
SCReen Adjusted Panoramic Effect - SCRAPE

Carl Flynn
CASALA Research Centre

Dundalk Institute of
Technology

Dundalk, Co. Louth
carl.flynn@casala.ie

David Monaghan
CLARITY: Centre for Sensor

Web Technologies
Dublin City University

Dublin 9
david.monaghan@dcu.ie

Noel E. O’Connor
CLARITY: Centre for Sensor

Web Technologies
Dublin City University

Dublin 9
noel.oconnor@dcu.ie

SUBMITTED to ACM MULTIMEDIA 2013 OPEN SOURCE SOFTWARE COMPETITION

ABSTRACT
A Cave Automatic Virtual Environment (CAVE) is an en-
closed virtual reality room that uses multiple projectors to
display images across its surfaces. It uses one or more com-
puters to synchronise and combine the images and allows
users to control virtual worlds using a host of interaction de-
vices. Traditionally, a CAVE is used by a single user at any
one time and by utilising some form of motion sensing, the
user’s head position can be tracked to allow for first virtual
perception. The images are then displayed in stereographic
3D in order to complete the virtual reality effect.

Professional CAVE installations are expensive and can
cost upwards of several hundred thousand euros. This tends
to act as a significant barrier to their propagation, however,
as the reduction in cost of high specification computers, pro-
jectors and graphics cards continues apace, it has sparked
a renewed interest in CAVE environments and given rise
to the realistic possibility of setting up low cost, amateur
CAVEs. Unfortunately, one of the greatest disadvantages of
CAVE systems is the lack of inexpensive, easy to use, spe-
cialised software. In this paper we present an open source
and easy to use CAVE software toolkit called SCReen Ad-
justed Panoramic Effect or SCRAPE for short. We believe
that SCRAPE is the first major piece in a longer-term vi-
sion that aims to bring easy to setup, easy to use, portable
CAVE systems to all types of non-expert users.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; H.5.1 [Multimedia
Information Systems]: [Artificial, augmented, and virtual
realities]

General Terms
Design, Experimentation, Human Factors, Measurement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM’13, October 21–25, 2013, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-2404-5/13/10 ...$15.00.
http://dx.doi.org/10.1145/2502081.2502230.

Figure 1: The standard layout for a CAVE

Keywords
CAVE; SCRAPE; Processing; Virtual Reality; 3D

1. INTRODUCTION
The standard setup for a CAVE [7, 6, 8] environment has

not changed much since its inception and can be seen in
figure 1. The archetypal CAVE is made up of four screens
but anywhere between two and six screens is also possible.
They typically consist of expensive hardware and software
solutions and require extensive investment of time and ex-
pertise in order to develop useful interactive virtual environ-
ments. After assessing the many different CAVE software
platforms available, it became clear that there was an op-
portunity to develop a simple application which would take
the accessibility of one of the most interesting open source
visual programming tools available today and adapt it to
work in a CAVE.

The primary objective of the work described in this paper
was to develop an application that could be easily configured
to work in CAVEs of differing sizes, dimensions and screen
numbers using a multitude of different inputs. We also put
an added emphasis on the need for the software to be open
source and freely available. The chosen software develop-
ment platform is an open sourced tool called PDE (Process-
ing Development Environment) or Processing for short [5].
Processing is released under the GNU GPL (General Public
License) and its libraries are released under the GNU LGPL
(Lesser General Public License). The technical project to
adapt Processing to CAVE environments is called SCReen
Adjusted Panoramic Effect or SCRAPE and is intended for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/18320556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

use by anyone who works with a CAVE or similar virtual
reality environment (see figure 2). SCRAPE is particularly
suited to abstract data visualisations [9] but can be used for
visualising a wide range of CAVE-based projects.

In this paper we describe the main motivations behind the
development of SCRAPE. We present a technical description
of the SCRAPE software platform, outline its configurations,
reference key libraries and provide a brief summary of a
standard SCRAPE setup.

2. MOTIVATION
The initial seed for SCRAPE was planted in 2010 when

the primary author, based between the Centre for Affective
Solutions for Ambient Living Awareness (CASALA) [1] and
the Centre for Sensor Web Technologies (CLARITY) [2],
started working with a CAVE installation. CASALA had
recently purchased a CAVE for a six figure sum from well-
known CAVE suppliers which provided everything from the
physical CAVE structure to the 3D projectors, ceiling mir-
ror, screens, workstations, IR trackers, IR emitters, glasses
and interaction controller. They also installed the initial
CAVE 3D and tracking software as well as an assortment of
additional demo software installations and examples.

Using the supplied software one could take 3D models and
quickly view and interact with them in the CAVE. It sup-
ported 6 degrees of freedom around 3D objects as well as
head tracking to help with the sense of immersion but in re-
ality it was little more than an extravagant stereo 3D model
viewer. On discussing these limitations with the supplier,
they suggested using an alternative software that would pro-
vide us with the levels of interactivity that we were looking
for. However, this would have incurred a significant addi-
tional cost and the software required considerable expertise
in low level 3D programming. Initial trials indicated that
a lot of development time would be required to do even
relatively simple 3D interactive worlds. Several other simi-
lar CAVE software packages were also investigated, however
most had similar limitations in terms of accessibility or were
simply too costly.

The high cost and inaccessibility of most CAVE software
applications left us with a bad impression and initiated our
thinking about the idea of creating a low cost CAVE and
developing open source software that could cope with the
particular requirements of a CAVE. At the same time we
wanted to allow ordinary developers to code something that
was both interactive and relatively easy to use.

The Processing open source programming language and
data visualisation tool platform, created by Casey Reas and
Benjamin Fry [5], holds as its tenets the fundamental con-
cepts of being freely available and easy to use by non-experts.
While Processing has some limitations, it is an excellent tool
for developing 2D and 3D interactive visuals that can help
in understanding and interpreting large quantities of data.

Over the nearly four years of using the CAVE we received
a steady stream of enquiries from people from all over the
world interested in setting up their own CAVE systems. In
the majority of cases cost was an important factor and most
were surprised when they discovered the price tag associated
with both the hardware and the software. There was, how-
ever, a definite interest from people in setting up CAVEs
for a wide range of different uses, such as data visualisation,
product prototyping, training, exhibitions etc. Stemming
from our familiarity with CAVE installations, the price tag

Figure 2: SCRAPE being used in a CAVE

associated with them did not seem to accurately reflect the
technology and constructions involved. We were convinced
that a four screen CAVE could be built for a few thousand
euros rather than hundreds of thousands and even less for
three screen and V-screen (i.e. two screens) builds. Jeffrey
Jacobson, director of PublicVR, developed a set of modifi-
cations for the Unreal Tournament (UT) 2004 Game Engine
many years ago which enabled the UT engine to display in
a CAVE [4] . He also published an online article on how to
build a low cost PC based CAVE with UT. Keeping exam-
ples such as this in mind, we were confident that it would
be possible to build a reasonably comparable CAVE to our
professional one for around €3000 but most importantly we
wanted to provide a free software tool that even a relatively
non-technical person could use.

Included amongst Processing’s long list of library contri-
butions lies one particularly interesting library called ‘Most
Pixels Ever’ (MPE) [3]. MPE was created by Daniel Shiff-
man, an assistant arts professor at NYU and his library en-
ables Processing sketches to run synchronously across mul-
tiple machines and across multiple screens in order to give
the impression of one large screen. It works particularly well
with 2D sketches displayed on a flat surface and was crucial
in inspiring the initial idea for the development of SCRAPE.

For SCRAPE we have adapted MPE in conjunction with
many other useful libraries in order to visualise seamless 3D
sketches on screens placed at entirely different angles and
positions to each other. SCRAPE is a setup that is flexible
and can accommodate different screen numbers and sizes,
different controllers and both stereo and non-stereo images.
It was developed specifically to work well on both low bud-
get homemade CAVE installations and six figure research
CAVEs. Video demonstrations of SCRAPE in action can
be viewed via a dedicated YouTube channel:
http://www.youtube.com/user/cjflyn

3. TECHNICAL DESCRIPTION

3.1 Overview of Software Components
SCRAPE works in a similar manner to all Processing

sketches in that it uses the two key functions of Processing,
setup() and draw(), in order to initialise and animate a 3D
sketch. setup() handles all the initialisations for SCRAPE

http://www.youtube.com/user/cjflyn

Figure 3: Modified Processing Icon for the SCRAPE
platform

and is only run once while draw() runs continuously and is
used to animate the sketch. SCRAPE also contains multi-
ple Processing sub classes which are displayed as tabs within
the Processing IDE. Each sub class handles a specific aspect
of the SCRAPE application such as the camera movements,
the use of different controllers and the use of a stereo and a
non-stereo sketch. The SCRAPE logo can be seen in figure
3.

The following is an explanation of the functionality of each
class:

SCRAPE.pde This is the core of SCRAPE and defines
its main configurations:

1. Imports key libraries

2. Configures main scene variables

3. Reads the mpe.ini configuration file settings and ap-
plies relevant functions

4. Sets up the Most Pixels Ever library which controls
screen synchronisation and message broadcasting

5. Configures and applies the Obsessive Camera Direc-
tion library based on configurations set in the mpe.ini
file

joypad.pde
This uses the proCONTROLL library to enable SCRAPE
sketches to be easily configured to work with a multitude of
different USB controllers. Each action of the controller is
then broadcast out to all the other SCRAPE clients which
then interpret that action via the ‘navigation’ code.

keyboard.pde
Some basic code that enables a SCRAPE scene to be con-
trolled out of the box with the arrow keys and spacebar but
can be expanded and modified as required. Similar to the
‘joypad’ code, each action of the keyboard is then broadcast
out to all the other SCRAPE clients which then interpret
that action via the ‘navigation’ code.

navigation.pde
This code listens for messages broadcast by other clients and

translates those messages into actions within the SCRAPE
scene. Actions are applied differently to different SCRAPE
clients depending on which screen is set in the mpe.ini file
for that particular client. Movements for the camera of a
‘FRONT’ screen will obviously be different to movements
of a camera for a ‘FLOOR’ screen which point in different
directions and sit on different axes.

nunchuckoo.pde
Nunchuckoo is a project in of itself but is incorporated into
SCRAPE. The Nintendo Wii Nunchuck has proved to be an
excellent controller for SCRAPE and this code allows you
to easily connect and configure your Nunchuck and Arduino
to SCRAPE. As with the ‘joypad’ and ‘keyboard’ code files,
each action of the keyboard is then broadcast out to all the
other SCRAPE clients which then interpret that action via
the navigation code. More information on the Nunchuckoo
project can be found at:
https://github.com/c-flynn/Nunchuckoo

scene.pde
Simply contains the non-stereographic scene code. This is
the code that one would normally expect to find in a Pro-
cessing draw() function

stereoScene.pde
This contains the same code one would expect to see in
the ‘scene’ tab but also references the stereo library and
splits the scene rendering per eye in order to be able to view
SCRAPE in full stereo 3D in conjunction with active shutter
glasses.

3.2 Configuration
One of the key goals in developing SCRAPE was to pro-

vide a system that could adapt dynamically to the require-
ments of different users with different CAVE specifications.
In order to do this, SCRAPE uses a configuration file called
mpe.ini. The mpe.ini file within SCRAPE is an extension of
the original Most Pixels Ever configuration file and makes
use of the previous MPE configurations but also adds a few
CAVE specific elements such as screen selections, controller
options and stereo activation. Using this file, SCRAPE is
able to identify how many screens are being used, the po-
sition of each screen, the size of each screen etc. SCRAPE
then takes this information and ensures that each camera is
positioned according to the correct size, position and aspect
ratio of each screen and that the images displayed on the
screen appear and move seamlessly. This is a core function
of what SCRAPE does and it is primarily handled on ini-
tialisation of SCRAPE in the SCRAPE.pde file within the
setup() function.

3.3 Other Key Libraries
The key libraries used in order to enable SCRAPE to func-

tion correctly are:
Most Pixels Ever (MPE)

Controls the communication between the different sketch in-
stances and synchronisation between screens
https://github.com/shiffman/Most-Pixels-Ever/

Obsessive Camera Direction (OCD)
Handles the multiple scene cameras required
http://gdsstudios.com/processing/libraries/ocd/

https://github.com/c-flynn/Nunchuckoo
https://github.com/shiffman/Most-Pixels-Ever/
http://gdsstudios.com/processing/libraries/ocd/

proCONTROLL
Allows users to connect a multitude of USB controllers in
order to interact with SCRAPE
http://creativecomputing.cc/p5libs/procontroll/

stereo
Enables standard 3D sketches to be viewed in full stereo-
scopic 3D
https://github.com/CreativeCodingLab/stereo/

3.4 SCRAPE Setup
In this section we provide a brief summary of a standard

SCRAPE setup. We assume that it is desired to install
SCRAPE on a four wall CAVE which has one PC/workstation
per screen and one master PC/workstation to control every-
thing. Detailed instructions and open source code can be
downloaded from:
https://github.com/c-flynn/SCRAPE/

1. Install the appropriate version of Processing onto each
computer

2. Download SCRAPE from github onto each computer
and copy the ‘SCRAPE’ folder into the Processing
sketchbook folder

3. On the master computer copy the mpeServer.jar file
from the SCRAPE folder and place in Processing’s
/lib directory. This file handles the communications
between the different SCRAPE instances

4. Run the mpeServer.jar file on the master computer
with the command: java -jar mpeServer.jar -framerate30
-screens5

5. Ensure all the other machines can talk to the master
computer with telnet: telnet 192.168.1.x 9002

6. Modify the mpe.ini file for each instance of SCRAPE
ensuring that the correct information and options are
set for each; such as screen id (starting from 0 up),
screen view (Front, left top etc.), screen size, stereo
on/off etc.. The controller configurations should only
be set and activated on the computer that a controller
will be connected to

7. Run the sketch on each computer and once all 5 in-
stances are running your SCRAPE sketch should be
visible on all screens

4. CONCLUSIONS
We have presented an easy to use open source CAVE soft-

ware creation toolkit called SCReen Adjusted Panoramic
Effect or SCRAPE. With the ever increasing popularity of
CAVE systems we believe that SCRAPE is one of the first
major pieces in the overall CAVE jigsaw that will allow
non-expert users, with modest budgets, to create and adapt
stereoscopic virtual reality environments quickly and easily.
The SCRAPE software platform can function in either pro-
fessional or amateur based CAVE systems and is designed
to adapt to multiple screen orientations and sizes using a
multitude of inputs. SCRAPE is an ongoing project and
continues to be developed as an open source platform for
users of all levels to support the development of new and
interesting 3D interactive CAVE virtual environments.

5. ACKNOWLEDGEMENTS
CASALA is funded under Enterprise Ireland’s Applied

Research Enhancement Program with support from EU struc-
tural funds. This work is supported by Science Foundation
Ireland under grant 07/CE/I114. The research that lead to
this paper was supported in part by the European Commis-
sion under the Contract FP7-ICT-287723 REVERIE.

6. REFERENCES
[1] Centre for Affective Solutions for Ambient Living

Awareness. http://www.casala.ie/.

[2] CLARITY: Centre for Sensor Web Technologies.
http://www.clarity-centre.org/.

[3] Daniel Shiffman’s Most Pixels Ever.
https://github.com/shiffman/Most-Pixels-Ever.

[4] Jeffrey Jacobson’s Unreal Tournament.
http://planetjeff.net/ut/CaveUT.html.

[5] Processing open source programming language.
http://www.processing.org/.

[6] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual reality: the
design and implementation of the CAVE. In
Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’93,
pages 135–142, New York, NY, USA, 1993. ACM.

[7] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V.
Kenyon, and J. C. Hart. The CAVE: audio visual
experience automatic virtual environment. Commun.
ACM, 35:64–72, June 1992.

[8] A. Febretti, A. Nishimoto, T. Thigpen, J. Talandis,
L. Long, J. Pirtle, T. Peterka, A. Verlo, M. Brown,
D. Plepys, D. Sandin, L. Renambot, A. Johnson, and
J. Leigh. CAVE2: a hybrid reality environment for
immersive simulation and information analysis. In
Proceedings of IS&T/SPIE Electronic Imaging, The
Engineering Reality of Virtual Reality 2013, 2013.

[9] C. Flynn, H. Lee, and N. E. O’Connor. Visualising and
interacting with a cave using real-world sensor data. In
iHCI 2011 - Irish Human Computer Interaction
Conference, Cork, Ireland, 2011.

http://creativecomputing.cc/p5libs/procontroll/
https://github.com/CreativeCodingLab/stereo/
https://github.com/c-flynn/SCRAPE/

	Introduction
	Motivation
	Technical Description
	Overview of Software Components
	Configuration
	Other Key Libraries
	SCRAPE Setup

	Conclusions
	Acknowledgements
	References

