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Abstract:

Resonant systems are pervasive in nature including such things as
lasers, organ pipes and kindergarten swings. Such systems provide high
amplitude, periodic output and because they recycle energy, use very little
energy input. Often such systems must resonate multiple frequencies, as in an
antenna. The shape of the antenna determines which frequencies will
resonate. A large body of research has focused on analyzing systems to
determine their frequency response in some narrow band.

Unfortunately, little work has explored how to synthesize a resonant
system for a desired set of frequencies. This thesis presents a design procedure
using impedance discontinuities (shape) to produce a resonator that supports
the desired amplitude and phase relationships at each frequency of interest.

The basis for the tuning theory is the finding that a discontinuity at
some location introduces a voltage and phase shift to the resonating
waveform. The amount of shift is determined by the size of the impedance
step and the current phase at the location of the discontinuity. Normally, this
would present an intractable design problem because at a particular point each
frequency has a different phase and so a different shift. However, another
important conclusion is that at any point where the phase is a multiple of 900,
a discontinuity will introduce no phase shift. This effectively decouples
different frequencies so that they can be tuned independently.

The space of applications for this tuning technique is quite broad. Some
applications include acoustics, fluid dynamics, optics, electronics, RF antennas
and power supplies. The thesis focuses on two applications: resonant clocks
and resonant transformers.

The first application explores driving the clock of a microprocessor
with a transmission line tuned to resonate the first few harmonics of a square
wave. A 20MHz mockup demonstrated a factor of 10 power savings over an
actively driven system. Further, Spice simulations showed a factor of 4 power
savings at frequencies up to 1GHz. The other application is a resonator that
can produce a trapezoidal waveform for an adiabatic system. A transmission
line is tuned to shift the phase and voltage of an input square-wave, which is
easy to produce, into a trapezoid by the far end of the line.

Thesis Supervisor: Dr. Thomas F. Knight, Jr.
Title: Senior Research Scientist
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1. Introduction
Resonant systems are pervasive in nature. If you have ever watched the

waves at the beach, listened to a trumpet play or pushed a child in a kindergarten
swing, you have seen a resonant system in action. In the field of electrical
engineering, resonant systems include antennas, AC power supplies and lasers, to
name just a few examples.

Such systems provide high amplitude, periodic output and because they
recycle energy, use very little energy input. For example, the kinetic energy at the
bottom of a kindergarten swing is converted into potential energy as the swing rises,
only to be "recovered" as the swing falls. A parent must add only enough energy to
replace the energy lost to friction. Resonant systems recover energy in one form and
redeliver it the next cycle. [Koller, Younis]

Often such systems must also resonate multiple frequencies, as in an antenna.
The shape of the antenna determines which frequencies will resonate. This thesis
presents a design procedure using impedance discontinuities (shape) to produce a
resonator to support the desired amplitude and phase relationships at each
frequency of interest.

1.1 Prior Related Work

The search of prior literature has ranged through a wide array of topics. The
search began in acoustics, optics and mechanics. There is a tremendous body of
research focused on analysis of distributed, resonant systems, but virtually none on
synthesis. As a sampling, in the area of organ pipes, one of the oldest forms of
resonant systems devised, the primary body of work describes organ construction as
an art form rather than engineering. Some of the articles briefly delve into an
analysis of how length relates to the harmonics or overtones present. The most
interesting analysis work in the field of acoustics described the resonance of a few
very common structures, such as the flare of a trumpet horn. [Benade]

A good portion of the literature involves time domain analysis and synthesis.
In the area of transmission lines, some previous theoretical work focuses on
analysis in the time domain. [Schutt, Dhaene] Their primary objective is to devise
faster algorithms for calculating the reflections present when a quiescent line is
disturbed by an impulse or step function. A few articles explore how to synthesize a
transmission line to deliver a desired waveform in the time domain. [Burkhart,
Hayden, Curtens] Often these experimenters are trying to devise a control system
requiring a particular waveform. Again, they use a quiescent line that is disturbed by
some impulse event.

From the application side, a number of recent inventions and papers have
delved into using single frequency resonators to drive digital loads. [Tran,
Reymond] Further inventions have used the resonant sine wave, not for power
savings, but to synchronize physically distributed entities. [Chi]

Unfortunately, sine waves are not an optimal waveform to drive digital logic,
because of their slow rise times. First, during the rise time inverters experience
cross-over current which waste power: the longer the rise time, the more power.
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Second, because certain digital devices have different thresholds, the lengthened rise
time introduces additional skew. A more appropriate waveform would be a square
wave with its fast rise times.

1.2 Overview of Synthesis Technique
In order to resonate a square wave, a single transmission line would have to

resonate each of the harmonics that are present in that waveform. The following
thesis explores a synthesis technique using impedance discontinuities (shape) to
design a resonator that will support the desired amplitude and phase relationships
at each frequency of interest. Further, this technique is applicable to any periodic
waveform and can even be extended to other disciplines, like acoustics.

1.2.1 Basis of Tuning Theory
The basis for the tuning theory is the finding that a discontinuity in

impedance at some location introduces a voltage and phase shift to the resonant
standing waveform. The amount of shift is determined by the size of the impedance
step and the phase of the standing wave at that location. Later chapters will explore
this relationship in detail.

Please note that the tuning technique provides control through the standing
waveforms, i.e. the waveform of voltage or current amplitude as a function of
distance. In order to get instantaneous voltage or current, one simply needs to
multiply this amplitude by the sinusoidal term related to time.

Let's follow through a basic example of tuning a transmission line for a single
frequency, say 475MHz. Normally, this could be accomplished by increasing or
decreasing the length of a uniform line until exactly one phase, or 180', of the signal
fits in the channel. At a velocity of 1x108 m/s, a uniform line would need to be
10.5cm long in order for a 475MHz waveform to reach 1800. But for this example,
let's assume that the length is too short, fixed at 8cm. The 475MHz signal would
reach only 136.80 over the course of 8 cm.

Therefore, a discontinuity, such as the one shown in Figure 1.1, would have
to make up the difference by adding a 43.20 phase shift (1800 - 136.80). The
discontinuity appears at 2cm where the line transitions from an impedance of Za to
an impedance of Zb.

2cm 6cm

Input za Zb / output

Figure 1.1. Tuning a Line for One Frequency

Figure 1.2 shows how the voltage standing wave undergoes a phase shift at
the location of the discontinuity, 2cm. Signals on both sides of the discontinuity are
of the same frequency, 475MHz, but the phase has been shifted by the desired
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amount. Please note that the discontinuity has also introduced a voltage shift from
the left side amplitude of 1 volt to a right side amplitude of almost 4 volts. This
example will be revisited in more detail later.

.V- 5.25 cm
(half of 10.5 cm)

1cm 2cm 3cm 4cm 5cm 6cm 7cm 8cm

-0.5 V Distance Along
Transmission Line

-1lV

-1.5 V- -

-2 V-

-2.5 V'

-3 V

-3.5 V -

-4 V Voltage

Figure 1.2. Voltage Amplitude on a Line Tuned for One Frequency

1.2.2 Multiple Frequency Tuning
The challenge for the synthesis technique is to apply tuning to multiple

frequencies, simultaneously. Relating this back to the example above, we would
have to tune the line to resonate 2 frequencies that aren't necessarily related. For
larger numbers of frequencies, the design problem can become intractable because at
a particular location each frequency has a different phase. The different phases
translate into different required shifts in phase and voltage.

In order to overcome this challenge, another important conclusion is that any
discontinuity located where the phase is a multiple of 900, will introduce no phase
shift. This effectively decouples different frequencies so that they can be tuned
independently. These phase locations at multiple of 90' occur where either the
voltage or current are equal to zero.

Figure 1.3 shows one of the more interesting applications explored in detail
later. It shows a transmission line with 3 discontinuities placed at the voltage and
current zeroes of a 3GHz waveform. Each section has a length of X and an
impedance of Za, Zb, Ze or Zd. The length is such that a full cycle, 360', fits in the line.
The standing waveform below the transmission line is plotted merely for reference.
The amplitude of the standing wave may change from section to section depending
on the discontinuities.
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The discontinuity at 180' will not introduce either a phase or a voltage shift.
The discontinuities at 900 and 270' will not introduce any phase shift but will alter
the voltage by the ratio of the impedances.

Input Output
3 GHz

-I70

00 Phase
0 1800

360'

-oltage

Figure 1.3. Discontinuities Located at Zeroes

Figure 1.4 shows the effect on a 1GHz signal in the same line. Since the left
discontinuity occurs when the 1GHz signal is at 30', a phase shift and a voltage shift
are introduced. The same occurs at the right discontinuity. Note that the
discontinuity at the center introduces just a voltage amplitude shift because the
1GHz frequency signal is also at a 900 phase point.

0 .4 . 1 G H z I p hi =3

0.2
30 0 360o70

06

900 Phase
-0.2

-0.4 180-o.4 3 G Hz

-0.6 A phi=300

-0.8 -
1500

Voltage 12001 18q0

Figure 1.4. Affect on 1GHz Frequency Signal

Why is this interesting? Notice that the voltage amplitude at the left end of
the line is 0.3 volts for the 1GHz signal and 0.1 volts for the 3GHz signal. The sum of

8



these two waveforms represents the first 2 harmonics of a 0.1 volt square wave. At
the right end of the line, the 1GHz signal has an amplitude of -1 volt while the
3GHz signal has an amplitude of 0.11 volts. The sum of these two waveforms
represents the first 2 harmonics of a 1 volt linear ramp waveform. The transmission
line resonator has been tuned to not only fit two harmonics into a single line, but
has also transformed the left signal from a square wave into a linear ramp by the far
end of the line!

Note that at intermediate points along the line the voltage amplitudes will
have varied according to their standing wave pattern. This means that the
instantaneous voltage will be some random waveform associated with the sum of
each of those frequency/amplitude components.

The thesis also explores using large impedance discontinuities to linearize the
phase shift part of the problem. Finally, the theory section includes lumped
elements into the tuning equations. These lumped elements can model existing
loads that might cause phase and voltage shifts that must be accounted for. Or these
elements can be used for tuning.

1.3 Applications

The space of applications for this tuning technique is quite broad. Some
applications include acoustics, fluid dynamics, optics, electronics, RF antennas and
power supplies. The thesis focuses on two applications: resonant clocks and
resonant transformers.

1.3.1 Resonant Clocks

Over the years a number of trends have increased the power consumption of
the clock drivers in standard digital systems. First, the clock capacitance has steadily
increased as the die size and the gate capacitance have become larger. Second, the
clock frequency is increasing. Clock drivers on today's micro-processor chips must
drive a 4 nF load at 500 MHz. This burns a very significant 40% of the overall chip
power. [Bowhill]

As mentioned before, the big benefit of using a tuned transmission line to
drive a clock load is that most of the energy to drive the capacitance, comes from the
line instead of the power supplies. Therefore, the clock power consumption falls to
just the amount burnt in the parasitic resistance of the transmission line. In our
micro-processor example this can amount to a factor of 10 in power savings.
Another benefit explored later is that the instantaneous voltage transitions through
1/2 VDD simultaneously across the entire transmission line. This translates to
virtually no skew across a single die.

The micro-processor example is nice and simple, because the driver and
capacitive load are collocated, so that we only care about the signal at one location.
This lets us ignore the voltage shifts at each discontinuity and just design the cavity
for the phase. Further, just a few harmonics are necessary to produce a high quality
square wave.

A large scale mockup has proven the viability of the transmission line clock
driver technique. At 20 Mhz a transmission line clock driver with uniform
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impedance reduces power consumption by a factor of 5.8 relative to a standard clock
driver. Using a tuned transmission line saves a factor of 9.5 over the standard
driver. The quality of waveforms is significantly better for the tuned transmission
line. Further, Spice simulations showed a factor of 4 power savings at frequencies up
to 1GHz.

1.3.2 Resonant Transformers
Another more challenging application lies in the area of signal conversion as

briefly mentioned above. The end of the theory chapter explores an example
application to convert a square wave input into a trapezoidal output for an adiabatic
system. [Younis] The adiabatic system utilizes charge recovery from data values to
reduce power consumption.

The value of using a square-wave input is that it is very simple to produce
without consuming much power. Also the two waveforms share the same
frequency components, but in varied amounts. Over the length of line, the voltage
of each frequency component in the square wave must be altered to a new desired
value. Further, the first and third harmonics of the square wave have the same sign,
while the first and third harmonics of the trapezoid are of opposite sign. This means
that either the first harmonic or the third harmonic must be phase shifted so that it
is 1800 out of phase.

One important item to note is that the resonate transformer can just as easily
step up a voltage level, as step down a voltage level. The input waveform does not
limit the scope of the output waveform. The primary limitation arises from the
quality of the resonator, i.e. parasitics, and from the amount of power being actively
consumed by the load versus the amount of power supplied by the driver.

1.4 Outline

Chapter 2 reviews basic transmission line theory. This includes inductance
and capacitance of a simple parallel stripline. From these, impedance and velocity
can be calculated. The chapter explores the basics of resonant cavities including
terminations, reflections and sinusoidal resonance. The primary purpose is to set
the stage for the next chapter.

Chapter 3 explores the core of the thesis, namely tuning resonant
transmission lines. It begins by describing the pair of equations that govern the
waveform in the presence of a discontinuity. The chapter then explains some of the
characteristics of impedance variations. It next uses the resonant transformer
application to illustrate how to linearize the problem and utilize zeroes. Finally,
chapter 3 introduces lumped elements into the framework.

Chapter 4 presents the central application explored, resonant clock drivers for
standard microprocessors. The chapter begins with the basics and then explains how
to drive such a system using a resonant transmission line. The chapter describes a
20MHz mockup that demonstrates the viability of the technique. The chapter
concludes by describing the 1GHz simulations.

Chapter 5 explores the practical issues encountered in building a transmission
line resonator. The beginning focuses on how to build a transmission line with a
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sufficiently low impedance to drive common loads. Then the chapter delves into
the effects of parasitic resistance on velocity and voltage. Finally, the chapter tries to
quantify the effect of system variability on resonance, including load, length and
impedance variation.

Chapter 6 revisits the important ideas presented throughout this thesis. And
it tries to fit this work into the space of what remains to be explored.

Finally, an appendix provides the schematics used in the 1GHz simulations.
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2. Review of Transmission Line Theory

2.1 Introduction

The following chapter is meant to review basic transmission line theory with
an eye towards Equation 2.8 relating voltage and current on a resonating line. The
first section, 2.2, begins the review with the LC ladder model, impedance and
velocity. Section 2.3 calculates the impedance and velocity of an example used later
in the application chapter. Then, section 2.4 explores time domain reflections due to
line terminations.

Building on the termination discussion, Section 2.5 focuses on the most
important subset of waveforms, sinusoids. This leads to the important result
showing that the voltage and current standing waves are related by a derivative
embodied in Equation 2.8. This result will begin the next chapter and lead to the
synthesis technique for resonant lines.

2.2 Basic Theory
Figure 2.1 shows the circuit model equivalent for an ideal transmission line.

The line is sectioned into stages each with an inductor and capacitor. L represents
the inductance per unit length and C is the capacitance per unit length. Each section
of the LC ladder has a capacitance of C times the distance of the section, dx, and has
an inductance of L times the distance. As dx approaches zero, the number of stages
approaches infinity and the line begins to approximate a transmission line.

.- ~ ~-dx
I I - - d

-- Ldx

Cdx V

Figure 2.1. Circuit Model of Transmission Line

The inductor in Figure 2.1 introduces a voltage step based on the slope of the
current.

Vright -Vleft = =V -(L x)a
at
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The equation can be re-written by pulling the dx expression into the
denominator. Following the lead of field theory, let's take the partial derivative
with respect to time.

DV
Dx

D2V
or -

ax 2

D21
L DxD

I axat

Equation 2.1

At the right common node in Figure 2.1, the current encounters a step based
on the slope of the voltage. This is caused by the capacitor drawing charge to support
a new voltage level.

Iright - Ileft = I = (C dx) at

As before, the equation can be re-written by pulling the dx expression into the
denominator and taking the partial derivative with respect to distance.

DI aV

Dx D t

D21 D2V
or = - C

atax I at 2

Equation 2.2

The wave equation relating time and distance for signals traveling down the
transmission line can be computed from the above derivations, Equation 2.1 and
Equation 2.2.

D2V D2V
-x= L C

ax 2 11 at2
Equation 2.3

Canceling the a
2V terms on either side and

of velocity. As will be shown later the velocity, v,
characteristics of the transmission line.

1 1 ax2

x =L C1  2 t2 - =
x2 at2 at2 LIC1

simplifying leaves the definition
is dependent only on the intrinsic

1
=> v=

LIC 1
Equation 2.4

The general solution to the wave equation, Equation 2.3, is

V(x,t)= F + +G t -
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Let's substitute this into either Equation 2.1 or Equation 2.2, integrate and
solve for the impedance, Z. Impedance is the effective resistance of the transmission
line, Z=V/I.

Z0 = impedance =

Equation 2.5

2.3 Calculating Impedance and Velocity

Probably the simplest form of transmission line to analyze is the strip line as
shown in Figure 2.2. This type of line is also easy to build in a ceramic package or
PCB. The impedance of the line in Figure 2.2 is related to the dielectric constant of
the insulator, the spacing and width. The velocity is solely dependent on the
dielectric.

spacing (h) Strip-Line
Transmission
Line

T
width (w)

Figure 2.2. Strip Line Transmission Line

The capacitance per unit length and the inductance per unit length can be
estimated from basic principles. In the equations below, w corresponds to the width
of the conducting plates and h to the spacing between them. E, corresponds to the
relative dielectric constant of the insulator. These equations neglect fringe fields at
the edge of the conductors, which for smaller width lines can be quite significant.
Chapter 5 will briefly explore the effect and use of fringing fields.

C 1 = E (8.85 x 10- F/m) h

Li = (4nx 10-7 H/m) -7Jw

Let us work through some example numbers that will be used for the
application explored in chapter 4. This application requires a low impedance line,
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i.e. wide lines, closely spaced together. The width, w, is limited to 2 cm, so that the
line can fit under a chip. Current industrial processes limit the spacing, h, to 50 gim.
Finally, higher dielectric constant insulators can raise the capacitance and lower the
impedance. However, we don't want to use any material that is too exotic or too
difficult to work with. This limits the dielectric constant to about 9. Plugging in
these numbers yields capacitance and inductance per unit length.

C1 = 9 (8.85 x 1012F/m) ( 2cm = 3.19 x 10-8 F/m
50gm)

Li = (47c x 10-7H/m) i m = 3.14 x 10~9 H /m
2cm)

These values can be used to calculate both impedance and velocity using
Equation 2.4 and Equation 2.5.

LiZo=-
F 3.14 x 10-9 H/m 03

=8 .14
3.19 x 10- F/in

1 1
v =1 x H F

-,LiC1 , 3.14 x 10e H / mX3.14 x leF / m)

= 1 X 108 m/s

In the applications we shall discover that driving a voltage into a capacitive
load requires a very low impedance line. The impedances must be a large factor
smaller than that achieved with a single strip line. In chapter 5 we shall explore
methods to reduce the impedance further by ganging lines stacked both vertically
and horizontally.

2.4 Reflection Coefficient and Terminations

In a transmission line there can be both forward propagating and backward
propagating waveforms as shown in Figure 2.3. These waveforms do not affect each
other in a uniform line. Individually the voltage and current are related by the
impedance to V,=IZo and V-=LZo.

e . V Zo V 0 0 0

Figure 2.3 A Section of a Uniform Transmission Line
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The voltage at any particular point would be the sum of the forward and

reverse propagating waves. The instantaneous current would be the difference of

the forward and reverse waves.

V(x,t) = V(x,t)+V_(x,t)
Equation 2.6

V,(xlt) V_(xjt)I(x,t)= I+(xt) - I_ (x,t)= ZO ZO
Equation 2.7

I| I

ZO V_ V+ Zi

Figure 2.4 Transmission Line Terminated with Impedance Z,

Figure 2.4 shows a terminated line where the impedance undergoes a step

from Z0 to Zi. The termination constrains the reverse wave to be a function of the

forward wave and the load impedance. First, the combined voltage and current at

the termination are related by V=Z 11. Substituting the voltage and current from

Equation 2.6 and Equation 2.7 yields:

vV++V_V+ + V_ = Zi +V
(ZO ZO)

Below we solve for VJ/V+, which represents the reflection coefficient, R. This

coefficient relates the outgoing voltage, V_, to the incoming voltage, V.

R = -- = ,-Z
R=+ jZZO)

Three special cases provide some useful insight. When Z, = ZO (infinite,

uniform line), R = 0 and no reflection occurs. When Z, = 0 (short circuit), R = -1 and

the reflected wave is equal and opposite. This means that the combined voltage
must be zero, while the combined current is twice the forward current. Finally,
when Z1 = oo (open circuit), R = 1 and the reflected wave is equal. The combined
voltage will be double the incoming voltage and the current will be zero.
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2.5 Sinusoids on Transmission Lines

This section focuses on the transmission line shown in Figure 2.5 with an
impedance of Zo. As drawn this transmission line terminates at x =0 in an open
circuit and the line extends to infinity in the positive x direction.

Z 0VV
V+

'0

Figure 2.5 Transmission Line with Open Termination at x=O

One very important set of waveforms that can resonate within this line is
sinusoidal. From the wave equation, Equation 2.3, we know that the most general
solution would consist of a pair of waveforms traveling in opposite directions.
These waveforms would take the form of F(t-x/v) and G(t+x/v). Because the line is
terminated in an open circuit, the voltages for the reverse wave and forward wave
must be equal, leading to the following two equations. As shown below these can be
rewritten in exponential form for easy manipulation.

V (ox V e *eV - (O
V+(xt)= -sin ot - = - -e e

2 v 2 2j

.OX .(OX

V .t ox V ev e -e-s*
V (x, t)= -smn ot + o - = .j'e -'t-

2 v 2 2j

The voltage at any particular point would be the sum of these waveforms as
shown below. Below we proceed with the sum and group like terms.

V(x,t) = V,(x,t)+V_(xt)

V -JII
V(x,t) = e "t e irv + e V - eicot e v + e v

2 x2j

Once the terms are fully separated, each can be divided by 2 and 2j and
resolved back into sin's and cos's. Note that the equation for voltage along the line
varies independently with time and distance. Essentially, the cos term sets the
maximum amplitude, while the sin term sets the temporal behavior.
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= Vsin(cot)cos(

In the above equation wo/v is equivalent to (27c/wavelength) or 2t/k.
Therefore, at intervals of x=O, k/2, k, etc., the voltage simplifies to a full sinusoid in
time and the current is zero. Conceptually, this corresponds to points in which the
forward and reverse voltage waves must be equal. Inserting an open circuit and
removing the remainder of the line at any such point will have no effect on the
above resonance.

At intervals of x=X/4, 3k/4, etc., the current simplifies to a full sinusoid in
time and the voltage is zero. Conceptually, this corresponds to points in which the
forward and reverse current waves must be equal. Inserting an short circuit and
removing the remainder of the line will have no effect on the resonance.

Figure 2.6 shows how the voltage varies over the length of the line. Multiple
snapshots of time are shown. At distances from the origin that are multiples of k/2
the voltage represents a maximum sinusoid. When shifted by k/4 the voltage is a
minimum with a voltage of zero for all time.

Voltage
1

0.75 Time
sin(2nft) -

0.5
t=9/8f-

-0.25 - / 8

IN

-0.5 -'-,14f 3/4

-0.75 - '3/8f 5/8f

-1
t=1/2f

Figure 2.6 Voltage(x, t) on Open Terminated Line Resonating a Sinusoid

The same procedure can be used to solve for I(x, t) for the line in Figure 2.5
with the open termination at x=O. The current as a function of distance and time can
be solved for in the same manner as with voltage.
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I(x,t)= V cos(ot)sin -
Zo

Current

r

x

Time
cos(2rft)

t=5/8f

4
A /k

8 2

t=0

N

5X
4

Figure 2.7 Current(x, t) on Open Terminated Line Resonating a Sinusoid

Figure 2.7 plots the current as function of distance for multiple snapshots of
time. The current is sinusoidal in distance and time, but the time component is
phase shifted by 90' relative to voltage. This is interesting because the current as a
function of distance, I, represents the slope of the Vx. This relationship is captured
in Equation 2.8. and will be used as the foundation for describing more complex
transmission lines in the next chapter.

k aV

SZo ax
where k =

27c
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3. Impedance Discontinuity Theory

3.1 Introduction
The following theory describes how to design a line that will resonate a

desired waveform. Most transmission line theory focuses on the problem of
analysis. By contrast this theory focuses on synthesis: specify the desired waveform
and derive the line from the constraints implied by that waveform.

This chapter begins with the basic principles of a resonating transmission
line. The next section illustrates the implications for synthesis in one simple
example. Then, the chapter introduces phase boundaries and zeros. This is
followed by another example. The final section describes a way to linearize the
synthesis problem.

3.2 Basic Theory
The following theory is based on a few very simple facts. First, in a uniform

line the voltage and current form a standing wave that is sinusoidal as a function of
distance. Second, current and voltage are related by a derivative and the impedance,
IXR=kdVx/dx. And finally, the voltage and current must be continuous along the
line, even at an impedance discontinuity. This leads to the following equations for
voltage across a discontinuity:

Va cos -x = Vb COS -x + ACD

Equation 3.1

and current across a discontinuity:

V .L 2 TfJVb-a sin x = sm -x+ A-DZa v Zb v
Equation 3.2

Va and Za represent the voltage amplitude and impedance to the left of the
discontinuity. Vb and Zb represent the voltage amplitude and impedance to the right
of the discontinuity. The velocity in the line appears as "v" and "f" represents the
frequency. The phase of the signal to the left of the discontinuity appears inside the
left cos and sin terms. The phase to the right appears inside the right cos and sin
terms. Note that this has been written in terms of the phase on the left shifted by
some A$.

As Equation 3.1 states, for a given waveform, the voltage will be continuous
at all points in space. However, its slope, dVx/dx, will not remain continuous. Since
the voltage and current are related by a derivative, the slope changes by the
impedance ratio across the boundary. So if going into the discontinuity the slope of
the voltage standing wave is 3 and Zb/Za is 2, then the slope in the next section
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would be 6. This corresponds to a different phase and voltage amplitude, hence the
use of Vb and A0.

When dealing with multiple frequencies on a single line, at any given point
along a line, they will have different phases. This means that a discontinuity at a
particular point will introduce different voltage and phase shifts depending on the
frequency. We can use this concept to tune a line.

3.3 A Simple Example of Tuning

Let's look at a simple example to drive the point home. Assume we want to
make a given line resonate at a given frequency. Normally this can be achieved by
changing the length of the line to match some multiple of half of the wavelength.
However, in this example we are going to assume the length is fixed, fixed at a value
we don't want. To resonate the desired frequency, we'll introduce an impedance
variation to add phase to the signal so that it fits in the line.

Figure 3.1 shows the line involved, where Xa and Xb are fixed:

Xa Xb

Input Za zb Output

Figure 3.1. Example of Tuning a Line for One Frequency

The basic equations relating voltage and current at this discontinuity appear
below. They assume that the entire transmission line will resonate a half
wavelength. This condition appears as n - F(Xb) in the right cos and sin terms. The
idea is that the beginning of the line needs to have a phase of 0 and we have moved
forward a distance, Xa, to get to the discontinuity. For the end of the line the phase
needs to be IT in order to reflect properly and we are moving back a distance, Xb, from
the end of the line.

Va cos 2 fXa Vb cos 21f -Xb
v = v

asin -7fXa) = Vb sin (n - --- fXb
Za v Zb v

For this example, let's resonate a 475 MHz sinusoid in a 8 cm line with a
velocity of 1x10 8 m/s. For a uniform line to resonate at this frequency, it would have
to be 10.5cm long. The 475 MHz signal would reach only 136.8' over the course of 8
cm. In order to reach half a wavelength it needs to be at 180' by the end of the line.
Therefore, the discontinuity must make up the difference by adding a 43.2' phase
shift (1800 - 136.80).
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In this example, let's limit ourselves to one impedance variation located at,
say, Xa= 2cm (Xb = 6cm). Finally, we will arbitrarily assume an initial impedance of
Za = 5Q and a Va = 1 volt input amplitude. Let's plug in the numbers we know:

(1Volt) cos

(1Volt) sin

27c x 475MHz

1xl10 8m/s

27c x 475MHz

1x10 8 m/s

0.02m)

0.02m)

= Vb cos (n -
2K x 475MHz

1xl108 m/s

Vb i 27 x 475MHz

Zb 1xl10 8 m/s

0.06m

0.06m

Solving the first equation gives a value of 3.791V for Vb. Plugging this into
the second equation yields 32.91Q for the impedance of the b section. This tells us
that a line composed of a 2 cm section at 5Q and a 6 cm section at 32.91Q will
resonate a 475 MHz waveform. Also it will convert the input amplitude from 1V to
an output amplitude of 3.791V. At the end of the 2 cm section the phase is 34.20 and
the discontinuity adds the 43.20 phase shift.

0 v

-0.5 V

-1 v

-1.5 V

-2 V

-2.5 V

-3 V

-3.5 V

5.25 cm
(half of 10.5 cm)

1 cm 2 cm 5 cm 6 cm 7 cm 8 cm

Distance Along
Transmission Line

-4 V t Voltage

Figure 3.2. Voltage Amplitude on a Line Tuned for One Frequency

Figure 3.2 shows the voltage amplitude as a function of distance along the
line. It is quite apparent that the discontinuity occurs at 2 cm. Both sides of the
discontinuity have the same frequency component, but at the discontinuity a large
phase shift has been introduced. The change in slope is directly related to the
impedance ratio. Note that the distance from when the amplitude voltage V=O to
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V=-maximum, or 90' of phase, matches the 5.25cm for a quarter wavelength of a
475MHz waveform.

Figure 3.3 shows the current amplitude as a function of distance along the
line. Just as with the voltage, it is quite apparent that the discontinuity occurs at
2cm.

0.12

0.1

0.08

0.06

0.04

0.02

0
8 cm

Figure 3.3. Current on a Line Tuned for One Frequency

3.4 Phase Boundaries
This section introduces the idea of phase boundaries. These appear at

multiples of 90'. A phase boundary is a phase point that cannot be crossed by
introducing a phase shift with an impedance change. After a brief description, this
section illustrates the concept with an example.

There are two causes for phase boundaries, one related to voltage and the
other related to current. Trying to cross 900 or 2700, the voltage phase boundary,
requires that the cos term in Equation 3.1 changes sign. Since Va and Vb are just
amplitudes (no negatives), the left and right sides cannot be equal. Hence we cannot
introduce a phase shift to cross this boundary.

Crossing 00 or 180', the current phase boundary, means that the cos terms in
Equation 3.1 will have the same sign. However in Equation 3.2, the sin terms will
have different signs. In order to make the two sides equal, we would need a
negative impedance. Since we cannot physically produce a negative impedance, we
cannot introduce a phase shift to cross this boundary.

Said simply, an impedance discontinuity cannot introduce a sign reversal in
the voltage standing wave or the current standing wave.
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Figure 3.4. Voltage and Current Waveforms

3.4.1 Phase Boundary Example

The best way to illustrate phase boundaries is to break our previous example
by trying to cross one. In this case, let's resonate a 475 MHz sinusoid in a 6 cm line
with a velocity of 1x108 m/s. Again, let's limit ourselves to one impedance variation
located at 2 cm, an initial impedance of 5Q and a 1V input amplitude. The 475 MHz
signal would reach only 102.60 over the course of 6 cm. In order to reach half a
wavelength, the discontinuity must add 77.4'.

Note that we are not shifting more than 90'. However, at the location of the
discontinuity the phase is already 34.2'. With the addition of 77.4' we would cross
the 900 phase boundary to 111.6'. This would require a negative amplitude. Let's
plug the numbers into Equation 3.1 and see it happen:

1iCos( 27t x 475MHz 002m V 1 27 x 475MHz 0.04m
1x10 8 m/s ) b x108 m/s

Solving the voltage equation yields a value of -2.247V for Vb. Since a negative
amplitude can't happen, we can't get across this phase boundary. If we continue and
plug these numbers into Equation 3.2, we get the following:

1 sin 2nx 475MHz 0V02J bKsin 2 x 4 7 5M Hz
-- s X0.02m = sm - jX -M 0.04m

50 1x108m/s Zb 118/
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The current equation yields an impedance of -18.58Q for the right section.
Since we can't create a negative impedance, we can't resonate a 475 MHz sinusoid in
a 6 cm line with only one discontinuity at 2 cm. If we move the discontinuity back to
0.5 cm, the line can resonate, because the phase shift does not cross a boundary.

3.5 Discontinuities at Zeroes
The tuning method presented above scales badly for larger numbers of

frequencies. One method of simplifying the problem involves properly locating the
discontinuities.

One good place to locate an impedance discontinuity is at a phase of 90' or
2700. In the voltage equation, Equation 3.1, the left cosine equals zero, forcing the
right cosine to be zero also. Hence, the phase shift is zero and the voltage equation
drops out. The current equation, Equation 3.2, becomes a linear equation because
both sin's will be equal to 1 or -1. Only a voltage shift occurs, not a phase shift. The
voltage-current equations simplify to:

Za Zb

By locating the discontinuity at a voltage zero, we have simplified the overall
equations by one order. Unfortunately, at the other frequencies, where the voltage is
not zero, the discontinuity will still introduce both a voltage and a phase shift.

Another good place to locate an impedance discontinuity is at a phase of 00 or
1800. In the current equation, Equation 3.2, the left sin will equal zero, forcing the
right sin to be zero also. Hence, the current equation drops out. The voltage
equation, Equation 3.1, simplifies to equating the voltage on the left and right. In
other words locating a discontinuity at a current zero has no effect on the
waveforms. The other frequencies still experience both a voltage and phase shift.

3.5.1 Two Frequency Tuning Example Using Zeroes
Let me describe a slightly more complicated example using discontinuities

located at zeroes to simplify the problem. For this example I will convert two
frequencies of a square wave into two frequencies of a linear ramp.

If you remember Fourier series decomposition, a square wave is the sum of
odd harmonics with amplitudes inversely related to frequency, while a linear ramp
is the sum of odd harmonics with amplitudes inversely related to the square of
frequency and every other harmonic is 180' out of phase. Here are the
decompositions. For simplicity, I will focus on just the first two frequencies.

Square Wave = 1Vsin(2x1GHz t)+ sin(2ir3GHz t)+ sin(27t5GHz t)+...
3 5

1V 1V
Linear Ramp = 1V sin(27t1GHz t)- -sin(27 3GHz t)+ -sin(2 t5GHz t)-...

9 25
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In a single line we need to resonate a 1 GHz sinusoid with an output voltage
of, say, IV. In the same line we need to resonate a 3 GHz sinusoid with an output
voltage of 1/9V. In order to produce a ramp as the output, the two harmonics must
also be 180' out of phase. The square wave input, chosen because it is easy to
produce and drive, requires a 1:1/3 relationship between the voltage amplitudes of
the 2 frequencies, 1GHz:3GHz.

Za Z b Zc Z d

Input Output
3 GHz

70'
00 180 Phase

%360 

-oltage

Figure 3.5. Discontinuities Relative to Third Harmonic

Realizing that discontinuities at zeroes do not affect phase, we can base the
total line length and location of discontinuities on the third harmonic. As shown in

Figure 3.5, we have chosen the line to resonate 2n of the third harmonic. The
discontinuities are located at the zeroes: 90', 180' and 2700. The discontinuity at 180'
leaves V 3bequal to V3c. V3b refers to the voltage amplitude of the 3GHz waveform in
the section of the line labeled b. However, the discontinuities at 90' and 270'
introduce voltage shifts.

discontinuity at 90 : a =

discontinuity at 180': V3b -V3c

V V

discontinuity at 270 : to =id
Ze Zd

Based on the location of the discontinuities and line length, we can consider
the structure of the first harmonic. If the 3GHz signal reaches a phase of 360 by the
end of the line, the 1GHz signal will reach only 1200. The first harmonic will need to
travel n over the length of the line, which requires a total phase shift of 60, 180 -
120. As in Figure 3.6, this can distributed as two 30 shifts at the first and last
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discontinuity. Since the center crossing will be at 90' the center discontinuity will
not create a phase shift.

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

A phi=300

3600

900

3 GHz
1800

A phi=300

Voltage 1200

Phase,

18Q0

Figure 3.6. Desired Waveforms of Two Frequency Example

There are three sets of equations for the first harmonic, one for each
discontinuity. The amplitude of the voltage amplitude of the 1GHz waveform for
each section of the line appears below.

discontinuity at 900:

discontinuity at 90':

Via cos j

Via sin J

Za 6)

= Vib cos -

= Vib sin j
Zb 3)

or 3 Via - Vlb

or Via _ 3 Vb
Za Zb

The second discontinuity produces just a voltage shift:

discontinuity at 1800: - -
Zib Z1 e

The third discontinuity also has an equation for voltage and current:

2n
discontinuity at 270: Vic cos( 3

discontinuity at 270': Vic sin(
Ze Y3

5n
= Vid cos j

Vid 5n
=Z sin -

Zd 6

or V1c = 3 Vid

or -F
ZC

Together the 3 linear equations of the 3rd harmonic and the 5 linear
equations of the 1st harmonic can be solved to quantify our internal waveforms and
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impedance values. The result will be a line that resonates a square wave at the input
of the line and a linear ramp at the output. Table 3.1 shows the voltages and
impedances that solve the equations above. Note that the output was fully specified
and the input voltage ratio was specified.

Section A Section B Section C Section D

Voltage of 1st 1/3 V 1/sqrt(3) V sqrt(3) V 1 V

Voltage of 3rd 1/9 V 1/3 V 1/3 V 1/9 V

Impedance 5/3 Q 50 15 Q 50

Table 3.1 Voltages and Impedances of Internal Sections

3.6 Linearization

Each variation introduces a pair of non-linear equations involving sin and

cos terms for each frequency of interest. Even locating discontinuities at zeroes only
reduces the number of equations by one order. As the number of frequencies to be
tuned scales the previous solution technique suffers.

One method to simplify the problem involves applying conditions that
linearize the phase shift part of the problem. This process begins by solving for the
phase and voltage shift across a discontinuity from Equation 3.1 and Equation 3.2:

Zbsin20+ Za cos 2

2

= cos 20+ Zb sin2
Va F Za)

When the Zb>>Za and e=7c/2 or =3n/2, the sin terms dominate and the
relationships simplify to:

It 3xt
A$= -0 and A$ = -0

2 2

Vb = sinO
Va Za

Figure 3.7 plots the phase shift relationship for an impedance variation with a

ratio of 50. The phase shift becomes highly linear in the specified region. Namely,
the waveform shifts from its initial phase to n/2 or 3n/2. Initial phases that are

around 0 and n, introduce highly non-linear shifts. Figure 3.9 plots the ratio of the

voltage shift to the current phase and the impedance change.
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Figure 3.7. Phase Shift as a Function of Phase for Large Impedance Increase

When the Za>>Zb and 0=0 or =x, the cos terms dominate and the
relationships simplify to:

A$=-O or A$= x-6

Vb = cosO
Va

Figure 3.8 shows the phase shift relationship for variations where the
impedance decreases by a factor of 50. Namely, the phase shift becomes highly linear
in the specified region in which the waveform shifts from its initial phase to 0 or nT.
Initial phases that are around ,T/2 and 37/2, introduce highly non-linear shifts.
Figure 3.9 plots the ratio of the voltage shift to the current phase and the impedance

change.
Because the voltage and phase shift relationships simplify for large

impedance discontinuities, tuning a line can involve alternating high and low

impedances. As long as each waveform has an initial phase in the linear region, the

tuning equations remain simple.
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3.7 Lumped Elements

Lumped elements, like capacitors and inductors, must be included in this
theoretical framework for three reasons. First, they affect the resonance of a
transmission line. Second, the clock loads we wish to drive and sometimes
unavoidable parasitics may be represented as lumped elements. Third, the use of
varactors or variable capacitors along the line could be used to tune or fine tune the
line.

Similar to an impedance variation, an element introduces phase and voltage
shifts. The element acts as a frequency dependent impedance. The elements can be
wired in parallel or in series. A parallel connection leaves the voltage continuous,
but introduces a current step based on the voltage. A series connection leaves
current continuous, but introduces a voltage step based on the current.

This leads to the following equation for voltage:

(2tf 2_f V . (2f 1i~

Va cos( v x =Vb cos -2 -x+ A + a sin x [Lo CIlSeries

Equation 3.3

and current:

asin 2Tf x =- sin 27f x+AJ +Vacos --x -Co]r

Z v Z v v X Lo - Parallei
Equation 3.4

As before Va and Vb represent the voltage amplitude on each side of the

element. The phase of the signal before the discontinuity appears inside the left cos

and sin terms. Just as with impedance discontinuities, the phase after the element

has been written in terms of the old phase shifted by some A$. A new set of terms

related to the lumped elements appears on the far right. In the voltage equation it

multiplies the current before the element by the impedance to introduce a voltage

step. In the current equation the term divides the voltage before the element by the

impedance to introduce a current step.

Xa Xb

Input Z Z Output

C

Figure 3.10. Transmission Line with a Lumped Capacitive Load

Figure 3.10 shows one of the four possible configurations, a capacitor wired in

parallel with a uniform transmission line. The capacitor has an impedance of
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1/27cfC. As expected, any phase and voltage shift depends on the current phase and

voltage and by extension the frequency of the waveform.
The following equations describe the voltage and current across the element

shown in Figure 3.10. Note the parallel connection introduces a current step.

2xf 2f
Va cos 2fXa = Vb cos7 - 2-f Xb

Va 2xcf V27f Va C s27cf
asin -Xa = b sin 2--Xb _2a cosit -Xa)

Z (v Z v (1/27cf C) v

3.7.1 Simple Example of Tuning with a Capacitor

This section revisits the first tuning example presented on tuning. However,
this time instead of an impedance step at 2 cm we shall use a lumped capacitor at 2

cm. Figure 3.10 shows the setup involved.
As a reminder, the previous problem was to resonate a 1V, 475 MHz

waveform in an 8 cm line that would normally resonate at 625 Mhz waveform. The

velocity of the line is 1x10 8 m/s and the impedance is 5Q. So, let's plug in these
numbers into Equation 3.3 and Equation 3.4:

(2xT x 475MHz 2 x 475MHz 6cm
1V cosys 2cm)= Vby osl-m 6c

1 Ix108m /s 1 xOS 10 8m /s

1V 2n x 475MHz Vb . 27c x 475MHz
-sin 1X0MS2cm = smn xC -X08 6cm5 lny1x108m/s 2cm 1-l~c x108 m/s

1V (27c x 475MHz 2cm

(1/C2t x 475MHz) 1x10 8 m/s

Solving the voltage equation again yields a value of 3.791 V for Vb. Plugging
this into the current equation produces 254.2pF as the capacitance. This tells us that a

line composed of a 2 cm section of 5 Q, a 254.2pF capacitor and then 6 cm of 5 Q will

resonate a 475 Mhz waveform.
As shown in Figure 3.11, the voltage waveform, though continuous, changes

slope at the capacitor. The waveform exactly matches the waveform of Figure 3.2 in

the previous example.
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Figure 3.11. Voltage Along Transmission Line for Capacitor Tuning Example

However unlike the previous
not continuous at the location of the
current drawn by the capacitor.

0.8 A

0.7 A

0.6 A

0.2

0.1

Current

1 cm 2 cm 3 cm

example the current waveform in Figure 3.12 is
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Figure 3.12. Current Along Transmission Line for Capacitor Tuning Example
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3.7.2 Phase Boundaries and Zeroes

With the introduction of lumped elements into the theoretical model, phase
boundaries take on a new characteristic. Because an element introduces a step in
voltage or current, the waveform can step from positive to negative or vice versa.
So for a series element which introduces a voltage step, the voltage phase boundary
can be crossed. However, a current phase boundary will still exist. For an element
connected in parallel, where a current step is introduced, the current phase
boundary disappears. The voltage phase boundary still can not be crossed.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6 Voltage i
Phase Current

-0.8 Boundary Phase i
Boundary'

-1II

Figure 3.13. Crossing a Voltage Phase Boundary with a Series Element

Figure 3.13 shows an attempt to move across the voltage phase boundary at
iT/2 in which voltage changes from positive to negative. The current is positive on
both sides of the element. In order to equalize the voltage on both sides of Equation
3.3, a series inductor can provide a positive voltage step: (+) = (-) + (+)(+).

Va COS -2f = Vb cos 2fx +A<D + a sin 2  x [L(>]series
( vel ( vel ) Z (vel e

The other voltage phase boundary at 2n, in which current goes from negative
to positive, can also be crossed with a series inductor. This results from the current
being negative, making the inductor term negative: (-) = (+) + (-)(+)

Both the current boundaries can be crossed with a parallel capacitor. At R this

results from the voltage being negative while the current is changing from positive

to negative: (+) = (-) + (-)(-). At 2n, the voltage is positive while the current changes
from negative to positive: (-) = (+) + (+)(-).
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fa sin -x Vb sin --- x+ Af + Va COS -x [-Co]Parallel
Z vel Z ( vel ) vel )

Finally, just as impedance discontinuities can be placed at voltage or current
zeroes, so can lumped elements. By matching the type of connection, series or
parallel, with the type of zero, voltage or current, the same non-effect on phase can
be achieved. This means that tuning for multiple frequencies can be simpler
through decoupling.

3.8 Conclusions for Theory Chapter

This chapter explored two basic methods of tuning a transmission line for
resonating a desired waveform. The first involves placing impedance
discontinuities and sizing them to alter the phase of each frequency along the line.
The basic equations we have learned are voltage in Equation 3.1 and current in
Equation 3.2. C2,tf 2,tf

Va cos -- x) = Vb coS --- x+ AD
vel vel

Va. 22f Vb 2 f
-a sin x = sin x+AGD
Za vel Zb vel

Two important realizations can make the tuning problem much simpler.
First, large discontinuities cause a linear amount of phase shift based on the current
phase. The second realization that properly locating a discontinuity decouples the
problem of tuning multiple frequencies. A discontinuity located at a voltage zero
introduces no phase shift and no voltage shift. And a discontinuity at a current zero,
there is no phase shift, but the voltage shift is related to the ratio of the impedances.

The final set of equations explains how to tune using lumped elements that
introduce steps into the voltage and phase. The equation for voltage and current
must be modified to Equation 3.3 and Equation 3.4.

(2if (2xf V . (2xf 1i
Va cosi -x = Vb cos -- x+ A + a- sin x Lo - i

a vel ) vel Z vel C iseries

Va. 27if V 27rf 2nf 1 1
sin -x = sin -x + AQ + Va cos xl -

Z vel Z ( vel ( vel _Lo -Parallel
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4. Application for Microprocessor Clock Driver
This chapter describes one of the most obvious applications of the

transmission line technique, using the technique to drive microprocessor-like loads.
The technique reduces power consumption by at least a factor of four and leads to
zero skew in the traditional sense. However, this technique does not eliminate
second-order skew effects such as rise time differences across the chip.

The chapter is broken into three basic sections. The first describes traditional
clock drivers and how the transmission line technique can be applied to them. The
second section describes a low frequency mockup which tested the technique at 20
MHz and realized a factor of 10 improvement in power. The third section describes
the Spice simulations of the technique at 1GHz, which led to power savings of a
factor of 4.

4.1 Overview of Driver Application

4.1.1 Standard Clock Driver

A standard clock distribution structure appears in Figure 4.1. It includes a
clock generator, a buffer and a distribution network. The clock lines are drawn as
transmission lines to emphasize that they introduce delay. However, since the series
resistance dominates over the inductance, it is more appropriate to model the clock
lines as distributed RC lines.

Clock Driver Clock
Load

Figure 4.1 Standard Clock System for Large Chips

Figure 4.2 shows the crux of the problem with using the standard driver.
Current to charge the clock capacitance passes from the power supply through the
pmos device with its associated resistance. This energy is dumped into the ground
supply when discharging the capacitance. Since the clock drives such a large fraction
of the chip's transistors every cycle, the clock power represents 40% of the total
power.
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Load

Vdd Vdd->OV

OV OV->Vdd

Driver

Figure 4.2 Power Consumption in Standard Clock System

4.1.2 Benchmark Clock Driver - Alpha 21164

The Alpha 21164 microprocessor represents a good benchmark of advanced
micro-processors. First, the Alpha is at the forefront of design work with high clock

rates and prolific use of the clock to improve bandwidth. Second, its clock structure
consists of a fused clock plane that achieves reasonably low skew at the operating
frequency.

Basic Clock Load 3.7 nF

Reference Die size 1.6 cm x 1.8 cm

Data Vdd 3.3V
Drive Transistor Size 58 cm x 0.5 um
Frequency 300 MHz

Performance Rise time 500 ps
Parameters Clock Power 40% of 50 W

Skew time 30-90 ps

Table 4.1 Alpha 21164 Benchmark Data

Table 4.1 lists the relevant published data for the Alpha 21164. [Bowhill] These

basic system level characteristics have been adapted for the mockup (Section 4.2) and

simulations (Section 4.3). The clock load, 3.75 nF, is comprised of 3 major elements:

interconnect (1.95 nF), gate (1.2 nF) and driver self-loading (0.6 nF). Both the

interconnect and self loading capacitances will not vary in a data dependent fashion.

The large die size, 1.6 cm x 1.8 cm, causes a maximum skew time of 90 ps. The

operating frequency is 300 MHz with transition times of 500 ps (15% of cycle time). A
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pair of inverters with a combined width of 58 cm, drive the clock load at this
transition rate. At 3.3V the clock consumes 20 W, which represents 40% of the total.

Within this framework, we seek to match the reference data and optimize for
rise time, power and skew delay. The power consumption is a function of rise time
based on the size of the driver. Namely, as the driver shrinks, it consumes less pre-
driver power and self-loading power, but suffers from longer rise times. The
mockup and simulations have been geared to match the rise time as a percentage of
the clock period. Various skew reduction techniques are explored in the next
chapter. Each section, mockup and simulation, describes its own version of the
standard chip used to a make fair comparison.

4.1.3 Transmission Line Clock Driver

Our technique, shown in Figure 4.3, simply adds an external transmission
line to the standard driver. Energy is recovered by charging and discharging the final
clock load not through the clock driver, but through the transmission line as seen in
Figure 4.4. This also means that the clock buffers can be smaller resulting in less pre-
driver power.

Clck CHIP
I Driver

Flip-Chip I
Connections

Resonating
Transmission Line

Figure 4.3 New Transmission Line Clock System

Let me walk through a simplified description of how the technique works.
The central driver forces a square wave into the chip and the external transmission
line. Because the driver is smaller, it cannot fully drive the system. However, a
reduced height pulse flows down the length of the transmission line. The pulse
travels to the open termination of the transmission line and reflects back towards
the chip. The line length is such that the pulse in the transmission line will reach
the driver exactly when it drives again. The result is an increase in the pulse height.

Eventually the transmission line will be resonating a full clock pulse at a
given clock frequency. The transmission line frequency can be tuned by artificially
loading or unloading the line or by using impedance discontinuities. Taps using
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flip-chip technology strap the internal clock line to the external transmission line. A
pin structure like flip-chip is useful because of its low inductance, short pin lengths
and the even distribution of pins across the chip.

Resonator

Clock
Load OV OV->Vdd Vdd Vdd->OV

Driver

Figure 4.4 Power Consumption with Transmission Line Technique

Figure 4.5 shows a realistic implementation for the transmission line
technique. The key features are the chip, connections and strip-line. In order to
properly drive the large clock capacitance, the strip-line must have a low impedance.
This will most likely require a stacked set of strip lines or a mesh as described in the
next chapter.

Chip,

Flip-Chip
Connections

Strip-Line
Transmission
Line

2 cm

Figure 4.5 Possible Implementation of Transmission Line Technique
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4.2 Large Scale Mockup

The large scale mockup provides experimental evidence that this technique is
viable. It is a low frequency version of the 300 MHz clock driver described above. For
the following experimental work, I have assumed a clock rate of 500 MHz which
would be the next generation Alpha. At 20 MHz a transmission line clock driver
with uniform impedance reduces power consumption by a factor of 5.8 relative to a
standard clock driver. Using a tuned transmission line saves a factor of 9.5 over the
standard driver. Further, the quality of waveforms is significantly better for the
tuned version.

Section 4.2.1 lists many of the reasons for building the mockup. Section 4.2.2
describes the overall structure, scaling and comparison issues. In Section 4.2.3, I
cover the testing method. Section 4.2.4 shows the results from the standard clock
driver which provide a basis for comparison. The next section, 4.2.5, presents the
results from the clock driver with a uniform transmission line. Finally, section 4.2.6
describes the success of the clock driver with a tuned transmission line.

4.2.1 Purpose

Why would anyone want to build a large scale version to test this clock driver
technique? Even though the mockup runs at under 20 MHz with transmission line
dimensions that span an entire room, the basic tenets remain the same. The power
consumption is directly related to the total capacitance of the clock load, 2.2 nF. And
the addition of a resonant structure significantly reduces power consumption.

There were three overwhelming reasons to build such a large, low frequency
model:

* Fast construction time
" Ease of testing
" Fast redesign and alteration time

Building the system required just a few days instead of the months required
to produce a Mosis chip and circuit board. This resulted from the use of standard
components and lumped circuit elements that function reasonably well at 20 MHz,
but not much above.

As for testing, a big win was the ability to tune the input frequency to match
the transmission line instead of the other way around. This saved countless hours
of needless work to find the system's "sweet" spot. A real system would need some
type of variable capacitor to provide tuning to the desired frequency.

Because the system was easy to modify, results from one test could be used to
quickly improve the design. For example the initial system, shown in Figure 4.6,
simulated the on-chip clock wires with resistors, RLOAD, instead of real 2 in. wires. In
a compact amount of space the resistors were meant to provide the delay expected in
traveling across a 24 inch chip. Unfortunately, the resistors shorted together
separated points along the external transmission line. Because the voltage varied
along the transmission line for a given moment in time, the resistors were causing
excess power consumption. Once testing verified this, each resistor could be replaced
with the more realistic structure, a 2 inch wire. The new configuration appears in
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Figure 4.7. Determining the error and modifying the design required just a few days
of work.

Driver

External
Transmission -
Line | - -DRIVER

I~~~ F___
- - - IF 4"l 4"1 4"1 4" 4"

Extensions Extensions
for Tuning for Tuning

On-chip R
Clock C I
Structure

Figure 4.6 Original Structure of Standard Clock Driver

4.2.2 Overview
Figure 4.7, Figure 4.9 and Figure 4.11 show each configuration of the large

scale mockup: a standard clock driver, a clock driver with a uniform transmission
line and a clock driver with a tuned transmission line. All configurations can be
broken into three distinct parts. From top to bottom there appears the driver, the
external transmission line and finally the on-chip clock structure. The clock
structure is shared between all the designs.

The driver is a pulse generator with variable frequency that drives a set of
inverters with an output impedance of approximately 7Q each. Further, the
inverters drive the clock load in series with a pair of resistors. By altering the
number of inverters wired through the resistor and the size of RDRIVER, the driver can
exhibit a higher output impedance without actually finding a new, smaller inverter
part. In the normalizing equations this driver impedance is converted into an
effective width, w. For the configurations with a transmission line, the basic length
of the line is chosen to get approximately 20MHz. Then the exact frequency is
changed to match the true resonant frequency of that particular line.

The central section of the external transmission line is shared between all the
configurations. This includes the five 4 in segments that match the length of the
entire chip, 20 in. This length is derived from the frequency scale up factor of 500
MHz : 20 MHz, and the width of a standard chip, 2 cm.

LCHIP (20 MHz) = LCHIP (500MHz) 50MHZ 0.787in. 0MHz
C 20MHz 20MHz

LCHIP(20MHz) = 19.7 in.
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The extensions of the external transmission line changes extensively between
configurations. As seen in Figure 4.7, the standard driver has no extensions at all.
The next configuration in Figure 4.9 uses a uniform transmission line that is 15 ft.
long. Figure 4.11 shows the tuned line.

In order to reduce the line impedance to 10Q, 11 twisted pairs were ganged
together. This is the impedance for most of the external transmission lines: the five
central sections, the 15 ft. sections of the uniform line, the 8 in. section of the
complex line and the 4ft. 8in. section of the complex line. For the 15 in. high
impedance section of the complex transmission line, I use only 3 twisted pairs
ganged together to produce an impedance of roughly 35Q.

Lumped elements, CLOAD/ model the on-chip clock capacitance. The total load
is 2.2 nF. The small, 2 in. wires represent the on-chip clock wires and connect the
loads.

4.2.3 Testing Method

This section contains a list of the steps involved in testing and evaluating
each transmission line driver. I then describe how to normalize power relative to
frequency, the self-loading power and the pre-driver power. The last two
components are dependent on the inverter width and frequency. As mentioned
earlier, the inverter width, w, is varied by introducing a resistor to simulate a
smaller driver.

The first three steps are performed on the standard driver:

1) Measure the rise time, TSTD/ for a given inverter width, wSTD
2) Measure the power, PSTD/ wsTD
3) Normalize PSTD

Then the following steps are performed on each transmission line driver:

4) Measure the rise time, T, for a given inverter width, w
5) Change w until T = TSTD
6) Measure the power, P, at w
7) Normalize P
8) Compare the normalized powers

The first three steps involving the standard clock driver, provide a base line
against which to compare the transmission line drivers. As one can see in the final 5
steps, the driver width acts as the independent variable. As the width increases the
signal rise times improve, but the power increases. In step 5 I choose the driver
width such that the transmissions line driver provides the same quality of signal,
based on rise time, as the standard driver. At this size I can compare the normalized
powers.

I calculate the power, P and PSTD/ by measuring the current drawn from the
power supply and multiplying it by the applied voltage, 5V. Then I normalize the
power for three different effects as seen in Equation 4.1. First, in order to compare
powers obtained at different frequencies, I normalize the power relative to a
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frequency of 20 Mhz with the three frequency terms, (20 MHz/F), (20 MHz/FSELF) and
(20 MHz/FSTD). F FSELF and FSTD represents the frequency for the current
configuration, for the self-loading test case and for the standard driver, respectively.

Second, in order to compare configurations fairly, I need to include the self-
loading power. Self-loading power is the power required to fill the source and drain
capacitance of the driver. Because all the designs used the same inverter part, they
all have the same self-loading capacitance and all consume the same amount of self-
loading power, even in the cases with a smaller, simulated inverter width, w.
Therefore, I normalize the measured power to correct for the reduced self-loading
capacitance when I simulate a smaller inverter. This correction appears in the
second term of Equation 4.1. (l-w/wSTD) represents the fraction of the extra width to
the total width. By multiplying this by the total self-loading power, I calculate the
self-loading power related to the unused width. This can then be subtracted from the
total power, leaving a normalized power which accounts for the reduced self-
loading of a smaller, simulated inverter.

Finally, in order to compare configurations fairly, I need to include the pre-
driver power. Pre-driver power represents the amount of power consumed in
driving the input to the final inverter stage. Please note that in all of the
configurations, this power comes from the pulse generator, not the power supply.
Therefore, I estimate the pre-driver power by dividing the measured power in the
standard case by an inverter scale up factor of 4. This correction is added to the total
power by the third term of Equation 4.1. Further, in order to compare pre-driver
powers with different inverter widths, the pre-driver power has to be normalized
relative to the inverter width. Therefore, I multiply the standard pre-driver power
by the by the new width, w/wSTD'

~NRM- 20MHz ~ w ~ 20MHz" w (20MHz~
PNORM jTEST SELF 1 - + PSTD

FTEST wSTD FSELF (WSTD FSTD

Equation 4.1

4.2.4 Standard Clock Driver

This section will describe two important test cases that establish some metrics
for evaluating later designs. The first is the self-loading case and the second is the
standard driver. I begin with a schematic of the test structure. Then I show the
measured results and plug them into our normalizing equation for both this case
and for later cases. At the end of the section, I have included a printout of the
waveforms produced by the standard driver.

Figure 4.7 shows the schematic for the standard clock driver. For all the test
cases CLOAD is fixed at 2.2 nF. However, the frequency and RDRIVERvary quite

extensively from case to case. Please note that I did not remove the external
transmission line from the standard driver, even though I could have. I did this for
two reasons. First, the standard driver performs better with the external
transmission line and so makes a harder standard to beat. Second, for a real chip the
clock impedance would probably be lower than the 2 in. segments by themselves,
but definitely not lower than the impedance with the external transmission lines.
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In order to calculate the self-loading for the entire part, I simply disconnect
the clock load and measure the current flowing through the power supply.

External
Transmission
Line

On-chip
Clock -

Structure |

I _-__

|

Driver

411 411 4"

RDRIVER

4" 4"

Figure 4.7 Standard Clock Driver

Table 4.2 shows the power consumption for a few important cases. The values
fill in the variables of the normalization function, Equation 4.1. I have included the
rise times at the edge and center of the chip.

Center T Edge T P w/wSTD PNORM

Self-Loading @ 16.4 MHz 0.12 W 1
Standard @ 2 MHz 15.6 ns 11.6 ns 0.19 W 1 2.4 W

Standard @ 16.4 MHz 13.3 ns 10 ns 1.5 W 1 2.3 W

Standard @ 14 MHz 14.7 ns 11.4 ns 1.48 W 1 2.6 W

Table 4.2 Mock-up of Standard Clock Driver

Below, I have made the substitutions and simplified the previous relation
down to Equation 4.2. First, I include the self-loading power and frequency: PSELF=0*12

W and FSELF= 1 6 .4 MHz. Next I substitute the pre-driver power and frequency:

PSELF=0.19 W and FSELF=2 MHz. Finally, I use Equation 4.2 to calculate the normalized

power for a few different frequencies close to my region of interest: 16.4 MHz and 14
MHz. These appear above in Table 4.2.

PNORM = PTEST 20MHz
0.12W 1 wJ 20MHz + +4019W (Iw J20[MHz)

(wSTD) 16.4MHz) wSTD 2MHz
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(20 MHz (w
PNORM = PTEST F -MST 0.15W + 0.62W

FTEST wSTD)

Equation 4.2

Below I have included a plot of the last test case of the standard driver. This
was run at 14 MHz, a period of 71.5 ns. Channel 1, C1, corresponds to the center of
the chip and Channel 2, C2, corresponds to the edge of the chip. Despite the
seemingly reasonable rise times of the last row in Table 4.2 and shown on the right
of Figure 4.8, note the poor quality of the waveform. Basically, the standard inverter
part can't drive the given load because the high inductance at its pins. The next
sections will describe how both transmission line drivers clean up the quality
appreciably. The transmission lines do so by reducing the size of the current spike
flowing through the inverter chip pins and the related voltage noise.

Tek Run: 2.OOGS/s Average

. . . .. .. A : 5.00 V
@: 0 V

. . . . . . C1 Period
- - - -- - -- - - - - -7 1.4 5ns

Low signal
amplitude

. . *.. amplitude- C1 Rise
.... .. .. ... ... .. ... .. ... . ... . ... . . . .. . ..1 4 .7 5 n s

- ILOW signal
amplitude

C2 Rise
- - -11. 35ns

Ch1 2.00 V 2.00 V M 25.Ons Ch1 r 2.20 V 17 Feb 1998
09:43:53

Figure 4.8 Clock Signal of the Standard Driver
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4.2.5 Driver with Uniform Transmission Line

This section will describe the results from testing the clock driver with a
uniform transmission line. I begin with a circuit schematic followed by a table of
power and rise time results. At the end of the section, I have included a printout of
the clock signals produced by the driver. Figure 4.9 shows the schematic for the
uniform transmission line driver. Please notice that four of the inverters have been
disconnected to provide a smaller driver. Further, the value of RDRIVER is varied quite
extensively from case to case. For all the test cases CLOAD is fixed at 2.2 nF and the
frequency at 14 MHz. The frequency was chosen by setting the initial length and
then changing the frequency of the oscillator to the "sweet" spot of the transmission
line. The impedance of the entire transmission line is fixed at approximately 100.

Driver

External
Transmission DRIVER
Line

15' 4"1 4" 4"1 4"1 4" 15'

On-chip 2
Clock C
Structure -D

Figure 4.9 Clock Driver with Uniform Transmission Line

Table 4.3 shows the power for many different driver widths, w. In order to
calculate the normalized power at 20 MHz, w/wSTD and P is substituted into Equation
4.2. Based on the rise time and overall quality of the waveform, the point where the
transmission line driver matches the standard clock driver appears when
w/wSTD=0.0 7 . At this width, the transmission line clock driver consumed 0.42 W and
saves a factor of 5.7 over the standard clock driver.

Below in Figure 4.10 I have included a plot of the uniform transmission line
driver. This was run at 14 MHz, a period of 71.5 ns. The width of the driver, w, was
set to 0.07 times the width of the standard driver, wSTD. This was done by introducing
a resistor between the driver and the load. Channel 1, C1, corresponds to the center
of the chip and Channel 2, C2, corresponds to the edge of the chip. The quality of this
waveform is quite superior to that found with the standard driver in Figure 4.8,
even though the driver width and power are significantly smaller.
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Center T Edge T P w/wSD PNORM

Extension w/1 drive & 47Q 14.1 ns 20.5 ns 0.32 W 0.04 0.33 W

Extension w/1 drive & 27Q 14 ns 19 ns 0.35 W 0.06 0.39 W

Extension w/1 drive & 22Q 10 ns 19 ns 0.37 W 0.07 0.42 W

Extension w/1 drive & 6.7Q 6.6 ns 18.8 ns 0.38 W 0.15 0.49 W

Extension w/1 drive 4.6 ns 19.3 ns 0.40 W 0.33 0.62 W

Table 4.3 Mock-up of Clock Driver with Uniform Transmission Line

Tek Run: 2.OOGS/s Average
[............................ T.............]

A: 5.00 V
C: 0 V

C1 Period
71.20ns

C1 Rise
5.75ns

C2 Rise
8.35ns

17 Feb 1998
09:55:46

Figure 4.10 Clock Signal of the Driver with a Uniform Transmission Line

4.2.6 Driver with Tuned Transmission Line
This section will describe the results from testing the clock driver with a

tuned transmission line. I begin with a circuit schematic followed by a table of power
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and rise time results. At the end of the section, I have included a printout of the
clock signals produced by the driver.

Figure 4.11 shows the schematic for the tuned transmission line driver. Please
notice that four of the inverters were disconnected to provide a smaller driver.
Further, the value of RDRIVER is varied quite extensively from case to case. For all the
test cases CLOAD is fixed at 2.2 nF and the frequency at 16.4 Mhz. Again, the structure
and lengths of the transmission line was chosen according to theory and then fine
tuned by adjusting the frequency source. It would be difficult if not impossible to
tune the line purely from the tuning equations because of unknown parasitics and
load anomalies.

The tuned line reinforces the first and third harmonics of a 16.4 MHz square
wave. I use a low impedance, 10Q, for my central section: five 4 in. sections and a
pair of 8 in. sections. Beyond this a 15 in. section of higher impedance, 35Q, and a 4
ft. 8 in. of low impedance, 10Q, tune for each harmonic.

Driver

External
Transmission DRIVER
Line rDIE

4 8" 15" 8" 4" 4" 4" 4" 4" 8" 15" 4'8"

On-chip 3 i 2

ClockF F F LOAD
Structure

Figure 4.11 Clock Driver with Tuned Transmission Line

Table 4.4 shows the power consumption and rise times of the complex
resonating transmission line for many different driver widths. Based on the rise
time and overall quality of the waveform, the point where the complex
transmission line driver matches the standard clock driver appear when w/wSTD

0.06. At this width the transmission line clock driver consumes 0.24 W and saves a
factor of 9.5 over the standard driver.
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Center TR Edge TR PMEAS w/wS PNORM

Extension w/1 drive & 47Q 19.9 ns 21.0 ns 0.27 W 0.04 0.20 W

Extension w/1 drive & 27Q 5.6 ns 14.5 ns 0.29 W 0.06 0.24 W

Extension w/1 drive & 22Q 5.0 ns 14.2 ns 0.3 W 0.07 0.26 W

Extension w/1 drive & 6.7Q 3.5 ns 12.1 ns 0.33 W 0.15 0.35 W
Extension w/1 drive 3.2 ns 12.1 ns 0.33 W 0.33 0.46 W

Table 4.4 Mock-up of Tuned Transmission Line Clock Driver

Below in Figure 4.12 I have included a plot of the complex transmission line
driver. This is run at 16.4 MHz, a period of 61.1 ns. The width of the driver, w, was
set to 0.06 times the width of the standard driver, wSTD. Channel 1, C1, corresponds to
the center of the chip and Channel 2, C2, corresponds to the edge of the chip. The
quality of this waveform is quite superior to that found with the previous drivers,
even though the driver width and power are significantly smaller.

Tek Run: 2.0OGS/s Average
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10:02:35

Figure 4.12 Clock Signal of the Driver with a Tuned Transmission Line
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4.3 Hspice Simulations

The hspice simulations have proven the applicability of the transmission line
clock driver technique to current and future process generations. The simulations
focus on a 1 GHz driver. The power savings comes in at roughly a factor of 4. This is
significantly lower than originally expected from the mockup results. The likely
cause is the cutoff frequency of the flip-chip bumps.

The first section will list some of the assumptions and simplifications made
for simulation purposes. The second section will describe how the standard clock
driver performed with respect to power, transition times and skew. The third
section delves into the transmission line driver simulations. The final section will
explore the practical issues of how to tune for a given waveform.

4.3.1 Overview

The basic structure is a square chip, 1.6cm on a side. The 4nF load is evenly
distributed and driven at a frequency of 1 GHz. Parasitic inductance and resistance
are included relative to this frequency. The transistor length is 0.24 um which for a
fanout of 4 produces transition times of 130 ps. Vdd is set at 1V.

In order to reduce simulation times, the actual schematics model only a
1/16th wide section of the chip. The RC skew of the clock net can be measured
between the center and edge along the long dimension. The standard driver uses a
split driver in which each part drives 2 mm off center. The transmission line driver
uses a single center driver.

To compare the simulated power against a full chip like the Alpha 21164, one
would need to multiply the simulation power by approximately 3.3. This would
include a factor of 11 for the vdd differential from 3.3V to 1V. And it would include
0.3 for the lower frequency of the Alpha, 300 MHz. The power already includes the
factor of 16 related to the reduced simulation width.

Please refer to the appendix for the schematics of all 1 GHz simulations.

4.3.2 Standard Clock Driver
Figure 4.13 shows the block digram used to simulate the standard driver. The

size of the final driving stage totals 8 mm of width. Both the pre-driver power and
the final driver power are measured separately. The pre-driver sizes increase by a
fanout of four.
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Figure 4.13 Schematic of Standard Driver

Figure 4.14 shows the waveforms at the center and edge of the chip. These
should represent the extremes for the purposes of skew and transition times.

* split standard, 2mm of center, n=BkxO.24, 4nf/16, 1GHz
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Figure 4.14 Waveforms at Center and Far Edge of Chip in Standard Driver
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The important results from the simulations are that the transition times are a
maximum of 130 ps. This represents 13% of the total cycle time, which roughly
compares with the expectations from the numbers published for the Alpha 21164.
The skew across the entire 16 mm chip is approximately 30 ps. Finally, the power
consumed is 6.5W, where the pre-driver contributes approximately a third. Once
scaled by 3.3, this power, 21.5W, which matches closely the 20W reported for the
Alpha 21164.

4.3.3 Transmission Line Driver
Figure 4.15 shows the schematic used to simulate the transmission line

driver. The size of the final driving stage totals only 2.8 mm of width. This is almost
a factor of three smaller than the driver width in the standard case. Further, the
driver is not split, but consolidated in the center. This should be easier to build and
control.

The transmission line and load appears above. The first part with an
impedance of 2Q consists of the short sections connected to the chip through flip-
chip bumps and the first extension. Combined the length is 42 mm long. The second
wing has an impedance of 7.25Q over its length of 25 mm. The flip-chip bumps
shown as circles in the figure can be modeled as 100pH inductors.

Z=7.25Q Z=2Q Z=2K2 Z=7.25K
25mm 42mm 42mm 25mm

Flip-Chip
Bumps --

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - - - - - External

On-chip Clock Structure Transmission
~~ ~ ~ ~LineL----------------------------------------------Ln

Figure 4.15 Schematic of Transmission Line Driver

Figure 4.16 shows the center and edge waveforms for the transmission line
driver. The important results from the simulations are that the transitions times are
slightly lower, about 125 ps. The skew is about 30% better across the entire 16 mm
chip, only 20 ps. Finally, the power consumed is a factor of 4 better than the standard
at only 1.6W. An interesting side point is that, because the final driver is helped by
the transmission line, the pre-driver consumes a larger percentage of the total
power, almost 40%.
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Figure 4.16 Waveforms of T-line Driver

4.3.4 How to Really Tune a Line
Determining the correct transmission line for a given load involves some

amount of trial and error to find the sweet spot of the system, but a large portion
relies on the tools developed in the first two chapters. Let me begin by listing the
basic steps:

Determine cap/length of load and chose an impedance
Chose a tuning strategy
Set basic length for the desired frequency
Chose location and effect of discontinuities
Sweep discontinuity sizes until other harmonics are tuned
Repeat to get to the sweet spot...

Step one of the process begins by determining the capacitance per unit length
of the load. This gives a rough idea of the level of impedance needed. Basically, the
impedance level must be sufficiently low so that the line can drive the load.
However, an impedance that is too low will burn extra power, because the current
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in the line is related to the impedance, while the power is related to the parasitic
resistance. As the impedance falls, the current rises, V/Z, which makes the parasitic
power rise, I2Rparasitic. A factor of 5 lower C, in the transmission line versus the
load/length is a good starting point.

Step two is to pick a basic impedance variation strategy. For this case, I chose
to tune the base length for the third harmonic and use discontinuities to tune the
1st harmonic into place. By placing discontinuities at the voltage maximum of the
3rd harmonic, I can affect the first harmonic exclusively.

Because the flip-chip connections have such a high inductance, 100pH, they
filter out much of the 5th harmonic. This removes any performance improvement
that could have been obtained by tuning for the 5th harmonic. Figuring out this
ugly fact involved some of that trial and error mentioned in the first paragraph. For
better connections or lower frequencies, I might tune the base length for the 5th
harmonic and then use two discontinuities to tune the 1st and third. Alternately,
one could tune the fourth harmonic into location and then tune the other
harmonics into place. The space of tuning ideas is quite large.

1st Harmonic
Voltage

Length

3rd
Harmonic

Figure 4.17 Line Voltages through Step 3

Step three involves running the first Hspice AC simulation to set the length
of a uniform line to the desired frequency. The driver should be a sinusoidal driver
that is swept through the frequencies of interest. Change the length until the voltage
peaks at the given location. As shown in Figure 4.17, the third harmonic fits exactly
in the channel, while the 1st harmonic still needs some tuning.

Once the length is correct, step four involves checking for the location where
you want to place the discontinuities. As mentioned before I used the maxima for
the third harmonic, which are marked with arrows in Figure 4.17. The end ones are
not useful, because they are the open termination points. The two centrally located
ones however are valuable. Now comes a little cheat sheet, Figure 4.18, to help
decide how a discontinuity will affect a given waveform. If you recall from chapter
3, an impedance discontinuity will introduce a shift in phase based on the current
phase. As shown in the diagram if the voltage is positive and rising then that
location has a phase between 0' and 900. A positive jump in impedance at this
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location will add phase or lower the frequency. Each of the regions and the
subsequent effect of increasing impedance is shown below in Figure 4.18.

Z

A phase

V+ tV-

4~ Current
V- V+ Phase

Figure 4.18 Cheat Sheet for Tuning a Line

Going back to our simulation, the line is tuned for too low a frequency. A
positive phase shift is needed to shift the frequency higher and make the first
harmonic fit. At the left maximum, the voltage is positive and falling, so a negative
step in impedance will shift the frequency higher. At the right discontinuity, a
positive step will shift the frequency higher, because the voltage is negative and
falling. Since higher impedances are easier to build, that is typically the one to chose.

As step 5 suggests, one should sweep across multiple discontinuity sizes
located at this right location until the first harmonic is aligned. Finally step 6
suggests that the process should be repeated for different tuning styles and initial
impedances to find the most appropriate. The primary reason one would need to
repeat is because the tuning equations do not incorporate nearly as much detail as
Spice does. In this particular case the model neglects parasitics and much of the
loading model. Until the synthesis technique can be updated with these important
secondary issues, it can only provide a great starting place and a guide to expected
effects. The repetition with Spice is still needed to find the sweet spot of each system.

4.4 Application Conclusions

Two sets of results have been presented in this chapter. One for the 20 MHz
mockup and one for the 1 GHz simulations. In the large scale mockup a uniform
impedance tuned to the correct length reduces power consumption by a factor of 5.8
relative to a standard clock driver. And using an impedance tuned transmission
line saves a factor of 9.5 over the standard driver with the bonus of much cleaner
waveforms. From the 1 GHz simulations, we found that the power falls by a factor
of 4 and the skew improves by about 30%
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5. Secondary Effects

5.1 Outline

This chapter focuses on a variety of secondary issues from impedance
reduction to the effects of parasitic resistance. The next section describes how to use
vertical and horizontal stacking to reduce impedance. The second section explores
two skew reduction techniques, the removal of edge connections and usage of a
"hairy" chip model. The third section derives skin depth and parasitic resistance for
a strip line. The effect of the parasitics is included in the velocity and then in the
voltage amplitude. The fourth section mentions the issues associated with choosing
a dielctric. The last two sections explore the effect of variability in capacitance and
physical dimensions.

5.2 Impedance of a Stacked Transmission Line

A few configurations, shown in Figure 5.1, can increase the capacitance of the
transmission line. Arguably the simplest is to stack lines as shown on the left of
Figure 5.1. The five conducting layers alternate between gnd and signal. The
transmission line in the figure would have four times the capacitance of a single
line with similar dimensions: spacing, width and length.

The right configuration, similar to fractal capacitors, involves interleaving
the conducting layers in the horizontal dimension as well as the vertical. [Lee] For
channels with equal horizontal space and vertical space, the interleaving increases
the surface area and capacitance by roughly another factor of 2. Also as interconnect
technology scales, the minimum height of the wires increases relative to the
minimum width, which means that horizontal interleaving provides an even
larger advantage.

Gnd

Clock

Figure 5.1. Cross-section of Low Impedance Transmission Lines

An approximation for the capacitance and inductance can be made by
modifying the equations presented in Chapter 2. The final term includes horizontal
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and vertical interleaving based on N, the number of conducting channels, which for
the case on the left of Figure 5.1 would be 4.

Ci = c- (8.85 x 10-12 F/m) (W) (2Nconducting channels)

h1

L i = (47t X 10-7 H/m)(h)1
w 2Nconducting channels ,

In the velocity equation rewritten below, the 2N term and the 1/2N term
would simply cancel out. In other words the number of conductors has no effect on
the propagation of a wave. Physics explains that velocity depends solely on the
material properties of the dielectric. Based on the numbers presented in chapter 2,
the velocity, v, would remain 1x108 m/s.

18
v= =1x08m /s

LI(1 2 N)CI(2N)

In the impedance equation rewritten below, the 2N term and the 1/2N term
multiply. In other words the number of conductors reduces the impedance by a
factor of 2N. Based on the numbers presented in chapter 2, the impedance would fall
to 0.314Q/2N.

Z L( N) _ 3.14 x 10-9 H/m 1 _ 0.314Q2
C1 (2N) 3.19 x 10-8 F/m 4N 2  2N

A microprocessor presents a load of 3.7nF spread across 2 cm of length. This
can be massaged into an effective capacitance per unit length of 3.7nF/2cm or
1.9x10-7F/m. In order for a resonator to drive such a capacitive load, it must have
appreciably more capacitance. A stack of 11 conductors with 10 channels could be
used in conjunction with horizontal interleaving to increase the capacitance per
unit length of a single line by a factor of 20, making it significantly larger than the
clock load. The height of the channel, 50um is an assumption of today's ceramic
process parameters. The width is set by the width of the chip to be driven in our
previous applications

Ci=9(8.85 x 10-12 F/m) 2cm (2x10conductors)
C50gm)

C =6.38 x10-7 F/m
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The inductance per unit length would consequently fall by a factor of 20.

Li = (47 x 107H/m)50m 1

( 2cm ) (2 x 10 conductors)

Li = 1.57 x 10-10 H/m

5.3 Clock Skew from Rise Time Differences

Beyond power, one of the very exciting prospects of this design regards clock
skew. Ideally the entire resonating transmission line crosses through 1/2 Vdd at the
same time. In real cases, the clock load, interconnect delay and dispersion within the
transmission line introduce a minimal amount of skew, less than 10 ps. This
performance figure is almost an order of magnitude better than what is achieved in
the Alpha!!

Unfortunately, though the center crossing is relatively well controlled, the
differences in rise and fall times across the chip can be serious. Consider the
situation in the frequency domain as shown in Figure 5.2. In the frequency domain,
our clock waveform decomposes into a sum of sinusoids. The primary components
are the 1st, 3rd and 5th harmonics. As we move farther away from the center of the
chip, the amplitudes of the third and the fifth harmonics fall off more quickly than
the first, because of the structure of the standing wave. This degrades the rise and
fall times at the edge of the chip.

Amplitude Chip

1/2 Vdd

Ov

Distance
Along
T-Line

-1/2 Vdd _ _

Figure 5.2 Frequency Domain View of Skew Problem

Figure 5.3 shows the situation for a rising edge of the clock waveform at
various points across the chip. The center of the chip has a very nice rise time, while
the edge of the chip has a much longer rise time.
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Vdd

90% Center

10%

Ov
Time

Figure 5.3 Rising Edge of Clock Waveform across the Chip

Because our clock waveform feeds pre-charge style circuitry as well as static
circuitry, skew must be measured throughout a large range of voltages. With static
logic, skew is measured at roughly 1/2 Vdd, the inverter threshold voltage. However,
in pre-charge circuits, when the clock reaches an p- or an n-device threshold, pre-
charged nodes can begin to discharge. Taking this into account, the maximum skew
could occur not at 1/2 Vdd, but at a higher, or lower, voltage. Figure 5.3 shows skew
measured from the center's 90% point to the edge's 90% point. This assumes that the
device thresholds are approximately 10% of the power supply voltage.

5.3.1 Clock Skew Reduction - No Edge

Since the waveforms degrade quickly as one moves farther away from the
center, we can reduce skew by disconnecting the edge of the chip. In this way an
interior point with a better rise time propagates to the edge of the chip. Figure 5.4
shows this new configuration.
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Clock Driver CHIP

Removed
Connection

Resonating
Transmission Line

Figure 5.4 Clock Structure to Reduce Clock Skew

Figure 5.5 shows the rising clock waveform at various points across the chip.
The center of the chip has a nice rise time. The edge of the chip receives a delayed
version of the rising edge from an interior connection. The maximum skew again
occurs at the 90% point. It can be measured from the center's 90% point to the edge's
90% point. This turns out to be half of the skew in the previous version.

Amplitude

Vdd

90% Center

\Edge

10%

Ov

Time

Figure 5.5 Rising Edge of Clock without Edge Connections
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5.3.2 Clock Skew Reduction - Hairy Chip
As described in Section 5.3, signals farther from the center of the line have

worse rise times than those at the center. And from Section 5.3.1, the situation can
be improved by shifting the sampling point closer to the center of the line. Another
option would be to give each sampling point its own transmission line, as shown in
Figure 5.6. In this way each sampling point will receive the best signal possible.

Resonating
Transmission

Lines

Chip

mr 11
K~2

Figure 5.6 Concept of Hairy Chip

Figure 5.7 shows how the transmission lines can be folded into the substrate.
For visual compactness the figure has been simplified to just 4 separate lines.
Though this implementation is realizable, designing the layers may prove complex,
especially with horizontal and vertical stacking. Secondly, it may not be reasonable
for the separate lines to share a ground plane because of coupling.
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Figure 5.7 Possible Implementation of Hairy Chip

5.4 Skin Depth and Parasitic Resistance

The parasitic resistance will have a minimal effect on the velocity and a more
significant effect on line losses. In order to calculate resistance, we must first
calculate the skin depth at each harmonic, the frequencies of interest. We will be
using copper with a resistivity, p, of 1.72x10-8 2m. To first order, the following
equation for skin depth, 8, should hold:

8(f)=

Equation 5.1

1.72 x 10-l8 Qm 6.6 x 10- 2 m -s 1/ 2

Sf (4irx10 H/m)

Since 95% of the current flows within three skin depths of the surface, we
must chose our metal thickness greater than this. For example, at a base frequency of
1 GHz, the thickness should be at least:

Thickness > 3 e 8(1GHz) or 6.26 gm

If the wire thickness is large compared to the skin depth, the following
calculations for resistance per unit length should hold. For the higher frequencies,
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like the other harmonics of a square wave, the skin depth is even smaller so the
approximation should only improve.

1 1
Ri(f)= p(f

8(f) w

R,(f)=1.72 x10- 8 Qm1 =(2.61x107 Q /mi
6.6 x10-2ms-1/2 2cm

R,(1GHz)= 8.25 x10' Q /m

Ri(3GHz)= 0.0143 /m

R,(5GHz)= 0.0185 Q/m

5.4.1 Effect on velocity

Because the frequencies of interest are so high, the inductance dominates the
parasitic resistance. This means the frequency dependent parasitics won't impact the
velocity significantly. An ideal transmission line has a velocity derived in Chapter 2,
while a real line with parasitics would be more complex.

_1

v- 1x10 8 m/s
QLiC 1

1

RIG, G12 R,2
4o2LiC1 8o2C1

2 + 8o2L12j

Where R is the parasitic resistance of the conducting plates and G is the
parasitic conductance of the dielectric. Both parasitics are dominated by the
impedance of the inductor and capacitor at the frequencies of interest. Looking at the
last term with the numbers explored earlier, we find that the change in velocity due
to parasitic resistance is insignificant relative to 1.

R12_ (2.61 x 10-7 Q / m 500MHz )2 = 1.75x10 11

8(o 2LI2  8 (27t 500MHz)2 -(1.57 x 10-7H /m)

5.4.2 Effect on voltage

Unfortunately the effect of parasitic resistance and dielectric losses on voltage
cannot be neglected. The equation for voltage as described in the second chapter was
a pair of waveforms, one forward propagating wave and one reverse. As shown
below, each wave consists of 2 exponentials, a real component (a) and an imaginary
component (P).
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V = V e(X e-px + V eax ejX

The real component (a) is the combination of the dielectric losses and the
conductor losses. The conductive losses which result from parasitic resistance are
captured in the equation below.

_R _ 2.61x10~7Q/ms-1/2)
a R - 6 ' = (4.15 x10-7 m-1s-1/2)'
2ZO 2(0.314Q)

The dielectric losses are captured in the equation below.

a = (loss tangent)[[nf g] = (0.001) [nf J4n x 10- 7 F /m 9 8.85 x 10-7 H/m]

a = (3.14 x10-11 m-'s-1)f

For a 1GHz square wave the length of the transmission line would be 5cm,
which a wave would need to traverse twice each cycle. The voltage lost for each of
the harmonics over the course of this length is shown below. The first term in the
exponential represents the conductor parasitics, while the second represents the
dielectric losses.

AV = e-(1GHz)x -(0.0131+0.0314)0.1 0.996 or 0.44%

AV = e-(3GHz)x e-(0.022 7 +0.0942)0.1 0.988 or 1.2%

AV = e-(5GHz)x -(0. 02 9 3 +0.1 5 7 )0.1 0.982 or 1.8%

The resonance of the transmission line cavity must be such that it retains the
appropriate level at the source. The Q of the cavity is defined by the above losses. As
the frequency increases, these losses stay relatively constant. The cavity length varies
inversely with frequency which offsets the dielectric losses that vary directly with
the frequency.

5.5 Choosing a Dielectric

A few issues arise in the choice of a dielectric material in the resonator. Of
obvious importance is choosing a material with low losses. This will be explored
more in the next sections. The other item which is not so obvious is the tradeoff
between velocity and impedance. The dielectric constant sets the velocity of the line
and sets the inherent size of the impedance for given dimensions.

A material with a high dielectric constant will have a lower velocity and a
lower impedance for a given set of dimensions. On the positive side the low
impedance translates into a better driver for the load and the low velocity means a
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shorter line to resonate the desired frequency. The shorter line means lower losses
related to parasitics, but parasitics will increase as a percentage of the impedance.

A material with a low dielectric constant will have a higher velocity and a
higher impedance. On the positive side, the chip will represent a smaller section of
the transmission line and so skew will be reduced. On the negative side, the length
of the line increases and so the power burnt increases. Since the impedance is higher
the parasitics represent a smaller portion of the total.

Generally, a low dielectric constant is desirable in the wings of the chip to
reduce the length and therefore losses of the line. Directly under the chip a high
dielectric material is needed to reduce skew and improve drive. If a single dielectric
must be chosen, balancing these two desires is important.

5.6 Load Capacitance Variation

If the clock load were to vary wildly from cycle to cycle, the resonant circuit
might function poorly. A drastically smaller clock load on a particular cycle could
cause the voltage on the clock line to spike. For a number of reasons such an effect is
not a concern. But first let's explore the primary reason for load variability.

5.6.1 Typical Load

Figure 5.8 shows a few examples of clock loading that can be found in
synchronous circuits. On the left appears a domino style "and" gate in which the
precharge and evaluate devices present load. At the upper right is a clocked nand
gate that creates clock qualified data. Finally at the lower right appears a standard
latch whose load is the nmos pass transistor and the inverter.

DDn Dclocked

A. Clock
in

B. P

n~ Di- Dout

HInv n

Clock

Figure 5.8. Typical Examples of Clock Loads

Let's take a look at the clocked nand gate, upper right. If the D input is low,
the output node will not transition. Therefore, the clock capacitance will be
dependent on just the gate oxide capacitance. However, if the D input is high, then
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the output node will transition in the opposite direction from the clock. The
subsequent clock capacitance will be a combination of the gate oxide and miller
effect.

Note that gate oxide, a constant, will dominate the clock capacitance. The back
gate coupling related to data dependence should introduce something on the order
of a 17% variation in capacitance from best to worst case. The following table lists
data-dependent variations for the common clocked gates based on Spice
simulations.

Gate Type % variation
nand 17%
nor 6%
pass 25 to 35%
dynamic 11%

Table 5.1. % Variation in Capacitance for Clocked Gates

5.6.2 Why data-dependent variability is not a concern
There are three reasons why one should not worry about load variability.

First, the data would need to be correlated across the entire chip in order to seriously
affect the overall capacitive load. Second, the transmission line capacitance is a
significant factor larger than the total load capacitance. Relative to the transmission
line capacitance, the data dependent variation of 20% would be reduced to 2 or 3% of
the total capacitance. Finally, the drive transistors should ameliorate some of the
spike and undershoot presented by the cycle to cycle variation.

Note that this discussion ignores clock gating, a technique that introduces a
very large amount of variance in capacitance. Because clock power has been reduced
by a large factor, I am assuming that clock gating loses its appeal. If clock gating was
combined with a resonant driver, load variability could be a serious issue.

5.7 Physical Variations of Transmission Line

Another possible concern about variation centers on the characteristics of the
transmission line. This would include variations in width, spacing, length and
dielectric constant between parts of the transmission line and of the entire line from
some expected, nominal value. Should the characteristics vary too much, the quality
of the resonant waveform might be degraded. Variations in the width, spacing and
dielectric constant boil down to variations in the impedance, while the length and
dielectric constant variations look like velocity variations.

5.7.1 Impedance Variation
Information for common manufacturing tolerances is hard to come by, but

one number bandied about is that, in a particular process, a 50Q impedance can be
expected to vary by no more than 5%. This variability is almost exclusively between
a substrate and the expected, nominal value. Within a particular substrate the
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impedance is more carefully controlled. This means that though the absolute value
of an impedance will vary, the relative value between sections of the transmission
line will remain constant. Since tuning relies exclusively on relative values, the 5%
absolute variation will not affect how the transmission line resonates.

Further, the 5% number is quoted for chip to chip communication. Within a
particular substrate, local to the microprocessor chip, the variability will be much
lower. Finally, because we are interested in an impedance much lower than 50Q, the
importance of width variations falls significantly. For all these reasons impedance
variation of transmission lines should be a secondary concern.

5.7.2 Velocity/Length Variation

On the other hand, variations that affect the velocity of a channel, but not its
length, should be considered carefully. The effect of length variation can be safely
ignored, because the lithographic tolerances are quite low. For a 2cm section of
transmission line, variation of 1 to 29m amounts to at most 0.01% (2gm/2cm). On
the other hand, the dielectric constant accounts for a significant portion of the
impedance variation, maybe half of the 5% mentioned earlier. The velocity in the
line is dependent on the square root of the dielectric constant, so we can expect
variations in velocity of 2.5%. Changes in velocity mean that the phase of a
waveform at the location of a discontinuity could change from the expected value.

The best way to correct for any such variation is to use a feedback tuning
technique, post-manufacturing trimming or lumped element selection. Fortunately,
none of these variations will cause any cycle-to-cycle variation, unlike the data
dependent capacitance explored earlier.
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6. Conclusion
This chapter presents how this work fits into the wider space of what remains

to be done. It begins with the major findings of the thesis, namely how to synthesize
resonant cavities for very broad band, periodic signals. Finally, it will conclude by
outlining the broad space of things left to be done.

6.1 This Work

Chapter 2 began with the basic of transmission line theory. And in chapter 3
we learned how to tune a transmission line for a desired periodic waveform using
impedance discontinuities. This involved two basic equations relating voltage and
current across a discontinuity.

Va cos jnf x = Vb cos -- x + A
v v

V .2f V . 27tf
sin x = -- sin -x+ A

Za v Zb v

We also learned that the tuning process can be simplified by linearizing the
phase shift with large discontinuities or by removing it altogether by locating a
discontinuity at a voltage or current zero. The end of that section looked at the first
application of converting a square wave into a linear ramp waveform.

The end of the chapter laid out the basis for tuning using lumped elements
that introduce steps into the voltage and phase. The basic equations describing the
voltage and current were modified to handle series and parallel elements.

(2nf ~ 27f Va (2nf 11Va cos(v x) = Vb cos --- x + Ac + a sin - x)[L(o- 1 ]Series
v (v Z (v _ Co sre

Va. 2nf V . 27f +21rf 1
sm -- = sm -x+A + V cos -- x -- Co'PrlZ v Z n v a v Lo Parane

Chapter 4 covered the central application pursued in this thesis: square-wave
clock drivers for microprocessors. The choice was made because of the usefulness of
the technique for power reduction and the ease with which to generate and resonate
the waveforms.

A version of the clock-driver was built at two different frequencies. The 20
MHz mockup provided true verification of the basic principles with waveforms on
an oscilloscope. We were able to use a resonant cavity to reduce power consumption
and create much cleaner waveforms. But more importantly we showed that when
the line was tuned for the desired frequencies, the improvement in waveform
quality and power was much more significant. The line with a uniform impedance
tuned to the correct length reduced power consumption by a factor of 5.8 relative to
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a standard clock driver. And using the impedance tuned line saved a factor of 9.5
over the standard driver.

The other version of the clock driver was a set of Spice simulations at a
frequency of 1 GHz. The purpose of these was to show the applicability of the tuning
technique at technologically relevant frequencies. From the 1 GHz simulations, we
found that a tuned transmission line reduced power by a factor of 4 and improved
skew by 30% over the actively-driven clock.

6.2 Future Work
This work has focused on the problem of synthesizing a resonant line for a

desired set of frequencies. It began as an attempt to answer the question of what was
going on in a transmission line. In essence, figuring out the why's in the analysis
problem. As the work progressed, a new idea began to take shape: that of phase and
voltage shifts in the resonant standing waves.

Another, possibly more intuitive way to understand the problem is to focus
on power instead of voltage and current standing waves. The idea is that the power
must be conserved at every point along the system. At a discontinuity the power
must be equal on either side. Certainly much of the same theory could be derived by
following such a line of reasoning and this approach is worth exploring.

A deeper question that remains open is whether a transform exists to convert
from the frequency space into the impedance space. The impedance space is just the
impedance as a function of distance. A large portion of my work was oriented
towards developing such a transform, and the synthesis technique presented here
was as close as I could come. The biggest difficulty with a transform is the broad
space of possible waveforms.

It would be rather simple to transform a waveform into an impedance shape,
if one could specify a waveform at every point along the line. The problem lies in
choosing the desired waveform. Typically a user is concerned only with the voltage
and/or current at a few key locations and cares nothing about the waveform in the
intervening space. Unfortunately, the user also cares about the simplicity of the line
impedance: no impedance can be too large or too small or require fine grain control
of impedance. Marrying these two sets of desires from both the impedance and
frequency spaces represents the real difficulty in finding a useful transform.

Another area unexplored by this thesis, that may be partly related to finding a
transform, is the idea of "continuous" impedance discontinuities. At first this might
sound contradictory, but a simple example will illustrate the point. The flare of a
trumpet horn is a fabulous method for matching a high impedance, the tube of the
horn, to a low impedance, the outside world. Such a discontinuity in impedance
does not change suddenly, but changes gradually over distance, hence use of the
term "continuous." Incorporating such discontinuities into this theoretical
framework, could open this technique up to an even wider range of applications.

Beyond the possible work in the theoretical aspect of impedance tuning, there
remains much to be done on the application side. Probably the most interesting is
applying the lumped element tuning equations to an active tuning technique. The
idea would be to use varactors (variable capacitors) to fine tune a line to the exact
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resonance desired. Some method of measuring the activity on the line would be
needed, along with some intelligence in altering the line correctly.

Another very interesting application would be to marry this tuning technique
to the idea of salphasic distribution of clock signals to distributed loads. [Chi] The
power of very low skew distribution coupled with square wave distribution is quite
exciting.

A few other secondary issues touched on in this thesis, but not explored in
detail are the incorporation of parasitics directly into the model, the hairy chip
method of skew reduction and the variability in the system parameters including
load capacitance and velocity variability.

I have greatly enjoyed filling out this relatively untouched space of theory
and applications and hope that future work in this area will be as fruitful.

70



Bibliography

Benade, Arthur H. Fundamentals of Musical Acoustics. New York: Dover
Publications, 1990. 137, 406-410.

Bowhill and Gronowski. "Practical Implementation Methods and Circuit Examples
used on the ALPHA 21164," Proceedings of VLSI Circuits Workshop . June
1996.

Burkhart, Scott and Russel Wilcox. "Arbitrary Pulse Shape Synthesis Via
Nonuniform T-line," IEEE Transactions on Microwave Theory and
Techniques, Volume 38, Number 10. October 1990. 1514-1518.

Chi, Vernon L. "Salphasic Distribution of Clock Signals for Synchronous Systems"
IEEE Transactions on Computers. Version 43, Number 5, May 1994. 597-602.

Collin, Robert E. Foundations for Microwave Engineering. New York: McGraw-Hill,
1966.

Curtins, H. and A. V. Shah. "Step Response of Lossless Nonuniform Transmission
Lines with Power-Law Characteristic Impedance Function" IEEE Transactions
on Microwave Theory and Techniques, Number 11. November 1985. 1210-
1212.

Dhaene, Tom, Luc Martens and Daniel De Zutter. "Transient Simulation of
Arbitrary Nonuniform Interconnection Structures Characterized by Scattering
Parameters" IEEE Transactions on Circuits and Systems I - Fundamentals
Theory and Applications, Volume 39, Number 11. November 1992. 928-937.

Hayden, Leonard A. and Vijai K. Tripathi. "Nonuniformly Coupled Microstrip
Transversal Filters for Analog Signal Processing" IEEE Transactions on
Microwave Theory and Techniques, Volume 39, Number 1. January 1991. 47-
53.

Horowitz, Mark. "Clocking for High Performance Processors," Proceedings of VLSI
Circuits Workshop . June 1996.

Koller, J. and W. Athas. "Adiabatic Switching, Low Energy Computing, and the
Physics of Storing and Erasing Information", Proceedings of Physics of
Computation Workshop. October 1992.

Lee, Thomas, Hirad Samavati, Ali Hajimiri, Arvin Shahani and Gitty Nasserbakht.
"Fractal Capacitors". IEEE journal of Solid State Circuits, Volume 33, Number
12. December 1998. 2035-2041.

71



Ramo, Simon, John R. Whinnery and Theodore Van Duzer. Fields and Waves in
Communication Electronics, Second Edition. New York: John Wiley & Sons,
1984. 210-312.

Reymond, Welles. Standing Sine Wave Clock Bus for Clock Distribution Systems.
General DataComm, Inc. Middlebury, CT: US Patent #1993000143442. May 14,
1996.

Schutt-Aine, Jose E. "Transient Analysis of Nonuniform Transmission Lines" IEEE
Transactions on Circuits and Systems I - Fundamentals Theory and
Applications, Volume 39, Number 5. May 1992. 378-385.

Tran, Thanh T., Clarence Mar, Javier Izquierdo. Sine Wave Clock Distribution with
High Voltage Output. Compaq Computer Corp. Houston, TX: US Patent
#1992000855453. January 25, 1994.

Younis, Saed G., Thomas Knight. "Resonant Power Supply Techniques for Adiabatic
Logic" Symposium on Integrated Systems. Chapel Hill, March 1995.

Younis, Saed G. Asymptotically Zero Energy Computing Using Split-Level Charge
Recovery Logic (CMOS). Ph.D. Thesis Massachusetts Institute of Technology,
1994.

72



Al. Appendix of 1GHz Schematics
The following appendix includes all the schematics for the 1GHz simulations

and a brief description. The first section covers the on-chip clock load used
throughout the simulations. The next section describes the top level schematic of
the standard driver. The third section includes the model of the flip-chip bumps and
a model of the transmission line. And the appendix concludes by describing the top
level schematic for the tuned transmission line driver.

A1.1 Model of Load
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Figure 1.1. Schematic of mload

The basic element of the clock load, called "mload", consists of a 5 by 5 array
of capacitors connected by a mesh of inductors and resistors. It is meant to represent
a 1mm square section of clock load. 16 m._load modules are connected in series to
represent one slice of the total chip, called "mchip". 16 slices would need to be
connected in order to create a full chip with a capacitance of 4nF. The simulations

73



stop at the level of one slice. Therefore, m-chip represents 1/16th of the total load
and mload represents 1/256th of the total load.

The parasitic resistance is calculated relative to a frequency of 1GHz and
accounts for the expected width of internal metal that can be utilized to distribute
clock, namely 1/3rd. Note that the side elements are shared with the side of the next
m_load and so have half (or twice) the value of central elements. The slice allows
connections every 1mm along most of the length of the load. The two dimensional
nature of mload does not really affect the simulations, but it begins to give the
impression that the clock load is distributed in both dimensions.

AIno0d mined reload rrelad rnlaad rn-laad m-land qLined rreind rnrlead rreLead rnJaad rnland rload rfLInd rrelad

:10 d I ri 1 i 1 i 1 f 0 1 11 rt rl 1 r 11 rl 01 r 11 rt 1lF ri 11 rl 11 di

178 1177 1178 1171 [lie [107 [1198 119 395 3194 31143 [192 [1dI8. 3183 118B2

4) N)
(U M

Resistance:
50m Ohms of sheet R

Inductance:
2crn/3 of width
2cm of length
3.73pH

Capacitance:
15 mjoads at 15.6pF each for a iotal of 0.25nF shown above.
This represents 1/16th of re<1l chip (4nF)

Full Chip Load

Figure 1.2 Schematic of mchip
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A1.2 Top Level of Standard Driver
The top level of the standard driver is called mstandard. The driver is split

with each side connecting 2mm off the center point. Skew is measured between the
center and the edge of the slice, "far". The n-device size of the final driver stage is
8mm by 0.24 microns. The beta ratio of the final inverter is 3 to 1 to give roughly
equal rise and fall times. The power supplies of the final stage and two pre-driver
stages are each connected to a very large capacitance. The power can be calculated
from the amount of voltage droop on these nodes.

rrchip

Standard Driver "r
Split 2mm off center fiefht2

p/3=n=8kx0.24 'eft2 rigt2

4n F/1 6 lefti center rightl

1GHz
power-final

12k/0.24 3
OCIC,32 1 "

M14 C lft
power-pre 4k/3.24

1.5 k/0. 24 6k;/0.24 CCIC4
OC,IC,4 M11

pre , 4 M12 el M 13 0 01 rm2?
50/0,24 2k/,24 12k/ A24

OCC,2 CC, '7 OC.IC,32 igt

IM+M M7 M10 rgt

1. - 4k/3,24
tdf 1t .2 E3p,: OCIC,16

P0P MS6

Figure 1.3 Schematic of mstandard
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A1.3 Model of Transmission Line

This section includes the model used for the transmission line, m_t1mm. As
the name suggests, m_t1mm models a 1mm long section of line with a two stage,
RLC ladder. The length is tuned by adding or removing sections. The impedance of
the line can be set by changing the parameter, "z". A copy of m_t1mm, m_t1mma,
uses "za" instead of "z". Another copy named m_t1mmb uses "zb". These allows
different impedances in different sections of the lines. The parasitic resistance is
sized relative to an impedance of 8.42Q which represents the impedance calculated
for a line with 1mm of width, dielectric constant of 4 and spacing of 50um that uses
horizontal stacking. The inductance and capacitance are directly dependent on the
impedance and the velocity.

The second schematic shows the simple model of the flip-chip bumps.
Basically they present an inductance of 100pH.

All relative to Z=9.42ohms
for 1mm width

Resistance:
sheet= 0.0082ohms/sq @ 1GHz
length=1rmm/2
width=lmmr
R relative to Z=9.42
r=(z/19.42)*0.0082*0.5mrV1 mm

Inductance:
L/length = Z/vel
Length is 0-5mm
L=0.5mm*z/1 .5e8

Capacitance:
C/length = 1/(vel*Z)
length is 0.5mm
c=0.mrnV( 1.5e~l*Z)

1mm Section of Transmission Line

Shared

'z*4.35e-4' L='z*3.3e-12 'z44.35e-4' L='z*3.33e-12'

1CO 
1 C34 R72

1.66e-12/z' 3.33e- 12/z' 1.6Se-12/z"

Figure 1.4. Schematic of m_tlmm
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Flip-chip Bump

Figure 1.5 Schematic of mflip
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A1.4 Top Level of Tuned Transmission Line Driver

The top level of the tuned transmission line driver is called mtuned. The
driver feeds the center point. The n-device size of the final driver stage is 2.8mm by
0.24 microns. The beta ratio of the final inverter is 3 to 1 to give roughly equal rise
and fall times. The power supplies of the final stage and two pre-driver stages are
connected to a very large capacitance. The power can be calculated from the amount
of voltage droop on these nodes. Skew is measured between the center and the edge
of the slice, "far".

The flip-chip bumps connect the center of the chip to the transmission line
every 1mm. At the edge of the chip, right2 and left2, the transmission line jumps to
the extensions above the clock load, m_load. It flows from the outside in towards
the middle. The impedance consists of 2Q across the middle of the chip and the
36mm extension whose node names are "zn" for the right side and "yn" for the left
side. At this point the impedance jumps to 7.25Q for the remaining 25mm. This
would be through the "za" and "ya" sections that are 23mm long and the "zb" and
"yb" sections that are 2mm long.

Ift2 yr<0> yn<36 ya<0> ya<23 yb<0> yb<2>

yn<35:0> 42<35I yn<36-1> ya<22:0> 4e 22 > ya<23:1> yb<1:0> 1I yb<2:1>
nr rn n rnit mm

10HZ
Z=2. ZA=ZB=7.25
TOTAL POWER= 1.66W
125ps riseTall

left2 left 1

0Mrn tom 1M
zb<2> Zb<0> <23> Z4e<0> fl<36> Zn<0> riht2

X54 X53 X49
zb<2 5:1 zn35:0>

t-rn b10 a2.; Fir1v . n<1;rr rni-m

lefto right0 right1 right2

yower-pre power-final L
525/ .24 2.1k/.2 7,41</0.24 CB

a- CI,4 C,IC,te1B'u CC,IC,32 :T0 8
0.15p M18 pre1 M17 pre2 M19

175 /0.24 0.7 .24 2.8k 24

pre' OCIC,2 07 OC,IC,8 2.8 OC,IC,18
M10 M 15 M16

Figure 1.6 Schematic of mtuned
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