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ABSTRACT

In this thesis, we explore how we can combine the advantages of both word and class n-
grams by backing off from a word n-gram to a class-based language model (LM). In
particular, we are interested in whether the resulting LM will prove to be more robust to
slight changes in domain. For our purposes, words are classified based on their part-of-
speech (POS) tags. We discuss the incorporation of our class based LM into the search
phase of a speech recognition system. In particular, we discuss the creation of a simple
online tagger and its performance as compared to the Brill POS tagger originally used to
tag the training text. We also present a series of perplexity and recognition experiments to
investigate the performance of our class based LM across a variety of broadcast shows. In
addition, we examine the effect of out-of-vocabulary (OOV) words on the recognition
accuracy and a feature-based LM that considers the separation of root and stem.
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2



Acknowledgements

I would like to thank my advisor, Dave Goddeau, and the rest of the speech group, Pedro

Moreno, Beth Logan, and Jean-Manuel Van Thong, at Compaq Computer Corporation's

Cambridge Research Lab (CRL) for their invaluable guidance and insights. I would also

like to thank Jim Glass, my thesis supervisor at MIT, for his help and support.

In addition, this work would not be possible without the generous support of Compaq

Computer Corporation. CRL not only provided the necessary funding and resources, by

also a great working environment with wonderful people.

Finally, I want to thank my family and friends for their continuous encouragement and

support, to my friend Meena Bharwani for always believing in me and for always being

there to make me laugh, and to my parents for all their love and understanding.

3



Table of Contents

ABSTRACT...............-.--------------.............................................................................. 2

ACK NOW LEDGEM ENTS ...................................................................................... 3

TABLE OF CONTENTS .......................................................................................... 4

LIST OF FIGURES AND TABLES......................................................................... 6

CHAPTER I INTRODUCTION ................................................................................ 7
1.1 OVERVIEW .............................................................................................................. 7
1.2 M OTIVATION.........................................................................................................8
1.3 PRIOR W ORK .......................................................................................................... 9
1.4 DOCUMENT OUTLINE..........................................................................................10

CHAPTER II BACKGROUND INFORMATION............................................... 11
2.1 LANGUAGE M ODELING....................................................................................... 11

2.1.1 Information Theory and Speech Recognition............................................... 11
2.1.2 W ord n-Grams............................................................................................ 13
2.1.3 Smoothing Techniques................................................................................. 14
2.1.4 Evaluating Language M odels..................................................................... 15

2.2 PREVIOUS WORK ON CLASS BASED LANGUAGE MODELING .................................. 16
2.2.1 Class n-grams.............................................16
2.2.2 Classification Schemes................................................................................ 18
2.2.3 Combining Class and Word N-Grams for LVCSR.......................................20

CHAPTER III CLASS M ODELS............................................................................ 23
3.1 INTRODUCTION ................................................................................................... 23
3.2 LANGUAGE M ODELS .......................................................................................... 23

3.2.1 Class and W ord N-grams............................................................................. 23
3.2.2 Bigram Backoff M odel................................................................................ 24

3.3 IMPLEMENTATION ................................................................................................. 26
3.3.1 Overview .................................................................................................... 26
3.3.2 Brill Tagger ............................................................................................... 27
3.3.3 Other Implementation Issues ..................................................................... 28

3.4 PERPLEXITY EXPERIMENTS................................................................................. 29
3.4.1 Domain and Data....................................................................................... 29
3.4.2 Baseline perplexity results.......................................................................... 29
3.4.3 Class and Word n-gram models................................................................. 30
3.4.5 Bigram Backoff M odel ................................................................................ 32

CHAPTER IV RECOGNITION EXPERIMENTS................................................34

4.1 INTRODUCTION ................................................................................................... 34
4.2 BASELINE SYSTEM ................................................................................................ 35

4



4.3 ONLINE TAGGER ............................................................................. 35
4.3.1 Tagger D esign........................................................................... .............. 36
4.3.2 Tagger Experim ents ....................................................................................... 37

4.4 INTEGRATION INTO SEARCH......................................................................... 38
4.4.1 O verview of Search .................................................................................... 38
4.4.2 Class-based Backoff Nodes ......................................................................... 39

4.5 RECOGNITION RESULTS ...................................................................................... 40
4.5.1 Class Bigram Backoff Experim ents.................................................................41
4.5.2 Unigram Backoff Experim ent ......................................................................... 42
4.5.3 Bigram Reduction Experim ent........................................................................43

C H A PTER V PO R TA BILITY .................................................................................... 44

5.1 INTRODUCTION ....................................................................................... . ..... 44
5.2 PORTABILITY EXPERIM ENTS ............................................................................... 44

5.2.1 M otivation.................................................................................................. 44
5.2.2 D ata D escription......................................................................................... 45
5.2.3 Perplexity and Recognition results .............................................................. 45
5.2.4 Analysis..........................................................................................................47

5.3 O OV EXPERIM ENTS..............................................................................................48

5.3.1 M otivation.................................................................................................. 48
5.3.2 M ethod...........................................................................................................49
5.3.3 Results and Analysis................................................................................... 50
5.3.4 Future W ork................................................................................................ 51

5.4 FEATURE BASED LANGUAGE M ODEL ................................................................... 51

5.4.1 M otivation.................................................................................................. 51
5.4.2 M ethod...........................................................................................................52
5.4.3 Results and Analysis................................................................................... 53
5.4.4 Future W ork................................................................................................ 54

CHAPTER VI CONCLUSIONS AND FUTURE WORK...................55

6.1 SUM M ARY .................................................................................... 55
6.2 FUTURE W ORK....................................................................................................56

APPENDIX A: SUMMARY OF CLASSES...............................................................58

APPENDIX B: SUMMARY OF DISCOUNTING METHODS...............59

REFERENCES................................................................................. ...... 60

5



FIGURE 2.1.

FIGURE 3.1.

FIGURE 3.2.

TABLE 3.1.

TABLE 3.2.

TABLE 3.3.

TABLE 3.4A.

TABLE 3.4B.

TABLE 3.5.

TABLE 3.6.

TABLE 3.7.

TABLE 3.8.

TABLE 4. 1.

TABLE 4.2.

TABLE 4.3.

TABLE 4.4.

TABLE 4.5.

TABLE 4.6.

TABLE 5.1.

TABLE 5.2.
TABLE 5.3.

TABLE 5.4.

TABLE 5.5.

TABLE 5.6.

TABLE 5.7.
TABLE 5.8.

6

List of Figures and Tables

SOURCE CHANNEL MODEL OF SPEECH RECOGNITION ......................................................... 12
BACKOFF PATHS FOR BIGRAM BACKOFF MODEL................................................................. 25
COMPONENTS IN CREATING A CLASS-BASED LANGUAGE MODEL ......................................... 26
SUM M ARY OF CORPUS DATA ............................................................................................ 29
PERPLEXITIES FOR WORD TRIGRAMS USING DIFFERENT BACKOFFS........................................ 30
BIGRAM AND TRIGRAM PERPLEXITIES FOR CLASS AND WORD LMS .................................... 30
BIGRAM PERPLEXITIES FOR INTERPOLATION OF WORD AND CLASS LMS ........................... 31
TRIGRAM PERPLEXITIES FOR INTERPOLATION OF WORD AND CLASS LMS.......................... 31
NUMBER OF PARAMETERS USED IN EACH LANGUAGE MODEL. ............................................. 31
PERPLEXITIES FOR DIFFERENT BIGRAM BACKOFF PATHS..................................................... 32
PERPLEXITIES FOR BIGRAM BACKOFF MODELS WITH CUTOFFS OF 0, 10, 100....................... 33
PERPLEXITY RESULTS FOR DIFFERENT TRIGRAM MODELS................................................... 33
ACCURACY OF TAGGER FOR DIFFERENT CUTOFFS ............................................................. 37
COMPLEXITY OF TAGGER FOR DIFFERENT CUTOFFS ........................................................... 37
AFFECT OF CUTOFFS FOR ONLINE TAGGER ON PERPLEXITY................................................ 38
PERPLEXITY RESULTS FOR H4E97 ..................................................................................... 41
WER RESULTS FOR CONSTANT BACKOFFS ON H4E97........................................................ 42
W ER OF REDUCED BIGRAM ON H4E97............................................................................. 43
SUMMARY OF SHOWS AND THEIR CONTENT...................................................................... 45
PERPLEXITIES FOR TALKRADIO AND ZDTV .................................................................... 46
W ER FOR DR. LAURA, ARTBELL, AND ZDTV ............................................................... 46
WER FOR ARTBELL USING DIFFERENT CLASS WEIGHTS. ...................................................... 47
OUT OF VOCABULARY RATES FOR TALKRADIO AND ZDTV. ............................................. 50
WER FOR LM WITH OOV WORDS ADDED ON TALKRADIO AND ZDTV............... 50
WER FOR LM WITH OOV WORDS ADDED ON ZDTV.......................................................... 50
ENTROPIES FOR FEATURE BASED LM ............................................................................... 53



Chapter I Introduction

1.1 Overview

Language models play an essential role in speech recognition systems by providing

the a priori probability distribution for a sequence of words. Although extremely simple,

word bigrams and trigrams have proven to be both fast and robust, and provide state-of-

the-art performance that has yet to be surpassed by more sophisticated models [20]. At the

same time, they have several serious drawbacks and are limited in their power. Class n-

grams have been introduced to reduce the necessary number of parameters, alleviate the

sparse data problem, and add robustness. However, due to the limited constraint they

provide, class n-grams by themselves can perform much worse than the traditional word n-

gram.

In this thesis, we are interested how class n-grams can be combined with word n-

grams to improve the word error rate for the broadcast news domain. We are going to

work from the DARPA Broadcast News (Hub4) domain and explore the portability of our

language model to other news sources. Sponsored by DARPA to "advance the state of

the art in technologies required to automatically transcribe and extract information from

recordings of radio and television broadcast news," the Hub4 corpus provides an

important benchmark for the large vocabulary continuous speech recognition (LVCSR)

research community. Since it features well prepared speech in a relatively clean

environment as well as audio from a variety of acoustic environments and different

speakers, the broadcast news domain serves as a natural development environment for

LVCSR technology. Hub4 provides this research effort with a common standard and

development data that includes transcriptions and audio data for a variety of broadcast

news sources such as ABC news, CNN, and others [15].
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Since Hub4 serves as an ideal source of data for the broadcast news domain, we

use Hub4 to train our language models and then investigate the performance of our class-

based language model on other domains. As our main focus, we concentrate on a bigram

backoff model and the integration of this class based language model into the decoding

search. To measure the quality of our language model, we conduct a variety of

experiments to investigate portability issues and the effect of out-of-vocabulary words.

We also examine a feature based language model that considers the separation of root and

stem.

1.2 Motivation

The work in this thesis is motivated mainly by the desire to provide transcripts for

audio shows. While the Hub4 domain serves as an important benchmark for the

community, we are more interested in how well models developed for this domain

generalize to other domains. In particular, we are interested in speech recognition

accuracy for transcribing different shows on which the language model was not trained.

We attempt to study this by measuring word error rates for several popular radio talk

shows.

In these shows, we may be faced with vastly different acoustic conditions and

language usage, such as different ways of speaking and different statistical distributions of

words. For instance, two shows we are interested in is Artbell, which is very conspiracy

theory oriented, and Dr. Laura, which is dominated by high-pitched female voices. In

contrast, there is much less emphasis on news about stocks and politics, which make up

the bulk of the data from Hub4. By exploring a class-based backoff model, we hope to

combine the advantages of both word and class n-grams that will prove to be more robust

across domains. We use a relatively simple model so that we can incorporate classes

directly into the search phase of a two-pass recognition system. In addition, we explore a

feature-based model that separates root and stem.

Another application of interest is the multimedia search and retrieval of audio using

transcripts produced by the recognizer. For indexing and retrieval, out-of-vocabulary
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(OOV) words prove to be an extremely perplexing problem. If we have keywords that are

not part of the vocabulary, then the decoder will not be able to recognize important

keywords and the user will not be able to locate the desired segments in the audio. Thus,

we perform experiments to investigate the effect of OOV words on the word error rate.

We use class-based models in the hopes that it will be easier to introduce new words into a

class-based model rather than a traditional word N-gram.

1.3 Prior Work

Combinations of word and class n-grams have been shown to provide better

perplexity by combining the advantages of both types of models [20]. While word n-grams

provide important specific word-word relations, classes provide many other advantages.

Using classes, it becomes much easier to extend a language model for use on a different

corpus or with new words without having to retrain. Providing important linguistic

information, classes can also be useful for natural language understanding. However,

despite the research done on interpolating class models with word n-gram models and the

existence of many different classification schemes, it is still unclear which type of classes

work the best and what is the best method for combining them with word n-grams.

Because most research on class based language models has been done on smaller

domains such as ATIS, we will focus on the broadcast news domain for the LVCSR

problem. It is only recently that class-based language models have been applied to

recognition experiments for the broadcast news domain. Unlike smaller domains such as

ATIS which had much less training data available, it is still uncertain as to how well

classes will work for the broadcast news domain. And even in the LVCSR community,

most work has focused on the Hub4 domain only while we are more interested in

recognition performance for a broader range of domains. Although the Hub4 domain

serves as an important benchmark, we are more interested in how well models developed

for Hub4 generalize beyond that particular domain.

Past work has also used class-based language models mainly as a refinement for

multiple stage decoding systems such as the 1998 HTK Broadcast News Transcription
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System from Cambridge University [38]. While studies of classes have been show to

improve recognition performance in multi-pass systems, we are interested in the merit of

classes on their own. In this thesis, we attempt to study the performance of class based

language models in a two-pass system.

1.4 Document Outline

In this chapter, we gave a brief introduction to the problem of interest and some

motivating factors behind this work. Chapter II gives some background on language

modeling and speech recognition, including previous work on class based language models

and some different classification schemes. In Chapter III, we describe how we plan to

improve the word error rate for LVCSR by using a backoff model to combine word and

class n-grams. Beside perplexity experiments on Hub4, we also perform recognition

experiments, which are discussed in Chapter IV. We also discuss how this class-based

model is integrated into the recognizer, focusing on the integration into the search and the

creation of an online tagger. The performance of the class-based model on other domains

is explored in Chapter V through a variety of perplexity and recognition experiments. In

addition to portability experiments on TalkRadio and ZDTV, we also discuss experiments

studying the effect of OOV words and a feature-based language model in Chapter V.

Finally, in Chapter VI, we discuss how this work can be extended in future experiments.
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Chapter II Background Information

2.1 Language Modeling

2.1.1 Information Theory and Speech Recognition

In speech recognition, we are faced with the problem of extracting a sequence of

words from an audio signal. From our own experiences with natural language, we know

that not all sequences of words are equally likely and that there will be some structure

associated with the string of words. This understanding helps us determine what was

likely to have been said and to eliminate ungrammatical sentences. Similarly, language

models help constrain the search space of possible word sequences by attempting to use

some of the structure and properties of natural language to describe what kind of

sentences can be found in a language. These models can be very important in the

performance of speech recognition system, especially when there is noise or acoustic

ambiguity.

Languages have traditionally been modeled using grammars that describe how to

form high-level structures from phrases and words. While grammars can provide

important structural information, they are more suited for natural language processing

than speech recognition. In speech recognition, language modeling is used mainly to

constrain the search space of possible sentences. So far unstructured statistical models

such as n-grams, which attempt to give the probability of encountering a certain sequence

of words, have been much more effective than structured grammars. Despite attempts to

incorporate grammatical structure and long-range information into language modeling,

simple word n-grams remain the prevalent language model in most speech recognition

systems.
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Language models are also useful in many other applications outside of speech

recognition. Probabilistic models can be used for applications such as handwriting

recognition, machine translation, and spelling correction, all of which can be placed in the

framework of the source-channel model of information theory.

r-------------------------------
r ------------- I--------------- r--------------------------

Text Speech Acoustic Linguistic
Generation W Producer Speedh Processor A Decoder

11
----------.----------.. -.---.------------------------

Speaker ------------------------------ Speech Recognizer
Noisy Communication Channel

Figure 2.1. Source Channel Model of Speech Recognition

From the perspective of information theory, these are all problems of recovering

information sent through a noisy channel. In the case of speech recognition, the original

message is the string of words, W, generated by a person. After converting the sentence

from text to speech, and some acoustic processing at the receiver, we can view W as

having gone through a noisy channel to give the observed acoustic signal, A. Now the

problem is to find the message or rather sequence of words W that maximize the

probability that the original text is W given that the acoustic signal is A:

W= arg max P(W I A)

Using Bayes rule, we can represent W as:

P(W )P( A |W )W = arg max P(W I A) = arg max - = arg max P(W)P(A I W)
w w P(A) w

The probability P(A I W) characterizes the acoustic model and is determined using the

acoustic models of the recognizer. The probability, P(W), indicates how likely a person is

to say a certain sequence of words and characterizes the information source acoustic

channel. Calculating these a priori probabilities, P(W), is the main concern of language

modeling. In statistical language modeling, these parameters are estimated by training on

a large amount of text.
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def

LetW =w" = w1,w2 ,w3 ,, where w " is a string of n words and wi is the

i th word in the string. Then

P(W ) = $ P(wi | wl,...,wi_,) = J P(wi | w ) P(wi | hi)
=1i=1 i=1

where h, = w" and is known as the history. Since the event space for (h,w) is extremely

large, we simplify the problem by separating the history h, into equivalence classes

4(h) and approximate P(w, I h,) by P(w, I cF(h,)).

2.1.2 Word n-Grams

In the n-gram model, we assume that only the immediate history is important and

use the last n-1 words as equivalence classes:

I(h,) =wi_ = w,, 'w,_

Then we have

P(w; I hi) = P(w, IJQ(h;))= P(w, |w,_n,1,...,wi_1)

For bigrams (n=2) and trigrams (n=3), the probability of seeing a word, wi, given its

history reduces to:

bigram: P(wi Ih) = P(wi |wi_ 1)

trigram: P(w I h) = P(w |w i- 2 ,w i-1)

For LVCSR, only bigrams and trigrams are typically used since higher order n-grams

increase the complexity of the model and the size of the search space substantially but do

improve performance significantly.

From the training data, we can estimate these probabilities by calculating the

frequency at which a n-gram occurs. If c(w) is the number of times the sequence of

words, w, occurred in the training set, then we can estimate the probability of seeing

w, given a history of 4'(hi) by:

P(w, I 4?(hi)) = P(w I W_,..., w )= f (w, i w,_+ 1 ,...,w 1 ) =
c(wi _, 1 )

13



Unfortunately, this estimation can be very bad for n-grams that occur only

infrequently or even not at all in the training data. For n-grams that never occur in the

training set, this language model will seriously underestimate their probabilities and assign

them all probabilities of zero, even though these sequences can still occur outside of the

training data. For large vocabulary sizes, this sparse data problem is unavoidable. In large

vocabulary recognition systems today, the vocabulary size V is on the order of 60,000.

That means that there are over V = 2.16 x 10"4 possible trigrams, while the typical size of

the training set is much smaller. Obviously some of the possible trigrams are going to

appear only a few times or not all in the training data. For these words, our estimate of

their probabilities will be highly inaccurate. To adjust for this problem, it is necessary to

smooth n-gram parameters [20].

2.1.3 Smoothing Techniques

There are a variety of different techniques for smoothing an n-gram. In his Ph.D.

thesis [8], Stanley Chen gives a description and comparison of some common smoothing

methods. One approach is to do a linear interpolation of the different n-gram models.

P(w I CD(hi)) AX f (w, I< j(h)) 1A =1

In a trigram model, linear interpolation gives:

P(w, I wi- 2 ,Wi- 1) = A3f(Wi iWi- 2 ,Wi- 1)+A 2f(wi Wi- 1)+ A,f(w)

The parameters, 11, can be estimated using either deleted interpolation or by reserving a

section of the training data for held-out interpolation [20].

Another common smoothing technique is to use the original n-gram estimate if it is

reliable but backoff to lower order n-grams otherwise. If there is enough data for a

particular n-gram, say if it occurs more than a times, then training data will probably give

a good estimate so we can use the frequency as it is. If the n-gram occurs at least once but

less than a times, then we use a discounted frequency. Since there is not enough training

data for the n-gram to give a good estimate, its frequency will not be very reliable and so

we take away from the probability to distribute it for n-grams which we have no training

14



data. For those words, we back off to a lower n-gram that will hopefully provide a better

estimate. In general, we have

f(w, I I(hi)) c(j (h,)) > a
P(w, I (Dj(hi)) fd (W I D j (hi)) 0 < c( (hi))< a

1q(w,)P(w, I D (hi)) c((DIj (hi)) = 0

where fd (w I 4 (h,)) is the discounted count for w,, and q(w,) are chosen

appropriately so that the sum of the probabilities add up to one. The parameters of the

model can be estimated using the Good-Turing estimate, or other methods discounting

methods such as absolute or Witten-Bell discounting [10].

2.1.4 Evaluating Language Models

To compare different language models, we need to be able to measure the quality

of a language model. Perplexity, which is related to entropy, is usually used to compare

different language models. From information theory, entropy is defined to be the amount

of randomness in the system and can be expressed as:

H(p)=- pi log p1

If p is the true source distribution and q is the source distribution as estimated by user,

then we have:

H ( p) - pi log q,

The right hand side of the equation is known as the logprob and can be interpreted as

entropy from the point of view of user. Since the user might misestimate the source

distribution, the true entropy of the system will be less than the entropy perceived by the

user. In language modeling, the logprob or LP measures the difficulty of the task from the

recognizer's point of view and can be expressed as:

LP =- p log q, = - IIlog P (W)
I n

Perplexity is then defined as PP = 2LP and can be viewed as the average branching factor

of the model. It gives the average number of words that the recognizer has to choose from

15



each time. Intuitively, if we can reduce the perplexity, then the recognizer will have fewer

words to choose from and should give a better performance.

However, an improvement in perplexity does not necessarily correlate to an

improvement in the recognizer itself. Ultimately in speech recognition, we are concerned

with the accuracy of the recognizer, which is dependent not only on the language model

but how it interacts with the other components of the system. The accuracy of the system

is defined by the word error rate (WER), which is the total number of deletions D,

insertions I, and substitutions S, over the total number of words N.

WER = S+I+D
N

Even though lower perplexity does tend to correlate with a lower word error rate, large

improvements in perplexity do not always lead to improvements in word error rate. Often

large improvements in perplexity can lead to little or even no improvement at all [8].

Despite the dubious correlation between perplexity and word error rates,

perplexity results remain more prevalent because running recognition experiments can be

extremely time consuming while perplexity experiments are much easier and faster to

perform. In addition, calculating1 the word error rate is not without its own pitfalls.

Since the word error rate is also a function of the speech recognition system itself, the

final accuracy may be influenced not only by the performance of the language model, but

also by its integration into the system. It can reflect the combination of the language

model with other components such acoustic models, lexical models and search. Thus,

perplexity remains a useful and dominant gauge of how good the language model is.

2.2 Previous Work on Class based Language Modeling

2.2.1 Class n-grams

While word n-grams have proven to be extremely powerful and are currently used

in many state-of-the-art speech recognition systems, the word n-gram model is limited in

many ways. By its very definition, n-gram models can only provide local constraints and

so do not incorporate any long-distance relationships. The word n-gram is also very

inflexible and cannot be easily adapted to new words or new domains. For instance, in
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order to introduce new words, we have to provide training data containing these new

words and retrain the entire language model.

To address some of these issues, the idea of word n-grams can be extended to

class n-grams. Instead of using single words as the basis for our language model, we

separate words into different classes and build a language model using these classes. The

class n-grams offer many advantages over conventional word n-grams. For one, class n-

grams provide a much more concise representation than word n-grams and has fewer

parameters. Classes can also compensate for sparse data since if a word never appears in

the training data but the class does, then we can still obtain a reasonable estimate for the

word using its class. Because of this, it is easier to introduce new words into class-based

models than word-based models. In addition, class-based models are also more robust to

changes in the domain. By attempting to capture some of the linguistic information and

to exploit the syntactic structure of language, class n-grams also move us closer to natural

language understanding.

To create class n-grams, we first partition a vocabulary of V words into C classes

using function ir, which maps a word, wi to its class c,. These classes can be created

either manually or automatically. If each word is assigned to exactly one class, we can

make the estimate

P(w; | w ) = P(wj I c, )P(ci |c ) .

Then the probability of seeing a particular string of words, W, is:

P(W) = 1P(w |Iw) = P(w Ic;)P(c IcO)
i=1 i=1

When words are allowed to belong to multiple class, the formulation of the class n-

gram becomes more complicated. To resolve the issue of multiple classification, we have

to sum over all possible classes or to redefine the problem as to find the best class

sequence in addition to finding the best possible word sequence [16]. Since words often

have multiple roles, the increase in complexity is compensated by a more realistic model.

Although classes are a powerful tool, class n-grams tend to have a higher

perplexity than word n-grams. For example, when using part-of-speech tags to form class

n-grams, Sriniva reported a 24.5% increase in perplexity over a word-based model on
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Wall Street Journal [34]. Niesler and Woodland [28] reported an 11.3% increase in

perplexity and Kneser and Ney [22] a 3% increase for LOB corpus. In general, other

classifications also resulted in an increase in perplexity because word n-grams can model

the relationships between specific words. Often when there is enough data to train a good

class n-gram model, there is often enough data to train an even better word n-gram model.

To take advantages of both types of language models, we can combine word and

class n-grams. By using well-studied smoothing techniques such as interpolation or back-

off models to combine word and class n-grams, research shows that classes do improve

perplexity and word error rate. Work by various researchers indicated linear interpolation

of the two types of language models resulted in lower perplexity. Niesler and Woodland

also reported that using a backoff model to combine word and class n-grams also

improves the perplexity [29]. While word-class n-grams do improve perplexity, it still

remains unclear what is the best way to partition words into classes, especially for LVCSR

tasks that are found in the broadcast news domain.

2.2.2 Classification Schemes

With a large amount of data, classes can be automatically derived from their

statistical characteristics using data driven clustering. Usually, automatic clustering will

assign unique classes to each word. Since there is no reliance on linguistic knowledge and

any optimization criterion can be used, automatic clustering is very flexible and can be

tailored to its use. One approach suggested by Brown et al is to do a bottom up clustering

that attempted to minimize the loss of mutual information during merges [5]. Martin et al

extended the Kneser and Ney's exchange clustering maximizing bigram perplexity to

maximizing trigram perplexity [22] [25]. However, these methods can only guarantee a

local optimum. Jardino and Adda used simulated annealing to give optimal classifications

by overcoming local solutions [19]. They also extended their algorithm to allow for

multiple classifications [20]. While Jardino claims that the algorithm can be used to

optimize the classification of tens of millions of untagged words in a few hours [18],

others have found his algorithm to give only a slight improvement in perplexity at the

expense of dramatically increased computational costs [25]. It is interesting to note that
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simulated annealing resulted in similar groupings for the French, English, and German

corpora, composed of functions words, syntactical classes, semantic classes, and other

combinations that reflected the short range context [18].

Since these methods all focus on optimizing perplexity for training set, the criterion

used in the clustering process might not prove to be optimal for the test set. To resolve

this potential problem, there have been efforts to imitate the test corpus. Mori, Nishimura,

and Itoh suggested extending the deleted interpolation technique by dividing the learning

corpus into k partial corpora, building k language models, and then evaluating word-class

relation by using the average perplexity of all possible pairs of language models [24].

Despite these efforts, the main disadvantage of data driven clustering, the need for a large

amount of data, remains. In addition, the classification scheme that results in the lowest

word error rate does not always correspond to the one with the lowest perplexity

reduction, as shown in [12].

An alternative approach to data driven clustering is to cluster using linguistic

knowledge and properties. For example, words can also be classified based on their

morphology by placing words with same prefix or suffix into the same class. Uebler and

Niemann showed that the word error rate for Italian and German improved using

automatic prefix and suffix decomposition over frequency and semantic classes [32].

However, while this approach is clearly advantageous for languages with many different

inflectional endings, it is unclear how beneficial it will be for English. Words can also be

classified by using a thesaurus based approach [2] or by attempting automated semantic

analysis [3].

Currently, the most popular classification strategy in using linguistic knowledge is

to use part-of-speech (POS) tags. Possible POS features and values capture syntactical

information such as whether a word is noun, verb, adjective, or determiner. It can also

model other features such as the gender of a word or whether it is singular or plural.

Most work have shown POS classes to give slightly worse perplexity results than data

driven clustering, probably because linguistic knowledge are not necessarily ideal for

language modeling.
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According to a comparison of POS and automatically derived class n-grams by

Niesler and Woodland [30] [31], automatic clustering procedures gave larger performance

improvements than POS classifications. The n-grams based on automatic clustering

procedures resulted in both lower perplexity and word error rate, though the changes in

word error rate were not that significant. They discovered that automatic clustering to be

much more flexible than classification using POS tags. For example, automatic clustering

allowed a variable number of different categories, which had a significant impact on

performance. Initially, as the number of classes increases, there was an improvement in

performance. But at a certain point, more classes lead to deteriorating performance. In

their work, Niesler and Woodland also investigated the total contribution to the overall

likelihood made by individual word-categories. They found that words with semantic

content such as nouns and adjectives were harder to predict than syntactic function words

such as prepositions, articles, conjunctions, and personal pronouns. This is not too

surprising since the POS does not take into account the semantic information at all, and in

order to improve the contribution of those words, we have to incorporate semantic

information into the classification scheme.

2.2.3 Combining Class and Word N-Grams for LVCSR

Despite the plethora of classification techniques, it is still uncertain what is the best

way to classify words for language modeling. Since words can be classified in many

different ways with each providing disparate information about the underlying structure of

the language, there is perhaps no one best method. Instead, a more complex model that

integrates the different sources of information has been shown to outperform individual

models. By combining these different classification schemes and techniques, language

models can capture some of the more complex ways that words interact.

For instance, class n-grams and word n-grams have combined to utilize the

advantages of both, offering a model with both word specific relationships and more

robust class-based relationships for words with sparse data problems. In a backoff model

from class to word n-grams, if c, is the count using words, and cc is the count using

classes, the trigram probabilities can be estimated by:

20



f(w, I wi-2 wi-1)

P(wIwi-2,wi-1 ) P(wI c1 )P(c I ci-2 ci,))

q(wi )P(w; I w;_, )

c (wi- 2 , wi-1, wi) > a

c (wi-2, Iwi-1, Iwi)<a & Cc (ci-2 , c, 1 , c) > 0

cc (wi 2,wi-1 , wi) = 0

In general, if P,(w I (h)) and Pc (w, I D (h)) are probabilities from a word and class n-

gram respectively, the overall model is given by:

P,(w I Dj(h))

P(wi I (D j(h)) = P (wi I (D (h))

lq(w; )P(wi I QD,_,(h))

cw ((Dj(h), wi ) > a

cw(Ij(h),w,)<a & cc(Q:I(h),w,)>0

Cc (cDj(h),w) =0

Since there are many different ways we can backoff from a word n-gram to a class n-gram,

we plan to compare some of them. The specific formulations and experiments we plan to

investigate will be discussed in more detail in Section 3.2.

Similarly, different language models can also be combined. Past work has also

shown that integrating different language models tends to improve perplexity and word

error rate. Using maximum entropy, Rosenfeld [32] demonstrated that different

information sources can be combined to create a better language model. In their work on

three different probabilistic language models, Cerf-Danon and El-Beze [6] combined a

trigram model with models based on POS tags and morphological features. To integrate

the different class models, Cerf-Danon and El-Beze used the following hierarchical

backoff model:

f (w I wi-2, wi- 1)

P(Wi I wlw 2 " W i- morph (wi I Dmorph ( -2 , w, )
Pp 0w (Iwi-2Iwi-1 .2- POS (Wi POS I-2 w _1 ))

q(wi)P(w, I w;_ )

cw -2, wi-1, Iwi) > a,
Cmorph (wi- 2 Wi- 1 ) >amorph

CPS p _2 I wi-1 POS

otherwise

The hierarchical structure follows a backoff model in which a word trigram was used

when the related probabilities were reliable. Otherwise the model backed off first to a

morphological level, and then to a grammatical or POS level. Their results using the

hierarchical model showed that there were significant improvements in recognition

performance when all three models where combined using either linear interpolation or a
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hierarchical structure. Maltese and Mancini's pos-lemma model, which interpolated two

class-based models, combined grammatical POS tags and morphological properties [23].

According to their results, the simultaneous presence of two different types of class

models gave greater decrease in perplexity than just having one class-based model.
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Chapter III Class Models

3.1 Introduction

In this chapter, we describe how we hope to effectively combine class and word n-

gram to create a language model that is more robust across domains. The specific class-

based language models that we plan to investigate are described in more detail in Section

3.2. In Section 3.3, we discuss the implementation of our class-based language models.

Finally, we present some perplexity results using these models in Section 3.4.

3.2 Language Models

3.2.1 Class and Word N-grams

We will focus our investigation on several different methods for backing off from a

word n-gram to a class n-gram. In our experiments, we will first compare perplexities for

the following four types of models and then investigate combinations of the different

models:

1.) A pure word n-gram (www):

Predicting the next word, wi, given the word history, D, (h):

P(wi I h) = P(wi \Ib,(h))~ c(wi-2Wi-1Wi)

c(wi-2Wi-1 )

2.) A pure class n-gram (ccc)

Predicting the next word, wi, based on the ci , given the class history, <D,(h):
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P (wi I h) = X P(wi I ci )P(ci I D, (h)) X P(wi I ci ) c(ci_2 c 1 ci-)
c:ai-c c:wsc cc~ i

3.) (ccw)

Predicting the next word, wi, given the class history, ID, (h):

P (wi I h)= P(wi I Dc (h)) =c(c- 2ciwI)

c(ci-2ci)

4.) (wwc)

Predicting the next word, wi, by predicting the next class, ci , given the word

history, D (h):

,P (wi I|h)= P(wi I\ci )P(ci I\Q,(h))= Y PCw \ i 2 )cwwi-I ci)

c:wEc c:Ec C(wi-2Wi-1

Ideally, we would like to use the most specific model for which we had enough

data, suggesting a hierarchy of backoffs, for instance from (1) to (3) or (4) to (2).

However, such a model can become overly complex. Thus, we will only attempt to

examine combinations (by backoff and linear interpolation) of model (1) with each of the

other models.

3.2.2 Bigram Backoff Model

Besides exploring different combinations of class and word n-grams, our main

focus is to investigate a bigram backoff model designed to allow us to systematically

analyze different backoff paths. Using this model, we hope to gain some insight into why

we don't have the bigram and backoff based on which word is not very well modeled.

In our bigram backoff model, we start with a normal bigram with P(w2 lwi)

estimated using:

P(w 2 1 w) - c(wI w 2 )

c(w)

However, if there's not enough data for a good estimation of P(w2lwl) we backoff to a

class based model. From the equation above, it is obvious that we will be unable to

24



estimate P(w2lwi) accurately when there is not enough counts for w1w2, i.e. c(wiw 2) is low.

This implies that either c(w1) ,c(w 2 ) is small, or c(wiw 2) is just low despite wi and w2

being both well modeled. If c(w,) is high, but c(w 2 ) low, then we have enough data for

wi to be able to estimate c2 given wi. From c2, we can then estimate P(w2Iwi) by

P(c21w1)P(w21c2). Otherwise, if c(w 2 ) is high, but c(w,) is low, then we can approximate

P(w2lwi) using P(w2Ici). However, if we don't have enough data for either word, we then

backoff to a purely class based model or a word unigram model if necessary. Thus,

depending on the cause for the lack of wiw2 in the training data, we back off to a different

class based model.

p(w 21w1 wo)

c(wl) > m p(w 21wi) c(w2) > m
c(w2) m c(wl) m

p(c21wi0p(w21c2) c(wl) M p(w21c1)

p(c21c1)p(w21c2) W) M

F p(w2)

Figure 3.1. Backoff paths for bigram backoff model

While it is unclear whether this backoff strategy offers any advantages over more

traditional direct backoffs, through this model we hope to see whether the backoff path

matters, and if so which backoff path is the best. We chose to focus on a bigram backoff

model instead of a trigram backoff model since it was much simpler to break down the

possible backoff paths. In addition, a large percentage of useful information is already

included in bigrams and it is a simple matter to add a word trigram on top of our bigram

backoff model.
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As a possible extension to our model, if counts for both wi and w2 are extremely

low, then we can choose to backoff to a very small probability. Thus, we attempt to

address the problem of overestimating bigram pairs that don't occur together although

individually they may have high unigram counts. Under normal bigram models, these pairs

are given a relatively high probability. In our model, such pairs can be forced to have low

probabilities.

3.3 Implementation

3.3.1 Overview

In order to create a class based language model, the training data was first tagged

with the appropriate part-of-speech (POS) using the Brill tagger [4]. We chose to classify

words based on their part-of-speech (POS) to make use of the syntactic information

inherent in languages through classes. Using POS tags had the additional advantage that

they also provided some stemming information for our feature based model. The Brill

tagger will be described in more detail in Section 3.3.2.

P( w j~h j)

tet Brill Tagd Text to - -- + Pwc
tagger text ngrams

Tag table

Figure 3.2. Components in creating a class-based language model

Statistics for creating language models are then gathered from the tagged text

using CMU's Statistical Language Modeling Toolkit and other tools built on top of it to

support classes [10]. Using these statistics, we calculated P(wlc) and created different

language models for calculating P(wilhi) as described in Section 3.2.2. The calculations for

P(wc) are described in more detail in Section 3.3.3. These statistics are also used to
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create a tag table for an online tagger (see Section 4.3) that allows for direct integration of

classes into the search of the decoder.

3.3.2 Brill Tagger

To tag our training text with the proper part-of-speech, we used Eric Brill's rule

based POS tagger which is able to achieve an accuracy of 96-97% [4]. We used a lexicon

of 78218 words with 62 possible parts of speech. The lexicon was originally trained on

data from Brown and the Wall Street Journal (WSJ) and had an average of 1.23 possible

tags per word. The POS tags are an extended subset of the Penn Treebank tag-set [24],

and include limited information on stem and tense. For instance, we had six different

possible verb forms:

POS tag Description Example
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, singular present, non-3rd take
VBZ verb, 3rd person singular present takes

In addition to the normal POS tags that were part of the Penn Treebank tag-set,

we include special tags for the two context cues, <s> and </s>, which are used to mark

the beginning and end of each sentence. We also distinguish between nouns and their

possessives (NN vs. NN's and NNP vs. NNP's). Common words such as IT'S, WE'RE,

are also given their own tag. The main reason for these additions to the tag set is to

bridge the difference between the Brill tagger and the language modeling toolkit's

treatment of the apostrophe. A complete list of the parts of speech we used is given in

Appendix A.

Since each word can have more than one part-of-speech, it is possible for the

proper POS tag for a word to be ambiguous. Using rules trained over previously tagged

text, the Brill tagger attempt to choose the best tag for each word based on its context.

First, the Brill tagger assigns every word its most likely tag in isolation. Unknown words

are assumed to be nouns or proper nouns depending on capitalization. After the initial

pass, learned lexical and contextual rules are used to find a more likely tag [4].
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Using lexical rules, unknown words may also be tagged differently based on cues

such as prefixes, suffixes, and adjacent word co-occurrences. In our system, we relied on

151 lexical rules derived from roughly 300,000 words of tagged text from the WSJ. As

an example, the sample lexical rule

NN ing fhassuf 3 VBG x
tells the tagger that if there's a word that ends in -ing, and has initially been tagged as a

noun (NN), then it's POS tag should be changed VBG to indicate a verb, used either as a

gerund or in its present participle form.

To refine the POS tags based on contextual cues, we used 313 contextual rules

derived from roughly 600,000 words from the WSJ. For instance, the contextual rule

NN VB PREVTAG TO

tells the tagger to change a tag from noun (NN) to verb (VB) if the previous tag was TO.

3.3.3 Other Implementation Issues

Due to the presence of multiple classes for each word, an additional complexity is

introduced into our bigram backoff model. Since each word can have multiple parts of

speech, we maintain a table of words and their possible POS tags. Then to implement the

model for multiple classes, we take the simple approach of summing over all possible

classes.

To create a class-based language model, we also need to provide estimates for

P(wlc), the probability of a word given its class. For each possible class c, we calculate

P(wlc) using:

c(wc)(wc)= (C)if c(wc)> cutoff
c(c)

To smooth the distribution, we interpolate P(wc) with a uniform PDF:

1
P(wIc)= cwt * P(w I c)+(1-cwt)*-

n
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3.4 Perplexity Experiments

In this section, we describe the series of perplexity experiments we performed to

test and evaluate our class based models. First we describe the domain and data that we

used to develop our models. Then, we give some baseline perplexity results using a word

trigram before discussing perplexity experiments using our class-based models.

3.4.1 Domain and Data

To develop the class based system, we used data from the Hub4 broadcast domain.

Our baseline word trigram language models are trained using the Hub4 language modeling

training set, supplemented with additional data from the North American Business News

corpus. The language model training data from Hub4 (hub4_lm) consists of data of

transcripts of various news shows such ABC News, CNN, and NPR covering the period

from January 1992 to June 1996. There are approximately 150 million words in the

training data, comprising about 1 gigabyte of uncompressed data [15].

3.4.2 Baseline perplexity results

To develop our language models, we performed perplexity experiments using the

Hub4 evaluation sets from 1996 and 1997 (h4e96 and h4e97), text from news.com

(news com), and ZDTV (zdtvl), and the New York Times (nyt). A summary of the

different corpuses used for these experiments is given in Table 3.1. Table 3.1 also gives

the number of words and the out-of-vocabulary (OOV) rate for each test set. The ccs

column gives the number of context cues found in each corpus. For each sentence, we use

the context cues <s> and </s> to mark the beginning and end of sentence respectively.

# of words OOV words OOV rate ccs

h4e96 20736 197 0.95 834

h4e97 32848 202 0.61
news com 30000 857 2.86 2897
zdtvl 13929 732 5.26 0
nyt 19999 296 1.48 1665

Table 3.1. Summary of corpus data
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Since different smoothing techniques can influence the performance of our

language model, we did an initial perplexity comparison of the four different discounting

methods supported by CMU's SLM Toolkit. A brief summary of the four discounting

methods is given in Appendix B. According to studies by Chen, of the four methods,

linear discounting has the worst performance while Good-Turing the best. Both Witten-

Bell and absolute discounting performs very poorly on small training sets. However, on

large training sets, as is the case here, they are extremely competitive [9]. So it is no

surprise to see from Table 3.2, that Witten-Bell, absolute, and Good-Turing smoothing all

give about the same perplexity, with Witten-Bell discounting being slightly better for four

out of five of the test sets. For consistency in future experiments, Witten-Bell discounting

will be used exclusively.

Witten Bell linear Good Turing absolute
h4e96 168.38 201.31 167.80 167.45
news com 420.44 559.41 426.50 423.40
zdtvl 258.69 318.54 263.11 261.96
nyt 270.30 344.74 273.15 272.12

Table 3.2. Perplexities for word trigrams using different backoffs

3.4.3 Class and Word n-gram models

Table 3.3 shows some perplexity results for different word and class n-gram

models. As expected, the performance of the class model is extremely bad as compared to

the word trigram model. While the combination models of ccw and wwc give better

perplexity performance that the pure class model, ccc, the perplexity is still no where near

that of the word trigram model.

ww cc cw wc www ccc ccw wwc
h4e96 224.39 706.08 473.29 491.65 168.38 574.51 410.37 410.80
h4e97 251.03 713.88 573.39 561.52 179.56 659.58 488.21 460.96
news corn 474.47 934.21 814.24 869.94 420.44 881.27 712.05 765.73
zdtvl 310.72 642.24 560.40 514.12 258.69 603.76 502.10 449.41
nyt 345.22 946.89 715.44 785.03 270.30 869.23 599.61 640.11

Table 3.3. Bigram and trigram perplexities for class and word LMs

By combining the word and class n-gram models, we are able to improve the

perplexity. Tables 3.4a and 3.4b give the bigram and trigram perplexities of combining a

word and class n-gram model using linear interpolation with A =1/2. While the best
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bigram perplexity results still came from the word bigram model, we were able to obtain

comparable perplexities for a trigram model using an interpolated model. For the non-

Hub4 corpuses (newscom, zdtvl, and nyt), the lowest perplexities are given by

ccw+www or wwc+www model. For instance, the ccw+www model lowered perplexity

from 420.44 to 356.00 for newscom, and from 270.30 to 261.39 for nyt.

ww cc cc+ww cw+ww wc+ww

h4e96 224.39 706.08 246.20 241.62 245.39
h4e97 251.03 713.88 283.33 277.08 278.86
news com 474.47 934.21 450.66 446.52 487.89
zdtvl 310.72 642.24 334.12 331.24 324.66

nyt 345.22 946.89 370.52 361.29 371.58
Table 3.4a. Bigram Perplexities for interpolation of word and class LMs

www ccc ccc+www ccw+www wwc+www

h4e96 168.38 574.51 177.54 173.66 174.79
h4e97 179.56 659.58 194.67 189.31 188.85
news com 420.44 881.27 364.27 356.00 390.74
zdtvl 258.69 603.76 261.07 259.07 251.42

nyt 270.30 869.23 270.73 261.39 264.89
Table 3.4b. Trigram Perplexities for interpolation of word and class LMs

From these results, we see the promise of combining word and class n-grams. However,

we are more interested in investigating a backoff model that will give us more control over

the combination of word and class n-grams than a simple interpolation model. Thus in the

next section, we describe some experiments and results using a class-based bigram backoff

model.

While the ccw and wwc models give a better estimate than a purely class based

model of ccc, they also require significantly more parameters than the ccc model. Table

3.5 gives the number of parameters needed to create the different models.

1-gram 2-gram 3-gram 1-gram marg. 2-gram marg. Total

www 59,817 7,572,530 35,511,314 43,143,661
ccc 62 2,964 65,938 68,964
ccw 59,817 837,559 4,064,171 61 2,964 4,964,572
wwc 62 924,292 16,528,325 59,504 7,572,530 25,084,713

Table 3.5. Number of parameters used in each language model.

For a vocabulary of 59,817 words and 62 classes, the ccc model uses only -70,000

parameters in comparison with the -43 million required by the www model. Since they

are essentially a mixture of class and word n-grams, the ccw and wwc model offer a

31



considerable reduction in complexity over the www model but are still significantly larger

than the ccc model. In addition, they require us to keep track of separate counts for the

marginals in addition to the normal n-gram probabilities. Because of the additional

complexity introduced by the ccw and wwc models, we will focus on backoff to a purely

class based model.

3.4.5 Bigram Backoff Model

In this section, we describe some experiments using the bigram backoff model.

To develop the model and determine the best backoff path and cutoff parameters, we

performed perplexity experiments on h4e96, newscom, zdtvl, and nyt using different

backoff paths. The last data set, h4e97 was used as the test set to evaluate the bigram

backoff model in recognition experiments which are discussed in Chapter IV.

The results for perplexity experiments using different backoffs on a bigram are

given in Table 3.6. We experimented with backoff from word bigram to class bigram to

class unigram (ww-cc4c), word bigram to class bigram to word unigram

(ww-cc+w), and the full backoff model discussed in Section 3.2.2 (wc/cw) with a

cutoff of 0, compared to normal word bigram backed off to word unigram (ww-w). Of

the four models, ww-ccdc had the worst perplexity performance, due to the fact that it

was the only model that did not backoff to a word unigram. Perplexity results for the

other three models were comparable, with the full bigram backoff model (wc/cw) being

slightly better than the other two.

ww-+w (wb) ww->w ww-+cc(-+c) ww->cc-w wc/cw (0)
h4e96 224.39 208.70 228.84 205.05 202.97
news com 474.47 413.73 405.73 389.23 388.40
zdtvl 310.72 282.58 292.13 292.13 292.32
nyt 345.22 307.87 345.41 308.12 305.53

Table 3.6. Perplexities for different bigram backoff paths

Taking the full bigram backoff model, we also studied the effect of cutoffs on the

perplexity. Varying the cutoff results in about the same perplexity, with the perplexity

rising slightly as the cutoff is set too high. By examining the number of words in each

backoff paths, we see that for low cutoffs, we mostly backoff to wc or cw. As the cutoff

increases, we use the class bigram more and more in the backoffs. However, the
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perplexity calculation is still dominated by the bigram estimate and the results are very

similar.

wc/cw (0) wc/cw (10) wc/cw (100)
h4e96 202.97 202.98 202.93
news com 388.40 388.15 387.47
zdtv1 292.32 292.28 292.20

nyt 305.53 306.07 305.43
Table 3.7. Perplexities for bigram backoff models with cutoffs of 0, 10, 100

Finally, we compare four different trigram models: a pure word trigram (www)

that backs off to word bigram, an interpolation of class and word trigram (ccc+www), a

word trigram back off to class trigram (www-ccc), and a word trigram on top of bigram

backoff model with cutoff of 0 (www4(0)). Again we find the worst performance in

backing off to a class trigram only, and the best performance in the full backoff model.

www ccc+www www->ccc www->(0)

h4e96 168.38 177.54 180.21 132.14
news-com 420.44 364.27 384.11 282.34
zdtvl 258.69 261.07 241.07 204.90
nyt 270.30 270.73 295.56 198.81

Table 3.8. Perplexity results for different trigram models

While we achieve improvements in perplexity using classes, it is uncertain whether our

class-based language model will improve recognition accuracy. In the next chapter, we

will focus on the class-based bigram backoff model and study its impact on recognition

experiments.
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Chapter IV Recognition Experiments

4.1 Introduction

Unlike most work done to incorporate class based models into existing recognition

systems by running N-best rescoring on lattices generated from word trigrams, we attempt

to incorporate classes directly into the search. Instead of studying classes as a refinement,

we try to investigate their performance directly through a variety of perplexity and word

recognition experiments.

Although perplexity is often used to measure the quality of a language model,

ultimately the most effective measure is the impact that a language model has on the

accuracy of a recognizer. However, integration with a recognizer can often be

complicated, since we have to be concerned not only with the language model but also

performance issues. In addition, the word error rate is very domain and system

dependent, and can be influenced by how language model interacts with acoustic model.

Thus in this section, we first give a brief overview of our baseline system and the

integration of class based language models into the system. In sections 4.2 and 4.3, we

describe in more detail the key points of implementation: the integration of classes into the

search and the creation of the online tagger. Finally, in section 4.4, we present some

recognition results on Hub4.
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4.2 Baseline System

To evaluate our language models through recognition experiments, we integrated

the models with the Calista speech recognition system developed at Compaq Computer

Corporation's Cambridge Research Lab (CRL). Originally derived from the Sphinx-3

speech recognition system at CMU [33], Calista is a hidden Markov model (HMM) based

speech recognizer. The acoustic models for our baseline system uses 6000 senonically-

tied states, each consisting of 16 diagonal-covariance Gaussian densities. The phonemes

are modeled with 49 context-independent phones, including noise phones such as AH and

UM, and 87,057 context-dependent phonemes. For our vocabulary, we use the most

frequent 59,817 words from the Broadcast News corpus. Normally, Calista uses a word

trigram for its language model. For this thesis, we concentrated on the class-based

language models described in Section 3.2.

Calista is essentially a two-pass decoding system that consists of two recognition

stages. In the first stage, the Viterbi decoding using beam search produces a word lattice

for each subsegment and a best hypothesis transcription. The best path search then goes

over the word graph and determines the final optimal path. To keep Calista as a two-pass

system, we integrated the class based language model directly into the search. In order to

accomplish this, we created an online tagger (see Section 4.3) for use in the recognizer.

The decoding search and the integration of our class based language model into the search

is further discussed in Section 4.4.

4.3 Online Tagger

In this section, we describe an online tagger for providing the class history during

recognition experiments. Because of the extensive search space, we did not wish to keep

track of class history in addition to the word history. To avoid the extra memory usage,

we created an online tagger to give the corresponding POS tags for the last two words.

The design and implementation of the online tagger for the speech recognizer is described
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in Section 4.3.1. Then, in section 4.3.2 we present some experiments comparing the

performance of our online tagger against that of the Brill tagger.

4.3.1 Tagger Design

In order to incorporate classes into the recognition system, we created a

deterministic online tagger using a simple tag table of words and their corresponding tags.

Using the tag table, we can do online tagging of any given history (i.e. the last two words)

without having to keep the tags in memory. Due to the extensive search space, the

reduction in memory can be essential. In addition, the tagger has to be simple and fast for

it to be included into the decoding search. Thus, a tag table with a straight forward and

simple lookup is ideal.

To create the online tagger, the training data (consisting of 150 million words from

Hub4) was first tagged using the Brill Tagger. A tag table was then created using

probabilities gathered from the tagged text. The tag table consists of three subtables with

the following maximum likelihood tags:

ww C1,C2 Wi,W 2  = arg max P(c,c2 1 w1,W2 ) if c(ww 2) > M2

CW C2 1 C 1,W 2  = arg max P(c 2 I c1,w 2) if c(cIw 2) > mI
W CIW = arg max P(c |w) if c(w) > mO

where mo, miI, and m2 are the cutoffs counts for inclusion in the different tag tables.

The three tables combines to give C1,C2 1 W1,W2 based on the following strategy:

Use C,,C 2 1 W1,W 2  if W,,W2 in ww table
take C, I W from w table and C2 1 C,W 2  else if c1,w2 in cw table
take Ci I Wi and C2 I W2 both from w table otherwise

To save space, the entry C2 I C1,W 2 is stored only if it gives a different C2 than the entry

C2 I W2 - Likewise, the entry C1,C2 W,,W2 is stored only if the resulting tags are different

from those given by C1 I W, and C2 1 C1,W 2 -

Although the tags generated by the Brill Tagger are neither completely accurate

nor unique, the use of statistics should ensure that the tag table is accurate most of the

time. For instance, using this strategy, unknown words are automatically tagged as names
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since that is what they are most likely to be. However, because POS tags can often be

ambiguous and may change depending on context, our tagger, which only uses two words

to determine the appropriate tags, is limited in its power and accuracy in comparison with

the Brill tagger. But being much simpler, it can be incorporated within the decoder

without any problems.

4.3.2 Tagger Experiments

The performance of the online tagger was measured by comparing text tagged

using the online tagger against the results of the Brill tagger. For our experiments, we

tested the performance of the online tagger on a portion of the training data from

hub4_lm and also on some separate test data from newscom. As expected, the online

tagger performed better on the training data from hub4_lm with accuracy of around 96%.

On the test data from news com, it had a comparable accuracy of about 93%.

cutoff = 1 cutoff = 10 cutoff = 100 no cw, cw tags

sample of hub4_Im 95.958 95.909 95.566 92.210
newscom 92.885 92.870 92.291 90.271

Table 4.1. Accuracy of tagger for different cutoffs

cutoff = 1 cutoff = 10 cutoff = 100 no cw, cw tags
w 59,503 59,503 59,503 59,503
cw 52,836 20,783 5,674 0
ww 452,496 46,639 6,509 0
total 564,836 154,462 76,328 59,504

Table 4.2. Complexity of tagger for different cutoffs

We further tested the effect of cutoffs (for cw and ww) on the performance of the

online tagger (as compared to Brill). While increased cutoff gave decreasing accuracy as

compared to Brill tagger, the total size of the tag table was reduced considerably. Since

by reducing the size of the tag tables, we can not only minimize the amount of memory

needed by the tagger but also reduce the lookup time, we decided to use a tag table with a

cutoff of 100. Although a cutoff of 100 gave less accurate tags than cutoffs of 1 or 10,

the total size of the tag tables was reduced by 7.4 times with the elimination of almost

500,000 cw and ww entries. In comparison, eliminating all cw and ww tags gave a

much less accurate tagger while reducing the overall size of the tag table by only 22%

more.
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To ensure that our choice of a cutoff of 100 for the online tagger will not have a

significant impact on perplexity, we studied the affect of three different cutoffs on the

perplexity of a class trigram model. From Table 4.3, we can see that the perplexity is

barely influenced by the cutoff parameter. However, having no ww or cw tag tables at all

can adversely affect the perplexity.

cutoff = 1 cutoff = 100 no ww, cw tags
h4e96 PP 575.14 574.51 583.58
h4e96 H 9.17 9.17 9.19
Table 4.3. Affect of cutoffs for online tagger on perplexity

4.4 Integration into Search

4.4.1 Overview of Search

The hypothesis search is an important component of any speech recognizer. Given

an acoustic signal A, speech recognition can be regarded as the problem of finding the

sequence of words, W, that maximizes P(W I A). However, since the boundaries between

possible words are unclear and each word can have multiple pronunciation, we also have

to consider all possible ways that each sentence can be spoken and aligned with a recorded

utterance. So the goal of the search phase is to find best sentence with the highest scoring

alignment.

This can be accomplished by using the Viterbi decoding algorithm to generate a

word lattice and find the best path through the graph. Based on dynamic programming,

the Viterbi search is an efficient, time synchronous search algorithm. Starting with a set of

initial nodes, the algorithm moves forward in time. At each time boundary, the algorithm

maintains the best path from initial nodes to all nodes corresponding to the boundary. For

each node at the boundary, the algorithm looks at all incoming arcs to that node and stores

the arc that gives the maximum score as the back pointer.

For a trigram backoff model, the language score for each arc is given by:

38



P(wi l wi 1, wi_2 ) if trigram estimate exists

P(wi I hi ) =<tq,(wiwi_2 )(wi I wi-1) if bigram estimate exists

qPwI i= (wi w_ 2 )P2 (w i )wi) otherwise

where P(wi I wI , wi- 2 ), P(wi I wi-1), and P(wi) are the trigram, bigram, and unigram

estimates, and qi,q2 are the bigram and unigram backoff scores. To make the search

efficient, the unigram backoff scores are calculated only once at each boundary. This is

possible since the unigram backoff score, q2 (wi- 1), is not dependent upon the next word

w. Because the Viterbi search only store the maximum path to each node, we only need

to maintain the largest unigram backoff at each boundary in order to determine the

transition scores to all possible next words. One side effect is that unigram backoffs are

added to the lattice regardless of whether the bigram or trigram score exists or not.

When the search is complete, the best path can be reconstructed by taking the best

scoring final node and following the back-pointers back through the graph. Because of the

large size of the vocabulary, the search space would be gigantic if all possible paths at

each boundary were kept. To restrict the graph to a more reasonable size, a beam search

is used to threshold the search by trimming paths with very low probability.

4.4.2 Class-based Backoff Nodes

While it is a simple matter to implement the bigram backoff model for perplexity

experiment, a straight implementation of bigram backoff model into the search phase

proves to be extremely inefficient. For one, the presence of multiple tags for each word

presented a computational challenge. To accurately represent P(wi I h,), we have to sum

over all possible classes that the word can take. However, within the decoder, doing this

proves to be extremely inefficient and unwieldy. In order to reduce computational costs,

we decided to use the maximal likelihood tag only.

Even then, because of the huge search space, it is computationally infeasible if we

attempt to calculate the backoff score for each possible trigram. To resolve this, we rely

on the time synchronous property of the Viterbi search and use a similar method to

calculate class backoffs as was done for unigrams.

39



In the unigram case, the highest scoring unigram backoff is stored. For the

P(c2 I w1) and P(c2 I c) component of the backoff, we keep track of the highest scoring

backoff for each class. The P(w2 I C,) component of the backoff was incorporated into the

bigram scores directly so that if there are no bigram for P(w2 I w,) but c(wi) is still greater

than the cutoff, P(w2 I c,)would be used as the bigram score. Thus for a word wi, there

are transitions to w2 using the following bigram and trigram scores:

P(w2 1W1, WO) if trigram exists

P(w 2 I h) P(w 2 w1 ) if bigram exists

P(w 2 Ic1) if c(wj)>m

Backoff scores from unigrams and class backoffs are incorporated by adding transitions to

w2 as follows:

For a unigram: P(w2 I h)= PgP(W2 ) where Pjg is the largest unigram backoff exiting

from wi.

For classes: P(w2 I h) = max P(w 2 I c2 )Pc (W 1 I c2 ) where Pc (wI Ic2) is the largest class
C2

backoff for c2 exiting from wi and for each class c2, Pc (w, I c2) is calculated by

cP(c2l 1 ) if c(w)> m

p(c2 1 c) otherwise

Using this scheme, we will essentially always take into account class and unigram scores

regardless of whether we have bigram or trigram scores for w2. Only when the bigram

score is larger than the class and unigram backoffs for the bigram will the bigram estimate

be used. Thus, we should be able to remove all bigrams whose bigram score is less than

its backoff score without affecting the recognition. Recognition results for such a reduced

bigram is given in Section 4.5.3.

4.5 Recognition Results

To evaluate our final system, we performed a series of word recognition

experiments on h4e97. In addition to experimenting with our class-based bigram backoff
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model, we also investigate two other models. In section 4.5.2, we study influence of

backoffs on WER in general by backing off to constants instead of unigrams. In section

4.5.3, we examine whether we can reduce the size of our language model by removing

unused bigrams.

4.5.1 Class Bigram Backoff Experiments

bo-ug bo cc
ww 251.03 244.64
www 179.64 151.22
Table 4.4. Perplexity results for h4e97

Before looking at the recognition performance of our bigram backoff model on

h4e97, we present the perplexities of this corpus. As can be expected from our previous

perplexity experiments, our backoff model (bocc) gave lower perplexity than the normal

backoff (bojug).

To investigate the performance of the bigram backoff model, we performed

recognition experiments on a word bigram backed off to classes using several different

backoff paths. For the full bigram backoff model, we also experimented with several

different language weights (1w) and word insertion penalties (ip) to improve the WER.

The recognition results for clean, studio conditions (FO) and all acoustic environments

(ALL) are summarized below.

Bigram recognition experiments on hub4 97:
FO ALL

ww-+w 19.6 29.9 (baseline word bg with backoff to word ug)
ww-+cc-*w 20.3 30.7 (backoff to classes without using backoff weights)
ww-+wc/cw--+cc-*w (0) 20.6 30.8 (+ bowt, cc->ug)
ww-+wc/cw-cc/w (0) 19.2 29.9 (+ bowt, cc+ug)
(lw=9.5, ip=0.45) 20.1 30.9
(lw=9.7, ip=0.6) 19.3 29.7
(lw=9.7, ip=0.45) 19.3 29.7

Trigram recognition experiments on hub4 97:
FO ALL

www-+ ww-4w 17.2 27.4
www-* ww-+ wc/cw-+cc/w 17.0 27.4

Unfortunately, the improvement in recognition accuracy is not as significant as the

perplexity results might lead us to expect. With the full backoff model, we can get a 0.4%
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improvement in WER over a normal bigram on FO conditions, while maintaining the same

WER for all conditions. For the trigram model, we were again able to improve the WER

slightly on FO conditions, with the same WER for all conditions.

Because the optimal combination of acoustic and language models might be

different for our class backoff model, we investigate whether a different language model

weight will give better performance. In addition, we noticed that long words tended to

become chopped up into phrases of smaller words when using classes which might be

caused by a low word insertion penalty. To find the best parameters using the class based

backoff model, we varied the language model weight (1w) and word insertion penalty (ip)

over a subset of 100 utterance from the development set of Hub4 1997. By tweaking the

two parameters, we were able to improve the performance over all conditions by 0.2%.

Overall, the bigram experiments on h4e97 suggests that we can only get slight

improvements in the recognition accuracy.

4.5.2 Unigram Backoff Experiment

The difference in perplexity and recognition results from the bigram backoff model

suggests that although different backoff schemes can have a tremendous effect on

perplexity, they only influence the word error rate minimally. To investigate this matter,

we performed word recognition experiments on h4e97 by backing off to constants instead

of word unigrams. We found that backing off to a reasonable probability of 1/n , where n

is 59,817 or the number of unigrams, gave only a 1% worse WER. Meanwhile, backing

off to a higher probability of 1/5000 gave a much worse WER.

FO ALL
backoff to ug 19.6 29.9
1/n-ug 20.4 30.9
1/5000 24.4 34.5

Table 4.5. WER results for constant backoffs on h4e97

These results suggest although the method of backoff has an impact on the recognition

accuracy, it is not that significant as long as the backoff probabilities are not absurd.

However, it is also important to note that recognition rates are very system dependent and

this might not be the case for other systems.
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4.5.3 Bigram Reduction Experiment

Because of the nature of the implementation of the search, we suspect that we can

reduce the size of our language model without affecting the WER very much. To make

the search efficient, calculation of backoff scores are combined so that backoff

probabilities are added to the lattice regardless of the possible presence of bigrams. Since

the Viterbi search only keeps the best path, bigrams for which the bigram probability is

less than their backoff probability are ignored. Therefore, we should be able to remove

these bigrams and reduce the size of our language model without affecting the WER.

FO ALL
normal bigram 19.6 29.9
reduced bigram 19.7 30.3

Table 4.6. WER of reduced bigram on h4e97.

Table 4.6 shows the impact of eliminating these bigrams on the WER. While we were

able to reduce the number of bigrams by 5.5% from 7,572,530 to 7,153,454, the WER

increased slightly. For the FO condition, the WER increased by only 0.1 %, while the

overall WER increased by 0.4 %.
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Chapter V Portability

5.1 Introduction

In this section, we describe a series of experiments to explore how well do word

and class n-grams port to domains outside of Hub4. We will study the robustness of the

language model to a new domain by measuring the perplexity and word error rates on data

from ZDTV and Talkradio in Section 5.2. Next we examine the effect of out-of-

vocabulary (OOV) words on the performance of our language models in Section 5.3.

Finally, in section 5.4 we discuss a feature based language model and its performance.

5.2 Portability Experiments

5.2.1 Motivation

While many studies have currently focused on particular tasks (e.g. Hub4), it is

also important to see how well language models generalize to other domains without

retraining to other corpuses. In particular, we are interested in the application of speech

recognition for creating transcripts for radio shows. Often, there are no transcriptions,

and thus no training data, available for these shows. In contrast, the Hub4 domain is ideal

for development purposes because of the large amount of transcribed data available.

Thus, we want to be able to use a language model trained on data from the Hub4 domain

and port it to other domains. To investigate the portability of our language model, we

describe several perplexity and word recognition experiments conducted on TalkRadio

and ZDTV.
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5.2.2 Data Description

For these portability experiments, we concentrate on the performance of the

bigram backoff model on ZDTV and four popular radio shows, which we will refer to

collectively as Talkradio. Each of the Talkradio shows, consists of transcripts for four

segment in Real Audio gather from the Internet. For our recognition experiments, we will

be focusing mainly on Dr. Laura, Artbell, and ZDTV.

Data Show Content
artbell Art Bell Coast to Coast 4 segments from the popular radio show exploring paranormal

phenomena
drlaura Dr. Laura Show 4 segments from radio talk show with advice and solutions on

family, children, religion, etc. from Dr. Laura
emerson Rick Emerson Show 4 segments from popular radio talk show with Rick Emerson
edtyll Ed Tyll Show 4 segments from talk show focusing on topics for young adults
ZDTV ZDTV News News about about computing, technology, and the Internet.

Table 5.1. Summary of shows and their content

5.2.3 Perplexity and Recognition results

Perplexity Results

From Table 5.2, we see that the class bigram backoff model gives promising

perplexity results. As expected, a pure class model (ccc) had extremely bad perplexity

while the class bigram backoff model (www.bocc) improved perplexity. For instance,

the class trigram increased the perplexity to 785.97 from a word trigram perplexity of

292.71 on the first segment from Artbell (ab050299-10-25). In contrast, the class bigram

backoff model (www.bocc) reduced the perplexity by 22.7% to 226.15. On average,

there was about an 18% decrease in perplexity by using the backoff model across the

domains.
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www www.bo cc ccc
ab050299-10-25 292.71 226.15 785.97
ab051799-100-115 257.63 237.93 797.45
ab060199-185-200 278.14 217.94 630.93
ab061199-205-220 210.62 168.48 534.57
drlaura04O299-5-20 232.22 188.98 597.77
drlaura062299-150-165 251.37 201.51 626.11
drlaura073099-45-60 184.40 155.02 526.92
drlaura082799-105-120 176.03 148.48 481.15
edtyl1062299-10-25 278.69 217.74 695.99
edtyl1072299-50-65 267.83 210.73 705.08
edtyl1080699-120-135 181.44 149.90 428.42
edty11082699-140-155 189.79 157.88 510.71
emerson0607-10-25 255.18 199.45 655.89
emerson0705-65-80 271.36 212.46 659.90
emerson0802-150-165 335.72 261.09 688.63
emerson0825-200-215 241.19 258.93 726.18
h4e96 168.38 132.14 574.51
h4e97 179.56 151.22 659.58
news corn 420.44 282.34 881.27
zdtvl 258.69 204.90 603.76
nyt 270.30 198.81 869.23

Table 5.2. Perplexities for Talkradio and ZDTV

Recognition Results

To study the performance of the bigram backoff model on word error rate, we

performed recognition experiments on Dr. Laura, Artbell, and ZDTV. Because the overall

word error rates for TalkRadio (50%) and ZDTV (35%) are extremely high in comparison

to that of Hub4 (27%), we hoped that class-based language model can decrease the WER

for TalkRadio and ZDTV. Yet despite the promising perplexity experiments, the

recognition results were not quite as good. While we achieved slight improvements in

recognition accuracy for Dr. Laura (0.11 %) and Artbell (0.26 %), the accuracy for ZDTV

deteriorated slightly.

Dr. Laura Artbell ZDTV
cutoff = 0 Cutoff = 1 cutoff = 0 cutoff = 1

www 51.75 51.35 51.84 51.98 34.74
www.bo_cc 51.64 51.42 51.58 51.97 35.67

Table 5.3. WER for Dr. Laura, Artbell, and ZDTV
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5.2.4 Analysis

One possible reason for the disappointing results using the word bigram model is

the particular selection of classes. As seen in past work, POS tags are not a particularly

effective way to classify words because they can only provide weak syntactic constraints.

This is especially a problem since the spoken language is often not grammatically correct.

POS tags are also limited in the number of classes and the specificity. Our class based

model was constructed using only 62 classes while most class based LM's in past work

have several hundred classes. In addition, it is not clear if all 62 classes are useful. For

example, the two verb forms VBN and VBD are so similar in their usage as to be often

indistinguishable.

Another problem is the presence of multiple tags for each word. While it is natural

for a word to belong to several different classes, it introduces complexity and differences

into the models used for perplexity and recognition experiments. Although our perplexity

experiments were performed by summing over all possible classes for each word,

computational issues limited recognition experiments to calculating P(w) using the mostly

likely class only, resulting in a less accurate P(w).

Since the accuracy of our estimates of P(wlc) is also uncertain, we experiment with

changing the class weight in the interpolation of P(wc) with a uniform distribution. Even

though, lowering the class weight tend to improve the WER, the improvement again is not

very significant.

www cwt=0.1 cwt=0.2 cwt=0.4

ab050299-10-25 50.73 50.47 50.51 50.69
ab051799-100-115 48.31 48.31 48.27 48.22
ab060199-185-200 53.47 53.47 53.47 54.54
ab061199-205-220 44.97 45.01 45.05 45.43

Table 5.4. WER for Artbell using different class weights.

These problems suggest that perhaps a better classification using semantic information

would have given better results. This idea is pursued further in our feature-based model,

which considers the separation of root (semantics) and stem (syntax), described in section

5.4. But first in Section 5.3, we investigate the contribution of out-of-vocabulary (OOV)

words to the word error rate. From our experiments on the influence of OOV, we will

also realize the importance of pronunciation models.
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5.3 OOV Experiments

In this section, we describe a series of experiments done to study the affect of out-

of-vocabulary (OOV) words on the word error rate. We are mainly interested in how easy

it is to adapt these language models to new corpora by introducing new words into

existing classes.

5.3.1 Motivation

A major problem with porting language models to new domains is the existence of

new words that are not part of our original dictionary. These out-of-vocabulary (OOV)

words are impossible for the recognizer to decode and cannot be introduced into a

language model without retraining. Even then, they pose a problem since we often have

no training data for these new words. The ability to introduce new words into a language

is extremely important not only because of portability issues but also because of the

temporal nature of broadcast news and radio shows. While something might be a hot

topic on one day, it is an entirely different story the next month. Indeed, OOV words tend

to be names or other important keywords, words that a user might want to be able to do

search and retrieval on. Thus, having a flexible language model, into which new words

can easily be added, is doubly important.

For instance, consider using a language model trained on Hub4 data on a ZDTV

broadcast. Although we would like the decoder to recognize keywords such as "ZDTV"

with the same frequency as the name of a corresponding news source found in Hub4, say

"CNN", the language model is rarely that robust. In general, the language model trained

on the Hub4 domain will be able to recognize the word "CNN" with no problem.

However, it will fail to recognize "ZDTV" even if it was added to vocabulary since there's

simply no data for it. But since "ZDTV" and "CNN" are extremely similar in nature, we

would expect them to have the same distribution, suggesting that a class-based model

could be the ideal solution.
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With a class-based model, there is no need to retrain the entire language model,

which could not only be extremely time consuming, but also unproductive due to the lack

of data. Instead, we only need to add the word into the vocabulary and give it the

appropriate P(wlc). Thus, a class-based model offers a convenient way of introducing new

words.

5.3.2 Method

While we can introduce new words by adding them directly into the vocabulary

and retraining the language model, it can be extremely time consuming. In addition, we

might also lack the necessary data for the new words so to obtain a good estimate of P(w)

for these new words, we will need to find new training data that uses these words. As an

alternative, we can introduce new words into a class-based language model by simply

providing possible tags for word and P(wlc). Since it is uncertain what the correct P(wlc)

should be, we use a uniform distribution of -, where ne is the number of classes, to
nc

estimate P(wc). Similarly, we use -, where n is the number of unigrams, to estimate the
n

unigram probability of P(w).

The procedure for introducing new words into the language model is summarized

below:

1. Create list of OOV words

2. Make dictionary with OOV words

3. Add to unigrams with uniform probability:

P(w) = - where n is the number of unigrams.
n

4. For class based language model:

a. Tag OOV words

b. Add tag tables and to P(wlc) using uniform probability:

P(w I c) = I where ne is the number of words in class c.
nc
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5.3.3 Results and Analysis

To investigate the effect of out-of-vocabulary words on recognition accuracy, we

attempt to decrease the WER by adding new words into the language model. We chose to

do OOV experiments on Artbell, which has a relatively low OOV rate, and ZDTV, which

has the highest OOV rate of the five shows. The out-of-vocabulary rates for ZDTV and

the four Talkradio shows is given in Table 5.5.

Show # words # OOV OOV rate
artbell 9319 76 0.82%
drlaura 8512 72 0.85 %
emerson 12545 171 1.36%
edtyll 10697 104 0.97 %
zdtv 34486 555 1.61 %
Table 5.5. Out of vocabulary rates for Talkradio and ZDTV.

By adding out-of-vocabulary words to Artbell, we were only able to decrease the

WER by .09%. However, the inclusion of OOV rates to ZDTV (which has more OOV

words), decreased the WER by almost 2%. Again, the bigram backoff model improved

the WER for Artbell while it increased the WER for ZDTV.

Artbell ZDTV
no OOV +OOV no OOV +OOV

www 51.84 51.75 34.74 32.91
www.bocc 51.58 51.49 35.67 33.63

Table 5.6. WER for LM with OOV words added on Talkradio and ZDTV.

When introducing new words, pronunciation models can be a problem. For

instance, by changing the pronunciation of a single word, A.O.L, in the dictionary for

ZDTV, we are able to lower the WER by 1%: from 32.91 to 31.88 for the word trigram

model, and from 33.63 to 32.63 for the word trigram backed off the to bigram backoff

model. By tweaking the pronunciations for the new words for Artbell, we were also to

improve the WER for Artbell from 51.49 to 51.22.

We also experimented with introducing the OOV words for ZDTV by retraining

the entire language model. Table 5.7 gives the results of the experiment, using the new

dictionary with the adjusted pronunciations.

no OOV +OOV (ug) +OOV (retrain LM)
www 34.74 31.88 32.76
www.bocc 35.67 32.62 33.40

Table 5.7. WER for LM with OOV words added on ZDTV.
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By retraining the language model, we get worse performance than simply adding the new

words into the unigrams with a uniform probability of l/nug where n-ug is the total

number of unigrams. This result can be explained by the fact that these are OOV words

for which we had little if any data, thus they would be vastly underestimated by the

language model.

5.3.4 Future Work

Our results suggest that out-of-vocabulary words might be more important than

the OOV rate indicates. Even when the OOV rate is low, adding the new words into the

vocabulary can help the decoder not only recognize the added words but also words

spoken close to these OOV words. However, a problem with introducing new words is

that until we are given a transcription, it is impossible to determine what the OOV words

are. An extension of this work can concentrate on a dynamic language model that is able

to flexibly add new words as needed. Due to the nature of English language, in which

new words are constantly added, this ability is especially important. For the broadcast

news domain, in an age of changing technology and changing news, new acronyms and

new names are appearing all the time. Often, these words are keywords, the important

words that listeners are most interested, and it is important for a language model to be

able to adjust and incorporate these words into its vocabulary.

5.4 Feature Based Language Model

5.4.1 Motivation

Lastly, we wish to investigate a feature based language model. If every word is

tagged using several different features such as POS, its tense or number, then by

combining the probabilities for each feature, we can obtain a reasonable estimate for the

probability of a word. Using a class n-gram approach, we can represent each feature by a

different class and attempt to obtain the probabilities for each feature independently.
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Assuming that we have m different features and that feature probabilities are independent,

we will have:

P(w, I h)= P(w c1 ,C 2 ,...C.) P(c I (D (h))P(c2 I eD2(h))- -P(c, I ,(h))

Using such a feature-based model, each component, P(c, I (D (h)), can be estimated using

a language model optimal for that feature. Then, we can effectively combine the

information provided by the different classes.

A feature-based model should offer an advantage over traditional word n-grams

for words with the sparse data problem, even for words that might not be part of the

vocabulary. While a limited number of common words such as "the", "and", "is" occur

many times and are well modeled, many words appear only once or twice in the training

data. However, by breaking these words into their feature components, we might have the

necessary class information to provide a better probability model for them. In addition,

we can even hope to reconstruct some OOV words using their morphological properties.

5.4.2 Method

For our experiments, we concentrate on a simple feature based model that

considers the root and stem separately. We take a different approach for stop and non-

stop words. For our purposes, stop words will be regarded as all words that are not

verbs, nouns, adjectives, or adverbs. Since stop words tend to be common words such as

"the", "a", that are well modeled, they are predicted using the normal bigram distribution.

For non-stop words, we attempt to predict the root based on the roots of the last two non-

stop words. Since the last two non-stop words may not be the last two words, we hope to

incorporate some longer-range constraints than normally found in a word n-gram. For our

stem, we simply use the POS tag, which includes information such as the verb or noun

form. The tags are predicted based on the tags of the last two words. The steps involved

in creating the feature based model is summarized below:

1. Extract roots

2. Build table of rootslword,tags

3. Calculate P(w,) using:
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P(w, I w,_1) if wi is a stop word
P(w \ h, ) = I P(ti ,t_2 \)P(r I r_ i-2 ) otherwise

where ti- ,t are the tags of last two words and

r , r are the roots of last two non-stop words

To extract the root from a word, we use simple pattern matching rules on words

and their POS tags. For instance, the rule

VBZ (.*)IES$ $1Y VERB

indicates that if a word ends in "IES" and is labeled as a third singular verb form (VBZ),

then the root is a verb with the ending "IES" replaced with "Y". So for the word "flies",

the root would be "fly". For verbs with irregular forms, such as "are" and "is", we

maintain a list of the verbs and their roots. The list of irregular forms is taken from LDC's

(Linguistic Data Consortium) COMLEX Syntax Corpus, a monolingual English

Dictionary consisting of 38,000 head words intended for use in natural language

processing.

5.4.3 Results and Analysis

We tested the described feature-based language on three data sets: artbell, h4e97,

and ZDTV. Unfortunately, our perplexity results were much worse than that of the word

trigram.

www feature
artbell 292.71 1152
h4e97 179.56 809
ZDTV 258.69 1073

Table 5.8. Perplexities for the feature based LM

One reason is because the probabilities for the two features P(root, I hi) and P(tag, I hi)

are not independent, we cannot combine them using the proposed method. Another

problem is that combining probabilities inevitably lead to smaller probabilities. Thus, we

need a better way to combine the information from the different features.
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5.4.4 Future Work

Despite our preliminary perplexity results, we believe that further research on an

improved feature based model can contribute to the future of language modeling. One

can imagine many extensions and improvements upon the described model. For instance,

one can investigate different features. One can also build an improved feature based model

by using more sophisticated methods to combine the features. In addition, because

separating features will allow each component to be modeled using a different language

model, determining the optimal model for a feature is also important. By using a feature-

based model, many different types of constraints such as long distance and local

constraints or syntactical and semantic constraints, can be separately captured using

different models and then recombined to give new flexibility to language modeling.

54



Chapter VI Conclusions and Future Work

6.1 Summary

In this thesis, we explored a bigram backoff language model combining class and

word n-grams using POS tags. We described the work done to integrate the language

model into a two-pass decoding search for recognition experiments, including the

development of an online tagger. As our main focus, we investigated the portability of a

language model trained on data from Hub4 to other domains such as TalkRadio and

ZDTV. Although the class-based LM lowered perplexity across the different shows, it did

not always improve the WER. For Hub4 and TalkRadio, we were able to lower the WER

slightly, but using the bigram backoff to classes increased WER for ZDTV slightly.

To analyze the effect of backoff on the WER, we performed unigram backoff

experiments where we backed off to a constant instead of the unigram probability. Results

indicate that the backoff scheme is not very important as long as we have reasonable

backoff probabilities. We also investigated a bigram reduction backoff model unnecessary

bigrams were removed. While we were able to achieve a reduced language model, the

reduction in size was not significant enough to make the slight increase in WER

worthwhile. Our experiments were also limited by using a two-pass system. Perhaps a

word trigram is already optimal in capturing local constraints and we should only be using

classes as a refinement on top of a word lattice generated using a word trigram.

As part of our portability experiments, we also studied the effect of OOV words

on the WER. We discovered that OOV words were not as big a problem as we had
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feared, with the shows from Talkradio and ZDTV having a relatively low OOV.

Nevertheless, adding the unknown words into the vocabulary helped to lower the WER

considerably. However, using a class-based model did not help us improve the WER

more than a word trigram when new words are added. This could be due to the fact that

POS tags were not specific enough to capture the relationship between words such as

"ZDTV" and "CNN" across domains.

Finally, we investigated the separation of root and stem in a feature based language

model. While the idea is promising, we were unable to achieve interesting results. More

work is needed to fully explore the possibilities of such a model. In the next section, we

describe some future work in this area.

6.2 Future Work

There are many possible areas in which the present work can be extended. For

one, recognition accuracy is very domain and recognizer specific and we only used a

relatively small amount of data to investigate portability issues. Thus, we will need to

expand our work by performing experiments on other shows.

In addition, it would be interesting to examine the portability of other class-based

language models. For example, we can improve our language model by pursuing more

precise classification schemes. A more intriguing direction is to pursue an improved

feature based model. By separating the different features of a word, such as stem and

root, each component can be modeled using a technique most optimal for that feature.

For instance, in our work, we attempted to predict the roots using short-range constraints

while predicting the stem using longer-range information on previous stems. However,

due to time limitations and challenges with combining the various features into a single

model, we were unable to improve on a word n-gram. Yet we believe that using such a

scheme, one can create a language model that is more robust and flexible to changes in

domain and the addition of new words.
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Finally, a language model using dynamic OOV learning should also be

investigated. As mentioned in Section 5.3.4, OOV words will continue to be a problem

because of the changing nature of both language and the domain. The ability to

incorporate new words automatically into a language model is vital for reducing word

error rates and the multimedia indexing and retrieval of keywords.
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Appendix A: Summary of Classes

POS Tag Description Example

<S> Context Cue: start of segment <S>

</s> Context Cue: end of segment </s>

CC coordinating conjunction and

CD cardinal number 1, third

DT Determiner the

EX existential there there is

FW foreign word d'hoevre

IN preposition/subordinating conjunction in, of, like

JJ Adjective green

JJR adjective, comparative greener

JJS adjective, superlative greenest

LS list marker 1)

MD modal could, will
NN noun, singular or mass table

NNS noun plural tables

NN'S noun, possessive table's

NNP proper noun, singular John

NNP'S proper noun, possessive John's

NNPS proper noun, plural Vikings
PDT predeterminer both the boys

POS possessive ending friend's

PRN'D pronoun I'd, he'd
PRP personal pronoun I, he, it

PRP$ possessive pronoun my, his

RB adverb however, usually, naturally, here, good

RBR adverb, comparative better

RBS adverb, superlative best

RP particle give up

SYM punctuation or symbol

TO to to go, to him

UH interjection uh-huh

VB verb, base form take

VBD verb, past tense took

VBG verb, gerund/present participle taking

VBN verb, past participle taken

VBP verb, singular present, non-3rd take

VBZ verb, 3rd person singular present takes

WDT wh-determiner which

WP wh-pronoun who, what

WP$ possessive wh-pronoun whose

WP'D wh-pronoun with 'd who'd

WPLL wh-pronoun with 'll who'll
WP'S wh-pronoun with 's who's

WP'VE wh-pronoun with 've

WRB wh-abverb where, when

Additional Classes

HE'LL I'LL IT'S THEY'LL WELL YOU'LL
HE'S I'M LET'S THEY'RE WE'RE YOU'RE

I'VE THAT'S THEYVE WEVE YOU'VE
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Appendix B: Summary of Discounting Methods

Using CMU's SLM toolkit, each N-gram is smoothed using one of four different
discounting methods before they are combined using backoff. In discounting, the actual
count r for an event is replaced by a modified count r* to redistribute probability mass
from common events to unseen events. Here we give a summary of the four discounting
methods, see [9] and [10] for more details.

Witten Bell discounting
Originally developed for text compression, Witten-Bell discounting adapts well to the
language modeling task for large amounts of data. If t is the number of types (i.e. number
of different words) following a particular history h, and n is the total number of words, the
Witten-Bell estimations for the probability of a word w following h are given by:

P(w I h) = if w had appeared after h in training data
n+t

P(w I h) = t for unseen events
n+t

Basically, we want P(wlh) to be proportional to how often the word w occurs after the
history h. For unseen events, if there are more unique words that follow a particular
history h, then we are more likely to have h be followed by other words.

Good Turing discounting (essentially Katz smoothing)
In Good Turing discounting, the modified count r* is chosen so that r*/C, where C is the
total number of N-grams, is the expected probability of an N-gram given that it occurred r
times in the training set.

n(r +1)r*= (r +1) where n(r) is the number of n-grams that occurs r times
n(r)

Since we can assume the original count r to be accurate for extremely common events,
this estimation is used only for events that occur fewer than K times. In addition, because
the estimate generates ridiculous values if n(r) = 0, it is necessary to adjust n(r) so that
they are all larger than zero.

Absolute discounting
Absolute discounting takes a fixed discount from each count and redistributes the leftover
among unseen event. In absolute discounting, we have

n(l)
r* = r - b where b is a constant, typically b =

n(l) + 2n(2)

Linear discounting
Linear discounting takes the modified count to be linearly proportional to actual count,
giving us:

r*= ar where a is a constant between 0 and 1.

Typically, a =1- n(l) where C is the total number of N-grams
C
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