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Abstract— We study a dynamic vehicle routing problem
where demands are strategically placed in the region by an
adversarial agent with unitary capacity operating from a depot.
In particular, we focus on the following problem: a system
planner seeks to design dynamic vehicle routing policies for
a vehicle that minimize the average waiting time of a typical
demand, defined as the time difference between the moment the
demand is placed in the region until its location is visited by
the vehicle; while the agent aims at the opposite, strategically
choosing the spatial distribution to place demands. We model
the problem as a complete information zero-sum game and
characterize an equilibrium in the limiting case where the
vehicle travels arbitrarily slower than the agent. We show that
such an equilibrium is constituted by a routing policy based
on performing successive traveling salesperson tours through
outstanding demands and a unique power-law spatial density
centered at the depot location.

I. I NTRODUCTION

In the recent past, considerable efforts have been devoted
to dynamic vehicle routing problems, where the objective is
to cooperatively assign and schedule demands among a team
of vehicles for service requests that are realized in a dynamic
fashion over a region of interest [3], [4], [7]. These problems
provide a rich framework for a variety of applications such as
surveillance missions, environmental monitoring, automated
material handling and transportation networks. Throughout
the existing literature, demands are assumed to be generated
over time by an exogenous process that is unaffected by the
routing policies, and in particular is non-adversarial [7]. A
recurrent theme is that demands are either customers that
need to be picked up, raw material or merchandise to be
delivered, failures that must be serviced by a mobile repair
person, etc. However, there are many scenarios, including
surveillance missions, where there is an inherent conflict
of interest between the process generating demands and the
system planner designing routing policies. Moreover, evenin
non-adversarial scenarios the system planner may not have
perfect information about the underlying process generating
demands and a study of strategic dynamic vehicle routing
can add insight into policies that are robust with respect to
such uncertainty. To the best of our knowledge, settings with
these characteristics have not yet been studied.

In this paper, we consider the following problem: a system
planner seeks to design dynamic vehicle routing policies for
a vehicle that minimize the average waiting time of a typical
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demand, defined as the time difference between the moment
the demand is placed in the region until its location is visited
by a vehicle; while an adversarial agent with unitary capacity
operating from a depot, aims at the opposite, strategically
choosing the spatio-temporal stochastic process of demands.
A novel feature of this setup is that, since demand generation
is tied to the motion of the agent, there is a dependence
between the spatial and temporal aspect of the demand
generation process: the point process is thus completely
specified by the spatial distribution. This is in stark contrast
with the conventional setup for dynamic vehicle routing
problems, where the spatial and temporal components of
the demand generation process are typically assumed to be
independent.

We model the problem and its inherent pure conflict of
interests as a complete information zero-sum game with
two players: the system planner and the adversarial agent,
with the average system time being the utility function.
In the limiting regime when the vehicle travels arbitrarily
slower than the adversarial agent, we show that the game
has a finite value and we characterize an equilibrium (or
saddle point) of the game. This saddle point is shown to
consist of a routing policy performing successive traveling
salesperson (TSP) tours through outstanding demands and
a unique power-law spatial density centered at the depot
location. The saddle point routing policy is the one proposed
in [4], where it is shown to be optimal for the setup where
the demands are generated by an arbitrary spatio-temporal
renewal process with a very high arrival rate. In order to
rigorously determine the saddle point spatial distribution
for the adversary we rely on Fenchel (conjugate) duality
[15] and results from [5], [6] concerning the maximization
of concave integral functionals subject to linear equality
constraints. Such mathematical tools could also be brought
to bear on the study of dynamic vehicle routing with partial
information about demand generation, where the goal is to
design routing policies with performance guarantees under
worst case scenarios.

The rest of the paper is organized as follows: Section II
contains basic notions on classic convex theory, as well as
duality results for partially finite optimization (optimization
of a functional subject to a finite number of constraints);
Section III describes the problem and the zero-sum game
theoretic formulation; in Section IV we review the recur-
sive TSP-based routing policy and its optimality for the
conventional dynamic vehicle routing setup, and we show
that the value of the game is obtained by maximizing a
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functional over the space of integrable functions, where the
maximizer constitutes the saddle point spatial density of
demands; simulations are presented in Section VI, while
conclusions and future work are discussed in Section VII.

II. M ATHEMATICAL PRELIMINARIES

A. Basic Concepts and Notation

A point x in the n-dimensional Euclidean spaceRn will
be conceived as a column vector, wherexi denotes itsi-
th component. The inner product of two vectors inRn will
be written as〈x,y〉 = xTy =

∑

i xiyi. The non-negative
orthant is the setRn

+ = {x ∈ R
n : x ≥ 0}, where≥ is to

be understood component-wise.
We now introduce some basic concepts from convex

analysis, as found in [2], [15]. Theepigraphof an extended
real-valued functionf : X ⊆ R

n → [−∞,+∞] is the set

epi f = {(x, w) ∈ R
n+1 : x ∈ X,w ∈ R, f(x) ≤ w};

its effective domainis defined asdom f = {x ∈ X : f(x) <
∞}, which is the projection ofepi f onR

n. We say that the
function f is proper if f(x) < +∞ for at least onex ∈ X
andf(x) > −∞ for all x ∈ X ; andf is said to beclosed,
if its epigraph is a closed set. A proper convex functionf :
R → (−∞,+∞] is said to be:essentially strictly convex
if f is strictly convex on strictly convex ondom f ; and
essentially smoothif f is differentiable on the interior of
dom f and ‖f ′(xk)‖ → ∞ for any sequence{xk} in the
interior of dom f such thatxk → x with x in the boundary
of dom f . Given a setX ⊆ R

n, we define itsindicator
functionδ : Rn → (−∞,+∞] as

δ(x|X) =

{

0 if x ∈ X,

∞ otherwise.
(1)

Theaffine hullof a subsetX of Rn is the smallest affine set
containingX . The relative interior of X , denotedri X , is
defined as the interior which results whenX is considered
as a subset of its affine hull. The key property of relative
interiors is that ifX is a nonempty convex set, thenri X is
nonempty and convex as well (in contrast to the interior of
X , which is certainly convex but might be empty). Often,
finding the relative interior of a set based on its definition
might be cumbersome. The next lemma, as stated in [2],
provides an equivalent characterization for convex sets.

Lemma 1: LetX be a nonempty convex set. Then,x ∈
ri X if and only if, for everyy ∈ X there exists a scalar
α > 0 such thatx+ α(x− y) ∈ X .

We end this section with a generalized version of the
classical Weierstrass theorem concerning the existence of
minima of an extended real-valued function.

Theorem 1: Letf : Rn → (−∞,+∞] be a closed proper
extended real-valued function. If there existsη ∈ R such
that the level set{x ∈ dom f : f(x) ≤ η} is nonempty and
bounded, then the set of minima off overRn is nonempty
and compact.

B. Conjugate Functions and Fenchel Duality

Let V andV ⋆ be vector spaces, equipped with a bilinear
product 〈·, ·〉 on the product spaceV × V ⋆, and consider
a convex functionf : V → [−∞,+∞]. The (Fenchel)
conjugate functionof f with respect to〈·, ·〉, is a function
f⋆ : V ⋆ → [−∞,+∞] defined as

f⋆(x⋆) := sup{〈x,x⋆〉 − f(x) : x ∈ V }. (2)

Fenchel’s duality theory is concerned with the problem of
minimizing the difference of two proper functions,f − g,
convex and concave respectively. The following duality the-
orem resides in the connection between minimizingf − g
(convex) and maximizingg⋆ − f⋆ (concave).

Theorem 2: LetV and V ⋆ be vector spaces paired by a
bilinear product〈·, ·〉 defined onV ×V ⋆. LetA : V → R

n be
a linear map with adjointAT , and letf : V → (−∞,+∞]
and g : Rn → [−∞,+∞) be proper functions, convex and
concave respectively. If the constraint qualification

ri (Adom f) ∩ ri (dom g) 6= ∅

is satisfied, then

inf
x∈V

{f(x)− g(Ax)} = sup
ξ∈Rn

{g⋆(ξ)− f⋆(AT ξ)},

with the supremum on the right being attained when finite.
The reader is referred to [15] for the proof in the case

whereV has finite dimension, and to [6] whenV is infinite-
dimensional. The latter case is often calledpartially finite
because the linear operatorA mapsV into R

n.

C. Partially Finite Convex Programming inL1

Let S ∈ R
n be a finite Lebesgue measure set, and let

h : R → R be a closed proper convex function. Consider the
(convex) functionalI : L1(S) → [−∞,+∞] defined as in
[16] by

I(ϕ) =
∫

S

h(ϕ(x))dx. (3)

Now, consider the following optimization problem:

inf I(ϕ) s.t. Aϕ = b, ϕ ∈ L1(S), (4)

whereb ∈ R
n andA : L1(S) → R

n is a continuous linear
map with componentsAi ∈ L∞(S) defined by

(Aϕ)i =

∫

S

Ai(x)ϕ(x)dx, for i = 1, . . . , n. (5)

The most widely encountered instance of (4) is the problem
of entropy optimization (see [10] and references therein),
where the goal is to describe the statistical properties of an
underlying stochastic process from a finite set of measure-
ments of its moments.

Problem (4) is amenable to solve through Fenchel duality.
Let V = L1(S) and V ⋆ = L∞(S), then it is possible to
define a bilinear product onV × V ⋆ by,

(ϕ, ϕ⋆) 7−→ 〈ϕ, ϕ⋆〉 :=
∫

S

ϕ(x)ϕ⋆(x)dx. (6)



As the following result [14] shows, to compute the convex
conjugate of the integral functional (3) with the bilinear
product defined in (6), we may just conjugate the integrand.

Proposition 1: LetS be a finite measure set inRn, and
let V and V ⋆ be as above with bilinear product given by
(6). Then, for anyϕ⋆ ∈ V ⋆, we have

I⋆(ϕ⋆) =

∫

S

h⋆(ϕ⋆(x))dx. (7)

A direct application of Theorem 2 and Proposition 1, with
f := I andg(Aϕ) := −δ(Aϕ−b|0), yields the next result.

Corollary 1: Consider the problem defined by (4) and (5),
and assume that the constraint qualification

b ∈ ri (Adom I), (8)

holds. Then, (4) is equal to

sup {〈ξ,b〉 − I⋆(AT ξ) : ξ ∈ R
n}, (9)

whereAT : R
n → L∞(S) is the adjoint map, given by

AT ξ :=
∑n

i=1
ξiAi. Moreover, the supremum on the right-

hand side of (9) is attained by someξ∗ whenever finite.

Problem (4) will be referred to as theprimal problem, and
ϕ ∈ L1(S) theprimal variable; (9) is thedual problem, and
the vectorξ ∈ R

n thedual variableor simplymultiplier. The
dual is always a convex problem, regardless of the structure
of the primal. The following proposition gives sufficient
conditions for the uniqueness ofξ∗.

Proposition 2: If the set of constraint functions{Ai}ni=1

is linearly independent andh⋆ is essentially strictly convex,
then any optimal dual solution is unique.

We now have all the ingredients required to state the
chief result in [5], which yields the existence, uniqueness
and characterization of the primal optimal solutionϕ∗(x) ∈
L1(S) in terms of (h⋆)′, the optimal dual solutionξ∗ and
the linear operator of constraintsA.

Theorem 3: Consider the primal-dual pair (4)−(9) of
Corollary 1. Assume thath is an essentially strictly convex
and essentially smooth function, and suppose the following
condition is satisfied:

∆ := lim
x→∞

h(x)

x
> ess sup

x∈S

AT ξ∗(x). (10)

Then, the primal optimal solution is given by,

ϕ∗(x) := (h⋆)′(AT ξ∗(x)) = (h⋆)′

(

n
∑

i=1

ξ∗i Ai(x)

)

, (11)

whereξ∗ ∈ R
n is the dual optimal solution.

The proof of Theorem 3 builds on results derived in [14]
regarding the subgradients of convex integral functionals, and
is mainly based on differentiating the dual objective function
at the optimum.

III. PROBLEM DESCRIPTION

Consider a bounded setS ⊆ R
2 with µ(S) > 0, where

µ(·) is the Lebesgue measure. LetS be closure ofS and
assume that for everyx ∈ S there exists a ballB centered
at x, such thatµ(B ∩ S) > 0. An infinite number of

targets/demands are stored in a depot located, without any
loss of generality, at the origin0. These targets are picked up
from the depot, carried and dropped inS by an adversarial
agent traveling in straight lines at unit speed. The placement
locations are sampled independently from a spatial density
ϕ : S → R+. We assume that the agent has unitary target
carrying capacity, i.e., he returns to the depot in between
placing successive targets, and when he returns to the depot
he spends an average timeτ > 0. The rate at which demands
are placed inS by the agent adopting spatial distributionϕ
is thus given by

λϕ =
1

2Eϕ[‖X‖] + τ
, (12)

whereX is the location of an arbitrary demand. From (12)
we observe that the demand generation stochastic process is
completely specified by the spatial densityϕ. In particular,
in order to sustain a higher rate, the density has to be
more concentrated around0; alternately, as demands are
distributed further away from the depot, the smaller is the
arrival rateλϕ. This dependence between the temporal rate
and spatial density of demands is a novel feature in our
formulation as compared to conventional setup for dynamical
vehicle routing problems, where the temporal and spatial
components of the demand point process are typically as-
sumed to be independent.

Demands have to be serviced by a vehicle1, traveling at
speedv. In order to service a target, the vehicle has to
physically travel to the location of the target, and we assume
without loss of generality, that the on-site service time is
zero. A routing policy is said to be stable if the expected
number of outstanding demands is bounded almost surely at
all times. In this paper, we are further interested inspatially
unbiasedpolicies. A policy is said to be spatially unbiased
if for every pair of setsS1,S2 ⊆ S,

E[T |X ⊆ S1] = E[T |X ⊆ S2],

whereT represents its waiting time. The results for spatially
biased policies follow along similar lines.

Let Π denote the class of spatially unbiased stable policies
and let F =

{

ϕ : S → R+ s.t.
∫

S
ϕ(x)dx = 1

}

be the
set of spatial probability distributions with supportS. Let
Ti(π, ϕ) represent the time elapsed from the moment the
agent placesi-th demand at its location until the vehicle
reaches its location, while the agent is placing targets accord-
ing to distributionϕ ∈ F and the vehicle is implementing
routing policyπ ∈ Π. Define thesystem timeT : Π×F by

T (π, ϕ) := lim sup
i→∞

Eϕ[Ti(π, ϕ)]. (13)

Expressions for the average system timeT in dynamic
vehicle routing problems are available only in the extremes
of system loadλ/v, light or heavy. Here we focus on the
heavy load regime,λ/v → ∞. However, in this setup the

1We assume a single vehicle for the sake of simplicity. The analysis
presented here does not change qualitatively when there aremultiple
vehicles.



target generation rate, as given by (12), is intertwined with
the spatial densityϕ; therefore, we perform our analysis for
the limiting casev → 0+ so thatλϕ/v → +∞ for any
ϕ ∈ F .

In the context described above, we consider a two-player
complete information zero-sum game between the system
planner seeking to design routing policy for the vehicle and
the adversarial agent placing demands, with the system time
defined in (13) as the utility function. In other words, in this
strictly competitive setting, the agent will seek to maximize
the system time, while the goal of the system planner is
exactly the opposite. A solution, or equilibrium, of the game
will be a pair(π∗, ϕ∗) ∈ Π×F for which

sup
ϕ∈F

inf
π∈Π

T (π, ϕ) = T (π∗, ϕ∗) = inf
π∈Π

sup
ϕ∈F

T (π, ϕ). (14)

A pair (π∗, ϕ∗) satisfying condition (14) is called asaddle
point for the functionT . In this paper, we are interested in
characterizing one such saddle point.

IV. A N OPTIMAL ROUTING POLICY

Consider the following policy proposed in [4], which we
will refer to asπ∗:

Unbiased TSP-based Routing Policy:Let r be a large
enough positive integer. From a central point inS partitionS
into r setsS1, . . . ,Sr, such that

∫

Sk
ϕ(x)dx = 1/r. Within

each set of the partition, form sets of demands with sizen/r,
and as these sets are constructed, deposit them in a queue
and service them in a “first come, first served” fashion. The
service of each set is achieved by constructing a TSP tour
and following it in an arbitrary direction. Finally, optimize
overn.

It was shown in [4] that in the limit asλ/v → +∞,

T (π∗, ϕ) ≥ β2

2v2
λϕ

(
∫

S

√

ϕ(x)dx

)2

(15)

for any ϕ ∈ F , where β ≃ 0.7120 is a constant that
appears in the asymptotic result for the length of the shortest
path in the Traveling Salesman Problem (TSP) over the
Euclidean plane [1]. Moreover, it was proved in [18] that
infπ∈Π T (π, ϕ) = T (π∗, ϕ) for all ϕ ∈ F . Hence,

sup
ϕ∈F

T (π∗, ϕ) = sup
ϕ∈F

inf
π∈Π

T (π, ϕ) ≤ inf
π∈Π

sup
ϕ∈F

T (π, ϕ),

where the last inequality follows from the min-max in-
equality, which holds true on any product space (see e.g.
[2]). Since infπ∈Π supϕ∈F T (π, ϕ) ≤ supϕ∈F T (π∗, ϕ) (by
definition of infimum), we arrive at

sup
ϕ∈F

inf
π∈Π

T (π, ϕ) = sup
ϕ∈F

T (π∗, ϕ) = inf
π∈Π

sup
ϕ∈F

T (π, ϕ).

Therefore, if there exists aϕ∗ ∈ F such thatT (π∗, ϕ∗) =
supϕ∈F T (π∗, ϕ), then it would constitute, together withπ∗,
a saddle point ofT asv → 0+. The next section is devoted
to finding such aϕ∗.

Remark: Note that the complete information assumption
implies that the system planner has perfect knowledge of
the spatial densityϕ, needed to implementπ∗. This could,

for example, be achieved if the system planner has an
estimator to learnϕ. We leave the investigation of such
learning/adaptive routing policies for future work.

V. THE SADDLE POINT SPATIAL DENSITY

The optimal spatial density that will maximize the system
time asv → 0 when the routing policy isπ∗ will emerge as
the solution to the following optimization problem:

sup
ϕ

λϕ

(
∫

S

√

ϕ(x)dx

)2

s.t. ϕ ∈ F . (16)

In its original form, problem (16) is the product between a
convex and a concave function. Hence, it is not convex thus
hard to tackle. However, applying a logarithmic transforma-
tion to the objective function and introducing a new variable
γ := logλϕ yields the following equivalent formulation

sup
γ,ϕ

γ + 2 log

∫

S

√

ϕ(x)dx s.t. γ ∈ Γ, ϕ ∈ F . (17)

Since 0 ≤ Eϕ[‖X‖] ≤ max
x∈S

‖x‖, from (12) it can be
easily seen that

Γ = −
[

log

(

2max
x∈S

‖x‖+ τ

)

, log τ

]

⊂ R. (18)

Expressing the dependence ofϕ on the real variableγ allows
us to rewrite (17) as

sup
γ∈Γ

{

γ + 2 sup
ϕ∈Fγ

log

∫

S

√

ϕ(x)dx

}

, (19)

where

Fγ =

{

ϕ : ϕ ∈ F , Eϕ[‖X‖] = e−γ − τ

2

}

. (20)

Problem (19) decouples the spatio-temporal dependence of
the stochastic process of demand locations, splitting (16)into
two connected sub-problems: one for the spatial component,
and another one for the temporal component. The former
entails a maximization over an infinite-dimensional space to
determine an optimal parametric family of spatial probability
densities, parametrized byγ; the latter is a scalar maxi-
mization which yields the optimal rate, therefore completely
identifying the optimal density from the previously found
parametric family, rendering the solution to (16) and the
saddle point density for the game.

A. The Optimal Parametric Family

Given γ ∈ Γ, we wish to solve

sup

{

log

∫

S

√

ϕ(x)dx : ϕ ∈ Fγ

}

,

or equivalently,

inf I(ϕ) :=
∫

S

−
√

ϕ(x)dx s.t. ϕ ∈ Fγ . (21)

First let us note that, as stated by the following lemma,
problem (21) is feasible for everyγ ∈ Γ and has a value
of zero whenγ lays at the boundary ofΓ in (18).



Lemma 2: For everyγ ∈ int Γ, there exists a density
ϕ ∈ Fγ . Moreover, whenγ belongs to the boundary ofΓ the
value of (21) is zero.

Proof: Let y ∈ A = {x ∈ S : x ∈ argmax
x
‖x‖}, and

note thatµ(A) = 0. Because of the smoothness assumption
imposed on the setS, there exist ballsB andB′ centered at0
andy with radiusr andr′ respectively, such thatµ(B∩S) >
0 and µ(B′ ∩ S) > 0. Clearly, we can reduce the radii
and still maintain the same property. Letϕr andϕr′ denote
the densities associated with uniform distributions defined
over B and B′, respectively. Then,limr→0 Eϕr

[‖X‖] = 0
and limr′→0 Eϕr′

[‖X‖] = max
x∈S ‖x‖. Furthermore, these

limiting values will only be achieved by singular distributions
with supports over{0} andA, respectively; therefore, the
integral in (21) is zero forγ on the boundary ofΓ defined
in (18). Now consider a densityϕ defined as a linear
combination ofϕr andϕr′ , with support overB∪B′. Then,
by the linearity of the expectation we get for everyα ∈ [0, 1],

Eϕ[‖X‖] = αEϕr
[‖X‖] + (1− α)Eϕr′

[‖X‖].
Thus, givenγ ∈ Γ with appropriate choices ofr, r′ andα
we can always construct a densityϕ ∈ Fγ .

Define the continuous linear mapA : L1(S) → R
2 with

linearly independent components given by,

Aϕ =

( ∫

S
ϕ(x)dx

∫

S
‖x‖ϕ(x)dx

)

, (22)

and letbγ ∈ R
2 be the column vector

(

1, e
−γ−τ
2

)

. Then,
expressing the constraints that defineFγ in (20) in terms of
A andbγ , we can rewrite problem (21) as

inf I(ϕ) s.t. Aϕ = bγ , ϕ ≥ 0, ϕ ∈ L1(S). (23)

Since the objective function is convex inϕ and the equality
constraints definingFγ are linear, problem (21) is convex
thus amenable to solve through Lagrange duality. The La-
grangian for this problem is the functionL : L1(S)×R

2 →
R defined asL(ϕ, ξ) := I(ϕ) + 〈ξ,bγ −Aϕ〉. If some
constraint qualifications are met, assuring that strong duality
holds, then the solution to (21) can be obtained by solving

sup
ξ∈R2

inf
ϕ≥0

L(ϕ, ξ).

For the minimization overϕ one might be tempted to
differentiate the Lagrangian (in the Fréchet sense [12]);
however, the Lagrangian is nowhere differentiable since the
positive cone{ϕ ∈ L1(S) : ϕ ≥ 0} has empty interior
and its complement is dense inL1(S). As a result, this
approach cannot be rigorously justified (see [5] for further
discussions).

To bypass this technical difficulty we will cast problem
(21) under the conjugate duality framework presented in
Section II-C. Defining the function

h(x) := −√
x+ δ(x|R+), for all x ∈ R, (24)

we can further rewrite (23) as

inf I+(ϕ) :=
∫

S

h(ϕ(x))dx s.t. Aϕ = bγ , ϕ ∈ L1(S).
(25)

Note that the integrandh is proper and convex. Moreover,
we claim that it is also closed. Indeed, consider a sequence
{xk, wk} ⊆ epi h such that(xk, wk) → (x,w) as k → ∞.
We can assume that{xk} ⊆ dom h given that restricting a
function to its effective domain does not change its epigraph.
Then, sincedom h = [0,∞) is a closed set, it follows
that x ∈ dom h, thusw ≥ limk→∞ −√

xk = −√
x. This

implies that(x,w) ∈ epi h, which shows the closedness of
h. Consequently, formulation (25) exhibits the same structure
as (4), and the results in Section II-C are applicable.

The next conjugate duality theorem will be of great
significance in the subsequent analysis. It determines the dual
of (25) and states that the duality gap is zero. Before we
formally state and prove the theorem, we need the following
key lemma.

Lemma 3:bγ ∈ ri (Adom I+), for everyγ ∈ int Γ.
Proof: By definition, ri (Adom I+) is equal to

ri {d ∈ R
2 : ∃ϕ ∈ L1(S) ∩ dom I+ s.t.Aϕ = d},

and because{ϕ ∈ L1(S) : ϕ ≥ 0} ⊂ dom I+, it follows
from Lemma 1 thatri (Adom I+) = {d ∈ R

2 : d > 0}.
The fact thatbγ > 0 yields the claimed result.

Theorem 4: LetΓ be defined as in (18), and letint Γ
denote its interior. Then, for everyγ ∈ int Γ the dual of
problem (25) is given by

D(γ) := sup
ξ∈R2

{

〈ξ,bγ〉+
∫

S

dx

4AT ξ(x)
: AT ξ < 0

}

,

(26)
where AT : S → L∞(S) is the adjoint map, given by
AT ξ(x) = ξ1 + ξ2‖x‖. Furthermore, (26) admits a unique
solutionξ∗(γ), and the optimal value achieved is finite and
equal to the infimum in (25).

Proof: The dual of problem (25) is given by,

sup
ξ∈R2

{

〈ξ,bγ〉 − I⋆
+(A

T ξ)
}

,

and since the conjugate of the integrand functionh defined
in (24) is,

h⋆(y) = sup
x≥0

{xy +√
x} =

{

− 1

4y y < 0,

∞ otherwise,
(27)

by Proposition 1 it must be equal to

sup
ξ∈R2

{

〈ξ,bγ〉+
∫

S

dx

4AT ξ(x)
: AT ξ < 0

}

.

From Lemma 3 it follows that for everyγ ∈ int Γ
the constraint qualification (8) is satisfied, and Corollary1
implies that (26) is equal to (25) (thus equal to (21)).

Over the set

M = {ξ ∈ R
2 : AT ξ(x) < 0, for all x ∈ S}, (28)

that describes the maximization space in the dual problem,
we must have〈ξ,bγ〉 < 0. To see this, consider an arbitrary
γ ∈ int Γ and letϕ be a density with support overS such
that Aϕ = bγ , whose existence is guaranteed by Lemma



2. Then, for everyx ∈ S we haveϕ(x)(ξ1 + ξ2‖x‖) < 0;
hence,

〈ξ,bγ〉 = ξ1

∫

S

ϕ(x)dx + ξ2

∫

S

‖x‖ϕ(x)dx < 0.

Therefore, the dual optimal value is bounded above by zero;
thus it must be achieved at someξ∗(γ). Finally, the fact that
h⋆ is essentially strictly convex (it is strictly convex over
its effective domain) and the set of functions{1, ‖x‖} that
defineA is linearly independent, implies through Proposition
2, thatξ∗(γ) is unique for everyγ ∈ int Γ.

Corollary 2: ξ∗1(γ) < 0, for everyγ ∈ int Γ.
Proof: Given thatξ∗ ∈ M, we haveAT ξ∗(γ)(x) =

ξ∗1(γ) + ξ∗2(γ)‖x‖ < 0 for all x ∈ S. Hence, lettingx = 0

renders the result.
Based on the preceding theorem, the following proposition

characterizes the unique optimal parametric family of spatial
densities.

Proposition 3: Consider the optimization problem defined
by (21) and (20). Then, for everyγ ∈ int Γ the unique
optimal solution is given by,

ϕ∗
γ(x) =

1

4(ξ∗1(γ) + ξ∗2 (γ)‖x‖)2
, for all x ∈ S. (29)

Proof: The functionh defined in (24) is both essentially
strictly convex and essentially smooth. Indeed, it is strictly
convex and differentiable when restricted to its effective
domain [0,∞), and |h′(x)| = x−3/2 which tends to∞ as
x → 0. Moreover,h satisfies the growth condition (10) since
∆ = 0 > ess sup

x∈S AT ξ
∗(x). Then, invoking Theorem

3 we conclude that for everyγ ∈ int Γ, the optimal
solution to (21) is given byϕ∗

γ(x) = (h⋆)′(AT ξ∗(γ)(x))
for all x ∈ S, where ξ∗(γ) is the unique dual solution
determined by Theorem 4. Finally, from (27) we have that
(h⋆)′(x) = 1/4x2 for all x < 0, and we thus arrive at (29).

Remarks:
• Through the use of conjugate duality, Theorem 4, we

have transformed the infinite-dimensional optimization
problem (21) into a maximization of a strictly concave
function over a convex set inR2, and although the
unique solution to (26) cannot be expressed in closed
form it can be efficiently found numerically.

• The solutionϕ∗
γ(x) obtained in Proposition 3 belongs

to C(S), the set of continuous functions with support
over S which is dense inL1(S) and has a positive
cone with non-empty interior. We could have chosen
C(S) as the underlying working space and solve (21)
through differentiation of the Lagrangian; however, the
uniqueness result obtained forL1(S) is much stronger.

B. The Optimal Parameter

We now study the optimization overγ in (19), and show
that there exists a unique solutionγ∗. Since for every
γ ∈ int Γ the dual optimumξ∗(γ) is unique, γ∗ will
determine the unique spatial densityϕ∗ := ϕ∗

γ∗ from the
family described in (29) that attains the maximum in (16).
We start by providing some results concerning the behavior

of ξ∗ as a function ofγ ∈ int Γ, that will play a key role in
establishing the existence and uniqueness of the solution to
(19). Specifically,

Proposition 4: Consider the dual problem defined in (26).
Then, the functionξ∗ : int Γ → M is differentiable, and
(ξ∗2 )

′(γ) < 0. Also,D′(γ) =
〈

ξ
∗(γ),b′

γ

〉

for all γ ∈ int Γ.
Proof: The setM defined in (28) is open, therefore

the following first order condition must be satisfied atξ
∗:

G(γ, ξ∗) = bγ − ∂I⋆
+

∂ξ
(AT ξ

∗) = 0. (30)

This equation implicitly definesξ∗(γ) with a Jacobian

∂G

∂ξ
= −∂2I⋆

+

∂ξ2
,

which is negative definite for everyξ ∈ M because of the
strict convexity ofI⋆

+ (strictly convex function composed
with a linear function). Thus, it is nonsingular and the
implicit theorem function furnishes the differentiability of
ξ∗(γ). Moreover,

(ξ∗)′ =

(

∂2I⋆
+

∂ξ2

)−1
∂G

∂γ
. (31)

The inverse of the Hessian ofI⋆
+ is positive definite, and

∂G
∂γ is the column vector with entries(0,− 1

2
e−γ). Hence,

left-multiplying (31) by the transpose of∂G∂γ yields

0 <

(

∂G

∂γ

)T

(ξ∗)′ = −1

2
e−γ(ξ∗2 )

′,

and so(ξ∗2 )
′ < 0. Finally, since for everyγ ∈ int Γ we have,

D(γ) = 〈ξ∗(γ),bγ〉 − I⋆
+(A

T ξ∗(γ)),

it follows thatD is differentiable and

D′(γ) =
〈

ξ∗(γ),b′
γ

〉

+

〈

(ξ∗)′(γ),bγ − ∂I⋆
+

∂ξ
(AT ξ∗(γ))

〉

;

the second term vanishes due to (30).
The next theorem in conjunction with Proposition 3

completely characterizes the unique optimal spatial density,
solution to problem (16).

Theorem 5: The optimization problem defined by (19) and
(18) admits a unique optimal solutionγ∗ ∈ int Γ.

Proof: For all γ ∈ Γ, define

F (γ) := sup
ϕ∈Fγ

∫

S

√

ϕ(x)dx,

and letΨ(γ) = γ+2 logF (γ) denote the objective function
in (19). From Theorem 4 we know thatF (γ) = −D(γ) over
int Γ, and Lemma 2 implies thatΨ(γ) = −∞ whenγ is at
the boundary of the intervalΓ. Thus,dom Ψ = int Γ, andΨ
is proper. The functionΨ is also closed; indeed consider any
sequence{γk, wk} ⊂ epi Ψ such that(γk, wk) → (γ, w).
Recall that restricting a function to its effective domain does
not affect the epigraph; hence, we can assume that{γk} ⊂
dom Ψ. Then, by Proposition 4 we knowΨ is continuous
over its effective domain, andΨ(γ) = limk→∞ Ψ(γk) ≥
limk→∞ wk = w, which shows that(γ, w) ∈ epi Ψ. Now,



sinceΨ tends to−∞ at the boundary of its effective domain,
we can find a scalarη such that the upper level set{γ ∈
dom Ψ : Ψ(γ) ≥ η} is nonempty and bounded. Therefore
we can invoke Theorem 1 to conclude that the set of maxima
Γ∗ is nonempty and compact; moreover,Γ∗ ⊆ int Γ.

For everyγ∗ ∈ Γ∗ note that sinceγ∗ is an interior point
of Γ, the following first order condition must be satisfied:

Ψ′(γ∗) = 1 + 2
F ′(γ∗)

F (γ∗)
= 0. (32)

Combining Theorem 4 with Proposition 4, we get

F ′(γ∗) = −
〈

ξ∗(γ∗),b′
γ∗

〉

=
1

2
ξ∗2(γ

∗)e−γ∗

.

Also, Proposition 3 leads to

D(γ) =

∫

S

dx

2AT ξ∗(γ)(x)
, for all γ ∈ int Γ,

which implies thatD(γ) = 2 〈ξ∗(γ),bγ〉. Thus, returning to
(32) and after some simple algebra we conclude that every
γ∗ ∈ Γ∗ must satisfy

2ξ∗1(γ
∗) = τξ∗2 (γ

∗), (33)

whereτ > 0. Let Γ̃ = {γ ∈ int Γ : ξ∗2(γ) < 0}, and note
from Corollary 2 thatΓ∗ ⊆ Γ̃. From Proposition 4 it follows
that ξ∗2 is continuous, thus̃Γ is an open set. Inside this set,
(ξ∗2 )

′(γ) < 0 and by Proposition 3 it is clear thatξ∗1 should
be increasing so that the density defined in (29) integrates to
unity overS. Hence, returning to (33) we conclude that the
maximizerγ∗ has to be unique.

Corollary 3: The solution to (16) can be written as

ϕ∗(x) =
K

(τ + 2‖x‖)2 , for all x ∈ S, (34)

whereK > 0 is a normalization constant.
Proof: Letting K = (τ/2ξ∗1(γ

∗))2, the result readily
follows by plugging (33) back in (29).

Remark: If a demand is placed at locationx, then from
(12) we note thatτ + 2‖x‖ is the average time the agent
has to wait before he can place another demand inS. This
is the source of the spatio-temporal dependence between the
location and the rate of demands, and not surprisingly, it is
reflected on the shape of the optimal spatial densityϕ∗.

VI. SIMULATIONS

In this section we provide simulations that shed light on
the theoretical results developed in the previous sections.
Let Sρ = {x ∈ R

2 : ‖x‖ ≤ ρ} be the support of
densities, andτ = 0.1. If the physical constraint imposed
by the agent carrying and placing the targets onS were
removed and the rate were fixed, then the distribution that
attains the maximum system time asλ/v → ∞ is uniform;
this was proved in [4] using a Hardy-Littlewood-Pólya
inequality. However, when the spatio-temporal dependence
is introduced, a uniform distribution will induce a rate that
is smaller thanλϕ∗ . This is becauseϕ∗ is more concentrated
around the depot location than a uniform spatial density

and hence the agent has to travel less distance on average
between placement of successive targets. Figure 1 shows the
plot of the ratio of the system timeT

∗
:= T (π∗, ϕ∗) and

TU := T (π∗, ϕuniform) with respect to increasing size of the
regionS. As it can be seen,ϕ∗ yields 20% higher system
time than a uniform distribution forρ as low as 1.
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Fig. 1. System timeTU with uniform distribution andT
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Recall that the pair(π∗, ϕ∗) constitutes an equilibrium for
the game in the limit asv → 0+. Therefore, understanding
how the relative error betweenT

∗
and the measured optimal

system timeT
∗

m decreases asv becomes closer to zero is an
issue of practical significance. To that end, we implemented
in Matlab the TSP-based routing policy described in Section
IV based on the Lin & Kernighan’s algorithm [11]. The
results obtained are gathered in Figure 2, where we note that
for v = 0.01 the relative error|T ∗ −T

∗

m|/T ∗
is already less

than 5%. This observation is actually not surprising, since
as implied in [9], the expression for the system time (15)
in heavy load is usually a fairly good approximation for the
system time under “intermediate” load regimes.

VII. C ONCLUSIONS

We studied a strategic dynamic vehicle routing problem
where demands are place in a bounded regionS by an agent
with unitary capacity operating from a depot. We formulated
the corresponding complete information zero-sum game,
with the average waiting time of a typical demand as the util-
ity function, and showed that an equilibrium in the limiting
regime when the vehicle travels arbitrarily slower than the
adversarial agent is given by the pair of a TSP-based routing
policy and a unique power-law spatial density centered at
the depot location. While the TSP based routing policy and
its performance analysis has been adopted from [4], [18], the
results on the optimal spatial density were rigorously derived
using tools from conjugate duality and results concerning
the maximization of concave integral functionals subject
to linear equality constraints. Remarkably, all the results
obtained hold for any bounded regionS with a sufficiently
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smooth boundary, and in particular also for regions with
holes. This is an important feature since it allows to introduce
support constraints for the spatial distribution adopted by the
adversary, which serves as a good abstraction for scenarios
involving predator-prey interactions and criminal pursuit.
Also note that since lower bounds for the average system
time for dynamic vehicle routing under heavy load often take
the form of concave integral functionals (see e.g. [8]), the
convex analytic approach applied in this paper could be used
to formally analyze the performance of policies under worst
case scenarios.

Regarding avenues for future research, it would be in-
teresting to relax the complete information assumption. In
particular, we are interested in incorporating estimationof
ϕ∗ into the strategy set of the system planner. Accordingly,
it would be interesting to incorporate estimation cost intothe
utility function of the game and investigate its effects on the
optimal strategies. Such a setup could also provide a natural
framework for the formal study of geographic profiling [17],
[13], where the objective is to determine the most probable
area of a criminal (predator) hideout (“anchor point”) based
on observed attack locations. It would also be interesting to
study strategic dynamic vehicle routing problems involving
multiple coordinated adversaries.
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