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Abstract
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implemented which uses this model to perform load balancing.
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Chapter One

Introduction

A large portion of computer science research is today directed toward distribued

systems. These systems allow a number of individual computers to communicate,

cooperate and share resources in performing work. There are many kinds of

distributed systems, ranging from geographically distributed communication

networks to tightly coupled multiprocessors. Each of these provides certain

advantages over a single system. A geographically distributed network is normally

used primarily to allow sharing of ideas and data. A tightly coupled system, on the

other hand, allows a higher processing throughput than a single processor.

1.1 Loosely Coupled Systems

I am particularly interested in two of the advantages often ascribed to distributed

systems: the increased throughput from performing tasks concurrently, and the

increased availability of having extra processors available in case some fail.

The second goal requires that the processors be independent enough that failure of

one does not preclude operation of the others. However, they must be similar

enough that the tasks running at one processor can be run on another if the first

fails. As a result, I will be concentrating on what are often referred to as loosely

coupled distributed systems. These consist of processors which share access to some

peripherals such as printers and terminals, as well as mass storage, so that a task is

not tied to a particular processor. The majority of communication is via a network.

This allows isolation of a failing processor (as opposed to a system with shared

memory, where a failing processor might modify memory used by another

processor.)
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1.2 Need for Load Balancing

Having such a system does not automatically guarantee that we will have achieved

these goals. A number of problems remain, such as how to accomplish the necessary

communication and monitoring of tasks in order to prevent conflict. The problem

which interests me, often referred to as load balancing, is how to assign the tasks

which need to be accomplished to the processors available. In particular, I would

like to do this assignment in a heicrogeneous] environment. I would like to do this

without assuming significant a priori knowledge about either the processors or the

tasks to be run. As a result, part of the problem will be in determining dynamically

what the characteristics of different tasks and processors are, in order to make a

good assignment.

1.3 Use of Load Balancing

There are three circumstances in which I feel load balancing is important. The first,

placemeni, is deciding where to run a newly created task. Load balancing can also

be useful at other times. I break these into two categories, redistribution and

changing use.

1.3.1 Redistribution

Unplanned failure of a processor in effect creates a number of new tasks to be run.

The scenario is slightly different from that of a single new task. With a single task,

the placement is determined based only on the task and the current state of the

processors. With a number of tasks, the placement could depend not only on the

task to be placed and the state of the processors. The placement decisions of all of

11 am using heterogeneous to refer to an environment in which not all of the processors are the
same. In particular, this means that some tiks may run better on some processors than on others.
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the newly orphaned tasks are interrelated. Simply using the current state of the

processors to place all of the orphaned tasks would result in all of the tasks being

placed at the least loaded processor. This would immediately overload that

processor. This results in a significantly more complex problem, and yet the gains

that could result from good load balancing are correspondingly greater. A method

used for redistribution would also be Liseful in the case of a planned shutdown,

although the prior notice would allow other options, such as gradually moving tasks

from the processor to be shut down. This would make maintenance less of a burden

on the users of the system, as they need notice only a slight decrease in the system

performance.

A similar situation occurs when a processor is restarted, or a new node is added to

the system. Although there is no emergency which must be handled, load balancing

is still called for in order to make use of the new processing power available (and

ease the load on everything else.)

A third situation, which in a way combines the above two, is what to do in the case

of a processor which is overloaded. This is not quite as bad as a failure, as

processing still continues, but load balancing could result in tasks completing much

sooner.

1.3.2 Changing Use

In some cases, the load on the system may become unbalanced even though all of

the tasks were originally placed at the best locations, and no processors have failed.

This is a result of changes in the use of tasks. This could be happen as a result of a

task completing, leaving a lightly-loaded processor. Some tasks, such as mailer

programs or data base managers, run continuously. These tasks act as servers. The

characteristics of these tasks may change over time, as more (or less) demand is

9



made for their services. Due to these changes, it may be desirable to move already

running tasks in order to improve the overall system performance.

This case introduces a problem that was not present in the first two cases. There is

normally some expense associated with moving a task. This could be increased use

of the network, extra shutdown and startup expense for the tasks moved, or simply

the time lost while the task is being moved. As a result, a trade-off must be made

between the cost of moving tasks and the eventual gains in system performance

from balancing the load.

1.4 Prior Work

There has already been considerable research done in the area of load balancing.

Much of this work has been directed toward determining an optimum static

allocation. The static load balancing problem assumes that there are a number of

tasks to be placed in an empty system. I believe that this may be a mathematically

interesting problem, but most computer systems do not have the property that all

tasks start simultaneously and run to completion before new tasks appear. This is

actually a special case of redistribution, and as such serves as interesting

background.

There has been work done in dynamic load balancing. Dynamic load balancing is

used to refer to two problems: allocation of new tasks in a system which is already

in use, and moving tasks which are already running in order to redistribute load.

There has been some good algorithmic work, but it relies on assumptions about

system load which I feel to be unrealistic. This results in difficulty in actually

applying this work to real systems.
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1.4.1 Static Balancing

Much of the early work in static load balancing concentrated on two-processor or

homogeneous multiprocessor systems [Bokhari 79] [Stone 78]. In addition, the tasks

to be distributed were assumed to have certain predetermined and unchanging

requirements for communication and processing. Usually, each task would have

some known communication with each other task, and the object of load balancing

was to minimize these communication costs. This resulted in several methods for

reducing load balancing to a linear programming [Hofri 78] or a network flow [Stone

77] problem. Solutions to optimally partitioning networks have been known for

some time [Ford-Fulkerson 62]. This work, while mathematically interesting,

assumes an idealized view of computer systems. Today's distributed systems are

likely to be composed of many processors of varying types, e.g. MIT's Common

System project [Clark 85]. The problem becomes much more complex, and these

solutions lose much of their LIsefulness.

Later research has filled in some of these gaps. Such special cases as tasks only

running on certain processors [Rao 79], costs of file storage as well as CPU use,

[Morgan 771, and non-homogeneous systems [Bokhari 811 [Chow 79] have been

explored. These solutions use a number of different techniques, making them

difficult to compare and combine. All of this work shares a common assumption,

which is that all tasks are started simultaneously. This may be useful in a

batch-oriented system, but is difficult to apply to on-line systems where tasks may

start at any time. In addition, this static work does not take into account changes in

system configuration. I feel that a significant contribution of load balancing should

be in reasonable handling of failures and other downtime.
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1.4.2 Dynamic Balancing

More recently, work has been done on the question of dynamic reassignment [Kar

84]. This does hclp LIS in dealing with on-line systems. The problem of task

reassignment in the event of processor failUre has also been investigated [Chou 83].

However, little work has been done which discusses tasks with characteristics which

change over time. There has been some work done which does not assume this a

priori knowledge of task requirements [Stankovic 85]. This provides some useful

heuristics for load balancing. However, this work does not discuss the problem of

how to determine the requirements of tasks, and it ignores the redistribution

problem.

1.5 Overview

This thesis concentrates on modeling system load rather than on algorithms to

perform load balancing. In addition, a system was built that monitors load and uses

the information gathered in load balancing decisions. Although the model for load

is applicable to a variety of systems, all of the work has been influenced by the

environment in which I built the test system. Therefore I will describe this

environment in Chapter 2.

Chapter 3 gives a formal definition of load balancing, and also identifies certain

useful subproblems (such as the static balancing problem mentioned above.)

Chapters 4 and 5 formally introduce the model for system load, and discuss how to

characterize real systems using this model. This lays the groundwork for developing

load balancing algorithms. Methods of evaluating load balancing algorithms are

discussed in chapter 6. This chapter also introduces a particular variant of the load

balancing problem which is shown to be NP-hard. Chapter 7 presents the algorithm

which I use for load balancing.
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The remaining chapters describe the design and implementation of a load balancer.

Chapter 8 discusses problems of distributed control of the load balancer. Existing

solutions to similar problems are compared, and the one actually used is described

in detail. Chapter 9 describes the techniques used to determine load and the actual

implementation of the load balancing. Chapter 10 presents some actual results of

the load balancer.

13
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Chapter Two

Background and Environment

The direction of my work has been heavily influenced by the environment in which

it was done. As a result, I will first discuss this environment, in order to give a better

understanding of what I have accomplished. This thesis was started while I was an

intern in the Computer Science department at the I.B.M. San Jose Research Lab. A

more complete description of this project is available in some of the papers

published by this group [Aghili 83], but I will summarize here.

2.1 Highly Available Systems Project

The Highly Available Systems (H.A.S.) Project at the IBM San Jose Research Lab

was started to investigate the use of a loosely coupled network of medium to large

computers in order to provide a highly available database system. The project has

since expanded its goals to providing high availability of all computing resources

using distributed systems. The basic premise of this research is that given a number

of processors, a system can be built which will recover from the failure of one or

more (although not all) processors without human intervention. In addition, the

system should be able to make productive use of all running processors at all times

(as opposed to having idle backup processors.) This leads to many interesting areas

of study, such as providing a communications system which has predictable

behavior even when parts of the system fail, detecting failure of tasks and

processors, moving tasks from processor to processor, and load balancing.

14



2.1.1 Communication subsystem

An important part of any distributed system is its means of communication. The

project has investigated a number of ways of achieving fault-tolerant

communications. One concept that has proven useful is that of atomic broadcast

[Cristian 85a]. An atomic broadcast provides three guarantees:

1. Either all or none of the intended recipients will receive the broadcast.

2. All messages will be received in the same order at all sites.

3. Messages will be delivered within a known time bound 8 (or will not be
delivered at all.) ~

The difficulty is in guaranteeing this in the presence of failure. It has been shown

that this cannot be done in general [Fischer 83], but it is possible given some

restrictions on the allowable failures [Strong 85].

This capability in a communication system simplifies the problem of distributed

control, as communication failures can almost be ignored. I make use of this

communication primitive in order to simplify distributed decision handling in my

load balancing system. This will be discussed in more detail later, in Section 8.3.

2.1.2 Resource management

Another part of the project involves monitoring the status of tasks in order to insure

that all required services are available. This is done through the Auditor subsystem

[Aghili 83]. The auditor is responsible for restarting tasks in the event of failure.

This is an obvious place to make use of load balancing. As a result, my design and

implementation was oriented towards the same type of tasks as the auditor.
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2.2 Base Operating System

All of the prototyping of this research has taken place on top of IBM's VM/SP

operating system. This operating system is based on the concept of a virtual

machine, a simulated single-user processor. Each task runs in a separate virtual

machine. This gives a clear level of granularity in regards to load balancing

decisions. A task is not tied to a particular virtual machine. This allows the task to

be moved to virtual machines on different physical processors. Load balancing

decisions consist of choosing which physical machine a task should run on.

In some cases, tasks may only be able to run on certain physical machines. This

could happen if, for example, only one or two of the available physical machines

had access to mass storage required by the task. I do take this into account, and

allow for restrictions on the freedom of my load balancing decisions. Without some

freedom, however, load balancing is no longer an interesting question. Multiple

paths to disks or system-wide file servers can be used to enable the processor

independence necessary in order to use load balancing to best advantage.

2.3 Influence of H.A.S. Environment on this Work.

The tasks of most interest in this system are continuously running services, such as

database managers, mail servers, or file servers. As a result, long-term usage

patterns for these tasks can be developed and used in load balancing decisions. I

take advantage of this assumption, and integrate monitoring of both tasks and

processors into my load balancing. This is not to say, however, that this work is

irrelevant to other types of tasks. Such tasks as compilers and text formatters may

not run continuously, but their load characteristics should be similar from run to

run. This does vary with input, but monitoring and averaging over individual runs

can give figures which can be used in much the same way as those from

continuously running tasks.
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The result is that this research assumes that tasks are stable enough that some

characterization or them can be developed. This can be either through continuous

observation, or through monitoring of a number of individual runs. This partly

defines the granularity of what is considered a task, as it must be possible to

independently monitor tasks.
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Chapter Three

Definition of Load Balancing

Load balancing involves choosing an assignment of tasks to processors. We start

with a set T of tasks and a set P of processors, and determine a configuration of the

system where some subset of the tasks in T are running on some subset of the

processors in P. Sometimes the system may already have certain tasks running at

certain processors. In soeic cases these may be moved, in others they may be fixed.

Note that we do not necessarily have to run all of the tasks, or use all of the

processors. In some situations we may want to get all of the tasks done as quickly as

possible; in others we may want to get certain tasks done within a certain time, and

the rest of the tasks can wait.

Load balancing, then, is used to determine the configuration of the system:

Definition 3-1: A configuration C is a set of pairs (TP) where each T is a
task, P is a processor, and there is at most one pair for each task TE C.

(T,/)EC means that Tis running on processor Pin the given configuration.

Load balancing can be defined as afunclion which maps a set of tasks to be run onto

this pairing of tasks to processors. The following definitions give several classes of

load balancing functions. The first is the general case.

Definition 3-2: A load balancing function takes a configuration C and a
set s of tasks (where any task TES is not in C), and returns a new
configuration c' containing at most one pair corresponding to each task in
s and each task in C.

Note that this function is not limited to choosing where to place the tasks in S. New

tasks can be assigned to processors, tasks already running in the system can be

reassigned to new processors, and some tasks may not be assigned to any processor.



This definition tells us what qualiries as a load balancing function, but does not

specify what the function should accomplish. The goal of load balancing is to

improve the performance of the system. This is done by distributing the load

imposed by the tasks across the processors available. This load is different from

system to system, and can be quite complex. A model for load is given in chapters 4

and 5. The goal of load balancing can likewise vary from system to system. This can

make load balancing a computationally difficult problem, as shown in section 6.1.

In many cases, the power of the general load balancing function is not necessary.

There are special cases of load balancing problems which are often useful. It may be

easier to develop efficient algorithms which give an assignment meeting the desired

goal for these cases than for the general load balancing problem. I refer to these

special cases as initial distribution, task placement, and redistribution.

Definition 3-3: An initial distribution function takes a set S of tasks and a
set 9P of processors, and returns a configuration C, where for each pair
(T,P)EC, TESand PE9'.

This performs an initial assignment of tasks to processors in an empty system,

otherwise known as static load balancing.

Dynamic load balancing is used to refer to two problems. These are described in the

following definitions.

Definition 3-4: A task placement function takes a task and a configuration,
and returns a processor on which to place the task (or null, specifying that
the task is not put on any processor.)

A placement function is useful when adding a single task to an already running

system.

Definition 3-5: A redistribution function takes a configuration C' and
returns a new configuration c' where each task TE C' is in C.
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Chapter Four

Model for System Load

In order to decide which tasks to assign to which processors, we must be able to

evaluate potential choices. One way to do this is to compare the processing

resources needed by a task with the resources provided by a processor. To do this,

we need a general method to:

1. Characterize the capacities of a processor. These are the total resources
that the processor can provide.

2. Characterize the requirements of a task. These are the resources used by
the task, and may vary depending on the state of the system.

3. Relate these two.

This would give the information necessary to make decisions, except that we do not

yet have a goal. I see the end goal of load balancing as minimizing the response time

of the system. This is the time from when a request is submitted until the result is

returned. Not only is this what a user really means when asking how fast a system is,

but it would seem easy to measure: simply start a task, and measure the time it takes

to complete. However, general-purpose computer systems are capable of handling a

variety of tasks, which may have different running characteristics. Which do we

choose in order to measure the response time?

It would seem reasonable to choose some task as a "standard" with which to

measure response time. For example, some commonly used system command could

be timed each time it was called, and this would be used as the system response

time. Alternatively, a special program could be written which would be run each
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time the response time of the system was needed. The time required for this special

program to run would be the response time for the system.

If the response times of all tasks were directly proportional to this "standard task",

this would be a useful measure of system performance. However, tasks may vary in

the kind of processing required. One task could need a lot of CPU time while

another requires the use of a communication channel. This difference in the kind of

processing resources required by a task can result in the "standard task" not actually

reflecting the performance of other tasks on the processor. For example, the

"standard task" could be CPU dependent, and run very slowly in a system with an

overloaded CPU, but an I/O intensive task would still I-tin quickly. There has been

work done which takes these differences into account [Kuck 78], but with an

emphasis on performance analysis, not load balancing.

Many time-sharing operating systems will allow tasks using different kinds of

processing to run concurrently. For example, while one task is waiting on 1/O,

another can use the CPU. In this way, running two tasks simultaneously will result

in better response times than running them sequentially. However, two tasks which

compete for the same resource will not gain by running concurrently. They will

have to share the resource, resulting in slower response. Tasks which do not need to

use that resource, however, will still run as quickly as before. Load balancing

algorithms can exploit this concurrency if they are able to consider different

processing resources separately.

Considerations like these make characterizing the load on a system more difficult. A

"standard task" will actually only reflect the response times for tasks requiring a

similar set of resources. Minimizing response time is still a good goal, but the load

on a system can not be measured using a single task, or for that matter, any single

value. To adequately characterize load it is necessary to look at a variety of factors.
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4.1 load as a Resource Vector

In order to capture this variety of processing types, I will represent processing

resources using a vector. The components of this vector correspond to amounts of

particular processing resources, e.g., CPU cycles/second, memory, communication

channels, etc. The processing resources actually used as the components of the

vector are based on the system under consideration. For example, in a system with

very high speed communication channels, communication costs may be insignificant

enough to be ignored in load balancing. These resource vectors will be used to

describe both the capacity of individual processors, and the resources used by

individual tasks.

Definition 4-1: A Resource vector R = (r, . r,) is a length n vector of
non-negative reals. R[i] is used to refer to resource r.

This relates to processors in the following manner. Each processor has an associated

resource vector R where each component RjiJ of the vector characterizes the

processor's capacity for resource r. Typical values for these components would be

the number of instructions per second of the CPU, or the total amount of memory

attached to the processor.

Definition 4-2: The capacity of a processor P is a resource vector
capacity(P), where the the it entry in the vector denotes P's capacity for
resource r.

This leads to a method of describing of a task using a vector of requirements, where

each component of the vector refers to the amount of a particular resource used by

the task. For example, one component of the vector for a processor may refer to

how many instructions can be processed per second. For a task, this component of

the vector would give how many instructions the task executes per second. This is

not sufficient, however, as the running characteristics of a task are dependent on its

environment. For example, a task which accesses a network may spend more time

waiting for data from the network at a processor with a slow communication link
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than at one with a fast link. Since it is spending more time waiting, it will use less of

the CPU. The requirements of a task may change depending on the state of the rest

of the system.

The requirements of a task can be characterized using a resource vector when the

system is stable. In fact, for each possible configuration of the system there may be

a different resource vector which characterizes the task. This leads to characterizing

a task using a set of resource vectors. In any given configuration, one of these

resource vectors will actually correspond to the resources used by the task. This

vector is referred to as the current requirements vector.

Definition 4-3: The requirements of a task T is a set of resource vectors
requircimenis(T). Each vector RE requirements(T) represents a possible pattern
of resource usage by 7, where the component Rli] of the vector
corresponds to the amount of resource r, used when R is the current
requirements vector for the task.

In order to make use of this set we must be able to determine which of the resource

vectors is the current requirements vector in a given configuration. In general, this is

done by taking a profile of the entire system.

Definition 4-4: Profile(C) is a function which takes a configuration C and
returns a set of (T,R) pairs, where for each task TE C, RE requirementis(T) is

the corresponding current requirements vector.

These functions give us the necessary information to completely characterize a

system.

Definition 4-5: A system is composed of

P={P}, a fixed set of processors,
T={ T}, a fixed set of tasks,
R, a fixed, totally ordered set of n resources,

where r. denotes the idt resource in the set, and
capacity, requirements, and profile fuinctions.

These functions are quite general. As stated, any change in the configuration could
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affect every task. In some cases it would be nice to determine the status of the tasks

on a particular processor without knowing the entire system configuration. This can

be done if the status of a task only depends on the local part of the configuration.

Definition 4-6: Status(/,,s) is a function which takes a processor and a set
s of tasks, and returns a set of (T,R) pairs corresponding to each task TES,
where RE requirements(T) corresponds to the current requirements vector for
T when every task TE S is ru nning on P.

Note: This function is only valid if it can be defined such that
status(P,S)C profile(C), where (T,P1) E (C TE S.

There is an invariant on the relation of tasks and processors which must be satisfied

by profile (and therefore by status.) This is that the tasks running on a processor

will never use more than that processor's capacity of any resource.

For any processor P and resource i, (4-1)
Let = {R } such that (T P)c C and (T, R)Eprofile(C). Then

1: R [i] < capacity(P)[ij
RE%

Another way to describe this invariant is to use an availability vector. This vector

corresponds to the amount of resources a processor has which are not in use. The

above equation states that the availability of any resource cannot be negative.

Definition 4-7: Availability(PC) is a resource vector corresponding to the
unused capacity of P running in configuration C. It is defined such that:

Let %= {R } such that (T, P)E C and (T. R)Eprofile(C). Then

A vailability( P, C )[iJ = capaciiy( P )[i - 2 R [ij
RE%

This gives the information necessary to make load balancing decisions. The next

step is to define the goal of load balancing.
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4.2 Quality

In order to state the goal of load balancing, I use a concept of task qualiy. This is a

number which gives a measure of how well a task is.running, based on which vector

is the current requirements vector. This will normally be related to the response time

of the task, although other goals could be chosen. Desirable current requirements

vectors will have high qualities, and undesirable current requirements vectors will

have low qualities.

Definition 4-8: A task quality function takes a task T and a resource vector
R (where RE requiremenis(T)), and returns a non-negative number.

Such a function is effectively a ranking of the resource vectors in requirements(T).

The resource vector which corresponds to a task. having all of the resources it can

possibly use will have the highest quality, and one which corresponds to the task not

being able to run at all will have quality 0.

The real goal of load balancing is to improve the overall response time of the system.

The task quality function gives us a measure by which to judge individual tasks. We

now need a configuration quality function which uses all of the individual task

qualities to give a measure of how well the entire system is running.

Definition 4-9: A configuration quality function takes a set of
(task, task quality) pairs and returns a real number.

A configuration quality function is what is actually used to evaluate load balancing

decisions. A simple configuration quality function would be to just average the task

qualities; however, it may be desirable to assign priorities to certain tasks. Thus a

typical configuration quality function would be a weighted average of the task

qualities.

Note that these functions take no notice of where tasks are running, only how they

are running. This is a desirable feature, as the goal of load balancing is to place tasks
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so as to increase the speed of the system. T[he location of tasks is only interesting in

that it affects the speed of the individual tasks, but this is reflected in the current

requirements vector. The task quality, and thus the con figuration quality, are based

on the current requirements vector. Therefore the quality can only reflect the

location of tasks as it relates to the speed of the system, which is exactly what is

desired for load balancing.
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Chapter Five

Relation of Model to Actual Systems

The main goal of any model is to help us to understand the real world. In particular,

this model is intended to be useful in performing load balancing in real computer

systems. It provides a means of dividing load balancing into two problems:

characterizing the system, and developing algorithms for load balancing. I will

discuss the former problem in this chapter, and the latter in chapter 7.

I will try to describe general techniques for using this model to characterize systems.

Section 9.1 discusses an actual implementation based on this model.

There are a number of factors which contribute to the load on a processor. Some of

these have been mentioned (CPU, 1/O) as justification for the model. Here is a

more comprehensive list

* Processor use (there may be a variety of these, such as specialized
numeric processors.)

. Memory (again, this is not necessarily a single item. Large systems often
have caches or various speeds of memory.)

. Storage devices (Disk, Tape)

" Interprocess communications

" Peripherals (i.e., printers)

It is important to remember that this list is by no means complete; as computer

systems grow and develop, new factors may appear.

It would be impossible to list all of the factors that contribute to load, and describe
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here exactly how to characterize each of them. This is a task which must be

performed separately for each system. It is possible, however, to develop some

general techniques to use in describing a system. To do this, I divide these factors

into two classes, shared and dedicated resources. A shared resource is one which can

service multiple tasks simultaneously. An example would be a processor in a

time-sharing system. Dedicated resources are those that are tied to a single task,

such as a tape drive.

In the above examples, the difference between shared and dedicated resources is in

how long the resource is tied to a particular task. A time-shared CPU will normally

spend less than a second on each task. If the time required to move the task to a

different processor is shorter than the wait for this one, such as in a shared-memory

system, processors would be considered a dedicated resource. However, in a

loosely-coupled system the time required to move a task will be longer. In these

systems, a CPU would be shared. The decision as to which resources are dedicated

and which are shared may vary considerably between systems, but the handling of

each of the two separate cases stays the same.

5.1 Dedicated Resources

To characterize a dedicated resource, the processor vector simply has a number

corresponding to the amount of that resource available on the processor. The task

requirements vectors are similar. These contain a number corresponding to the

amount of the resource in use. One of the requirements vectors corresponds to the

case in which the resource is not available. In this case, the component of the vector

corresponding to the resource indicates that none is in use. In addition, the other

components will indicate little or no use of any resources, indicating that the task is

waiting for the resource. The task quality will be 0, reflecting that the task is not

accomplishing anything. This indicates that this is a poor choice of location for the
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task. However, in some situations it may be desirable to place the task on a

processor even though it won't be able to run. For example, if some resource is

located at only one processor, the tasks needing that resource could be placed on

that processor to wait for the resource to become available.

An example of a dedicated resource would be memory (assuming a single level

memory system, systems using paging and caching are discussed in the next section.)

The component of the vector capacity(P)[memory would indicate the amount of

memory available. A task T requiring a fixed amount in of memory would have one

vector RO Erequirements(7) with R,nemoryj=0. The rest of the components and the

task quality of R0 would also be 0. All of the other vectors R, E requircntis(T), i3 0

would have R,[nemoy'=,n. The meaning of the invariant given in equation 4-1 is

clear; the tasks on a processor can not use more memory than the processor has.

In some cases, the task may be able to run without a dedicated resource, perhaps by

using an alternative resource. In this case, instead of having a single requirements

vector for the case in which the dedicated resource is not available, the set of

requirements vectors is partitioned into two subsets. One subset of the potential

vectors handles the case where the resource is not available. The vectors in this

subset reflect the running characteristics of the task without the resource, and show

that the task is not making use of the resource. The second subset states that the

resource is in use, and each vector corresponds to a potential operating condition

while using the resource. This is the general case of dedicated resources.

5.2 Shared Resources

Shared resources are those which can theoretically be divided up infinitely. A prime

example is a CPU, which can be time-shared between any number of tasks. Another

task can always be added, but the tasks already on the processor will suffer. Note
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that this is in theory; in practice there is normally an upper limit on the amount of

sharing that can be done. This can be handled by having an extra component in the

vector which keeps track of the maximum amount of sharing which can be done, in

the manner of a dedicated resource.

The interesting part of a characterizing a shared resource is representing the sharing.

For the capacity vector of the processor, each shared resource is represented by a

value in the vector corresponding to the amount of that resource which the

processor is capable of providing. Task vectors contain a corresponding value

denoting the amount of the resource that that task is using. This seems no different

from the method for handling a dedicated resource. The difference shows up when

a particular resource becomes a botleneck. In this case, the resource is fully utilized.

In the dedicated resource case, this meant that no other task could make use of the

resource. The value for a dedicated resource in the requirements vectors for a task

had only two possible values, corresponding to the task either having or not having

use of the resource.

With a shared resource, addition of another task results in some or all of the tasks

receiving a smaller share of the resource. How this division of the resource is done

depends on the scheduler in the operating system. With a fair scheduler, the loss of

resources will be spread across all of the tasks. More complex schedulers may divide

the resource up differently. However, in any case, the task requirements vectors for

a task will have many possible values for the resource, depending on what share of

the resource the task is given. If the capacity of the processor for a shared resource

is not as great as the amount of that resource the tasks on the processor would like to

use, then the current requirements vector for some of the tasks will reflect a lower

than desired use of the resource, so as to satisfy equation 4-1. This will lower the

quality of the tasks, and thus the quality of the system.
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Using the example of a CPU, the capacity vector of a processor contains a

component with the number of instructions per second that the processor is capable

of. The requirements vectors for each task will have a corresponding component

giving the number of instructions per second used by the task. This number will

vary between 0 and some maximum, depending on which resource vector is the

current requirements vector. The current requirements vectors for all of the tasks are

chosen so as to satisfy equation 4-1. As a result, the number of instructions per

second used by all of the task on a processor is less than or equal to the number of

instructions per second that the processor is capable of.

A more complex example, involving both shared and dedicated resources, is a

multilevel memory system (caching, or paged main memory). Overall, the total

amount of virtual memory on the processor is a dedicated resource (although

enough is normally available that this will not be a major factor in load balancing.)

But main memory (or a cache) is shared. When all main memory is in use, some of

the information in main memory is paged out to a disk, and other information is

brought in. This allows processing to continue (although at a slower rate.) This sort

of a memory can be represented using a separate component of the resource vector

for each type of memory. Tasks attempt to run entirely in main memory, but when

this is not possible, a vector is chosen which represents the average amount of main

memory in use by the task, as well as the total virtual memory in use. As the average

amount of main memory in use by a task goes down, so would the task's use of other

resources. This would cause the task quality to go down.

In terms of the model, the difference between shared and dedicated resources is that

whereas a dedicated resource partitions the requirements vectors into two subsets, a

shared resource partitions the requirements vectors into a possibly infinite number

of subsets. In effect, then, dedicated resources can be thought of as a subset of

shared resources. However, I see reasons to actually think of the two as different.
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1. Load balancing decisions for dedicated resources involve qualities with
only two possible values corresponding to the availability or lack of the
resource. In many cases, this is a simple run/no run decision.

2. Use of a dedicated resource does not change the current requirements
vector of other tasks. This makes predicting the results of a placement
decision much easier.

A load balancer will have to ask different questions for the two types of resources.

With a dedicated resource, the question will normally be "Which tasks should be

run?" With a shared resource, the question is closer to "In this configuration, are

there any tasks which are not running well enough?" The first is a much simpler

question to answer, perhaps by prioritizing the tasks. The second problem involves

many trade-offs. Except in real-time control systems, it is rare to have an absolute

cutoff for adequate performance.

5.3 Representing Communications

The cost of communicating over a particular channel is easily represented by either

a shared or dedicated resource (depending on what sort of a protocol is being used.)

However, deciding which communications channel a task is going to use is a

different matter. In fact, two tasks which communicate will not need to use such a

channel at all if they are on the same processor. How can this be represented?

One way to do this is to have a component in the resource vector which contains a

different value for each link which may be used to communicate between the two

tasks (including one for the case when they are on the same processor.) This

component is used only for purposes of determining which link is used for

communication between the tasks, and does not correspond to a processing

resource. The profile function will know that for this component, resource vectors

must be chosen such that the value of this resource in the current requirements

vectors for the two tasks are compatible.
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[his component partitions the set of requirements vectors for the two tasks into a

different subset for each possible communication link between the tasks. Ihe

vectors in each subset will reflect the processing resources used when that link is in

use for tile intertask communication. For example, if one of the processing

resources was a communication link between processors a and b, then the resource

vectors for the two tasks would only use this resource (the communication link) if

one task was on d and the other was on b. The "extra" component would make sure

that the current requirements vector for each of the tasks would show use of the

communications link if and only if one task was on a and the other was on b.

In this case, the status function is no longer valid, since the requirements vector

currently in use may be dependent on the location of a task which is not at the

current processor. This appears to make load balancing more formidable, although

it is difficult to actually prove that the problem is more difliculL
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Chapter Six

Evaluation of Load Balancing Algorithms

The previous chapters have specified what load balancing is, what information is

used in load balancing, the goal of load balancing, and how to characterize a

particular system. Before introducing an algorithm for load balancing, I would like

to discuss methods of judging load balancing algorithms. One method is to compare

the quality of the configurations produced by an algorithm with the quality of an

optimal configuration. ['his optimal assignment is the one which actually has the

highest configuration quality. Finding the optimal configuration may be

computationally infeasible, however (see section 6.1.) As a result, there should be

other means by which to measure load balancing algorithms.

One criterion is the efficiency of the load balancing algorithm. A load balancing

algorithm will take processing resources away from other tasks. A trade-off must be

made between the gains of load balancing, and the cost involved in load balancing.

An algorithm which determines the optimal configuration is not helpful if the time

required to run the algorithm is longer than the time available to complete the tasks

which are waiting to be assigned.

Another criterion based on preventing the load balancing algorithm from overusing

system resources is stability. If task requirements and processor capacities do not

change, and new tasks are not introduced, then multiple runs of a stable load

balancing algorithm (in particular, the redistribution function) will eventually stop

making changes in the configuration. A load balancing algorithm which does not

meet this criterion will constantly be moving tasks. The load imposed by moving

tasks will be detrimental to the system. As such, a load balancing algorithm should
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be able to reach some point at which it is satisfied, and seeks no further

improvements.

This is not enough, however, as no load balancing at all (assigning tasks to

processors on some random basis) will satisfy the two previous criteria. Testing if

the algorithm improves the configuration quality will ensure that a load balancing

algorithm gives some gains, but is a less demanding criterion than comparing with

an optimal configuration. This, like stability, is most pertinent to redistribution

algorithms.

This is not intended to be a complete list. It is a sampling of considerations which

are important in the design of a load balancing algorithm. The following section

justifies the use of criteria other than optimality in judging load balancing

algorithms.

6.1 Computational Difficulty of Load Balancing.

Finding an optimal solution to load balancing (an algorithm which maximizes the

configuration quality) can be a computationally expensive problem. A particular

load balancing problem is given by specifying a system (definition 4-5), and task

quality and configuration quality functions. An optimal solution for a particular load

balancing problem is a load balancing function (definition 3-2) which gives the

configuration with the highest configuration quality for any particular set of tasks to

be run. For some load balancing problems, finding an optimal solution can be

shown to be an NP-hard problem. This section describes such a problem, and

shows that it is NP-hard.

I will actually be working with a problem which I call minimum acceptable

configuration. This problem is to determine if given a particular minimum
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configuration quality Al and a set of tasks to be run, there is a configuration with

configurationquality A. This is no harder than the optimal solution problem, as if we

can find an optimal solution to a given load balancing problem, we can easily check

to see if the optimal configuration quality is greater than the minimum Mu. Showing

that the minimum acceptable configuration problem for a particular load balancing

problem is NP-hard will thus show that optimal load balancing for that problem is

also NP-hard.

In addition, I restrict minimum acceptable configuration to finding an initial

distribution. This is a special case of the general load balancing problem (definition

3-2), and thus showing that initial distribution is NP-hard for a particular problem

shows that general load balancing for that problem is also NP-hard.

The minimum acceptable configuration problem, then, is as follows:

Definition 6-1: For a particular load balancing problem (i.e. a system plus
task and configuration quality functions), the minimum acceptable
configuration problem asks:

Given a set of processors 9, a set of tasks S, and a minimum
acceptable configuration quality A, does there exist a
con figuration C= initial disiribution (S, 9) such that

1. VTE S, 3 PE P such that (T, P)E C

2. configuration quality (profile(C)) M ?

Note that this problem requires that all of the tasks be rtn.

There are scheduling problems which are similar to load balancing which have been

shown to be NP-complete. These use a single value, the time required to complete a

task, as the sole information needed to describe a task in order to make scheduling

decisions. This is comparable to load balancing using a single processing resource.

The following class of load balancing problems is similar to these scheduling

problems.
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Definition 6-2: The single resource class of load balancing problems is
defined as follows:

Let R be a single-component rational-valued vector.
Note: Since there is only a single processing resource in this
system, I will actually use resource vectors as a value instead of
a one-component vector. This is done for ease of notation, and
is no different from using a single component resource vector.

Let P be a fixed set of processors.

Let T be a fixed, infinite set of tasks, where each task TE T has
an associated weight w(T)E0, 0< w(T)s 1.
This weight is used to rank the tasks in terms of the amount of
resources required. This would normally be incorporated into
the requirements of the task, but is separated to simplify the
NP-hardness proof.

V /PE P, let CajIacity(l) = 1.

Note that all processors are identical.

V TE T, let requiremenis(T)={x IxE 0, 0 s x:5 11.

The current requirements of a task can be anything from 0
(using none of the resource) to 1 (using all of the resource
available on a single processor.)

task quality(T, R )=w(T) -R.

configuration quality({( T, R ) )= mi n (task quality( T, R )).
{(T, R)}

The configuration quality is the quality of the lowest quality
task in a given configuration.
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profile(C)= {(T, R)} such that for each PE C,

1. 1 R = capacity(P)
(T, R )E profile(C) (T, P)E C

2. 1f(T;, P),(T., P)EC, and (T7,R ),(T.,R.)Eprofile(C), then
task quality( T.,R)= lask quality( 7, R.)

The first item is equation 4-1, and the second states that the
current requirements vector for all of the tasks on a given
processor are chosen so that the task qualities of the tasks on
that processor will be the same.

We can now state the theorem which is the focus of this section.

Theorem 6-3: rFhe minimun acceptable configuration problem for a single
resource load balancing problem is NP-hard.

Proof: Reduction from the multiprocessor scheduling problem given on
page 65 of [Garey 79]. The scheduling problem as defined by Garey and
Johnson is as follows (paraphrased and some notation changed for
compatibility):

Theorem 6-4:
Let Tbe a finite set of tasks,

I(T)E Z+ the "length" of TE ,
I E Z+ a number of processors,
DEZ+ a deadline.

The multiprocessor scheduling problem:
Does there exist a partition vX=iU2U ... of T
into m disjoint sets such that

max ( X I(T))5 D ?
r.CJ TEI

is NP-Complete.

Proof: See [Garey 79].

This corresponds closely to the problem of theorem 6-3. We have a set of
tasks, a set of processors, a cutoff (in this case, a deadline, not a minimum
quality), and a weighting function for tasks.

The multiprocessor scheduling problem states that if the total length of all
the tasks assigned to any processor is too great, they will not be completed
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by the deadline. This is analogous to saying that if the tasks on a
processor desire too much of a resource, the task quality of these tasks will
be unacceptably low.

Given this, the maximum used in theorem 6-4 corresponds to
configuration quality. The multiprocessor scheduling problem asks if
there exists an assignment such that all of the tasks will complete by a
certain deadline. The minimum acceptable configuration problem asks if
there is an assignment such that the configuration quality is greater than
the minimum. If we take the configuration quality to be the minimum of
the task qualities, then the two are analogous.

In order to show the reduction, it must be shown that a solution for the
problem of theorem 6-3 can be used to solve the problem of theorem 6-4,
with any conversions necessary being performed in polynomial time. The
close correspondence between the problems simplifies this. Tihe following
lemma shows that a solution for the minimun acceptable quality problem
for single resource load balancing can be used to solve the multiprocessor
scheduling problem.

First, we must convert an instance of the multiprocessor scheduling
problem to an instance of the minimum acceptable configuration load
balancing problem. This can be done using the following function f.

Given an instance x of the multiprocessor scheduling problem
(a finite set Tof tasks, a number of processors n, a deadline D,
and a length function (T)), define an instance f/x) of the
minimum acceptable configuration problem for single resource
load balancing as follows:

S={ TE T l each IE rhas a corresponding T such that w(T)=-}
(T)

9={IPI . Pml

M=-
D

Note that the set s must be of the same size as the set r.

Lemma 6-5: Instance x of the multiprocessor scheduling
problem is satisfiable if and only if instance f(x) of the
minimum acceptable quality problem for single resource load
balancing is satisfiable.
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Proof: Assume we can solve the minim urm acceptable
con figuration problem for single resource load balancing. Then
we know that the Ibilowing is true if and only if an instance
satisfies the minimum acceptable configuration problem:

configuration quality(pn)file(C)) At

min (iask qualify(T R)) A
(T, R )e profile(C)

Using the definition of profile given in definition 6-2, we know
that the task quality on any given processor P is constant, and is
given by

V(T, R)E profle(C), (T, P)E C,

1ask qualiIy( T, R )= w( T)- R R
1(T)

We also know from the profile function that

I R = capacily( P )
(T. R) Ton P

Combining these (and noting that capaciiy(P)= 1), we get
I(T) R=1(T)

R (T, R ), Ton P R

Since the task quality, and thus its inverse, is constant on any
given processor,

R =(T) (T)

(T,R),TonP R R
1 () (T) I

/(T)- -

(T, R), Ton P R task quality(T, R)

This can be carried back into the configuration quality to give

min ( 12)
PE P I (T)

(T, R), Ton P
(iff the problem is satisfied.)

Since DEZ+ D=I> 1, so the previous line can be transformed
to

max ( X (T) ) s D
PE P (T, R), Ton 1)
(iff the problem is satisfied.)

Since the partitions of 4r in the multiprocessor scheduling
problem correspond to the assignment of tasks to processors
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above, this last statement answers the multiprocessor
scheduling question. I

All that remains is to show that the conversion function f can be
performed in polynomial time. The construction of the set of processors 9
and the computation of the minimum acceptable configuration A/ are
trivial. The only difficult problem is the proper choice of tasks in S. For
each task w,r, the set of tasks to be scheduled, a corresponding task TET
must be chosen such that its weighting function w(T)= 111(i). However,
since the tasks requirements sets are all identical, the only distinguishing
characteristic is the weighting function. This allows us to construct the set
s by constructing a weighting function for each task. This is trivial, and
thus the construction of S can be done in polynomial time.

This shows the polynomial time reduction of the multiprocessor
scheduling problem to the minim urn acceptable configuration problem
for single resource load balancing. I

This proves that finding an initial distribution which meets some minimum

configuration quality for a single resource load balancing problem is NP-hard, and

thus the problem of optimal load balancing for the problem is NP-hard.

The class of load balancing problems defined above is actually quite simple, with all

processor capacities identical and a single component in the resource vector. It can

be easily reduced to load balancing problems specified in other ways by a simple

restriction. I believe that many of the load balancing problems encountered in

actulal systems can be shown to be NP-hard in this manner. This justifies the search

for non-optimal, but efficient, algorithms for load balancing.
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Chapter Seven

Heuristics for Load Balancing

The emphasis of this thesis is not on developing optimal or efficient algorithms for

load balancing. It instead concentrates on working out a better way to describe the

problem, and showing that this description is useful in relation to real-world

systems. There has been a good deal of work done in the area of load balancing

algorithms (see section 1.4.) Some of this work could be extended to use this model

for load without great difficulty, using the technique discussed in the next section

for reducing resource vector load to a single value. Any serious discussion of load

balancing algorithms for this model should go beyond that, however. Such a

discussion would be beyond the scope of this thesis. As such, the following simple

algorithm is presented with little discussion as to optimality of decisions or

comparison with other algorithms.

7.1 Placement Algorithm

The system implemented uses a simple task placement algorithm. The idea behind

the algorithm is that a single processing resource is chosen as the crilical resource,

and this resource is used to find the best location for the task. This would seem to

have all of the problems of using a single value for load. However, this algorithm

differs from algorithms based on a single measure of load in that the decision of

what to use as a load balancing criterion is based on the current system

configuration. For example, a database manager will be heavily dependent on

access to disk, and thus will be placed on a processor with plenty of unused I/O

capacity. However, if 1/O is not heavily utilized in the system, some other resource

may be used as the criterion for load balancing
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Actually, this single criterion is chosen from among shared resources. Dedicated

resources are checked first, and if placing the task at a given processor would violate

the invariant of equation 4-1, it is removed from the set of possible locations for the

task. Once this is done, the critical resource is chosen.

The manner used to select the critical resource is to choose one of the task's resource

vectors as a baseline vector. This vector should be one which gives a measure of the

relative use of various resources under a wide variety of configurations. For

example, a mail system would primarily make use of communications channels.

Although some CPU and other resources would be needed, these would be small in

relation to the communication cost. If the communication channel was heavily used

by other tasks, the amoLnt used by the mail server would probably be small, but the

aMount of CPU use would go down as well. The communication used by the mail

server would still be relatively large compared to the use of other resources.

There are a number of possible ways to choose this baseline vector. One possibility

would be to use the vector which is most often chosen as the current requirements

vector. Another would be to decide on some standard configuration, and use the

current requirements vector in that standard configuration as the baseline vector.

This latter method is the one used in the system described in chapter 9. The choice

of the baseline vector is dependent on the system, and should reflect the relative use

of resources in a variety of configurations.

Once the baseline vector is chosen, the resource in this vector with the highest value

could be used as the critical resource. However, this strategy does not take into

account the status of the rest of the system. The method used is to compare the

task's baseline vector with a vector which is built from information about the current

system state. This is done by Finding a component-by-component average of the

current requirements vectors of all the tasks in the system. This average gives a
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means for determining which resources are heavily used in the system. In more

formal terms:

Definition 7-1: Average(PrC) is a resource vector defined as follows:

Let % = I R } such that (R, T)E profile(C) and (T, P)E C.

X R[iJ

V resources i, average(P, C)[iJ= A

The baseline vector of the task to be placed is compared with this average vector,

and the component which is the highest in relation to the average is used as the

critical resource. If the system is short of some shared resource, each task will get

less of the resource, and the average will be lower. This will cause the difference to

be greater, increasing the chance that the resource will be chosen as the critical

resource. For example, if the processors in the system do not have enough CPU

cycles/second to keep up with the demand, the use of the CPU by each task will

drop. If the task to be placed is a mail server, it would normally be considered

communication intensive. However, comparing the low values for CPU use in the

average vector with the baseline vector of the mail server may show that the mail

server uses a relatively high amount of CPU. The placement will then be done

based on the availability of CPU cycles, as this is of greater effect on the

configuration quality than the relatively lightly used communications channels. The

algorithm for choosing the critical resource is shown in figure 7-1.

Once the critical resource is chosen, the algorithm looks for the processor with the

highest availability of that resource. If all of the processors have 0 availability of the

resource, the processor whose tasks have the highest average for the resource is

chosen. This assumes that the tasks with lower averages are doing poorly, and could

ill afford to give up more of the critical resource. The algorithm for selecting a

processor is shown in Figure 7-2.
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Critical(R,9, C) is a function which takes a resource vector R, a set of processors 9,

and a con figuration C, and returns the critical resource c determined as follows:

Let A be the resource vector such that:

I average(P-,C(.)[i)

V resources i, A[i=P9

Return the shared resource c such that

V shared resources i, R[> J
AIc] Ali\

Figure 7-1:Choosing the Critical Resource.
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Placenent(TC) takes a configuration C and a task TeC, and returns a processor P

determined as follows:

Let 9 be the set of processors in C,

R E requiremenis( T) be the baseline vector chosen for T.

For each dedicated resource d,

For each processor PE 9

if availability(P, C)[dJ s Rd] then 9=9- { P}

c= criica/(R,P, C)

Let PE P be the processor with the highest availabiliiy(PC)[c.

If capaciiy( P )[c ]> 0, return P.

else return PE 9 with the highest average(P, C)[c].

Figure 7-2:Placement algorithm for Load Balancing.

47



Chapter Eight

Distributed Control

One of the problems in this load balancing implementation is communicating load

balancing decisions to different processors. The load balancing system monitors

tasks and processors in order to determine requirements and capacities. Since the

monitoring must be done at each processor, the load balancer is already somewhat

distributed. This leads to questions about the load balancing algorithm, should it be

distributed, or should a central load balancer send new tasks to the proper locations?

This chapter begins with a description of some of the requirements of the system

resulting from the environment described in chapter 2. The remainder will discuss

possible solutions. The one used in the implementation is then presented in detail.

8.1 Requirements

The primary goal of the Highly Available Systems group is just what the name

implies: providing a reliable system. As a result, any load balancing algorithm must

be able to handle failures. This immediately gives us one requirement: duplication

of information. Necessary information must not be confined to a single site, where

it could be lost in case of a failure. It is easy to see that in order to handle n failures,

the information must be available at at least n+1 sites.

This also leads to a requirement that load balancing be distributed; if the load

balancer were at a single site, failure of that site would cause loss of load balancing.

This can be handled in many ways: a voting system; leader election in case of

failure (or a predefined succession list); or distributing the algorithm such that the

loss of a particular node (and its load balancer) will not affect the rest of the system.
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8.2 Possible Protocols

One method of providing a reliable load balancing system would be to make all

decisions at a central site. This site would be chosen using a leader election

protocol. The load balancing algorithm would not have to worry about concurrency

in its own operation. The only remaining problems would be collecting the needed

data and communicating the results, so as to actually act on the decisions. This

would be basically a master-slave arrangement, with the master sending commands

to all of the remaining nodes.

Certain nodes would have to be chosen as potential masters, so as to have the

information available to take over in case of a failure of the current master. In

effect, this means full replication of code and data at all of the chosen sites; in order

to avoid having an arbitrary limit on the number of allowed failures, all information

must be present at all sites. ]his would be easy to change, however, should someone

wish to set such a limit and gain the corresponding savings in replicating

information.

The other possibility would be to develop a distributed load balancing algorithm.

This would have certain advantages. It may be possible to make decisions locally,

for example, a processor could determine that it is a good place to start a new task

without looking at other processors. This would lower communication costs.

However, this appeared to be a difficult approach, and is not pursued in this thesis.

8.3 Delta-common storage

The protocol used, suggested by Flaviu Cristian [Cristian 85a]realizes some of the

advantages of a totally distributed protocol, while being simple and robust. This is

done using atomic broadcast (described in section 2.1.1.)
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The idea behind 8-common storage is that all of the processors in effect share

common memory, which happens to take up to 8 time units to update. In practice,

all changes to the 8-common storage are made by broadcasting the update using an

atomic broadcast. The atomic broadcast guarantees that a message will arrive at all

sites within 8 time units, or will not arrive at any sites.. Each processor maintains a

local copy of 8-common storage, which is updated only when a broadcast is

received. Since the broadcast messages are received at all sites (or at none), this

guarantees that all copies of the storage will be identical.

Once we have the 8-common storage, it is simple to write a fully distributed

protocol for load balancing. All of the information on task and processor

characteristics is kept in 8-common storage. Any changes to this (for example, a

processor failing or a task changing its characteristics) are made using an atomic

broadcast. In addition, any request to place a task, or otherwise redistribute the load

in the system, is made using an atomic broadcast. When a request to place a task or

redistribute the load arrives, each site runs an identical load balancing algorithm.

This algorithm uses only information contained in the 8-common storage. Since all

of the copies of 8-common storage are identical, the algorithms will all give identical

results. The load balancer at each processor only acts on results which involve

starting or stopping a task at that processor. Since all of the decisions are identical,

there is no need to communicate the results of the algorithm.

The decisions made are the same as running the same algorithm in a master-slave

arrangement, except that no communication of results is necessary, and all

leader-election problems are avoided. The disadvantage is in duplicating

processing, but the placement algorithm that I am using is efficient enough that this

is not a problem.
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Chapter Nine

System Design and Implementation

The model for load and definitions of load balancing given in chapters 4 and 3 are

useful for describing load balancing, but difficult to apply directly to an on-line load

balancing system. For example, the model describes tasks in terms requireients, a

set of resource vectors which potentially characterize the task. This could be a very

large set. Given a different resource vector for each configuration, if we have p

processors and i tasks, there are nt resource vectors for each task. Storing sLIch a set

on the computer may be infeasible. In addition, it may be impossible to actually

determine in advance all of the possible vectors which could characterize a task. As

a result, it is necessary to approximale this set, providing the vectors necessary for

the load balancing algorithm. For example, the load balancing algorithm of chapter

7 needs only the current requirements vector, and a baseline vector.

Determining this approximation is one of the more difficult parts of designing a

load balancing system. The critical factors in the load must be determined, and their

interactions studied. For example, using all of the main memory of a computer will

result in paging, which will slow down each task and cause each to demand less of a

percentage of the CPU. Actual or simulated use of the system should be studied in

order to determine what conditions actually result in a fast or slow response time.

This chapter is devoted to a description of the design of the load balancer which I

developed for the system described in chapter 2. I will try to avoid implementation

details and instead give an overview of the reasons behind design decisions.
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9.1 Monitoring

One of the first decisions was that the requirements Vectors should be determined

dynamically. This meant that I would have to monitor the tasks to determine the

use of each resource. Another possibility would be to ask the programmer to

describe a task, or otherwise statically determine the characteristics. I have already

given some reasons why I believe this is not a good method. One of the most

important was the desire to have an automatic system which did not require user

intervention. I could also have chosen to have some initial set-up time during which

the characteristics of all. of the tasks would be determined. This would neglect the

possibility that tasks change with time, and could impose difficulties on adding new

and different tasks.

Continuously monitoring the system imposes certain constraints and allows me to

take some liberties. Non-optimal placement decisions are less critical, as mistakes

will show up in the monitoring and redistributions made. As long as the algorithm

results in significant improvements in the configuration quality, a good (although

not necessarily optimal) configuration will eventually be reached. This allows for a

simpler and more efficient load balancing algorithm. The disadvantages are from

the extra cost imposed by monitoring the system, and the difficulty of monitoring

some resources. Intertask communication, for example, is difficult and expensive to

determine by monitoring the system. Tracking each message and communicating

the results could significantly increase communication costs.

9.1.1 Choice of Processing Resources to Consider

One of the first steps in the design was to choose which processing resources to

consider. In chapter 5 1 mentioned a number of possibilities: CPU, memory,

communications, etc. Which of these are important in this environment? In order to

make this decision, I looked at three factors for each resource:
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1. Ease of monitoring: It would not make sense to make load balancing
decisions on information which was not available.

2. Likelihood of becoming a bottleneck: There is no need to use a
processing resource in determining load if it is so plentiful that it will
never be critical.

3. Ease of computation: Some resources may have complex interactions
which make them difficult or expensive to use in figuring load.

I chose to look at CPU use, memory requirements, and total 1/O. CPU use is easy

to obtain. The operating system maintains values on both the total utilization of the

CPU and the total amount of CPU time used by each task. These can be used to get

values for the amount of CPU time used per second. Memory use is slightly more

difficult; the operating system maintains values for the paging rate and the amount

of memory actually used by each task (as an average per timeslice.) Calculating

from these gives a reasonable set of values to use to determine how heavily utilized

the memory is.

Total 1/O is also easy to obtain. The operating system maintains values for total

number of Start I/O instructions (which call operating system primitives to perform

the actual I/O.) I would have liked to break I/O down into separate categories for

each processor-processor path, and each path to disk. Use of the disks can proceed

in parallel, and encouraging this parallelism is a goal of the load balancer. However,

although the information necessary to make these decisions is available from the

operating system, it would be computationally expensive to obtain without

incorporating the monitoring directly into the operating system, which was beyond

the scope of my project.

For similar reasons I was not able to take into account interprocess communications.

Using the actual expense of communicating on each particular processor-processor
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path would not have been necessary. The major cost of interprocess communication

appeared to be in the drivers on either end, due to high-speed communication

channels. Therefore the communication cost was not as Much a factor of which pair

of processors were communicating as a factor of whether there was any interprocess

communication required. This would have made for a simple decision process;

there would be two task vectors corresponding to whether communicating processes

were on the same or different processors. I would have liked to incorporate this

feature into the system, however, I felt the expense and difficulty of tracing message

traffic would have been unreasonable.

9.1.2 Load averaging methods

The next step was to determine how to find the current requirements and baseline

vectors for a task. Determining the current requirements vector is an easy task for

the monitoring system, as the information available characterizes the task in the

current configuration. The baseline vector is more difficult. To determine this we

must be able to predict how the task will run Under a different configuration. This is

done by comparing current requirements vector with the current vectors of other

tasks, and the availability vector of the processor. The exact manner in which this is

done is described in section 9.1.3.2.

Determining these vectors is primarily a problem of studying the operating system

and performing experiments. It is difficult to give general methods for doing this. I

will instead describe the methods used in my implementation for VM.

9.1.3 Data Gathering Implementation

Once the choice as to important processing resources had been made, it was

necessary to actually determine how to gather and store this information. The VM

operating system maintains information about processor use in control blocks which
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may be accessed by privileged users. I periodically gather and process this

information. The actual details of how the raw data is turned into useful

information follows.

9.1.3.1 Processor Data

I deviated from this model in my handling of information about processors. The

capacity(P) vector is supposed to give the total amount of each resource on the

processor. I instead used data on the available capacity (or rather, the capacity

already in use.) Using the model directly, this information would be obtained from

looking at the current requirements vectors of the tasks. However, the information

as to the current load on the processor was easier to obtain by monitoring directly.

In effect, what I have is an availability vector. This does not require many changes in

the algorithm of chapter 7. In this system, it was computationally easier to use

availability.

The VM operating system keeps most basic information in the Prefix Storage Area.

It is out of this area that I gather information as to the machine state. I am really

only interested in measures of CPU utilization, memory use, and 1/O use; but these

values are not readily available. The information available amounted to total time

spent in each of a variety of wait states (see table 9-1). Periodically obtaining these

values (and noting the time passed between measurements) we can note the ratio of

time spent in each state as follows: as follows:
New wail- OldI wait

ratio offtmespent inwal= Nwwil-Odwait (9-1)
Current lime- Previous time

Supervisor state CPU time (Operating system CPU use) can be obtained by

subtracting the sum of the resulting ratios from one.

This gives a good measure of what the current system bottlenecks are. If a

significant portion of the time is spent in page wait, the memory is probably
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Name Description

Idlewait Total system idle wait time.

Pagewait Total system page wait time.

lOntwait Total system I/O wait time.

P3robtime Total system problem state time (User CPU use.)

rable 9-1: Data areas containing in formation on CPU use [IBM 82].

overtaxed. But I am after the total utilization. Knowing the bottleneck on a

particular processor does not help determine if it is a better choice for a task than

another processor with a similar bottleneck.

In order to find the total utilization, I look at queue length; the number of tasks

actually waiting for some type of processing resource. By multiplying this value by

the ratio of the wait time for a resource to the total time passed (equation 9-1), 1

obtain a good value for the desired amount of each resource. This is actually a

deviation from the model, for this does not correspond to the availability vector.

However, figuring the resources in this way includes information about how much

of the resource is desired with a fully utilized shared resource into the availability

vector. This necessitates only a few changes in the algorithm, and results in a

computational saving in this system. The value thus obtained is then averaged in

with old data, so as not to overreact to temporary changes in system use. This is a

choice made due to the degree of coupling of the system, and the expense of moving

tasks.

The actual implementation also has a number of constants which are used to weight
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this information. All of the raw values used to compute the vectors are multiplied

by their corresponding constant beFore being used. This is needed in order to have

the vectors meet certain constraints. For example, a vector for a processor should

show that the demand for a particular resource has doubled is the need for that

resource by the tasks running on the processor doubles. Task vectors satisfy a

different constraint. They are supposed to reflect a baseline vector, which reflects

the resource requirements of the task running in some hypothetical standard

configuration. A change in the makeup of the task should be reflected in this vector,

but a change in the way it runs due to a change in the demand on the processor

should not. The proper values for these constants were determined by

experimentation. Tests were run with the system running under a variety of

configurations, and the constants were modified until the desired results were

achieved. Some samples of the actual vectors of systems running Linder different

confIgurations are shown in appendix A. This experimentation turned up certain

other situations which the monitoring must correct for. For example, each of the

processors runs a background task that causes the system to spend all idle time in

1/O wait, thus giving the impression that an idle processor is overloaded with I/O.

9.1.3.2 Task Data

Obtaining the task data was similar. Each task (corresponding to a virlual machine)

has a corresponding VMBLOK. Each VMBLOK contains considerable information

about that task (see table 9-2.) The CPU values are added and divided by the time

between monitoring updates to obtain a ratio of CPU use. The same is done with

the SIO count to obtain I/O rate. The Drum, disk, and core memory values are

added to obtain the total amount of memory allocated to the task. The working set

size is taken directly as a measure of how much actual primary memory is needed.

This gives a value corresponding to the tasks curreni requirements veclor, but the
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Name Description

VMVtime

VMTTime

VM IOcnt

V MPDrum

VM PI)isk

VMPages

VMWSProj

Virtual Problem-state CPU time used.

Virtual Supervisor-state CPU time used.

Virtual SIO count for non-spooled I/O. (I chose to ignore
spooled I/O, as the tasks of interest in this system used little of
this type of I/O.)

Count of user pages on drum.

Count of user pages on disk.

Number of currently resident real pages.

Projected working set size. (Number of pages needed to run.)

Table 9-2: Data areas containing information on tasks [IBM 82].

algorithm also needs the baseline vector. To do this, I multiply the CPU and I/O

values by their corresponding values for the processor. This (after adjusting by

some constant factors as described in the previous section) gives a relatively stable

value, regardless of system load.

Each of these values are averaged in with old data, so as not to overreact to

temporary anomalies in the running characteristics of the task. I chose to average

this so as to accomplish a 90% replacement of data every hour; this value should be

chosen for each system based on the expense of moving tasks.
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9.1.4 Communicating Information

I have already discussed my desire to fully replicate information on the status of the

system. The primary drawback to this is communication cost; each update to the

information must be broadcast throughout the system. Therefore I keep the

monitoring results in separate local storage until significani changes occur. After

each update this local information is compared with the (local) copy of 8-common

storage. If there is a large change in the status of the processor or one of the tasks

then the new vector is used to update 8-common storage. This is done by

broadcasting a message stating that the vector has changed, and giving the new

values.

The load balancing algorithm uses only the information in 8-common storage. As a

result these decisions may not be made on the most current information available.

All decisions will be consistent, however, and can be based on arbitrarily current

information (within the limit imposed by 8) at the expense of increased

communication costs.

9.2 Design of the Load Balancer

The monitoring subsystem puts the resource vectors into 8-common storage. The

load balancing subsystem is started on each receipt of an update to this storage (by

the task which receives the broadcast update.) It then goes and checks to see if the

new information is significant enough to demand action. Since all processors have a

load balancer executing the same algorithm on the same data, the same decision will

be reached at each. The action thus decided upon is carried out, with each of the

load balancers performing the part of the action relevant to its processor. A more

concrete version of this is shown in figure 9-1.

Since newtask requests often come in frequent batches (for example, when a
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The load balancing program is a continuous loop which waits for a message, and

then acts on it.

Note: Placement is the placement algorithm given in figure 7-2.

Storage is the local copy of 8-common storage.

Local-storage is the copy of storage maintained by the monitor containing

current information about the local processor and tasks. This is

used only to broadcast information when a new load balancer is started.

Broadcast a configuration-request message.
Wait for 2*8, to give time for all of the information to arrive.

repeat
me s s a g e = The next message received, taking update messages first

if there is more than one in the buffer.

if message.type = newtask then
The message contains a request to place a new task in the system.
processor := placement(message.task, storage)
if processor := local-processor then

Start the new task on ihis processor.
s t o r a g e = Predict the way the vectors for all of the tasks

and processors will look after the task has started

elseif message.type = update-to-storage then
The message is an update to 8-common storage
storage[message.location] := message.newvector

elseif message.type = configuration-request then
Broadcast updatejto sorage messages with the vectors for
all of the tasks and the processor in local stomge.

forever;

Figure 9-1: Load Balancing Program
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processor fails) it is necessary to have some feel for the results of previous decisions

before new ones are made. Otherwise all of the tasks will be dumped on the least

loaded processor, causing it to be overloaded. Since monitoring takes time, I have

chosen to attempt to predict the status of the system after each decision. This is

done by performing a vector addition on the task and processor resource vectors.

The function which actually relates each of the components is slightly more complex

than simple addition, but only as a result of constant terms which are used to handle

idiosyncrasies in the system. These must be determined for each operating system

by study and experimentation.

Actually starting tasks is not a part of the load balancer. In the H.A.S. project

(chapter 2) this is the responsibility of the Auditor subsystem. How these are done is

very dependent on the system: A shared memory system may just transfer a pointer

between processors; a loosely-coupled system may have to send code over the

network. There has been research in this area, for more information see [Theimer

85].



Chapter Ten

Results

Although I have completed an operating prototype, it has not been integrated into a

system in day to day use. As such, my results are based on experiments in a

three-processor test system using "artificial" tasks. These tasks were tightly

controlled. I am not sure how these would compare with the characteristics of actual

tasks such as a compiler or database manager, but they do give a good feel for the

quality of the load balancing decisions made.

10.1 Description of Tests

I created three sample tasks: a heavy CPU user, a memory-intensive process, and an

I/O intensive process. These were each designed to use a given amount of the target

resource, while using as little as possible of the other resources. A portion of each

task was timed, in order to give a value for response time. Some results of these tests

are given in table 10-1. Using this, I was able to obtain results for the change in

response time of each type of job under various load conditions.

Once I had created the jobs and run some performance tests tinder a variety of

conditions, I started the load balancing and monitoring system. I first tried

monitoring tasks under a variety of conditions, to make sure that the monitoring

system adequately reflected their baseline vector regardless of the general load

characteristics. These results are summarized in appendix A.

After a waiting for a period of time to allow the monitoring to characterize the tasks,

I began to move tasks. While otherwise leaving the system stable, I added a given
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Results from monitoring each task in an unloaded system.
Note: Units given are intended for use only as relative measures.

CPU Memory Memory SIO Response
use used desired rate time

CPU task 2738 139 139 0 52
Memory task 0 1517 1827 0 48
I/O task 2 64 64 5561 36

Table 10-1: Characteristics of tasks used in testing.

task to each of the processors, noting the resulting change in response times. I also

took note of the recommendations of the load balancer, in order to compare its

decision with the optimal decision based on measuring response times in trials of all

possible placements.

After trying this with multiple load situations, I tested the predict function. To do

this, I introduced tasks slowly (following the load balancer's decisions), allowing

time for the monitoring to catch up. I then performed the same set of introductions

rapidly, testing to make sure that the resulting decisions were the same.

10.2 Evaluation of Decisions

The load balancing decision process performed well. It placed tasks away from

others of the same type. This compared well with test data that showed that the

response time of the system deteriorated when multiple tasks of the same type were

placed on the same processor. Part of this is probably due to the simplistic nature of

the tasks I was using. Appendix B contains some information on the actual test

results.
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Predict did not fare as well. For a few iterations, it performed successfully. The

differences between the predicted and actual system status were not large enough to

change the decisions. But the errors tended to build with the number of predictions

made. Whether this is a problem is very much a factor of the normal influx of jobs

in the system. Ifjobs come in infrequently, this is not too major a difficulty. Ifjobs

come in in batches, it may be desirable to look at an alternative form of load

balancing which will take all new tasks into account simultaneously.

10.3 Expense of Load Balancer

The load balancing algorithm itself is quite simple and inexpensive. Since the

algorithm is run on demand, this expense will be paid back over time even if load

balancing only results in small gains in the configuration quality. Monitoring is

more of a problem. Since monitoring is continuous, it will result in a permanent

decrease in configuration quality. This must be offset by a greater increase in

quality as the result of load balancing.

Fortunately, the monitoring is not that expensive. I found that the monitoring used

less than 1% of the available CPU. This was while monitoring 20 tasks at five second

intervals. I would actually use a significantly longer interval in practice, but this

savings would probably be negated by the larger number of jobs I would expect in a

system this size. Table 10-2 contains a breakdown of the cost of the monitoring.

The potential gains of this monitoring/load balancing system more than make up

for the extra cost of running it.
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CPU use per check Memory required
(seconds) (byes)

Per CPU monitored 0.0041 92
Per task monitored 0.0012 76

Table 10-2: Cost of running the monitor.
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Chapter Eleven

Conclusion

I have presented a new model for load which separates different types of processing

resources. Load is given as a resource vector, as opposed to a single value. This

measure can be applied to both processors and tasks. Processors are characterized

by a capacity resource vector, which describes the availability of each type of

processing power on that processor. Tasks are described by a set of requirements

vectors, where each vector in the set corresponds to the tasks usage of resources in a

particular system con figuration (assignment of tasks to processors.)

This load model has been applied to the problem of load balancing in distributed

systems. In distributed systems where each node is capable of processing multiple

tasks simultaneously (for example, a time-shared computer), this load model

exploits concurrency at each node. A simple algorithm has been given to choose the

best location for a single task. This may be extended to multiple task placement by

repetitive application. It can also be used to handle overloaded nodes by allowing

processors to "shed" tasks.

This load balancing system has been applied to a loosely-coupled distributed system

using IBM mainframe computers running the VM operating system. A monitoring

subsystem was designed to measure the capacities of each processor and the

requirements of each task. The load balancing system was implemented, and test

results obtained which verified the advantages of this method of load balancing.
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1 I.1 Results of this Study

Load balancing is not a new topic. There has been considerable research in the area,

but only casual mention has been made of balancing based on different types of

processing power. This work provides a framework for load balancing based on

multiple types of processing power.

In addition, little work has been done on determining the load imposed by tasks.

This thesis describes a monitoring system, which dynamically determines the

characteristics of tasks and processors relevant to load balancing. This enables an

automatic load balancing system to exploit differences in tasks and processors.

11.2 Further Work

The load balancing algorithm presented in this thesis is quite naive. There is room

for considerable research into better algorithms for load balancing based on

multiple criteria for load. There is also room for research in determining task

characteristics. While monitoring is a useful technique, it would be more efficient to

determine the running characteristics of a task statically. This could be done

through analysis of the object code, or as part of the compilation process. The latter

could also be useful in optimization techniques; for example, optimizing a task for a

processor with limited memory.
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Appendix A

Sample Monitor Results

Note that the units are only intended as relative measures. Figures shown for tasks

correspond to data used as a baseline vector.

Processor idle

Processor
CPU time

118
Page wait

0
I/O wail

829

One CPU intensive task

Processor

CPU task

CPU time
2076

CPU
use

2738

Page wail
0

Memory
used
139

I/O wail
78

Memory
desired

139

Sf0
.rate

0

Response
time

52

Three CP3U intensive tasks

Processor

CPU task

CPU time
3677

CPU
use

2090

Page wail
0

1/O wail
0

Memory
used
139

Memory
desired

139

S10
rate

0

Response
lime
120
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Two niemory intensive tasks

Processor

Memory task

Four memory intensive tasks

Processor

Memory task

One I/O intensive task

Processor

I/O task

Three 1/O intensive tasks

Processor

I/O task

Page wait
980

CPU time
460

CPU
use

1

1/O wail
509

Memory
used

1569

Memory
desired
1874

S1O
rate

0

Response
lime

48

Page wait
4132

CPU time
676

CPU
use

0

I/O wail
34

Memory
used
587

Memory
desired
1711

S/O
rate

0

Response
lime
480

Page wail
0

CPU time
317

CPU
use

2

1/O wait
1554

Memory
used

64

Memory
desired

64

S10
rate

5561

Response
lime

36

CPU lime
545

Page wait
0

CPU
use

0

1/O wait
2371

Memory
used
173

Memory
desired

173

S10
rate

3028

Response
lime

73

U
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Appendix B

Sample Load Balancing Decisions

Note that the units are only intended as relative measures.

Moving a memory intensive task.

Processor 1:
Processor 2:
Processor 3:

Processor I
Processor 2
Processor 3

Processor 1:
Processor 2:
Processor 3:

Processor I
Processor 2
Processor 3

Two CPU tasks, one memory task.
Three memory tasks.
Two I/O tasks, one memory task.

CPU time
1043

87
58

Page wait
0

318
0

Two CPU tasks, two memory tasks.
One memory task.
Two 1/O tasks, two memory tasks.

CPU time
988
20
69

Page wait
0
2
0

Recommends moving to Processor 2.

70

1/O wait
0

472
848

Recommends moving to Processor 1.

Moving a CPU intensive task.

I/O wait
0

451
843



Moving two I/O intensive tasks and one memory intensive task.

Processor 1: One CPU task, two memory tasks.
Processor 2: One CPU task, one memory task.
Processor 3: Two 1/O tasks, two memory tasks.

Processor I
Processor 2
Processor 3

CPU time
801
791

66

Page wail
0
0
0

I/O wail
0

174
727

Recommends moving one I/O intensive task to Processor 2 and the other tasks to
Processor 1.

U
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