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Abstract

This thesis provides a formal analysis of two kinds of cryptographic objects that
used to be treated with much less rigor: All-or-Nothing Transforms (AONTs) and
Password-Authenticated Key Exchange protocols. For both, novel formal definitions
of security are given, and then practical and efficient constructions are proven secure.
The constructions for password-authenticated key exchange are novel, and the AONT
construction is an application of an existing scheme to a new area.

AONTs have been proposed by Rivest as a mode of operation for block ciphers.
An AONT is an unkeyed, invertible, randomized transformation, with the property
that it is hard to invert unless all of the output is known. Applications of AONTs
include improving the security and efficiency of encryption. We give several strong
formal definitions of security for AONTs. We then prove that Optimal Asymmetric
Encryption Padding (OAEP) satisfies these definitions (in the random oracle model).
This is the first construction of an AONT that has been proven secure in the strong
sense. We also show that no AONT can achieve substantially better security than
OAEP.

The second part of this thesis is about password-authenticated key exchange pro-
tocols. We present a new protocol called PAK which is the first such Diffie-Hellman-
based protocol to provide a formal proof of security (in the random oracle model)
against active adversaries. In addition to the PAK protocol that provides mutual
explicit authentication, we also show a more efficient protocol called PPK that is
provably secure in the implicit-authentication model. We then extend PAK to a pro-
tocol called PAK-X, in which one side (the client) stores a plaintext version of the

password, while the other side (the server) only stores a verifier for the password. We
formally prove security of PAK-X, even when the server is compromised. Our formal
model for password-authenticated key exchange is new, and may be of independent
interest.

Thesis Supervisor: Ronald Rivest
Title: Professor of Computer Science
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Chapter 1

General Introduction

1.1 The Need for Provable Security

Cryptography, the art of secret communication, has been in use for thousands of years.

From Caesar's simple substitution system, to more complicated monoalphabetic ci-

phers, then to polyalphabetics, and on to cipher machines in the first half of the 20th

century - the techniques were constantly increasing in complexity. The development

of new systems was spurred by the efforts in cryptanalysis - the art of breaking the

other side's systems. The first records on the methods of cryptanalysis appear in the

14th and 15th centuries (see Kahn [61] for an extensive history). From that time on,

cryptographers and cryptanalysts were engaged in a constant race, with ciphers be-

ing designed, broken, redesigned, and so on time and again. This situation continued

without much change through World War II, during which cryptanalysis, especially

of the German Enigma machine, played a major role.

The state of affairs changed greatly with the widespread use of computers in the

1960s and 1970s. New systems have appeared, such as DES [75], Diffie-Hellman [35],

and RSA [89], that seemed to be unbreakable. As Kahn [61] wrote in 1996, "The war

of cryptographer against cryptanalyst has been won by the cryptographers" (p. 984).

However, even in recent times cryptographic schemes get attacked and broken. Of

course, a lot has changed since World War II. The field of cryptography has expanded

far beyond mere protection of secrecy of messages, to include such applications as
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public key encryption, digital signatures, and key exchange. On the other hand, each

new application carries with it its own notion of attack. Here are some examples

of cryptanalysis in modern cryptology: In the area of public key encryption, we

have the large family of knapsack cryptosystems [71, 28, 27] most of which have

been broken [92, 22, 98]. Among signature schemes, let us point out the the Ong-

Schnorr-Shamir scheme [80, 81] which was broken [1], fixed and again broken [84],

then the cycle repeated itself one more time [39], until finally a new fixed version was

made [74]. For key exchange, we have the Needham-Schroeder protocol [77], which

has been attacked [33] and fixed [78].

It would seem that cryptographers continued with the old routine: They would

design a scheme, and try to break it. If they couldn't break it, they would show the

scheme to their friends, and see if they could cryptanalyze it. If that test was passed

as well, the scheme would be used (or at least published). The scheme could then

be in use for years, until later cryptanalysts would discover new attacks and break

it, at which point another scheme would be made, and the cycle would repeat. This

arrangement would seem perfect for providing both cryptographers and cryptanalysts

with job security, but it is not too satisfactory to the users. The question becomes:

What can we do to today to protect ourselves against tomorrow's attacks?

An approach to this problem was introduced by the notion of provable securi-

ty: we can't predict what an adversary might do, but we can try to prove that she

won't succeed no matter what strategy she employs. A number of provably secure

constructions of cryptographic primitives have been proposed, two of the most promi-

nent ones being the Goldwasser and Micali [46] public-key encryption scheme and the

Goldwasser, Micali, and Rivest [48] signature scheme.

When saying that a particular construction is "provably secure," there are several

questions that need to be asked: What exactly is being proven? What, if any, are the

assumptions of the proof? To answer the first question, i.e., to precisely formulate

the statement that "the adversary won't succeed," one needs to carefully define a

formal model of security for the application under consideration. The model needs

to precisely specify what exactly the adversary may do (i.e., the attack scenario), as

11



well as what goal the adversary should not be allowed to achieve. For instance, in the

application of encryption, the adversary's allowed behavior could range from simply

observing the ciphertext (a passive attack), to querying the decryption function on

the values of the adversary's choice (adaptive chosen-ciphertext attack). The adver-

sary's goal could also vary: it could be determining partial information about the

message (breaking semantic security [46]), distinguishing the encryptions of two mes-

sages (breaking indistinguishability [46]), or constructing a new plaintext-ciphertext

pair with certain properties (breaking non-malleability [36]). Some models may be

equivalent (the equivalence of indistinguishability and semantic security is shown by

Micali et al. [72]), some may be strictly stronger than others (non-malleability with

a chosen-plaintext attack (CPA) implies indistinguishability with a CPA, but not

vice versa [6]), and some may be uncomparable (non-malleability with a CPA nei-

ther implies nor is implied by indistinguishability with a lunchtime chosen-ciphertext

attack [6]).

The second major question when talking about "provable security" is the as-

sumptions of the proof. Ideally, we would like to prove security without any special

assumptions (this is the so called information-theoretic security), but very few results

have been obtained in such a model (the one-time pad [99] is a famous example of

an information-theoretically secure, yet rather impractical system). Most of modern

cryptography is based on assumptions of computational infeasibility of certain tasks.

The minimal such assumption seems to be the existence of one-way functions (OWF-

s), which are functions that are easy to compute, yet hard to invert (more precisely, no

polynomial-time adversary can invert them with non-negligible probability). OWFs

have been shown necessary for the existence of secure private-key encryption [54],

pseudorandom generators [64], and digital signatures [91] (as well as other applica-

tions). For the three applications just mentioned, provably secure constructions have

indeed been proposed based on generic OWFs [45, 53, 91]. However, those construc-

tions are generally too inefficient to use in practice, and appear interesting mainly

as existence proofs. There are also limitations on what may be built from OWFs:

Impagliazzo and Rudich [55] have provided evidence that certain cryptographic ap-

12



plications, such as secret key exchange, are unlikely to be achievable using OWFs in

a black-box manner.

To construct efficient schemes, as well as to achieve tasks that appear to require

more than just generic OWFs, cryptographers have relied on a number of specific

computational assumptions, such as the hardness of computing discrete logarithm-

s [69], the Diffie-Hellman problem [35], and the RSA problem [88]. However, the

security guarantees of schemes based on these problems have generally been low. For

instance, even if we assume that the RSA function x -+ (Xe mod n) is hard to invert,

that does not guarantee that no partial information about the input will be leaked,

when the function is used for encryption in the RSA cryptosystem. In fact, it is

known that certain kinds of partial information do get leaked.

More recently, two assumptions have appeared in the literature that lead to the

constructions of schemes that are efficient, and yet offer high guarantees of securi-

ty: the Diffie-Hellman indistinguishability assumption [18] (also known as the DDH

assumption), and the random oracle assumption [9]. (We note that both of these

assumptions are used in this thesis.) The DDH assumption by itself already implies

that the ElGamal public-key cryptosystem [38] is semantically secure (while based

on just the regular Diffie-Hellman assumption, we can only say that the scheme is

hard to invert). The DDH assumption has also been used to construct an efficient

public-key cryptosystem with a very high level of security, namely the Cramer-Shoup

system [29], which is provably secure against chosen-ciphertext attacks.

The random oracle model was introduced by Bellare and Rogaway [9]. The idea

of the model is that all the participants (including the algorithms and the adversary)

have access to the same fixed random function. In a practical implementation, the

ideal of a random function would be approximated by a public and deterministic hash

function, such as SHA [76]. A number of efficient schemes have been proposed and

proven secure in the random oracle model, such as the OAEP method for encryp-

tion [10], or the PSS signature scheme [12]. The main disadvantage of the random

oracle model is that it is unrealistic, in the sense that no deterministic function could

ever have the properties of a random function. In fact, Canetti et al. [24] show that

13



there are some (admittedly artificial) schemes that are secure in the random ora-

cle model, but not in the standard model, no matter how the random function is

instantiated. However, as far as we know, no "reasonable" cryptographic construc-

tion has been shown secure in the random oracle model, and yet compromised in

the standard model. Clearly, random oracle security is substantially better than just

heuristic confidence (as it does rule out "generic" attacks that are independent of

the hash function), but relying only on standard complexity assumptions is definitely

preferable.

Finally, let us point out some limitations of provable security. First of all, a proof

of security is valuable only if the formal model is properly chosen. For instance, the

original work on zero-knowledge (ZK) proofs [47] was in the model where there are

just two parties. This model is indeed appropriate in some scenarios (such as the

host-smartcard scenario). However, it is not suitable for client-server applications,

where many clients could be connecting to the server at the same time. In fact,

many standard ZK protocols are not provably secure in the concurrent setting. New

techniques are required to achieve security in the concurrent model [37, 85]. As

another example, let us point out that there are classes of practical attacks that

are not addressed by most standard models, such as timing attacks [63] (where the

adversary can measure the time taken by a party's operations), or power analysis

attacks [62] (where the adversary can monitor the amount of power consumed by a

party's circuits).

Second, it is important to keep in mind that security based on a certain assump-

tion is only as good as the assumption itself. If the assumption is ever broken (e.g.,

a sufficiently efficient way is found to solve a problem that was previously believed

to be hard), then the scheme might no longer be secure. Also, even if the underlying

problem is infeasible asymptotically, it could still be solvable for practical values of

parameters. As an example, the Ajtai-Dwork cryptosystem [2] is provably secure

based on the difficulty of a certain lattice problem. However, the system was suc-

cessfully attacked by Nguyen and Stern [79], for practical values of parameters, by

applying algorithms that can heuristically solve such lattice problems. We should also
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note that even if the underlying problem is hard, the reduction from a scheme's secu-

rity to solving the problem may be so inefficient as to make the security guarantees

worthless. As a hypothetical example, suppose an attack of time T on a cryptosystem

translated into the ability to find a collision in the SHA function (which has 160 bits

of output) in time T. Since a collision in SHA can be found in time 280 through

random sampling (by the birthday paradox), it would follow that the security of the

cryptosystem is only (280)1/5 = 32768, which is quite small, even though the security

of SHA (280) is substantial.

In summary, although provable security has limitations, it appears to be the only

reasonable hope for making schemes that will stay unbreakable for a long period of

time. Cryptanalysts will still have what to do, of course, even if they will have to con-

centrate all their efforts on solving the underlying hard problems. However, barring

major progress in those areas, cryptographers will no longer need to go through the

old design-break-redesign cycle. We think, then, that the major task in cryptography

right now is to construct new schemes that are efficient and provably secure, for more

and more applications.

1.2 The Contributions of This Thesis

The task of this thesis is to rigorously define, and provide efficient and provably

secure constructions, for the following two cryptographic applications: All-or-Nothing

Transforms (AONTs) and Password-Authenticated Key Exchange protocols. Both

areas are relatively recent, and have not received much previous formal treatment.

In fact, this thesis is the first work we are aware of to give strong formal definitions

of AONTs, and provide a provably secure construction. In the field of password

authentication, we know of only one preceding work based on formal methods [67].

Compared to that work, we provide a novel model of security (which we feel is more

elegant), as well as constructions that are more efficient and rely on fewer security

assumptions.
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Chapter 2

On the Security Properties of

OAEP as an All-or-nothing

Transform

2.1 Introduction

The concept of an All-or-Nothing Transform (AONT) was introduced by Rivest [86]

to increase the cost of brute force attacks on block ciphers without changing the key

length. As defined .by Rivest [86], an AONT is an efficiently computable transforma-

tion f, mapping sequences of blocks (i.e., fixed length strings) to sequences of blocks,

which has the following properties:

" Given all of f(xi, ... , X) = (Yi, ... , yn,), it is easy to compute x1,... , X.

* Given all but one of the blocks of the output (i.e., given yi, .. .., y_1, y.1, .Y.. ,

yn' for any 1 < j < n'), it is infeasible to find out any information about any of

the original blocks xi.

As mentioned by Rivest [86], an AONT should be randomized, so that a known

message does not yield a known output.

An AONT itself does not perform any encryption, since there is no secret key in-

formation involved. However, if its output is encrypted, block by block, with a block

16



Ciphertext

Figure 2-1: The use of an AONT against brute force attacks

cipher (see Figure 2-1), the resulting scheme will have the following interesting prop-

erty: An adversary cannot find out any information about any block of the message

without decrypting all the blocks of the ciphertext. Now, if the adversary attempts

to do an exhaustive search for the key, she will need to perform n' decryptions before

determining whether a given key is correct. Thus, the attack will be slowed down by

a factor of n', without any change in the size of the secret key. This is particularly im-

portant in scenarios where the key length is constrained to be insecure or marginally

secure (e.g., because of export regulations).

Another very important application of AONTs, as proposed by Johnson et al. [60]

for inclusion in the IEEE P1363a standard, is to make fixed-blocksize encryption

schemes more efficient. Instead of encrypting the whole message block by block,

we can apply AONT to it, and encrypt just some of the blocks of the output (see

Figure 2-2). When used with a public key cryptosystem, such as RSA [89], this

method can give a substantial reduction in communication overhead, as compared

to the traditional approach of generating a random symmetric key, encrypting it

17



Ciphertext

Figure 2-2: The use of an AONT for efficient encryption

with the public key, and then encrypting the message with the symmetric key. For

example, the overhead of the traditional method with RSA would be 1024 bits (for

the encryption of the random key). On the other hand, the new method, using the

AONT construction proposed in this paper, would give an overhead of less than 200

bits. This method is even more useful for elliptic-curve cryptosystems, which typically

have a block length that is too small to fit a symmetric key, together with padding

and redundancy (see Johnson and Matyas [59]). A similar application of AONTs, as

proposed by Rivest [87], would be to reduce communication requirements in a case

where the encryption function greatly expands its input.

The use of AONT with encryption can be particularly useful for remotely keyed

encryption, i.e., applications where the part of the system that contains the keys

is separate, and where bandwidth restrictions prevent us from sending the whole

message from the insecure to the secure component (see Blaze [17]). An example

of such a scenario would be the case where the keys are stored in a smartcard, and

the user wishes to encrypt or decrypt large files. Through the use of AONT, we can

18



Smartcard

Figure 2-3: The use of an AONT for remotely-keyed encryption

completely eliminate any encryption components from the host system, and restrict

such operations to the smart card (this is a generalization of the scheme of Jakobsson

et al. [58], substituting general AONTs for the OAEP-like construction used in that

paper). The host would transform the message with an AONT, and send one block

to the smartcard (see Figure 2-3). The smartcard would encrypt that block, and

return it to the host. The encryption of the message will then be the output of

the AONT, with one block encrypted. Assuming the block encryption is secure, the

whole message will be secure. Note that since the host system does not contain any

encryption algorithms, it might not be subject to export regulations.

The major problem with the definition of Rivest [86] is as follows: That definition

only speaks about the amount of information that can be learned about a particular

message block. It does not, however, address the issue of information about the

message as a whole (e.g., the XOR of all the blocks). To make the AONT truly

useful, we would want it to hide all information about the input if any part of the

19
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output is missing (we will refer to this as the semantic security model). For instance, if

an AONT is used for the purpose of slowing down exhaustive search of the key space,

a relation between several blocks of the plaintext may provide enough information

to the adversary for the purpose of detecting an invalid key. Similarly, security of

encryption should incorporate the adversary's inability to learn partial information

about the plaintext after seeing the ciphertext.

Another disadvantage of the model of Rivest [86] is that it does not consider

the relation between the number of bits of AONT output that the adversary has,

and the information that is leaked about the input. That model only considers the

cases when the adversary has the whole output (in which case she should be able to

completely determine the input), and when at least one complete block of the output

is missing (in which case it should be infeasible to determine any block of the input).

It would be interesting to consider exactly how much information about the input

can be determined by looking at all but a certain number 1 bits of the AONT output,

and how much effort is required to obtain that information.

2.1.1 This Work

The goal of this part of the thesis is to provide an AONT construction that is provably

secure in the strong sense described above. Our contributions are as follows:

" We give new formal definitions of AONT security in terms of semantic securi-

ty and indistinguishability. These definitions address the concerns mentioned

above and provide the security needed for practical applications. They are

parallel to the two notions of security for public-key cryptosystems, defined by

Goldwasser and Micali [46]. We consider both the non-adaptive scenario (where

the positions of the bits that are removed from AONT output are fixed before

the experiment), and the adaptive scenario (where the adversary can choose the

positions).

" We prove that OAEP (see Section 2.1.2), a construction originally introduced

by Bellare and Rogaway in a different context, satisfies these definitions (in the
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random oracle model).

* We give an upper bound on the adversary's advantage in getting information

about OAEP input when given all but I bits of OAEP output, as opposed to

having none of the output. The bound is exact, i.e., does not involve asymp-

totics. It does not use any computational assumptions and relies only on the

properties of random oracles. The bound is directly proportional to the number

of adversary's queries to the random oracle and is inversely exponential in the

number of bits of OAEP output that are withheld from the adversary.

" We then show that our upper bound is nearly optimal, in the sense that no

adversary can do substantially better against OAEP than by exhaustive search.

In addition, it will follow that no AONT can achieve substantially better security

(i.e., upper bound on the adversary's advantage) than OAEP.

2.1.2 OAEP

Optimal Asymmetric Encryption Padding (OAEP) was originally introduced by Bel-

lare and Rogaway [10] for the purpose of constructing semantically secure and plaintext-

aware public-key encryption schemes from arbitrary trapdoor permutations. For

parameters n and ko, "generator" G : {0, 1}ko -+ {0, 1}, and "hash function"

H {0,1}" -+ {0,1}ko, the transform OAEP : {0, 1} x {0,1}ko - {0, 1}"', for

n' n + ko, is defined as

OAEPGH(x, r) = x E G(r) 1r E H(x E G(r)),

where || denotes concatenation. Here x is the message and r is a random string.

In applications, n would be the length of a message, and ko would be the security

parameter, e.g., ko = 128. We will often refer to the first half of the OAEP output

(i.e., x E G(r)) as s, and to the second half (i.e., r E H(s)) as t. Here |s| = n and

|t| = ko. We may also write OAEPGH(x), implying that r is chosen uniformly at

random from {0, 1}ko.
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Figure 2-4: A diagram of the OAEP

A diagram of the OAEP appears in Figure 2-4.

Functions G and H are "random oracles," as introduced by Bellare and Rog-

away [9]. The same authors show [10] that if G and H are "ideal," i.e., they are

random functions, and f : {0, 1}ko+" -+ {0, 1}ko+n is a trapdoor permutation, then

the encryption scheme

EG,H(X) = f (OAEPGH (x, r)),

with r chosen at random for each encryption, is semantically secure, in the sense of

Goldwasser and Micali [46].

2.1.3 Previous Work

Rivest [86] has proposed the following construction ("the package transform") as a

candidate AONT:

* Let E be a block cipher. Let KO be a fixed, publicly known key for E.

* Let the input message be the sequence of blocks mi, m 2 , ... , Ms.

" Choose at random a key K' for E.

* Compute the output sequence m'i, m', ... , m',, for s' = s + 1, as follows:
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- Let m' = m EDE(K',i) fori = 1,2,... ,s.

- Let

m'/ = K' E hi E h2  . . hs,

where

hi = E(Ko, m' E i)

for i = 1,2, ... , s.

No formal proof was given that this construction is actually an AONT. The heuristic

argument for security is based on the idea that if any block of the output is unknown,

then K' cannot be computed, and so it is infeasible to compute any message block.

Rivest [86] mentions that "the package transform" can be viewed as a special case of

the OAEP, for G(x) = E(x, 1)f|E(x, 2)|| ---IIE(x, s) and H (x) = E(Ko, xi p i).

However, no claims about OAEP itself are made in that paper.

Johnson et al. [60], in their contribution to the IEEE P1363a standard, give an

OAEP-like transform that uses four rounds of hash applications instead of two. A

heuristic analysis of the security of that construction is given by Matyas et al. [68].

Using an informal assumption about the hardness of the underlying hash functions,

they argue that the number of operations required to determine the secret bits in

the input message grows exponentially with the number of unknown bits. However,

we are not aware of any formal proof of security of the transform from Johnson et

al. [60]. In any case, the analysis of Matyas et al. [68] is not directly applicable if

there are fewer than four rounds, so it does not work for OAEP.

Stinson [96] gives a treatment of AONTs from the point of view of unconditional

security. Similarly to Rivest [86], Stinson's definition only considers the amount

of information leaked about a particular block of the message, as opposed to the

whole message. He uses a straightforward formalization of Rivest's definition above,

suitably modified for information-theoretic security. Stinson then goes on to propose
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some constructions for AONTs using linear transforms, which can be proven secure in

that model. The basic idea of these constructions is to use the function #(x) = xM-1,

where x is a vector of s message blocks (considered as elements of GF(q), for some

prime power q), and M is an invertible s by s matrix over GF(q), such that no entry

of M is equal to 0. It is easy to see that each component of x linearly depends on all

the components of y = #(x) (since x = yM).

It is conceivable that Rivest's "package transform" would be secure in the semantic

security model (with sufficiently strong assumptions about the block cipher). The

construction of Johnson et al. may also be secure, although no formal proof has been

given. However, the linear constructions of Stinson would definitely not be secure in

that model, since it is easy to come up with linear relations among the elements of x

by looking at just a few elements of #(x) (in fact, since # is linear and deterministic,

every output of #(x) gives a linear relation on elements of x). Even if the message is

padded with random blocks, it is still possible to extract partial information about

the message if the number of known outputs is larger than the number of random

blocks.

It is interesting to note that the relationship between the number of missing bits

and adversary's required effort has come up in other contexts. Merkle [70], in one of

the first papers on public key cryptography, defines the concept of a "puzzle," which is

a cryptogram that requires O(N) work to break, where N is some number depending

on the security parameters (the total amount of work put in by the communication

parties is going to be O(N)). Merkle's proposed construction of such "puzzles" is to

take a block cipher and restrict the size of the key space, by varying only 0(log N)

bits of the key and fixing the rest. It is assumed that breaking a cryptogram of the

underlying cipher, when all but 0(log N) bits of the key are known, requires 0(N)

work.

Even et al. [42] assume the existence of a "uniformly secure" block cipher for their

construction of a contract signing protocol. They consider a block cipher "uniformly

secure" if it is infeasible to find a key for a given plaintext-ciphertext pair when no

information about the key is known; but if the first i bits of the key are known, then
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there is an algorithm for breaking the cryptogram in time t(k - i), for some function

t(.), and no algorithm can do it faster than in time lt(k -i). Here k is the key length.

Both Merkle and Even et al. conjecture that standard block ciphers, such as

Lucifer [43] or DES [75], satisfy their assumptions. However, uniform security is

probably not a common consideration in block cipher design, as almost all applications

of these primitives assume the whole key to be secret. Thus, it may be unsafe to make

such an assumption about standard block ciphers. In fact, this is, in effect, one of

the criticisms given by Ben-Or et al. [15] of the work of Even et al. It seems to us,

however, that the methods of this thesis can be used to give a simple construction

that will turn any block cipher that is secure in the regular sense into one which is

uniformly secure. See Section 2.6 for more details.

2.1.4 Subsequent Work

Since the publication of the conference version of these results [20], several further

results have appeared that cite this work and consider various variations and applica-

tions of AONTs. Canetti et al. [23] generalize our definitions and give some provably

secure constructions of AONTs (in their new model) without random oracles. In

addition, they prove some general results (such as that the existence of computa-

tional AONTs implies the existence of one-way functions). Desai [34] analyzes the

security of AONTs for protection against exhaustive key search. Bellare and Boldyre-

va [4] analyze the security of AONTs (and in particular, OAEP) in the application of

chaffing-and-winnowing, with some of their results applicable to general application

of encryption.

The Work of Canetti et al.

The paper of Canetti et al. [23] can be viewed as the most direct continuation of this

work, as it provides a very important next step: constructions and analysis of AONTs

without random oracles. We will only speak here about their model and construction

(see Section 2.3.1 for the description of some new applications for AONTs proposed
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in that paper). They formulate a security definition, which is very similar to the non-

adaptive indistinguishability model described in Section 2.3. The only important

differences are that no random oracles are used, and the security is described in

terms of a threshold: As long as more than a certain number f bits of the output

are unavailable to the adversary, the adversary should be unable to find out any

information about the input. The adversary's inability to find out information is

formulated in terms of either computational, statistical, or perfect indistinguishability

of certain distributions. An AONT with threshold f is called an f-AONT. The authors

then proceed to give an extension of the model, by allowing an AONT to have a public

and a secret output. The definition of security would then presume that the adversary

is always given the public output, and bits can be only be removed from the secret

part. As pointed out by Canetti et al., an E-AONT with public and secret outputs of

length p and s, respectively, also gives a secret-only (i.e., traditional) f'-AONT with

output size N = s + p and f' = f + p (since if the adversary misses f + p bits of the

output, that means it must miss at least f bits of the secret output).

The authors then present a construction based on a new primitive, called an Ex-

posure Resilient Function (ERF): A function is an £-ERF if its outputs are (perfectly,

statistically, or computationally) random even if all but f bits of the input are known.

Given an £-ERF f : {0, 1}" -+ (0, 1}k, an -AONT can be constructed with inputs of

size k, secret output of length n and public output of length k, as follows:

T(x; r) = (r, f (r) e x),

where r is a random string of length n, r is the secret output, and f(r)EDx is the public

output. Based on the authors' constructions of ERFs (which use strong extractors

and pseudo-random generators), it follows that, whenever s = e(1) and k - O(1),

there exists a computationally-secure £-AONT for messages of length k with secret

output size s and public output size k.

Let us now analyze the applicability of the results of Canetti et al. to the various

applications. The main concern is the difference made by the notion of splitting the
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output into public and secret parts. This change to the model does not appear to

affect the use of AONTs for the applications of efficient encryption and remotely-

keyed encryption. The reason is that in those applications it is up to us to decide

which part of the output to withhold from the adversary (see Figures 2-2 and 2-3).

We can thus always decide to encrypt a piece of the secret output.

However, for the application of protection against exhaustive key search, the d-

ifference appears to be more substantial. Specifically, the adversary may be able to

recover information about the input message by decrypting all of the secret part, but

only a small piece (or even none) of the public part. Thus, the adversary's workload,

as compared to encryption without an AONT, is only increased proportionally to the

length of the secret part. The constructions of Canetti et al. would then appear useless

for this application: The secret output length in those constructions is independent of

the length of the message, and is exactly equal to the overhead (i.e., the expansion of

the input introduced by the AONT). Thus, security can be increased only at the cost

of increased overhead. On the other hand, the OAEP construction achieves security

proportional to the length of the message, and independent of the overhead (since for

OAEP, the whole output can be viewed as the secret part). It is interesting to note

that if we were willing to have security proportional to the overhead, then we could

achieve that using the following very simple construction, based on any cipher:

1. Generate s random keys ki, ... , k,.

2. The secret output is ki, ... , k8, and the public output is the encryption of the

input message x using key ki e ... k.

Here s (number of blocks in the secret output) is the size of the overhead, as well as

the increase in the adversary's workload. Clearly, if the adversary is missing any ki,

then she is unable to recover x (assuming that the underlying cipher is secure).

Other Subsequent Work

Two subsequent papers analyze the security of AONTs in the context of applications.

Desai [34] considers the application of protection against exhaustive key search. The
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definition of AONTs used in that paper differs from ours in three important ways:

First, the adversary's view of the output is measured in blocks, and not in bits

(similarly to Rivest's [86] original definition). Second, the partial output (with at

least one complete block removed) is required to not only convey no information about

the input, but to also be indistinguishable from a random string. This strengthening

appears necessary to achieve the required security results (see Section 2.3.1). Third,

instead of specifying the positions of the missing bits (actually, blocks) in advance,

the adversary is able to ask for blocks after seeing the value of other blocks (we will

call this the fully-adaptive scenario). Desai then goes on to prove that encryption of

AONT output does result in a secure encryption scheme (in the indistinguishability

sense), and also slows down exhaustive search by a factor equal to the number of

input blocks. Instead of the random oracle model which we use in this work, Desai's

model is based on the notion of an ideal block cipher, i.e., a function that gives an

independent random permutation for any choice of the key. (The ideal block cipher

model can be thought of as an analog of the random oracle model, except for block

ciphers rather than hash functions. We note that the ideal block cipher model is used

much less often in the literature than the random oracle model.) In that model, Desai

presents an efficient construction of an AONT that is similar to Rivest's construction,

yet even simpler (the difference is that Desai's construction uses hi = m', instead of

hi = E(Ko, m' E i) - see the description of Rivest's construction in Section 2.1.3).

It would appear that Rivest's construction could be proven secure in the ideal block

cipher model as well.

Bellare and Boldyreva [4] analyze the security of AONTs (and in particular,

OAEP) in the application of chaffing-and-winnowing. Their definition of AONT secu-

rity is very similar to our non-adaptive indistinguishability model, except it is stated

in terms of blocks (as in Rivest [86] and Desai [34]). The most relevant result of

that paper is that the encryption scheme made by processing the message through an

AONT and encrypting the first block is secure (the encryption could be done through

chaffing-and-winnowing, or through any other scheme). Specifically, if the underlying

encryption scheme is semantically secure, then the resulting scheme is semantically
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secure. This proves the security of the use of AONTs for efficient encryption, as

described at the beginning of Section 2.1.

2.1.5 Outline

The outline of the rest of this chapter is as follows. Section 2.2 describes the notation

and model. In Section 2.3, we give formal definitions of security for AONTs and dis-

cuss the relation of our definitions to the applications. Section 2.4 presents the results

on the security of OAEP as an AONT. Section 2.5 presents the proofs. Section 2.6

presents the conclusions and discusses open problems.

2.2 Notation and Model

Let us speak briefly about our notation and model. All algorithms used are oracle

Turing machines, possibly randomized. Oracle queries execute in unit time. If A

is a randomized algorithm, we may write A(xi,...) to mean the distribution of A's

output on certain inputs. We may also specify the coins explicitly, as in A(rA, x 1 ,...),

in which case the notation will refer to the fully determined output.

We will write x 4 X to mean that a variable x is to be chosen at random according
R R R

to distribution X. As a shorthand, x1, x 2 <- X denotes x1 <- X, x 2 <- X. On the

other hand, x <- X will mean that x is to be set to the result of evaluating expression
R

X (which is not random). If S is a set, then we will write x +- S to mean that x is
R R

chosen uniformly at random from S. We will write Pr[x +- X; y +- Y; z <- Z; ...

p(x, y, z,.. .)] to mean the probability of predicate p(x, y, z,... .), when x is chosen at

random according to distribution X, y is chosen at random according to distribution

Y, z is set to the result of evaluating expression Z (possibly a function of x and y),

etc. Similarly, we will write E[x A- X;... f(x,...)] to mean the expected value of

f (x, ... ) when x is chosen at random according to distribution X, etc.

To specify the distribution of a random function ("random oracle"), such as G

and H for OAEP, we will use notation like G, H -R , where Q is the set of all

maps from the set {0, 1}* of finite strings to the set {0, 1}' of infinite strings. The
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notation should be interpreted as appropriate in its context, restricting the input and

truncating the output of the function as necessary.

For a function f : X -+ Y, we define its set-inverse f{1- : Y -+ 2x as f1-}(y)

{x E X : f(x) = y}. We will freely put sets in positions that require a non-set,

as in x E Y or f(X, y) (where f might have signature {0, 1}m x {0, 1} -+ {0, 1}').

This should be taken to mean the set of all possible results if all the elements of the

specified set(s) are used in the specified position(s). For instance,

x ED Y= {x E y : y E Y}.

For x C {0, 1}*, 1 < i < |x|, and 0 < I < |xI - i + 1, let substr(x, i, 1) denote the

substring of x starting at bit i (with the leftmost bit being 1) and having length 1.

For any integer m and L C [1, m], we define hm,L {0, _ _ {0, }m-II as

follows: hm,L takes a bit string of length m and throws out ("hides") the bit positions

indicated by L. More precisely, if we let Li, for 1 < i K m - |LI denote the ith

smallest element of L = [1, m] \ L, then

hm,L (x) = substr(x, L1 , 1)j1 substr(x, L2 , 1) -l substr(x, Lm-|L|, 1)-

We also define Um,L : {0, 1}ILI x {0, 1}mILI _ {, 1}m as the inverse operation to

hm,L: Um,L(V, x) returns the result of inserting ("unhiding") the bits of v into x in

the positions indicated by L. More precisely, we can define um,L as follows: for every

substr(um,L(vx),i, 1) = {g 3j i = L3,

to L j : i = Lt s

where Lj denotes the jth smallest element of L. It is easy to see that for any x and
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hm,L (Um,L (V, X)) = X,

h -}(x) = Um,L ({0, 1}LI, X).

Forn' >1>0, let }={L c[1,n']:L =l}.

2.3 Definitions

Our definitions of security for AONTs are patterned after the notions of security for

encryption defined in Goldwasser and Micali [46]: polynomial security (polynomial

indistinguishability) and semantic security.1 We also try to define security "exactly,"

as in Bellare and Rogaway [10]: instead of concerning ourselves with asymptotics (i.e.,

showing that the adversary's advantage is "negligible" in the security parameters), we

are interested in giving an exact bound on the adversary's advantage, as a function

of the adversary's running time, the number of bits of AONT's output given to the

adversary, etc.

For simplicity, we will formulate the definitions in terms of a single random oracle

F. No generality is lost, since a single random oracle can be used to simulate several,

by constructing the query as the concatenation of the oracle index and the original

query. For instance, we could use F to simulate random oracles G and H by translating

query x to G into query 0IIx to F and query y to H into 1||y. In addition, it would

be easy to change the definitions for the case of no random oracles.

The non-adaptive indistinguishability scenario is as follows: Let L be an arbitrary

set of 1 bit positions. The adversary runs in two stages:

1. Find stage: The adversary is given L and access to F. She outputs x0 E {0, 1}",

X1 E {0, 1}", and cf E {0, 11*.

'To prevent confusion, we note that while Bellare and Rogaway [10] talk about semantic security
(for encryption), the definition they give is actually stated in terms of indistinguishability. This is
acceptable in their context, since the two notions are known to be equivalent for encryption (see
Micali et al. [72]). In our context, however, we state and analyze each one separately, since no
equivalence has yet been proven.
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Figure 2-5: Diagram of the non-adaptive indistinguishability scenario. Here Q =
hn',L(y). In this figure and below, the bit strings are shown for illustration purposes
only.

2. Guess stage: The adversary is given cf and, for random bit b, AONT(Xb)

with bit positions L missing. The adversary has access to F. She has to guess

b.

We want the adversary's probability of correctly guessing b to be as close as possible

to }. Note that xO and xi do not need to be explicitly passed to the guess stage, since

they may be included in cf. We may view cf as the saved state of the adversary at

the end of the find stage.

A diagram of the non-adaptive indistinguishability scenario is shown in Figure 2-5.

The formal definition is as follows:
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Definition 1 (Non-adaptive indistinguishability). Let AONT be a randomized

transform mapping n-bit messages to n'-bit outputs and using random oracle F. Let I

be between 1 and n'. An adversary A is said to succeed in (T, qr, e)-distinguishing

AONT with 1 missing bits if there exists L E {"|} such that

Pr[F 4- Q; (xo, x 1 , cf) 4- A(L, find); b - {0, 1};

y - AONTr(Xb) Ar(hn',L (y), cf, guess) = b] > - + c,
2

and, moreover, in the experiment above, A runs for at most T steps, and makes at

most qr queries to F.

It follows from this definition that in order for an AONT to be secure in the sense

of non-adaptive indistinguishability for certain choices of parameters, it needs to be

that for every adversary and every L, the adversary's advantage has to be less than

E.

The adaptive indistinguishability scenario is as follows: The adversary runs in

three stages. The first stage chooses a value of L, while the last two stages are same

as in the non-adaptive indistinguishability scenario. The adversary runs as follows:

1. Select stage: The adversary is given 1 and access to F. She selects 1 bit

positions and outputs L E ( ) and c, E {0, 1}*.

2. Find stage: The adversary is given c, and access to F. She outputs xO E

{0, 1}", xi E {o, 1}", and cf E {O, 1}*.

3. Guess stage: The adversary is given cf and, for random bit b, AONT(Xb)

with bit positions L missing. The adversary has access to F. She has to guess

b.

Similarly to the remark about xO and x1 above, we note that L does not need to be

explicitly passed to the find and guess stages, since it may be included in cs, and then

put into cf.

33



Adversary

bit positions { 3, 4, 6} Select

coin flip

state c,

zo 010001

Pick one X, 1110100 Find

zb 110100

AONT state cf

y 01100111

Erase 2 01..0.11
bits G ess

----- --- ...- -- -----

guess of b

Figure 2-6: Diagram of the adaptive indistinguishability scenario. Here 9 = hn',L(Y)-
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A diagram of the adaptive indistinguishability scenario is shown in Figure 2-6.

In the formal definition, we will assume that the adversary's select stage will always

output a valid value of L E {'} (this can be implemented by having a suitable

encoding).

Definition 2 (Adaptive indistinguishability). Let AONT be a randomized trans-

form mapping n-bit messages to n'-bit outputs and using random oracle IF. Let 1

be between 1 and n'. An adversary A is said to succeed in (T, qr,e )-adaptively-

distinguishing AONT with 1 missing bits if

Pr[F 4- Q; (L, c,) 4- A'(l, select); (xo, x 1 , c) 4- A (cs, find);

b 4 {0, 1}; y R AONT(Xb) : A' (hn',L (y), cf, guess) = b] > - + e,
2

and, moreover, in the experiment above, A runs for at most T steps, and makes at

most qr queries to F.

Note that for the application of speeding up encryption that was mentioned above

in Section 2.1, it is sufficient for the AONT to be secure for a fixed choice of the missing

part of the output (since the user decides which part will be encrypted). Thus, for that

application, it is sufficient for the AONT to be secure in the non-adaptive scenario.

However, when an AONT is used to increase the cost of exhaustive search, it needs

to be secure in the adaptive scenario, since then the adversary has a choice of which

blocks to decrypt.

For the adaptive and non-adaptive indistinguishability scenarios, we will assume,

without loss of generality, that A never asks the same oracle query more than once

(A can accomplish this by remembering the history of past queries; this history can

be passed between stages through c, and cf).

The non-adaptive semantic security scenario is as follows: Let L be an arbitrary

set of 1 bit positions and f : {0, 1}' -+ {O, 1}* be an arbitrary deterministic function.

The adversary runs in two unconnected stages (each stage can be viewed as a separate

algorithm):
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* Find stage: The adversary is given L and access to F. She outputs x E {0, 1}".

* Guess stage (no data is passed from the find stage): The adversary is given

L and AONT'(x) with bit positions L missing. The adversary has access to F.

She has to guess f(x).

In the context of the traditional definition of semantic security for encryption, the

adversary's find stage may be seen as the sampling algorithm for a distribution of

messages, and the guess stage as the actual predicting algorithm. We want the

adversary not to be able to do substantially better than always outputting the most

probable value of f(x).

A diagram of the non-adaptive indistinguishability scenario is shown in Figure 2-7.

The formal definition is as follows:

Definition 3 (Non-adaptive semantic security). Let AONT be a randomized trans-

form mapping n-bit messages to n'-bit outputs and using random oracle F. Let 1 be

between 1 and n'. Let f : {0, 1}" -+ {0, 11* be any deterministic function. An adver-

sary A is said to succeed in (T, qr, e)-predicting f from AONT with I missing bits

if there exists L E {' } such that

Pr[F A Q; x A Ar(L, find); y A AONT -(x)

A' (L, hnr,L(y), guess) = f (x)] > PA, + i, (2.1)

where

PA,f = E[F A : maxPr[x A A1 (L, find) : f(x) = z]],
z

and, moreover, in the experiment (2.1), A runs for at most T steps, and makes at

most qr queries to F.

The expectation in the definition of PAf is necessary to handle the possibility that

the adversary may choose x to be a function of F (e.g., x could be set to the result

of querying F on some fixed input). This would result in perfect prediction (both the
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Figure 2-7: Diagram of the non-adaptive semantic security scenario. Here =
hn/,L(y). Note that no state information is passed between the adversary's stages.
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find and guess stages can compute the same x), even though the output of the find

stage will appear random, for random F. Thus, the quantity

maxPr[F A Q;x A A"(L,find) : f(x) = z]
z

could be much smaller than the adversary's success probability. However, for any

fixed F, this adversary would always output the same x, so PA,f = 1. Thus, this

adversary's advantage c will have to be zero.

In the semantic security scenario (both adaptive and non-adaptive), no informa-

tion is passed between the adversary's find and guess stages, except hflr,L(AONT"(x))

(otherwise, the find stage could simply pass the value of f(x)). We will therefore re-

move the assumption that A can't make the same query to F more than once. We

will still assume, though, that all queries are unique within a single stage.

The adaptive semantic security scenario is same as the non-adaptive one, except

for the addition of the select stage before the find stage, in which the adversary

outputs L. The formal definition is as follows:

Definition 4 (Adaptive semantic security). Let AONT be a randomized trans-

form mapping n-bit messages to n'-bit outputs and using random oracle F. Let I be

between 1 and n'. Let f : {0, 1}" -+ {0, 1}* be any deterministic function. An adver-

sary A is said to succeed in (T, qr, E)-adaptively-predicting f from AONT with 1

missing bits if

Pr[F A Q; (L, c,) A A]7(l, select); x A ArP(c,, find); y A AONT" (x)

A' (hn,L(y), c,, guess) = f (x)] > PA,f - e, (2.2)

where

PA,f E[F A Q; (L, c,) A A' (l, select) : max Pr[x A Ar(cs,find) : f (x) = z]],

and, moreover, in the experiment (2.2), A runs for at most T steps, and makes at
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most qr queries to F.

Note that since information may be passed from the select stage to the find and

guess stages (through c,), we can assume that no query from the select stage is

repeated in any of the other stages. There is no danger in passing c, to the guess

stage, since c, is generated before x is chosen (note that PA,f involves an expectation

over cs, so the adversary will not gain any advantage by choosing (x, f(x)) at the

select stage and then passing it to the other stages).

2.3.1 Relation of the Definitions to the Applications

Once the definitions have been formulated, it is appropriate to ask whether or not

they are necessary and sufficient for the applications described above. It is clear from

the motivation given in Section 2.1 that non-adaptive security, in terms of either indis-

tinguishability or semantic security, appears to be necessary for all the applications

mentioned above: protection against exhaustive key search, as well as encryption.

As mentioned above in Section 2.3, we actually need adaptive security for the first

application, since it is up to the adversary to choose which blocks to decrypt.

However, we don't necessarily need the bit positions to be arbitrary. In fact, for

both of those applications it appears sufficient to have granularity at the block, rather

than the bit level (similarly to Rivest's [86] original definition). Our main motivation

for considering arbitrary sets of bit positions was because we wanted to show the

strongest possible results for OAEP.

We note that the application of protection against partial key exposure, proposed

by the subsequent paper of Canetti et al. [23], provides some extra motivation for

considering bit-level granularity. The scenario in that application is that the adversary

finds out part of a cryptographic key. We would like to maintain some security

guarantees, based on the amount of information leaked. However, most cryptographic

schemes do not offer any guarantees of security if even a small piece of the secret is

published. The solution is to store the key processed with an AONT, in which case a

partial leakage will not give any information to the adversary. To analyze security of
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AONTs in this context, it is appropriate to have the maximum possible granularity,

since that would allow the maximum potential for spreading the secret information

and making it hard to find for the adversary. In addition to this application, Canetti

et al. mention the possibility of viewing an AONT as a secret-sharing scheme with

bit-sized shares, which also motivates analyzing security at that level of granularity.

Some results on the sufficiency of our definitions are given in the papers mentioned

in Section 2.1.4. One of the results of Bellare and Boldyreva [4] can be interpreted

as showing that our non-adaptive definition is sufficient for the semantic security of

the encryption scheme based on AONTs, as long as the underlying encryption al-

gorithm is semantically secure. This result also implies security in the context of

remotely-keyed encryption, as long as the adversary has no access to the internals of

the encryption mechanism (i.e., the adversary is not allowed to perform such oper-

ations as impersonating the smartcard). There is still an open question as to what

kind of security is achieved against stronger attack scenarios, both for general encryp-

tion (e.g., chosen-ciphertext attacks), as well as for remotely-keyed encryption (e.g.,

security against forging valid plaintext/ciphertext pairs [58]).

The results of Desai [34] appear to imply that our adaptive definition implies

protection against exhaustive key search, as long as two additional requirements are

made: First, partial AONT output should not only convey no information about the

input, but also be indistinguishable from a random string. The extra requirement

does appear to be necessary, as illustrated by the following example: Suppose we

append 0 to the output of an AONT. The resulting scheme is still a secure AONT

(with security just slightly decreased), and yet the adversary can reject half the keys

in an exhaustive search by simply checking the block that is supposed to always end

with 0. The second requirement is that instead of specifying the positions of the

missing bits (or blocks) in advance, the adversary should be able to ask for blocks

after seeing the value of other blocks (we call this the fully-adaptive scenario). We

have not analyzed the security of OAEP in the fully-adaptive scenario, and it is indeed

an important open problem.

40



2.4 Security Results

Throughout most of this section we will be using two random oracles G and H. As

mentioned above, we can still use our definitions, since F could be used to simulate G

and H. We will write AG,H in place of Ar. We will also use notation (T, qG, qH, C)-' ' '

(e.g., "an adversary (T, qG, qH, c)-distinguishes") as a shorthand for (T, qG -I~ qH, C)- ' '

with the additional condition that at most qG queries are made to G and at most qH

queries are made to H.

2.4.1 Non-adaptive Indistinguishability: Upper Bound

Theorem 1. Suppose I < ko and ko > 14. Suppose that there exists an adversary A

that (T, qG , qH , C)-distinguishes OAEP with 1 missing bits, where qG < 2 ko-1 . Then

e < 8qG k o2 -20'.log2 ko

The proof appears in Section 2.5.1. The intuition behind the result is as follows:

Let ro be the value of r that was used to generate = hflL(OAEPGH(Xb)) in a

particular experiment. Then, the adversary cannot find out any information about Xb

unless she queries G for G(ro) (since Xb only appears in OAEPG,H (Xb, ro) as XbOG(ro)).

There are ~ 2' possible values of ro, corresponding to the 2' values of y that are

consistent with Q. Thus we would expect the probability that any of the adversary's

queries to G are equal to ro to be bounded by approximately qG2-'. The complication

is that there may be fewer than 2' possible values of ro and that these values may not

be equally probable, given 9. These possible variations in probability cause the term

O ( k0
log ko

Note that this result, like all the others in this chapter, does not use any compu-

tational assumptions and the bound is information theoretic, based on the properties

of random oracles. In fact, the bound does not directly depend on T, the adver-

sary's running time. It does, however, have implications for the running time, since

T > qG + qH (every oracle query takes unit time).
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2.4.2 Non-adaptive Indistinguishability: Lower Bound

To see how good our upper bound is, let us try to give a lower bound on the adversary's

advantage, by estimating the success of exhaustive search. This lower bound applies

to any AONT.

Theorem 2. Let AONT be a randomized transform mapping n-bit messages to n'-

bit outputs and using random oracle F. Let 1 be between 1 and n - 3. Then, for any

L E {'} and any N between 1 and 21, there exists an adversary that (NT, Nqr, e)-

distinguishes AONT with 1 missing bits, with

1
e > -N2~1.

- 16

Here T and qr are the time and number of queries to F, respectively, taken by a single

evaluation of AONT.

The proof outline appears in Section 2.5.2. The idea of the proof is as follows: The

exhaustive search algorithm that achieves the advantage of at least 1N2-' works by

choosing x0 and xi independently at random in the find stage. The guess stage tries

random values of the missing bits, up to N times, and, if the inverse AONT returns

Xb, for b' c {0, 1}, produces b' as the guess. If none of the trials has succeeded, a

random bit is returned. The idea of the analysis of this algorithm is that every trial

in the guess stage has probability of at least 2-' of succeeding with the correct value

of b (since there exists a choice of the missing bits, namely the values that actually

appeared in y, that leads to Xb). On the other hand, since Xb is chosen uniformly and

independently, the probability of getting Xlb in any particular trial is 2- < 2--.

We see from Theorems 1 and 2, that no adversary can improve by a factor of

more than O( ') over exhaustive search. Since, for large 1, this factor is negligible

compared to 2-', our bounds for OAEP are nearly optimal.

We also see that no AONT can be substantially more secure than OAEP, in the

sense that no AONT can have an upper bound that is better than OAEP's by a factor

of more than O( ).

42



2.4.3 Adaptive Indistinguishability

T heorem 3. Suppose I < ko, 1 < -, and ko > 14. Suppose that there exists an ad-

versary A that (T, qG, qH, e)-adaptively-distinguishes OAEP with I missing bits, where

q ko-1G _< 2k0 1 Then

E < 8(qG + qH 0o k2-1.

The proof outline appears in Section 2.5.3. It is very similar to the proof of

Theorem 1, with the only major difference being that we have to consider the possible

correlation between L and H (since L may be chosen by the adversary to depend on

H). This is taken care of by showing that with large probability (depending on

qH), the queries made in the select stage will not constrain H enough to spoil those

properties of it that are used in the proof of Theorem 1.

We can easily see that for the adaptive indistinguishability scenario, as for the

non-adaptive one, our bound is optimal within a factor of O( k,) of the advantage

given by exhaustive search for an arbitrary AONT (in this scenario, exhaustive search

would choose a random L in the select stage).

2.4.4 Non-adaptive Semantic Security

Theorem 4. Suppose 1 < ko and ko > 14. Suppose that there exists a deterministic

function f : {0, 1}' -+ {0, 1}* and an adversary A that (T, qG, qH, E)-predicts f from

OAEP with I missing bits, where qG 2 ko-1 . Then

ko
c < 8 qG 2-.

log 2 ko

The proof outline appears in Section 2.5.4. It is a simple modification of the proof

of Theorem 1, with the difference being the estimation of the adversary's success

probability in the case where she has not queried G for G(ro) (where ro is the value

of r used to compute OAEPGH(x) in the experiment). In the case of Theorem 1 that

success probability was I, while here it can be easily seen to be less than or equal to2'
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PAJ-

We have not yet shown a lower bound for the semantic security scenarios. We

still expect our upper bound for these scenarios to be nearly optimal, as for the

indistinguishability scenarios.

2.4.5 Adaptive Semantic Security

Theorem 5. Suppose I < ko, I < 1, and ko > 14. Suppose that there exists a

deterministic function f : {0, 1}" - {0, 1}* and an adversary A that (T, qG, qH, e)-

adaptively-predicts f from OAEP with 1 missing bits, where qG 2 2 ko-1. Then

e < 8 (qG- q) 1 ko 2 -1
log2 ko

The proof of Theorem 5 may be easily obtained from the proof of Theorem 3 by

adding the modifications given in the outline for the proof of Theorem 4.

2.5 Proofs of Theorems

2.5.1 Proof of Theorem 1

Let A be an adversary. We want to show that

Pr[G, H 4- Q; (Xo, X1, cf) - AGH(L, find); b 4- {0, 1}; ro - {0, 1}ko;
1k

y <- OAEPG,H (Xb, ro) : GH (hn',L (y), Cf, guess) = b] < - + 8G ko
2 log 2 ko

for all L E {" } and ko > 14 (recall that for OAEP we have n' = n + ko). Note that

we have explicitly mentioned random variable ro, which supplies the randomness for

the computation of OAEPGHx b)- We will refer to the success of the adversary in

the above experiment as event AC (Adversary is Correct). In the rest of the proof we

will refer freely to random variables from the experiment.

Let qFG and QGG = qG- qFG be the number of queries that A makes to G in
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the find and guess stages respectively (without loss of generality, we can assume that

these are fixed for any given values of n and ko).

Fixavalue ofL E {'}. Let Ls = Ln[1, n] and Lt = (Ln[n+1, n+ ko])-n. We

can think of Ls and Lt as the sets of bits that are removed in the s and t parts of y,

respectively. Let Is = |LsI and it = ILt 1. Clearly, I = is + It.

Let Q denote the random variable hn',L(y). Let

s substr(Q, 1, n - Is),

= substr(9, n - Is + 1, ko - lIt).

Thus § and i correspond to the s and t parts of y with bits from L removed, just as

Q corresponds to y with bits from L removed.

Let hs {0, 1}" -+ {0, 1}~l's and h: {0, I}ko -+ {0, 1}ko-1t be defined as hn,Ls and

hko,Lt, respectively. We may look at h, and ht as functions that remove the missing

bits from the s and t parts of y, respectively. Let us : {O, 1}'s x {0, 1}"-s -+ {0, 1}"

and ut : {0, 1}'t x {0, 1}ko-It _ {0, 1}kO be defined as un,Ls and Uko,Lt . We may look

at us and ut as functions that "fill in the holes" in the s and t parts of y, respectively.

Note that the subscripts in Ls, Lt, i, it, hs, ht, us, and ut refer to the part of

OAEP output that the object (set, number, of function) is related to. They do not

imply dependence on the actual values of s and t, taken as substrings of the random

variable y (hence the subscripts are set in Roman font, and not in italics).

Fig. 2-8 shows the relationship between the above mentioned variables and func-

tions.

Let

S = h"-}(9) = us({O, 1 }ls, s),

T - h 1  (i) = ut ({0, 1 }ht, i).

We can think of S and T as the sets of the possible values of s and t, respectively,
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Figure 2-8: OAEP and related functions

that are consistent with the information in Q. Let

SH = {s c S : r E H(s) E T} for r E {0 , 1}ko

RGH = {r E {0, 1 }ko : Xb D G(r) E S }.

SH may be seen as the set of values of s that are consistent with Q and a particular

r for some G:

S" = {s E {0, 1}" : 3G E Q : substr(OAEPGH (Xb, r), 1, n) - s A

hn',L(OAEPG,H(Xbr))

RG,H may be seen as the set of values of r that are consistent with Xb and Q. In other

words, it is the set of possible values of ro that could have been used to produce the

adversary's view for the value of b that was used:

{G,H = {r E {, 1}ko : hn',L(OAEPGH(Xb, r))
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Define H' : {0, 1 }ls -+ {0, 1 }ko~'t as

H'(v) = ht (H (us (v, s))).

Note that H' does not depend on any values of H, except within domain S. If H

is a random function, then, for any fixed s, H' is also a random function. Now

S = {us(v, s) v E Vht(,)}, where VH' = {v c {0, 1}'s : r' E H'(v) = t}. In

particular, |f'| = V l -(r) = H'-} (ht (r) ( D)

Let MH' maxzE{O,1}kO -lI |H'1-U (z)j.

Let AskRo be the event that A ever asks for the value of G(ro). Let FAskRo

and GAskRo be the events that such a query is made during the find and the guess

stages, respectively. Note that FAskRo and GAskRo are mutually exclusive, since, by

assumption, all of A's oracle queries are unique. We have

Pr[AC] = Pr[AC-,AskRo] - Pr[-,AskRo] + Pr[ACIAskRo] - Pr[AskRo]

< Pr[ACl-,AskRo] + Pr[AskRo]

= Pr[AC|-,AskRo] + Pr[FAskRo] + Pr[GAskRo]

= Pr[AC-|,AskRo] + Pr[FAskRo] + Pr[GAskRo A -,FAskRo]

= Pr[AC-iAskRo] + Pr[FAskRo] + Pr[-,FAskRo] - Pr[GAskRol-,FAskRo]

< Pr[AC|-,AskRo] + Pr[FAskRo] + Pr[GAskRo-lFAskRo].

We have

1
Pr[AC-AskRo] = -,

since if A does not see G(ro), all of its inputs will be independent of b (Xb only appears

in y asXb E G(ro)). We also have

Pr[FAskRo] < qFG 2-o

since ro is chosen at random after the find stage.
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Let's bound Pr[GAskRo-1FAskRo]. Let GAskR' denote the event that A's ith query

to G in the guess stage is ro. The GAskR's are all mutually exclusive. Therefore,

Pr[GAskRo -,FAskRo]
QGG

Pr[V GAskRi jFAskRo]
i=190G

qGa

Z Pr[GAskRl-,FAskRo]
i1

9GG i--1

Pr[GAskR' A A -GAskRiFAskRo]
i=1 j=1

=S Pr[A ,GAskRIl-,FAskRo] - Pr[GAskRIl A ,GAskRj A -,FAskRol
i=1 j=1 j=1

qGG -1

5 Pr[GAskRl A -,GAskRj A -,FAskRo].
j=1

Lemma 1. For any i between 1 and qGG,

i-i

Pr[GAskR'l A ,GAskRj A -,FAskRo] < 2- 1 EH',[MH'1.
j=1

Here, and everywhere below, EH'[MH'] means E[H' - Q : MH'], i.e., the expected

value of MH, for H' distributed as a random function with input size 1, and output

size ko - It.

Proof. Let rA denote the coins of A. Let r, ... , rFG 7 denote A's

queries to G in the find and guess stages, in order, up to and including the ith query

in the guess stage. Let Gf, ... , GFG, G9, ... , G_ 1 denote the responses to those

queries, in order, except the last one.

Let's fix some values of H, rA, r{, .. . , rfF, G, .. . , G X0 , X1 I Cf b,

G ... , and Gg_1 that do not contradict EqCond (i.e., the probability of those values

given EqCond is non-zero). Here EqCond is the event that the values that we have

fixed for the variables are consistent among themselves and with 9. More precisely,
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we define

EqCond

((rV=

A ((xo, xi, cf) = AH(rA, L, find,G1, ... , GFG

A (r =--) A ... A (rg = AH(rA , cf, guess, j, G,... ,G 1)) A ... A (rf =

Here we have written out explicitly all of A's inputs, including the random coins and

the responses to the queries to G, omitting only the responses to the queries to H.

The notation AH(... , stage,j,...), where stage E {find, guess} and j is an integer,

means A's jth query to G in the corresponding stage.

We wish to bound

Pr[G 4 R ; ro R {0, 1 }ko : GAskRJ -| ,GAskRj A -,FAskRo A EqCond].
j= 1

Let NRo denote the condition ro V {r ,... ,r r ,r_1}. Let EqNRo denote

EqCond A NRo. Simplifying and splitting over the possible values of y-, we get

Pr[G A ; ro {0, 1}0 : GAskRJA -,GAskRi A -,FAskRo A EqCond]
j=1

= Pr~ro 4 {O, 1}ko; G(ro) 4- {0, 1}; p +- h,, ,L(OAEP (Xb, ro)) : r = roIEqNRo]

Pr[ro 4 {0, 1}ko; G(ro) 0 {, 1} 9 = hn',L (OAEPGH (Xb, ro)) A
g e{o,1}n' -

rf= rol EqNRo].

We now turn the probability of the conjunction = h,(OAEPGH (Xb, ro) A =
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ro into a product of two probabilities:

Pr[ro 4- {0, 1}k0; G(ro) {O, 1}" : hn',L (OAEPGH (Xb, ro)) A r o
gefo,1}In' -

EqNRo]

= Pr[ro 4- {0, 1}ko; G(ro) R {O, 1}" :r rolEqNRo] x
9E {0,1}In'-I

Pr[ro 4 {0, 1}k0; G(ro) 4 {0, 1}" : - hn',L(OAEPGH(Xb, ro))

-= ro A EqNRo]

To evaluate Pr[rg = rolEqNRo] for a fixed Q, we note that ro is uniformly dis-

tributed over the set {O, 1}ko \ {r, ... , rFG g , r' 1 } (which is, at the moment,

fixed), and r is an element of that set (since queries are unique). Also, ro is inde-

pendent of rg (since, at the moment, Q is fixed). Therefore,

Pr[ro 4- {O, 1}ko; G(ro) 4 {O, 1}" : r = rolEqNRo] = (2ko - qFG - i + 1 -

Now let's bound Pr[Q = hn',L(OAEPG,H (b, ro ro A EqNRo]:

Pr[ro 4- {0, 1}0; G(ro) 4 {O, 1}" : hn',L(OAEPGH(Xb, ro)) I T ro A EqNRo]

Pr [ro 4- {0, }0; G(ro) 4- {0, 1} : ro E IZG,H __ ro A EqNRo]

= Pr [ro - {0, 1}k0; G(ro) 4 {0, 1}" : Xb E G(ro) E SH ro A EqNRo]

Pr [G(r) 4- {0, 1}' : G(r ) E Xb ( S|EqCond]

= 2-"xb E Sr|

= 2~"H' 1 }(h (r) @ i)|

< 2 -MH'.

Here we have used the fact that G(rf) is uniform and independent of Xb ( Se , since
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r is distinct from all of A's other queries to G, and since Q is, at the moment, fixed.

We now get

Pr(G 4- Q; ro 4- {, 1}O GAskR' I -,GAskR] A -,FAskRO A EqCond]
j=1

= Pr[ro 4- {0, 1}ko; G(ro) R {O,1}" : r' = rolEqNRo] x

PCE{o,1 }n'- I

Pr[ro - {0, 1}ko; G(ro) 4 {0,1}" :

rf = ro A EqNRo]

(2 0 - qFG - i + 1 )-x 2-MH

Q E {O,1 }n' -1

2 -n( 2 0 - qFG - -1

gEfo,1}n'-i

= hnr,L(OAEPGH (Xb, ro))I

MH'.

Let E = E CjO'j.--, MH'. We have

2 n (k - qFG - i + 1 -n (2 ko - qFG - qGG)E

(2 - qG)

-n ko ko-1)-1Z

2 -n-ko+1Z

(since qG 2 2 ko-1).

Taking the probability over H and the other random variables that we have fixed,
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i-1

Pr[GAskRl A ,GAskRj A -FAskRo] < 2 -n-ko+E[E]
j=1

2-n-ko+1

2-n-ko+1

Here EH [MH' =EH'[MH,] for any fixed Q, since, as noted above, H' is a random

function whenever H is a random function and Q is fixed.

We now have

Pr[GAskRo-iFAskRo] < qGG3 2 +1EH,[MH,]

and

Pr[AC] < Pr[ACl-,AskRo] + Pr[FAskRo] + Pr[GAskRol-,FAskRo]

1
< 1 + qFG -k qGG2-1+1EH,[MH-

Let's compute EH'[MH']. We will need to show

D

Lemma 2. Let F : U -± U be a random function, for a set U of size N > e. Then

1 e in N
EF[max |F-1- (y)1] < +1.

yEU In In N

Proof. The following result appears in Motwani and Raghavan [73, Theorem 3.1]:

Lemma 3. Suppose N balls are randomly assigned to N bins. Then, with probability

at least 1 - 1/N, no bin will have more than k* enN balls in it.

It is easy to see that this implies the following:
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Lemma 4. Let F : U -+ U be a random function, for a set U of size N. Let

k* - elnN Then

Pr[Vy E U: IF{1 (y)| < k*] > 1 - 1/N. (2.3)

The two statements are equivalent, since the random function F corresponds to

the random assignment of "balls" (inputs) to "bins" (outputs).

Let MF = maxyEu jF1}(y)j. We can restate (2.3) as follows:

Pr[MF > k*] < 1/N.

Clearly, MF < N. We have

1
EF[MFI k* Pr[MF k*] + N Pr[MF > k*] k* + N - k* + 1.

N

Thus EF[MF] n enN + 1, as we wished to show. l

Corollary 1. Let F : {0, 1}' -+ {0, 1}" be a random function, for m < n and n > 1.

Then EF[mayc{o,1}n |F1 (y)|] n22 + 1.

This corollary easily follows, since the maximum number of balls in a bin will not

increase if we decrease the total number of balls.

We have is < ko - it (we assume that 1 < ko). Suppose ko - it > 1. Then

1
Pr[AC] < - + qFG 2-k + qGG 2 +1EH'[ MH1

2
1 (e ln 2Jco-It

< I + qFG2 k + qGGl2+1 ln ln 2ko-1t

We will use the fact that x - is a monotonically increasing function for x >

log 2 (ee) = 3.92.... Taking into account the possibility that ko - it may be 2 or 3,

after a simple calculation we get

e ln 2 ko0 1t

ln ln 2 ko-it

e ln 2 ko

In ln 2ko'

53

+1 *



assuming ko > 14. Now

kne In 2 koe
+1= I+1= + 1

In ko + In In 2 log 2 kO + log 2 In 2
4ko

- log 2 ko

for all ko > 5. Thus

1 4
Pr[AC] < + qFG k + qGG2+1 4ko

2 log 2 ko
1

1

+ (qFG + qGG) max(2 ko 2-1+3 o

log 2 ko
ko

log 2 ko
- + qG max(2 ko 2-1+3

2

Since 1 < ko, we have 2 -ko < 2-1, and so

1
Pr[AC] < -

2
+ 8 qG o

log2

On the other hand, if ko - l c {0, 1}, then MH' < 2. Therefore,

1
Pr[AC) < -

2
1

1
<K-

2

+ qFG ko 2 1 qGGEH[MH'

+ qFG ko +2 -1+2 qGG

+ (qFG + qGG) max(2 ko 2-1+2)

+ qG maX(2 -ko 12-1+2)

1
- + 4qG2'

2

+ 8 qG
log 2 ko

(since 2- ;> 1 for all ko > 2).

Thus we have in both cases

1 k
Pr[AC] < -+8qG k 2-2 log 2 ko

which is what we wished to show.

54

e in 2 ko

ln in2ko

1
2-

.1



2.5.2 Proof Outline for Theorem 2

The exhaustive search algorithm is as follows:

1. Find stage: Choose x0 and x1 independently at random from {0, 1}f. Let

cf = xoljx 1 . Output xo, x1 , and cf.

2. Guess stage: Let Q be the value of hr,L(y) that is given as input. Extract x0

and x1 from cf. Repeat N times:

* Choose random v {0, 1}'. Compute x = (AONTF)~(un',L (v,))- If

x = Xb for some b' E {0,1}, then output b' and halt (we will call this

"success," whether or not b'= b). Otherwise, continue.

If there has been no success after N trials, then output a random b' E {0, 1}.

This algorithm evaluates AONT at most N times, so it takes at most NT time and

makes at most Nqr queries to F.

Let's estimate the advantage given by this algorithm over blindly guessing b. Let

AC be the event that the algorithm outputs the correct answer. Let SuccC (Succl) be

the event that one of the trials succeeds and gives the correct (incorrect) output.

It is easy to see that

1
Pr[AC] = -(1 + Pr[SuccC] - Pr[Succi]).

2

Let Unique be the event that Xlb is not consistent with Q (i.e., there is no v such

that X1_b = (AONTF)~1(un,L(v, Q))). In other words, Unique means that only one of

x0 and x1 is consistent with y, since Xb is consistent with it by construction. If Unique

is true, then no trial can succeed with 1 - b. Also, each trial has probability at least

2- of succeeding with b (since there is at least one good v). Using inclusion-exclusion,

this easily leads to the bound Pr[SuccCIUnique] > 2-'-'N (since there are N < 21

independent trials, each with success probability of at least 2-').

We have Pr[Unique) > 1 - 2'- > 1, since there are at most 21 values of x cor-

responding to the 2' possible values of y that are consistent with 9, and they are
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independent of Xib, which is chosen at random out of a set of size 2'. Therefore,

Pr[SuccC] > Pr[Unique] - Pr[SuccC Unique] > Pr[Unique] -2-'-N > 2 -- 2N.

Let's bound Pr[Succl]. For any particular trial,

Pr[Xilb = (AONTFr(u-l,(v,Q))] =2-",

since Xib is uniform and independent of all the other variables. Therefore, Pr[Succl] <

2-"N.

We now get

1 1 1
Pr[AC] = -(1 + Pr[SuccC] - Pr[Succl]) > -(1 + 2 -- 2N - 2-"N) > I + lN2-1,2 2 -216

since 1 < n - 3. This is what we wished to show.

2.5.3 Proof Outline for Theorem 3

The proof is almost the same as for the non-adaptive indistinguishability scenario.

The only major change is that it is no longer obvious that H' can be viewed as a

random function. The reason is that the adversary may now choose L using some

information about H (A can query H in the select stage). Therefore, if we fix a value

of L, H and its restriction H' might no longer be distributed as random functions.

The idea of the solution to this problem is that, with overwhelming probability, none

of the queries to H made in the select stage will be in S, which is the only part of

the domain of H that affects H'. Then we will still be able to view H' as a random

function.

Let qsG and qSH be the number of A's queries to G and H, respectively, in the

select stage (without loss of generality, we can assume that these are fixed for any

given n and ko). Let SAskR0 be the event that query ro has been asked of G in the

select stage. Let SAskS be the event that a query made by A to H in the select stage
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is an element of S. Let SFAskRO = SAskRo V FAskRo. We have

Pr[AC) < Pr[ACl-,AskRo] + Pr[SFAskRo] + Pr[GAskRol-ISFAskRo]

< Pr[AC-,AskRo] + Pr[SFAskRo] + Pr[SAskS-iSFAskRo]

+ Pr[GAskRolSFAskRo A -,SAskS].

Similarly to the non-adaptive case, it is easy to see that

1
Pr[ACIAskRo]= 2'

Pr[SFAskRo] < (qSG + qFG) k

Let's bound Pr[SAskS|-,SFAskRo]. Suppose -SFAskRo. Then s = h,(G(ro)) (

hs(Xb) will be distributed uniformly over 2 1s, and independently from any of A's

inputs in the select stage. The probability that any particular query s' made to

H in the select stage is in S, i.e., the probability that hs(s') = s, is then 21-".

Consequently,

Pr[SAskS|-,SFAskRo] < qSH2s-

Now let's estimate Pr[GAskRol-,SFAskRo A -SAskS]. As before, let rA denote the

coins of A. Let s, ... , sSH denote A's queries to H in the select stage. Let H',

HosH denote the responses to those queries.

Let's fix some values of s,, ... , ss H, HS, and L, that satisfy -,SAskS.

As before, let GAskR' denote the event that A's ith query to G in the guess stage is

ro. Similarly to Lemma 1, we can show the following:

Lemma 5. For any i between 1 and qGG,

i-1

Pr[GAskRl A -,GAskRi A -,SFAskRo A -,SAskS] < 2-' 1 EH'[MH')-
j=1

outline. We can use the proof of Lemma 1, with trivial modifications, except that

now we need a new proof for the equality EH[MH'] = EH'[MH,], for any fixed 9.
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It is constrained to values H', , HsSH on

inputs s, . . . , s'. However, on the domain {O, 1} \ {s1})SH , H is distributed as

a random function. Let Hs be the restriction of H to domain S. Since -ISAskS, we

have S C {0, 1}2 \ {sjqSH . Therefore, Hs is distributed as a random function. Since

H' can be written as

H'(v) =- ht (Hs (u, (v, s)

(because us(v, s) E S for any v), H' is also distributed as a random function, for any

fixed 9. Consequently, EH[MH'] = EH'[MH'] for any fixed Q. L

We now have

Pr[GAskRo-|,SFAskRo A -,SAskS] < qGG2'1+1 EH'[MH,.

and

Pr[AC] < Pr[ACl-,AskRo] + Pr[SFAskRo] + Pr[SAskSI-SFAskRo] +

Pr[GAskRol-,SFAskRo A -,SAskS]

1
< + (qSG + qFG) 2 k, + qSH s + qGG2- 1 EH,[MH']2

< + qH2'4 + qG max(2 ko 2 '+'EH'[MH)

1
K + q B a( ko 2 '+ 1 E H'[ MH'])-

2

Since 1 < K we have 2'1-n < 2'i. Also, since 1 < ko, we have 2 ko < 2-1. Therefore,

2'2 1
Pr[AC] -+ (qG +±qH )2-l 1 max(1, EH'[MH'O)-

Using Corollary 1, similarly to the non-adaptive case, we get

1 k
Pr[AC] < - + 8(qG + qH) kg2 k o 2

2 log2sk

which is what we wished to show.
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2.5.4 Proof Outline for Theorem 4

We can use the proof of Theorem 1 with the following simple modifications: We need

to substitute x for Xb. Those queries in the guess stage that have been asked in the

find stage need to be answered in the same way as they were the first time. Also,

GAskR will now refer to A's ith query to G in the guess stage, of all the queries to

G that have not been asked in the find stage.

The only change that affects the bound on Pr[AC] is that the estimate on Pr[AC|-,AskRo]

is different from Theorem 1.

Lemma 6. Let X be an arbitrary distribution. If a random variable f' is independent

of x, then

Pr[x 4 X : f' = f(x)] < max(Pr[x X : y]).

Proof.

Pr[x 4 - X: f' = f(x)] = Pr[x 4 X: f' = y A f(x)=y]

= Pr[f' = y) Pr[x 4 - X : f(x) = y]
y

Pr[f'= y] max Pr[x 4 X : f(x) y]

- max(Pr[x - X : f(x) y]) Pr[f' = y
y Ry

-max(Pr[x 4- X f f(x) = y]). rf y
y

It follows that Pr[ACJ-iAskRo] PA,f, since if A does not see G(ro), all of its inputs

will be independent of x.

Continuing as in the proof of Theorem 1, we get

Pr[AC] PA,f + 8 qG ko -
log2 ko
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which is what we wished to show.

2.6 Conclusions and Open Problems

We have presented new and very strong formal definitions of security for AONTs.

We have proposed OAEP as a candidate AONT, and shown that it satisfies these

definitions. The bounds that we have proved are nearly optimal, in the sense that

no adversary can do much better against OAEP than exhaustive search, and in the

sense that no AONT construction can achieve a substantially better bound than the

one we have shown for OAEP.

We note that an AONT that satisfies our definitions, such as OAEP, can be used

to implement the "puzzles" of Merkle [701, or the notion of uniform security of Even

et al. [42]. The "puzzles" could be made by publishing a certain number of bits of

AONT output on a bit string of sufficient redundancy (so that, with overwhelming

probability, only one such string corresponded to the published information). Sim-

ilarly, cryptograms of uniform security could be achieved by publishing a part of

AONT output on the key used in the cryptogram. It seems, though, that a simpler

construction would suffice: Let E(K, M) - C be a regular symmetric cryptosystem,

and let H be a random oracle. Then, it seems to us that, using the methods of this

thesis, it can be shown that E(H(K), M) -+ C is a uniformly secure cryptosystem.

On the other hand, the AONT construction for the "puzzles" has the advantage that

it does not use encryption, which could put it outside the scope of export regulations.

It would be interesting to investigate these issues further.

The first open problem that comes to mind is to improve our bounds. The best

would be to bring the upper bounds within a constant factor of exhaustive search,

or to devise an algorithm that does better than exhaustive search. Also, it would be

interesting to give lower bounds for the semantic security scenarios.

Another open problem is to show equivalence (or non-equivalence) of our defi-

nitions, trying to carry over the exact bounds as much as possible. There are also

other possible models to consider, such as the fully-adaptive scenario described in
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Section 2.3.1. Also, just as there are several variations of the definition of semantic

security for encryption, one might consider other definitions for AONTs, and whether

they are equivalent to the ones in this thesis. We note that the subsequent paper

Canetti et al. [23] states that all their constructions satisfy fully-adaptive security,

and it is only due to the messiness of an appropriate definition that no formal defi-

nition is given. Unfortunately, we don't see any trivial way to extend our proofs to

such a scenario, so the security of OAEP in that context is thus an open problem.

This is just one of the open questions related to the use of OAEP in AONT appli-

cations. Another important open question related to applications is the security of

AONT-based encryption against adaptive chosen-ciphertext attacks.

One of the most interesting problems related to AONTs is to construct a secure

AONT without the use of random oracles. As mentioned above in Section 2.1.4, this

problem has been partially solved by Canetti et al. [23]. However, as also mentioned

above, their constructions do not appear to be useful for the original application of

AONTs, i.e., protection against exhaustive key search. That application has been

addressed by Desai [34). However, his construction, while not relying on random

oracles, does use the non-standard ideal block cipher assumption. Thus, there is still

an open problem concerning the construction of a secure AONT based on standard

computational assumptions, if we want it to be useful for the original application.

Canetti et al. [34], besides the constructions mentioned above, also give a result that

may be of help in solving this problem: Consider a variant of OAEP, where the

function H is replaced by the identity function, and G is any function such that

both G(r) and G(r) e r are length-preserving ERFs (see Section 2.1.4). Then the

resulting transform is shown to be an AONT. This result does not offer an immediate

solution, for two reasons: First, no deterministic choice of G is known that would

satisfy the above property. Second, the actual parameters of the construction result

in overhead equal to the length of the message, which is unacceptable (as mentioned

in Section 2.1.4, if we are willing to tolerate such overhead, then we can settle for a

much simpler construction that is also based on standard assumptions). In any case,

we hope that the above mentioned result will be a good base for further research.
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Another interesting question is whether there is any relation between the prop-

erties of OAEP as an AONT, and its original proposed use for constructing secure

cryptosystems. One might ask, for instance, if OAEP could be replaced by an arbi-

trary AONT in the construction of Bellare and Rogaway [10].
One could also look into the possibility of generalizing the definitions of AONT

security, so that instead of getting a certain number of bits of the output, the adver-

sary gets the equivalent amount of information through other means, i.e., by seeing

the value of some transformation of the output that reduces its entropy by 1. The

function h,',L is just one example of such a transformation.

Finally, now that we have a provably secure AONT, it would be of great interest

to find new applications of this primitive. We hope that its usefulness extends far

beyond its original applications.

As an example of a potential new application, it seems that an AONT might be

used to construct a protocol for simultaneous exchange of information. The parties

would apply an AONT to the messages that need to be exchanged. Then, in each

round, they would send each other the next bit of their respective AONT outputs.

If the protocol stops early, then the amounts of work needed by either party to

reconstruct the other's message are different by at most a factor of 2-o -, for the case
log 2 ko'

of OAEP (since the number of bits of AONT output that the parties have differs by

at most one, and a party can always apply exhaustive search). This computationally

fair approach is along the lines of Even et al. [42].

In order to detect cheating in the above protocol, it would be necessary to use a

zero-knowledge proof that the bits sent so far form a prefix of a valid AONT output

on the message. It is unclear to us if such a zero-knowledge proof system can be made

for an AONT that uses random oracles. However, it would certainly be possible for a

computationally-secure AONT, if one is found with security that "smoothly" depends

on the number of missing bits. We note that the model and constructions of Canetti

et al. [23] do not consider security as a function of the number of missing bits, and

are thus not directly suitable for this application.
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Chapter 3

Provably Secure

Password-Authenticated Key

Exchange Using Diffie-Hellman

3.1 Introduction

Two entities, who only share a password, and who are communicating over an insecure

network, want to authenticate each other and agree on a large session key to be

used for protecting their subsequent communication. This is called the password-

authenticated key exchange problem. If one of the entities is a user and the other

is a server, then this can be seen as a problem in the area of remote user access.

Many solutions for remote user access rely on cryptographically secure keys, and

consequently have to deal with issues like key management, public-key infrastructure,

or secure hardware. Many solutions that are password-based, like telnet or Kerberos,

have problems that range from being totally insecure (telnet sends passwords in the

clear) to being susceptible to certain types of attacks (Kerberos is vulnerable to off-

line dictionary attacks [101]).

Over the past decade, many password-authenticated key exchange protocols that

promised increased security have been developed, e.g., [13, 14, 50, 49, 95, 56, 57, 66,
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100, 90].1 Some of these have been broken [82, 83], and, in fact, only two very recent

ones have been formally proven secure. The SNAPI protocol in [67] is proven secure

in the random oracle model, 2 assuming the security of RSA (and also Decision Diffie-

Hellman, 3 when perfect forward secrecy is desired). The simple and elegant protocol

in [7] is proven as secure as Decision Diffie-Hellman in a model that includes random

oracles and ideal block ciphers. (Our work was performed independently of [7]. In

fact, the conference version of our results [21] appears in the same proceedings as [7].)

We present a new password-authenticated key exchange protocol called PAK

(Password-Authenticated Key exchange), which we prove to be as secure as Decision

Diffie-Hellman in the random oracle model. Compared to the protocol of [67], PAK (1)

does not require the RSA assumption for security, (2) is more efficient in terms of the

number of rounds, and (3) is conceptually simpler, with a simpler proof. Compared to

the protocol of [7], PAK does not require an ideal block cipher assumption for security,

but has a more complicated proof. (We note that the ideal block cipher assumption

is used much less often in the literature than the random oracle assumption.) We also

show how the security of PAK can be related to the Computational Diffie-Hellman

problem, although with weaker security bounds.

In addition to PAK, we also show a more efficient protocol called PPK (Password

Protected Key exchange) that is provably secure in the implicit-authentication model.

The PPK protocol only requires 2 rounds of communication.

We then extend PAK to a protocol called PAK-X, in which one side (the client)

stores a plaintext version of the password, while the other side (the server) only

stores a verifier for the password. We formally prove security of PAK-X, even when

the server is compromised. Security in this case refers to an attacker not being able

'We will discuss hybrid protocols (i.e., password-based protocols in which a server public key is
also known to the user) in Section 3.2.2.

2The random oracle model was introduced in [9]. Many popular protocols have been proven secure
in that model, including Optimal Asymmetric Encryption Padding (OAEP) [10]. It would certainly
be desirable to have a security proof using only standard cryptographic assumptions [24], but, so
far, no protocol (and in particular, no efficient protocol) is known for the password authentication
problem that is provably secure in the standard model.

3The hardness of the Decision Diffie-Hellman problem is essentially equivalent to the semantic
security of the ElGamal encryption scheme [38]. See Boneh [18] for more information on this problem.
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to pose as a client after compromising the server; naturally, it would be trivial to pose

as the server.

Our formal model for password-authenticated key exchange is new, and may be

of independent interest. It is based on the formal model for secure key exchange by

Shoup [93] (which follows the work of [5]), enhanced with notions of password authen-

tication security from [51, 67]. This model is based on the multi-party simulatability

tradition (e.g. [3]), in which one first defines an ideal system that models, using

a trusted center, the service to be performed (in this case, password-authenticated

key exchange), and then one proves that the protocol running in the real world is

essentially equivalent to that ideal system.

3.2 Background

3.2.1 User Authentication

Techniques for user authentication are broadly based on one or more of the follow-

ing categories: (1) what a user knows, (2) what a user is, or (3) what a user has.

Passwords or PINs are example of the first category. Biometric techniques, such as

analysis of voice, fingerprints, retinal scans, or keystrokes, fit in the second category.

Identification tokens, such as smart cards, fit in the third category. Techniques involv-

ing biometric devices tend to be cost-prohibitive, while techniques involving smart

cards tend to be both expensive and relatively inconvenient for users. The least ex-

pensive and most convenient solutions for user authentication have been based on the

first category, of "what a user knows," and that is what we will focus on in this work.

In fact, we will focus on the harder problem of remote user authentication, in which

not only must the basic authentication techniques be secure, but the protocol that

communicates the authentication data across the network must also be secure. The

need for remote user authentication is greatly increasing, due mainly to the explosive

growth of the Internet and other types of networks, such as wireless communication

networks. In any of these environments, it is safest to assume that the underlying
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links or networks are insecure, and we should realistically expect that a powerful

adversary would be capable of eavesdropping on legitimate sessions, deleting and

inserting messages into those sessions, and even initiating sessions herself.

Now let us consider the question: "What can a user know?" It is common knowl-

edge that users cannot remember long random numbers, hence if the user is required

to know a large secret key (either a large symmetric key or a private key correspond-

ing to a public key), then these keys will have to be stored on the user's system.

Furthermore, keeping these secret requires an extra security assumption and intro-

duces a new point of weakness. Even if a user is required to know some public but

non-generic data, like the server's public key, this must be stored on the user's system

and requires an extra assumption that the public key cannot be modified. In either

case, (1) there is a significant increase in administration overhead because both secret

and public keys have to be generated and securely distributed to the user's system

and the server, and (2) this would not allow for users to walk up to a generic station

that runs the authentication protocol and be able to perform secure remote authen-

tication to a system that was previously unknown to that station (such as, perhaps,

the user's home system).

To solve these problems one may wish to use a trusted third party, either on-line

(as in Kerberos) or off-line (i.e., a certification authority). However, the fact that

the third party is "trusted" implies another security requirement. Also, the users or

servers must at some point interact with the third party before they can communicate

remotely, which increases the overhead of the whole system. Naturally, if an organized

and comprehensive PKI emerges, this may be less of a problem. Still, password-only

protocols seem very inviting because they are based on direct trust between a user

and a server, and do not require the user to store long secrets or data on the user's

system. They are thus cheaper, more flexible, and less administration-intensive. They

also allow for a generic protocol which can be pre-loaded onto users' systems.
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3.2.2 Password-Authentication Protocols

Many existing password authentication protocols, like telnet and ftp, send the pass-

word in the clear and are thus vulnerable to eavesdroppers.4 Sending the password

in the clear can be avoided by using more sophisticated schemes, such as one-time

passwords systems (e.g., S/KEY [52]), or simple challenge-response schemes (e.g.,

CHAP [94]). However, these protocols are susceptible to off-line dictionary attacks:

Many users choose passwords of relatively low entropy, so it is possible for the ad-

versary to compile a dictionary of possible passwords.' Obviously, we can't prevent

the adversary from trying all the passwords on-line, but such an attack can be made

infeasible by simply placing a limit on the number of unsuccessful authentication at-

tempts. On the other hand, an off-line search through the dictionary is quite doable.

Here is an example of an off-line dictionary attack against a simple challenge-response

protocol: The adversary overhears a challenge R and the associated response f(P, R)

that involves the password. Now she can go off-line and run through all the passwords

P' from a dictionary of likely passwords, comparing the value f(P', R) with f(P, R).

If one of the values matches the response, then the true password has been discovered.

A decade ago, Lomas et.al. [65] presented the first protocols which were resistant

to these types of off-line dictionary attacks. The protocols assumed that the client

had the server's public key and thus were not strictly password-only protocols. Gong

et.al. [50] later presented their versions of these types of protocols. Recently, Halevi

and Krawczyk [51] presented protocols and formal proofs of security for the same

scenario as addressed by [65], i.e., where the client authenticates with a password and

the server with a public key. Boyarsky [19] has addressed some problems with the

Halevi-Krawczyk protocols in the multi-user scenario.

The EKE protocol [13] was the first password-authenticated key exchange protocol

that did not require the user to know the server's public key. The idea of EKE was to

use the password to symmetrically encrypt the protocol messages of a standard key

4Hashing the password does not offer more protection.
5See, for example, the experiment performed by Wu [101]. Briefly, using an off-line dictionary

attack, he was able to discover 2045 passwords in a realm of slightly over twenty-five thousand users
by verifying about 100 million candidate passwords.
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exchange (e.g., Diffie-Hellman [35]). Then an attacker making a password guess could

decrypt the symmetric encryption, but could not break the asymmetric encryption in

the messages, and thus could not verify the guess. Following EKE, many protocols for

password-authenticated key exchange were proposed which did not require the user to

know the server's public key [14, 50, 49, 95, 56, 57, 66, 100]. Some of these protocols

were, in addition, designed to protect against server compromise, so that an attacker

that was able to steal data from a server could not later masquerade as a user without

having performed a dictionary attack.' All of these protocol proposals contained

informal arguments for security. However, the fact that some of these protocols were

subsequently shown to be insecure [82, 83] should emphasize the importance of formal

proofs of security.

3.2.3 Models for Secure Authentication and Key Exchange

Bellare and Rogaway [8] present the first formal model of security for entity authen-

tication and key exchange, for the symmetric two party case. In [11] they extend it

to the three party case. Blake-Wilson et.al. [16] further extend the model to cover

the asymmetric setting. Independently, [67] and [7] present extensions to the model

to allow for password authentication. Halevi and Krawczyk [51] and Boyarsky [19]

present models which include both passwords and asymmetric keys (since both of

those papers deal with protocols that are password-based, but rely on server public

keys).

Bellare, Canetti, and Krawczyk [5] present a different model for security of entity

authentication and key exchange, based on the multi-party simulatability tradition

[3]. Shoup [93] refines and extends their model. We present a further extension of

[93] that includes password authentication.

6 Naturally, given the data from a server, an attacker could perform an off-line dictionary attack,
since the server must know something that would allow verification of a user's password.
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3.3 Model

For our proofs, we extend the formal notion of security for key exchange protocols

from Shoup [93] to password-authenticated key exchange. We will prove security

against a static adversary, i.e., one whose choice of whom to corrupt is independent

of its view while attacking the protocol. We assume the adversary totally controls

the network, a la [8].

Security for key exchange in [93] is defined using an ideal system, which describes

the service (of key exchange) that is to be provided, and a real system, which describes

the world in which the protocol participants and adversaries work. The ideal system

should be defined such that an "ideal world adversary" cannot (by definition) break

the security. Then, intuitively, a proof of security would show that anything an

adversary can do in the real system can also be done in the ideal system, and thus it

would follow that the protocol is secure in the real system.

3.3.1 Definition of Security

The definition of security for key exchange given in [93] requires

1. completeness: for any real world adversary that faithfully delivers messages

between two user instances with complimentary roles and identities, both user

instances accept; and

2. simulatability: for every efficient real world adversary A, there exists an effi-

cient ideal world adversary A* such that RealWorld(A) and IdealWorld(A*) are

computationally indistinguishable (here Real World(-) and Ideal World(.) refer to

real and ideal world transcripts, respectively, and are defined in Sections 3.3.3

and 3.3.2).

We will use this definition for password-authenticated key exchange as well, with

no modifications. We can do this because, as will be seen below, our ideal model

includes passwords explicitly. If it did not, we would have to somehow explicitly
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state the probability of distinguishing real world from ideal world transcripts, given

how many impersonation attempts the real world adversary made.

We now proceed with a description of the Ideal System for password authentica-

tion. The parts that are not directly related to passwords are taken from [93], except

for a slight modification to handle mutual authentication.

3.3.2 Ideal System

We assume there is a set of (honest) users, indexed i = 1, 2,. Each user i may

have several instances j = 1, 2 .... Then (i, J) refers to a given user instance. A user

instance (i, j) is told the identity of its partner, i.e., the user it is supposed to connect

to (or receive a connection from). An instance is also told its role in the session, i.e.,

whether it is going to open itself for connection, or whether it is going to connect to

another instance.

There is also an adversary that may perform certain operations, and a ring master

that handles these operations by generating certain random variables and enforcing

certain global consistency constraints. Some operations result in a record being placed

in a transcript.

The ring master keeps track of session keys {Kjj} that are set up among user

instances (as will be explained below, the key of an instance is set when that instance

starts a session). In addition, the ring master has access to a random bit string R of

some agreed-upon length (this string is not revealed to the adversary). We will refer

to R as the environment. The purpose of the environment is to model information

shared by users in higher-level protocols.

Since we deal with password authentication, and because passwords are not cryp-

tographically secure, our system must somehow allow a non-negligible probability of

an adversary successfully impersonating an honest user. We do this by including

passwords explicitly in our model. We let 7r denote the function assigning passwords

to pairs of users. To simplify notation, we will write r[A, B] to mean 7r[{A, B}] (i.e.,

w[A, B] is by definition equivalent to w[B, A]).

The adversary may perform the following types of operations:
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initialize user [Transcript: ("initialize user", i, IDi)]

The adversary assigns identity string IDi to (new) user i. In addition, a random

password gr[IDi, IDg] is chosen by the ring master for each existing user i'.

The passwords are not placed in the transcript. This models the out-of-band

communication required to set up passwords between users.

set password [Transcript: ("set password", i, ID', )]

The identity ID' is required to be new, i.e., not assigned to any user. This sets

7r[IDs, ID'] to 7r and places a record in the transcript.

After ID' has been specified in a set password operation, it cannot be used in a

subsequent initialize user operation.

initialize user instance [Transcript: ("init. user inst. ", i,j, role(i, j), PIDij)]

The adversary assigns a user instance (i, j) a role (one of {open, connect}) and

a user PIDij that is supposed to be its partner. If PIDij is not set to an identity

of an initialized user, then we require that a set password operation has been

previously performed for i and PIDij (and hence there can be no future initialize

user operation with PIDij as the user ID).

terminate user instance [Transcript: ("terminate user instance" ,ij)]

The adversary specifies a (previously initialized) user instance (i, j) to termi-

nate.

test instance password

This is called with an instance (i, j) and a password guess 7r. The adversary

queries if -r = r[IDi, PIDij]. If this is true, the query is called a successful guess

on {IDi, PIDij} (note that a successful guess on {A, B} is also a successful guess

on {B, A}).

This query may only be asked once per user instance. The instance has to be

initialized and not yet engaged in a session (i.e., no start session operation has

been performed for that instance). Note that the adversary is allowed to ask a

test instance password query on an instance that has been terminated.
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1. open for connection from (i',]') 2. connect to (i',]'). This requires that

This requires that
T role(i, j) is "connect,"

* role(ij) is "open," * (i', j') has been initialized and has
" (i', j') has been initialized and has not been terminated,

not been terminated,
* role(i', j') is "open,"

* role(i', j') is "connect,"
* PIDg =-ID1

* PID2 3g = ~
* PI~h11 = ID,

* PIDjy = ID,
* (i', J') was open for connection from

" no other instance is open for con- (i, j) after (i, J) was initialized, and
nection from (i', j'), and

* no test instance password operation
" no test instance password operation has been performed on (i, j).

has been performed on (ij'). The ring master sets Kij = K2if. We
The ring master generates Kij randomly. now say that (i', j') is no longer open for
We now say that (i, j) is open for connec- connection.
tion from (i', j').
3. expose. This requires that either PIDj has not been assigned to an identity of an
initialized user, or there has been a successful guess on {IDj, PIDjj}. The ring master
sets Kiy to the value specified by the adversary.

Table 3.1: Valid connection assignments for the start session operation

This query does not leave any records in the transcript.

start session [Transcript: ("start session", i, j)]
The adversary specifies that a session key Kij for user instance (i, J) should be

constructed. The adversary specifies which connection assignment should be

used. There are three possible connection assignments, as shown in Table 3.1.

Note that the connection assignment is not recorded in the transcript.

application [Transcript: ("application", f, f(R, {Kj}))]

The adversary is allowed to obtain any information she wishes about the envi-

ronment and the session keys. (This models leakage of session key information

in a real protocol through the use of the key in, for example, encryptions of
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messages.) The function f is specified by the adversary and is assumed to be

efficiently computable.

implementation [Transcript: ("impl', cmnt)]

The adversary is allowed to put in an "implementation comment" which does

not affect anything else in the ideal world. This will be needed for generating

ideal world views that are equivalent to real world views, as will be discussed

later.

For an adversary A*, IdealWorld(A*) is the random variable denoting the tran-

script of the adversary's operations.

Discussion (general key exchange): Because keys exchanged between two hon-

est users are not transmitted during the start session operations, it should be clear

that key exchange is completely secure in the ideal world. Naturally, application op-

erations may reveal keys. This models the use of the keys in a higher-level protocol.

What we require from a secure key exchange protocol is that even given some partial

information about the keys, the adversary shouldn't be able to do anything in the

real world that he couldn't do in the ideal world. In other words, if a higher-level

protocol is secure (in some appropriate sense) in an ideal system with keys generated

by the ring master, that protocol should also be secure if we use a secure key exchange

scheme.

Remarks on mutual authentication: As may be seen from the definition, the

guarantees provided to the instances in open and connect roles are not completely

symmetric. Specifically, an instance in a connect role is guaranteed that a connection

will be established (since its partner is ready to accept the connection). On the other

hand, an instance (i, j) in an open role has no guarantee that anyone will ever connect

to it. All that is required is that there must exist an instance (i', j') of the partner

that has not yet been terminated, and the only connection that either (i, j) or (i', j')

could ever establish would be to each other. It appears impossible to completely

eliminate the asymmetry of the definition without unrealistic assumptions.
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The unilateral-authentication model of Shoup [93] is different from the one pre-

sented above in the following way: The open connection assignment does not specify

the instance from which the connection is expected, and any instance of the partner is

allowed to connect. On the other hand, the connect connection assignment still spec-

ifies an instance. It is unclear to us as to why one would need a model that provides

authentication to only one of the parties. In any case, as Shoup remarks, authen-

tication is not an important issue in ordinary key exchange. We will see, however,

that authentication is more of an issue with passwords. This will become apparent

when we consider the password key exchange model with implicit authentication in

Section 3.5.1.

Discussion (password authentication): The major difficulty in designing an

ideal system for password-authenticated key exchange is that there may be a non-

negligible probability of an adversary guessing a password and impersonating a user.

Thus either the definition of security must allow for a non-negligible simulation error,

or the ideal system is forced to have some notion of passwords built in.

Our ideal system for password-authenticated key exchange explicitly uses (ring

master generated) passwords. This forces any proof of security to have a simulator

that has to be not only aware of a password-guessing attempt, but of exactly which

password is being guessed. (In the proof for the PAK protocol presented in this

thesis, the simulator is able to learn this information.) If this is not possible, then

constructing and using a different ideal system would be required.

We did not specify how the ring master chooses passwords for pairs of users. The

simplest model would be to have a dictionary D, which is a set of strings, and let all

passwords be chosen uniformly and independently from that dictionary. To achieve

the strongest notion of security, though, we can give the adversary all the power,

and simply let her specify the distribution of the passwords as an argument to the

initialize user operation (the specification of the distribution would be recorded in

the transcript). The passwords of a user could even be dependent on the passwords of

other users. We note that our proofs of security do not rely on any specific distribution
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of passwords, and would thus be correct even in the stronger model.

Why does our ideal system correctly describe the ideal world of password-authenti-

cated key exchange? If two users successfully complete a key exchange, then the ad-

versary cannot obtain the key or the password. This is modeled by the adversary not

being allowed any test instance password queries for a successful key exchange. On

the other hand, the adversary is allowed one test password query for any other key

exchange, with successful impersonation only allowed if the adversary actually guesses

the password correctly. This corresponds to an on-line impersonation/password-

guessing attempt by the adversary. (One may think of this as modeling an adversary

who attempts to log in to a server by sending a guessed password.)

We also model the ability for an adversary to set up passwords between any users

and himself, using the set password query. This can be thought of as letting the

adversary set up rogue accounts on any computer she wishes, as long as those rogue

accounts have different user IDs from all the valid users.

3.3.3 Real System with Passwords

We now describe the real system in which we assume a password-authenticated key

exchange protocol runs. Again, this is basically from [93], except that we do not con-

cern ourselves with public keys and certification authorities, since all authentication

is performed using shared passwords. Note that the same real system is used, no

matter what authentication model we choose for our ideal system.

Users and user instances are denoted as in the ideal system. User instances are

defined as state machines with implicit access to the user's ID, PID, and password

(i.e., user instance (i, j) is given access to wr[IDi, PIDij]). User instances also have

access to private random inputs (i.e., they may be randomized). A user instance starts

in some initial state, and may transform its state only when it receives a message. At

that point it updates its state, generates a response message, and reports its status,

either "continue", "accept", or "reject", with the following meanings:

. "continue": the user instance is prepared to receive another message.
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" "accept": the user instance (say (i, j)) is finished and has generated a session

key Kij.

" "reject": the user instance is finished, but has not generated a session key.

The adversary may perform the following types of operations:

initialize user [Transcript: ("initialize user", i, ID)]

As in the ideal system (with passwords), the adversary assigns identity string

IDi to (new) user i (as before). In addition, a random password w[IDi, IDi,]

is chosen by the ring master for each existing user i'. The passwords are not

placed in the transcript. This models the out-of-band communication required

to set up passwords between users. As mentioned above with respect to the

ideal system, the distribution of passwords may be fixed, or may be specified by

the adversary as an argument to the operation (in the latter case, a description

of the distribution would be recorded in the transcript).

initialize user instance [Transcript: ("init. user inst. ", i, j, role(ij), PIDjg)]

As in the ideal system, the adversary assigns a user instance (i, j) a role (one of

{open, connect}) and a user PIDij that is supposed to be the partner of (i, J).

deliver message [Transcript: ("impl", "message", i, j, InMsg, OutMsg, status)]

The adversary delivers InMsg to user instance (i, j). The user instance updates

its state, and replies with OutMsg and reports status. If status is "accept",

the record ("start session", i, j) is added to the transcript, and if status is

"reject", the record ("terminate instance", i, j) is added to the transcript.

set password [Transcript: ("set password", i, ID', 7)]

As in the ideal system, this sets w[IDi, ID'] to 7 and places a record in the

transcript.

application [Transcript: ("application", f, f(R, {Kij}))]

As in the ideal system, the adversary is allowed to obtain any information she

wishes about the environment and the session keys, except that the keys are

now actual session keys generated by user instances.
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random oracle [Transcript: (" impl", "random oracle ", i, x, Hi (x))]

The adversary queries random oracle i on a binary string x and receives the

result of the random oracle query Hi(x). Note that we do not allow applica-

tion operations to query random oracles Hi. In other words, we do not give

higher-level protocols access to the random oracles used by the key exchange

scheme. (Although a higher-level protocol could have its own random oracle.)

The adversary, however, does have access to all the random oracles.

For an adversary A, RealWorld(A) denotes the transcript of the adversary's oper-

ations. In addition to records made by the operations, the transcript will include the

random coins of the adversary in an implementation record ("impi", "coins", coins).

3.4 Explicit Authentication: The PAK Protocol

3.4.1 Preliminaries

Let i, and f denote our security parameters, where K is the "main" security parameter

and can be thought of as a general security parameter for hash functions and secret

keys (say 128 or 160 bits), and f > r, can be thought of as a security parameter for

discrete-log-based public keys (say 1024 or 2048 bits). Let {0, 1}* denote the set of

finite binary strings and {0, 1} the set of binary strings of length n. A real-valued

function E(n) is negligible if for every c > 0, there exists nc > 0 such that e(n) < 1/n'

for all n > nc.

Let q of size at least , and p of size f be primes such that p = rq + 1 for some

value r co-prime to q. Let g be a generator of a subgroup of Z* of size q. Call this

subgroup Gp,q. We will often omit " mod p" from expressions when it is obvious that

we are working in Z*.

Let DH(X, Y) denote the Diffie-Hellman value gxy of X = gx and Y = gY. We

assume the hardness of the Decision Diffie-Hellman problem (DDH) in Gp,q. One

formulation is that given g, X, Y, Z in Gp,q, where X = gx and Y = gY are chosen

randomly, and Z is either DH(X, Y) or random, each with half probability, determine
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A

R
x - Zq

m gx - (H1(A, B, r)), m

o- = prt . _''

Test k A H2a(A, B m, u, yo, 7r)
k' = H2b(A, B, m, P, o-, r)

k'K=H3(A, B, m, y, ,r) k

Figure 3-1: The PAK protocol, with ir = 7r[A, B].
a "Test" returns false, the protocol is aborted.

Test m Omodp

y * Z
P - gY

o=((H1(AB,7r))7

k - H 2a(A, B, m, y, o,7 r)

Test k' + H2b(A, B, m, y, o-, 7r)
K = H 3 (A, B, m;, , , r)

The resulting session key is K. If

if Z = DH(X, Y). Breaking DDH implies a constructing a polynomial-time adversary

that distinguishes Z = DH(X, Y) from a random Z with non-negligible advantage

over a random guess.

3.4.2 The Protocol

Define hash functions H 2 aH 2bH 3 : {0, 1}* -+ {O,1}K and Hi {0, 1}* - {0,1}1

(where rj > f + rK). We will assume that H1, H2a, H2b, and H 3 are independent

random functions. Note that while H1 is described as returning a bit string, we will

operate on its output as a number modulo p.

The PAK protocol is given in Figure 3-1.

Theorem 6. The PAK protocol is a secure password-authenticated key exchange pro-

tocol in the explicit-authentication model.

The proof is given in Section 3.7.
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3.5 Implicit Authentication: The PPK Protocol

We first describe an Ideal System with Implicit Authentication, and then describe

the PPK protocol. Note that we still use the Real System from Section 3.3.3.

3.5.1 Ideal System with Implicit Authentication

Here we consider protocols in which the parties are implicitly authenticated, meaning

that if one of the communicating parties is not who it claims to be, it simply won't be

able to obtain the session key of the honest party. However, the honest party (which

could be playing the role of "open" or "connect") would still open the session, but

with no one able to actually communicate with on that session. 7

Thus some of the connections may be "dangling." We will allow two new connec-

tion assignments:

dangling open. This requires role(i, j) to be "open."

dangling connect. This requires role(i, j) to be "connect."

In both cases, the ring master generates Kij randomly.

To use implicit authentication with passwords, we will make the following rules:

" We no longer require that no two instances are open for connection from the

same instance (since for implicit authentication we don't care that every ac-

cepting instance has a unique partner instance).

* Dangling connection assignments are allowed even for instances on which the

test instance password query has been performed.

" A test instance password query is allowed on an instance that has started a

session with a dangling connection assignment. In that case, if the test is

successful, then the ring master returns to the adversary the key of the instance

(the adversary is "rewarded" with the key, since the usual "reward," i.e., the

7 In a later version of [93], Shoup also deals with implicit authentication, but in a different way.
We feel our solution is more straightforward and intuitive.
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ability to make an expose connection assignment, is not usable once the dangling

connection assignment has been made).

We still restrict the number of test instance password queries to at most one per

instance. The rules relating to other connection assignments do not change.

The reason for the permissiveness in test instance password is that an instance

with a dangling connection assignment can't be sure that it wasn't talking to the

adversary. All that is guaranteed is that the adversary won't be able to get the key

of that instance, unless she correctly guesses the password.

In practice, this means that we can't rule out an unsuccessful password guess

attempt on an instance until we can confirm that some partner instance has obtained

the same key. (If another instance has indeed obtained the same key, that guarantees

that a non-dangling connection assignment was made, since otherwise the keys would

be independent.) It follows that if we are trying to count the number of unsuccessful

login attempts (e.g., so that we can lock the account when some threshold is reached),

we can't consider an attempt successful until we get some kind of confirmation that

the other side has obtained the same key. We thus see that key confirmation (which,

in our model, is equivalent to explicit authentication) is indeed relevant when we use

passwords.

3.5.2 PPK Protocol

If we don't require explicit authentication, we can make a much more efficient pro-

tocol. The PPK protocol requires only two rounds of communication. The protocol

is given in Figure 3-2. Here H' {0, 1}* -+ {0, 1} is another random function. PPK

has the same basic structure as PAK, except without the "authentication" values k

and k'.

Note that in PPK, as opposed to PAK, both the m and p values need to be

"encrypted" with the password (by multiplication with a random oracle value). The

reason is that in PPK these values are not in any way authenticated. If, as in PAK,

p wasn't "encrypted," then an adversary could carry out the following attack:
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A

x R Zq

m = gx- (H1(A, B,r)),

Test yu 0 modp

K- = ((H'(AB,7r))u
K =- H3(A, B, m, y,1 o-, 7)

7

Test m 7 0 mod p

y R Z
1= g- (H'(AB,T))

o = ((H1(AB,7r))Ir

P K = H3 (A, B, m, y, o-, 7r)

Figure 3-2: The PPK protocol, with 7r = 7r[A, B). The resulting session key is K.

1. Perform a conversation with Alice, impersonating Bob: Alice sends m = gx-

(HI(A, B, r*))r. Adversary responds with y = gY.

2. Adversary asks an application query to get Alice's key

S mK =H3(A, B, m, y, ( ),*))r*).
(H1 (A, B, r)

3. Now the adversary can carry out an offline dictionary attack, by checking K

against H 3 (A, B, m, y, ((H(A7Br)),)Y,7) for all values of 7.

This attack is not possible against PAK, since Alice would not accept (and would not

compute K) without receiving a proper k value, and the adversary can't generate the

proper k value without knowing the password.

Theorem 7. The PPK protocol is a secure password-authenticated key exchange pro-

tocol in the implicit-authentication model.

The completeness requirement follows directly by inspection. The proof of simu-

latability appears in Section 3.8. The basic structure of the proof is the same as for

the PAK protocol, except that we now have an analog of Claim 1 for both initiator

and responder instances.
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3.6 Resilience to Server Compromise: The PAK-X

Protocol

3.6.1 Ideal System with Passwords: Resilience to Server Com-

promise

We now define a system in which one party is designated as a server, and which

describes the ability of an adversary to obtain information about passwords stored

on the server, along with the resultant security. To accomplish this, one role (open or

connect) is designated as the server role, while the other is designated as the client

role.

We add the test password and get verifier operations, and change the start session

operation.

test password

This query takes two users, say i and i', as arguments, along with a password

guess r. If a get verifier query has been made on {i, i'}, then this returns

whether -r = ir[IDi, IDi']. If the comparison returns true, this is called a suc-

cessful guess on {IDi, IDg }. If no get verifier has been made on {i, i'}, then no

answer is returned (but see the description of get verifier below).

This query does not place a record in the transcript. It can be asked any

number of times, as long as the next query after every test password is of type

implementation. (The idea of the last requirement is that a test password query

has to be caused by a "real-world" operation, which leaves an implementation

record in the transcript.)

get verifier [Transcript: ("get verif ier", i, i')]

Arguments: users i and i'. For each test password query on {i, i'} that has

previously been asked (if any), returns whether or not it was successful. If

any one of them actually was successful, then this get verifier query is called a

successful guess on {IDj, IDg'}. Note that the information about the success of
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failure of test password queries is not placed in the transcript.

start session [Transcript: ("start session", ij)]

In addition to the rules specified previously, a connection assignment of expose

for client instance (i, j) is allowed at any point after a get verifier query on users

i or i' has been performed, where ID1 = PIDig.

The test password query does not affect the legality of open and connect connection

assignments.

3.6.2 Real System: Resilience to Server Compromise

In a real system that has any resilience to server compromise, the server must not

store the plaintext password. Instead, the server stores a verifier to verify a user's

password. Thus the protocol has to specify a PPT verifier generation algorithm VGen

that, given a set of user identities {A, B}, and a password 7r, produces a verifier V.

As above for 7r[A, B], we will write V[A, B] to mean V[{A, B}].

A user instance (i, J) in the server role is given access to V[IDi, PIDi3 ]. A user

instance (i, j) in the client role is given access to wr[IDi, PIDij].

The changes to the initialize user and set password operations are given here:

initialize user [Transcript: ("initialize user", i, IDi)]

In addition to what is done in the basic real system, V[IDi, ID] = VGen({IDi, ID, },

7r[IDi, IDg,]) is computed for each i'.

set password [Transcript: ("set password", i, ID', ir)]

In addition to what is done in basic real system, V[IDj, ID'] is set to VGen({IDj, ID'}, ir).

We add the get verifier operation here:

get verifier [Transcript: ("get verif ier", i, i'), followcd by ("impl", "verif ier",(i, i',

V [IDiI IDi,]) ]

The adversary performs this query with i and i' as arguments, with V[IDi, IDi,]

being returned.
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3.6.3 PAK-X Protocol

In our protocol, we will designate the open role as the client role. We will use A

and B to denote the identities of the client and the server, respectively. In addition

to the random oracles we have used before, we will use additional functions Ho :

{0, 1}* -+ {0, 1}~ql+K and H6 : {0, 1}* -+ {0, l}ql+,, which we will assume to be

random functions. The verifier generation algorithm is

VGen({A, B},r 7) - gv[A,B]

where we define v[A, B] = Ho(min(A, B), max(A, B), 7) (we need to order user iden-

tities, just so that any pair of users has a unique verifier).

The PAK-X protocol is given in Figure 3-3.

Theorem 8. The PAK-X protocol is a secure password-authenticated key exchange

protocol in the explicit-authentication model, with resilience to server compromise.

The completeness requirement follows directly by inspection. The proof of simu-

latability appears in Section 3.9. The basic structure of the proof is the same as for

the PAK protocol. A major technical difficulty in the simulation is the case when

the adversary has obtained the verifier, and is now acting as the server (in fact, the

security of the SNAPI-X protocol [67] has only been shown under the assumption

that such a scenario does not occur). The difficulty is that the simulator needs to

verify the value of VH6(A,B,c) without knowing v. This is achieved by checking all

the H6 queries until we find a query c that gives a gH(ABc). We can then use

this value of c to determine the correct value of VH6(A,B,c). (A similar technique was

used independently in [44] to obtain an efficient encryption scheme secure against an

adaptive chosen-ciphertext attack.)

3.7 Security of the PAK Protocol

The completeness requirement follows directly by inspection. Here we prove that the

simulatability requirement holds. The basic technique is essentially that of Shoup
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A (client)

R
X +- Zq

m = gx - (H 1(A, B, V))r

ao- =po
C = k ( H 2a(A, B, m, y, a, a, a', V)

Test a A 9 H6(A,B,c)

k' =H 2b(A, B, m, p, c, a, k, c, V)

K = H3 (A, B, m, , o, c, V)

B (server)

m

p, a, k

k'

Figure 3-3: The PAK-X protocol, with 7r = r[A, B],
The resulting session key is K.

Test m Z 0 mod p

y + Zq

y= gY

o (Hi (A,V))r

c {0, 1}, a = gH6(A,B,c)

k = c EH 2a(A, B, m, y, a, a,
VH(A,B,c) V)

Test k' = H2b(A, B, m, yt, a, a, k, c, V)
K = H3 (A, B, m,[ ,u , c, V)

v = v[A, B], and V = V[A, B].

[93). The idea is to create an ideal world adversary A* by running the real world

adversary A against a simulated real system, which is built on top of the underlying

ideal system. In particular, A* (i.e., the simulator combined with A) will behave in

the ideal world just like A behaves in the real world, except that idealized session keys

will be used in the real world simulation instead of the actual session keys computed

in the real system.

Thus our proof consists of constructing a simulator (that is built on top of an

ideal system) for a real system so that the transcript of an adversary attacking the

simulator is computationally indistinguishable from the transcript of an adversary

attacking the real system.

Let T be the running time of the adversary. (We will also use this as a bound

on the number of operations the adversary performs in the real system.) T must

be polynomial in the security parameter K. W.o.p. stands for "with overwhelming

probability," i.e., with probability at least 1 - E, for some E which is negligible in the

security parameter K.
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Let DH(X, Y) denote the Diffie-Hellman value gXY of X = g' and Y = gy.

3.7.1 The Simulator

The general idea of our simulator is to try to detect guesses on the password (by

examining the adversary's random oracle queries) and turn them into test instance

password queries. If the simulator does not notice a password guess, then it either

sets up a connection between two instances (if all the messages between them have

been correctly relayed), or rejects (otherwise).

The main difficulty in constructing the simulator is that we need to simulate the

protocol without knowing the actual passwords. We solve this problem as follows:

It may be seen that the password only appears in the protocol as an argument to

random oracle queries. Now, whenever the actual protocol would use the result of a

random oracle query whose arguments involve the password, we will simply substitute

a random value for the oracle's response. We can think of this as an "implicit" oracle

call, i.e., one where we know the value returned, even though we don't (as of yet,

at least) know the arguments. In handling the adversary's explicit random oracle

queries, as well as those protocol operations that use random oracles, we need to

make sure that we don't use inconsistent values for the result of a random oracle on

a certain input. In particular, we need to be able to detect if an adversary's query to

a random oracle might match a prior implicit oracle call. We will say that an oracle

query is shadowed by an implicit oracle query if the two queries would be equal for

some feasible (i.e., not yet ruled out) value of the password.

Indeed, one of the main concerns in the proof is dealing with the possible shad-

owings: either detecting them when they occur, or showing that they are impossible.

The possible shadowings in the PAK simulator are shown in Table 3.2.

In the process of describing the simulator, we will show that the transcript of the

simulation in the ideal world is computationally indistinguishable from the transcript

of the actual adversary in the real world, step by step, unless is is possible to construct

an algorithm to break the Decision Diffie-Hellman problem.

Let us now proceed with the technical details. Say an initiator is an instance that
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Current

Earlier H 2 a H2 j H 3  B1I B1' A2

H2a 6 e

H2b Claim 3
H 3  Claim 3
BI Claim3 e e
B1' Explicit e_ e
A2 Claim 3 Claim 3 E

The names of rows and columns refer to parts of the simulator: handling of
the adversary's random oracle queries (Hi) and message responses (e.g., BI). A
message-response action without a prime (e.g., B1) denotes that there is a matching
conversation with an acceptable partner, while a prime (e.g., B1') denotes the lack
of one. Only actions that could possibly cause shadowing are shown in the table.

The columns of the table correspond to an action being currently handled by the
simulator. The rows correspond to earlier actions. An entry in the table indicates
whether or not while handling the current action we need to be concerned for
shadowing caused by an earlier action.

The entries of the table have the following meaning:

blank shadowing is impossible by the structure of the simulator,

e shadowing is possible, but has a negligible probability (statistically),

claim if the adversary can cause such shadowing with nonnegligible probability, then
we can construct a DDH distinguisher (as shown in the referenced claim),

explicit shadowing can indeed occur, and is explicitly dealt with in the simulator.

Table 3.2: Possible shadowings in the PAK simulator.
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sends the first message in the protocol, and a responder is an instance that sends the

second message in the protocol. We will always write (i, J) for the user instance that

is an initiator, and (i', j') for the user instance that is a responder. Let A (resp. B)

be the ID of the current initiator (resp. responder), i.e., either IDi or PIDerj, (resp.

PIDij or IDg1), depending on the context. Let wr* = -r[A, B]. An acceptable partner for

an instance (i, j) (resp. (i', j')) is any instance (i',j') (resp. (i, j)) with PIDr1 = IDi

and PIDig = IDg, (resp. PIDig = IDg, and PIDj = ID). We say that two instances

had a matching conversation if all the messages sent by one were received by the

other (preserving order) and vice versa. (This definition is as in [8], except that we

don't care about the timings, i.e., we don't rule out the possibility of a message being

received before it is sent. However, we will see that the probability of this is negligible

in our protocol. Also note that, as opposed to [8], matching conversations are not

used in our definition of security, but only as a notion to better illustrate our proof.)

When we say that an instance in the open role has had a matching conversation

with an instance in the connect role, this does not make any requirements on the

last message (i.e., the last message is not required to have been delivered properly).

However, in order for an instance in the connect role to have a matching conversation

with an instance in the open role, all the messages need to be delivered properly.

We now describe the actions of the simulator for each possible operation of the

adversary in the real protocol. An initialize user instance or an application operation

is simply passed on to the ideal system. A set password operation is also passed

through to the ideal system (and the password is recorded by the simulator). A

deliver message operation is dealt with depending on the state of the user instance

involved. This state includes the role of the user instance, and the previous messages

to and from that user instance. A random oracle operation is answered depending on

which random oracle is queried. The responses to deliver message and random oracle

operations are specified below.

We name the actions of user instances on deliver message operations as follows:

AO Initiator instance action to start the protocol (i.e., an AO action for an initiator

instance is generating and sending in).
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B1 Responder instance action upon receiving the first message (i.e., m).

A2 Initiator instance action upon receiving the message from the responder (i.e.,

(p, k)).

B3 Responder instance action upon receiving the second message from the initiator

(i.e., k').

For example, B1(m) denotes an adversary's deliver message operation on some re-

sponder instance, with InMsg being m.

We now describe some general rules for handling deliver message operations: We

discard all improper messages to user instances, just as would be done in the real sys-

tem. These messages may be improper because, for instance, they are not formatted

correctly, or the user identities do not match. If the partner ID of a user instance

is not set to an identity of an initialized user, then the original protocol is followed,

and the expose connection assignment is used for a start session operation (this is

possible, since the simulator has seen the necessary password in the set password

operation).

Here are some general rules for handling random oracle operations: The simulator

keeps a record of all random oracle query-response pairs (of course, this is only done

for explicit oracle queries). If a query made to a random oracle matches a previous

query to the same random oracle, the stored response is returned. If a random oracle

is given user identities A and B as arguments, and either (or both) of A and B is not

the identity of a valid user, then the query is answered with a random string (as in

the real system).

Detailed descriptions of how the simulator responds to deliver message and ran-

dom oracle operations (that do not fall under the above rules) follow:

1. H1 (A, B, ir)

Generate a[A, B,7r] A Zq and store it. Then generate h 4 Z* and # ZL2/pj,

and return (hqga[A,B,,x) mod p)+#p. Note that this will be indistinguishable from
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a random bit string of length I, since hqga[ABr] mod p is a random element from

Z*s and 2m odp is negligible.
P27 ine

Note that (H1 (A, B, r))r = (hqga[A,B,7r] r qrr-a[A,B,7r] - gra[A,B,7r]

2. H2a(A,B,m,y,7r)

Case 1 Some prior BI query has recorded a tuple of the form (i', j' m, , y, kty),

with A = PIDgy and B = IDg, for some values of y and key. This implies

that a B1(m) query was made to (i', j') and returned (p, key), but no AO

query to an acceptable partner returned m-see the BI query description

below. (In other words, this H2a query might be shadowed by the implicit

H 2a query from case 2 of the BI action.)

W.o.p., there will be at most one such tuple, since yt values stored in these

tuples are random and independent. If H1 (A, B, 7r) has been asked, and

(H (A B,7r))y = o, then:

(a) If there has been a successful guess on {A, B} and 7 was the password

in that guess, call this H2a query a successful H2a query on (i', j').

(b) If there hasn't been a successful guess on {A, B}, and there never was

an unsuccessful guess on {A, B} for r:

i. If a test instance password operation has not previously been per-

formed on (i', J'), perform a test instance password operation with

arguments (i', j') and 7r. If the test is successful, we also call this

query a successful H2a query on (i', j').

ii. If a test instance password operation has previously been per-

formed on (i', j'), then abort. We will call this event an H2a failure.

Finally, if this query is a successful H2a query on (i', j') for some (i', j'),
then return kiiy. Otherwise, return k - {0, 1}.

8 To see this, note that hq is a random element from the subgroup of order r in Z* and ga[A,B,7r]

is a random element of the subgroup of order q in Z,.

90



If no H2a failure occurs as a result of this H2a query, then the simulation will

be indistinguishable from the real world, as follows: In the real world the k

value sent by (i', j') is H2a (A, B, m, y, DH (p (H(Ar*))r), 7r*). Therefore,

if this H2a query is successful, it will return a value consistent with the

adversary's view. On the other hand, if this query is not successful, then

generating a random response is indistinguishable from the adversary's

view in the real world.

The following claim shows that w.o.p. A will not ask an H 2a query that

causes an H2a failure. (The H2b case in the claim is necessary to handle

B3 operations.)

Claim 1. Let p be returned by a B1(m) query to (i', j'). Let A = PIDer3 f

and B = IDi . Then w.o.p. it will not happen that the two oracle queries

H,(A, B, m, yL, DH(p, (H1(A ,ri)), ) 1), and Ht (A, B, m, y, DH(p' (H1(A,Br 2 ))r ,7 2 )

will be asked, with s, t E {2a, 2b}, unless either ic1 =F 2 , or by the time of

the second query there has already been a successful guess on { A, B}.

Note that in this claim we speak both about queries made by the adversary,

and explicit queries made within the simulator (e.g., in case 2 of the A2

operation).

The proof appears in Section 3.7.2.

Note that an H2a query can result in a test instance password query on

(i', j') only if a tuple (i', j', m, y, y, kiey) has previously been recorded. It

will become apparent below (see the BI query description) that, w.o.p.,

this could only happen if (i', j') has not had a matching conversation with

an acceptable partner. We have just proven one part of the following claim:

Claim 2. If a test instance password query is made on a responder in-

stance (i',j'), then (i'_ )" has not had a matching conversation with an

acceptable partner.

The other part is shown in case 3b of B3 (which is the only other place

where a test instance password could be made on a responder instance).
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Case 2 No tuple of the form (i', j', m, P y, ke) has been recorded with A =

PIDepj1 and B = IDi.

Return k 4 {0, 1}'. The only way this response could be distinguishable

from the real system is if this query would be shadowed by an implicit H2a

query from case 1 of some B1 action, i.e., if m and y are from a match-

ing conversation of two valid user instances, and o-= DH(p, ).

However, by the following claim, w.o.p. this will not occur.

Claim 3. Let m be returned by an A0 query to (i, J) with A = ID and B =

PIDij, and p be returned by a subsequent B1(m) query to (i',j') with B =

ID' and A = PIDepj,. Then, w.o.p., the there will never be (neither before

nor after the A0 and BI queries) an oracle query (A, B, m, y, DH( t (Hi(AB,r))r)

to H2a, H2b, or H3, for any 7.

The proof of the claim appears in Section 3.7.2. Note that we only consider

B1(m) queries subsequent to an AO query that returns m, since the proba-

bility of their occurrence prior to an AO query that returns m is negligible

(by randomness of m).

3. H2b(A, B, m, y, o-, 7)

Return k' {0,1}'. This is indistinguishable from the real system by the

following argument: The only implicit H2b query that could shadow this one

is the query from case 1 of an A2 action. However, that shadowing is, w.o.p.,

impossible by Claim 3. (Note that the H2b query from case 2 of an A2 action is

explicit, i.e., all of its arguments are known, and so a query-response pair would

be stored for it.)

4. H3 (A, B, m, p, -, 7r)

R
Return K +- {0, 1}'. As for H2b queries, indistinguishability easily follows by

Claim 3.

5. AO query to (i, j)
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Generate and store w R*- Z, and send m = gW. Clearly, m is uniformly drawn

from Gp,q, just as in the real system.

6. B1(m) query to (i', j')

RR
Generate y A Zq and ki j {o, 1}. Send y = gY and k = kgg. Now consider

two cases:

Case 1 The value of m has been sent by an acceptable partner.

We can think of kgj as the result of an implicit query

m
H2a(A, B,m, y, DH(p, ( A , F*)) 7r*).

(H1 (A, B, r)

Since p is a freshly chosen random number, this implicit query, w.o.p.,

will not shadow any prior H 2a queries (whether explicit or implicit). Con-

sequently, kgg will be indistinguishable from the value sent in the real

system.

Case 2 The value of m has not been sent by an acceptable partner.

In this case, record the tuple (i', j', m7, y, key). It is important to note

(for Claim 2, that if this tuple is recorded, then, w.o.p., (i', j') will never

be considered to have a matching conversation with an acceptable partner,

due to the fact that values of m are generated randomly by initiator in-

stances. (Recall that in our definition of "matching conversation" we are

not concerned with the timing of sends and receives.)

As in case 1, we can view kg, as the result of an implicit query

m
H 2a (A, B, m, p, DH(p, ,, 7r*).

(H1 (A, B, r)

The value of key will be indistinguishable from the one sent in the real

system for the same reason as before.

7. A2(p, k) query to (i, j)
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Case 1 (i, J) has had a matching conversation with an acceptable partner

(I', j').

Generate k4- {, 1}, send k'= k, set status to Accept, and perform a

start session operation with the connection assignment open for connection

from (i', j'). This corresponds to the following implicit oracle queries:

m
k = H2b(A, B, m, y, DH(p, () r*),ij (H1 (A, B, -r*))r)

m
Ki = H3 (A, B, m, y, DH(p, ), 7r*),

(H1 (A, B, 7*)

where Kij is the random session key assigned by the ring master at the

time of the start session operation.

By Claim 3, these implicit queries couldn't shadow any past or future ex-

plicit queries. It is also easy to see that these implicit queries will not

shadow any other implicit queries, unless there is a collision of m val-

ues between two initiator instances (and that only occurs with negligible

probability).

The open connection assignment will be legal, since the only place that the

simulator could perform a test instance password operation on (i, j) would

be in case 2 of the A2 query (see there). Also, w.o.p., we will never have two

initiator instances (ii,]j) and (i 2,j 2) that are open for connection from the

same responder instance (i', j'), since that would imply that (ii, Ji) and

(i2, J2) generated the same m value (otherwise, they couldn't both have

had matching conversations with (i', j')).

Case 2 (i, J) has not had a matching conversation with an acceptable partner.

Look for a value of 7r for which an H1 (A, B, 7r) query has been made, and

another query H 2a(A, B, m, y, w-ra[A,B,7r] I7r) has been made and returned

k. (W.o.p. there will be at most one such value of 7r, due to the randomness

of H2,.) If no such 7r is found, then reject. This is indistinguishable from

the real system, since w.o.p. the k received would be incorrect in the real
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system (i.e., the correct k H2a(A, B, m, y, DH(p, (H1(A,B,r*)),), ir*) would

be independent of the adversary's view).

Otherwise (if such a w is found), perform a test instance password operation

with arguments (i, j) and w (note that this is the only place where we

could perform this operation for an initiator instance, and no session has

been started yet, so the operation is legal). If the guess is not successful,

then reject (this is indistinguishable from the real system, by an argument

similar to the one above). If the guess is successful, then:

(a) Set k' H2b(A, B, m, y, P w-ra[A,B,7r]

(b) Send k'.

(c) Accept.

(d) Set K = H 3 (A, B, m, , pw-ra[A,B,7rJ

(e) Expose using session key K (this is allowed, since there was a successful

guess on the password).

Note that the values of k' and K are computed through explicit oracle

queries (we can think of these as subroutine calls within the simulator),

and the queries and responses are recorded, as usual. It is clear that the

values of k' and K produced in this case are the same as would be computed

in the real system.

8. B3(k') query to (i',j')

Case 1 (i', j') has had a matching conversation with an acceptable partner

(i, j).

Set status to Accept and perform a start session operation with a connect

to (i, J) connection assignment. This is legal because

(a) w.o.p., the instance (i,j) will still be open for connection by the ran-

domness of pL values sent by responder instances (so that, w.o.p., for

each initiator (i, j), there will be at most one (i', j') with which it has
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had a matching conversation, and so at most one instance will try to

connect to (i,j)), and

(b) by Claim 2, there could not have been a test instance password query

on (i', j'), since (i', j') has had a matching conversation with an ac-

ceptable partner.

Case 2 The current value m has been sent by some acceptable partner (i, j),

and y and k have been received by (i, j), but the value of k' that was

received has not been sent by (i, J).

Reject. This is indistinguishable from the real system since k' is invalid.

Case 3 Neither Case 1 nor Case 2 holds.

Look for a value of -r such that an H1 (A, B, r) query has been asked, and

a query H2 b(A, B, m, p, ( (H (A r )),)",7r) has been asked and returned k'.

(W.o.p. there will be at most one such value of -r, due to the randomness

of H2b.) If no such 7r is found, then reject. This is indistinguishable from

the real system, since w.o.p. the k' received would be incorrect in the real

system (i.e., the correct k' would be independent of the adversary's view).

(The only way k' could be correct, other than through a random guess, is

if it is the result of an implicit H2b query in case 1 of A2. However, it is

easy to see that if that was the case, we couldn't get to case 3 of B3.)

Otherwise (if such a 7r is found), check if there was a successful guess on

{A, B}.

Case 3a There was a successful guess on {A, B}. If that guess was not

7r, then reject.

Case 3b There was no successful guess on {A, B}. If there already was an

unsuccessful guess on {A, B} for 7r, then reject. Otherwise, perform a

test instance password operation with arguments (i', j') and 7r. (Note

that in this case (i', j') has not had a matching conversation with an

acceptable partner. This completes the proof of Claim 2.) If the guess

is not successful, then reject.
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We can easily see by Claim 1 (using s = 2a and t = 2b), that, w.o.p.,

this procedure will not make a test instance password query on (i', j')
if one has already been made before.

If we haven't rejected yet, then

(a) set status to Accept,

(b) set K = H 3 (A, B, m, y, ( (H(AB,r))r) ,7r), and

(c) expose using session key K (this is allowed, since there was a successful

guess on the password).

Note that the value of K is computed through an explicit oracle query. It

is clear that the value of K produced in this case are the same as would

be computed in the real system.

3.7.2 Proofs of Claims

Proof of Claim 1. We will call an oracle query of form H,(A, B, m, A, o-, 7r), for s E

{2a, 2b}, "bad" if a = DH(p (H(AB,ir))r

Suppose that with some nonnegligible probability e there will be some responder

instance (i', j') (with B = ID;, and A = PID;,,) such that the following "bad event"

occurs:

1. query B1(fin) is made to (i',j') and returns y, and

2. at least two "bad" queries are made with (A, B, fn, f) and distinct values of ir,

before there is a successful guess on {A, B}.

We will then show how to construct a distinguisher D for the DDH problem.

The idea of the distinguisher is as follows: We start with a triple (X, Y, Z) as

input, for which we need to determine whether or not Z = DH(X, Y). We will run

the adversary against a simulation of the original PAK simulator. In the simulation,

we will use X and Y in place of some random values, and, if the adversary can cause

a "bad event," we will get information about DH(X, Y). More specifically, we will
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"incorporate" X into half of the H1 responses (randomly), and Y into B1 responses

(i.e., the t values). A bad query will then have to contain

m
o- DH(pu m = DH(Ygz, m

' (HI(A, B, r))r ' Xb[rlr go)'

where b[7r] c {0, 1}, z and a are random values known to us, and m comes from

the adversary. One bad query does not give us information about DH(X, Y), since

we don't know m. However, two bad queries with different values of b[7r] will give us

enough information. If b[7] is randomly chosen for each 7r, and the adversary asks two

bad queries for different choices of the password, then we will get information about

DH(X, Y). The main difficulty in the construction is how to perform the simulation

without knowing the discrete logarithms of H1 and yt values. For that reason, we

want to minimize the number of places where X and Y get used, and so we need to

make a guess as to where the "bad event" will occur.

Now let us give the details. Our distinguisher D for input (X, Y, Z) runs as follows:

1. Generate random d between 1 and T.

2. Initialize two lists BADO and BAD1 (initially empty).

3. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulation until the dth pair of users (A, B) is

mentioned. (This may be from an oracle query H1 (A, B, -), or from an initialize

user instance query with user ID A and partner ID B, or vice-versa.) If we

guessed d correctly, this pair will be the identities of the users in the "bad

event."

4. Once A and B are set, continue as in the original simulator, except:

(a) B1(m) query to instance (i',j') with IDl = B and PIDgy = A: generate
R R 1 K, se 1

zy+- Zq and ke + {0,, setp= YgW,~a and respond with (p,' ke)
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(b) H1(A, B,7): If 7 ir*, then set b[7r] = b[w*] = 0. Otherwise, let b[7r] A-

{0, 1}. Respond with (Xb['Ii - hqgQe[A,B,] mod p) + Op, for a[A, B, r] R Zq,

h +- Z* and # ' ZL2/j.

(c) A2(pu, k) query to initiator instance (i, j), where IDi = A and PIDij = B:

Behave as in the original simulator, except if we get into case 2, then look

for query

H 2a (A, B, m, y pw-ra[A,B,2<*)

i.e., ignore any 7r # r*.

Note that we know -r*, and that (H1 (A, B, r*))= gr-.a[A,B,ir*], since b[7*]

0. Thus, the original simulator will work correctly in this case. It is safe to

ignore oracle queries with ir # 7r*, since those wouldn't lead to an accept

(as the test instance password query would fail).

(d) B3(k') query to responder instance (i', j'), where PIDgj = A and ID, =

B: If there is no matching conversation with an acceptable partner, then

respond with reject. Otherwise, behave as in the original simulator.

If the "bad event" is about to occur and d has been guessed correctly, then

this response is appropriate: If there was no matching conversation with

an acceptable partner and this query was supposed to result in an accept,

then there would be a successful guess on {A, B} before the second "bad"

oracle query, and that would contradict the definition of the "bad event."

On the other hand, if the "bad event" has already occurred, then we don't

care whether or not the response was correct (as will be seen below, it is

sufficient for us to have the "bad event" at any point in our execution, and

we don't need to know the point at which it actually occurred).

(e) (A, B, m t, , r) query to H2a or H2:

If H1 (A, B, r) was queried and there is an instance (i', J') with B = IDg

that was queried with B1(m) and returned p = Ygh'i', then do the follow-

ing (and otherwise, answer the query as in the original simulator):
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First note that if this is a bad query, then

a- D H(pu, (H1 (A, B, 7r))r DH(Ygz'' Xb[7r"3gr-a[A,B,]

Now compute

n o-m -sT Xb["]ri'j Zi["j'Yra[A,B,r] r-a[AB,x]zy

Put 7y on the list BADb[,]. Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguish-

able from the original simulator, since no successful guess on {A, B} can

occur before the bad event.

At the end of the simulation, check whether the lists BADo and BAD1 intersect (note

that this check can be done in time O(T log T), by sorting the lists together). If yes,

then output "True DH," otherwise output "Random."

Note that the values stored in BADO and BAD1 are simply guesses of DH(m, Y),

assuming Z = DH(X, Y). If Z is random, then the probability of an intersection

between the lists would be at most T 2 /q by the union bound, since Zr would be a

random element of Gp,q (note that q and r are relatively prime, and m # 0 mod p

because of the test by B).

On the other hand, suppose Z = DH(X, Y). If the adversary makes two "bad"

queries for the pair of users (A, B), for passwords 7r, 7r2 with b[7r1 ] # b[7 21, then the

distinguisher will correctly answer "True DH" (since each "bad" query will result in

- = DH(m, Y)). The probability of the "bad event" is e. The probability of guessing

d correctly is 1. The probability of b[7 1] 0 b[7r2] for 7ri # 7r2 is j. All of these events

are independent.
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Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses "DH True" DH instance) Pr(DH instance)

+ Pr(D guesses "Random" Random instance) Pr(Random instance)

>1 + 1 - )

Thus the probability that D is correct is at least 1+ - 2, which is non-negligibly

more than j.

Proof of Claim 3. If such a query is indeed made with some non-negligible probability

E, then we will construct a distinguisher D for DDH. Let (X, Y, Z) be the challenge

DDH instance.

The idea of the construction is similar to the one in the previous proof. The main

difference is that now we incorporate X and Y into the m and y values, respectively,

sent in a matching conversation.

The distinguisher runs as follows:

1. Generate random d between 1 and T, and random b e {0, 1}.

2. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulator until the dth AO query. Say this

query is to (i, j). Let A = IDi, B = PIDij, and wr* = -r[A, B]. Reply to this AO

query with m = X.

3. Continue with the simulation, but with the following changes:

(a) B1(m) query to instance (i', j') where m = X, IDg1 = B, and PIDig = A:

Generate a random zgg E Zq, and set y = Ygzi'. Compute k = kgj as in

the original simulator and return (i, k).

(b) Any H2., H2b or H3 query (A, B, X, y, o, r) where yL = Ygie' for some

(i', j') and o = ZXj /Pra[A,B,7r]: Stop the distinguisher and guess "True

DH."
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(c) A2(p, k) query to (i, j) not part of a matching conversation with an ac-

ceptable partner:

Check that an H1 (A, B, w*) query has been asked and a query H 2a(A, B m, 1, , o,*)

has been asked and returned k (w.o.p., there will be at most one such H2a

query, by the randomness of H2a responses). If not, then reject.

Otherwise, if b = 0, reject, and if b = 1,

i. Set ki= H2b(A, B, m, /7, , , 7*)

ii. Send k' = k'8.

iii. Accept.

iv. Set Ki= H3(A, B, m, y, o, *).

v. Expose using K = Kij.

(d) B3(k') query to instance (i', j') where m = X, which is not part of a

matching conversation:

Reject. If the simulator should have accepted, the adversary w.o.p. would

have already queried H2b with the correct Diffie-Hellman value.

4. If the simulation ends without outputting "True DH," then output "Random."

Note that if the adversary does make a bad query, we have probability at least 1/T

of guessing the correct initiator user instance, and probability at least 1/2 of answering

the A2 query to that user instance correctly (thus allowing the DDH distinguisher to

continue in a way that is indistinguishable from the regular simulator).

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) Pr(D guesses "DH True" DH instance) Pr(DH instance)

+ Pr(D guesses "Random" Random instance) Pr(Random instance)

()+ 1 )(1

where the term T/q comes from the probability of the adversary "guessing" a random

Z correctly on a random oracle query. Thus, the probability that D guesses correctly

is at least 1 + ' - -, which is non-negligibly more than j. 1:
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Remark on the use of Computational Diffie-Hellman: It is easy to see that

the proofs could be modified to base security on the Computational Diffie-Hellman

problem (i.e., the hardness of computing Z = DH(X, Y) for random X and Y).

Basically, instead of checking whether the random oracle queries match a given form,

we would just guess which of the oracle queries are "right," and thereby extract Z.

However, this approach would only give O(n) success probability in Claim 1, since

we would need to guess the location of both of the bad oracle queries.

3.8 Security of the PPK Protocol

3.8.1 The Simulator

The proof of simulatability of PPK is similar in structure to that of PAK. We name

the actions of user instances on deliver message operations as follows:

AO Initiator instance action to start the protocol (i.e., an AO action for an initiator

instance is generating and sending m).

B1 Responder instance action upon receiving the first message (i.e., m).

A2 Initiator instance action upon receiving the message from the responder (i.e., p).

We will let (i, j), (i', j'), A, B, and r* have the same meaning as in the proof

of PAK (see the beginning of Section 3.7.1). The notions of acceptable partner and

matching conversation will also retain their meaning.

The simulator will follow the same general rules as described in Section 3.7.1.

Responses to deliver message and random oracle operations that do not fall under

those rules are done as follows:

1. H1 (A, B, 7r)

R R
Same as for PAK: Generate o[A, B, r] <- Zq and store it. Then generate h <- Z*

and /3 4- ZL2'/pj, and return (hqga[A,B,7r] mod p) + 3p. Note that this will be
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indistinguishable from a random bit string of length q, since hqg,[AB,] mod p

is a random element from Z*9 and 24 7
7odp is negligible.

2. H'(A, B, wr)

R RSame as for PAK: Generate a'[A, B,r] &- Zq and store it. Then generate h A

Z* and #' / ZL2"/pJ, and return (hqga'[A,B,i] mod p) +13'p. Note that this will be

indistinguishable from a random bit string of length 71, since hqga'[A,B,] mod p

is a random element from Z and 27moa, is negligible.

3. H3(AB,myo,7)

Case 1 Some prior BI query has recorded a tuple of the form (i', j', m, y, z),

with A = PIDg1 and B = IDi, for some value of z. This implies that a

B1(m) query was made to (i', j') and returned pu, but no AO query to an

acceptable partner returned m-see the BI query description below. (In

other words, this H3 query might be shadowed by the implicit H3 query

from case 3 of the B1 action.) Instance (i', J') must have already opened a

session with the dangling open connection assignment (see case 3 of B1).

W.o.p., there will be at most one such tuple, since y values stored in these

tuples are random and independent. If queries H1 (A, B, ir) and H'(A, B, ir)

have been asked, and ((H1(A .))r)z-ra'[A,B,27c = o, then:

(a) If a test instance password operation has not previously been per-

formed on (i', j'), perform a test instance password operation with

arguments (i', j') and -r. If the test is successful, the ring master will

give us the key Kggj, of instance (i', ') (since (i', j') has a dangling

connection assignment). Return Kgg.

(b) If a test instance password operation with 7r has already been per-

formed on (i', j') and was successful, then let Kigj 1 be the key obtained

9 To see this, note that he is a random element from the subgroup of order r in Z* and ga[A,B,,r]

is a random element of the subgroup of order q in Z*.
'0 To see this, note that hq is a random element from the subgroup of order r in Z* and g'[AB,7r

is a random element of the subgroup of order q in Z*.
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from the ring master in that operation. Return Kiiy.

(c) If an unsuccessful test instance password operation has already been

performed on (i', j') with a password ir' 0 7r, then abort. We will call

this event a responder failure (note that (i', j') is a responder instance).

R
If we have neither failed nor returned anything yet, then return k <-

{0, 1}.

If no responder failure occurs as a result of this H3 query, then the simu-

lation will be indistinguishable from the real world, as follows: In the real

world the key generated by (i', j') is

DH p_____ mH3 (A, B, m, y, DH( ),*)r gH(, r*).
(H11(A,7 B, 7r)'(1A B, 7r))

Therefore, if this H3 query is successful, it will return a value consistent

with the adversary's view. On the other hand, if this query is not suc-

cessful, then generating a random response is indistinguishable from the

adversary's view in the real world.

The following claim shows that w.o.p. A will not cause a responder failure.

Claim 4. W.o.p., no responder failure will occur.

The proof appears in Section 3.8.2. Note that case 1 of H3 is the only

place in the simulation where a responder failure can occur.

As can be seen, an H3 query is the only place in the simulation that a test

instance password query can be made on a responder instance. We can

therefore state the following claim (similarly to PAK):

Claim 5. If a test instance password query is made on a responder in-

stance (i',j'), then the m value received by (i', j') was not sent by an ac-

ceptable partner.

The reason is that an H3 query can result in a test instance password query

on (i', j') only if a tuple (i', j', m, y, z) has previously been recorded. It will

become apparent below (see the B1 query description) that, w.o.p., this
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could only happen if the m value received by (i', j') was not sent by an

acceptable partner.

Case 2 Some prior A2 query has recorded a tuple of the form (i, J M, , w),

with A = ID, and B PIDg, for some value of w. This implies that (i, j)
sent m and received y back, but did not have a matching conversation

with an acceptable partner-see the A2 query description below. (In other

words, this H3 query might be shadowed by the implicit H3 query from

case 2a or 2b of the A2 action.) Instance (i, j) must have already opened

a session with the dangling connect connection assignment (see cases 2a

and 2b of A2).

(Note that this case cannot overlap with the previous one, i.e., w.o.p., we

won't have both a tuple (i', IJ'7 m, P, z) and tuple (i, j, m, P, w) recorded,

with matching values of A and B. That reason is that if the values of

m and p in the tuples match up, then (i, j) and (i', j') will have had a

matching conversation. Also, the two instances are acceptable partners.

However, an initiator instance that has had a matching conversation with

an acceptable partner will not record a tuple-it will be in case 1 of A2,

while an initiator tuple can only be recorded in case 2 of A2.)

W.o.p., there will be at most one such tuple, since m values stored in these

tuples are random and independent. If queries H1 (A, B, 7) and H'(A, B, r)

have been asked, and ( , A )w-ra[A,B,7r] = o., then:

(a) If a test instance password operation has not previously been per-

formed on (i, j), perform a test instance password operation with ar-

guments (i, J) and -r. If the test is successful, the ring master will give

us the key Kij of instance (i, j) (since (i, j) has a dangling connection

assignment). Return Kij.

(b) If a test instance password operation with r has already been per-

formed on (i', j') and was successful, then let Kgj be the key obtained

from the ring master in that operation. Return Kig.
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(c) If an unsuccessful test instance password operation has already been

performed on (i, j), then abort. We will call this event an initiator

failure (note that (i, j) is an initiator instance; in addition, see case 2c

of A2 for another place where an initiator failure can occur).

R
If we have neither failed nor returned anything yet, then return k <-

{0, 1

If no initiator failure occurs as a result of this H3 query, then the simulation

will be indistinguishable from the real world, similarly to case 1.

The following claim shows that w.o.p. A will not cause an initiator failure.

Claim 6. W.o.p., no initiator failure will occur (whether in case 2 of H3

or in case 2c of A2).

The proof appears in Section 3.8.2.

Note that the test instance password query on (i, j) will only be made here

if a tuple (i, j, m, y, w) has previously been recorded. That, in turn, implies

w.o.p. that (i, j) did not have a matching conversation with an acceptable

partner (see the note at the end of case 2b of A2). We have just proven

one part of the following claim:

Claim 7. If a test instance password query is made on an originator in-

stance (i, j), then (i,.j) has not had a matching conversation with an ac-

ceptable partner.

The other part is shown in case 2a of A2 (which is the only other place

where a test instance password could be made on an originator instance).

Case 3 Otherwise.

Return k - {0, 1}K.

Let's show that this response is valid i.e., that this H3 query can't be

shadowed by any prior implicit queries. Implicit H3 queries are made in

cases 1, 2, and 3 of B1, and cases 2a and 2b of A2. It is easy to see that

any H3 call that might shadow an implicit query from case 3 of B1 would
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not be dealt with here (rather, it would be dealt with in case 1 of H3).

Similarly, we don't need to be concerned for implicit queries from cases 2a

and 2b of A2, since they are only relevant to case 2 of H3. Thus, we only

need to show that there is no shadowing from cases 1 and 2 of B1. These

are dealt with by the following:

Claim 8. Let m be returned by an A0 query to (i, j) with A = IDi and

B = PIDij, and p- be returned by a subsequent B1(m) query to (i', j') with

B = ID, and A = PIDep. Then, w.o.p., the there will never be a query

H3 (A, B, m, y, DH( , (H1(A B,7r)), ,), for any 7.

The proof of the claim appears in Section 3.8.2.

4. AG query to (i, j)
RSame as for PAK: Generate and store w - Zq, and send m = gw. Clearly, m is

uniformly drawn from Gp,q, just as in the real system.

5. B1(m) query to (i',j')

RGenerate and store z *- Zq, and send p = gz (which clearly has the correct

distribution). Now consider three cases:

Case 1 The value of m has been sent by an acceptable partner (i, J), and no

A2 action has yet been performed for (i, J). (Note that by the randomness

of m values, there will, w.o.p., be at most one such (i,j).)

Set status to Accept, and perform a start session operation with the con-

nection assignment open for connection from (i, j). This corresponds to

the implicit oracle query

Ke = H3 A, Bm, I, DH ( (r*
((H1 (A, B, gr*))r ' (Hj'(A, B, g*)

where KIy 7 is the random session key assigned by the ring master at the

time of the start session operation. Since t is a freshly chosen random
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number, this implicit query, w.o.p., will not shadow any prior H3 queries

(whether explicit or implicit). Consequently, Key will be indistinguishable

from the value used in the real system.

The connection assignment is legal because, by Claim 5, there could not

have been a test instance password query on (i', j'), since (i', j') has received

m from an acceptable partner.

Case 2 The value of m has been sent by an acceptable partner (i, j), and an

A2(I') action has been performed for (i, j), for some p'.

Set status to Accept, and perform a start session operation with the con-

nection assignment dangling open. This corresponds to the implicit oracle

query

Kely =_ H3 A, B, m, y, DH , , 1r* ,( (Hi(A, B, r*))r' (H'(A, B, *))r)

where Kgj is the random session key assigned by the ring master at the

time of the start session operation. As in case 1, it is easy to see that the

values of p and Key will be indistinguishable from those used in the real

system.

Case 3 The value of m has not been sent by an acceptable partner.

Record the tuple (i', j', m, , z). Then set status to Accept, and perform

a start session operation with the connection assignment dangling open.

This corresponds to the implicit oracle query

Kiij, = H3 A7 B7 mI p7 D H ,7*' H3 (A 'B~mWDH( (Hi(A, B, r*))r' (H'(A, Br*))r '

and is valid for the same reason as in case 2.

It is important to note (for Claim 5), that if a tuple is recorded, then,

w.o.p., the m value received by (i', j') neither was nor every will be sent
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by an acceptable partner, due to the fact that values of m are generated

randomly by initiator instances.

6. A2(p) query to (ij)

Consider two cases:

Case 1 (i, j) has had a matching conversation with an acceptable partner

(i', J').

Set status to Accept and perform a start session operation with a connect

to (i', j') connection assignment.

Let's show that this connection assignment is legal. Since (i, j) had a

matching conversation with (i', j'), it follows that (i', j') has received the

m sent by (i, j), and (i, j) received the y sent by (i', J'). Since p was a fresh

random number generated by (i', j'), it follows that w.o.p. (i, j) received y

after (i',j') sent it. It is now easy to see that the B2(m) action for (i',j')

was, w.o.p., in case 1. Thus, (i', j') was open for connection from (i,j).

W.o.p., (i', j') became open for connection from (i, j) after (i, j) sent m,

since m was a fresh random number.

In addition, by Claim 7, no test instance password could have been per-

formed on (i, j), since (i, j) has had a matching conversation with an ac-

ceptable partner.

Case 2 (i, j) has not had a matching conversation with an acceptable partner.

Now consider two cases:

Case 2a There exists exactly one ir such that queries H1 (A, B, 7r) and

Hj(A, B, r) have been asked, and query H 3 (A, B, m, y1, ((Hj(A B r) w-ra[A,B,7r] w)

has been asked and returned K.

Perform a test instance password operation with arguments (i, j) and

7. (Note that in this case (i, j) has not had a matching conversation

with an acceptable partner. This completes the proof of Claim 7.)

This is legal for the following reason: The only other place where a
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test instance password could be asked on an originator instance is in

case 2 of H3. However, that case can only lead to a test if a tuple

(i, j,...) has been recorded. Such a tuple can only be recorded by

an A2 action. Now, clearly no tuple has been recorded thus far by

this A2 action, and also no A2 action could have occurred on (i, j)

before (we don't allow more than one A2 action to be performed on

any particular instance).

(a) If the test is successful, then set status to Accept and expose using

key K. This is acceptable for the same reasons as above.

(b) Otherwise, record the tuple (i, j, m, , w), set status to Accept, and

perform a start session operation with the connection assignment

dangling connect.

This corresponds to the implicit oracle query

m PK H3 (A) B) M) AI DH ( (Hi(A, B, 7r*))r' (H(A, B, r*))r7

where Kij is the random session key assigned by the ring master at

the time of the start session operation. Clearly, this implicit query

will not, w.o.p., shadow any prior explicit queries, or else we would

have exposed. W.o.p., it won't shadow another implicit query

from an A2 action, by the randomness of m values. Also, it won't

shadow an implicit query from a B1 action of any instance (i', j'),
since that would imply that (i, j) had a matching conversation

with an acceptable partner (as A, B, m, and p would have to

match), and so we would not be in case 2 of A2.

Case 2b No such 7r exists.

Record the tuple (i, J, m, y, w). Then set status to Accept, and per-

form a start session operation with the connection assignment dangling
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connect. This corresponds to the implicit oracle query

Kzj = H3 A, B, mn, y, DH , *) r*((H1(AB,*))r' (Hj(A, B, r*))r) '

and is valid for the same reason as above at the end of case 2a.

It is important to note (for Claim 7), that if a tuple is recorded (either

in case 2a or in case 2b), then, w.o.p., (i, j) will never be considered to

have a matching conversation with an acceptable partner, due to the

fact that values of t are generated randomly by responder instances.

(Recall that in our definition of "matching conversation" we are not

concerned with the timing of sends and receives.)

Case 2c There is more than one such 7r.

Abort with an initiator failure. W.o.p., this case will not occur, by

Claim 6.

3.8.2 Proofs of Claims

Proof of Claim 4. We will call an oracle query of form H3 (A, B, m, y, o-, r) "bad" if

o H (H'(AB,7r))' (Hi(AB,7r))r )
Suppose that with some nonnegligible probability e there will be a responder

failure. This implies that there will be some responder instance (i', j') (with B = ID;,

and A = PID;,,) such that the following "bad event" occurs:

1. query B1(r^n) is made to (', j') and returns A, and

2. at least two "bad" queries are made with (A, B, fn, A) and distinct values of ir,

before there is either a successful test instance password on (i', j') or an initiator

failure. (Note that the simulator aborts when it encounters an initiator failure.

Thus, if a responder failure occurs, that implies that no initiator failure has

occurred so far.)

We will then show how to construct a distinguisher D for the DDH problem.
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The idea of our distinguisher D, with input (X, Y, Z), is to simulate the original

simulator, incorporating X and Y into some of the responses. Then, if D runs

indistinguishably from the simulator up to the bad event, we will be able to use the

logs to determine whether or not Z = DH(X, Y).

Our distinguisher D for input (X, Y, Z) runs as follows:

1. Generate random di and d2 between 1 and T.

2. Initialize two lists BADO and BAD1 (initially empty).

3. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulation until the d1th pair of users (A, B) is

mentioned. (This may be from an oracle query H1 (A, B, .), or from an initialize

user instance query with user ID A and partner ID B, or vice-versa.) If we

guessed di correctly, this pair will be the identities of the users in the "bad

event."

4. Once A and B are set, continue as in the original simulator, except:

(a) B1(m) query to the d2th responder instance (i',j') with ID;, B and

PID,3 , = A: respond with A = Y. Let fn = m.

If we guessed d2 correctly, this will be the responder instance in the "bad

event." Note that it is OK to set A = Y, since Y is assumed to be uniformly

distributed.

(b) H1 (A, B, 7r): If r = r*, then set b[7r] = b[7r*] = 0. Otherwise, let b[7r] 4

{0, 1}. Respond with -h mod p)+,3p, for h 4 Z*, a[A, B, r] 4

Z,_1 and # +- ZL2 1/pj .

(c) A2(p) query to initiator instance (i, j), where ID = A and PIDij = B:

Behave as in the original simulator, except if we get into case 2, then look

for query

H3 (A, B, m, y, ( -)"r~A'B'7r*''*,
(Hj(A, B, 7r*)r
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i.e., ignore any -r / 7r*.

Note that we know 7r*, and that (H1 (A, B, 7r*))r gr.a[A,B,ir*, since b[r*] =

0. Thus, the original simulator will work correctly in this case. It is safe to

ignore oracle queries with 7r $ -r*, since those wouldn't lead to an accept

(as the test instance password query would fail).

It is easy to see that the only way this behavior might be distinguishable

from the original simulator is if this query was supposed to cause an abort

(i.e., an initiator failure). However, this is not a problem: If the bad

event has already occurred, then we are no longer interested in preserving

indistinguishability. On the other hand, if the bad event is still about to

occur, then this query couldn't cause an initiator failure (since the bad

event, by definition, can't occur after an initiator failure).

(d) H 3 (A, B, m, y, o-, Tr) query, with a tuple (i, j, m, p, w) recorded, A = IDi,

B = PIDj: If 7r = gr*, then behave as in the original simulator (this will

be correct, since b[7r*] = 0). Otherwise, return k 4 {0, 1}.

This behavior is indistinguishable from the original simulator for the same

reasons as mentioned in the A2 query.

(e) H3(A, B, r^n, f, o, 7r) query (note that this case will not, w.o.p., overlap

with the preceding one for reasons similar to those mentioned in case 2 of

H3 in the description of the original simulator, i.e., that it would imply

a matching conversation with an acceptable partner, and thus the tuple

(i,j,...) wouldn't have been recorded):

If H1 (A, B,7 ) and Hj(A, B, 7r) were queried, then do the following (and

otherwise, answer the query as in the original simulator):

First note that if this is a bad query, then

=DH f
( (Hi(A, B, r))r' (Hj(A, B,r)))

iDH ( n Y
Xb[7rlrgr-a[A,B,7r]'I gr-a'[A,B,7r]'
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Now compute

_Y - - Zbl''l' . yra[A,B,7r] . . X -b['Elr -b g ra[A,B,7r]ra'[A,B,7r]

Put -y on the list BADb[,r . Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguish-

able from the original simulator, since no successful test instance password

on (i', j') can occur before the bad event.

At the end of the simulation, check whether the lists BADo and BAD1 intersect (note

that this check can be done in time O(T log T), by sorting the lists together). If yes,

then output "True DH," otherwise output "Random."

Note that the values stored in BADO and BAD1 are simply guesses of DH(r^n, Y),

assuming Z = DH(X, Y). If Z is random, then the probability of an intersection

between the lists would be at most T2 /q by the union bound, since Z' would be a

random element of Gp,q (note that q and r are relatively prime, and m : 0 mod p

because of the test by B).

On the other hand, suppose Z = DH(X, Y). If the adversary makes two "bad"

queries for the pair of users (A, B), for passwords ri, r2 with b[7r1] # b[7r2], then the

distinguisher will correctly answer "True DH" (since each "bad" query will result in

7= DH(rin, Y)). The probability of the "bad event" is c. The probability of guessing

di and d2 correctly is 1r. The probability of b[7r1] # b[7r2 ] for 7r1 # 7r2 is 1. All of

these events are independent.

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) Pr(D guesses "DH True" DH instance) Pr(DH instance)

+ Pr(D guesses "Random" Random instance) Pr(Random instance)
e \(1\ + T 2 ' (1\

Thus the probability that D is correct is at least + 4T2 - , which is non-negligibly

more than . 0
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Proof of Claim 6. We will call an oracle query of form H 3 (A, B, m, y, o, 7) "bad" if

o =DH (H'(AB,7r))r ' (H1(ABr) '

Suppose that with some nonnegligible probability c there will be an initiator fail-

ure. This implies that there will be some initiator instance (i, ) (with A = ID; and

B = PID-%) such that the following "bad event" occurs:

1. query AO is made to (i, j) and returns n,

2. at least two "bad" queries are made with (A, B, fiz, f) and distinct values of 7r,

for some f, before there is either a successful test instance password on (Z, j) or

a responder failure, and

3. at some point in the execution, the adversary asks the query A2(A) to (iJ),

and it is processed in case 2 of A2 (this could be either before, in between, or

after the bad queries).

We will then show how to construct a distinguisher D for the DDH problem.

Our distinguisher D for input (X, Y, Z) runs as follows:

1. Generate random di and d2 between 1 and T.

2. Initialize two arrays of lists BADo[.] and BAD1 [-] (initially empty).

3. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulation until the d1th pair of users (A, B) is

mentioned. (This may be from an oracle query H1 (A, B, .), or from an initialize

user instance query with user ID A and partner ID B, or vice-versa.) If we

guessed di correctly, this pair will be the identities of the users in the "bad

event."

4. Once A and B are set, continue as in the original simulator, except:

(a) AO query to the d2th initiator instance (Z, 3) with ID; B and PID3 = A:

respond with ?h = Y.
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If we guessed d2 correctly, this will be the initiator instance in the "bad

event." Note that it is OK to set rn - Y, since Y is assumed to be

uniformly distributed.

(b) H'(A, B, 7r): If ir = 7r*, then set b[7r] = b[7*] = 0. Otherwise, let b[7r] -

{0, 1}. Respond with (Xb-hgo'[^'B'7i) mod p)-+ /'p, for h 4- Z*, a'[A, B, Ir]

Z,_ 1 and /3' A Z,/pj

(c) A2(p) on (i, j): Set y = p. Then do start session with the dangling connect

connection assignment.

Note that if the bad event is about to occur, then we don't need to be

concerned for case 1 of A2. Also, the original simulator would not expose,

since that would imply a successful test instance password on (i,j), and

that is also ruled by the bad event. Now, it is easy to see that the only way

the above behavior might be distinguishable from the original simulator

is if this query was supposed to cause an abort (i.e., an initiator failure).

However, this would imply that the bad event has already occurred (i.e.,

the two bad queries have already been asked), and so we are no longer

interested in preserving indistinguishability.

(d) H3 (A, B, m, P, o, 7r) query, with a tuple (i', J', m, y, z) recorded, A = PIDgy,

B = IDi': If 7r = 7r*, then behave as in the original simulator (this will be
R

correct, since b[7r*] = 0). Otherwise, return k *- {0, 1}.

It is easy to see that the only way this behavior might be distinguishable

from the original simulator is if this query was supposed to cause an abort

(i.e., a responder failure). However, this is not a problem: If the bad

event has already occurred, then we are no longer interested in preserving

indistinguishability. On the other hand, if the bad event is still about to

occur, then this query couldn't cause a responder failure (since the bad

event, by definition, can't occur after a responder failure).

(e) H3(A, B, n, , o-, r) query (note that this case will not, w.o.p., overlap

with the preceding one since it would imply that some responder instance
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(i', j') has received its m from an acceptable partner, and yet recorded a

tuple-that is impossible, since cases 1 and 2 of BI do not record tuples):

If H1 (A, B, -) and Hj(A, B, w) were queried, then do the following (and

otherwise, answer the query as in the original simulator):

First note that if this is a bad query, then

a=DH T
((H1 (A, BI _)) r ' (H1 (A, B, x)

=DH Y
H gr Ba[A, ,rl' X b[-rlgr-'a [A,B,7r]

Now compute

7 = o- - Zb[7rl' . yra'[AB,r] X b ' . - gr-a'[A,B,7r} ra[A,B,7r].

Put ,3 on the list BAD[,][p]. Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguish-

able from the original simulator, since no successful test instance password

on (i, J) can occur before the bad event.

At the end of the simulation, check whether the lists BADo [] and BAD1 [f] intersect

(note that this check can be done in time O(TlogT), by sorting the lists together).

If yes, then output "True DH," otherwise (and also if f has never been set) output

"Random."

It is easy to show, similarly to Claim 4, that D is correct with probability at least

1 + E 21 i
4T - ,which is non-negligibly more than .

Proof of Claim 8. If such a query is indeed made with some non-negligible probability

C, then we will construct a distinguisher D for DDH. Note that, as in proofs of Claims 4

and 6, we can presume that no failures will occur before the "bad event."

Let (X, Y, Z) be the challenge DDH instance. The distinguisher runs as follows:

1. Generate random di and d2 between 1 and T, and random b E {O, 1}.
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2. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulator until the dith AO query. Say this

query is to (zj). Let A = ID;, B = PID;Y, and wr* = r[A, B). Reply to this AO

query with n = X.

3. Continue with the simulation, but with the following changes:

(a) B1(rh) query to instance (i', j') where ID = B, and PIDe, = A:

Generate a random zrjt E Zq, and send y = Yg ij'.

(b) A2(p) query to (i, j) not part of a matching conversation with an accept-

able partner:

The difficulty in this case is that the adversary may ask an H3 query that

should give him the correct key, but we are unable to determine which of

the adversary's queries is correct (since we don't know the discrete log of

n). We will resolve the problem by guessing which query is correct: If

b = 0, our guess is that none of them are correct. If b = 1, then our guess

is that the d2th query is correct.

Proceed as follows: Set A = p. Consider all the H3 queries of form

(A, B, in, A, -, 7r*). If b = 1 and there have been d2 or more of such queries,

then expose using the result of the d2th query. Otherwise, do a start session

with the dangling connect connection assignment.

Note that we don't need to be concerned about the possibility of an initia-

tor failure, if a bad event is about to occur (as mentioned at the beginning

of the proof of this claim). It now easily follows that the above response

is indistinguishable from the original simulator, if b and d2 are guessed

correctly.

(c) H3 (A, B, X, , ,7):
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If P = Y9gZi' for some (i', j') and

o - Z . X zis' -ra'[A,B,,r] . 9r2-a[ A,B,,ra'[A,B,,r] 1 ra[ A,B,,r ]

then stop the distinguisher and guess "True DH."

Otherwise, if f has been set, p = -, 7 *, b = 1, and this is the d2th

query of form H3 (A, B, ft, , *), then respond with the key of (i, j) (note

that the distinguisher is playing the ring master, and so has access to all

the keys). Otherwise, return k 4- {o, 1}.

Note that we don't have to be concerned with the possibility of an initiator

failure, as above. It is then easy to see that the response is indistinguishable

from the original simulator, as long as b and d2 have been guessed correctly.

4. If the simulation ends without outputting "True DH," then output "Random."

Note that if the adversary does make a bad query, we have probability at least

1/T of guessing the correct initiator user instance, and probability at least 1/2T of

answering the A2 and H3 queries to that user instance correctly (thus allowing the

DDH distinguisher to continue in a way that is indistinguishable from the regular

simulator).

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses "DH True" DH instance) Pr(DH instance)

+ Pr(D guesses "Random" Random instance) Pr(Random instance)

> (c )(1)+ 1 ) - 1

where the term T/q comes from the probability of the adversary "guessing" a random

Z correctly on a random oracle query. Thus, the probability that D guesses correctly

is at least + 4 - , which is non-negligibly more than j. l
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3.9 Security of the PAK-X Protocol

3.9.1 The Simulator

The proof of simulatability of PAK-X is similar in structure to that of PAK. We name

the actions of user instances on deliver message operations as follows:

AO Initiator instance action to start the protocol (i.e., an AO action for an initiator

instance is generating and sending m).

BI Responder instance action upon receiving the first message (i.e., m).

A2 Initiator instance action upon receiving the message from the responder (i.e.,

(p, a, k)).

B3 Responder instance action upon receiving the second message from the initiator

(i.e., k').

We will let (ij), (i',j'), A, B, and -r* have the same meaning as in the proof

of PAK (see the beginning of Section 3.7.1). The notions of acceptable partner and

matching conversation will also retain their meaning. For brevity, we will write

Ho({A, B}, 7r) to mean Ho(min(A, B), max(A, B), r). In addition, we will write v* and

V* to mean HO({A, B}, 7*) and gv*, respectively. (Note that when v* and V* appear

in expressions for implicit oracle calls, their values might not yet be determined, i.e.,

the HO queries may not yet have been made.)

The simulator will follow the same general rules as described in Section 3.7.1.

Responses to deliver message and random oracle operations that do not fall under

those rules, as well as to the new get verifier operation, are done as follows:

1. Ho({A,B},r)

We presume that A and B are valid user IDs, say of users i and i' (other-

wise, this query would be handled by one of the general rules, as mentioned in

Section 3.7.1). Perform a test password on (i, i') (this is legal, since an impl

operation will be made next to record the result of this oracle query). Now

consider two cases:
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Case 1 No get verifier operation has yet been performed on (i, i').

Generate and store v[{A, B},r] f {0,1 }IM+ . Respond with v[{A, B}, 7F].

This response is indistinguishable from the real system, since the only

prior implicit query that could shadow this one is in get verifier on (i, i').

However, this case assumes that no get verifier operation has yet been

performed on (i, i').

Case 2 A get verifier operation has been performed on (i, i').

In this case, the test password operation above has returned whether or

not 7r =r*. If 7 # 7r*, then return v 4 {0, 1} I+. If 7r = qr* (in which

case this query is shadowed), then return v[{A, B}] (which has been set

while processing get verifier-see the description of get verifier below).

2. H6(A, B, c)

Return u R {0, I}MI+K.

3. H1 (A, B, V)

Generate a[A, B, r] 4 Zq and store it. Then generate h 4- Z,* and 3 4- Z[ 217/pj,

and return (hqga[A,B,,r] mod p) +op. Note that this will be indistinguishable from

a random bit string of length r7, since hqg,[AB'2'] mod p is a random element from

Z*" and 2'7 odp is negligible.
p* 277

4. H 2a(A, B, m, y, a, o-, r, V)

Case 1 Some prior BI query has recorded a tuple of the form (i', j', m7 u, yij , city, kily),

with A = PIDIjl and B = ID,, for some values of yi'j', c2'r, and key. This

implies that a B1(m) query was made to (i', j') and returned (P, gH6(A,B,cgy) ,

but no AO query to an acceptable partner returned m-see the B1 query

description below. (In other words, this H 2 a query might be shadowed by

the implicit H 2a query from case 2 of the BI action.)

"To see this, note that hq is a random element from the subgroup of order r in Z* and g'[A>Bir]
is a random element of the subgroup of order q in Z,.
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W.o.p., there will be at most one such tuple, since y values stored in these

tuples are random and independent. Consider two cases:

Case la Query Hi(A, B, V) has been asked, ((H1(A T,V)) )i' = or, and

T = VHG(A,B,cjyp)

The simulator proceeds as follows: If there has been a successful guess

7r* on {A, B} and V = gHo(AB},''*), then call this H2, query a suc-

cessful H2a query on (i', j').

If there hasn't been a successful guess on {A, B}, then check all the

HO queries, and look for 7 that results in V - g Ho({A,B},r). If such a 7r

is found (there can be at most one such r, w.o.p., by the randomness

of HO), and there never was an unsuccessful guess on {A, B} for r:

(a) If a test instance password operation has not previously been per-

formed on (i', j'), perform a test instance password operation with

arguments (i', j') and r. If the test is successful, we also call this

query a successful H2a query on (i',j').

(b) If a test instance password operation has previously been per-

formed on (i', j'), then abort. We will call this event an H2a failure.

In explanation, let's note that V is independent of V*, unless either

the discrete log of V has been returned by a prior HO query, or V has

been returned by a get verifier query (in which case V = V*). The

following claim shows that even in the latter case, this H2a query can't

be "correct" unless a prior Ho query resulted in the discrete log of V

(or else there has been a successful guess on {A, B}):

Claim 9. Let (p,a,k) be returned by a B1(m) query to (i',j'). Let

A = PIDiey, and B = ID,. Suppose get verifier is performed on {A, B}

(either before or after the BI action), and returns V*. Then, w.o.p.,

no query

H 2a(A, B, m', p', a, DH(p', / ), DH (a, V*), V*),
I I(H1(A, BI V*))
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for any m' and p', will be made, unless by the time of the H2a query

there has been either a successful guess on { A, B}, or an Ho({ A, B}, 7r)

query, for some 7, with V* = gHo({AB},7r)

The proof of the claim appears in Section 3.9.2.

Case lb Otherwise.

Do nothing.

Finally, if this query is a successful H2a query on (i', j') for some (i', j'),
then return key. Otherwise, return k 4- {0, 1}".

If no H2a failure occurs as a result of this H2a query, then the simulation

will be indistinguishable from the real world, as follows: In the real world

the k value sent by (i', j') is

H a A B m y gH'( A,B,cit , D H , mH'( A,B,cyyt) ) .

H~a(l B mj -t)g 0 7 D (H1 A(A, B, V *))0

Therefore, if this H2a query is successful, it will return a value consistent

with the adversary's view. On the other hand, if this query is not suc-

cessful, then generating a random response is indistinguishable from the

adversary's view in the real world.

The following claim shows that w.o.p. there will be no failure:

Claim 10. W.o.p., no H2a failure will occur.

The proof appears in Section 3.9.2.

As can be seen, an H2a query is the only place in the simulation that a

test instance password query can be made on a responder instance. We

can therefore state the following claim (similarly to PAK and PPK):

Claim 11. If a test instance password query is made on a responder in-

stance (i', j'), then (i', j') has not had a matching conversation with an

acceptable partner.

The reason is that an H2a query can result in a test instance password
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query on (i',j') only if a tuple (i', j', t, yij, czgg, kg ) has previously

been recorded. It will become apparent below (see the BI query descrip-

tion) that, w.o.p., this could only happen if (i', j') has not had a matching

conversation with an acceptable partner.

Case 2 No tuple of the form (i', j', m, y, yi'j', c2'3', kiiy) has been recorded with

A = PIDgg and B = ,

Return k 4 {0, 1}. The only way this response could be distinguishable

from the real system is if this query would be shadowed by an implicit H 2a

query from case 1 of some BI action, i.e., if m and y are from a match-

ing conversation of two valid user instances, and o = DH(pt, (Hi(AMV))r).

However, by the following claim, w.o.p. this will not occur.

Claim 12. Let m be returned by an AO query to (i,j) with A = IDs and

B =PIDij, and p be returned by a subsequent B1(m) query to (i', j') with

B =ID,, and A = PIDgiy. Then, w.o.p., the there will never be (neither

before nor after the A0 and BI queries) an oracle query to either H2a, H2b,

or H 3, that includes (A, B, m, y, DH(p, ), V), for any V.

This claim is proved in the same way as Claim 3 (with obvious changes to

accommodate the differences between PAK and PAK-X).

5. H2b(A, B, m, t o-, a, k, c, V)

Return k' 4 {, 1}.

This is indistinguishable from the real system by the following argument: The

only implicit H2b query that could shadow this one is the query from case 1

of an A2 action. However, that shadowing is, w.o.p., impossible by Claim 12.

(Note that the H2b queries in case 2 of the A2 action are explicit, i.e., all of

their arguments are known, and so a query-response pair would be stored for

them.)

6. H 3(A,B,m,yo-,c,V)

Return K 4 {o, 1}.
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As for H2b queries, indistinguishability easily follows by Claim 12.

7. AO query to (i, j)

Generate and store w + Zq, and send m = g'. Clearly, m is uniformly drawn

from Gp,q, just as in the real system.

8. B1(m) query to (i',j')

R R RGenerate yz'j' +- Z, cgiy {0, 1}, k13 <- {0, 1}. Send y gu'', a =

9 H6(A,B,cgy) and k = kgg. Now consider two cases:

Case 1 The value of m has been sent by an acceptable partner.

The simulation corresponds to the implicit oracle query

key @ cry = H 2a(A, B, m, y, a, DH(t, m ), (V*)H(A,B,ci), V*).
(H1 (A, B, V*))-

Since p is a freshly chosen random number, this implicit query, w.o.p.,

will not shadow any prior H2a queries (whether explicit or implicit). Con-

sequently, kgj will be indistinguishable from the value sent in the real

system.

Case 2 The value of m has not been sent by an acceptable partner.

In this case, record the tuple (i',j', m, [y, yggj', ciy, kiiy). It is important to

note (for Claim 11), that if this tuple is recorded, then, w.o.p., (i', j') will

never be considered to have a matching conversation with an acceptable

partner, due to the fact that values of m are generated randomly by ini-

tiator instances. (Recall that in our definition of "matching conversation"

we are not concerned with the timing of sends and receives.)

As in the previous case, we have an implicit oracle query

ke® E cil = H2a(A, B, m, t, a, DH(p, m ), (V*)H(A,B,cty ), V*)
(H1 (A, B, V*))r
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which is indistinguishable as above by the randomness of p values.

9. A2(p, a, k) query to (i, j)

Case 1 (i, j) has had a matching conversation with an acceptable partner

(i', j').

Generate k'3 A- {0,1}', send k' = k'3, set status to Accept, and perform a

start session operation with the connection assignment open for connection

from (i', j'). This corresponds to the following implicit oracle queries:

mk1 = H2b(A, B, m, y, DH(pt , ) a, kly , cgyI V*),7
ij - (H1(A, B, V*))r

m
Kij = H3(A, B, m, y, DH(p, A ) cr , V*),

(H1(A, B, V*))r

where Kij is the random session key assigned by the ring master at the

time of the start session operation.

By Claim 12, these implicit queries couldn't shadow any past or future

explicit queries. It is also easy to see that these implicit queries will not

shadow any other implicit queries, unless there is a collision of m val-

ues between two initiator instances (and that only occurs with negligible

probability).

The open connection assignment will be legal, since the only place that the

simulator could perform a test instance password operation on (i, j) would

be in case 2 of the A2 query (see there). Also, w.o.p., we will never have two

initiator instances (ii, ji) and (i 2 , J2) that are open for connection from the

same responder instance (i',j'), since that would imply that (ii, ji) and

(i2 , j2) generated the same m value (otherwise, they couldn't both have

had matching conversations with (i', j')).

Case 2 (i, j) has not had a matching conversation with an acceptable partner.

Look for a value of c for which an H'(A, B, c) query has been made and

a - gHO(A,B,c). (W.o.p. there will be at most one such value of c, due to
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the randomness of Ho.) If no such c is found, then reject. This is indistin-

guishable from the real system, since w.o.p. the a received would not pass

the test a - g"0(ABc) no matter what c would have been computed in the

real system.

Otherwise (if such a c is found), look for a value of V for which an

H1 (A, B, V) query has been made, and another query

H2 a( A, B,m, yu, a, pw-ra[A,B,V] VH (A,B,c)

has been made and returned k E c. (W.o.p. there will be at most one

such value of V, due to the randomness of H2a.) If no such V is found,

then reject. This is indistinguishable from the real system, since w.o.p.

the k received would be incorrect in the real system (i.e., the correct

k C c H2a(A, B, m, p, a, DH(p, (Hi(A,B,V*))) ( HG(A,B,c), V*) would be

independent of the adversary's view).

Suppose such a V is found. Consider two cases:

Case 2a A get verifier query has been performed on (i, i') and returned

V*.

If V # V*, then reject. This is clearly indistinguishable from the real

system, since the correct k is independent of the adversary's view (as

the V argument to H2a is incorrect).

If V = V*, then proceed as follows:

(a) Set k' H 2b(A, B, m, y, Pw-ra[A,B,V] a, k, c, V).

(b) Send k'.

(c) Accept.

(d) Set K = H 3 (A, B, m, , Pw-ra[A,B,V] Ic, V).

(e) Expose using session key K (this is allowed, since (i, j) is a client

instance, and a get verifier query has been performed on (i, i')).

Note that the values of k' and K are computed through explicit oracle

queries (we can think of these as subroutine calls within the simulator),
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and the queries and responses are recorded, as usual. It is clear that

the values of k' and K produced in this case are the same as would be

computed in the real system.

Case 2b No get verifier query has been performed on (i, i').

Look for a value of -r such that Ho({A, B},7) has been asked and

V = gHo({AB},7). (W.o.p. there will be at most one such value of 7r,

due to the randomness of Ho.) If no such 7r is found, then reject. This

is indistinguishable from the real system, since w.o.p. the k received

would be incorrect in the real system (as the V argument to H2a is

incorrect w.o.p.).

Otherwise (if such a ir is found), perform a test instance password

operation with arguments (i, j) and r (note that this is the only place

where we could perform this operation for an initiator instance, and

no session has been started yet, so the operation is legal). If the guess

is not successful, then reject (this is indistinguishable from the real

system, by an argument similar to the one above). If the guess is

successful, then:

(a) Set k' = H 2b(A, B, m, y, Aw-ra[A,B,V], a, k, c, V).

(b) Send k'.

(c) Accept.

(d) Set K = H3 (A, B, m, y, w-ra[A,B,V], c, V).

(e) Expose using session key K (this is allowed, since there was a

successful guess on the password).

This is correct similarly to above.

10. B3(k') query to (i', j')

Case 1 (i', j') has had a matching conversation with an acceptable partner

(i, j).

Set status to Accept and perform a start session operation with a connect

to (i, j) connection assignment. This is legal because
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(a) w.o.p., the instance (ij) will still be open for connection by the ran-

domness of p values sent by responder instances (so that, w.o.p., for

each initiator (i, j), there will be at most one (i', j') with which it has

had a matching conversation, and so at most one instance will try to

connect to (i,j)), and

(b) by Claim 11, there could not have been a test instance password query

on (i', j'), since (i', j') has had a matching conversation with an ac-

ceptable partner.

Case 2 The current value m has been sent by some acceptable partner (i, j),
and (t, a, kgy) have been received by (i, j), but the value of k' that was

received has not been sent by (i, j).

Reject. This is indistinguishable from the real system since k' is invalid.

Case 3 The current value m has been sent by some acceptable partner (i, j),
but the triple received by (i, j) in A2 is not equal to (p, a, key) sent by

(i', j').

Reject. By Claim 12, w.o.p., the H2b query that would produce the cor-

rect value of k' has never been asked. Also, no implicit query could have

produced the correct k' (note that (i, J) did not have a matching conver-

sation, and thus did not "make" an implicit H2b query; also, any other

initiator instance would, w.o.p., have a different value of in). Thus, the

correct value of k' is independent of the adversary's view, and so it is safe

to reject.

Case 4 Otherwise. (Note that in this case, the current value of m has not been

sent by an acceptable partner, and thus a tuple must have been recorded

by (i', j') in case 2 of the B1 action.)

Look for a value of V such that an H1 (A, B, V) query has been asked

and a query H 2b(A, B, m, y, ( y(-, )Yii, a, kiiy, c2 y , V) has been asked

and returned k. (W.o.p. there will be at most one such value of V, due

to the randomness of H2b.) If no such V is found, then reject. This is
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indistinguishable from the real system, since w.o.p. the k' received would

be incorrect in the real system (i.e., the correct k' would be independent

of the adversary's view). (The only way k' could be correct, other than

through a random guess, is if it is the result of an implicit H2b query in case

1 of A2. However, it is easy to see that if that was the case, we couldn't

get to case 3 of B3.)

Otherwise (if such a V is found), consider two cases:

Case 4a There has been a successful guess -r on {A, B}.

If V = g Ho({AB},7r), then expose with key

m
K = H 3(A, B, m, y, ( H B V))I' ', c V).

(H1(A, B, V))r

This is clearly allowed and indistinguishable from the real system.

Otherwise, reject. This is clearly indistinguishable from the real sys-

tem, since the correct k' is independent of the adversary's view (as the

V argument to H2a is incorrect).

Case 4b There has not been a successful guess on {A, B}.

In this case, reject.

Let's show that this behavior is indistinguishable from the real sys-

tem. Suppose we were instead supposed to accept. The value ciiy is

independent of the adversary's view, unless the adversary has queried

H2a(A, B, m, y, a, DH~p, (H1 (A,B,V*)),), DH(a, V*), V*). Since the value

of ci'y, was present in one of the adversary's H2b queries, it follows

that, w.o.p., the adversary has indeed made the above H2a query.

Now, from Claim 9 and the discussion preceding that claim, it follows

that, w.o.p., the adversary has made a prior query Ho({A, B}, 7r), for

some r, such that V* gHo({AB},7r). However, that would imply that

Ho({A, B}, r) v*. It is easy to see that, w.o.p., Ho({A, B}, r) would

only return v* if 7r = r*. From the H2a action description above, it

is easy to see that this situation would, w.o.p., result in a successful
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guess on {A, B} (made during the H2a query). Thus, there has already

been a successful guess on {A, B}, which contradicts our original as-

sumption.

11. get verifier on user pair (i, i')

Let A and B be the IDs of users i and i', respectively. Send a get verifier query

on (i, i') to the ring master (i.e., in the ideal world). The ring master will return

whether any prior test password query on (i, i') was successful. If there was a

successful guess on {A, B} for some 7r (whether through test instance password

or test password), then return gHo({AB},7r)

Otherwise (i.e., if no query was successful), generate and store v[{A, B}] R

{0, 1}q+,. Return gv[{A,B}]. This corresponds to the implicit oracle query

v[{A, B}] = Ho({A, B}, -r*).

Clearly, this implicit query cannot shadow any prior explicit Ho query, or else

some prior test password would have been successful.

3.9.2 Proofs of Claims

Proof of Claim 9. Suppose that with some nonnegligible

some responder instance (i', ') (with B - ID;, and A

following "bad event" occurs:

1. query B1(rn) is made to (i',j') and returns (p, a, k),

2. get verifier is performed on {A, B} and returns V*

BI action), and

probability c there will be

= PID;,,,) such that the

(either before or after the

3. query

m
H 2a(A, B, m, y, e, DH(p, , V*))r), DH(&, V*), V*)

(H1(A, B, *)
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(for some m and y) is made, before there has been either a successful guess on

{A, B} or an Ho({A, B},r) query, for some 7r, with V* - gHo({A,B},7r)

We will then construct a distinguisher D for DDH. Let (X, Y, Z) be the challenge

DDH instance.

1. Generate random d between 1 and T.

2. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulation until the dth pair of users (A, B)

is mentioned. (This may be from a get verifier query on users with IDs A and

B, or from an initialize user instance query with user ID A and partner ID B,

or vice-versa.) If we guessed d correctly, this pair will be the identities of the

users in the "bad event."

3. Once A and B are set, continue as in the original simulator, except:

(a) get verifier on users with IDs A and B:

Respond with X. Note that this results in V* = X.

If the "bad event" is about to occur, then this response is correct, since

there could not have been a successful guess on {A, B}.

(b) B1(m) query to instance (i',j') with ID1 = B and PIDij = A:

Generate yi'j' R Zq, z/jgj 4 Zq, and kily 4 {O, 1}''. Send y = gui'',

a = Ygzi'i, and k = key.

Note that this corresponds to an implicit query

y + zgy = H (A, B, k E H2a (A, B, m, A, Yg Zi' ,

DH(yz A A71B ), DH(Ygzi'j', X), XI

W.o.p., this implicit query will not shadow any prior Ho query (whether

implicit or explicit), by the randomness of kily.
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(c) Ho({A, B}, 7) query: Generate and store v[{A, B}, 7r] '4R {0, 1}II+K. Re-

spond with v[{A, B}, r].

If the "bad event" is about to occur and d has been guessed correctly, then

this response is appropriate, as the "bad event" rules out Ho queries that

would return the discrete log of V*.

(d) Hs(A, B, c) query: Behave as in the original simulator.

The only way this behavior could be distinguishable from the original

simulator is if this query was shadowed by an implicit query from a BI

action. However, it is easy to see that this will not occur, w.o.p., unless

the adversary first makes the query

m
H2a(A, B, m, y, YgZi',, DH(pu, ,X))BrX), DH (Ygzi'', X), X),

(H1(A, B,X)

(since without such an H 2,, query, the value of c that would cause the

shadowing would be independent of the adversary's and simulator's view).

However, such an H2a query would imply that the bad event has already

occurred, in which case we are no longer concerned with indistinguishabil-

ity.

(e) A2(p, a, k) query to instance (i, j) with IDi = A and PIDij = B, not part

of a matching conversation: If the value of a is not equal to Yg'i'jl for any

(i', j'), then proceed as in the original simulator. Otherwise, reject.

In the first case, the behavior is clearly indistinguishable. On the other

hand, suppose a = Ygzi'' for some (i', j'). Our response could be incorrect

if query

m
H 2a(A, B, m, yt, YgZ'i'' , DH(p, (, X))r)' DH(Ygzi'jI, X), X)

(H1(A, B, X)

has been made. However, that would imply that the bad event has already

occurred, in which case we are no longer concerned with indistinguishabil-

ity.
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(f) B3(k') query to responder instance (i', j'), where PIDi, = A and ID =

B: If there is no matching conversation with an acceptable partner, then

respond with reject. Otherwise, behave as in the original simulator.

If the "bad event" is about to occur and d has been guessed correctly,

then this response is appropriate: If there was no matching conversation

with an acceptable partner and this query was supposed to result in an

accept, then there would be a successful guess on {A, B}, and that would

contradict the definition of the "bad event" (unless the "bad event" has

already occurred, in which case we don't care whether or not the response

was correct).

(g) H 2a(A, B, m, t, a, o-, r, X) query where a = Ygzi'j' for some (i', j') and T =

ZX'i: Stop the distinguisher and guess "True DH."

4. If the simulation ends without outputting "True DH," then output "Random."

Note that if the "bad event" does occur, we have probability at least 1/T of

guessing the correct pair of users. Now, the probability that the distinguisher D

guesses correctly is at least

Pr(D is correct) = Pr(D guesses "DH True" DH instance) Pr(DH instance)

+ Pr(D guesses "Random" Random instance) Pr(Random instance)

> (, )(1)+ 1 ) - 1

where the term T/q comes from the probability of the adversary "guessing" a random

Z correctly on a random oracle query. Thus, the probability that D guesses correctly

is at least 1 + " - !, which is non-negligibly more than j.
Proof of Claim 10. We will call an oracle query of form H2a(A, B, m, y, a, o, T, V)

"bad" if

1. some responder instance (i', j'), with ID, = B and PIDg, = A, has sent /p

(w.o.p., by randomness of p values, there will be at most one such instance),
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2. o DH(p, (H1(A ,V))r,) and

3. T =DH(a, V).

Suppose that with some nonnegligible probability e there will be an H2a failure.

This implies that there will be some responder instance (i', j') (with B = ID;, and

A = PID,91 ) such that the following "bad event" occurs:

1. query B1(rin) is made to (i',j') and returns (A, , k), and

2. at least two "bad" queries are made with (A, B, ri^, f) and distinct values of V,

before there is a successful guess on {A, B}.

(Note that we speak of distinct values of V, since, w.o.p., distinct values of 7 will

result in distinct values of 7r.) We will then show how to construct a distinguisher D

for the DDH problem.

The idea of our distinguisher D, with input (X, Y, Z), is to simulate the original

simulator, incorporating X and Y into some of the responses. Then, if D runs

indistinguishably from the simulator up to the bad event, we will be able to use the

logs to determine whether or not Z = DH(X, Y).

Our distinguisher D for input (X, Y, Z) runs as follows:

1. Generate random d between 1 and T.

2. Initialize two lists BADo and BAD1 (initially empty).

3. We will be running the simulator in the normal manner, but playing the ring

master also. (That is, we will choose passwords for user pairs, and answer any

test password queries.) Run the simulation until the dth pair of users (A, B) is

mentioned. (This may be from an oracle query H1 (A, B, .), or from an initialize

user instance query with user ID A and partner ID B, or vice-versa.) If we

guessed d correctly, this pair will be the identities of the users in the "bad

event."

We will say that V* is determined when either the query Ho({A, B}, 7r*) or the

query get verifier on {A, B} is made. Note that, since the distinguisher itself
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generates -r*, we will be able to detect whether or not V* has been determined,

and we will also be able to compute V* after that point.

4. Once A and B are set, continue as in the original simulator, except:

(a) B1(m) query to instance (i', j') with ID, = B and PIDj = A: generate

zilgi & Zq, set y = Ygi'i', and then proceed as in the original simulator.

(b) H1 (A, B, V): If V* has been determined and V = V*, then set b[V] =

b[V*] = 0. (Note that w.o.p. the query H1 (A, B, V*) will not be made until

after V* has been determined.) Otherwise, let b[V] 4- {0, 1}. Respond

with (Xb[ v] hga(A,B,V] mod p) + 3p, for h Z*, a[A, B,V ]- Zp_ 1, and

/3- Z[2n/pJ.

(c) A2(pu, a, k) query to initiator instance (i, j), where IDi = A and PIDj = B:

Behave as in the original simulator, except if we get into case 2, then only

check oracle queries with V = V* (and if V* has not yet been determined,

then simply reject).

Note that (H1 (A, B, V*))= gr [AB,V*), since b[V*] = 0. Thus, the original

simulator will work correctly in this case. It is safe to ignore oracle queries

with V #A V*, since those wouldn't lead to an accept (as the test instance

password query would fail).

(d) B3(k') query to responder instance (i', j'), where PIDerj, = A and ID, =

B: If there is no matching conversation with an acceptable partner, then

respond with reject. Otherwise, behave as in the original simulator.

If the "bad event" is about to occur and d has been guessed correctly,

then this response is appropriate: If this query was supposed to result in

an accept, then there would be a successful guess on {A, B} before the

second "bad" oracle query, and that would contradict the definition of the

"bad event." On the other hand, if the "bad event" has already occurred,

then we don't care whether or not the response was correct.

(e) H2a(A, B, m, y, a, o-, T, V) query:
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If H1 (A, B, V) was queried and there is an instance (i', f) with B - IDl

that was queried with B1(m) and returned y = Ygzi'', then do the follow-

ing (and otherwise, answer the query as in the original simulator):

First note that if this is a bad query, then

o- = DH(p, n = DH(Ygzilil, m
(H1(A, B,V))r Xb[V]rgr-a[A,B,V]>

Now compute

my = 0- -V'1r X zb[zis' Zb[V]r yra[A,B,V] r-a[A,B,V ]zyij

Put 7 on the list BADb[v . Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguish-

able from the original simulator, since no successful guess on {A, B} can

occur before the bad event.

At the end of the simulation, check whether the lists BADO and BAD1 intersect (note

that this check can be done in time O(T log T), by sorting the lists together). If yes,

then output "True DH," otherwise output "Random."

Note that the values stored in BADO and BAD1 are simply guesses of DH(m, Y),

assuming Z = DH(X, Y). If Z is random, then the probability of an intersection

between the lists would be at most T2/q by the union bound, since Z' would be a

random element of Gp,q (note that q and r are relatively prime, and m # 0 mod p

because of the test by B).

On the other hand, suppose Z = DH(X, Y). If the adversary makes two "bad"

queries for the pair of users (A, B), for values V1, V2 with b[V] # b[V 2], then the

distinguisher will correctly answer "True DH" (since each "bad" query will result in

y = DH(m, Y)). The probability of the "bad event" is E. The probability of guessing

d correctly is . The probability of b[Vi] # b[V2] for 7ri # r2 is 1. All of these events

are independent.
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Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses "DH True" DH instance) Pr(DH instance)

+ Pr(D guesses "Random" Random instance) Pr(Random instance)

()+ 1 - )(1

Thus the probability that D is correct is at least 1 + - 2, which is non-negligibly

more than jl

3.10 Conclusions and Open Problems

We have presented new formal definitions of security for password-authenticated key

exchange protocols, with several variations: explicit authentication, implicit authen-

tication, and resilience to server compromise. For each variation of the model, we

have presented a new, efficient, and provably secure construction: the PAK, PPK,

and PAK-X protocols. The proofs of security are based on the DDH problem and the

random oracle assumption.

The major open problem seems to be the construction of provably secure password-

authenticated key exchange protocols without using random oracles. It seems unlikely

that random oracles can be easily removed from our schemes, as the proofs rely on

the random oracle model quite heavily. One of the major issues in proving the se-

curity of a protocol in our security model is the ability of the simulator to extract

the adversary's attempted guess of the password (as passwords appear explicitly in

the ideal world). In our proofs, this extraction is accomplished by examining the

adversary's random oracle queries, which is clearly impossible in a standard security

model. It may, however, be possible to construct protocols based on zero-knowledge

techniques, where the simulator would extract attempted passwords through rewind-

ing. The problem with this approach is that the best known zero-knowledge protocols

in the general concurrent setting take a polynomial number of rounds [85], which is

too inefficient for use in practice. In any case, it may be advantageous to consider
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variations of the model, where the passwords do not need to be extracted, but can be

tested in some indirect manner (e.g., by asking the ring master whether the password

is equal to the value of some hard-to-compute expression).
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Chapter 4

General Conclusion

In summary, two cryptographic applications have been analyzed in this thesis: All-or-

Nothing Transforms (AONTs), and Password-Authenticated Key Exchange protocols.

For each of these, we have presented novel security definitions (in several flavors), gave

efficient constructions, and shown the security of the constructions in our models. Our

results on AONTs have already led to further research in that area. We hope that our

work on password authentication will also have a substantial effect on future research,

both in that specific area, as well as in the more general context of the construction

of provably secure protocols. Our proof methods seem to be rather general, and may

be of use for many schemes involving random oracles.
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