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Abstract— Demand-responsive transport (DRT) systems,
where users generate requests for transportation from a pickup
point to a delivery point, are expected to increase in usage
dramatically as the inconvenience of privately-owned cars in
metropolitan areas becomes excessive. However, despite the
increasing role of DRT systems, there are very few rigorous
results characterizing achievable performance (in terms, e.g.,
of stability conditions). In this paper, our aim is to bridge this
gap for a rather general model of DRT systems, which takes the
form of a generalized Dynamic Pickup and Delivery Problem.
The key strategy is to develop analytical bounds for the
optimal cost of the Euclidean Stacker Crane Problem (ESCP),
which represents a general static model for DRT systems.
By leveraging such bounds, we characterize a necessary and
sufficient condition for the stability of DRT systems; the con-
dition depends only on the workspace geometry, the stochastic
distributions of pickup and delivery points, customers’ arrival
rate, and the number of vehicles. Our results exhibit some
surprising features that are absent in traditional spatially-
distributed queueing systems.

I. INTRODUCTION

Private automobiles have dramatically changed the concept
of personal urban mobility by enabling fast and anytime
point-to-point travel within large cities. However, the fact
that the urban population is projected to jump from the
current 3.5 billion to more than 6 billion in the next 30
years [1], coupled with the fact that the availability of urban
land for road and parking is bound to decrease, indicates
that private automobiles are an unsustainable solution for
the future of personal mobility in dense urban environments.
Hence, a paradigm shift is emerging whereby the outdated
concept of personal urban mobility based on private cars is
being replaced by the concept of large-scale one-way vehicle
sharing.

One of the main paradigms for one-way vehicle sharing is
represented by demand-responsive transport (DRT) systems,
where people drive (or are driven by) shared vehicles from
a pickup point to a delivery point. Even though the previous
considerations suggest that DRT systems will likely become
the backbone for personal urban mobility in large metropoli-
tan areas, there are very few rigorous results about the
characterization of their achievable performance (in terms,
e.g., of stability conditions). In this paper, our aim is to
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bridge this gap for a rather general model of DRT system.
Specifically, we model a DRT system as a Dynamic Pickup
and Delivery Problem (DPDP), where pickup requests arrive
according to a renewal process and are randomly located
according to a general probability distribution; corresponding
delivery locations are also randomly distributed according to
a general probability distribution (possibly different from the
pickup distribution), and a number of unit-capacity vehicles
must transport demands from their pickup locations to their
delivery locations. The objective is to derive a necessary
and sufficient condition for the stability of the system, in
the sense that customers’ waiting times stay bounded at all
times. The key strategy and contribution is the development
of analytical bounds for the optimal cost of the Euclidean
Stacker Crane Problem (ESCP), which represents a static
model for DRT systems: in the ESCP, each customer is
associated with a pickup location and a delivery location,
and the objective is to find a minimum-length tour visiting
all locations with the constraint that each pickup location
and its associated delivery location are visited in consecutive
order. By leveraging these bounds, we derive a necessary
and sufficient stability condition for our DRT model that
only depends on the workspace geometry, the stochastic
distributions of pickup and delivery points, customers’ arrival
rate, and the number of vehicles.

Literature overview. DPDPs with unit-capacity vehicles,
which are arguably a rather general model for DRT systems,
are generally treated as a sequence of static subproblems
and their performance characteristics, such as stability con-
ditions, are generally not characterized. Excellent surveys on
heuristics, metaheuristics and online algorithms for DPDPs
modeling DRT systems can be found in [2] and [3]. Even
though these algorithms are quite effective in addressing
DPDPs, alone they do not give any indication of fundamental
limits of performance. To the best of our knowledge, the only
analytical studies for DPDPs modeling DRT systems are
[4] and [5]. Specifically, in [4] the authors study the single
vehicle case of the problem under the constraint that pickup
and delivery distributions are identical; in [5] the authors
derive bounds for the more general case of multiple vehicles,
however under the quite unrealistic assumption of three-
dimensional workspaces and equal distributions of pickup
and delivery sites. On the contrary, in this paper we derive a
necessary and sufficient stability condition for the more real-
istic case of multiple servicing vehicles and possibly different
distributions for pickup and delivery sites. We will show that
when such distributions are different, our stability condition
shows an additional term compared to stability conditions
for traditional spatially-distributed queueing systems. Our
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(a) Six pickup/delivery pairs are
generated in the Euclidean plane.
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(b) Dashed arrows combined with
the solid arrows represent a stacker
crane tour.

Fig. 1. Example of Euclidean Stacker Crane Problem in two dimensions.
Solid and dashed circles denote pickup and delivery points, respectively;
solid arrows denote the routes from pickup points to their delivery points.

stability condition, by giving structural insights into DRT
systems, would provide a system designer with essential
information to build business and strategic planning models
regarding, e.g., fleet sizing.

Structure of the paper. This paper is structured as follows.
In Section II we provide some background on the Euclidean
Stacker Crane Problem (which represents a static approx-
imation for DPDPs), on the Euclidean Bipartite Matching
Problem, and on some relevent notions in probability theory.
Then, in Section III we introduce the DPDP we wish to
study and we formally state the objective of the paper, i.e.,
to derive a necessary and sufficient condition for such a
model of DRT systems. In Section IV we present lower and
upper bounds on the optimal cost of the ESCP, which will
be instrumental, in Section VI, to derive the desired stability
condition. Section VII presents our concluding discussion
and directions for future work.

II. BACKGROUND MATERIAL

In this section we summarize the background material used
in the paper. Specifically, we review the stochastic Euclidean
Stacker Crane Problem, the stochastic Euclidean Bipartite
Matching Problem (EBMP), a related concept in transporta-
tion theory, and a generalized Law of Large Numbers.

A. The Euclidean Stacker Crane Problem

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two sets
of points in the d-dimensional Euclidean space Rd, where
d ≥ 1. The Euclidean Stacker Crane Problem (ESCP) is to
find a minimum-length tour through the points in X ∪Y with
the property that each point xi (which we call the ith pickup)
is immediately followed by the point yi (the ith delivery); in
other words, the pair (xi, yi) must be visited in consecutive
order (see Figure 1). The length of a tour is the sum of all
Euclidean distances along the tour. We will refer to such a
tour as an optimal stacker crane tour, and to a tour that is
not minimum-length but still satisfies the pickup-to-delivery
constraints as a stacker crane tour. Note that the ESCP is a
constrained version of the well-known Euclidean Traveling
Salesman Problem.

In this paper we focus on a stochastic version of the
ESCP. Let X = {X1, . . . , Xn} be a set of points that are

independent and identically distributed (i.i.d.) in a compact
set Ω ⊂ Rd and distributed according to a density ϕP : Ω→
R≥0; let Y = {Y1, . . . , Yn} be a set of points that are i.i.d.
in Ω and distributed according to a density ϕD : Ω→ R≥0.
As before, we interpret each pair (Xi, Yi) as the pickup and
delivery sites, respectively, of some transportation request,
and we seek to determine the cost of an optimal stacker crane
tour through all points. We will refer to this stochastic version
of ECSP as ESCP(n, ϕP, ϕD), and we will write X ,Y ∼
ESCP(n, ϕP, ϕD) to mean that X contains n pickup sites
i.i.d. with density ϕP, and Y contains n delivery sites i.i.d.
with density ϕD. An important contribution of this paper will
be to characterize the behavior of the optimal stacker crane
tour through X and Y as a function of parameters n, ϕP,
and ϕD; throughout the paper we assume that distributions
are absolutely continuous with densities ϕP and ϕD.

B. The Euclidean Bipartite Matching Problem
Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two sets

of points in Rd. The Euclidean Bipartite Matching Problem is
to find a permutation σ∗ : {1, . . . , n} 7→ {1, . . . , n} (not nec-
essarily unique), such that the sum of the Euclidean distances
between the matched pairs {(yi, xσ∗(i)) for i = 1, . . . , n} is
minimized, i.e.:

n∑
i=1

‖xσ∗(i) − yi‖ = min
σ∈Πn

n∑
i=1

‖xσ(i) − yi‖,

where ‖ · ‖ denotes the Euclidean norm and Πn denotes the
set of all permutations over n elements. Let Q := (X ,Y);
we refer to the left-hand side in the above equation as the
optimal bipartite matching cost LM(Q); we refer to lM(Q) :=
LM(Q)/n as the average match cost.

The EBMP over random sets of points enjoys some
remarkable properties. Specifically, let X = {X1, . . . , Xn}
be a set of n points that are i.i.d. in a compact set Ω ⊂ Rd,
d ≥ 3, and distributed according to a density ϕ : Ω→ R≥0;
let Y = {Y1, . . . , Yn} be a set of n points that are i.i.d. in Ω
and distributed according to the same density ϕ : Ω→ R≥0.
Let Q = (X ,Y). In [6] it is shown that there exists a
constant βM,d such that the optimal bipartite matching cost
LM(Q) = minσ∈Πn

∑n
i=1 ‖Xσ(i) − Yi‖ has limit

lim
n→+∞

LM(Q)

n1−1/d
= βM,d

∫
Ω

ϕ̄(x)1−1/d dx, (1)

almost surely, where ϕ̄ is the density of the absolutely con-
tinuous part of the point distribution. The constant βM,3 has
been estimated numerically as βM,3 ≈ 0.7080± 0.0002 [7].

In the case d = 2 (i.e. the planar case) the following
(weaker) result holds with high probability [8]

LM(Q)/(n log n)1/2 ≤ γ (2)

for some positive constant γ (if ϕ is uniform, it also holds
with high probability that LM(Q)/(n log n)1/2 is bounded
below by a positive constant [9]).

To the best of our knowledge, there are no similar results
in the literature that apply when the distribution of X points
is different from the distribution of Y points (which is the
typical case for transportation systems); moreover, despite a



close relation between the stochastic ESCP and the stochastic
EBMP, the asymptotic cost of a stochastic ESCP has not been
characterized to date.

C. Euclidean Wasserstein distance

A significant component of the paper will be to generalize
the results in [6] to address the case that the distribution of
X points is different from that of Y points. The following
notion of transportation complexity will prove useful.

Let ϕP and ϕD be two probability densities over Ω ⊂ Rd.
The Euclidean Wasserstein distance, between ϕP and ϕD, is
defined as

W (ϕP, ϕD) = inf
γ∈Γ(ϕP,ϕD)

∫
x,y∈Ω

‖y − x‖ dγ(x, y), (3)

where Γ(ϕP, ϕD) denotes the set of measures over product-
space Ω × Ω having marginal densities ϕP and ϕD respec-
tively. The Euclidean Wasserstein distance is a continuous
version of the Earth Mover’s distance; properties of the
generalized version are discussed in [10].

D. An Asymptotically Optimal Polynomial-Time Algorithm
for the Stochastic ESCP

In [11] the authors have introduced a polynomial-time
algorithm for the Euclidean Stacker Crane Problem, called
SPLICE, that was shown to be asymptotically optimal for
ESCP(n, ϕP, ϕD), with d ≥ 2; optimality is in the sense
that limn→+∞ LSPLICE(n)/L∗(n) = 1, almost surely, where
LSPLICE(n) is the length of the output of SPLICE, and L∗(n)
is the optimal tour length. The behavior of this algorithm will
be instrumental to prove bounds for the length of the optimal
stacker crane tour; hence, we briefly describe its logic:

Algorithm SPLICE
Input: a set of demands S = {(x1, y1), . . . , (xn, yn)},

n > 1.
Output: a stacker crane tour through S.

1: initialize σ ← solution to Euclidean bipartite matching
problem between sets X = {x1, . . . , xn} and Y =
{y1, . . . , yn} computed by using a bipartite matching
algorithm M.

2: Add the n pickup-to-delivery links xi → yi, i =
1, . . . , n.

3: Add the n matching links yi → xσ(i), i = 1, . . . , n.
4: Apply a rewiring heuristic to connect subtours.

The key idea behind SPLICE is to make connections from
delivery sites back to pickup sites in accordance with an
optimal bipartite matching between the sets of pickup and de-
livery sites. Unfortunately, this procedure is likely to generate
two or more disconnected subtours, and so, in general, the
result is not a stacker crane tour. Fortunately, it was shown
that the number of disconnected subtours is “asymptotically
small”, and so any “rewiring” heuristic can be used to
form a feasible stacker crane tour from the relatively small
number of disconnected subtours. The asymptotic optimality
of SPLICE relies crucially on the growth order for the
number of subtours generated by SPLICE with respect to

n, the size of the problem instance. Since we will need a
similar analysis for the bounds derived in Section IV, we
present the result governing the growth order here.

Lemma 2.1 (Asymptotic number of subtours [11]): Let
X ,Y ∼ ESCP(n, ϕP, ϕD) be a random ESCP instance of
size n, in a compact d-dimensional Euclidean environment
Ω ⊂ Rd, where d ≥ 2. Let Nn be the number of subtours
generated by the SPLICE algorithm on inputs X and Y .
Then limn→+∞Nn/n = 0, almost surely.

Remark 2.2: One can prove, using the same arguments of
the proof, that limn→+∞Nn/n

1−1/d = 0 almost surely, for
any integer d ≥ 3.

E. The strong law of absolute differences
The last bit of background is a slightly more general law

of large numbers result. Let X1, . . . , Xn be a sequence of
scalar random variables that are i.i.d. with mean EX and
finite variance. Then the sequence of cumulative sums Sn =∑n
i=1Xi has the property (discussed, e.g., in [12]) that

lim
n→∞

Sn − ESn
nα

= 0, almost surely,

for any α > 1/2. Note that the well-known Strong Law of
Large Numbers (SLLN) is the special case where α = 1.

III. PROBLEM STATEMENT

We consider the following model for DRT systems, which
is known in the literature as DPDP: a total of m vehicles
travel at unit velocity within a workspace Ω; the vehicles
have unlimited range and unit capacity (i.e., they can trans-
port one demand at a time). Demands are generated accord-
ing to a time-invariant renewal process, with time intensity
λ ∈ R>0. A newly arrived demand has an associated pickup
location which is independent and identically distributed in Ω
according to a density ϕP. Each demand must be transported
from its pickup location to its delivery location, at which time
it is removed from the system. The delivery locations are also
i.i.d. in Ω according to a density ϕD. A policy for routing
the vehicles is said to be stabilizing if the expected number
of demands in the system remains uniformly bounded at all
times; in this paper, we consider policies that are causal,
but for which no additional information restrictions apply
(i.e. the policy could depend on any information about past
or outstanding requests). The objective of the paper is as
follows: find a necessary and sufficient condition for the
existence of stabilizing policies as a function of the system’s
parameters, i.e., λ, m, ϕP, ϕD, Ω.

This problem has been studied in [5] under the restrictive
assumptions ϕD = ϕP := ϕ and d ≥ 3; in that paper, it has
been shown that if one defines the “load factor” as

%
.
= λEϕ ‖Y −X‖ /m,

where Y and X are two random points in Ω distributed
according to the distribution ϕ, then the condition % < 1
is necessary and sufficient for a stabilizing policy to exist.
However, that analysis—and indeed the result itself—is no
longer valid if ϕD 6= ϕP. This paper will show how the
definition of load factor has to be modified for the more
realistic case ϕD 6= ϕP. Pivotal in our approach is to



characterize, with almost sure analytical bounds, the scaling
of the optimal solution of ESCP(n, ϕP, ϕD) with respect to
the problem size.

IV. ANALYTICAL BOUNDS ON THE COST OF THE ESCP
In this section we derive analytical bounds on the cost

of the optimal stacker crane tour. The resulting bounds are
useful for two reasons: (i) they give further insight into the
ESCP (and the EBMP), and (ii) they will allow us to find a
necessary and sufficient stability condition for our model of
DRT systems (i.e., for the 1-DPDP).

The development of these bounds follows from an analysis
of the growth order, with respect to the instance size n, of
the EBMP matching on Qn = (Xn,Yn), where Xn,Yn ∼
ESCP(n, ϕP, ϕD). The main technical challenge is to extend
the results in [6], about the length of the matching to the
case where ϕP and ϕD are not identical. We first derive in
Section IV-A a lower bound on the length of the EBMP
matching for the case ϕP 6= ϕD (and resulting lower bound
for the ESCP); then in Section IV-B we find the correspond-
ing upper bounds.

A. A Lower Bound on the Length of the ESCP
In the rest of the paper, we let C = {C1, . . . , C |C|} denote

some finite partition of Euclidean environment Ω into |C|
cells. We denote by ϕP(Ci) :=

∫
x∈Ci ϕP(x)dx the measure

of cell Ci under the pickup distribution (with density ϕP),
i.e., the probability that a particular pickup X is in the ith
cell. Similarly, we denote by ϕD(Ci) :=

∫
y∈Ci ϕD(y)dy the

cell’s measure under the delivery distribution (with density
ϕD), i.e., the probability that a particular delivery Y is in the
ith cell. Most of the results of the paper are valid for arbitrary
partitions of the environment; however, for some of the more
delicate analysis we will refer to the following particular
construction. Without loss of generality, we assume that the
environment Ω ⊂ Rd is a hyper-cube with side-length L.
For some integer r ≥ 1, we construct a partition Cr of Ω by
slicing the hyper-cube into a grid of rd smaller cubes, each
length L/r on a side; inclusion of subscript r in our notation
will make the construction explicit. The ordering of cells in
Cr is arbitrary.

Our first result bounds the average length of a match in
the optimal bipartite matching, lM(Qn), asymptotically from
below. In preparation for this result we present Problem 1, a
linear optimization problem whose solution maps partitions
to real numbers.

Problem 1 (Optimistic “rebalancing”):

Minimize
{αij≥0}

i,j∈{1,...,rd}

∑
ij

αij min
y∈Ci,x∈Cj

‖x− y‖

subject to
∑
j

αij = ϕD(Ci) for all Ci ∈ C,∑
i

αij = ϕP(Cj) for all Cj ∈ C.

We denote by T (C) the feasible set of Problem 1, and we
refer to a feasible solution A(C) := [αij ] as a transportation
matrix. We denote by A(C) := [αij ] the optimal solution of
Problem 1, and we denote by l(C) the cost of the optimal
solution.

Lemma 4.1 (Lower bound on the cost of EBMP): Let
Xn,Yn ∼ ESCP(n, ϕP, ϕD), and let Qn = (Xn,Yn). For
any finite partition C of Ω, lim infn→∞ lM(Qn) ≥ l(C)
almost surely, where l(C) denotes the value of Problem 1.

Proof: Let σ denote the optimal bipartite matching
of Qn. For a particular partition C, we define random
variables α̂ij :=

∣∣{k : Yk ∈ Ci, Xσ(k) ∈ Cj
}∣∣ /n for every

pair (Ci, Cj) of cells; that is, α̂ij denotes the fraction of
matches under σ whose Y-endpoints are in Ci and whose X -
endpoints are in Cj . Let T̂n be the set of matrices with entries
{αij ≥ 0}i,j=1,...,|C|, such that

∑
i αij =

∣∣Xn ∩ Cj∣∣ /n for
all Cj ∈ C and

∑
j αij =

∣∣Yn ∩ Ci∣∣ /n for all Ci ∈ C; note
{α̂ij} itself is an element of T̂n. Then the average match
length lM(Qn) is bounded below by

lM(Qn)=
1

n

n∑
k=1

∥∥Xσ(k) − Yk
∥∥ ≥∑

ij

α̂ij min
y∈Ci,x∈Cj

‖x− y‖

≥ min
A∈T̂n

∑
ij

αij min
y∈Ci,x∈Cj

‖x− y‖ .

The key observation is that limn→∞
∣∣{Xn ∩ Cj}∣∣ /n =

ϕP(Cj), and limn→∞
∣∣{Yn ∩ Ci}∣∣ /n = ϕD(Ci), almost

surely. Applying standard sensitivity analysis (see Chapter 5
of [13]), it can be shown that the final expression converges
almost surely to l(C) as n → +∞; thus, we obtain the
lemma. A version of this proof with a detailed sensitivity
analysis appears in [14].

We are interested in the tightest possible lower bound,
and so we define l := supC l(C). Remarkably, the supremum
lower bound l is equivalent to the Wasserstein distance
between ϕD and ϕP, and so we can refine Lemma 4.1 as
follows.

Lemma 4.2 (Best lower bound on the cost of EBMP):
Let Xn,Yn ∼ ESCP(n, ϕP, ϕD), and let Qn = (Xn,Yn).
Then

lim inf
n→∞

lM(Qn) ≥W (ϕD, ϕP), almost surely. (4)
Proof: [Proof (Sketch)] The lemma is proved by

showing that supC l(C) = W (ϕD, ϕP). By construction,
Problem 1 is a discrete approximation and lower bound
of (3); moreover, it can be shown that limr→+∞ l(Cr) −
W (ϕD, ϕP) → 0−, where Cr is the grid partition of dr

cubes. Applying Lemma 4.1 to this sequence of partitions
obtains the lemma. A complete proof of the lemma appears
in [14], deriving both the approximation bound and the limit
of the sequence.

Henceforth in the paper, we will abandon the notation l
in favor of W (ϕD, ϕP) to denote this lower bound. This
connection to the Wasserstein distance yields the following
notable result.

Proposition 4.3: The lower bound W (ϕD, ϕP) of (4) is
equal to zero if and only if ϕD = ϕP.

Proof: The proposition follows immediately from the
fact that the Wasserstein distance is known to satisfy the
axioms of a metric on Γ(ϕD, ϕP).

An intuitive explanation of the proposition is that if some
fixed areaA in the environment has unequal proportions of X
points versus Y points, then a positive fraction of the matches



associated with A (a positive fraction of all matches) must
have endpoints outside of A, i.e., at positive distance. Such
an area can be identified whenever ϕP 6= ϕD.

The implication of Lemma 4.2 is that the average match
length is asymptotically no less than some constant which
depends only on the workspace geometry and the spatial
distribution of pickup and delivery points; moreover, that
constant is generally non-zero. We are now in a position
to state the main result of this section.

Theorem 4.4 (Lower bound on the cost of ESCP): Let
L∗(n) be the length of the optimal stacker crane tour
through Xn,Yn ∼ ESCP(n, ϕP, ϕD), for compact Ω ∈ Rd,
where d ≥ 2. Then

lim inf
n→+∞

L∗(n)/n ≥ EϕPϕD ‖Y −X‖+W (ϕD, ϕP), (5)

almost surely.
Proof: A stacker crane tour is composed of pickup-

to-delivery links and delivery-to-pickup links. The latter
describe some bipartite matching having cost no less than
the optimal cost for the EBMP. Thus, one can write
L∗(n)/n ≥ 1

n

∑n
i=1 ‖Yi −Xi‖ + 1

nLM(Qn). The first term
of the last expression goes to EϕPϕD ‖Y −X‖ almost surely.
By Lemma 4.2, the second term is bounded below asymp-
totically, almost surely, by W (ϕD, ϕP).

B. An Upper Bound on the Length of the ESCP
In this section we produce a sequence that bounds LM(Qn)

asymptotically from above, and matches the linear scaling
of (5). The bound relies on the performance of Algorithm 2,
a randomized algorithm for the stochastic EBMP. The idea
of Algorithm 2 is that each point y ∈ Y randomly generates
an associated shadow site X ′, so that the collection X ′ of
shadow sites “looks like” the set of actual pickup sites. An
optimal matching is produced between X ′ and X which
assists in the matching between Y and X ; specifically, if
x ∈ X is the point matched to X ′, then the matching
produced by Algorithm 2 contains (y, x). An illustrative
diagram can be found in Figure 2.

Algorithm 2 is specifically designed to have two impor-
tant properties for random sets Qn: First, E ‖X ′ − Y ‖ is
predictably controlled by “tuning” inputs—a partition C of
the environment and “policy matrix” A(C)—chosen as a
function of n; second, LM((X ′,X ))/n → 0+ as n → +∞.
Later we will show that C and A(C) can be chosen so that
E ‖X ′ − Y ‖ → W (ϕD, ϕP) (as n → +∞) leading to a
bipartite matching algorithm whose performance matches the
lower bound of (2).

Lemma 4.5 (Similarity of X ′ to X ): Let X1, . . . , Xn be
a set of points that are i.i.d. with density ϕP; let Y1, . . . , Yn
be a set of points that are i.i.d. with density ϕD. Then
Algorithm 2 generates shadow sites X ′1, . . . , X

′
n, which are

(i) jointly independent of X1, . . . , Xn, and (ii) mutually i.i.d.,
with density ϕP.

Proof: Lemma 4.5 relies on basic laws of probability,
and the proof is omitted in the interest of brevity. A complete
proof of the lemma is provided in [14].
The importance of this lemma is that it allows us to apply
equation (1) of Section II-B to characterize LM((X ′,X )).

Algorithm 2 Randomized EBMP (parameterized)
Input: pickup points X = {x1, . . . , xn}, delivery points
Y = {y1, . . . , yn}, probability densities ϕP(·) and
ϕD(·), partition C of the workspace, and matrix A(C) ∈
T (C).

Output: a bi-partite matching between Y and X .
1: initialize X ′ ← ∅.
2: initialize matchings M ← ∅; M̂ ← ∅; M ← ∅.
3: // generate “shadow pickups”
4: for y ∈ Y do
5: Let Ci be the cell containing y.
6: Sample J ; J = j with probability αij/ϕD(Ci).
7: Sample X ′ with pdf ϕP( · |X ′ ∈ CJ).
8: Insert X ′ into X ′ and (y,X ′) into M .
9: end for

10: M̂ ← an optimal EBMP between X ′ and X .
11: // construct the matching
12: for X ′ ∈ X ′ do
13: Let (y,X ′) and (X ′, x) be the matches in M and M̂ ,

respectively, whose X ′-endpoints are X ′.
14: Insert (y, x) into M .
15: end for
16: return M
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Fig. 2. Algorithm 2: Demands are labeled with integers. Pickup and
delivery sites are represented by solid and dashed circles, respectively.
Pickup-to-delivery links are shown as black arrows. Shadow pickups are
shown as dashed squares, with undirected links to their generators (delivery
sites); also shown are optimal matching links between shadows and pickups.
Dashed arrows show the resulting induced matching. Note, this solution
produces two disconnected subtours (1, 2, 3) and (4).

Lemma 4.6 (Delivery-to-Pickup Lengths): Let Y be a
random point with probability density ϕD; let X ′ be the
shadow site of y = Y generated by lines 5-7 of Algorithm 2,
running with inputs C and A(C). Then E ‖X ′ − Y ‖ ≤∑
ij αij maxy∈Ci,x∈Cj ‖x− y‖.

Proof: First, we observe that E ‖X ′ − Y ‖ ≤∑
ij P[Y ∈ Ci, X ′ ∈ Cj ] maxy∈Ci,x∈Cj

‖x− y‖. By chain
rule, we can write P[Y ∈ Ci, X ′ ∈ Cj ] = P[Y ∈ Ci] ×
P[X ′ ∈ Cj |Y ∈ Ci]. Finally, noting that P[Y ∈ Ci] =
ϕD(Ci), and P[X ′ ∈ Cj |Y ∈ Ci] = P[J = j|Y ∈ Ci] =
αij/ϕD(Ci), we obtain the result.

Given a finite partition C, it should be desirable to choose
A(C) in order to optimize the performance of Algorithm 2;
that is, minimize the expected length of the matching pro-



duced. We can minimize at least the bound of Lemma 4.6
using the solution of Problem 2 (shown below); we denote
the optimal solution A(C).

Problem 2 (Pessimistic “rebalancing”):

Minimize
{αij≥0}

i,j∈{1,...,rd}

∑
ij

αij max
y∈Ci,x∈Cj

‖x− y‖

subject to
∑
j

αij = ϕD(Ci) for all Ci ∈ C,∑
i

αij = ϕP(Cj) for all Cj ∈ C.

Now we present Algorithm 3, described in pseudo-code,
which computes1 a specific partition C, and then invokes
Algorithm 2 with inputs C and A(C).

Algorithm 3 Randomized EBMP
Input: pickup points X = {x1, . . . , xn}, delivery points
Y = {y1, . . . , yn}, and prob. densities ϕP(·) and ϕD(·).

Output: a bi-partite matching between Y and X .
Require: an arbitrary resolution function res(n) ∈ ω(n1/d),

where d is the dimension of the space.
1: r ← res(n).
2: C ← grid partition Cr, of rd cubes.
3: A← A(C), the solution of Problem 2.
4: Run Algorithm 2 on (X ,Y, ϕP, ϕD, C, A), producing

matching M .
5: return M

Lemma 4.7 (Granularity of Algorithm 3): Let r be the
resolution parameter, and Cr the resulting grid-based parti-
tion, used by Algorithm 3. Let Y be a random variable with
probability density ϕD, and let X ′ be the shadow site of
y = Y generated by lines 5-7 of Algorithm 2, running under
Algorithm 3. Then E ‖X ′ − Y ‖ −W (ϕD, ϕP) ≤ 2L

√
d/r.

Proof: [Proof (Sketch)] Using Lemma 4.6, we can
bound the difference E ‖X ′ − Y ‖ − W (ϕD, ϕP) by the
difference between Problems 1 and 2. Problems 1 and 2 are
discrete lower- and upper- approximations, respectively, of
equation (3), which converge at a rate 2L

√
d/r. A complete

proof of the lemma appears in [14].
We are now in a position to present an upper bound on

the cost of the optimal EBMP matching that holds in the
general case when ϕP 6= ϕD.

Lemma 4.8 (Upper bound on the cost of EBMP): Let
Xn,Yn ∼ ESCP(n, ϕP, ϕD), and let Qn = (Xn,Yn). For
d ≥ 3,

lim sup
n→+∞

LM(Qn)− nW (ϕD, ϕP)

n1−1/d
≤ κ(ϕP, ϕD), (6)

almost surely, where

κ(ϕP, ϕD) := min
φ∈{ϕP,ϕD}

{
βM,d

∫
Ω

φ(x)1−1/d dx

}
. (7)

For d = 2,
LM(Qn)− nW (ϕD, ϕP)√

n log n
≤ γ, (8)

1In the definition of the algorithm, we use the “small omega” notation,
where f(·) ∈ ω(g(·)) implies limn→∞ f(n)/g(n) =∞.

with high probability as n→ +∞, for a positive constant γ.
Proof: We first focus on the case d ≥ 3. The proof

relies on the characterization of the length of the bipartite
matching produced by Algorithm 3 (which also bounds the
length of the optimal matching). By the triangle inequality,
the length L̃M(Qn) of its matching is at most the sum of
the matches between X and X ′, plus the distances from the
sites in Y to their shadows in X ′, i.e.

L̃M(Qn) ≤ LM((X ′,X )) + LYX ′ , (9)

where LYX ′ =
∑

(Y,X′)∈M ‖X ′ − Y ‖. By subtracting on
both sides of equation (9) the term nW (ϕD, ϕP), and divid-
ing by n1−1/d, we obtain

L̃M(Qn)− nW (ϕD, ϕP)

n1−1/d

≤ LM((X ′,X ))

n1−1/d
+
LYX ′ − nW (ϕD, ϕP)

n1−1/d

=
LM((X ′,X ))

n1−1/d
+
LYX ′ − nE ‖X ′ − Y ‖

n1−1/d

+O

(
n1/d

r

)
,

where the last equality follows from Lemma 4.7. Lemma 4.5
allows us to apply equation (1) to LM((X ′,X )), and so the
limit of the first term is

lim
n→+∞

LM((X ′,X ))

n1−1/d
= βM,d

∫
Ω

ϕP(x)1−1/d dx

almost surely. We observe that nE ‖X ′ − Y ‖ is the expec-
tation of LYX ′ , and so the second term goes to zero almost
surely (absolute differences law, Section II-E). The resolution
function of Algorithm 3 ensures that the third term vanishes.
Collecting these results, we obtain the inequality in (6) with
φ = ϕP. To complete the proof for the case d ≥ 3, we
observe that Algorithm 2 could be alternatively defined as
follows: the points in X generate a set Y ′ of shadow sites;
the intermediate matching is now between Y and Y ′. One can
then prove results congruent with the results in Lemmas 4.5,
4.6, and 4.7. By following the same line of reasoning, one
can finally prove the inequality in (6) with φ = ϕD. This
concludes the proof for the case d ≥ 3. The proof for the
case d = 2 follows the same logic and is omitted in the
interest of brevity.

We can leverage this result to derive the main result of
this section, which is an asymptotic upper bound for the
optimal cost of the ESCP. In addition to having the same
linear scaling as our lower bound, the bound also includes
“next-order” terms.

Theorem 4.9 (Upper bound on the cost of ESCP): Let
Xn,Yn ∼ ESCP(n, ϕP, ϕD) be a random instance of the
ESCP, for compact Ω ∈ Rd, where d ≥ 2. Let L∗(n) be the
length of the optimal stacker crane tour through Xn ∪ Yn.
Then, for d ≥ 3,

lim sup
n→+∞

L∗(n)− n
[
EϕPϕD ‖Y −X‖+W (ϕD, ϕP)

]
κ(ϕP, ϕD)n1−1/d

≤ 1,

(10)



almost surely. For d = 2,

L∗(n)− n
[
EϕPϕD

‖Y −X‖+W (ϕD, ϕP)
]

γ
√
n log n

≤ 1, (11)

with high probability as n→ +∞, for a positive constant γ.
Proof: We first consider the case d ≥ 3. Let LSPLICE(n)

be the length of the SCP tour through Xn,Yn generated by
SPLICE. Let Qn = (Xn,Yn). One can write

LSPLICE(n) ≤
n∑
i=1

‖Yi −Xi‖+LM(Qn) + max
x,y∈Ω

‖x− y‖Nn

=

(
n∑
i=1

‖Yi −Xi‖ − nEϕPϕD ‖Y −X‖
)

+
(
LM(Qn)− nW (ϕD, ϕP)

)
+ n

[
EϕPϕD

‖Y −X‖+W (ϕD, ϕP)
]

+ max
x,y∈Ω

‖x− y‖ Nn.

The following results hold almost surely: The first
term of the last expression is o(n1−1/d) (absolute
differences); by Lemma 4.8, the second term is
κ(ϕP, ϕD)n1−1/d + o(n1−1/d); finally, by Remark 2.2, one
has limn→+∞Nn/n

1−1/d = 0. Collecting these results,
dividing on both sides by κ(ϕP, ϕD)n1−1/d, and noting that
by definition L∗(n) ≤ LSPLICE(n), one obtains the claim.
The proof for the case d = 2 is almost identical and is
omitted.

V. SIMULATION RESULTS

In this section, we compare the observed scaling of the
length of the EBMP, as a function of instance size, with
what is predicted by equations (4) and (6). The implications
for the scaling of the ESCP—equations (5) and (10)—are
immediate. We focus on two examples of pickup/delivery
distributions (ϕP, ϕD):
Case I—Unit Cube Arrangement: In the first case, the pickup
site density ϕP places one-half of the probability uniformly
over a unit cube centered along the x-axis at x = −4,
and the other half uniformly over the unit cube centered at
x = −2. The delivery site density ϕD places one-half of the
probability uniformly over the cube at x = −4 and the other
half over a new unit cube centered at x = 2.
Case II—Co-centric Sphere Arrangement: In the second case,
pickup sites are uniformly distributed over a sphere of radius
R = 2, and delivery sites are uniformly distributed over a
sphere of radius r = 1; both spheres are centered at the
origin.

Figure 3(a) (top) shows a scatter plot of (n,LM/n) with
one point for each of twenty-five (25) Case I trials per size-
category; that is, the x-axis denotes the size of the instance,
and the y-axes denotes the average length of a match in the
optimal matching solution. Additionally, the plot shows a
curve (solid line) through the empirical mean in each size
category, and a dashed line showing the Wasserstein distance
between ϕD and ϕP, i.e. the predicted asymptotic limit to
which the sequence should converge. Figure 3(b) (top) is
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Fig. 3. Scatter plots of (n,LM/n) (top) and
(
n, (LM −W )/n2/3

)
(bottom), with one point for each of twenty-five trials per size category.
Figure 3(a) shows results for random samples under the distribution of Case
I; Figure 3(b) shows results for random samples under the distribution of
Case II.

analogous to Figure 3(a) (top), but for the Case II trials.
Both plots exhibit the predicted approach of LM/n to the
constant W (ϕD, ϕP) > 0; the convergence in Figure 3(b)
(top) appears slower because W is smaller. Figure 3(a)
(bottom) shows a scatter plot of

(
n, (LM −W )/n2/3

)
from

the same data, with another solid curve through the empirical
mean. Also shown are constants κ and κ̃ (dashed lines): κ is
the asymptotic upper bound of equation (6); κ̃ is a smaller
constant that results from bringing the min inside the integral
in equation (7). Figures 3(b) (bottom) is again analogous to
Figures 3(a) (bottom), and both plots indicate asymptotic
convergence to a constant no larger than κ(ϕD, ϕP). In fact,
these cases give some credit to a developing conjecture of the
authors: that the minimization in (7) can be moved inside the
integral to provide a smaller (often much smaller) constant
factor.

VI. STABILITY CONDITION FOR DRT SYSTEMS

In this section we present a necessary and sufficient
condition for the stability of DRT systems, modeled as
DPDPs. Specifically, let us define the load factor as

% := λ [EϕPϕD ‖Y −X‖+W (ϕD, ϕP)]/m. (12)



Note that when ϕD = ϕP, one has W (ϕD, ϕP) = 0
(by Lemma 4.2), and the above definition reduces to the
definition of load factor given in [5] (valid for d ≥ 3 and
ϕD = ϕP).

The following theorem is the main result of the paper.
Theorem 6.1 (Stability condition for DRT systems):

Consider the DPDP defined in Section III, which serves as
a model of DRT systems. Then, the condition

% = λ [EϕPϕD ‖Y −X‖+W (ϕD, ϕP)]/m < 1

is necessary and sufficient for the existence of stabilizing
policies.

Proof: [Proof (Sketch)] Here we only present a sketch
of the proof. A complete proof of the theorem appears
in [14]. Let us first consider necessity. By Theorem 4.4 each
demand requires, on average, a service time strictly greater
than EϕPϕD

‖Y −X‖+W (ϕD, ϕP). Since demands arrive,
on average, at a rate of λ, and there are m vehicles, the
fraction of time spent by the vehicles to provide service
is, on average, λ [EϕPϕD

‖Y −X‖+W (ϕD, ϕP)] /m = %.
Hence, to have any hope of stability, such fraction has to be
less than one, i.e., % < 1.

Let us now consider sufficiency. The proof is constructive
in the sense that a particular gated policy is stabilizing; the
policy repeatedly applies algorithm SPLICE to determine
tours through the outstanding demands, splits the tour into
m equal length fragments, and assigns a fragment to each
vehicle. The proof is based on a recursive relation bounding
the expected number of demands in the system at the times
when new tours are computed. The details of the proof can
be found in [14].

The stability condition in Theorem 6.1 only depends on the
workspace geometry, the stochastic distributions of pickup
and delivery points, customers’ arrival rate, and the number
of vehicles, and makes explicit the roles of the different pa-
rameters in affecting the performance of the overall system.
We believe that this characterization would be instrumental
for a system designer of DRT systems to build business and
strategic planning models regarding, e.g., fleet sizing.

VII. CONCLUSION

In this paper we have derived a necessary and sufficient
stability condition for demand-responsive transport systems,
modeled as DPDPs with general and possibly different
pickup and delivery distributions. Central to our approach
has been the development of asymptotic bounds for the
cost of the optimal solution to the stochastic ESCP. Our
bounds prove that the ratio between the ESCP optimal
cost and the number of demands goes to a constant al-
most surely (or with high probability in two dimensions),
and that, perhaps surprisingly, this constant is generally
larger than the expected pickup-to-delivery distance; in other
words, the optimal tour is characterized by non-vanishing
delivery-to-pickup links, whose length we have related to a
known measure of transportation complexity, the Wasserstein
distance. These bounds have allowed the derivation of a
stability condition for our model of DRT systems that only
depends on the workspace geometry, the spatial distributions

of pickup and delivery points, customers’ arrival rate, and
the number of vehicles. Compared to traditional vehicle
routing problems and spatially-distributed queueing systems,
the stability condition presents an extra term due to the effect
of non-vanishing delivery-to-pickup links.

This paper leaves numerous important extensions open
for further research. First, in this paper we have restricted
our analysis to stability conditions: in future work we plan
to characterize quality-of-service, e.g., in terms of customer
waiting time or time-to-service, and develop optimal (or near
optimal) routing policies. Second, it would be of interest
to address the even more general case where the pickup
and delivery locations are statistically correlated. Finally,
devising similar stability conditions and results for a network
model of DRT systems (i.e., where a graph better describes
the environment than Euclidean space) would be of both
theoretical and practical importance.
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