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Strategic Dynamic Vehicle Routing with Spatio-Temporal
Dependent Demands

Diego Feijer Ketan Savla Emilio Frazzoli

Abstract—We study a dynamic vehicle routing problem demand, defined as the time difference between the moment
where demands are strategically placed in the region by an the demand is placed in the region until its location is eisit
adversarial agent with unitary capacity operating from a depot. by a vehicle; while an adversarial agent with unitary cajyaci

In particular, we focus on the following problem: a system ting f d t ai t th it trateqicall
planner seeks to design dynamic vehicle routing policies fo operaung from a depot, aims at the opposite, strategically

a vehicle that minimize the average waiting time of a typical Choosing the spatio-temporal stochastic process of desnand
demand, defined as the time difference between the moment the A novel feature of this setup is that, since demand generatio
demand is placed in the region until its location is visited ¥ s tied to the motion of the agent, there is a dependence
the vehicle; while the agent aims at the opposite, strategidly between the spatial and temporal aspect of the demand
choosing the spatial distribution to place demands. We mode . ) . .

the problem as a complete information zero-sum game and genelrfit'on process..the. PQ'”t .procesls .'S.thus completely
characterize an equilibrium in the limiting case where the SpPecified by the spatial distribution. This is in stark castr
vehicle travels arbitrarily slower than the agent. We show hat ~ with the conventional setup for dynamic vehicle routing
such an equilibrium is constituted by a routing policy based problems, where the spatial and temporal components of

on performing successive traveling salesperson tours thugh  {he gemand generation process are typically assumed to be
outstanding demands and a unique power-law spatial density

centered at the depot location. independent. o .
We model the problem and its inherent pure conflict of
|. INTRODUCTION interests as a complete information zero-sum game with

two players: the system planner and the adversarial agent,

In the recent past, considerable efforts have been devotggl, ‘the average system time being the utility function.
to dynamic vehicle routing problems, where the objective i, ihe |imiting regime when the vehicle travels arbitrarily

to cooperatively assign and schedule demands among a teg@\yer than the adversarial agent, we show that the game
of vehicles for service requests that are realized in a dy®am, 45 5 finite value and we characterize an equilibrium (or
fashion over a region of interest [3], [4], [7]. These prob®  ga4gle point) of the game. This saddle point is shown to
provide a rich framework for a variety of applications sueh acq st of a routing policy performing successive travglin
surveillance missions, environmental monitoring, aut®a g,jesperson (TSP) tours through outstanding demands and
materl_al_han_dlmg and transportation networks. Throughoy, unique power-law spatial density centered at the depot
the existing literature, demands are assumed to be gederafig aiion. The saddle point routing policy is the one progose
over time by an exogenous process that is unaffected by tma[4]’ where it is shown to be optimal for the setup where
routing policies, and in particular is non-adversarial [&] o demands are generated by an arbitrary spatio-temporal
recurrent theme is that demands are either customers thahewal process with a very high arrival rate. In order to
need to be picked up, raw material or merchandise o Bgyorously determine the saddle point spatial distrittio
delivered, failures that must be serviced by a r_nob|l_e rePafpy the adversary we rely on Fenchel (conjugate) duality
person, etc. However, there are many scenarios, includipgs) and results from [5], [6] concerning the maximization
surveillance missions, where there is an inherent confligf concave integral functionals subject to linear equality
of interest between the process generating demands and fa@straints. Such mathematical tools could also be brought
system planner designing routing policies. Moreover, 89en , pear on the study of dynamic vehicle routing with partial
non-adversarial scenarios the system planner may not N3ug,rmation about demand generation, where the goal is to
perfect information about the underlying process gemegali gesign routing policies with performance guarantees under
demands and a study of strategic dynamic vehicle routingq st case scenarios.

can add insight into policies that are robust with respect 10 Thg rest of the paper is organized as follows: Section I
such uncertainty. To the best of our knowledge, settings wit.qntains basic notions on classic convex theory, as well as
these characteristics have not yet been studied. duality results for partially finite optimization (optintion

In this paper, we consider the following problem: a systergs 5 functional subject to a finite number of constraints):
planner seeks to design dynamic vehicle routing policies fasaction 111 describes the problem and the zero-sum game

a vehicle that minimize the average waiting time of a typicaheoretic formulation; in Section IV we review the recur-

sive TSP-based routing policy and its optimality for the
The authors are with the Laboratory for Information and Bieci 9P Y P Y

Systems, Massachusetts Institute of Technology, CamdyritiA, USA. conventional dynamic VehiCIe. rou“”g setup, and _W(.:" _ShOW
{feijer, ksavla, frazzoli}@rt.edu. that the value of the game is obtained by maximizing a
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functional over the space of integrable functions, wheee thB. Conjugate Functions and Fenchel Duality
maximizer constitutes the saddle point spatial density of | ot 1 and1* be vector spaces, equipped with a bilinear
demands; simulations are presented in Section VI, Wh"ﬁroduct( ) '

. . . ) -,-y on the product spac& x V*, and consider
conclusions and future work are discussed in Section VIl 5 convex functionf : V — [—oo,+00]. The (Fenchel)

conjugate functiorof f with respect to(,-), is a function
1. MATHEMATICAL PRELIMINARIES f*: V* = [—o0, +00| defined as

A. Basic Concepts and Notation FA(x) = sup{(x,x*) — f(x) : x € V}. (2)

A point x in the n-dimensional Euclidean spad@&® will
be conceived as a column vector, wheredenotes itsi-
th component. The inner product of two vectorsRi will
be written as(x,y) = x’y = Y, z;y;. The non-negative
orthant is the seR”, = {x € R™ - x > 0}, where> is to (convex) and maximizing* — f* (concave).
be understogd component-wise. i Theorem 2: Lef and V* be vector spaces paired by a

We now introduce some basic concepts from conveyijinear product(-, -) defined or/ x V*. LetA : V — R" be
analysis, as foun_d in [2], [15]. Thepigraphof an extended g jinear map with adjointA”, and letf : V — (—oo, +od]
real-valued functiony : X C R" — [—oo, +-o0] is the set  gnq . g [—o0, +00) be proper functions, convex and
concave respectively. If the constraint qualification

Fenchel’'s duality theory is concerned with the problem of
minimizing the difference of two proper functiong,— g,
convex and concave respectively. The following dualitythe
orem resides in the connection between minimizihg g

epi f={(x,w) eR"™ :x € X, weR, f(x) <w};
. _ N _ ri (Adom f) Nri (dom g) # 0
its effective domaiiis defined aslom f = {x € X : f(x) <
oo}, which is the projection ofpi f onR™. We say that the is satisfied, then
function f is properif f(x) < +oo for at least onex € X . . N e/ AT
and f(x) > —oo for all x € X; and f is said to beclosed ,ig/ {/(x) —g(Ax)} = ;euﬂg 7€) - I"(A° O}
if its epigraph is a closed set. A proper convex functjon _ i ) ) o
R — (oo, +00] is said to be:essentially strictly convex with the supremum on the right being attained when finite.
if f is strictly convex on strictly convex odom f; and The reader is referred to [15] for the proof in the case
essentially smootfif f is differentiable on the interior of WhereV has finite dimension, and to [6] wheén is infinite-
dom f and||f'(xx)| — oo for any sequencéx;!} in the dimensional. The latter case is often calledrtially finite
interior of dom f such thatx;, — x with x in the boundary Pecause the linear operatr mapsV' into R™.
of dom f. Given a setX C R"”, we define itsindicator

functiond : R™ — (oo, +00] as C. Partially Finite Convex Programming ifi,

Let S € R™ be a finite Lebesgue measure set, and let

5(x|X) = 0 ifxeX, L h : R — R be a closed proper convex function. Consider the
oo otherwise (convex) functionalZ : £,(S) — [—o0, +oco] defined as in
[16] by

The affine hullof a subsetX of R is the smallest affine set T(p) = / h(p(x))dx 3)

containing X. The relative interior of X, denotedri X, is 7 s v '

defined as the interior which results whéhis considered Now, consider the following optimization problem:

as a subset of its affine hull. The key property of relative = '

interiors is that ifX is a nonempty convex set, thenX is inf Z(p) st Ap=b, pc Li(S), (4)

nonempty and convex as well (in contrast to the interior of

X, which is certainly convex but might be empty). Oftenwhereb € R" and A : £,(S) — R" is a continuous linear

finding the relative interior of a set based on its definitiodmap with componentsl; € L..(S) defined by

might be cumbersome. The next lemma, as stated in [2],

provides an equivalent characterization for convex sets. (Ap); = / Ai(x)p(x)dx, for i=1,....n. (5)
Lemma 1: LetX be a nonempty convex set. Theng s

vi X if and only if, for everyy € X there exists a scalar The most widely encountered instance of (4) is the problem
a > 0 such thatx + a(x —y) € X. of entropy optimization (see [10] and references therein),

We end this section with a generalized version of th(\_f,vhere the goal is to describe the statistical propertiesnof a

classical Weierstrass theorem concerning the existence ‘H?def'y"]jg stochastic process from a finite set of measure-
minima of an extended real-valued function. ments of its moments.

Theorem 1: Leff : R™ — (—oo, +oc] be a closed proper Problem (4) is argen:able to solve tr:wou_gh Fench_ebllduality.
extended real-valued function. If there existsce R such Iae]E_V :lﬁ'l(S) an ;/ - EOO(S*),bt en it is possible to
that the level se{x € dom f : f(x) <n} is nonempty and efine a bilinear product ol x V* by,

bounded, then the set of minima pfover R™ is honempty N N N
and compact. (¢, %) — (@, ") 1= /SSD(X)%D (x)dx. (6)



As the following result [14] shows, to compute the convexargets/demands are stored in a depot located, without any
conjugate of the integral functional (3) with the bilinearloss of generality, at the orig. These targets are picked up
product defined in (6), we may just conjugate the integrandrom the depot, carried and dropped$hby an adversarial
Proposition 1: LetS be a finite measure set iR™, and agent traveling in straight lines at unit speed. The placeme
let V and V* be as above with bilinear product given bylocations are sampled independently from a spatial density

(6). Then, for anyp* € V*, we have ¢ : S — R,. We assume that the agent has unitary target
carrying capacity, i.e., he returns to the depot in between
I*(¢*) = h/ h* (" (x))dx. (7)  placing successive targets, and when he returns to the depot
A direct application of Theéorem 2 and Proposition 1, withhe spends an average time> 0. The rate at which demands

f:=Tandg(Ay) := —3(Ap—Db|0), yields the next result. are placed inS by the agent adopting spatial distributign
is thus given by

Corollary 1: Consider the problem defined by (4) and (5), \ - 1 (12)
and assume that the constraint qualification YR [IX] + T
b € 1i (Adom Z), (8) whereX is the location of an arbitrary demand. From (12)

we observe that the demand generation stochastic process is
completely specified by the spatial densijty In particular,
sup {(&,b) — T*(ATE¢) : £ e R}, (9) in order to sustain a higher rate, the density has to be
_ . ) more concentrated aroun@ alternately, as demands are
where A™ : R™ — Lo(S) is the adjoint map, given by gistributed further away from the depot, the smaller is the
ATE := 31, A Moreover, the supremum on the right-ayrival rate),. This dependence between the temporal rate
hand side of (9) is attained by sorge whenever finite. and spatial density of demands is a novel feature in our
Problem (4) will be referred to as thimal problem and formulation as compared to conventional setup for dynamica
v € L1(S) theprimal variable (9) is thedual problemand vehicle routing problems, where the temporal and spatial
the vectorg € R” thedual variableor simplymultiplier. The  components of the demand point process are typically as-
dual is always a convex problem, regardless of the structusemed to be independent.
of the primal. The following proposition gives sufficient Demands have to be serviced by a veHickeaveling at
conditions for the uniqueness §f. speedv. In order to service a target, the vehicle has to
Proposition 2: If the set of constraint functiodsi;}.,  physically travel to the location of the target, and we assum
is linearly independent anfi* is essentially strictly convex, without loss of generality, that the on-site service time is
then any optimal dual solution is unique. zero. A routing policy is said to be stable if the expected
We now have all the ingredients required to state theumber of outstanding demands is bounded almost surely at
chief result in [5], which yields the existence, uniquenesall times. In this paper, we are further interestedjratially
and characterization of the primal optimal solutiph(x) €  unbiasedpolicies. A policy is said to be spatially unbiased
£L1(S) in terms of (h*)’, the optimal dual solutiog™ and if for every pair of setsS;, S, C S,
the linear operator of constraints.
Theorem 3: Consider the primal-dual pair (4§9) of E[TIX € 8] =E[TX € 5],

Corollary 1. Assume thak is an essentially strictly convex whereT represents its waiting time. The results for spatially
and essentially smooth function, and suppose the followingased policies follow along similar lines.

holds. Then, (4) is equal to

condition is satisfied:h Let IT denote the class of spatially unbiased stable policies
A= lim hiz) > esssup AT¢*(x). (10) and let 7 = {o:S =Ry st [so(x)dx =1} be the
T—00 T x€S set of spatial probability distributions with suppast Let

Then, the primal optimal solution is given by, T;(m, ) represent the time elapsed from the moment the

n agent places-th demand at its location until the vehicle
" (x) == (B*)(AT¢" (x)) = (B*) | D& Ai(x) |, (11)  reaches its location, while the agent is placing targeteraec
i=1 ing to distributiony € F and the vehicle is implementing

where&* € R” is the dual optimal solution. routing policy 7 € II. Define thesystem tim&” : II x F by
The proof of Theorem 3 builds on results derived in [14] = o .
regarding the subgradients of convex integral functigreaig T(m ) = ll?l)ilolp Eo[Ti(m, )] (13)

is mainly based on differentiating the dual objective fumtt

at the optimum. Expressions for the average system tifiein dynamic

vehicle routing problems are available only in the extremes
[1l. PROBLEM DESCRIPTION of system load\/v, light or heavy. Here we focus on the

Consider a bounded s& C R? with ;(S) > 0, where heavy load regime)/v — oco. However, in this setup the

u(-) is the Lebesgue measure. L&tbe closure ofS and N . _ . .

hat for eve S there exists a balB centered We assume a single vehicle for the sake of simplicity. Thelyaisa
assume tha Very € Xl el presented here does not change qualitatively when theremardéple
at x, such thatuy(B N'S) > 0. An infinite number of vehicles.



target generation rate, as given by (12), is intertwinedhwitfor example, be achieved if the system planner has an
the spatial density; therefore, we perform our analysis for estimator to learnp. We leave the investigation of such
the limiting casev — 0" so that\,/v — +oco for any learning/adaptive routing policies for future work.

peF.

In the context described above, we consider a two-player
complete information zero-sum game between the systemThe optimal spatial density that will maximize the system
planner seeking to design routing policy for the vehicle antime asv — 0 when the routing policy ist* will emerge as
the adversarial agent placing demands, with the system tirtlee solution to the following optimization problem:
defined in (13) as the utility function. In other words, inghi 2
strictly competitive setting, the agent will seek to maximi sup A, </ \/de) st. peF. (16)
the system time, while the goal of the system planner is 2 S
exactly the opposite. A solution, or equilibrium, of the gam |n its original form, problem (16) is the product between a
will be a pair (7, ¢*) € Il x F for which convex and a concave function. Hence, it is not convex thus
hard to tackle. However, applying a logarithmic transforma
tion to the objective function and introducing a new vargabl
v :=log A, yields the following equivalent formulation

V. THE SADDLE POINT SPATIAL DENSITY

sup inf T(m, ) = T(n*,¢*) = inf sup T(m, ). (14)
peF mell nell e F

A pair (7*, ¢*) satisfying condition (14) is called saddle

point for the functionT'. In this paper, we are interested in
characterizing one such saddle point. SVEIE v+ 2log g Vex)dx st yel,peF. (17)
IV. AN OPTIMAL ROUTING PoLICY Since0 < E,[|X[] < max_ 5 |x]||, from (12) it can be

Consider the following policy proposed in [4], which we €asily seen that
will refer to asw*:

Unbiased TSP-based Routing Policket » be a large I'=- {bg (2 max || x|| +T) ’10gT] CR. (18)
enough positive integer. From a central poinSSipartitionS ) xes )
into r setsSy, ..., Sy, such thatf;sk o(x)dx = 1/r. Within Expressmg the dependenceobn the real variable allows
each set of the partition, form sets of demands with ajzg ~ US to rewrite (17) as

and as these sets are constructed, deposit them in a queue

and service them in a “first come, first served” fashion. The sup {’y + 2 sup log/ \/go(x)dx} , (29)

service of each set is achieved by constructing a TSP tour ver PEFY S

and following it in an arbitrary direction. Finally, opti@@  \here

overn. e

It was shown in [4] that in the limit a3 /v — +o0, Fy= {<P o € 5 E[IXl] = — } : (20)

(o 8 vy ? Problem (19) decouples the spatio-temporal dependence of
T ¢) 2 W)\“" (/5 ﬂx)dx) (15) the stochastic process of demand locations, splittingi(it6)

for any o € F, where 3 ~ 0.7120 is a constant that two connected sub-problems: one for the spatial component,

appears in the asymptotic result for the length of the skorte?nd another one for the temporal component. The former
path in the Traveling Salesman Problem (TSP) over th%ntalls a maximization over an infinite-dimensional space t

Euclidean plane [1]. Moreover, it was proved in [18] thadetermine an optimal parametric family of spatial proligpil
infren T, ) = T(n*, ) for all p € F. Hence densities, parametrized by, the latter is a scalar maxi-

B - - mization which yields the optimal rate, therefore compiete
sup T'(7", @) = sup inf T(m, ) < inf sup T'(m, ¢), identifying the optimal density from the previously found
g permell rellper parametric family, rendering the solution to (16) and the
where the last inequality follows from the min-max in-saddle point density for the game.
equality, which holds true on any product space (see e.g. ) . )

[2]). Sinceinfrerrsup e T(m,¢) < sup,crT(*,¢) (by . The Optimal Parametric Family

definition of infimum), we arrive at Giveny € I', we wish to solve
sup inf T(w, ) = sup T(7*, @) = inf sup T(m, ).
WEI} TET () WEI} (™, ¢) TET wer} (%) sup {log/s Vox)dx:pe .7-'7},
Therefore, if there exists @* € F such thatl'(7*,¢*) = o equivalently,
sup,c T'(*, ¢), then it would constitute, together witft,
a saddle point of” asv — 0T. The next section is devoted inf Z(p) := / —Vp(x)dx st peF,. (21)
to finding such ap*. S

Remark: Note that the complete information assumptiorfirst let us note that, as stated by the following lemma,
implies that the system planner has perfect knowledge §foblem (21) is feasible for every € I' and has a value
the spatial densityp, needed to implement*. This could, ©f zero wheny lays at the boundary df in (18).



Lemma 2: For everyy € int I', there exists a density Note that the integrand is proper and convex. Moreover,
v € F.. Moreover, whery belongs to the boundary @fthe we claim that it is also closed. Indeed, consider a sequence
value of (21) is zero. {zk, wr} C epi h such that(xy, wy) — (z,w) ask — oc.

Proof: Lety € A= {x € S :x € argmax, ||x|},and We can assume thdts;} C dom & given that restricting a
note thatu(A) = 0. Because of the smoothness assumptiofunction to its effective domain does not change its epilgrap
imposed on the s&, there exist ball$s and3’ centered a®@  Then, sincedom h = [0,00) is a closed set, it follows
andy with radiusr andr’ respectively, such that(BNS) >  thatz € dom h, thusw > limj_o —/@r, = —/. This
0 and (B’ Nn'S) > 0. Clearly, we can reduce the radii implies that(z,w) € epi h, which shows the closedness of
and still maintain the same property. Let andy,. denote h. Consequently, formulation (25) exhibits the same stmectu
the densities associated with uniform distributions defineas (4), and the results in Section II-C are applicable.
over B and B, respectively. Thenlim, o E,, [[|X]|] = 0 The next conjugate duality theorem will be of great
andlim, o E, , [[|X||]] = max, 5 |x||. Furthermore, these significance in the subsequent analysis. It determinesubk d
limiting values will only be achieved by singular distributs  of (25) and states that the duality gap is zero. Before we
with supports ove{0} and A, respectively; therefore, the formally state and prove the theorem, we need the following
integral in (21) is zero fory on the boundary of' defined key lemma.
in (18). Now consider a density defined as a linear Lemma 3:b, € ri (Adom Z,), for everyy € int I.

combination ofy,. and,-, with support ovei3 U B’. Then, Proof: By definition,ri (Adom Z, ) is equal to
by the linearity of the expectation we get for every¥ [0, 1],

Eo[IIX]]] = aBy, [[IX[I] + (1 = )E,, [IX]]-

Thus, giveny € T" with appropriate choices of, ' and «
we can always construct a densitye F.,. ]

Define the continuous linear mak : £;(S) — R? with
linearly independent components given by,

ri {d € R?:Jp € £1(S)Ndom Z; s.t. Ap =d},

and becauséy € £1(S) : ¢ > 0} C dom Z,, it follows
from Lemma 1 thati (Adom Z;) = {d € R? : d > 0}.
The fact thatb,, > 0 yields the claimed result. [

Theorem 4: Letl’ be defined as in (18), and leht T’
denote its interior. Then, for every € int I the dual of

dX . .
Ay — fs p(x) ) ’ 22) problem (25) is given by
o= ( it 22 )
X

2 e -7 D(y) := sup{g,b +/7:AT£<O},
and Ietla_)V € R? be thg column ve_cto(l, 7 )- Then, () ceR? (€, by) s 1ATE(x)
expressing the constraints that defifie in (20) in terms of (26)
A andb,,, we can rewrite problem (21) as where AT : § — L. (S) is the adjoint map, given by

. _ ATE(x) = & + &|x|. Furthermore, (26) admits a unique
t7 st. Ap=b,, ¢ >0, p € Li(S). 23 \ . ’ : o
inf Z(p) 4 »e=59 1(S) (23) solution&*(y), and the optimal value achieved is finite and
Since the objective function is convex gmand the equality equal to the infimum in (25).

constraints definingF, are linear, problem (21) is convex Proof: The dual of problem (25) is given by,
thus amenable to solve through Lagrange duality. The La-

grangian for this problem is the functidn: £,(S) x R? — sup {(¢, b)) — I} (AT},

R defined asL(y,&) := Z(p) + (£,b, — Ag). If some ger?

constraint qualifications are met, assuring that stronditgua and since the conjugate of the integrand functiodefined
holds, then the solution to (21) can be obtained by solvingn (24) is,

sup inf L(ep,&). _1 <0
gere ¢=0 W) =supfay +Vay =4 W VS0 27)
For the minimization overp one might be tempted to 220 oo otherwise

differentiate the Lagrangian (in the Fréchet sense [12]):iy Proposition 1 it must be equal to

however, the Lagrangian is nowhere differentiable sinee th p

positive cone{y € L£1(S) : ¢ > 0} has empty interior S { b +/ X AT¢ < O}.
and its complement is dense if;(S). As a result, this 5552 (€,bx) s 4ATE(x) ¢

approach cannot be rigorously justified (see [5] for furthe'r:rom Lemma 3 it follows that for everyy € int T

discussions). . e . .
To bypass this technical difficulty we will cast problem.the constraint qualification (8) is satisfied, and Corollary

(21) under the conjugate duality framework presented iqunglles mat (2t6) is equal to (25) (thus equal to (21)).
Section II-C. Defining the function ver the se

hz) = -z +06(z[Ry), foral zeR,  (24) M={¢eR?: AT¢(x) <0, forall xe S}, (28)

we can further rewrite (23) as that describes the maximization space in the dual problem,

i we must haveg, b.,) < 0. To see this, consider an arbitrary

inf Z (o) := /Sh(sﬁ(x))dx st Ap=by, ¢ € Li(S): ., cint T and lety be a density with support ove? such
(25) that Ay = b,, whose existence is guaranteed by Lemma



2. Then, for everyx € S we havep(x)(&1 + &%) < 0;  of £€* as a function ofy € int I, that will play a key role in

hence, establishing the existence and uniqueness of the solution t
&b, =¢ / p(x)dx 4+ ¢ / x||lp(x)dx < 0. (19). Specifically,
(& by) ' s ( ? s Ikt Proposition 4: Consider the dual problem defined in (26).

Therefore, the dual optimal value is bounded above by zeréhen, the functiorg™ : int I' — M is differentiable, and
thus it must be achieved at sor&~). Finally, the fact that (£3)'(7) < 0. Also, D'(y) = (£"(v),bl,) for all y € int T.

h* is essentially strictly convex (it is strictly convex over Proof: The setM defined in (28) is open, therefore
its effective domain) and the set of functiofis, ||x||} that the following first order condition must be satisfiedéat

defineA is linearly independent, implies through Proposition oT*
2, that&*(v) is unique for everyy € int I, [ G(7,€") =by — Bg (AT¢") =0. (30)
Corollary 2: &(vy) <0, for everyy € int T.
Proof: Given that¢* € M, we haveAT¢*(y)(x) =  This equation implicitly defineg” (y) with a Jacobian
&)+ &()|x|l < 0 for all x € S. Hence, lettingx = 0 PYe 9*T
renders the result. ] 5_5 = _8—52’

Based on the preceding theorem, the following proposition
characterizes the unique optimal parametric family ofigpat Which is negative definite for every € M because of the
densities. strict convexity ofZy (strictly convex function composed

Proposition 3: Consider the optimization problem definedvith a linear function). Thus, it is nonsingular and the
by (21) and (20). Then, for every € int I the unique implicit theorem function furnishes the differentialyliof

timal solution is ai by, *(~). Moreover, _
Op Imal solution IS gl\llen y S (7) (é*)/ B <82_'Z_T_> 1 8G (31)
“(x) = —— _ , forall xeS. (29 -\ o 28
)= Em T aoN? @9 ¢

Proof: The f iomh defined in (24) is both all The inverse of the Hessian @} is positive definite, and
oot The functio efined in (24) is both essentially oc is the column vector with entrie@,—%e—V). Hence,

strictly convex and essentially smooth. Indeed, it is #itric 27 L )
convex and differentiable when restricted to its effectivéeft'mumply'ng (31) by the transpose (%% yields
domain [0, o), and |/(z)| = =~3/2 which tends toco as oG\ T 1

x — 0. Moreover,h satisfies the growth condition (10) since 0< (6_> (€)' = _56_
A = 0 > esssupyes AT¢"(x). Then, invoking Theorem "

3 we conclude that for everyy € int I', the optimal and so(¢)’ < 0. Finally, since for everyy € int " we have,
solution to (21) is given byp*(x) = (h*) (ATE"(v)(x . . .

for all x € S, where£*(v) Ys( t)he u(niq)ué dual(s)o(lu?[i)on D(7) = (€7 (7):by) — T1L(ATE (7)),
determined by Theorem 4. Finally, from (27) we have thait follows that D is differentiable and
(h*)(x) = 1/422 for all z < 0, and we thus arrive at (29).

m D) = (€ (). b,) + <(£*)’(7),bv -

(&)

811 T ¢&* >
(ATE° () )s
Remarks: 0¢

« Through the use of conjugate duality, Theorem 4, wéh€ second term vanishes due to (30). u
have transformed the infinite-dimensional optimization The next theorem in conjunction with Proposition 3
problem (21) into a maximization of a strictly concavecOmpletely characterizes the unique optimal spatial dgnsi
function over a convex set ifR2, and although the Solution to problem (16).
unique solution to (26) cannot be expressed in closed Theorem 5: The optimization problem defined by (19) and

form it can be efficiently found numerically. (18) admits a unique optimal solutio” < int I".
« The solutiony’ (x) obtained in Proposition 3 belongs ~ Proof: Forally € I', define

to C(S), the set of continuous functions with support

over S which is dense inl;(S) and has a positive F(y):= :‘gg /SWP(X)dXv

cone with non-empty interior. We could have chosen o _
C(S) as the underlying working space and solve (213nd let¥(y) = v+ 2log F(v) denote the objective function
through differentiation of the Lagrangian; however, thdn (19). From Theorem 4 we know that(y) = —D(v) over

uniqueness result obtained 6 (S) is much stronger. int I', and Lemma 2 implies thak(v) = —oo wheny is at
) the boundary of the intervdl. Thus,dom ¥ = int I, and¥
B. The Optimal Parameter is proper. The functio’ is also closed; indeed consider any

We now study the optimization over in (19), and show sequence{,wy} C epi ¥ such that(yx,wr) — (v, w).
that there exists a unique solution*. Since for every Recall that restricting a function to its effective domaoed
~ € int T the dual optimumé&*(v) is unique,~* will  not affect the epigraph; hence, we can assume {tha} C
determine the unique spatial density := 7. from the dom V. Then, by Proposition 4 we know is continuous
family described in (29) that attains the maximum in (16)over its effective domain, an@(v) = limg_e Y(y%) >
We start by providing some results concerning the behavidiim_, ., wr = w, which shows tha{y,w) € epi . Now,



sinceV tends to—oco at the boundary of its effective domain, and hence the agent has to travel less distance on average
we can find a scalan such that the upper level sty €  between placement of successive targets. Figure 1 shows the
dom W : W(y) > n} is nonempty and bounded. Thereforeplot of the ratio of the system timé = T(m*,¢*) and
we can invoke Theorem 1 to conclude that the set of maxingy := T'(7*, @uniform) With respect to increasing size of the
I'* is nonempty and compact; moreovE¥, C int I regionS. As it can be seenp* yields 20% higher system
For every~* € I'* note that since/* is an interior point time than a uniform distribution fop as low as 1.
of T', the following first order condition must be satisfied:
F'(y")
F(y*)
Combining Theorem 4 with Proposition 4, we get
* * /% 1 k7 k) —~*
F'(y") = = (€ (7)), bl ) = 586 (v )e
Also, Proposition 3 leads to
dx
D ) = / AT EF NN
SE AT erSion ey

which implies thatD(vy) = 2 (£*(v), b,). Thus, returning to
(32) and after some simple algebra we conclude that eve
~* € I'" must satisfy

267(v") = 765 (v"), (33)

wherer > 0. LetT = {y € int T' : &(y) < 0}, and note
from Corollary 2 thaf™ C I'. From Proposition 4 it follows
that & is continuous, thud is an open set. Inside this set,
(&)'(v) < 0 and by Proposition 3 it is clear that should L ) o
be increasing so that the density defined in (29) integrates t R€call that the paifr™, ™) constitutes an equilibrium for

_ : ) - p :
unity overS. Hence, returning to (33) we conclude that thd€ game in the limit as — 07 Therefore, understanding
maximizery* has to be unique. - how the relative error betweeéhi and the measured optimal

Corollary 3: The solution to (16) can be written as system timeT’,, decreases asbecomes closer to zero is an
X issue of practical significance. To that end, we implemented
P (x) =

1.4

=0.

V(v )=1+2 (32)

1.351

_ 130
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N
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T

N
)
T

forall v e€int T,
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N

o
T

11F

1.05
0

Radiusp

Fig. 1. System timeT'y; with uniform distribution andl™ .

forall xeS, (34)

in Matlab the TSP-based routing policy described in Section
(7 +2[1x[)*’ IV based on the Lin & Kernighan's algorithm [11]. The
results obtained are gathered in Figure 2, where we note that
for v = 0.01 the relative errof T — T, |/T is already less
than 5%. This observation is actually not surprising, since
as implied in [9], the expression for the system time (15)
in heavy load is usually a fairly good approximation for the

where K > 0 is a normalization constant.
Proof: Letting K = (7/2&5(v*))?, the result readily
follows by plugging (33) back in (29). ]

Remark: If a demand is placed at location, then from

(12) we note that- + 2[|x|| is the average time the agentsystem time under “intermediate” load regimes.

has to wait before he can place another demand.iithis

VII. CONCLUSIONS

is the source of the spatio-temporal dependence between the
location and the rate of demands, and not surprisingly, it is We studied a strategic dynamic vehicle routing problem
reflected on the shape of the optimal spatial dengsity where demands are place in a bounded regidy an agent
with unitary capacity operating from a depot. We formulated
the corresponding complete information zero-sum game,
In this section we provide simulations that shed light omwith the average waiting time of a typical demand as the util-
the theoretical results developed in the previous sectionigy function, and showed that an equilibrium in the limiting
Let S, = {x € R? : |x|| < p} be the support of regime when the vehicle travels arbitrarily slower than the
densities, and- = 0.1. If the physical constraint imposed adversarial agent is given by the pair of a TSP-based routing
by the agent carrying and placing the targets ®rwere policy and a unique power-law spatial density centered at
removed and the rate were fixed, then the distribution th#éte depot location. While the TSP based routing policy and
attains the maximum system time agv — oo is uniform; its performance analysis has been adopted from [4], [18], th
this was proved in [4] using a Hardy-Littlewood-Polyaresults on the optimal spatial density were rigorouslydsti
inequality. However, when the spatio-temporal dependenersing tools from conjugate duality and results concerning
is introduced, a uniform distribution will induce a rate thathe maximization of concave integral functionals subject
is smaller tham\,-. This is because* is more concentrated to linear equality constraints. Remarkably, all the result
around the depot location than a uniform spatial densitgbtained hold for any bounded regighwith a sufficiently

VI. SIMULATIONS
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smooth boundary, and in particular also for regions with
holes. This is an important feature since it allows to introel
support constraints for the spatial distribution adoptedie
adversary, which serves as a good abstraction for scenarios
involving predator-prey interactions and criminal putsui
Also note that since lower bounds for the average system
time for dynamic vehicle routing under heavy load often take
the form of concave integral functionals (see e.g. [8]), the
convex analytic approach applied in this paper could be used
to formally analyze the performance of policies under worst
case scenarios.

Regarding avenues for future research, it would be in-
teresting to relax the complete information assumption. In
particular, we are interested in incorporating estimatidén
©* into the strategy set of the system planner. Accordingly,
it would be interesting to incorporate estimation cost ith®e
utility function of the game and investigate its effects be t
optimal strategies. Such a setup could also provide a Hatura
framework for the formal study of geographic profiling [17],
[13], where the objective is to determine the most probable
area of a criminal (predator) hideout (“anchor point”) ldhse
on observed attack locations. It would also be interesting t
study strategic dynamic vehicle routing problems invodvin
multiple coordinated adversaries.
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