about x during the evaluation
of D. If F is thus obtained, return (Vx)F.

2. To evaluate pick-any x in D in #, evaluate D' in 0, where D' is obtained from
D by replacing every free occurence of x by some fresh variable y (one that does
not occur in 3 or in D). If F is thus obtained, return (Vy)F.

Both approaches are sound but the first one destroys the monotonicity aesthetic, and
for that reason we will opt for the second alternative. From a practical standpoint
this should be irrelevant to the user: as far as writing deductions is concerned, all that
matters is that in deductions of the form pick-any x in D the system will ensure
that no special assumptions about x are made.

Finally we consider the evaluation of deductions of the form

pick-witness x for (3y)F in D

in some 0. The idea here is that the existential generalization (3y)F is already estab-
lished (i.e., in 3), and we are simply picking x as a witness term for it in the course
of D. We thus evaluate D in / U {{y - x} F}; if that results in a conclusion G, we
return G. That is, the result of the entire deduction is the result of evaluating D in
U {{y -+ x} F}. Loosely speaking, the reasoning is: "We know that there exists an
individual for which F holds. Let the name x refer to that individual. If with this
convention we can prove (via D) some formula G, then we are entitled to infer G".

Of course there are some caveats to be observed. First, no special assumptions
about x should be made. The variable x should only serve as a "dummy"-the de-
duction should go through if we replace x by any other variable. It is not difficult
to see what could go astray otherwise. Suppose we know that x is even, i.e., the for-
mula Even(x) is in 0. And suppose that we know that there exists an odd number,

6.2 Evaluation semantics 159

(]y) Odd(y). If we let x be the witness for this claim, we could deduce that there is
a number that is both odd and even. In our case, the phrase "no special assump-
tions about x" simply means that x should not occur free in /. As in the case of
V-introduction, the semantics will ensure that this requirement is satisfied by replac-
ing x throughout by a fresh variable that does not occur in 3 or in D. Thus the burden
of having to keep track of which names are currently in use and can or cannot be used
as witnesses shifts from the user to the system. The user can choose any name he
pleases as a witness, even if it occurs free in the assumption base. Since the name is
meant to be used as a "dummy", the system will automatically replace it by a fresh
name throughout.

For technical reasons, we will also require that the variable x should not occur free
in the conclusion G. This is in harmony with our stipulation that x should only serve
as a dummy name for the object for which F holds in the course of establishing G. The
conclusion G should not refer to that object by name; that should be irrelevant. In fact
this requirement is not essential, because renaming will ensure that only sound results
are obtained, even if x occurs free in the conclusion. Nevertheless, we will enforce
the requirement, first because doing so will facilitate some technical issues later in
our proofs, and secondly because deductions which violate this requirement are in bad
style.3

We stress that the eigenvariable restrictions are relegated to the semantics, and
hence, from a practical standpoint, to the implementation of the language. The user
is free from all the tedious book-keeping that is usually necessary for quantifier ma-
nipulation in formal proof systems. This is part of the reason why, as the examples
will show shortly, proofs in this language mirror informal mathematical reasoning so
closely.

Figure 6.3 depicts the formal evaluation semantics of first-order CND. Rules [R1]
[R5] are just as in the propositional case. Rules [R6]-[R] cover the new syntax forms

3For a more exotic example of a situtation where things could go wrong if this requirement is not
met, suppose that we had concurrency in the language, so that two deductions could be evaluated in
sync. Suppose that these two deductions are

pick-witness x for (]y)H(y) in H(x)

and

pick-witness x for (]y)-,H(y) in -,H(x)

to be evaluated in some Q that contains (1y)H(y) and (1y)-,H(y) and no occurences, say, of the
variable z. Suppose that, during the parallel evaluation, the variable z is chosen in both cases as a
replacement for x. This could happen because z does not occur either in # or in either of the two
deductions. Then the respective conclusions would be H(z) and --,H(z). After the two threads would
join, the contradiction H(z) A -,H(z) would be derivable.

First-order reasoning in CND160

6.2 Evaluation semantics

[R1] [R2]
F- true-> true -, ,false ~> -false

[R3] # U {F}H D ~> G [R4]
3U{F } HF >F F- assume F in D--+ F = G

I-H Di ~>-F 1 # U {F 1 } D 2-- + F2 [R5
/ H D 1 ; D 2->- F 2

[R6|
U {(V x) F} Fspecialize (V x) Fwith t --+ {x -4 t} F

[R7]
U {{x -* t} F} - ex-generalize (3 x) F from t -~>- (3 x) F

0 F {x - y} D ~>+ F [8[Rs]
3 - pick-any x in D -s* (Vy)F

whenever y does not occur in # or in D.

U {(3 y) F, {y - z} F} {x - z} D -- G [R9]
U {(3 y) F} [pick-witness x for (3 y) F in D -> G

whenever z does not occur in / U {(3 y) F} or in D,
and z g FV(G).

Figure 6.3: Evaluation semantics of predicate CN'D.

introduced in this chapter, formalizing the ideas we discussed above. In addition to

these rules, we also need to postulate the axioms shown in Figure 4.3, which prescribe

the behavior of the primitive inference rules for propositional reasoning. Those axioms

carry over without change-save the obvious difference that we are now dealing with

formulas rather than propositions-and so we will not repeat them here.

Now fix a logic vocabulary (Q, V). As before, we write / I- D -- > F to mean that

there is a finite sequence of judgments

01 - D1~>-- F1, . .. , On - Dn ~>- Fn (6.6)

such that #n = 3, Dn = D, Fn = F, and where every judgment /i I- Di -- F in 6.6 is

either an instance of [R1], [R2], [R3], or one of the primitive-rule axioms of Figure 4.3;

161

or else follows from previous judgments through one of the rules [R4]-[R9]. For an
arbitrary set of formulas (D, we write 4J Hcgo F to signify that there is a deduction
D and an assumption base # C 1 such that # I- D -- > F. The following two results
are immediate consequences of the foregoing definitions, just as in the propositional
version:

Lemma 6.2 (Reflexivity) (HCAI-D F for all F E (.

Lemma 6.3 (Monotonicity) If 4(D Hcgp F then 'T U T Hcgv F.

Equality

Special primitive inference rules are needed to handle signatures with equality. The
number of such rules can be reduced to a minimum of two: reflexivity and Leibniz's rule.
All of the other familiar properties of equality (symmetry, transitivity, congruence, etc.)
can be derived from these two rules. Our formulation of these rules is as follows:

" Reflexivity: Applications of this rule are of the form

ref t

for an arbitrary term t. This simply produces the result t = t, regardless of the
contents of the assumption base.

" Leibniz: Applications of this rule are of the form

leibniz F with x, s, t

for any formula F, variable x and terms s and t. If the equality s = t is in the
assumption base then the result is the biconditional

{x 4 s} F {x -4 t} F.

If s = t does not hold (i.e., is not in the assumption base), then an error occurs.

The formal semantics of these two rules are shown in Figure 6.4.
Derived inference rules for dealing with equality can easily be obtained from [Ref]

and [Leibniz] in such a way that every application of a derived inference rule can
be mechanically replaced by a deduction that uses only the primitive inference rules.
(Later we will develop a more uniform way of formulating "derived" rules via methods.)
We discuss a few such derived rules and rule schemas below:

First-order reasoning in CNVD162

[Ref]
F- ref t -- t = t

.[Leibniz]
U{s = t}H leibniz F with x,s,t-~+ {x F- s} F >{x- t} [Lbnz F

Figure 6.4: Evaluation semantics for the primitive equality rules.

1. Symmetry: From s = t we may infer t = s. We model this with the rule swap,
which is applied as follows:

swap s = t

for any terms s and t. The idea is that if s = t is in the assumption base, then
the result t = s should be produced; otherwise an error should occur. This can
be achieved by "desugaring" every application of swap of the form shown above
into the following deduction:

leibniz t = x with x, s,t;

;; This gives t =s < t = t.

left-iff t = s t = t;

;; Now we have t = t -t = s.

ref t;
;; And t = t from reflexivity.
modus-ponens t = t =>t = s,t = t
;; Finally we get t =s.

for any variable x (Var(s) U Var(t).

2. Transitivity: From si = S2 and S2 = s3 we may infer si = S3. We model this
with a rule called tran, which is applied as follows:

tran Si = S2, 2 = 83

for any terms si, S2 and s3. The intended semantics are: if si = S2 and s2 = 83

are in the assumption base, then si = S3 should be produced; otherwise an error
should occur. This can be achieved with the following desugaring:

leibniz X = S3 with x, si, s 2 ;

6.2 Evaluation semantics 163

First-order reasoning in CNF1D

;; This gives si = 83 S2 82 83.

left-iff Si = S3 4= = 83;

;; Now we have S2 = Sa * Si = 83.

modus-ponens S2 = 83 = S1 = S3, 2 = 83

;; Finally we get Si = s3-

for any x that does not occur in si , S2, or s3 .

3. Congruence: If we have si = t1 ,... , sn = tn and R(si,... , sn), for any n-ary
relation symbol R, then we may infer R(ti, . . . , tn). This is a rule schema, with
one instance for each different value of n. The general schema is

cong R(ti,... , tn) from R(si,... , sn), Si =ti,... ,S = tn

the intended semantics being that if the equalities si = ti, ... , sn = tn and the
formula R(si,... , sn) are in the assumption base, then the formula R(ti, . .. , tn)

is derived; otherwise an error occurs. We show how to desugar applications of
this rule for n = 2; the idea is the same for all other values of n.

leibniz R(x, s 2) with x, si, ti;

;; This gives R(si, S2) 4 R(ti, 82).

right-iff R(si, s 2) 4 R(ti, s 2);
;; Now we have R(si, s 2) = R(ti, s 2).
modus-ponens R(si, S2) ==> R(ti, S2), R(si, S2);

;; We now have R(ti, s 2).
leibniz R(ti, x) with x, s 2 , t 2 ;
;; This gives R(ti, S2) 4 R(ti, t2).
right-iff R(ti, s 2) 4 R(t1 , t 2);
;; Now we have R(ti, s 2) = R(ti, t2).
modus-ponens R(ti, S2) = R(ti, t 2), R(ti, S2)
;; And finally we get R(ti,t 2).

(for x g Var(si) U Var(ti), i = 1,... ,n.)

The same method can be used for congruences involving function symbols, i.e.,
the derivation of formulas f(si, . . . , s,) = f (t, , tn) from the equalities si =

ti, ... , sn = tn. The same rule schema, cong, can be used for such derivations,
as in

cong f(s 1, . .. , s.) = f(ti, ... , tn) from s 1 = ti , ... , sn = tn

164

6.3 Examples

Our first example derives -(3 x) -,P(x) from the assumption (Vx) P(x) (this is one of
a family of inference rules collectively known as quantifier negation):

assert (V x) P(x);
suppose-absurd (3 x) -P(x) in

pick-witness y for (] x) -,P(x) in
begin

specialize (Vx) P(x) with y;
absurd P(y),-,P(y)

end

Our second example infers (V y) R(y) from (V x) [P(x) A Q(x)] and (V x) [Q(x) = R(x)]:

assert (Vx) [P(x) A Q(x)];
assert (Vx) [Q(x) => R(x)];
pick-any y in

begin
specialize (Vx) [P(x) A Q(x)] with y;
right-and P(y) A Q(y);
specialize (V x) [Q(x) = R(x)] with y;
modus-ponens Q(y) = R(y), Q(y)

end

Our third example derives the tautology (V x) [P(y) Q(x)] = [P(y) = (V z) Q(z)]:

assume (V x) [P(y) = Q(x)] in
assume P(y) in

pick-any z in
begin

specialize (V x) [P(y) = Q(x)] with z;
modus-ponens P(y) = Q(z), P(y)

end

Observe how our choice of which language construct to use at each step is dictated
by the main logical connective of the formula we are trying to prove-a hallmark of
natural deduction. At the top level we are trying to establish a conditional F =* G,
so we start out with a skeleton deduction assume F in D, where D is to establish G
(perhaps with the help of the hypothesis F). Now G itself is a conditional G1 =4 G 2 ,
so D becomes refined into another hypothetical deduction of the form assume G1

6.3 Examples 165

in D', where D', yet to be discovered, should establish G 2 , i.e., (Vz)Q(z). Universal
generalizations are introduced by pick-any deductions, so this is the form that D'
assumes. The details are then filled in with elementary forward reasoning.

Our fourth example derives (3 y) [Q(y) A R(y)] from the set of premises

{(V x) [P(x) > Q(x)], (3 x) [R(x) A P(x)]}:

assert (V x) [P(x) = Q(x)];
assert (3 x) [R(x) A P(x)];
pick-witness z for (3 x) [R(x) A P(x)] in

begin
right-and R(z) A P(z);
specialize (Vx) [P(x) = Q(x)] with z;
modus-ponens P(z) = Q(z), P(z);
left-and R(z) A P(z);
both Q(z), R(z);
ex-generalize (3 y) [Q(y) A R(y)] from z

end

Our next example is taken from an exercise in Copi's "Symbolic Logic" [17]. The
exercise asks for the formalization of the following argument:

All the accused are guilty. All who are convicted will hang. Therefore, if
all who are guilty are convicted, then all the accused will hang.

Using A(x), C(x), G(x), and H(x), respectively, for "x is accused", "x is convicted",
"x is guilty", and "x will hang", we are asked to derive

(V x) [G (x) =* C (x)] =:> (V y) [A (y) =: H (y)]

from (V x) [A(x) =* G(x)] and (V x) [C(x) => H(x)]. The following deduction accom-
plishes this:

assert (V x) [A(x) # G(x)];
assert (V x) [C(x) = H(x)];
assume (V x) [G(x) > C(x)] in

pick-any y in
assume A(y) in

begin
specialize (V x) [A(x) = G(x)] with y;
modus-ponens A(y) = G(y), A(y);

First-order reasoning in CNVD166

specialize (V x) [G(x) C 0(x)] with y;
modus-ponens G(y) C 0(y), G(y);
specialize (V x) [C(x) = H(x)] with y;
modus-ponens C(y) = H(y), C(y)

end

Finally, we present additional CA'D proofs of some well-known and important tau-
tologies of predicate logic. We hope these will serve as evidence that this language
captures common mathematical reasoning in a formal but fluid style. The reader
should glance at a few of these proofs and then try the rest on his own. We believe
that the reader will be pleasantly surprised by how easy it is to write (and read!)
deductions in such a language.

(Vx) [P(x) A Q(x)] => (Vx) P(x) A (Vx) Q(x)

Proof:
assume (Vx) [P(x) A Q(x)] in

begin
pick-any y in

begin
specialize (Vx) [P(x) A Q(x)] with y;
left-and P(y) A Q(y)

end;
pick-any y in

begin
specialize (Vx) [P(x) A Q(x)] with y;
right-and P(y) A Q(y)

end;
both (Vy) P(y), (Vy) Q(y)

end

[(Vx) P(x) A (Vx) Q(x)] => (Vx) [P(x) A Q(x)]

Proof:
assume (V x) P(x) A (V x) Q(x) in

pick-any y in
begin

left-and (V x) P(x) A (V x) Q(x);

6.3 Examples 167

168 First-order reasoning in CA/V

specialize (Vx) P(x) with y;
right-and (V x) P(x) A (V x) Q(x);
specialize (Vx) Q(x) with y;
both P(y), Q(y)

end

(3 x) [P(x) A Q(x)] =: (3 x) P(x) A (3 x) Q(x)

Proof:
assume (3 x) [P(x) A Q(x)] in

pick-witness y for (3 x) [P(x) A Q(x)] in
begin

left-and P(y) A Q(y);
ex-generalize (3 x) P(x) from y;
right-and P(y) A Q(y);
ex-generalize (3 x) Q(x) from y;
both (3 x) P(x), (] x) Q(x)

end

[(Vx) P(x) v (Vx) Q(x)] => (Vx) [P(x) V Q(x)]

Proof:
assume (V x) P(x) V (V x) Q(x) in

pick-any y in
begin

assume (V x) P(x) in
begin

specialize (V x) P(x) with y;
left-either P(y), Q(y)

end;
assume (V x) Q(x) in

begin
specialize (V x) Q(x) with y;
right-either P(y), Q(y)

end;
cd (V x) P(x) V (V x) Q(x), (V x) P(x) # P(y) V Q(y),

(V x) Q(x) # P(y) V Q(y)
end

First-order reasoning in CN'VD168

6.3 Examples 169

,(3 x) P (x) -:> (V x) ,-IP(x)

Proof:
assume -(x) P(x) in

pick-any y in
suppose-absurd P(y) in

begin
ex-generalize (3 x) P(x) from y;
absurd (3 x) P(x), -(x) P(x)

end

(V X) ,1P (x) -(3 x) P(x)

Proof:
assume (Vx)-,P(x) in

suppose-absurd (E x) P(x) in
pick-witness y for (3 x) P(x) in

begin
specialize (Vx) -,P(x) with y;
absurd P(y),-iP(y)

end

-(V x) P(x) => (x) -,P(x)

Proof:
assume -(V x) P(x) in

begin
suppose-absurd -(3 x) -P(x) in

begin
pick-any y in

begin
suppose-absurd -,P(y) in

begin
ex-generalize (]x) -,P(x) from y;
absurd (3x) -,P(x), -(3x) -P(x)

end;
dn ,,P(y);

end;

6.3 Examples 169

170 First-order reasoning in CA/D

absurd (V x) P(x), -(V x) P(x)
end;

dn ,(3 x) ,iP (x)
end

(3 x),-P (x) 4 (V X) P (x)

Proof:
assume (3x) -P(x) in

suppose-absurd (V x) P(x) in
pick-witness y for (3x)-,P(x) in

begin
specialize (Vx) P(x) with y;
absurd P(y),-,P(y)

end

(3 x) P(x) V (3 x) Q(x) =4 (3 x) [P(x) V Q(x)]

Proof:
assume (] x) P(x) V (3 x) Q(x) in

begin
assume (3 x) P(x) in

pick-witness y for (3 x) P(x) in
begin

left-either P(y) V Q(y);
ex-generalize (3 x) [P(x) V Q(x)] from y

end;
assume (3 x) Q(x) in

pick-witness y for (3 x) Q(x) in
begin

right-either P(y) V Q(y);
ex-generalize (3 x) [P(x) V Q(x)] from y

end;
cd (] x) P(x) V (3 x) Q(x), (] x) P(x) = (I x) [P(x) V Q(x)],

(3 x) Q(x) = (3 x) [P(x) V Q(x)]
end

(3 x) [P(x) V Q(x)] => (3 x) P(x) V (3 x) Q(x)

First-order reasoning in CND170

6.3 Examples 171

Proof:
assume (I x) [P(x) V Q(x)] in

pick-witness y for (] x) [P(x) V Q(x)] in
begin

assume P(y) in
begin

ex-generalize (3 x) P(x) from y;
left-either (3 x) P(x) V (3 x) Q(x)

end;
assume Q(y) in

begin
ex-generalize (3 x) Q(x) from y;
right-either (3 x) P(x) V (3 x) Q(x)

end;
cd P(y) V Q(y),P(y) = (3 x) P(x) V (3 x) Q(x),

Q(y) = (3 x) P(x) V (3 x) Q(x)
end

(V x) [P(x) = Q(x)] (V x) P(x) = (V x) Q(x)

Proof:
assume (V x) [P(x) = Q(x)] in

assume (V x) P(x) in
pick-any y in

begin
specialize (V x) [P(x) #* Q(x)] with y;
specialize (V x) P(x) with y;
modus-ponens P(y) =* Q(y), P(y)

end

(V X) [P(X) == Q(X)] = (3 X) P(x) =* (3 X) Q(z)

Proof:
assume (V x) [P(x) # Q(x)] in

assume (] x) P(x) in
pick-witness y for (3 x) P(x) in

begin
specialize (V x) [P(x) > Q(x)] with y;

6.3 Examples 171

172 First-order reasoning in CA/P

modus-ponens P(y) => Q(y), P(y);
ex-generalize (3 x) Q(x) from y

end

Proof:
assume (V x) [P(x) = Q(x)] in

assume (V x) P(x) in
begin

suppose-absurd -(x) Q(x) in

begin
(V x) -,Q(x); (Insert the deduction of (V x) Q(x) from ,(3 x) Q(x)).

pick-any y in
begin

specialize (V x) [P(x) = Q(x)] with y;
specialize (Vx) P(x) with y;
modus-ponens P(y) =* Q(y), P(y);
specialize (Vx) -,Q(x) with y;
absurd Q(y), -,Q(y)

end;
specialize (V y) false with y;

end;
dn ,,(]x) Q(x)

end

(3 x) (V y) P(x, y) =* (V y) (3 x) P(x, y)

Proof:
assume (3 x) (V y) P(x, y) in

pick-witness x1 for (I x) (V y) P(x, y) in
pick-any z in

begin
specialize (V y) P(xi, y) with z;
ex-generalize (] x) P(x, z) from xi

end

(V x) (V y) P(x, y) = (V y) (V x) P(x, y)

First-order reasoning in CNVD172

[-x) [P x) * Qx) W = (V x) P (x) * (: x) Q (x)I

6.3 Examples 173

Proof:
assume (V x) (V y) P(x, y) in

pick-any z in
pick-any w in

begin
specialize (V x) (V y) P(x, y) with w;
specialize (V y) P(w, y) with z

end

(3 x) (3 y) P(x, y) = (3 y) (3 x) P(x, y)

Proof:
assume (3 x) (3 y) P(x, y) in

pick-witness x1 for (] x) (I y) P(x, y) in
pick-witness y1 for (Ely) P(xi, y) in

begin
ex-generalize (3 x) P(x, yi) from x1 ;
ex-generalize (3 y) (3 x) P(x, y) from y1

end

(ax)(Vy) P(x, y) =* (Vy) (3 x) P(x, y)

Proof:
assume (3 x) (V y) P(x, y) in

pick-any z in
pick-witness x1 for (3 x) (V y) P(x, y) in

begin
specialize (V y) P(xi, y) with z;
ex-generalize (] x) P(x, z) from x1

end

The above derivations imply the second and third parts of the following lemma,
which will come handy in our completeness proof; the first part is an easy exercise in
propositional reasoning.

Lemma 6.4 (a) If 0 -CxvD --,(F >. G) then 13 I-CvD F and 0 Hcxv, 'G.

(b) If 0 cvD (V x) -F then/3 Hcgv- (3 x) F.

(c) If 0 cD -(V x) F then 0 crD (3 x) -F.

6.3 Examples 173

174 First-order reasoning in CAfD

6.4 Theory

In this section we derive some fundamental results about CAD.

Lemma 6.5 -TF =o- oF.

Proof: By induction on the structure of F. When F is an atom R(ti,... , t") we have

UTF = R(6Qr(ti)), ... , U(T.(t)))

and
o- o r F = R (oi--T (ti1), . . . - (tn))

and the result follows from Lemma A.1. When F is a negation -G we have o-r F =

-- 'a T G while o- o r F = ,o- o T G, so the identity follows from the inductive hypothesis.

The rest of the propositional cases are similar.
Finally, when F is of the form (Q x) G for some quantifier Q, we have

Or TF = (Q x) o-[x '-* x] r[x -4 x] G (6.7)

while

UO TF = (QX) (U 0T)[X -+ x] G. (6.8)

By alphabetic conversion, we may assume that x g Supp(o-) U Supp(T), and thus

o[x H- x] = o,

T[X - X] = r,

and

(o 0 T)[X F-> X] = o T

so the identity follows directly from 6.7 and 6.8 by the inductive hypothesis.

Lemma 6.6 Let 01 = {x f-+ Y1l, 02 = {x I-* Y2}, x / yi. Then 02 o 01 = 01.

Proof: We have 01(x) = y1 and

02 0 01(x) = W2(01(X)) = 9 2(Y1) = Y1 = 01(x)

(since y1 V Supp(0 2) by the supposition x $ y1). For any variable z / x we also have

02 o 01(z) = 02(01(z)) = z = 01(z).

Thus we have shown that 01(v) = 02 o 01(v) for all variables v. 0

6.4 Theory 175

Corollary 6.7 Let 01 = {x '-4 y1}, 02 = {X '-4 Y2}, x / Y1. ThenW2(I(t)) = 9(t).

Proof: By Lemma A.1, 62(1(t)) = 92 o 61 (t), thus the desired identity follows from
Lemma 6.6. 0

Corollary 6.8 Let 01 = {x y1}, 6 2 = {X F Y 2}, X #y 1.

Proof: Immediate from Lemma 6.6 and Lemma 6.5.

Then 2 61 F = 01 F.

0

Lemma 6.9 Let 1 = I{x -- y1}, 2 = {X - Y 2 }, x 1yi. Then6261 D = 01 D.

Proof: By induction on the structure of D. When D is a claim F or a primitive
deduction of the form Prim-Rule F 1, . . . , Fn, or specialize F with t, or

ex-generalize F from t,

the result follows from Corollary 6.7 and Corollary 6.8.
assume F in D' we have

while

When D is of the form

0291 D = assume 92 01 F in 02 01 D'

01 D = assume 01 F in 01 D'

and the identity now follows from Corollary 6.8 and the inductive hypothesis. When
D is of the form D1; D 2, the result follows readily from the inductive hypothesis.

Next, when D is of the form pick-any z in D', we have

0291 D = pick-any z in 92 [z '-+ z] 01 [z F-+ z] D' (6.9)

while

01 D = pick-any z in 01[z F-- z] D' (6.10)

There are two cases:

(a) z = x : Then 01 [z '-4 z] = {} = 92[z 1 z], so 6.9 and 6.10 yield 02 1 D = 01 D.

(b) z x : Then 01[z '-* z] = 01, 02 [z - z] = 02, and 02 0 1 D = 01 D now follows
from 6.9, 6.10, and the inductive hypothesis.

6.4 Theory 175

Finally, suppose that D is of the form pick-witness z for F in D'. Then

6201 D = pick-witness z for 0201 F in 62 [z '- z] 01[z '-* z] D' (6.11)

while

01 D = pick-witness z for 01 F in 01[z '- z] D' (6.12)

and we again perform a case analysis:

(a) z = x: Then 01 [z '-4 z] = {} = 02 [z '-4 z], so 6.11 and 6.12 yield

0201 D = pick-witness z for 0201 F in D'

while
01 D = pick-witness z for 01 F in D'

and thus the equality 0201 D 0 01 D follows from Corollary 6.8.

(b) z # x: Then 01 [z '-* z] = 01, 02 [z F-> z] = 02, so 6.11 and 6.12 become

0201 D = pick-witness z for 0201 F in 0201 D'

while
01 D = pick-witness z for 01 F in 01 D'

and 0201 D = 01 D now follows from Corollary 6.8 and the inductive hypothesis.

This completes the case analysis and the inductive argument.

We will call two substitutions 01 and 02 disjoint iff

1. Supp(0i) n Supp(02) = 0; and

2. Ran Var(0) n Supp(0j) = 0 whenever i, j E {1, 2},i j. 4

Lemma 6.10 If 01 and 02 are disjoint then so are 01[x i-4 x] and 02[x '-* x].

Proof: The reader will recall the following elementary fact about sets: if Si n S2 = 0
then S' n S2 = 0 for all S' C Si, S2 C S2. Thus the result is immediate, since
Supp(0i[x F-+ x]) C Supp(0) and Ran Var(0i[x -* x]) C Ran Var(0) for i = 1, 2. M

The following result shows that disjoint substitutions commute:

4 See page 404 for the definition of RanVar.

First-order reasoning in CND176

Lemma 6.11 If 01,02 are disjoint then02 0 01 = 01 0 02.

Proof: We will show that L(x) = R(x) for all variables x, where L(x) = 02 (01(x)) and
R(x) = 01(0 2(x)). There are two possible cases:

(a) x E Supp(02) : Then, by the supposition of disjointness,

x V Supp(01) (6.13)

and

Var(02(x)) n Supp(0i) = 0.

Therefore, from 6.13, L(x) = 02(01(x)) = 02 (x), while from 6.14,

R(x) = W1(02(x)) = 02(x)

(6.14)

and thus L(x) = R(x).

(b) x g Supp(02) : Here we distinguish two subcases:

- x E Supp(01) : Then, by disjointness,

Var(01(x)) n Supp(02) = 0 (6.15)

hence L(x) = 02 (01 (x)) = 01(x), while R(x) = 01 (02 (x)) = 01(x), thus the
equality holds in this case as well.

- x g Supp(01) : Then L(x) = x = R(x).

The proof is now complete since the considered cases are jointly exhaustive.

Corollary 6.12 If 01 and 02 are disjoint then 02 (0 1(t)) = 01 (0 2(t)).

Proof: By Lemma 6.11 and Lemma A.1.

The following is the analogue of Corollary 6.12 for formulas:

Corollary 6.13 02 01 F = 01 02 F whenever 01,02 are disjoint.

Proof: By Lemma 6.11 and Lemma 6.5.

We can generalize the result to deductions as follows:

Lemma 6.14 0201 D = 01 02 D whenever 01, 02 are disjoint.

6.4 Theory 177

178 First-order reasoning in CAND

Proof: By induction on the structure of D. When D is a claim F or a primitive
deduction of the form

Prim-Rule F 1, ... ,

or specialize F with t, or ex-generalize F from t, the result follows from Corol-
lary 6.13 and Corollary 6.12. When D is of the form assume F in D', we have

02 01 D = assume 02 01 F in 92 91 D'

while

91 02 D = assume 91 92 F in 91 92 D'

and the desired identity follows from Corollary 6.13 and the inductive hypothesis.
When D is a composite deduction DI; D 2, the result follows directly from the inductive
hypothesis.

Next, when D is of the form pick-any z in D', we have

0201 D = pick-any z in 92 [z z] 01[z - z] D'

and

0192 D = pick-any z in 91 [z - z] 0 2 [z - z] D'

and since 91 [z -* z] and 2[z -* z] are disjoint (Lemma 6.10), the result follows from
the inductive hypothesis. Finally, when D is of the form pick-witness z for F in D',

0201 D = pick-witness z for 0201 F in 2 [z - z] 01 [z - z] D'

and

0102 D = pick-witness z for 0102 F in 91 [z z] 0 2 [z - z] D'

and the result now follows from Corollary 6.13 and the inductive hypothesis, since
01[z -* z] and 92 [z - z] are disjoint (again, by Lemma 6.10). 0

Lemma 6.15 Let o = {x 1 4 X2} T = {X 2 - X3}, 0 = {xi F-- x 3 }. If x 2 Var(t)
then T(U(t)) = 9(t).

Proof: By structural induction on t. When t is a variable, it is either x1 or something
other than x1 and x 2 (it cannot be x 2 by supposition). If it is x1 then T(-(t)) = X3,

while 0(t) = x 3 , so the equality holds. When it is something other than x1 and x 2 then

T(i(t)) = t = 0(t)

6.4 Theory 179

so the equality holds in this case too. When t is a constant symbol the result is
immediate. Finally, when t is of the form f(ti,... , t.) we have

7T(OV)) = f(M(F(ti)), . .. , T((tn)))

and

O(t) = f((ti), , 0(tn))

so the equality follows from the inductive hypothesis.

We immediately get:

Corollary 6.16 If x 2 V Var(t) then {x2 F-+ 1I({ F- x 2 }(t)) = t.

The following is the analogue of Lemma 6.15 for formulas:

Lemma 6.17 Let a = {x1 - 2, T = {X 2 - X3}, 9 = {xi -* x3}. If x2 V Var(F)
then TacF = OF.

Proof: By structural induction on F. When F is an atom the result follows from
Lemma 6.15. When F is a negation -G, we have r F = -r u G, and, by the inductive
hypothesis, T a G = 0 G, hence

-rF = ,1G = 0-C,G = F.

The rest of the propositional cases are handled similarly.
Finally, suppose that F is of the form (Q v) G. Owing to alphabetic conversion, we

may assume that
V g {Xi, X 2 , X 3 }

so that u[v '-+ v] = a, T[v '-* v] = r, and O[v F-+ v] = 0. Accordingly,

T -F = (QV)T a G (6.16)

and

OF= (Qv)OG. (6.17)

Since x2 does not occur in G, the inductive hypothesis yields

TuG = OG

hence
TrF = OF

now follows from 6.16 and 6.17. 0

180 First-order reasoning in CND

Corollary 6.18 If x 2 V Var(F) then {x 2 > x1} {xI x 2} F = F.

The following result generalizes Lemma 6.17 to deductions:

Lemma 6.19 Let o- = {x1 - X2}, T = {x 2 '- X3 }, 9 = {xi - x3}. If x 2 does not
occur M D thenoD = OD.

Proof: By induction on the structure of D. When D is a claim F or a primitive
deduction of the form Prim-Rule F1,... , F, the the result follows from Lemma 6.17.
When D is of the form specialize F with t then

r o- D = specialize T o F with r7t))

while
9 D = specialize 9 F with 9(t)

and the result follows from Lemma 6.15 and Lemma 6.17. When D is of the form

ex-generalize F from t

the reasoning is similar. When D is of the form assume F in D' we have

-r aD = assume T o F in T oD'

while
0 D = assume 9 F in 9 D'

and the desired identity now follows from Lemma 6.17 and the inductive hypothesis.
Next, when D is of the form pick-any z in D', we have

So- D = T pick-any z in a[z '-- z] D'. (6.18)

We distinguish two cases:

(a) z = x: Then a[z '-4 z] = {}, hence, from 6.18,

Ta D = Tpick-any z in D'
= pick-any z in T[z F-- z] D'
= pick-any z in D'

where the last identity holds because x2 does not occur in D, and thus

r[z - z] D' = T D' = D'.

6.4 Theory 181

Furthermore,
6 D = pick-any z in O[z -* z] D'

and since z = x 1 , 6[z '-* z] is the empty substitution {}, hence

0 D = pick-any z in D'

and we thus have TD = OD.

(b) z / x1 : Then a[z F-- z] = a, hence, from 6.18,

Tr oD = Tpick-any z in o D'
= pick-any z in T[Z F- z] a D'.

But x2 does not occur in D, hence T[z - z] = T, and therefore

T a D = pick-any z in T a D'.

Likewise, z # x1 entails O[z - z] = 0, thus

0 D = pick-any z in 0 D'

and the equality T a D = 0 D now follows from the inductive hypothesis.

Finally, suppose that D is of the form pick-witness z for F in D'. Then

T o D = pick-witness z for Ta F in T[Z F- z] a[z '-* z] D'

while

0 D = pick-witness z for 0 F in 6[z '-+ z] D'.

We again distinguish two cases:

(a) z = x1 : Then a[z -* z] = 9[z] = {}, so 6.19 and 6.20 become

a D = pick-witness z for r -F in T[Z * z] D'

and

0 D - pick-witness z for 9 F in D'.

But x2 does not occur in D, hence T[Z '-* z] D' = r D' = D', and the result now
follows from 6.21, 6.22, and Lemma 6.17.

(6.19)

(6.20)

(6.21)

(6.22)

6.4 Theory 181

(b) z $ xi : Then o-[z - z] = o, T[Z - z] = T (since x2 does not occur in D), and
9[z F-4 z] = 0, so 6.19 and 6.20 become

T o D = pick-witness z for T o F in T o- D'

and
0 D pick-witness z for 0 F in 0 D'.

The result now follows from Lemma 6.17 and the inductive hypothesis.

This completes the case analysis and the inductive argument.

Corollary 6.20 If x 2 does not occur in D then {x 2 F-- x1} {xi - x 2} D = D.

Lemma 6.21 If x V Var(t) U Ran Var(0) then x V Var(O(t)).

Proof: By induction on t. When t is a variable z we must have z / x (since x
Var(t)), and there are two possibilities:

(a) z E Supp(0) : Then
x V Var(O(t)) = Var(0(z))

by the supposition x V RanVar(0).

(b) z V Supp(0) : Then
Var(9(t)) = Var(6(z)) = {z}

and the result follows because x = z.

When t is a constant symbol the result is trivial; and for an application f (t, .. ., tn)
it follows readily from the inductive hypothesis.

Lemma 6.22 If x V FV(F) U Ran Var(0) then x V Var(0 F).

Proof: By induction on F. When F is an atom the result follows from Lemma 6.21.
When F is a negation -G we have x V FV(G) and 0 F = ,6 G, thus the inductive
hypothesis yields

x V Var(0 G) = Var(-, G) = Var(O F).

The rest of the propositional cases are similar. Finally, suppose that D is of the
form (Q z) G for some quantifier Q. By alphabetic conversion, we may assume that

First-order reasoning in CND182

z / x, so that x ' FV(G) (since FV(G) C FV(F) U {z} and x g FV(F)). Further,
x g RanVar(9[z - z]), thus the inductive hypothesis yields

x 0 Var(6[z - z] G).

Since x / z,

x g Var((Q z)0[z '-> z] G) = Var(0 (Q z)G) = Var(0 F)

and the induction is complete. U

Lemma 6.23 If x does not occur in D or in Ran Var(9) then x does not occur in 9 D.

Proof: By induction on the structure of D. When D is a claim or a primitive deduction
the result follows from Lemma 6.21 and Lemma 6.22. When D is a hypothetical
deduction assume F in D', the result follows from Lemma 6.22 and the inductive
hypothesis. In the case of a composite deduction D1 ; D2 the result is immediate from
the inductive hypothesis.

Next, suppose that D is of the form pick-any z in D'. Then

0 D = pick-any z in 9[z F-+ z] D'.

But x does not occur in D' or in Ran Var(9[z - z]), so the inductive hypothesis entails
that x does not occur in 9[z F-- z] D', and since z / x, x does not occur in

pick-any z in 0[z F z] D' = 0 D.

The case when D is of the form pick-witness z for F in D' is similar, except that
we also need to invoke Lemma 6.22 to show that x g Var(9 F).

Lemma 6.24 If x 0 Var(t) then 9(t) = 9[x '-4 x](t).

Proof: By induction on t. When t is a variable y, we must have y # x, so 9(t) = 9(y)
while

9[x '-4 x](t) = 9[x F-+ x](y) = 6(y)

and the equality holds. When t is a constant symbol the result is immediate; and when
it is an application, the result follows readily from the inductive hypothesis. 0

Lemma 6.25 If x V FV(F) then OF = 9[x '-- x] F.

6.4 Theory 183

Proof: By induction on F. When F is an atom the result follows from Lemma 6.24.
Propositional cases are handled by straightforward applications of the inductive hy-
pothesis. Finally, when F is a quantified formula (Q y) G we may assume (by renaming)
that y g Supp(O) U {x}, so that 0 F = (Q y)O G and x g FV(G). Inductively,

OG=6[x - x]G

thus

SF =(Q y) O[x - x] G. (6.23)

The supposition y g Supp(O) entails O[x -+ x] = O[x =-4 x][y '-4 y], thus 6.23 becomes

0 F = (Q y) O[x '-4 x][y '-4 y] G = O[x '-* x] (Q y) G = [x '-* x] F

and the induction is complete. U

Lemma 6.26 If x E Supp(O) and x V RanVar(O) then x V Var(9(t)).

Proof: By induction on the structure of t. When t is a variable there are two cases:

(a) t = x : Then the suppositions x V Ran Var(O) and x E Supp(0) imply that x does
not occur in Var(O(x)) = Var(9(t)).

(b) t f x : Here we distinguish two subcases:

1. t E Supp(9) : Then x g RanVar(O) implies x V Var(O(t)).

2. t V Supp(O) : Then O(t) = t, and x V Var(O(t)) now follows from the
assumption x j t.

When t is a constant symbol the result is trivial; and when it is an application
f(t 1 , ... , t,), it follows from a straightforward application of the inductive hypoth-
esis. U

Lemma 6.27 If x E Supp(O) and x V Ran Var(O) then x V Var(9 F).

Proof: By induction on the structure of F. When F is an atom the result follows
from Lemma 6.26. When F is a negation -G we have 6 F = -0 G, and, inductively, we
have x V Var(O G), hence x V Var(-6 G) = Var(O F). The rest of the propositional
cases are similar.

Finally, suppose that F is of the form (Q z) G for some quantifier Q. Then,
by alphabetic conversion, we may assume z V Supp(O), so that O[z -4 z] = 0 and
0 (Q z) G = (Q z) 0 G. The result now follows from the inductive hypothesis, since
z X.

First-order reasoning in CND184

6.4 Theory 185

Lemma 6.28 If x E Supp(0) and x V Ran Var(0) then o-0 D = o-[x '-- x] 0 D.

Proof: By induction on the structure of D. When D is a claim F, Lemma 6.27 implies
x V Var(9 F), hence by Lemma 6.25,

o 0 D = a (0 F) = o[x '-4 x] 9 F = o[x '-4 x] 0 D.

When D is a primitive deduction of the form Prim-Rule F1,... , F,

a-0 D = Prim-Rule o-0 F1 , a-0 F

and again by Lemma 6.27, x V Var(9 F), hence Lemma 6.25 entails

o-0 F = o[x - x] 0 Fi.

Accordingly,

o-0 D = Prim-Rule o[x - x] 0 F1 ,... ,o-[x - x] 0 Fn
= o[x a-x] 0 Prim-Rule F1 ,... , F
= u[x ix] 0 D.

When D is of the form specialize F with t, we have

o 0 D = specialize o 0 F with 5(0(t)). (6.24)

Reasoning as above, o 9F = o-[x ' x] 9F, while by Lemma 6.26 and Lemma 6.24 we
obtain

(O(t)) = u[x i* x](6(t)).

Thus 6.24 becomes

auD = specialize u[x ' x]OF with o-[x '- x](O(t))

= u[x - x] G specialize F with t

= o[xi-x]9D.

Similar reasoning applies when D is of the form ex-generalize F from t.
When D is a hypothetical deduction assume F in D',

o-OD = assume o-OF in o9 D'. (6.25)

Again by Lemma 6.27 and Lemma 6.25 we get

a-0 F = o-[x i-* x] 0 F

First-order reasoning in CN/D

while the inductive hypothesis gives or 0 D' = a[x F-+ x] 0 D', so 6.25 becomes

uOD = assume o[x - x] 0 F in a[x '-* x] O D'

= o[x * x] 0 assume F in D'
= a[x x] 0 D.

When D is a composition D1; D 2 the result follows directly from the inductive hypoth-
esis.

Next, when D is of the form pick-any z in D', we have

o 0 D = pick-any z in o[z - z] 0[z -* z] D'. (6.26)

There are two possibilities:

(a) x = z: Then

a[x - x]OD = pick-any z in u[x -- x][x-- x] 9[x i- x] D'

= pick-any z in d[x i-+ x] 6[x - x] D' (from 6.26, since x = z)
= -OD.

(b) x 4 z : Then x E Supp(0[z t-- z]) (since x E Supp(0) and x # z), and

x V RanVar(0[z i-* z])

so the inductive hypothesis yields

a-[z '-* z] 0[z i-* z] D' = [z - z][x --* x]0[z - z] D'
= [x a *x][z a z]6[z a *z]D'.

Thus 6.26 becomes

ciOD = pick-any z in u[x '- x][z '- z] [z - z] D'

= u[x F-+ x] 6 pick-any z in D'

= -[xi-*x]OD.

Finally, when D is of the form pick-witness z for F in D', we have

o D = pick-witness z for a 0 F in o-[z '-4 z] 0[z '-4 z] D'. (6.27)

186

6.4 Theory

By Lemma 6.27 and Lemma 6.25 we get

o- F = cx[x '-- x] OF (6.28)

and we again distinguish two cases:

(a) z = x: Then

o[x '-4 x] O D = pick-witness z for o-[x - x] OF in a[z - z][z -4z] O[z - z] D'

= pick-witness z for -[x x] OF in a[z - z]O[z - z] D'

= pick-witness z for aOF in o-[z - z]O[z - z] D'

= oD.

(b) z f x : Then x E Supp(O[z '-f z]), x V RanVar(6[z - z]),
hypothesis gives

o[z -* z]0[z - z] D' = [z z][x 4 x] 0[z z] D'
= o[x a x][z - z] 0[z -z] D'

and thus 6.27 becomes

o-OD = pick-witness z for oOF ino,[x - x][zF- z] [z-4z] D'
= pick-witness z for o-[x - x] OF in o[x - x][z - z] O[z - z] D'

= o-[x x] 0 pick-witness z for F in D'
= o-[x -x] D.

This completes the case analysis and the induction.

so the inductive

(from 6.28)

0

Corollary 6.29 If x V Var(t) then 0 {x F-- t} D = 0[x '- x] {x - t} D.

Lemma 6.30 If x V Supp(0) U Ran Var(9) then {x - (t)} o = 0 o {x i-f t}.

Proof: We will prove that o-(z) = T(z) for all variables z, where

o- = {x F-(t)} o

and
T = Oo {x i-* t}.

We distinguish two cases:

(from 6.28)
(from 6.27)

187

188 First-order reasoning in CN/D

(a) z = x : Then 0(z) = z (since z = x g Supp(0)), thus

o-(z) = 0(t) = T(z).

(b) z x : Here we distinguish two subcases:

1. z E Supp(0): Then x g Var(0(z)) (since x V RanVar(0)), hence

U(z) = 0(z) = T(Z).

2. z g Supp(0): Then, since z / x, o(z) = z = r(z).

This completes the case analysis and the proof.

Corollary 6.31 {x -- (t)} - = 0 - {x -* t} whenever x V Supp(0) U Ran Var(0).

Proof: Immediate from Lemma 6.30 and Lemma A.1.

Corollary 6.32 0 {x F-+ t} F = {x '-* 0(t)} OF whenever x g Supp(0) U RanVar(0).

Proof: By Lemma 6.5 and Lemma 6.30. U

Theorem 6.33 If /F- D -F and 0 is safe for D then 0F 0 D--+ 0 F.

Proof: By structural induction on D. When D is a claim, the supposition 13 F- D -~- F
means that D is the formula F and that 3 = O'U{F} for some /' (since 3 must contain
F for the judgment # F- F -* F to be derivable). Therefore, by [R3 1,

0/3 = 0/'U {0 F} - 0 F s+O F

which is to say 0/3 F- 0 D --+ 0 F.
When D is a primitive deduction of the form Prim-Rule F 1, . . . , Fn, the result

follows by a case analysis of Prim-Rule. We illustrate with both and left-either, and
leave the rest as an easy exercise. When D is of the form both F1 , F2, we must have
F = F A F2 and / = /' U {F1 , F2} for some /3'. Accordingly, the evaluation semantics
give

0 ' {0 F1 ,0 F2} F- both 0F 1, 0F 2-, 0F1 A 0 F2

i.e., 0/3 F 0 D -- + 0 F. When D is of the form left-either F1, F2, we have F = F1 V F2

and / = /' U {F1 }. Now the semantics give

0 0' U {0 F1} F- left-either 0 F1, 0 F2-- + OF1 V 0 F2

i.e.,0 3[- 0D-> OF.
Next, suppose that D is of the form specialize (Vx) G with t, so that

F = {x -*t}G

and 13 = 3' U { (V x) G} for some 0'. Without loss of generality, we may assume

x g Supp(O) U RanVar(O) (6.29)

(we can always a-rename (V x) G to ensure this). Now by the semantics of specialize
we have

03' U {(V x) 0 G} F- specialize (V x) 0 G with 9(t) -- {x F-+ 9(t)} 9 G. (6.30)

But, by 6.29, O[x '- x] = 9, thus (V x) 0 G = 0 (V x) G; while, by Corollary 6.32,

{x '-_ O(t)} 9 G = 0 {x -* t} G.

Accordingly, 6.30 becomes

0 O' u {0 (Vx) G} I- specialize 9 (Vx) G with 9(t) -- 0 {x -4 t} G

which is to say 93- 0 D>-- O F.
If D is of the form ex-generalize (I x) G from t then F = (3 x) G and

3 = O' U {{x -4 t} G}

where we may again assume

x Supp(0) U RanVar(O). (6.31)

From [R7] we get

0/' U {{x F-- 9(t)} 9 G} I ex-generalize (3 x) 0 G from 9(t) ->-+ (3 x) 0 G. (6.32)

But, from 6.31, O[x F-f x] = 0, hence 9 (3 x) G = (3 x) 0 G; while, by Corollary 6.32,
{x 0 (t)}0 G = 9 {x F t} G. Thus 6.32 becomes

0/3' U { {x '- t} G} I- ex-generalize 0 (] x) G from 0(t) ->- 0 (3 x) G

i.e., 0 [0 D>- 0 F.
When D is a hypothetical deduction assume H in D', we have F = H => G and

/ U {H} H D'--- G. Inductively, the latter gives

03Uf{H } OD'~ -* G

6.4 Theory 189

190 First-order reasoning in CA/D

so, by [R4],
9 H F assume 9 H in 0 D'--+ H => G

i.e., 0 0/3 D --* O F.
When D is a composition D 1; D 2, we must have # F- Di -s- G and

3Uf{G} F-D 2 - -F.

Inductively, 90 Di s-* 0 G and 0 0 U {0 G} 1- D 2 >--* 0 F hence, by [R5],

0 H 9 0 D1; 0 D 2 -* 0 F

which is to say 9 3- 0 D -~i+ O F.
When D is of the form pick-any x in D', the supposition # I D -,-+ F means that

S3 f{x - z} D'-,s+G (6.33)

and F = (V z) G, for some z that does not occur in 1 or in D'. Let w be a variable that
does not occur in 0, D', G, or in Supp(0) U Ran Var(0) U {z, x} (such a w must exist
since there are infinitely many variables). From 6.33 and the inductive hypothesis we
get

{z a w} 0 {z F w}{x a z} D's> {z 4 w} G. (6.34)

Since z does not occur in 0, {z -- w} 1 = 0; while, since z does not occur in D',
Lemma 6.19 yields {z '-* w} {x - z} D' = {x a w} D'. Thus 6.34 becomes

f{x - w} D'+ {z - w} G. (6.35)

From 6.35 and the inductive hypothesis we get

9 1 0{x w} D'--+ {z z w} G. (6.36)

From Corollary 6.29, 9 {x '-* w} D' = 9[x - x] {x '-4 w} D', thus 6.36 becomes

0 O 13 [x - x] {x - w} D'-+ 0 {z - w} G. (6.37)

Now x Ran Var(9) (since 9 is safe for D), and thus from our assumptions about w it
follows that O[x '-* x] and {x i-* w} are disjoint. Therefore, by virtue of Lemma 6.14,
6.37 becomes

013 I- {x - w} 9[x F-- x] D'-,+ 9 {z -+ w} G. (6.38)

6.4 Theory 191

On the basis of our suppositions about w, Lemma 6.22 and Lemma 6.23 entail that w
does not occur in 6#3 or in 6[x '- x] D'. Accordingly, [R8] and 6.38 yield

6 F- pick-any x in 6[x -* x] D'-~> (V w) 6 {z - w} G. (6.39)

But 6 = 6[w - w], hence 6.39 gives

63 F- pick-any x in 6[x - x] D'-~> (Vw) 6[w H-* w] {z '-4 w} G (6.40)

and since
(Vw)6[w - w]{z i-w} G =(Vw){z -+ w}G

and
pick-any x in 6[x ' x] D' = 0 pick-any x in D',

6.40 becomes

63 F0 pick-any x in D'-- 0 (V w) {z - w} G. (6.41)

But (V w) {z -* w} G is alphabetically equivalent to F = (V z) G (by our choice of w
and Lemma 6.1), thus 6.41 becomes 63 I- 6 D -- 0 F.

Finally, suppose that D is of the form pick-witness x for (Ely) H in D'. Then
- D -- > F means that

= O'U {(Ely) H}, (6.42)

U {{fy F- z} H} {x z} D'~>+ F (6.43)

and

z FV(F) (6.44)

for some z that does not occur in # or in D'.
Now let w be a variable that does not occur in /, D', F, or in

Supp(6) U Ran Var(6) U {z}.

From 6.43 and the inductive hypothesis we get

{z 4 W}# U {{z + w}{y 4 z} H} F {z - w}{x 4 z} D'~> {z - w} F. (6.45)

But z does not occur in 0, hence {z '-a w}# = 0. Moreover, z does not occur in H or
in D', therefore, by Lemma 6.17 and Lemma 6.19, 6.45 becomes

U {{y -* w} H} F {x -* w} D'~ {z -* w} F. (6.46)

From 6.44, {z '-- w} F = F, thus 6.46 becomes

U {{y - w} H} {x -* w} D' -F. (6.47)

Now 6.47 and the inductive hypothesis give

0 U {0 {y -* w} H} 0 {x -w} D'--+ 0 F. (6.48)

Without loss of generality, we may assume y g Supp(6) U RanVar(O) (we can always
rename (3 y) H to ensure this), thus 0 and {y - w} are disjoint, and Corollary 6.13
yields

0 {y " w} H = {y 4 w} 0H.

Furthermore, Corollary 6.29 gives

0 {x '-4 w}D' = O[x F-+ x] {x '-* w} D'

and thus 6.48 becomes

0 # U {{y -*w} 0 H} O[x -*x] {x - w} D'-- OF. (6.49)

Owing to the supposition that 9 is safe for D and our assumptions about w, 9[x i- x]
and {x '- w} are disjoint, thus Lemma 6.14 gives

O[x -* x] {x '-* w} D' = {x F- w} O[x -* x] D'

and 6.49 becomes

03 U {{y w} 0H}I {x - w}O[x -+ x] D'-~> 0 F. (6.50)

In addition, 0 (] y) H = (3 y) 0 H (since y V Supp(6)), so 6.50 and 6.42 give

60 'U {(3y)O H,{y - w} 0H} F- {x F- w}9[x -- x] D'-~> O F. (6.51)

Owing to our choice of w, Lemma 6.22 and Lemma 6.23 entail that w does not occur
in 0/# or in 0 F, or in O[x '-4 x] D'. Consequently, [R9] and 6.51 yield

0 /3'U {(3 y) H} F- pick-witness x for (3 y) 0 H in O[x - x] D'-> 0 F

which is to say

0 0 6pick-witness x for (3y) H in D'-s* 0 F

i.e., 0 # O 0 D- 0 F.

First-order reasoning in CNVD192

0

6.4 Theory 193

Corollary 6.34 If 4 H {x '- y} D -- F for some y that does not occur in # or in D
then 4 H {x '-* z} D->-+ {y '-4 z} F for any z that does not occur in 4 or in D.

Proof: Since z does not occur in D, {y '-* z} is safe for {x '-4 y} D. Thus the suppo-
sition 4 f {x - y} D - F in tandem with Theorem 6.33 gives

{y -*z} 0 {y - z} {x -*y} D -- {y - z} F. (6.52)

But y does not occur in 4, and thus {y - z} 4 = 4; while, by Lemma 6.19 and the
supposition that y that does not occur in D,

{y - z}{x y}D = {x F- z} D.

Therefore, 6.52 becomes # H {x '-* z} D -- + {y z} F.

Corollary 6.35 If # D~- F and x V FV(3) then {x --* y} D -- {x - y}F for
any y that does not occur in D.

Proof: If y does not occur in D then {x F-- y} is safe for D, hence, in tandem with
4 H D -~ F, Theorem 6.33 entails

{x '-* y}# H {x '-* y} D -~> {x - y} F.

But because x V FV(), {x -+ y} = 0, hence {x - y} D -- {x --* y} F.

In many natural-deduction systems, universal generalizations are introduced by an
inference rule that derives (Vx) F from 4 provided that x does not occur free in 4.
The following result shows that our evaluation semantics subsumes this method:

Corollary 6.36 If 4 HcoD F and x V FV() then 43 HCKD (V x) F.

Proof: By supposition, there is a D such that 4 H D -- > F. Let

D' = pick-any x in D

and let y be any variable that does not occur in 4 U {F} or in D. By Corollary 6.35,

f 3{x - y} D- {x I- y} F.

Hence, by [R8],

#3 D'~ (V y) {x Fy} F. (6.53)

By Lemma 6.1,
(V x) F 0 (V y){x y} F

so the desired conclusion follows from 6.53. 0

Theorem 6.37 (Dilution) If / H- D ->- F then # U 0' I- D -> F.

Proof: By structural induction on D. When D is a claim or a primitive deduction
the result is immediate by the semantics of claims, the primitive rules, and specialize
and ex-generalize. When it is a hypothetical deduction assume H in D', we have
F = H => G and U{H} HFD'- --*G, for some G. Inductively, 3 U O'U {H} F D'--+ G,
thus

/3U O'' assume H in D'--> H = G = F.

When D is a composition D1 ; D2 we have - D1 -- G and # U {G} I- D 2 ~> F, for
some G. Inductively, / U /' H- D1 -- G and / U 0' U {G} I D2 -> F, thus

/3 U ' H D1; D2-~-> F.

Next, when D is of the form pick-any x in D', we must have

Sk- {x F+ z} D'~> G (6.54)

for some G, and

F = (Vz)G (6.55)

for a z that does not occur in / or in D'. Let w be a variable other than z that does
not occur in

SU 13 U {F}

or in D'. By Corollary 6.34 and 6.54 we get

[- {x w} D'~> {z - w} G (6.56)

and, from the inductive hypothesis,

SU 0' {x w} D'~>+ {z 1-4 w} G. (6.57)

Owing to our choice of w, [R8] and 6.57 give

U 0' H pick-any x in D'-- (V w) {z -* w} G. (6.58)

But w does not occur in G, hence F = (V z) G and (V w) {z '-4 w} G are identical
(alphabetically equivalent-Lemma 6.1), and 6.58 becomes / U /' H- D -- > F.

Finally, suppose that D is of the form pick-witness x for (I y) H in D'. Then
we must have

(3y) H E (5

First-order reasoning in CND194

(6.59)

6.4 Theory

and

#U {{y --* z} H}H f{x - z}D'-~- F (6.60)

for some z V FV(F) that does not occur in # or in D'. Let w be a variable other than
z that does not occur in

U'U{F}

or in D'. By 6.60 and Theorem 6.33 we get

{z I-> w}# U {{z a w}{y --> z} H} k {z + w}{x --> z} D'~> {z w} F. (6.61)

Now {z -4 w} = 3 (since z does not occur in /), while

{z -* w}{y -- z} H = {y - w} H

(by Lemma 6.17, since z does not occur in H),

{ z --> w} {x -+ z} D' = {x '-4 w} D'

(by Lemma 6.19, since z does not occur in D'), and

{z -* w} F = F

(since z V FV(F)). Thus 6.61 becomes

#3 U {{y w} H} F {x --> w} D'-s> F (6.62)

and the inductive hypothesis gives

U #'U {{y w} H} I-{x --> w} D'-- F. (6.63)

Owing to our choice of w, 6.63 and [R9] give

U/3' H pick-witness x for (] y) H in D'-- F

which is the desired / U ' D -- F.

Next we introduce the relation of eigenvariance, denoted by -e. Intuitively, D1 =E D 2
(D1 and D 2 are "eigenvariant") if they only differ in the names of their eigenvariables.
The precise definition appears in Figure 6.5. Eigenvariance is similar to the relation of
alphabetic equivalence for formulas, or o-convertibility in the A-calculus. Like those
other relations, it is an equivalence, and it fully preserves the relevant semantics, as
Theorem 6.45 below will show. We will also see that we can systematically "rename"
the eigenvariables of any deduction to our liking.

Lemma 6.40 below is an important technical tool. We first need to prove analogous
forms of the lemma for terms and formulas.

195

196 First-order reasoning in CKD

[E1] Di ,E D 3 D 2 E D 4 [E2]
D =-e D D1; D2 =-e D3; D4

D1e D2 [E3]
assume F in D1 assume F in D 2

I f yX2 -+ y} D2 [E4]
pick-any x1 in D1 e pick-any x 2 in D 2

where y does not occur in D 1 , D 2 , y / {X, X2}-

{zi -- y} Di f {X2 y} D2 [E5]
pick-witness xi for F in D1 , pick-witness x 2 for F in D 2

where y does not occur in D1 , D 2 , F, y , {Xi, X 2 }.

Figure 6.5: Definition of the eigenvariance relation =.

Lemma 6.38 If {x 1 -4 z}(s) = {x 2 F- z}(t) for some z g Var(s) U Var(t), then

{xi - z'}(s) = {x 2 '-4 z'}(t) for all z'.

Proof: By induction on s. When s is a variable there are two possible cases:

(a) s = x 1 : Then {x 1 F z}s = z = {x 2 - z} t, and thus we must have t = x 2 , for
otherwise the equation {x 2 '-+ z} t = z would entail t = z, which is impossible

by the supposition z V Var(t). But if t = x 2 and s = x1 then we clearly have

{xi X-* Z1} S = {X 2 H-* Z'} t.

(b) s / xi: Then

{xi ' z}s = s = {x 2 -- z} t (6.64)

and thus we must have t f x 2 , for if t = x 2 then {x 2 -* z} t = z and, by 6.64,
z = s, which is impossible by the supposition z V Var(s). But t f x 2 entails

{x 2 - z} t = t, so, by 6.64, t = s. Accordingly,

{xi i- Z'} s = t

= t (since t $ x 2)

= {X 2 - z'} t.

6.4 Theory 197

Thus the identity {xi F-+ z'} s = {x 2 -* z'} t holds in both cases.
When s is a constant we must have s = t, so the result is immediate. Finally, when

s is of the form f(si,... , sn), t must be of the form f (t, ... , tn), so by supposition,

{xi '-+ z} si = {x 2 '-* z} tj (6.65)

for i = 1, ... , n. Now

{xi - z'} s = f({xi z'} s 1 ,... ,{x 1 iz'}s)

and
{x 2 z'}t = f({x 2 z'}t 1 , ... , {x 2 z'}tn)

so now the result follows from (6.65) and the inductive hypothesis, since

z V Var(si) U Var(ti)

for every i E{1, , n}.

Using Lemma 6.38 for the base case, the following can be proved with a straightforward
induction on F:

Lemma 6.39 If {x 1 z} F = {x 2 '-* z} G for some z that does not occur in F or in
G, then {x 1 - z'} F = {x 2 - z'} G for every z' that does not occur in F or in G.

Finally, we generalize to deductions as follows:

Lemma 6.40 If {x1 F-- z} D1 = {x 2 F-+ z} D2 for some z that does not occur in D1 or
in D 2, then {x1 F-+ z'} D1 {x 2 1 4 z'} D2 for every z' that does not occur in D1 or in
D 2.

Proof: We will use induction on the structure of D1 to show that if

61 Di =e 02 D 2 (6.66)

then
01 D1 c 01 D 2

where 61 = {xi '-* z}, 02 = {x 2 -* z}, 0' = {xi '- z'}, and 0' = {x 2 - z'}.
When Di is a claim F, D 2 must also be a claim G, and 6.66 entails

61 F = 02 G.

Thus Lemma 6.39 yields 0' F = 0' G, i.e., 0' D1 -= 0' D 2.

198 First-order reasoning in CA'D

When D1 is a primitive deduction of the form Prim-Rule F 1, ... , F", D 2 must also
be of the form Prim-Rule G1, ... , G,, and 6.66 entails

01 F = 02 Gj

for i = 1,..., n. Thus Lemma 6.39 gives O1 F = O' Gi, and hence O 1 D= O D2.
Consequently, O' Di , 6 D2.

When D1 is of the form specialize F with s, D 2 must be of the form

specialize G with t

and 6.66 implies 01 F = 02 G and

01(s) = 02(t).

Accordingly, Lemma 6.38 and Lemma 6.39 yield 06(s) = 66(t) and 01 F = 0' G, so that
O' Di = Of D 2 and 61 D1 ,0' D2. The reasoning is similar when Di is of the form
ex-generalize F from s.

If D1 is of the form assume F in D3 , D2 must be of the form assume G in D4 ,
and 6.66 entails

01 F = 02 G (6.67)

01 D 3 e 02 D 4. (6.68)

Inductively, 6.68 gives 01 D 3 e 0' D4 , while 6.67 and Lemma 6.39 give O1 F = O' G,
hence, by [E3],

assume 0' F in 0' D 3 =e assume 0' G in O' D 4

i.e., 'I Di =c 02 D 2.
When Di is of the form D'; D', D 2 must be of the form D2; D , and 6.66 entails

01 DjI e 02 D (6.69)

01 D 02 D. (6.70)

Inductively, 6.69 and 6.70 give 0' D' 0' D2 and 0' D E 0 D , hence, by [E2],

0' D'; 0' D' 0e' D 2; 0' D2

which is to say, 01 Di = O' D2.
Next, suppose that D1 is of the form pick-any y1 in D', so that D 2 must be of

the form pick-any Y2 in D'. By supposition, we have

Z {yiy2} (6(6.71)

6.4 Theory 199

and

Z' V {Y1, Y2}. (6.72)

Further, the supposition 01 D1 , 02 D 2 means that

{y1 F- w} 01[y1 -* y] D' E{y2 - w} 0 2 [Y2 -*Y2] D2

for some w g {y1, y2} that does not occur in 01[y1 H-> y1] D' or in 0 2 [Y
let v be a variable that does not occur in D1 or in D2 , and such that

V {X1i, X2, Z, Z , W}.

(6.73)

2 -> Y2] D'. Now

(6.74)

From 6.73 and the inductive hypothesis we get

(6.75)

i.e.,

{y1 I- v} {x 1 -- z}[y1 yi] D' {Y2 1 v} {X 2 I z}[Y2 > Y2] D'.2

We now observe that

{y1 - v} {Xi - z} [y1 yi] D' = {xi z [y1, yi] {y1 - v} D'

as there are two cases: either yi = xi or not. If yi = x1 then {x 1 H->

is the empty substitution {}, and 6.77 holds trivially. Otherwise, if yi

{x 1 -- } [y1 - yi] = {xi -> z}, and 6.77 becomes

(6.76)

(6.77)

z}{y1 -+ Y1]
x1, then

{1 H-> v} {x1 H--> z} D' = {xi H-> z} {y F- v} D'

which follows from Lemma 6.14 since (by 6.74, 6.71, and the inequality yi # x1) the
substitutions {y1 > v} and {xi F-> z} are disjoint.

By parity of reasoning,

{Y2 -> V} {X 2 - z[Y2 - Y2] D' = {x 2 -- }Y2 F-> Y2] {Y2 H-> v} D'. (6.78)

Applying 6.77 and 6.78 to 6.76 yields

{x1 - z[y1 -> yi] {y1 - v} D' E X2 F z H- [Y2] {Y2 -> v} D'.

By applying Corollary 6.29 to both sides of 6.79 we get:

(6.79)

{X 1 H-4 Z} {y1 -> v} D' {X 2 -> Z} {Y2 H-> v} D'

6.4 Theory 199

200 First-order reasoning in CND

and thus the inductive hypothesis yields

{x1 '-* z/} {yi - v} D' s {x 2 F-* z'} {Y2 -* v} D'. (6.80)

Now applying Corollary 6.29 to 6.80 gives

{xi- Z'}I[y1 F y1]y1 -+ v} D'I c {x y2 - [H-> Y2] {Y2 -+ v} D' (6.81)

and by establishing 6.77 and 6.78 with z' in place of z (with the same reasoning, but
using 6.72 instead of 6.71), 6.81 becomes

{y --> v} { Ixi F-- z[y y] D' s {Y2 '-> v} {x 2 -* z'}[Y2 y2] D'. (6.82)

By our choice of v and rule [E4], 6.82 entails

pick-any yi in {xi - z'}y1 - y1] D' _, pick-any Y2 in {x 2 z'[Y2 F-+ Y2] D'

which is to say {x 1 H- z'} Di ,E {x 2 - z'} D 2 .
The reasoning is the same when D is of the form pick-witness y1 for F1 in D',

and the induction is thus complete.

Next we show that eigenvariance is preserved by safe substitutions:

Lemma 6.41 If D1 =e D 2 and 9 is safe for D1 and D2, then 9 D1 - 9 D 2 -

Proof: We use induction on the structure of D 1. When D1 is a claim or a primitive
deduction we must have Di = D2 , so 9 Di -, 9 D 2 is immediate. When D1 is of the
form assume F in Di, D 2 must be of the form assume F in D', where D' s D'.
Thus, inductively, 9 D' 0 9 D', and hence

assume 9 F in 9 D' =- assume 9 F in 9 D'

i.e., OD1 =E 6D 2.
When D1 is a composition D'; D', D 2 must be of the form D ; D , and we must

have

D' 3D2 (6.83)

and

D' D 2 (6.84)

From the inductive hypothesis, 6.83 and 6.84 yield

9 D - 0 9 D2 (6.85)

6.4 Theory 201

and

0D,' 0 D2 (6.86)

hence, from [E2],
0 D1' ; 0 D' 0 D D2 ; OD D2

i.e., 0 D1 =-, 0 D2.
Next, suppose that D1 is of the form pick-any x1 in D', so that D 2 must be of

the form pick-any x 2 in D'. The supposition D1 =e D 2 then entails

{xi -*z} D IE{x2 -- z} D' (6.87)

for some z that does not occur in D1 or in D 2. Now let w be a variable that does not
occur in D 1, D 2 , or in Supp(O) U RanVar(9). By Lemma 6.38 and 6.87 we get

{x 1 - w} Di e {x 2 - w} D'. (6.88)

Inductively, 6.88 gives

O {xi w} D' {x 2 F- w} D (6.89)

and by Corollary 6.29 we get

9[x 1 '-4 x1] {x1 - w} D' = 6[x 2 '-- x2] {x 2 - w} D'. (6.90)

By our choice of w and the safety of 0 for D 1, the substitutions 9[xi 1 z 1] and

{x 1 F-> w} are disjoint, and hence, by Lemma 6.14,

O[xi '-* xi] {x1 F w} D' = {xi F-+ w} [xi '-4 xi] D'. (6.91)

Likewise, 9[x 2 '-4 x2] and {x2 '-4 w} are disjoint, therefore

O[x 2 F-- X2] {X 2 - w} D' = {x 2 - w} [x 2 - x 2] D'. (6.92)

Applying the identities 6.91 and 6.92 to 6.90 yields

{x 1 - w} O[x 1 '-* x1] D' {X 2 -* w} 6[x 2 ' x 2] D' (6.93)

and by our choice of w and [E3] we get

pick-any x1 in O[x 1 H-* x1] D' e pick-any x 2 in O[x 2 H-> X2] D'

which is to say 0 D1 =- 0 D2 . The case of existential instantiations is similar, and the
induction is thus complete. 0

Lemma 6.42 If D1 -- D and D2 -e D then Di --, D2.

Proof: We will use induction on the structure of D. When D is a non-compound
deduction, D1 -e D and D2 e D imply Di = D and D2 = D, thus D1 -, D2 is imme-
diate. When D is of the form assume F in D', the suppositions D1 -- D and D2 -< D
entail that Di and D2 are of the forms assume F in D' and assume F in D', re-
spectively, where D' -, D' and D' se D'. Therefore, inductively, D' D', and thus
D1 --c D2.

When D is of the form Dj; D,, the suppositions D1 -- D and D2 -, D entail that
D1 must be of the form D'; D and that D2 must be of the form D; D , where

D11 Di,

D9 E DI,

D r D,,

(6.94)

(6.95)

(6.96)

and

D 2 Dr -E - (6.97)

From 6.94, 6.95, and the inductive hypothesis we
and the inductive hypothesis we infer J91 D 2
is to say D1 -=, D2.

When D is of the form pick-any x in D', the
must be of the form pick-any x1 in D', where

get D - D ; while from 6.96, 6.97,
Therefore, D1; D 19D; D , which

supposition D1 -= D entails that D1

{x1 -+ z1} 1 {x -* zi} D' (6.98)

for some zi that does not occur in D1 or in D. Likewise, the supposition D2 =e D
entails that D2 must be of the form pick-any x2 in D, where

{x 2 .-- z2 }1D -E {x - z2 } 1D' (6.99)

for some z2 that does not occur in D2 or in D. Let w be a variable that does not occur
in D1, D2, or in D. Then 6.98 and 6.99 in tandem with Lemma 6.38 give

{x1 F-*w} Di {x - w} D'

and

{x 2 - w} D2 f{x * w}1 D'.

First-order reasoning in CND202

Hence, inductively,

{xi + w} D'i s{X 2 -- w} D'

and by our choice of w and [E4] we get D1 =E D 2. The reasoning is similar when D is
of the form pick-witness x for F in D', and thus the induction is complete.

Corollary 6.43 =e is an equivalence relation.

Proof: It is readily verified that any reflexive relation R such that x R y whenever x R z
and y R z is an equivalence. For =, the latter property was shown by Lemma 6.42.
Reflexivity is immediate by [E1]. 0

The relation of observational equivalence for first-order CND deductions is defined just
as before: for a given Q, we define Di ~d D2 to mean that

f 3 D 1 ~ F iff 3 D 2-- + F

for all F. If D1 ~- D 2 we say that Di and D 2 are observationally equivalent in 3.
General observational equivalence is again defined by quantifying over all assumption
bases: Di ~ D2 iff Di ~% D2 for all 3. The following result is the first-order analogue
of Lemma 4.18:

Lemma 6.44 If D 1 ~~ D 2 then assume F in D1 ~ assume F in D 2. Furthermore,

D1; D 2 ~ -D 3 ; D 4

whenever D 1 ~ D 3 and D 2 ~ D 4.

The next result confirms that eigenvariant deductions have the same meaning:

Theorem 6.45 e C ~; i.e., eigenvariant deductions are observationally equivalent.

Proof: We will use induction on the structure of D1 to prove that if D1 =e D2
then Di ~ D 2. When Di is a claim or a primitive deduction, we must have D2 =

Di and observational equivalence is trivial. When D1 is a hypothetical deduction
assume F in D', D 2 must be of the form assume F in D', where D' e D'. Induc-
tively, D' ~ D', and thus Lemma 6.44 gives

assume F in D'1~ assume F in D'

i.e., Di ~ D 2. When D1 is a composition Di; D, the supposition D1 _- D 2 means that
D 2 is of the form D'; D,, and that D, -e D', D, =- D',. Accordingly, the inductive

6.4 Theory 203

204 First-order reasoning in CN/D

hypothesis entails D, a Dj, D, D,, and thus Lemma 6.44 yields Dj; D, a D'; D., i.e.,
D 1 D 2.

Next, suppose that D1 is of the form pick-any x1 in D'. Then D1 D 2 means
that D2 must be of the form pick-any x 2 in D', where

{xi '-* z} Di s {x2 - z} D' (6.100)

for some z that does not occur in D1 or in D 2. Now suppose that

#HDi N-* F. (6.101)

This means that

" {x1 D'w}D'i G (6.102)

and F = (V w) G for some G and a w that does not occur in 1 or in D'. Choose
a variable v g' {z, w} that does not occur in D 1, D 2, F, or in 1. Then 6.102 and
Corollary 6.34 give

S3 f{xi " v} D' -+{w -*v} G. (6.103)

From 6.100 and Lemma 6.40 we have

{x1 - v}D'i {x 2 -4 v} D

hence from the inductive hypothesis and 6.103 we get

X2{x2 - v} D' > {w - v} G.

Therefore, owing to our choice of v,

1 F pick-any x2 in D'. (V v) {w F- v} G. (6.104)

But (V v) {w '-4 v} G and F = (V w) G are identical (alphabetically equivalent, by
Lemma 6.1), thus 6.104 becomes 1 [- D 2 ->- F. The converse implication follows by
parity of reasoning, based on the fact that =e is symmetric.

Finally, suppose that D1 is of the form pick-witness x1 for (3 y) H in D'. Then
D1 -, D 2 entails that D 2 is of the form pick-witness x 2 for (3 y) H in D', where

{x 1 -+ z} D' a {x 2 '-4 z} D' (6.105)

for some z that does not occur in D1 or in D2 . Now suppose that

13 D -- + F. (6.106)

6.4 Theory 205

This means that (3 y) H E # and

U {{y '-w} H} F {xi - w} D'> F (6.107)

for some w that does not occur in / or in D1 , and such that

w V FV(F). (6.108)

Pick any v = {z, w} that does not occur in /3, D 1, D 2, or in F.
Theorem 6.33 give

Then 6.107 and

(6.109)

Since w does not occur in 0, {w '-* v}# = #. Moreover, by virtue of the fact that w
does not occur in H or in D', Lemma 6.17 and Lemma 6.19 imply

{w - v}{y w} H

{w -* v}{x 1I w} D'

= {y - v} H

= {x -* v} D'

and thus 6.109 becomes

U {{y - v} H} {x1 -- v} D'- {w - v} F.

Now by 6.105 and our choice of v, Lemma 6.40 implies

{xi - v} Di = {x 2 - v} D2

which, in tandem with 6.110 and the inductive hypothesis, yields

/3U{{y -- v} H} {x2 -- v} D~>- {w -* v} F.

But w does not occur free in F, hence {w F-+ v} F = F, and 6.111 becomes

U {{y '- v} H} F- {x 2 v} D'-~ F.

From our choice of v and the fact that (3 y) H E /, 6.112 and [R9] yield

/ I pick-witness x 2 for (3y) H in D' -* F

(6.110)

(6.111)

(6.112)

The converse direction is established with a symmetric argument,
and the induction is thus complete.

6.4 Theory 205

{f W F+V}#1 U {{fw -- v}{fy - w} H} f {wF- v}{fx1 - w} D' -~> {w F-- v} F.

i.e., 0 - D2~>+ F.
0

Lemma 6.46 pick-any x in D =e pick-any y in {x F-- y} D for any y that does not
occur in D.

Proof: Pick any z that does not occur in D or in {x, y}. By Lemma 6.19,

{y i z} {x - y} D = {x i-- z} D,

thus, by [E1], {x i--> z} D -{y -- z} {x - y} D, and by [E4],

pick-any x in D -e pick-any y in {x '--* y} D

owing to our choice of z.

Likewise:

Lemma 6.47 If y does not occur in D then

pick-witness x for F in D -e pick-witness y for F in {x 1-* y} D.

Proof: Choose a z that does not occur in D or in {x, y}. By Lemma 6.19,

0

{y -+ z} {x - y}D= {x - z} D,

thus {x '--* z} D -, {y - z} {x 1-- y} D and, by [E5],

pick-witness x for F in D -e pick-witness y for F in {x '-4 y} D

which again holds by our choice of z.

Lemma 6.48 If Di -e D 2 then

(a) pick-any x in D1 -e pick-any x in D 2; and

(b) pick-witness x for F in D1 -, pick-witness x for F in D 2 .

Proof: Choose any variable y that does not occur in D1 or in D 2. Then {x - y}
is safe for Di and D 2 and thus Lemma 6.41 in tandem with the hypothesis D1 _- D2
entails

{ x F- y} Di --, {x --> y} D2

which in turn implies (a) and (b) (by [E4] and [E5])

First-order reasoning in CND206

0

Lemma 6.49 (Eigenvariable renaming) There is an algorithm that will take any
deduction D and any finite set of variables X and will produce a deduction D' such
that D' =- D and EV(D') n X = 0.

We define such an algorithm as follows:

EigenRename(D, X) = R(D)
where

R(assume F in D) = assume F in R(D)

R(D1; D 2) = R(D1); R(D 2)

R(pick-any x in D) = pick-any y in R({x -* y} D), for y g Var(D) U X

R(pick-witness x for F in D) = pick-witness y for F in R({x F-- y} D),
for y g Var(D) U X

R(D) = D

Note that the algorithm does not prescribe any specific way of choosing the variable
y in the pick-any and pick-witness clauses; it only requires that y does not occur
in D or in the given set X. This non-determinism can readily be removed once we
impose some fixed computable well-ordering on the set of all variables; we can then
always choose the smallest available variable with respect to this ordering. Finally, the
following establishes Lemma 6.49:

Lemma 6.50 Let D' = EigenRename(D, X). Then EV (D') n X = 0 and D' =_ D.

Proof: We prove both assertions for D'= R(D), for any fixed value of X. We will use
induction on D. The only interesting cases are when D is a universal generalization
pick-any x in Db or an existential instantiation pick-witness x for F in Db. In the
former case we have D' = pick-any y in D', where D' = R({x v-+ y} D) and y does
not occur in Db or in X. Inductively, we have EV(D') n X = 0, and since y g X,
EV(D') n X = 0. Moreover, because y does not occur in Db, Lemma 6.46 yields

D = pick-any x in Db =e pick-any y in {x '-* y} Db. (6.113)

Inductively, we have
{x '-* y} Db-eR({x F-4 y} Db) = D

and thus Lemma 6.48 gives

pick-any y in {x H-* y} Db -e pick-any y in R({x - y} D) = D' (

2076.4 Theory

(6.114)

Now D =e D' follows from 6.113 and 6.114 by the transitivity of =e. A similar argument
applies to existential instantiations, using Lemma 6.47 instead of Lemma 6.46.

We will say that a deduction of the form

pick-witness x for (I y) F in D (6.115)

is normal if the variable x does not occur free in the formula (3 y) F. Non-normal
deductions-where x does occur free in (3 y) F-are in bad style because, intuitively,
they seem to be saying "Pick as a witness this particular object". What makes x
"particular", of course, is that it occurs free in the assumption base (recall that the
formula (3 y) F must be in the assumption base during the evaluation of 6.115).

More generally, we will say that a deduction D is normal iff every subdeduction
of it of the form 6.115 is normal. Because eigenvariables can be consistently renamed
without changing the meaning of a deduction, from here on we will assume that all
deductions are normal. We lose no generality in making this assumption, as the re-
naming algorithm we presented above can always be used to ensure that a deduction
is normal.

Next, we define C(D), the conclusion of a deduction D:

C(F) F (6.116)
C(specialize (V x) F with t) ={x - t} F (6.117)

C(ex-generalize (] x) F from t) = (x) F (6.118)

C(assume F in D) = F =C(D) (6.119)
C(D1 ; D 2) = C(D 2) (6.120)

C(pick-any x in D) = (V x) C(D) (6.121)

C(pick-witness x for F in D) = C(D) (6.122)

where the clauses for primitive deductions other than universal specializations and ex-
istential generalizations are as in the propositional case (see Section B.1). A straight-
forward induction on D will show:

Lemma 6.51 If x does not occur in D then x V Var(C(D)).

Lemma 6.52 C(O D) = 0C(D).

Proof: By structural induction on D. When D is a claim F we have

C(O D) = C(O F) =0 F = 0C(F) = 0C(D).

When D is a primitive deduction of the form Prim-Rule F1,... , Fn the result is readily
verified by an inspection of each possible case. We demonstrate the case where D is of
the form both F1, F2 :

First-order reasoning in CND208

6.4 Theory 209

C(O D) = C(O both Fi, F2)

= C(both OF1, F2)

= OF 1 A OF 2

= 0 (F1 A F 2)

= OC(both F1,F 2)

= 0C(D).

Next, suppose that D is a universal specialization of the form

specialize (Vx) F with t.

By alphabetic conversion, we lose no generality in assuming

x V Supp(0) U RanVar(0) (6.123)

so that 0[x '-* x] = 0 and 0 (V x) F = (V x) 0 F. We then reason as follows:

C(O D) = C(specialize (V x) OF with 0(t))

= {x - (t)} OF (6.123 and Corollary 6.32)

= {x " t} F

= OC(specialize (V x) F with t)

= OC(D).

When D is an existential generalization ex-generalize F from t we have:

C(0 D) = C(ex-generalize 0 F from 0(t))

= OF

= 0 C(ex-generalize F from t)

= 0C(D).

When D is a hypothetical deduction assume F in D' we have:

C(O D) = C(assume OF in 0 D')

= 0 F == C(O D') (from the inductive hypothesis)

= 6F > 0 C(D')

= 6(F > C(D'))

= OC(assume F in D')

= OC(D).

First-order reasoning in CA/D

When D is a composition D1 ; D2:

C(9D) = C(9D 1 ;0D 2)
= C(6 D 2) (from the inductive hypothesis)

= 9C(D 2)
= 9C(D1;D 2)
= 0C(D).

When D is a universal generalization pick-any x in D':

C(0 D) = C(pick-any x in 0[x '-* x] D')

= (V x) C(0[x -+x] D')
- (V x) [x -* x] C(D')

(from the inductive hypothesis)

= 6(V x) C(D')
- 9C(D).

Finally, suppose that D is an existential instantiation

pick-witness x for F in D'.

By Lemma 6.49, we may assume x g Supp(9), so that

9[x '-* x] = 0. (6.124)

Thus:

= C(pick-witness x for O F in 9[x - x] D')

= C(pick-witness x for O F in 9 D')

= C(D')

(by 6.124)

(inductively)
= 0 C(D')
= 0 C(pick-witness x for F in D')
= 0C(D).

The result now follows by structural induction. U

Theorem 6.53 If 0|- D->- F then F = C(D).

Proof: By induction on the structure of D. When D is a claim the result is immediate.
In the case of a primitive deduction Prim-Rule F 1, ... , F, the result is verified by a

C(O D)

210

6.4 Theory 211

straightforward inspection of the different rules. When D is a universal specialization
or an existential generalization, the result holds by virtue of [R6] and [R7]. Hypothetical
deductions and compositions are readily handled by applying the inductive hypothesis.

Next, suppose that D is of the form pick-any x in D'. Then the supposition
- D -- F means that

H f {x -z} D'~-> G (6.125)

and

F= (Vz) G (6.126)

for some z that does not occur in # or in D'. Inductively, 6.125 gives

G = C({x " z} D'). (6.127)

By Lemma 6.52,

G = {x '- z} C(D'). (6.128)

Therefore, by 6.126,
F = (V z) {x " z} C(D').

But, by Lemma 6.51, z does not occur in C(D'), hence (V x) C(D') and

F = (V z) {x - z} C(D')

are identical (a-convertible), and thus

F = (V x) C(D') = C(D).

Finally, suppose that D is an existential instantiation

pick-witness x for (Ely) H in D'.

Then the supposition # H D -- F means that (] y) H C / and

/3U {{y z}IH} - {x z} D'---> F (6.129)

for some z that does not occur in / or in D', and where z g FV(F). Inductively, 6.129
gives F = C({x i-4 z} D'). By Lemma 6.52,

C({x -* z} D') = {x -- z} C(D')

212

hence
F = {x - z} C(D')

and

{z '-_ x} F = {z ' x} {x '-* z} C(D'). (6.130)

But z does not occur in D', hence, by Lemma 6.51, z does not occur in C(D'), and
Corollary 6.18 yields

{z '-* x} {x -* z} C(D') = C(D').

Thus 6.130 becomes

{z - x} F = C(D'). (6.131)

But z does not occur free in F, hence {z F-+ x} F = F and 6.131 gives

F = C(D') = C(D),

completing the induction. U

Corollary 6.54 (Conclusion Uniqueness) If 01 I- D s+ F1 and 02 - D -~-+ F2 then
F1 = F2 .

An interpreter that evaluates any (well-formed) deduction in any given assumption
base appears in Figure 6.6. It is a proper extension of the propositional interpeter
shown in Figure 4.4, augmented with clauses that handle universal and existential
generalizations and instantiations. In order to obtain a deterministic algorithm we
assume that there is a fixed well-ordering -<v on the set of all variables such that we
can mechanically produce the <v-smallest element of any co-finite subset of V (e.g.,
this is trivial if we identify variables with natural numbers through some appropriate
bijection). The same basic results carry over from the propositional setting: evaluation
always terminates, respects the semantics (i.e., the interpreter is sound), and always
produces a conclusion if one is derivable (i.e., the interpreter is complete).

The following is immediate by observing that the size of the input deduction strictly
decreases with each recursive invocation of the interpreter:

Theorem 6.55 (Termination) Eval always terminates. In particular, the recursion
tree spawned by a call Eval(D, ,) has size O(n), where n is the size of D.

Theorem 6.56 0 F- D -+ F iff Eval(D, ,) = F. Therefore, by termination,

Eval(D, /) = error

iff there is no F such that 0 H- D -- * F.

First-order reasoning in CNVD

Eval(D, #) = ev(D)
where

ev(F) = F E / U {true, -false} -- F, error

ev(Prim-Rule F1 ,... , F,,) = do-prim-rule(Prim-Rule, [F1,... , F".], #)
ev(specialize (V x) F with t) = (V x) F E -- {x '-* t} F, error

ev(ex-generalize (3 x) F from t) = {x -4 t} F E # -+ (3 x) F, error

ev(assume F in D) let G = Eval(D,3 U {F})
in

G = error-* error, F =- G

ev(Di; D2) = let F1 = Eval(Di,3)
in

F1 = error-+ error, Eval(D2 , # U {F 1})
ev(pick-any x in D) = let z = the -<v-least variable not in / or in D

G = Eval({x - z} D, #)
in

G = error -+ error, (V z) G

ev(pick-witness x for (3 y) H in D) =
(3 y) H g # - error, let z = the -<v-least variable not in # or in D

F = Eval({x -+ z} D, #U {{y ' z} H})
in

F = error-+ error, (z E FV (F) - error, F)

Figure 6.6: An interpreter for first-order CAD.

Proof: By induction on the structure of D. When D is a claim or a primitive deduction
the result is verified by a straightforward inspection of the semantics of CA/D. When

D is a hypothetical deduction or a composition, the result follows readily from the

inductive hypothesis. The only interesting cases are universal generalizations and

existential instantiations.

Suppose first that D is of the form pick-any x in D' and that /3 1- D -- + F. This
means that

{x - w} D'-\ +H (6.132)

(where, by Theorem 6.53, H = C({x F-* w} D')), and that

F = (Vw) H (6.133)

for some w that does not occur in D' or in /3. Let z be the <v-least variable that does

not occur in / or in D. There are two cases to consider:

6.4 Theory 213

214 First-order reasoning in CAD

(a) z = w : Then, from 6.132 and the inductive hypothesis we get

H = Eval({x - w} D', 3) = Eval({x - z} D', 3)

and, by the definition of Eval and 6.133,

Eval(D, /) = (V z) H = (V w) H = F.

(b) z # w : Then from 6.132 and Corollary 6.34,

f{x z} D'~ {w -*z} H

and thus, inductively,

Eval({x ' z} D', 0) = {w -- z} H

Eval(D, /) = (V z) {w " z} H. (6.134)

But
H = C({x * w} D')

and since z does not occur in D' and z # w, Lemma 6.23 implies that z does not
occur in {x F w} D', so that, by Lemma 6.51, z does not occur in

C({x - w} D') = H.

Therefore, by Lemma 6.1, (V z) {w '-+ z} H is identical (alphabetically equiva-
lent) to (V w) H = F, so 6.134 becomes

Eval(D,/3) = F.

The converse implication-that if Eval(D, /) = F then 3 F- D -- F-is readily estab-
lished by the corresponding inductive hypothesis and rule [R8], owing to the choice of
z as the <v-least variable not occuring in / or in D'.

Finally, suppose that D is of the form pick-witness x for (3 y) G in D' and that
SI- D -- F. Accordingly, we must have

(3 y) G Ec- (6.135)

and

U {{yF w} G} {x F--+ w} D'- F (6.136)

for some w that does not occur in # or in D', and where

w 0 FV(F). (6.137)

Let z be the -<v-least variable that does not occur in / or in D. Again we distinguish
two cases:

(a) z = w : Then, by 6.136 and the inductive hypothesis,

Eval({x -* z} D', U {{y -* z} G}) = F

and thus from 6.137 and the definition of Eval we get Eval(D, /) = F.

(b) z / w : Then, by Lemma 6.23, z does not occur in {x '-* w} D', and thus {w '-- z}
is safe for {x -* w} D'. Accordingly, Theorem 6.33 and 6.136 yield

{w a z}#U {w - z}{y a w}G} -{w a z}{x - w} D'~> {w a z}F. (6.138)

Further, since w does not occur in 0, {w '-* z} / = #; and since w g FV(F),
{w '-* z} F = F. Consequently, by Lemma 6.17 and Lemma 6.19, 6.138 becomes

U {{y - z} G} F {x - z} D'-~>+ F. (6.139)

Inductively,

Eval({x - z} D', 3 U {{y '-+ z} G}) = F. (6.140)

Since F = C(D') and z does not occur in D', Lemma 6.51 entails that z does
not occur in F. Therefore, it follows from 6.140 and the definition of Eval that
Eval(D,/3) = F.

The converse implication-that # H D ->- F whenever Eval(D, /) = F-follows readily
from the corresponding inductive hypothesis and [R9], by virtue of our choice of z. m

Finally, we define the set of free (or strict) assumptions of a deduction D, denoted
FA(D), by conservatively extending the corresponding propositional definition in the
following manner:

FA(true) = FA(-,false) = 0

FA(F) = F (F 0 {true, -false})
FA(left-either F1 ,F 2) = {F 1 }

FA(right-either F1, F2) = {F 2 }

FA(Prim-Rule F1,... , F,) = {F..._ , Fn} (Prim-Rule 0' {left-either, right-either})
FA(specialize (V x) F with t) = {(V x) F}

FA(ex-generalize (] x) F from t) = {{x '-+ t} F}

FA(assume F in D) = FA(D) - {F}
FA(D1; D2) = FA(D1) U [FA(D 2) - {C(D 1)}]

FA(pick-any x in D) = let <D = FA(D)
in

6.4 Theory 215

= error-- error, [x E FV(4) -> error, (P]

FA (pick-witness x for (3 y) F in D) =

x E FV(C(D))-> error,
let 4 = FA(D)
in
S= error -> error, let T = 4 - {{y - x} F}

in

x E FV(xI) -+ error, T U {(3 y) F}

The next key result is Theorem 6.65 below, asserting that # I- D --i C(D) iff 3 2
FA(D). Note that when we write # 2 FA(D) we tacitly imply that FA(D) # error.
In general, we adopt the convention that in any context in which an expression such

as FA(D) would have to denote a set of formulas for some enclosing expression to be

meaningful, we are tacitly conjoining the qualification FA(D) f error. Accordingly,
the full content of the theorem in question is: # I- D -- C(D) iff FA(D) # error and
D FA(D). Observe that this convention is not necessary for an identity such as

FA(D 1) = FA(D 2), as the values of FA(D 1) and FA(D 2) do not have to be sets for
such an identity to be meaningful. In particular, this equality will be considered valid

iff both FA(D 1) and FA(D 2) are error, or else both denote the same set of formulas.

We proceed with some auxiliary results that will be used in the proof of Theo-

rem 6.65. The following is the analogue of Lemma 6.51:

Lemma 6.57 If x does not occur in D then x g Var(FA(D)).

Proof: Immediate by induction on D. U

The next two lemmas are direct consequences our definitions. Note that the con-

verse of part (b) of the following result does not hold, i.e., we do not in general have

0 (41 - 42) = 06(1 - 0 (2.

Lemma 6.58 (a) 6 (4 1 U 4 2) = 0 41 U 0 4 2 ;

(b) 0 (D1 - 0 (D2 C_ 0 (4i - 4)2).-

Lemma 6.59 If x E FV(F) then y E FV({x t-4 y} F).

Lemma 6.60 If x V Supp(O) U Ran Var(6) then:

(a) x E FV(F) iff x E FV(O F);

(b) x C FV(l) iff x C FV(O(D).

First-order reasoning in CND216

6.4 Theory 217

Proof: Part (b) follows automatically from (a). One half of (a) follows directly from
Lemma 6.22. The other half is a straightforward induction on the structure of F. 0

Lemma 6.61 x g FV(FA(D)) whenever D is of the form pick-any x in D' or of
the form pick-witness x for F in D'.

Proof: By direct inspection of the definition of FA(D).

Lemma 6.62 If {x 1 -> x 2 }(s) = {xI '-* x 2}(t) for x 2 V Var(s) U Var(t) then s = t.

Proof: By induction on s. When s is a variable z, there are two cases:

(1) z = x1 : Then

{x 1 ax 2 }s = x 2 (6.141)

so, by supposition, we must have

{x 1 x 2 } t =x 2. (6.142)

Thus the assumption x2 , t entails

t = x 1 = z = S.

(2) z / xi: Then

{x 1 a- x 2} z = z. (6.143)

We must also have t f x1 , for otherwise we would have

{ X1 F-> X 2 } t = X2 = {X1 * X 2 } Z = Z

which contradicts the assumption x2 V Var(s) (since s = z). But t $ x1 means
that

{ X1 x 2 } t = t

and now the supposition {x 1 - x 2 } s = {X 1 '-* X2 } t in tandem with 6.143 implies
t = z = S.

When s is a constant symbol the result is immediate. Finally, when s is an appli-
cation f(si, ... , sn), t must be of the form f(ti, . . . , tn) and we must have

{ x 1 '-* x 2 } Si = {Xi F-- X 2 } tj

for i = 1,... , n. Hence, inductively, si = tj and thus s = t. 0

Lemma 6.63 If {x1 -* x2 } F = {x1 -- x2} Gforx 2 ' Var(F)U Var(G) then F = G.

Proof: By structural induction on F. When F is an atom R(s1,... , sn), the result
follows from Lemma 6.62. When F is a formula built from a propositional constructor
the result follows readily from the inductive hypothesis. For instance, when F is of the
form F1 o F2 , G must be of the form G1 o G2 , and the assumption

{ x 1 - x 2 } F = {xi -* x 2} G

entails

{x1 '-- x2} F1 o {xi x2} F2 = {X1 F x2} G1 o {xi - x 2} G2

so that

{x - x2} F1 = {x 1 - X 2 } C1

and

{x 1 - x 2} F2 = {x 1i- x 2 } G 2.

By the inductive hypothesis, F1 = G1 and F2 = G2 , therefore

F1 o F2 = G1 oG2

i.e., F = G.
Finally, when F is of the form (Q x) F', G must also be of the form (Q x) G', where

we may assume by renaming that x -, x1 . Now the supposition

{ X1 - x2} F = {xli- x 2} G

entails

{x 1 ' x2} F' = {xi- x 2 } G'

and the inductive hypothesis gives F' = G'. Therefore, F = G.

Lemma 6.64 If w' does not occur in D then FA({w -4 w'} D) = {w '-* w'} FA(D).

Proof: We will prove
FA(O D) = 0 FA(D)

by induction on the structure of D, writing'O for {w 4 w'}. When D is the claim true
or the claim -,false, the result is immediate. When D is a claim

F g' {true, -false}

First-order reasoning in CNVD218

6.4 Theory 219

we have
FA(6 D) = FA(O F) = {0 F} = 0 { F} = 0 FA(D).

When it is a primitive deduction

Prim-Rule F 1, ... , F

the result is verified by a case analysis of Prim-Rule. We illustrate with both:

FA(0 D) = FA(both 0 F1,0 F2) = {F 1,F 2} = 0 {F 1, F2} = 9FA(D).

When D is of the form specialize (Vx) F with t we have:

FA(6 D) = FA(specialize (Vx) 9[x i- x] F with O(t))

= {(Vx) [x -*x] F}
= {6(Vx) F}
= {(Vx) F}
= OFA(D).

When D is of the form ex-generalize (] x) F from t, we may assume without loss
of generality that

x V Supp(0) U Ran Var(0)

so that:

FA(0 D) FA(ex-generalize (3] x) O F from 0(t))

= {{x '-* O(t)} 0 F} (Corollary 6.32)
= {{x F- t} F

=0 {{x - t} F}

=0 FA(D).

When D is a hypothetical deduction assume F in D', we have:

FA(0 D) = FA(assume OF in 0 D')
- FA(O D') - {9 F} (inductively)
-0 FA(D') - 0 {F}.

Now FA(D) = FA(D') - {F}, hence

0 FA(D) = 0 [FA(D') - {F}] (6.144)

and thus in order to prove FA(0 D) = 0 FA(D) we need to prove

0 FA(D') - 0{ F} = 0 [FA(D') - { F}].

220

The inclusion
9 FA(D') - 0 {F} C 0 [FA(D') - {F}]

follows from Lemma 6.58. In the converse direction, we need to show that

0 G E 0 FA(D') - 0 {F} (6.145)

for all G E FA(D') - {F}. To that end, pick an arbitrary G E FA(D') such that

G # F. (6.146)

Clearly, 9 G E 9 FA(D'), so in order to establish 6.145 we only need to show 0 G # 0 F.
But this follows directly from 6.146 and Lemma 6.63, as w' occurs neither in F nor in
G (from Lemma 6.57, since G E FA(D')).

When D is a composition D1 ; D 2 we have

FA(9D) = FA(9D 1 ;D 2)
= FA(9D 1) U [FA(9D 2) - {C(9D1)}] (by induction and Lemma 6.52)
=0 FA(D 1) U [0 FA(D 2) - 0 {C(D 1)}].

Moreover,

9 FA(D) = 9 [FA(D 1) U (FA(D 2) - {C(D 1)})] (from Lemma 6.58)
= 0 FA(D 1) U 0 [FA(D 2) - {C(D 1)}].

Therefore, to prove FA(0 D) 0 FA(D) we need to prove

0 FA(D 2) - Of{C(D 1)} = 0 [FA(D 2) - {C(D 1)}].

One half of this equality follows from Lemma 6.58. For the other half, we need to show
that

0 G E 0 FA(D 2) - 0 {C(D 1)}

for all G E FA(D 2)-{C(D 1)}. To that end, pick any G E FA(D 2) such that G f C(D 1).
Clearly,

0 G E 0 FA(D 2)

so we only need to show that

G 9 0 C(D1). (6.147)

But given that w' occurs neither in G nor in C(D1) (Lemma 6.51 and Lemma 6.57),
6.147 follows from Lemma 6.63.

First-order reasoning in CN1D

6.4 Theory 221

Next, suppose that D is of the form pick-any x in D'. Either x = w or not. If
x = w then

0 D = pick-any x in D' = D

hence FA(0 D) = FA(D), while, by Lemma 6.61, 0 FA(D) = FA(D), hence the desired
equality holds readily in this case. Suppose then that x / w, so that

0 D = pick-any x in D'. (6.148)

There are two possibilities:

(1) FA(0 D') = error- Inductively,

FA(0 D') = 0 FA(D')

thus we must have FA(D') = error. Then, by the definition of FA, FA(D) = error
and hence 0 FA(D) = error. But, by virtue of 6.148, FA(6 D') = error also means
that

FA(0 D) = error

so we have
FA(0 D) = 0 FA(D) = error.

(2) FA(0 D') # error- Here we distinguish two possible subcases:

(a) x E FV(FA(0 D')): Inductively,

FA(0 D') = 0 FA(D')

hence x E FV(0 FA(D')) and, by Lemma 6.60, x E FV(FA(D')). Therefore,
by the definition of FA, we have FA(D) = error. From 6.148 and the
supposition x E FV(FA(9 D')) it follows that FA(9 D) = error. Hence in
this case too we have the identity

FA(0 D) = error = 0 FA(D).

(b) x V FV(FA(9 D')): Then by the definition of FA and 6.148, we must have

FA(0 D) = FA(0 D'). (6.149)

Further, the inductive hypothesis yields

FA(0 D') = 0 FA(D') (6.150)

so the supposition x g FV(FA(0 D')) gives

x g FV(0 FA(D')).

Therefore, Lemma 6.60 entails

x V FV(FA(D')).

Accordingly, by the definition of FA we get

FA(D') = FA(D) (6.151)

and now the desired FA(9 D) = 9 FA(D) folows from 6.149, 6.150, and 6.151.

Finally, suppose that D is of the form pick-witness x for (2 y) F in D', so that

9 D = pick-witness x for 9 (3 y) F in 9[x i x] D'

and on the supposition that y , w (which can always be ensured by alphabetic renam-
ing), we have:

9 D = pick-witness x for (3 y) 0 F in 9[x F-+ x] D'. (6.152)

Now either x = w or x / w. If x = w then the result is immediate because, since we
are assuming that x does not occur free in (3 y) F, 9 D = D; while, by Lemma 6.61,
0 FA(D) = FA(D), so the identity FA(9 D) = 0 FA(D) degenerates into FA(D) =

FA(D). Suppose then that x , w, so that 6.152 becomes

9 D = pick-witness x for (3 y) 0 F in 9 D'. (6.153)

There are two possible cases:

(a) x E FV(C(0 D')): Then, by Lemma 6.52, x E FV(0 C(D')), and by Lemma 6.60,
x E FV(C(D')). Therefore, FA(D) = error, and thus

0 FA(D) = error. (6.154)

But, from 6.153, x E FV(C(6D')) also means that

FA(6 D) = error (6.155)

hence FA(0 D) = 0 FA(D) follows from 6.154 and 6.155.

(b) x g FV(C(6 D')): Here we distinguish two subcases:

First-order reasoning in CNVD222

6.4 Theory

1. FA(6 D') = error. In that case the inductive hypothesis implies

FA(0 D') = 0 FA(D')

thus we must have FA(D') = error. Accordingly, FA(D) = error and

9 FA(D) = error. (6.156)

But FA(0 D') = error also means that

FA(9 D) = error (6.157)

and hence the desired identity follows from 6.156 and 6.157.

2. FA(9 D') -, error- There are two final subcases here:

- xE FV(FA(O D') - {{y x- x}0 F}): Inductively, FA(9 D') = 0 FA(D'),
while 9 and {y '-* x} are disjoint and hence Corollary 6.13 entails

{y -- x} 0F = 0{y -4 x} F.

Accordingly, the supposition

x E FV(FA(6 D') - {{y '-* x} 9 F})

becomes

x E FV(9 FA(D') - 9 {{y '-f x} F}). (6.158)

From Lemma 6.58,

0 FA(D') - 0{{y - x} F} C 0 [FA(D') - {{y i- x} F}]

and since 41 C 4)2 implies FV((1) C FV(2), 6.158 entails

x E FV(9 [FA(D') - {{y '-- x} F}]).

Therefore, Lemma 6.60 yields

x E FV(FA(D') - {{y i-4 x} F})

and by the definition of FA we have FA(D) = error, and thus 0 FA(D) =

error. But the supposition

x E FV(FA(9 D') - {{y x} 9 F})

also means that FA(9 D) = error, hence the equality holds in this case
too.

223

224

- x V FV(FA(6 D') - {{y 1- x}O F}): First we will show that

x V FV(FA(D') - {{y -4 x}F }). (6.159)

By way of contradiction, suppose that 6.159 does not hold, so that there
is a G E FA(D') such that

G # {y '-4 x} F (6.160)

and

x E FV(G). (6.161)

Now G E FA(D') entails 0 GE FA(D'), and, inductively, 0 FA(D') =

FA(O D'), so

0 G E FA(O D'). (6.162)

Moreover, we must have

OG # {y t- x} OF; (6.163)

for the supposition 0 G = {y x} 0 F, i.e.,

{w i w'} G ={y --* x} {w w'} F (6.164)

engenders a contradiction as follows: {y F-- x} and {w '-4 w'} are dis-
joint (since w' V' {x, y} from the assumption that w' does not occur in
D, and w V' {x, y} from the assumption w # X5), hence

{y H-> x}{w -+ w'} F = {w w'}f{y H-> x} F

and 6.164 becomes

{w F4 '} G = {wF &I w' {y x} F (6.165)

thus

{w' -- w} {wI w'} G= {w' -w} {w w'} {y -- x} F (6.166)

and since w' does not occur in G (since G E FA(D')) and w' does not
occur in {y H-> x} F, Corollary 6.18 along with 6.166 imply

G = {y - x} F
5 While y is a quantified variable that can be assumed to be different from w by renaming.

First-order reasoning in CNVD

6.4 Theory 225

contradicting 6.160. But 6.162 and 6.163 together entail

0 G e [FA(0 D') - {{y '- x} 0 F}] (6.167)

while 6.161 and Lemma 6.60 give

x c FV(OG) (6.168)

and finally 6.167 and 6.168 contradict the supposition

x V FV(FA(O D') - {{y - x}0 F}).

Thus we conclude x V FV(FA(D') - {{y ' x}F }).
Now in light of Lemma 6.52, Lemma 6.60, and the inductive hypoth-
esis, the suppositions x V FV(C(6 D')) and FA(0 D') = error entail,
respectively, that x V FV(C(D')) and FA(D') , error. Hence, by the
definition of FA, 6.159 entails that

FA(D) = [FA(D') - {{y - x} F}] U {(3 y) F}

and since
o (4 1 U 4 2) = O- (1 U O- (2

for any o and sets 41, (2, we get

0 FA(D) = 0 [FA(D') - {{y - x} F}] U {(3 y) 0 F}.

Likewise, by our suppositions, we must have

FA(0 D) = [FA(D') - {{y - x} 0 F}] U {(3 y) 0 F}.

Therefore, to show FA(9 D) = 0 FA(D), we only need to prove

FA(0 D') - {{y '- x} 0 F} = 0 [FA(D') - {{y - x} F}] (6.169)

or, by the inductive hypothesis and the disjointness of 0 and {y - x},

0 FA(D') - 0 {{y '-4 x} F} = 0 [FA(D') - {{y '-- x} F}]. (6.170)

One inclusion, namely,

0 FA(D') - 0{{y -- x} F} C 0 [FA(D') - {{y i- x} F}]

6.4 Theory 225

follows from Lemma 6.58. In the converse direction, we need to show
that

0 G E 0 FA(D') - 0 {{y - x} F}

for every G E FA(D') - {{y 4 x} F}. Accordingly, pick any G E
FA(D') such that

G $ {y - x} F. (6.171)

Clearly, 0 G E 0 FA(D'), so we only need to show that

G 6O{{y -* x F},

i.e., that 0 G 0 O{y -* x} F. But this is easily done by contradiction:
If 0 G = f{y - x} F, i.e., if {w w'} = {w F-- w'} {y '-* x} F, then

{w' sw} {w w'}G{1 G = w' w}{w w'} {y - x} F. (6.172)

But w' occurs neither in {y F-+ x} F (since w' does not occur in D), nor
in G (since G E FA(D'), so every variable that occurs in G must also
occur in D', and thus in D), hence, by Corollary 6.18, 6.172 becomes

G = {y -*x} F

contradicting 6.171.

This completes our case analysis and the inductive argument. U

Theorem 6.65 3 H D>- C(D) iff # D FA(D).

Proof: By induction on the structure of D. When D is a claim or a primitive deduction
Prim-Rule F1, . . . , F, or a universal specialization or existential generalization, the
result is readily verified.

Suppose that D is a hypothetical deduction assume F in D' and that

S- D -- > C(D)

i.e., /3D - F => C(D'), so that

0 U {F} H D' -s-> C(D').

Inductively, # U {F} D FA(D'), thus

0 - FA(D') - {F}

First-order reasoning in CN1D226

i.e., 3 2 FA(D). Conversely, suppose that

/ D FA(D) = FA(D') - {F}.

Then / U {F} 2 FA(D') and the inductive hypothesis yields

U {F} F D'~->,+ C(D').

Therefore,
/31-assume F in D'-~> F =>C(D')

i.e., #3 D-s* C(D).
We continue with compositions. Suppose that D is of the form D1; D2 and that

/3 I- D - C(D), so that

3 H D1 -- C(D1) (6.173)

and

/ U {C(D 1)} F D2 -- > C(D 2) = C(D). (6.174)

Inductively, 6.173 and 6.174 entail

/32FA(D1) (6.175)

and

/ U {C(D 1)} 2 FA(D 2). (6.176)

Thus 6.176 gives

2 FA(D 2) - {C(D 1)} (6.177)

and 6.175 and 6.177 now imply

/ 3 FA(D 1) U [FA(D 2) - {C(D 1)}]

i.e., # 2 FA(D). Conversely, suppose that /3 2 FA(D), i.e.,

3 2 FA(D 1) U [FA(D 2) - {C(D 1)}] (6.178)

so that

/3 2 FA (D1)

6.4 Theory 227

(6.179)

and

U {C(D1)} 2 FA(D 2). (6.180)

Inductively, 6.179 and 6.180 entail / 1- Di -- + C(D1) and

U {C(D 1)} [D 2 -+ C(D2)

thus we infer H D -~+ C(D).
Next, suppose that D is of the form pick-any x in D' and that

3D --+ C(D)

so that
F {x z} D'-+ C({x -- z} D')

for some z that does not occur in # or in D'. By the inductive hypothesis,

2 FA({x '-* z} D'). (6.181)

By Lemma 6.64 and our choice of z,

FA ({x - z} D') = {x =-4 z} FA(D') (6.182)

hence 6.181 implies

FA(D') $ error. (6.183)

In addition, we must have

x g FV(FA(D')) (6.184)

for otherwise Lemma 6.59 would entail that z occurs free in

{x '-* z} FA(D') = FA({x - z} D')

which is impossible by 6.181 since z does not occur in 0. Therefore, by 6.183, 6.184,
and the definition of FA, we conclude that FA(D) f error, and, in particular,

FA(D) = FA(D'). (6.185)

But 6.184 also means that

{x -* z} FA(D') = FA(D')

228 First-order reasoning in CNVD

so by 6.182 we get FA({x -* z} D') = FA(D'), which, in tandem with 6.181 yields

/ D FA(D').

Finally, by 6.185, this becomes 3 D FA(D).
Conversely, suppose that

D FA(D). (6.186)

This means that FA(D) = error, and in particular,

FA(D) = FA(D') (6.187)

and

x g FV(FA(D')). (6.188)

Pick a z that does not occur in 3 or in D. By 6.188,

{x -*z} FA(D') = FA(D')

so by 6.186 and 6.187 we get /3 2 {x - z} FA(D'). But

{x -+ z} FA (D') = FA({x -* z} D')

thus 13 D FA({x -* z} D'). Therefore, by the inductive hypothesis,

- {x - z} D'~>+ C({x - z} D')

and hence, by our choice of z,

H pick-any x in D'->- (V z) C({x '-4 z} D')

which is to say
3 F D -- (V z) C({x -* z} D').

Now C({x '-4 z} D') = {x '-- z} C(D'), thus

/ F D --+ (V z) {x - z} C(D'). (6.189)

But, by Lemma 6.1,
(V z) 0x z} C(D) (V x) C (D')

so 6.189 becomes
F D~>,- (V x) C(D') = C(D).

6.4 Theory 229

230

Finally, suppose that D is of the form

pick-witness x for (]y) F in D'

and that /3 I- D --+ C(D), so that

(3y) F E #3

and

3 U {{y '-4 w} F} - {x '-4 w} D'--* C({x - w} D')

for some w that does not occur in / or in D',

(6.190)

(6.191)

and where

w g FV(C({x F- w} D')). (6.192)

Inductively, 6.191 gives

13 U {{y -*w} F} FA({x - w} D') (6.193)

so that

2 FA({x - w} D') - {{y -*w} F}. (6.194)

But

FA ({x H- w} D') = {x H-* w} FA(D')

and thus 6.193 entails

FA(D') $ error.

Furthermore, C({x F-- w} D') = {x --> w} C(D'), thus 6.192 means that

w g FV({x F-> w}C(D'))

(6.195)

(6.196)

and from Lemma 6.59,

(6.197)

We will now show that

FA(D) = [FA(D') - {{y -+ x} F}] U {(y) F}.

First-order reasoning in CND

x g FV(C(D')).

(6.198)

6.4 Theory 231

By the definition of FA and in view of 6.197 and 6.196, the only way in which 6.198
could fail to hold is if

x E FV(FA(D') - {{y '-- x} F}). (6.199)

We will prove that this is not the case via an argument by contradiction. On the
supposition that 6.199 holds, there must be a G E FA(D') such that

G = {y - x} F (6.200)

and x E FV(G). Then

{x w}G c {x - w} FA(D')

and by 6.195,

{x - w} G E FA({x a w} D'). (6.201)

Suppose that {x '-* w} G = {y F-+ w} F. Then

{w F- x}{Ix 1-- W} G = {w x} {y F-- w} F

and from Lemma 6.17, G = {y F-* x} F, contradicting 6.200. Therefore,

{x - w}G# {y - w}F

and from 6.201,

{x -* w} G E FA({x -* w} D') - {{y -* w} F}.

Hence, from 6.194,

{x - w}G E 3. (6.202)

But we have assumed x E FV(G), thus, by Lemma 6.59, w E FV({x F-* w} G),
and 6.202 would then mean that w E FV(3), which contradicts the supposition that
w does not occur in 0. This establishes 6.198. Next, from 6.195, 6.193 becomes

IU {{y -w} F} D {x - w} FA(D')

and therefore, from Lemma 6.58,

{w - x} U {{w - x}{y i-* w} F} 2 {w - x}{x - w} FA(D')

i.e.,

{w - x}# U {{y - x} F} 2 FA(D')

and thus

{W I-* X} 3 D FA(D') - {{y -4 x} F}. (6.203)

But w does not occur in /3, hence {w - x} / = # and 6.203 becomes

/3 D FA(D') - {{y ' x} F}. (6.204)

Finally, by 6.204 and 6.190 we get

2 [FA(D') - {{y -4 x} F}] U {(] y) F}

which, in view of 6.198, is to say that 2 FA(D).
Conversely, suppose that / 2 FA(D). Then we must have FA(D) A error, and in

particular,

x (FV(C(D')) (6.205)
FA(D') f error (6.206)

x (FV(FA(D') - {{y v x} F}) (6.207)

/ 2 [FA(D') - {{y '-+ x} F}] (6.208)
(3 y) F E /. (6.209)

Clearly,
[FA(D') - {{y - x} F}] U {{y - x} F}

is a superset of FA(D'), hence, by the inductive hypothesis,

[FA(D') - {{y - x} F}] U {{y - x} F} F- D'-- C(D'). (6.210)

Pick a z that does not occur in / or in D'. By 6.210 and Theorem 6.33,

{x -* z} [FA(D') - {{y -* x} F}] U {x -* z} {{y -4 x} F} [- {x -4 z} D'->- {x -* z} C(D'). (6.211)

But, by 6.207,

{x - z} [FA(D') - {{y - x} F}] = FA(D') - {{y - x} F}

while, by 6.205,
{x -4 z} C(D') = C(D')

so 6.211 becomes

[FA(D') - {{y -- x}F}] U {{x -*z} {y -- x}F} I {x - z}D'--C(D').

232 First-order reasoning in CNrD

(6.212)

6.4 Theory 233

Since we are assuming that D is normal, x g Var(F), hence Lemma 6.17 gives

{x - z}{y 1- x} F = {y - z} F

and thus 6.212 becomes

[FA(D') - {{y '-* x} F}] U {{y '-+ z} F} F- {x '- z} D'--> C(D'). (6.213)

From 6.208 and the Dilution Theorem we get

U {{y z} F} {x - z} D'~>+ C(D'). (6.214)

Finally, since z does not occur in D', Lemma 6.51 implies

z V FV(C(D')). (6.215)

Therefore, in light of 6.214, 6.209, 6.215, and our choice of z, [R9] yields the desired
judgment

t D + C(D') = C(D).

This completes the induction.

The next corollary follows directly from Theorem 6.65; it is the analogue of Corol-
lary 4.11.

Corollary 6.66 Eval(D, #) = C(D) iff FA(D) C 3. Equivalently, Eval(D, 3) = error
iff FA(D) = error or there is some F E FA(D) such that F V 3.

The next two results are analogues of Lemma 4.19 and Theorem 4.20, respectively, and
can be proved with similar reasoning:

Lemma 6.67 If D1 :~~ D 2 then one of two conditions must hold: C(D1) = C(D 2), or

FA(D 1) = FA(D 2) = error.

Theorem 6.68 D 1 ~~ D2 iff one of the following holds:

(a) FA(D 1) = FA(D 2) = error, or

(b) C(D1) = C(D 2) and FA(D 1) = FA(D 2).

Accordingly, observational equivalence is decidable.

6.4 Theory 233

234 First-order reasoning in CND

These definitions and results allow all of the optimization procedures we developed
for propositional CAD to carry over without modification; we only need to define their
behavior on the new syntactic constructs, which is entirely straightforward in most
cases. Recall, for example, that the utility analysis was performed by the following
algorithm:

" (assume P in D) assume P in U (D)

" (D1; D2) = let D' U (D1)
DI =U (D2)

in
(D') gFA (D') -> D', D'; D'

Ui(D) = D

This does not use any concepts other than conclusions and free assumptions. The
foregoing results demonstrate that these notions behave in the predicate setting as
they did in the propositional case, and thus the correctness proofs for these analyses
remain valid.

We close this section with a desugaring of existential specializations in terms of
universal generalizations that will prove convenient in Chapter 9. Specifically, suppose
we had an additional unary primitive rule ex-elim with the following semantics:

0 1- ex-elim (V x) [F =* G] =* [(]x) F == G]s- (V x) [F =: G] => [(3x) F => G]
provided x does not occur free in G.

Thus ex-elim has no premises (and is therefore really an axiom), and simply outputs
its argument, provided that the latter is of the correct form and the proviso about free
occurences of x is observed. We will show in Section 9.7.2 that this is a sound rule by
proving that every formula of the form

(V x) [F = G] > [(3 x) F = G]

with x 0 FV(G) is a tautology. For now we will simply observe that, with the help
of ex-elim, we can desugar pick-witness deductions into pick-any deductions as
follows: we view every deduction of the form

D = pick-witness x for (3 y) F in D'

as an abbreviation for the following T(D):

1. pick-any x in
assume {y F-* x} F in

D';

6.4 Theory

2. ex-elim (V y) [F =* C(D')] == [(] y) F == C(D')];
3. modus-ponens (V y) [F => C(D')] => [(3 y) F = C(D')], (V y) [F = C(D')];
4. modus-ponens (3 y) F => C(D'), (] y) F

The correctness of the desugaring is readily demonstrated:

Lemma 6.69 Let D = pick-witness x for (3 y) F in D'. If (3 y) F E 3 and

3 U {{y -* z} F} {x - z} D'-~+ G

for some z that does not occur in /3 or in D or in FV(G), then # 1 T(D) -- G.

Proof: We are assuming that

(3y) F E 0 (6.216)

and

3 U {{y -*z} F} [{x - z} D'> G (6.217)

for some z that does not occur in # or in D, and where

z V FV(G). (6.218)

Let w / z be a variable that does not occur in / or in D or in G. From 6.217 and
Theorem 6.33 we get

{z a w}# /3U {{z F-* w} {y -* z} F} [{z '-* w} {x '-4 z} D'->+ {z F-+ w} G

so from our assumptions about z and Lemma 6.17 and Lemma 6.19 we get

SU {{Iy w} F} F {x w} D'~>+ G. (6.219)

We will refer to the deductions in lines 1-4 of the definition of T(D) as D1-D4,
respectively. Now since

{x + w}{y -*x} F = {y - w} F

6.219 means that

HDi s- (Vw) {y - w} F =G = C({x - w} D') (6.220)

and since C({x i-* w} D') = {x 4 w} C(D'), 6.220 becomes

(6.221)

235

0 - D1~>, (V w) [{y F-- w} F =:> {x -- w} C(D')].

First-order reasoning in CNVD

But x does not occur free in C(D'), because, from 6.217,

G = C({x -* z} D') = {x - z} C(D')

so if x occured free in C(D') then, by Lemma 6.59, z would occur free in

{x -> z} C(D') = G

contradicting 6.218. Thus 6.221 becomes

/ H Di --+ (V w) [{y -4 w}F * C(D')] (6.222)

and hence
(V w) [{y -*w} F = C(D')]

and (V y) [F > C(D')] are alphabetic variants, so 6.222 becomes

13 F Di 1 -+ (V y) [F == C (D')]

From this point on the result follows readily.

Corollary 6.70 Let D = pick-witness x for (3 y) F in D' If

#3 D --+ G

then /3HT(D)~+ G.

Thus we see that in the presence of ex-elim, the pick-witness construct is superfluous;
it is expressible in terms of pick-any.

6.5 Tarskian semantics

Structures

Let a logic signature Q = (C, F, Z) be given. An Q-structure is a pair D = (D, a)
consisting of a non-empty set D, which we call the domain (or carrier) of D, and a
mapping a, called the realization assignment of D, that is defined on C U F U R and
is such that

* for every constant symbol c E C, a(c) is an element of D;

" for every function symbol f" E F, a(f) is an n-ary operation on D; and

236

* for every relation symbol R' E R, a(R) is an n-ary relation on D.

D is also called an interpretation of the signature Q.
We will write co, fD, and RD as abbreviations for a(c), a(f), and a(R), respec-

tively. We call cD, fD, and R' the realizations of the symbols c, f, and R under D,
respectively. It is important to bear in mind that c, f and R are syntactic objects
(symbols), while their realizations cD, f', and R' are semantic objects (an element of
a domain, an operation on that domain, and a relation on that domain, respectively).
This distinction can become blurry if the underlying domain D happens to consist of
syntactic objects, but it is still useful to think of Q as "syntax" and of an Q-structure
D as "semantics". When the signature Q is fixed or immaterial we will simply speak
of a "structure" rather than an "Q-structure".

As a convention, we will use the same letter for a structure and its domain but in
different fonts, e.g., D for the structure and D for the domain. Thus in any context in
which we are speaking of structures D, 1C, M, ... , the letters D, K, M, ... , should
be understood to signify the respective domains.

Note that an Q-structure D determines a unique Q-algebra: the carrier is D and
the realizations of c and f are cD and fD. Indeed, an s-structure is just an Q-
algebra augmented with realizations for the relation symbols. Accordingly, whenever
it is convenient to do so we will ignore the relations and treat an Q-structure as an
Q-algebra.

Finally, if Q is a signature with equality then an Q-structure D will be called normal
iff the realization of the symbol = is the identity relation on the domain, i.e., iff

=E = {(d, d) I d E D}.

Clearly, insofar we intend = to signify equality, only normal structures provide the
right semantics: if D is not normal then either we will fail to have ='(d, d) for some
d E D, or else we will have =zD(di, d 2) for two distinct di, d2 E D. From now on we
will only be concerned with normal structures, unless we explicity say otherwise.

Valuations and satisfaction

Because an (Q, V)-formula might contain free variables, its truth value cannot be deter-
mined simply on the basis of an Q-structure D. We also need a context that associates
variables in V with elements in the domain D. This is quite analogous to the situation
in algebra, where in order to determine the meaning of a term t E Terms(Q, V) we
need not only a Q-algebra but also a mapping p from V to the algebra's carrier. Ac-
cordingly, let p : V -+ D be a valuation, i.e., a function that assigns an element of the

2376.5 Tarskian semantics

domain D to each variable in V. Bearing in mind that D is an Q-algebra, we write -o
for the unique homomorphic extension of p to Terms(Q, V), so that

TD W)= p(x)

AD c)= c

AD(f (t,. ... ,tn)) = fD(Pv(ti), ,PE)(tn)).

The existence and uniqueness of ;5-D follow from the unique generation of the set of
terms over Q and V [27]. When D is understood or irrelevant we will simply write 7
rather than PD. The following is a fundamental tool of universal algebra; it is easily
proved by a structural induction on t.

Lemma 6.71 (Algebraic Coincidence) If p and a- agree on Var(t) then

P(t) = i5t).

Now given an (Q, V)-formula F, an Q-structure D, and a valuation p : V -> D, we
define the satisfaction relation D |-, F as follows:

" If F is an atom R(ti,... , tn), then D |- F iff RE(-D(ti),... ,PD (tn)).

* If F is a negation -G, then D K, F iff D L= G.

" If F is a conjunction (F1 A F2) then D K, F iff D K, F1 and D K, F2 .

" If F is a disjunction (F1 V F2) then D K, F iff D K, F or D K F2 .

* If F is a conditional (F1 => F2) then D K, F iff D |-K F2 whenever D K-, F1.

" If F is a biconditional (F1 >F2) then D K, F iff D |-, F2 whenever D |-K F1,
and D K, F1 whenever D |-K F 2.

* If F is a universal quantification (Vx) G, then D |, F iff D |=[x d] G for every
d E D.

" If F is an existential quantification (I x) G, then D K-, F iff D K[x - G for
some d E D.

If D |-, F we say that D satisfies F relative to p, or that F holds in D relative to
p. Otherwise, if D f, F, we say that D falsifies F relative to p, or that F fails in
D relative to p. We call F satisfiable if there are D and p such that D |-, F, and
unsatisfiable otherwise. When D |=, F for every valuation p, we say that F is true (or
valid) in D, or that D is a model of F. We denote this by writing D |= F.

238 First-order reasoning in CND

6.5 Tarskian semantics

More generally, for any set (1 C Form(Q, V), we write D K-, 1 to mean that

D =,, F for every F E (P. When D K, (we say that D satisfies 1 relative to p. We

call 1 satisfiable if D |-, 4 for some D and p, and unsatisfiable otherwise. If D |= F

for every F E (J we write D |= 4 and say that D is a model of '1. Note that every

structure is a model of the empty set, i.e., D |= 0 for every D.

A set (D C Form(Q, V) logically implies an (Q, V)-formula F, written 1 |= F, if for
every Q-structure D and valuation p : V -* D, we have D |-K F whenever D |-K D.

In that case we also say that F is a logical consequence of 4. When 1 is a singleton

{G} we write G |= F instead of {G} |= F; and when 4 is the empty set we write |= F
instead of 0 |= F. The reader will verify the following analogue of Lemma 4.25:

Lemma 6.72 If 4b U{F} = G then D |= F =-G.

Coincidence and the Substitution Theorem

The following result formally captures the intuition that whether or not D |-, F holds

depends only on the values that p assigns to the free variables of F.

Lemma 6.73 (Logic Coincidence) If p and o agree on FV(F) then

D |-, F iff D |=, F.

Proof: By structural induction on F. When F is an atom R(ti,... , tn), Lemma 6.71

implies

PD(ti) = 0D(ti) (6.223)

for i = 1, ... , n, since p and o agree on Var(ti). Accordingly,

D |-, F iff

RE(pv(t1),... , PD(tn)) iff (from 6.223)

RE(Th(t1),... ,6:(tn)) iff

D |-, F.

The propositional cases are handled by straightforward applications of the inductive

hypothesis.
Finally, suppose that F is of the form (V x) G. The key observation is that for any

d E D, the valuations p[x -*+ d] and a[x i-+ d] also agree on FV(G). This allows us to

use the inductive hypothesis in the following reasoning:

D 7p F iff

239

240 First-order reasoning in CVD

D kpt, -j G for every d E D iff (from the inductive hypothesis)

D |9 -, q G for every d E D iff

D |-, F.

The case of existential quantifications is similar. U

A different formulation of this lemma is given below which allows us to handle
coincidence of valuations over two different sets of variables. The proof is virtually
identical to the one given above.

Lemma 6.74 Consider an Q-structure D and valuations p : V -+ D, p' : V' -> D,
where V C V'. If p and p' agree on V then for any F E Form(Q, V) we have D |-K F iff
D |=pi F (where F is viewed as a member of Form(Q, V') in the expression D |=p, F).

Next, consider a vocabulary (Q, V). For any valuation p : V - D and substitution
0 = {x 1 ' t 1, ... , x '-4 tn} from V to Terms(Q, V), we define a valuation

P/D 0 = p[x 1 " AD(t1),... , xn - P' D(tn)].

Thus p/D 0 maps a variable xi to whatever domain element PD assigns to the term ti,
and every other variable x to p(x). In particular, when tj is a constant symbol c, pID 0
maps x to the individual c. When D is fixed or immaterial we might omit it, writing
p/O instead of p/D 0.

Lemma 6.75 p/=p.O

Proof: We will use structural induction to show that p/O(t) = 7(0(t)) for all t, where
O = {x 1 '-* t 1 , ... , x,n F-- t}. If t is a variable x then either x E Supp(0) or not. In the
latter case O(t) = 0(x) = x, thus p(0(t)) = 7(x) = p(x), while p/O(t) = p/O(x) = p(x),
hence the equality holds. If x E Supp(O), i.e., if x = xi for some i E {1, ... , n}, then

p/O(t) = p/O(xi) = p(ti)

while

p(0(t)) = T(0(xi)) = ti)

so the equality holds in this case as well.
For a constant symbol c we have

p/O(c) = c = 0(c) = c).

6.5 Tarskian semantics 241

Finally, when t is of the form f(ti,... , t,,) we have

p/O(t) = f (P/O(ti),... , p/(tn))

and

X(#(t) = P(f (O(ti), . . 0(tn))) = f (P(O(ti)), , 7i(O(tn)))

and the result now follows from the inductive hypothesis.

Lemma 6.76 If x g RanVar(O) then (p/O)[x F d] = p[x F-+ d]/O[x F- x].

Proof: Let 0 = {xi F-- ti, ... , x,n -* tn}. By supposition, x g Var(ti) for i = 1, ... , n.
Pick any variable y and let

L(y) = (p/6)[x i-* d](y),

R(y) = p[x H-- d]/O[x i-* x](y).

We prove L(y) = R(y) by a case analysis:

(1) y = x: In that case L(y) = d = R(y).

(2) y / x: Here we distinguish two subcases:

(a) y c Supp(O): In that case L(y) = (p/O)(y) = p(ti), while

R(y) = p[x - d](ti).

But x V Var(ti) by supposition, hence p and p[x '-* d] agree on Var(ti), and
by Lemma 6.71,

p[x - d](ti) = p(ti) = L(y).

(b) y V Supp(O): In that case L(y) = p(y) = R(y).

The result now follows since L(y) = R(y) in every possible case.

The following is a direct consequence of our definitions:

Lemma 6.77 If 01 and 02 agree on FV(F) then so do pI01 and p/ 0 2.

Theorem 6.78 (Substitution Theorem) D |-,/o F iff D M, 0 F.

Proof: By induction on F. When F is an atom R(ti,... , tn) we have

D |= 0 R(t 1 ,... ,tn) iff

242 First-order reasoning in CA/V

D |=p R(6(ti), ... , (ti))

RD(j(0(t 1)), ... , P(O(tn)))

R'(p/O(t1), _. , p/O(tn))

D =p/o R(ti, . .. , tn).

iff

iff (Lemma 6.75)

iff

The propositional cases are handled by straightforward applications of the inductive
hypothesis. We illustrate with conjunctions. Suppose F is of the form F1 A F2. Then

D |-K OF

D | 0 F1 A 0 F2

iff

iff

D |-K 0 F1 and D K, 0 F2

D |-p7o F1 and D |-plo F2

iff (from the inductive hypothesis)

iff

D hp/o F 1 A F2

Finally, suppose that F is a quantified formula of the form (Q x) G. Without loss
of generality, we may assume that x g
a-rename F to ensure this). Now if F is

D h=K OF

D |-K (3x)O[x - x] G

D |-,[x -3d O[x F-- x] G for some d

D |-p[x - d/o[x - x] G

V I(p/9)[x - d] G

Var(ti), i = 1, ... , n (we can always rename
an existential generalization (3 x) G:

iff

iff

iff (from the inductive hypothesis)

iff (Lemma 6.76, as x Ran Var(0))

iff

D =po (] x) G.

Universal generalizations (V x) G are handled similarly:

D = OF iff

D K, (V x)O[x - x] G iff

D -,[x - d] O[x '-+ x] G for arbitrary d

First-order reasoning in CND242

iff (from the inductive hypothesis)

6.6 Metatheory

E) dp[x - a/o[x -xJ G

E)D (p/o) [X -* d G

iff (Lemma 6.76, as x Ran Var(0))

iff (since d is arbitrary)

D =,lo (V x) G.

This completes the induction. U

Lemma 6.79 If 01 and 02 agree on Var(t) then 0(t) = 02 (t).

Proof: A straightforward induction on t.

Lemma 6.80 If 01 and 02 agree on FV(F) then 01 F = 02 F.

Proof: By induction on the structure of F. When F is an atom R(ti, ... , tn), we have

01 F = R(0 1(ti),... ,W (tn)) and 02 F=R(02 (t1),... , 2(tn)).

By Lemma 6.79, 1 (ti) = 02(ti) for i = 1, ... , n, hence 01 F = 02 F. The propositional
cases are straightforward with the aid of the inductive hypothesis.

Finally, suppose that F is a quantified formula of the form (Q x) G. We have

01 F = (Qx)01[x - x] G and 02 F = (Qx)0 2[x -*x] G.

It is readily verified that 01[x '_4 x] and 02 [x '-4 x] agree on FV(G).
inductive hypothesis, 01[x '-* x] G = 02 [v '- v] G and thus 01 F = 02 F.

Hence, by the
N

6.6 Metatheory

We are now ready to prove the soundness and completeness of first-order CKD.

6.6.1 Soundness

We begin by establishing the soundness of the new axioms [R6] and [R7], which will
be needed in the base case of our inductive argument.

Lemma 6.81 The universal specialization axiom [R6] is sound. That is,

U {(Vx)F} |= {x - t} F.

243

Proof: Suppose that for some D and p we have

D |=p/ U {(Vx)F}

so that D K, (Vx)F. Then, by definition, we must have D |-K[,d F for all d E D,
and in particular,

D I=p[x-*T(t)I F.

It now follows from the Substitution Theorem that D |, {x -- t} F.

Lemma 6.82 The existential generalization axiom [R7] is sound. That is,

U {{x '-* t} F} 1= (]x)F.

Proof: Suppose that D K, 3 U {{x '-* t} F}, so that D K, {x -4 t} F. By the
Substitution Theorem, D |-,[x-p(t)l F. Accordingly, D K, (]x)F.

Lemma 6.83 The equational axioms [Ref] and [Leibniz] are sound.

Proof: For [Ref], we always have D =, t = t, i.e., D - =D(;(t), p(t)), since D is
normal. For [Leibniz], suppose we have D -, # U {s = t}, so that p(s) = p(t). A
straightforward induction on F will show that D |-K {x ' s} F iff D K, {x ' t} F. m

Finally:

Theorem 6.84 If / I- D -- F then # = F.

Proof: By induction on the structure of D. When D is a claim or a primitive de-
duction, the supposition that the judgment 0 I- D -- + P is derivable means that the
judgment in question is either an instance of [R1], or [R2], or [R3], or [R6], or [R7]; or
an instance of one of the two equational axioms [Ref] and [Leibniz]; or an instance of
one of the propositional axioms for primitive deductions shown in Figure 4.3. In light
of the preceding lemmas for [R6], [R7], [Ref], and [Leibniz], it is readily verified that
in any of these cases we have # |= P.

When D is a hypothetical deduction or a composition, we proceed just as in the
propositional case, using Lemma 6.72 (in place of Lemma 4.25) and the transitivity
of |=. We consider the two remaining cases, universal generalizations and existential
instantiations:

244 First-order reasoning in CNVD

6.6 Metatheory 245

" When D is of the form pick-any x in D', the conclusion F must be of the form
(V y) G, where we have

S/ {x - y} D'- G
for some y that does not occur in # or in D'. By the inductive hypothesis, 3 = G.
Now suppose that D K, /. Pick any d E D. Since y does not occur free in 3,
Lemma 6.73 implies D |-,[y 4 0 /. Thus, since /3 = G, we conclude

D |-p[y - d] G.

As this holds for arbitrary d E D, we infer D |-,, (Vy)G = F.

" When D is of the form

pick-witness x for (E y) G in D'

the supposition / F D -~-+ F means that we must have (3 y) G E 3 and

SU {{f y z} G} { x z} D'-+ F (6.224)

for some z that does not occur in # or in D', and such that z g FV(F). Thus
from 6.224 and the inductive hypothesis we get

#3U {{y -z}G} j= F. (6.225)

Now suppose that

D |=, #(6.226)

so that

D |-, (3 y) G (6.227)

(as (3y) G E #). Since z does not occur in (3y) G, we have

(3 y) G - (] z) {y F-- z} G

so 6.227 yields D |-, (3 z) {y F-+ z} G, which is to say

D |-p[z - d] {y '-- z} G (6.228)

for some d E D. But z does not occur free in #, so Lemma 6.73 and 6.226 give

D |=[-* z 0. (6.229)

From 6.228, 6.229, and 6.225 we get D |=p[z2, * F. But z g FV(F), hence
Lemma 6.73 yields D K-, F. We have thus shown that D K, F whenever
D |-, 0, i.e., #|-= F.

The result now follows by structural induction.

We immediately get:

Corollary 6.85 (Soundness) If 4 HCoD F then <D |= F.

6.6.2 Completeness

In this section we will prove that CND is logically complete, i.e., that (D HcAI-D F when-
ever D |= F. The proof is a standard Henkin argument, but there is one original result,
Theorem 6.93, which abstracts aways from different completeness proofs by postulat-
ing the existence of a mapping from the underlying domain to the set of terms whose
composition with the homomorphic extension of the relevant valuation is the identity
on the domain. This allows us, for example, to get completeness as an immediate
corollary when we come to cover equality, working with the quotient set of equivalence
classes as the underlying domain. There are some other minor technical differences
from the standard course, which we feel make for a cleaner proof, e.g., variables are
used as witnesses rather than the usual Henkin constants. The reader who is not
interested in the details of the proof may take the result on faith and move on.

Preliminaries

We begin with a few definitions and results that carry over directly from the propo-
sitional setting. First, we call a set of formulas 4 inconsistent if 1 HcKD false, and
consistent otherwise. Equivalently, 4 is inconsistent iff there is a formula F such that
D Hcg-p F and 4 -cAr -F. The proofs of the next two lemmas are as in the propo-
sitional case (Lemma 4.29 and Lemma 4.34), since the first-order version of F-C'rD

remains reflexive and monotonic.

Lemma 6.86 (D is inconsistent iff 1 -CArD F for every formula F.

Lemma 6.87 1 HcgVE) F iff ({-F} is inconsistent. Equivalently, (HcpV IF iff
SU { F} is inconsistent.

The definition of maximally consistent sets is the same as before, but with one added
subtlety. Specifically, we say that a set 1 C Form(Q, V) is maximally consistent iff
it is consistent and not properly contained in any consistent set of (Q, V) -formulas.
The last qualification is important, as the property is not invariant under vocabulary
changes-any consistent set of (Q, V)-formulas will remain consistent if we add to it a
formula such as R(v) V -,R(v) for some relation symbol R that does not occur in Q.
Further, we say that 1 C Form(Q, V) is saturated iff for any (Q, V)-formulas F and G
we have

" F E 1 if ,F g '. That is, exactly one of the couple F, -F is in 4b.

" F AG E 4 iff F E 4 and Gc 4).

e F v G (D iff F c D or GE (D.

First-order reasoning in CXD246

* F -G E 4b iff G E 4 whenever FE (D.

* F G E 4) iff F E D iff G E (.

* (3x)F E 4 iff {x '-4 t}F E (D for some t.

* (Vx)F E Q iff {x -*t}F E D for every t.

The proofs of the next two lemmas also carry over from the propositional setting:

Lemma 6.88 Maximally consistent sets are deductively closed. That is, if b is maxi-
mally consistent then) \-cgV F iff F E D.

Note that the converse does not hold-the set of all formulas, for instance, is deduc-
tively closed but inconsistent.

Lemma 6.89 (Lindebaum's Lemma) Every consistent set of (Q, V)-formulas is
contained in some maximally consistent set of (Q, V)-formulas.

The analogue of Theorem 4.36 does not hold in the first-order setting-it is not true
that maximally consistent sets are saturated. However, we will see that maximally
consistent sets that contain witnesses are saturated.

Henkin extensions and witnesses

Consider any logic vocabulary (Q, V) and let V be a countably infinite set of vari-
ables disjoint from V and the symbols of Q. The vocabulary (Q, V U V) is called a
Henkin extension of (Q, V). The elements of V are called the Henkin variables of
(Q, V U V). We will write Henkin variables in boldface, e.g., v, v', vi, etc. Clearly,
every logic vocabulary has infinitely many Henkin extensions. We note:

(a) Terms(Q, V) C Terms(Q, V U V);

(b) Form(Q, V) C Form(Q, V U V);

(c) Terms(Q, V U V) and Form(Q, V U V) are countable.

Now let us say that a set D contains witnesses iff for every existential quantification
(3 x) F in D, there is a term t such that {x '-* t} F E 4D. We have:

Lemma 6.90 A maximally consistent set that contains witnesses is saturated.

The proof of the propositional cases carries over directly from propositional logic. The
two quantifier cases are straightforward exercises.

The following result is of central importance:

6.6 Mietatheory 247

Theorem 6.91 Consider an arbitrary Henkin extension (Q, V U V) of a logic vocab-
ulary (Q, V). Every consistent set (D C Form(Q, V) is contained in a maximally con-
sistent set V* C Form(Q, V U V) that contains witnesses.

Proof: Let

(v1) F1, (v 2) F 2 , (v 3) F3 , ... (6.230)

be an enumeration of all and only the existentially quantified formulas in

Form(Q, V U V)

(such an enumeration exists since there are countably many such formulas). Since V
is countable, there exists a bijection 7P : N -+ V. Define an order -< on V so that

x -< y iff @)-1(x) < V- 1 (y). It is easy to check that -< is a well-ordering. Now define a
sequence of Henkin variables x 1, x 2 , x 3 ,... as follows:

xi = min, [V - {x I x occurs in (v) F, 1 < j i} U {x,... ,x 1 }]. (6.231)

This is a legitimate definition because V is infinite, whereas for every i E N+ the set

{x I x occurs in (3vj) Fj, 1 < j < i} U {xi,... , xi_1}

is finite, so their difference is always non-empty; and since -.< is a well-ordering, every
non-empty subset of V must have a unique -<-least element. Thus, by construction,
the following claims hold for all i > 1:

(1) xi does not occur in (3 vi) F1, . . . , (3 vi) F; and

(2) xj+ 1 is distinct from x 1,... ,xi.

In what follows we will refer to the xi as "witnesses".
For any i > 0, define

() if i = 0 (6.232){i_1 U{(3vj)F=>{vj-4xj}Fj} ifi> 0.

By definition, (o contains no witnesses (since 1 C Form(Q, V)), while for i > 1, 4I1
does not contain any witnesses outside of x1 , ... , xi.

An inductive argument on i will show that every I i is consistent. For i = 0 this
holds by supposition. For i > 0 we proceed by way of contradiction. Specifically,
suppose that <j is inconsistent. Then, by 6.232 and Lemma 6.87 we conclude

First-order reasoning in CN'D248

4i-1 _cMo -, [(3 vi) F ->{Ivi F-- xi} F] .

Thus, from Lemma 6.4a,

'Di-1 lC-cD (] vi) F (6.233)

and

(Di- I CA/-D ,{vi '-- xi} F. (6.234)

But xi does not occur in 4i_1, hence, from Corollary 6.36, 6.234 gives

Di -1i -c~r (V xi) ,{ifvi -- xi}I F

and since
(V vi) ,i r10 (V xi) ,{ifvi - xi}I F

(as xi does not occur in F), we conclude Gi--i -cgo (Vvi) ,Fi. But this means that
(z-1 -c~CD -(] vi) F (Lemma 6.4b), which, combined with 6.233 entails that 4i-1 is
inconsistent, contradicting the inductive hypothesis. This completes the inductive
argument showing that every (i is consistent.

Now set

U 4i.
iEN

By Lemma 6.92, ' is consistent. By Lindebaum's Lemma, V is contained in some
maximally consistent set * C Form(Q, V U V). All that remains to show is that *
contains witnesses.

Suppose that V* contains an existentially quantified formula, which must thus
appear in the list 6.230, i.e., it must be of the form (2 vi) F, for some i E N+. By
construction, @* contains the formula

(3 vi) F -{vi F- xi}I Fi.

Since V* is maximally consistent, it is deductively closed (Lemma 6.88), hence *
contains the formula {vi '-4 xi} F, which proves that it contains witnesses. U

Lemma 6.92 The union of a countable chain of consistent sets is consistent.

Proof: Let to g 41 J P2 C - be the given chain, where each Gi is consistent, and
set

*= U i.
iEN

By way of contradiction, suppose that 4* is inconsistent, so that * FcrD false, mean-
ing that f3 F D -~ false for some D and / C *. Since # is finite and 1* = Go U 1U - - ,
we must have # C 4)n for some n, hence 4 |-cgp false, contradicting the assumption
that every Gi is consistent. 0

6.6 hMetatheory 249

Theorem 6.93 Let (D be a maximally consistent set of (Q, V)-formulas that contains

witnesses, and suppose that there exist an Q-structure D, a valuation p : V -~ D, and
a function @ : D -+ Terms(Q, V) such that

(a) for all n-ary relation symbols R in Q and terms t 1,... , tn c Terms(Q, V),

D |-, R(tjI,... ,in) iff R(ti,7... , tn) E@

(b) 75. is the identity on D.

Then for any (Q,V)-formula F, D K, F iff F G 4.

Proof: By structural induction on F. When F is an atom the result holds by sup-

position. The propositional cases are readily handled by straightforward applications
of the inductive hypothesis and the fact that maximally consistent sets are saturated.
We will work out negation as an example and leave the remaining cases as an exercise.
When F is a negation -,G we have:

D , -,G iff

D V, G iff (by the inductive hypothesis)

G V 4 iff (Lemma 6.90)

-,G c 4D.

Next, suppose that F is of the form (] x) G. In one direction, suppose that F E 4b.
Because 4b contains witnesses, we have {x H-+ t} G E 4D for some term t. From the
inductive hypothesis, D K, {x - t} G, so, by the Substitution Theorem,

D -,/lj -* t} G.

But p/{x F-4 t} = p[x F-- p(t)], hence D [,[x pty) G and thus D K (2 x) G = F.

Conversely, suppose that F V 4. We will show that

D V,[x -al G

for all d E D, which will entail D 4,, F. Pick an arbitrary d E D and let t = @(d).

Since F 4D , we have @ -cn (3 x) G. Hence 4 Y-cv-D {x '-* t} G, for otherwise we

would have 4b HcoD (3 x) G via ex-generalize. Therefore, {x '-+ t} G g 1, and the

inductive hypothesis implies D y, {x '-* t} G, so the Substitution Theorem gives

First-order reasoning in CND250

(6.235)D VN,/{x -+ t} G.

But from the equation t = 0(d) and our supposition about .-0 we get

p/{x F-- t} = p[x - p(t)] = p[x '-f T(#)(d))] = p[x '-* d] (6.236)

hence 6.235 entails D G, g G. Since d was chosen arbitrarily, we conclude

D V, (3 x) G = F.

Finally, suppose that F is of the form (V x) G. In one direction, assume F E 1.
Pick any d E D and let t = $(d). Now F E @ entails 4 Hcgv F, hence, using
specialize, (-CgD {x i-* t} G. Thus {x F-+ t} G E (, and the inductive hypothesis
implies D |=, {x '-+ t} G. The Substitution Theorem, in turn, gives D ,/l2 - t} G,
and by the reasoning of 6.236 we get

D |=p[x - al G.

Since this holds for arbitrary d, we conclude D |=, (Vx) G = F.
Conversely, suppose that

D '=, (V x) G. (6.237)

By way of contradiction, suppose (V x) G §' (, so that -(V x) G E 1 (since 1 is
saturated), and thus 4 Hc-, - (Vx) G. Hence 4 Hcgo (3x) -G (Lemma 6.4c), and

(3x) ,G E (.

Since 1 contains witnesses, we have -1{x F-> t} G E 4) for some t, hence

4D Hcr -,{x -> t} G. (6.238)

But, from 6.237, D -p[x - (t)] G, and since

p[x F-> (t)] = p/{x F-+ t}

the Substitution Theorem yields D =, {x '-4 t} G. Therefore, from the inductive
hypothesis, {x -> t} G E 1, and hence (D F-cKD {x -* t} G, which, in view of 6.238,
contradicts the consistency of &1. Thus we conclude (V x) G E 4.

All the pieces are now in place for the key result:

Theorem 6.94 Every consistent set is satisfiable.

6.6 Aletatheory 251

Proof: Let JD be a consistent set of (Q, V)-formulas, and let (Q, V U V) be a Henkin
extension of (Q, V). By Theorem 6.91, 4 is contained in a maximally consistent

* C Form(Q, V U V)

that contains witnesses. Now define an Q-structure D as follows:

1. the domain D is the set of all terms over Q and V U V, i.e.,

D = Terms(Q, V U V);

2. for any constant symbol c, cD is the constant symbol c;

3. for any n-ary function symbol f, f : -> D is defined as

f "(tli, . tn) = f(ti, . .. , tn);

and

4. for any n-ary relation symbol R, we set RD(ti, . . . , tn) iff R(ti, ... , tn) E (*.

Next, let p : V U V -> D be the identity mapping on V U V (we can do this because
V U V C D). It is readily verified that 5 is the identity function on D. Now let
be the identity on D as well. It follows that P -# is the identity on D. Hence,
by Theorem 6.93, for any F E Form(Q, V U V) we have D |-, F iff F E V*. Let
o- = p [V, so that o- is the identity on V. Then Lemma 6.74 entails D |=, b, proving
that 4D is satisfiable.

We conclude:

Theorem 6.95 (Completeness) If 4D j= F then (D -CA/D F.

Proof: If 4 |- F then 4) U {-F} is unsatisfiable, hence, by Theorem 6.94, it is
inconsistent. Therefore, by Lemma 6.87, 4) Hcg F. U

Completeness in the presence of equality

It is well-known that the preceding construction will not work for a logic vocabulary
with equality because the resulting structure might be non-normal. That is, the re-
alization of the equality symbol will not be the identity relation on the underlying
domain-the set of all terms. Suppose, for example, that '1* contains the formula

Ci = c2 for two distinct constant symbols ci and c2. Then, by construction, we will
have =E (ci, c2). But ci and c2 are two distinct elements of the domain D, hence =E
is not the proper realization of the equality symbol.

First-order reasoning in CNVD252

6.6 Metatheory

However, the construction can be modified in a straightforward way that will result
in a normal interpretation. Specifically, let D C Form(Q, V) be a consistent set, for
some vocabulary (Q, V) with equality. We will construct a normal structure D that
satisfies 4. The first step is the same as before: we let (Q, V U V) be a Henkin extension
of (Q, V), and we let V* C Form(Q, V U V) be a maximally consistent set that contains
witnesses. Now we define a binary relation - on Terms(Q, V U V) as follows: s = t iff
the formula s = t is in V. We can prove:

Lemma 6.96 - is an equivalence relation that is compatible with the function and
relation symbols of Q. That is, for every n-ary function symbol f and n-ary relation
symbol R in Q, if s 1 t1,... , Sn n then

(a) f(si, ... , sn) f , tn); and

(b) R(si,... ,,s) E V* iff R(ti,... ,itn) E V.

Proof: We first need to show that - is an equivalence relation: reflexive, symmetric,
and transitive. For reflexivity, we have V* Hc-v t = t for arbitrary t (by ref), and since

* is deductively closed, t = t E V, hence t = t. For symmetry, suppose s = t, so that

s = t E V. Then V* cgv s = t, and from swap, V *Hcgo t = s, so that t = sE V
and hence t = s. Transitivity is proved by similar reasoning.

For (a) and (b): if si = tj then si = tj E I* and hence

* HCV-D Si = ti (6.239)

and

(* H-cMo ti = Si (6.240)

for i = 1,... , n. Hence, by cong and 6.239 we get

* -cND f (S1, - - - ,sn) = f (t1, - tn)-

Thus the formula f(si,... , sn) = f(ti, ... , in) is in V*, and therefore

f (si, ... , sn) - f (ti, .. . , in).

Likewise, we have

R(si, ... , sn) E @* iff

* VcgD R(si, ... , sn) iff (by 6.239 or 6.240, and cong)

* coD R(til ... ,t n) iff

R(tjI,... , tn) E 4*

253

254 First-order reasoning in CA/D

which completes the proof of (b). 0

Next we define an Q-structure D as follows. First, we take the domain D to be the
quotient class Terms(Q, V U V)/=, that is, the set of all equivalence classes determined
by =. For any constant symbol c, n-ary function symbol f, and n-ary relation symbol
R in , we set

(1) CD = [C];

(2) fv(t1], . .. , [tn]) = [f (tli, t,,)]; and

(3) Ro([t1], . .. , [tn]) iff R(ti, , tn) E 4@*

where we write [t] for the equivalence class of t.
For definitions (2) and (3) to be legitimate we must show that they are inde-

pendent of how we choose the representatives ti, . . . , tn. In particular, suppose that

Si t 1 , ... ,s tn (so that [si] = [ti]). For (2), we must show that [f (si, ... , s)]
[f (ti, ... , tn)], i.e., that f(si, ... , s) f(ti, ... , tn). But this follows directly from
the assumptions si = tj and the preceding lemma. For (3), we must show that

R(s 1 ,... , s) E V* iff R(ti,... , t) E (*

This, too, follows directly from si = tj and the previous lemma.

We can now see that D is normal. For we have

s=tCE * iff

s = t iff

[s]= ' [t].

That is, = relates all and only identical domain elements. Hence D is normal.

We now define a valuation p : V U V -* D as p(v) = [v]. A simple structural

induction will show that p-(t) = [t] for all t. Therefore,

Lemma 6.97 -(s) = -(t) iff s = t.

We also get:

RoD(P(ti), . .. , N(tn)) iff Ro([t1], . .. , [tn]) iff R(ti, . .. , tn) E 4*. (6.241)

Further, let -< be some well-ordering on Terms(Q, V U V), and define Q([t]) as the

-<-least element of [t]. Thus:

Lemma 6.98 t = #([t]).

6.6 Metatheory 255

Lemma 6.99 ~-(#([t])) = [t].

Proof: Since t = #([t]), we have (by Lemma 6.97) that V-(t) = P-(Q(t])). But p-(t) =
[t], hence VD(#([t])) = [t]. U

Thus we have shown that 75 - is the identity on D. In view of 6.241, Theorem 6.93
entails that D b=, F iff F E V. It follows from Lemma 6.74 that D |=p[v G for every
G E <b, and hence that <D is satisfiable.

Chapter 7

CA/D as a formal analysis of
classical reasoning

In this chapter we will consider CA/D as a formal explication of deduction and contrast
it with previous similar analyses: Hilbert systems, sequent systems, and proof trees.

7.1 Deduction and the nature of formal analysis

The notion of deduction, or proof, is one of several fundamental intellectual concepts
that were around for thousands of years in a fairly well-understood but informal form
in a pre-theoretical state. As a methodology for attaining scientific knowledge, and
especially for investigating mathematics, it was first introduced in ancient Greece [43].
Two of the most exemplary mathematical proofs of all time (proofs "from the book",
to use Paul Erd6's phrase [2]), widely cited in modern textbooks, come verbatim from
ancient Greece: the proof that V2 is irrational' (by the Pythagorians), and the proof
that there are infinitely many primes (by Euclid). Both are surprisingly modern in
their structure, as well as paradigms of insightful, elegant, and succinct deductive
reasoning. In his Elements Euclid gave 465 rigorous mathematical proofs, starting
from five postulates, the first example of systematic axiomatic reasoning in the modern
sense. Aristotle developed the subject further in his Organon, although many modern

'What was actually shown was the incommensurability of the side and the diagonal of a square,
but this is just an alternative, geometric formulation of the same statement; the proof proceeds
identically regardless of the setting (geometric or numeric). Incidentally, the ancients were severely
shocked by the discovery of irrational quantities, and all manners of legend surround the fate of the
person responsible for it. According to the historian Proclus: "It is well known that the man who
first made public the theory of irrationals perished in a shipwreck, in order that the inexpressible and
unimaginable should ever remain veiled."

logicians tend to reproach his work on the charge that his emphasis on syllogistic
reasoning held back the development of predicate logic for two thousand years.2 Many
other proofs were accumulated through the Dark and Middle ages, and even more
came after the discovery of analytic geometry, as a result of the general proliferation of
mathematical activity that ensued. A good number of the latter, however, especially
those dealing with the differentiable calculus, were later found to be flawed; and in
fact that was a major motivating factor for the attempt to formalize mathematical
reasoning that began with Frege's work.

So although proofs have existed for a very long time, a formal definition of the
notion of proof itself was not given until the time of Frege and Russell. Deduction is
not alone in this respect. Other fundamental concepts that had been around for a long
time but were only defined rigorously in this or the past century include continuity

(convergence), the notion of a number (magnitude), and the notion of a mechanical
procedure (algorithm). In all of these cases, formal analysis proved to be a tremen-
dously powerful catalyst for scientific progress. The same was to be the case with
deduction, but the road here, as we will see, has not been as smooth as in the other
cases.

The first formal analysis of deduction, which we will refer to as the Frege-Russell-
Hilbert (FRH) analysis, defined a proof as a finite sequence of propositions, each of
which is either an axiom or follows from some previous propositions via one of a fixed
number of inference rules. Of course this is a formal definition only insofar the notion
of proposition is formal. Indeed, casting propositions in symbolic form so as to be able
to work with strings of symbols-perfectly sharp mathematical objects-was the key
step in the right direction, the one that cleared the path for all subsequent progress;
and for this the credit goes directly to Frege and his 1879 Begriffsschrift.3 In our
discussion we will take symbolization for granted, since it is entirely unproblematic
in relation to our present concerns. And we will do the same for Tarskian semantics,
since for our purposes they, too, are non-controversial and routine. Thus we will be
perfectly happy to treat

as asserting the existence of an empty set, under the expected interpretation of E and
the usual meanings of the logical symbols.

With this background, then, we may pose our analysis problem as follows: What

2 Kant once remarked that Aristotle's work on the subject was so thorough that for all practical

purposes Logic was a finished science, complete once and for all.
3 The importance of Frege's discovery of the variable-quantifier notation that we so readily take

for granted today cannot be underestimated. Dummett [24] suggests that Moore's characterization of

Russell's theory of descriptions as "a paradigm of philosophy" would have been more aptly ascribed

to Frege's discovery.

CNrD as a formal analysis of classical reasoning258

7.1 Deduction and the nature of formal analysis 259

is a proof? More specifically, what exactly is a deduction of a proposition P from a
set of propositions F? We will restrict our attention to first-order reasoning (which is
perfectly adequate for mathematics in a set-theoretic universe).

The FRH answer to this question is unsatisfactory because it is not a good model
of the informal notion of proof that predated it for thousands of years. Indeed, most
readers would be hard-pressed to take either of the two aforementioned ancient proofs,
the existence of irrational numbers or the infinitude of prime numbers, and formalize
them in FRH style. The reason is that both proofs proceed by way of contradiction,
which is a special brand of hypothetical reasoning. In hypothetical reasoning one proves
P by making some provisional assumption P1 and then deriving from it some conclusion
P2 , the idea being that the derivation of P2 from P1 constitutes sufficient justification for
inferring P. For instance, the derivation of a contradiction from a hypothesis P entitles
us to conclude -,P, and this is precisely what "proofs by contradiction" do, including
the two aforementioned proofs by Euclid and the Pythagorians.4 The second kind of
hypothetical reasoning, which in fact subsumes the above,5 is the method commonly
used for establishing conditionals P =4 Q: we take P as a working assumption and
attempt to derive Q; if successful, we infer P =: Q. Hypothetical reasoning permeates
mathematical practice, and by far the most serious flaw of the FRH analysis is that it
makes no provisions for it.

Note that we are not talking about extensional accuracy here. A formal analysis D
of an intuitive, pre-theoretical concept C may be viewed as a pair of relations (R, S),
where R relates instances of the informal concept C to instances of the formal concept
D, while S goes from D to C. The relation R confers extensional ontological status,
while S confers intensional status. That is, if i Rj then the definition proposes-for
analyses are essentially proposals-that we think of j as a formal hypostasis ("being")
for the (informal) i. And conversely, if j Si then the definition proposes that we
intuitively understand j as the informal object i. For instance, in Turing's analysis of
computability, R might map Euclid's algorithm (an informal object) to some Turing
machine that carries it out; while S maps Turing machines to the informal algorithms
that they embody. Now a formalization is extensionally accurate if for every instance i
of the informal concept C there is some instance j of D such that i R j; and conversely,
if for every instance j of D there is some instance i of C such that j S i. This second
half is usually the easy part. Take any Turing machine, for instance, no matter how
large or bizarre or senseless. We can, with a modicum of good will, view such a machine

4 This technique of "indirect proof" is essentially the Socratic method of dialog, which aims to
discredit an assertion by showing that it engenders a contradiction. Plato frequently illustrated this
method (also known by the Latin term reductio ad absurdum) by citing the proof that the diagonal
of the unit square is of irrational length.

5See our desugaring of suppose-absurd in terms of assume in Section 4.1.

as embodying an informal algorithm, albeit a very strange or useless algorithm. Or
consider even the formalization of propositions as "well-formed formulas", as another
example. Any given wff, even silly ones such as true V (Vx)true, can still be viewed
as expressing a proposition, albeit a silly one. A useless algorithm, after all, is an
algorithm nevertheless; and a silly proposition is still a proposition.

The other half, however, is trickier. In fact the extensional accuracy of a formal-
ization can never be rigorously established, since the principle of extensional accuracy
is a universally quantified empirical proposition ("for every instance i of the informal
concept C, . . ."), akin to empirical laws such as "All whales are white". Such proposi-
tions can never be conclusively established, although they can be conclusively falsified

(as the above law was indeed falsified when the Europeans discovered black whales in
Australian waters). That is why Church's thesis, which is the assertion that Turing's
analysis is extensionally accurate, can never be mathematically proven. There will
always remain the possibility, however slim, that some informal algorithm manages to
do something that no Turing machine can. Nevertheless, when a formalization has
withstood the test of time, meaning that no counterexamples have been discovered de-
spite extensive research and experience; when it has been found co-extensive with all
other sensible formalizations of the same concept; and when it has enabled us to derive
results that make intuitive sense; then we are perfectly justified to accept the formal-
ization as extensionally accurate, even if we must do so on a thereotically tentative
basis. That is why Church's thesis, for instance, is widely accepted.

Now in the case of deduction it transpired, thanks to G6del's work, that the FRH
analysis captured a provability relation that could be extensionally characterized inde-
pendently of any particular formalization of the notion of proof, and which furthermore
was intuively deemed to be just the right extension for that concept: namely, P is prov-
able from F iff P is logically entailed by F. The latter condition is purely semantic, and
makes no reference to any particular formal proof system. This extensional identifica-
tion is the famous logical completeness result for first-order FRH proof systems.6 Later
on other formal analyses of the same concept (e.g., Gentzen's systems), also turned
out to be logically complete, and hence co-extensive with the FRH analysis.

In view of this it becomes eminently reasonable to take logical entailment as the
touchtone of extensional accuracy for any formal analysis of (classical first-order7)

6 The fact that systems so stark as FRH calculi would turn out logically complete might appear
combinatorially striking at first, but nowadays it is no surprise: all one needs to do is choose the
axioms and the rules so as to make inter-provability of two propositions an equivalence relation, taking
care that the resulting quotient class should become a Boolean algebra when one defines a partial
order PI < IQI as Q being derivable from P; the ultrafilter theorem then takes care of completeness
automatically. Henkin witness methods have likewise been streamlined for the first-order case.

71ntuitionist analyses, for example, are not extensionally complete by choice, as they reject classic
Tarskian semantics. But they have an agenda-they are not formal analyses of what mathematical

CNrD as a formal analysis of classical reasoning260

proof. That is, such an analysis is deemed extensionally correct iff a formal proof that
derives P from IF exists iff F entails P (this is usually expressed symbolically by writing
F |- P).

So when we are saying that the FRH analysis is unsatisfactory, we are not referring
to its extensional accuracy. In general, extensional accuracy is not the only standard
by which a formalization ought to be judged. It is, of course, a necessary condition for
a good analysis, but it is not quite sufficient. Two other important classes of criteria
are the following:

* Intensional accuracy: When the analysis relates an informal object i to a
formal one j, i.e., when we have i Rj, how natural is it for us to think of j
as a formal counterpart of i? Is there an evident conceptual resemblance, or
is the correspondence ad hoc, to the point where we really have to strain our
imagination to "see" it?' As an example, consider three different formalizations
of computability:

1. a machine language (with programs being sequences of Os and 1s, to be in-
terpreted according to the rules of some Turing-complete abstract machine);

2. Turing machines; and

3. your favorite modern high-level language.

Now take Euclid's algorithm as the informal object i, and consider three for-
mal objects jM (a machine-language program), jT (a Turing machine), and jH
(a program in the high-level language), each of which carries out Euclid's algo-
rithm in its respective formalism. How natural is it for us to think of jM as
Euclid's algorithm? Is there any conceptual resemblance between the two? How
about iT? And jH? Now all three formalizations are extensionally identical, but
intensionally it is apparent that they are not all of the same merit.

A good acid test here is this: find someone who is familiar with the informal
concept, present the formal analysis to them, give them arbitrary informal i, and
ask them to find formal counterparts of i, for several different i. This can yield a
relative quantitative measure of the foregoing attributes: If we have two different
but co-extensive analyses of the same concept, and test performance is consis-
tently better for one of them, with a difference that is statistically significant,
then that analysis is surely to be preferred.

reasoning actually is, but rather of what it should be.
8These are of course psychological considerations, not mathematical, but keep in mind that formal

analyses are essentially proposals, intent on shedding light on some hitherto vague notion; their very

raison d'etre is explication, a largely psychological notion.

2617.1 Deduction and the nature of formal analysis

* Pragmatic considerations: What is the theoretical muscle of the analysis?
Does the analysis lead to reasonable, intuitive results? Does it allow us to for-
malize other related notions? More importantly, how easy is it to derive "the
right results"? Could our task be easier if we adopted some other analysis?

Pragmatic considerations can sometimes be at odds with intensional accuracy.
For instance, Zermelo's original definition of the natural numbers as

0 = 0, 1 = {0},2 = {{0}},...

is a perfectly sensible formalization of the concept of number. Contrast it with
the now-customary definition

0 - 0,n + 1 = {n} U n

(due to Mirimanoff, although commonly attributed to Von Neumann). Now, in-
tensionally, Zermelo's definition is better. It's much easier for me to conceive and
express the number six in his formalization than in Mirimanoff's, since transitive
well-ordered sets, elegant as they may be, are not particularly intuitive. Yet
Mirimanoff's definition is preferred because it affords a smooth generalization of
the ordinal notion to the transfinite case; and this is extremely important in set
theory.

However, note that insofar the theorems we derive are to be interpreted as results
about the pre-theoretical, informal objects, intensional accuracy is extremely im-
portant; for if the formal objects are not good models of their informal counter-
parts, in the intensional sense, then their properties will not necessarily be re-
flected by those counterparts. Consequently, deriving such properties, although
perhaps interesting and challenging as a research project in and of itself, will not
necessarily tell us something about the informal concept, which is really what we
wanted to elucidate in the first place. Consider, for instance, the formalization
of natural deduction by proof trees in which disharged assumptions are tagged
by labels attached to nodes of the tree (a typical system of this kind can be
found in Section 1.3.1 of "Basic Proof Theory" by Troelstra and Schwichtenberg
[68]; we will discuss such systems in more detail shortly). In fact there is nothing
"natural" about this kind of deductive system, and as an analysis of the notion of
proof it is patently unsatisfactory. Nevertheless, it might be of interest to study
such proof trees as objects of investigation in and of themselves. But to call
that "proof theory" is presumptuous at best and incorrect at worst, for it tacitly
presupposes that the formal objects under investigation merit identification with
"proofs" in the informal sense. That is, it presupposes the acceptance of the pro-
posal behind the underlying formal analysis, the proposal of course being "We

262 CNVD as a formal analysis of classical reasoning

7.1 Deduction and the nature of formal analysis 263

propose to think of a proof as a tree such that ... ". But we will see that there are
in fact many good reasons to reject that analysis. So strictly speaking what one
should call this subject is "theory of proof trees", or something to that effect.
The point is that one cannot simply impose the results obtained by a formaliza-
tion (tagged proof trees) on the informal objects (proofs) without evidence that
the formalization is intensionally accurate.9

These are simply two very general classes of criteria that are desirable in most
formalizations; they are not an exhaustive enumeration of requirements, nor do they
provide a mechanical guide for evaluating formalizations. Some formalizations have
well-defined, specific goals, and their success can only be measured in accordance with
the extent to which they meet those goals. For example, a formalization of "proof"
might be given especially so that it facilitates mechanical proof search, the goal being a
formal system in which proofs can be efficiently discovered by an algorithm. Genzten's
LK and LJ calculi [29], for instance, should be viewed in this light, as should be
Beth's semantic tableau [7, 6]. In such cases one does not make any metaphysical or
epistemological claims, such as "our formal analysis elucidates the notion of proof";
all that is made is an attempt to achieve a particular stated objective.

We will summarize the foregoing discussion with a reference to the first chapter of
Carnap's "Logical foundations of probability" [13], which is also devoted to a discussion
of the general principles of formal analysis (he uses the term "explication" instead of
"analysis"). Carnap singles out three criteria10 for assessing a formal concept that is
being proposed as an analysis of an informal one:

Similarity The formal concept should be similar to the informal notion it is intended
to replace, "in such a way that in most cases in which [the informal concept] has
been used, [the formal concept] can be used".

Fruitfulness The formal concept should be fruitful, meaning that it should be con-
ducive to the development of a rich theory, allowing for the formulation of many
universal statements ("empirical laws in the case of a nonlogical concept, logical
theorems in the case of a logical concept").

9 0f course in practice the use of the term "proof theory" is completely innocuous, serving simply
as a convention for labelling a particular field of study as distinct from other related disciplines, and
as such it is perfectly reasonable. And in fact it is not specific to any one formalization of deduction;
it studies a fairly wide variety of systems. I am only using it as an example to call attention to a
general point about formalizations.

10In fact he singles out four criteria, but the fourth one, that of "exactness", is extraneous in
our case because we are only concerned with formal explications, where the explicatum is an exact
(formal) concept by supposition.

Simplicity The formal concept should be as simple as possible; "this means as simple
as the more important requirements [of similarity and fruitfulness] permit".

Note that similarity falls under what I have dubbed "intensional accuracy", whereas
fruitfulness and simplicity are what I have called "pragmatic considerations".

Now the principal claim of this chapter is that, as a formal analysis of deduction,
CAD fares better than its predecessors:

* CAD proofs are more similar to informal proofs-they preserve their structure
much better thanks to composition and assumption/eigenvariable scope;

" they are "fruitful" in Carnap's sense because they are remarkably amenable to
rigorous analysis and give rise to a rich body of theory (proof equivalence, opti-
mization, etc.); and

* they are simple-this is what we mean by "readability" and "writability". Read-
ing and writing CA/D proofs is, in our experience, considerably easier than in
other systems.

To support these claims comparatively, we will critically examine the three most promi-
nent formalizations of deduction: FRH systems, sequent systems, and proof trees. Al-
though our focus is on classical logic, most of what we have to say will apply to other
logics as well, since the weaknesses to which we will call attention carry over unchanged
when these systems are adapted to intuitionist logics, higher-order logics, and so on.

7.2 A critique of previous formalizations of deduc-
tion

7.2.1 FRH systems

FRH systems are very poor analyses of deduction. They are extensionally correct;
and it is not difficult to reason about them because of their simple linear structure.
But anyone who is familiar with them will attest that, as models of actual proofs,
they are horrific. Wilfrid Hodges [39] has called them "barbarously unintuitive", and
that is one of the more polite epithets that can be ascribed to them. Constructing
proofs in such systems is extremely impractical (this is "the acid test" we mentioned
above in the discussion of intensional accuracy). The key problem is that they do not
accomodate hypothetical reasoning. As a result, informal proofs of conditionals and
negations (and most interesting resuls in mathematics are conditionals and negations,
not conjunctions or disjunctions), are impossible to formalize. Roundabout ways must

CNVD as a formal analysis of classical reasoning264

be found. People who persist working in a FRH system eventually drift into doing
proofs at a meta level ("such and such can be derived from such and such, therefore
there exists a derivation of P from F), invoking meta-theoretic results such as the
"deduction theorem". At that point they are essentially working in a Gentzen-type
system, to be discussed below, which can be seen as meta versions of FRH systems.

Another defect of FRH systems, which is actually shared by all other common
formalizations, is that the semantics of a proof are baked into its very definition: a
proof is defined not just as any sequence of formulas, but as a sequence of formulas
each of which is either an axiom or properly follows from previous formulas through
some sound inference rule. This entails the paradoxical conclusion that all proofs are
sound-ex cathedra. This is as realistic as the assertion that all computer programs
are correct. The opposite conclusion is borne out by a brief inspection of the history of
mathematics, or simply by grading homeworks for a math or logic class. Some proofs
contain subtle errors, other make patent mistakes, others are trivially sound, some are
sound relative to a given set of assumptions but may become incorrect if some of those
assumptions are retracted, others are incorrect relative to a set of assumptions but
may become correct if some additional assumptions are postulated, and so on. It is
the purpose of proof-checking to separate the sound proofs from the flawed ones. Of
course this is not a deep difference; it is largely a matter of viewpoint." Proof-checking
in a FRH system, as well as in every other system, amounts to type-checking: we
simply check to see whether a given sequence of formulas actually is a proof. But
it is a more appropriate viewpoint to regard a proof as correct relative to a given
specification: does it derive a given P from a given F? DPLs adopt this viewpoint by
enforcing a sharp distinction between the syntax of deductions and their semantics.

7.2.2 Sequent systems

It was dissatisfaction with the FRH analysis that prompted Gentzen to seek a different
formalization, one that would better capture what working mathematicians, logicians,
and philosophers had traditionally understood by the term "deduction". (Gentzen
was in fact predated by Lukasiewicz, who was the first logician to openly criticize
FRH systems and stress the need for a different formalization. The credit for "natural
deduction" should properly go to the Polish school-Lukasiewicz and Ja'skowski in par-
ticular; we will discuss their contributions further later on. Gentzen's work, however,
was independent of the Polish developments.) He correctly perceived that the main

"It is similar to the difference between defining terms in a typed language with a context-free
grammar and then introducing a type system to weed out the well-typed terms from the ill-typed
ones, versus defining terms with a context-sensitive grammar that incorporates the typing rules, so
that all terms are by definition well-typed.

7.2 A critique of previous formalizations of deduction 265

problem of FRH systems is their inability to accomodate hypothetical reasoning. He
tackled the problem by using sequents: pairs of the form (F, P).12 The propositions in
F represent the assumptions from which P is derived-the "assumption base", in DPL
terminology. Formally, the meaning of a sequent ({ P1, . . . , Pk }, P) can be understood
as the assertion that the set {P 1, . . . , Pk} logically entails P, so that the sequent is
tantamount to the conditional P A ... A Pk => P. But informally one might think of
it as the assertion that P is derivable from F in some FRH system. Then rules such as
"from (F, A A B) infer (F, A)" can be understood as statements about the meta-theory
of a FRH system: if A A B can be deduced from F, then so can A. This interpretation
is more faithful to Gentzen's original motivations (e.g., see Kleene's "Mathematical
Logic" [42], Chapter 1, Section 11). The rule for introducing conditionals, in particu-
lar (7.1 below), embodies the meta-theoretic result known as "the deduction theorem"
for FRH systems.

Now in such a system a proof is defined as a sequence of sequents, each of which
is either an "axiom" sequent (i.e., a sequent whose validity is obvious, such as (F U
{ P}, P)), or else follows from some previous sequents through the application of some
inference rule such as the one mentioned in the last paragraph, or such as

From (F U {P}, Q) infer (F, P -Q) (7.1)

or
From (F, P) and (F, Q) infer (F, P A Q).

(It is also possible to define a proof as a tree of sequents, where every leaf is an axiom
sequent and every internal sequent is obtainable from its children through a rule, but
this is largely a stylistic variation; all of the criticisms we put forth below will also
apply to tree versions.)

How good a model of deduction is this? It represents an improvement over the
FRH analysis, because at least it begins to address the issues of assumption scope

12 Gentzen also formulated systems using sequents of the form (F1, F2), understood as asserting that
I1 entails at least one proposition in F2. Such systems, however, are not so much concerned with
modeling the informal notion of proof as they are with automatic proof search. That is, they are not
meant as frameworks in which people can formally express a proof that they already have in their
mind informally, but rather as frameworks in which one would search for a proof of a result that they
want to establish. Differently put, they are analytic (or backwards) systems, rather than synthetic (or
forward) systems. The idea is that the system will try to decompose a given "goal" into a number of
simpler subgoals (hence the term "analytic"), and so on with each subgoal, until all the subgoals are
trivial. These systems lend themselves to this approach because, unlike forward systems, they have
the so-called "subformula property". Of course such systems can also be used in a forward manner,
and although I doubt that anyone would seriously advocate this for the task of expressing proofs, all
the criticisms we level against sequent systems of the "natural deduction" variety (based on sequents
of the form (F, P)) will also apply to these.

CNVD as a formal analysis of classical reasoning266

and hypothetical reasoning; but it does not resolve these issues in a satisfactory man-
ner. Although it is certainly easier to express a proof in a sequent system than in a
FRH system, the approach is marred by serious problems. Proofs in the real world
manipulate individual propositions, not sequents. Euclid did not prove that there are
infinitely many primes by pushing sequents around. Pick any mathematics or science
or philosophy journal or textbook, or indeed even a newspaper describing a logical
argument. People deduce propositions, not sequents. And in the process, they apply
inference rules such as Modus Ponens to single propositions, not to pairs consisting of
an assumption base and a proposition. That is, in the course of a typical proof one
applies Modus Ponens to two propositions of the form P =* Q and P, which are already
known to hold, to obtain Q. That seems crystal clear. But in a sequent system the
same step is considerably more complicated, as Modus Ponens needs to be applied to
two sequents (F1 , P1) and (F 2 , P2) that have already been derived, in order to derive
another sequent (F 3 , P3). This is unsatisfactory in several respects:

" It is not a good model of informal proofs .

" It is mentally taxing because the arguments to the rule, as well as the result, are
substantially more complex than they are in practice. One needs to keep track
of three sets of propositions (F 1, F2, and F3), each of which might well contain

dozens of propositions, as well as the three individual propositions (P1 , P2 , and
P3), as well as the relations between the three sets and the three propositions

(namely, that Si is paired up with P1, S2 with P2, etc.). By contrast, in practice
only P1, P 2, and P3 are relevant.

" It obfuscates the structure of the proof, because the presence of the contexts Si
clutters up the picture. In fact the presence of the Si is gratuitous in connection
with the application of Modus Ponens, as the latter is commonly understood.

" It is inefficient, since a lot more data needs to be maintained and manipulated
with every application of an inference rule.

In Carnap's terminology, sequent proofs are not similar to informal proofs; and they
are not simple. They are also more difficult to analyze than CfND proofs, because the

scopes of the various hypotheses are not as readily identifiable.
The gist of the matter is that people do not bother to carry around every single

assumption that they are making at every step of the way. And this is just as well, for
there is no reason why they should; to do so would be superfluous. They only mention

the assumptions that they actually need, and then only when they actually use them.
An analogy with programming might illuminate the situation. Consider an assignment
command such as x : = y + 1, in some modern imperative programming language.

2677.2 A critique of previous formalizations of deduction

The effect of this command is to store the value of the expression y + 1 in the location
denoted by x in the current store. What does "the current store" mean? It has to do
with the semantics of the language. If you look at the formal denotational semantics
of the language you will see that every command is executed relative to a given store.
The semantics themselves specify, in perfect detail, how a given command interacts
with a given store. Then an abstract machine that implements those semantics starts
executing a program in some initial store and moves through the various commands
appropriately, automatically updating the store to account for the effect that each
command has, as prescribed by the semantics. Thus the handling of the store is
streamlined by the semantics of the language, which automatically ensure that the
store is properly threaded from each command to the next.

Now imagine a programming language in which an assignment command must take
a store explicitly as as an argument. In such a language you would not be able to simply
say something like x : = y + 1. Instead, you would have to supply each assignment
statement with three arguments: a store S, a variable v (the target of the assignment),
and an expression e (the value of which will be stored in the location denoted by v).
The result of the assignment command would be the store S' obtained from S by storing
in location v the value obtained by evaluating e in S. The purpose of a program, then,
would be to start at some initial state (some "initial sequent", in the case of sequent
proofs) and eventually produce the right store S' ("right" in that it contains the desired
computational results in some particular locations). Programming in such a language
would be highly impractical. The language would suffer from exactly the four defects
that we mentioned above in connection with sequents: it would not reflect the way in
which imperative computations are described in practice; it would be mentally taxing,
because each command would take and produce stores as arguments in addition to
whatever other parameters it would normally take; it would obfuscate the structure of
the algorithm; and it would be inefficient."

That is why in practice the programmer does not need to manipulate stores explic-
itly. Instead, store manipulation is implicit, baked into the semantics of the language at
a foundational level, and thus automatically performed at run time. This relieves the
programmer of a great burden resulting in shorter, more readable, and cleaner code.
Likewise, we claim that a proof engineer should not have to explicitly manipulate as-
sumption bases, as sequent systems require. Incorporating the assumption base into
the underlying semantics streamlines its handling and relieves the user of that concern,
resulting in shorter, more readable, and cleaner proofs, that more closely resemble the
informal arguments one encounters in practice. This is perhaps the principal tenet of

13 In fact that is how state can be theoretically simulated in purely functional languages. It is well-
known that for most applications with a strong imperative component (dealing with mutable objects
such as bank accounts), such a simulation would be unduly cumbersome [30, 1].

268 CN1D as a formal analysis of classical reasoning

the DPL approach.
One might think that making the assumption base explicit is necessary for dealing

with assumption introduction and discharge in hypothetical reasoning, but that is not
the case. In actual proofs, when we introduce an assumption P it is tacitly understood
that the assumption base, whatever it might be at that point, will be augmented by
P; there is no reason to mention its actual contents. Furthermore, and this is a
crucial observation, the scope of an assumption is emergent from the lexical structure
of the proof. Accordingly, assumptions do not need to be explicitly discharged, for
it is clear just by visual inspection of the text of the proof exactly when a particular
thread of hypothetical reasoning is complete, and hence exactly when the corresponding
hypothesis ceases to be in effect. We quote De Brujin [11], speaking about "what is
sometimes called the Fitch style of natural deduction" (emphasis mine):

It fully deserves to be called natural, since it was used by mathematicians
long before it was ever formally described: namely, the presentation of
mathematics in the form of nested blocks, where blocks are opened either
by making an assumption or by introducing a (possibly typed) variable (but
it should be admitted that the action of closing a block was usually not men-
tioned explicitly, just suggested by the subdivision of texts into sentences,
paragraphs, sections, etc.).

This correspondence cannot be captured in sequent systems because the scope of
a hypothesis, as we understand it in a regular proof, loses its meaning in a sequent
proof. In a regular proof, the scope of an assumption is the portion of the proof within
which the assumption remains active and may be freely asserted. But in a sequent
proof the scope of an assumption makes sense only with respect to a single sequent,
not with respect to the entire proof, because the entire sequent proof itself is linear-it
has no nested structure, and hence no notion of scope. Thus important notions such as
that of a subdeduction, which naturally arise in practice, become hard to formalize in
this setting; and important questions which are easily answerable in informal proofs,
such as whether the scope of an assumption is properly included within the scope of
another assumption, whether the scopes of two assumptions are disjoint, etc., become
much harder to formulate and answer.

Another thing that gets lost in sequent systems concomitantly with assumption
scope is intention. In an informal proof, the author guides the reader through every
piece of hypothetical reasoning. When the author sets out to establish a conditional
P =* Q, he starts out by saying something to the effect of "To derive P #* Q, assume
P. Then ... ". Or in a proof by contradiction, the proof might read "We will establish

-P by contradiction. To that end, suppose that P holds. Then ... '". In this manner

it becomes evident what the author intends to prove by a certain piece of hypothetical

2697.2 A critique of previous formalizations of deduction

reasoning. The upshot is that the explicit postulation of an assumption conveys valuable
cognitive information about where the proof is heading. Thus we see that sequent
systems make a whole lot of unnecessary information tediously explicit; yet the little
that should be made explicit, namely the postulation of assumptions in hypothetical
reasoning, remains implicit, obscuring the proof's structure. 14

7.2.3 Proof trees

The third formalization of deduction that we will discuss, popular in proof theory
circles, represents proofs as trees. Specifically, a deduction of P from F is represented
as a tree with the conclusion P at the root. At the leaves we find the various elements
of F, possibly along with other auxiliary assumptions that are eventually discharged
(more on this shortly). Internal nodes contain propositions that are obtained by the
application of some inference rule to the node's children. An example is show in
Figure 7.1. Typical systems of this kind can be found in Prawitz's "Natural Deduction"
[59], Van Dalen's "Logic and structure" [22], and Troelstra's "Basic Proof Theory" [68].
Some authors prefer to depict such trees with the root at the bottom, and use horizontal

A B
lines to separate conclusions from their premises, e.g. writing instead of

C

A B

In order to better understand this model, it is useful to keep in mind what a tree
really is formally. We tend to identify a tree with a picture of the kind we see in
Figure 7.1, but pictures are informal objects (remember that we are discussing formal
analyses of deduction here). Extensionally, a tree is a pointed partially ordered set
(i.e., it has a "bottom", namely the root of the tree), such that the predecessors of any
given node are well-ordered. In the case of proof trees, the nodes are pairs consisting

14 It is certainly possible to dress up a sequent system by introducing a keyword such as "assume",
which would make it seem as if we can explicitly postulate hypotheses. But that will not get us far as
long as we are manipulating sequents underneath it all. In fact it will be a misleading use of the term
"assume". In HOL, for example, which is a sequent-based system, one can actually say at the prompt
something like "ASSUME A", for any proposition A. However, the effect of that is to establish the
sequent ({A}, A). In other words, the command "ASSUME A" proves that A implies A. That is
completely different from what "assume A" means in informal proofs. When we say "assume A" in
an informal proof we are not proving anything-not yet. We are simply postulating a hypothesis.
More precisely, we are tacitly manipulating the current assumption base by inserting A into it. The
act of introducing A as a working hypothesis is completely different from the act of proving that A
implies A; to confuse the two is almost a category mistake.

270 CND as a formal analysis of classical reasoning

7.2 A critique of previous formalizations of deduction

(A V B) A ((A = B) = ((B = C) => (A * C))) (A-I)

A v B (V-IB)(B ((B C (A > C (=*-I)2

A (B C) (A C) (=>-I) 3

A 4C (=*-I)1

C (=*-E)

B (= -E) [B= C13

Figure 7.1: The derivation of (A V B) A ((A B) z= ((B => C) =* (A C))) from A as a
proof tree.

of propositions and inference rules, as well as additional information to keep track of
disharged hypotheses.

Thus one problem with this analysis is that it only imposes a partial order on

inference rule applications and on postulated hypotheses. This is not an accurate

model of informal proofs, because in an informal proof a total ordering obtains on all
inferences and all hypothesis introductions (of any two of those, exactly one precedes

the other). Not so with proof trees: two different topological sortings of the same proof
tree will produce two distinct proofs, in the sense that we normally understand proofs;

hence the loss of accuracy-different informal proofs get mapped to the same formal
object. Note that it will not do to simply enforce an arbitrary ordering convention,
e.g., to stipulate that children are orderered from left to right, as this will break down

at the leaves. In actual proofs assumptions can be introduced in the course of the

proof; we do not list all of them in some fixed order in the beginning and then proceed

with strict inferences.
This is not to say that a partial ordering does not give a useful view of a proof.

By relaxing the linear ordering constraint we get a informative picture of the essential
dependencies of a proof, which might prove particularly useful, for example, if we

271

wish to parallelize a proof (whereby two inferences with no mutual dependencies may
be performed concurrently). But as a formal model of proofs, it is not intensionally
accurate. The problem is particularly acute with respect to the discharged assumptions
which arise in hypothetical reasoning: they are all maximal elements, i.e., leaves.
(Actually, as we explain below, not all discharged hypotheses occur at the leaves.
Some need to stay invisible.) That fails to reflect the order in which hypotheses are
introduced in a proof; and also obfuscates the scope of a hypothesis, especially in
relation to the scope of other hypotheses.

Indeed, the labelling relationship between the discharge of an assumption A at an
internal node and the occurence(s) of A at the leaves has led Girard et al. [31] to claim
that proof trees are "more of a graphical illusion rather than a mathematical reality"
because "we have to link the crossed A with the line of the =*-I rule", so that "it is no
longer a genuine tree we are considering!". That remark is actually incorrect, in that it
confuses the leaf-to-internal-node "linking" with the partial order that is determined by
rule applications (in a rigorous definition we can completely extensionalize the linking
set-theoretically while preserving the tree structure); but it does attest to the confusion
surrounding assumption discharge.

Another weakness of proof trees is that they can only depict strict inferences.
Assumptions which do not get used cannot be handled in a uniform manner: they
cannot appear at the leaves, which is where assumptions are supposed to appear in
this model, for if an assumption is not used then it cannot be linked to any internal
node, and hence we will no longer have a tree! Consider, for example, the derivation
of A => (B => A), in which the hypothesis B is never "consumed". If we were to list all
assumptions at the leaves, which would be the uniform thing to do, we would get

A (1) B (2)

B = A =4-I, (2)

A=> (B ==A) ==-I, (1)

which is a partial order but not a tree. Accordingly, if the tree model is to accomodate
such situations, non-strict assumptions must remain invisible. They will not appear
anywhere by themselves. Instead, they will suddenly be discharged at some internal
node. Thus, for example, when depicted as a tree the proof of A =* (B => A) must look
like this:

272 CN'VD as a formal analysis of classical reasoning

7.2 A critique of previous formalizations of deduction

A (1)

B3 ==>A 4-,(2)

A = (B = A) *-I, (1)

Of course it is at best peculiar that we should discharge an assumption that we never
introduced. What assumption does (2) label? Worse yet, the scope of such non-strict
assumptions is completely obscured, for there is no starting (introduction) point, only
an ending (discharge) point. Hence no path between introduction and discharge can be
traced. In fact this type of situation makes it necessary to add clumsy qualifications to
the label rules for tagging assumptions and internal nodes (e.g., see the quoted remark
below from "Basic Proof Theory" about labelling "invisible" classes of assumptions).

Another serious drawback of proof trees is the redundancy stemming from the fact
that every time an assumption is used a different copy of it must appear as a tree
leaf. This is not only a bad model of informal proofs (where only one "copy" of any
assumption is active at any one time, and may be used multiple times), but is also
quite inefficient. Any mechanized system that is based on a proof-tree model is bound
to run into this problem (see the relevant discussion of LF in Section 2.2.2), and this
will have an adverse impact in applications (such as PCC [52]) where proof size must
be kept to a minimum. In fact it is easy to show that there are infinitely many proofs
in CA/D whose tree versions are larger by an arbitrary factor n (e.g., say you pick
n = 1080; then there are infinitely many proofs which, if expressed as trees, their sizes
are 1080 times larger than what they would be in CAD). On the other hand, it is
equally easy to see that every CA/D proof is smaller than any corresponding proof-tree
proof (under any sensible translation between CAD and proof trees).

The most severe defect of this model, however, has to do with assumption discharge.
For one thing, as we discussed earlier, this does not need to be made explicit, and in
fact it is always tacit in informal proofs. People do not explicitly mark assumptions as
"cancelled". But what is more troubling is the mechanism for effecting the discharge,
namely, the taggging of leaves (assumptions) and internal nodes with matching labels.
The meager extent to which this is workable hinges on visual factors and is gravely
hampered by physical and psychological limitations: if a proof is not trivial and cannot
fit in one page then tracking the various matching subscripts between the leaves and the
various internal nodes becomes impossible-the model does not scale. We quote from
the Handbook of Proof Theory [12] (by a "natural deduction proof" the author means
what we call a proof tree; see our earlier comments about unwarranted conflations of
formal and informal notions):

273

A fully constructed natural deduction proof can be very confusing to read;

in particular, because of the non-local nature of natural deduction proofs,
it is difficult to quickly ascertain which formulas depends [sic] on which
hypotheses.

The problem is that the labelling mechanism is very low-level (reminiscent of the use

of labels in programming languages, and subject to many of the same criticisms), and
greatly complicates the overall system. In fact the actual rules for assumption discharge

are invariably convoluted and counter-intutive. Does one discharge one particular

occurence of an assumption, all occurences of the same assumption, some of them?

Does one discharge only assumptions that are in the same subtree as the internal

node at which the discharge occurs? The rules are usually expressed pictorially, which

leaves ample room for misinterpretation. For instance, Van Dalen [22] states the rule

for assumption discharge (i.e., #'.-introduction) as follows:

B

A =* B

Keep in mind that this is informal ("striking out" a proposition by writing a slash over

it has no formal meaning; nor do the elipses); it is supposed to be clear and intuitive.

A rigorous presentation of the rules would be much more difficult to follow (see, for

instance, Prawitz's "Natural Deduction" [59], Section 1.2, part B). The clumsiness of

the method is reflected in the presentations. Van Dalen devotes a number of pages

to discussing the subtleties of assumption discharge. Even advanced texts such as

Troelstra's make several qualifications to get assumption discharge straight. Here is a

typical passage from Troelstra, addressing the issue of unused discharged hypotheses

we dicussed above:

It should be noted that in the rule -> I the "degenerate case", where [A]u is

empty, is permitted; thus for example the following is a correct deduction:

Au

B == A

A=>(B =A)

At the first inference an empty class of occurences is discharged; we have

assigned this "invisible class" a label v, for reasons of uniformity of treat-

ment, but obviously the choice of label is unimportant as long as it differs

CND as a formal analysis of classical reasoning274

7.2 A critique of previous formalizations of deduction

from all other labels in use; in practice the label at the inference may be
omitted in such cases.

Later in the same page:

In applying the rule -* I (assumption discharge), we do not assume that [A]
consists of all open assumptions of the form A occuring above the inference.
Consider for example the following two distinct (inefficient) deductions of
A (A A):

Au Au
V Aw" U Av

A=*A A =A

A A

A=>A Azz*A
w w

A =(A =A) A=#(A =A)

The formula tree in these deductions is the same, but the pattern of closing
assumptions differs. In the second deduction all assumptions of the given
form which are still open before application of an inference -+ I are closed
simultaneously. - - -

This does not strike me as "natural deduction", in any sense of "natural". I do not
see any connection to actual proofs.

We will now consider two problems of proof trees that carry over to their A-calculus
analogues through the Curry-Howard correspondence. (The reader is expected to have
a basic understanding of the Curry-Howard isomorphism in order to understand the
following discussion; the classic exposition is Howard's article "The formulae-as-types
notion of construction".") These are problems which do not get remedied by the
binding power of the A; they run deeper, to the costructive interpretation of the logical
connectives. They show that, as they stand, proof trees and their Curry-Howard
counterparts are not adequate formalizations of the informal notion of proof: in one
direction, they are not fine enough, meaning that there are informal proofs which
cannot be faithfully represented as proof trees (or A-terms); in the other direction, they
are too fine, meaning that they formally distinguish proofs which informally would be
deemed indistinguishable.

"Other references include the books by Girard et al. [31], by Goubault-Larrecq and Mackie [34],
and by Troelstra and Schwichtenberg [68].

275

In one direction, consider the derivation of A A A from A A B. Informally, this
would proceed as follows:

From A A B, we may infer A (using A-elimination). From A, we infer (7.2)
A A A (using A-introduction).

Note that, naturally, we only derive A once. But, as a proof tree, the cleanest way to
represent this deduction is as follows:

AAB AAB

A A

AAA

The glaring redundancy here, of course, is the duplicate derivation of A from A A B.
But the problem is really philosophical, going beyond efficiency: there is no formal
counterpart (proof tree) that is a faithful representation of the informal proof (7.2).
For a faithful representation would entail that any meaningful statement we can make
about the informal object i would be preserved salva veritate (without change of truth
value) once appropriately translated so as to become a statement about the formal
counterpart of i. That is clearly not the case here if we regard the foregoing proof tree
as the formal counterpart of (7.2). The statement "A is derived from A A B once" is
true for (7.2), but false for the proof tree.

Moreover, the proof tree above cannot be simplified in any way so as to avoid the
duplicate derivation of A. It is, in proof-theoretic terms, in normal form: it is as simple
as it can possibly get. Proof trees in normal form are advertised as free of redundancies
and extraneous steps. That is clearly not true in view of this example. Normal form
for proof trees does not capture the intuitive notion of redundancy-free proofs. Under
the Curry-Howard correspondence, the analogue of this proof tree in the A-calculus is
the term

pair(first(XA x B), first(XA x B)) (7.3)

or perhaps
A XAxB .pair(first(A x B), first (XA x B))

if we wish to close over ("discharge") A A B (proving the theorem A A B => A A A,
rather than deriving A A A from A A B). A A-calculus term, of course, is in normal
form iff it contains no -redex, i.e., no subterm of the form app(A x, .M, N), and
no pairs surrounded by a projection, i.e., no subterms of the form first(pair(M, N))
or second(pair(M, N)). By the Curry-Howard isomorphism, a term M is in such
a normal form iff the corresponding proof tree is in (proof-theoretic) normal form.

CN'D as a formal analysis of classical reasoning276

7.2 A critique of previous formalizations of deduction

Thus we can see that the proof tree above is really irreducible by noting that the
corresponding A-term (7.3) contains no redexes.

One might suggest that, at least on the A-calculus level, this can be remedied by
introducing let expressions. Then we might cast our deduction as

let XA = first(XAxB) in pair(XA, XA).

This is indeed the right thing to do, but now the question arises as to what status we
should give to these let expressions in our A-calculus. One might think of the standard
desugaring of let expressions into applications of As, whereby

let x, = M in N

is taken as syntax sugar for
app(A x, .M, N).

But this will not get us anywhere, for then every desugaring will introduce a Prawitz
detour (a -redex), which will in turn get "normalized" by contraction back into a
redundant term, taking us back to square one! For instance,

let XA = first(AxB) in pair(xA, XA)

will be desugared into

app(A XA . pair(XA, XA), first(xAxB))

which will be #-reduced to

pair(first(Ax AB), first(XA xB))

Thus we see that let expressions must be taken as primitive (native) terms in our
A-calculus. But then the question arises: how are these to be interpreted under the
Curry-Howard correspondence, and a fortiori under Heyting's interpretation of the
logical connectives? For the standard A calculus, we know the answer: A abstractions
correspond to proofs of conditionals; pairs correspond to conjunctions; projections cor-
respond to A-eliminations; applications correspond to conditional detachments (modus
ponens); case expressions correspond to disjunctions; and so on. But what would let
expressions correspond to if they are taken as native? In the setting of DPLs, this ques-
tion can be answered quite precisely: a let term corresponds to a proof composition,
where the latter has a precise, technical definition based on assumption base thread-
ing. But proof trees cannot accomodate proof composition without destroying the tree
property, i.e., without turning the trees into dags. Thus we see that the solution of the

277

redundancy problem at the A-calculus level by introducing native let terms into the
language cannot be mirrored at the proof tree level. Hence either we do not introduce
lets and we remain stuck with the redundancy problem; or we introduce lets and we
destroy the Curry-Howard isomorphism.

The second problem lies in the fact that in the typed A-calculus, variables are iden-
tified not with assumptions but with proofs of assumptions. This is a very important
point that gets to the heart of a fundamental difference between the Curry-Howard
approach and DPLs. Several authors describing the Curry-Howard correspondence
state that variables correspond to assumptions (e.g., Girard et al., [31]). This is quite
wrong, as an assumption and a proof of an assumption are two very different things;
and under the Curry-Howard correspondence variables correspond to proofs of assump-
tions, not to assumptions. This can be easily proven simply by noticing that for each
proposition (type) T there are infinitely many distinct variables x,, yr, z,, ' More
elaborately:

(1) Under the Curry-Howard-isomorphism, (different) terms correspond to (different)
proofs (perhaps of the same proposition, but different proofs nevertheless).

(2) Pick any proposition (type) T. The variables x, and y, are different terms, hence
they represent different proofs (of the same proposition, T).

(3) Now if variables were identified with assumptions, i.e., with propositions, then
xT and y, would be indistinguishable, contradicting (2) above.

In fact the identification of typed variables with proofs of propositions rather than
with mere propositions is crucial for Heyting's constructive interpretation of the logical
connectives: remember that a proof of a conditional A => B is a computable function
A XA . M that maps an arbitrary proof of A (precisely the variable XA) into a proof of
B (the term M, which must thus be of type B).

Now what does that entail about proof trees (and through the Curry-Howard-
correspondence, the terms of the typed A-calculus) as formalizations of the notion of
proof? It has negative ramifications: we are in a position where we must distinguish
between formal objects which would not be informally distinguished. For instance,
consider the terms (proofs)

AXA . AnYA XA (7.4)

and

A xA. A -YA. y75

CND as a formal analysis of classical reasoning278

(7.5)

7.2 A critique of previous formalizations of deduction

These are distinct terms (they are not a-convertible), representing two distinct proofs
of the same proposition, namely A => (A =:> A). Heyting's constructive interpretation
of conditionals helps to understand why these are two different proofs of A => (A =* A):
in (7.4), we are given a proof XA of A, then we are given another proof YA of it, and we
finally decide to use the first proof, which might well have significant computational
differences from the second one (e.g., one might be much more efficient than the other).
By contrast, in (7.5) we are given a proof of A, then another proof of it, and finally
we decide to use the second proof, disregarding the first. But in mathematical practice
these two proofs would (and should) be conflated, because one postulates propositions,
not proofs of propositions. The customary mode of hypothetical reasoning is

"Assume that A holds. Then ... A."

not

"Assume we have a proof 1 of A. Then A."

Clearly, to assume that something is true is not the same as to assume that we have a
proof of it.

In a DPL this problem would not arise because both (7.4) and (7.5) (as well as the
infinitely many other terms which can be gotten by using different variables in place
of x and y) would be conflated to

assume A. assume A. A

which captures perfectly well how this proposition would be proved in actuality.
Incidentally, this shows that there cannot be an isomorphism between a customary

typed A-calculus and a DPL, for we cannot have a bijection: infinitely many A-terms
would be mapped to a single DPL deduction. It is possible to obtain a bijection by
collecting variables of the same type into equivalence classes, taking the compatible
closure of this equivalence relation, and then mapping equivalence classes of the re-
sulting relation to DPL deductions. But then the relationship of #-reduction on one
hand and proof normalization on the other becomes complicated, since we now have to
consider /-reduction between equivalence classes of A-terms if we wish to preserve the
Curry-Howard isomorphism in any meaningful sense. What is immediately apparent is
that even in the absence of proof composition, DPLs are not just notational variants of
typed A-calculi. Unlike proof trees, there is no bijective correspondence between DPL
deductions and terms of the typed A-calculus. And from the foregoing discussion, that
is a good thing-it is closer to informal mathematical practice.

279

7.2.4 Quantifier reasoning

Our discussion so far has been restricted to the propositional fragments of the reviewed
systems. When we come to quantifier reasoning we are presented with an additional
set of difficulties. I will single out two classes of problems below. Since all three
formalizations (FRH, sequent, and proof-tree systems) are suspect to these problems,
the discussion will be generic and should be understood to apply to all three analyses.
It will be seen that the source of these problems is the view of a deduction as a static
object with a fixed meaning. Once we separate syntax from meaning we are free to
equip deductions with evaluation semantics that averts these problems.

The first problem has to do with tedious free-variable restrictions on the appli-
cability of various quantifier rules. An example is universal specialization, i.e., the
derivation of P[t/x] from (Vx)P. Most systems require t to be "safe" for x in P in
order to avoid variable capture. Likewise for existential generalization, the inference of
(2x)P from P[t/x]. Clearly, this is a trivial matter and should be of no concern to the
person expressing the proof, just as it is of no concern to a mathematician presenting a
proof in a journal (did you ever read a mathematical article where the author explicitly
took care to satisfy free-variable conditions when specializing a universal generaliza-
tion?) Propositions are understood modulo alphabetic equivalence, and this should
be reflected in a formal system. This is not a deep point, yet most formalizations
of deduction do not observe it (Howard-Curry representations of such formalizations
handle this problem easily, but they present other problems).

The second class of problems arises in connection with the two remaining kinds
of quantifier reasoning: universal generalization (V-introduction), and existential spe-
cialization (3-elimination). We will discuss each in turn. Asides from specialized
techniques such as various forms of induction, the most common method for establish-
ing a universal generalization (Vx)P is to consider an arbitrary individual a and show
that P holds for it. The idea of course is that because no special assumptions about
the nature of a have been made, a may well be any element (in the underlying uni-
verse of discourse) whatsoever. Thus showing P(a) amounts to showing that P holds
for any element, which is to say (Vx)P. Now the interesting aspect of such informal
proofs that is not captured by any of the formalizations we have considered is that the
parameter a has scope, namely the subdeduction of P(a). Any use of a that might had
been in effect at the point when the author says "Consider an arbitrary a ... D - --",
where D is the deduction that derives P(a), becomes masked by this new use of a. The
masking remains in effect throughout D. Following D, the old use of a, if one existed,
is restored.

This is of course similar to lexical scoping in programming languages, but there
are important differences. In a programming language masking amounts to rebinding

CN'VD as a formal analysis of classical reasoning280

7.2 A critique of previous formalizations of deduction 281

a variable to some new value; e.g., when we say (let (x E1) E2), we bind x to the
value of E1 and proceed to evaluate E2. But when we say "pick an arbitrary a and
consider - - -", what does a come to denote? Certainly not any particular element in
the universe of discourse. Thus we see that it is only the syntactic notion of scope that
is similar in both cases; the evaluation semantics must be different.

The important point is that deductions of the form

"pick an arbitrary a - - -" (U)

introduce scope for a, and the formal analysis should capture and support this. That
is not the case with any of the three formalizations we have examined. None of them
provide any notion of scope for deductions of the form (U). What one must do instead
is prove P(x) individually, for some x that does not occur free in the assumptions, and
then use the rule of universal generalization to conclude (Vx)P. This caveat about
free occurences of x in the assumptions is unnecessary and does not reflect the way in
which such proofs are carried out in practice. If scope is taken into account properly
then we can do away with the caveat.

Similar considerations apply to existential specialization. Suppose we have estab-
lished a statement of the form (3x)P. One can use such a statement to derive further
results by reasoning as follows: "We know that P holds for some element. Let a be
the name of that element. Then ... D ... ", where D is a deduction that infers some
statement A, which is the final upshot. This is a very common form of reasoning, and
it, too, is characterized by scope: a has a clearly delineated range, namely, the subde-
duction D. Any prior use of a becomes obsolete at the beginning of this subdeduction,
and is restored at the end. That is the proper way to formalize this form of reasoning.
Instead, all of the analyses that we have considered impose an array of cumbersome
restrictions on free occurences of a in assumptions, in the conclusion A, and elsewhere.
Once again, this does not reflect common mathematical reasoning.

Our formalization of natural deduction as a DPL has the closest kinship to a fam-
ily of systems that date back to work done by members of "the Polish school" in the
late 1920s. A brief history of this line of work is given in Appendix C of Prawitz's
"Natural Deduction". It was Lukasiewics who first expressed dissatisfaction with the
FRH approach, as far back as 1926, pointing out that it does not capture informal
mathematical reasoning. Jaskowski in 1929 presented the first deduction system that
attempted to formalize common mathematical inference. It was the first in a long
line of systems that we will refer to as "box systems". Deductions in such systems
are visually characterized by the presence of nested boxes. Every introduction of an
assumption A starts off another box, which delineates the scope of A. Within the
box of A, one proceeds to derive other propositions which may depend on A, as well
as on other assumptions which were introduced earlier, and possibly introduce addi-

tional assumptions (which will open other boxes, nested inside the box of A). Finally,
immediately below the box of A we write the proposition obtained by discharging A.

Box systems have been very successfull pedagogically; most logic textbooks have
traditionally used some such system to teach deduction. Some well-known variants
that have been widely used can be found in books by Fitch [25], Kalish and Montague
[41], Copi [17], Quine [60], Suppes [67], Lemmon [46], or, more recently, Bergman et
al. [5].

The common trait of all these systems is that they pay proper attention to hy-
pothetical reasoning and assumption scope; their pedagogical success is a testament
to the importance of those concepts. But when it comes to reasoning with quanti-
fiers box systems are subject to the same criticisms as the other systems (unnecessary
eigenvariable restrictions, etc.)

However, insofar our concern is a formal analysis of the concept of deduction, the
most serious problem is that deductions in box systems are not formal objects. They
are based on pictorial devices, and as a result, all of the important ideas remain intu-
itively clear but informal. Attempts to extensionalize such systems have been heavily
syntactic, and thus clumsy and subject to many of the foregoing criticisms. Essentially,
in doing away with boxes they have all relied on some type of labelling or tagging mech-
anism to keep track of assumption dependencies. Jiskowski [50], for example, prefixes
every occurence of a proposition P with a list of numerals that indicate the assumptions
on which that occurence of P depends. A deduction then becomes a finite sequence
of such decorated propositions, where each member of the sequence is either taken
for granted or obtained from previous members by some inference rule. The inference
rules are designed to keep track of and manipulate the numeric prefixes appropriately,
and are thus unduly cumbersome. Quine uses a "flagging" mechanism that is similar
in spirit but even more convoluted. In conclusion we might say that box systems have
the right idea, at least concerning propositional reasoning, but have been difficult to
formalize while retaining their intuitive advantages.

CN1D as a formal analysis of classical reasoning282

Chapter 8

The Ap-calculus

In this chapter we introduce the Ap-calculus, which can be viewed as a uniform un-
derlying framework for DPLs. In Section 8.1 and Section 8.2 we define its syntax and
evaluation semantics. In Section 8.3 we call attention to some of its novel character-
istics and the rationale behind them. The next two sections develop the rudiments of
the theory and metatheory of the Ap-calculus. Section 8.6 introduces some notational
conventions and syntax sugar that we will use in the sequel. Section 8.7 discusses
the subject of interpreting the Ap-calculus, and presents three such interpreters. Fi-
nally, Section 8.8 presents an introductory example of a Ap system. Several additional
examples will be given in the next chapter.

8.1 Syntax

There are three syntactic categories in the Ap-calculus: deductions, expressions, and
phrases. The first two are the important ones; a phrase is simply either a deduction
or an expression. Put differently, Phr = Exp U Ded, where we write Phr, Exp, and
Ded for the sets of all phrases, expressions, and deductions, respectively. We use the
letters D and E to range over deductions and expressions, respectively; M and N will
range over phrases. The letter I ranges over the set Ide of identifiers; we assume that
Ide is countably infinite. The letter c ranges over an unspecified set C of constants;
the only assumption we will make about C is that it is disjoint from Ide and that it
contains the constant claim (as a convention, we will use sans serif font for constants).
We will use the letter as a metavariable ranging over the variables D, E, and M
(thus has only three possible values.) We write kwd for an unspecified keyword

("token", or "terminal" in Varsing terminology); keywords will be written in boldface.
Finally, the symbol I (E, etc.) ranges over finite sequences-possibly empty-of
identifiers (expressions, etc.). The following grammar specifies the abstract syntax of

the Ap-calculus:

D E Ded Deductions

E E Exp Expressions

M, N E Phr Phrases

D dapp(E, 7) { kwd1(1) - kwdn(;')} (8.1)

E c I p I. D A I. E | app(E, M) (8.2)

M E D (8.3)

The braces {... } in 8.1 indicate that the enclosed productions are optional. Thus
equation 8.1 is really a "meta-clause", in that it allows for any finite number n > 0 of
special deductive forms kwd1(21),... , kwdn(). An example of a special deductive
form is assume(M, D). This form matches the schema kwd(B1, B2), where kwd is
assume, B1 is M, and B2 is D. Once we instantiate the various kwdi and Ej as
desired, equations 8.1-8.3 single out a fixed, well-defined set of abstract syntax trees.
When there are no special deductive forms we speak of a pure A system; otherwise
we have an augmented Ap system. Thus in a pure A system every deduction is of
the form dapp(E, 2). We will see that pure systems are sufficient for most purposes;
special deductive forms are never strictly necessary. We can get sound and complete
systems for many important logics, including classical first-order logic, in the setting of
the pure Ap-calculus. However, some special deductive forms are occasionally essential
for directly capturing the structure of certain modes of reasoning, especially in natural
deduction. Nevertheless, even in those cases we have observed that the number of
special deductive forms can be kept to a minimum; once a fundamental form or two
have been chosen, other forms become expressible as syntax sugar. In this entire
document we will only consider two special deductive forms.

A particular A system is obtained when we fix a set of constants C, a set of 6-rules
A specifying the behavior of the constants (to be discussed shortly), and a number
n > 0 of special deductive forms kwd1($1),... , kwdn (n). Accordingly we will write
a Ap system L as

L= (kwd 1(.1), ... , kwdn(Pn); C; A) (8.4)

or simply L = (kwdi,... , kwdn; C; A) when there is no risk of confusion. As we
remarked above, when there are no special deductive forms we say that L is pure, and
we write L = (C; A). A pure system is completely determined by its constants and its
6-rules.

The Ap-calculus284

8.1 Syntax 285

Note that the regular A-calculus

E ::= c | I I A T. E | app(E, V) (8.5)

is directly embedded into the Ap-calculus. That is, every expression generated by 8.5 is
also an expression of the Ap-calculus. We will see that the regular reduction semantics
of the A-calculus are also wholly preserved.

Expressions of the form p 1 1, . . . , Ik .D and A I', . . . , I' . E are called methods and
functions, respectively. These are abstractions of deductions and computations, re-
spectively. We refer to I1,... , I and I', ... , I, as the parameter lists of the method
and the function. We require that parameter lists have no duplicate entries. Expres-
sions and deductions of the form app(E, TI) and dapp(E, 2) are called function and
method applications, respectively.

Free and bound occurences of identifiers are defined as usual. Specifically, the set
of identifiers that have free occurences in a phrase M, denoted FV(M), is defined as
follows:

FV(dapp(E, TI))

FV(kwd(E1,... , _n))

FV(c)

= FV(app(E, I)) = FV(E) U FV(A)

= FV(1)U ... u FV(En)

=0
FV(I) = {I}

FV(pI1,... ,Ik.D)

FV(AI1,... ,Ik.E)

= FV(D)-{I,... ,I}

= FV(E) -{II,... ,Ik}

where FV(TI) denotes FV(M) U - -U FV(M) whenever TI = M1,.. . , Mk. The set
of identifiers that have bound occurences in a phrase F, denoted BV(F), is defined
thus:

BV(dapp(E, T))
BV(kwd(B1,... , En))

BV(c)

BV(I)

BV(p I 1 ,... ,I k.D)

BV(AI1,... ,Ik.E)

= BV(app(E,1A)) = BV(E)UBV(V)

= BV(-1)U ... U BV(n)

=0
=0

= {I1,... , Ik} U BV(D)

= {I1,... ,Ik}UBV(E)

8.1 Syntax 285

The Ap-calculus

Phrases which differ only in the names of their bound variables are called alphabetic
variants, and will be identified. That is, we will consider two phrases to be identical
iff they are alphabetically convertible. When V = N 1, . . . , Nkl, r = 11, .. . , Ik2 ,
ki = k2 2 0, and the identifiers I1, ... , 1 k2 are distinct, we define M[V/I] as the
phrase obtained from M by simultaneously replacing every free occurence of Ij by Nj,
j = 1,... , ki = k2. In general this replacement can result in variable capture, but
since alphabetic variants are considered identical, we can always rename the bound
identifiers of M so as to make this impossible. If ki , k2 or the identifiers I1,... , k 2

are not distinct then M[/ I] is undefined.

8.2 Semantics

For the remainder of this section fix a Ap system L of the form 8.4. We will assume
that the set of constants C is partitioned into three parts, the set Methc of primitive
methods, the set Func of primitive functions, and the set Valc of primitive values.
Furthermore, a subset Sentc C Valc must be singled out as the set of sentences. Intu-
itively, the sentences will be the "statements" or "assertions" that one can formulate
in the system. The letters #, V), V and S will range over primitive functions, prim-
itive methods, primitive values, and sentences, respectively. An assumption base (or
context) # will simply be a finite set of sentences, so that

0 C Sentc C Valc C C.

Finally, we will require that every primitive method V) have a unique non-negative
integer r(@) > 0 associated with it and known as its arity. Likewise, every primitive
function # must have a given positive arity r(#) > 0.

The semantics of L are given via rules that establish judgments of the form

/C M -+ N

which may be read as "In the the assumption base /, M evaluates to N", or "N is
derivable from M relative to #", or "/ proves that we can derive N from M". When
L is understood or immaterial we simply write / I- M -- + N. We write /3 K M -* N
to mean that # Fr M -,-+ N or M = N.

The rules are divided into three groups: the core rules, which specify the semantics
of the standard Ap constructs; the 6-rules, which specify the behavior of the constants;
and the special-form rules, which specify the semantics of the special deductive forms
of L. Of course in a pure Ap system there are no special deductive forms and the last
group of rules is empty.

286

8.I eatc 8

/ H app(A I. E, V) E[/ IT] [Ri]

H E -+ E'

-H app(E, V) -> app(E', TI)
[R3] / H E ~ E'

H dapp(E, 11) dapp(E', A)

H Mz -- M-

app(E,M1,...,Mi,...,Mk)~>app(E,M1,...,Mi,., MH

3 1-E Ej E,

F Es N

3 F A . E >A I. N

/ D ~> S

U ' D -- S
[R10]

H D~> N

T pI. D~ p IT. N
[R8]

/HM--+ M 2 # / M 2 ~ -- +M 3

3 H M1 -+M3

{S} F dapp(claim, S) -- S [R12]

Figure 8.1: Semantics of the pure Ap-calculus.

8.2.1 Core semantics

The rules defining the core semantics of Ap systems appear in Figure 8.1. Rules
[R1] and [R2] model the customary notion of reduction (this is the usual notion of
/-reduction, but we reserve the letter / for assumption bases). Rules [R3]-[R6], [R8],
and [R9] are simple compatibility rules. Rule [R10] is a dilution rule. Rule [R11]
ensures that the derivability relation (with respect to a fixed assumption base /) is
transitive. Finally, rule [R12] fixes the semantics of the primitive method claim.

[R7] is the most distinctive rule of the Ap-calculus. It is the rule that allows for
inference composition: deriving conclusions that will be used in subsequent deductions.
To understand what it says, think of the expression E as an inference rule such as

H dapp(p T. D, V)~> D[/I/7*] [R2]

[R4]

[R5]

[R61

[R7]

[R9]

[R11]

8.2 Semantics 287

~>+ dapp(E, M1,. ... , Ej,7 . . . MO)# -dapp(E, M1, 7... , E,.. . , MO)

F Di~> S # U{S} F dapp(E, M1,... , S,... , Mk)~>, N

F-E dapp (E, M1,I... , Dj,... , Mk)~>,- N

Modus Ponens and read the rule backwards. The rule states that if the ith argument
of a method application is a deduction (Di), then the application at hand can take the
result of that deduction (S) for granted That is, the application can be evaluated in
3 U {S}, instead of just 0. We will see many examples of this rule in action soon.

8.2.2 Semantics of constants

Recall that the set of constants C is made up of three pairwise disjoint sets, Methc,
comprising the primitive methods; Func, containing the primitive functions; and Valc,
the set of primitive values. The latter are uninterpreted constants that are intended
as the results of computations and deductions; there are no evaluation rules for them.
The only assumption we will make is that the equality relation on Valc is decidable. In
order to simplify the presentation, we will often treat the elements of Valc as abstract
objects; and we will allow for any number of them, even uncountably many. For a
real calculus, of course, we should instead work with concrete, finite representations of
abstract objects.

Semantics of primitive methods

For every primitive method 4 with arity n there is a given set of 6-rules

Ap C P.(Sentc) x C" x Sentc

where Po(Sentc) is the set of all finite subsets of Sentc. Thus every 6-rule R E AO is
a triple of the form

R = ({S 1, ... , SkR}, (ci, ... , cn), S) (8.6)

where the number kR may depend on R. We say that Si,... ,SkR are the rule's
premises; cl, . .. , c, are its arguments; and S is its conclusion. If

{ S1, ... , SkR} C {ci, . .. , cn}

for every R E Agp we say that @ is compositional, for reasons that will be explained
later. Further, if every rule has the same number of premises, i.e., if kR1 = kR2 for all
R 1 , R 2 in Ag,, we say that V) is uniform. All of the primitive methods we will encounter
in the sequel will be uniform. A primitive method all of whose rules have zero premises
is called an axiom. Note that axioms are trivially uniform and compositional. Also note
that primitive methods are finitary, in that every rule has a finite number of premises.
Finally, for any 6-rule R, we write Prem(R), Arg(R), and Con(R) to denote the set of
premises, the tuple of arguments (c1,... , cI), and the conclusion of R, respectively.

The Ap-calculus288

8.2 Semantics

For every rule R E Ap of the form 8.6 we stipulate that the following judgment
holds:

{S1,,.. , SkJ} dapp(@, ci, ... , cn)~>" S

or, equivalently,
Prem(R) F dapp(@, Arg(R)) -- + Con(R).

Such a judgment will be called a 6-evaluation axiom. In addition, we impose the
following requirements:

PM1 The conclusion of a rule is uniquely determined by its arguments. More precisely,
S = S' whenever (#31, (ci,... , cn), S) E Ap and (32, (ci, .. . , cn), S') E A0.

PM2 The following problem is mechanically solvable: given an arbitrary assumption
base # and a list of constants ci, . . . , c, determine whether or not there is a
6-rule in \, whose arguments are ci, . . . , cn and whose premises are contained
in #; and if there is such a rule, produce its conclusion (there may be several such
rules in Ap, but they will all have the same conclusion by virtue of the previous
requirement).

Of course A0 will usually be infinite and we will not be able to specify it by
exhaustively enumerating its members. Rather, we will usually specify it by a small
number (usually one) of rule schemas of the form

{r, ... ,i rk} dapp(0, 7r', ... ,r') -+r (8.7)

where the irs are patterns containing variables that range over C. It will then be
understood that Ap contains all and only those triples {{S 1, ... , S}, (ci, ... , cn), S)
such that Si, . . . , Sk, ci, . . . , cn, and S can be obtained from 7ri, . . . , '1, - . . , ir' and
7r by consistently instantiating pattern variables with specific constants. As an exam-
ple, the 6-rules for Modus Ponens (mp) in simple propositional logic will be specified
with the single schema {P =* Q, P} F- dapp(mp, P =>. Q, P) -- + Q. Here P and Q are
variables ranging over propositions, which serve as the sentences of the system. Every
rule in Amp can be obtained from the above schema by fixing values for P and Q. Note
that mp is uniform and compositional. That will be the case for most of the primitive
methods we will encounter.

Semantics of primitive functions

When it comes to primitive functions it is useful to allow for rules of the form

289

1- app(<p, M1,I... , Mk)~>,, N

290 The Ap-calculus

whereby a primitive function # manipulates entire phrases rather than just constants

(as primitive methods do). However, embracing such rules in an unrestricted fashion
can easily lead to unpleasant consequences. Most notably, it can destroy confluence,
even when the rules themselves determine unique functions; and it can considerably
complicate evaluation.

In particular with regard to evaluation, in order to handle primitive applications
in a uniform manner across different reduction strategies (by-name, by-value, etc.), we
would like the following condition to obtain: when evaluating a primitive application

app(#, M1, ... , Mk)

(in some /), we should be able to go ahead and evaluate the arguments M1, ... , Mk,

obtain values v 1, . . . , vk for them (where each "value" vi is an expression in some kind
of normal form), and then apply the primitive # to the obtained values. Moreover, the
result of the application should itself be in normal form, so that it does not require
any further evaluation.

The standard notion of normal form that we will consider in this document will be
that of "weak normal form", which is determined syntactically and is thus independent
of any particular semantics for the Ap-calculus. Specifically, a phrase M is in weak
normal form iff it is either a constant c, or of the form A I. E or p T. D for arbitrary
D and E (strictly speaking we should also include identifiers I and applications of the
form app(I, 1) with Al in weak normal form, but we will only be interested in closed
phrases-with no free identifiers-where such cases do not arise). Unlike the definition
of "normal form" which we will formulate later on and which hinges on a specific set
of reduction rules, this is a purely syntactic criterion; it is independent of evaluation
semantics and assumption bases.

Our Ap-interpreters will be required to evaluate phrases up to weak normal form.
Accordingly, in order to ensure the aforementioned condition we should at the very least
require that primitive applications operate on weak normal forms and produce weak
normal forms. However, this is not sufficient to guarantee unproblematic behavior. As
an example, consider a primitive equality function = along with the rules

,3 app(=, v, v) - true

Fapp(=,v1 , v 2) - false
whenever vi / V2

where v ranges over expressions in weak normal form and true and false are primitive
values. These rules successfully determine a unique, decidable function that takes

an assumption base and a pair of expressions in weak normal form and produces an
expression in weak normal form (either the constant true or false). However, the rules
destroy confluence, as can be seen by considering the expression

app(A x, y .app(=, A z. x, A z. y), true, true).

By reducing the outermost A redex, one obtains app(=, A z .true, A z . true), which then
reduces to true by the foregoing 6-rules. However, by first reducing the application of
= to A z .x and A z . y we obtain

app(A x, y. false, true, true)

(since A z . x and A z . y are syntactically distinct), and with one more reduction we get
false. Hence one and the same expression produces two different results. 1

In the above example the culprit was the presence of the free variables in the
arguments to the primitive =, so we should require the arguments to a primitive
application to be closed expressions in weak normal form. However, we will go a step
further and require that all arguments in a 6-rule of a primitive function # must be
constants; and we will require that the result must be a closed expression in weak
normal form.

Thus we require that for every primitive function # of arity n > 0 we are given a
set Ae of triples of the form

R = (0, (ci, ... , cn), E) (8.8)

where # is an arbitrary assumption base called the context of the rule; ci, ... , cn are
constants, called the arguments of R; and E is a closed expression in weak normal form
called the result of R. We say that # is context-independent if

(13', (ci, . .. ,cn), E) E A4

for every 0' C Sentc whenever (3, (ci, . . . , cn), E) E A4; otherwise # is context-
dependent. Almost all of the primitive functions we will encounter in the sequel will be
context-independent. In fact almost all of the primitive functions we will encounter will
produce constants as results, rather than arbitrary closed expressions in weak normal
form.

For every rule R E AO of the form 8.8 we stipulate that the following judgment
holds:

-app (#, ci, . . . , cn) ~i E.

In addition, we impose the following requirements:

'This example was inspired by a similar example in Barendregt's "The Lambda Calculus" [4], page
400.

8.2 Semantics 291

PF1 The result of a rule is uniquely determined by the context and the arguments.
Specifically, E = E' whenever

(0, (ci, ... , cn), E) E AO and (/, (ci,... , ca), E') E A4.

This means that AO can be regarded as a (partial) function that takes an as-
sumption base and a list of constants and produces a unique closed expression
in weak normal form.

PF2 The following problem is mechanically solvable: given an arbitrary assumption
base 0 and a list of constants ci, . . . , c, determine whether or not A4 is defined
for # and (ci, . . . , c) (treating A0 as a function); and if yes, produce the result
(the result must be unique by the previous requirement).

The purpose of these requirements is to ensure that a primitive function (a) is indeed
a function, and (b) can be mechanically implemented.

8.2.3 Semantics of special deductive forms

For each special deduction form kwd(i, ... ,Bk) of L, a rule of the form shown below
must be given, specifying the semantics of kwd. Each fi function, i = 1, ... , k, produces
an assumption base, while g produces a sentence; R is a relation, serving as an optional
constraint that may be imposed, delimiting the applicability of the rule. We require
that fi, g, and R be computable. We write -i for 0, l... , k and 1 for N1,... , Nk.

fli- - 1-* N1 f 2(TI, N1) K 2 -+* N2 -- - fk(, Ni , Nk_1) r =k k * Nk

#3 FL kwd(Ei 1... , E0)- g(A

provided R(II, ,g(V)).

As an example, consider again the deductive form assume(M, D), and suppose that
the sentences of L are the propositions of first-order logic, denoted by P, Q, etc. Then
the semantics of assume might be given via the rule:

/3F M- **P /U{P} D-*Q

/3Hassume(M, D) - P = Q

Here II = 0, M, D, fi(ff) = fi(, M, D) = 0, f2 (fl, P) = f2(, M, D, P) = / U {P},
and g(P, Q) = P =4 Q. There are no additional constraints on the applicability of the
rule, so R might be taken to be the constant "true".

The Ap-calculus292

8.3 Remarks

Some noteworthy points:

" Deductions and expressions are syntactically distinct. It is immediately evident
by simple inspection whether a given phrase is an expression or a deduction.
Intutively, expressions are intended to represent computations, while deductions
represent logical demonstrations. Accordingly, evaluating an expression E in
the context of some assumption base 3 might produce any result whatsoever-a
number, a string, a function, or perhaps even a sentence. If E happens to produce
a sentence, say a proposition P, then P could be anything; it might even be the
negation of a proposition in #3; it might even be the constant false. After all, the
procedure of taking a proposition P and outputting -P is a perfectly legitimate
algorithm; I should be able to apply this algorithm to any given P, even one that
happens to be a member of the current assumption base, and obtain the result
-,P. But precisely because this result is obtained from an expression, we make
no claims about the soundness of it in relation to 0. We only make such claims
about the results of deductions.

" Functions and methods take multiple arguments rather than being curried. This
is quite important for methods, because a method application is a deduction,
and a deduction is always expected to return a sentence (or else fail or diverge);
it cannot return any other kind of expression, such as a method. This viewpoint
of a deduction D as something that you evaluate in order to obtain a sentence
as the conclusion is central in the Ap-calculus. Of course this viewpoint could
be preserved even if methods were unary, by packaging up all the necessary
arguments of a method into a single list. However, methods would still have to
return sentences, and hence currying would still not be possible in any meaningful
sense.

* In a method application dapp(E, M 1, . . . , Mk), the operator must be an expres-
sion E. It cannot be a deduction, because deductions can only produce sentences,
and of course the value of E needs to be a method, not a sentence. An argument
Mi, however, can be either an expression or a deduction. Method applications
with deductions as arguments, i.e., nested deductions, play a very important role
in the Ap-calculus: inference composition. The main mechanism for imparting
an ordering on a deduction is via nested method applications. The fact that
expressions, too, can be passed as arguments to methods, means that methods
are higher-order: they can take arbitrary functions or methods as arguments.

" Likewise, in a function application app(E, M1 , ... , Mk) the operator must be an

8.3 Remarks 293

expression E, since its value must be a function. An argument Mi can again be
either an expression or a deduction. It can be a deduction because deductions
produce sentences, and a sentence can clearly be given as an argument to a
function. Thus it is sensible to say, for instance, "apply the negation algorithm
to the result of the deduction D", i.e., app(f, D), where f takes an arbitrary
sentence P and outputs -P.

" Methods are abstractions of deductions. A method of the form p I1, . . . , Ik . D
is obtained from the deduction D by abstracting over the parameters 1, ... , Ik.

This abstraction mechanism is a tremendously useful tool for packaging up deduc-
tions into reusable units. Soundness is automatically ensured by the semantics of
assumption bases-no type system is necessary. Every method is automatically
guaranteed to produce sound conclusions. This will become more clear in due
course.

" Accordingly, the body of a method must be a deduction, not an expression. Thus,
something like p x, y .app(f, app(g, x), app(g, y)) is nonsense at the syntactic
level; it is not a well-formed phrase of the Ap-calculus. In contradistinction, the
body of a function must be an expression, not a deduction. Thus something like
A x .dapp(f, -- -) is syntactically ill-formed.

" A deduction is simply an application of a method-nothing else counts as a
deduction.2 A method is not, by itself, a deduction; it is an expression that
captures infinitely many deductions (corresponding to the infinitely many values
that the parameters may assume) in a single finite description.

8.4 Basic Ap theory

We will say that a judgment # Kr M -N N is derivable in L iff there is a sequence of
judgments

01 Kr M1 -o-+ N 1 , . .. , #3 K Mk - Nk

such that Ae = 3, Mk = M, Nk = N, and each judgment /i H Mi -- ,+ Ni is either an
instance of a core axiom ([R1], [R2], or [R12]) or a 6-evaluation axiom; or else follows
from previous judgments via a core rule or some special-form rule.

A phrase M is reducible in a given # iff there is a phrase N such that / H M '-+ N.
M is irreducible (or in normal form) in 13 iff it is not reducible in /, i.e., iff there is
no N such that # F M -+ N. We say that M is weakly convergent in / iff there is a
phrase N that is irreducible in # and such that / F M -'-+* N. M is strongly convergent

2 1n the pure Ap-calculus; augmented systems also have special deductive forms.

The Ap-calculus294

in / iff there is no infinite sequence M1 , M 2, .. . , Mn,... such that M = Mi and
/3 H- Mi -'-+ Maij for all i. Clearly, strong convergence implies weak convergence. For
suppose that M is strongly convergent in 0. Now either M is irreducible in 3 or not.
If it is, then # 1- M -'-+* M and M is irreducible in 0, hence M is weakly convergent in
#. If it is not, then there must be a phrase M 2 such that # H- M -,-+ M 2. Now either
M 2 is irreducible in # or not. If it is, then M is weakly convergent in /; otherwise
we have # H- M 2 M 3 for some M3. Eventually we must reach a phrase M" that
is irreducible in 0, as otherwise M would not be strongly convergent in /3. But if
M, is irreducible and 3 F- M -* M, then M is weakly convergent in /. Of course
weak convergence does not imply strong convergence. In addition, we say that M is
everywhere weakly convergent iff M is weakly convergent in every /3; and we say that
M is everywhere strongly convergent iff it is strongly convergent in every 0.

We say that M is divergent in / iff N is reducible in /3 whenever / H- M .-\-* N. The
following equivalent characterization of divergence is easily derived:

Lemma 8.1 M is divergent in / iff M is not weakly convergent in /.

Finally, M is everywhere divergent iff it is divergent in every assumption base.

Theorem 8.2 There are deductions and expressions that are everywhere divergent.

Proof: Set
QD= dapp(p I . dapp(I, I), p I .dapp(I, I))

and
E= app(A I .app(I, I), A I . app(I, I)).

Note that QD E Ded, QE E Exp. It is easy to see that for no 3 do we have Q H GE -* N
or # F- D -- * N for irreducible N. M

The following result shows that divergence (and hence weak convergence) may
depend on the context. The reader must read Section 8.6.4 in order to understand the
proof.

Theorem 8.3 There are phrases which are divergent in some assumption bases and
not divergent in others. Accordingly, divergence in some # does not imply divergence
everywhere. Equivalently, weak convergence in some # does not imply weak convergence
everywhere.

Proof: Consider a primitive function holds such that

/ U {S} H- app(holds, S) -'- true

and

8.4 Basic Ap theory 295

/31-app(holds, S) - false
whenever S V /.

It is clear that holds satisfies PF1 and PF2. Now pick any constant sentence S and
let E be the expression

(cond (holds S) S QE)

where QE is defined in the proof of Theorem 8.2. Clearly, {S} F- E -- + S, but E is not
weakly convergent in any # that does not contain S. Hence, from Lemma 8.1, E is
divergent, say, in 0. U

8.5 Basic Ap metatheory

Let a Ap system C = (kwd1(P1),... , kwdn(n); C; A) be given. A binary relation
> C P(Sentc) x Sentc will be called Tarskian iff it is

1. reflexive, i.e., 4 - S whenever S E (D;

2. monotonic, i.e., (D1 U (D2 - S whenever 41 - S; and

3. transitive, i.e., ID > S2 whenever (D > Si and P U {S1} S2.

Further, we say that > includes the primitive methods of L iff for every primitive
method 0 of L we have Prem(R) > Con(R) for all R E A,.

The evaluation semantics of the Ap-calculus determine a binary deducibility relation
F-t C P(Sentc) x Sentc as follows:

41 E S iff there exist / C (and D such that 3 F- D -- S.

If 4b F- S we say that S is deducible from 4b (in L). The theorems of L are all and only

those sentences S such that 0 FL S. When L is understood or irrelevant we will write

1 I- S instead of 4D Kc S. We have:

Theorem 8.4 F-r is Tarskian.

Proof: For reflexivity, invoke the primitive method claim (see rule [R12]). Monotonic-
ity is immediate. Finally, transitivity follows from [R7]: If D F Si and I U {S1} F S2

then there are deductions D 1 and D 2 such that

01 H Di 8. S9)

The Ap-calculus296

(8.9)

297

and

#2 F- D 2 ~> S2 (8.10)

for some # 1 CI(, #2 C 4 U {S 1}. Set

so that

/32 -- S1} C C (D

02 C /3U{S1}

and
D = dapp(p I. D 2, D1)

for some I that does not occur in D1 or in D2, so that

D2 [M/I] = D2

for all phrases M. Then we have:

(a) #13 I- D1 -- Si

(b) 13 D1~>- Si

(c) 2 F- D 2 -- S 2

(d) # U {S1} F D 2-~> S 2

(e) # U {S 1 } F dapp(p I. D 2 ,Si)->D 2

(f) # U {S 1 } dapp(p I. D 2 ,Sl1)--S2
(g) F- D--+ S2

supposition 8.9
(a), 8.11, [R10]

supposition 8.10

(c), 8.13, [R10]

[R2], 8.14

(e), (d), [R11]

(b), (f), [R7]

Therefore, (F- S 2 . 0

Theorem 8.5 If L is pure then Kr is the least Tarskian relation that includes the
primitive methods of L.

Proof: We have already shown that Kr is Tarskian. It is also readily verified that it
includes the primitive methods of L. Specifically, pick any 6-rule

R = (Prem(R), (ci, ... , cn), Con(R))

(8.11)
(8.12)
(8.13)

(8.14)

8.5 Basic Ap metatheory

The Ap-calculus

of any primitive method 4). Then the following evaluation axiom holds:

Prem(R) -e dapp(V), ci,., c,,)~- Con(R) (8.15)

and, consequently, Prem(R) Kt Con(R).
Lastly, we need to show that if > C P(Sentc) x Sentc is any Tarskian relation

that includes the primitive methods of L then Kt C >, i.e., D > S whenever 4) FK S,
or equivalently, that 4 > S whenever # F- D ->-- S for some D and # g (D. We proceed
by induction on the length n of the derivation of the judgment 0 F D -- * S. When
n = 1 the judgment must be an instance of a core axiom or a 6-evaluation axiom. In
the first case, the only core axiom that is a possible candidate is [R12]; it could not
possibly be [R1] or [R2] for syntactic reasons. Specifically, every instance of [R1] is
of the form 0 F Ei -- * E2 , relating an expression to an expression, whereas in our case
the judgment is of the form 0 H D -- S, taking a deduction to an expression (recall
that every sentence S is a constant, and hence an expression). For similar reasons,
the judgment could not be an instance of [R2], as every instance of [R2] is of the
form / F D1 -- > D 2, relating a deduction to a deduction. Hence the judgment must
be an instance of [R12], i.e., of the form {S} F dapp(claim, S) -- S, in which case

4 S follows because > is assumed to be Tarskian, and hence reflexive. In the second
case, if the judgment is a 6-evaluation axiom of the form 8.15, the supposition that >z
includes every primitive method of L entails / - S, and thus D - S follows from the
monotonicity of -.

For the inductive step, suppose that the derivation is of length n + 1 and that the
result holds for all derivations of length n or less. Then the judgment / H D -- S is the
last-(n + 1)"-judgment in the derivation, and there are two possibilities as to how
it is obtained: First, the judgment might again be an instance of a core axiom or a 6-
evaluation axiom. In that case the result can be established as in our preceding analysis.
Secondly, the judgment might follow from previous judgments in the derivation via
one of the core rules of the Ap-calculus (Figure 8.1). We perform a case analysis: for
syntactic reasons, the rule in question could not be one of [R3], [R4], [R5], [R6], [R8],
or [R9], given that the obtained judgment is of the form / F D -- > c. Hence the only
remaining possibilities are [R7], [R10], and [R1i1]. In the case of [R7], the judgment
S D -~-> S must be of the form / 3 dapp(E, M, ... , Di, . . . , Mn) --* S, where the
judgments # H Di ~> Si and

#U {Si} -dapp(E, M1, , Si, . .. , Mn)~>" S

are derivable in n or fewer steps. Accordingly, the inductive hypothesis implies 1 > Si
and 4 U {Si} > S, and the desired 4 > S now follows from the supposition that > is
transitive. In the case of [R10] or [R11] the result follows directly from the inductive
hypothesis. This completes the case analysis and the inductive argument. U

298

The decision problem for L is: given an arbitrary S, determine whether S is a
theorem of L. If this problem is mechanically solvable, we say that L is decidable. 1
is inconsistent iff 0 Kr S for every S; if it is not inconsistent we call it consistent.

Other metatheoretical properties of L such as soundness and completeness are
formulated with respect to some "entailment relation" L= C P(Sentc) x Sentc. Given
such a relation, we define the following notions. If D = S we say that JD entails S. If a
sentence S is entailed by the empty set we say that it is a tautology, or valid (always
with respect to |=); this might be abbreviated as |= S, instead of 0 |= S. Moreover,
we say that

" L is sound with respect to |= iff F-L C

" 1 is complete with respect to |= iff 2|

" 1 is tautologically complete with respect to |= iff 0 FK S whenever 0 |= S.

Clearly, completeness implies tautological completeness.

Theorem 8.6 (Soundness theorem, pure systems) A pure Ap system L is sound
with respect to a Tarskian relation |= iff = includes every primitive method of L.

Proof: One direction is trivial. The converse follows directly from Theorem 8.5. *

Next, consider a special deductive form kwd(-1, ... , Ek), whose semantics are given
by a rule of the form shown in Section 8.2.3. We say that this form preserves |- iff
3 -g(V) whenever Bi = D and fi(P, N1, . . . , Ni_ 1) |- Ni for i = 1,... , k. We have:

Theorem 8.7 (Soundness theorem, augmented systems) An augmented Ap sys-
tem L is sound with respect to a Tarskian relation |= iff = includes every primitive
method of L and is preserved by every special deductive form of L.

Proof: Again, one direction is immediate. For the converse, we need to show that
4 = S whenever 3 FK D -- * S for some D and 3 C 4). We proceed just as in the proof
of Theorem 8.5, except that there is one more possibility to consider on the inductive
step: the case when the judgment # I- D -- + S is obtained from a special-form rule
(in which case, of course, D is a special deductive form). The result in that case
follows from the inductive hypothesis in tandem with the supposition that the special
deductive forms of L preserve |=. 0

The entailment problem for |= is to find a strongly converging method' p I. D such
that

/31dapp(p I. D, S) - S iff # S. (8.16)

3 A method p I. D is called strongly converging iff dapp(p I. D, M) is everywhere strongly con-
vergent, for all phrases M.

8.5 Basic Ap metatheory 299

The Ap-calculus

In fact we are usually interested in a special case of the above problem, namely, the
validity problem for |=: find a strongly converging method y I. D such that

0 - dapp(p I. D, S) -- S iff 0 = S, i.e., iff S is valid. (8.17)

Clearly, a solution to the entailment problem constitutes a solution to the validity
problem.

Note that we require the relevant methods to be strongly converging to ensure that
they "always terminate". Accordingly, a method which derives S from # whenever
the latter entails S but diverges in all other cases does not count as a solution to
the entailment problem. We want to obtain an answer in a finite amount of time, the
answer being either the result S, verifying that S is indeed a consequence of /, or some
kind of irreducible expression that is not a primitive value, such as dapp(mp, P A Q),
indicating that an error has occured, and hence, from 8.16, that # does not entail S.

Assuming that = is compact, i.e., that D |= S iff 3 = S for some # g 4, we have:

Theorem 8.8 If the entailment problem is solvable then L is complete; if, in addition,
L is sound, then it is also decidable. In particular, if the validity problem is solvable
and L is sound then L is tautologically complete and decidable.

Proof: Assume there is a strongly converging method p I. D such that

SF dapp(p I. D, S) S

whenever S |- S. Pick any sentence So and suppose that 1 - So, so that, by com-
pactness, /| So for some /C D. It follows from our assumption that

/ 3 dapp(p I. D, So)-- So

and hence So is deducible from (D. To decide whether an arbitrary So is a theorem,
simply evaluate dapp(p I. D, SO) in 0. By strong convergence, a result must eventually
be obtained. Further, by supposition, the result will be So iff So is valid, i.e., by
soundness and completeness, iff So is a theorem. 0

Of course for many interesting systems the relation = is undecidable, and the
entailment and validity problems do not have a solution. In such cases what we are
interested in, from a practical standpoint, is obtaining better and better solutions of
what might be termed the "automated reasoning problem" for =, which is to find a
strongly converging method p I. D such that 0 F- dapp(p I. D, S) --4 S for as many
tautologies S as possible.

A significant advantage of formulating these problems in terms of methods rather
than functions (i.e., arbitrary algorithms) is that if L is sound with respect to 1= then

300

8.5 Basic Ai metatheory 301

the first halves of the requirements 8.16 and 8.17 are automatically satisfied: we know
that if any deduction D produces a sentence S in an assumption base 0, then / must
entail S. Now the advantage is that, by Theorem 8.6 and Theorem 8.7, soundness is
easy to verify if |= is Tarskian: we simply check that the primitive methods respect |-
and that the special deductive forms preserve it. Then the hard work is done by the
semantics of the language: soundness for the entire system L follows, as guaranteed by
the two cited theorems, by the very design of the Ap-calculus. This means that simply
by checking the soundness of the primitive methods we are entitled to conclude that
any method y- I .D, no matter how complicated, even one with trillions of "lines of
code" and nested recursive calls and pattern matches and so on, will never produce
something that does not follow; for dapp(pu I . D, I) is, syntactically, a deduction,
and the soundness theorems tell us that the result of any deduction in any 0 is entailed
by #.

By contrast, suppose that we formulated the entailment/validity problems in terms
of functions A I. E, i.e., in terms of conventional algorithms. This is, in fact, how the-
orem proving is usually formulated. We want to find an algorithm, for instance, that
always terminates and which produces a result S iff S is a tautology (or at any rate
produces as many tautologies as possible, if the full problem is undecidable). Once
we arrive at such an algorithm, however, we have the burden of proving it correct, a
big part of which is proving that it never outputs something that is not a tautology,
i.e., proving that it is sound. If the algorithm is sizeable and complicated, as theorem
provers are bound to be, then proving its soundness will not be an easy task: big, com-
plicated algorithms are not easily amenable to rigorous analysis. Moreover, everytime
we modify our theorem prover in order to improve it we have to reprove its soundness
all over again. In contradistinction, if we write our theorem prover as a method then no
such analysis is ever necessary: soundness comes for free, courtesy of the Ap-calculus.
And we can modify the method to our heart's content; it will always remain sound.

On the other hand, it is usually easier to write a theorem prover as a function than
as a method. Methods require harder thinking and more work. And they are generally
less efficient than functions, although that could change with more research on method
optimization. But they are also more interesting to write, as they give insight into
exactly why a result holds. A Prolog engine that is written as a predicate logic method,
for instance, will perform universal instantiation on the quantified Horn clauses with
the results of the unification, it will perform Modus Ponens on the instantiated clause
and the (recursively proved) head goals, and so on. Essentially, then, a theorem prover
written as a method will actually prove a given goal in full detail, it will not just
"verify" it. An added advantage of this is that the prover could stack up all the
primitive inferences that it performs, in the order in which they occur, and then at the
end reverse the stack and offer them as a forward proof of the result. Thus theorem-

proving methods have a uniform mechanism for explaining their behavior that is not
available to theorem provers expressed as generic algorithms.

8.6 Conventions and syntax sugar

8.6.1 Notational conventions

For readability reasons we will often use s-expression syntax for function applica-
tion, writing (E M1 ... Mk) instead of app(E, M1 , ... , Mk). Parentheses will be
left out whenever they are not necessary for unambiguous parsing. In particular, the
outer pair of parentheses can always be omitted. Thus we might write, for instance,
add (- 5 2) 7, meaning app(add, app(-, 5, 2), 7). A similar s-expression syntax will
be used for method applications, but with an exclamation mark ! preceding the method
being applied: (!E M1 ... Mk). This will serve to distinguish method applications
from function applications. Again parentheses will often be dropped, so we might
write, for example, !both P (!dn ,,Q) for

dapp(both, P, dapp(dn, ,,Q)).

8.6.2 let and dlet

We introduce the following syntax sugar:

[dlet I = M in D] = dapp(p I . D, M) (8.18)

and

let I = M in E] = app(A I. E, M) (8.19)

Thus every dlet is a deduction, and every let is an expression. We may also have a
dlet (or let) with multiple bindings I1 = M 1 , . . . , I, = M,; those are desugared as
shown in Fig. 8.2, with 8.18 and 8.19 as base cases.

The following lemma clarifies the sense in which dlets allow for proof composition:

Lemma 8.9 Let D be the deduction dlet I = D1 in D 2. If

3 /D 1 >-+ Si and 3 U {S1} F D 2 [S1 /I] -- *S 2

then f D-> S2 .

302 The Ap-calculus

8.6 Conventions and syntax sugar 303

[dlet I1 = Mdet 11 [ltIM let
12 = M2 in dlet 12= M 2 12 =M 2 in let 12 =M2

In= = M= M

in in in in
D]D]ID D]

Figure 8.2: Desugaring of dlets and lets with multiple bindings.

Proof: By definition, D stands for dapp(p I. D 2, D1), an application of a method
to the result of a deduction. The key rule here is [R7]: it will entitle us to conclude
SF- D-- S2 if we can only show 3 1- D1 -- > Si and

3 U {S1 } H dapp(p I. D 2 , SI)--+ S2.

Now the former holds by supposition, while for the latter we have:

1. 3 U {S 1 } H dapp(p I. D 2, Si) -- D2 [S1 /I] [R2]

2. / U {S1} I D 2 [S1 /I]> -+ S2 Supposition

3. # U {S1} H dapp(t I. D 2 , P)~ -S 2 1, 2, [R11]

and we are now done by virtue of [R7].

The following corollary will come handy later:

Corollary 8.10 Let D = dlet I = D1 in D 2 , where I does not occur in D 2. If
/3 H D 1 - Si and 1 U {S1} - D 2-- S 2 then # H- D ~* S2.

8.6.3 Recursive deductions and computations

It will prove very useful to be able to formulate recursive methods of the form

m=y 7 (8.20)

It is possible to express such methods in the Ap-calculus owing to the fact that methods
can be the results of computations, meaning that functions can return methods. In
particular, we note that any method mo that is a fixed point of

(8.21)H = A m.y 7*. - - - m -.-.-

satisfies equation (8.20), since

mno = app(H, mo) = p I.---mo ---

Now a fixed point of H can be found with the regular fixed-point combinator

Y = A F. app(A x. app(F, app(x, x)), A x. app(F, app(x, x))).

Of course Y will not work for multi-argument functionals, but it is easy to see that
it will find the fixed point of any single-argument functional H such as (8.21) (for
arbitrary 0):

1. 3 F app(Y, H) -- + app(A x .app(H, app(x, x)), Ax . app(H, app(x, x)))

2. 3 F- app(A x. app(H, app(x, x)), A x. app(H, app(x, x))) -*
app(H, app(A x .app(H, app(x, x)), Ax . app(H, app(x, x))))

3. # -app(Y, H) --+
app(H, app(A x. app(H, app(x, x)), A x. app(H, app(x, x)))) = app(H, app(Y, H)).

Here the first two judgments are instances of [R1], while the third judgment follows
from the first two by [R1i1]. Thus for any # and any single-argument H we have

3 - app(Y, H) -- + app(H, app(Y, H)) (8.22)

or, in more conventional notation, Y(H) = H(Y(H)), i.e., Y(H) is a fixed point of H.
It is the derivability of judgment 8.22 that will allow us to find solutions to equations
requiring recursive methods as solutions. Of course the same idea applies to recursive
functions as well. Thus we introduce the following syntax sugar: we treat

dletrec I = M in D

as an abbreviation for
diet I = app(Y, A I. M) in D

and
letrec I = M in E

as an abbreviation for
let I = app(Y, A I. M) in E.

Thus, syntactically, a dletrec is a deduction while a letrec is an expression.
4 Strictly speaking, the equality sign here signifies the equivalence relation generated by the sym-

metric closure of the quasi-order #3 F- -+* -

304 The Ap-calculus

8.6.4 Conditionals

In many situations it is useful to have a primitive equality function for testing whether
two constants are the same. Thus the reader may assume that all of the systems we
will examine in the sequel come equipped with a constant equal and two constants true
and false, the first being a primitive function and the last two being primitive values.
The semantics of equal are given by the 6-rules

I app(equal, c, c) ~> true

and

/ F app(equal, c1 , c2) ~> false
whenever ci f c2-

Requirement PF2 is satisfied owing to our assumption that the equality predicate on
the set of constants is decidable.

Note that in some systems true and false will also serve as sentences. In those
cases, then, true and false will have dual roles as primitive values: possible results of
deductions, as well as "boolean values" indicating the results of equality tests and so
on.

It is useful to be able to combine conditions (phrases that return true or false) into
more complex conditions through the use of boolean operators. Thus we introduce
primitive functions bool-not, bool-and, and bool-or, with the expected semantics:

13 I- app(bool-not, true) false

/ F app(bool-not, false)~i true

H app(bool-and, true, true) -~>+ true

and so forth.
Next, we would like to have some means of expressing conditional computations

and deductions whose outcome may depend on arbitrarily complicated conditions. In
particular, we would like to express computations of the form

(cond M E1 E 2)

with the following informal evaluation semantics: if the phrase M evaluates to true
(in the context of some /3), then evaluate E1 ; otherwise, if M evaluates to false, then

8.6 Conventions and syntax sugar 305

evaluate E2 . The case in which M produces neither true nor false is left unspeficied.
Likewise, we want to be able to write deductions of the form

(dcond M Di D2)

with similar semantics. Thus cond forms are to count as expressions, because re-
gardless of whether M is true or false, (cond M E1 E2) will end up evaluating an
expression-either Ei or E2 . Similarly, dcond forms can automatically be understood
as deductions because regardless of whether M is true or false, (dcond M Di D 2)
will end up evaluating a deduction-either D1 or D2 . This is important in order to
maintain the distinction between computations and deductions at the syntactic level.

Although the A-calculus does not have any built-in machinery for this purpose,
we can easily simulate it in terms of the primitives. The standard trick from the A-
calculus of defining "true" and "false" as A x . A y . x and A x . A y. y will not work for
several reasons, as the reader will verify. But a solution can be obtained by modifying
this idea. In particular, let us introduce two primitive functions ifD and ifE, whose
semantics are given by the 6-rules

/ - app(ifD, true) - p x, y. dapp(claim, x)
F- app(ifD, false) ~+ p x, y. dapp(claim, y)

and

F- app(ifE, true) ' A x, y. x
F- Happ(ifE, false)- A x, y. y.

We now define (dcond M Di D 2) as syntax sugar for

dapp(app(ifD, M), D 1, D 2)

and (cond M E1 E2) as syntax sugar for

app(app(if E, M), Ei, E 2).

The reader will verify that this results in the desired semantics:

Lemma 8.11 If 0 F- M -- + true and / H Di -- + S then

/ 3 (dcond M Di D 2)--> S

while if F M -- + false and / H D2 -'-+ S then

/ 3 (dcond M Di D2)~_ + S.

The Ap-calculus306

307

Moreover, if
/ M-> true and# E -- + E'

then 3 F (cond M E1 E2) -> E'; while if

H - M>- false and,3 F E2-- > E2

then 1 3 (cond M E1 E2)>--+ E.

A Ap system that contains all of the above constants and 6-rules will be called standard.

8.6.5 Conclusion-annotated form

With the background of the previous desugarings, we introduce the syntax

E by D

as an abbreviation for the deduction

dlet S = D in (dcond (equal E S) (!claim S) Dfail)

where Dfail is some fixed deduction that always fails (or, more precisely, one that is
irreducible in all assumption bases). Thus the form "E by D" is very similar to D; if
both are correct, then, denotationally, they are identical: they both produce the same
result. However, "E by D" says something over and above D-it explicitly asserts
that the results of D and E are identical. Therefore, even if D successfully produces a
conclusion, the deduction "E by D" might still fail if the produced conclusion does
not agree with E. It is this extra "documentation" that these forms provide that makes
them useful. Deductions which are written in this style are said to be in conclusion-
annotated form. It will be seen that such deductions are even more perspicuous than
regular A deductions. Accordingly, when proof presentation is the main concern, so
that the top priorities are readability and clarity, this style is advised. When proof
discovery is the main concern, this style is not necessary.

8.6.6 Pattern matching

In many A systems it is useful to be able to match sentences (and perhaps other kinds
of primitive values as well) against patterns. Specifically, we would like the ability to
express deductions of the following abstract syntax:

dmatch M ri ==> D 1,... , rn == Dn

8.6 Conventions and syntax sugar

(8.23)

The Ap-calculus

where the various ri are patterns, and having the following informal evaluation seman-
tics: evaluate the phrase M to obtain a value, called the discriminant value. Then
try to match the discriminant value against the pattern 71. If this succeeds, evaluate
Di in the current lexical environment augmented with the bindings resulting from the
match. Otherwise try the same process with 7r2 and D 2, and so on, until a successful
match is found. If no match can be found, fail. We also want a similar construct on
the expression (computation) level:

match M 7ri -- > E1, . .. , , ==> E,. (8.24)

In this section we will show how to express pattern matching in terms of Ap primi-
tives for one particular set of sentences: the propositions of zero-order logic. However,
the same idea can be applied to other sets of sentences, and indeed, to any other
domain of inductively generated compound values.

For the remainder of this section the reader should assume that the set of sentences
is the set of propositions P having the following abstract syntax:

P ::= true | false | Ai -,P | P => Q | P A Q | P V Q I P 4 Q

where A1 , A2, . . . are propositional atoms. Patterns for these sentences can be defined
via the following abstract syntax:

7r ::= I I P ,-7 1 7r1 Ar2 | 7V7r2 | 7r1 ->7r 7r 2

so that a pattern is either an identifier or a compound pattern consisting of a propo-
sitional constructor applied to a list of patterns. This basic pattern language can be
enriched so as to allow for the decomposition of not only propositions but other primi-
tive values as well, or combinations thereof (e.g., lists of propositions). The basic idea
is the same and can be adapted to more complicated cases.

Again we will be simulating the desired behavior in terms of appropriate combina-
tions of primitives: we will desugar deductions of the form 8.23 into dlets and dconds
(which are themselves syntax sugar for method applications). Before we present the
desugaring algorithm, we need to introduce a few primitive functions: "recognizer"
functions such as is-negation, is-conjunction, is-disjunction, etc., and "selector" functions
such as left-conjunct, right-conjunct, neg-body, etc. The semantics of these constants
should be specified via 6-rules, which should be obvious from their names. We illustrate
with conjunctions:

/ I- app(is-conjunction, P1 A P 2) -- * true

308

8.6 Conventions and syntax sugar

/3 |- app(is-conjunction, P) ->- false
whenever P is not of the form Pi A P 2

F app(left-conjunct, Pi A P2) -~- Pi

H- app(right-conjunct, P1 A P 2) -~+ P2

We also assume the existence of a unary primitive function is-prop which returns true

if its argument is a proposition, and false otherwise. The desugaring now proceeds as

follows: a deduction of the form 8.23 becomes

dlet xinj = M
in

(dcond Qi dlet B 1 in Di
(dcond Q2 dlet B 2 in D 2

(dcond .. Dri)))

where Dfail is some fixed deduction that always fails, Qi is an expression that will

return either true or false, and Bi is a list of bindings 1 = E 1 ,... , Ik. = Mk, for

i = 1, ... , n. The definition of Qi and Bi is given via the algorithm T below that takes
a pattern 7r and an expression E and returns a pair (Q, B) consisting of an expression

Q and a list of bindings B. In particular, we set (Qi, Bi) = T(7ri, zini). The algorithm
T is defined by induction on the structure of the pattern 7r:

T(ir, E) = match r

I -> (app(is-prop, E), [I = E])

-17r --+ let (Q, B) = T(7r, app(neg-body, E)) in

(app(bool-and, app(is-negation, E), Q), B)

7r1 A 7r2 -- let (Q1, B 1) = T(7ri, app(left-and, E))

(Q2, B 2) = T(7r2 , app(right-and, E)) in
(app(bool-and, app(bool-and, app(is-conjunction, E), Q1), Q2),
join(B1 , B 2))

7r1 V 7r2 -> let (Q1 , B1) = T(7ri, app(left-or, E))

(Q2, B 2) = T(7r2 , app(right-or, E)) in

(app(bool-and, app(bool-and, app(is-disjunction, E), Q1), Q2),
join(B1 , B 2))

where we write join for list concatenation. The remaining two cases (conditional and

biconditional patterns) are treated similarly to conjunctions and disjunctions.

309

A successful match decomposes (or "destructures") the discriminant value in accor-
dance with the structure of the pattern. The identifiers of the pattern act as variables
that get bound to appropriate parts of the discriminant value. Note that the identifiers
of the pattern 7ri (see 8.23) introduce lexical scope: their scope is the deduction Di.
If Di itself contains another dmatch deduction with a pattern that uses one of the
identifiers I of 7ri, as in

dmatch P
P1 A P2 ==> dmatch P 2

P3 V (P ^P) -> -

then a new binding takes effect for I, masking the outer one from -ri and introducing
new scope. Our desugaring handles these issues automatically by binding pattern
identifiers in properly nested dlets.

The desugaring of expressions of the form 8.24 is entirely analogous to that given
above.

8.7 Interpreting the Ap-calculus

In this section we will be concerned with the task of reducing a phrase M, in a given
assumption base 0, to a weakly irreducible expression, i.e., to an expression in weak
normal form, which will be regarded as "the result" of M in 0. We will say that a
phrase M is normalizable in 0 iff there is a weakly irreducible phrase N such that
/ 3- M -* N. It is clear that normalizibility in / implies neither strong nor weak
convergence in 3 (take A x . Ogas a counter-example). The converse does not hold
either, however, even for closed phrases (for open phrases it clearly does not hold,
e.g., any identifier I by itself is strongly convergent in every assumption base but not
normalizable). For example, if no 6-rules apply to a primitive-function application of
the form app(#, ci, . . . , cn), then the latter expression is strongly convergent but not
normalizable.

By an "interpreter" for the Ap-calculus we will mean an algorithm that takes as
input a phrase M and an an assumption base / and attempts to "normalize" M, i.e.,
transform it into a phrase N in weak normal form such that / I- M -'-* N. Thus an
interpeter might be viewed as a semi-decision procedure (albeit an incomplete one, as
we will see soon) for constructively answering the question "Is a phrase M normalizable
in 0?", where a positive answer is always accompanied by producing a particular
weakly irreducible expression N such that / F M -'-** N. The algorithm might result
in an error in attempting to evaluate an application of the form app(#, Ei, ... , En)
or dapp(@, E1, . . . , E,) where each Ej is in normal form and there are no applicable

The Ap-calculus310

311

Figure 8.3: An argument-evaluation algorithm, parameterized over Eval.

6-rules for q, 0 (this can be decided effectively owing to PF2 and PM2). An error
might also occur if the input phrase is not closed. Of course the algorithm might also
diverge. The gist of the evaluation process is the reduction of As and ps via rules [R1]
and [R2], and the reduction of primitive method and function applications via 6-rules,
as in the regular A-calculus. However, there is an extra complication arising from rule
[R7] that we will discuss shortly.

A normal-order evaluation strategy always contracts the left-most, outer-most A
or y redex first, whereas an applicative-order (eager) evaluation strategy contracts the
left-most, inner-most redex. In what follows we will present three interpreters for the
Ap-calculus. The first two will be substitution-based, the first using a normal-order
evaluation strategy and the second using an applicative-order strategy. The third
algorithm will be based on environments and closures rather than substitution, and
will also use an eager strategy.

We assume the availability of a function eval-prim which takes a constant c, a
list of expressions E1 , ... , E,, in weak normal form, and an assumption base /, and
returns the result of applying c to E1 ,... , En in # (assuming that c is either a primitive
function or a primitive method). Presumably, eval-prim(c, [E1 ,... , En], 3) will produce
a result c' iff a judgment of the form

or app(c, E1, . . . En)

or

dapp (c, Ei, . .,En) -s+ c'

eval-args [M 1,... , Mk] # Eval= eval* [M 1,... ,Mk] [] 0
where

eval* [] V J=(rev(V),()

eval* [E,M 2 ,... ,Mk] V (D=

let N = Eval(E, 3)
in

eval* [M2,... , Mk] N::V 1

eval* [D, M2,... , Mk] V 4D=
let S = Eval(D,/3)

in
eval* [M2,... , Mk] S::V 1 U {S}

8.7 Interpreting the Ap-calculus

is a 6-evaluation axiom. If that is not the case, or if c is not a primitive method
or function, or if the number or form of arguments is wrong, then eval-prim should
generate an error. This specification of eval-prim is realizable owing to the requirements
we imposed on primitive functions and methods in Section 8.2.

The algorithms are presented in functional notation similar to that used in Chap-
ter 5. The normal-order interpreter is shown in Figure 8.4, and the applicative-order
one in Figure 8.5. They both use an argument-evaluation algorithm eval-args, shown
in Figure 8.3, which takes a list of phrases [M1, . . . , Mk] to be evaluated (represent-
ing the argument list of a function or method application), along with an assumption
base 3 in which to evaluate them and an evaluator Eval to perform the evaluation

(note that we write rev for list reversal). Barring error or non-termination, a call
eval-args [M1 , . . . , Mk] # Eval will return a pair ([v, ... , Vk], 4) consisting of a list
of "values" [V1, ... , Vo] (these will be expressions in weak normal form representing
the evaluation results for the inputs M 1, . . . , Mk) and a set 1 c {vi, ... , Vk} that
contains the value vi iff the phrase Mi is a deduction. Accordingly, (D may be regarded
as the set of lemmas or intermediate conclusions established prior to the application.
Keeping track of 4 is necessary in order to handle rule [R7] without having to resort
to backtracking. Thus if M 1,... , Mk are the arguments of a method application, then
after evaluating them we can proceed in a forward manner and apply the method in
the context /3 U D, rather than just /, thereby incorporating into the assumption base
whatever sentences were deductively derived. The idea is that if the application can
go through in / U 0', where 0' is any subset of the values of the deductive arguments,
then, by monotonicity, it will certainly go through in # U (D, since D D 3'. Hence there
is no need to backtrack and try some other subset in case of failure. We need only
try the application once, using the largest possible 0': 4. Of course in practice every
member of D is usually needed; an element of 4 that is not necessary for the method
application would constitute an extraneous lemma.

Moreover, in the case of augmented systems, for each special deductive form

kwd(-1, .. , k)

with semantics given by a rule of the form shown in Section 8.2.3, the call-by-name
interpreter should have a clause of the following form:

EvalN(kwd(Ml, ... , Mk),3) =
let vi = EvalN(M, fi(13, M 1, ... , Mk))

V2 = EvalN(V 2 , f 2(3 , 1, . - , , vil))

Vk = EvaN(k, fk(/, M 1, ... , IMi, V1i, ... , ok-1)

312 The Api-calculus

EvalN(c, /3) = c

EvalN(I, 0) = fail "Free identifier"

EvalN(A -E,) = A .E

EvalN(p I .D,)= pi.D

EvalN(app(E, M1,... , M),/) =

match EvalN(E, 3)
A I.Eb-- EvalN(E[M1,... ,Mk/I1,... ,Ik],3)

c -> let ([v1, ... ,Vk], () = eval-args [M1, ... , Mk] / EvaiN

in
eval-prim(c, [vi, ... , Vk], /)

_ -> fail "Invalid function application"

EvalN(dapp(E,M1,... , M),/3) =

match EvalN(E, 13)

pTI.D -+ EvalN(D[M1, ... , Mk/I1,. ,7I1]0)
c -> let ([v 1,... ,Vk], b) = eval-args [M 1,... ,Mk] / EvalN

in
eval-prim(c, [vi, ... , Vk], U)

- > fail "Invalid method application"

Figure 8.4: A normal-order substitution-based interpreter for the 4y-calculus.

v =g(v1,... ,Vk)

in

R(, M 1,... ,Mk, v, ... , vk, v) -* v, fail

Entirely analogous clauses should appear in the applicative-order interpreter.
The final Ap interpeter we present, Evalc, is based on environments and closures.

It brings to the surface certain idiosyncracies of the Ap-calculus that pass unnoticed
in the substitution-based interpreters. By an environment p we will mean a finite
function from identifiers to values, where a value is either a constant or a closure,
and where a function (method) closure is a triple containing a list of identifiers,
called the parameters of the closure; a phrase, called the body of the closure (this
will be an expression for function closures and a deduction for method closures); and
an environment p, called the closure environment. We write fclos([I1, ... , k], E, p)

(mclos([I1, ... , Ik], D, p)) to designate a function (method) closure with parameters

8.7 Interpreting the Ap-calculus 313

314 The Ap-calculus

EvalA(c, 0) = c

EvalA (I, #) = fail "Free identifier"

Eval(A .E,) = A .E

EvalA(p ID,)=tp7I .D

EvalA(app(E, M, ... , Mk),) =

let ([v1 , . .. ,Vj], 1) = eval-args [M1,... , Mk]]3 EvalA

in
match EvalA(E, 3)

A I.Eb - EvalA(Eb[vi,.... ,Vk1,. ,Ik1], 3)
c eval-prim(c, [v 1,... ,Vk], 3)

fail "Invalid function application"

EvalA(dapp(E, M1,... , Mk), 3) =
let ([v1, ... ,Vk], 1) = eval-args [M1, ... , Mk] /3 EvalA

in
match EvalA (E, 3)

[LI.D-+ Eval(D[v1,... ,vk/I1,... ,Ik],/3U()
c -- eval-prim(c, [vi, ... , Vk], / U (D)

_ -+ fail "Invalid method application"

Figure 8.5: An applicative-order substitution-based interpreter for the Ap-calculus.

... , Ik, body E (D), and environment p; and we write p[I1 F- v 1 , .. . , IF-- Vk] for
the environment that maps Ij to vj and every other I to p(I) (we assume , ... I

are distinct).

Evalc takes a phrase, an environment, and an assumption base, and produces a
value (either a constant or a closure), or else it reports an error or gets into an infi-
nite loop. The definition of Evalc(M, p, /) is given by structural recursion on M in
Figure 8.6. Note that according to our conventions about 6-rules, a primitive function
application ma produce not only a constant, but also a closed expression of the form
A I . E or p I . D. Hence, to adhere to our above specifications (of always returning
either a constant or a closure , the interpreter must "close" such an expression, i.e.,
turn it into the closure fclos(I , E, 0) or mclos(I, D, 0), where 0 is the empty environ-
ment. Accordingly, the interpreter applies a close function on the result of a primitive
function application. This function returns a constant unchanged, while it "closes" an

315

Evalc(c, p, 3) = c

Evalc(I, p, #) = p(I)

Evalc(A 7. E, p, /) = fclos(7 , E, p)

Evalc(p 7 .D, p,#3) = mclos(TI, D, p)

Evalc(app(E, Mi, ... ,Mk),p,/ 3) =
let ([v1,... ,V k],') = eval-args-env [M1,... ,Mk] p 3

in
match Evalc(E, p, #)

fclos({I1,I . .. , k], Eb, p') Evalc(Eb , p'[I1 -- vi,.., Ik V-+ o7,#
c - close(eval-prim(c, [vi,... ,Vk],))
- fail "Invalid function application"

Evalc(dapp(E, M1, ... , Mu), p, #) =

let ([v1,... , v], (D) = eval-args-env [M1,... , Mk] p #
in

match Evalc(E, p, /)
mclos([Ii, . .. , Ik], D, p') ->Evalc(D, p'[I1 vi, . .. ,Ik -> k], # U (D)
c -+ eval-prim(c, [vi,... , Vj, # U ID)

_- fail "Invalid method application"

and

eval-args-env [Mi,... ,Mk] p /3= eval* [Mi,... ,Mk] H 0

where

eval* [V 4I = (rev(V), 4D)

eval* [E, M2 ,... , Mk] V 4=
let N = Evalc(E, p, /3)
in

eval* [M2,... , Mk]I N:: V 4)

eval* [D, M 2 ,... , Mk] V P =
let S = Evalc(D, p, /3)

in
eval* [M2,... , Mk] S::V 1 U {S}

Figure 8.6: An applicative-order environment-based interpreter for the Ap-calculus.

expression A I. E or p I . D in the manner indicated above.

The important points to notice, which are not salient in the substitution-based

8.7 Interpreting the Ap-calculus

interpreters, are the following:

1. When a method closure is evaluated, the assumption base in which the evaluation
takes place is thrown away; only the lexical environment is retained in the closure.
This reflects the intuition that what we know at the point at which a method is
formed is immaterial; what matters is the state of the world at the point at which
the method is applied. Accordingly:

2. When a method closure is applied to a list of values, the body of the closure
is evaluated in the current assumption base; the assumption base in which the
method was formed has been forgotten, as we explained above. Thus we see that
methods are statically scoped with respect to lexical environments, but dynami-
cally scoped with respect to assumption bases.

These points apply to function closures as well, but that is immaterial if compu-
tation and deduction are sequestered so that expressions never access the assumption
base. In fact if all the primitive functions are context-independent, as is almost always
the case, then the fact that function bodies are dynamically scoped with respect to
assumption bases is completely inconsequential: function bodies may be evaluated in
the current assumption base, but that will not be of any significance if expressions
are oblivious to the contents of the assumption base. Thus in such cases it makes no
difference whether function closure bodies are evaluated with respect to the current
assumption base, the static assumption base (the assumption base in which the closure
was formed), or even the empty assumption base. However, the issue becomes relevant
when context-dependent primitives are provided (such as the function holds in the
proof of Theorem 8.3), as might be done in order to enable users to write theorem
provers as functions rather than methods. We will discuss this further in the sequel.

We close by discussing the correctness and completeness of the interpreters.

Theorem 8.12 If EvalN(M, 0) = N then N is in weak normal form, and further,
S1- M N. Likewise, if EvalA(M, /) = N then N is in weak normal form and

#F M **N.

Regarding completeness, we observe that none of the three interpeters is guaran-
teed to find a weak normal form for the input phrase, even if one exists. This is in
contrast to the regular A-calculus, where a normal-order reduction strategy is guaran-
teed to converge to a weak normal form (and even a regular normal form) if one exists.
The reason why this does not hold in the Ap setting is rule [R7]: consider a method
application having two deductions Di and D2 as arguments, and suppose that (a) the
application will go through if both D1 and D 2 go through, (b) D1 goes through on the
supposition that the result of D2 holds but not otherwise, and (c) D2 goes through.

316 The Ap_-calculus

By virtue of [R7], this means that the entire application should be successful: we can
evaluate D 2 first, then D 1, and then the overall application. But if our strategy is
to evaluate arguments left-to-right, then D1 will clearly fail, and so will the overall
deduction. As an example, let the application be

dapp(both, dapp(mp, P =* Q, P), dapp(dn, -- ',P))

in the assumption base {-i-P, P => Q}, where dn and mp stand for double negation
and modus ponens, respectively, with the obvious 6-rules (see Figure 9.2). Clearly,
this deduction will fail with a left-to-right argument evaluation strategy, even though
the Ap semantics can successfully reduce it to the sentence Q A P. In fact it is easy
to see that this situation arises with any fixed argument-evaluation strategy, be it
left-to-right, right-to-left, or anything else-even a parallel one. There will always be
a temporal permutation of the arguments that would enable the deduction to succeed
but runs counter to the evaluation order.

From a practical standpoint the issue is inconsequential. Just as languages such
as Scheme or ML adopt an applicative-order strategy even though this might fail to
accord with the formal semantics of the A-calculus, in the same manner it is perfectly
sensible for an implementation of the Ap-calculus to adopt a fixed argument-evaluation
order for methods even if this might fail to accord with the formal semantics. In fact
making an argument deduction contingent on the result of a fellow argument deduction
is patently bad style and very unlikely to be encountered in practice.

8.8 A simple example

In this section we will consider a pure Ap system Parity = (C, A) for proving that a
number is even or odd. The set of primitive values Valc contains all strings generated
by the grammar n ::= 0 1 s(n) (hereafter these strings will be called simply "numbers");
as well as the constants Even and Odd, which will be called "parity signs". As primitive
values we also take all pairs of the form (n, p), where n is a number and p a parity
sign. These will be the sentences of the system. For readability, a sentence of the form
(n, p) will be written as n : p, e.g., s(0) : Odd. Hence, evaluating deductions in this
system will result in "theorems" of the form n : p, asserting that "n is p".

Methc contains three primitive methods: zero-axiom, make-even, and make-odd.
The associated 6-rules are given by the following schemas:

0 I- dapp(zero-axiom) -'- 0 : Even

{n : Odd} F- dapp(make-even, n : Odd) - s(n) : Even

{n: Even} H- dapp(make-odd, n: Even) - s(n) : Odd

8.8 A simple example 317

1. 0 1 dapp(za) + 0 : Even 6-rule

2. {0 : Even} I- dapp(mo, 0 : Even) -+ s(0) : Odd 6-rule

3. 0 F- dapp(mo, dapp(za)) --+ s(0) : Odd 1, 2, [R7]

4. {s(0) : Odd} I dapp(me, s(0) : Odd) s(s(0)) Even 6-rule

5. 0 F- dapp(me, dapp(mo, dapp(za))) - s(s(0)) Even 3, 4, [R7]

6. {s(s(0)) : Even} F- dapp(mo, s(s(0)) : Even) -,+ s(s(s(0))) : Odd 6-rule

7. 0 F dapp(mo, dapp(me, dapp(mo, dapp(za)))) --- s(s(s(O))) Odd 5, 6, [R7]

8. {s(s(s(0))) : Odd} F- dapp(me, s(s(s(0))) : Odd) -,# s(s(s(s(0)))) : Even 6-rule

9. 0 F- dapp(me, dapp(mo, dapp(me, dapp(mo, dapp(za))))) ---+ s(s(s(s(0)))) : Even 7, 8, [R7]

8.7: The derivation of a judgment of the form # F- D ~>-+ S. Note the

by [R7].
crucial role

Note that all three methods are uniform and compositional. In more conventional
notation, the above rules might be depicted as:

0 : Even

n : Odd

s(n) : Even

n : Even

s(n) : Odd

Finally, we will assume that the system is standard, i.e., that it includes all the con-

stants and 6-rules introduced in Section 8.6.4. This completes the specification of the
system.

The following is a deduction D that proves the sentence s(s(s(s(O)))) : Even:

dapp(ma ke-even, dapp(ma ke-odd, dapp(ma ke-even, dapp(ma ke-odd, dapp(zero-axiom))))) (8.25)

Using the notational conventions of Section 8.6.1, D is written as follows:

!make-even (!make-odd (!make-even (!make-odd (!zero-axiom)))).

The derivation shown in Figure 8.7 establishes the judgment

0 F- D -> s(s(s(s(0)))) : Even

(where in order to save space we write za, mo, and me in place of zero-axiom, make-odd,
and make-even, respectively).

Here it is as a dlet:

Figure

played

The Ap-calculus318

8.8 A simple example

dlet So = !zero-axiom
Si = !make-odd So

S2 = !make-even Si
S3 = !make-odd S2

in
!make-even S3

Note that if one desugars this dlet and reduces the resulting p-redexes the obtained
deduction is precisely 8.25. Finally, here is the above dlet expressed in conclusion-
annotated form:

dlet So = 0 : Even by !zero-axiom
Si = s(0) : Odd by !make-odd So
S2 = s(s(O)) : Even by !make-even Si
S3= s(s(s(0))) : Odd by !make-odd S2

in
s(s(s(s(O)))) : Even by ! make-even S3

The gains in readability appear substantial when one considers the starting point 8.25.
Next, let us say that a sentence n : Even is true iff M~n] is even, where M[O = 0,

M~s(n)] = 1 + M~n]; while a sentence n : Odd is true iff M~n] is odd. We now define
an entailment relation / |- S as follows: S is true whenever every element of / is true.
For instance, we have

{0 : Odd} |= s(O) : Even.

The following two lemmas are immediate:

Lemma 8.13 |= is Tarskian.

Lemma 8.14 0 |= S iff S is true. In other words, S is valid iff S is true.

Lemma 8.15 |= includes all three primitive methods.

Proof: By straightforward inspection. For zero-axiom we have 0 |= 0 : Even, since
0 : Even is true. For make-odd, we clearly have {n : Even} |r= s(n) : Odd for all n. And
for make-even, we have {n : Odd} = s(n) : Even.

Thus we derive the soundness of the system:

Theorem 8.16 HPaty is sound with respect to |=. That is, if # 1 Party D -- S then
/ |= S.In particular, all theorems of Parity are true, i.e.,

|= S whenever 0 H Parity D ~> S.

319

Proof: Immediate from Lemma 8.13, Lemma 8.15, and the Soundness Theorem for
pure systems (Theorem 8.6).

Corollary 8.17 Parity is consistent.

Proof: The sentence 0 : Odd cannot be provable because it is not true: by soundness,
only true sentences are theorems. 0

We now turn our attention to the subject of computation as proof, or perhaps more
appropriately, computation as theorem proving. Specifically, we want to write a method
find-parity that will take an arbitrary number n as input and will derive a sentence
of the form n : p, where the sign p represents the parity of n. The main advantage
of doing this with a method rather than with a function is guaranteed correctness.
Because a method call is, syntactically, a deduction, and because we have proven
easily, thanks to Theorem 8.6-that all deductions produce sound results, we can rest
assured that if the call dapp(find-parity, n) returns a result n : p, that result will be
correct. Of course in the case of computing parity signs the issue is rather trivial,
but our goal here is only to illustrate the general principles; for other problems the
advantage of guaranteed correctness is of considerable practical importance (see our
treatment of unification in Section 9.6, for instance). With correctness guaranteed
then, all we have to do is make sure that the method will always return some sentence
of the form n : p. This more or less boils down to verifying that the method always
terminates, something that we would also have to do for a function anyway (over and
above proving that the function produces correct results).

Another advantage of methods is that they can shed light on many interesting
logical properties of the system. In particular, if we manage to write a method that
can derive all valid sentences then we may automatically conclude that the system
is (tautologically) complete, i.e., that every valid sentence is derivable. Observe that
the same is not the case for functions, i.e., for conventional algorithms. Generally
speaking, finding an algorithm that generates all valid sentences is of little value: it
will not by itself entitle us to conclude anything about the completeness of the logic,
for the mere fact that an algorithm produces a sentence S does not necessarily mean
that S is derivable (to take an extreme case, an algorithm which generates all sentences
trivially generates all valid sentences; but we cannot conclude from this that the latter
are in fact provable). By contrast, if a method generates a sentence S then we know
that S is provable in the logic. Therefore, the mere fact that the method can generate
every valid sentence suffices to establish that the logic is complete. In fact the method
can be taken as constructive proof that the logic is complete: we are not merely told

The Ap-calculus320

that there is a derivation for any given tautology, but we are in fact given a recipe of
how to construct such a derivation. 5

Moreover, if we manage to solve the validity problem, i.e., discover a method p I. D
that always terminates and such that dapp(p I. D, S) produces S iff S is valid, then
not only do we get completeness as a corollary, we also get a decision procedure for
theoremhood/validity (the two will coincide by soundness and completeness): given
any S, apply the method to it. If we eventually get S as a result, we know that S is
a tautology/theorem; if we do not get S back, we know that it is not. Hence we have
proved, again constructively, that the logic is decidable. As one might expect, it is
usually the case that if we discover a method that derives all valid sentences then it
becomes relatively easy to solve the validity problem. Of course for rich logics these
tasks will be quite difficult, if not impossible. For instance, solving the validity problem
even for propositional logic is challenging. For first-order logic it is impossible. For
incomplete logics it is not even an issue. We are simply claiming that, whenever it is
applicable, the approach of methods has considerable merits.

In the sequel these themes will resurface in different settings. The logics will be
different, but the underlying ideas will be the same. For example, in the "arithmetic
calculus" of Section 9.2 we show how to perform numerical computation with methods,
by proving theorems. And we show that the underlying logic is complete and decidable
by presenting a method that derives every valid sentence.

We continue with the method find-parity, which is to take an arbitrary n and derive
its parity in the form of a theorem n : p. For convenience, we will assume we have
patterns for matching numbers, parity signs, and sentences. For instance, number
patterns i could be generated by the grammar 7 ::= 0 | I s(ir), parity signs patterns
rq by the grammar q ::= Odd I Even | I, and sentence patterns o by o- ::= 7r : q. We
could then consider deductions with abstract syntax

dmatch M 1r1 ==> D1, ... , w, ==> Dn,
dmatch M 1 ==> D 1,... ,q ==> Dn, and

dmatch M o-1 => D1 , ... , orn => Dn

for matching against numbers, parity signs, and sentences respectively. Of course we
could also have expressions of the form

match M 7r1 ==> Ei,... , 7n ==> En

5A plain algorithm could do the same, of course, by outputting a proof of S along with each
produced sentence S, and then completeness would indeed follow if we could show that every valid
S is thus produced. But there is an important difference: we would also have to show that every
proof that the algorithm could ever produce is sound, which would require a challenging analysis of
the algorithm-and would also be ad hoc. With methods we get this guarantee automatically and in
a uniform fashion, across a wide spectrum of different logics.

8.8 A simple example 321

etc. The same method that we presented in Section 8.6.6 could be used to desugar
such deductions and expressions into primitive As syntax. From now on we will not
bother to define pattern languages in detail. We will use patterns "as needed" in a
somewhat ad hoc manner, but it will always be straightforward to determine their
intended meaning from the context. The precise desugaring of dmatch deductions
and match expressions will always be achievable using the techniques we discussed in
Section 8.6.6; the details will be left to the reader who is interested in working them
out.

We can now write find-parity as follows:

find-parity = y n.

dmatch n
0 ==> (!zero-axiom)
s(k) => dlet S = !fnd-parity k

in
dmatch S

k : Even -- > !make-odd S
k : Odd =- !make-even S

A simple structural induction on n will show' that the method call !find-parity n
will always return some sentence of the form n : p. In combination with the system's
soundness, we get:

Lemma 8.18 For every number n, evaluating the call (!flnd-parity n) in the empty
assumption base produces a true sentence of the form n : p.

Of course this means that find-parity generates every valid sentence, so we already
know that the logic is complete. We can also show completeness constructively by
slightly modifying the above method to solve the validity problem:

prove-theorem = p S.

dmatch S
n : p ==> !fAnd-parity n

'In fact if we actually desugared the body of find-parity into pure Ap-calculus, the required argu-
ment would be far from simple. But then again if we desugared the usual definition of the factorial
function into pure A-calculus, "simple" inductive facts about it would no longer be simple either. In
essence, then, when we need to reason about a Ap method it is reasonable to imagine that the method
is not desugared but rather written in a language that directly offers all the relevant constructs (re-
cursion, conditionals, matching, etc.), and that these constructs have the expected semantics. Using
those hypothetical semantics directly, then, it would in principle be fairly straightforward to verify
simple properties such as the above. In fact in a realistic situation that would be the case: in prac-
tice one would not write methods in a Ap language that desugared everything into abstractions and
applications.

The Ap-calculus322

8.8 A simple example 323

With the aid of the foregoing lemma, it is easy to see that this method solves the validity
problem: it always halts, and given any sentence S, the call (!prove-theorem S) will
result in S iff S is valid. We conclude:

Theorem 8.19 The system Parity is consistent, sound, complete, decidable, and its
validity problem is solvable.

Chapter 9

Examples of Ap systems

9.1 Ap-Ho, a Hilbert calculus

In this section we define Ap-Ho, a Ap system for a Hilbert-style propositional logic.
The sentences of Ap-Ho are the propositions generated by the abstract grammar:

P ::= Ai | -P I P = Q

where A1, A2,... are distinct propositional atoms. We use the letters P and Q to
denote such sentences. There are four primitive methods: mp, K, S, and N. Their
6-rules are as follows:

0 F- dapp(K, P, Q)~+ P (Q = P)

0 1 dapp(S, P, Q, R)* [P > (Q R) * [(P * Q) > (P = R)]
0 dapp(N, Q, P) -- + (,Q ,P) (P Q)

{P = Q, P} H dapp(mp, P = Q, P) -+ Q

Here is a deduction D that derives P =* R from the assumption base {P => Q, Q => R}
(for any P, Q, and R):

dapp(mp,dapp(mp,dapp(S, P, Q, R),
dapp(mp,dapp(K,Q => R, P), (9.1)

Q =* R)),
P =Q)

The reader will verify that

{P = Q,Q = R} -A Ho D r+ P = R.

326 Examples of Ap systems

The preceding deduction is not very readable of course. Here is another version
that uses dlet; note that this dlet desugars exactly into the above dapp:

diet Si = dapp(K, Q =. R, P)
S2 = dapp(mp, S 1, Q = R)
S3 = dapp(S, P, Q, R)
S4 = dapp(mp, S3, S 2)

in
dapp(mp, S 4 , P = Q)

or, using the convention of writing (!E M1 ... M,) for dapp(E, M 1,... , Mn):

dlet Si = !K Q=>.R P

S2 = !mp Si Q = R
S 3 =!S P Q R

S4 = !mp S3 S2
in

!mp S4 P = Q

And in conclusion-annotated form:

dlet Si = (Q > R) >[P >(Q > R)] by !K Q > R P
S 2 = P >(Q R) by !mp Si Q = R
S3= [P 4(Q R)] > [(P Q)(P > R)] by !S P Q R
S4 = (P Q) (P = R) by !mp S3 S2

in
P= >R by !mp S4 P = Q

The reader should compare the readability of this deduction against that of the starting
point 9.1.

As another example, here is a deduction D such that 0 |- D -- > P #' P, for arbitrary
P:

dapp(mp,dapp(mp, dapp(S,P, P P P, P),
dapp(K,P, P = P))

dapp(K,P, P))

Here it is as a dlet:

dlet Si = !S P P =P P

S2 = ! K P P4 P
S3 = !mp Si S2

9.2 The arithmetic calculus: numerical computation as theorem proving

S4 =!K P P
in
!mp S3 S3

And in conclusion-annotated form:

dlet S1=[P*((P P) P)]*[(P (P P))>(P*P)] by !S P P =P P
S2 =P =((P P) P) by !K P P=P
S3 =(P (P P))=(P*P) by !mp Si S2

S4 =P=(P=*P)by !K P P
in

P=>P by !mp S3 S3

The logical entailment relation |= from assumption bases to propositions is defined
as usual. Proving Ap-Ho sound is easy, by Theorem 8.6, since we only need to show
that |= contains every primitive method of A-Ho, which is straightforward.

Theorem 9.1 Ap-Ho is sound: if 3 F- D -~-> P then 3 |= P.

The system is also complete, but we will not prove this here since it is not germane to
our present concerns.

9.2 The arithmetic calculus: numerical computa-
tion as theorem proving

In this section we present a pure Ap system Arith = (C, A) for deducing ground
equations in elementary number theory. The set of primitive values Valc C C includes
all the strings generated by the grammar

e ::= 0 | s(e) | (ei + e2) I (ei * e2) I fact(e).

These strings will be called "expressions". We will use the letter e to range over
expressions. As a convention, when writing expressions we will omit the outer pair of
parentheses, e.g., writing ei * e2 rather that (ei * e2).

We single out some expressions as numerals. Intuitively, numerals can be regarded
as normal forms for expressions. Specifically, a numeral is either the expression 0 or
an expression of the form s(x), where x is a numeral. We will use the letters x, y, and
z to range over numerals.

As primitive values we also take all pairs of the form (ei, e2), where ei and e2 are
arbitrary expressions. A pair of this form will be called an equation, and it will be more

327

suggestively written as ei = e2. These will be the sentences of Arith. Accordingly,
assumption bases in this system will contain equations; and the result of a deduction

will be an equation. An equation will be said to be in solved form iff it is of the form

e = x, for arbitrary expression e and numeral x. Intuitively, an equation in solved

form e = x asserts that the "value" of e is x. There are no other primitive values

outside expressions, equations, and the "standard" values described in Section 8.6.4

(true, false, etc.).
The following constants are the primitive methods of Arith: plus-1, plus-2, times-1,

times-2, fact-1, fact-2, ref, tran, sym, s-cong, +-cong, *-cong, and fact-cong. Their
semantics are given by the 6-rule schemes shown in Figure 9.1. The rules for plus-1,
plus-2, times-1, times-2, fact-1, and fact-2 amount to the usual primitive recursive

definitions of the addition, multiplication, and factorial functions, respectively, though
written somewhat idiosyncratically. Primitive methods suffixed by -1 constitute the

"base case" of the corresponding definition, while those ending in -2 constitute the

inductive case. In more conventional notation, for instance, the rules for plus-1 and

plus-2 may be written as follows:

ei + e 2 = e3

e + 0 = e ei + s(e 2) = s(e3)

The methods ref, sym, and tran model equational reflexivity, symmetry, and transi-

tivity, respectively. Finally, the methods ending in -cong are congruence rules. For

example, in more traditional notation s-cong and *-cong may be written as:

e=e' e 1 =e' 1 e 2 =e'

s(e) = s(e') ei* e 2 = e* e

This completes the specification of the system.

Here is a deduction D, in conclusion-annotated form, proving that

s(s(O)) * s(s(O)) = s(s(s(s(O))))

(more precisely, we have 0 - D -- + s(s(O)) * s(s(O)) = s(s(s(s(0)))):

dlet I1 = s(s(O)) * 0 = 0 by !times-1 s(s(0))

I2 = s(s(0)) + 0 = s(s(0)) by !plus-1 s(s(0))
13 = s(s(O)) * s(0) = s(s(0)) by !times-2 I1 '2

14 = s(s(0)) + s(0) = s(s(s(0))) by !plus-2 I2

15 = s(s(O)) + s(s(O)) = s(s(s(s(0)))) by !plus-2 14
in

s(s(0)) * s(s(O)) = s(s(s(s(O)))) by !times-2 13 15

Examples of Ap systems328

9.2 The arithmetic calculus: numerical computation as theorem proving

0 F dapp(plus-1, e) -- e + 0 e

{ei + e 2 = e3 } F dapp(plus-2, el + e2 = e3) ei +
0 F dapp(times-1, e) -+ e * 0 = 0

{ei * e2 = e3 , ei + e3 = e4} F- dapp(times-2, ei * e2 = e3 , ei + e3

0 F dapp(fact-1) -,,+ fact(0) = s(0)

{fact(ei) = e2, s(ei) * e2 = e3} F- dapp(fact-2, fact(ei) = e 2 , s(ei) *

s(e2) = s(e3)

= e4) H - ei * s(e2) = e4

e2 = e3) fact(s(ei)) = e3

0 H dapp(ref, e) -- + e = e

{ei = e2 } F- dapp(sym, ei = e2)- e2 = ei

{ei = e2 , e2 = e3 } F dapp(tran, ei = e2 , e2 = e3) -- + e = e3

{e = e'} I- dapp(s-cong, e = e') -- s(e) = s(e')

{ei = ei, e2 = e'} F dapp(+-cong, ei = e', e 2 = e') (ei + e2) (e' + e')

{ei = e', e2 = e'} F- dapp(*-cong, ei = e', e2 = e') (ei * e2) = (e' * e')

{e e'} F dapp(fact-cong, e = e') -- + fact(e) = fact(e')

Figure 9.1: 6-rules for the primitive methods.

The set of all expressions is clearly a freely generated term algebra, and there is a

unique epimorphism V from it to the algebra formed by the natural numbers N under

the corresponding constants and operations (namely, the constant 0 and the successor,
addition, multiplication, and factorial operations) that extends the empty mapping
V : 0--0, so that

Vq0o
Vis(e)]

V[(ei + e2)]

V[(ei * e2)]
V fact(e)]

=0
= V[e]+1

= Ve 1 + Veil

= Vieil -Vei
= Ve]!.

We refer to the number V~e] as the value of e.
The mapping V will be the center of the system's semantics. Specifically, we will

say that an equation ei = e2 is true iff V~ei] = V~e2]. For instance, the equations
0 = 0 and fact(s(s(s(0)))) = s(s(0)) * s(s(s(O))) are true, but 0 = fact(s(0)) is not.
Further, for any set of equations / and single equation S, we define 0 = S to hold iff
S is true whenever every equation in 3 is true. The following results are immediate:

Lemma 9.2 |= is Tarskian.

329

Lemma 9.3 |= e1 = e2 iff e1 = e2 is true. That is, the valid sentences are all and
only the true equations.

Lemma 9.4 |= includes every primitive method.

Proof: By straightforward inspection of the 6-rules of every primitive method. We
illustrate with plus-2: we need to show that Prem(R) = ConR for every 6-rule R of
plus-2, namely, that

{ei + e2 = e3} |= ei + s(e2) = s(e 3)
for arbitrary expressions ei, e2, e 3, i.e., that ei + s(e2) = s(e 3) is true on the supposition
that ei + e2 = e3 is true. On that supposition it follows, by definition of truth, that
V~ei + e2] = Vie3], and by definition of V, that V~e1] + V~e2] = V~e3 . Therefore,

V~eil + V~e2] +1 = V~e3] + 1

hence
V~eil + V~s(e 2)] = V s(es)]

hence
V~ei + s(e2)] =V s(es)

which is to say that the equation ei + s(e 2) = s(e 3) is true.

Thus we get:

Theorem 9.5 (Soundness) \-Aith is sound with respect to |=, i.e., - e1 = e2
whenever /3 -Arith e1 = e2. In particular, |= e1 = e2 whenever 0 \-Arith e1 = e2 , which is
to say that all theorems of Arith are true.

Proof: Immediate from the preceding lemmas and Theorem 8.6.

Corollary 9.6 Arith is consistent.

Proof: The equation 0 = s(0) is not a theorem. If it were, then, by soundness, it
would have to be true. M

We now turn to the subject of computing as theorem proving. First we consider
the following problem: given two arbitrary numerals x and y, find their sum. This
can be viewed as a theorem proving problem in the following light: given x and y,
prove an equation of the form x + y = z, where the numeral z represents the sum
of x and y. Now the task is to write a method that does this for arbitrary x and
y. As we explained in the Parity example (page 320), the advantage of computing

330 Examples of Apt systems

3319.2 The arithmetic calculus: numerical computation as theorem proving_

with methods is guaranteed correctness. In our case, Theorem 9.5 guarantees that if
a method returns an equation of the form x + y = z, then z will indeed denote the
sum of x and y. (Of course there is nothing special about arithmetic operations. By
applying the same viewpoint to an arbitrary function f(xi,... , X), one can regard all
computation as proof search: to compute f(ai,... , an) for given arguments a1,... , an,
prove a theorem of the form f(ai,... , an) = a, using axioms that define f.) Now here
is a method for adding numerals:

add = px,y.
dmatch y

0 ==> !plus-1 x
s(u) == !plus-2 (!add x u)

As an example, the reader should convince himself that

0 F- ! add s(0) s(s(0)) ~> s(0) + s(s(0)) = s(s(s(0))).

A simple induction on y will show that for all numerals x and y, the method call
(!add x y) will result in a sentence of the form x + y = z, for some numeral z. In
combination with the soundness of Arith, we get:

Lemma 9.7 For all numerals x and y, the method call (! add x y) results in the equa-
tion x + y = z, where the value of the numeral z is the sum of the values of x and y.

Before continuing we should stress that the compositionality of primitive methods
has a large impact on the readability and writability of deductions and methods. When
primitive methods are compositional, it is possible for one method call to appear
directly as an argument to another method call, so that the result of one inference
becomes a premise of another inference. This "threading" is intuitive, enhances the
perspicuity of deductions, and facilitates the writing of methods. As an example,
consider the primitive method plus-2. In every 6-rule ({S 1}, (S 2), S 3) of plus-2, the
argument S2 and the premise Si are identical: an equation of the form ei + e2 = e3.
Given such an equation as an argument, the method checks that the equation is in the
assumption base, and if so, it produces the output sentence S3 : e1 + s(e 2) = s(e 3).
That is what happens, evaluation-wise, when plus-2 is applied to an argument (note
here the importance of requirement PM2). Thus it is possible for a deduction D that
produces an equation of the form ei + e2 = e3 to appear directly as the argument of
plus-2: dapp(plus-2, D). By rule [R7], by the time we come to apply plus-2 to the
result of D, the latter will be incorporated in the assumption base, where plus-2 will

then find it as expected. Indeed, this is precisely what happens in the method call
!plus-2 (!add x u) in the body of add.

Now to get a feeling for what things would look like without compositionality, let's
say that we specified the 6-rules of plus-2 as follows:

{ei + e2 = e3}| - dapp(plus-2, ei, e2, e3) ---+ e1 + s(e 2) = s(e 3)

so that plus-2 is now a ternary method and not compositional. In principle, this set
of 6-rules is acceptable because it satisfies PM1 and PM2. To see that the latter is
satisfied, in particular, think of what is involved at evaluation-time in applying plus-2
to given arguments ei, e2, e3 : checking that the relevant premise is in the assumption
base, and generating the correct output. Now observe that the given list of arguments
ei, e2, e3 enables us to carry out both: it unambiguously determines what premise we
should look for in the assumption base, namely, ei + e2 = e3 ; and it unambiguously
determines what sentence we should output, namely, ei + s(e 2) = s(e 3) (note, inciden-
tally, that neither would be unambiguously determined if the method received a single
set of arguments {ai, a 2, a3}; the order is important). Thus this version of plus-2 is
acceptable, and is in fact extensionally equivalent with the preceding version in terms
of premises and conclusions. However, the non-compositionality makes the rule very
awkward to use. As an example, the reader should try to write the add method with
this new version of plus-2. It would look something like this:

add= px,y.
dmatch y

0 ==> !plus-1 x
s(u) ==- dlet eq = !add x u

plus-term = lhs eq

e1 = left-plus plus-term

e2= right-plus plus-term

result = rhs eq

in
!plus-2 ei e 2 result

where left-plus is a function that extracts the term ei from an expression of the form
ei + e2 (and symmetrically for right-plus); while lhs ("left-hand side") is a function
that takes an equation ei = e2 as input and returns ei (and likewise for rhs). If you
think that this is bad, check to see what the methods mult, factorial, and Eval, given
below, would look like if the relevant primitive methods were not compositional. As
methods get more and more complex, the code would get more and more jumbled.

332 Examples of Ay- systems

9.2 The arithmetic calculus: numerical computation as theorem proving

The heuristic principle that emerges from this discussion: whenever possible, primitive
methods should be made compositional.

We continue with a multiplication method mult, which takes two numerals x and
y and proves an equation of the form x * y = z, where z is a numeral that represents
the product of x and y. We will use the simple auxiliary function rhs mentioned
above, which takes an equation ei = e2 and returns e2; rhs can be straightforwardly
implemented using pattern matching:

rhs = A eq.
match eq

el = e2 ==4* e 2

(keep in mind that equations are constants and can be freely passed around to functions
and methods). We can now write mult as follows:

mult = px,y.
dmatch y

0 ==> !times-1 x

s(u) ==> dlet eqi = ! mult x u

eq2 = ! add x (rhs eq1)
in

!times-2 eqi eq2

As an example, the reader should verify that

0 |- ! mult s(s(0)) s(s(0)) ~+ s(s(0)) * s(s(0)) = s(s(s(s(O)))).

As with add, we conclude:

Lemma 9.8 For all numerals x and y, the method call (! mult x y) results in the
equation x * y = z, where the value of the numeral z is the product of the values of x
and y.

We continue with a method factorial that takes a numeral x and derives an equation
fact(x) = y for a numeral y that represents the factorial of x:

factorial = p x.
dmatch x

0 == !fact-1

s(y) ==> dlet eqi = !factorial y

eq2= !mult x (rhs eq1)
in

! fact-2 eq1 eq2

333

Examples of Ap systems

Lemma 9.9 For all numerals x, the method call (!factorial x) results in the equation
fact(x) = y, where the value of the numeral y is the factorial of the value of x.

Next, we want to write an "evaluation method" Eval that takes an arbitrary ex-
pression e and derives the equation e = x, where x is the numeral representing the
value of e. That is, Eval will essentially compute the mapping V, where numerals are
identified with numbers.

Eval = p e.

dmatch e
0 ==> !ref 0
s(ei) ==> !s-cong

ei + e2 == dlet

ei * e2 ==>

fact(ei) ==

(!Eval ei)
eqi = ! Eval
eq2 = ! Eval

sum = ! add
e2

(rhs eq1) (rhs eq2)
in

!tran (!+-cong eqi eq2) sum

dlet eqi = ! Eval ei
eq2 = ! Eval e2

product = ! mult (rhs eq1) (rhs eq2)
in

!tran (!*-cong eqi eq 2) product

dlet eq= !Eval ei
fact = !factorial (rhs eq)

in
!tran (!fact-cong eq) fact

As usual, the method proceeds by structural recursion on the input expression e.
For the base case, when e is the numeral 0, we simply invoke the reflexivity method
to derive the equality 0 = 0. When e is of the form s(ei), a recursive call ! Eval ei
will return an equation of the form ei = x1 , where the numeral x1 is the value of ei.
Therefore, the result that we want is s(ei) = s(x 1), which we can easily obtain by
applying the method s-cong to the equation ei = x1 . When e is of the form ei + e2 ,
we recursively call ! Eval ei and ! Eval e2, obtaining equations of the form ei = x1 and
e2 = x2 , where the numerals xi and x2 are the values of ei and e2 , respectively. Hence,
the result that we want is

ei + e2 = z (9.2)

334

9.2 The arithmetic calculus: numerical computation as theorem proving

where z is the sum of x1 and x2. To obtain z, we use our numeral-addition method
add: the call !add x1 x 2 then returns the equation

x 1 + x 2 = z. (9.3)

Now by applying +-cong to the equations ei = x1 and e2 = X2 we get ei + e2 = xi + x 2;
and applying transitivity to this and 9.3 we get the desired 9.2. The remaining cases
are similar.

It is instructive to compare this method with an evaluation algorithm, expressed
as a function. An algorithm would evaluate an expression such as ei + e2 simply by
evaluating the subexpressions ei and e2 and adding the resulting numerals. This is
more efficient but skips some steps which are important in understanding why we
should accept the final numeral as being equal to the input expression. The method
makes those steps explicit, and by doing so it not only produces the desired result but
also proves that the result is correct.

Lemma 9.10 For all expressions e, the method call (! Eval e) results in a true equation
of the form e = x.

Finally, we note that the Eval method can be used to solve the validity problem
for Arith. Suppose we are given a valid (true) equation of the form ei = e2. We
evaluate ei, resulting in ei = x1 , then we evaluate e2, resulting in e2 = X2. Now
if ei = e2 is indeed true then by the above lemma we must have Vjx1] = V x 2]-
But two numerals have identical values iff they are syntactically identical, hence the
aforementioned equations must be of the form ei = x and e2 = x. By transposing
the latter equation via symmetry and then using transitivity we obtain the desired
ei = e2. This is a simple manifestation of a general principle in equational logic, where
two terms are shown equal by reducing both to a common normal form. Thus we arrive
at the following method for recognizing all and only the valid sentences of Arith:

prove = p eq.

dlet eq1 = ! Eval (lhs eq)
eq2 = ! Eval (rhs eq)

in
!tran eqi (!sym eq2)

It follows from our preceding discussion that the system is complete and decidable.
We summarize:

Theorem 9.11 The system Arith is consistent, sound, complete, decidable, and its
validity problem is solvable.

335

Examples of Ap systems

9.3 Recursive methods

We often present a method 0 in the form V = p 7 . D, where V may occur in D.
Although we have offered no way of desugaring something like this by itself into
the Ap-calculus, we can always desugar any deduction Do that uses add into pure
Ap-calculus as follows: dletrec add = p T. D in Do. For instance, the method call

!add s(O) s(O)

is desugared into

dletrec add =p x, y. D in ! add s(O) s(O). (9.4)

To convince the reader that the semantics of the Ap-calculus "work", and that our var-
ious desugarings (especially those involving recursive methods) yield the right results,
we will fully work out a derivation showing that evaluating the above deduction in the
empty assumption base produces the sentence s(O) + s(O) = s(s(0)).

First, suppose that the dmatch body of add has been desugared into

D = (dcond app(equal, y, 0) dapp(plus-1, x) dapp(plus-2, dapp(add, x, app(pred, y))))

where pred is a primitive unary function with the obvious semantics. Then 9.4 desugars
into

Do,, = dapp(p add. dapp(add, s(0), s(0)), app(Y, A add. p x, y . D))

where, from Section 8.6.3,

Y = A F. app(A x. app(F, app(x, x)), A x. app(F, app(x, x))).

We will show that 0 I- Dtp s->+ s(O) + s(0) = s(s(O)).
First, by axiom [R1] we have

0 H D tp ->- dapp(app(Y, E), s(0), s(0)) (9.5)

where

E = A add. p x, y. D. (9.6)

Now letting

M = A x. app(E, app(x, x)) (9.7)

we get, again from [R1],

0 H app(Y, E) ~>,+ app(M, M).

336

(9.8)

Next, from [R1],

0 I- app(M, M) -s-+ app(E, app(M, M)) (9.9)

hence from 9.8, 9.9, and [R11] we get

0 F- app(Y, E) -+-- app(E, app(M, M)). (9.10)

Again from [Ri], we have

0 |- app(E, app(M, M)) -+ y x, y. D[app(M, M)/add] (9.11)

hence from 9.10, 9.11, and [R11] we get

0 F app(Y, E) -- + y x, y. D[app(M, M)/add]. (9.12)

Accordingly, 9.5, 9.12, and [R4] yield

0 I- DtOP -s- dapp(p x, y .D[app(M, M)/add], s(O), s(0)) (9.13)

From [R2] we have

0 H- dapp(p x, y. D[app(M, M)/addj, s(O), s(O)) '-+ D' (9.14)

where

(dcond app(equal, s(0), 0)
D'= dapp(plus-1, s(0))

dapp(plus-2, dapp(app(M, M), s(0), app(pred, s(0)))))

But in accordance with the prescribed desugaring of dcond,

dapp(app(ifD, app(equal, s(0), 0)),
D' dapp(plus-1,s(0)), (9.15)

dapp(plus-2, dapp(app(M, M), s(0), app(pred, s(0)))))

hence from 9.13, 9.14, 9.15, and [R11] we get

dapp(app(ifD, app(equal, s(0), 0)),
0 D Dtops+ dapp(plus-1, s(0)), (9.16)

dapp(plus-2, dapp(app(M, M), s(0), app(pred, s(O))))).

9.3 Recursive methods 337

Examples of Ap systems

Since
0 F- app(equal, s(), 0) -- + false

the 6-rules for ifD give

0 F app(ifD, app(equal, s(0), 0)) --+ p x, y . dapp(claim, y)

so 9.16, 9.17, and [R4] yield

0 F Dtop ~-+

dapp(p x, y. dapp(claim, y),
dapp(plus-1, s(0)),
dapp(plus-2, dapp(app(M, M), s(0), app(pred, s(0))))).

and from [R2] and [R1i1] we get

0 H Dto0p -~,+ dapp(claim, dapp(plus-2, dapp(app(M, M), s(0), app(pred, s(0))))).

Now 0 F app(pred, s(0)) ~* 0, hence 9.19 via [R4] gives

0 F Dtop -~-+ dapp(claim, dapp(plus-2, dapp(app(M, M), s(0), 0))).

Next, let

K = dapp(app(M, M), s(0), 0)

From 9.9, 9.11, and [R11] we conclude

0 F app(M, M) -- x, y. D[app(M, M)/add]

thus from 9.21 and [R4] we get

0 H K -+ dapp(p x, y . D[app(M, M)/add], s(O), 0)

Now [R1] gives

0 F dapp(t x, y . D [app(M, M)/add], s(O), 0) --+ D[app(M, M), s(0), 0/add, x, y]

so 9.22, 9.23, and [R11] give

0 F K -- + D[app(M, M), s(0), 0/add, x, y]

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

338

9.3 Recursive methods

and since

D[app(M, M), s(0), 0/add, x, y] =
(dcond app(equal, 0,0)

dapp(plus-1, s(0))
dapp(plus-2, dapp(app(M, M), s(0), app(pred, 0))))

we get

(dcond app(equal, 0, 0)
0 H K ~> dapp(plus-1, s(0))

dapp(plus-2, dapp(app(M, M), s(0), app(pred, 0))))

or, according to the desugaring of dcond,

dapp(app(ifD, app(equal, 0, 0)),
0 H K s> dapp(plus-1, s(0)),

dapp(plus-2, dapp(app(M, M), s(0), app(pred, 0)))).

Further, 0 H app(equal, 0, 0) -~- true, hence

0 H app(ifD, app(equal, 0, 0)) -- p x, y . dapp(claim, x)

and from 9.25 and [R4] we get

dapp(p x, y. dapp(claim, x),
0 F K"~> dapp(plus-1, s(0)),

dapp(plus-2, dapp(app(M, M), s(0), app(pred, 0))))

(9.24)

(9.25)

(9.26)

so, from [R2] and [R11],

0 F K --* dapp(claim, dapp(plus-1, s(0))). (9.27)

Now, by the 6-rules of plus-1,

0 H dapp(plus-1, s(0)) -~i+ s(0) + 0 = s(0)

339

(9.28)

Examples of Ap systems

while

{s(O) + 0 = s(0)} F dapp(claim, s(O) + 0 = s(0)) ~+ s(0) + 0 = s(O) (9.29)

hence 9.28, 9.29, and [R7] give

0 H dapp(claim, dapp(plus-1, s(0))) -,-+ s(0) + 0 = s(0). (9.30)

Therefore, from 9.27, 9.30, and [R11] we get

0 F K -~+ s(0) + 0 = s(0). (9.31)

By the 6-rules of plus-2,

{s(O) + 0 = s(0) } H dapp(plus-2, s(0) + 0 = s(O)) ~+4 s(O) + s(O) = s(s(0)) (9.32)

so now from 9.31, 9.32, and [R7] we get

0 H dapp(plus-2, K) -~* s(0) + s(0) = s(s(0)). (9.33)

Moreover,

{s(0) + s(0) = s(s(0))} H dapp(claim, s(0) + s(0) = s(s(O))) -s* s(0) + s(0) = s(s(0)) (9.34)

hence from 9.33, 9.34, and [R7] we get

H dapp(claim, dapp(plus-2, K)) -+ s(0) + s(0) = s(s(0)). (9.35)

Finally, from 9.20, 9.35, and [R11] we obtain the desired

0 - DtOP -s+ s(0) + s(0) = s(s(0)).

9.4 Natural deduction in the Ap-calculus, proposi-
tional case

In this section we introduce a Ap system for classic zero-order natural deduction,
Ap-CNDo. We show that Ap-CKDo subsumes propositional CN(D, and goes further
by providing the naming and abstraction mechanisms missing from the latter (see
Section 4.9). We show that Ap-CDo is sound and complete (completeness follows
readily from the inclusion of CNAD), present several examples of deductions written in
it, and show how the deductive abstraction mechanisms of the Ap-calculus allow us to
formulate powerful "derived inference rules" as methods.

The constants of Ap-CNVDo are the following:

340

9.4 Natural deduction in the Ap-calculus, propositional case

" The propositions generated by the abstract grammar

P ::= true | false | Ai I P | P =>Q I P A Q I P V Q | P 4 Q

where A1, A 2, ... are distinct propositional atoms. These will be the sentences
of the system. Accordingly, assumption bases will be sets of propositions.

e The primitive functions not, and, or, if, and iff. These will be used for building
propositions. Their semantics are given by the following 6-rule schemas:

H app(not, P) -,P

3 F app(and, P, Q)- P A Q
/ app(or, P, Q) P V Q
3app(if, P, Q) P # Q
0 app(iff, P, Q) P #e Q

Note that all five of these functions are context-independent, and satisfy require-
ments PF1 and PF2.

" The primitive methods T-axiom, F-axiom, mp, mt, dn, both, left-and, right-and,
cd, left-either, right-either, equiv, left-iff, right-iff, and absurd. Their semantics are
specified by the 6-evaluation axioms in Figure 9.2. The reader will verify that
the axioms are such that all fifteen methods satisfy PM1 and PM2.

In addition, Ap-C/Do has one special deductive form: assume(M, D), which we
will write as assume M in D. Its semantics are given by the rule

/3H-M~.-**P /u{PHD---+Q (9.36)
SF assume(M, D) -,+ P = Q

which, as the reader will verify, satisfies the requirements of Section 8.2.3.
We introduce the form assume I = M in D as syntax sugar for

dlet I= M
in

assume I in D

Moreover, we introduce deductions of the form suppose-absurd M in D as abbrevi-
ations for

dlet I= assume M in D
in

dapp(mt, I, dapp(F-axiom))

341

Examples of Ay systems

Figure 9.2: 6-evaluation axioms for the primitive methods of ApN-CDo.

for I that does not occur in M or in D. We show the correctness of this translation
by proving that it captures the intended semantics:

Lemma 9.12 If # M s+* P and / U {P} I- D -+ false then

,3 H suppose-absurd M in D +--* -P.

Proof: By definition, suppose-absurd M in D abbreviates dlet I = D1 in D 2 ,
where Di = assume M in D and D 2 = dapp(mt, I, dapp(F-axiom)). Therefore,
by Lemma 8.9, the desired conclusion will follow if we can only show:

(a) F- Di+ P -P4 false; and

(b) / U {P = false} H D 2 [P * false/I] -- > -P, i.e.,

/ U {P => false} H dapp(mt, P =* false, dapp(F-axiom)) s+ ,P.

Now (a) holds by the suppositions/3 H M -'-+* P, /U{P} H D -s-+ false, and the semantics
of assume; while (b) holds owing to [R7] and the semantics of mt and F-axiom. m

0 H dapp(T-axiom) -- + true

0 I- dapp(F-axiom) - -,false
{P = Q, P} F dapp(mp, P = Q, P) s+ Q

{P =4 Q, -Q} H dapp(mt, P =* Q, -,Q) - -P

{--P} I- dapp(dn, -,-,P) -s.+ P
{P, Q} F- dapp(both, P, Q)~-+ P A Q

{P A Q} F- dapp(left-and, P A Q) -,+ P

{P A Q} I- dapp(right-and, P A Q) -- + Q
{P} F dapp(left-either, P, Q) s+ P V Q
{Q} H dapp(right-either, P, Q) -- + P V Q

{P 1 V P2, Pi * Q, P2 => Q} dapp(cd, Pi V P2, Pi = Q, P2 ->Q)N+ Q
{P = Q, Q = P} H dapp(equiv, P => Q, Q = P) -+ P Q

{P # Q} F dapp(left-iff, P * Q) -+ P => Q
{P # Q} H dapp(right-iff, P #> Q) Q -> P

{P, -P} H dapp(absurd, P, -,P) false

342

3439.4 Natural deduction in the Ap-calculus, propositional case

Let us work out a detailed example showing a derivation of a judgment. We will
derive the judgment {Q} F- D -- 4 (P =* P) A Q, where D is the deduction

!both (assume P in !claim P)
((A x. x) Q)

1. {P} F- !claim P--+ P [R12]

2. {P, Q} F- !claim P -- P 1, [Rio]

3. {Q} F- assume P in !claim P- P = P 2, 9.36
4. {P =>P, Q} 1- ((A x .x) Q) ~>+ Q [R1]
5. {P P, Q}F- ! both P =P ((A x. x) Q)~ !both P = P Q 4, [R6]
6. {P P, Q} F- ! both P P Q ~> (P =- P) A Q 6-axiom
7. {P = P, Q}F- ! both P =P ((A x. x) Q) -+(P = P) A Q 5, 6, [R11]
8. {Q} F- ! both (assume P in !claim P) ((A x. x) Q)- (P => P) A Q 3, 7, [R7]

We present a second, slightly more involved example. Let D be the deduction

!((A x.x) both) (assume R in !claim R)
(!right-either -,R (assume P A Q in !both (!right-and P A Q)

(!left-and P A Q))).

The derivation shown below establishes the judgment

0 \- D~- R => R A [-,R V (P A Q > Q A P)].

Note the crucial role played by [R7].

1. {P A Q} F- !left-and P A Q -- P 6-axiom

2. {P A Q} F- ! right-and P A Q ~> Q 6-axiom

3. {P A Q, P, Q}|-!both Q P~ Q A P 6-axiom

4. {P AQ,Q}H [!both Q (!Ieft-and PAQ)-~-> QAP 1, 3, [R7]

5. {P A Q} IF- !both (!right-and P A Q) (!left-and P A Q) -- Q A P 2, 4, [R7]

6. 0 Fassume P A Q in !both (!right-and P A Q) (!left-and P A Q)->-+
PAQ=->QAP 5,9.36

7. P A Q = Q A P} F- !right-either -,R (P A Q => Q A P)~>
-,R V (P A Q -> Q A P) 6-axiom

0 |- !right-either -,R
8. assume P A Q in !both (!right-and P A Q)

(!left-and P A Q)~>
-,R V (P A Q -> Q A P) 6, 7, [R7]

9. {R} F-!claim Rs+ R 6-axiom

10. 0 H assume R in !claim R --+ R => R 9, 9.36

11. 0 (A x. x) both -- + both [R1]

0 D ~-+ !both (assume R in !claim R)

12. (right-either ,-R

(assume P A Q in ! both (!right-and P A Q)
(!left-and P A Q))) 11, [R4]

13. {R = R,R V (P A Q = Q A P)}|!both R = R -,R v (P A Q =>Q A P)+
R R A -,R V (P A Q > Q A P) 6-axiom

{R = R}!both R R

14. (right-either -,R

(assume P A Q in !both (!right-and P A Q)
(!left-and P A Q))) s+

R R A [-,R V (P A Q => Q A P)] 8, 13, [R7]

0 F !both (assume R in !claim R)

15. (right-either -,R
(assume P A Q in !both (!right-and P A Q)

(!left-and P A Q)))s
R R A [-,R V (P A Q > Q A P)] 10, 14, [R7]

16. 0 F D -+ R R A [--,R V (P A Q = Q A P)] 12, 15, [R11]

We will now show that Ap-CNDo subsumes propositional CJD, in the sense that

every CAD deduction can be straighforwardly desugared into a Ap4-CDo deduction.
Hypothetical deductions of the form assume P in D correspond directly to assume
deductions in Ap-CNDo; while proof compositions D1 ; D 2 correspond to dlets, and
thus essentially to nested method applications.

Specifically, we define a function -] from CAD deductions to Ap-C/Do deductions
as follows:

[true] = dapp(T-axiom)

[-false = dapp(F-axiom)

P = dapp(claim, P) (for P V' {true, -ifalse})
[Rule P1,... ,Pn] = dapp(Rule*, P1, ... , P)

assume P in D = assume P in [D
[D 1 ; D 2] = dlet I = [D1] in [D 2]

344 Examples of Ap systems

9.4 Natural deduction in the Ap-calculus, propositional case

for fresh I (meaning that every time the last clause is applied, a different I should be
used 1). Also, for every primitive rule Rule of CAND (listed in Figure 4.1), Rule* denotes
the corresponding primitive method of ApN-C Do. 2

The next result now follows by a straightforward induction on D.

Theorem 9.13 / HCgo D --+ P iff # HA-,co [D>j --+ P.

Proof: By structural induction on D. When D is a simple claim the result follows by
virtue of T-axiom, F-axiom, and the Ap rules [R12] and [R10]. When D is of the form
Rule P 1, ... , Pa, the result follows from a case analysis of Rule, in accordance with the
rules shown in Figure 4.3 and Figure 9.2. When D is of the form assume Pi in D1

then P must be of the form P1 => P2 and

0 /cg D~-+ P1 = P 2 iff

U {P 1} Hcg-D D1 P2 iff (from the inductive hypothesis)

#3 U {P 1} ApNoo [D 1]> -- * P2 iff (from 9.36)

/3 EjxCy-D assume Pi in [D1] -- Pi =* P 2 .

Finally, when D is of the form D1; D 2 we have

3 cgo D1; D2 ~- P iff

Hco D1 -> P1 and # U {P 1} Hcgo D 2 ~> P iff (inductively)

3 ,Xp-cgDo [D 1]~> P1 and # U {P 1} -ACMNo [D 2] -- P iff (Corollary 8.10)

3 -A,1Cgp0o dlet I = [D1] in [D21 ~> P.

The result now follows by structural induction. U

Next we turn to soundness and completeness. We define logical entailment # = P
as usual (see Section 4.6). Then, by Theorem 8.7, we can show Ap-CNDo to be sound
provided we can show that 1= includes every primitive method and that the form
assume preserves 1=. A cursory inspection of the 6-evaluation axioms in Figure 9.2
and the rule 9.36 will suffice for both tasks. We conclude:

Theorem 9.14 (Soundness) Ap4-C Do is sound, i.e., / = P whenever I- D -- P.

The completeness of A-CA/Do follows from the completeness of CA/D and Theo-
rem 9.13:

'In fact this is not essential (the same I could be used repeatedly), but it simplifies the proof of

the correctness of the desugaring
2 The correspondence being obvious: mt corresponds to modus-tollens, etc.

345

346 Examples of Ap systems

Theorem 9.15 (Completeness) Ap-CNDo is complete. That is, if 3 |= P then
there is a deduction D such that | I- D -- > P.

We now present sample Ap-CADo deductions of some of the tautologies that were
proved earlier in CA/D (Section 4.4). Comparing the two sets of deductions, we see that
they are very similar (modulo the replacement of the composition operator ; by dlet,
as explained in the proof of Theorem 9.13), the most noticeable difference being that
Ap-C/Do deductions can be somewhat more compact than their CA/D counterparts
due to their use of nested method applications. More essential differences will surface
when we come to formulate methods.

P L I,,P]

Proof:

assume P in
suppose-absurd -iP in

!absurd P -,P

PAQ =;QA P

Proof:

assume x = P A Q in
!both (!right-and x)

(!left-and x)

An alternative proof of the above tautology is:

assume P A Q in
dlet right = !right-and P A Q

left = !left-and P A Q
in

!both right left

(P A Q=* R) (P=4 Q=R)

Proof:

9.4 Natural deduction in the Ap-calculus, propositional case

assume imp = P A Q * R in
assume P in

assume Q in
!mp imp (!both P Q)

,(PVQ) (-,P A-,Q)

Proof:

assume -,(P V Q) in
dlet not-P = suppose-absurd P in

!absurd (!left-either P Q) -,(PVQ)
not-Q = suppose-absurd Q in

!absurd (!right-either P Q) -(P V Q)
in

!both not-P not-Q

Finally, we will show how easy it is in Ap-CNVDo to abstract away from concrete
deductions towards general methods. Consider, for instance, the deduction schema
shown above for establishing P = -,P. Abstracting over P results in the following
method:

m 1 = pP.
assume P in

suppose-absurd -P in
!absurd P -P

This method can be applied to different propositions, producing different instances of
the tautology schema P = -,--,P. For instance, the reader will verify that:

0 -!mi A2^ A5 ~+ (A2A ̂ A) >,,(A A5).

Note that mi does not require any premises, as the input P is not strictly used in
the body of the method. In fact the body of mi does not have any free assumptions
at all. It is for this reason that the application of mi always results in a tautology.
We say that methods of this form (that do not require any premises and hence always
result in tautologies) are hypothetical. Non-conservative methods will be called strict.
Hypothetical methods can be viewed as derived axioms (or, more precisely, as axiom

347

schemas), since they do not have any premises, whereas strict methods can be seen as
derived rules that require one or more premises in order to yield a conclusion.

Hypothetical and strict methods are essentially equivalent, because any inference
rule of the form

P1,... P

P

is tantamount to the axiom

P1 , P, == P

Thus from any strict method with body D and n > 0 free assumptions P1, ... , Pn we
may obtain a hypothetical method by replacing D with

assume P1 in ... assume P in D.

And conversely, from any hypothetical method we may obtain a strict one by removing
certain assumes. For instance, mi can be expressed in strict style as:

M'/ = p P.
suppose-absurd -P in

!absurd P -P

In contrast to m1 , m' requires the argument P to be a premise, i.e., to be in the
assumption base at the time of invocation. If it is not, an error will occur. Thus m'1
"takes P and derives -,--1P", and in that sense it is a more customary inference rule (if
by an inference rule we mean one that takes certain propositions P1, .. . , Pn that have
already been established and produces, on that basis, some conclusion P).

Note that most primitive methods, such as modus ponens or double negation, are
strict. Double negation, for example, requires its argument -- ,P to hold (i.e., to
be in the assumption base) in order to generate the conclusion P. Alternatively, we
could have made dn hypothetical by having it produce, for a given P, the tautology
-,-,P => P. But then every time we had -,-,P and wanted to infer P from it we
would have to first call dn in order to obtain the tautology -- P => P, and then apply
modus ponens to this and -,-,P in order to detach the desired P. This is somewhat
roundabout, so we prefer to obtain P directly by applying dn to -- ,P. Accordingly, in
what follows we will write most of our methods in strict style.

We continue with four methods dmi, dmi', dm2, and dm2', that can be seen as
"derived inference rules" for De Morgan's laws:

Examples of Ap systems348

9.4 Natural deduction in the Ap-calculus, propositional case 349

-(P v Q) [dm1] - ~P A 'Q [dm1 '] -(P A Q) [dm 2] ,P v 'Q [dm 2 ']
-P A -IQ ,(P v Q) ,P v -Q -(P A Q)

Accordingly, the methods dmi and dm1' will be inverses, in the sense that the identities

! dmi (!dmi' P) = P

and
! dmi' (!dmi P) = P

will hold in any assumption base that contains P (with P of the right form; see the
remark following the definition of dmi); and likewise for dm12 and dm72'. We implement
the four methods as follows:

dm1 = p premise.

dmatch premise
-,(P V Q) == dlet not-P = suppose-absurd P in

!absurd (!Ieft-either P Q) -,(PVQ)
not-Q = suppose-absurd Q in

!absurd (!right-either P Q) -(P V Q)
in

!both not-P not-Q

Note that, by the semantics of dmatch, if the input premise is not of the form
-(P V Q) then no match will be found and an error will occur. This is quite ap-
propriate, as we only intend the method to work for inputs of the aforementioned
form. We continue with the remaining methods:

dm1' = p premise.
dmatch premise

,PAQ =- dlet condi = P -faIse by assume P in
!absurd P (!Ieft-and premise)

condi = Q ->false by assume Q in
!absurd Q (!right-and premise)

in
-(P V Q) by suppose-absurd P V Q in

!cd P V Q condi cond2

Next is dm 2:

dn 2 = p premise.
dmatch premise

350 Examples of A4~i systems

-(P A Q) == dlet S =,(V -Q) by
suppose-absurd H = -,(-,P V -,Q) in

dlet Si = -- ,P A --,,Q by ! dmi H
S2= P by !dn (!left-and S1)
S3 = Q by !dn (!right-and Si)
S4 =PAQby !both S2 3

in
!absurd S4 premise

in
-,P V -,Q by !dn S

Here we have already begun to witness the benefits of the abstraction mechanism of
methods: proposition Si above is derived by applying the previously defined method
dmi to the hypothesis H. We conclude with dm2':

dm2' = p premise.

dmatch premise

,P V ,Q -,(P A Q) by
suppose-absurd H P A

dlet condi = -P = false

cond2 = -,Q = false

Q in
by assume -,P in

!absurd (!left-and H) -,P
by assume -Q in

!absurd (!right-and H) ,
in

!cd premise condi cond2

We can now write a more flexible De Morgan's method dm that
appropriate rule in accordance with the form of the input proposition:

dm = y premise.

dmatch premise
,(P V Q) =

-P A-,Q --Q
,(P A Q) -
-P VQ -- >

dmi,
dm1'
dm2
dm2'

dispatches the

premise
premise

premise

premise

Next we present two methods for the following derived rules of inference:

(P AQ) R

P=(Q->R)
[curry]

P=>(Q->R)

(P AQ) R
[uncurry]

350 Examples of Ap systems

9.4 Natural deduction in the Apt-calculus, propositional case

The names curry and uncurry derive from identifying the connectives A and =# with
the type constructors x and -, whereby the currying rule is viewed as transforming
a functional type (T1 x T2) -+ T3 into Ti -+ (T 2 -* T3), with uncurrying proceeding in
the converse direction. We have:

curry = p-t premise.

dmatch premise
(P A Q) >R ==> assume P in

assume Q in
!mp premise (!both P Q)

uncurry = t premise.

dmatch premise
P =(Q = R) => assume P A Q in

dlet =P by !Ieft-and P A Q
=Q by !right-and P A Q

in
!mp (!mp premise P) Q

The next method begins to demonstrate the ease with which methods can ex-
press powerful derived inference rules. We consider a method that takes a premise
of the form P1 -> (P 2 = (-... => (Pn ==> Pn+1) ...)), for arbitrary n > 1, and derives

(P1 A -.-. A Pn) P,+1:

uncurry* = p premise.

dmatch premise
P -> (Q => R) ==> dlet S = !uncurry premise

in
dmatch R

R 1 => R 2 => !uncurry* S
- ==> !claim S

We end this section with a method replace that takes a proposition P, which
must be in the assumption base, as well as two propositions Paid and Pnew such that

Pold 4=> Pne, is in the assumption base, and derives the equivalence P 4= P[Pnew/Pold],
where P[Pnem/Pold] denotes the proposition obtained from P by replacing every oc-
curence of Polad by Pne.. Thus, schematically, we might represent replace as follows:

P Pold 4> Pnew [replace]

P ' P[Pnew/ Pold]

351

352

We will need some auxiliary "congruence" methods:

[not-congruence]
-,P1 e ,P1

P 1 A P P2 A P2

P1 A P2 4 Pl A P2'
[and-congruence]

and likewise for or-congruence, if-congruence, and iff-congruence. These methods are
straightforward; we illustrate with and-congruence and leave the rest as an exercise:

and-congruence = p equiv1, equiv2 .
dmatch [equivi, equiv2]

[P1 < Pj, P2 - 7 P2] =- dlet condi = assume Pi

dlet - =
A P2 in
Pj by !mp

- = P2 by !mp

in

!both P1 P2
cond2 = assume Pj A P2 in

diet _ = P1 by !mp

SP 2 by !mp

(!left-iff equivi)

(!left-and P1 A P2)
(!left-iff equiv2)

(!right-and P 1 A P2)

(!right-iff equivi)

(!Ieft-and Pj AP2)

(!right-iff equiv2)

(!right-and P A P2)
in

!both Pi P2

in
P 1 A P2 4= P A P2 by !equiv condi cond2

where we assume the straightforward extension of having lists of constants [ci, ... , cn]
as primitive values, and the ability to match such lists against appropriate patterns.

We can now express replace as follows:

replace = P P, Poldi, Pnew.
dcond (= P Pold)

!claim Pold ':Fnew

dmatch P
-Q ==- dlet equiv = ! replace Q Pold

in
Pnew

not-congruence equiv
P1 op P2 == dlet equiv1 = ! replace P1 Pold Pnew

equiv2 = ! replace P2 Pold Pnew
in

Examples of Ap systems

9.5 A sequent calculus for natural deduction as a pure As system

! congruence equiv1 equiv2 op

- -- > !reflex P

where reflex is a trivial unary method that derives the tautology P <-> P for any given

P, and where

congruence = p equiv1 , equiv2 , op.

dmatch op

and =-> ! and-congruence equiv1 equiv2

or -= ! or-congruence equiv1 equiv2

if => ! if-congruence equiv1 equiv2

iff =z ! iff-congruence equiv1 equiv2

Note that because the propositional constructors and, or, etc., are data values (con-

stants), we can match propositions against patterns such as P1 op P 2 , where op is a

pattern variable that can become bound to a propositional constructor. For instance,
matching A 2 V (A 4 => As) against the pattern P1 op P2 would bind P1 to the atom A 2 ,
op to the constructor or, and P2 to the proposition A 4 = A 8 . This type of pattern-

matching on propositions has been implemented in Athena [3], and has been found to

result in very succinct method and function definitions.

9.5 A sequent calculus for natural deduction as a
pure Ap system

Definition

In this section we will present a sequent-based natural deduction system for first-

order logic as a pure Ap system. Here the set of constants C includes every constant,
function, and relation symbol of some first-order logic signature 9, every variable3 x

in some countably infinite set of variables V, and every term t and formula F that can

be built from these symbols and variables (see Section 6.1). Formulas, in particular,
are generated by the following grammar:

F ::= R(t1,... ,tn) I true | false I -F I F AG I F V G I F G | F <> G I (Vx)F I (3x)F

where R ranges over relation symbols of arity n. As usual, we identify alphabetically

equivalent formulas; we write {x '-* t} F for the formula obtained from F by replacing

every free occurence of x by t (this is always safe with an appropriate a-conversion);

3It is an important distinction that in this approach object-level variables are treated as constants

at the meta level.

353

and we write FV(F) (FV(F), for a set of formulas F) for the set of variables that occur
free in F (in the members of F). As constants we also take finite sets of formulas, as
well as all pairs of the form (F, F), where F is a finite set of formulas and F is a single
formula. Such pairs are called sequents, and will serve as the sentences of the system.

In addition, we will need the following constants, which will serve as inference
rules: init, dilute, true-axiom, false-axiom, mp, discharge, neg-intro, neg-elim, conj-intro,
conj-elim-1, conj-elim-r, disj-elim, disj-intro-1, disj-intro-r, bicond-intro, bicond-elim-1, cut,
bicond-elim-r, uspec, ugen, espec, and egen. The cut rule is not necessary for forward
proof (it does not affect completeness), but we will see that it is useful for backwards
proof search. The semantics of these constants are given by the 6-rules shown in
Figure 9.3.

Example proofs and methods (forward style)

The sentences of this system are sequents, thus a sequent (F, F) is derivable in (or
from) an assumption base # iff there is a deduction D such that 3 H D -,-* (F, F); and
(F, F) is provable iff it is derivable from the empty assumption base, i.e., iff there is a
deduction D such that 0 - D -\+ (F, F). A sequent (F, F) is sound if F |- F, i.e., iff
F is a logical consequence of F. It is not difficult to show that if an assumption base
contains only sound sequents, then every sequent derivable from 3 is sound as well.
In particular, then, all provable sequents are sound. Finally, in this framework we say
that a formula F is deducible from a finite set of formulas F iff the sequent (F, F) is
provable. Hence, from what we said above, deducibility is sound: if F is deducible
from F then it follows logically from it. Completeness means that if F follows logically
from F then it is also deducible from it. This system is complete as well, although we
will not prove that.

We continue with some example deductions, beginning with our running example
F A G => G A F. Specifically, we prove that the sequent (0, F A G => G A F) is provable
by presenting a deduction D such that 0 1- D -- + (0, F A G => G A F). We present D in
conclusion-annotated form:

dlet Si = ({FA G},FAG) by !init FAG
S2 = ({F A G}, G) by !conj-elim-r Si
S = ({F A G}, F) by !conj-elim-1 Si
S4= ({F A G}, G A F) by !conj-intro S 2 S3

in

(0, F A G G A F) by !discharge S4 FAG

Here it is without annotated conclusions:

354 Examples of Ap systems

9.5 A sequent calculus for natural deduction as a pure Ap system

0 1 dapp(init, F) -- * ({F}, F)

{(F, F)} dapp(dilute, (F, F), G) -~> (F U {G}, F)

0 H dapp(true-axiom,)~+ (0, true)

0 H dapp(false-axiom,) ~+ (0, -ifalse)

{(F U {F}, G), (Pu {F}, -G)} H dapp(neg-intro, (P U {F}, G), (F U {F}, -G), F) -+ (F, ,F)

{(F,, -- F)} F- dapp(neg-elim, (F, -,-,F))+ -+ (F, F)

{(F U {F}, G)} F dapp(discharge, (r U {F}, G), F) -- + (F, F => G)

{ (r, F =* G), (r, F)} I dapp (m p, (r, F -:> G), (r, F))~-+ (IF, G)

{(r, F), (F, G)} H dapp(conj-intro, (F, F), (F, G)) s (F, F A G)

{(F, F A G)} F dapp(conj-elim-1, (F, F A G))~+ (F, F)

{(F, F A G)} F dapp(conj-elim-r, (F, F A G))~+ (F, G)

{(F U {F 1}, G), (P U {F 2}, G)} F dapp(disj-elim, (P U {F 1}, G), (P U {F 2 }, G))
(P U {F 1 V F2 }, G)

{{F, F)} H dapp(disj-intro-1, (F, F), G) ~+ (F, F V G)

{(F, F)} H dapp(disj-intro-r, (F, F), G) s+ (r, G V F)

{(, F => G), (r, G = F)} dapp(bicond-intro, (, F = G), (P, G => F)) -+ (r, F G)

{(r, F 4= G)} H dapp(bicond-elim-1, F < G) s+ (F, F => G)

{(r, F * G)} H dapp(bicond-elim-r, F 4 G)~+ (F, G => F)

{{rF))... , (rF,)) (r U {F1, ... , Fn }, G)} I dapp(cut, r, { F1, .. , Fn }, G) s-+ (r, G)

{(r, (V x) F)} H dapp(uspec, (F, (V x) F), t) s+ (r, {x '-* t} F)

{(F, F)} H dapp(ugen, (F, F), x) -- + (r, (V x) F), provided x g FV(r).

{(F, {x '-- t} F)} H dapp(egen, (F, (3 x) F)) -- + (r, (3 x) F)

{(P, (3 x) F), (P U {{x '- y} F}, G)} H dapp(espec, (F, (3 x) F), y, G) --+ (r, G)
provided y does not occur in F, F, or G.

Figure 9.3: 6-axioms for the constants of the sequent calculus.

dlet S1 =!init FAG

S2 = !conj-elim-r Si

S3 = !conj-elim-1 Si

S4 = !conj-intro S2 S3

in

!discharge S4 F A G

355

356 Examples of Ap systems

or in even shorter form:

(!dishcarge (!conj-intro (!conj-elim-r (!init FAG))
(!conj-elim-r (!init FAG)))

FAG)

Compare all three of the above with the following Ap-CNDo deduction:

assume P A Q in
!both (!right-and PAQ)

(!left-and P A Q)

or even with its CA/D equivalent:

assume F A G in
begin

right-and F A G;
left-and F A G;
both G, F

end

It is evident that the last two deductions are more clear and to the point than their
sequent-based counterparts.

Next, here is a deduction D that proves the sequent

(0, (Vx) [P(x) A Q(x)] = (Vx) P(x) A (Vx) Q(x)):

dlet S1 = !init (V x) [P(x) A Q(x)]
S2 = !uspec s1 y

S3 = !conj-elim-1 s2

S4 = !ugen S3 y

S5 = !conj-elim-r s2

S6 = !ugen S5 y

S7 = !conj-intro S4 S6
in

!discharge S7 (Vx) [P(x) A Q(x)]

And here it is in conclusion-annotated form:

9.5 A sequent calculus for natural deduction as a pure Ap system

diet S1 = ({(Vx) [P(x) A Q(x)]}, (Vx) [P(x) A Q(x)]) by !init (Vx) [P(x) A Q(x)]

S2 = ({(Vx) [P(x) A Q(x)]}, P(y) A Q(y)) by !uspec sl y

S3 = ({(Vx) [P(x) A Q(x)]}, P(y)) by !conj-elim-l s2

S4 = ({(V x) [P(x) A Q(x)]}, (V y) P(y)) by !ugen S3 y

S5 = ({(Vx) [P(x) A Q(x)]}, Q(y)) by !conj-elim-r s2

S6 = ({(V x) [P(x) A Q(x)]}, (V y) Q(y)) by !ugen S5 y

S7 = ({(Vx) [P(x) A Q(x)]}, (Vy) P(y) A (Vy) Q(y)) by !conj-intro S4 S6

in

(0, (V x) [P(x) A Q(x)] => (V x) P(x) A (V x) Q(x)) by !discharge S7 (V x) [P(x) A Q(x)]

Insofar perspicuity is concerned, the second deduction is more verbose, but easier

to follow than the first. Contrast both deductions with the proof of the same result

in CA/D (Section 6.3), or with the Ap-CKD1 proof of it (Section 9.7). We believe the

comparisons will convince the reader that sequents are not a good medium for present-

ing proofs, as we argued earlier (Section 7.2.2). Proposition-based natural deduction

mechanisms such as assume, pick-any, etc., are far more effective in bringing out the

structure of the proof in a lucid form.

Our last two examples use pattern matching (dmatch deductions). That subject

is discussed in Section 8.6.6, and although the details of that discussion are specific

to a particular system, the basic ideas are applicable in a variety of contexts. For

our present purposes we do not need to specify a pattern language in detail or show

how to desugar dmatch deductions. Rather, we will rely on the reader's intuitive

understanding of pattern matching, bolstered by the discussion in Section 8.6.6. One

assumption we will make explicit is that multiple occurences of the same identifier in

a (non-linear) pattern must be bound to the same value during matching.

Let us now write a recursive method that weakens (dilutes) the context of a given

sequent with an arbitrary number of formulas. The built-in binary method dilute can

only insert a formula at a time: it takes a sequent (F, F) and a single formula G and

returns the sequent (F U {G}, F). It would be convenient to have a binary method

dilute* that takes a sequent (F, F) and a set of formulas A and derives the sequent

(F U A, F). It is not necessary to take such a method as primitive; we can express it

in terms of the simpler primitive dilute as follows:

dilute* = pAS, A.

dmatch A

0 ==- !claim S

A'U{F} ==> ! dilute* (!dilute S F) A'

357

As an example, the reader will verify that the method call

!dilute* (!init F) {G1 ,G2,G3}

produces the sequent ({F, G1, G2, G3}, F), in any assumption base.
We can now write a method that derives any sequent of the form (F U {F}, F) as

follows:

reflex = y F, IF.

!dilute* (!init F) F

Thus reflex takes a formula F and a set of formulas F and derives (F U {F}, F).
For our final example we will assume that the system is equipped with lists. We

note that any Ap system (kwd 1 (i), ... , kd(E); C A) without lists can be conser-
vatively extended to a system (kwd1(1), ... , kwd(E ,); C'; A') with lists as follows.
Let cons, head, tail, nil, and list be five constants that do not occur in C, and define C'
as follows: every constant c E C is in C'; and if cl,... , c, are in C' then so is the term
Iist(ci, ... , cn) (denoting the list [c1 , ... , c]). We also stipulate that C' contains the
five constructors mentioned above. Finally, the 6-rules of the new system include all
of the old rules plus the ones that give the desired semantics to the new constructors,
e.g.,

0 |- app(nil) -- > list()
0 F- app(cons, c, list(ci, ... , cn)) ->- list(c, ci, ... , cn)

0 I- app(head, list(ci, ... , cn)) -ci

and so on. In what follows we will write [ci, ... , cn] as an abbreviation for Iist(c, ... , c).
With this background, let us write a method Tran that takes two sequents Si =

(F, F =: G) and S2 = (F, G => H) that are assumed to hold (i.e., we assume that Si
and S2 are in the assumption base at the time when Tran is invoked), and produces
the sequent (F, F = H):

Tran = y S1, S2 .

dmatch [S1, S2]

[(F, F =: G),(F, G == H)]-=
dlet S3 = !dilute Si F

S4 = !dilute* (!init F) F
S5 = !dilute S2 F

S6 = !mp S3 S4

S 7 = !mp S5 S6

in

!discharge S7 F

358 Examples of Ap systems

9.5 A sequent calculus for natural deduction as a pure Ap system

For instance, the reader will verify that

{(0, (Vx) P(x) * (Vx) Q(x)), (0, (Vx) Q(x) =* (3x) R(x))} |-

! Tran (0, (Vx) P(x) 4 (V x)Q(x)) (0, (Vx) Q(x) 4 (3 x) R(x))~>(0, (V x) P(x) 4>(3 x) R(x)).

Examples of proof search (backwards style)

In this section we will write a theorem prover for the {#:., A}-fragment of this logic.
Accordingly, we will only "recognize" conditionals and conjunctions; everything else
will count as an atom. The prover will be written as a method. The advantage of
this, as we have pointed out, is that methods are guaranteed to give sound results once
the primitive constants have been shown to be sound; there is no need to introduce
a type system for the purpose of ensuring soundness. A method call is a deduction,
and every deduction (immediately recognizable as such by its syntactic form) produces
sound results.

Let a goal sequent (F, F) be given, and let us assume that we have a method
prove-atom which we can apply if F is an atom. This will be our "base case". If F is
not an atom then we decompose it and generate appropriate subgoals which we will
try to satisfy recursively. Once the subgoals have been established, we need to combine
them in the right way in order to derive the desired goal. In the HOL world this means
applying the "justification function" produced by the generation of the subgoals to the
subgoal theorems. In our case there is no need to generate justification functions and
to keep track of the subgoals in a stack; all of this will automatically be managed by
the semantics of the language-and in particular by the semantics of nested method
calls. The call tree spawned by the top recursive method call is the subgoal stack.
More specifically, the method proceeds in accordance with the structure of F:

* If F is a conjunction F1 A F2, recursively prove the subgoals (F, F) and (F, F2),
and then use conj-intro to derive the goal.

" If F is a conditional F1 =* F2, recursively prove the subgoal (F U {F 1}, F2) and
then discharge F1 to generate the desired goal.

" Finally, if F is an atom (i.e., neither a conjunction nor a conditional), then apply
prove-atom to it.

Thus we arrive at the following method, which we call prove:

prove = p goal.

dmatch goal

(F, F A G) => dlet left =!prove (F, F)

359

right = !prove (F, G)

in
!conj-intro left right

(F, F =* G) ==* dlet S = !prove (F U {F}, G)
in

!discharge S F
- -== !prove-atom goal

We must now implement prove-atom, whose task is to prove sequents of the form
(F, A), where A is an atom. The basic idea is to keep applying Modus Ponens and
conjunction eliminations in the context F until we arrive at a sequent of the form
(F' U {A}, A). For instance, suppose that the goal is ({A =* B, B =* C, A}, C), for
atoms A, B, and C. If we apply Modus Ponens to the context once, we obtain B; if
we apply Modus Ponens again to the result, we get the sequent

({A > B, B > C, A, B, C}, C)

which clearly holds. The only question is how to justify going (backwards) from the
last sequent to the original goal ({A =* B, B = C, A}, C). We can do this by recursively
applying the cut rule. In general, if we have obtained

({F G, F, G} U F, H)

then we can derive
({F G, F} U F, H)

through the cut rule by proving

({F G, F} U F, G)

thereby showing that G is not really necessary. Likewise, if we have shown

({F A G, F, G} U F, H)

then we can use the cut method to derive

{F A G} U F, H)

by proving the sequents

({FAG}UF,F) and ({FAG}UF,G)

which is straightforward. Thus we arrive at the following:

360 Examples of As systems

9.5 A sequent calculus for natural deduction as a pure Ap system

prove-atom = p (IF, A).

dmatch A E F
true => (!reflex A F)

false -- > dmatch (detach-if? F)

[F = G, F] ==> dlet _ = !prove-atom (F U {G}, A)

_ = !mp (!reflex F=>G F)
(!reflex F F)

in

[] =4 dmatch
[F A G]

!cut F {G} A
(detach-and? F)
-=4 dlet _ = !prove-atom (F U {F, G}, A)

_ =conj-elim- (!reflex F A G F)

_ =!conj-elim-r (!reflex F A G F)
in

!cut F {F,G} A

Note that we have written the argument of prove-atom as a pattern (in ML style).
This is just a convenient shorthand; for any pattern ir, a method definition of the form
I = y 7r. D should be understood as syntax sugar for I = p S. dmatch S 7r == D.

The method prove-atom uses two unary functions detach-if? and detach-and?. The
former takes a set of formulas F as input and checks to see if F contains two formulas
of the form F -G and G, where G is not in F. If so, detach-if? returns the two-
element list [F G G, F]; otherwise it returns the empty list []. Note that the condition
that G is not a member of F is crucial in preventing the method from getting into
an infinite loop. If we do not observe this caveat then it is possible for the method
call (!prove-atom ({A = B, B => C, A}, C)) to diverge, indefinitely applying Modus
Ponens to A = B and A and deriving B. Likewise, detach-and? takes a set of formulas
F and checks to see if it contains a formula of the form F A G such that either F V F or
G V F. If so, detach-and? returns the single-element list [F A G]; otherwise it returns
the empty list []. Again, it is important to ensure that not both of F and G are already
in the list, in order to avoid duplicate work (and possibly getting into an infinite loop).
These two functions are clearly easy to implement and we omit their definitions.

Figure 9.4 depicts the flow of control during the evaluation of

!prove (0, F A G ->G A F).

Downward arrows correspond to recursive method calls, while upward arrows corre-
spond to primitive method applications. Thus we see that recursion is used analytically

361

362 Examples of 4 systems

(0, F A G G A F)

I discharge

({FAG},GAF)

conj-intro conj-intro

({F A G}, G) ({F A G}, F)

cut I I I cut

({F A G, F, G}, G) ({F A G, F, G}, F)

Figure 9.4: The call tree for the method application !prove (0, F A G => G A F).

("backwards") for proof search, attempting to decompose the goal into axioms, while
primitive method applications work synthetically in the reverse direction ("forward"),
building up the goal from the axioms, thus ultimately justifying the preceding recursive
decomposition. The reader should compare this example with that shown in Figure 9.8.

9.6 Unification as deduction

In this section we set up a Ap system in which one can prove sentences of the form "E
is unifiable", where E is a finite system of equations between Herbrand terms. Based
on this logic, which is shown to be sound, we formulate a unification procedure as a
method. We also prove that the logic is complete.

9.6.1 Unification via transformations

For the remainder of this section, fix a set F of function symbols and a disjoint set V of
variables (see Appendix A for the relevant terminology and notation). In what follows,
by a "term" we will mean a Herbrand term over F and V; and by an "equation" we
will mean an ordered pair of terms (s, t), which will be more suggestively written as
S ~ t.

Recall that two terms s and t are unifiable iff there exists a substitution 6 such
that 6(s) = 0(t); we say that such a 6 "unifies" s and t. Unification lies at the heart of

Examples of Ap systems362

many symbolic-reasoning engines, e.g., the Prolog abstract machine, resolution theorem
provers, Hindley-Milner type-inference systems such as found in ML, and others. The
following problem is mechanically solvable: given two terms s and t, determine whether
they are unifiable; if they are, produce a most general unifying substitution for them.
Robinson [63] was the first researcher who explicitly formulated this problem, gave

an algorithm for it, and proved the algorithm's correctness. Although his algorithm
performs fairly in practice, it has exponential worst-case complexity, both in time and in

space. Subsequent work resulted in major efficiency improvements, and there are now
several unification algorithms of low polynomial time and space complexity [56, 48, 20]

(see Knight's survey [44] for an overview). Most of these algorithms, however, need to
maintain elaborate data structures and their details are fairly intricate, in contrast to
Robinson's original procedure.

Martelli and Montinari in 1982 [49] introduced a particularly elegant and clean

formulation of unification based on a set of transformations akin to those used by
Gauss-Jordan elimination in solving systems of linear equations. Although they were
the first ones to discuss such transformations explicitly in the context of unification,
the basic ideas were already present in Herbrand's thesis in the 1930s. We quote from

"Logical writings of Herbrand" [37], page 148:

Now, to find an appropriate set of associated equations is easy, if such a set
exists; it suffices, for each system of equations between arguments, to proceed
by recursion, using one of the following procedures which simplify the system of
equations to be satisfied.

(1) If one of the equations to be satisfied equates a restricted variable x to an
individual, either this individual contains x, and then the equations cannot be
satisfied, or else the individual does not contain x, and then the equation will be
one of the associated equations that we are looking for; in the other equations
to be satisfied we replace x by the individual;

(2) If one of the equations to be satisfied equates a general variable to an
individual that is not a restricted variable, the equation cannot be satisfied;

(3) If one of the equations to be satisfied equates

fi (#1, . .. , # O) to f2 (01, - - - ,'On),

either the elementary functions fi and f2 are different, and then the equation
cannot be satisfied, or they are the same, and then we turn to those equations
that equate the #i to the Oi.

Therefore, if we successively consider each prenex form of P, we shall be able,
after a finite and determinate number of steps, to decide whether the proposition
P is a normal identity.

9.6 Unification as deduction 363

364

As we will see, this is the crux of the Martelli-Montanari algorithm. In what follows
we will use the acronym HMM as an abbreviation for "Herbrand-Martelli-Montanari".

The HMM algorithm approaches unification from a more general angle than other
procedures, dealing with finite systems of equations rather than with single equations.
By a system of equations we will mean a multiset of the form

E {ie i .. s _;t} (9.37)

Because this is a multiset, an equation si = tj might have multiple occurences in E,
and those occurences are significant.4 We will write E, s a t as an abbreviation for the
multiset union of E and {s }

A system of equations E of the form 9.37 is unifiable iff there exists a substitution 0
that unifies every equation in E, i.e., such that 0(si) = 0(ti) for i = 1,... , n. We call 0
a unifier of E. If - <0 for every a that unifies E then we say that 9 is a most general
unifier ("mgu") of E. Most general unifiers are unique up to = (composition with a
renaming, see Section A.2.2), and in that sense we may speak of the mgu of some E.
We write U(E) for the set of all unifiers of E, where we might of course have U(E) = 0
if E is not unifiable. Thus the traditional unification problem of determining whether
two given terms s and t can be unified is reducible to the problem of deciding whether
the system {s _ t} is unifiable.

Next, we say that E = {si 1ti,... , s tn} is trivial iff si = t, for i = 1,... ,n.
And for any substitution 9, we define O(E) as the system

{#(si) r1_ 0(tli . .. , 5(sn) 0 5(tn)}

The following is immediate:

Lemma 9.16 9 unifes E iff 9(E) is trivial.

A system E is said to be in solved form iff it is of the form

{iX r'- ti, ... , X z e'- tk }

where the variables x1, ... , Xk are distinct and x g Var(tj) for any i, j c {1,... , k}.
Clearly, such a system E determines a unique substitution

OE = {X1 F-- t1, -. - - Xk - tk}I

that is an idempotent most general unifier of E, as Lemma 9.18 states below. We will
need one auxiliary result before we prove Lemma 9.18:

4 Our discussion could also be cast in terms of simple finite sets, but the use of multisets avoids
certain tedious complications.

5 Recalling that a multiset S over a universe A is formally defined as a function S : A -+ N, the
union of two multisets Si, S 2 over A can be defined as A x : A. Si (x) + S 2 (x).

Examples of Apt systems

Lemma 9.17 If 0 unifies x ~~ t then 0 = 0 o {x -- t}.

Proof: By supposition,

0(x) = 0(t). (9.38)

Now pick any variable z. Either z = x or not. If z = x then

0 o {x -* t}(z) = (definition of o)

O({x - t}(z)) = (since z = x)

0(t) = (from 9.38)
0(x) = 0(z).

In contradistinction, if z / x then 0 o {x - t}(z) = ({x '-* t}(z)) = 6(z) = 0(z).
Thus 0(z) = 0 o {x-* t}(z) for all z, which is to say 0 = 6 o {x a t}. U

Lemma 9.18 If the system E = {x1~ t 1,... ,x tk} is in solved form then the

substitution OE = {X1 '- t 1 , ... , Xk -* tk} is an idempotent mgu of E.

Proof: Idempotency follows from the supposition that xi g Var(tj) for all i, j in
{1,... , k}. This also means that OE(ti) = tj for i = 1,... , k, hence OE(ti) = OE(xi)
and OE unifies E. Now pick any o- E U(E). If a variable z is one of the xi then, since
o- unifies E, -(z) = o(xi) = :(tj) = 6(0E(xi)) = 6'(E(z)), while if z is not one of the
xi then the equality

U(z) = 6(0E(Z)) (9.39)

holds trivially, so 9.39 holds for all z, i.e., o = o- o OE. Accordingly, OE is more general

than a. M

The HMM algorithm attempts to transform a given set of equations into solved
form by repeated applications of the following rules:

" Simplification: E, t ~ t ==> E;

" Decomposition: E, f (si, ... , s) f (t 1 ,... , tn) ==* E, s1 ~ ti, ... , s-, ~ n;

" Transposition: E, t ~ x == E, x ~ t-provided that t is not a variable;

* Application: E, x ~ t = {x - t}(E), x ~ t-provided that x g Var(t) and that

x occurs in E.

3659.6 Unification as deduction

For any two systems E and E', we write E == E' to signify that E' can be obtained
from E by one of the rules.

The qualification in the transposition rule is needed to guarantee the termination
of the transformation process. The same goes for the qualification that x must occur
in E in the last rule (the second qualification of that rule, x V Var(t), ensures that the
process does not proceed in the presence of an equation x ~ t with x E Var(t), since
such an equation is not unifiable). Thus we see that these are not pure inference rules,
in the sense that they have control information built into them, intended to ensure that
they cannot be applied indefinitely. This will be made clear in Section 9.6.3, where it
will be shown that these rules essentially perform search rather than inference.

Now the idea behind using these transformations as an algorithm for unifying two
terms s and t is this: we start with the system E1 = {s ~ t} and keep applying rules
(non-deterministically), building up a sequence E ==> E2 => ... == Ek, until we
finally arrive at a system of equations Ek to which no more rules can be applied. It
is straightforward to prove termination (i.e., that it is impossible to continue applying
rules ad infinitum), and that if s and t are indeed unifiable then the final system
Ek will be in solved form, i.e., of the form Ek = {x 1 $ ti, ... , X 0 tni}, where the
variables x 1,... ,, are distinct and x does not occur in any tj. Accordingly, the
substitution 6 Ek = { i s-+ t1 , ' ' , Xn F-+ tn} is an idempotent mgu of Ek. Further, we
can show that if Ej+1 is obtained from E by one of the rules-i.e., if Ej ==> Ei+1-then
U(Ei) = U(Ei+1), so that any substitution that unifies Ej also unifies Ej41 and vice
versa. Thus it follows that 9 Ek is also an idempotent mgu of Ek_1, Ek-2, ... , E1, and
hence an idempotent mgu of s and t. On the other hand, if the final set of equations
Ek is not in solved form then we may conclude that the initial terms s and t are not
unifiable.

As an example, here is a series of transformations resulting in a most general unifier
for the terms f (x, g(z), b, z) and f (a, y, b, h(x)):

1. {f (x, g (z), b, z) f (a, y, b, h(x))} -- > Decompose
2. {x a, g(z) y,b~ b, z ~h(x)} -- > Apply x~ a
3. {x a, g(z) y, b ~ b, z ~h(a)} -> Apply z ~~ h(a)
4. {x a, g(h(a)) ~ y, b b, z ~ h(a)} =-> Simplify
5. {x a, g(h(a)) ~ y, z~ h(a)} => Transpose
6. {x a, y g(h(a)), z ~h(a)}

The system {x ~ a, y ~ g(h(a)), z ~ h(a)} is in solved form, and thus the substitu-
tion

{x F-a a, y 1__ g(h (a)), z - h (a)}

366 Examples of Ap systems

is an idempotent mgu of the given terms.
On the other hand, if we start with two terms that cannot be unified, say f(a)

and f(b), or x and g(x), we will end up with a system of equations that cannot be
transformed any further but is not in solved form, and we can then conclude that
unification is impossible.

9.6.2 Deductive formulation

We want to devise a calculus U for proving that a system of equations E is unifiable.
We could use such a calculus to show that two given terms s and t can be unified by
adducing a proof to the effect that the system {s a t} is unifiable. Such a proof would
start from axioms asserting that certain systems are evidently unifiable, and proceed

by applying inference rules of the form "If Ei, . . . , E,, are unifiable then so is E". The
HMM transformation rules are not appropriate for that purpose because they proceed
in the reverse direction: they start from the equations whose unifiability we wish to

establish and work their way back to sets of equations whose unifiability is apparent. In
that sense, they are analytic, or "backwards" rules: they keep breaking up the original
equations into progressively simpler components. By contrast, we want synthetic rules
that will allow us to move in a forward manner: starting from simple elements, we
must be able to build up the desired equations in a finite number of steps. In fact
we will see shortly that the HMM algorithm is, in a very precise sense, a backwards
proof-search algorithm for the deduction system we will set up below.

We must now decide exactly what form the judgments of our calculus will have.
One simple choice is to work with judgments of the form I-, E, asserting that the
system E is unifiable. However, we will instead opt for more complex judgments, of
the form I , E : 9, asserting that the substitution 9 is an idempotent most general
unifier of E. The advantage of such a judgment is that it conveys more information
that the mere fact that E is unifiable; it includes a substitution 9 that actually unifies
E. In addition, the judgment guarantees that 9 is idempotent and most general. This
design choice will enable us to use our logic for computational purposes, namely, for
computing unifiers. More precisely, it will enable us, when we come to formulate our
logic as a Ap system, to write a method that takes two terms s and t as input and-
provided that s and t are unifiable-returns a theorem of the form {s ~ t} : 9. This
theorem does not only tell us that the terms s and t are unifiable, it also produces
an idempotent mgu for them. By now the reader should be able to guess the benefit
of computing unifiers with such a method (rather than with a function): guaranteed
correctness. If we do obtain a theorem {s ~ t} : 9, we can be assured that 9 is indeed
an idempotent mgu of s and t.

The logic comprises one axiom and four unary rules, shown in Figure 9.5. The

3679.6 Unification as deduction

F~ {(1 i .. . , ~ t} : {Xi a ti, . . . , Xk a tk} [Solved-Form]

provided {x1 r ti ... , xk d tk} is in solved form

K -E : 0 [Reflexivity]

HuE,tat :9

-uEs-'t : [Symmetry]
Hy E, t _ s : 0

-uEs,- .. S t :9 [Congruence]
Ej Ef (si, ... ,sn) f f(t I,. ,tn): 0

Ku E, x t 0 [Abstraction]

Ky E', x t : 9

provided {x '-* t}(E') = E.

Figure 9.5: A logic for deducing idempotent most general unifiers.

axiom [Solved-Form] asserts that every set of equations E = {X 1 ~ t, ... , x tk}
in solved form is unifiable, and that OE {X 1 1-4 t 1 , ... , Xk '- tk} is an idempotent
mgu of E, which is clearly true by Lemma 9.18. The rules [Reflexivity], [Symmetry],
and [Congruence] are self-explanatory, and their soundness should be clear; we will
formally prove it shortly. Observe that if we read the rules in a forward manner then,
in relation to the HMM transformations, reflexivity can be viewed as the inverse of
simplification, symmetry as the inverse of transposition, and congruence as the inverse
of decomposition. We will also see that [Abstraction] is the inverse of application.
Also notice that these are pure inference rules, in the sense that no control information
is embedded in them. Restrictions such as found in the transposition rule of the HMM
system will instead be relegated to the control structure of a method that automates
the logic U, keeping the logic itself cleaner.

The rule [Abstraction] is a bit trickier. The key is the proviso {x F-- t}(E') = E.
This means that the equations in E' are abstractions of the equations in E, obtainable
from the latter by replacing certain occurences of t by x. Alternatively, the equations
in E are instances of the equations in E', obtained from the latter by applying the

368 Examples of Ap systems

substitution {x '- t}. (Indeed, that is how the rule would be applied in a backwards
fashion, and we will see that this is precisely the sense in which the HMM application
rule is the inverse of abstraction.) Accordingly, the equations of E' are more general
than those of E; and this is why the rule is called "abstraction": it takes us from the
specific to the general.

Let us illustrate with our earlier example. We wish to show that f(x, g(z), b, z) and

f(a, y, b, h(x)) are unifiable, or more precisely, that the substitution

0 = {x -* a, y 4 g(h(a)), z '-* h(a)}

is an idempotent mgu of these two terms. The following deduction proves this:

1. {x a, y ~ g(h(a)), z h(a)} :0 [Solved-Form]

2. {x a, g(h(a)) ~ y, z h(a)} : 0 1, [Symmetry]

3. {x a, g(z) y, z h(a)} : 0 2, [Abstraction] on z 0 h(a)

4. {x a, g(z) y, z h(x)} :0 3, [Abstraction] on x a

5. {x a, g(z) y, b b, z e h(x)} : 0 4, [Reflexivity]

6. {f (x, g(z), b, z) _ f (a, y, b, h(x))} : 0 5, [Congruence]

Note that the only rule that creates-or in any way affects-the substitution 0 of
a judgment E : 0 is the axiom [Solved-Form]. All the other rules simply pass along
the substition of the premise unchanged. Thus a substitution is created only once, for
a system in solved form, and from that point on it is carried along from system to
system via the various rules, until it is finally attached to the desired system.

We will now prove that the rules of our logic are sound. We will need the following
two lemmas:

Lemma 9.19 If {x '-* t}(E') = E then U(E, x ~ t) = U(E', x - t).

Proof: In one direction, suppose that 0 unifies E, x ~ t.6 Then, from Lemma 9.17,
0 = 0 o {x - t}, hence

9(E')= 0 o {x -* t}(E') = (Lemma A.1)

({x '-* t}(E')) = (supposition)

O(E).

But 0 unifies E, so from Lemma 9.16, O(E) is trivial, and by the foregoing equality,

'Recall that we write E, s ~ t for the multiset union of E and {s ~ t}.

9.6 Unification as deduction 369

O(E') is trivial. Thus 6 unifies E', and a fortiori, E', x _ t. A symmetrical argument
will establish the converse inclusion.

Lemma 9.20 If U(E 1) = U(E 2) then 0 is a mgu of E1 iff it is a mgu of E2 .

Proof: Let 0 be a mgu of E1 . Then 0 unifies E2 , and for any o E U(E 2) we also have
o- E U(E 1), hence - <0 . Thus 0 is a mgu of E2 . The converse implication is shown
likewise. M

We will say that a judgment E : 0 holds iff 0 is an idempotent mgu of E. Accord-
ingly, a rule of the form "From Ei : 01, . . . , E, : 0, infer E : 0" will be considered
sound iff the conclusion E : 0 holds whenever each premise Ei :6 holds, i = 1, . . . , n.
We can now prove:

Theorem 9.21 The rules of U are sound.

Proof: The soundness of the axiom [Solved-Form] follows from Lemma 9.18. The
other four rules are unary, i.e., of the form "From Ei : 0 infer E2 : 0", and we will
show that in all four cases we have U(E 1) = U(E 2); soundness will then follow from
Lemma 9.20. For reflexivity, symmetry, and congruence we need to show, respectively,
the identities U(E) = U(E, t ~ t), U(E, s ~ t) = U(E, t ~ s), and

U(E, si rl tli, . .. , sn ~%. tn) = U(E, f (si, . .. , sn) ~l- f(ti, , tn)),I

all three of which are immediate. In the case of abstraction the desired identity follows
from Lemma 9.19.

9.6.3 The unification calculus as a Ap system

In this section we will cast the logic U as a Ap system, Unif. As constants we take:

" every element of F U V;

" every term over F and V;

* all ordered pairs of such terms, to serve as equations;

* all systems of equations (finite multisets thereof);

* all substitutions; and

370 Examples of Ap systems

9.6 Unification as deduction 371

Figure 9.6: 6-rules for the primitive methods of Unif.

e all ordered pairs (E, 9) consisting of a system E and a substitution 9.

The latter will be the sentences of the system. For increased readability, a sentence
(E, 9) is written as E : 9. We will say that such a sentence holds iff 9 is an idempotent
most general unifier of E.

We define an entailment relation |= as follows: # |= E : 9 iff E : 9 holds whenever
every member of # holds (keep in mind that an assumption base # is a set of sentences,
so in this system # will be a set of ordered pairs (E, 9)). It is readily verified that |-
is a Tarskian relation.

The primitive methods of Unif will be the five constants solved, abstract, ref, sym,
and cong. Their semantics are given by the 6-evaluation axioms shown in Figure 9.6.
The reader should convince himself that all five methods satisfy the requirements PM1
and PM2 laid down in Section 8.2.

We can now present our earlier proof that {x '- a, y -4 g(h(a)), z F-+ h(a)} is an

idempotent mgu of the terms f(x, g(z), b, z) and f(a, y, b, h(x)) as a Ap deduction:

dlet Si = !solved {x ~ a, y ~ g(h(a)), z ~ h(a)}

S2 = !sym Si g(h(a)) ~ y
S 3 = !abstract S2 z h(a) {x ~ a, g(z) ~ y}

S4 = !abstract S 3 x a {g(z) ~ y, z ~ h(x)}

S5 =!ref S4 b b

0 !solved E ---> E : E

provided E is in solved form

{E,x ~ t : 0} F !abstract E,x ~ t : 9 x ~ t E'-+-- E',x ~ t : 9

provided {x '-* t}(E') = E

{E : o}!ref E :o E t~ t 1 .E t s :

{E, s ~-' t :0} - !sym E, s ~- t :0 t ~s ~>- E, t ~-- S : 6

{E : 0} F cong E : 0 f (si, . . .,,) ~ f(ti, . . . , tn) ~

E', f (si, .. . , sn) ~~. f(tli, . .. ,itn) : 0

whenever E is of the form E', Si ~%- ti, . .. , sn ~~.. tn.

3719.6 Unification as deduction

in
!cong S5 f (x, g(z), b, z) - f (a, y, b, h(x))

Note that this proof is more succinct than the informal one given in page 369.
We may also express certain parts of our choice in conclusion-annotated style,

resulting, for instance, in:

dlet E= {x = a,y a g(h(a)),z ~ h(a)}
9 = {x -* a, y - g (h(a)), z '-* h(a)}
Si = E : 0 by !solved E
S2 = {x ~ a, g(h(a)) r y, z ~h(a)} : 0 by !sym Si g(h(a)) . y
53 {x a, g(z) ~ y, z h(a)} : by !a bstract S2 z h(a) {x a, g(z) y}
S4= {x a,g(z) ~ y,z ~ h(x)}: 0 by !abstract S3 x a {g(z) y, z ~ h(x)}
S5= {x a, g (z) ~ y, b ~ b, z ~ h(x)} : 0 by ! ref S4 b b

in
{f (x, g(z), b, z) ~ f (a, y, b, h(x))} : 9 by !cong S5 f (x, g(z), b, z) - f (a, y, b, h(x))

As another example, here is a proof showing that {x F-- a, y '-4 h(a), z '-+ b} is an
idempotent mgu of the terms f(x, g(y, z)) and f(a, g(h(x), b)):

dlet Si = !solved {x ~ a, y ~ h(a), z ~b}
S2= !abstract Si x ~ a {y a h(x), z ~ b}
S3 = !cong S2 g(y, z) ~ g(h(x), b)

in
!cong S3 f (x, g(y, z)) ~ f (a, g(h(x), b))

or in conclusion-annotated style:

dlet E = {x a, y h(a), z ~ b}
0 = {x - a, y ' h(a), z '-+ b}
Si = E : 9 by !solved E
S2 = {x ~ a, y ~ h(x), z - b} : 0 by !a bstract Si x ~a {y ~ h(x) , z ~ b}
S3 = {x ~ a, g(y, z) ~ g(h(x), b)} : 9 by !cong S2 g(y, z) r g(h(x), b)

in

{f (x, g(y, z)) - f (a, g(h(x), b))} : 0 by !cong S3 f (x, g(y, z)) ~ f(a, g (h(x), b))

We now turn to soundness and completeness.

Theorem 9.22 (Soundness) Unif is sound, i.e., if # H D -- E : 0 then 3 |= E : 9.
In particular, if 0 F D --+ E : 0 then E is unifiable, and 9 is an idempotent mgu of it.

372 Examples of Ap systems

9.6 Unification as deduction 373

Figure 9.7: A unification method.

Proof: j= is Tarskian, so by Theorem 8.6 we only need to check that 1= includes every

primitive method. We have already done this in the proof of Theorem 9.21. 0

The usual question of tautological completeness-whether we can prove every sen-

tence that holds-is not of much interest in the present context, because it assumes
the following form: suppose E : 6 holds, i.e., that 6 is an idempotent mgu of E; can

we prove this? The reason why this is not particularly interesting is that the unifier

6 is already given as part of the input. For our purposes, a more practical question is

this: suppose that E is unifiable; can we constructively prove the proposition

(-3) E : 0

3739.6 Unification as deduction

374 Examples of Att systems

i.e., can we constructively prove the existence of an idempotent mgu for E? More
precisely: can we prove the sentence E : 0 for some 0 that is appropriately constructed
on the basis of the given E? If we can do this whenever E is unifiable, and fail whenever
it is not, then we will have a unification "algorithm" that backs its results by proving
that they are correct.

The method unify shown in Figure 9.7 answers this question affirmatively. It takes
an arbitrary system E as input and, as we will show shortly, it derives a theorem of the
form E : 0 iff E is unifiable. Implementing the predicates of the five dcond clauses in
the body of the method is a straightforward exercise that is peripheral to the main task,
and therefore, to save space, we have expressed the predicates in plain English. This
introduces some non-determinism: for instance, in case 4, E might contain several
equations of the form t = t, and there will then be several possible choices for E'
and t; and likewise for all other cases, with the exception of the first. However, the
non-determinism will be eliminated once the English descriptions are replaced by Ay
code. The interested reader will readily achieve this replacement after settling on a
few primitive functions for manipulating multisets.

We will now study the behavior of unify in detail, starting with the following simple
observation:

Lemma 9.23 If (!unify E) terminates successfully, in any assumption base, then the
theorem produced is of the form E : 0.

Proof: By inspection of the five possible cases and the definitions of the primitive
methods and multiset union. N

For the next result we need to define, for any term t, the quantity FS(t), denoting
the number of function symbols occuring in t. More precisely, we set

FS(c) = 1

FS(x) = 0

FSf (t1, ... ,tn)) = 1+FS(t1)+---+FS(tn).

Further, recall that SZ(t) denotes the size of a term t, i.e., the number of function
symbol occurences plus the number of variable occurences.

Theorem 9.24 The method unify always terminates.

Proof: Let us say that a variable x occuring in a system of equations E is solved in E iff
E is of the form E', x ~ t, where x Var(t) and x does not occur in E'. In other words,
x is solved in E iff x occurs in exactly one equation in E, and that equation is of the form
x ~ t, with x g Var(t). Otherwise we will say that x is unsolved in E. For any E =

374 Examples of Ap systems

{s 1 ~ t1 ,... , s~ tn}, let UV(E), LS(E), and LFS(E) denote the number of unsolved

variables in E, SZ(s) + - - -+ SZ(sn), and FS(si) + -- -+ FS(sn), respectively. We claim
that if a method call (!unify E1)-placed in the context of an arbitrary assumption
base-results in a recursive call (!unify E2) then the triple (UV(E 2), LS(E 2), LFS(E2))
is lexicographically smaller than (UV(E 1), LS(E 1), LFS(E1)); i.e., either UV(E 2) <

UV(E 1); or UV(E 2) = UV(E 1) and LS(E 2) < LS(E1); or else UV(E 2) = UV(E 1),
LS(E 2) = LS(E1), and LFS(E 2) < LFS(E1). This means that we cannot have an
infinitely long chain of recursive calls, since a lexicographic extension of a well-founded
relation is itself well-founded.

To verify our claim one must check each of the four possible recursive calls in the
body of unify (cases 2-5). In the recursive call of case 2 the number of unsolved
variables strictly decreases, so the claim holds. The recursion of case 3 (sym) does not
increase the number of unsolved variables (since t is not a variable) or the quantity LS
(since the size of t must be at least 1), and decreases the quantity LFS (because t is
not a variable and gets transferred to the right side). In case 4, UV does not increase
while LS decreases; and the same holds for the recursion of case 5. 0

Lemma 9.25 If E is unifiable then at least one the five cases distinguished in the body
of unify must hold.

Proof: We will show that if cases 2-5 do not hold then E must be in solved form, so
that case 1 holds. We begin by observing that any given equation must be of exactly
one of the following three kinds:

(i) x t; or

(ii) f (si, .. . , s) ~x; or

(iii) f (Si1, . . . , sn) ~~ g(ti , tm)

where, for convenience, a constant symbol is represented as f (). Now pick any equation
s ~ t in E. The equation cannot be of the form (ii), because then case 3 would apply.
Suppose, next, that s ~ t is of the form (iii). Then we must have f = g, since f f g
would imply that E is not unifiable, contrary to our supposition. Now either n = 0,
i.e., f is a constant symbol, or n > 0. But because f = g, if n = 0 then case 4 would
apply, while if n > 0 case 5 would apply. Since in either case we get a contradiction,
we conclude that the equation in question cannot be as shown in (iii) either; thus it
must be of the form (i).

Furthermore, since x / t, we must have x (Var(t), for otherwise E would not be
unifiable. But then it must also be the case that x does not occur anywhere else in E,

9.6 Unification as deduction 375

376 Examples of Ap systems

for otherwise case 2 would obtain. We have thus shown that every equation in E is of
the form x ~ t, where x occurs neither in t nor anywhere else in E. Accordingly, E is
in solved form. U

Theorem 9.26 If E is unifiable then the method call (!unify E) will produce-in any
assumption base-a sentence of the form E : 9, where, by soundness, 9 is an idempotent
mgu of E.

Proof: By the previous result, one of the five cases in the body of unify must obtain.
In the first case the result is immediate, while in the remaining four cases we proceed
by well-founded induction on (UV(E), LS(E), LFS(E)). The discussion in the proof
of Theorem 9.21 shows that the argument to each of the four recursive calls is also
unifiable, hence the inductive hypothesis applies, and the result in each case follows
directly from induction and the 6-evaluation axiom for the corresponding primitive
method. E

These results clarify the sense in which we can use this logic for computational
purposes. Supposing that we wish to determine whether two terms s and t are unifiable,
and if so, to find an idempotent mgu for them, we can invoke unify with the system
{s % t} as input. If s and t are indeed unifiable then the above result guarantees that
we will obtain a theorem of the form {s ~ t} : 9, where 9 is an idempotent mgu for s
and t. On the other hand, if s and t are not unifiable then the method will fail, since
it always terminates and yet could not terminate successfully for then the theorem
produced would be of the form E : 0 (Lemma 9.23), implying (by soundness) that s
and t are unifiable, contrary to our supposition.

Let us illustrate with the terms f(x, g(z), b, z) and f(a, y, b, h(x)). Figure 9.8 shows
the flow of control during the evaluation of the call

!unify {f(x, g(z), b, z) ~ f(a, y, b, h(x))} (9.40)

in a counter-clockwise direction. (To save space, we have written the substitution
{x '-* a, y '- g(h(a)), z '-- h(a)} as 9.) Observe that the recursive calls that are made
during the evaluation, depicted on the left side of the diagram, correspond precisely
to HMM transformations. This shows that HMM transformations embody control
strategy-in particular, proof-search strategy-rather than inference rules. The actual
inferences that make up the discovered proof are wide asunder: they consist of the
primitive method applications shown on the right side of the picture, beginning at the
bottom with the application of the axiom solved and culminating in the upper right-
hand corner with the application of cong. The HMM transformations are only useful
in searching for the proof in a backwards manner; once we have found the approrpiate

9.6 Unification as deduction 377

!unify {f(x, g(z), b, z) - f(a, y, b, h(x))}

I Case 5 (decompose) , Inverses

!unify {x a, g(z) a y, b b, z h(x)}

I Case 2 (apply)

!unify {x - a, g(z) . y, b b, z h(a)}

I Case 2 (apply)

!unify {x e a, g(h(a)) ~ y, b b, z h(a)}

I Case 3 (transpose)

!unify {x = a, y - g(h(a)), b b, z h(a)}

I Case 4 (simplify)

!unify {x ~ a, y ~ g(h(a)), z h(a)} solved

{f (x, g(z), b, z) f(a, y, b, h(x))} 9

I!cong

{x a, g(z) ~y, b a b, z e h(x)} :0

I ! abstract

{x a, g(z) y, b ~ b, z ~ h(a)} : 0

I ! abstract

{x a, g(h(a)) y, b b, z h(a)} :

!sym

{x a, y g(h(a)), b b, z h(a)} : 9

I ! ref

{x a, y ~g(h(a)), z h(a)} : 0

Figure 9.8: Control flow, shown counter-clockwise, for the method application (9.40),
where 9 = {x '-* a, y '-* g(h(a)), z F-> h(a)}. Note that the recursive calls correspond

precisely to HMM transformations.

starting point (axiom), we put the proof together in a forward manner with the proper
inference rules.

The diagram does not merely show that the HMM rules are applied in the oppo-
site direction from the primitive methods, but spells out the exact inverse relationship
between the four HMM transformations and the four primitive methods of Unif (the
axiom solved being neutral). Specifically, we can see that for every HMM transforma-
tion there is exactly one primitive method that reverses ("undoes") the transformation:
congruence undoes decomposition, symmetry undoes transposition, reflexivity undoes
simplification, and abstraction undoes application.

The picture also reinforces our earlier point that the only method which has any
sort of impact on the final substitution 0 of a theorem E : 0 is the axiom solved. All
the other methods simply pass along their given substition unchanged. So the strategy
of unify, as the figure illustrates, is to transform the given system into solved form,
create a substitution for that solved system, and then prove that this substitution is
also an idempotent mgu for the original system. That half of the process, depicted
on the right side of the picture, is what differentiates the method from the HMM

9.6 Unification as deduction 377

-

Examples of Ap systems

algorithm, and the source of the correctness guarantee.
Finally, returning to the issue of tautological completeness, we remark that if we

consider substitution identity modulo renaming (so that two substitutions are regarded
as identical iff each can be obtained from the other via composition with a renaming),
as is customarily done, then our logic is complete: the method unify can be used to
derive all tautologies, since mgus are unique up to renaming. Specifically, if a sentence
E : 9 is valid (holds), then (!unify E) will result in the theorem E : 9', where 9' will
be identical to 9 modulo renaming. However, unify cannot be used as a solution to
the validity problem (and hence as a decision procedure for theoremhood), because if
E is unifiable but 9 is not a unifier of it then we will fail to reject the given sentence
E : 9, since (!unify E) will successfully produce a theorem E : 9' (with 9' distinct
from 0, of course). To solve the validity problem with a method, then, we would need
to introduce additional inference rules specifying when a substitution is more general
than another. We will not pursue this theme here, as it is tangential to the subject of
unification. We summarize:

Theorem 9.27 The Ap system Unif is sound, consistent, and complete.

9.7 Natural deduction in the Ap-calculus, predicate
case

9.7.1 Definition

Fix a logic vocabulary (Q, V), consisting of a signature Q = (C, JF, R) and a countably
infinite set of variables V (see Section 6.1). We will assume that there is a given
well-order -<v on V, such that the unique -<v-successor of any given x E V can be
mechanically computed (recall that x is used as a metavariable ranging over V). Free
and bound occurences of variables, etc., are defined as usual. Alphabetically equivalent
formulas (Figure 6.1) are considered identical.

The As system that we define in this section, Ap-CND1, will be parameterized
over the vocabulary (Q, V). The primitive values of Ap-CND 1 include all terms t E
Terms(Q, V) and formulas F E Form(Q, V). The latter will be the system's sentences.

For each function symbol f E F of arity n > 0 we include a primitive Ap function
f of the same arity and with the following 6-rules:

- app(f, ti, I... , tn) -- f(tii .. . , in).

Likewise, for every relation symbol R E RZ of arity n we have a primitive function R
with semantics:

1- app(R, ti, ... , tn) -- R(ti, . .. , in).

378

9.7 Natural deduction in the Ap-calculus, predicate case

We also include five primitive functions -i, A, V, -, and # for building formulas:

3 app(-i, F) - -F
3 3 app(A, F1, F2)~> F1 A F 2

3 3 app(V, F 1, F2)~> F V F 2

3app(=>, F1, F2) ~> F1 ->F2

3 Happ(-, F1, F2)~ F1 <F 2

and two binary primitive functions V and 3 for building quantified formulas:

3 app(V, x, F)-~ (V x) F
3 I- app(3, x, F) ~> (] x) F

We refer to a primitive function f (for f E F) as a term constructor. The primitive
functions in {R I R E R} U {-,, A, V, =>, , V, 3} are called formula constructors.
More specifically, the elements of {R I R E RZ} are called atomic formula constructors;
those in {-, A, V, ->, -# } are called propositional formula constructors; while V and
3 are called quantified formula constructors.

In addition, we introduce a ternary primitive function sub (for substitution), with
the semantics

I app(sub, t, x, F) -~> {x - t} F.

Thus an application app(sub, t, x, F) should be read as "substitute t for all free oc-
curences of x in F", and produces the sentence {x '-- t} F (with a possible a-renaming
to avoid variable capture). Instead of the usual abbreviation (sub M M2 N), we will
often write {M 2 '-* M1} N as a shorthand for app(sub, M 1, M2, N). The reader will
verify that all of the foregoing primitive functions satisfy PF1 and PF2.

The primitive methods of Ap-CND 1 include the propositional methods T-axiom,
F-axiom, mp, mt, dn, both, left-and, right-and, cd, left-either, right-either, equiv, left-iff,
right-iff, and absurd. Their semantics are just as in Ap-CNfDo (Figure 9.2), only now
instead of propositions P, Q, etc., we are dealing with formulas F, G, etc. Thus, for
instance, the 6-rules for mp are given by the schema

{F =G, F} H dapp(mp, F ->G, F) -- G.

In addition, there are three new primitive methods: uspec, egen, and qs-axiom, with
the following semantics:

{(V x) F} I- dapp(uspec, (V x) F, t) -- > {x '-- t} F

{{x F-* t}F} F- dapp(egen, (3 x) F, t) -~> (3 x) F

379

0 H dapp(qs-axiom, (Vx) [F =t G] =* [(3 x) F => G])
(V x) [F =* G] > [(3 x) F = G]

provided x does not occur free in G.

The reader will verify that all of the aforementioned primitive methods adhere to the
provisos PM1 and PM2.

Lastly, Ap-CND1 has two special deductive forms, assume(M, D) and

ugen(E, D)

written, respectively, as assume M in D and generalize-over E in D. Their se-
mantics are given by the following rules:

O3HMI~--*F /3U{F}HD- +G [assume]
Hassume(M, D) -- + F = G

/3HE~~--*x /HD-x-*F [ugen]
/ ugen(E, D) -+ (V x) F

provided x does not occur free in /.

It is clear that both forms are as required in Section 8.2.3.
Universal generalization, like hypothetical reasoning, is another mode of inference

that cannot be captured by a simple primitive method (the reader is invited to try
to formulate such a primitive method); a special deductive form along the lines of
ugen(E, D) is necessary. The reason is the need to ensure that the formula which we
wish to generalize has been deductively derived from an assumption base that does
not contain any free occurences of the relevant eigenvariable. Thus, for example, a
primitive method ugen with semantics such as

0 U {F} F dapp(ugen, x, F) -+- (V x) F

would be unsound, even if we made the provision x g FV(#) (take # = 0 and F =

Even(x)).
Finally, assuming the availability of lists (see page 358 for how lists can be added

to any Ap system), we introduce a unary primitive function fresh-var with the following
semantics:

3 F app(fresh-var, [xl,... , x])~+ x

where x is the v -least variable that
does not occur in FV() U {x 1,.. . , x,}

380 Examples of Ap systems

9.7 Natural deduction in the Ap-calculus, predicate case 381

The reader should have little trouble verifying that the result of fresh-var is uniquely
determined on the basis of the context 3 and the argument list [x, ... , xn], and can
be mechanically computed from them. Accordingly, fresh-var satisfies PF1 and PF2.
Observe, however, that fresh-var is context-dependent, unlike the preceding primitive
functions.

9.7.2 Metatheory

The entailment relation |= from sets of formulas to formulas is defined as usual (see
Section 6.5). We are ready to demonstrate soundness:

Theorem 9.28 Ap-CND1 is sound, i.e., if <D H F then <D |= F.

Proof: By Theorem 8.7, all we have to do is prove that the primitive methods are in-
cluded in =, and that the latter is preserved by the two special deductive forms assume
and ugen. For the propositional primitive methods, the proof is as in Ap-CDo. From
the three new primitive methods, the soundness of uspec and egen is shown just as in
the case of first-order CAD (see the proofs of Lemma 6.81 and Lemma 6.82, respec-
tively). Thus we only need to show the soundness of qs-axiom. To that end, pick an
arbitrary Q-structure D and valuation p : V -+ D, and suppose that

D K, (V x) [F = G] (9.41)

and

D |-K (] x) F. (9.42)

Now 9.42 means that there is a d E D such that

'D |--[x - al F (9.43)

and by 9.41 we get

D |--[x -] F = G, (9.44)

so from 9.43 and 9.44,

D al[x- d G. (9.45)

But x ' FV(G), hence p and p[x F-+ d] agree on FV(G) and the Coincidence Lemma
(Lemma 6.73) gives D K G. We have thus shown that if x V FV(G) then

D |-K (V x) [F G] =* [(x) F =* G]

for arbitrary D and p.
Finally, we have to show that assume and ugen preserve 1=. For assume this is

done just as in the propositional case. For ugen, we need to prove that, for any /,
|= (Vx) F whenever # = F and x g FV(#). To that end, suppose that D K=, #,
so that # |= F gives D |-, F (for arbitrary D and p). Pick any d E D. Since
x (FV(), the valuations p and p[x F d] agree on the free variables of /, hence
D k=p , d] 0, and thus # = F implies D][g F. Since d was chosen arbitrarily,
we infer D |-, (V x) F. 0

For completeness, we will show how to embed first-order CA/D deductions into
Ap-CND 1 . Owing to the desugaring of pick-witness in terms of pick-any and
ex-elim (which is qs-axiom here) given in page 235, we need not be concerned with
pick-witness deductions. For the remaining constructs, we proceed as follows. First,
let -y : V - Exp be a function from variables to Ap-CKD1 expressions that is the iden-
tity almost everywhere (this is possible since the elements of V are terms, and terms
are constants and hence expressions). We extend y to terms and formulas as follows:

9(x) = Y(x)
9(a) = a

(f (t i,..., t)) = app(f, 9(t 1), . .. (t))

and

i(R(ti, ... , t))= app(R, (ti), ... , 9(tn))
'(-,F)= app(-i,(F))

9'(F 1 o F 2) = app(o, i(F 1),9(F2))

((V x) F) = app(V, x, -y[xI- x](F))

'((3 x) F) = app(3, x,y[xi--*x](F))

for o E {A, V, -=, @}. We now define a translation T from first-order CAD deductions
into Ap-CNfD1 deductions as follows:

T(D) = T(D, idv, [1))

where idv is the identity on V and T is defined as follows:

T(F, y, L) = '(F)
T(Rule F1, . . . , Fn, 7, L) = dapp(Rule*, '(F1), . . . , '(Fn))
T(specialize (V x) F with t, -y, L) = dapp(uspec, ((V x) F), -(t))

382 Examples of Ap systems

9.7 Natural deduction in the Ap-calculus, predicate case

T(ex-generalize (1 x) F from t, -y, L) = dapp(egen, ((3 x) F), '(t))
T(assume F in D, -, L) = assume '(F) in T(D, 7y, L)
T(D1; D 2 , y, L) = T(D 1 , 7y, L); T(D 2 , 7, L)
T(pick-any x in D, 7, L) = dlet I = fresh-var L in ugen(I, T(D, -y[x '-* I], I::L))

where Rule* is the obvious Ap-CND 1 analogue of the corresponding CN/D primitive
rule. Also, in the pick-any clause, a fresh I should be chosen every time the clause is
applied. This is essential in order to ensure that in the translation of a deduction such
as

pick-any x in - pick-any y in

the identifier that will take the place of the underlined occurence of x refers to the
outer eigenvariable. The parameter L, like y, is only used for desugaring the bodies
of pick-any deductions: it holds a list of already-allocated eigenvariables (or, more
precisely, a list of identifiers whose values will be the said eigenvariables), so that
fresh-var can generate distinct entries inside nested universal generalizations. As an
example, the translation of

pick-any x in
pick-any y in

assume x = y in
swap x = y

is:

dlet fooi = fresh-var []
in

generalize-over foo1 in
dlet foo2 = fresh-var [foo1]
in

generalize-over foo2 in
assume fooi = foo2 in

!swa p fooi = foo2

We now have:

Lemma 9.29 If 3 |-cgV D -r+ F then Q H-ACKD T(D)~+ F.

Therefore:

Theorem 9.30 (Completeness) Ap-CKD 1 is complete, i.e., if < 1- F then <D F.

383

9.7.3 The importance of term and formula constructors

Next we define a mapping [-] from terms and formulas to Ap expressions that will

clarify how term and formula constructors may be used to build terms and formulas.

We begin with terms:

[c] =

[f (ti, . tn)] app(fI [t1], ... , [tnl)

For formulas we set:

[R(ti, . . tn)l app(R, [t1], ... , [tn])

,-F]= app(-i, [F])
F1 o F2= app(o, [F1], [F 2])

(Vx)F] = app(V, x, [F])

(3 x) fl = app(3, x, JF]).

for o C {A, V, ->, >}. Now a straightforward induction on t and F will show:

Lemma 9.31 For all t, F, and /, /3 [t -- *t, #- [F]Vs+ F.

To make matters concrete, let us fix a signature Q1 = (C, F, R) with C = {a, b},
F = {f, g, h}, and 1Z = {P, Q, R}, where the arities of f, g, P and Q are 1, while those

of h and R are 2; and let us take V = {x 1, x 2, X3 ,... }, with the natural well-ordering

x1 -v x 2 -<v x3 ---. Then the reader will verify that, in any /3, the expression

A (R x1 a) (P x 2) (9.46)

will produce the formula R(xi, a) A P(x 2). (Recall that by virtue of the conventions

we laid down in Section 8.6.1, expression 9.46 is an abbreviation for

app(A, app(R, x 1, a), app(P, x 2)).

To conform with custom, in this section we will also use infix abbreviations for the

primitive functions A, V, =>, and '>, writing, for example, (Ei A E2) instead of the

usual s-expression abbreviation (A Ei E2). As usual, outer pairs of parentheses will

be omitted, so that 9.46, for instance, would be written in infix as (R x1 a) A (P x 2).)
But term and formula constructors are functions and can thus be applied to ar-

bitrarily complicated phrases, not just to constants; in practice this flexibility is very

useful. For instance, in any assumption base the expression

R ((A u. u) x 5) (let ind = a in ind)

Examples of Ap- systems384

will result in the atomic Q1-formula

R(x 5 , a).

A more useful example: when writing out formulas with many leading occurences
of the same quantifier, it is tiresome to write out each occurence separately. Instead
of writing, say,

(V x1) (V x2) (V x 3) (V x 4) F (9.47)

we would like to write something like

(V* [X1 ,X 2 ,X 3 ,X 4] F) (9.48)

where all the quantified variables are assembled together in a single list. In fact we can
express V* as a binary Ap-CD 1 function, in such a way that 9.48 will be a function
call that will produce the formula 9.47! Specifically:

V* = A var-list, F.
match var-list

v :: rest-vars ==> V v (V* rest-vars F)

Moreover, because the Ap-calculus is higher-order, term and formula constructors
can themselves become bound to identifiers and passed as arguments to functions or
methods, or be returned as the results of functions. For example, the expression

let neg=,
var = X8
Q =V

in

neg (Q ((A u.u) X8) (R var x 8))

will return the Q1-formula
-(V x8) R(Xs, x 8).

This also allows for remarkably expressive and succinct patterns. For instance,
the pattern P (h a var) will match the atomic formula P(h(a, x1)) with the binding
var - X1 , while the pattern

(V var (con (P var) (rel t (h a (fun var)))))

9.7 Natural deduction in the Ap-calculus, predicate case 385

Examples of Ap systems

will match the formula

(V xi) [P(xi) = R(xs, h(a, g(x 1)))]

yielding the bindings

var -* x1, con - ->, rel -* R, t - xs,fun F-- g.

This type of pattern matching is found in Athena (see the relevant discussion in
page 37).

Before continuing we should emphasize that the variables of V are constants in
Ap--CNAD1. This point is of critical importance, as most primitive functions (term
constructors, V, E, the function sub, etc.), as well as primitive methods such as uspec
and the special deductive form ugen, all rely on the ability to pass around and ma-
nipulate variables as raw data. This point also marks an essential difference between
Ap systems and Curry-Howard-based frameworks such as LF (where the variables of
the object logic are variables in the meta-logic), and has some interesting notational
consequences. For example, suppose again that V = {x1i, x2 , ... }. Then an expression
such as A x 2 . x 2 is syntactically invalid, since the variable x 2 E V is a constant, and a
constant cannot be used as the parameter of a A-abstraction (recall that constants c
are supposed to be syntactically distinct from identifiers I). In Athena the distinction
is made visually clear by fixing V to consist of all and only those expressions of the
form ?I, where, by fiat, no identifier can begin with ?.

9.7.4 Syntax sugar

The forms assume I = M in D, suppose-absurd M in D, and

suppose-absurd I = M in D

are introduced as syntax sugar in the manner of Ap-CNVDo. Additionally, we define
two new syntax forms

pick-any I1, . . . , I, in D (9.49)

and pick-witness I for E in D as syntax sugar; they mimic the corresponding con-
structions of first-order CNAD. For the former, let x 1,... , Xk be all and only the
variables that occur in D. Then 9.49 is taken as an abbreviation for the deduction

dlet Ii = fresh-var [X1, .. . , xk]

I2 = fresh-var [x1,... , ,I1]

386

9.7 Natural deduction in the Ap-calculus, predicate case

dmatch E
(3 v B) ==- dlet F = pick-any I in

assume {v '- I} B in
D

in
dmatch F

(V w (F1 ->F2)) =>

dlet G =!qs-axiom F = (E w (F1 -- F 2))
in

!mp (!mp G F) (3 v B)

Figure 9.9: The desugaring of pick-witness I for E in D.

I,= fresh-var [x 1 ,... , Xk ,I1, ... In1

in
ugen(I1, ugen(I2, . .. ,ugen(In, D) ---)

The following lemma shows that this desugaring captures the expected semantics of
pick-any:

Lemma 9.32 # - pick-any I1,... ,In in D -- + (V x1) (V x 2) ... (V Xn) F whenever

- D[x1,. ... , Xn/I1, . . . , In] -s+ F

for distinct variables x 1 ,... , x, that occur neither in D nor in FV(#).

Proof: Immediate by the semantics of ugen, fresh-var, and the desugaring of dlet. u

The desugaring of deductions of the form

pick-witness I for E in D (9.50)

is a bit trickier, but based on the same idea as the CND desugaring of pick-witness
in terms of pick-any and ex-elim given in page 235 (with qs-axiom here playing the
role of ex-elim). It appears in Figure 9.9. We state the following without proof:

387

388

Lemma 9.33 If # E -~* (3 x) F and

U {{x - z} F} H D[z/I]* G

whenever z does not occur free in 3 U {(3 x) F, G}, then

3 U {(3 x) F} I- pick-witness I for E in D -- G.

Let us work out a detailed example, with Q1 and V = {x1, x 2 ,... }. We will show
that

0 F- D - (V x1) [P(x1) A Q(x1)] = (V x1) P(x1)

where D is the deduction

assume F = (V x1) [P(x1) A Q(x1)] in
pick-any i in

!Ieft-and (!uspec F i).

Now D desugars into

Di = dlet F = (V x1) [P(x1) A Q(xi)]
in

assume F in
pick-any i in

!Ieft-and (!uspec F i)

and desugaring the dlet gives

D2= dapp(p F . assume F in
pick-any i in

!Ieft-and (!uspec F i),
(V x1) [P(x1) A Q(x1)]).

Finally, desugaring the pick-any yields

D3= dapp(p F. assume F in
dapp(pi .ugen(i, !left-and (!uspec F i)), (fresh-var [])),

(V x1) [P(x1) A Q(x1)]).

Thus our goal becomes to show

0 I- D 3 -- * (Vx1) [P(x1) A Q(x1)] =* (Vx1) P(x1) (9.51)

and we accomplish this with the following Ap-derivation. First, letting

D4= assume (Vxi) [P(x1) A Q(x1)] in
dapp(pi .ugen(i, !Ieft-and (!uspec (Vx1) [P(x1) A Q(x1)] i)),

(fresh-var []))
we have

Examples of Ap systems

9.7 Natural deduction in the Ap-calculus, predicate case

1. 0 D 3 -- +D 4 [R2].

Furthermore, letting 31 = {(V x1) [P(xi) A Q(xi)]}, we have

2. #1 F- (fresh-var []) -+ xi 6-rule

3 1 F- dapp(p i .ugen(i, !Ieft-and (!uspec (Vx1) [P(xi) A Q(x1)] i)), (fresh-var []))
dapp(p i.ugen(i,left-and (!uspec (Vx1)[P(x1)AQ(xi)] i)), xi) 2, [R6]

4. 1 F dapp(p i . ugen(i, !left-and (!uspec (Vx1) [P(xi) A Q(x1)] i)), xi)--
ugen(xi,!Ieft-and (!uspec (Vx1)[P(xi)AQ(x1)] x1)) [R2]

5. 1 F- dapp(p i . ugen(i, !left-and (!uspec (Vx1) [P(xi) A Q(x1)] i)), (fresh-var []))
ugen(x1, !Ieft-and (!uspec (Vx1) [P(x1) A Q(xi)] x 1)) 3, 4, [R11]

6. 31 F !uspec (V x1) [P(x1) A Q(xi)] xi -- + P(x1) A Q(x 1) S-rule

7. #1 U {P(x1) A Q(xi)} F !Ieft-and P(x1) A Q(xi) -- * P(x1) 6-rule

8. 31 F- !Ieft-and (!uspec (V x1) [P(xi) A Q(x1)] x1) -,+ P(xi) 6, 7, [R7]

9 1 F- ugen(xi, !left-and (!uspec (V x1) [P(xi) A Q(x1)] x1))
(Vx1) P(x1) 8, [ugen]

10 1 F- dapp(p i . ugen(i, !left-and (!uspec (V x1) [P(xi) A Q(xi)) i)), (fresh-var []))
(V xi) P(x1) 5, 9, [R11]

11. 0 F D4 - (Vx 1) [P(x1) A Q(xi)] = (Vx 1) P(x) 10, [assume]

12. 0 F D3 - (Vx 1) [P(xi) A Q(x1)] = (Vxi) P(x) 1,11, [R11]

which is precisely our goal 9.51.

9.7.5 Examples

We continue with a Ap-CKD1 deduction of the tautology

[(V xi) P(xi) A (V xi) Q(xi)] = (V x1) [P(xi) A Q(xi)]

where we again take Q1 as our signature and V = {x 1, x 2, ... }. This tautology was
proved in CNFD in Section 6.3. Compare that proof with the following one in Ap-CND1:

[(V x1) P(x 1) A (V xi) Q(x1)] => (V xi) [P(xi) A Q(x1)]

Proof:

assume H = [(V xi) P(xi) A (V xi) Q(x1)] in
pick-any i in

389

Examples of Ap systems

dlet S = ! uspec (!left-and H) i

S2 = !uspec (!right-and H) i
in

!both Si S2

or with annotated conclusions:

assume H = [(Vx1) P(x1) A (Vx1) Q(x1)] in
(Vx1) [P(xi) A Q(x1)] by pick-any i in

dlet S1 = (P i) by !uspec (left-and H) i
S2 = (Q i) by !uspec (!right-and H) i

in
(P i) A (Q i) by !both Si S2

The reader will observe that there is nothing special in the foregoing proof about
the relation symbols P and Q, or about their arity, or about the specific variable xi.
In other words, there is nothing special about the specific vocabulary: the signature
Q1 and the variables V = {x 1 , x 2 ,... }. The same reasoning could be applied to derive
the tautology

[(Vx) F1 A (Vx) F2] -> (Vx) [F1 A F2]

where F1 and F2 are any formulas, built over an arbitrary signature, and x is an
arbitrary variable. Accordingly, we inquire whether it is possible to write a method,
in strict style (see the discussion in page 348), that will take any given premise of
the form (Vx) F1 A (Vx) F2 , irrespective of the specific identity of F1, F2, and x, and
will reason as above in order to deduce the conclusion (V x) [F1 A F2]. The following
method accomplishes this:

m1 = P premise.

dmatch premise
(Vv F1) A (Vv F2) ==> pick-any i in

dlet Si = !uspec (!Ieft-and premise) i
S2= !uspec (!right-and premise) i

in
!both Si S2

This will work for any signature because v, F1, and F2 are Ap pattern variables that
will get appropriately instantiated depending on the specific input; the only constants
that are used are the primitive functions A and V. Schematically, we may depict the
"interface" of mi as follows:

390

9.7 Natural deduction in the Ap-calculus, predicate case 391

(Vx) F A (Vx) F2 i]

(Vx) [F1 A F 2]

Continuing in the same vein, we formulate methods that capture several useful
"derived" inference rules (most of these were proved hypothetically, as tautologies, in
C/D, Section 6.3, pages 167-173):

(] x) [F1 A F2] I2

(3 x) F1 A (3 x) F2

M 2 = p premise.
dmatch premise

I v (F1 A F2) =+ pick-witness w for premise in
dlet F = {v - w} (F1 A F2)

- = {v - w} F1 by !left-and F
Si = (3 v F1) by !egen (3 v F1) w
- ={vi-*w}F 2 by ! right-and F
S2 = (3 v F2) by ! egen (3 v F2) w

in
(3 v F1) A (3 v F2) by !both Si S2

(V x)-,-F in 3]

(Vx) F

M3= p premise.
dmatch premise

(V v -,-,F) ==> pick-any i in
!dn (!uspec premise i)

,1(3 x) F I4[mn4]

(Vx)-F

m4= y- premise.

dmatch premise
(3 v F) == pick-any i in

suppose-absurd {v - i} F in

392 Examples of AAL systems

!absurd (!egen (3 v F) i) premise

(Vx)-F

,-1(3 x) F
[m5]

m5 = p premise.

dmatch premise

(V v -iF) ==> suppose-absurd H = (3 v F) in
pick-witness w for H in

!absurd {v - w}F (!uspec premise w)

-(V x) F

(3 x) -,F
[m6]

M6 = 1 premise.

dmatch premise
-, (V v F) == dlet S = suppose-absurd H = - (3 v - F) in

!absurd (!m 3 (!m 4 H)) premise
in

!dn S

Notice how the construction of new methods is facilitated by the use of previously
defined methods; this drastically reduces the size of new methods. This is precisely
the sort of "abstraction" and "task decomposition" that we were talking about in the
introduction, and in Section 2.3.

(3 x) ,F

,1(V x) F
[m7]

m 7 = p premise.
dmatch premise

(3 v -i F) == suppose-absurd H = (V v F) in
pick-witness w for premise in

!absurd (!uspec H w) (-i{v F- w} F)

392 Examples of As systems

9.7 Natural deduction in the Ap-calculus, predicate case

(Vx) F

(3 x) F
[m8]

M8 = p prem'se.

dmatch premise
(V v F) ==- dlet S1 = suppose-absurd H = , (3 v F) in

dlet S 2 = (Vv - F) by !m 4 H
in

!absurd (!uspec premise v) (!uspec S2 v)
in

!dn Si

(V x) [F = G]

(Vx) F = (Vx) G

mg = p premise.
dmatch premise

(V v (F =-G)) => assume H = (V v F) in
pick-any i in

!mp (!uspec premise i) (!uspec H i)

(V x) [F = G]
(V x) F = (3 x)G

mio = p premise.

dmatch premise
(Vv (F => G)) =-> assume H = (V v F) in

!m 8 (!mp (!mg premise) H)

Note that mio abstracts over the CA/D deduction of

(V X) [PWx) > Q Wx)] [(V x) P (x) == (V X) Q(x)]

shown in page 172. The reader should observe how much smaller the present method
is, and more importantly, how the need for the informal directive "Insert the deduction
of (Vx) -,Q(x) form -(3x) Q(x)" is eliminated here thanks to method calls.

A more detailed, step-by-step version of mio, with annotated conclusions, attests
to the expressive versatility of Ap-CND1:

[mg]

[mio]

393

m10 = p premise.

dmatch premise

(V v (F =- G)) ==> assume H = (V v F) in

dlet Si = (V v F) =- (V v G) by !mg premise

S2 = (Vv G) by !mp Si H
in

(3 v G) by !ms S2

We conclude with a recursive method uspec* that takes a premise

(V X1) (V x2) -.-. (V Xn) F

with an arbitrarily long chain of n leading universal quantifiers, and a list of n terms

[ti, ... , ta], and derives the formula obtained by successively specializing x1 with ti,

x2 with t 2 , .. . , xn with tn:

uspec* = A F, term-list.

dmatch term-list

[] -- > !claim F
t :: rest-terms -4 ! uspec* (!uspec F t) more-terms

Our last example will be of a more conventional mathematical flavor: we will prove

that if a binary relation is irreflexive and transitive then it is also assymetric. The

formal definitions of these concepts are as follows:

R is irreflexive: (V x) -iR(x, x) (9.52)

R is assymetric: (V x) (V y) [R(x, y) -,R(y, x)] (9.53)

R is transitive: (V x) (V y) (V z) [R(x, y) A R(y, z) => R(x, z)] (9.54)

First let us see how we might go about this task informally.
Taking as working assumptions that R is irreflexive and transitive, we need to show

that for any a and b, if R(a, b) then -,R(b, a). Therefore, decomposing our task in a

top-down manner, we see that our proof must have the following structure:

pick any a, b
assume R(a, b)

D

where D is a deduction that must establish -R(b, a), and may freely use the assump-

tions that R is irreflexive and transitive, in addition to the hypothesis R(a, b). Our

task now has been reduced to discovering such a D.

Since the conclusion of D must be a negation (to wit, -,R(b, a)), and negations are

often introduced via reasoning by contradiction (suppose-absurd), we proceed by

taking R(b, a) as a hypothesis in the hope of discovering an inconsistency:

Examples of Ap systems394

9.7 Natural deduction in the Ap-calculus, predicate case

pick any a, b
assume R(a, b)

suppose, by way of contradiction, that R(b, a)

(i) From R(b, a), R(a, b), and the fact that R is transitive, we get R(b, b).

(ii) But R is irreflexive, hence we must have -R(b, b).
(iii) R(b, b) and -,R(b, b) constitute a contradiction-false!

Figure 9.10: An informal proof showing that if R is irreflexive and transitive, then it
is assymetric.

pick any a, b
assume R(a, b)

suppose, by way of contradiction, that R(b, a)
D'

and we are now left with the task of discovering a D' that manages to derive the
absurdity false on the basis of the current hypotheses. This is not difficult at all: by
the assumption of transitivity, the hypotheses R(b, a) and R(a, b) give R(b, b)-but this
contradicts the assumption that R is irreflexive. Thus the full proof takes the form
shown in Figure 9.10.

Naturally, this informal proof skips some "obvious" steps, involving mainly the
instantiation of the universally quantified statements 9.52-9.54 with the eigenvariables
a and b, and a bit of propositional reasoning. Consider inference (i), for example, which
purports to derive R(b, b) from

(A) R(b, a);

(B) R(a, b); and

(C) "the fact that R is transitive".

Formally, the phrase "the fact that R is transitive" boils down to no more and no less
than "the formula 9.54 is in the assumption base". To actually obtain the conclusion
R(b, b) from this along with (A) and (B), we need to instantiate the formula 9.54 three
successive times with x '-+ b, y '-* a, and z '- b to obtain

R(b, a) A R(a, b) -> R(b, b) (9.55)

then use A-introduction on (A) and (B) to get

R(b, a) A R(a, b)

395

(9.56)

Examples of Ap systems

and finally use Modus Ponens on 9.55 and 9.56. Similar manipulation must occur in
step (ii) with formula 9.52 and the eigenvariable b. Now in a formal proof these steps
must appear explicitly at some point, but they can be teased apart in separate and
clearly delineated parts so as not to obscure the main idea of the argument. We will
see that the abstraction mechanism of methods is ideal for such decomposition.

In order to arrive at the right abstractions, we analyze the informal proof in a
little more depth. Upon closer inspection, we see that what is really happening at
(i) is this: we are hiding all of the aforementioned details of instantiating 9.54 with
the appopriate eigenvariables, using A-introduction and Modus Ponens, etc., by tacitly
invoking a "derived" inference rule of the form:

R(tj t2) R(t2 1,t3) [transitivity]
R(ti, t3)

whenever R is transitive

that is presumed to "fill in" all those tedious details. Likewise, in (ii), we are tacitly
using a nullary rule of the form

[irreflexivity]
,'R(t, t)

whenever R is irreflexive.

All we do in (ii) is apply this rule with b in place of t. The responsibility of actu-
ally performing a specialization of the universal quantification 9.52 is relegated to the
internal workings of irreflexivity; all we need to do is invoke the rule.

Let us see now how we can transcribe these ideas into Ap-C'Di code. First we
observe that because atomic formula constructors can be passed around and manipu-
lated as data, we can abstract our main proof over R; we can then apply it to a specific
binary relation by passing it some particular constructor R. To illustrate this kind of
manipulation, consider the following function:

irreflexive = A R.
Vx-,(R x x)

This is a function that takes any given binary atomic formula constructor and produces
a formula (of course, since this is a function and not a method, the produced formula
does not have to be a logical consequence of the assumption base). For instance,
suppose that our signature contained a binary relation symbol L, so that we had a
binary primitive function L with the semantics

396

13 F app(L, ti, t2)~>- L(tjI, t2).-

9.7 Natural deduction in the Ap-calculus, predicate case

Then the function call app(irreflexive, L) would produce the formula (V x) -L(x, x).
Likewise, the functions

assymetric = A R.

V x 1 (V x 2 ((R x1 x2) - (R x2 Xi)))

and

transitive = A R.

V x1 (V x 2 (V x 3 (((R x1 x 2) A (R x 2 x 3))=- (R x1 X3))))

could be applied to, say L, to produce, respectively, the formulas

(V X 1) (V X2) [L (x 1, X2) ->L(X2, X 1)]

and
(V x1) (V x2) (VX 3) [L(xi, x2) A L(x 2 , X3) = L(x1, x3)].

The task before us, then, is to write a unary method prove-assymetric, that has
one parameter R, and which derives formula 9.53 whenever formulas 9.52 and 9.54
hold (are in the assumption base). Note that we are choosing to write the method in
"strict style", counting on 9.52 and 9.54 to be in the assumption base at the time of
invocation. Of course we could also write it in hypothetical style, by explicitly assuming
9.52 and 9.54; in that case the conclusion would be a more long-winded conditional to
the effect that "if 9.52, then if 9.54, then 9.53"; see page 348 for the pros and cons of
each alternative.

Now, following our analysis above, suppose we have a binary method transitivity
that takes two premises of the form R(ti, t2) and R(t 2, t3) and, on the assumption that
9.54 holds, derives R(ti, t); and a binary method irreflexivity that takes an atomic
binary constructor R and a term t and, on the assumption that 9.52 holds, derives the
formula -,R(t, t). Then we can express prove-assymetric as follows:

prove-assymetric = y fR.
pick-any a, b in

assume (fR a b) in
suppose-absurd (R b a) in

diet S = (fR b b) by ! transitivity (fR b a) (fR a b)
S'=, (R b b) by ! irreflexivity R b

in
!absurd S S'

The reader should compare this with the informal proof in Figure 9.10.
The methods transitivity and irreflexivity that perform the tedious quantifier ma-

nipulations and the propositional reasoning we discussed earlier are written as follows:

397

transitivity = p premise1 ,premise2 .
;; This method takes two premises of the form R(ti, t 2) and R(t 2, t),

;; where (V x) (V y) (V z) [R(x, y) A R(y, z) => R(x, z)] is assumed to hold, and
;; derives the conclusion R(ti, t3)-
dmatch [premisei, premise2]

[(R t1 t2), (R t2 t3)] -=*
diet S 1 = V* [x 1 , x 2 , X 3] ((R x 1 x 2) A (R x 2 x 3) = (R x 1 x 3))

by !claim (transitive R)

S2 = ((R ti t 2) A (R t 2 t 3)) => (R ti t3) by !uspec* Si [t, t2 , t6
in

(R ti t3) by !mp S2 (!both premise1 premise2)

irreflexivity = p R, t.
;; This method takes (1) a binary atomic formula constructor R

;; such that (V x) -,R(x, x) is assumed to hold, and (2) a term t,
;; and derives -R(t, t).
dlet S = V x1 - (R x1 x1) by !claim (irreflexive R)

in
!uspec S t

For instance, with L as described earlier and

0 = {(Vx1) -L(xi, xi), (V xi) (V x2) (VX 3) [L(xi, x2) A L(x2, X3) = L(xi, X3)]}

the reader will verify that

0 - !prove-assymetric L -- (V x1) (V x 2) [L(xi, x 2) = -iL(x2, Xi)].

9.7.6 Ap-CKD1 as a foundation for first-order theories

Ap-CND1 allows for first-order natural deduction, and as such it is a fundamental

system. Many well-known theories can be cast in this framework, simply by fixing

a signature and specifying either an appropriate set of axioms #o or a collection of

primitive methods. By "postulating a set of axioms 0o" we simply mean that we

intend to evaluate deductions only in supersets of 0o; that is, we restrict attention

to assumption bases that contain the sentences of po. Put differently, we take the

members of 0 as "given".

By and large, the two approaches are equivalent. For instance, in Peano arithmetic

we could either take the formula

(V n) (V m) s(n) = s(m) = n = m

Examples of Ap systems398

(9.57)

9.7 Natural deduction in the Ap-calculus, predicate case

as an axiom, or, alternatively, cast it as a primitive method that takes two arbitrary
terms ti and t 2 such that s(ti) = s(t 2) holds and produces ti = t 2 . This is the strict
version of the method. A hypothetical version is also possible that would take ti and
t2 and would output the conditional s(ti) = s(t 2) => ti = t 2. The two versions are
equivalent, in the sense that either method is expressible in terms of the other, owing
to assume and mp. And both methods are equivalent to taking 9.57 as an axiom,
since if we assume that every assumption base contains 9.57 then it is trivial to write
either of the two methods, thanks to uspec and mp. And conversely, if we have either
method then we can easily write a pick-any deduction that will derive 9.57.

However, primitive methods are more powerful than axioms on account of their
"input/output" capability. Take induction in Peano arithmetic, for instance. This
could be easily captured by a primitive method that took two premises of the form
{n '-* 0} F and (Vn) (F = {In '-4 s(n)} F) and generated the formula (Vn) F. With-
out methods, we would have to cast it as an axiom schema, which would essentially
translate into an infinite (but recursive) assumption base.

We emphasize, however, that the underlying machinery of Ap-CD 1 would re-
main the same from theory to theory. In particular, all of the primitive methods of
Ap-CND1 (dn, mp, both, left-either, uspec, egen, etc.), both of its special deductive
forms (assume and ugen), and, a fortiori, all of the forms we introduced as syn-
tax sugar (pick-any, pick-witness, suppose-absurd, etc.), as well of course as the
core syntax and semantics of the Ap-calculus (method abstraction and application,
etc.) would carry over unchanged. The only new thing would be the signature and a
collection of axioms and/or primitive methods.

For instance, if we fix the signature Q = (C, F, R) to be C = {}, F = {s, +, -},
and R = {~}, with unary s and binary +, -, and ~, and we take any set of variables
V we please, then we have the language of TEL, Chapter 2. If we also introduce ten
primitive methods ref, sym, tran, id, +cong, -cong, com, inv, +assoc, + - assoc with
semantics

0 H dapp(ref, t) --+ t t

{ti ~ t2 } F dapp(sym, ti ~ t2) - t

{ti ~ t2, t2 ~ t3} H dapp(tran, ti ~ t2 , t2 ~ t3) - t ~
0 H dapp(id, t) -- * t + 0 ~ t

{ti ~~ t2, t' ~ t'} dapp(+cong, ti ~ t 2 , t' ~ t') - ti + t' ~ t2 + t2

{ti ~ t2, l ~ t'} H dapp(-cong, ti ~ t 2, t' ~ t') -ti - t', t2 - t2
0 1 dapp(com, t1 , t2) -- ti + t2 ~ t 2 + ti

0 H dapp(inv, t) -- t - t ~ 0
0 F dapp(+assoc, t1 , t 2 , t3) - (ti + t2) + t3 ~ ti + (t 2 + t3)

399

400 Examples of Ap systems

0 F dapp(+assoc, t1, t2 , t3) -'- (t1 + t 2) - t3 ~ t 1 + (t 2 - t3)

(where here we speak of "terms" t rather than "expressions" e) then we have the
complete logic TL. The mechanisms for method abstraction, reasoning with universal
quantifiers, etc., are all inherited from ApN-C'D 1 . The reader should now be able to
make perfect sense of the details of our discussion in Section 2.3, and in particular of
the diplays in Figure 2.7, Figure 2.8, and Figure 2.9.

Appendix A

Herbrand terms

In this chapter we present some basic material on Herbrand terms. The terminology
and notation that we introduce here are used in our discussion of first-order systems
(Chapter 6, Section 9.7, and Section 9.5), as well as in our treatment of unification in
Section 9.6.

A.1 Basic concepts

By a term signature we will mean a pair E = (C, F) consisting of a set C of constant
symbols and a disjoint set F of function symbols, where each f E F has a unique
positive integer n associated with it and known as its arity. We write Eo for C and
En for the set of all function symbols in F that have arity n. We also assume the
existence of a set of variables V, disjoint from C and F. Although no such restriction
is necessary in general, in this document we require V to be countable. We will use the
letters x, y, and z as typical variables; the letters a, b, and c as constant symbols; and
the letters f, g, and h as function symbols. A pair (E, V) consisting of a signature E
and a set of variables V will be called a term vocabulary.

Fix a term vocabulary (E, V). The set of Herbrand terms over E and V (or simply
"terms over E and V") is defined as follows:

" every variable x E V is a term over E and V;

e every constant symbol c E Eo is a term over E and V; and

* if f E En and t 1, . . . , tn are terms over E and V, n > 0, then f(ti,... , t) is a
term over E and V.

Terms of the form f(ti,... , tn) are called applications. We say that f is the top (or
root) function symbol of such a term, and that t1 , . . . , tin are its children. We write

402 Herbrand terms

Terms(E, V) for the set of all terms over E and V. The letters s and t will range over
terms.

As an example, consider E = ({0}, {s, plus, times}), where the arity of s is one,
the arity of plus is two, and the arity of times is also two. Let V = {x, y, z}. Then
0, plus(x, s(0)) and times(plus(s(0), 0), s(s(0))) are all terms over E and V.

Subterms are defined recursively: every term is a subterm of itself; and t is a
subterm of f (ti, . . . , t,,) whenever it is a subterm of some ti.

We frequently use the principle of structural induction to prove that a certain claim
holds for every t E Terms(E, V). This generally involves three steps: proving that the
claim holds for every variable; proving that it holds for every constant symbol; and
proving that it holds for every application f(t 1 , . . . , t,,) on the assumption that it holds
for ti, ... , i, (this assumption is the "inductive hypothesis"). Structural induction is

merely a stylistic variation of mathematical induction on the natural numbers, as every

argument of the above form could also be cast as a conventional inductive argument
on the height of a term. Nevertheless, structural induction is more convenient and is
usually preferred over its standard counterpart.

Moreover, because terms are freely generated by the above inductive definition
(indeed, Terms(E, V) is the paradigmatic free algebra) we are allowed to give recursive
definitions of functions on terms by pattern-matching against the three clauses of the
definition. As a first example, let Var(t) be the set of variables that occur in a term
t; e.g., Var(plus(0, y)) = {y}. We can recursively define this as a function Var from
Terms(E, V) to the power-set of V with the following equations:

Var(x) = {x}

Var(c) = 0
n

Var(f(ti, ... ,t n)) = Var(ti)
i=1

As another example, we define the size of a term t, denoted SZ(t), as follows:

SZ(x) = 1
SZ(c) = 1

n

SZ(f(ti,... ,tn)) = 1 + SZ(ti)
i=1

The height of a term is yet another example of a quantity that can be defined in a

similar recursive manner: the height of a variable or constant symbol is zero, while
that of an application is one more than the height of the tallest child. Formally, the
legitimacy of such function definitions is ensured by the well-known theorem asserting

that if A is an algebra that is freely generated by a set X, then any mapping from X
to a similar algebra B can be uniquely extended to a homomorphism from A to B [69].

If a term t contains no variables (i.e., Var(t) = 0) we say that t is a ground or
closed term. Non-ground terms are called open. We write Terms(E) for the set of all
ground terms over E. Accordingly, Terms(E) = Terms(E, 0).

We define TDom(t), the domain of a term t, as a set of lists of positive integers:

TDom(x) = {[]}
TDom(c) = {[]}

TDom(f (ti, ... , tn)) = {[]} U {i::p I p E TDom(ti), i = 1,... , n}

Every list p E TDom(t) represents a position (or address): a sequence of positive
integers such as [2, 1, 3], indicating the path that one must follow in order to get from
the root of the term to the root of a certain subterm [21].1 These positions can be
very helpful in identifying different parts of a term. Specifically, we define a function
TLabel that takes a term t and a position p E TDom(t) and produces whatever "label"
(symbol or variable) appears in that position. The precise definition is:

TLabel(x,[]) = x

TLabel(c,[]) = c

TLabel(f(ti,... ,tn),[]) = f
TLabel(f (ti, , t), i::p) = TLabel(ti, p) (for i E {1, ... , n}).

Owing to the free generation of terms and lists, a straightforward induction on t will
show that TLabel(t, p) is unique and well-defined for all p E TDom(t). The value of
TLabel(t, p) for p g1 TDom(t) is left unspecified. (An implementation might report an
error in such cases to indicate that an invalid position was given.)

Finally, for any p E TDom(t), we define the subterm of t at position p, denoted t/p,
as:

t/[] = t

f(ti, . .. ,)/i::q = ti/q.
1Observe that TDom(t) is upwards-closed, meaning that if pi D P2 E TDom(t) then pi E TDom(t);

and left-closed, meaning that if p E [n] E TDom(t) then p e [i] E TDom(t) for all i < n. We could
alternatively define Herbrand terms as arity-respecting functions from upwards- and left-closed sets of
lists of positive integers to CUFUV, which is the course taken by Gallier [27], Courcelle [21], and others,
and which would essentially identify a term t with the function A p. TLabel(t, p). Such definitions are
more abstract than ours, since they avoid concrete-representation details such as parentheses and
commas, but both approaches give rise to isomorphic term algebras and thus the differences are
inessential.

A.1 Basic concepts 403

A.2 Substitutions

Let (E, V) be a term vocabulary. A (E, V)-substitution (or simply "substitution" when
the reference to the vocabulary is not necessary) is a function 0 : V -> Terms(E, V)
that is the identity on all but finitely many elements of V; that is, 0(x) $ x only for
finitely many variables x E V. The finite set comprised by these variables is called the
support of 0, and will be denoted by Supp(0); that is, Supp(0) = {x E V I 0(x) # x}.
In addition, we define

RanVar(0) = U Var(0(x)).

xESupp(0)

The letters 0, o-, and r will be used to denote substitutions.
Since a substitution 0 is completely determined by its restriction to its support,

it is customary to identify 0 with the finite set {(x 1 , (x 1)), ... , (Xk, (4))}, where

{x 1 ,... , Xk} = Supp(0). We will use the more suggestive notation

{Xi F-- ti, ... , xk - tk }

to represent the substitution that maps each xi to tj and every other variable to itself.
We write {} for the substition that has an empty support, that is, the identity function
on V. We call this the empty substitution.

Any substitution 0 V -> Terms(E, V) can be uniquely extended to a function

0 : Terms(E, V) -> Terms(E, V)

as follows:

0(x) = 0(x)
0(c) = c

O(f(ti, . .. ,tn)) = f(O(tli,... , 0(tn)).

Computing 6(t) is known as applying the substitution 0 to t. For instance, if 0 is the
substitution {x '-* s(O), y F-- z} and t is the term f(z, x, y) then applying 0 to t yields

the term f (z, s(O), z). In symbols, 0(f (z, x, y)) = f (z, s(O), z). The reader familiar
with universal algebra will recognize 0 as the unique homomorphic-and in this case,
endomorphic-extension of the mapping 0 : V -+ Terms(E, V) to the term algebra
Terms(E, V).

For notational convenience, we sometimes write 0 t as an abbreviation for 6(t).

E.g., the expression {x -* s(0)} f(x, x) will stand for f(s(0), s(0)), the term obtained

by applying {x + s(O)} to f(x, x). Note that some authors prefer to use postfix
notation for substitution application, writing t 0 where we write 0 t.

Herbrand terms404

A.2.1 Composing substitutions

Substitutions are functions from V to Terms(E, V), and thus the composition a - T
is not well-defined. However, -6. T is well-defined, and this is in fact how we define
the "composition" of a and T. Formally, we define a binary operation o on the set of
all (E, V)-substitutions as o- O T = T-r, and we call o 0 T the composition of o- and T.
That is, -0 T is the function A x E V. 3(T(x)). This function is clearly a substitution
(has finite support) since for all x outside Supp(-) U Supp(r) we havea T(X) = X,
which proves that o is indeed an operation. Further, a simple induction will show
that o a T =-U - T, which justifies naming this operation "composition". It is also
straightforward to verify that the set of all substitutions forms a monoid under this
operation, with the empty substitution serving as the identity element. We conclude:

Lemma A.1 For any substitutions 0, o,T:

(a) o-9 o = - T;

(b) {} o 0 = 0 o {} = 0;

(c) ao(o-rT)=(Oo-)oT.

In analogy with customary function composition, we define the powers of a substitution
O as 90 = {}, gi+1 = 0 o 6'.

A substitution 6 is called idempotent iff 6 = 02, i.e., iff 9(x) = 9(9(x)) for all
x E V. Idempotent substitutions are nice because they yield a final result with only one
application-once we have applied an idempotent substitution to a term, reapplying
it will not give us anything new: 0(0(t)) = 9(t). Contrast this with a non-idempotent
substitution such as a = {x - f(y), y '-* a}. Applying a to, say, g(x), yields g(f(y)).
But this can be viewed as an "incomplete" result in that it contains y, which a maps
to a. Thus if we apply a once more we get another term, g(f(a)). This term can be
seen as the final result in the sense of being a fixed point of i; because it does not
contain any variables in the support of a, if we apply a to it again we will not get
anything new. Thus we see that a required two applications to give a final result. By
contrast, idempotent substitutions reach a fixed point with just one application. The
following result furnishes a simple mechanical test for detecting this property:

Lemma A.2 9 is idempotent iff Ran Var(9) n Supp(9) = 0.

A.2.2 Comparing substitutions

Let o and T be two substitutions and let X C V. We say that o and T are equal over
X, written o = T[X], iff o(x) = T(x) for all x E X. When X = V we simply write

A.2 Substitutions 405

U = T. We say that o- is less general than T over X, or equivalently, that r is more
general than o over X, written o < r[X], iff there is a substitution 0 such that for all

x E X, o(x) is a 0-instance of T(x), i.e., such that -(x) = 6(r(x)) for all x E X. We
can phrase this more succinctly as follows: U < T[X] iff there is a substitution 0 such
that o- = 0 o r[X]. Again, when X = V we simply write o- T and say that o is less

general than T.

As an example, let o- = {x f(g(a))} and r = {x " f(y)}. Then o- T[{X}], i.e.,
T is more general than o over {x}, because u(x) = f (g(a)) is an instance of T(x) = f (y)
under the substitution {y F-+ g(a)}. However, T is not more general than - over {x, y}.

To see this, observe that for any substitution 0 for which o = 0 T r[{X, y}], we must have
0(y) = g(a). (Proof: If o- = 0 0 T[{x, y}] then o-(x) = 0 T(x), hence U(x) = 6(r(x)),
hence

f (g(a)) = (f (y)) = f ((y)) = f (O(y))

hence 0(y) = g(a).) But then 0 o r(y) = 0(T(y)) = O(y) = 0(y) = g(a), whereas

o(y) = y. Thus o-(y) # 0 o T(y), and consequently, U # 0 o T[{X, y}], contradicting the
assumption a = 0 0 Tr[{X, y}]. In fact, by the same reasoning, r fails to be more general
than a over any set of variables that includes both x and y.

The reader will verify that < is a quasi-order:

Lemma A.3 < is a quasi-order. In particular, 0 < 0[X]; and 01 03 [X| whenever

01 02[X] and 02 03 [X].

We define as the symmetric closure of <: 01 02 [X] iff 01 02 [X] and 02 5 01 [X].
Clearly, - is an equivalence relation. Moreover, because 01(x) and 02(x) are instances
of each other (for all x E X), Theorem A.5 below tells us that 61(x) and 02 (x) are literal
variants. This means that 01 can be obtained from 02 via a renaming, and vice versa;
i.e., if 01 - 02[X] then there are renamings o-, a' such that 01 = O- 00 2 and 02 = o' o 01.

(We cover renamings in the next section.) For this reason we may regard 01 and 02 as
identical.

A.3 Patterns and matching

A term that contains variables can be viewed as a pattern. The variables act as place
holders or "empty boxes" that may be filled with arbitrary terms, provided that the
same term is consistently substituted for all different occurences of the same variable.
Inserting terms in place of the variables yields instances of the pattern. Accordingly,
this process is known as instantiating the pattern. For example, one instance of the
term plus(O, s(x)) is plus(O, s(times(O, y))), which is obtained by putting times(O, y) in
place of the variable x.

Herbrand terms406

More formally, given two terms s, t E Terms(E, V), we call s an instance of t (and
in particular, a ground instance if s happens to be ground) iff there is a substitution
0 such that s = 9(t). We then write s < t and say that s has the form of t, or that it
matches t under the substitution 9. The latter is called a match from t to s. We also
say that t is more general than s, or that it subsumes s. For this reason, < is often
called the subsumption relation.

Lemma A.4 The subsumption relation is a quasi-order.

Proof: Reflexivity follows immediately in virtue of the empty substitution. For tran-
sitivity, suppose that s1 s2 via a and S2 < S3 via r. Then o- o T(s 3) = 3(S2) = ,
hence si matches S3 under the composition a o T. N

Theorem A.5 below will show that the equivalence relation induced by < captures
the identity of patterns. That is, if two terms are instances of each other then they
represent the same pattern.

The subsumption relation is decidable. Specifically, there is an efficient algorithm
for solving the following problem: given s and t, determine whether s is an instance
of t, and if so, produce a matching substitution 9 such that s = 9(t). The algorithm
in question is linear in the height of the pattern t, and this is what makes first-order
pattern matching so expedient. Both matching and the related problem of unification
are substantially more involved in the higher-order case.

A.3.1 Renamings

Consider the terms s = f(x, g(y, x)) and t = f(z, g(w, z)). It is clear that these two
terms represent the same pattern. They only differ in the names of their variables: t
uses z and w where s uses x and y, respectively. We say that s and t are literal variants
of each other. This relationship is formalized via the notion of renaming substitutions.

A substitution is a renaming iff it is of the form

{Xi X I X, . .. , Xn '-+X

where {x', . . . , x'} = {x1, ... , x,}; i.e., iff it is a permutation of its support, and by
extension, a permutation of the entire set of variables V. For example,

01 = {x '-* y, y '-- z, z F- x}

is a renaming, but neither 02 = {x '-f y} nor 03 = {x '-+ y, y - z} are. Intuitively, a
substitution is a renaming iff applying it to an arbitrary term t will yield a term t' that
represents the exact same pattern that t does. E.g., applying 01 above to f(x, y, x)

A.3 Patterns and matching 407

gives f(y, z, y), which is the same pattern. But applying, say, 62 to f(x, y) gives f(y, y),
which is a different pattern.

We now formally define a term t to be a literal variant (or simply a "variant") of a
term s iff t = 0(s) for some renaming 0. Observe that because every permutation has an
inverse, this is a symmetric relation: if t is a literal variant of s then s is a literal variant
of t . E.g. the inverse of 61 = {x F-- y, y F- z, z -* x} is 01- 1 = {x - z, y - x, z - y}.

Thus, since f (x, y, x) is a literal variant of f (y, z, y) via 01, f (y, z, y) is a literal variant
of f(x, y, x) via 6 1. We will write s t to indicate that s and t are literal variants.
We call e the relation of "alphabetic equivalence" on Herbrand terms, and if s t,
we say that s and t are the same "up to renaming".

As one would expect, e is an equivalence relation. It can be viewed as the equality
relation on patterns. That is, if s t then s and t represent the same pattern. We
have already discussed symmetry. Reflexivity follows by virtue of the empty renaming
{}; and transitivity from the fact that renamings can be composed (although this is
not quite trivial to prove). However, a more informative way of showing a to be an
equivalence relation is to point out that it is the symmetric closure of the subsumption
relation, which we already know to be a quasi-order:

Theorem A.5 Two terms are literal variants iff each is an instance of the other. In
symbols, s t iff s < t and t < s.

Herbrand terms408

Appendix B

CAD

In this appendix we give rigorous definitions of some CND notions that were either
omitted or only described informally in the body of the document.

B.1 Propositional CND
We define DDom(D), the domain of a deduction D, as follows:

DDom(P)

DDom(Rule P1, . .. , P,)
DDom(assume P in D)

DDom(D1; D 2)

= {[]}
= {}U { [1],... , [n]}
= {[]} U { [1]} U { 2::p I p E DDom(D)}

= { }U{1::p I p E DDom(D1)} U { 2::p I p E DDom(D2)}

We can now define a function DLabel that takes a deduction D and a "position"
p E DDom(D) and returns whatever part of D appears there:

DLabel(P,H)
DLabel(Prim-Rule P1,.... , Pn,)

DLabel(Prim-Rule P1,... , Pn, [i])
DLabel(assume P in D, H)

DLabel(assume P in D, [1])
DLabel(assume P in D, 2::p)

DLabel(D1; D 2 , n)

DLabel(DI; D2 , 1::p)
DLabel(D1; D2, 2 ::p)

P
Prim-Rule

P (for i = 1, ... , n)
assume

P
DLabel(D, p)

DLabel(D p)
DLabel(D2 , p)

We say that a deduction D' occurs in D at some p E DDom(D) iff DLabel(D', q) =
DLabel(D,p E q) for every q E DDom(D'). By a subdeduction of D we will mean

410 CAD

any deduction that occurs in D at some position. We define a thread of D as any
subdeduction of D of the form Di; D2 ; ... ;Da;Dn+1 , n > 1.1 We call D 1,... ,Dn
the elements of the thread. For each i = 1, ... ,n, we say that Di dominates every

D,, i < j < n + 1; and we call D 1,... , Dn the dominating elements of the thread.
In general, we say that a deduction D' dominates a deduction D" in D iff there is a

position p E DDom(D) and a non-empty list q = [2, ... , 2] (i.e., q is a list of one or
more 2s) such that

1. DLabel(D,p) =;

2. D' occurs in D at p ED 1]

3. DLabel(D, p E q') =; for every prefix q' ; q

4. D" occurs in D at p D q e [1].

Clearly, the dominance relation imposes a total ordering on the elements of a thread.
Next, let p E DDom(D). We will say that p is a trailing position (or conclusion

position) in D iff there is no q E DDom(D) such that DLabel(D, q) =; and p = q E [1].
It follows that a subdeduction of D occurs in a non-trailing position in D iff it is a
dominating element of some thread of D.

Recall from Sec. 4.2 that a CA/D deduction is well-formed iff every primitive subde-
duction of it has the right number and form of arguments. Here this is formally defined
via rules that establish judgements of the form -w D, asserting that D is well-formed.
For primitive deductions we have the following axiom schemas:

F- w modus-ponens P =4 Q, P I- w modus-tollens P => Q, -,Q

w both P, Q f w left-and P A Q -w right-and P A Q

V w left-either P, Q I- w right-either P, Q

F w constructive-dilemma Pi V P2 , Pi > Q, P2 =* Q

Sw equivalence P > Q, Q =- P F w absurd P, -,P

- w double-negation -- P k w left-iff P * Q F w right-iff P #> Q

1 0r more precisely, recalling that composition associates to the right, as any subdeduction of the
form D 1 ; (D 2 ; .- ; (Dn; Dn+1) -..)-

For non-primitive deductions we have:

_w D FwDi FwD 2

Hw P w assume P in D F w Di; D2

The conclusion C(D) of a well-formed primitive deduction D is defined as:

C(modus-ponens P => Q, P) = Q
C(modus-tollens P =4 Q, -,Q) = -,P

C(double-negation ---,,P) = P
C(both P, Q) = PAQ

C(left-and P A Q) = P
C(right-and P A Q) = Q
C(left-either P, Q) = P V Q

C(right-either P, Q) = PVQ
C(constructive-dilemma Pi V P2 , Pi => Q, P2 = Q) = Q

C(equivalence P => Q, Q => P) = P Q
C(left-iff P < Q) = P= Q

C(right-iff P 4 Q) = Q= P
C(absurd P, -,P) = false

For non-primitive deductions we have:

C(P)= P
C(assume P in D) = P = C(D)

C(D1; D 2) = C(D 2)

Finally, we define the auxiliary function do-prim-rule used by the interpeter Eval
(Fig. 4.4) as do-prim-rule = f, where

f(modus-ponens, [P - Q, P], # U {P -> Q, P}) = Q
f(modus-tollens, [P => Q, -,Q], / U {P => Q, -Q}) = 7P
f(double-negation, [-P], u {,--P}) = P
f(both, [P, Q], # u {P, Q}) = P A Q
f(left-and, [P A Q], /3 U {P A Q}) = P
f(right-and, [P A Q], # U {P A Q}) = Q
f(constructive-dilemma, [Pi V P2 , Pi => Q, P2 -> Q], # U {Pi V P2 , P -> Q, P2 -> Q}) = Q
f(left-either, [P, Q], / U {P}) = P V Q
f(right-either, [P, Q], / U {Q}) = P V Q
f(equivalence, [P -> Q, Q --> P], # u {P = Q, Q P}) = P < Q
f(left-iff, [P < Q], 0 U {P < Q}) = P --> Q
f(right-iff, [P # Q], # U {P < Q}) = Q -> P
f(absurd, [P, -,P], / U {P, -P}) = false

B.1 Propositional CN1D 411

CN'D

f (_, -, -) = error

The last clause dictates that an error must occur if the list of arguments supplied to
f does not match any of the preceding patterns.

B.2 Predicate CAD

B.2.1 Formulas

For any formula F, we define FDom(F)-the domain of F-as a set of positions (lists
of positive integers), similarly to the definition of TDom in Appendix A:

FDom(R(ti,... , n))

FDom(-,F)

FDom(F o G)

FDom((Q x) F)

= {[]} U {i::p I p E TDom(tj), i = 1, ... ,n}

= {[]} U {1::p I p E FDom(F)}

= {[]} U {1::p | p E FDom(F)} U {2 ::p I p E FDom(G)}

= {[], [I]} U {2::p I p E FDom(F)}

for o E {A, V, ->, 4>}, Q E {V, 3}. Continuing the analogy, we define a binary function
FLabel that takes a formula F and a position
datum occurs there:

FLabel(R(ti,... , tn), [])
FLabel(R(t1,... ,tn), i::p)

FLabel(-,F, [])
FLabel(-,F, 1::p)
FLabel(F o G, [])

FLabel(F o G, 1::p)
FLabel(F o G, 2::p)
FLabel((Q x) F, [)

FLabel((Q x) F, [1])
FLabel((Q x) F, 2::p)

p E FDom(F) and returns whatever

=R

= TLabel(ti, p)
= ,1

= FLabel(F,p)
= a

= FLabel(F, p)

- FLabel(G, p)

=Q
= x

= FLabel(F,p)

An occurence of a term t in a formula F is a position p E FDom(F) such that
TLabel(t, q) = FLabel(F, p E q) for all q E TLabel(t). If such an occurence exists we
say that t occurs in F (at position p). Likewise, by an occurence of a formula G in F

we will mean a position p E FDom(F) such that

FLabel(G, q) = FLabel(F, p E q)

for all q E FLabel(G); and we say that G occurs in F at p to mean that p is such an

occurence. A subformula of F is any formula that occurs in F at some position.

412

A variable x occurs bound in F at position q iff there is a prefix p E: q and a quantifier
Q such that FLabel(F, p) = Q and FLabel(F, p @ [1]) = x; x occurs free in F at q iff it
does not occur bound in F at q. By a bound (free) occurence of x in F we will mean
a position p E FDom(F) such that x occurs bound (free) in F at p. We write BV(F)
(FV(F)) for the set of all variables that occur bound (free) in F at some position,
and we set Var(F) = BV(F) U FV(F). The definitions of these three sets are readily
generalized to arbitrary sets of formulas; e.g., for any 4 C Form(Q, V) we set

FV(Q)= U FV(F)
FE4b

and likewise for BV() and Var(f).

B.2.2 Deductions

The domain of a deduction D, denoted DDom(D), is defined as a set of lists of positive
integers ("positions"), in a manner similar to the definition of TDom and FDom:

DDom(F)
DDom(Prim-Rule F1,... , F,)
DDom(specialize F with t)

DDom(ex-generalize F from t)
DDom(assume F in D)

DDom(D1; D 2)
DDom(pick-any x in D)

DDom(pick-witness x for F in D)

FDom(F)

{[]} U {i::p I p E FDom(F), i = 1,... , n}
{[]} U {1::p | p E FDom(F)} U {2::p | p E TDom(t)}
{[]} U {1::p | p E FDom(F)} U { 2 ::p I p E TDom(t)}
{[]} U {1::p | p E FDom(F)} U {2::p I p E DDom(D)}
{[]} U {1::p I p E DDom(D1)} U {2::p I p E DDom(D2)}
{[], [1]} U {2::p I p E DDom(D)}
{[], [1]} U { 2 ::p | p E FDom(F) U { 3 ::p I p E DDom(D)}

Next we define a function DLabel that does for deductions what TLabel and FLabel
do for terms and formulas, respectively:

DLabel(F, p)
DLabel(Prim-Rule F1 ,... , Fn, [)

DLabel(Prim-Rule F1 , ... , Fn, i::p)
DLabel(specialize F with t, [])

DLabel(specialize F with t, 1::p)
DLabel(specialize F with t, 2::p)

DLabel(ex-generalize F from t, [)
DLabel(ex-generalize F from t, ::p)
DLabel(ex-generalize F from t, 2::p)

DLabel(assume F in D, [)
DLabel(assume F in D, ::p)
DLabel(assume F in D, 2 ::p)

FLabel(F, p)
Prim-Rule

FLabel(Fi, p)
specialize
FLabel(F, p)
TLabel(t, p)
ex-generalize
FLabel(F, p)
TLabel(t, p)
assume
FLabel(F, p)
DLabel(D, p)

B.2 Predicate C'D 413

414 CHD

DLabel(D1; D 2 , [])
DLabel(D1; D2 , 1::p)
DLabel(DI; D2, 2 ::p)

DLabel(pick-any x in D, [])
DLabel(pick-any x in D, [1])

DLabel(pick-any x in D, 2::p)
DLabel(pick-witness x for F in D, [])

DLabel(pick-witness x for F in D, [1])
DLabel(pick-witness x for F in D, 2::p)

DLabel(pick-witness x for F in D, 3 ::p)

DLabel(Di, p)
DLabel(D2 , p)
pick-any
x
DLabel(D, p)
pick-witness

x
FLabel(F, p)
DLabel(D, p)

An occurence of a term t in a deduction D is a position p E DDom(D) such that

TLabel(t, q) = DLabel(D, p E q) for all q G TDom(t); if such an occurence exists we say

that t occurs in F (at position p). Likewise, by an occurence of a formula F in D we
will mean a position p E DDom(D) such that FLabel(F, q) = DLabel(D, p E q) for all

q E FDom(F); and we say that F occurs in D at p to mean that p is such an occurence.
Finally, an occurence of a deduction D' in D is a position p E DDom(D) such that
DLabel(D', q) = DLabel(D, p E q) for all q E DDom(D'). If such an occurence exists

we say that D' occurs in D, and we refer to D' as a subdeduction of D. The size of a
deduction D, denoted SZ(D), is defined as the cardinality of the set DDom(D).

There are two ways for a variable occurence to be bound in a first-order CN/D
deduction: through a quantifier, or through pick-any or pick-witness. Specifically,
an occurence q of a variable x in D is quantifier-bound iff there is a prefix p E q
and a quantifier Q such that DLabel(D, p) = Q and DLabel(D, p @ [1]) = x. An
occurence of x that is not quantifier-bound is said to be an eigenvariable occurence

(or "eigenbound") iff there is a prefix p E- q such that (a) DLabel(D, p) = pick-any
or DLabel(D, p) = pick-witness; and (b) DLabel(D, p G [1]) = x. A free occurence
of x in D is one that is neither quantifier-bound nor eigenbound. We write FV(D)
and EV(D) for the sets of variables that have free and eigenbound occurences in D,
respectively; Var(D) denotes the set of variables that occur in D.

Well-formed deductions in predicate CNVD are defined as in the propositional case:
via a collection of similar rules that establish judgements of the form I-w D:

F w modus-ponens F 4 G, F F w modus-tollens F => G, -,G

F w both F, G F w left-and F A G F w right-and F A G

F w left-either F, G F w right-either F, G

F w constructive-dilemma F1 V F2 , F1 =* G, F2 => G

CNrD414

B.2 Predicate CAfD 415

F- w equivalence F -> G, G -+ F F- w absurd F, -,F

F- w double-negation -- F F- w left-iff F # G F w right-iff F <* G

F- w specialize (V x) F with t F- w ex-generalize (3 x) F from t

For non-primitive deductions we have:

F-w D

F-w assume F in D

F-wDi F-wD 2

-w Di; D 2

F-w D
F w pick-witness x for (3 x) F in D

The function do-prim-rule used by the interpeter Eval shown in Fig. 6.6 is defined
just as in the propositional case (Section B.1).

F-w F

Fw D

F-w pick-any x in D

B.2 Predicate CND 415

Bibliography

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, 1985.

[2] M. Aigner and G. M. Ziegler. Proofs from the book. Springer, 1998.

[3] K. Arkoudas. Athena: a formal system integrating deduction and computation.
Forthcoming, at www.ai.mit .edu/projects/express.

[4] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics. North Hol-
land, 1984.

[5] M. Bergmann, J. Moor, and J. Nelson. The Logic Book. Random House, New
York, 1980.

[6] E. W. Beth. Semantic entailment and formal derivability. Mededlingen der Konin-
klijke Nederlandse Akademie van Wetenschappen, 18(13):309-342, 1955.

[7] E. W. Beth. The foundations of mathematics. North Holland, 1959.

[8] R. S. Boyer and J. S. Moore. A computational logic handbook. Academic Press,
New York, 1988.

[9] N. G. De Brujin. The Automath checking project. In P. Braffort, editor, Proceed-
ings of Symposium on APL, Paris, France, December 1973.

[10] N. G. De Brujin. A survey of the project Automath. In J. Hindley and J. R.
Seldin, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalisms. Academic Press, 1980.

[11] N. G. De Brujin. Type-theoretical checking and philosophy of mathematics. In
G. Sambin and J. Smith, editors, Twenty five years of constructive type theory,
volume 36 of Oxford Logic Guides. Oxford University Press, 1998.

[12] S. Buss. Introduction to proof theory. In S. Buss, editor, Handbook of Proof
Theory, volume 137 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 1998.

[13] R. Carnap. Logical Foundations of Probability. University of Chicago Press, 1950.

[14] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[15] D. Cl6ment, J. Despeyroux, T. Desperyoux, and G. Kahn. Natural semantics on
the computer. Research Report RR 416, INRIA, Sophia-Antipolis, France, June
1985.

[16] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, EngleWood Cliffs, New Jersey, 1986.

[17] I. M. Copi. Symbolic Logic. Macmillan Publishing Co., New York, 5th edition,
1979.

[18] T. Coquand. Metamathetical investigations of a Calculus of Constructions. In
P. Odifreddi, editor, Logic and Computer Science, pages 91-122. Academic Press,
London, 1990.

[19] T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76:95-120, 1988.

[20] J. Corbin and M. Bidoit. A rehabilitation of Robinson's unification algorithm.
In R. E. A. Mason, editor, Information Processing, volume 83, pages 909-914.
Elsevier, Amsterdam, Holland, 1983.

[21] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer
Science, 25:95-169, 1983.

[22] D. V. Dalen. Logic and Structure. Springer Verlag, 1983.

[23] A. G. Dragalin. Mathematical Intuitionism. Introduction to Proof Theory, vol-
ume 67 of Translations of Mathematical Monographs. American Mathematical
Society, Providence, RI, 1988.

[24] M. Dummett. Frege: Philosophy of Language. Harper & Row, 1973.

[25] F. B. Fitch. Symbolic Logic: an Introduction. The Ronald Press Co., New York,
1952.

418 BIBLIOGRAPHY

[26] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Pro-
ceedings of Symposium in Applied Mathematics, pages 19-32. AMS, 1967.

[27] J. H. Gallier. Logic for Computer Science. Harper & Row, 1986.

[28] S. J. Garland and J. V. Guttag. A guide to LP, The Larch Prover. Research Re-
port 82, Systems Research Center, DEC, 130 Lytton Avenue, Palo Alto, California
94301, December 1991.

[29] G. Gentzen. The collected papers of Gerhard Gentzen. North-Holland, Amsterdam,
Holland, 1969. English translations of Gentzen's papers, edited and introduced
by M. E. Szabo.

[30] D. Gifford and F. Turbak. Applied semantics of programming languages. Unpub-
lished book draft used in MIT course 6.821.

[31] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[32] M. J. C. Gordon. The denotational description of programming languages.
Springer-Verlag, 1979.

[33] M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving envi-
ronment for higher-order logic. Cambridge University Press, Cambridge, England,
1993.

[34] J. Goubault-Larrecq and I. Mackie. Proof Theory and Automated Deduction.
Kluwer Academic Publishers, 1997.

[35] J. Guttag and B. Liskov. Abstraction and specification in program development.
MIT Press, 1986.

[36] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143-184, January 1993.

[37] J. Herbrand. Sur la Theorie de la Demonstration. In W. Goldfarb, editor, Logical
Writings of Herbrand. Cambridge University Press, 1971.

[38] C. A. R. Hoare. An axiomatic basis for computer programming. Acta Informatica,
1:271-281, 1972.

[39] W. Hodges. Elementary predicate logic. In D. M. Gabbay and F. Guenthner,
editors, Elements of Classical Logic, volume 1 of Handbook of Philosophical Logic.
D. Reidel Publishing Company, 1983.

419BIBLIOGRAPHY

[40] G. Kahn. Natural semantics. In Proceedings of Theoretical Aspects of Computer
Science, Passau, Germany, February 1987.

[41] D. Kalish and R. Montague. Logic: Techniques of Formal Reasoning. Harcourt
Brace Jovanovich, Inc., New York, 1964. Second edition in 1980, with G. Mar.

[42] S. C. Kleene. Mathematical Logic. John Wiley & Sons, 1967.

[43] M. Kline. Mathematics: The Loss of Certainty. Oxford University Press, 1982.

[44] K. Knight. Unification: A multidisciplinary survey. ACM Computing Surveys,
21(1):93-124, 1989.

[45] L. Lamport. How to write a proof. Research Report 94, Systems Research Center,
DEC, February 1993.

[46] E. J. Lemmon. Beginning Logic. Hackett Publishing Company, 1978.

[47] Z. Manna. Mathematical Theory of Computation. McGraw-Hill Computer Science
Series, 1974.

[48] A. Martelli and U. Montanari. Unification in linear time and space: A structured
presentation. Technical Report B76-16, University of Pisa, 1976.

[49] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258-282, 1982.

[50] S. JA'skowski. On the rules of suppositions in formal logic. Studia Logica, 1, 1934.

[51] D. McAllester. Ontic. MIT Press, 1989.

[52] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In
Proceedings of the Second Symposium on Operating Systems Design and Imple-
mentation, Seattle, Washington, October 1996.

[53] G. Necula and P. Lee. Efficient representation and validation of logical proofs.
Computer Science Technical Report CMU-CS-97-172, CMU, October 1997.

[54] S. Owre, N. Shankar, and J. M. Rushby. The PVS specification language (draft).
Research report, Computer Science Laboratory, SRI International, Menlo Park,
California, February 1993.

[55] M. Parigot. Ap-calculus: an algorithmic interpretation of classical natural deduc-
tion. In Proc. Int. Conf. Log. Prog. Automated Reasoning, volume 624 of Lecture
Notes in Computer Science, pages 190-201. Springer-Verlag, 1992.

420 BIBLIOGRAPHY

[56] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and
System Sciences, 16(2):158-167, 1978.

[57] L. Paulson. Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag, 1994.

[58] G. D. Plotkin. A structural approach to operational semantics. Research Re-
port DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark, September 1981.

[59] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockhol, Sweden, 1965.

[60] W. V. Quine. Methods of Logic. Harvard University Press, 4th edition, 1982.

[61] N. Rescher. Introduction to Logic. St. Martin's Press, 1964.

[62] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings
of the 1999 Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

[63] J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12:23-41, 1965.

[64] P. Rudnicki. An overview of the Mizar Project. In Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, Chalmers University of Technology, Bas-
tad, 1992.

[65] D. A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[66] J. E. Stoy. Denotational Semantics: The Scott-Stratchey Approach to Program-
ming Language Theory. MIT Press, 1981.

[67] P. Suppes. Introduction to Logic. Van Nostrand, Princeton, NJ, 1957.

[68] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, Cambridge, England, 1996.

[69] W. Wechler. Universal Algebra for Computer Scientists. Springer-Verlag, 1992.

[70] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare. Ambiguities and Insecurities in
PASCAL. Software Practice and Experience, 7, 1977.

421BIBLIOGRAPHY

