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ABSTRACT

The implementation of digital filters using
finite precision or fixed point arithmetic introduces
several quantization problems, among which is roundoff
noise. An investigation of the behavior of roundoff
noise in cascade realizations of finite impulse response
digital filters as a function of filter parameters as well
as section ordering is carried out, with both theoretical
bases as well as experimental results. It is shown that
most orderings of a filter have relatively low noise.
Linear phase filters are used as examples throughout, and
a unified, rigorous treatment of the theory of these fil-
ters is provided. Furthermore, several methods for the
scaling of cascade filters to meet dynamic range con-
straints are rigorously summarized, and two of these
methods are treated in depth, including a comparison be-
tween their effects on roundoff noise.

Arguments are presented which demonstrate a
correlation between roundoff noise and a parameter which
is defined in terms of the peakedness of certain sub-
filter spectra. This result enables one to judge by
inspection the relative merit of a filter ordering.
Experimental evidence is presented to support this result.
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Based on a simple procedure proposed by
others, an algorithm which finds, for a cascade filter,
an ordering which has very low noise is developed.
Application of this algorithm to over 50 filters has
in every case shown excellent results. For practical
cascade filter orders of interest, viz. up to 50, the
algorithm requires less than 20 seconds on the Honeywell
6070 computer. A filter of 128th order has been ordered
using this algorithm, yielding an ordering with rms
noise of approximately 4Q to 6Q (Q = quantization
step size), depending on the type of scaling performed,
compared to a potentially possible value of over 10 2 7 Q.

THESIS SUPERVISOR: Alan.V. Oppenheim
TITLE: Associate Professor of Electrical Engineering

THESIS SUPERVISOR: Lawrence R. Rabiner
TITLE: Member of the Technical Staff at the Bell
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1.0 Introduction

Within the past decade, great advances have been

made in the field of digital filtering. Many efficient

techniques have been developed for the design of filter

transfer functions with specified frequency response

characteristics. Digital filters have been successfully

employed and found to be indispensable in many signal

processing tasks, such as speech and picture processing

and analysis. The advantages of digital systems over

functionally-equivalent analog systems are clear - high

reliability, arbitrarily high accuracy, stable and easily

alterable parameter values, and straight-forward realiza-

tion.

Arbitrarily high accuracy, however, is possible

in any digital system only at the expense of arbitrarily

long wordlength used to represent data. Clearly, increased

wordlength implies increased system complexity and cost.

Because special-purpose digital systems dedicated to

the task of filtering have become feasible through the

use of large-scale integrated circuits, system wordlength

has become an important design parameter. Therefore,

given a specified filtering task that a system is to per-

form, it is desirable to minimize the accuracy or wordlength

required of that system, in order that size and cost may

be held to a minimum.
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While excellent filter transfer functions

designed on the basis of infinite-precision arithmetic

are readily available, it is as yet unclear what types

of algorithms are most efficient for implementing any

particular filter transfer function using finite-precision

arithmetic. In fact the approximation (design of transfer

function) and implementation phases of digital filter

design are not really independent since given a filter

wordlength and algorithm or configuration, one may find

a better solution for a transfer function than that

obtainable by quantizing the result of an "infinite

precision" transfer function. In any event, in order to

solve the implementation problem, it is necessary to

understand as much as possible the effects, commonly

referred to as quantization effects, that finite word-

length has on the behavior of a practical filter. In

this report we shall consider the behavior of one type

of quantization effect in one type of practical digital

filter.

Digital filters can be divided into two

fundamental classes - those with impulse responses of

infinite duration and those with impulse responses of

finite duration. We shall refer to the former class as
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"Infinite Impulse Response" (IIR) filters and to the

latter class as "Finite Impulse Response" (FIR) filters.

In the frequency domain these two classes are distinguished

by the fact that transfer functions of IIR filters are

rational functions in z~ , hence are represented by both

poles and zeros in the z-plane, whereas transfer functions

of FIR filters are polynomial functions of z~ , repre-

sented by zeros only in the finite z-plane. The reader

may recognize that IIR and FIR filters are also referred

to in the literature as "Recursive" and "Nonrecursive"

filters. However, since both IIR and FIR filters can

be realized recursively as well as nonrecursively[1 51

we shall reserve the terms "Recursive" and "Nonrecursive"

to describe types of realizations of filters.

The study of IIR digital filters has had a

longer history mainly because of the generality of IIR

filters and the close resemblance between the form of

their transfer function and that of traditional analog

filters. By simple algebraic transformations it is

possible to convert transfer functions of analog filters

into transfer functions for IIR filters while preserving

frequency response or time response characteristics of

interest. In this way design specifications for a

digital filter can be phrased in analog filter terms,
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so that the great body of knowledge already existing

for continuous filter design can be put to advantage in

digital filter design. However, IIR filters have some

important inherent short-comings. First of all, limit

cycles can occur in IIR filters, causing non-zero output

even with zero input. Secondly, quantization of the

coefficients of a stable IIR filter can lead to an

unstable filter. Finally, IIR filters with stringent

specifications on their magnitude frequency response

have highly nonlinear phase response characteristics.

In order to find solutions to these problems

where they are significant, and also as a result of

important developments in discrete optimization theory,

a great deal of interest has been turned to FIR filters

in recent years. FIR filters have several important

advantages over IIR filters. Most notable among these

are the following:

1) With proper constraints on their coefficients

FIR filters can be easily made to have exactly linear

phase response. These filters can then be used to

approximate any arbitrary magnitude frequency response.

2) When realized nonrecursively FIR filters are

always stable, thus quantization of coefficients cannot

lead to instability. Furthermore, limit cycles cannot

occur in nonrecursive FIR filters.
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In this report we shall restrict all experi-

mental investigations to FIR filters with linear phase.

However, most results obtained can be easily generalized

for FIR filters in general. Sections 2.0 to 2.2 will

present a unified discussion of linear phase filters.

But meanwhile, we first consider quantization effects

in general and then define our research problem area.

1.1 Quantization Effects in Practical Filters

A practical digital filter (i.e. one realized

with finite precision arithmetic) introduces several

quantization effects that are unexplained by a simple

theoretical transfer function. These may be classified

into three basic categories:

1) Quantization of the values of samples derived from

a continuous input waveform causes inaccuracies

in the representation of the waveform.

2) Finite precision representation of the filter

coefficients alters the frequency response

characteristics of the filter and may cause a

stable filter to become unstable.

3) Finite precision arithmetic causes inaccuracies

in the filter output, which, together with the

finite dynamic range of the filter, limits the

signal-to-noise ratio attainable.
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The first type of quantization effect,

commonly known as A-D (analog-to-digital) noise, is

independent of the method of transfer function implemen-

tation, and can be easily analyzed. It will be shown to

be negligible compared to roundoff errors in most

filters realized in the cascade form of interest. The

second type of quantization effect, known as the coeffi-

cient sensitivity problem, does depend in degree and

character on the type of structure used to implement a

filter. Much effort has been given to studying the nature

of this effect in IIR filters[7-1024]. However, though

some of the findings on IIR filters can be specialized

to FIR filters, others are not applicable. Herrmann and

SchUissler[6] have provided some insights into the sensi-

tivity of coefficients in the linear phase FIR cascade

structure, but more work needs to be done before the full

implications are clear.

In this report we will consider only the third

type of quantization effect. Errors in this category

are introduced into a filter by the quantization of results

of arithmetic operations within the filter. The exact

nature of these errors depends on the "mode" of arithmetic

employed (fixed-point or floating-point), as well as the
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type of quantization used (rounding or truncation).

For the same quantization step size truncation leads to

a larger error variance than rounding. Therefore, in

general rounding is preferred.

Extensive studies have been made on the statis-

tical properties of roundoff errors in both floating-point

and fixed-point arithmetic[ 2 7 -3 0]. With regard to quan-

tization errors the major difference between these two

modes of arithmetic is that given the wordlength used,

in the former case the maximum possible error committed

when quantizing the result of a multiplication depends

on the magnitude of the result whereas in the latter

case it is independent of the data magnitude. Also,

addition introduces quantization errors in floating-point

arithmetic but not in fixed-point arithmetic.

Although,for a given wordlength, floating-point

arithmetic generally results in less error than fixed-

point arithmetic, for reasons of economy fixed-point

arithmetic is generally employed in special-purpose

digital equipment. In this report our analyses will be

based upon the assumption of fixed-point arithmetic

with rounding. However, the results obtained are essen-

tially independent of the mode of arithmetic employed as

well as the type of quantization performed. Only the
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formulas for the calculation of noise variances are

different among the different cases.

1.2 Contributions of this Thesis Research

The major contributions of this thesis to the

understanding of FIR digital filters can be summarized

as follows:

1). Sections 2.0-2.1: The theory of linear phase

filters is presented in mathematical rigor.

2). Section 3.2: A noise figure in number of bits

is defined which relates an upper bound on

the noise output magnitude of a filter to the

number of bits required to represent noise so

as to free signal bits from noise.

3). Section 3.3: A thorough, rigorous treatment

of known scaling methods to meet dynamic range

constraints in cascade filters is presented and

optimal scaling methods are defined and proved

for two classes of input signals to a filter.

4). Section 4.1: Considering all possible orderings

of sections of relatively low order cascade

filters, the distribution of output noise

variance values over their range of possible

occurrence was determined for a large number of

filters. The shape of the distributions is



found to be essentially independent of the

characteristics of the transfer function of a

filter. In particular, most orderings of a

filter are found to have relatively very low

noise. Also, certain orderings equivalent in

terms of output noise are determined and their

equivalence proved.

5). Section 4.2: A comparison of the output noise

variances of a filter determined by two

different scaling methods is presented. Analy-

tical reasoning shows the results of the two

methods to be very comparable, at least in

order of magnitude. Experimental results then

show that for almost all orderings the variances

are approximately in a constant ratio indepen-

dent of ordering for the filter.

6). Section 4.3: Experimental results are provided

to show that roundoff noise tends to increase

with all four parameters, viz. filter length,

bandwidth, passband and stopband approximation

errors, which characterize a filter transfer

function. In particular, noise tends to in-

crease exponentially with filter length.

7). Section 4.4: A correlation is established

18
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heuristically and experimentally between output

noise level and a parameter defined in terms

of the amount of peaking of certain subfilter

spectra. The result enables one to judge by

inspection the relative merit of an ordering

for a filter. It also explains to a degree

why most orderings for a filter have low noise

and helps the designer in the absense of an

ordering algorithm to sensibly choose, with

minimal efforta good ordering for a filter.

8). Section 5.0: A completely automatic machine

algorithm is presented which findsfor a cas-

cade filteran ordering with very low noise.

This algorithm is developed based on a simple

procedure proposed by Avenhausl16l. For prac-

tical cascade filter orders of interest, viz.

up to 50, the algorithm requires less than

20 seconds of computation time on the Honeywell

6070 computer. Application of this algorithm

to over 50 filters has,in every case,shown

excellent results. Typically the resulting

filters have only 2 to 3 bits of noise. A

typical 1 2 8 th order (129 point) filter has

been ordered by this algorithm, yielding an
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ordering with rms noise of approximately

4Q to 6Q (Q = quantization step size),

depending on the type of scaling performed,

or -3 bits, compared to a potentially possible

value of over 10 Q, or 91 bits.

Because of the rigorous nature of the presen-

tations in sections 2.1 and 3.3, the major results are

stated in theorems followed by their proofs. Thus,

the reader not interested in rigorous proofs may, without

loss of continuity, read only the statements of the

theorems. In fact, for an understanding of the discussions

of sections 4.1 and higher, the reader need only be

familiar with the definitions and some of the theorem

statements of earlier sections.
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2.0 Linear Phase FIR Filters

The general transfer function for an N point

FIR filter can be written in the form

N-1
H(z) = Y h(k)z-k

k=0
(2.1)

where the real-valued sequence {h(k), k = 0,... ,N-1} is

the impulse response of the filter. Alternatively, H(z)

can be expressed in the factored form

=Ns -1l
H(z) NI (b oi + b li +b2iZ

1=1
(2.2)

where b i, j = 0,1,2, 1 =

the number of factors, is

Ns =

1,...,Ns are real numbers and Ns,

defined as

-1

N

N odd

N even

and b 2Ns = 0 if N is even.

We shall define a linear phase filter to be a

filter whose transfer function H(z) is expressible in the

form
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H(z)I = H(eiW) = + |H(ejW)|e-ja) (2.3)
z=e

where a is a real positive constant with the physical

significance of delay in number of samples. The factor +

is necessary since H(eiw) actually is of the form

H(edw) = H*(ejw)e-jaw

where H*(eiw) is a real function taking on both positive

and negative values. We will also find it useful to

define a mirror-image polynomial (MIP) of degree N to be
N k

a polynomial of the form I a kz whose coefficients
k=O

satisfy the relation

ak aN-k 0 < k < N

In the next section we shall derive necessary

and sufficient conditions on the coefficients of H(z)

such that a filter with transfer function H(z) will have

an exactly linear phase response.
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2.1 Criteria for Linear Phase

The conditions on H(z) which are necessary and

sufficient for linear phase are summarized in the state-

ment of Theorem 2.1 below. All notations are as they

were defined in the previous section. A rigorous proof

of the theorem is provided. However, the reader who is

either already familiar with the results of Theorem 2.1 or

is not interested in a rigorous proof may skip to the end

of the proof on page 34 without loss of continuity.

Theorem 2.1: H(z) can be expressed in the form (2.3) if

and only if one of the following equivalent conditions

hold:

(a) h(k) = h(N-1-k) 0 < k < N-1

(b) If z is a zero of H(z), then z 1  is also a zero

of H(z). Also if zi = +1 is a zero of H(z) then

it occurs in even multiplicity.

(c) Suppose zi is a zero of the ith factor in (2.2).

Let S = {i: zi is real} and Q = {i: i te S}.

Then f(z) = H (b + b z 1+ b 21 2) is a
ics o1li2

mirror-image polynomial in z , and for all icQ,

either b oi = b21 or there exists j # 1, jeQ, such

that
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b . b . b.oi b _li_ 21

b2j b- bo

Furthermore, the following is a sufficient condition for

H(z) to be expressible in the form (2.3):

(d) In (2.2), for 1 < i < Ns, either b21 = 0 and

b = b , or b = b2 1 , or there exists j / 1,

1 < j < Ns, such that

b b b
oi li -2i

b -b b
2j lj oj

N-1
In all cases the value of a is a =N

Before proceeding with the proof of Theorem 2.1 we

will need the following result on mirror-image polynomials.

Lemma: The product of mirror-image polynomials is a

mirror-image polynomial.

Proof: We first show that f(z) is an MIP of degree N iff

N -1
f(z) = z f(z~). To see this, let

N
f(z) = akk

k=0



Then

z Nf(z~- )

Hence f(z) = zNf(z~ ) iff ak = a N-k, 0 < k < N.

let f(z) and g(z) be any two MIP's of degrees N

Then

(f-g)(z) = f(z)g(z)

= zNf(z-1 [zMg(zl)]

= zN(f-g)(z~ )

Hence (f-g) is an MIP (of degree N+M).

of polynomial multiplication the lemma

By the associativity

is proved.

Q.E.D.

Proof of Theorem 2.1:

We shall prove necessity and sufficiency

condition (a) and then (a) + (b) + (c) + (a), and finally

(d) + (a).

Suppose there exists some a such that

25

N

k=O

N

k=0

N-k

k
a N-kz

Now

and M.

for



H(ejw)

Then since from (2.1)

N-1
H(eJW) = I

k=0
h(k)e-jok

h(k)e-jwk

Equating real and imaginary parts

N-1

k=0

N-1

k=0

of (2.6), we

h(k)cos kw = + IH(ejw)Icos aow

h(k)sin kw = + IH(eiw)|sin

Dividing (2.8) by (2.7) yields

sin xw
cos aow

N-1

k= 0
h(k)sin kw

N-1
I h(k)cos

k=0

26

(2.4)

we have

(2.5)

N-1

k= 0
(2.6)

obtain

(2.7)

(2.8)aow

(2.9)

kw

= H(edw)|e-jao

|H(e jw)|e-jao
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or

N-1

tan aw = k=1

h(k)sin kw

(2.10)N - I

h(o)+ I h(k)cos kw
k=1

First, suppose a = 0, then we must have h(k) = 0 for all

k > 0, hence N = 1 and H(z) = h(0). Clearly, (a) is

satisfied with a = N-i = 0.2

Now suppose a / 0, then we can rewrite (2.9) as

N-1
I h(k) cos kw sin aw -

k=0

N-1
h(k) sin

k=0

The only possible solution to

N-1
Y h(k)sin kw cos

k=0

(a-k)w = 0

(2.12) for all w is

aw = 0

(2.11)

(2.12)

N-1

h(k) = h(N-1-k) 0 < k < N-1

Conversely, suppose condition (a) holds. Furthermore, for

the time being suppose N is even. Then (2.5) can be

rewritten as

or



h(k)e-Jok

h(k)e-jok +

N-i
+ 1 h(k)e-jwk

k=N2

k=0
h(k)e-jw(N-l-k)

Vj ( N-i.
h(k)eiw(2)

k)

N-i
2h(k) cos( 2 -

_j(N-1) w

k)w e 2(2.13)

Similarly, if N is odd, we obtain

2h(k)Cos( NiH(eiW) =
k=0

N-1

- k)w + h(N e 2

Hence H(z)

(a) -+ (b):

indeed satisfies (2.3) with a 2

Note from the proof of the lemma that (a)

H(z)

implies

= z- (N-1)H(z 1)

There fore if z is a zero of H(z), then z is also a

zero of H(z).

2?
N_

H(e ) = f2I
k=0

N_--12

k=O

N
2

k= 0

- k)1

Lk=0

(2.14)

(2.15)

-j ( N-1
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If z = +1 is a zero of H(z) occurring with odd

multiplicity, write H(z) as

H(z) = g(z)(l-z~1) (2.16)

Now g(z) satisfies condition (b) with H(z) replaced by

g(z). In the course of the remainder of this proof it

will be shown that condition (b) implies that H(z) is a

mirror-image polynomial in z~ . Hence g(z) is an MIP in

z~1 and can be expressed as

N-2
g(z) = Z akz

k=0
(2.17)

where ak = aN-2-k 0 < k < N-2.

But

1 N-2 k
H(z) = (1-z~ ) ak z-

k=0

N-2 k
= ak zk=0

N-2 k-1
- akz

k=0

N-2 -k
a0+ I ( ak- a k- 9Z

k= 1
- aN- 2 z-(N-1)

Identifying coefficients in (2.1) and (2.18) we see that

(2.18)
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h(0) = -h(N-1)

h(k)

h(N-1-k)

= ak-ak-l

= aN-1-k-aN-2-k

= ak-1-ak

I < k < N-2

(2.19)

Therefore h(k) = -h(N-1-k) for all k and condition (a) is

contradicted unless H(z) = 0.

(b) -+ (c):

Next, suppose (b) holds. Clearly (b) also holds

with H(z) replaced by f(z). Suppose f has an even number

of zeros. Then we can group these into reciprocal pairs

and write

f(z) = R a(1-z~rj)(1-z~ir~)
I=1 i

(2.20)

where {ri,ri ~, 1 = 1,...,M} are the real-valued zeros and

a are real constants. Expanding (2.20) gives

m -i iz - -2
f(z) = IIa(1-(r +r ~)z~+z-)

J=1 i i i
(2.21)
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Clearly each factor in (2.21) is an MIP in z~1, hence by

the lemma f(z) is also an MIP. If f has an odd number of

zeros, we can write f as

f(z) = g(z)(l+z~1) (2.22)

The preceeding arguments

since 1+z~1 is an MIP in

for f(z) apply to g(z), and

z ~~, so f(z) must be. Next

if ieQ, we can write

boi +b i~ + b2iZ-2 = ai(l-z~ rej ' )(l-z re-j

= S(1-2r cos e z -l1+r Z- 2)

(2.23)

If ri = 1, then bo = a = b2i. On the other hand if

r $ 1 there must be some j # i such that rj = r

o = -e6 ,or

-1
and

b + b z~ + b2jZ-2 = (1-z~11e -j e) Z(1-z~lq~ ej

= %(1-2r~1 cos 0 z + ri2Z2)

(2.24)
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Identifying coefficients we obtain

b .

b 2j

b

2i

b

b 2

be o

2S

ji 2r

2a r icos 6

- 12 8jri cos 6 j

2r

r 2

oi li (2.25)

(c) -+ (a):

Now let

g(z) 11
iCQ

(b oi i + b2iz- 2) (2.26)

We can write

= g 1 (z)g 2 (z)

Hence

boj

(2.27)g(z)
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where gl(z) contains those factors in which b = b2i

and g2 (z) contains the remainder. Clearly by the lemma

g1 (z) is an MIP in z- . Now for each factor of index

i in g2 (z) there is a factor of index j X i such that

(2.25) holds. Combining two such factors yields

(b i + b 1 iZ 1 + b21z- 2 ) (b o + b Z + b2jZ-2

= a(b + biZ z1 + b21z- 2 ) (b2i + b1 z- + biz- 2 )

= [b oib 21 +(b oibi + b 1 ib 2 1)z-

+ (b 2 + b 2 + b21)z- 2 + (b9ib + bb 2 1 3

+ boib2 1z j (2.28)

where a is a proportionality constant. Clearly (2.28)

is an MIP, and since g2 (z) is a product of such factors,

it is also an MIP. Thus g(z) is an MIP. Since

H(z) = f(z)g(z) (2.29)

H(z) is an MIP of degree N-1 in z~1, which means
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h(k) = h(N-1-k) 0 < k < N-1 (2.30)

Thus we have proved (c) -+ (a).

Sufficiency of condition (d) is now clear from the fact

that each condition stated for the b 's leads to a

factor for H(z) which is an MIP, hence H(z) must be an

MIP, and (2.30) holds. This completes the proof of

Theorem 2.1.

Q.E.D.

The definition (2.3) of a linear phase filter

requires that the filter has both constant group delay

and constant phase delay. However, if we are content

with only constant group delay we can define a second

type of "linear phase" filter in which the phase of

H(e O) is a piecewise affine function of w, i.e.,

H(eiw) = + IH(ejw)Iej(a-aw) (2.31)

By proceeding exactly as in the proof of Theorem 2.1 it is

easily shown that with the constraint (2.1) on the form of

H(z) the only possible solutions for SE[-r,r] is

S= + kT, k = 0,1,2. If a = 0,+n (2.31) reduces to

(2.3). Thus the only new cases added are when S = +

It can be seen from the proof of Theorem 2.1 that these
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cases arise exactly when z = +1 occurs as a zero of H(z)

in odd multiplicity, or equivalently when {h(k)}

satisfies

h(k) = -h(N-1-k) 0 < k < N-1

Filters of this special type are useful in the design of

wide-band differentiators.[171 However, we shall not

consider them further in this report, but shall restrict

the term "linear phase filter" to refer to those satisfying

(2.3).

2.2 Design Techniques and Realization Structures

There are three basic techniques for the design

of FIR filters. These are the windowing, frequency-

sampling, and optimal design techniques.[5] Although

both the windowing and frequency-sampling techniques yield

suboptimal filters, they are useful because of their

simplicity and ease of design. However, we shall not

consider further these techniques in this report, but

instead will focus on the third design technique. Optimal

design is attractive because the filters generated are

optimum in a sense which we shall describe presently, and

because efficient algorithms exist for its implementation.

For simplicity we shall consider only filters with an odd

number of points in their impulse responses.
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A linear phase filter with an odd number of

points has the nice property that with a simple translation

of its impulse response samples in the time domain, its

frequency response can be made purely real. Thus if

H(e ) is the frequency response of an N-point, linear

phase filter with impulse response {h(k), k=O,...,N-1},

where N is odd, define a new sequence {g(k)} by

g(k) = h(N- + k) k = -N- N-1 (232)
2 2 3 (2.32)

Since {h(k)} satisfies h(k) = h(N-1-k), 0 < k < N-1

we have g(k) = g(-k), 0 < k < N-1

Hence N-1

GieW). 2JwG(ed) = g(k)e-k

k=N-

N-i

= g(0) + I 2g(k) cos kw (2.33)
k=l

which is the desired real frequency response. Now

G(edw) is simply plus or minus the magnitude of H(eiw), as
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N-1

G(eiW) = h(N-i + k)e-jk

k=-N-1k 2

N-1 -jw(k - Ni)
= h(k)e 2
k=O

j (N-l) N-1
=e 2 h(k)eiwk

k=0

N-1

=e 2  H(e W)

=+ |H(e )| (2.34)

where the last step is obvious from (2.14). Since in

the design of linear phase filters we can shape only

the magnitude of the frequency response, we will assume

in the remainder of this section that H(e d) is real and

of the form (2.33).

For the special case of low-pass filters, we

can state simply that a filter designed via the optimal

technique is optimum in the sense that given the order

of the filter, the passband edge, and the maximum allowable
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approximation error in the passband and the stopband, it

has the minimum attainable transition bandwidth. [2J In

general, the optimality criterion can be stated as follows:

Let D(w) be an ideal transfer characteristic

which we wish to approximate with H(e j) for all weS,

where S is any closed subset of [0,7T) , not necessarily

connected. Define a weighted error function on S as

E(w) = W(w) [D(w)-H(ejW)], and let ||E|| = ma E(w)|.

Then a filter H(e w) designed via the optimal technique

is optimum in the sense that given D(w), W(w), S, and

the number of points N of the filter, it results in the

least possible ||EI|.

It can be proved[2] that an H(ejw) which

satisfies the above optimality criterion exhibits on S

at least N+3 "alternations", i.e., if
2

Q = {o eS, i=l,...,MjWi < W1 + 1, E(wi) = -E(wi+1 )

= +||E|, 1=1,... ,M-l1 then Q has at least N+3 elements,

or M > N+3 In the case where H(e ) is a low-pass

transfer function with passband edge wp and stopband edge

w, S = [opw ]Uwos',i. Since by definition wPeQ and

SseQ, and all other elements of Q must be extrema of

H(edw), the condition on the number of elements in Q

implies that the optimum H(eiw) must have at least N1

points of extrema on S. We will show next that any

H(eiW) can have at most N extrema on [0,7r], hence on S.2
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Recall that H(ejW) is plus or minus the

magnitude of the frequency response of some causal linear

phase filter and has the form (2.33), i.e.,

N-1

H(eJW) = gk coswk (2.35)
k=0

for some sequence {gk *

Now for each k we have the trigonometric

relation

k
coskw = m mk (cosw)m (2.36)

for some real sequence {amk} Therefore (2.35) can be

written as

N-1

. W 2 k MH(eW)= gk( Xamk(cosw)m
k=0 m=0

N-1
2 k

= dk(cosw) (2.37)
k=O

where {dk I is some appropriate sequence. Differentiating

(2.37), we obtain

N-1
d jw 2 k-l

- H(e") = kdk(cosw) (-sinw)
k=0
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= -sinw Y (k+l)dk+1 (cosw)k (2.38)
k=0

Now consider the one-to-one mapping from {0,Tr] onto

[-1,1] defined by x = cosw. With this transformation we

can define a new function G(x) by

G(x) = - H(e) _ = f X)f2 (x) (2.39)
w=cos x

where

f1 (x) = - 1-x2

Xe{-1,1]

N-3
2-7

f2 (x) = (k+l)dk+lxk (2.40)
k=0

Clearly, f 1 (x) has two zeros at x = +1. Now f2 (x) is

the restriction of a polynomial of degree N-3 to the

interval (-1,1), hence can have at most N zeroes

on the open interval (-1,1). Therefore G(x) can have

at most N+l zeroes on [-1,1]. But this means H(eiW)

can have at most N+1 extrema on [0,rrj.

Thus a low-pass filter designed via the optimal

design technique, which we shall call an optimal low-pass

filter, has an H(ejw) which has either N or

N extrema on [o,). Following conventional usage we
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to the value of |E(w)| at an extremum as the height of

the ripple. Now to achieve optimality an H(e jW) need

only have N-1 ripples of equal height on [0,r] . Hence,

in generalan optimal filter is not necessarily equiripple,

N-1i
meaning that for instance if more than -1 ripples are

present, no more than N of them need be of equal height.

Those low-pass filters which exhibit

equal-height ripples constitute a special class of optimal

low-pass filters, which we shall refer to as extraripple

filters, following the usage by Parks and McClellan[2]

Because of the uniqueness of optimal filters, given the

maximum allowable approximation error in the passband

and the stopband, there are exactly N possible extraripple

filters of length N, which are uniquely determined once

the number of ripples in the passband or the stopband

is specified. Furthermore, given the approximation error

and N there are exactly N-1 unique values of w which are

possible passband edges for an N-point extraripple filter.

Finally, within the class of all optimal low-pass filters

with identical impulse response length and approximation

error, extraripple filters are shown to be locally optimum

in the sense that if F(w) denotes transition bandwidth

as a function of passband edge and if-w x is a passband

edge for an extraripple filter, then F(w) possesses a local

minimum at w = wX [18]
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Several methods for the optimal design of

filters are currently available. The polynomial inter-

polationDI and nonlinear optimization[19] methods are

both only capable of designing extraripple filters.

However, the former technique is considerably more

efficient than the latter. The Chebyshev approximation[2

and linear programmingl2O methods can both be used to

design optimal filters in general. Though less flexible,

the former technique is much more efficient. Given the

same specifications, where applicable, all four techniques

yield identical solutions. The extraripple filters

used as examples in this report will be generated using

the polynomial interpolation method.

Having obtained a desired transfer function,

the next step in the design of a digital filter is choosing

a method of implementation. There are several "structures"

in which a given linear phase FIR transfer function can

be realized. Perhaps the simplest of these is the direct

form.

Figure 2.1 shows the block diagram of an N-point

filter in direct form, where N is odd. This structure

can be easily derived by writing H(z) in the form
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N-3 N-1
=2 k +N-i -k +2H(z) = h(k)z- N h(k)z- + h(N-1)z
k=O k hN+k1

k=2

N-3
2 -k-( - -)N 1) --
Y h(k)z + h(N-1-k)z-(N-i-k) + h(N-i) 2

k=0 -

N-3 N-1=2h~k) z-k + z-(N-1-k) N-1) z 2
k h(k)[1zk+Z +h(2)

k= 0

(2.41)

A similar structure arises when N is even.

Alternatively, H(z) can be realized in cascade

form. Because complex zeros of linear phase FIR filters

may occur in quadruplets where the four zeros in each

group are interdependent, it is natural to attempt a

cascade structure using 4th order subfilters as building

blocks. However, the results of this report will show

that from the viewpoint of roundoff errors it is generally

undesirable to group together reciprocal zeros in a

cascade structure. Therefore we will consider only a

cascade structure built upon 2nd order filter sections.

Condition (d) of Theorem 2.1 provides us a way

to assign zeros to individual 2nd-order sections of a

cascade filter so that linear phase is preserved. In
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particular, complex zeros are grouped by conjugate pairs,

real zeros that are reciprocals of each other are paired

together, while doubled or higher multiplicity zeros

are grouped by pairs of the same kind. In this way the

only zero that can occur by itself in a section is

Z = -1 (since by Theorem 2.1 z = +1 is not allowed as a

zero of odd multiplicity). This strategy of zero assignment

will be assumed in all cascade filters discussed in this

report. Thus for a cascade filter we write H(z) in the

form

N

H(z) R (bo +b iz 1 +bi-2 (2.42)
1=1

where {b1 } satisfies condition (d) of Theorem 2.1 and Ns

is the number of sections. Figure 2.2 shows a general

block diagram for the ith section of H(z). However, when

b = b21 we will find it desirable to use instead

the configuration in Figure 2.3, since it leads to reduced

roundoff errors. Figure 2.4 shows that these two con-

figurations can be readily accommodated in a more general

subfilter structure, therefore in the remainder of this

report we will assume that both configurations are used

in a cascade structure. In particular, for the ith section
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if b0  = b2 i, Figure 2.3 is used and if b0 1 X b21'

Figure 2.2 is used. Furthermore, though minor variations

to Figures 2.2 and 2.3 are possible as building blocks

for a cascade form, we will assume unless otherwise

stated that Figures 2.2 and 2.3 are meant whenever the

term cascade form is used. For more on cascade form

variations see Section 4.1.

Other structures are possible for the realization

of linear phase FIR filters. A well known example is

the frequency-sampling structure[15], which is particularly

well adapted to the frequency-sampling design approach.

Other less well-known structures based upon polynomial

interpolation formulas have also been proposed. These

include the Lagrange, Newton, Hermite, and Taylor

structures . We shall not consider any of these other

structures in this report.

3.0 Techniques for Roundoff Error Analysis

Although digital filters are usually analyzed

using linear system techniques, such as difference equations

and z-transformations, any practical realization of a

digital filter is necessarily nonlinear because of quan-

tization effects. Nonlinearities are introduced when

results of arithmetic operations are quantized. Thus a

single input-output linear relation cannot accurately

describe the behavior of a practical digital filter.
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The powerful techniques of linear system theory,

however, can still be applied if we take a slightly

different approach and model a digital filter as a multi-

input rather than a single-input system. The additional

inputs are contrived in such a way that the overall

system becomes linear. More specifically, each multiplier

in a filter is modelled as an ideal multiplier followed

by a summation node where an auxiliary input signal is

added to the product. The samples of this extra input

are devised in such a way that the summation result always

equals some quantized level in the filter. Thus if the

extra input sequence is chosen to have magnitudes less

than or equal to half of a quantized step, our model is

exactly equivalent to a multiplier which rounds its result.

Since fixed-point arithmetic is assumed, addition

introduces no error. Thus with each multiplier modelled

as in the above, we arrive at a multi-input linear system

model for a practical digital filter. Quantization as a

direct constraint disappears from our analysis since all

data at physical points of interest in the filter model

automatically take on quantized values. In effect we

have shifted our problem from dealing with a nonlinear

system transfer function to determining a set of auxiliary

inputs.

Clearly, given a practical filter and its input,

all the appropriate auxiliary input sequences can be

exactly determined. However, the highly complex nature
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and lack of generality of any such attempt deems it

totally unfeasible. Therefore, we shall not venture into

any deterministic analysis of the extra inputs, but instead

will adopt a statistical approach which has proven to be

very fruitful.

In view of the statistical analysis, we shall

refer to roundoff errors as "roundoff noise" and call

each auxiliary input in our model a noise source. The

next three sections will formulate the model for roundoff

noise and apply it to cascade FIR filters with dynamic

range constraints.

3.1 Statistical Model for Roundoff Errors

In the previous section, we have developed a

model for a practical filter consisting of noise inputs

as well as signal input. We will now formulate a statistical

description for the noise sources so that using the

linearity of our model the roundoff noise in a filter

can be analyzed independent of the signal.

Clearly, each noise source is simply a sequence

of samples each of which is an error term due to rounding.

Therefore, it is reasonable to model each sample as a

random variable with uniform probability density on the

interval (- Q, ) and zero density elsewhere, where Q

is the quantization step size. Thus each sample is a

Q2
zero mean random variable with a variance of . If all
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data were represented by fractions, then Q = 2 -(t-l)

where t is the number of bits in a data word (1 sign bit

and t-l numerical bits).

Furthermore we shall assume the following:

1) Any two different samples from the same noise

source are uncorrelated.

2) Any two different noise sources, regarded as random

processes, are uncorrelated.

3) Each noise source is uncorrelated with the input

signal.

Thus each noise source is modelled as a discrete

stationary white random process with a uniform power
2

density spectrum of magnitude . Although the above
12

assumptions can be shown to be invalid for many pathological

cases, they have been supported by a great deal of experi-

mental results for a large class of signals and quantization

step sizes of interest,.ll, 13, 27, 28]

Thus far, the vast majority of studies on

roundoff noise has been carried out based upon the

assumptions stated above. The results have been found to

be useful and agree well with experimental evidence.

Therefore, we shall do likewise in this report.
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3.2 Roundoff Noise in Cascade Form FIR Filters

Having formulated a model for roundoff errors,

we will now apply it to the analysis of roundoff noise

in cascade form FIR filters. Block diagrams for general

sections of a cascade FIR filter with quantization effects

ignored are shown in Figures 2.2-2.4. As can be seen

from these diagrams, adding a noise source to the output

of any multiplier in any of these section configurations

is equivalent to adding a noise source to the output of

the section. Therefore, to model a section of a practical

cascade filter we need simply add k noise sources to the

output of the section, where k is the number of multipliers

with non-integer coefficients in the section. Or

equivalently, by assumption 2 of the previous section,

we can instead add one noise source of variance ki112

Before proceeding further, we shall need to

develop some notations. Let H i(z) denote the transfer

function of the ith section of a filter H(z), i.e.,

Ns
H(z) = H H (z) (3.1)

i=l

where

H i(z) = b oi + b liz- + b21 -2
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Furthermore, define

Ns
11 H.(z)

j=i+l

1

0 < i < Ns-1

i = Ns

and let {g.(k)} be the impulse response of G.(z), i.e.,

G (z) = E g 1 (k)z-k
k

(3.3)

Then we can model a practical cascade filter

as in Figure 3.1 or equivalently as in Figure 3.2.

Letting {E(nl)} denote the noise sequence at the filter

output due to the ith noise source alone, we have

Ei(n) = Z g (k)ei(n-k)
k

(3.4)

By the stationarity of {ei(n)} the variance of

E i(n) is independent of n, hence denoting this variance

by a , we obtain by assumption 1 of section 3.1,

a2= g2(k)e (n-k) 2
k

2 2
= kZg,(k)S 12 k

(3.5)

G (z) =

(3.2)
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Now the total noise output is given by

Ns Ns
E(n) = E (n) = Y g (k)e (n-k) (3.6)

1 1=1 k

Therefore by assumptions 1 and 2 of the previous section,

a2 = E2 (n) = Ns 2
i=1

It is instructive to re-derive (3.5) by a

slightly different approach. Since different noise

sources are uncorrelated white pr'ocesses, their power

density spectra add, therefore we can write the power

spectrum of {e (n)} as

S (w) = k (3.8)

Let N (w) be the power spectrum of {E (n)}, then from linear

system noise theory,

N (w) = IG i(eW)|2Si(W)

Q2 4

= k IG,(e jw)| 2 (3.9)

Therefore
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cr2 1 2 TrN.( )d
i 2 2i .

= k --  G (ejw)I2 do (3.10)

0

But by Parsevalt s theorem for discrete signals

2 Tr

1f G (eI) d= g (k) (3.11)0 d k (

Therefore again we arrive at (3.5). In comparing different

orderings of a given cascade filter we shall use the output

noise variance a2 as a figure of merit. However, in terms

of the actual deviation of an output sample from the value

it would have if quantization effects were absent, the

standard deviation a is more applicable. a is the rms noise

value, or in some sense a measure of the expected magnitude

of a noise sample. If a large number of noise sources

were present in a filter, we can argue from the Central Limit

Theorem of probability theory that the distribution of

the output noise will be approximately Gaussian. In that

case we can say that essentially (i.e., with high probability)

all output errors are bounded in magnitude by 3a.
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In general some multiple of a can be used as

an essential upperbound on the noise magnitude. From

(3.5) and (3.7) a is directly proportional to Q. We

will now show that if all output errors of a filter are

bounded in magnitude by 6Q, where 6 is some positive

constant and Q is the quantization step size, then t

bits of accuracy in the output can be assured if all

data are represented by t+k bits, where Z > log 2 6+1.

To show this, observe that with t bits of

accuracy all data are represented to within an error of

+2-t , since 2-t is half of the quantization step size.

Thus if the roundoff error magnitudes at the filter

output are no more than 2 -t, then t bits of accuracy is

preserved. Now if t+k bits are used to represent all

data in the filter, then Q = 2 (t+2-1) Therefore to

assure t bits of accuracy we require

6Q = 6 -2 -(t+k-l) < 2 -t (3.12)

or

k > log 2 6+1 (3.13)

Because of the statistical approach which we

adopted, we cannot set an absolute upperbound on the output

errors. However, as an engineering criterion for choosing

the number of extra bits required to compensate for roundoff
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noise in a filter, we can use

6Q = a

or

6 =/Q (3.14)

Thus we can define a noise figure for a

filter in number of bits as

Noise in number of bits = log 2 ( ) + 1 (3.15)

Notice that this noise figure is independent of the

quantization step size or the wordlength employed.

3.3 Dynamic-Range Constraints in the Cascade Form

A practical digital filter, necessarily

implemented as a physical device, must have a finite

dynamic range. Especially when fixed-point arithmetic

is employed, this dynamic range sets a practical limit to

the maximum range of signal levels representable in a

filter and acts to constrain the signal-to-noise ratio

attainable.

In some filter structures, such as the direct

form, given the filter transfer function the designer has
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no control over the relative signal levels at points

within the filter. Only the gain of the overall filter

can be varied. However, in a cascade realization with

Ns sections there are Ns-l degrees of freedom available

in addition to the overall filter gain and the ordering

of sections.

To see this let us define a factorization for

H(z) which is unique up to ordering of factors, in the

form

Ns
H(z) = R H H.(z)

i=1

H i(z) = + a -lz + a2iz-2 (3.16)

where {a I satisfies

2
aoi > 0, | laji = 1 i = 1,...,Ns (3.17)

j =0

Then the transfer function for the ith section in a

cascade realization can be written as

H i(z) = SiH i(z) (3.18)



where S is an arbitrary constant, subject only to the

constraint that

Ns
I S = (3.19)

i=l

Thus given 5, Ns-1 of the S 's can be chosen at will.

We shall refer to any rule for assigning values

to {S I as a scaling method. Obviously, some scaling method

must be employed in the design of a cascade filter whether

or not one is concerned with dynamic range constraints

since numerical values must be assigned to the S. 's.

When dynamic range is an issue, the constraints it imposes

can be met in some best manner by choosing the proper

scaling method. In this thesis we shall be concerned

only with filters designed so that no arithmetic overflow

in them can cause distortion in the filter output.

Therefore, our investigation of scaling methods will be

restricted to those methods which guarantee that for a

given class of input signals no distortion-causing overflow

occurs in the scaled filter.

It can be shown [21] that in an addition operation

if two's complement arithmetic is used, as is usually the

case, then as long as the final result is within the repre-

sentable numerical range, individual partial sums can be
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allowed to overflow without causing inaccuracies in the

result. We shall assume in this thesis that all additions

in a filter are done using two's complement arithmetic.

Then, to guarantee that no distortion caused by overflow

occurs at a cascade filter's output, only the input and

output of each filter section need be constrained not to

overflow.

To simplify the discussion of scaling methods,

we make the following definitions. Let

2i -k
F (z) = Y f i(k)z H H (z) (3.20)

k=0 j

and 1 < i < Ns

2i i
F (z) = f i(k)zk = H H (z) (3.21)

k=0 j=1

Also, let {v (n)} be the output sequence of F (z) or H (z).

Furthermore, assume that the maximum magnitude of numerical

data representable in a filter is 1.0. Then the necessary

overflow constraints on a cascade filter can be stated as

all n (3.22)|V v(n)|I < 1 1 < i < Ns,.
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We now state and prove necessary and sufficient

conditions for (3.22) to hold for two classes of input

signals. Theorem 3.1 deals with the class of input

sequences {x(n)} which satisfy jx(n)| < 1 for all n.

For simplicity we shall refer to this class as class 1.

Theorem 3.2 deals with the class of inputs of the form

{x(n)} with transform X(ej4) which satisfy

2T 0
IX(e W)Idw < 1.

This class will be called class 2. By virtue of the

fact that

x(n) = 21T

0

X(e w)ejon dw

and hence

(3.24)x(n) < 1 2 | (e )|d 0

0

class 2 is a subset of class 1.

Theorem 3.1: Suppose jx(n)j < 1.

is satisfied if and only if

Then condition (3.22)

(3.23)



2i
Y 1f(k)|

k=0

Proof: If (3.25) holds, then since

21
v (n) = I f

k=0

we have

I v. (n) I
2i

< If.(k
k=O

< maxIx(n)j

for i = 1,...,Ns

(k)x(n-k)

) Ix(n-k) I

2i

k=0
|f (k)I

If 1 (k)I < 1

Hence (3.22) holds.

On the other hand if (3.25) does not hold, then for some

21

k=0
If 1 (k) I

sequence

= 6, where 6 >

satisfying

1. Now let {x(n)} be

Ix(n)I < 1

any

such that for some n
0

x(k) = f1(n0 -)
if (n -k)I n -21 < k

Clearly {x(n)} can be chosen to be a causal sequence by

< 1 i = 1...,Ns (3.25)

21

k=0

i

< n90



letting n

21
v (n0 ) =

k=O

21

k= 0

21

k=0

f (k)x(n

f 1 (k) K

if1 (k)I

0
-k)

f (k) j
f (k)|

Hence (3.22) does not hold.

Q.E.D.

Theorem 3.

condition

2: Suppose 1 2 IX(eJw)Idw < 1.

(3.22) is satisf~ed if and

IF (e "W )I 1 1

only if

= 1,... ,Ns

0 < w < 2 r

Proof: In general, for i

v(n) - 2

0

If (3.26) holds, then

F (ejw)X(e e )ejn dw

> 21. But now

Then

(3.26)
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= 1, .. .,Ns



2 Tr

0

|X(ejW)Idw

,27r
< Il |X(eiW)Idw < 1

0

However,

some w
0

if (3.26) does not hold, then for some

j W
1F,(e ) where e > 1

F(e ) = IFje.(W)F (ed") =lFi(eiW)le

and let the input sequence {x(n)} be defined

x(n) = cos(w 0 (n-S

0

= t[6(w-w 0) + 6( 0)] e
-j W i

-T < W < ff

and

27T

0

IX(ejW)Idw = 1

I v (n) I
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< max |F (ed")|

i and

Let

(3.27)

(3.28)

where

by

Then

(3.29)

X(ejw)

(3.30)



j4 .(w)
v (n) = - X(e j)ejwn dw

S Fi (e 0)Je j )ejw0(n)

+ Fi(e-jO) ee 0(-W)e-j (n-6 )

Since {f 1 (k)} is real,

IF i(ejw)I = |F1(e~iw)|

and

e1(w) = -e1(-w)

Therefore

v1 (n) = |F1 (e 0)Icos[ei(wo)+won-w 01]

= e cos wn
0

where we have used (3.27) and (3.30). Hence v.(0) = e > 1

which shows that (3.22) does not hold.

Q.E.D.

But

00
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Conditions (3.25) and (3.26) of Theorems 3.1

and 3.2 can be re-stated to give conditions on {S }.

Recall that the H i(z)'s are unique once H(z) is given,

hence the F i(z)'s and {f (k)}'s are also unique. From

(3.18), (3.20) and (3.21) we have

i
f (k) = ( S i)f )(k) (3.31)

j=1
and

F i(z) = (rH S )F1 (z) (3.32)
j=l

Therefore, conditions (3.25) and (3.26) can

be re-stated respectively as

i 21 . -1
H Is | < if (k)| (3.33)

j=1 k=0

i = 1,... ,Ns

and

TI IS | < max |F (e ")| (3.34)
J=1 0 < w < 2

These then are conditions which, for the class of inputs

concerned, a scaling method must satisfy. We shall show

next that in some sense optimum scaling methods are obtained

when (3.33) and (3.34) are satisfied with equality. For

ease of reference we shall first define and name two

scaling methods.
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Define sum scaling to be the rule

i 2i
H S. = I jIf.

j=1 i -k= 0
(k) 1 = 1,..., Ns

or stated recursively,

i = 1

S =

i-1

Also, define peak

iF
Hs =

j=l 0a

21
S.) Y

k=O
i = 2,...,Ns

scaling to be the rule

max
< o < 2r

IF i(e 3

or

max
< w <[0 2Tr

F 1 (e )

-1
) i

] 1

i = 1,.. .,Ns

i = 1

(3.38)S =

max IF i (eJ) i
< w < 2ff

(3.35)

(3.36)

(3.37)

2

-: I f 1(k)|

|f.i(k)|

= 2, .. .,Ns

1-1

j=1 0
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Theorem 3.3: Given a transfer function to be realized in

cascade form (as defined in figures 2.2, 2.3) using

fixed-point arithmetic of a given word-length, and given

the ordering of filter sections, assume that

a) the number of noise sources in each section (i.e.

k ) is independent of the scaling method.

b) all filter coefficients can be represented to

arbitrary precision.

c) no overflow is allowed to occur at the input and

output of each section.

d) the overall gain of the filter is maximized

subject to no overflow at the filter output.

Then each of the following scaling methods is optimum

for the class of input signals stated in the sense that

it yields the minimum possible roundoff noise variance as

defined in (3.7) among all scaling methods which satisfy

conditions (c) and (d) above for the class of inputs

considered.

1) Sum scaling for class 1* signals

2) Peak scaling for class 2* signals

Proof: From (3.7) and (3.10),

2 Ns w 22 (339
a = i i 12 -r lGi(e )|dI (3.39)

* See page 62 for definitions. .
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or using (3.2) and (3.18),

a2 Ns-1 Ns 2 2
S. C-i+kNs 12 (3.40)

where
2 2 7T Ns j 2

C. = k H. (e ) dw
i 12 2 Tr 11f0 j=1+1

1 < i < Ns-1

We can rewrite (3.40) as

Y2 Ns-1 C + 2
a= i 2 Ns ' (3.141)

11 2 Ns 1)
(H S.
j=1 '

Ns 2
where a = (IT S ) is by assumption independent of scaling.

j=1

Also, the last term in (3.41) and all the C 's are by the

2
assumptions independent of scaling. Therefore a is

minimized when the summation in (3.41) is minimized. But

since each term in the summation is nonnegative, the sum

is minimized by minimizing each term individually. This
i

means we must maximize H IS| for i = 1,.. .,Ns-1.
j=1

Referring to (3.33), (3.34), (3.35), and (3.37), clearly

sum scaling and peak scaling satisfy conditions (c) and
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(d) of the theorem. Also we see that the maximization of

H IS I is accomplished when sum scaling is used for
j=
class 1 signals or peak scaling is used for class 2

signals.

Q.E.D.

Thus optimal scaling methods are established

for two classes of input signals. It is possible to

define other classes of signals by considering the "Lp norm"

of their transforms [ll. The Lp norm, or p-norm, of a

function f(x) on an interval [a,b] is defined as[ 2 2]

rb I1/p
IIf(x)| = |f(x)|Edx 1 < p < o (3.42)

In general, the p-norm of a function f(x) is defined as

long as If(x)IP is Lebesque integrable over [a,b]. Also,

the results which we shall obtain are applicable in this

general case. However, we shall be concerned only with

the case when f(x) is a continuous function.

For a sequence {x(n)} with transform X(e j)

let us define the p-norm of X(ejW) as

IJX(eiW)II = J|g(x)|I 1 < p < o (3.43)
p p-

where g(x) is a function on [0,1] defined by



g(x) = X(ej 21x) 0 < x < 1

In other words

I|X(e"j )|| pI = 0 IX(ej)Pdw} 
1 < p < *

extend definitions (3.42) and (3.43) to values

extended real number system by defining

IIf(x) I -lim lf(x)| I
p 40 (3.46)

p

IIX(e )I| 00 = |Ig(x)II ". (3.47)

For each p we can now define a class of signals consisting

of those sequences whose transform satisfy

IIX(ejW)II < 1 (3.48)

We shall refer to signals satisfying (3.48) as p-norm

constrained signals. Note that 1-norm constrained signals

are simply class 2 signals. The following theorem provides

us with a scaling method for these input signals for each p.
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(3.44)

Next

of p

let us

in the

(3.45)

and



Theorem 3.4:

the interval

Let f(x)

[0,1].

and g(x) be continuous functions

Then

(a) if(x)I| =

(b) ||f(x)g(x)II

max
0 < x<

|f(x)|

1 < p, q < o

(c) IIf(x)II r IIf(x) if 1 < r < s

Proof: The proof for

They

(a) and (b) will be omitted here.

can be found in standard works on Lp-spaces. For

instance for (a) see [23]. (b) is the well-known Halder's

inequality and can be found in

prove (c) assuming

[22] or [23]. We shall

(b).

From (3.42)

1/q

Ig(x) IIq fo
|g(x) Iqdxj 1 < q < co

Taking g(x) = 1, 0 < x < 1, we see that

||g(x) Iq = 1 1 < q < o

Therefore from (b)
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on

1
p

+ 1=
q

1

if

< 00

(3.49)

(3.50)

1 f(x)|| p I[g(x)| I



|IfL(x)|li I |lf(x)| l

Given 1 < r < co let u(x) = Jf(x)|r

1 < p < 0

If s satisfies

1 < r < s < 0, choose p so that s = pr. Applying

I u(x)

u(x) I

1 p

= f10 If(x) Irdx

(I If(x)IIr )r

II u(x) IIp= :
i/p

f(x)IrPdx

= 1 If(x)Isdxj
- 0

*= f(x)| s r

Combining (3.52), (3.53) and (3.54)

IIf(x) I

, we have

1 < r < s < o
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(3.51)

But

(3.51)

(3.52)

and

(3.53)

(3.54)

(3.55)

Q.E.D.

u(x)|I|

r < f- X Is



Using definitions

3.4 implies that

IF i(ei )X(e j)I

(3.43) and (3.47) part (b) of Theorem

S IIF 1(elw) Ip
I IX(e )

1 1
p q

1 < p, q < oo

1 < i < Ns

But with input {x(n)},

v n) = 2 r
2 r 0

F (ej w)X(ejw)ejwndw

Therefore

1 2 Tr2w 1 IF (e )X(eJ )Idw =

(3.58)

Hence

(3.59)

For q-norm constrained signals, i.e. if I|X(ew)II

(3-59) suggests the following scaling method (p-norm scaling):

IF i(elw)|I =

=q-1

1

i =,...,Ns
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1

(3.56)

Iv (n) I

(3.57)

q
< 1,

||F i(e jw)X(elw) (|

vi (n)|I < II ||F w)I IIX(e w) I

(3.60)
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or stated in terms of {S.}

1-

IL S. = | iP(ew) li = 1,...,Ns (3.61)

Notice that by virtue of part (a) of Theorem 3. 4,

*-norm scaling is just peak scaling which we have shown

to be optimum for class 2, or 1-norm constrained, signals.

Furthermore, part (c) of the theorem implies that

Ix(n)I < IIX(ej )I| < IIX(eW)|I 1 < p < q < o (3.62)
-p-q -

Therefore we have the hierarchy of classes of signals:

class 1 D class 2 D p-norm constrained D q-norm

constrained

if 1 < p < q < o.

In general class 1 and class 2 signals are the

most useful to consider. 2-norm constrained signals with

2-norm scaling is useful when all inputs to a filter have

finite energy bounded by a known value. For by Parseval's

Theorem

x 2 (n) = 2 f X(eiw)I 2 dw (3.63)

Hence the energy of {x(n)} is simply given by (I|X(ejw)112 2

Thus if the input signals are first scaled so that their

maximum energy is 1.0 (or squared dynamic range of filter),

then 2-norm scaling is sufficient to ensure no overflow.
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However, the p-norm of any X(eow) is not defined

if IX(eiw)|P is not integrable. Therefore all infinite-

energy signals, such as infinite-duration periodic signals,

are excluded from the 2-norm constrained class. Now any

reasonable extension of the definition of p-norms to

infinite-energy signals must be consistent with statement

(c) of theorem 3.4 and (3.63). Thus we see that if X(e j)

is the transform of an infinite-energy signal, then

IIX(eiw)|| is necessarily unbounded if p > 2. Hence
p

infinite-energy signals are excluded from all p-norm con-

strained classes for p > 2.

Thus the concept of p-norm constrained signals

has little practical usefulness for p > 1. Furthermore

p-norm scaling for p < o is only a sufficient method and

no optimality properties can be proved for it. In this

thesis we shall be concerned mainly with sum scaling and

peak scaling methods for class 1 and class 2 signals

respectively.

Clearly, sum scaling and peak scaling can be

extended to apply to IIR filters. In fact theorems 3.1

and 3.2 can be readily generalized for IIR filters.

However, the input sequence needed in theorem 3.1 to prove

necessity in the case of IIR filters is an infinite-duration

sequence extending to -oo with full dynamic range magnitudes,

and signs that match those of {fi(k)} for some i. Clearly
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such an input sequence is highly improbable, hence class 1

signals have been deemed too restrictive a description for

ordinary inputs to an IIR filter, resulting in too stringent

a scaling method[ 1

However, for FIR filters it is not difficult to

find an input sequence within dynamic range which will

require sum scaling to ensure no overflow, since only a

small, finite portion of the sequence need match up with

the {f (k)}'s. For example, if F 1 (z) has a zero with angle

< w 0< ff, then all three samples of {f1 (k)} have the

same sign, hence an input sequence need only have three

consecutive samples of value 1 before |vl(n)I = If(k)I
k

for some n.

Because of the pessimistic nature of sum scaling

for IIR filters and also the need to evaluate infinite

sums, sum scaling has not been considered in analyses of

roundoff noise in cascade IIR filters. However, none of

these two reasons are applicable for FIR filters, hence

sum scaling will not be neglected in this report. Of

course, for any specific filter, the best choice of scaling

method depends on the particular application.
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4.0 Behavior of Roundoff Noise in Cascade Filters

The previous sections have established the

basic properties of linear phase FIR filters, their

implementation in cascade form, and methods by which

roundoff noise can be analyzed. In the sections following

we will make use of the tools developed to investigate

the dependence of roundoff noise on sequential ordering

of individual sections of a cascade filter and on other

filter parameters.

However, let us first establish some facts

concerning the characteristics of individual sections

of a cascade filter. Let H1 (z) be the transfer function

of a filter section which synthesizes a pair of conjugate

zeros at z = re 1,3 r,> 0, 0 < w < r. Then

H (z) = (1-rei z )(1-re Wi 1

= S(1-2r cos w.z- +r 2z- 2 (4.1)

Referring to (3.1) we have simply S = b01 , therefore

H (z) = b i(1-2r cos wz +r2 z -2) (4.2)
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Now

Hi(eW) = b .(1 - 2r cos o. ej + r2 e-j2w)

- 2r cos o e + r2e- ) + (1 - r

= b [ (r2 e -

= b .[2r(r cos

2r cos o + r 2 e-j )e-jW + (1

- cos o )e- " +

-r2

(1

(4-3)

If r = 1, we have simply

Hi(e ) = 2b i(cos o - Cos o )e" 

which has linear phase, as expected.

Clearly, from (4.3)

|H (ej") I < |b 1(12r(r cos W - cos co) I + 1 - r1 )

b Ibi 1(2r maxjr cos o - cos W.I
I + 1i - r21)

= b (r2

(4.4)

(4.5)
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But

maxir cos o - cos wo = r + Icos oil
Co

(4.6)

Therefore

IHi(ejo )| b o0 [2r(r + lcos o |) + 1l - r2l1 (4.7)

Now from (4.3)

Hi(l) = b9 [2r(r - cos w.) + ( 1 - r2 )] (4.8)

and

Hi(-l) = b 0 1 [2r(r + cos w) + (1 - r2 )] (4.9)

Thus assuming r < 1, |Hi(l)| is simply the right hand

side of (4.7) for cos wo < 0 while |Hi(-1)| is the

right hand side of (4.7) for cos o > 0. Hence

| H (-1)|

max |Hi(e )| = I

|H(1) l

0 < o <

o i < I

(4.10)
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or

max |H,(e )l = lb .j(2r(r + jcos o L) + (1 - r 2 ))
W.)0

= lb 0i(2r lcos oil + 1 + r2) (4.11)

If r > 1, let s = and let H .(z) be a section which

produces zeros at z = se . Then H .(ejo) satisfies

(4.10). But then

Hi(z) = b .(1 - 2r cos o z

= b r z (1 - 2s cos

b.

= b-b3

+ r2z-2

o ) z + s z )

r2z H .(z1)a

Therefore

H(e )I r2 1 H (eJW)
o

b . 2
01 r H (ejw)|b oa 2

(4.12)

(4.13)
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Hence |Hi(eOO) and tH.(e3o)I are proportional to each

other, thus IHi(ejW)I also satisfies (4.10).

Next consider the case when the zeros of H (z)

are at z = r, r~- . Then

Hi(z) = b0 (l - rz~ )(1 - r~ z~ )

= b (1- (r + r~ )z~ + Z-2 (4.14)

and

Hi (ejw) = b .(eaw_(r + r~ ) + e- ")e- j

= b .(2 cos w - (r + r~ ))e-jw (4.15)

From (4.15) we see that (4.10) is again satisfied where

o = 0 if r > 0 and w. = r if r < o.

Finally, if Hi(z) synthesizes only one zero at

z = -1, then

Hi (e ) = b i((1 + e~jw)

=2b cos-eoi 2

.LIw

(4.16)

Thus again, (4.10) is satisfied (wo1 = Tr). Hence (4.10)

holds for every section of an FIR filter.
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Next, we establish that for all sections

lbji max lH(e W )I (4.17)
2

j=0

For zeros at re , we have from (4.2)

lb.. = Jb |(1 + 2r |cos oi + r2 )

2

j=0

which compared with (4.11) shows that

If the zeros are at r , from (4.14)

2

j=0

(4.17) is true.

lb |l = lboi|(2 + |r + r 11) (4.19)

which is seen to be max lHi(ed")l from (4.15). Finally,

a sole zero at z = -l yields

2

J=0
Jb i| = 21b I (4.20)

which by (4.16) again satisfies (4.17).

(4.18)
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Thus (4.17) is established. The next few

sections will present some of the findings on the behavior

of roundoff noise in cascade filters. All filter examples

used will be extraripple filters. Figure 4.1 shows

a typical extraripple filter and the parameters used to

define it. The same symbolic terminology as defined in

Figure 4.1 will be used to define all filters in the

remainder of this thesis report. Furthermore, all sampling

rates will be normalized to unity.

4.1 Dependence of Roundoff Noise on Section Ordering

In section 3.3 it was shown that given a

transfer function H(z) to be realized in cascade form

and the order in which the factors of H(z) are to be

synthesized, there remains Ns degrees of freedom

(including gain of filter) in the choice of filter

coefficients, where N is the number of sections of the

filter. Scaling method-s were developed to fix these

Ns degrees of freedom, and two particular methods, viz.

sum scaling and peak scaling, were shown to be optimum

for the particular classes of input signals which they

assume. These scaling methods will be applied in this

section, so that ordering of filter sections will be

the sole variable in our investigations.
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The prime issues in the realization of filters

in cascade form are threefold -- scaling, ordering, and

section configuration. Because of the simplicity of a

2nd order FIR filter, there is little freedom in the

choice of a structure for the sections of a cascade filter.

We have assumed thus far the configurations shown in

figures 2.2 to 2.4 because they turn out to be the most

useful. Other possible configurations will be discussed

later on. The major concern of this section is the

ordering of sections. Unlike the scaling problem, no

workable optimal solution (in terms of feasibility) to

the ordering problem has yet been found for cascade

filters in general. The dependence of output roundoff

noise variance on section ordering given a scaling method

is so complex that no simple indicators are provided to

assist in any systematic search for an ordering with

lowest noise. Any attempt to find the noise variances

for all possible orderings of a filter involves on the

order of Ns! evaluations, which clearly becomes prohibitive

even for moderately large values of Ns. Thus there is

little doubt that optimal ordering is by far the most

difficult issue to deal with in the design of cascade

filters.
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Since finding an optimal solution to the

ordering problem is very difficult, if not impossible

by any feasible means, for all but very low-order filters,

it is important to find out how closely a suboptimal

solution can approach the optimum and how difficult it

would be to find a satisfactory suboptimal solution. Even

this concern, however, would be rather unfounded if the

roundoff noise level produced by a filter were rather

insensitive to ordering. For then the difference in

performance between any two orderings may not be sufficient

to cause any concern. However, Schissler has demonstrated

that quite the contrary is true E14 . He showed a 33-point

FIR filter whichordered one way, produces a2 = 2.4Q2 while

2 8 2 *
ordered another way yields a = 1.5x10 Q . In terms of

the noise figure defined in (3.15), this represents a

difference of 1.6 bits versus 14.6 bits of noise. The

difference is drastic indeed. Hence the problem of

finding a proper ordering of sections in the design of

a cascade filter cannot be evaded.

An important question to pursue in investigating

suboptimal solutions is whether or not there exists some

general pattern in which values of noise variances

distribute themselves over different orderings. For

example, for the 33-point filter mentioned above, are

* As.sumes all products in each section summed before
rounded.
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all noise values between the two extremes demonstrated

equally likely to occur in terms of occurring in the same

number of orderings, or perhaps only a few pathological

orderings have noise variances as high as that indicated.

On the other hand perhaps only very few orderings have

noise variances close to the low value, in which case

an optimum solution would be very valuable while a

satisfactory suboptimal solution may be just as difficult

to obtain as the optimum.

In this section, we will attempt to answer

these questions by investigating filters of sufficiently

low order so that calculating noise variances of N !

different orderings is not an unfeasible task. The

implications of results obtained will then be generalized.

The methods and results will now be presented.

The definitions of sum scaling and peak scaling

in section 3.3 indicate that for FIR filters sum scaling

is much simpler to perform than peak scaling. To achieve

peak scaling, the maxima of the functions 9 (eiW) must

be found for all i given an ordering. Even using the FFT

this represents considerably more calculations than finding
21
E If (k)I for all i. In the 33-point filter mentioned

k=0
above, Schissler used peak scaling on both the orderings.

We will show in the next section thatgiven a filter, peak
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and sum scaling yield noise variances that are not very

different (within the same order of magnitude), and,in

fact,experimental results indicate that they are essentially

in a constant ratio to one another independent of ordering

of sections. Hence the general characteristics of the

distribution of roundoff noise with respect to orderings

should be quite independent of the type of scaling performed.

In order to save computation time, sum scaling will be

used in our investigations.

Returning to the question of section configuration,

for IIR filters Jackson [12] has introduced the concept of

transpose configurations to obtain alternate structures

for filter sections. However, the application of this

concept to Figure 2.2 yields the structure shown in Fig. 4.2,

which is seen to have the same noise characteristics as the

structure in Fig. 2.2 since by the whiteness assumption

on the noise sources, delays have no effect on them.

Therefore Fig. 4.2 need not be considered. The only other

significant alternate configuration for Fig. 2.2 is shown

in Fig. 4.3. The counterpart for Fig. 2.3 is Fig. 4.4,

valid when bo = b21. Both of these new configurations

have exactly the same number of multipliers as the original

ones. However, one noise source is moved from the output

to essentially the input of the section. Thus it is

advantageous to use the structures in Fig. 4.3 and 4.4

for the ith section when
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0 1 1-1(k) < I g (k) (4.21)
boi 2k 11 k

where {g1 (k)} is as defined in section 3.2. However, in

order to have no error-causing internal overflow when the

input and output of a section are properly constrained,

Fig. 4.3 and 4.4 can be used only when b < 1. If

b0 > 1, either four multipliers become required or

Fig. 4.3 reduces to Fig. 2.2.

In the investigations that follow, for each

section of a filter the configuration among Figs. 2.2,

2.3, 4.3 and 4.4 which is applicable and results in the

least noise will be employed. It turns out that this

flexibility in the choice of configuration has little

effect on the noise distribution characteristics of a

filter. For low-noise orderings the configurations of

Fig. 2.2 and 2.3 are almost always more advantageous. For

high-noise orderings the alternate configurations help to

reduce the noise variance, but the difference is comparatively

small. Thus in actual filter implementations the structures

in Fig. 4.3 and 4.4 may be ignored.

Figure 4.5 shows the flow diagram of a computer

subroutine which is used to accomplish scaling, choice

of configuration, and output noise variance calculation
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given a filter and its ordering. The input to the

subroutine consists of Ns (the number of sections) and

4 the sequence {C , 1 < j < 4, 1 < i < Ns}, whose elements

are unscaled coefficients of the filter, defined by

Hi (z)=C (C 21 +C3iz~1+C4,z--2) 1 < i <N (4.22)

where Hi(z) is,as usual,the ith section in the filter

cascade. The sequences {fi(k)} and {g (k)} in Fig. 4.5

are as previously defined in sections 3.2 and 3.3. The

coefficients {C } on input are assumed to be normalized

so that for all i, C = 1and at least one of C and1i 2i

C equals 1. On return {C } contains the scaled coefficients

and NX is the value of output noise variance computed in

units of Q2, where Q is the quantization step size of the

filter.

Using this subroutine the noise output of all

possible orderings of several FIR filters ranging from

N = 3 to N = 7 was investigated. Before the results

are presented, we shall prove one characteristic of sum

scaled filters which, for most filtersreduces the total

number of orderings that differ in output noise to at

most N !/2.



Theorem 4.1: Let {H. (z)} and {H(z)} be two
1

orderings

for H(z), both scaled by sum scaling,

H(z)

N

= f H(z)
i=l

N
5

= T H'(z)
i=l1

a zero of H'(z) whenever z isi

H.(z). Then filters ordered according to {Hi

a zero of

(z)} and

{H'(z)} produce identical output noise variances.

Proof:

We first establish that if {x(n)} is a sequence

of length N+l, {y(n)} a sequence of length M+l,

p(n) = x(n)*y(n) (* denotes convolution)

q(n) = x(N-n)*y(M-n)

then

p(n) = q(M+N-n)

To see this note that

x(N-k)y(M-n+k)

96

thus

Suppose is

and

(4.23)

q(n)
N

k=0
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N
= 2 x(m)y(M+N-n-m)

m=O

Hence immediately

q(M+N-n)
N
Y

m=O

Now let H i(z) and '(z) be

x(m)y(n-m)

normalized transfer functions

defined in (3.16) so that

H i(z) = S H(z)

H'(z) = S*H (z)

Also let (H

N
5

H H (z)
j=1+1

i(z), {h i(k) }),

{g (k) })

(j
j=1

H (z), {f i (k)}) and

be transfer function - impulse

response pairs, and the same when primes are added. Now

for all i such that H i(z) has 2 zeros (see Theorem 2.1)

$ '(0)

h (2)

h'(1) h'(2)

h (1) h (0)

= p(n)

as
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But because of the normalization condition (3.17),

h (k) = h (M1 -k) (4.24)

where M.+1 is the length of the sequence {h (k)}. In the

present case Mi=2. If Hi(z) has only 1 zero (viz. at

z=-1), then

l+z ~1
Hi(z) = H!(z) =

hence (4.24) is again satisfied.

Now let N +1 be the length of sequence

We next show by induction that

(k) = f (N -k) 1 i< Ns

For i = 1,

f (k) = h (k)

fj1 k) = h k

Hence by (4.24), (4.25)

k = 0,1,2

is true.

Suppose (4.25) is true for i=m, m < Ns. Now

f M~~k)= fm(k) * 1mlk

f1 1  * 1
f m+l (k) = fm(k) * hm +1 (k)

(4.25)
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Using (4.24) and the induction hypothesis,

h+1(k) =h

fm(k) = f'(Nm~k )

Therefore by (4.23)

fM+1 (k) = f'm+1(Mm+l+Nm-)

= fm+l(Nm+1-k)

Thus (4.25) holds for all i.

Clearly then

N-

Ifi(k) = I
k=0

1 < i < As

Therefore by the definition of sum scaling

S. =S

Using (4.26)

(4.26)

we can show in exactly the same way that

where T. +1
1

g1 (k) = gr(Ti-k) i =

is the length of Jg (k) .

Ni

.k=0

-l

If(k) I
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Hence
T T.

1 1 2
1 g. (k) = g' (k) 0 < i < N -1

k=0 1 k=0 1 S

Since for all i the ith section of both orderings have

the same number of noise sources, we have by (3.5) and

(3.7) that their output noise variances are identical.

Q.E.D.

A stronger result than Theorem 4.1 can

actually be proved for the case of peak scaling. In

particular we can show that if two orderings of a filter

differ only in that in one ordering a pair of sections

which have reciprocal zeros are interchanged in position,

then with peak scaling both these orderings yield the

same noise variance. This is easily seen by noting that

if Hi(z) and H (z) are two sections having reciprocal

zeros, by (4.13)

IHi(eJO)| = |H (eJw)| (4.27)

where a is a proportionality constant. Hence the

normalized spectra satisfy

IHi(e )| = I (e ")| (4.28)
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But from (3.10) and (3.37) peak scaling and output noise

variance depend only on the magnitude of the individual

sections' frequency spectra, hence (4.28) shows that

exchanging the positions of H (z) and H (z) in an

ordering does not change the filter's output noise

variance under peak scaling.

Since we are concerned only with sum scaling,

we shall restrict attention to Theorem 4.1. The result

of this theorem can be used in our investigation of all

possible noise outputs of a filter by choosing a pair

of sections which synthesize reciprocal zeros and then

ignoring all orderings in which a particular one of these

sections precedes the other in our search over all

orderings. To see that this does not change the noise

distribution, note that if we divide all orderings into

two groups, according to the order in which the pair of

sections chosen occurs, then by Theorem 4.1 there exists

a one-to-one correspondence in terms of noise output

between each ordering of one group and some ordering of

the other group. In this way only N !/2 different orderings
5

need to be scaled and have their output noise variances

computed. Of course, the applicability of this procedure

depends on the existence of such a pair of sections.
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Using the methods and procedures described in

this section, the noise distributions of 27 different

linear phase, low-pass extraripple filters were investigated.

22 of these filters were 13-point filters, since N=13

represents a good filter length to work with. 13-point

filters have six sections each, corresponding to 6! or

720 possible orderings of sections. By reducing redundancy

via Theorem 4.1, the number of orderings that are necessary

to investigate reduces to 360 for all but 2 of the 22

filters.

The results of the investigations for all

27 filters will eventually be presented. Meanwhile, we

focus attention on a typical 13-point filter. Chosen

as an example is a filter with 4 ripples in the passband,

3 ripples in the stopband, and passband and stopband

tolerances of 0.1 and 0.01 (or -40 dB) respectively. By

passband and stopband tolerances it is meant the maximum

height of ripples in the respective frequency bands. (For

definition of terminology see Fig. 4.1 and page 41).

Plots of the impulse response, step response, and magnitude

frequency response of the filter are shown in Fig. 4.6.

Figure 4.7 shows the positions of the zeros of the filter in

the upper half of the z-plane. Each section of the filter

is given a number for identification. The zeros that a
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section synthesizes are given the same number, and these

are shown in Fig. 4.7. Appendix A.1 shows a list in

order of increasing noise magnitude of all 360 orderings

investigated and their corresponding output noise

variances in units of Q 2, computed according to Fig. 4.5.

On the Honeywell 6070 machine the total computation

time required amounted to approximately 12 seconds. A

histogram plot of the noise distribution is shown in

Fig. 4.8, and a cumulative distribution plot is shown

in Fig. 4.9.

Two characteristics of the histogram shown

in Fig. 4.8 are of special importance because they are

common to similar plots for all the filters investigated.

First of all, most significant is the shape of the

distribution. We see that most orderings have very low

noise compared to the maximum value possible. In fact,

the lowest range of noise variances, in this case

between zero and 2Q 2, is the most probable range in

terms of the number of orderings which produce noise

variances in this range. The distribution is seen to be

highly skewed, with an expected value very close to the

2
low noise end, in this case equal to 19.5Q . In fact,

from the cumulative distribution we see that approximately

two-thirds of the orderings have noise variances less than



1 07

100

90 N = 13

Fi = .279

80 F 2 = .376

D1 = 0.1

70 D2 = 0.01

NO. OF ORDERINGS = 360

W = 2.0
60

50

40

30

20-

10

0 1 i A i I I I I I
0.0 20 40 60 80 100 120 140 160 180 200

OUTPUT NOISE VARIANCE

FIG. 4.8 - NOISE DISTRIBUTION HISTOGRAM OF FILTER
OF FIG. 4.6

z

0

U-

0

LU

z



360

340

320 -

300 -

280 -

260 -

240 -

220 -

200 -

ISO

160

140

120

100

so

60

40

20

0
0 20 40 60 So 100 120 1

OUTPUT NOISE VARIANCE

140 160 ISO 200

FIGURE 4.9- CUMULATIVE NOISE DISTRIBUTION OF FILTER
OF FIGURE 4.6

40z

0
Ix
0

LLJ
0

2



109

4% of the maximum while nine-tenths of them have noise

variances less than 14% of the maximum.

The second characteristic is that large gaps

occur in the distribution so that noise values within

the gaps are not produced by any orderings. While Fig. 4.8

shows this effect only for the higher noise values, a

more detailed plot of the distribution in the range from

zero to 28Q 2, as in Fig. 4.10, shows that gaps also occur

for lower noise values. Thus noise values tend to occur

in several levels of clusters. These observations provide

us with the general picture of clusters of noise values

which move apart very rapidly as the magnitude of the

noise values increases, thus forming a highly skewed

noise distribution.

The significance of these results is far-reaching.

Given a filter, because of the large abundance of orderings

which yield almost the lowest noise variance possible,

we conclude that it should not be too difficult to devise

a feasible algorithm which will yield an ordering whose

noise variance is very close to the minimum. Thus as

far as designing practical cascade filters is concerned,

it really is not crucial that the optimum ordering be

found. In fact, it may be by far more advantageous to

use a suboptimal method which can rapidly choose an
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ordering that is satisfactory than to try to find the

optimum. The amount gained by finding the optimum solution

is probably at best not worth the extra effort from the

design standpoint. At least up to the present no simple

method for finding an optimum ordering has been found.

In section 5.0 we will present a suboptimal

method which given a filter yields a low-noise ordering

efficiently and has been successfully applied to over 50

filters. But before we do that, we will investigate

further the behavior of roundoff noise with respect to

scaling and other filter parameters. Also, we will try

to understand more on the nature of high noise and low

noise orderings, so that they might be more easily recognized.

Before we end this section, we present the

noise distribution histograms of an 11-point and two

more 13-point filters, in Figs. 4.11 to 4.13. These

are seen to exhibit all the characteristics discussed

above. The major difference among the noise distributions

for the three 13-point filter examples presented lies

in the magnitude of the maximum and average noise

variances. In fact, the differences are drastic. These

differences will be accounted for in section 4.3.
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Finally, the noise distributions for three 15-

point, extraripple filters are shown in Figs. 4.14 to

4.16. Each of these involves 2,520 different orderings

and requires 118 seconds on the Honeywell 6070 machine.

These plots show even stronger emphasis on the distribution

characteristics discussed, and together with Fig. 4.11

suggests that the skewed shape and large gaps properties

of the noise distribution of a filter must become

increasingly pronounced as the order of the filter

increases. Thus we expect that our results can be generalized

for higher order filters.

4.2 Comparison of Sum Scaling and Peak Scaling

It was mentioned in the previous section that

the results obtained on the noise distribution of filters

with respect to different orderings ought to be quite

independent of whether sum scaling or peak scaling is

used. In this section we will show heuristically and

support with experimental evidence that this claim is

indeed true.

Let H(z) be any transfer function and denote

by {Hi(z)} an ordering for a filter synthesizing H(z)

which is sum scaled and denote by {H (z)} the same

ordering except peak scaled. Then
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N N
s s

H(z) = k H H.(z) = k I1 H (z) (4.29)2 i=l

where k and k2 are constants. Let

N
s

H (z) = S H i(z), II S = S
j=1

N
s

H'(z) = SH (z), S = ' (4.30)

where H (z) is as defined in section 3.3. Furthermore,

define as in section 3.3

F (z) = H H.(z) = f (k)zk (4.31)
j=1 k

Since {H i(z)} is sum scaled, we have from (3.35)

1 --
H S = Ifi(k)|J 1 < i < N (4-32)

a=1 - k

Recall that condition (4.32) guarantees that no inter-

section overflow (i.e., error causing) can occur in the

filter for all class 1* inputs. Since class 2* is a subset

of class 1, the same must also be true for all class 2

inputs. But by Theorem 3.2 and (3.34) this no-overflow

condition for class 2 inputs means that the S must satisfy

(noting from (4.32) that S > 0 for all i)

* See page 62.
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H S < max |' (e)
a=1 W

Turning to

i
H

j =1

1

1 < i < N s (4.33)

{H'(z)}, since it is peak scaled, we have

-1

S' = max
_ W

1 < i < N (4. 34)

Therefore

S
i

< H S'
j=1j

1 < < N S

Now the output noise variance due to the ith section

and {H'(z)} are respectively

2C

1 S
j=( I )

1< i < N

1 < i < N s

i
II

i

{H1 (z)}

(4.35)

for

2a.

and

(4.36)

-2

where

(4.37)

-W
| ' (ed" |



27r

* 
7 J

k.

C =

kN
S

Q 2

j=1+1
e ) 2 dow

1 < i < Ns

Q
2

12 i= N
S

(4.38)

Let

(4.39)

Then by (4.35) to (4.39)

a > _ 2 0 '2
. > 0.

Therefore

2 > a 2 '2

where 02 = Z2 and a = ZO'2
Zo and

Now from (4.32) and (4.34) we can write

max IFNs(e )I

f N(k)|
k

121

-1

(4.40)

(4.41)

(4.42)

t3 = as



Clearly, by (4.35) P < ', therefore

(k)FN
S

and

(elo)
S

fNS (k)

K max
WI

|FN (ew)
S

K a~ 1 i
(k)|

S

Defining a sequence

NT\T (k)

r(k) = LS
fN (k) < 0

S

fN (k)
S

> 0

we can write
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a <1. But

(4.43)

FN
S
(1) =

Hence

(4.44)

if N
k

(4.45)

{r(k)} by

(4.46)

1) = X
k



Z N )
k

fN (k)
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N (k)| -2 r(k)
k s kk k

Z fN (k)|
k

= 1 - 2E

(4.47)

where

r(k)

kzf 1 N (k)I
k

1 - 2e K a K 1

Loosely speaking, e is the fraction of the impulse response

of FNs(z) which has negative values. Since FNS (z) is simply

a constant multiple of H(z), E is unchanged if FNs(z) is

replaced by H(z). For a low pass transfer function H(z),

the envelope of its impulse response has the general

shape of a truncated sin x curve. Therefore E is expected

to be a small number.

Then

(4.48)

(4.49)



For a low pass filter, we can in addition

overbound a more tightly by noting that

fN (k) = FN (1) > max IFN (e )I - 25 (4.50)
k s s s

where b is the passband tolerance (i.e. maximum approximation

error). Therefore

max IFN (e (k) + 25 (4.51)
o s k N s . 1

k

or from (4.42)

Z N (k) + 25
^S

k

a x (4-52)

With £ defined as before, we have finally

1 - 26 a< 1 - 2E + 2 5 (4.53)

Zf IN (k)I
|K~
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For any reasonably well designed low pass transfer

function FN (z),
S

But from (4.32),

6 << max IFN (eO")|
W S

(4.34) and (4.35)

max IFN (e
o s

f N (k)I
k s

Hence

5 << XfNs(k)| (4.56)

Therefore, with little error committed we can write

a = 1 - 2E (4.57)

for a low pass filter.

The relation a2 > a2a,2 has the implication

that for class 2 input signals peak scaling yields a

higher signal-to-noise ratio than sum scaling. To see

this note that {Hi(z)} has a gain a times as large as

(4.54)

(4.55)
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that of {H.(z)}. Thus given a class 2 input constrained
1

to the dynamic range, the maximum attainable output

signal level is a times as large in {H (z)} as in

{H'(z)}. Therefore if we multiply all outputs of {H'(z)}
i 1

by a so that the signal output of both {H (z)} and

{H'(z)} are identical given identical class 2 inputs,

then the ratio of their signal-to-noise ratios will

simply be given by the inverse ratio of their noise

outputs. But the output noise variance of the modified

{H'(z)} would be given by a 2 2, hence the signal-to-

noise ratios satisfy (S/N for sum scaling and S/N' for

peak scaling):

S/N' (4.58)
S/N cao

or since a > aa',

S/N' > S/N (4.59)

Of course, this result is to be expected since we have

shown in section 3.3 that both sum scaling and peak

scaling are optimal within the classes of inputs they

assume. Thus since class 2 is a subset of class 1, we

would expect the optimal scaling for class 2 signals

to yield no worse performance than the optimum for class 1.
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In Tables 5.1-5.2, a list of filters and some

results of section 5.0 will be presented. Together

with these results we have also listed measured values

of a for each filter. Observe that for these typical

filters a ranges from .5 to 1. Furthermore, for each

filter, the last and third last columns of Tables 5.1-5.2

list the noise variances that result from the same

ordering using sum scaling and peak scaling respectively.

Comparing these, we see that in almost every case

a2 < Y2 (4.60)

In particular, we observe that (4.60) holds if a is not

too close to 1.0. When a=l, (4.60) can be easily false

since (4.36) and (4.37) show that

. 2

_ (=1 J- (4.61)
'.2 1 2
i H1 S.a (\i=l

and it is not difficult to conceive of a filter with

a = 1 in which for some i
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max |F.i(ejW)I < I fi.(k)j (4.62)
W k

i i2 2
so that H S < H S'. Thus for this i 2> 2, hence

j =,I j=1

a2 > a 2 contradicting (4.60). A concrete example is

filter no. 40 in Table 5.1.

However, except for the uninteresting cases

of filters with all zeros on the unit circle, in general

a < 1 and (4.60) holds. Thus we may assume for practical

arguments that

2 2

a2 <2< 1 (4.63)
a'

From (4.63) we see that the output noise

variance for a filter with sum scaling is very comparable,

at least in order of magnitude, to that for the same

filter ordered the same way with peak scaling applied. In

fact, experimental results show that given a filter, the

noise variances for sum scaling and peak scaling are in

an approximately constant ratio for almost all orderings.

An example of this result is shown in Fig. 4.17, where

the noise variances for sum scaling and peak scaling of

a typical filter are plotted against each other for each

ordering. The resulting points are seen to form almost

a straight line with slope approximately equal to 2, so

that essentially a'2 = 2a2 for all orderings of this filter.



200

Is

WD
z

Iac

0

z
4

4

U)

0
2

0 1 1 I
0 10 20 30 40 50 60 70 80 90 100

NOISE VARIANCE FOR SUM SCALING

FIG.4.17-PEAK SCALING VERSUS SUM SCALI
OUTPUT COMPARISON FOR TYPICAL

pNG NOISE
FILTER.



130

Thus the noise distribution plots of section 4.1

are essentially unchanged if peak scaling were used

instead of sum scaling. As an example we show in

Fig. 4.18 and 4.19 the noise distribution plots for sum

scaling and peak scaling respectively for the filter

of Fig. 4.17. Similar plots for the filter of Fig. 4.6

are shown in Fig. 4.20 and 4.21.

The evaluation of noise variances with peak

scaling is done in exactly the same way as that described

in Fig. 4.5, except that the statements

x + 1 IfN (k)j
k s

x 1 If+ 1 (k)I
k

are replaced by

x2 + max IF N (ejW )I

* 2 max IF i 1 (e jW)I
W

Using a 128-point FFT to evaluate two at a time (exploiting

real and imaginary part symmetries) the maxima of the

Fi(eiw), for 360 orderings the computations for peak

scaling were found to require four times as much time as

that for sum scaling, viz. approximately 48 seconds on the

Honeywell 6070 machine.
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4.3 Dependence of Roundoff Noise on Other Filter Parameters

The two preceeding sections have investigated the

dependence of roundoff noise output of a cascade filter on

scaling and section ordering. It was shown that though

different filters may produce very different ranges of

output noise variances when ordered in all possible ways,

the noise variances for each filter always distribute

themselves in essentially the same general pattern. (By

different filters we mean filters which realize different

transfer functions.) In this section we shall account for

the differences in noise variance ranges among different

filters by investigating the dependence of noise distribu-

tions on parameters which specify the transfer function

of a filter.

For simplicity only low-pass filters will be

considered. A low-pass transfer function can be specified

up to overall gain by four independent parameters. The

parameters which we have chosen to be independent variables

in our investigations are filter length (N), passband edge

(F ), passband tolerance (D 1 ), and stopband tolerance (D2).

These four parameters together are sufficient to uniquely

specify a transfer function designed via the optimal design

technique (see section 2.2).

The noise distributions of several filters with

various values of the above parameters were computed using
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the methods of section 4.1. Sum scaling was employed as

the scaling method. Since all these distributions have

the same general shape, we can compare them by simply

comparing their maximum, average, and minimum values.

A list of all the filters whose noise distributions have

been computed, including those already discussed in section

4.1, are presented in Table 4.1. These filters are

specified by five parameters, namely the four already

mentioned plus Np, the number of ripples in the passband.

Since all the filters are extraripple filters, it is more

natural to specify Np than F . Of course, N and F are

not independent. The maximum, average, and minimum values

of the noise distributions of each of these filters are

listed in Table 4.1. The last column in this table will

be discussed in section 5.0.

Filters no. 1 to 5 in Table 4.1 are very

similar except for their length in that they all have iden-

tical passband and stopband tolerances and approximately

the same bandwidth. The maximum, average, and minimum

values of their noise distributions are plotted on semi-

log coordinates in Fig. 4.22. We see that all these

statistics of the distributions have an essentially exponen-

tial dependence on filter length. The less regular

behavior of the minimum values is believed to be caused

by differences in bandwidth (F 1 ) among the filters.
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Table 4.1

List of Filters and Their Noise Distribution Statistics

Noise Variance

# N Np F D1  D2  Max Avg Min Alg. 1

1 7 2 .212 .1 .01 1.24 .84 .37 .37
2 9 3 .281 .1 .01 6.26 2.54 .73 .73

3 11 3 .235 .1 .01 19.41 4.79 .68 .68

4 13 4 .279 .1 .01 192.86 19.55 1.10 1.10

5 15 4 .244 .1 .01 923.63 54.45 1.02 1.16

6 13 3 .100 .001 .001 15.84 3.01 .65 .69

7 13 4 .261 .05 .004 119.48 12.91 .96 1.02

8 13 1 .012 .01 .01 9.91 1.61 .32 .35

9 13 2 .067 .01 .01 16.30 2.94 .44 .47

10 13 3 .138 .01 .01 42.63 5.94 .71 .73

11 13 4 .213 .01 .01 69.76 8.52 .82 .91

12 13 5 .288 .01 .01 76.43 11.01 1.44 1.52

13 13 6 .364 .01 .01 52.54 10.33 1.92 2.43

14 13 3 .201 .1 .01 96.25 12.09 .81

15 13 3 .179 .05 .01 69.26 9.02 .76
16 13 3 .154 .02 .01 50.63 6.87 .72

17 13 3 .123 .005 .01 37.36 5.33 .70

18 13 3 .106 .002 .01 32.83 4.80 .69

19 13 3 .095 .001 .01 30.53 4.53 .69

20 13 3 .124 .01 .1 132.57 17.56 1.02

21 13 3 .129 .01 .05 85.84 11.45 .83

22 13 3 .135 .01 .02 54.94 7.47 .75
23 13 3 .141 .01 .005 35.59 5.07 .68
24 13 3 .144 .01 .002 26.44 4.37 .68
25 13 3 .146 .01 .001 22.52 4.07 .70
26 15 4 .185 .01 .01 417.08 27.38 1.00

27 15 4 .255 .1 .001 601.83 35.15 1.02
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Figure 4.23 shows a similar plot of the same

distribution statistics for filters no. 8 to 13 as a

function of F1 . These filters have identical values of

N Dl, and D2 , and represent all six possible extraripple

filters that have these parameter specifications. From

Fig. 4.23 we see that with those parameters mentioned

held fixed the noise output of a cascade filter tends to

increase with increasing bandwidth.

Filters no. 14 to 25 all have fixed values of

N, N and either D or D2. Plots of the distribution

statistics of these filters as functions of D1and D2

are shown respectively in Figs. 4.24 and 4.25. These

plots indicate that as the transfer function approximation

error for a filter decreases, so does its noise output.

Though the plots were made holding Np rather than F1

fixed, we see that at least for the filters used in Fig.

4.25, bandwidth increases with decreasing approximation

error. Since the noise output of a filter is found to

increase with bandwidth, we expect that noise would still

decrease with stopband tolerance D2 if F were fixed

instead of N . In any event the variation of F1 among

these filters is small.

Figures 4.23 to 4.25 are all plots of statistics

for 13-point filters. Notice how the maximum, average, and

minimum curves all tend to move together. In particular the
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average curve almost always stays approximately halfway

on the logarithmic scale between the maximum and minimum

curves. This phenomenon is, of course, simply a manifes-

tation of the empirical finding that noise distributions

of different filters have essentially the same shape

independent of differences in transfer characteristics.

To summarize, we have found experimentally that

with other parameters fixed, the roundoff noise output of

a filter tends to increase with all four independent

parameters N, F ,D , and D2 which specify its transfer

function. In particular, noise output tends to grow

exponentially with N. We did not show that the noise output

of a filter with a fixed ordering and scaled a given way

always varies in the way indicated when its transfer

function parameters are perturbed. What we have shown is

perhaps a more useful result from the design viewpoint.

Our findings imply that, other things being equal, a trans-

fer function with, for instance, a higher value of D2 3 is

likely when realized in a cascade form to result in a

higher noise output than a transfer function with a smaller

value of D2 realized by the same method. Though these

results were found using only low-order filters, we expect

them to generalize for higher order filters as well.

Section 5 will present experimental evidence to confirm

this expectation.



4.4 Spectral Peaking and Roundoff Noise

Given a filter, we have seen that its output

noise variance can be very different depending on how

its sections are ordered. This difference arises from

complicated reasons which involve differing spectral

shapes of different combinations of individual filter

sections and the interactive scaling of signal levels

within a filter necessitated by dynamic range limitations.

As such, these reasons are too complex to provide a good

feel for judging by inspection whether a given ordering

ought to have a relatively high noise or a reasonably low

noise output without performing involved calculations.

In this section, we shall attempt to devise more

intuitive means for judging the relative noise level of

a filter by bringing out one characteristic of an ordered

filter which is associated with the noise level of the

filter.

While specific points in the following

arguments cannot be proved to be valid in general, they

are very reasonable to assume and predictions based on

them are supported by experimental evidence. Thus the

arguments are useful to advance. More importantly, they

have provided valuable insights to the author on the

behavior of roundoff noise in cascade filters. Taking

advantage of the similarity between sum scaled and peak
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scaled filters in terms of noise output we shall for

simplicity restrict our discussions to peak scaled

filters.

Let H(z) be the transfer function of a peak

scaled filter with section transfer functions {Hi(z)}.

Then

N
s

N
s

H(z) H H (z) = II H (z)
j=1 j=1

(4.64)

where the H.(z)'s are as defined
3 N

in section 3.3 and a

is a constant. Let a = a S, C > 0, and define new

transfer functions

Hi(z) = H i(z) 1 < i < Ns

Ns
H(z) = R (Z)

j=1

From (4.17) and the definition of H.(z) we have clearly

max |Hi(eiw)| = 1

max |Hi(ejw)| = C
WA

1 < 1 < N s

1 < 1 < N9

Now define a sequence {r } by

Then

(4.65)

(4.66)

Hence

(4.67)

(4.68)



H (z) = r A (z)

N
S

R r. =
j=1 3

1 < i < N s

1

and peak scaling implies for all i

H r. = max I H .(eL)j
j=1 j _W j=l

(4.71)

Clearly r is simply related to S. by

S = Cr (4.72)

Stated simply, the ffI (ed")s are factors of H(ejw) which

have maxima normalized to the same value such that their

product has a maximum equal to unity.

Now define a number Pk by

Pk = max(p1 ,p 2)

P, = max max
1 < i < N -1 

p2 = max max
2 1 < i < N s-1 ( W

N
s

j=i+l
II.(e j )|e0 wI

Then

1.46

(4.69)

(4.70)

where

(4.73)

(4.74)

|I H i (e )
j=1



We will ar

indicates

gue that given an ordering a large value of Pk

a high noise output while a low value of Pk

indicates a low noise output.

To see this, define

d(z) =( max
(A)

N

j=i+l
H (e j )

Then

max Ili(ew)I
WA

Now the noise output due to the

= 1

ith

(4.76)

section is given by

2n Ns
- 2Tr N

0 j=i+1
H.

J
(ejW) I

1 < i < Ns -

(We will not consider i=N

ordering. ) But

Ns

ii r. = 11
j=i+1 0 =1

r

2since aN
s

i
= max |H

A J=1

is independent

Hf (eW ) I

14i7

-l N
j

fi.(z)
J

(4.75)

2
N

H
=i+1

2r k Q
2

i 12

2

(4- 77)

and

of

(4.78)
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2I N s .jW) 1
I H (ye do max

0 ij=i+1 ( W

Ns 2 2 2
1 1 ! (e jW)) I IGi(eJw)j dw|H H.(e

j=i+1 0

(4.79)

Therefore defining

A max

B = max
1

H(e w)|
j=l

N
s jw
H H (e )|

j =1+1

C. = k - 2
1 12 2Trj0

0

i~ (e~ j 2 dw

1 = A B2 C1 1 < i-< N s-1

For the moment assume that C is a constant

2factor independent of ordering. Then a. is proportional

to (A1 B ). Note that for any i, A and B are the maxima

of two functions whose product is H(ejW). Furthermore,

for some i either A. = Pk or B = Pk. Now suppose

Pk >> C. Without loss of generality we may assume

A = Pk. We then argue that A B >> C.

we have

(4.80)

(4.81)
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Clearly C > 1, since we must have

N

max Ii(e)J > max I H ll.(e) (4.82)
W j=1 

In fact, C is found to be an increasing function of N
s

given other parameters fixed. A plot of measured values

of C for typical filters is shown in Fig. 4.26. These

filters are listed in Table 4.2. We see that typically

C > 2.

For simplicity of notation let

i
A(z) = H ff.(z)

j=l 2

N
s

B(z) = H H%(z) (4.83)
j=i+l i

so that Ai = maxlA(ejW)I and B = max| B(e j)|. Clearly

A, = JA(e 0)I for some w. Now A(z)B(z) = H(z), and

H(z) is a function with zeros only in the z-plane other

than the origin. Also, at least in the case of well-

designed band-select filters, the zeros of H(z) are well
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Table 4.2

Tabulation of Filters Used for Fig. 4.26

Dl = .01
D2 =.01

N N F C

13 4 .213 1.97

15 4 .185 2.02

17 5 .222 2.12

19 5 .198 2.16
21 6 .227 2.24

23 6 .207 2.28

25 7 .231 2.34

27 7 .214 2.37
29 8 .234 2.42

31 8 .218 2.45

33 9 .236 2.49

35 9 .222 2.51
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spaced and spread out around the unit circle. Plots

of the zeros of typical filters are shown in Fig. 4.7

and 4.27. Furthermore, IH(ejW)I < 1. Thus in order

for A(ed") to have a large peak at wo, several zeros of

H(z) which occur in the vicinity of z = e 0 must be

missing from A(z), while most of the remaining zeros

must be in A(z). This means that B(z) has a concen-
jW

tration of zeros around e . Recalling from (4.3) and

(4.10) the shape of the frequency spectra associated with

individual zeros, we see that most factors of B(e j)

must have maxima which occur at exactly the same w.

Since each maximum typically has value C > 2, B(ejw)

is very likely to have a peak which is at least 1, or

B i> 1. Thus A B >> C. By the same token if B = Pk

and Pk >> C then A B >> C.

Hence if Pk >> C, then for at least one i

2 2
G = (AiBi) C where A B >> C. Compared with a nominal

value of say A B = C the resulting difference in output

noise variance can be great. When Pk takes on its

lowest possible value, viz. Pk = C, the a 2s are comparatively

small for all i, hence we may expect that the resulting a 2

is among the lowest values possible. Thus we have

established a correlation between high values of Pk and

high noise, and low values of Pk and low noise.
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Concerning the assumption that C. is constant

independent of ordering, it is reasonable as long as

only order of magnitude estimates are of interest. Since

by definition max 1 (e )| = 1 independent of ordering
W

and i, we can expect that variations in C. with ordering
1

is much less than variations in (A B )

What all these arguments lead to is the result

that the output noise variance from a cascade filter

can be minimized by choosing an ordering which yields a

minimal value of Pk. The usefulness of this result lies

in the fact that Pk is a parameter whose magnitude can

be judged by inspection much more easily than the

2
magnitude of a2. Thus a means is provided for judging

whether an ordering is likely to have high noise or low

2
noise without having to calculate a2. For example, we

can conclude that an ordering which groups together

either at the beginning or at the end of a filter several

zeros all from either the left half or the right half of

the z-plane is likely to yield very high noise. This

observation is based on the fact that zeros from the

same half of the z-plane produce frequency spectra whose

maxima occur at exactly the same w (namely 0 or ). Hence
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several zeros from the same half of the z-plane can build

up a large peak in A(ejw) or B(ejw) for several i. On

the other hand, a scheme which orders sections so that the

angle of the zeros synthesized by each section lies

closest to the w at which the maximum of the spectrum

of the combination of the preceeding sections occurs is

likely to yield a low noise filter.

The above observations are found to be true

for all the filters whose noise distributions were

investigated. For example, from the list of all orderings

and noise variances for the filter of Fig. 4.6, shown

in Appendix A.1, we see that those orderings which group

together all three sections 4, 5, and 6 of this filter

(see Fig. 4.7) either at the beginning or at the end of

the filter are precisely those which have the highest

noise, viz. with a2 > 81Q 2 . Furthermore, the next

highest in noise output are those orderings in which

sections 4 and 6 or 5 and 6 occur side by side at the

beginning or the end of the filter. Similarly, a different

13-point filter, one whose highest output noise variance

is only 15.8 Q2 and whose noise distribution was shown in

Fig. 4.12, also confirms our remarks. Its list of

orderings and noise values in Appendix A.2 shows that
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all noise variances above 2.8 Q2 are produced by orderings

which group together sections 5 and 6 at the beginning

or the end of the filter. From the plot of its zeros in

Fig. 4.28 we see that sections 5 and 6 are those sections

which synthesize the passband zeros on the right half of

the z-plane.

Using the results on the noise distribution

of a filter and the results of this section, we can

say that the comparatively few orderings of a filter

which have unusually high noise can be avoided simply

by judiciously choosing zeros for each section so that

no large peaking in the spectrum either as seen from the

input to each section or from each section to the output

is allowed to occur. In particular this can be done by

ensuring that from the input to each section the zeros

synthesized well represent all values of w, i.e.,

the variation in the density over w of zeros chosen

should be minimal.

Although the correlation between high peaking

(large Pk) and high noise was not rigorously shown, we

can overbound the possible values of output noise variances

in terms of Pk. For since A B < Pk2 and by (4.76)

and (4.80)
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2 2
C. < k< -( .4

we have

14
a2 < Q2 1 < i < N -1 (4.85)

Hence

a2 < (N-1) a2 +

s4 -

(N s-14) Pk + 1 I 2  (4.86)

Considering the ordering in which all zeros of

a filter are sequenced according to increasing angle,
N /2

we see that Pk can increase as C . Hence the high

noise values of a filter can increase exponentially with

Ns (recall that C also increases with N s). This was

shown experimentally to be true for small N in the previous

section. On the other hand, (4.86) shows that if Pk can

always be chosen small (eg. Pk = C), then noise variances

bounded by an approximately linear increase with Ns can

be guaranteed. Thus for large Ns the difference can be

very important. In general we cannot guarantee that
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Pk = C can be attained. However, in several of the

filters experimentally investigated (N = 6) Pk = C

was indeed attained for several orderings. In any event

by virtue of (4.86) the minimization of Pk is certainly

a working means for minimizing roundoff noise.

The values of Pk for all orderings of several

filters have been measured. The results for a typical

13-point filter, namely that listed as no. 14 in Table

4.1, are listed in Appendix A.3. The designation of

orderings refers to the numbering scheme in Fig. 4.29

and all noise variances are calculated using peak

scaling on the filters. The list is arranged in order

of increasing noise value. We see that the orderings

with the highest value of Pk are indeed those with the

highest noise, viz. having a2 > 109 Q 2, while where Pk

has the lowest value, a2 < 1.7 Thus our arguments

are supported. Those orderings with noise values between

these extremes are less well behaved in terms of correlation

between a2 and Pk. For this filter there are only 4

possible values for Pk. However, for higher order filters

we would expect a much larger spectrum of values for Pk.

If Pk and a2 were in fact well correlated, we

would expect each ordering of a filter to have a noise
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value comparable to that of its reverse, since both

have the same value of Pk. Appendix A.4 lists the a2

and Pk values of each ordering of filter no. 14 and

those of its reverse on the same line. (Note that

sections 5 and 6 synthesize reciprocal zeros, hence

their relative order does not matter.) The overall

list is ordered according to increasing noise values on

the left side. Comparing the right and left sides of

this list we see that indeed reversed orderings have

comparable noise variances. This experimental result is

a further confirmation that Pk and a2 are well correlated.

As a final illustration, plots of the spectra

{IFi(ejW)I} and {IGi(ejw)|} (as defined in sections

3.2 and 3.3) for a high noise and a low noise ordering

of filter no. 14 (peak scaled) are shown in Appendices

B.1 and B.2 respectively. From Appendix A.3 we see that

the former ordering, namely 213456, has a2 = 186 Q2

2 2
while the latter, 351462, has a 1.1 Q Note that as

expected, for the high noise ordering the spectra

|G1 (ejw)| have large maxima for at least one i, reaching

a value of 60, while for the low noise ordering

IGi(eiw)I < 2.2 for all i. Since, in reference to (4.80),

A, = 1 and B = max |Gi(eW )I for all i in both orderings,
i i
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we see that indeed the high noise ordering has large

values of A B . Along the same lines, we see also that

Ci, the integral of IGi(e ")I2 with its maximum normalized

to unity, does not vary too much between the two orderings.

Finally, we point out that the high noise

ordering has its zeros sequenced almost exactly in the

order they occur around the unit circle, while the

sequencing of zeros in the low noise ordering obeys

the rule of good representation of all values of w, thus

resulting in a sequence which "jumps around" a great

deal around the unit circle. Furthermore notice how

the spectrum of each section in the low noise ordering

tends to suppress the peak in the spectrum of the combination

of previous sections. Our deductions are thus further

supported.

In the next section we shall see how the results

of this section give basis to an algorithm which can be

used successfully to find low noise orderings for

cascade filters.
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5.0 An Algorithm for Obtaining a Low Noise Ordering

for a Cascade Filter

An extensive analysis of roundoff noise in

cascade form FIR filters has been presented in the

previous sections. However, an investigation of roundoff

noise would not be complete without studying the practical

question which in the first place had motivated all the

analyses and experimentation. The question is, given an

FIR transfer function desired to be realized in cascade

form, how does one systematically choose an ordering for

the filter sections so that roundoff noise can be kept

to a minimum?

A partial answer to this question has already

been given in the previous section. However, no com-

pletely systematic method has yet been devised for selecting

an ordering for a filter guaranteed to have low noise.

Ultimately, one wishes to find an algorithm which, when

implemented on a computer, can automatically choose a

proper ordering in a feasible length of time.

Avenhaus has studied an analogous problem for

cascade IIR filters and has presented an algorithm for

finding a "favorable" ordering of filter sections[16]

His algorithm consists of two major steps; a"preliminary
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determination" and a "final determination." In this

section we shall describe an algorithm for ordering

FIR filters which is based upon the procedure used in

the "preliminary determination" step of Avenhaus'

algorithm. We have found that a procedure appended to

our algorithm similar to Avenhaus' final determination

step adds little that is really worth the extra computation

time to the already very good solution obtainable by the

first step. Hence such a procedure is not included in

our algorithm.

No statement was made by Avenhaus as to what

range of noise values can be expected of filters ordered

by his algorithm, nor did he claim that his algorithm

always yields a low noise ordering (relatively speaking,

of course). However, based on the results of sections

4.1 to 4.4, we shall be able to argue heuristically that

our algorithm always yields filters which have output

noise variances among the lowest possible. Together with

extensive experimental confirmation, these arguments

enable us to be confident that our algorithm produces

solutions that are very close to the optimum.

Application of Avenhaus' procedure to FIR filters

also enables us to introduce modifications which reduce
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significantly the amount of computation time required.

Finally, while IIR filters of higher order than the

classic 2 2 nd order bandstop filter quoted by Avenhaus

are of very little practical usefulness because of high

coefficient sensitivity problems, practical FIR filters

can well have orders over 100. Though the same basic

algorithm should still work for high orders, care must

be exercised in performing details to avoid large roundoff

errors in the computations. Through proper initialization

our algorithm has been successfully tested for filters

of order up to at least 128.

With these remarks as introduction we now

describe the basic procedure or algorithm proposed by

Avenhaus. The procedure is simply the following. To

order a filter of Ns sections, begin with i=Ns and

permanently build into position i in the cascade the

filter section which, together with all the sections

already built in, results in the smallest possible

variance for the output noise component due to noise

sources in the ith section of the cascade. Because in

an FIR -cascade filter noise is injected only into the

output of each section, for FIR filters we need to modify

the procedure and consider the output noise due to the

section in position i-l rather than i when choosing a



section for position i. But the ith section is determined

before the (i-1)th section, hence the number of noise

sources at the output of the (i-1)t setionis unknown

at the time that a section for position i is to be chosen.

This problem is overcome by assuming all sections to have

2.
the same number of noise sources. Then a1 is simply

proportional to g (k) independent of what the ith

section is (see section 3.2 for notational definitions).

Hence the revised basic algorithm for ordering

FIR cascade filters is: beginning with i=Ns, permanently

build into position i the section which, together with

the sections already built in, causes the smallest possible

value for k 1 1 (k). Once this basic algorithm is

determined, we need only decide on a scaling method and

a computational algorithm for accomplishing the desired

scaling and noise evaluation before an ordering algorithm

is completed. Prior to discussing these issues, let us

consider why the basic algorithm described above is

always able to find a low noise ordering.

The reason why the algorithm might not be

able to find a low noise ordering is that rather than

minimizing a2 directly, it minimizes each a individually

16'7
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where for a., 1 < j < Ns-1, the search is essentially

conducted over only (j+l)! out of the total of Ns!

possible orderings. Now this set of (j+l)! orderings

depends on which sections were chosen for positions

j+2 to Ns in the cascade if j < Ns-l. Hence in choosing

a section for position j, previous choices might prevent

attainment of a sufficiently small value for a 2

The basis for our arguments is the results

of section 4.4. Let H(z) be an appropriately scaled

2.
filter. Given j, 1 < j < Ns-l, suppose a. is small for

all i > j. Then the zeros of II H.(z) must be well
i=j+1

spread around the unit circle in the z-plane since a
N5Ns - (jW

clustering would cause large peaking in H H (eJ )
=k+1

for some k > j, hence a large value of ak* But this means

that the remaining zeros of H(z), namely those in
j
HL H (z), must also be well spread around the unit circle,

1=1
since the zeros of H(z) are distributed almost uniformly

around the unit circle. Hence it ought certainly to be

possible to find some pair of zeros in H (z) which,
i=l

when assigned to position j, causes little peaking in
N

Sff H (z) or H (z), and thus results in a small value
i~l 2i=j i

= 2 "d2
for a . By induction, then, a can be chosen small for

all i.
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For small j it is true that there are very few

zeros left as candidates for position j, but in these

positions little peaking in the spectra can occur since

the overall spectrum H H (e W) must be a well behaved
i=1

filter characteristic. Typically in a high noise ordering

2
a reaches a peak for j somewhere in the middle between
4

2
1 and Ns, while a for small j has little contribution

2
to a . Hence the choice of sections for small j is not

too crucial. Of course, the eligible candidates are still

well-spaced zeros as for larger j, so that peaking should

not be a problem.

Note that the reason the algorithm works so

well is tied in with the result of section 4.1 that

most orderings of a filter have comparatively low noise.

That most orderings of a filter have low noise is principally

because there are far more ways to sequence zeros around

a circle so that they are well "interlaced" and do not

cluster than if they are to form clusters. Because it

is not difficult to find low noise arrangements of zeros,

2 2
we are able to minimize I a2 by minimizing each ai

independently, searching over a much smaller domain. If

we were not able to segment the sum Y a , searching for

a minimum would be essentially an impossible task because

of time limitations.
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Having discussed why the basic algorithm works,

we now turn to the practical problem of implementing it.

First of all, we have the choice of scaling method to

use in computing the )g 2(k). As in the calculation
k

of noise distributions in section 4.1, sum scaling is to

be preferred since it can be carried out the fastest.

Figure 5.1 shows a flow chart of the ordering algorithm

in which sum scaling is employed. Calculation of a 2

(NX in the flow chart) is done exactly the same way as

in the algorithm of Fig. 4.5.

Using this ordering algorithm, over 50 filters

have been ordered and the noise variances in units of Q2

(Q = quantization step size) of the resulting filters are

shown in the last columns of Tables 4.1, 5.1 and 5.2. Note

that these noise variances are computed with sum scaling

applied to the filters. The corresponding noise

variance values for peak scaling have also been computed

for the filters of Table 5.1. These are shown in the

third to the last column of that table. The comparability

of these noise values to those for sum scaling has already

been pointed out in section 4.2.

For an alternative implementation of the basic

ordering algorithm, peak scaling can be used. To dis-

tinguish between the two different resulting algorithms,
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List of Filters and the Results of Ordering Algorithms

Noise Variance

Peak Scaling Sum Scaling

# N Np F a Alg. 1 Alg. 2 Alg. 1

28

29

30

31

32

33
34

35
36
37
38

39
4o

41

42

43

44

45

46

47

48

49

50

51

52

53

54

13

15

17

19

21

23

25

27

29

31

33

35
33

33

33

33

33

33

33

33

33

33

33

33

33

33

33
I I

4

4

5

5
6

6

7

7
8

8

9

9
1

2

3
4

5
6

7
8

10

11

12

13

14

15

16

.219

.193

.230

.207

.236

.216

.240

.223

.243

.227

.244

.231

.005

.029

.059

.090

.121

.152

.183

.214

.275

.305

.334

.363

.392

.419

.448

D1
D2

.01
ool

.65

.68

.61

.64

.59

.61

.57

.59

.55

.57

.54

.55
1.0

.82

.73

.68

.63

.60

.58

.61

.52

.52

.50

.50

.50
-51

.53

1.25

1.23

1.99
1.93
2.50

2.57

3.75
3.95
4.54

5.27
7.81
6.01

0.47

0.60

0.89
1.43

2.29

2.48

3.47
4.72

10.04

15.68
13.43
21.35

41.64

55.20

89.52

1.26

1.22

2.49

1.92

2.61

2.91

3.62
4.11

5.04
5.88
6.67
6.43

0.48

0.67
1.00

1.36
1.84

2.70

3.37
5.23
8.16

11.35

14.88

17.62

31.41

41.13

65.66

0 .90

1.02

1.37
1.47

1.58
1.77
2.35
2.45

2.67
2.74
4.59

3.72
0.53
0.60

0.80

1.16

1.71
1.61
2.30

3.38
4.83
8.30
6.27
9.14

15.40
22.12

38.23
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Table 5.2

List of Filters and the Results of Ordering Algorithms

= 33
=8

Noise Variance

Peak Scaling Sum Scaling

# F D D2 a Alg. 1 Aig. 2 Aig. 1

55 .211 .01 .002 .59 5.63 5.33 3.34

56 .208 .01 .005 .57 5.13 5.69 3.18

57 .205 .01 .01 .56 5.05 5.27 3.34

58 .202 .01 .02 .55 7.63 8.31. 4.01

59 .197 .01 .05 .53 11.34 12.53 6.92

60 .193 .01 .1 .51 46.33 22.99 16.88

61 .238 .1 .01 .58 9.90 9.01 5.61

62 .227 .05 .01 .58 8.91 7.35 5.52

63 .214 .02 .01 .56 8.87 5.75 4.32

64 .196 .005 .01 .56 5.47 4.69 3.68

65 .185 .002 .01 .56 5.95 4.08 3.41

66 .178 .001 .01 .57 4.10 4.11 2.85

N
N
p
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we shall refer to the former (sum scaling) as aig. 1 and

the latter as alg. 2. The only changes to Fig. 5.1

needed to realize alg. 2 rather than alg. 1 is to replace

I Ifi(k)| by max IF i(ejW)I for given i whenever it appears.
k

Results of using alg. 2 on the filters of Tables 5.1 and 5.2

are shown in the second last column of those tables. Observe

that though the two algorithms in general yield different

orderings for a given filter, the resulting noise

variances are very comparable. Thus with both alg. 1

and alg. 2 we can obtain two separate low noise orderings

for a given filter.

At this point let us digress for a moment to

examine more closely the results presented in Tables 4.1, 5.1

and 5.2. Note from Table 4.1 how close to the minimum,

if not the very minimum, a noise variance alg. 1 is able

to result in. From this observation and the results of

section 4.3 on the dependence of the minimum noise

variance for a filter on different parameters, we are

quite confident that the noise variances shown in Tables

5.1-5.2 are also very close to the minimum possible. The

filters of Tables 5.1-5.2 were chosen intentionally to show

the dependence of the results of the ordering algorithms

on various transfer function parameters. We see that the
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noise variances indeed behave in the way that we would

expect from the results of section 4.3. In particular,

a2 is seen to be essentially an increasing function.

of N, F , Di, as well as D2. The results of Tables 5.1-5.2

are then a confirmation of the expectation that the results

of section 4.3 on the general dependence of noise on

transfer function parameters can be generalized to higher

order filters.

We now return to the description of the

algorithms. Even with a scaling method decided upon, the

questions still remain of how Y g (k) and Y If (k)|
k k

or max F i(ed )I are to be computed and how the sequence
W

{IO(i)} is to be initialized. In obtaining the results

of Tables 5.1-5.2 we have simply done the following. g (k)

and |f 1(k)I were computed by evaluating {g (k)} or
k

{f i(k)} through simulation in the time domain (i.e.

convolution). max IF i(ejW)I was determined by transforming
W

{f i(k)} via an FFT and then maximizing. Finally, {IO(i)}

was initialized to 10(i) = 1, i = 1,...,N . We shall see

later that these procedures must be modified for higher

order filters. But meanwhile let us consider what these

procedures imply in terms of dependence of computation

time on filter length.
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Clearly, in algorithmically computing the

impulse response of an N-point filter via convolution,

the number of multiplies and adds required to calculate

each point varies as N, hence the time required to

evaluate the entire impulse response must vary approximately

2as N2 . Now in the basic algorithm there are two nested

loops, where the number of times the operations within

the inner loop are performed is given by

N
s N (N +J):i=

1=1 2

' N2

Clearly for alg. 1 the evaluation of Y If (k)I and
g2 k

kg 1 (k) dominates all operations within the inner loop
k

in terms of time required. Since the total number of

points required to evaluate for computing {f _j(k)} and

{gX1(k)} together turns out to be a constant independent

of 2, the combined operations must have approximately an

N2 time dependence. Hence we would predict that the

computation time required for alg. 1 must be approximately

p4proportional to N. This prediction is verified in Fig. 5.2
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where computation time for aig. 1 on the Honeywell 6070

computer is plotted against N on log-log coordinates for

various values of N. As expected, these points lie on a

straight line with a slope very nearly equal to 4.

For alg. 2 exactly the same procedures as in

alg. 1 are carried out except that after each evaluation

of {f (k)} an FFT is performed. Thus for a given N

alg. 2 always requires more time than alg. 1, with the

exact difference depending on the number of points employed

in the FFT.

For filters of length greater than approximately

41, it is found that accuracy in the evaluation of

impulse response samples by the methods described rapidly

breaks down. This phenomenon is chiefly due to the fact

that the initial ordering used is a very bad one. In

particular, we have seen that this ordering (i.e.,

10(1) = i) has a noise variance which is among the

highest possible and which increases exponentially with

N. Thus all attempts at evaluating the impulse response

of the filter by simulation in the time domain is marred

by roundoff noise.
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A natural possibility for resolving this problem

is to perform calculations in the frequency domain. This

we have tried as a modification to alg. 2. In particular,

rather than computing F (ejW) from {f.(k)}, we evaluate

it as a product of H (ejW), j = 1,... ,i, where each

H.(e w) is computed from the coefficients of section j

via an FFT. In this way the accuracy problem was solved,

but computation time increased significantly. As an

example the 67-point filter listed in Table 5.3 was

ordered using this method. The resulting noise variance

2
was a reasonable 26.6 Q , but even with a 256-point FFT

the computation time required amounted to 7.2 minutes,

more than 7 times that required for alg. 1 to order the

same filter.

A far better solution is as follows. Recall

from section 4.1 that most orderings of a filter have

relatively low noise. Thus if we were to choose an

ordering at random, we ought to end up with an ordering

which has relatively low noise. The strategy is then to

use a random ordering as an initial ordering for alg. 1.

A given ordering of a sequence of numbers

{IO(i), i = 1,...,Ns } can be easily randomized using the

following shuffling algorithm[25].
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step 1: Set j +-Ns.

step 2: Generate a random number U, uniformly

distributed between zero and one.

step 3: Set k - LjUJ+l. (Now k is a random

integer between 1 and j.) Exchange

IO(k) *-+ IO(j).

step 4: Decrease j by 1. If j > 1, return to

step 2.

By adding a step to randomize the initial

ordering IO(i) = i in alg. 1, the inaccuracy problem

was eliminated. The interesting question now arises that

since most orderings of a filter have relatively low

noise, can we not obtain a good ordering simply by choosing

one at random? The answer is yes, but as we shall

shortly see, a random ordering is by far not as good as

one which can be obtained using the ordering algorithm.

The extra step of randomizing the initial

ordering for alg. 1 requires negligible additional compu-

tation time, and a filter with impulse response length as

high as 129 has been successfully ordered in this way.

The time required to order this filter was approximately

13.5 minutes. Except for time limitations, there is no
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reason why even higher order filters cannot be similarly

ordered. The results of using the modified alg. 1

(denoted alg. 1') on this filter as well as a few other

filters are shown in Table 5.3. Also shown in this table

are the noise variances of these filters when they are

in the sequential ordering IO(i) = i (where computable

within the numerical range of the computer) as well as

when they are in a random ordering (obtained by randomizing

{IO(i)} where IO(i) = i, as described above). Because

of the potentially very large roundoff noise encounterable

in these orderings, the noise variances were computed

using frequency domain techniques. In particular, each

H (ejW) is evaluated via an FFT; peak scaling is then
2 .is_ comute via 2 f2

performed; and finally a is computed via 1- / G (e )|

rather than Ig (k).
k

From Table 5.3 we see that though the noise

variances of the random orderings are certainly a great

deal lower than those of the corresponding sequential

orderings, they are far from being as low as those obtained

by alg. 1'. Thus it is certainly advantageous to use

alg. 1' to find proper orderings for cascade filters. In

practice cascade FIR filters of orders over approximately

50 are of little interest since there exist more efficient



Table 5.3

List of Filters and the Results of Alg. 1'

= .01

Noise Variance

Ordering Alg.

II
# N N p F 1 D 2 Sequential Random Sum sc. Peak SC.

38 33 9 .244 .001 1.0x10 6.2xlo3  4.59 7.81

67 47 12 .237 .001 4.3x101 7  2.2x106  6.47 12.07

68 67 17 .242 .001 3.3x1027  1.5x10 6  16.77 30.03

69 101 25 .241 .001 >1038 1.4x105 41.93 73.55

70 129 20 .153 .0001 - 5.5x10 17.98 37.54
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ways than the cascade form to implement filters of higher

orders. For filters of at most 5 0 th order the computation

time required for alg. 1 is less than 20 seconds on the

Honeywell 6070 computer. Thus aig. 1 (or 1') is also a

very efficient means for ordering cascade filters.

In all the examples given, one can do little

better in trying to find orderings with lower noise.

With the possible exception of the uninteresting wide

band filter, #54 in Table 5.1, all filters have less than

4 bits of noise (as defined in (3.15)) after ordering

by alg. 1, while the great majority have less than 3 bits.

Thus we do not expect that these noise figures can be

further reduced by much more than a bit or so.

In summary, an algorithm has been described

which enables a filter designer with access to a general-

purpose computer to determine efficiently for a cascade

FIR filter an ordering which has very low noise. The

noise figures obtained are in general sufficiently close

to the optimum so that little further improvement can

be made. Thus for all practical design purposes, it is

believed that the ordering problem for cascade FIR filters

has been solved.
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6.0 Conclusions

In this thesis a comprehensive investigation

of the problem of roundoff noise in cascade FIR filters

has been presented. We have considered the central

issues of scaling and ordering for cascade filters. In

particular, several methods of scaling to meet dynamic

range constraints have been discussed, with emphasis on

two types of methods which were named sum scaling and

peak scaling. The effects of these two types of scaling

methods were compared and found to be closely related.

With regard to ordering, a specific algorithm has been

presented to automatically choose a proper ordering for

any given FIR filter.

In addition to these central issues, the

dependence of roundoff noise on various filter transfer

function parameters has also been determined. This

knowledge enables a designer to predict, based on known

results, the level of noise to expect in new situations.

Finally, an explanation of why some orderings of a filter

have low noise while others have high noise has been

developed in terms of characteristics of a filter which

provide good intuitive "feel." Based on the notions

developed we are able to characterize and recognize high

noise orderings and to explain one of the results of our

research that given a filter some orderings have relatively

very high noise but most orderings have relatively low noise.
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While a fairly complete study of roundoff noise

in cascade FIR filters has been presented in this thesis,

none of the issues involved in other types of quantization

effects has been touched upon. In particular, the

question still remains as to what is the best way to

obtain transfer functions whose coefficients are quantized.

Furthermore, in addition to the cascade form, many other

structures exist in which FIR transfer functions can be

realizedl. Some of these structures may prove to be

particularly advantageous under certain circumstances.

In order that these structures may be intelligently

compared, a great deal more must be understood concerning

quantization effects in them. Ultimately it would be

desirable to know for any given filter and application

just what is the best structure to use. These are some

of the problems open to further research.
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APPENDIX A

The following pages are computer listings of the

results of searches over all orderings of different filters.

Each ordering is identified by a sequence of numbers, where

each number identifies a section of the filter. The left-

most number in each sequence corresponds to the input

section. A filter section is identified by the same number

as that which labels the zeros it synthesizes in the plot of

its zeros (see figures). All noise variances listed are in

units of Q , where Q is the quantization step size.



App. A.1 - List of Orderings and Noise 193
Variances of Filter of Fig. 4.6

ORDER NOISE ORDER NOISE ORDER NOISE

263451 1.0983 145263 1.1104 145362 1.1131
163452 1.1382 245163 1.1601 245361 1.1605
362451 1.1834 246351 1.2305 162453 1.2456
361452 1.2561 261453 1.2783 143652 1.2841
146352 1.3245 415263 1.3298 41536? 1.3325
243651 1.3356 345261 1.3546 345162 1.3568
246153 1.3652 346251 1.3660 341652 1.3666
425163 1.3687 425361 1.3692 146253 1.3763
163425 1.3797 342651 1.4009 263415 1.4151
142653 1.4160 241653 1.4332 4263-51 1.4392
346152 1.4489 162435 1.4582 261435 1.4909
361425 1.4976 143562 1.4977 362415 1.5002
413652 1.5034 435261 1.5227 435162 1.5249
143625 1.5256 436251 1.5341 431652 1.5347
416352 1.5439 423651 1.5442 264351 1.5470
246315 1.5474 142563 1.5642 146325 1.5660
432651 1.5690 4261F3 1.5739 246135 1.5778
341562 1.5803 241563 1.5814 146235 1.5889
416253 1.5957 341625 1.6081 436152 1.6170
142635 1.6286 412653 1.6354 421653 1.6418
241635 1.6458 243615 1.6524 243561 1.6539
164352 1.6583 264153 1.6817 346215 1.6829
346125 1.6904 364251 1.7040 164253 1.7101
413562 1.7171 342615 1.7177 342561 1.7192
413625 1.7449 431562 1.7483 426315 1.7560
431625 1.7762 412563 1.7835 416325 1.7854
426135 1,.7865 364152 1.7869 421563 1.7900
416235 1.8083 412635 1.8480 436215 1.8509
421635 1.8544 436125 1.8585 423615 1.8610
423561 1.8626 264315 1.8638 43261F 1.8858
432561 1.8873 264135 1.8943 164325 1.8998
164235 1.9227 364215 2.0208 364125 2.0284
136452 2.0700 316452 2.1489 236451 2.2117
623451 2.2534 632451 2.2904 613452 2.3028
136425 2.3115 631452 2.3632 316425 2.3904
326451 2.3999 245631 2.4004 612453 2.4102
621453 2.4335 245613 2.4699 134652 2.4854
236415 2.5285 613425 2.5443 314652 2.5643
623415 2.5703 631425 2.6047 632415 2.6073
425631 2.6090 612435 2.6228 621435 2.6461
425613 2.6785 145632 2.6801 134562 2.6991
145623 2.6993 624351 2.7021 326415 2.7167
134625 2.7269 126453 2.7639 314562 2.7779
234651 2.7927 314625 2.8058 634251 2.8110
614352 2.8229 624153 2.8368 614253 2.8747
634152 2.8939 415632 2.8994 216453 2.9085
415623 2.9187 126435 2.9765 324651 2.9809
624315 3.0190 624135 3.0495 614325 3.0644
614235 3.0873 234615 3.1095 234561 3.1110
216435 3.1211 634215 3.1278 634125 3.1354
124653 3.2439 324615 3.2977 324561 3.2992
214653 3.3885 124563 3.3920 124635 3.4565
246531 3.4977 214563 3.5367 246513 3.5672
214635 3.6011 426531 3.7063 426513 3.7758
264531 3.8141 264513 3.8836 163245 4.0265
146532 4.0376 146523 4.0569 162345 4.0697
261345 4.1025 361245 4.1445 345621 4.2234
416532 4.2570 345612 4.2737 416523 4.2763
263145 4.2914 164532 4.3715 362145 4.3766
164523 4.3907 435621 4.3915 435612 4.4417
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451263
452361
136245
245136
613245
425136
236145
623145
614532
326145
421536
143526
452631
413526
425316
451632
436521
364521
423516
314526
634521
453612
451236
453126
462351
462153
462315
461325
462531
461523
142365
431265
412365
314265
423165
214365
642351
642153
642315
641325
143256
241356
412356
642513
243156
641523
124356
324156
132645
321645
456231
456123
132465
321465
132456
321456
465231
465123
645231
645123

4.5778
4.6353
4.9584
5.0354
5.1411
5.2440
5.4048
5.4466
5.5361
5.5930
5.6653
5.8168
5.8751
6.0362
6.0520
6. 1475
6.2106
6.3805
6.5454
7.0970
7.4875
7.6551
8.4532
9.0573

11*8333
11.9680
12. 1501
12.2073
14. 1'004
14.6982
16.4329
16. 5541
16. 6522
17.5837
17.9682
18.4053
21.7670
21.9017
22.0838
22.1410
23.0109
23.1575
23.3596
24.1036
24.4670
24.6319
24.9681
26.1122
81.4953
85.4615
99.7815

100.2410
112.8460
116.8120
119.5530
123.5190
180.9150
181.3750
190.8490
191.3080

451362
453261
624531
316245
415236
631245
145326
241536
614523
415326
345126
245316
341526
345216
431526
451623
436512
342516
432516
124536
634512
234516
452136
452316
463251
463152
462135
463125
462513
143265
241365
463521
421365
243165
432165
234165
643251
643152
642135
643125
341256
413256
421356
134256
342156
423156
214356
643521
312645
123645
456213
456321
312465
123465
312456
123456
465213
465321
645213
645321

4.5806
4.7361
4.9693
5.0372
5.2051
5.2515
5.4322
5.4567
5.5553
5.6515
5.6759
5.8434
5.8993
6.0375
6.0674
6.1668
6.2609
6.4021
6.5701
7.2674
7.5377
7.7939
8.5101
9.3181

11.8896
11.9725
12.1806
12.2140
14.1699
16.3035
16.4501
16.5661
16.6587
17.7595
17.9929
19.2166
21.8232
21.9061
22.1143
22.1476
23.0934
23.2302
23.3661
24.2122
24.5323
24.6756
25.1128
26.4998
81.5742
87.0142
99.85 10

101.7430
112.9250
118.3650
119.6320
125.0720
180.9850
182.8770
190.9180
192.8110

452163
453162
145236
624513
612345
621345
142536
632145
126345
412536
216345
435126
452613
346521
346512
435216
243516
364512
134526
214536
453621
324516
451326
453216
461352
461253
463215
461235
461532
341265
413265
463512
134265
342165
124365
324165
641352
641253
54321'5
641235

142356
431256
642531
314256
641532
432156
234156
643512
231645
213645
456132
456312
231465
213465
231456
213456
465132
465312
645132
645312

4.6348
4.7383
4.9857
5.0388
5.2343
5.2577
5.4395
5.4836
5.5880
5.65 89.
5.7326
5.8440
5.9446
6.0426
6.0928
6.2055
6.3368
6.4307
7.0181
7.4120
7.6049
7.9820
8.8996
9.4189

11.9658
12. 0176
12.2064
12.2302
14.6789
16.3860
16.5228
16.6163
17.5048
17.8249
18.2607
19.4048
21. 8995
21.9513
22.1401
22.1639
23*1403
23.2615
24.0341
24.2911
24.6126
24.7003
25.9240
26.5500
85.2733
87.1589

100.2220
101.7940
116.6240
118.5090
123.3310
125.2170
181.3550
182.9270
191.2890
192.8610



Variances of Filter of Fig. 4.12

' JER NOISE ORDER NOISE OROER NOISE

135462 0.6493 315462 0.6545 125463 0.6576
215463 066 5 92  251463 0.6595 351462 0.6635
254163 0.6670 145362 0.6688 354162 0.6699
145263 0.6704 235461 0.6741 152463 0.6763
153462 0.6773 325461 0.6777 415362 0.6785
253461 0.6789 245163 0.6795 415263 0.6800
135264 0.6818 352461 0.6819 154362 0.6821
254361 0.6832 154263 0.6837 315264 0.6870
425163 0.6876 354612 0.6876 354261 0.6876
125364 0.6886 235164 0.6889 215364 0.6902
251364 0.6904 354621 0.6908 325164 0.6925
253164 0.6937 245361 0.6957 351264 0.6960
352164 0.6967 425361 0.7037 345162 0.7056
451362 0.7060 152364 0.7072 451263 0.7076
453162. 0.7076 452163 0.7077 254613 0.7082
254631 0.7090 153264 0.7098 435162 0.7100
235641 0.7154 325641 0.7190 253641 0.7202
235614 0.7207 245613 0.7207 245631 0.7215
352641 0.7232 345612 0.7233 345261 0.7233
452361 0.7239 325614 0.7243 453612 0.7253
453261 0.7253 253614 0.7255 135642 0.7260
345621 0.7265 435612 0.7277 435261 0.7278
453621 0.7285 352614 0.7285 425613 0.7288
425631 0.7295 435621 0.7309 315642 0.7312
135624 0.7344 315624 0.7396 145632 0.7399
351642 0.7402 145623 0.7423 125643 0.7424
215643 0.7439 251643 0.7442 125634 0.7484
351624 0.7486 452613 0.7489 415632 0.7495
452631 0.7497 215634 0.7500 251634 0.7502
415623 0.7520 154632 0.7532 153642 0.7540
154623 0.7556 152643 0.7610 153624 0.7624
152634 0.767-0 451632 0.7771 451623 0.7795
134562 1.0838 314562 1.0890 143562 1.0960
413562 1.1057 256413 1.1153 256431 1.1161
256341 1.1264 341562 1.1304 256314 1.1317
431562 1.1349 256143 1.1443 256134 1.1504
521463 1.1698 531462 1.1704 534162 1.1769
524163 1.1774 156432 1.1806 512463 1.1821
156423 1.1830 513462 1.1831 156342 1.1843
514362 1.1879 532461 1.1889 523461 1.1892
514263 1.1895 156243 1.1915 156324 1.1928
524361 1.1935 534612 1.1945 534261 1.1946
124563 1.1973 541362 1.1974 156234 1.1975
534621 1..1977 214563 1.1989 142563 1.1989
541263 1.1990 543162 1.1990 542163 1.1991
521364 1.2007 531264 1.2029 532164 1.2036
523164 1.2040 241563 1.2078 412563 1.2086
512364 1.2130 542361 1.2153 513264 1.2156
421563 1.2159 543612 1.2167 543261 1.2167
524613 1.2186 524631 1.2193 543621 1.2199
234561 1.2232 324561 1.2267 532641 1.2302
523641 1.2305 532614 1.2354 523614 1.2358
243561 1.2383 542613 1.2403 542631 1.2411
423561 1.2463 531642 -1.2471 521643 1.2545
531624 1.2556 514632 1.2590 513642 1.2598
521634 1.2605 514623 1.2614 342561 1.2638
512643 1.2668 513624 1.2682 432561 1.2683
541632 1.2685 541623 1.2709 512634 1.2728
356412 1.3532 356421 1.3564 356241 1.3818
356214 1.3871 356142 1.3926 356124 1.4010
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526413
526314
132564
321564
213564
516243
135246
215436
125346
215346
253146
352146
152436
354126
415236
153246
153426
425136
245316
452136
453126
452316
536412
456321
456231
536124
134526
413526
521436
532146
531426
512346
513426
514326
534216
541236
543126
421536
234516
423516
546312
546231
132546
321546
561432
561243
562413
562314
563412
563214
564312
564231
134256
413256
142356
241356
234156
423156
132456
321456

1.6257
1.6420
1.6755
1.6851
1.6878
1.6973
1.7039
1.7087
1.7 107
1.7123
1.7158
1.7188
1.7258
1.7275
1.7295
1.7319
1.7349
1.7371
1.7485
1.7572
1.7652
1.7767
1.8602
1. 8767
1.8918
1.9080
2.1414
2.1633
2.2193
2.2258
2.2280
2.2351
2.2407
2.2455
2.2474
2.2484
2.2566
2.2653
2.2760
2.2992
2.3649
2.3832
2.6977
2.7073

12.2206
12.2315
12.3073
12.3237
12.5146
12.5485
12.9438
12.9621
13.8218
13.8437
13.8669
13.8758
15.2546
15.2777
15.8294
15.8390

526431
52b143
312564
123564
516423
516324
135426
251436
235146
251346
254136
145236
145326
245136
325416
154236
254316
154326
425316
345126
435126
453216
536421
536241
536214
456132
314526
341526
521346
523146
512436
513246
532416
524316
214536
542136
241536
542316
324516
342516
546321
546132
312546
123546
561423
561324
562431
562143
563421
5b3142
564321
564132
314256
124356
341256
412356
324156
342156
312456
123456

1.6264
1.6547
1.6807
1.6862
1.6888
1.6986
1.7069
1.7089
1.7110
1.7125
1.7165
1.7199
1.7264
1.7290
1.7305
1.7332
1.7360
1.7398
1.7566
1.7632
1.7676
1.7781
1.8634
1.8888
1.8940
1.9091
2.1466
2.1880
2.2229
2.2261
2.2316
2.2377
2.2417
2.2464
2.2484
2.2486
2.2573
2.2681
2.2796
2.3166
2.3681
2.4005
2.7028
2-.7083

12.2230
12.2328
12.3081
12.3363
12.5178
12.5540
12.9470
12.9794
13.8270
13.8653
13. 8685
13.8766
15.2581
15.2952
15.8346
15.8400

526341
526134
231564
516432
516342
516234
125436
315246
315426
325146
351246
351426
235416
152346
253416
35241b
415326
354216
451236
451326
345216
435216
456312
456213
536142
456123
143526
431526
531246
524136
534126
514236
523416
124536
142536
541326
412536
543216
243516
432516
546213
546123
231546
213546
561342
561234
562341
562134
563241
563124
564213
564123
143256
214356
431256
421356
243156
432156
231456
213456

1.6368
1.6607
1.6816
1.6863
1.6901
1.7033
1.7071
1.7091
1.7121
1.7146
1.7181
1.7211
1.7269
1.7293
1.7317
1.7347
1.7361
1.7405
1.7571
1.7636
1.7761
1.7806
1.8735
1.8910
1.8995
1.9115
2.1536
2.1925
2.2250
2.2269
2*2345
2.2390
2.2421
2.2468
2.2484
2.2550
2.2580
2.2695
2.2911
2.3211
2.3824
2.4029
2.7037
2'.7 099
12.2243
12.2375
12.3184
12.3424
12.5432
12.5624
12.9614
12.9819
13.8341
13.8669
13.8729
13.8839
15.2697
15.2997
15.8354
15.8416



App. A.3 - List of Orderings, Noise Variances, 197
and Parameter Pk for Filter no. 14

09qP NOTSr PEAK 0R8rI NOTSF PEAK

1432 0.949 1.9'3? I4362 0.944
2531661 0.9958 1.9'32 2r4361 1.0031 1.973?
2C4163 1.02q0 1.9732 251463 1.05C8 1.9732
1.O4?63 .005 1.9'32 15463? 1.0702 3.8934
1516F23 1.0p32 3.8931 192463 1.0912 1.973?
3F1A62 1.1021 1.9732 253641 1.1040 3.8934
34162 1.13t3 l.97'? ?35461 1.1328 3.8934
31461 113q3 1.9732 325461 1.1474 3.8934
135462 1.1i27 3.8934 253614 1.1556 3.8934
149;6? 1.174 3.8934 31146' j.164P 3.8934
3C4?61 1.1709 1.9732 15361 1.19"R 3.8934
415362 1.1986 3.8934 254631 1.2114 3.8934
245361 1.2118 3.8914 165263 1.2229 3.8934
2514613 1.2270 3.8936i 145632 1.2327 3.8934
249163 1.2377 3.8934 23F641 1.2411 3.8934
1I3?4 1.?448 3.8934 16156?3 1.2456 3.8934
3C2641 1.2475 3.8934 425361 1.2555 3.8934
329641 1.2596 3.8931 415263 1.2642 3.8934
41cf32 1.?739 3.893 425163 1.281; 3.8934
41C623 1.2869 3.8931 239614 1.2q26 3.8934
352614 1.2091 3.8934 351642 1.3039 3.8934
3?5514 1.3071 3.8934 253164 1.3348 1.9732
351624 1.3C29 3.8934 13R642 1.3545 3.8934
315642 1.3665 3.8934 2c1364 1.3688 1.9732
153?64 1.37?5 1.9732 ?51643 1.3807 3.8934
345162 1.3976 3.8934 13F6?4 1.4035 3.8934
152364 1.4042 1.9732 315624 1.415c 3.8934
152643 1.4161 3.8934 251634 1.4167 3.8934
245631 1.4201 3.8934 435162 1.4268 3.8934
245613 1.4356 3.8934 345261 1.4372 3.8934
1i2634 1.4c?1 3.893' 425631 1.4639 3.8934
435261 1.4664 3.8934t 23516 1.4718 3.8934
3F2164 1.4783 1.9732 425613 1.4794 3.8934
351264 1.4807 1.9'732 3?5164 1.4863 3.8934
135264 1.5313 3.8934 315264 1.5433 3.8934
451362 1.6191 1.9732 453162 1.6473 1.9732
45736j 1.6626 1.932 451263 1.6846 J.9732
453261 1.6870 1.9732 452163 1.6886 1.9732
491632 1.6P44 3.8934 451623 1.7073 3.8934
452631 1.8710 3.8934 452613 1.8865 3.8934
12F463 2.3505 3.8934 215463 2.4160 3.8934
125364 2.6636 3.8934 125643 2.6754 3.8934
125634 2.7115 3.8934 215364 2.7291 3.8934
21c643 2.7609 3.8934 256341 2.7615 7.6822
215634 2.7770 3.8934 256314 2.8131 7.6822
256431 2.8283 ".6822 256413 2.8438 7.6822
256143 2.9285 7.6822 256134 2.9645 7.6822
51346? 3.J5158 3.893'A 51436? 3.1518 3.8934
523461 3.1662 3.8934 524361 3.1'34 3.8934
524163 3.1994 3.8934 531462 3.2149 3.8934
M14263 3.2173 3.8934 521463 3.2262 3.8934
514632 3.2270 3.8934 514623 3.2400 3.8934
534162 3.2441 3.8934 512463 3.2481 3.8934
532461 3.2'1 3.8934 5?3641 3.2744 3.8934
534261 3.2837 3.8934 523614 3.3299 3.8934
513642 3.352A 3.8934 532641 3.3604 3.8934
5?4631 3.3818 3.8934 524613 3.3973 3.8934
513624 3.4016 3.8934 532614 3.4119 3.8934
531642 3.4167 3.8934 1;6432 3.4641 7.6822
531624 3.4657 3.8934 1564?3 3.4771 7.6822
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I?3146
6?1364
521643
612643
63?168

I F634

611362
C£8,361

563?612

?F41132
42I631

134I62
354621
264136
iC4?36
143662

1C3k26
1486?36
349612
436621
£1936
361626
34c1562
14 532 6
43162
653621

263416
346126'
461236
23641 6
326416
249316
463126
293146
2F1346
526314
F26431
243961
362146
325146
526143
135246
316246
342561
4:3?961
129436
516432
51634?
516243
534621
125346
514236
215346

531 426
643621
6?3416
641236
63?416

3.5 n1
3.C 32
3 .P11
3.6736
3. 6011

3 *"07
3. 67 86
3.7167

307 P F
3.7836
3.7010
3.9676
4.026
4.0lr45
4.127 
4.122
4.2290
4.?7 0?
4.?2729
4. 3146
4.3233
4.3c600
4.3 e58
4.3811
4.4268
4.4364
4.4=60
465705
4.6673
4. 6766
4.7763
4.8043
4.8188
4.8832
4.9263
4.9289
4.9630
4.9834
4.9986
5.0437
5.0724
5.0805
5.0988
5. 1254
5.1374
9;.3292
5 .36 84
5.4422
5.6210
5.7 053
5.8354
6.1673
6.2577
6.3090
6.3232
6.4298
6.4939
6.6671
6. 8377
6.8729
6.9236

3. 89314
3.8q3u
3. 893 
3. 89314
3. 893£8
7.68'2
7.6822?
3 893 £.

3.893 .
3.893
3. 8934

893
7.682?
30 8934
3 .893 if
3.893'.
7.6'22?
7.682?
3.893'.
3. 8 3 4
3.893 f
3. 893
3 .894
3 893 £
7.622
3.8934 £
7.6822
3.89314
3.89314
3.8934
3 .893 4
3.8 934
3.8934
3. 8934
3 .893 4
3.8934
3.8934
7.6822
7.6822
7.6822
3.893 4
3.8934
7.6822
3.893 8
308934
7.6822
7.6822
3. 8934 a
7.6822
7.6822
7.6822
3.8936h
3.8934
3.893 14
3.89314
3.8936 £
3.89314
3. 8934
3.8934
3.8934
3. 893 £

913?64
1C634?
C12364

?1634
931264
912634
166234
943162
641263
642163
541623
547613
314562
364612
?91436
162436
2349;61

154326
345621
245136
436612
4?9136
354126
136426
31F426
419326
453612
26.4316
435126
452136
352416
354216
451326
425316
526341
153246
152346
526413
235146
351246
423561
345216
526134
435216
452316
453216
215436
516423
516374
516234
534612
524136
521436
512436
514326
534126
543612
524316
942136
c34216

3.52q4
3.5486
3.5611
30. 871
3.5936
3.6090
3 .7 146
3.7440
3.7813
3.7852
3.8040
3.9831
4.0376
4.0570
4.147=
6.1829
4.2579
4.2724
4.2739
4.3207
4.3294
4.352c;
4.3732
4.4103
4.4317
4.4437
4.4776
4.5730
4 .6746
4.7 098
4.7802
4.8108
4.8424
4.8981
4.9270
4.9319
4.9667
4.9984
9.0 142
!.0659
5.0748
5.0874
C.1087
5.1348
5.1379
5.3341
5.3584
6.5077
5.6340
507543
5. 8716;
6.1698
6.2911
6.318
6.3397
6.4308
6.5231
6.6697
6.8449
6.8769
6.9652

31.8934
7.682?
.3.8934
3.8934
3.8934
3.8934
7.6822
3.8936
3.8934
3.8934
3.8934
3.8934
7.6822
3.8934
3.8934
3. 8934
7.6822
7.6822
3.8936
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
7.6822
3.8934
3.8934
7.6822
3.8934
3.8934
7.6822
3.8934
7.6822
3.8934
3.8934
3.8934
3. 8934
7.6822
7.6822
7.6822
3.8934
3.8934
3.8934

38934
3.8,934
3. 8934
3.8934
3.8934
3.8934
3.8934
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, 9047 . 44312 .n230 3.8936
n2P146 1.3 41324F 7.i35 3.8934

c? .1?3-66 7.1FS? 3.8934
F314 '.I4 q.836 t3 12 46 .1 87p$ 3.8934

136%> 7.3n4f 7.6F;2? 314926 '.3166 7.r822

47316 7.64v07 3.8q- 4 4326 7 3.8934
143*?5 .A080 7.6A?2 4 135? 7. .6822

7) 7.68?? 41263 7.668? 7.6822
3p? 770 r7 7.8? 43119;? '. IT 19.6822!

21r 7.9294 7.5?? 324516 .9h39 F.6822
241C63 8.183' 7.A2? 421563 A.227; '.682?

F A.7151 '.687? 4?316 8.7589 '.6822
34? q .0006 7.68? 432516 ql?9q 7.682?

124r63 10.1927 7 21.563 10.2582? '.F822
1c F. 10.'71 A6 T .,A'22 4129539f6 10.599 7 .68P22

S 11.2025 7.6822 36142 11.2393 7.6822
3t6216 11.2=40 7.6822 241536 11.2794 7.682?

6 11.?883 7.68? 421536 11.3197 7.6827
124 3I 13.2846 7.68?2 536241 13.3193 7.6822
214c3 13.3b98 7.68'22 536162 13.3521 7.682?

I3r? 4 13.3668 7.68? 536124, 13.4011 7.6822
39;9421 13.8100 7.A82? 356412 13.812m '.6822
231.64 15.76.56 7.682 321564 15.7602 '.822

1 15.7646 '.8?? 312?64 15.7766 7.6822
=36&?1 15.9228 '.6822 536412 15.9254 7.6822
231c46 19.3398 7.68?? 321546 19.3543 7.6822
13?4F 14.3g87 7.682 312546 19.37?7 ".6822
123C64 71.8119 7.6822 213564 21.87P4 7.6822
123546 25.4061 7.F?2 213546 25.471F '.6822
49613? 3?.38,1 7.68?? 456123 1?.3981 7.6822
4f6231 32.4'9q4 7.5822 456213 32.5149 I.682?
566132 34.4817 7.6822 566123 34.4947 7.6822
566231 34.5060 7.687? 546213 34.6119 7.6822
4 s321 35.0402 7.6822 456312 35.042' '.6822
946321 37.1368 7.6822 566312 37.1393 7.6822
134?56 109.2160 15.1C83 314296 109.2280 15.1983
1143256 100.4200 1s.1s83 413256 1Oq.4610 1518
341256 109.6170 15.gi83 431256 109.6470 15.1583
562341 113.52?0 15.1913 C6?314 113.5730 15.1583

62631 113.5880 15.1883 562413 113.6040 15.183
c62143 113.6890 15.1983 S62134 113.7250 15.1583
F6143? 114.1440 I .I83 5614?3 114.170 15.1583
561347 114.2280 15.1583 561324 114.2770 15.1983
561243 114.3590 15.1583 561234 114.3950 15.1583
234156 119.7f30 1.1583 3?41;6 119.7779 15.1583
243156 120.5480 199.183 423156 120.5920 15.f583
34?1t6 1?0.8340 15.1983 432156 120.8630 15.1983
v63741 121.2670 15.1583 56314? 121.2990 15.1583
563214 1?1.3140 15.I183 563124 121.3480 15.1583
F63421 123.8700 15. 183 563412 123.8720 1F.1583
142356 130.6020 j5.j"83 412356 130.7330 15.1583
241356 131.2490 15.1583 421396 131.2920 15.183
124356 133.2570 15.1983 214356 133.3230 15.1583
c64132 140.6*00 1F.1083 564123 140.4630 15.1583
564231 140.56S0 15.183 564213 140.5800 15.1583
564321 143.1050 15.183 964312 143.1080 15.9C83
731456 1 79.860 5.1.=83 321456 179.8'j0 9 .inq3
132156 179.8790 15.1=83 312456 179.88'0 15.1583
123456 185.92?0 15.183 2134q6 185.9880 19.1983



1i".367"
?24163
?g 1 k6 6 3
1"4?63
1. 632

1966F?3

253641
13c642
?"T6 14

319;642
16."?63
145632
26."163

11.5623
41I263

4.1639
425163
4.15623

153264
23164?3

315621.
2516314

1932j64.

251613.
1352624.

3196.?4

261636
21i?634

2?31.4

351264

1526 h
ilc9764
125463
?115463

215364.
125643
125634

2?19; 64 3

215643
2=6341

256132 C; 0 3 

2=6143
246 131.
2 176 4
514362
523A61
52U361
5?1163
531462

- Comparison of Orderings and
Reverse for Filter no. 14

Oc AK nPrrP NO TSF

App. A.4
their

NOT r

0.0940
00 lqq4 q

.91n49

1.fl?90

1.0605
1.07l?
1. 0 2 37
1.041?

1 .2 11.0S1.21420

I.i2?7
I .j56

. 1647
1.158
1.229
1.2327'
1.2377
1.468

1.26.6
1.2642
1.2739
1.2815
I1.2869
t 3348
1.3545

1.3688
1.3725
1.3807

t.140 42
4 1.155

I 1.4161
1.4167
1.472i1
j 1.718
1.4783
1.4807
I 1.4863
1.5313
I.54I.33
2.350s
2.6160
2.6636
2.6744
2.7I1.5
2.7291
2.74.09
2.7615

1.77 0 4T
2059S0

2.8131
2.8283
?.8.38
2.92 8'5
2.9645
3.1508
3.1"18
3.1662
3.1734

3.2149q

1. 9'3?
t. 973?
1.9'32
1. 973?

1 9 * It

tI*

3. 91 43

3. 89314

30 8931'

3.83 14
3. 893b
30 934 4
3. 89313

30 qq314

3 . 893 4
3.8934.3.8934 L

3893 14
3.8934
3.89314
3 .8934
3.8934
3. 8934I.973?

3. 8931.
3.8934

1.9'32
3.8931.
3. 8931.

3.8934
3.8934

3 . 89314

3.893 4

1.9T'32
1.973?
3. 8931.
3.8934

3. 89314
3.8934.
3. 8Q314
3. 893 4
3.8934
3.8934
3.*8934 1
3.8934.
'.6822
3. 8931.
'.6822
7.682?

'.6822
7.6822
3.*8931.
3.8931'
3.8934.
3.*89314
3. 8Q34
3.893.

254361
2346i1
3516.62
354162
3524f1
239461
325461
354?61
145367
254631
41362>
254613
245361
35? 6 4
235641
35164?
425361
325641
352614
93c614
351624.
325614
4.51362
24.5631
245613
2453623
452361
36,5162
425631
4.53261
425613
345261
135162
435261
4151632
151263

452163
451623
452631
45?613
354621
354612
4153621
345621.
435621
453612
4315612345612
1439;62
4,3561?
413562
1341562
311.56?
341q62
431.962
?C4316
253416
191326

3C1426
2514136
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1.0031
0.9954
1.1021
1.1313
1.1393
1.1328
1.14'74
1 .1709

1.1974
1 .?11.4
j.1986
1.2?70
1.2118
1 .2479
1.2411
1.3039
I .2559
1.2546
1.2991

1.29,6
1.3529
1.3071
1.6191
1.1.201
I .4356
1 .6473
1.6626
1.3976
1.4639
1.6870
t.1479
1.4372
1.4268
1.46616
1.6944
1.46 8346
1.6886
1.7073
1.8710
1.8865
4.0-545
4.0570
4.570c
403207
4.3500
4.573 P
4. 3233
6.2290

4.270?

4 .0 376
4.4268
4.4560
4. 16746
4.6673
4.2739
4.27 9
4.3811
6.1207

1.973?
1.9'32
1.973?
1.9732
t.973?
3.8934
3.8936.
1.9732
3.8934
3. 8 9314
3.8934
3. 8934
3.8934
S.8934
3.8936.
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934.
3. 893.
1.9732
3.8934
3. 8934
1.9732
1.9732
3.8936
3.8 934
1.9732
3.8934
3.8934
3.8934
3.893
3.8934
I .9'32
1.973?
3.8934
3.8934
3.8934
3. 8934
3.8934
3.8934
3. 89314
3. 8934
3.8934
3.8936
7.6822
3.8934
'.6822
7.6 822
7.6 82?
7.6822
7.6822
3.8934
3. 8934
3.8 9316
3.8934
3.8934
3.8934
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614263
6211663
616.63?
614.623
534162
617463
9326.61
6?3611
;34261
523A14
p13642
637641
C24631
5254613
6136?4
632614
631642

531624
1*64123
=23164
613264
621364
19634?
6?I43
612364
512643
521634
C32164.
';3 1?64
1C632.
512634
166243
166234
541362
'943162
542361
541263
9143261
54?j63
641632
541623
542631
542613
526341
626314.
526431
526413
526143
626134
12636
2165436
516432
516423
516342
516324
516243
6162:34
I?6346
624136
614236

3.2173
3.2?62
3.2?70
3.2400
3.2441
3.2481
3.2*21
3.2744
3.2 83'
3.3269
3.3526
3.3604
3. 3818
3.3973
3 .40 16
3.54119
3.4167
3.4641
3. 4667
3*4771
3.6031
3.6294
3.6392
3.686
3.5611
3.6611
3.67:30
3.6871
:3.5911
3.6935

3 .6090
3 .67 86
3.7'146-
3.*7167
3.7.40
3.7693
3 .7 813
3 .7836
3 .7 862
3.7910
3. 8040
3.9676
3.9831
54.9319
4. 983.
40.9986
6. 0 142
5.0988
6. 1348
6.4.22
3.6077
5. 62 10
5.63540
3.703
607643
6.8354

6.2877

6 * 26774

6. 2911
6.30 90

3. 8931.
3. 89394
3.8934.
:3. 8931.
3.89:34.
:3.*89354
3.8934.
3.8934.
3.89314
3. 89364
:3.89:34.

3.8 9354
3. 8934
3.8934

3.8934.
3. 89354
7.68?
3.8934
7.6822
3.8934
3.8934
3 8936
7.68?2
3.8936
3.8934
38934
3. 8934
3.8934
308934
7.6822
3.89314
7.6822
7.6822
3.8934
:308934
3089354
308934

3.*8934
3089343.934

~38 "n 54

3.8934.
7.6822
7.682?
7.6822
7.6822
7*6822
'.6822
3.893'.
3.8934
7.6822
'.6822
7.6822
7.6822
7.6822
7.68??
3. 893'.
308934
3.99314

352616
394126
23c416
325416
261436
3 4216
154236
1453?6
1r2436
415326
245316
145236
135426
316426
425316
41F236
245136
234561
425136
324561
4513?6
462316
453126
243561
345126
453216
345216
435126
451236
452136
423661
435216
342561
432561
253146
251346
193246
352146
152346
351246
235146
325146
135246
315246
143526
413526
134526
314526
341526
431526
534621
.534612
234516
3?4516
243516
423516
342516
432516
543621
531426
532416

4.8108
4 .4103
4.80 43
4.8188
4.147"
4.8424
4.1522
4.4364
4.1829
4.4776
4.8832
4.3146
4.4317
4.4437
4 .9270
4 .3568
4.3294
4 .2979
4.3732
4.2724
4.8981
5.3341
4.9263
5.043P
4.676C
5.3584
6.1087
4.7058
4 .7763
4.7802
5.0 874
5.1379
6.3292?
6.3584
4.9289
4.9630
4.9667
5.0724
4.9984
5.0748
5.0659
6.0806
5.1254
5.1374
7.6080
7 .5492
7.3046
7 .3166
7.7057
7.7350
6.1673
6.1698
7.92q4
7 .9 439
8.7151
8.7589
9.0006
9.0299
6.6671
6.493q
6.9236

3.893
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.89314
3.8934
3.8934
3.8934
3.8934
3.8934
3*8934
7.6822
3.8934
7.6822
3.8934
3.893
3.89316
7.6822
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
7.6822
3.8934
7.6822
7.6822
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3.8934
3*8934
3.8934
3.8934
7.6 822
7.6822
7.6822
7.6822
7.6822
706822
3.8934
3 .8934
7.6822
7.6822
7.6822
7.6822
7.6822
7.6 822
308934
3.8934
3.8936
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6?1 136
21634.6
2126.36

C143? 2

6142136
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Appendix B.1

Plots of Subfilter Spectra for a High Noise

Ordering of Filter no. 14
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FILTER SPECTRUM FROM INPUT TO SECTION 5
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FILTER SPECTRUM FROM SECTION 2 TO OUTPUT
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FILTER SPECTRUM FROM SECTION 4 TO OUTPUT
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Appendix B.2

Plots of Subfilter Spectra for a Low Noise

Ordering of Filter no. 14
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FILTER SPECTRUM FROM INPUT TO SECTION 5
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FILTER SPECTRUM FROM SECTION 2 TO OUTPUT
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FILTER SPECTRUM FROM SECTION 4 TO OUTPUT
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FILTER SPECTRUM FROM SECTION 6 TO OUTPUT
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