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Abstract	

 

The stochastic discount factor model provides a general framework for pricing assets. A 

suitably specified discount factor encompasses most of the theories currently in use, 

including the CAPM, consumption CAPM, higher-moment CAPM and their conditional 

versions. In this thesis, we focus on the empirical admissibility of alternative SDFs 

under restrictions that ensure that investors’ risk-preferences are well behaved. More 

innovatively, we explore whether the SDF implied by the 3 and 4-moment CAPM is 

plausible under restrictions that are weaker than those considered by Dittmar (2002) yet 

sufficient to rule out implausible curvature of the representative investor’s utility 

functions. We find that, even under these weaker restrictions, the 3 and 4-moment 

CAPM cannot solve well known puzzles which plague the empirical performance of 

extant rational asset pricing models, even though the higher order terms do generate 

considerable additional explanatory power. Faced with this difficulty, we then explore 

whether the failure to fully account for cross-sectional differences in average returns can 

be explained by the presence of either transaction costs or a behavioural component of 

the SDF, reflecting investors’ systematic mistakes in processing information. We find 

evidence of both problems, though our analysis is not conclusive in this respect. Finally, 

in a more applied exercise, we apply the SDF-framework to test whether Chinese fund 

managers generate superior investment performance, and find that Chinese fund 

managers have not achieved better performance than the individual investors under 

either the unconditional or the conditional measure.  
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1. Introduction	and	Overview	

1.1. Introduction	

Starting with the establishment of portfolio theory (Markowitz, 1952), financial 

researchers have devoted considerable efforts to the investigation of the trade-off 

between return and risk for traded assets. A legitimate pricing model is equivalent to a 

pricing function that projects uncertain future payoffs into present prices that are 

conditionally determined in the observable information set. Cochrane (2001) partitions 

asset pricing into two folds: absolute asset pricing and relative asset pricing. Absolute 

pricing involves pricing each asset with respect to its exposure to fundamental sources 

of macroeconomic risk. For example, the fundamental sources can be GDP, oil price, 

industry production, and consumption. Relative asset pricing is less ambitious. It aims 

to price an asset with reference to the prices of other assets. The CAPM (i.e. the “beta” 

model) and the Black-Scholes option pricing theory, respectively, are two classical 

examples. No matter which approaches we want to use, however, a generalized 

framework, namely the pricing model representation based on the stochastic discount 

factor (henceforth SDF) or pricing kernel, can be applied. 

 

For example, consider the paradigm proposed by Arrow-Debreu for the study of 

equilibrium in financial markets. In this setup, as a fundamental mechanism to study 

investor's wealth allocation between consumption and investment across time and states 

of nature, asset pricing models focus on the relation between future payoffs and current 

prices. In a complete market, for each state of nature at each time date, there exists a 

state price. And for each traded asset, the sum of all its possible future payoffs weighted 
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by the relevant state prices equals the current price of this asset. This approach can be 

renormalized in the framework of the SDF pricing model. As pointed out by, among 

others, Cochrane (2001) and Smith and Wickens (2002), most asset pricing models can 

be treated as particular versions of the SDF model. These models include the original 

capital asset pricing model (CAPM) introduced by Sharpe (1964), Lintner (1965) and 

Black (1972), the European option pricing model developed by Black and Scholes 

(1973), and the general equilibrium consumption-based inter-temporal capital asset 

pricing model of Breeden and Litzenberger (1978) and Lucas (1978). Precisely, if the 

SDF is linearly related to the market portfolio, then stock returns can be described by 

the static single-factor CAPM; If one constructs a SDF which prices an asset 

continuously, then it also can be applied to price the related option (Cochrane, 2001); If 

the economy has a representative agent with a well-defined utility function, then the 

SDF is related to the growth of marginal utility of aggregate consumption and stock 

returns can be explained under the consumption-based CAPM. Furthermore, most 

models proposed by the recently emerged behavioural asset pricing literature, notably 

the behavioural asset pricing theorem (Shefrin, 2010), also can be formalized in terms 

of this framework. 

 

As pointed by Campbell (2000), the challenge for researchers is to understand the 

economic forces that determine the SDF, or the reward for investors’ bearing particular 

risks. Although we have made progress in this field in the past 30 years, our 

understanding is still far from perfect. A number of anomalies persist in asset pricing 

(Lewellen & Nagel, 2006). For example we do not yet fully understand why, for many 

years, small stocks have outperformed large stocks (the “size effect”, see, (Fama & 

French, 1992)), why firms with high book-to-market (B/M) ratios outperform those with 
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low B/M ratios (the “value premium”, see, (Fama & French, 1992), and (Loughran & 

Ritter, 1997)), why stocks with high returns in the previous years outperform those with 

low prior returns (‘‘momentum phenomenon’’, see, (Jegadeesh & Titman, 1993), and 

(Jegadeesh & Titman, 1999)), why the link between consumption growth and the equity 

premium or interest rates is so weak (“equity premium puzzle”, see, (Mehra & Prescott, 

1985), and (Campbell & Cochrane, 2000); and “risk-free rate puzzle”, see, (Weil, 

1989)).  

 

Any measurable random variable can be described by its moments. For example, the 

mean of a random variable is its first moment, variance is its second moment centred 

around the mean, skewness is a centred third moment and kurtosis is a centred fourth 

moment. In this thesis, I make large use of the notion of moments in discussing and 

characterizing the multivariate distribution of equity returns. I study mainly first, second, 

third and fourth moments. I pay special attention to their interaction, as emphasized by 

modern asset pricing theory, and I discuss the portfolio, investment and risk 

management implications of alternative models equilibrium first moment, i.e. 

equilibrium mean returns.  

 

In the next section, I define and contrast unconditional and conditional moments from 

the viewpoint of the task represented by the modelling of the multivariate and 

multi-period distribution of asset returns. In 1.3, I outline the old and new paradigms of 

asset returns. In Section 1.4, I specify the main research questions. In Section 1.5, I 

explain the motivations of this study. In Section 1.6, I outline the structure of this thesis. 

In Section 1.7, I provide an overview of the main theoretical results and empirical 
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findings of this thesis and I highlight their contribution to the extant financial and 

econometric literature. Section 1.8 concludes. 

 

1.2. Conditional	vs.	Unconditional	Moments	

Time series of asset returns can be seen as realizations y1, y2, ..... yt of a multivariate 

random variable y drawn from a joint probability distribution p(y1, y2, ..... yt). Similarly, 

for practical modelling purposes, future returns can be seen as realizations yt+1 of a 

random variable drawn from the conditional probability distribution p(yt+1|y1, y2, ..... yt). 

Loosely speaking, stationary series have time invariant moments. Strictly stationary 

series are realizations of random variables drawn from a time invariant probability 

distribution and, therefore, all their moments are time invariant. Covariance stationary, 

also known as wide sense or weakly stationary, series have finite and time invariant 

first, second and cross-second moments (e.g., respectively, the mean, variance and 

autocovariances/autocorrelations). Thus, strictly stationary series with finite first and 

second moments are also covariance stationary but not vice versa. Since independence 

of two random variables refers to the possibility of writing their joint density function as 

the product of their marginal densities, serial independence requires that all the 

cross-moments between any polynomial of current and past realizations be zero. It 

therefore requires independence between all the moments. Formally, for any random 

process, and hence also for any return yt, serial independence (i.e. independence 

between yt and yt-i) means that E[g(yt)h(yt-i)] = E[g(yt)]E[h(yt-i)] for any integer i, 

implying that   0)(),(  itt yhygCov  for any measurable function g and h and, 

therefore, for any cross-moment of yt and yt-i. Autocorrelation is one possible source of 

serial dependence in returns. It implies linear dependence of the mean of the process on 
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past realizations, and it therefore corresponds to dependence in the first moment. More 

general forms of serial dependence introduce linear relations between different 

moments. These might appear as non-linearities in the dependence in first moments. 

 

One way to summarize serial dependence and co-dependence between moments is to let 

the corresponding polynomials of returns g(yt) be determined by data generating 

processes similar to those commonly used for returns, e.g. auto-regressive moving 

averages (ARMA). Serial dependence between moments can then be modelled as 

dependence between polynomials of current returns and past return realizations. For 

example, with tt yyg )( , the expectation of yt conditional on its past history 

)(1 ttyt yE  , i.e. the first conditional centred moment of yt, can be defined as a 

function of yt-i (i > 0). Using a simple autoregressive specification, we might let 

ttt ybgayg   )()( 1  or ttt ybgay   )( 1 , where a and b are constants and 

ttt y    is a conditionally zero-mean return innovation. In this specification, the 

first moment is a function of the past realization of the process, i.e. 

11 )(   tttyt byayE . Similarly, with 2)( ttyg  , the conditional expectation 

2
1

22
1

2 )()()(   ttttttyt byayyE   is the conditional variance of the return 

process and it depends upon the past history of the latter.  

 

Specifications like these introduce the distinction between conditional and 

unconditional moments and allow the former to be time-varying. In Finance, this 

distinction is important unless we assume that assets are held for a long period of time. 

In this case the relevant conditioning information set is far in the past and its influence 

on conditional expectations is negligible, e.g. for (stationary) series for which E[g(yt)] 
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exists, limk→+∞  Et-k[g(yt)] = E[g(yt)]. The distinction between conditional and 

unconditional variance was emphasized by Engle (1982). 

 

If a process is covariance stationary, its unconditional moments exist and they are the 

mean of the conditional moments over all the possible realizations of the process itself, 

i.e.  

 

 
       

  
1 ( ) 1 1, 2, ... ( ) ,

( ) 1, 2, ...

t t t k t

t k t

E E g y t E E g y k

E E g y k

 



      

  
.	 (1‐1)	

 

Thus, if a process is co-variance stationary, its unconditional variance exists and is the 

expectation of the time-t conditional variance conditional upon all the possible 

realizations, i.e. letting 2)( ttyg  , the unconditional variance of ty  is  

 

  2 2 1, 2, ....y t k tE E k    . 	 (1‐2)	

 

As pointed out by Loretan and Phillips (1994), the existence of unconditional moments 

critically depends on the shape of the density in the tails, i.e. if the density function does 

not decline rapidly enough as we move away from the centre of the distribution some of 

the moments might not exist. For example, returns with finite conditional variance 

might display infinite unconditional variance. The density in the tails of a distribution, 

i.e. its “thickness” and the related height of the peak towards the central part of the 

distribution (leptokurtosis), is captured by the fourth moment, the kurtosis.  
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1.3. Old	and	New	Paradigm	

The last few decades have witnessed a radical transformation in the way financial 

theory and financial econometrics researchers model asset returns. In the old paradigm, 

returns were thought to be independently drawn from an underlying joint distribution 

with time-invariant moments and all the moments were supposed to exist. In other 

words, returns were assumed to be independently and identically distributed 

(henceforth, i.i.d.). This view was particularly common in the fifties and sixties and it is 

summarized by the random walk representation (see Malkiel (1999) for a discussion) of 

the asset price process with constant drift and white noise error1. In the random walk 

model of asset prices, returns have finite moments of any order and conditional and 

unconditional moments are the same. Normality of the error term, moreover, implies 

that the entire multivariate distribution of asset returns can be described by its first and 

second moments. This, in turn, implies that rational investors should only be concerned 

about the mean and variance of their portfolios, leaving no room for any role of higher 

moments in the portfolio optimization problem, as in Markowitz (1952) 

mean-variance-portfolio theory. In such a setting, broadly corresponding to the static 

Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965), only the 

first two moments of the multivariate return distribution have asset pricing implications.  

 

This paradigm came under intense scrutiny, especially in the 1980s and 1990s. Four 

main issues about the distribution of asset returns drew the attention of the empirical 

                                                 
 

1 Formally: 
P

dP
 = μdt + εσ dt  with μ = 








P

dP
E , σ2 =

2







  

P

dP
E , P is the price, ε i.i.d and E(ε) =0. 

Here E() represents both the unconditional and conditional expectation operator. 
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financial literature, namely whether financial series are independently distributed, 

whether they are identically distributed over time, whether all the moments of the asset 

returns distribution exist and whether returns are normally distributed. A large body of 

evidence, as summarized in Pagan (1996), has since then made clear that, while high 

frequency returns are virtually serially uncorrelated and lower frequency returns are 

generally little auto-correlated, there is considerable serial dependence in higher 

moments. For example, there is overwhelming evidence of conditional 

heteroskedasticity and time variation in second moments. Furthermore, evidence on 

return predictability suggests that first moments are time-varying. For example, while 

monthly returns are generally found to be largely unpredictable2, there is evidence that 

annual returns are somewhat predictable and returns at five-year horizons are very 

predictable (Fama and French (1989) and Cochrane (1999b)) using forecasting variables 

such as the dividend yield, the price earning ratio and other functions of stock prices 

normalized by an appropriate divisor to make them stationary. This suggests that the 

mean of the return process is time varying and driven by a slow moving state variable.  

 

Subsequent studies in the empirical finance literature have reported evidence of two 

types of asymmetries in the distribution of stock returns. The first is skewness, i.e. 

)( 3
1, titE  , or asymmetry in the distribution of individual stock returns, which has been 

reported and studied by numerous authors over the last three decades. See, among 

others, Simkowitz and Beedles (1978) and Singleton and Wingender (1986). The 

second type of asymmetry is in the joint distribution of stock returns. One possible 

                                                 
 
2 Monthly and higher frequency stock returns typically have slight, statistically significant predictability with 
coefficient of determination R2 of about 1 percent. 
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source of such an asymmetry is coskewness, i.e. )( 2
1,1,  tititE  , where 1, ti  and 1, tj   

are two zero-mean return innovations. Evidence that stock returns exhibit some form of 

asymmetric co-dependence has been reported by several authors in recent years, see for 

example Erb et al. (1994), Longin and Solnik (2001), Ang and Bekaert (1999, 2002), 

Ang and Chen (2002), Campbell et al. (2002) , and Bae et al. (2003). The presence of 

either of these asymmetries violates the assumption of normally distributed portfolio 

returns, which underlies traditional mean-variance analysis (see Ingersoll (1987)).  

 

Pagan (1996), Campbell et al. (1997) and Cochrane (1999b), among many others, 

provide a summary of the main stylized empirical features of the multivariate 

distribution of asset returns, such as serial dependence, time variation in first, second 

and higher moments and non-normality. As these features have become common 

characteristics of models of asset returns, the old paradigm has been gradually 

abandoned in favour of a richer one. In this new paradigm, the multivariate distribution 

of asset returns cannot be described simply by its first and second moments and 

conditional and unconditional moments are not in general the same.  

 

1.4. The	Fundamental	Research	Questions	

The research questions that I address in this thesis are both theoretical and empirical in 

nature. They all concern the asset pricing problem, i.e. the description and explanation 

of observed mean returns, including the fundamental questions concerning the 

relationship between the representative investor’s risk preference and the distribution of 

asset returns. The key question, however, is whether investors are rewarded not only for 

holding portfolios that perform poorly when aggregate returns are low, as in Sharpe 
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(1964) and Lintner (1965) CAPM, but also for holding portfolios that perform poorly 

when volatility is high or even for holding portfolios that perform poorly when 

skewness is low. One way of reformulating this question is to ask whether asset 

coskewness and cokurtosis, in addition to the covariance with the market portfolio, 

explains the cross-section of average asset returns. In the empirical investigation of this 

issue, I focus on the explanatory power of coskewness and cokurtosis for the 

cross-section of average returns on a particular set of benchmark assets, i.e. the 

portfolios formed sorting by industry the NYSE, AMEX and NASDAQ stocks included 

in the database of the Center for Research on Security Prices (CRSP) of the University 

of Chicago. A further research question related to the asset pricing problem is whether 

investors’ sentiment and market frictions play important roles.  

 

1.5. Motivations	

The investigation of the asset pricing problem is motivated by its profound implications 

for capital budgeting, portfolio selection and portfolio management. There is ongoing 

debate on the ability of the CAPM to explain the cross-section of average asset returns. 

In particular, there is puzzling evidence on the limited ability of theoretically motivated 

risk factors to drive out the explanatory power of firm characteristics such as size and 

book-to-market ratio, see Fama and French (1992, 1993, 1995), momentum, see 

Jagadeesh and Titman (1993), coskewness (i.e. systematic skewness), see Harvey and 

Siddique (2000), cokurtosis, see Dittmar (2002), and industry, see Moskowitz and 

Grinblatt (1999) and Dittmar (2002). The evidence on the asymmetry of the multivariate 

distribution of asset returns suggests that, if investors’ preferences are not restricted to 

be defined only over the first two moments, expected returns might depend on higher 
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order odd moments. This possibility motivates the study of the explanatory power of 

asset coskewness and cokurtosis in the cross-section of excess returns, as in Harvey and 

Siddique (2000), Dittmar (2002), Post et al. (2008) and Potì and Wang (2010). I focus 

on the cross-section of portfolios3 formed sorting stocks according to the industry in 

which the issuing firm operates because this characteristic has been used less frequently 

in the extant empirical literature as a sorting criterion and it is known, see Dittmar 

(2002), for producing a very dispersed (and therefore challenging) cross-section of 

average returns.  

 

As stressed by Grinblatt and Titman (1989), empirical studies in finance must rely on 

non-experimental data. As a consequence, there is a concern that established statistical 

and econometric methods may suffer from biases. Since empirical research is often 

motivated by the successes or failures of past investigations, there is a danger of 

data-snooping, e.g. Ferson and Harvey (1999). Following a similar line of argument, 

Lewellen et al. (2010) suggest that asset pricing models should not be judged by their 

success in explaining average returns on portfolios for which a few popular factors are 

known to explain most of the time-series and cross-sectional variation. For example, 

nearly 92 percent time variation of portfolio constructed on the basis of size and 

Book-to-Market ratio can be explained by the three-factor model that includes market 

return, SMB and HML as factors (Fama & French, 1992). Then tests of whether pricing 

models capture cross-sectional variation of asset returns on the size-B/M portfolios is 

more or less equivalent to searching for factors which are highly correlated with the 

SMB and HML factors. This critique is similar in spirit to the point made by Farnsworth 

                                                 
 
3 I thank K. French for making this data publicly available for download. 
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et al. (2002b), and was also raised in the seminal paper by Roll (1977). Since the strong 

factor structure involved in size-B/M portfolios is less of a theory than an empirical 

observation, one way of making pricing model tests more convincing is to expand the 

set of test portfolios beyond the size-B/M sorting (Ferson & Siegel, 2009). Hence, in 

order to minimize data snooping bias, I use portfolios of CRSP stocks sorted by 

industry, alongside portfolios sorted by size and book-to-market, and experiment with a 

dataset of Chinese mutual funds.  

 

1.6. Structure	of	the	Thesis	

The first part of this thesis is devoted to the discussion of the extant literature on asset 

pricing. The second part presents original, largely empirical results on asset pricing and 

on fund evaluation. In particular, my novel contributions appear in Chapters 3 to 6 and 

in Chapter 7 I discuss their implications for asset pricing.  

 

I first discuss, in Chapter 2, the modern view of the multivariate distribution of asset 

returns within the conceptual framework of modern asset pricing theory. Chapter 3 

focuses on the cross-sectional dimension of the asset pricing problem and, in particular, 

on whether coskewness helps explain the cross-section of average returns and raised the 

so called ‘coskewness puzzle’. This Chapter is based on an article, i.e. Potì and Wang 

(2010), recently published in the Journal of Banking and Finance. In chapter 4, we show 

that augmenting the (C)CAPM with sentiment, and thus allowing for systematic 

investor error in forming beliefs about the distribution of returns, permits to largely 

reconcile investors’ optimizing behaviour with the cross-section of average returns. In 

Chapter 5, we comparas e several competing pricing kernels using a modified version of 
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Hansen-Jagannathan distance (Hansen & Jagannathan, 1997), which not only accounts 

for the conditional information but also recognizes the existence of transaction costs. 

Chapter 6 is devoted to the study of the open-end fund performance in the Chinese 

market. Chapter 7 summarizes the main findings, provides a discussion of their 

implications, outlines directions for future research and draws together the conclusions.  

 

1.7. Main	Findings	and	Contributions	

My thesis contributes to depict a representation of the multivariate distribution of stock 

returns where the relations between moments and their conditional dynamics are 

important in explaining their cross-sectional differences. More innovatively, we explore 

whether the SDF implied by the 3 and 4-moment CAPM is plausible under restrictions 

that are weaker than those considered by Dittmar (2002) yet sufficient to rule out 

implausible curvature of the representative investor’s utility functions. We find that, 

even under these weaker restrictions, the 3 and 4-moment CAPM cannot solve well 

known puzzles which plague the empirical performance of extant rational asset pricing 

models, even though the higher order terms do generate considerable additional 

explanatory power. In chapter 3, our findings confirm that the quadratic and cubic 

market factors help explain observed stock returns. They play an important role in the 

pricing of certain payoffs, including strategies characterized by relatively high SRs, 

such as those spanned by a fine industry-level diversification, most notably until the late 

90s, or by dynamic portfolios managed on the basis of available conditioning 

information, as well as momentum portfolios. They do so, however, by generating high 

levels of SDF volatility. To rationalize this evidence within a higher moment CAPM 

framework, we would need to postulate implausibly high levels of investors’ risk 
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aversion. We conclude, therefore, that the 3M and 4M-CAPM provide at best a partial 

explanation of the differences in average returns on stocks and stock strategies. This 

gives rise to a coskewness (and cokurtosis) puzzle. The solution of the latter requires an 

explanation, different from the 3M and 4M-CAPM, for why the quadratic and cubic 

market factors are priced in the cross-section of stock returns. 

 

Faced with this difficulty, we then explore whether the failure to fully account for 

cross-sectional differences in average returns can be explained by the presence of either 

transaction costs or a behavioural component of the SDF, reflecting investors’ 

systematic mistakes in processing information. In chapter 4, we show that augmenting 

the (C)CAPM with sentiment, and thus allowing for systematic investor error in 

forming beliefs about the distribution of returns, permits to largely reconcile investors’ 

optimizing behaviour with the cross-section of average returns. In fact, The 

Sentiment-(C)CAPM and Sentiment-3M(C)CAPM are empirically more successful, and 

most of the increase in the explanatory power is due to the inclusion of sentiment. This 

implies that investors must either commit systematic errors, at least ex-post, in assessing 

the joint distribution of stock returns and aggregate consumption or they must behave in 

a way that, at the aggregate level, is inconsistent with expected utility maximization and 

with standard risk aversion assumptions. 

 

In chapter 5, we compare several competing pricing kernels using a modified version of 

Hansen-Jagannathan distance (Hansen & Jagannathan, 1997), which not only accounts 

for the conditional information but also recognizes the existence of transaction costs. 

We follow the approach done by He and Modest (1995) and Luttmer (1996), shows how 

the Hansen-Jagannathan volatility bounds can be derived for economies with the kinked 
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budget constraints that arise from proportional transaction costs. Since these bounds do 

not depend on a particular model for the stochastic discount factor, but only on the form 

of the budget constraint, this analysis provides a robust way to quantify the extent to 

which market frictions affect inferences about important features of asset pricing 

models. In fact, we find that, if the market is frictionless (i.e. if we assume no 

transaction costs), the volatility of the admissible nonparametric pricing kernels is so 

high that even the models with nonlinearity terms cannot match it whereas a number of 

the estimated pricing kernels can do so when transaction costs are assumed to be 0.8 

percent per each one-way trade. 

 

In the final part, we follow apply the SDF approach, as in Chen and Knez (1996), to 

analyse the open-end fund performance in the Chinese market. In a similar spirit as 

Dahlquist and Söderlind (1999), we test whether Chinese open-end fund managers 

process information more professionally than individual investors do, so as to generate 

significant abnormal returns, and also try to observe whether their performance can be 

replicated by employing mechanic and easily replicable strategies that make use of 

publicly available information. The results of our analysis show the performance of 

such fund managers in an unfavourable light. The fund managers of the selected 

open-end funds in fact generate no superior performance. Even the naive buy-and-hold 

trading strategy is able to replicate their performance easily. Then the question that 

really needs to be answered, but that we leave for future research, is how the 

phenomenon of the poor fund performance can coexist with the rapid expansion of the 

open-fund industry in the Chinese market. 
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1.8. Conclusions	

In this Chapter, I first introduced some preliminary material on the distinction between 

conditional and unconditional moments and how it arises in the transition from the old 

to the new paradigm of asset returns. I then specified the fundamental research 

questions of this thesis and discussed the motivations that drive their investigation. In 

particular, I discussed the connection between the research questions and unresolved 

issues in asset pricing and second moment modelling. Finally, I outlined the structure of 

the thesis and I summarized the main findings and their contribution to the extant 

literature.   
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2. Literature	Review:	Asset	Pricing	

2.1. Introduction	

In this chapter, I review the literature on the distribution of asset returns and on the 

closely related topic of asset pricing. Rather than attempting to list all the countless 

contributions, my aim is to show how the discovery of moment dynamics and their role 

in asset pricing unfolded over the transition from the old view of asset returns, based on 

the random walk model and on the identity between conditional and unconditional 

moments, to the new paradigm that allows for time-varying conditional moments and 

returns predictability. I first show, however, how all asset pricing models can be derived 

as specializations of a common analytical framework, the general SDF model with 

possibly time-varying risk premia and returns predictability. I then discuss at more 

length select specifications. In particular, I focus on specifications that allow for 

systematic skewness and kurtosis to play a role in asset pricing.  

 

The Chapter is organized in eight main sections. The next two sections introduce the 

SDF approach to asset pricing and the risk-neutral density. In Section 2.4, I provide a 

brief account of no-arbitrage moment restrictions on the SDF. In Section 2.5, I discuss 

the relationship between the SDF and popular linear pricing models. Section 2.6-2.8 

review the developments in the theory of efficient markets and rational asset pricing, 

and the literature focusing on coskewness and higher-moments as priced risk exposures. 

Section 2.9 discusses the alternative behavioural approach to asset pricing and Section 

2.10 illustrates the dichotomy between absolute and relative pricing. Section 2.11 
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discusses the importance of transaction costs. The last section summarizes the chapter 

and draws together the conclusions. 

 

2.2. Pricing	the	Contingent	Claims	through	SDF	

Under the assumption of no-arbitrage (henceforth NA), an asset with payoffs that 

always dominate the payoffs of another asset in every state of world must have a greater 

price. The absence of arbitrage opportunities implies the Law of One Price (here forth 

LOP), i.e. two assets that have exactly identical payoffs across every state of nature 

must be priced identically at every point in time. This assumption is more restrictive 

compared with the LOP. The violation of this relation creates a riskless opportunity for 

making unlimited profit.  

 

Pliska (1997) provides a systematic analysis of NA in a one-period complete market 

setting. The initial state of the system is at time t, and the terminal time is 1t  . 

Trading and consumption can be done only at these times. 1 2{ , , ..., }d     denotes 

the possible states of the world4. A probability measure is defined on   with 

( ) 0 P   for all   . Since P  is a probability measure then we have 

( ) 1P   . This complete probability space can be denoted as ( , , )tF P , where 

tF  is the sigma-filtration, with 
1 2t tF F  when 1 2t t . Therefore, the filtration tF  

represents the information available up to and including time t. The risk-less asset is 

modelled as a bank account process, denoted by 1{ , },t tB B B  where 1,tB  and 

                                                 
 
4 Here, d  could be infinite in a Hillbert Space. 
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1 1(1 )t t tB B r    for every state of the world   at time t , earning the risk-free 

interest rate 1tr  . In the market there are N  risky securities, 1 2, , ..., NS S S . For each 

security, the price in a particular state of world   at time 1t   will be denoted 

1( )i
tS  . An investor’s portfolio will be made of the bond tB  and several risky 

securities i
tS . A linear pricing measure is a non-negative vector 

1 2( ( ), ( ), ..., ( ))d       5

 such that for every trading strategy 

1 2( , ,..., )N
t t t tH H H H=  , where the elements of tH  denote the value initially invested 

in each particular asset, generates a value process 0
1 1 1

1

( ) ( )
N

i i
t t t t t

i

V H B H S   


  with 

the current value 1 1( ) ( )t t tV V B


   


  . If we let *
1 1 1( ) ( )t t tV V B    , then we 

have, 

 * 1
1

1

( )
( ) ( ) ( ) t

t t
t

V
V V

B 

     


  

   .  (2-1) 

 

Notice that, if in Equation (2-1) we consider the strategy that invests only in the bank 

account and nothing in the risky assets, we get 

 

 
0

* 01
1

1

( )
( ) ( ) ( ) ( )t t

t t t
t

H B
V V H

B  

      


  

     ,  (2-2) 

 

                                                 
 
5 This is an implication of Riesz’s Representation Therom. Denote by H  a Hilbert space, and let 

*H be its dual 

space, then for any linear function *: ,H Hj j " Î , we have ( ) ,x y xj =< > , where ,x y HÎ  

and ,< > denotes the inner product on the linear space H . The assumption of the existence of the linear function 

: Hj   in fact requires the holding of the law of one price, i.e. 1 2 1 2( ) ( ),   x x if x xj j= = . But 

1 2 1 2( ) 0x x x xj - =  =  is not necessary. 
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but 0 ,t tV H which implies ( ) 1


 


 , and therefore   can be treated as a 

probability measure. Moreover, if in (2-1) we consider the strategy that invests in just 

one particular asset nS (thus 0 for all jH j n  ), then  

 

 ,
1 1

1

( )
( ) ( ) ( ),  for all 1,...,n n n

t t t
t

S S S n N
B 

    
 

  

    .  (2-3) 

 

Equation (2-3) says that the initial price of the asset equals the expected value of its 

discounted future price, under the linear pricing measure  . It can be proved that, if 

the no-arbitrage opportunity condition holds, the linear pricing measure   for each 

state of world is positive. Moreover, the linear pricing measure   is unique if the 

market is complete, i.e. if any contingent claim is attainable. Equation (2-3) can be 

rewritten as follows, 

 

 

,
1 1

1 1

1 |
1 |

( ) ( )
( ) [ ( ) | ],  

( )*

( )
( ) ( )   for all 1,..., .

( ) t

t

n n n
t t t t

t t

n
t F

t F

S S E S F
B P B

S f d n N
B f

 




    


    



 

   




 

 





�

  (2-4) 

 

where | ( )
tFf 
�

 is the conditional probability density function, under the information 

set tF , for each state of world  . In fact, both 1
1

( )
[ ( ) | ]

( )*
n
t t

t

E S F
P B

  
 

 

 and 

1 |
1 |

( )
( ) ( )

( ) t

t

n
t F

t F

S f d
B f 



    
 


  make the same statement, the former in discrete time 

and the latter under the continuous time measure. If, following Cochrane (2001), we 
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scale the contingent claims prices by the inverse probability of each state, the resulting 

expression provides the SDF specification so widely used in finance. That is, 

1

( )

( | )*t tP F B

 
 

 or, equivalently, 
1 |

( )

( )
tt FB f

 


 can be seen as the value taken by the 

SDF or pricing kernel, 1tm  , in state of the world   and equation (2-4) is simply 

written as 

 

 1 1[ ( ) | ],   for all 1,..., .n n
t t t tS E m S F n N    	 (2‐5)	

 

Equivalently but more conveniently,  

 

 1 1[ | ] 1,t t tE m R F    	 (2‐6)	

 

where 1tR   is the gross return for any asset nS  in market at time 1t  , and tF  

denotes the information set available to investors at t. Of course, condition (2-6) also 

can be represented using vector notation,  

 

 1
1 1[ | ] .N

t t tE m R F  
      	 (2‐7)	

 

Here, 1tR   is the vector of asset returns, and 1N   is the 1N   vector of units. Asset 

prices then equal the expectation of the product between the SDF and the payoffs. As 

explained by Campbell (2000), linear factor pricing models are associated with SDF 

specifications linear in a set of linear factors. For example, the well-known classical 

consumption-based pricing model is associated with a SDF structure specified as the 
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inter-temporal marginal rate of substitution of the representative-agent investor, which 

is linear in the consumption growth of such agent. 

 

2.3. Risk‐neutral	pricing	density	

1 1( )t i tB   is the state-contingent price ( )t ip  , which represent the current price of a 

security that secures one dollar once a certain state ( i ) occurs at a future date 1t  , and 

nothing otherwise. As discussed in section 2.2 of this chapter, the relation among 

state-price contingent prices ( )t ip  , the risk-neutral pricing density ( )i  , and the 

pricing kernel 1 ( )t im   is, 

 

 1 1
1

( )
( ) ( ) ( )i

t i t i t i
t

p m f
B

    


  ,  	 (2‐8)	

	

here, 1 ( )t if   is the physical probability density at time 1t  . If the non-constant 

information set tF  at time t is available, then 1 ( )t if   is the conditional density, 

otherwise the unconditional density is used instead in empirical test. The sum of such 

state-contingent prices across all states at 1t   has to equal the current price of a 

risk-free bond that pays off one unit at maturity 1t   for sure, i.e.  

 

 1 1
1

( )
( ) [ 1] [ | ] 1

i i

i
t i i i t t t

tw w

p d d E m F B
B

     
 

     .  	 (2‐9)	
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Since 1tB   is observable at t  and can be replaced by risk-free rate ,f tre , the 

availability of either ( )t ip   or 1tm   permits the estimation of the other. Breeden and 

Litzenberger (1978) provide an explicit formula for the estimation of ( )t ip  :  

 

 ,

1

2

( )2
( ) ( ) |f t

t i

r t
t i i S K

C
p e

K   






 


,  	 (2‐10)	

	

i.e. the second derivative of a European call price tC  taken with respect to its strike 

price K  is the state-contingent price ( )t ip   of the future asset price ending up at 

exactly the strike price of the option. The measure ( )   satisfies the probability 

axioms, since it is positive and ( ) 1


 


 , and therefore can be referred to as the 

risk-neutral pricing density,  

 

 ,

1

2

( )2
( ) |f t

t i

r t
i S K

C
e

K  
 





,  	 (2‐11)	

	

It satisfies, under no-arbitrage, the following pricing condition, 

 

 , ,

1 1( ) [ ]f t f tr r

t i t i tS e S d e E S



   
 



  .  	 (2‐12)	

	

Here, [ ]E �  is the expectation operator under the risk-neutral probability ( )  . 

According to equation (2-12), in a world in which investors are risk-neutral, all risky 

assets - including options - must yield an expected return equal to the risk-free rate of 

interest. Estimating the risk-neutral pricing density from option prices is equivalent to 
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estimating the SDFs using the prices and payoffs of assets priced by each SDF. 

Generally, the approaches for estimating the risk-neutral pricing density can be 

categorized into two different classes: parametric estimation and non-parametric 

estimation (see Cont (1997), and Jackwerth (1999)).  

 

Concerning parametric estimation, expansion methods, generalized distribution methods 

and mixture methods are the three main subgroups. More specifically, starting with a 

simple distributional assumption, expansion methods typically add correction terms into 

the normal or lognormal density, then estimate a flexible-shape version of the 

risk-neutral distribution in order to fit the observed option prices. Fore example, Abadir 

and Rockinger (1997) use confluent hypergeometric functions as a basis for the 

risk-neutral density and derive the option price function across strike prices. Abken et 

al. (1996a, 1996b) use instead four-parameter Hermite polynomials. Potters et al. 

(1998) use cumulant expansions to add a single correction term to a normal distribution, 

which adjusts for the kurtosis of the risk-neutral distribution. However, this approach 

may generate negative values for the risk-neutral density, which violate the positivity 

constraint. Without adding correction terms, generalized distribution methods 

concentrate more on inherent flexibility, abandoning familiar two-parameter normal and 

lognormal distributions by adding one or two additional parameters beyond mean and 

variance (see, Aparicio and Hodges (1998), Posner and Milevsky (1998)). The mixture 

methods can even achieve greater flexibility than the previous two. For example, Melick 

and Thomas (1997) apply the mixture methods, which combine three lognormal 

distributions, to evaluate American options on crude oil futures. Ritchey (1990) 

modifies log returns by a mixture of normal distributions to generate option prices. 

Although the number of parameters expands quickly under mixture methods, this 
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approach is more capable of generating a wider variety of shapes for the probability 

distributions than generalized distributions. 

 

Non-parametric estimation tries to achieve greater flexibility in fitting the risk-neutral 

distribution to option prices. Rather than requiring a parametric form of the distribution, 

it allows the use of more general functions. The most commonly used non-parametric 

method is kernel regression, which is conceptually related to regressions in that they 

both try to fit a function to observed data. The main difference is that kernel regression 

does not specify the parametric form of the function. As a data-intensive method, kernel 

regression assumes each data point is the center of the region where the true underlying 

functions lie. The further away a point in the support of the density is from the observed 

data point, the less likely it is that the true function goes through that distant point. Take 

the observe implied volatilities ( )iK  across strike prices iK  as an example, the 

kernel regression in one dimension is  

 

 1

1

( ) ( )
( )

( )

n
i

i
i n

i

i

K K
k K

h
K

K K
k

h


 











  	 (2‐13)	

	

where h  is the bandwidth, which governs the smoothness of the kernel regression, and 

the kernel 
21

2
1

( )
2

x
k x e




 , which as often the case takes the the form of a normal 

distribution probability density function with zero mean and unit standard deviation, 

measures the corresponding drop in likelihood when we move away from the data point. 

Aït‐Sahalia and Lo (1998) use kernel regression to estimate the risk-neutral density or 
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state-price density (SPD) based on five-dimensional data points consisting of stock 

price, strike price, time to expiration, interest rate and dividend yield. They also 

experiment with a lower-dimension problem, in which, for simplicity, the three 

dimensions are forward price, strike price, and time to expiration. Pritsker (1998) 

employs their methodology in order to investigate the risk-neutral distribution of 

interest rates.. 

 

2.4. Moment	Restrictions	on	SDF	

According to Equation (2-6), the expected return on the asset i is given by 

 

 
1 , 1

, 1
1 1

( ,  )1
( )

( ) ( )
t t i t

t i t
t t t t

cov m R
E R

E m E m
 


 

  .  	 (2‐14)	

	

where ( )tcov �  denotes the conditional covariance operator. The first moment of the 

SDF is determined by the risk-free rate. The above relation holds also when 1tR   is the 

risk-free return , 1f tR  , which equals ,f tre  in continuous time. Since the conditional 

covariance between SDF and risk-free rate is, by definition, zero, we have that 

 

 1
, 1

1
( )t t

f t

E m
R



 .  	 (2‐15)	

	

In other words, the expected SDF is the price of a short-term risk-free zero-coupon bond 

with a unit payoff at time 1t  . This characterizes the SDF as a random variable, i.e. 
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, 1

1
1 1f tt tRm 

   , where the conditional mean of the error term is zero, i.e. 1( ) 0t tE    . 

The restriction in (2-14) also applies to excess returns, i.e.  
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   


  

  
.  	 (2‐16)	

	

or, equivalently, 1 1 , 1[ ( )] 0t t t f tE m R R    . The conditional volatility of the SDF is 

related to the 2�  metric distance between the risk-neutral and the objective probability 

measures (Bakshi et al., 2005). In the absence of arbitrage opportunities, Bakshi et al. 

(2005) prove that the one-to-one correspondence is 

 

 

1
1 2 1

2

1 1

( ) [ ]

( ( ) ( )) ( )

t
t t t

t t

f
m f

f f d



  



    


 

 



  

 
.  	 (2‐17)	

	

As just seen, the fact that 1tm   prices excess returns gives that 1 , 1 , 1[ ( )]t t i t f tE m R R    

equals zero. Also the absolute value of correlation between SDF 1tm   and 

, 1 , 1( )i t f tR R   is bounded from above by 1, and this implies that, under no-arbitrage 

and for a given level of correlation between the SDF and asset returns, spreads in 

expected excess returns across assets are proportional to SDF volatility, 

 

 
, 1 , 1 , 1 , 1 , 1 1( ) ( ) ( )t i t f t f t t i t f t t tE R R R R R m         .  	 (2‐18)	
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Noting that (2-18) must hold for any SDF that prices the assets, including the minimum 

variance SDF 1tm
 , which is the projection of 1tm   on the payoff set, we can rearrange 

(2-18) to obtain the well-known Hansen and Jagannathan (1991) lower bound on SDF 

volatility 
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
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, 	 (2‐19)	

	

where, *
1 1( ) inf{ ( )}t tm m    indictates the miminum variance of 1tm   over the 

support of admissible kernels (not a singleton, in incomplete markets). Obviously, if the 

payoff space contains N  securities, condition (2-19) satisfies 

 

 2 1
1 1 1 1 1( ) [ ( ) ( )] ' [ ( ) ( )]t t t t t t t t t tm E m E R E m E R  
        ,  	 (2‐20)	

	

where 1( )t tcov R    denotes the covariance matrix of asset returns and   is the 

1N   unit vector. 

 

Moreover, Ross (2005) points out that risk-averse investors prefer volatile SDFs. 

Specifically, he shows that, in a complete market and given a family of SDFs with the 

same mean but different volatility, the expected utility of a risk-averse investor is 

uniformly larger if the payoffs are priced by a more volatile SDF. This implies that, if a 

risk-free asset with a given return identifies the SDF mean, the expectation of a concave 

utility function increases in the volatility of the unique SDF (i.e. the state-price density) 
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that prices the investment opportunity set. In incomplete markets, more than one SDF 

price the marketed payoffs and thus expected utility increases in the volatility of the 

projection of all admissible pricing kernels on the payoff space, i.e. it increases in the 

volatility of the minimum-variance SDF. Similar arguments can be traced to Bakshi et 

al. (2005) and Chabi-Yo et al. (2008). More precisely, Bakshi et al. (2005) show that 

1( )t tm   is related to both the level of risk aversion,  , and the variance of the 

consumption-growth 1( )t tc   

 

 

2 2
1( )

1

1

( ) 1

( )

t tc
t t

t t

m e

c

 







 


.  	 (2‐21)	

	

where 1 1( )t t tc log C C  , represents the growth of consumption. The argument of 

Chabi-Yo, et al., (2008) is more general than Bakshi, et al., (2004) without assuming a 

specific utility function, and they show that the growth of the SDF is proportional to the 

Arrow-Pratt index of absolute-risk aversion (ARA), 

 

 1 1

1 1

( ) ( )

( )
t t

t t

log m U C
ARA

C U C
 

 


  


.  	 (2‐22)	

	

Of course, a higher volatility of the SDF requires a higher ARA. In other words, if the 

ARA is restricted within a reasonable range, 1sup{ ( )}t tm   is bounded. 

 

Cochrane and Saa-Requejo (1996) and Cochrane (2001) introduced the term ‘good 

deals’ to denote desirable investment opportunities, i.e. arbitrage opportunities and 

investment opportunities that offer a large reward for risk. Similarly, Cerný and Hodges 
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(2000) define good deals as desirable investment opportunities that have zero or 

negative cost. They also formalize the conditions under which good deals can be ruled 

out in complete and incomplete markets, given the absence of good deals in the space of 

payoffs spanned by a subset of the traded assets. Again, the absence of good deals is 

connected to the volatility restriction of the SDF. Cochrane and Saa-Requejo (1996) 

suggest that, 

 

 *
1

, 1

( )t t
f t

h
m

R
 



 .  	 (2‐23)	

	

where h  is the pre-specified volatility bound. The results in Ross (2005) shows that 

good deals offer expected utility improving opportunities to the risk-averse investors 

who prefer a high SDF volatility. Potì (2007) and Potì and Wang (2010), in order to 

restrict the volatility of the minimum-variance SDF, extend this argument by restricting, 

by means of an upper bound, the volatility of the representative investor’s 

inter-temporal marginal rate of substitution (IMRS) between present and future 

consumption, which is specified as in the typical three-moment CAPM, i.e. it coincides 

with the representative investor’s IMRS and is a linear function of the market return and 

its square. 

 

2.5. The	SDF	Approach	and	Linear	Pricing	Models	

The classical linear Capital Asset Pricing Model (CAPM) has been established in the 

work of Sharpe (1964), Lintner (1965), Black (1972), Merton (1973) and Breeden 

(1979). The main prediction of the model is that the expected return on a financial asset 
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is a function of its covariance with some systematic risk factors or, equivalently, 

linearly related to the coefficients, known as betas, of the regression of the excess-return 

on the factors. Cochrane (1996) subsequently formalizes the relation between the SDF 

approach and linear beta-pricing models and reformulates the CAPM in a SDF setting. 

Generally, inference in the SDF approach requires the specification of fewer 

assumptions about the distribution of asset returns than when estimating linear pricing 

models.  

 

Sharpe (1964) and Lintner (1965) assume that all investors are single-period 

mean-variance optimizers to show that the market portfolio is mean-variance efficient 

and the expected return of each asset is linearly related with the market portfolio 

through the asset risk exposure beta. Ross (1976) points out that this conclusion can also 

be reached using an asymptotic no-arbitrage argument and the assumption that the 

market portfolio is the only source of common, undiversifiable risk. In other words, if 

there are several common factors that generate undiversifiable risk, then a multifactor 

model holds. Within the SDF framework, these same conclusions can be reached 

directly from the assumption that the SDF is a linear combination of K  common 

factors , 1,   1...k tf k K  . For expositional simplicity the factors are assumed to have 

conditional mean zero and are orthogonal to one another. If 

 

 1 , , 1
1

K

t t k t k t
k

m a b f 


  .  	 (2‐24)	

	

then the negative of the covariance of any excess return with the SDF can be written as 
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 
   . 	 (2‐25)	

	

Here ,ik t  is the conditional covariance of asset return i with the thk  factor, 2
,k t  is 

the conditional variance of the thk  factor, 2
, , ,k t k t k tb    is the price of risk with the 

respect to the thk  factor, and 2
, , ,ik t ik t k t    is the regression coefficient of asset 

return i on that factor, or the formerly mentioned beta . Then equation (2-25) together 

with the equation (2-16) implies that the risk premium on any asset can be rewritten as a 

sum of the asset’s betas with common factors times the risk prices of those factors. 

More particularly, if we set the asset i  as the market portfolio, i.e. , 1 , 1i t m tR R  , 

, 1 , 1 , 1( )k t m t t m tf R E R     and 1 , 1 , 1[ ( )]t t m t t m tm b R E R    , then , 1ik t   and  

 

 , , 1 , 1 , 1( )k t t m t f t f tE R R R     .  	 (2‐26)	

	

In other words, if 
,

2
, 1 , 1 , 1( ) ( )

m tkt t m t f t f t Rb E R R R      , then 1tm   will exactly generate 

the CAPM. Here, it is noticed that 1tm   is negatively correlated with , 1m tR  . 

 

2.6. Conditional	Liner	Models	

The unconditional or static asset pricing model was derived by considering the rational 

behaviour of investors living for only one period. In extending this model to a 

multiperiod setting, one of the commonly made assumptions is that asset betas remain 

constant over time. According to Jagannathan and Wang (1996), this is not a 

particularly reasonable assumption since the relative risk of a firm’s cash flow is likely 
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to vary over the business cycle. During a recession, for example, financial leverage of 

firms in relatively poor shape may increase sharply relative to other firms, causing their 

stock betas to rise. Also, to the extent that the business cycle is induced by technology 

or taste shocks, the relative share of different sectors in the economy fluctuates, 

inducing fluctuations in the betas of firms in these sectors. Hence, betas and expected 

returns will in general depend on the nature of the information available at any given 

point in time and vary over time. Therefore, they specify a relation between conditional 

expected return and conditional betas, i.e.  

 

 1 , 1 , ,
1

( )
K

t t f t k t k t
k

E R R   


  .  	 (2‐27)	

	

We can take the unconditional expectation of both sides of equation (2‐27) to get 
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(2‐28)	

	

where, ,( )k k tE   and ,( )k k tE  . k  is the regression coefficient of ,k t  on ,k t , 

i.e., 

 

 , , ,( , ) ( )k k t k t k tcov var    .  	 (2‐29)	

	

Jagannathan and Wang (1996) defined two types of unconditional betas: 
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 1 , 1 , 1( , ) ( )k t k t k tcov R var     .  	 (2‐30)	

	

 1 , 1 , 1[ , ( )] [ ( )]z
k t t k t t k tcov R E var E     .  	 (2‐31)	

	

where k  and z
k  are all constant. Moreover they proved that, 

 

 0 1
k k
z
k k

 
 

  
     

   
,  	 (2‐32)	

	

Here, 0  and 1  are constant coefficient vectors. Then, the unconditional expectation 

of the conditional expected return is 

 

 1 , 1 , 1 , 1
1 1

( ) ( )
K K

z
t f t k t k t k t k

k k

E R R E      
 

    .  	 (2‐33)	

	

The betas in equation (2-33) are not time-varying as the ones in equation (2-27), yet 

they follow from the same asset pricing model. In fact, equation (2-33) is the 

unconditional implication of equation (2-27). 

 

According to Cochrane (2001), letting tz  represent a vector of variables that 

summarize the relevant conditioning information, we can reformulate conditional linear 

models according to a SDF representation by writing the parameters in (2-24) as 

functions of the conditioning variables, i.e. we can write ( )t t ta a z  and ( )t t tb b z  in 

(2-24). The simplest way to model conditional time-variation in these parameters is to 

specify them as a linear function of the set of conditioning variable:  
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t t
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.   (2-34) 

 

Here, ta  is a scalar, tb , 0b  are 1N   vectors, tz  is a 1k   vector of conditioning 

variables, 1a  is a 1k   vector and 1b  is an k N  matrix. Using, (2-34) we can 

rewrite (2-24) as follows: 
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.   (2-35) 

 

Here, 2b  is a ]1)[(  Nk  vector obtained stacking the N  columns of 1b , i.e  

 

 2 1( )b vec b .   (2-36) 

 

The specification in (2-35) and (2-36) can be seen as an unconditional model, i.e. a 

model with time-invariant parameters, in the new set of factors 
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For convenience, we can also rewrite (2-35) folding the unconditional mean of these 

factors in the constant and write the SDF as a linear function of a new set of 

unconditionally de-meaned factors:  
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.   (2-38) 

Here, 

 0 1 0 2
1 1( ) ( ) ( )t t t ta a a E z b E f b E f z 

       .   (2-39) 
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 
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.   (2-41) 

 

Since the parameters of the factors in (2-38) are by definition constant over time, the 

conditional and unconditional implications of the model are the same. In particular, we 

can derive the unconditional implications without worrying about co-variation between 

the parameters of the SDF and the factors. To this end, we may take the unconditional 

expectation of (2-6) with the SDF specified as in (2-38). The covariance and 

beta-pricing representations of the implication of this unconditional expectation are the 

following: 
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where, 

        1 1

1 1 , 1 1 1 , 1, ,i t t i t t t i tvar F cov F R var F cov F R
 

        .  	 (2‐43)	

    3 3
, 1 1 1f t t tR var F b var F b       .  	 (2‐44)	

 

2.7. Asset	Pricing	Paradigms	and	EMH	

The efficient market hypothesis (henceforth, EMH), as formulated by Fama (1970, 

1976), requires that conditional expectations of future cash-flows and conditional 

moments of the multivariate return distribution be formed using all the available 

relevant information6 and, ultimately, that returns in excess of the rate of return on 

riskless assets do not deviate in any systematic (i.e. exploitable) way from their 

conditional expectation7 . This implies that returns deviations from their possibly 

time-varying equilibrium conditional expectations follow a fair game process (see, for a 

simple taxonomy, Copeland et al. (2004)) with zero conditional and unconditional mean 

but with possibly time-varying higher order moments. On average, then, returns equal 

conditional expected returns or, equivalently, expected returns conditional on the 

available information set are unbiased estimates8 of actual future returns. The key 

                                                 
 
6 This is a definition of market efficiency implied by Fama (1970) discussion and reported in Fama (1976). 
7 Recall that, if the distribution of the relevant conditioning variables is known, unconditional moments can be 
derived from the conditional ones. Therefore, if either asset cash-flows conditional expectations or conditional return 
moments are not formed using all the available relevant information, superior forecasts of asset prices could be 
formed by using conditioning variables that convey the relevant information neglected by market prices. These 
forecasts would be exploitable to earn above-average risk-adjusted returns. Clearly, this does not need to apply to 
conditional asset cash-flows expectations and return moments formed using subsets of the available information set, 
such as the data available to the econometrician. 
8 This condition can be formulated as follows: E(ri,t) = E[ri,t  - E(ri,t |Ω)], where Ω denotes the conditioning 
information set. 
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difference between rational asset pricing under the old and new paradigm9 is that 

conditional expected returns and higher order moments of the returns deviations from 

their conditional means are fixed in the former and possibly time-varying in the latter.  

 

The old paradigm implies the EMH, but the reverse is not true. In particular, within the 

new paradigm of asset returns, it is possible to recognize explanations for asset pricing 

phenomena based either on asset pricing models with investors that process information 

and decide upon it rationally, and thus consistently with the EMH, or on models that 

allow for some degree of investors’ irrationality. I refer to the former as rational asset 

pricing models and to the as latter behavioural asset pricing models.  

 

2.8. Rational	Asset	Pricing	Models	

Rational asset pricing models can be interpreted as specifications of a unified theoretical 

framework, the neoclassical rational economic model (Constantinides, 2002), that views 

expected excess returns as the reward demanded by risk averse, expected utility 

optimizing investors for bearing non diversifiable risk. These investors have 

unambiguously defined preferences over consumption. If we add the assumptions that 

investors’ expectations are rational and investors’ beliefs consistent, in the sense 

implied by Sargent (1996) discussion of the rational expectation equilibrium, this 

framework implies the EMH. Versions of this theory allow for market incompleteness, 

market imperfections, informational asymmetries, and learning. The theory also allows 

                                                 
 
9 The key difference is therefore that the former relies on a random walk whereas the latter in based on a fair game 
view of conditionally unexpected returns. Also recall that conditional and unconditional moments are the same only 
in the random walk case. 
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for differences among assets for liquidity, transaction costs, tax status, and other 

institutional factors. 

 

2.8.1 Consumption Asset Pricing 

For inter-temporal utility maximizing investors, the SDF depends on their impatience 

and on the marginal utility of whatever they must give up in order to acquire additional 

units of the payoff 1tx  . To see this, suppose that investors extract utility from 

consumption, and that they have the following 2-period utility function: 

 

 
1 1( , ) ( ) ( )j j j j

t t t tU C C U C E U C      .  	 (2‐45)	

	

Here, j
tC  denotes investor j’s consumption and   is the subjective discount factor 

that represents the investors’ impatience 10 , that is by how much, under any 

circumstance, any payoff is worth less if it is paid at a later date. Subjective discount 

factors should be always less than unity for impatient investors. Desirable properties of 

investors’ utility function, as argued by Arrow (1971), are positive and decreasing 

marginal utility of wealth and non-increasing absolute risk aversion. Positive marginal 

utility of wealth, or 0U   , implies investors’ non satiation (NS), whereas decreasing 

marginal utility, 0U   , implies risk aversion (RA). Non increasing absolute risk 

aversion (NIARA), ( / )
0

j

d U U

dC

 
 , implies that risky assets are not inferior goods 

and, as shown in Arditti (1967), it is a sufficient condition for 0U   . Hence 0U    

implies NIARA and aversion to negative skewness. NIARA, for a utility maximizing, 
                                                 
 
10 It has nothing to do with the CAPM asset beta but I keep this notation because it is almost standard in the 
literature.  



 44

risk-averse individual, and hence with positive marginal utility and RA, is also related 

to prudence as defined by Kimball (1990). Included in the set of utility functions that 

display these desirable attributes are the logarithmic, power and negative exponential 

utility function. It should be noted that the popular quadratic utility function does not 

satisfy NIARA.  

 

The investor in t must decide how much to consume and how much to invest in the 

asset that offers the payoff 1tx  . Subject to his inter-temporal budget constraint, the 

more of the asset he purchases, the less his consumption today but the more he will be 

able to consume in the future. The problem of a rational investor, therefore, is to find 

the level of investment that maximizes his expected utility. Assuming that the utility 

function is concave, denoting by ( )j
tU C  the marginal utility of consumption and  

setting 1
1

( )

( )

j
j t

t j
t

U C
m

U C
 







, (2-7) can be seen as the first order condition for the 

maximization of the investor j’s expected utility, i.e. the expectation of (2-45), given the 

price 
tp  of the pay-off 

1tx 
. In this setup, 1

j
tm   is known as the investor’s 

inter-temporal marginal rate of substitution and acts as the SDF that prices the assets 

faced by such investor. Treating the subjective discount factor as an inter-temporal 

constant, we thus have that the SDF 1
j

tm   is proportional to the investor’s marginal 

utility growth and (2-16) implies that the investor is willing to pay more for assets that 

are expected to pay off handsomely when her marginal utility of consumption is high.   

 

The economy SDF, i.e. the process 1tm   that prices all pay-offs (that is, the payoffs 

faced by all investors), depends in general on the circumstances (factors) that determine 
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the extent to which investors’ aggregate marginal utility in 1t 
 
is high relative to the 

previous period. The shape of investors’ utility functions and the extent to which they 

can freely form portfolios has also implications for the shape of the SDF that prices the 

assets. For example, NS imply no-arbitrage and therefore a positive SDF. Furthermore, 

if the utility function is concave, marginal utility is high when resources to purchase 

additional units of consumption are scarce and therefore consumption is low. A payoff 

that made additional resources available when these were needed the most would be 

particularly welcome and the investors would value it more ( 1tm   would be high). This 

implies a SDF decreasing in wealth. At a more technical level, the shape of investors’ 

utility also has implications for how closely the SDF that prices all assets resembles the 

shape of individual investors’ marginal utility growth. In other words, whether 

aggregation of individual investors’ marginal utility growth results in a SDF defined 

over aggregate wealth with the same shape as the individual investors’ SDF depends, in 

general, on the shape of the utility function. In empirical applications, the assumption 

that prices are set by a representative investor allows to bypass this issue (essentially, 

leaving it in the background for asset pricing theorists). 

 

2.8.2 Representative Investor 

Under the representative investor assumption, { ,    , 1}j
i iC C i t t    and the SDF 1tm   

can be expressed in terms of aggregate consumption as the growth of such investor’s 

marginal utility: 
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.  	 (2‐46)	
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For example, in LeRoy (1973), Lucas (1978) or Breeden (1979), whose specifications 

represent instances of the consumption-based CAPM (henceforth C-CAPM), one can 

identify the stochastic discount factor with the IMRS of a representative agent. The 

asset pricing implications of the representative investor assumption and of the 

assumption that capital markets are complete are the same. This is because, in complete 

capital markets, as in Lucas (1978), investors can exchange contingent claims on any 

future state of the world. Full risk-sharing and diversification are therefore optimal for 

all investors, who then hold portfolios with risky assets in identical proportions. In these 

circumstances, pricing assets with respect to individual investors’ consumption or with 

respect to aggregate consumption is equivalent because marginal utility growth is the 

same for all investors.  

 

In a 2-period setting, investors must consume at the end of the second period all their 

wealth. Thus, in the SDF in (2-46), we can substitute out the representative investor’s 

consumption with wealth. In a multi-period setting, consumption and wealth are 

equivalent only if either returns are unpredictable, as in the old paradigm, or 

predictability has no effect on inter-temporal optimal consumption-investment and 

portfolio choices. Strictly, the latter condition requires the assumption of logarithmic11 

utility. The empirical literature, e.g. Jagannathan and Wang (1996) and Lettau and 

Ludvigson (2001b), however, often assume that the SDF pricing equation holds 

conditionally period by period even under other types of utility functions. This 

corresponds to the assumption that predictability is at most a second order effect relative 

                                                 
 
11 As explained in Cochrane (2005), for this type of utility function substitution effects (higher expected returns 
imply an higher opportunity cost of current consumption and therefore tend to decrease it) and income effects (higher 
expected returns imply higher next period wealth and therefore tends to increase consumption) exactly offset each 
other. 
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to the variability in consumption and wealth. Under these conditions, the inter-temporal 

marginal rate of substitution in (2-46) can be expressed as a function of aggregate 

wealth: 
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.   (2-47) 

 

The SDF of a representative investor with preferences defined over wealth that display 

NS, RA and NIARA is positive, decreasing and concave in wealth.  

 

2.8.3 CAPM 

The CAPM is a special single factor model. In its original version, it is a static 

equilibrium model. Under investors’ NS, it can be derived either by assuming a 

representative investor with quadratic utility, thus excluding preference for moments of 

the multivariate distribution of asset returns higher than the second, or allowing for 

preference for higher moments (as under a power utility function) but assuming that 

returns are multivariate normal, and that investors, rational and risk averse, can freely 

diversify and have access to the same information. The latter assumption, even when a 

subset of investors is imperfectly rational, can be replaced by the assumption that the 

most informed marginal investor is rational and can borrow and lend without limits at 

the risk-free rate (this, essentially, requires a frictionless capital market). Quadratic 

utility assures that the U   and U   term in (A-3) in Appendix A is zero. Under a 

multivariate normal distribution, the covariance with the squared rate of return on 

investor’s wealth is zero (because of the symmetry of the normal distribution). In either 
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case, the SDF depends linearly only on the return on the mean-variance efficient 

portfolio of risky assets, i.e. (2-24) becomes: 

 

 1 , 1t m tm a bR   .   (2-48) 

 

From (2-42), then, the expected excess return on any asset is proportional to the 

coefficient of the regression of the asset excess returns on the portfolio excess return 

(that captures the asset systematic risk exposure). The proportionality coefficient, i.e. 

the risk-premium, is the market expected excess return. This is because, by 

construction, the regression coefficient ,m m  of the market excess return on itself 

equals 1 and therefore, from (2-42), , 1( )m m tE R  .  

 

2.8.4 Conditional CAPM 

We might extend the CAPM to an inter-temporal setting, where returns are not i.i.d. and 

moments are allowed to be time-varying, by letting the CAPM hold conditionally, 

period by period. This is clearly an approximation, as a rational mean-variance investor 

would anticipate the possibility of variation in the first moment of the return distribution 

and thus would seek to hedge against adverse (negative) changes in expected returns, 

i.e. a demand for hedging against reinvestment risk would arise and a corresponding 

risk premium would enter the equilibrium expected return determination equation. For 

the general derivation, please see Section 2.6.  Since in the one-period CAPM 

expected returns are proportional to expected market variance, the latter would show up 

in the multi-period CAPM as an additional risk factor with a positive risk price in the 
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SDF of the representative investor, as in Merton (1973) Inter-temporal CAPM 

(henceforth, ICAPM), i.e.  

 

 , 1 1, , 1 , 1 2, 1 , 1( ) ( , ) ( , )t i t t t m t i t t t t i tE R b cov R R b cov z R       .   (2-49) 

 

Here 1tz  is a state variable that describes the state of the investment opportunity set, 

i.e. it captures reinvestment risk. Merton (1980), however, points out that the hedging 

motive is likely not very important. Following Merton (1980) advice, Jagannathan and 

Wang (1996) set the price of reinvestment risk to zero and approximate the SDF as a 

linear function of the return on the market portfolio with time-varying parameters, i.e. 

1 , 1t t t m tm a b R   . Such a SDF summarizes the asset pricing implication of the 

conditional CAPM, henceforth (C)CAPM. Alternatively, we could just treat this 

specification of the SDF as a reduced form representation of the true inter-temporal 

SDF. In any case, letting the SDF parameters depend linearly on the conditioning 

variable tz , as in (2-34), and setting 1 , 1t m tf R 
 
in (2-24), we have: 

 

 
1 0 1 0 1 , 1

0 1 0 , 1 1 1 , 1

( )t t t m t

t m t m t

m a a z b b z R

a a z b R b z R
 

 

   

   
.   (2-50) 

 

Using (2-50) in (2-42), the beta-pricing representation of the conditional excess return 

pricing implications of the (C)CAPM is the following: 

 

 , 1 , , ,( )t i t m i t m tE R    .   (2-51) 
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Here, , ,m i t  is a time-varying coefficient of the regression of , 1i tR   on , 1m tR   and 

,m t  is the conditional market risk premium, given by (2-44): 

 

 , , 1( )m t t m t tvar R b   .   (2-52) 

 

Also, since by definition , , 1m m t  , we have from (2-51) that , , 1( )m t t m tE R  . Hence, 

the conditional market risk premium is equal to the conditional market expected excess 

return. Since, as shown in Appendix A, 1,t tb RRA  , the market risk premium in (2-52) 

can be rewritten as follows: 

 

 , , 1 , 1( ) ( )m t t m t t t m tE R RRA var R    .   (2-53) 

 

RRAt can be interpreted as the representative investor’s relative risk aversion parameter 

for reasons that become clear by examining the derivation of the stylized risk-return 

relation reported in Appendix (B-12) and (B-16). 

 

To derive the unconditional implications of the conditional SDF model in (2-50), I 

apply (2-51) and take unconditional expectations of both sides:   

 

 , 1 , , , , , , ,( ) ( )i t m i t m t i t t z i z m i m zm i zmE R E                .   (2-54) 

 

Here,
 ,z i , ,m i  and ,zm i  are regression coefficients of , 1i tR   on, respectively, tz , 

, 1m tR   and , 1t m tz R  . Equivalently, the SDF in (2-50) can be seen as a linear function of 
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tz , , 1m tR   and , 1t m tz R  . Hence, (2-54) can be derived applying (2-42) to (2-50) with 

the elements of tF  in (2-37) given by tz , , 1m tR   and , 1t m tz R  . Notice that, if the 

parameters of the SDF are fixed, 0ta a a   and 0tb b b  , the preceding equations 

simplify to the unconditional CAPM (CAPM), i.e. 1 , 1t m tm a bR   , and 

, 1 ,( )i t m i mE R    .  

 

2.8.5 Conditioning Variables 

A critical consideration in estimating the (C)CAPM, or any conditional asset pricing 

model, is the choice of the conditioning variable tz . The conditioning variable should 

capture the time variation in the parameters of the SDF. There are two main theoretical 

reasons why the parameters of a SDF conditionally defined over market wealth might 

change over time.  

 

One relates to non-market sources of risk and the impact of economy-wide shocks on 

the marginal utility of stock market wealth. From this perspective, we seek conditioning 

variables that proxy for the state of the economy and, in particular, for sources of 

systematic variation in non-market wealth, such as labor income shocks and real estate 

returns. These are labeled by Cochrane (2001) “distress risk” factors or recession 

variables and should capture sources of systematic risk different from the stock market. 

During a recession unemployment is high, labor income is low and more volatile and 

property prices falter. If investors’ marginal utility of stock market wealth is higher 

under these circumstances than in good times, variables that capture the state of the 

economy should show up as priced risk factors alongside the stock market factor. This 

ultimately implies that investors’ utility is not defined only over stock market wealth but 
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also over other forms of wealth. In turn, this implies that the stock market is not a good 

proxy for overall wealth. The recession state variables do not need to predict anything 

(either the stock market or the future state of the economy) but they should be highly 

correlated with the wider economy or particular (sizeable) portions of it unrelated to the 

stock market. In other words, they should represent good instruments for the state of 

portions of the economy, unrelated to the stock market but relevant in determining 

investors’ marginal utility. High correlation implies that the conditioning variable 

should be either highly pro-cyclical or anti-cyclical relative to these portions of the 

economy. If they were pro-cyclical, they would command a positive risk premium. If 

they were anti-cyclical, they would command a negative risk premium (exposure to 

them would represent an insurance against a non-stock market source of systematic 

risk). 

 

The other theoretical reason why the parameters of the SDF might change over time 

relates, in Merton (1973) ICAPM framework, to inter-temporal risk and to the impact of 

changes to the future investment opportunity set on marginal utility of wealth. Thus we 

seek conditioning variables that summarize the predictable evolution of the investment 

opportunity set and hence provide a summary measure of expected excess returns. 

These variables should, in other words, predict excess returns. In particular, in a world 

where only systematic risk matters to investors, the conditioning variable should help 

forecast market returns. The empirical literature has proposed a number of variables that 

help predict future returns. The most successful are the stochastically de-trended short 

term interest rate, employed among others by Scruggs (1998), the book to market value 

ratio, the dividend-price ratio, used by Campbell and Shiller (1988), and the observable 

proxy for the consumption-wealth ratio proposed by Lettau and Ludvigson (2001a). 
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Theoretical arguments that suggest that the consumption-wealth ratio and the 

dividend-price ratio should predict future returns are especially compelling.  

 

To show that the consumption–aggregate wealth ratio summarizes agents’ expectations 

of future returns, Lettau and Ludvigson (2001a), using a log-linear approximation to a 

representative investor’s inter-temporal budget constraint 1 , 1( )t m t t tW R W C   , 

express the log consumption-wealth ratio in terms of future returns to the market 

portfolio and future consumption growth. Because this approximation is based on the 

agent’s inter-temporal budget constraint, it holds both ex post and ex ante. Accordingly, 

the log consumption–wealth ratio may be expressed in terms of expected returns to the 

market portfolio and expected consumption growth as: 

 

 ,
1

( )j
t t t w m t j t j

j

c w E r c


 


    .   (2-55) 

 

Here, lower case letters denote logarithms of (per capita) consumption and wealth and 

w  is the steady-state ratio of invested to total wealth. This essentially means that, 

given the representative investor’s wealth, the amount of consumption today depends on 

the amount he wishes to be able to afford to consume tomorrow and, therefore, on his 

expected future consumption. Under Muth (1961) rational expectations (henceforth 

RE), the above equation implies that, if consumption growth is not too volatile 

(something that appears to be true empirically), the variation in the log 

consumption-wealth ratio must be driven by variation in expected returns. It therefore 

summarizes expectations of future returns on the market portfolio. Intuitively, if the 

consumption-wealth ratio is high, then the agent must be expecting either high returns 
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on wealth in the future or low consumption growth rates (boosting in both cases current 

consumption). Since consumption growth rates are fairly stable, however, swings in the 

consumption-wealth ratio should be related to changing agents’ expectations about 

aggregate returns and therefore, under RE, they should predict aggregate returns. 

 

Of course, the log consumption-aggregate wealth ratio is not observable because human 

capital is not observable. To overcome this obstacle, Lettau and Ludvigson (2001a) 

construct a proxy based on observable quantities. Denote non-human or asset wealth by 

tA  and its logarithm as ( )t ta log A . Also, assume that human capital 
tH  

is on 

average a constant multiple of labor 
tY  income, i.e. 

t tH KY . Its logarithm then can 

be written as ttt vykh  , where k is a constant and vt is a mean zero stationary 

random variable with ( ) 0tE v  . Lettau and Ludvigson (2001a) reformulate the 

bivariate cointegrating relation between
tc and

tw in the consumption-wealth ratio 

equation (
tc  

and 
tw  

are both integrated but their linear combination on the right hand 

side is stationary) as a trivariate co-integrating relation involving the three observable 

variables log consumption 
tc , log nonhuman or asset wealth 

ta , and log labor 

earnings 
ty . Since 

tc  and 
ta  

are both (1)I , such a reformulation is possible, by 

Engle and Granger (1987) representation theorem, under the condition that labor income 

is integrated and the rate of return to human capital is stationary. Aggregate wealth is 

ttt HAW   and log aggregate wealth may be approximated as ttt haw )1(    

where   equals the average share of nonhuman wealth in total wealth, t

t

A
W . The 

left-hand side of (2-55) may then be expressed as follows: 
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Here, tttt yaccay )1(    is the difference between log consumption and a 

weighted average of log asset wealth and log labor income. Solving (2-56) for tcay  

and using (2-55), we can write:   
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.   (2-57) 

 

Because all the variables on the right-hand side of the above equation are stationary, the 

model implies that tcay  is stationary and hence that consumption, asset wealth, and 

labor income share a common stochastic trend (they are cointegrated), with   and 

1   parameters of this shared trend. If the cointegrating parameter   can be 

consistently estimated, tcay  can be treated as observable. As long as the error term tv  

on the right-hand side is not too variable, this equation also implies that tcay should be 

a good proxy for the unobservable quantities on the right hand side of (2-57) and 

therefore for variation in the log consumption–aggregate wealth ratio and expected 

returns. An important issue in using the left-hand side of this equation as a conditioning 

variable is the estimation of the parameters in tcay . Lettau and Ludvigson (2001a) 

discuss how the cointegrating parameter   can be estimated consistently. As 

suggested by Lettau and Ludvigson (2001a) , it is the tcay  time-series constructed 
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using the estimated   parameter and the observed log consumption tc , log asset 

wealth ta  and log labor earnings ty  that can be employed as a scaling variable in a 

conditional asset pricing model. 

 

The specification of the consumption-wealth ratio equation reported above is analogous 

to the linearized formula for the log dividend–price ratio (Campbell & Shiller, 1988), 

where consumption enters in place of dividends and wealth enters in place of price: 

 

 1
,

1

. ( )j
t t t t j m t j

j

p d const E d r



 



     .   (2-58) 

 

Here, td  denotes log-dividends, tr  denotes returns, and   can be seen as the steady 

state dividend yield. Because all the variables on the right-hand side of the above 

equation are stationary, the model implies that t tp d  is stationary and hence that 

prices and dividends share a common stochastic trend (they are cointegrated), with 1 

and –1 parameters of their cointegrating relation. If the dividend-price ratio is high, 

investors must be expecting either high returns on the stock market portfolio in the 

future or low dividend growth rates. Since both consumption and dividends are not very 

volatile and their growth rates are relatively unpredictable, high wealth and high stock 

market prices relative to, respectively, consumption and dividends (but also relative to 

the book value and other metrics) must predict low future returns. The key difference 

between the consumption-wealth ratio and the dividend-price ratio is what is on the 

right-hand side: in the equation for the consumption-wealth ratio it is the return to the 

entire market portfolio and consumption growth, whereas in the dividend-price ratio 

equation it is the return to the stock market component of wealth and dividend growth. 
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Lettau and Ludvigson (2001a) and Guo and Savickas (2003) present evidence that tcay  

is a good predictor of excess returns on aggregate stock market indices. Evidence that 

the dividend-price ratio or the dividend yield is a good predictor of returns is given, 

among others, by Campbell and Shiller (1988), Campbell (1991), more recently, 

Cochrane (1999a, 2001); Fama and French (1996). It is worth stressing that 

predictability is a long-horizon effect. The updated predictability of 1 and 5 year returns 

using the dividend-price ratio as a forecasting regression variable is reported in Table 

2-1, reproduced from Cochrane (2011). The dividend-price ratio predicts 9 percent of 

the variation in 1 year returns and its explanatory power rises steadily as the horizon 

increases. It predicts up to 28 percent of the variation in 5 year returns. Even though the 

explanatory power, 2R , of the regression is inflated by an overlapping observations 

problem, the results at different horizons are reflections of a single underlying 

phenomenon. Even a small short run predictive power or non-zero contemporaneous 

correlation build up to yield substantial returns predictability at longer horizon if the 

forecasting variable is persistent. For example, if daily returns are very slightly 

predictable by a slow-moving (i.e., persistent) variable, that predictability adds up over 

long horizons. As argued by Cochrane (1999a) in a very illuminating way, you can 

predict that the temperature in Chicago will rise about one-third of a degree per day in 

spring. This forecast explains very little of the day to day variation in temperature but, 

because temperature changes are persistent (within each season), it tracks almost all the 

rise in temperature from January to July. Thus, the 2R  rises with horizon. Precisely, 

suppose that we forecast excess returns with a forecasting variable x: 
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	 	 (2‐59)	

	

Even for small values of short-horizon b and 2R  in the first equation above, a large 

coefficient   in the second equation implies that the long-horizon regression has a 

large regression coefficient b  and a large 2R . This regression has a powerful 

implication: stocks are in many ways like bonds. Any bond investor understands that a 

string of good past returns that pushes the price up is bad news for subsequent returns. 

Many stock investors see a string of good past returns and interpret this as a sign of a 

bull market, concluding that future stock returns will be good as well. The regression 

reveals the opposite: a string of good past returns which drives up stock prices is bad 

news for subsequent stock returns, as it is for bonds. 

 

Table	2‐1	

Return	Predictability	

Horizon k b t-statistic R2 

1 year 3.8 (2.6) 0.09 

5 years 20.6 (3.4) 0.28 

 

 

 

 

 

The co-integrating relation between consumption, asset wealth, and labor income and 

between consumption and dividends imply that asset prices are set as predicted by 

rational asset pricing models, i.e. prices and wealth equal the present value of the 

rational expectation of future cash flows, either consumption (real cash flows) or 

dividends, discounted at the equilibrium expected rate of return. The valuation implied 

Notes: This table reports OLS regressions of excess-returns (value-weighted NYSE - Treasury bill rate) on 
value-weighted dividend/price ratio (reproduced from Cochrane (2011)): 

 

 
denotes the kth year return. Standard errors use Hansen–Hodrick correction for heteroskedasticity and error 

autocorrelation.  
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by any such model is the solution to a stochastic differential equation where prices 

equal the present value of the rational expectation of next period dividend or 

consumption flows and capital gains discounted at the equilibrium expected rate of 

return. For this differential equation to have a determinate solution, a boundary 

condition that rules out bubbles must hold. Without this condition (equivalent to 

requiring that sooner or later any bubble bursts), any self-fulfilling expectation of 

capital gains would imply a different yet legitimate solution. In turn, the lack of this 

boundary condition would imply that the right hand side of (2-58) and (2-59) contains a 

non-stationary bubble component (in addition to the stationary terms in the rate of 

future returns and of consumption or dividend growth) and the left hand side would be 

non-stationary. 

 

The intimate relation between stationarity of the left-hand side of (2-58) and (2-59) and 

rational valuation has generated intense interest in tests of the co-integrating relation 

between variables such as prices and dividends or consumption, asset wealth and labor 

income. While Lettau and Ludvigson (2001a) find that consumption, asset wealth and 

labor income are co-integrated and a large body of evidence suggests that the 

dividend-price ratio is stationary, see for example Cochrane (1999a, 2001), the evidence 

that prices and dividends are co-integrated is at best weaker. In particular, tests based on 

the Engle and Granger (1987) methodology find limited evidence of cointegration 

between dividend and prices, see for example Campbell and Shiller (1988), Diba and 

Grossman (1988), Froot and Obstfeld (1991), Balke and Wohar (2001). Since prices are 

much more volatile than dividends, see for example Campbell and Shiller (1988) and 

Campbell (1987), it is possible that these tests fail to detect cointegration because the 

parameters of the cointegrating relation are time varying and, in particular, they display 
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heteroskedastic variability characterized by clustering over time. Heteroskedastic 

time-variation in the parameters of the cointegrating relation in turn might help explain 

heteroskedastic excess volatility of prices over fundamentals. Harris et al. (2002) 

introduce a test for stochastic cointegration, where the parameters of the cointegrating 

relation are allowed to be time varying. This test encompasses the test for cointegration 

with fixed parameters of the cointegrating relation, defined stationary cointegration. 

Harris et al. (2002) find mixed evidence in favour of stochastic cointegration between 

stock and dividends but this evidence is stronger than the evidence in favour of 

stationary cointegration. 

 

2.8.6 The Role of Systematic Skewness 

Non-normal return distributions cannot be entirely described by first and second 

moments. Unless investors display a special type of preferences (quadratic), they care 

about higher moments. In particular, while NIARA rules out preference for negative 

portfolio skewness, decreasing absolute risk aversion (DARA) implies preference for 

positive skewness. As argued by Richter (1960), Levy (1969) and Kraus and 

Litzenberger (1976), an exact preference ordering for risky portfolios using the first 

three moments of the portfolio return is possible, in general, only for an investor with a 

cubic utility function of wealth. Unfortunately, as shown by Levy (1969) and Tsiang 

(1972), this third degree polynomial utility function is unsuitable to model the 

preferences of a risk adverse investor. Duly restricted third order Taylor expansions of 

admissible non-polynomial utility functions can be used instead. Under (NS, RA and) 

DARA and hence if the investor has a preference for positive portfolio skewness, he 

should be willing to accept a somewhat lower expected return to hold assets with 

positive coskewness. 
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2.8.7 The 3M-CAPM  

Kraus and Litzenberger (1976) consider the optimal portfolio choice of a representative 

investor that lives in a 1-period economy. His utility is defined over end of period 

wealth W , i.e. ( )U U W , and it is not restricted to any particular functional form. The 

only requirement is that it be continuous and three times continuously differentiable 

over the range of wealth. In this very simple 1-period setting, where the investor does 

not have to solve the usual optimal consumption-investment decision problem that 

arises in multi-period (2 or more periods) models, the Euler equation for the 

maximization of his expected utility is: 

 

 
, 1 , 1( ) 0t m t i tE U W r     .   (2-60) 

 

As shown in Section 8.1 Appendix A, a third order Taylor expansion of a standardized 

utility function around the point 0 ( ) 1W E W   yields: 
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(2-61) 

 

Here, 1,

1
(1)

2t U    and 2,

1
(1)

6t U  . In the second line of (2-61), I use excess 

returns instead of returns because, in this simple 1-period setting where the distinction 

between unconditional and conditional moments is irrelevant, the risk free rate is known 
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with certainty (also conditionally) and, therefore,  , 1 , , 1 ,( ) ( )m t t m t m t t m tR E R r E r    . 

Differentiating (2-61) once with respect to wealth, marginal utility can be approximated 

as follows: 

 

 
2

, 1 1, , 1 , 2, , 1 ,( ) 1 2 ( ) 3 ( )m t t m t m t t m t m tU r r E r r E r               .   (2-62) 

 

Using (2-62) in (2-60) yields Kraus and Litzenberger (1976) 3M-CAPM. Interpreting 

marginal utility , 1( )m tU W   as a SDF, (2-60) can be seen as a version of (2-16) where 

, 1 , 1 , 1i t i t f tr R R   
 
and, because , 1i tr   

is an excess return, 0tp  . In (2-62), the SDF is 

approximated as a linear function of the market excess return and its square and thus it 

can be seen as an instance of (2-24) with )( ,1,1,1 tmtmt rErf    and 

 2,1,1,2 )( tmtmt rErf   , 1ta  , 1, 12tb  , 2, 23tb  . Applying (2-16), and dropping 

time-subscripts for notational simplicity, (2-60) and (2-62) imply:    

 

 
 [ ( | ) ( ( | ))][ ( )][ ( | ),  ]

( )
[ ( | )] [ ( | )]

m m i im i
i

m m

E U r E U r r E rcov U r r
E r

E U r E U r

 
 

  
   

 
.  (2-63) 

 

Here, differentiating (2-62) once, 1 2( | ) 2 6m mU r r       and, differentiating it once 

more, 2( | ) 6mU r    . Finally, multiplying and dividing the first and second term on 
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the right-hand side of this equation by, respectively, 2[ ( )]m mE r E r  and 

3[ ( )]m mE r E r  and re-arranging, we can write12: 

 

 1 2( )i i iE r      .   (2-64) 

where, 

 
2

1

[ ( | )] [ ( )]

[ ( | )]
m m m

m

E U r E r E r

E U r




 
 


.   (2-65) 

 
3

2

[ ( | )] [ ( )]

2 [ ( | )]
m m m

m

E U r E r E r

E U r




 
 


.   (2-66) 
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m m
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
.   (2-67) 

 
2

3

[( ( ))( ( )) ]

[ ( )]
i i m m

i
m m

E r E r r E r

E r E r
  



.   (2-68) 

 

Here, the coefficient δ1 is the beta premium and the coefficient δ2 is the gamma 

premium. The assumption of greed implies [ ( | )] 0mE U r    and, under RA, 

[ ( | )] 0mE U r   . Thus, since 0)]([ 2  mm rErE , the beta coefficient δ1 is positive for 

risk-averse, greedy investors. If the market portfolio skewness is negative (as it is often 

the case empirically) and if there is a market reward for holding assets with negative 

                                                 
 
12 I also assume that the second derivative of the utility function does not depend on the interaction between market 

and asset unexpected returns,    )()(),|( mrEmrirEirmruCov   = 0, and that the third derivative does 

not depend on the interaction between squared market unexpected returns and asset unexpected returns 

   2)()(),|( mrEmrirEirmruCov   . These are very useful and reasonable simplifications that, intuitively, 

correspond to the requirement that absolute risk aversion and preference towards skewness do not depend on the 
relation between a single asset and the market portfolio or its square (rather, they should depend only on the latter, i.e. 
the market return and its square). Essentially, only changes in overall wealth and in its volatility should determine 
moves along the utility function and, therefore, changes in the point at which its derivatives are evaluated. 
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systematic asset coskewness, the gamma coefficient δ2 is positive. This can also be seen 

by noting that, under the assumption of greed and NIARA, [ ( | )] 0mE U r    and

[ ( | )] 0mE U r    respectively. Since empirical market portfolio skewness is usually 

found to be negative, i.e. 0)]([ 3  mm rErE , then 02  . While δ1 represents 

investors’ reward for systematic variance, i.e. for holding assets that increase the 

volatility of the overall market portfolio, δ2 compensates investors for systematic 

negative skewness, i.e. for holding assets that decrease the skewness of the overall 

market portfolio (that cause the distribution of portfolio returns to be skewed to the left).  

 

2.8.8 The 3M-(C)CAPM 

While allowing utility to contain a cubic term in wealth, its parameters could be allowed 

to be time varying. For example, the elements of   in (2-60) could be specified as a 

function of conditioning information. A particularly interesting possibility is that they 

vary with the business cycle or that they are a function of conditioning variables that 

represent investors’ expectations about future returns. This would yield a conditional 

version of Kraus and Litzenberger (1976) 3M-CAPM. Following a similar approach, 

Harvey and Siddique (2000) propose a conditional asset pricing equation where 

expected asset excess returns are a function of their conditional covariance and 

coskewness with the market portfolio and the prices of covariance and coskewness risk 

also vary over time: 

 

 
, 1 , 1 1

2
1, , 1 , 1 2, , 1 , 1

( ) ( , )

( , ) ( , )

t i t t t i t t

t t i t m t t t i t m t

E r cov r m

cov r r cov r r



 
  

   



 
.   (2-69) 

where, 
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2 2
, 1 , 1 , 1 , 1

1, 2 2
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








.   (2-70) 

 

Here, the symbol 2 2
, 1 , 1 , 1 , 1 , 1( ) {[ ( )],[ ( )]}t m t t m t t m t m t t m tskew r E r E r r E r        represents the 

skewness of the market portfolio in 1t  conditional on information available at time t

, while the other symbols (e.g. conditional expectation and variance operators) have the 

usual meaning. To prove this, we only assume: 

 

 2
, 1 1, , 1 2, , 1( ) ( ) ( )t i t t t m t t t m tE r E r E r     .   (2-71) 

Since,  
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, 1 , 1) [ ( )]m t t m tr skew r 

,   (2-72) 

 

then, we combine (2-71) and (2-72) by taking the terms , 1 , 1( , )t i t m tcov r r   and 

2
, 1 , 1( , )t i t m tcov r r   out, we will have the equations in (2-70), i.e. 
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The pricing equation in (2-71) can be derived from (2-25) specifying the SDF 1tm   as a 

quadratic polynomial in the market excess return , 1m tr   
with parameters ta , 1,tb  and 

2,tb  that are allowed to vary over time, , 1 1f tR   , and therefore13, 1)( 1  tttt fEba . 

That is 

 

 2
1 1, , 1 2, , 1t t t m t t m tm a b r b r     .   (2-74) 

 

Interpreting 1tm   in (2.60) as the SDF implied by a third order Taylor expansion of the 

representative investor’s utility function, the pricing equation in (2.59) can be seen as 

the cross-sectional implication of a conditional version of the 3 moment CAPM 

(henceforth, 3M-(C)CAPM). Under this model, if investors like positive portfolio 

skewness, they should accept a negative risk premium to hold assets with positive 

coskewness because these assets contribute to increase the skewness of the overall 

market portfolio. In other words, the portfolio with positive coskewness is a ideal 

hedging instruments when the market is volatile, and the investors who hold such 

portfolio should pay extra price by bearing the lower premium. The price of coskewness 

risk 2,t , therefore, should be negative. It is worth at this point highlighting the 

difference with the 3-moment model derived by Kraus and Litzenberger (1976) where, 

if market portfolio skewness is negative, positive asset coskewness implies a negative 

gamma and a positive δ2. In other words, the specification of the systematic third 

                                                 
 
13 Recall that, as shown in Section 2.2, in (2.12), and 2.3, in (2.19) and (2.22), without this approximation and the 
resulting restriction on the relation between the intercept and the mean of the factors the risk free return would show 
up in the equations for the risk prices. 
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moment premium used by Harvey and Siddique (2000) and by Kraus and Litzenberger 

(1976) are not equivalent.  

 

2.8.9 Tests of the 3M-(C)CAPM 

Harvey and Siddique (2000) test the 3M-CAPM on Centre for Research on Security 

Prices (CRSP) NYSE, AMEX and NASDAQ stock data over the period 1963-1993. 

They find that the 3M-CAPM significantly improves on a two-moment CAPM 

specification. They report that coskewness helps explain the cross-section of average 

excess-returns on 32 industry portfolios and 25 size and book-to-market value sorted 

portfolios. Moreover, they find that coskewness retains a significant explanatory power 

even after the inclusion of factors related to size and book to market value that have 

been found by Fama and French (1992, 1993, 1995) to empirically explain a large 

portion of the cross-sectional variation in average asset returns. In particular, they find 

that systematic skewness is important and commands on average a risk premium of 3.6 

percent per annum. 

 

Dittmar (2002) specifies a conditional model by expressing the parameters of a 

quadratic and cubic SDF as linear functions of a set of conditioning variables. The 

quadratic SDF implies the 3M-(C)CAPM whereas the cubic SDF implies a 4 moment 

CAPM where preference for co-kurtosis (the systematic fourth moment), is allowed. 

The conditioning variables include one lag of the market excess-return, of the dividend 

yield, the spread of the 3 Month T-Bill over the 1 Month T-Bill rate and the 1 Month 

T-Bill rate itself. He finds evidence of substantial non-linearity in the pricing kernel and 

that both the quadratic and cubic SDF fit well the cross-section of US industry equity 

indices average returns over the period 1963-1995. After imposing the regularity 
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conditions on the shape of the utility functions that correspond to standard risk 

aversion, i.e. positive marginal utility, RA and NIARA over all values of wealth, the 

estimated gamma premium remains statistically and economically significant but it 

becomes much smaller, thus considerably reducing the ability of the estimated 3 and 4 

moment conditional specifications to explain the cross-section of average returns.  

 

Post et al. (2008) criticise previous empirical tests of the 3M-CAPM, such as Harvey 

and Siddique (2000), on the grounds that they fail to check whether the decreasing 

marginal risk-aversion requirement is satisfied by the estimated pricing model. 

Consistently with Dittmar (2002), they show that the gamma (standardised asset 

co-skewness) premium turns out very small when the appropriate regularity conditions 

(risk aversion) are imposed on the shape of the investor utility function. In fact, fitting a 

cubic utility to data on the Fama and French (1995) market portfolio and on 10 

size-ranked portfolios for the period 1963-2001, their estimated expected utility 

function does not satisfy the concavity requirement over the relevant wealth interval and 

thus the market portfolio is not guaranteed to be efficient for the representative investor. 

Moreover, they find that the market portfolio is likely to minimize the sample expected 

utility, rather than maximize it as predicted by the 3M-CAPM. 

 

2.8.10 3M-CAPM vs. (C)CAPM 

Even though the (C)CAPM uses the assumption that investors have a quadratic utility 

function and its pricing kernel does not incorporate 3rd order terms, the unconditional 

implications of both the 3M-CAPM and the (C)CAPM contain a premium for a cross 

third moment of asset returns. The 3M-CAPM contains a premium for the cross third 

moment between asset return and the square of the market return, i.e. a premium for 
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2
, ,( , )i t m tcov r r . The (C)CAPM contains a cross third moment between the asset return, the 

market return and a conditioning variable that influences marginal utility of market 

wealth, i.e. a premium for , 1 ,( , )i t t m tcov r z r . Equivalently, asset coskewness can be seen 

as the covariance between the asset return and market volatility14, whereas in the 

(C)CAPM the expression , 1 ,( , )i t t m tcov r z r  can be interpreted as the covariance between 

the asset return and the sensitivity of the market return to the conditioning variable. In 

other words, in the 3M-CAPM investors are rewarded for holding assets that perform 

poorly at times of high market volatility, whereas in the (C)CAPM they are rewarded 

for holding assets that do poorly when the return on the stock market portfolio is very 

reactive to the conditioning variable, and hence when it is very reactive to either returns 

on non-market wealth or expected stock market returns. There are a number of 

circumstances under which the (C)CAPM expression , 1 ,( , )i t t m tcov r z r  could proxy for 

asset coskewness and vice versa. This would be the case if 1tz   was a good proxy for 

,m tr  and hence when the former forecasts the latter.  

 

2.8.11 Higher Moment CAPM and the Shape of the Utility Function 

Consistent with the 3M-CAPM, Dittmar (2002) finds that SDF specifications quadratic 

and cubic in the market return provide a much better fit to the observed cross-section of 

stock returns than linear models. This author also emphasises, however, that the best fit 

obtains with a U-shaped SDF, whereas the superior performance of the 3M and 

4M-CAPM is significantly reduced when the SDF is restricted to be decreasing in the 

market return. Post et al. (2008) report similar findings and reach similar conclusions. 

                                                 
 
14 More accurately, coskewness should be seen as the covariance with the realization of the market second moment.  
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This evidence implies that marginal utility of wealth increases above a threshold and 

thus that the utility function takes an “inverse S” shape. Such a shape, in turn, implies 

risk-seeking over a range of sample wealth.  

 

It is not uncommon, in the extant literature, to encounter studies that find evidence of 

risk-seeking and specifications of investors’ preferences that admit this type of 

behaviour. Psychologists, led by Kahneman and Tversky (1979), find experimental 

evidence of local risk seeking. Friedman and Savage (1948) and Markowitz (1952) 

suggest that the willingness to purchase both insurance and lottery tickets implies that 

marginal utility is increasing over a range of investors’ wealth. Golec and Tamarkin 

(1998) and Garrett and Sobel (1999) provide evidence that risk-averse individuals take 

actuarially unfair “long shot” gambles, i.e. low-probability but high-variance bets, and 

argue that this behaviour can be rationalized by postulating skewness preference and an 

inverse-S shaped utility function. Post and Van Vliet (2006) and Post et al. (2008) 

argue, however, that non-concave utility is problematic from the viewpoint of the 

3M-CAPM. In essence, they point out that, if the representative investor’s utility 

function is not concave, the market portfolio is not guaranteed to maximize her expected 

utility function and the 3M-CAPM does not necessarily hold even if the estimated SDF 

is quadratic in the return on such portfolio. Their remark extends in a straightforward 

manner to models of the SDF cubic in market wealth, implying a similar difficulty in 

interpreting the explanatory power of such models as evidence in favour of the 

4M-CAPM. 
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2.9. Behavioural	Models	

The behavioural finance explanation of the stylized features of the distribution of asset 

returns also belongs to the new paradigm. While it does not rule out time varying risk 

and risk premia, it allows for investors’ irrationality and market inefficiency. Under this 

approach, it is admissible that asset prices and expected returns are not the solution to a 

general equilibrium model with fully rational, risk averse economic agents and 

competitive financial markets. See, for a review, Barberis and Thaler (2003)). The 

literature on limits to arbitrage clarified that, in the presence of noise trader risk, 

risk-averse market participants with short horizons (finitely lived) might not have the 

incentive to trade quickly as to exploit all available information even though financial 

markets are competitive and hence investors are price takers. This is the perspective 

advocated, among others, by De Long et al. (1990a, 1990b) and Shleifer and Vishny 

(1997). Noise trader risk is the risk that mispricing caused by the net demand of 

irrational (and hence uninformed) noise traders might worsen in the short run before 

trades by rational (and hence informed) traders manage to correct it. The relevant notion 

of rationality is, in this context, the definition embedded in the rational expectation 

hypothesis of Muth (1961).  

 

The behavioural perspective also allows for non-standard utility functions where 

investors either do not have unambiguously defined preferences over consumption or 

they display risk seeking over certain portions of the utility function domain. For 

example, Prospect Theory and Cumulative Prospect Theory, formulated by Kahneman 

and Tversky (1979) and Tversky and Kahneman (1992), respectively, imply framing 

and S-shaped utility functions defined over gains and losses instead of over 
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consumption and wealth as in the standard Expected Utility framework. In particular, 

these utility functions display risk aversion over gains and risk seeking over losses 

below a threshold. Behavioural Portfolio Theory, advocated by Shefrin and Statman 

(2000), predicts instead risk aversion over losses and risk seeking over gains and thus an 

inverse S-shaped utility function. These non-standard utility functions rationalize 

evidence that investors, under certain circumstances, display risk seeking behaviour. 

Active stock traders appear to play negative-sum games and their behavior can 

sometimes be interpreted as “gambling” (Statman, 2002). In addition, psychologists led 

by Kahneman and Tversky (1979) find experimental evidence for local risk seeking 

behavior. More specifically, Post and Levy (2005) argue that a number of celebrated 

asset pricing anomalies, such as the low average yield on stocks with large 

capitalization, growth stocks and past winners, could be explained by risk aversion over 

losses and risk seeking over gains.  

 

Numerous contributions from the literature on non-standard utility theory and 

behavioural asset pricing (see for a review Shefrin (2010)), thus, admit a non-linear 

pricing kernel that implies non concavity of the utility function over certain ranges of 

wealth, and thus an increasing SDF and a violation of RA. Friedman and Savage (1948) 

and Markowitz (1952) argue that the willingness to purchase both insurance and lottery 

tickets implies that marginal utility is increasing over a range. See Hartley and Farrell 

(2002) and Post and Levy (2005) for a recent discussion. S-shaped utility functions, 

such as the function implied by the prospect theory of Kahneman and Tversky (1979), 

do not satisfy either RA or NIARA. Inverse S-shaped utility functions, such as the 

specification implied by the behavioural portfolio theory of Shefrin and Statman (2002), 
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violate RA but satisfy NIARA at every point in the domain where the function is 

differentiable.  

 

2.10. Absolute	vs.	Relative	Pricing	

Financial theory has extensively addressed the issue of how to model the mean 

behaviour of asset returns and link it to other variables. In particular, asset pricing 

models relate mean returns to higher moments. The latter are typically cross-moments 

formed between the asset return and other variables. These variables can be either 

economic fundamentals and other non-asset variables, or returns on other assets such as 

the market portfolio. The first approach is known as absolute pricing, e.g. Lucas’ (1978) 

Consumption CAPM, whereas the second is known as relative pricing, e.g. the Sharpe 

(1964) and Lintner (1965) CAPM and especially the Asset Pricing Theory (APT), 

proposed by Ross (1976). The APT requires for its derivation less restrictive 

assumptions than the CAPM, such as that investors are greedy, that markets are 

frictionless (or, at least, that diversification is not too costly) and that the returns 

variance-covariance matrix has a well defined factor structure. The latter requirement 

guarantees that diversified portfolios can be closely replicated by portfolios that mimic 

the exposure to single factors. It does not, however, require market completeness (or, 

equivalently, the representative investor assumption). It provides a no-arbitrage pricing 

relation between diversified portfolios of assets based on their sensitivity to a set of 

pervasive risk factors and on the equilibrium risk premium for the exposure to each 

factor. Chen et al. (1986) proxy for the factors using macro-economic variables deemed 

to drive the variation in stock returns. Within a multi-factor model for asset returns 

derived from the APT, Koutoulas and Kryzanowski (1996) estimated conditional 
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time-varying risk premia and conditional volatilities associated with each pervasive risk 

factor. They found that five pervasive risk factors, namely the lag of industrial 

production, the Canadian Index of 10 Leading Indicators, the US Composite Index of 12 

leading Indicators, the exchange rate and the residual market factor, have priced risk 

premia, including the residual market factor. 

 

For large and diversified portfolios, the implications of the CAPM and of the APT are 

the same when there is only one pervasive risk factor, the market portfolio. In this case, 

the expected excess return on the market portfolio would be the only risk premium 

priced in equilibrium for any diversified portfolio. Neither the CAPM nor the APT 

admit any risk premium related to idiosyncratic risk (exposure to asset-specific, 

non-pervasive risk factors), which is expected to be diversified away. It should be noted 

however that the CAPM, contrary to a popular misinterpretation, is not a special case of 

the APT. The latter imposes an assumption, namely that the idiosyncratic residuals are 

uncorrelated, that the CAPM does not require. In the CAPM, idiosyncratic residuals are 

uncorrelated only on average (with capitalization weights). This is not an assumption, 

but an implication that follows by construction from the CAPM prediction that these 

residuals are the error terms of the regression of a set of asset excess returns on their 

own capitalization-weighted average, namely the market excess returns. 

 

2.11. Transaction	Costs	

Despite the formal elegance and analytical simplicity of the C-CAPM, the empirical 

performance of the model has been, at best, mixed. Since the early studies by Hansen 

and Singleton (1982, 1983), it has been clear that observed asset returns are inconsistent 
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with the dynamics of consumption choices, at least as observed in aggregate data. This 

evidence was reinforced and confirmed in a large number of subsequent studies (see, 

Mehra and Prescott (1985)). Some studies, such as Hansen and Jagannathan (1991), 

suggested that one of the reasons for the poor empirical performance of the model was 

the low level of variability of aggregate consumption growth. More recently, there have 

been several attempts at rationalizing this discouraging evidence and several studies 

have explored the possibility that limited participation in financial markets might 

explain the disparity between theoretical predictions and empirical evidence. More 

precisely, since the first-order conditions of representative-agent rational asset pricing 

models hold as equalities only for households that own diversified portfolios, the 

models should be tested for this subset of households only and not for the whole 

population. As a consequence, since in practice relatively few households hold shares 

directly and even fewer hold a fully diversified portfolio, the use of aggregate 

consumption data in evaluating asset pricing models can be misleading, This is arguably 

the case even if we abstract from standard aggregation issues arising from the 

nonlinearity of the marginal rate of substitution 

 

These points have been stressed by Mankiw and Zeldes (1991), Attanasio et al. (2002), 

Vissing-Jørgensen (2002) and Paiella (2004), among others, who propose limited 

financial market participation as a unified framework for rationalizing the empirical 

rejection of the C-CAPM. These authors show that accounting for portfolio 

heterogeneity and in particular for non-participation in financial markets helps reconcile 

the predictions of the theory with the empirical evidence. Attanasio et al. (2002), for 

instance, show that focusing on the consumption of stockholders not only yields 
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estimates of preference parameters that are in line with the theory, but also one does not 

reject the over identifying restrictions implied by the model and, relatedly, the moments 

of the marginal rate of substitution are within the Hansen-Jagannathan bounds. 

However, as pointed by Attanasio and Paiella (2011), limited participation is itself a 

puzzle for the intertemporal consumption model, just like the observed substantial 

differences in portfolio composition across agents and over the life cycle. Merton (1969) 

and Samuelson (1969) have illustrated how such behaviour is inconsistent with the 

maximization of expected lifetime utility, which predicts that rational agents should 

invest an arbitrarily small amount in all assets with positive expected return, including 

risky ones, unless there are nonlinearities in the budget constraint. 

 

One possible and obvious way to reinstate consumption risk as the key determinant of 

equilibrium asset prices is by invoking other market conditions, such as trading costs, 

which may explain the tenuous link between aggregate consumption risk and asset 

volatility. This approach has been pursued by He and Modest (1995), Luttmer (1996, 

1999) and, more recently, Attanasio and Paiella (2011). Investors trading directly on the 

New York Stock Exchange (NYSE) face a bid-ask spread of at least one eighth of a 

dollar per share (one “tick”). Also, taxes can create a gap between the interest rates at 

which consumers can borrow and lend. More indirectly, about 2.5 percent of the labour 

force in the U.S. is employed in the financial sector, presumably providing some costly 

intermediating service between buyers and sellers of assets (Luttmer, 1996). Empirical 

studies of the capital asset pricing model, the arbitrage pricing theory, and of 

consumption-based asset pricing models are typically premised on the assumption that 

the empirical implications of these models are not very much affected by the presence 
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of trading frictions of commonly observed magnitudes. Using aggregate data, Luttmer 

(1999) provides a lower bound on the transaction costs that would rationalize the model 

in the face of available data. Paiella (2007), using micro data, provides evidence in 

support of the participation cost hypothesis by bounding from below the costs of 

participating in some financial markets and showing that such lower bound is realistic. 

Her bounds for the stock market participation costs are as small as $130 per year.  

 

2.12. Summary	and	Conclusions	

In this section I have summarized the important developments in asset pricing theory 

along with the transition from the old to the new paradigm of asset returns, and I have 

shown how the various asset pricing models can be seen as specializations of the 

general SDF model. I have then reviewed a number of specifications of this model. 

Whenever possible, I highlighted the connections between the implications of the 

various asset pricing models and interesting patterns in equity returns and their 

moments.  

 

The SDF representation of the asset pricing problem is surprisingly flexible, yet it 

allows explanations for the observed patterns in asset returns to be generated in a 

rigorous and testable manner. The only requirement is that the SDF be linear in the 

factors. Since this approach allows for considerable flexibility in specifying the 

functional form of the SDF, it can capture non-linearity in the behaviour of marginal 

utility and time variation in the parameters of the utility function. It therefore serves as a 

useful framework to specify alternative asset pricing models that allow for a variety of 

factors to be priced in the time series and cross section of asset returns under alternative 
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assumptions about the multivariate return distribution, investors’ preferences and 

market completeness.  

 

All the asset pricing models considered in the empirical part of the thesis, i.e. Chapter 3, 

4, 5 and 6, can be seen as specializations of the SDF model. Chapter 3 proposes a novel 

approach to testing non-linear SDF specifications that arise in rational representative 

investor models. Chapter 4 will check whether adding the sentiment factor, and thus 

allowing for a behavioural influence on asset pricing, allows to significantly improve 

the explanatory power of the (C)CAPM and 3M-CAPM. In Chapter 5, I will allow for 

market frictions, and investigate the performance of the conditional higher-moment 

CAPM under realistic transaction cost assumptions. The attribution model used in 

Chapter 6 to assess the performance of Chinese mutual fund managers is based on a 

SDF representation of a multi-factor pricing model specified under the assumption that 

the shares of the funds are held at the margin by a representative investor that faces an 

investment opportunity set made up of Chinese stocks. 
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3. The	Coskewness	Puzzle	

3.1. Introduction	

In this chapter, we propose a novel approach to testing non-linear SDF specifications 

that arise in rational representative investor models. Our approach does not require 

overly-restrictive assumptions about the shape of investors’ preferences, typically 

imposed by the extant literature, and is based instead on restrictions that rule out “good 

deals”, i.e. arbitrage opportunities as well as unduly large Sharpe ratios. We apply this 

framework to test the empirical admissibility of 3 and 4-moment versions of the CAPM 

in explaining differences in average returns across a number of stock strategies and 

portfolios, including static strategies based on a fine industry-level diversification, 

momentum strategies and portfolios managed on the basis of available information. 

 

Our study aims to shed light on the puzzling conundrum arising from the problematic 

shape of the representative investor’s utility function implied by unrestricted estimates 

of the 3M and 4M-CAPM. On the one hand, the findings of Dittmar (2002) and the 

critique put forth by Post et al. (2008) suggest that omitting appropriate restrictions on 

the shape of the candidate SDF might lead to over-fitting the cross-section of the test 

asset returns and thus to spurious estimates of the parameters of the 3M and 4M-CAPM. 

On the other hand, concavity of utility is a sufficient but not necessary condition for the 

market portfolio to maximize expected utility. This implies that it is formally impossible 

to make any conclusive inference on the empirical validity of higher moment versions 

of the CAPM if the latter are rejected when this condition is imposed in estimation, as in 

the tests performed by Dittmar (2002) and Post et al. (2008). Such tests, in fact, while 



 80

suggestive, amount to tests of the joint hypothesis that the higher moment CAPM holds 

and utility is concave.  

 

To mitigate this difficulty, we pursue an alternative approach. We only assume that 

marginal utility is positive and the representative investor’s relative risk aversion (RRA) 

does not exceed an upper bound motivated by survey and experimental evidence 

(secondary data) on economic agents’ risk aversion, as well as by introspection. These 

restrictions, and especially the bound on RRA, have the effect of limiting the volatility 

of the estimated SDF and, together, they rule out both arbitrage opportunities and 

unduly high Sharpe ratios (henceforth, SR). Imposing such restrictions boils down to 

limiting the admissible curvature of the representative investor’s utility function and, 

ultimately, mitigates the danger of over-fitting the cross-section of the test asset returns. 

Because this approach does not rely on overly-restrictive assumptions about the shape 

of utility, it permits a more direct appraisal of the empirical admissibility of 

higher-moments versions of the CAPM than the approach followed by Dittmar (2002) 

and Post et al. (2008). 

 

Our empirical results paint a complex picture. On the one hand, somewhat surprisingly, 

we find that coskewness and cokurtosis risk matter only for the pricing of strategies 

characterized by relatively high SRs, such as dynamic portfolios managed on the basis 

of available conditioning information or, at least until the late 90s, payoffs spanned by a 

fine industry-level diversification, as well as momentum strategies. On the other hand, 

our results conclusively demonstrate that, as suspected by Post and Van Vliet (2006), 

the CAPM and its higher-moment versions cannot provide an exhaustive description of 
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average stock returns. This is also true of specifications, akin to those estimated by 

Dittmar (2002), consistent with 3 and 4-moment conditional versions of this model. We 

conclude that, while preferences towards higher moments are important in explaining 

average returns, especially on certain strategies, the CAPM and its higher-moment 

versions provide at best a partial account of the stock price determination mechanism. 

 

In the next Section, we discuss the problem of bounding from above SDF volatility in 

the context of the higher-moment CAPM. In Section 3.3, we outline the estimation 

methodology that underlies our tests. In Section 3.4, we describe our dataset. In Section 

3.5, we present our empirical results for the case of unconditional models. In Section 

3.6, to facilitate comparisons with the extant literature, we report estimates of the 

unconditional models obtained using different sample periods and test asset payoffs.  

In Section 3.7, we report our empirical results for the case of conditional models. In 

Section 3.8, we discuss the implications of our findings and offer our conclusions. 

 

3.2. The	Risk	Aversion	and	the	SDF	Volatility	

We specify the candidate SDF as the following third order polynomial defined over the 

market portfolio return , 1m tR  : 

 2 3
1 1, , 1 2, , 1 3, , 1t t t m t t m t t m tm a b R b R b R       .  	 (3‐1)	

 
The specification in (3-1) can be interpreted as a factor model with factors given by the 

first three integer powers of the return on the market portfolio of risky assets. In view of 

the covariance-pricing representation of the implications of (3-1) outlined in Appendix 
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A, 1,tb , 2,tb , and 3,tb  is related with the prices of market covariance, coskewness 

and cokurtosis risk, respectively. It is well known that the CAPM imposes a number of 

restrictions on (3-1). In this model, the market portfolio is the inter-temporal optimal 

allocation that maximizes the representative investor’s multi-period expected utility, 

subject to the economy’s inter-temporal budget constraint. Denoting by , 1( )m tU W   the 

investor’s time-separable utility function of wealth and by )( 1,  tmWU  its first 

derivative and according to the analysis in the last chapter, the first order condition 

(FOC) for the optimum is that, for every payoff 1tx  , the following equality holds: 

 
, , 1 1( ) ( )m t t t m t tU W p E U W x       .  	 (3‐2)	

 
This equation also can be interpreted as 

 
, 1

1 1 1
,

( )
( )

( )
m t

t t t t t t
m t

U W
p E x E m x

U W
 

  

 
    

.  	 (3‐3)	

 
The key prediction of the CAPM is that the market portfolio is efficient. This requires 

that the market portfolio maximizes the representative investor’s expected utility, 

subject to the inter-temporal budget constraint. That is, the market portfolio must 

represent the solution to a constrained maximization problem. The equalities in (3-2) 

represent FOCs of this problem. A necessary and sufficient condition for their solution 

to coincide with the solution to the representative investor’s problem is that the 

expectation of the utility function (the maximand) be quasi-concave in wealth. Deriving 

the implications of this condition for the parameters of (3-1) is, however, extremely 

complex. This difficulty explains why, in tests of the higher-moment CAPM, 

researchers usually impose global concavity of utility and thus require that its second 

derivative U   be negative, by either using a power specification or suitably restricting 
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the parameters of a polynomial expansion of the utility function, as in Dittmar (2002). 

This condition is relatively easy to enforce and it is sufficient to guarantee that the 

expectation of utility be quasi-concave in wealth, but it is not necessary for this to be the 

case. Therefore, if the aim is to test higher moment versions of the CAPM, such 

condition is too restrictive.  

 

We do not wish to impose the overly restrictive assumption that utility is concave, nor 

we are able to directly impose the requirement that its expectation be quasi-concave. We 

do wish, however, to restrict the curvature of the utility function in a meaningful 

fashion. To achieve this aim, we exploit the link between the curvature and volatility of 

the representative investor’s IMRS. Referring to Appendix A, we have: 
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2 2 3 3
, 1 , 1
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( ) ( )
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( ) ( )
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  



 
 

 



.  	 (3‐4)	

 

As a first step, we obtain an expression for the variance of the IMRS by applying the 

conditional variance operator to both sides of (3-4). In doing so, we neglect all terms in 

the Taylor expansion of the IMRS that contain second and higher order powers of the 

market return. This yields the following locally valid approximation of the IMRS 

conditional variance: 
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,2 2 2 2 2

1 , , 1 , , 1
,

( )
( ) ( )

( )
m t

t t t m t m t t m t m t
m t

U W
m W r RRA r

U W
      

 
    

.  	 (3‐5)	

The above result illustrates the relation between RRA and the volatility of the IMRS in 

a neighbourhood of an initial wealth value Wm,t. Under an upper bound on the (absolute 

value of) RRA, i.e. letting Vtm RRARRA , , we have the following inequality: 

 2 2 2 2
, , 1 , 1 , 1

( ) ( ) ( )t m t t V V tm t m t m t
RRA r RRA r RRA r      .  	 (3‐6)	

Using (3-6) to bound from above the right-hand side of (3-5), and recalling that the 

coefficient γ which is often called the subjective inter-temporal rate of substitution 

should satisfies 10   , we obtain the following upper bound to the volatility of the 

IMRS: 

 2 2 2 2 2 2
1 , 1 , 1

( ) ( ) ( )t t V t V tm t m t
m RRA r RRA r       .  	 (3‐7)	

Since 2 2 2
1 , 1 1 , 1 1 , 1( ) (1 ) ( )t m t t m t t m tr r R          , (3-7) could be re-written as, 

 2 2 2 2 2 2
1 , 1 , 1

( ) ( ) ( )t t V t V tm t m t
m RRA R RRA R       .  	 (3‐8)	

This inequality, ultimately a restriction on the curvature of utility, implies that the 

volatility of the IMRS is bounded from above by a quantity that depends on market 

volatility and a bound on the admissible values of RRA. It should be noted that, while 

(3-5) only holds in a neighbourhood of the initial wealth value Wm,t, the upper bound in 

(3-7) and (3-8) holds in the neighbourhood of every value of wealth as long as RRA, 

itself a function of wealth, evaluates to a quantity that is within the RRA bound. This 

makes the bound relevant for restricting the volatility of the IMRS of investors who 

exhibit non constant RRA and thus care about moments of third and higher orders. 

Therefore, (3-7) and (3-8) can be seen as a generalization to a possibly non 

mean-variance world of a result already formulated by Ross (2005) under the 
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assumption of either log-normally distributed returns or exponential utility. Importantly, 

Ross (2005) also demonstrates15 that the volatility of the representative investor’s 

IMRS provides a “no good deal” upper bound to the economy maximal SR or, 

equivalently, to the volatility of the minimum-variance SDF *
1tm   that prices all assets 

traded in the economy, i.e. 2 * 2
1 1( ) ( )t t t tm m   . Thus, using (3-8), we obtain the 

following bound on the variance of *
1tm  : 

 2 * 2 2 2
1 1 , 1

( ) ( ) ( )t t t t V t m t
m m RRA R      .  	 (3‐9)	

Taking unconditional expectations of both sides of (3-9) gives the following upper 

bound on the unconditional variance of the candidate SDF: 

 2 * 2 2
1 , 1( ) ( )t V m tm RRA R   .  	 (3‐10)	

To give empirical content to this inequality, one needs to identify a suitable value for 

the RRA bound. To this end, we follow the advice of Ross (2005) and seek guidance 

from survey and experimental evidence on investors’ RRA provided by the extant 

literature. Ross (2005) suggests imposing an upper bound of 5 on the RRA of the 

marginal investor, i.e. 5VRRA . Among the motivations advanced by Ross (2005) to 

do so, the one that most easily applies to a world with possibly non-normally distributed 

returns and non quadratic utility is the simple observation that RRA higher than 5 would 

imply that the investor is willing to pay more than 10 percent per annum to avoid a 20 

percent volatility of his wealth (i.e., about the unconditional volatility of the S&P in the 

last 75 years), which seems a rather large amount. Similar indications can be drawn 

from the analysis offered by Meyer and Meyer (2005), who provide a comprehensive 

                                                 
 
15 See Proposition 1 in Ross (2005). 
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re-evaluation of the hitherto scattered empirical evidence on economic agents’ risk 

aversion. They show that RRA estimates reported by the extant literature are less 

heterogeneous and extreme if one takes into account measurement issues and the 

outcome variable with respect to which each study defines risk aversion. Using returns 

on stock investments as the outcome variable, calculations by Meyer and Meyer (2005) 

show that the RRA coefficient in the classical Friend and Blume (1975) study of 

household asset allocation choices ranges between 6.4 and 2.0, and decreases in 

investors’ wealth. Using returns on the investors’ overall wealth, including real estate 

and a measure of human capital, the RRA estimate ranges between 3.0 and 2.4. The 

same calculations show16 that the RRA implied by the findings of Barsky et al. (1997) 

ranges between 0.8 and 1.6.  

 

These considerations allow us to identify a plausible upper bound on RRA. To be able 

to compute the SDF volatility upper bound in (3-10), all that remains to be done is to 

obtain an estimate of the market portfolio volatility, or at least an upper bound on such a 

quantity. To this end, we note that, even though the market portfolio of risky assets 

includes both a traded and a non traded portion, the former is likely the most volatile. 

Thus, we use the S&P500 index to proxy for the traded portion and neglect the 

non-traded one, which is hard to measure. The sample estimate of the S&P500 index 

volatility over the period 1965-2005 is about 15.5 percent per annum. Therefore, using 

(3-10), the SDF volatility bound for this period is about 78 percent per annum if, as 

                                                 
 
16 Meyer and Meyer (2005) calculate somewhat higher values based on estimates provided by studies of the equity 
premium puzzle. Since these estimates are backed out parametrically from estimates of a particular asset pricing 
model, often based on a narrow definition of the market portfolio, they are of no interest for the purpose of computing 
the SDF volatility bound. Moreover, their use would imply a circular argument. 
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suggested by Ross (2005), the RRA upper bound is set to RRAV = 5.0 and about 99 

percent per annum if the RRA upper bound is set to match the RRA of the most risk 

averse households’ cohort in Friend and Blume (1975) study, i.e. RRAV = 6.4. 

 

3.3. Factor	Model	Estimation	under	SDF	Sign	and	Volatility	Restrictions	

Given a set of n basis test asset payoffs 1tx  , a NA restriction and an upper bound on 

the volatility of the candidate SDF 1tm  , the latter can be estimated by solving the 

following problem: 

 { }

2
1 1

       min  

. .   0,   ( )

t n n t
m

t t t t

g W g

s t m m A



 



 
.  	 (3‐11)	

with 

 1 1 1( ) ( )t t t t t tg E m x p x    .  	 (3‐12)	

The elements of the vector tg  correspond to the moment conditions implied by the 

restriction in (3-3) and can be interpreted as pricing errors, while W  is a suitable 

n n  weighting matrix. The efficient choice for the latter is Hansen (1982) optimal 

weighting matrix but in this study, following Dittmar (2002), we mainly use Hansen and 

Jagannathan (1997) second moment matrix because it does not reward spurious 

variability of the candidate SDF. When using this weighting matrix, the minimized 

pricing error metric in (12) becomes T times the square of Hansen and Jagannathan 

(1997) distance, where T denotes the length of the sample period. To make inferences 

about the empirical admissibility of the candidate SDF, we use the asymptotic 

distribution of this statistic, under the null of zero pricing errors, provided by 

Jagannathan and Wang (1996). To identify the mean of the SDF, as done by Dittmar 
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(2002) and recommended by Dahlquist and Söderlind (1999) and Farnsworth et al. 

(2002a), we include the risk-free asset amongst the basis test asset payoffs 1tx . In 

estimation, under the usual ergodicity assumptions, we use sample averages ()TE  

instead of unconditional means and we expand the set of orthogonality conditions by 

imposing the pricing errors to be unpredictable using information carried by a vector of 

instruments tz : 

 { }

2
1 1

       min  

. .   0,   ( )

T nk nk T
m

t T t

g W g

s t m m A



 



 
.  	 (3‐13)	

with 

  1 1( )T T t t t tg E m x p z    .  	 (3‐14)	

Here, tz  is a vector of k  conditioning variables. This yields a total of  N n k   

orthogonality conditions for the pricing of as many test assets with payoffs represented 

by the cross-products tt zx 1 . The latter can be seen as payoffs of dynamic portfolios 

made up of basis assets having payoffs 1tx  and managed using information carried by 

the conditioning variables tz . The candidate SDF 1tm   is the polynomial described by 

(3-1). We call the unrestricted version of the latter the (conditional) cubic market factor 

model, and denote it by the shorthand notation CMFM. Letting tb ,2  equal zero yields a 

quadratic market factor model (QMFM). Setting both tb ,2  and tb ,3  equal to zero 

yields a linear market factor model (LMFM). Given the seminal role played by the 

study of Dittmar (2002) in the literature on tests of the higher moment-CAPM under 

preference restrictions, we adopt an empirical specification of the candidate SDF that is 

as close as possible to the one used by this author. We thus model the market portfolio 
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as a linear combination of a value-weighted portfolio of traded assets, with rate of return 

denoted by , 1vw tR  , and human capital, with rate of return , 1l tR  . That is, we let:  

 , 1 , 1 , 1(1 )m t t vw t t l tR R R      .  	 (3‐15)	

Here, 0 1t   represents the fraction of market wealth allocated to traded financial 

assets. Thus, using (3-15) in (3-1), we have the following empirical specification of the 

candidate SDF: 

 

2 3
1 0, ,1, , 1 ,2, , 1 ,3, , 1

2 3
,1, , 1 ,2, , 1 ,3, , 1

t t vw t vw t vw t vw t vw t vw t

l t l t l t l t l t l t

m a b R b R b R

b R b R b R

   

  

    

  


.  	 (3‐16)	

Here, the cross product between , 1
i
vw tR   and , 1

i
l tR   is ignored. This specification is the 

same as the one used by Dittmar (2002). We note, however, that the weights t
 

and 

1 t  are time-varying. For this reason, imposing that the candidate SDF in (3-16) be 

decreasing in , 1vw tR   and , 1l tR  , as done by Dittmar (2002), is not the same as 

imposing it to be decreasing in , 1m tR  . In fact, the former requirement is much more 

restrictive than the latter and it is overly restrictive if the aim is to impose concavity of 

the utility function, which only requires that the candidate SDF be decreasing in the 

overall market portfolio wealth rather than in each one of its components17. These 

considerations provide further motivation for imposing positivity and volatility 

restrictions on the estimated SDF in place of global concavity in tests of the higher 

moment CAPM. Finally, following again Dittmar (2002), we model conditional 

time-variation in the shape of the utility function by specifying the parameters of the 

                                                 
 
17 Admittedly, imposing that the estimated SDF be decreasing in Rm,t+1, rather than in Rvw,t+1 and Rl,t+1 separately, can 
be quite challenging because of obvious programming difficulties and econometric software limitations as well as 
because the weights with which traded and non traded wealth enter the market portfolio are difficult to observe and 
measured with error. 
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candidate SDF as linear functions of the set of conditioning information variables tz , 

i.e. we let, 

 , , , , , ,'               '               't t vw j t vw j t l j t l j ta z b z b z     .  	 (3‐17)	

Here, recalling that tz  is a vector of k

 

conditioning variables, ,vw j  and ,l j , with 

[1,  2,  3]j  , are conformable coefficients vectors.  

 

3.4. Empirical	Specification	Details	and	Data	

We use monthly data, from 1963 to 2005, on the rate of returns on an overall 

value-weighted portfolio of stocks included in the Centre for Research on Security 

Prices (CRSP) database and on portfolios of such stocks sorted into 17 and 30 industries 

as well as 10 momentum deciles 18 . As customary, the value-weighted portfolio 

represents the proxy for the return , 1vw tR 

 

on the traded portion of the market portfolio 

of risky assets. The returns on the 17 and 30 industry-sorted stock portfolios represent 

payoff spaces similar to those spanned by the returns on the 20 and 27 industry-sorted 

portfolios used by Dittmar (2002) and Harvey and Siddique (2000), respectively. The 

10 momentum portfolios are also similar to those used by the latter authors. We use 

NIPA data to construct, as in Dittmar (2002), a proxy for the return on human capital 

, 1l tR 

 

and we employ the yield of the 1-month US Government Treasury Bill as a proxy 

for the risk-free rate. We use the rates of return on the test asset payoffs to compute 

gross returns (i.e., one plus the rate of return or the yield). The conditioning information 

variables tz  are the unit series and variables drawn from a set that includes the 

                                                 
 
18 We thank K. French for making this data publicly available for download. 
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excess-return on the market portfolio proxy ,m tr , its dividend-yield tdy , the yield spread 

tys  of the 3-month T-Bill in excess of the 1-month T-Bill, the return ttb  on the T-Bill 

closest to one-month maturity, i.e, ,[ ,  ,  ,  ]t m t t t tz r dy ys tb  . These variables are known 

to predict market-wide returns, as noted by Dittmar (2002) and references therein. 

 

Figure 3-1 plots the Hansen and Jagannathan (1991) mean-variance frontier of the SDFs 

that price by construction the payoff space for the case when the payoffs 1tx   are the 

gross returns either on one of the two sets of industry portfolios or on the 10 momentum 

portfolios, augmented by the gross return on the risk-free asset proxy. The figure also 

plots the SDF mean-variance frontier for the case when the payoffs are the 

cross-products 1t tx z   between the gross returns on the 17 industry-sorted portfolios, 

augmented by the gross return on the risk-free asset proxy, and the conditioning 

variables tz , represented by the unit series, ,m tr , tdy , tys  and ttb . Panel A of the 

Figure 3-1 plots the frontiers for the sub-sample period 1965-1993, which ends at the 

same time as the sample period considered by Harvey and Siddique (2000), while Panel 

B plots the frontiers for our benchmark sample period 1965-2005. By construction, the 

30 industry-sorted portfolios span all strategies spanned by the 17 industry-sorted ones, 

but not the other way round. As a result, the frontier for the former set of portfolios lies 

above the frontier for the latter. Similarly, the managed portfolios span all strategies 

spanned by the static portfolios, but not the other way round, which is reflected in a 

tighter Hansen and Jagannathan (1991) bound for the former and thus in a higher 

frontier. One interesting feature of all these frontiers is that they are noticeably lower in 

the longer sample period. 



 92

 

3.5. Unconditional	Estimates	

We first estimated unconditional versions of (3-16), setting tz  equal to the unit series 

and using gross returns as test asset payoffs. The price of these payoffs, by construction, 

equals one. In (3-14), we therefore set 1tp  . In Panel A of Table 3-1, we summarize 

the unconstrained estimates of the LMFM, QMFM and CMFM. The panel reports the 

point estimates of the coefficients of the candidate SDFs, along with the p-values of the 

corresponding t-statistics computed using heteroskedasticity and autocorrelation 

adjusted (HAC) Newey and West (1987) standard errors, the Hansen and Richard (1987) 

distance and the associated p-value, based on the asymptotic distribution under the null 

of zero pricing errors provided by Jagannathan and Wang (1996), as well as the 

annualized volatility of the estimated SDF and the implied RRA bound. The sample 

period is 1965-2005.  

 

The estimated 2b  coefficients are statistically insignificant for all models. While the 

non-linear models are not rejected, neither are the linear ones. As shown in Panel B of 

the Table 3-1, imposing the positivity constraint on the estimated SDF does not 

significantly diminish the explanatory power of the models under consideration and the 

restriction is in many cases not binding. In Table 3-2, we report estimates of the 

candidate SDFs obtained under additional restrictions. To enforce RA and NIARA in 

estimation, we imposed 0)1( ,,  tji
j b , with [ ,  ]i vw l  and [1,  2,  3]j  . We also 

restricted the estimated SDF to satisfy a strict positivity constraint and imposed an 

upper bound on its volatility, as specified by (3-13). The volatility bound was set to 78 
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percent per annum, corresponding to a RRA upper bound of 5. Again, the Hansen and 

Jagannathan (1997) test fails to reject any of the models under consideration. Overall, 

these results suggest that third and fourth systematic moments play at most a limited 

role in the pricing of the test asset payoffs used in estimation, i.e. the gross returns on 

the 17 industry-sorted portfolios and the risk-free asset. 

 

3.6. The	Role	of	Coskewness	Risk	over	Time	and	Strategies	

On balance, our findings thus far suggest that the price of coskewness (and cokurtosis) 

risk does not greatly matter in the pricing of unconditional (i.e., static) portfolios of 

stocks. This is consistent with the results reported by Friend and Westerfield (1980) and 

Fang and Lai (1997) but is in sharp contrast with the findings of other authors, most 

notably Harvey and Siddique (2000). To double-check on these seemingly conflicting 

results, we estimate the QMFM under alternative choices for the weighting matrix of 

the moment conditions, including the identity matrix and the optimal weighting matrix, 

and using alternative sets of test asset payoffs and sample periods.  

 

To save space, we report in Table 3-3 only the estimation results obtained using a 

sample counterpart of Hansen (1982) optimal weighting matrix, based on a 

continuously updating (CUE) estimate of the spectral density matrix, and a set of test 

asset payoffs represented by excess-returns (in place of gross returns) on the 17 and 30 

industry-sorted portfolios over the sample period 1963-2005 and portions thereof. For 

comparison, we also report estimates obtained using excess-returns on the 10 

momentum portfolios as the test asset payoffs. The weighting matrix choice yields 
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CUE-GMM, which has nice statistical properties that allow for more efficient estimates. 

The use of excess-returns as test asset payoffs implies exact pricing of the risk free asset. 

By construction, excess-returns have a zero price. Therefore, in (3-14), we set 0tp  . 

 

Table 3-3 reports two sets of results. The first comprises point estimates of the 1b  and 

2b  parameters of the QMFM and the p-values of the corresponding t-statistics 

constructed using standard errors based on our estimate of the spectral density matrix. 

The second set of results include the stock market covariance and coskewness 

annualized risk-premia ,1vw  and ,2vw , respectively, implied by the estimated ,1vwb  

and ,2vwb  according to the beta-pricing representation, described by (A-3), (A-4) and 

(A-5) in section 8.1 Appendix A, of the QMFM. The Table also reports p-values of the 

bootstrapped risk-premia distribution. The latter is generated using the so called 

“estimation-based” bootstrap introduced by Freedman and Peters (1984) and Peters and 

Freedman (1984)19. A comparison of Panel A and B of Table 3-3 shows that the role of 

coskewness risk in explaining pricing phenomena is emphasized when the 30 

industry-sorted portfolios are used in place of the 17 industry-sorted ones. As shown by 

Figure 1, the frontier for the 30 industry-sorted portfolios lays noticeably above the 

frontier for the 17-industry sorted portfolios. This suggests that a positive price of 

                                                 
 
19 We first estimated time-series regressions of the test assets excess-returns on the factors (the stock market return 
proxy Rvw,t+1 and its square) and stored the residuals. We then re-sampled 5,000 times, with replacement, blocks of 5 
consecutive realizations from the stored residuals time-series, i.e. we employed ‘block re-sampling’ to capture any 
residual serial correlation not explained by the estimated time-series regression. Using the time-series of the 
re-sampled residuals and the point estimates of the time-series regression parameters, we generated 5,000 separate 
bootstrapped return series for each test asset, for which we then re-estimated the QMFM model and recorded the λvw,1 
and λvw,2 coefficients, calculated using (A5). This generates a bootstrapped distribution of the λvw,1 and λvw,2 
coefficients. 
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coskewness risk helps generate the additional SR attainable by a finer industry-level 

diversification. 

 

As shown in Panel C of Table 3-3, the quadratic term coefficient is also highly 

significant when the momentum portfolios are used as the test asset payoffs. This is 

consistent with the findings of Harvey and Siddique (2000) and also in agreement with 

the conclusions reached by Rachev et al. (2007), who argue that momentum strategies 

entail considerable tail risk. The coskewness risk premium, however, is not statistically 

significant. In the terminology used by Cochrane (2001), this implies that the quadratic 

factor helps “price” the momentum portfolios but it is not “priced” in their 

cross-section. Interestingly, this suggests that a non-zero price of coskewness risk might 

help explain the momentum effect uncovered by Jegadeesh and Titman (1993) rather 

than the other way round. Noticeably, however, in spite of the extremely large amount 

of volatility of the estimated SDF, the quadratic model is rejected in all sample periods 

at the 5 percent level and at the 10 percent level in the period 1963-1993. In 

un-tabulated results, we find a similarly disappointing empirical performance for 

4-moment versions of the model and for specifications that include human capital.  

 

Another, and perhaps most noteworthy, fact highlighted by Table 3-3 is that the pricing 

ability of coskewness risk has diminished in recent times, as implied by the 

considerably reduced significance of both the price of coskewness risk and the 

coskewness risk premium in the 1963-2005 sample period relatively to the benchmark 
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sample period used in Harvey and Siddique (2000) study, i.e. 1963-199320. The less 

important role played by coskewness risk after the early 90s, while somewhat puzzling, 

might be explained by a number of circumstances. For example, the discovery by 

Harvey and Siddique (2000) of the strength of the coskewness ‘effect’ might have led 

investors to engage in strategies designed to exploit it. The rise of hedge funds springs 

to mind as a possible key ingredient for such development. The analysis conducted by 

Zakamouline and Koekebakker (2009) suggests that hedge funds managers pursue 

strategies that exhibit negative skewness (and excess-kurtosis), for example by shorting 

options or engaging in dynamic portfolio insurance, in a quest for higher Sharpe Ratios. 

This behaviour can, in principle, drive down both the price of coskewness risk and the 

maximal SR attainable from the investment opportunity set, producing the drop in the 

SDF frontier that we observe in Figure 3-1.  

 

On balance, these results clarify that our earlier findings (those reported in Table 3-1 

and Table 3-2) do not contradict those of the extant literature but rather all such findings 

are sample-specific, in the sense that the estimated price of coskewness risk and the 

associated risk premium depend on the test asset payoffs used in estimation as well as 

on the sample period. Overall, coskewness appears to play a more important role in the 

pricing of strategies with relatively high SRs, such as those spanned by the finer 

industry level diversification allowed by the 30 industry portfolios, and in explaining 

                                                 
 
20 Our estimated market coskewness risk premium for this period, when using the 30 industry-sorted portfolios as 
test assets, is –2.90 per cent per annum. It is thus very close to the –3.60 per cent per annum estimated by Harvey and 
Siddique (2000) and it is larger, in absolute value, than the market covariance risk-premium, which is just 2.70 per 
cent per annum. By contrast, in the extended sample period 1993-2005, the coskewness premium is –0.48 per cent 
per annum, and thus the coskewness discount is a mere 0.48 percent, whereas the covariance premium is a much 
larger 6.68 per cent per annum.  
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returns on hard-to-price strategies, such as those spanned by the 10 momentum 

portfolios. The investigation of the determinants of the changing role of coskewness in 

asset pricing, as well as the difficult task of exploring the relations between momentum 

and coskewness, are outside the scope of this chapter. In order to focus on the main task 

at hand, i.e. the testing of the CAPM and its higher moment versions, we leave these 

intriguing tasks to future research. 

 

3.7. Conditional	Estimates	

Next, we turn to conditional versions of (3-16). Initially, in (3-14) and (3-17), we use 

the full set of conditioning variables. In Table 3-4, we report the unconstrained 

estimation results, obtained using gross returns on the 17 industry portfolios and the 

risk-free asset as the basis test asset payoffs. The reported SDF coefficients are the 

values of ta , tjvwb ,,  and tjlb ,, , with [1,  2,  3]j  , evaluated at the sample average 

values of the conditioning variables tz . The associated p-values are significance levels 

of Wald tests of the restriction that the coefficient under consideration is zero. 

Consistently with Dittmar (2002) findings, the non-linear SDF specifications achieve 

considerable empirical success. As shown in the lower panel of Figure 3-2, the 

estimated CMFM expected returns line up reasonably closely with sample average 

returns. Both the QMFM and the CMFM, but not the LMFM, pass the Hansen and 

Jagannathan (1997) distance test when the market portfolio proxy includes human 

capital. The results imply that coskewness and cokurtosis risk are significantly priced in 

the cross-section of stock portfolios managed on the basis of available information. This 

contrasts with the insignificance of the coskewness and cokurtosis risk coefficients in 
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unconditional estimates, suggesting that the quadratic and cubic terms generate the 

additional SDF volatility that, as shown in Figure 3-1, is required to price the managed 

portfolios used in conditional estimates. 

 

The unrestricted estimates do not satisfy, however, a number of requirements of 

Kimball (1993) standard risk aversion. For example, as shown in the top panel of Figure 

3-2, the estimated SDF is not always positive and, as shown in the lower right-hand 

corner of the same figure, it is not decreasing in the return on the stock market proxy. It 

may be argued that the estimated SDF takes negative values only very seldom, 

essentially only around times of exceptional market turmoil, namely the bear market 

that followed the 1974 oil shock, the 1987 stock market crash, the so-called 1997 Asian 

crisis and the crisis that followed the default of the Russian Federation on its domestic 

debt in 1998, as well as the bust of the “dot com” bubble in March 2000. Admittedly, 

these may be viewed as exceptional one-off circumstances, akin to outliers. The 

estimated SDF, however, is also very volatile, especially in the case of non-linear 

models. For example, the annualized volatility of the estimated SDF is 273 percent for 

the QMFM and 299 percent for the CMFM. Given a 15.5 percent annualized volatility 

of the stock market portfolio, this would imply that RRA takes values as large as 17.56 

and 19.23, respectively. These values are puzzling when compared with the upper 

bound on RRA suggested by Ross (2005), i.e. RRAV = 5, and survey evidence, as 

summarized by Meyer and Meyer (2005), which shows that, even for the most 

risk-averse households cohorts, RRA does not exceed 6.4 when the wealth portfolio 

includes only financial assets and 3.0 when it includes also non-financial assets.  
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To disentangle the pricing implications of violations of the NA positivity requirement 

from those of excessive SDF volatility, we estimate the candidate SDFs imposing each 

one of the two restrictions in turn. In  

 

Table 3-5, we report estimates obtained under a positivity restriction on the SDF. All 

candidate SDFs fail the Hansen and Jagannathan (1997) distance test when estimated 

under this restriction. This is also the case of non-linear specifications with human 

capital included in the market portfolio. Next, we estimate the candidate SDFs without 

the positivity restriction but under various upper bounds on their volatility. In Figure 

3-3, we summarize the results of this exercise for the CMFM with human capital. In the 

Figure, we plot the model Hansen and Jagannathan (1997) distance against the 

annualized volatility upper bound used in estimation and the corresponding RRA upper 

bound. All models estimated under a volatility upper bound set to less than 188 percent 

per annum are rejected at the 5 percent level. That is, it takes a RRA upper bound as 

loose as about 12.04 for the 4M-CAPM with human capital to be empirically 

admissible. These results are consistent with those reported by Dittmar (2002), who also 

reject the 4M-CAPM as well as more restricted versions of this model. Our findings, 

however, clarify that the model is rejected not because of attempts to enforce overly 

restrictive requirements on the shape of the estimated utility function but rather, and 

more conclusively, because of the binding implications of sensible ‘no good-deal’ 

restrictions. In unreported estimates, we find this to be the case also in the earlier 

sample period used by Dittmar (2002), i.e. in the period 1963-1997.  
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These results imply that, while the prices of coskewness and cokurtosis risk are 

statistically significant, 3 and 4-moment versions of the CAPM provide an inadequate 

account of asset pricing patterns. In interpreting these findings, however, a caveat is in 

order. The test asset payoffs second moment matrix used to compute the weighting 

matrix of the moment conditions is close to singular. This implies that the pricing error 

metric being minimized in estimation is the pricing error of a portfolio that contains 

extreme long and short positions21. This is a widespread problem in empirical asset 

pricing and occurs also with the second moment matrix estimated using data for the 

period 1963-1997, i.e. the sample period used by Dittmar (2002). To mitigate this 

problem, we re-estimate using one conditioning variable at a time, i.e. including in tz  

only one of the conditioning variables ,m tr , tdy , tys , and ttb , as well as the unit-series. 

This way, only 36 test asset payoffs at a time are used in estimation22. As shown in 

Table 3-6, the empirical performance of the CMFM with human capital improves 

somewhat and it passes the Hansen and Jagannathan (1997) distance test at the five 

percent significant level when the conditioning information variables set includes the 

lag of either the dividend yield, a term spread variable or the 3-month T-Bill return. The 

model, however, fails the test at the 10 percent in all cases except when the conditioning 

variables are the unit series and the lagged term spread and no restriction is placed on 

SDF volatility. When the conditioning variable is represented by the unit series and the 

lagged market excess return, the CMFM is rejected at the 0.1 percent level. These 

findings are important in that they confirm that our rejection of the 4M-CAPM is not a 

                                                 
 
21 We verified this by computing the weights assigned by this matrix to the asset payoffs in the definition of the 
pricing error metric. These weights can be calculated by taking the sum by column of the elements of the upper 
triangular matrix obtained from a Cholesky decomposition of the weighting matrix, i.e. of the inverse of the second 
moment matrix. 
22 Reassuringly, the resulting second moment matrix is much less close to singular.  
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spurious by-product of a near-singular inverse weighting matrix. Interestingly, the fact 

that the model fares worst when the conditioning variable is represented by the lagged 

market excess return might be related to the well-known difficulty, also noted earlier, of 

explaining abnormal returns of momentum strategies.  

 

3.8. Final	Remarks	and	Conclusions	

In this chapter, we acknowledge the importance of Dittmar (2002) findings and of the 

critique put forth by Post et al. (2008), in that they highlight the danger of spurious 

estimates of higher-moment versions of the CAPM. We emphasize, however, that a 

decreasing SDF, albeit sufficient, is not a necessary condition for the CAPM. Moreover, 

even if one is willing to restrict focus on the joint hypothesis of the higher moment 

CAPM and concave utility, the specification of the market portfolio proxy may 

seriously affect inferences on the empirical admissibility of such hypothesis, much in 

the same way in which, as pointed out by Roll (1977), the circumstance that the market 

portfolio is de facto un-observable affects all tests of the CAPM. Recognising this 

difficulty amounts to acknowledging the ramifications of Roll (1977) critique for tests 

of non-linear versions of the CAPM. In estimating the model, we thus impose 

alternative restrictions on the shape of the candidate SDF, namely a positivity 

requirement and a volatility upper bound. These restrictions boil down to ruling out 

arbitrage opportunities and SRs that, at least to the marginal investor, would resemble 

obvious near arbitrage opportunities23. This way, we limit the danger of over-fitting the 

                                                 
 
23 Beside, since coskewness is an asset characteristic that explains a considerable portion of the cross-section of asset 
returns, such an approach is also consistent with a multi-factor, no-arbitrage perspective, along the lines of Ross’ 
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cross-section of asset returns without the need to resort to the overly-restrictive 

assumption of concave utility.  

 

Our findings confirm that the quadratic and cubic market factors help explain observed 

stock returns. They play an important role in the pricing of certain payoffs, including 

strategies characterized by relatively high SRs, such as those spanned by a fine 

industry-level diversification, most notably until the late 90s, or by dynamic portfolios 

managed on the basis of available conditioning information, as well as momentum 

portfolios. They do so, however, by generating high levels of SDF volatility. To 

rationalize this evidence within a higher moment CAPM framework, we would need to 

postulate implausibly high levels of investors’ risk aversion. We conclude, therefore, 

that the 3M and 4M-CAPM provide at best a partial explanation of the differences in 

average returns on stocks and stock strategies. This gives rise to a coskewness (and 

cokurtosis) puzzle. The solution of the latter requires an explanation, different from the 

3M and 4M-CAPM, for why the quadratic and cubic market factors are priced in the 

cross-section of stock returns.  

 

One obvious possibility is that these factors proxy for other priced but omitted factors. 

Vanden (2006) suggests that powers of the market returns proxy for omitted 

option-related factors. This possibility, while intriguing, requires further scrutiny 

because Vanden (2006) sample period is relatively short and, more importantly, it 

                                                                                                                                               
 
(1976) APT. From this perspective, it is similar to the approach followed by Cochrane and Saà-Requejo (2000) and 
Cochrane (2005) to extend, in incomplete markets, the pricing implications of the factor prices and of (1) to a 
non-redundant security. 
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remains to be established whether the SDF estimated by this author satisfies a sensible 

volatility upper bound. Another fruitful extension of our study would be a check of 

whether the more flexible specification used by Smith (2007) 24  is empirically 

admissible under appropriate positivity and volatility restrictions on the estimated SDF. 

An alternative approach would be to allow for a wedge between volatility of the 

candidate SDF and IMRS volatility by letting sentiment and variables related to 

investors’ errors generate, as suggested by Shefrin (2010), the extra SDF volatility 

required to price stocks. There is also the possibility that some of the managed 

portfolios used in Dittmar (2002) study and in ours correspond to unfeasible strategies, 

i.e. strategies with unfeasibly high SRs. Luttmer (1996), for example, shows how even 

modest proportional transaction costs, short sales restrictions and margin requirements 

considerably lower the mean-variance SDF frontier.25 We leave the investigation of 

these possible explanations of the coskewness puzzle for the remaining parts of the 

thesis. 

  

                                                 
 
24 As shown by Smith (2007), his specification nests Dittmar’s (2002) specification and hence the specification used 
in this paper. 
25 While we took this problem partially into account by re-estimating using one conditioning variable at a time, we 
feel that additional and more direct checks on the implications of transaction costs and market microstructure 
frictions might be worthwhile. 
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Figure	3‐1	
SDF	Mean‐Variance	frontier	

Panel	A	

Sample	period:	1965‐1993	
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Notes. This Figure plots the Hansen and Jagannathan (1991) SDF mean-variance frontiers for sets of 
portfolios of basis assets managed using information conveyed by a set of conditioning variables. The 
basis assets are either industry-sorted (17 or 30 industries) or momentum portfolios augmented by the 
risk-free asset proxy. The data is monthly, but results are converted to an annual basis, for the 
indicated sample periods. The symbol U (C) in the legend means that the set of conditioning variables 
used in forming the managed portfolios includes only the unit series (the full set of conditioning 
variables). 
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Notes. This Table reports unrestricted GMM estimates of the unconditional LMFM, QMFM and CMFM, obtained using 
Hansen and Jagannathan’s (1997) second moment weighting matrix. Panel A reports the unconstrained estimates of SDF, 
while Panel B reports the estimates under no-arbitrage condition. For each included factor, we report the corresponding 
SDF coefficient point estimate and its p-value in brackets. We also report the Hansen and Jagannathan (1997) distance and 
its p-value in brackets. The second last column reports the annualized volatility of the stochastic discount factor in 
percentage. All the variables are defined as in the text. The test asset payoffs are gross returns on the 17 industry-sorted 
portfolios augmented by the gross return on the risk-free asset. The sample period is 1965-2005.  
 

Table	3‐1	
GMM	estimates	of	unconditional	models	

(1965‐2005)	

Model a bvw,1 bvw,2 bvw,3 bl,1 bl,2 bl,3 HJT 
(p.-value) 

σ(m) RRAv 

Panel A 
(Unconstrained estimates) 

Market portfolio without human capital 

LMFM 1.02  -2.55       0.18  0.40  2.55 

 (0.000)  (0.006)       (0.522)    

QMFM 0.99  -2.57  1.25      0.17  0.40  2.57 

 (0.000)  (0.018)  (0.978)      (0.511)    

CMFM 1.04  4.48  -34.48  -743.79    0.16  1.28  8.29 

 (0.000)  (0.138)  (0.241)  (0.039)    (0.677)   

Market portfolio with human capital 

LMFM 0.985  -2.32    47.82   0.17  0.76  4.86 

 (0.000)  (0.040)    (0.321)   (0.567)    

QMFM 1.01 -2.22 22.66  -3536.1 1783.12  0.17  0.88  5.67 

 (0.000)  (0.096)  (0.687)   (0.736) (0.732)  (0.525)    

CMFM 0.87  2.36  -14.60  -486.23 32.16 360.07 -516,15* 0.12  1.86  11.99 

 (0.001)  (0.303)  (0.395)  (0.154) (0.262) (0.373) (0.033) (0.798)    

Panel B 
(Estimates under NA) 

Market portfolio without human capital 

LMFM 1.02  -2.55       0.18  0.40  2.55 

 (0.000)  (0.006)       (0.522)    

QMFM 0.99  -2.57  1.25      0.17  0.40  2.57 

 (0.000)  (0.018)  (0.978)      (0.511)    

CMFM 1.03  3.68  -34.48  -743.80    0.17  1.12  7.22 

 (0.000)  (0.186)  (0.241)  (0.039)    (0.454)   

Market portfolio with human capital 

LMFM 0.99  -3.21    -53.53   0.19  0.86  5.53 

 (0.000)  (0.000)    (0.000)   (0.292)    

QMFM 1.26  -2.23  3.64   -46.32 -334.81  0.17  1.18  7.62 

 (0.000)  (0.017)  (0.470)   (0.110) (0.361)  (0.420)   

CMFM 0.86  1.77  -14.59  -486.23 32.17 360.07 -516,15* 0.15  1.15  7.43 

 (0.001)  (0.349)  (0.395)  (0.154) (0.262) (0.373) (0.033) (0.428)    
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Table	3‐2	
GMM	estimates	of	unconditional	models	under	NA,	Local	RA,	NIARA	and	

SDF	volatility	restrictions	
(1965‐2005)	

Model a bvw,1 bvw,2 bvw,3 bl,1 bl,2 bl,3 HJT 
(p.-value) 

σ(m) RRAv 

σ(m) ≤ 0.78 

Market portfolio without human capital 

LMFM 1.02  -2.55       0.18  0.40  2.55 

 (0.000)  (0.006)       (0.519)    

QMFM 0.99  -2.57  1.25      0.17  0.40  2.57 

 (0.000)  (0.018)  (0.978)      (0.511)    

CMFM 0.93 -2.61 45.64 -0.08    018 0.78 5.00 

 (0.000) (0.012) (0.087) (0.974)    (0.376)   

 

Market portfolio with human capital 

LMFM 1.01 -2.44   -0.01   0.17 0.37 2.39 

 (0.000) (0.010)   (0.975)   (0.432)   

QMFM 1.07 -0.71 1.39  -53.75 4795.55  0.18 0.78 5.00 

 (0.000) (0.093) (0.925)  (0.000) (0.000)  (0.160)   

CMFM 0.91 -0.37 1.91 -0.01 -20.47 4739.12 -73215.94 0.18 0.78 5.00 

 (0.000) (0.218) (0.878) (0.925) (0.007) (0.000) (0.893) (0.140)   

 

 

 

 

  

Notes. This Table reports GMM estimates of the unconditional LMFM, QMFM and CMFM for the period 1965-2005, 
obtained using Hansens and Jagannathan’s (1997) second moment weighting matrix, under positivity and volatility 
restrictions on the estimated SDF. For each included factor, we report the corresponding SDF coefficient point estimate 
and its p-value in brackets. We also report the Hansen and Jagannathan (1997) distance and its p-value in brackets. The 
second last column reports the annualized volatility of the stochastic discount factor in percentage. All the variables are 
defined as in the text. 
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Table	3‐3	
QMFM	without	human	capital	CUE‐GMM	estimates	

Sample Period m > 0 
(yes/no) 

R2 bvw,1 
(p.-value) 

λvw,1 

(p.-value) 

bvw,2 
(p.-value) 

λvw,2 

(p.-value) 

TJT 
(p.-value) 

σ(m) RRAv 

Panel A 
(17 industry portfolios) 

1963-2005 yes 0.01 -2.63 -8.28 0.18 0.43 2.77 

   (0.010) (0.840) (0.710)   

   6.40 0.20    

   (0.000) (0.500)    

1963-1993 yes 0.17 -2.59 87.48 0.14 1.35 8.85 

   (0.258) (0.083) (0.934)   

   4.32 -1.96    

   (0.000) (0.150)    

 

Panel B 

(30 industry portfolios) 

1963-2005 yes 0.05 -2.82 22.42 0.21 0.54 3.50 

   (0.027) (0.572) (0.761)   

   6.68 -0.48    

   (0.000) (0.270)    

1963-2000 yes 1.08 -3.94 78.49 0.22 1.26 8.29 

   (0.038) (0.092) (0.922)   

   8.26 1.61    

   (0.000) (0.250)    

1963-1997 yes 0.15 -4.18 116.95 0.21 1.73 11.68 

   (0.060) (0.010) (0.981)   

   6.95 -2.33    

   (0.000) (0.070)    

1963-1993 no 0.15 -2.25 127.96 0.21 1.94 12.70 

   (0.336) (0.004) (0.956)   

   2.71 -2.90    

   (0.000) (0.090)    

1963-1993 yes 0.12 -2.34 105.24 0.22 1.61 10.51 

   (0.278) (0.000) (0.930)   

   3.39 -2.37    

   (0.000) (0.050)    

 

Panel C 

(10 momentum portfolios) 

1963-2005 no 21.52 -2.67 -69.95 0.32 1.10 7.23 

   (0.006) (0.145) (0.000)   

   6.66 1.48    

   (0.000) (0.210)    
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1963-2005 yes 0.03 -6.79 106.10 0.27 1.82 11.98 

   (0.000) (0.000) (0.002)   

   15.14 -2.17    

   (0.000) (0.150)    

1963-1993 no 0.22 -17.99 383.30 0.20 6.21 40.66 

   (0.003) (0.004) (0.057)   

   34.45 -8.47    

   (0.050) (0.300)    

1963-1993 yes 0.10 -8.02 108.55 0.35 1.96 12.87 

   (0.000) (0.000) (0.000)   

   16.60 -2.34    

   (0.050) (0.220)    

 
 

 

 

 

 

  

Notes. This Table reports CUE-GMM estimates of the unconditional QMFM for various sample periods, 
specified in the first column. The second column indicates whether the estimated SDF satisfies the positivity 
requirement. The third column reports the coefficient of determination R2, i.e. the squared correlation 
coefficient between sample average excess returns and their model estimate. Next, we report the SDF 
coefficient point estimates with, in brackets, the p-values of their t-statistics computed using HAC standard 
errors. We also report the corresponding implied annualized percentage risk-premia and, in brackets, the 
p-values of their bootstrapped distribution. In the last 3 columns, we report Hansen’s (1982) TJT statistic (and 
the corresponding p-value, in brackets), the estimated SDF volatility and the associated RRA bound. The test 
asset payoffs are monthly excess returns on the 17 and 30 industry-sorted and momentum portfolios. 
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Table	3‐4	
Unconstrained	GMM	estimates	of	conditional	models	

(1965‐2005)	

Model a bvw,1 bvw,2 bvw,3 bl,1 bl,2 bl,3 HJT 
(p.-value) 

σ(m) RRAv 

Market portfolio without human capital 

LMFM 1.05 -3.67      
0.53  

0.73 4.69 

 (0.000) (0.001)      
(0.000)  

  

QMFM 1.06 -5.80 24.25     
0.50  

1.24 7.96 

 (0.000) (0.000) (0.002)     
(0.011)  

  

CMFM 1.07 -2.03 5.73 -613.23    
0.49  

1.39 8.94 

 (0.000) (0.024) (0.128) (0.605)    
(0.012)  

  

 

Market portfolio with human capital 

LMFM 1.04 -3.09   -1.96   
0.50  

1.60 10.27 

 (0.000) (0.005)   (0.009)   
(0.012)  

  

QMFM 1.01 -4.14 38.46  -20.70 1,098.81  
0.44  

2.73 17.56 

 (0.000) (0.001) (0.002)  (0.039) (0.041)  
(0.228)  

  

CMFM 0.96 -0.24 13.78 -548.68 -12.62 2,157.97 -75,667.48 
0.42  

2.99 19.23 

 (0.000) (0.030) (0.544) (0.335) (0.106) (0.249) (0.483) (0.170)  
  

 

 

 

 

  

Notes. This Table reports unrestricted GMM estimates of the LMFM, QMFM and CMFM with conditioning variables 
for the period 1965-2005, obtained using Hansen and Jagannathan’s (1997) second moment weighting matrix. For 
each included factor, we report the corresponding SDF coefficient point estimate and its p-value in brackets. We also 
report the Hansen and Jagannathan (1997) distance and its p-value in brackets. The second last column reports the 
annualized volatility of the stochastic discount factor in percentage. All the variables are defined as in the text. 
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Table	3‐5	

GMM	estimates	of	conditional	models	under	NA	

(1965‐2005)	

Model a bvw,1 bvw,2 bvw,3 bl,1 bl,2 bl,3 HJT 
(p.-value) 

σ(m) RRAv 

 

Market portfolio without human capital 

LMFM 1.05 -3.67      
0.53  

0.72 4.66 

 (0.000) (0.001)      
(0.000)  

  

QMFM 1.06 -5.78 24.25     
0.50  

1.15 7.40 

 (0.000) (0.000) (0.005)     
(0.007)  

  

CMFM 1.06 -2.05 5.63 -613.24    
0.50  

1.21 7.81 

 (0.000) (0.064) (0.178) (0.773)    
(0.006)  

  

 

Market portfolio with human capital 

LMFM 1.03 -3.26   0.65   
0.52  

1.17 7.54 

 (0.000) (0.001)   (0.100)   
(0.002)  

  

QMFM 1.00 -4.86 38.00  -18.32 1,098.82  
0.47  

1.87 12.03 

 (0.000) (0.001) (0.003)  (0.199) (0.521)  
(0.024)  

  

CMFM 0.92 -0.25 13.78 -548.68 -12.62 2,157.97 -75,667.48 
0.46  

2.30 14.81 

 (0.000) (0.049) (0.804) (0.781) (0.873) (0.596) (0.999) (0.015)  
  

 
 
 
 
  

Notes. This Table reports GMM estimates of the LMFM, QMFM and CMFM for the period 1965-2005, obtained 
using Hansens and Jagannathan’s (1997) second moment weighting matrix under a positivity restriction on the 
estimated SDF. For each included factor, we report the corresponding SDF coefficient point estimate and its 
p-value in brackets. We also report the Hansen and Jagannathan (1997) distance and its p-value in brackets. The 
second last column reports the annualized volatility of the stochastic discount factor in percentage. All the 
variables are defined as in the text. The conditioning variables are rm,t, dyt, yst,  tbt. 
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Figure	3‐3	
Pricing	errors	vs.	SDF	volatility/RRA	bound	

Conditional	CMFM	with	human	capital	

(1965‐2005)	

  

0.450

0.470

0.490

0.510

0.530

0.550

0.570

0.590

0.610

      1.00    
6.43

      1.09    
7.00

      1.33    
8.54

      1.62    
10.39

      1.64    
10.51

      1.73    
11.08

      1.80    
11.53

      1.88    
12.04

      1.97    
12.60

      2.04    
13.04

      2.12    
13.54

      2.30    
14.68

Notes. This figure plots the Hansen and Jagannathan (1997) distance of GMM estimates of the conditional 
CMFM with human capital under a varying volatility upper bound on the estimated SDF. The annualized 
volatility of the estimated SDFs and the corresponding RRA upper bound are reported on the horizontal axis. 
The sample period is 1965-2005. Values of the Hansen and Jagannathan (1997) distance that plot above the 
dotted line are significant at the 5 percent level.  The conditioning variables are rm,t, dyt, yst,  tbt. All 
variables are defined as in the text. 
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Table	3‐6	
GMM	estimates	of	conditional	CMFM	under	NA	

(1965‐2005)	

zt a bvw,1 bvw,2 bvw,3 bl,1 bl,2 bl,3 HJT 
(p.-value) 

σ(m) RRAv 

           

rm,t 1.00 -2.67 0.00 -5.10 -5.58 1458.78 -45873.47 0.34 0.46 2.97 

 (0.000) (0.009) (0.955) (0.759) (0.882) (0.504) (0.842) (0.001)   

 

dyt 1.21 -2.62 6.32 -25.35 -39.24 1313.89 -73356.49 0.29 0.74 4.77 

 (0.000) (0.020) (0.758) (0.772) (0.040) (0.050) (0.094) (0.061)   

 

yst 0.84 -2.23 0.13 -2.00 -10.43 4550.70 -5.09 0.27 0.94 6.07 

 (0.000) (0.028) (0.954) (0.907) (0.751) (0.011) (0.995) (0.192)   

 

yst 0.91 -0.58 39.34 -40.75 -1.85 1006.42 -77507.20 0.32 0.78 5.00 

 (0.000) (0.178) (0.114) (0.228) (0.495) (0.049) (0.045) (0.005)   

 

tbt 0.86 -2.19 33.82 -2.88 -8.38 2739.05 -10212.62 0.30 0.78 5.00 

 (0.000) (0.032) (0.283) (0.854) (0.686) (0.091) (0.759) (0.069)   

 
 
 
 
 
  

Notes. This Table reports GMM estimates of the CMFM for the period 1965-2005, obtained using Hansens 
and Jagannathan’s (1997) second moment weighting matrix under a positivity restriction on the estimated 
SDF. The first column reports the conditioning variable used in estimation. For each included factor, we 
report the corresponding SDF coefficient point estimate and its p-value in brackets. We also report the 
Hansen and Jagannathan (1997) distance and its p-value in brackets. The second last column reports the 
annualized volatility of the stochastic discount factor in percentage. All the variables are defined as in the 
text. Since the RRAV implied by yst is over 5, then we also report the SDF estimates under the restricted 
condition .  
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4. The	Sentiment	in	SDF:	Behaviour	Approach	

4.1. Introduction	

Habit persistence, as in the model of Campbell and Cochrane (1999), and recursive 

non-(time) separable preferences, as those employed by Epstein and Zin (1989), go 

some way towards explaining the equity premium puzzle. These models represent at 

least partially successful attempts to overcome some of the empirical shortcomings of 

the consumption-based CAPM without abandoning the tenets of rational asset pricing 

theory and thus, essentially, the view that asset prices are set by an expected utility 

optimizing representative investor endowed with rational expectations. Rational asset 

pricing theory, however, has not yet succeeded in the task of explaining the 

cross-section of stock returns. For example, it is difficult to reproduce the explanatory 

power of a number of stock characteristics26  using empirical specifications of 

available rational asset pricing models, most notably the CAPM. Well known 

examples of such characteristics are firms’ size and their book-to-market ratio, as in 

Fama and French (1992, 1993) studies, Jegadeesh and Titman (1993) momentum and, 

more recently, idiosyncratic volatility, as in Ang et al. (2006); Ang et al. (2009), 

(Peterson & Smedema, 2011), and (Fousseni, 2011).  

 

Conditional specifications, that allow for time-variation in the parameters of the 

representative investors IMRS, and 3 and 4-moment versions, are amongst the most 

empirically successful extensions of the CAPM. For example, Lettau and Ludvigson 

(2001b) demonstrate that a multifactor model inspired by the (C)CAPM performs 
                                                 
 
26 Other examples of relatively successful characteristics are the momentum effect documented by 
Jegadeesh and Titman (1993) and the liquidity effect documented by Pastor and Stambaugh (2003). 
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much better than the unconditional CAPM and almost as well as the Fama and French 

(1992, 1993, 1995) 3-factor model, while Harvey and Siddique (2000) argue that a 

conditional version of the 3M-CAPM captures a large portion of the cross-sectional 

variation in average stock returns27.  

 

Lewellen and Nagel (2006); Lewellen et al. (2010) however, warn that the sign of the 

risk premia estimated by Lettau and Ludvigson (2001b) is problematic from the 

perspective of the conditional consumption CAPM. More specifically, the risk premia 

point estimates reported by Lettau and Ludvigson (2001a) imply that (conditional) 

relative risk-aversion takes negative values for certain sample realizations of the 

conditioning variable. Moreover, these estimates imply a SDF, or pricing kernel, that 

might take negative values. This implies the existence of arbitrage opportunities, i.e. 

non-negative payoffs with a negative price. It is also inconsistent with the assumption 

that the representative investor’s preferences display non-satiation, as in the 

(C)CAPM the SDF and the representative investor’s IMRS coincide. There is 

therefore a puzzling contrast, in the specification of the (C)CAPM estimated by Lettau 

and Ludvigson (2001b), between the high cross-sectional explanatory power of the 

factors implied by the model and the inconsistence between the parameter estimates 

and fundamental assumptions underlying the model itself. We might label this 

problem as the “(C)CAPM puzzle”.  

 

On a related note, Dittmar (2002) and Post et al. (2008) point out that covariance and 

coskewness risk prices estimated in empirical tests of the 3 and 4 moment CAPM 
                                                 
 
27 Adesi, Gagliardini and Urga (2004) and Potì (2005), using a quadratic market model consistent with 
the 3M-CAPM, add to the evidence that models that allow for both covariance and coskewness 
premium fit the cross-section of stock returns well. 
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imply a non-concave utility function, to an extent that might be inconsistent with the 

models being tested. More worryingly, these authors show that the empirical fit of 

these models is greatly reduced when the shape of the representative investor’s utility 

function is restricted to display non satiation, risk aversion and non increasing 

absolute risk aversion (henceforth, NS, RA and NIARA, respectively). Yet, the 

evidence on the cross-sectional explanatory power of coskewness is compelling. This 

evidence, coupled with the critique put forth by Post et al. (2008) and Potì and Wang 

(2010), gives rise to a “coskewness puzzle” in the complete market-representative 

investor setting of the 3M-CAPM. 

 

There is the concrete possibility that an omitted factor problem might be behind both 

puzzles. In this case, OLS estimates of the model parameters, i.e. factor risk premia 

and risk prices, would be inconsistent. In this chapter, we explicitly explore this 

possibility and, in particular, we investigate whether the omitted factors are related to 

systematic investor error. We thus propose a multi-factor specification that augments 

2 and 3 moment versions of the (C)CAPM with a sentiment factor. This specification 

is based on the central result of Shefrin (2010), namely that the pricing kernel can be 

decomposed into two terms, one being sentiment and the other being an expression 

that depends only on economic fundamentals. The former term can be seen as the 

behavioural component of the kernel, while the second can be seen as its rational 

component. We check whether adding the sentiment factor, and thus allowing for a 

behavioural influence on asset pricing, allows to retain or improve the explanatory 

power of the (C)CAPM and 3M-CAPM while admitting risk price point estimates 

consistent with investors risk aversion (RA) and non increasing absolute risk aversion 

(NIARA), and thus with the underlying economic theory. Baker and Wurgler (2006) 
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carefully constructed a proxy for investors’ sentiment and demonstrated that exposure 

to this variable can explain a significant portion of the cross-section of stock returns. 

We thus employ this variable to proxy for sentiment in our specification. These 

authors, however, did not specify the representative investor’s problem and her role in 

setting prices and therefore their results, while suggestive, cannot be directly used to 

characterize the relative importance of the rational and behavioural component of 

asset prices. On the contrary, Cecchetti et al. (2000) and Abel (2002) did model the 

impact of sentiment in a representative investor setting, but their empirical focus was 

on the equity premium rather then on cross-sectional differences in stocks average 

returns. 

 

The remaining of this chapter is organized as follows. In the next Section, we 

introduce Shefrin (2010) SDF decomposition into a rational and sentiment related 

component and we map this decomposition into a linear factor model. In Section 4.3, 

we outline our estimation strategy. In Section 4.4, we present our dataset. In Section 

4.5, we report our empirical results. Section 4.6 concludes. 

 

4.2. Sentiment	and	the	Pricing	Kernel	

As in Shefrin (2010), we may model the stochastic process for the pricing kernel as 

follows: 

 
0

'( ( ))
( ) ( )

'( )
i

i R i

U C x
m x x

U C
  .  	 (4‐1)	 	

Here, R  is the representative investor’s subjective rate of time preference, 

)(

)(
)(

i

iR
i x

xP
x


  is the ratio of the probability weight )( iR xP  assigned to state ix  by 
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the representative trader and the objective probability ( )ix  of occurrence of state 

ix , 0C  represents current aggregate consumption and ( )iC x  represents aggregate 

consumption in state ix . The quantity )( ix  can be interpreted as sentiment and it 

plays a role similar to investors’ pessimism and optimism in the models of the equity 

premium developed by Cecchetti et al. (2000) and Abel (2002). Letting for simplicity 

1R  and exploiting the fact28 that ),(ln1)( ii xx  the kernel process can be 

approximated as follows: 

 
0 0

'( ( )) '( ( ))
( ) ln ( )

'( ) '( )
i i

i i c s

U C x U C x
m x x m m

U C U C
     .  	 (4‐2)	 	

In (4-2), 
)('

))(('

0CU

xCU
m i

c   is aggregate marginal utility growth, while  

)(ln
)('

))(('

0
i

i
s x

CU

xCU
m   is the product of marginal utility growth and the log of the 

ratio between the representative investor’s probabilities and the correct probabilities. 

The above equation thus states that the pricing kernel is the sum of two distinct 

processes, one based on the kernel of a rational expected utility optimizing 

representative investor and the other based on sentiment. The sentiment component is 

zero only when the likelihood ratio )( ix  equals one and thus only when prices are 

set in such a way that the representative investor holds objectively correct belief.  

 

Recalling from the last chapter, Arrow (1971) argued that investors’ utility functions 

should display non satiation (NS), risk aversion (RA) and non-increasing absolute risk 

aversion (NIARA). The latter is related to the notion of prudence, see Kimball (1990, 

                                                 
 
28 This approximation implicitly assumes that Λ(xi) is never much different from one.    
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1993). With utility functions ( )U W  defined over wealth, NS implies positive 

marginal utility of wealth, i.e. 0)(  WU , RA implies decreasing marginal utility, 

i.e. 0)(  WU , whereas NIARA, i.e. 0
)/(



dC

UUd , implies that the rate of 

decrease of marginal utility does not increase in wealth. A necessary condition for 

NIARA, as shown in Arditti (1967), is 0U . Hence NIARA implies 0U  and 

aversion to negative skewness. We may approximate the marginal utility growth of 

the representative investor with preferences defined over aggregate consumption 

using a Taylor's expansion, 

 2 20 0
0 0

0 0 0

'( ( )) ( ) ( )1 1
1 ( ) ( )

'( ) 2 ( ) 6 ( )
i

c i c i

U C x U C U C
C r x C r x

U C U C U C

 
   

 
 .  	 (4‐3)	 	

Here, 
0

( )
( ) i

c i

C x
r x

C


  is aggregate consumption growth. Differentiating (4-3) twice 

with respect to wealth, it becomes clear that a necessary and sufficient condition for 

0U  is 02 b  and thus this is also a necessary condition for NIARA. When this 

condition holds, a necessary condition for RA is 0,1 tb . Following Dittmar (2002), 

we might allow for a multi-period setting with predictability due to a possibly 

time-varying investment opportunity set, and we might thus generalize (4-3) as 

follows:  

 2 3
, 1 1, , 1 2, , 1 3, , 1

( ) ( ) ( )
1

( ) ( ) ( )
t t t

c t t c t t c t t c t
t t t

U C U C U C
m h r h r h r

U C U C U C   

  
    

  
 .  	 (4‐4)	 	

Here, the ih  terms, i = 1, 2 3…, are non-negative expansion parameters. Dropping 

terms of order higher than the second, we might rewrite 1, tcm  more compactly as 

follows:  
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 2
, 1 1, , 1 2, , 11 ...c t t c t t c tm b r b r     .  	 (4‐5)	 	

Since 1, 1,

( )

( )
t

t t
t

U C
b h

U C





 and 2, 2,

( )

( )
t

t t
t

U C
b h

U C





, RA and NIARA imply 1, 0tb   and 

2, 0tb  . With power utility with risk aversion parameter  , we have that 1,tb    

while the coefficients of the higher order terms are zero. This is the constant relative 

risk aversion (CRRA) case considered by Shefrin (2010). The component sm  of the 

kernel in (4-2) is the cross-product of cm  and the log-likelihood ratio )(ln ix . 

Letting, for notational simplicity, )()(ln ii xsx  , using (4-2) and (4-5), and 

dropping terms of third and higher orders, we can thus rewrite the kernel as follows: 

 2
1 1, , 1 2, , 1 3, 1 , 11t t c t t c t t t c tm b r b r b s r        .  	 (4‐6)	 	

 

4.3. Estimation	Strategy	 	

Consider the general conditional factor model, where the SDF is a (conditionally) 

linear function of a set of factors 1tf ,  

 1 1t t t tm a b f   .  	 (4‐7)	 	

The model in (4-6) is a specification of the general conditional factor model in (4-7), 

with 1ta  and factors 1tf  given by a constant, the growth rate of aggregate 

consumption, , 1c tr  , the square of the latter, 2
, 1c tr   , and the cross-product between the 

sentiment proxy, 1ts , and the consumption growth rate, 1 , 1t c ts r  . Since the price of 

excess returns , 1i tr   is by definition zero, the prcing of , 1i tr   can be rewritten as 

 1,10  titt rmE . The unconditional implications of the latter are 
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 1 , 1( ) 0t i tE m r   .  	 (4‐8)	 	

As in Dittmar (2002), we model variation in tb  as a linear function of the first lag of 

a vector of conditioning variables tz  (which typically include a constant), i.e.  

          1, ,t i tb b z i k   .  	 (4‐9)	 	

The unconditional factor model implied by (4-7), (4-8) and (4-9) can then be written 

as follows, 

 1 1t tm a b F   .  	 (4‐10)	 	

Here, 1a   and b  is a vector that stacks all the ib  vectors in a column. The 

specification in (11) is an unconditional model, i.e. a model with time-invariant 

parameters, in the new set of (unconditionally) de-meaned factors

)()( 111 ttttt zfEzfF   . When pricing excess returns, the means of excess 

returns do not identify the mean of the risk free rate29, see for example Cochrane 

(2001). Thus, for simplicity, we will set the mean of the kernel in (4-10) equal to one,  

    1 1 1t tE m a b E F    .  	 (4‐11)	 	

Based on (4-10) and (4-11), we can rewrite the restrictions that (4-8) impose on the 

cross-section of expected returns as follows: 

 , 1( )i t iE r    .  	 (4‐12)	 	

Here,    1

1 1 , 1,i t t i tvar F cov F r 
    is a vector of factor loadings of the regression 

of asset i  on the factors. The elements of   are factor risk-premia (of the 

unconditional model). Following a widely used terminology, we will refer to (4-12) as 

the beta-pricing representation of the restrictions that (4-8) and (4-10) impose on the 

                                                 
 
29 This, however, is strictly true only as long as the risk free rate is not unrealistically high. 
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cross-section of expected returns. The risk-premia and the parameters of the 

unconditional SDF model are linked as follows: 

 1( )tvar F b   .  	 (4‐13)	 	

We estimate (4-12) using a robust 2-pass regression without intercept in the second 

pass. In the first pass of this procedure, we regress the test asset payoff excess returns 

on the factors of the unconditional model and in the second pass we regress average 

excess returns on the factor loadings estimated in the first pass. This yields factor risk 

premia   estimates and we then retrieve the parameters of the SDF (of the 

unconditional model) using (4-13). It can be shown that this approach is equivalent to 

first-stage GMM. In a GMM setting, in fact, the parameters of the kernel that prices a 

vector of n
 
test asset payoff 1tx   

can be estimated by solving the following 

problem: 

 (1 ) (1 ){ }
min   T n k n k Tm

g W g   .  	 (4‐14)	 	

  1 1( )         ( )T T t t t t t tg E g g m b x p z     .  	 (4‐15)	 	

Here, ( )TE �  denotes a sample average, i.e. an arithmetic average over a sample of T  

observations, and tz  is a vector of k  instruments that coincide with the 

conditioning variables in (4-9). Based on (4-8), the elements of the 1n  vector tg  

can be interpreted as pricing errors and the moment conditions Tg  as pricing errors 

sample averages. Under the usual ergodicity assumption, the latter are consistent 

estimates of the unconditional expectations of (4-8). The nn  matrix W  is a 

weighting matrix for the moment conditions. The 2-pass OLS regression amounts to 

minimizing (4-14) using the identity matrix to weight the moment conditions, i.e. 

setting W I . Efficient second-stage and iterated GMM estimates are obtained 

instead by setting W  equal to the optimal weighting matrix of Hansen (1982). We 
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also experiment with the latter approach but we do not report the results as these are 

qualitatively the same as those obtained using the 2-pass regression. Finally, with the 

parameters of the unconditional model in hand, we back out the parameters of the 

conditional model using (4-9). 

 

4.4. Data	

The sample period starts in the first quarter of 1966 (to avoid the impact of dividend 

taxation reform in the early part of the previous decade) and ends in the last quarter of 

2005. The test asset payoffs are 25 size and book-to market sorted portfolio and 30 

value-weighted sorted portfolios of the NYSE, AMEX, and NASDAQ stocks30. We 

use returns on the three-month Treasury Bill as the risk-free rate and aggregate 

consumption expenditure data constructed as in Lettau and Ludvigson (2001b)31. We 

set the elements of ts  equal to the first difference of a proxy for investors’ sentiment 

constructed as described by Baker and Wurgler (2006)32, namely the updated version 

of their SENT   variable. More specifically, the latter is the first difference of a 

sentiment index33  based on the first principal component of six (standardized) 

sentiment proxies over the period 1966-2005, where each of the proxies has first been 

orthogonalized with respect to a set of macroeconomic conditions. Finally, we use the 

consumption-wealth ratio estimates tcay  supplied by Lettau and Ludvigson (2001a) 

as the conditioning variable that drives, in (4-9), the variation of the parameters of the 

representative investor’s IMRS. Notice that the much debated “look-ahead” bias of 

                                                 
 
30 Data on this portfolios was downloaded from Kenneth French website. 
31 We thank Martine Lettau and Sidney Ludvigson for making this data available on their web-sites.  
32 We thank these authors for making this data available for download from the AFA-Journal of Finance web-site. 
33 This index is given by Equation (3) in their paper.   
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this variable, if present, is actually a desirable feature in our context. This is because 

rational expectations themselves should indeed display look ahead bias, as rational 

investors know the return data generating process, see Muth (1961) for a seminal 

reference and, more recently, Sargent (1996).  

 

4.5. Empirical	Results	

Table 4-1 and Table 4-2 report estimates of an empirical specification of the 

(C)CAPM and 3M(C)CAPM, with an without sentiment. In particular, Table 4-1 

reports risk premia estimates and associated t-statistics. We construct t-statistics using 

standard errors adjusted, based on Shanken (1992) correction, for sampling error that 

arises because the regressors t  are estimated in a first-stage time-series regression. 

Following Lettau and Ludvigson (2001b), we also construct conventional OLS 

t-statistics. This is motivated by the argument put forth by Jagannathan and Wang 

(1996), who show that OLS standard errors from a 2-pass procedure do not 

necessarily overstate the precision of the standard errors, even if conditional 

heteroskedasticity is present. Table 4-2 reports the estimates of the SDF parameters 

(of the unconditional model), their t-statistics, without and with Shanken’s (1992) 

correction, and a first-stage GMM JT  test statistic of the null that the pricing errors 

are jointly zero. This statistic is constructed as a quadratic form of the pricing errors 

TTWgg , weighted by the first-stage GMM weighting matrix, 1))ˆ((  bgCovW T . The 

latter is defined as follows 
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 1 1ˆ( ( )) ( ) ( ) ( )T n T t nTcov g b I d d d d cov g I d d d d                (4-16)  

Here, nI  is the nn  identity matrix, ( )Tcov �  denotes the sample 

variance-covariance matrix and 1 1

( )
( )T

T t t

g b
d E F r

b  

  


 is the vector of the first 

derivatives of the moment conditions in (4-15) with respect to the model parameters. 

 

Concerning the (C)CAPM estimates, all the factor risk premia are statistically 

significant when t-statistics are computed using OLS standard errors. With Shanken’s 

(1992) standard error adjustment, however, only the risk premium of , 1t c tcay r   is 

statistically significant. This should not surprise as it simply means that there is 

considerable sampling error in the estimation of the factor loadings t . The 

coefficient of determination is, however, not very high. In particular, it is much lower 

than the coefficient of determination reported by Lettau and Ludvigson (2001b). This 

is due to the fact that they include an intercept in the second pass regression, thus 

reducing pricing errors. More importantly, the estimates of b  imply that both the 

SDF and 1,tb  display the wrong sign for prolonged portions of the sample period. As 

shown in Panel A of Figure 4-1, the estimated SDF often takes negative values, thus 

assigning negative prices to non-negative payoffs almost surely. This implies the 

existence of arbitrage opportunities and violation of the assumption that investors 

preferences display non-satiation. Moreover, as shown in Panel B, the estimated 1,tb  

does not always take a negative value, thus implying a violation of the assumption 

that investors are risk averse. Interestingly, 1,tb  becomes positive roughly when 

anecdotal evidence suggests that the market assessment of perspective earnings 

growth might have been affected by over-optimism, i.e. in the second part of the 
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1990s, end it peaks on June 2000, roughly at the beginning of the stock market 

correction. The estimates of the 3M(C)CAPM suffer from the same problems, i.e. the 

SDF is not always positive and b1t is not always negative (neither however plotted to 

save space), alongside a non-positive point estimate of 2b , in contrast with the 

assumption of non-increasing absolute risk aversion and thus with standard risk 

aversion.     

 

The Sentiment-(C)CAPM and Sentiment-3M(C)CAPM are empirically more 

successful, and most of the increase in the explanatory power is due to the inclusion 

of sentiment. As shown in Table 4-1, the 2R  of Sentiment-(C)CAPM jumps to 58.9 

(50.7 adjusted). This value is comparable to the coefficient of determination obtained 

by Lettau and Ludvigson (2001b) allowing for an intercept in the second pass 

regression. The 2R  of the 3-moment (C)CAPM with sentiment is not much larger (it 

is actually lower, when adjusted for degrees of freedom) than the 2R  of its 

2-moment version but it is much larger than the 3-moment specification without 

sentiment.  

 

The JT  test statistic reported in Table 4-2 is never statically significant, thus 

implying that pricing errors are jointly insignificant. Moreover, while not all risk 

premia are statistically significant at conventional levels (merely implying that the 

price of the factors themselves might be close to zero), both aggregate consumption 

and sentiment are priced in the cross-section of average returns, as demonstrated by 

the significance of the corresponding elements of the b  vector reported in Table 4-2. 

More importantly, the point estimates of the elements of b  imply a much better 

behaved behaviour of the rational component of the SDF compared to the 
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specifications without sentiment. As shown in Panel A of Figure 4-2, while the SDF 

still often takes negative values, its rational component (the ticker line) is rarely 

negative. Perhaps more remarkably, 1,tb  is now always negative, both in the case of 

the 2-moment model, as shown in Panel B of Figure 4-2, and in the case of the 

3-moment model (not reported to save space). This is important as it implies that, 

including sentiment as a factor, the sign of the price of systematic conditional 

covariance is consistent with the risk-aversion assumption for any realization of the 

conditioning variable. In Figure 4-3, we report the sentiment component of the SDF. 

This is the component that helps the SDF fit the cross-section of average excess 

returns while allowing for a representative investor’s IMRS much more consistent 

with the tenets of rational optimizing behaviour. As it is evident from the Figure, this 

component of the SDF peaks at times of high market valuations, such as the so called 

‘dot-com’ boom of the late 1990s, and its troughs coincide with the bottom of market 

corrections, when investors’ judgment might have been clouded by pessimism, as in 

the aftermath of the Latin American debt crisis in 1982. At these times, it is necessary 

to allow for a substantial amount of systematic investors’ information processing 

error, to be able to justify stock valuations and still retain the assumption that, by and 

large, investors are greedy, risk averse, expected utility maximizing individuals.  

 

We also report estimates that add an extra sentiment factor, namely ts  alongside 

1t ts cay  , and, to facilitate comparison of our estimates with those reported by Lettau 

and Ludvigson (2001b), we include 1tcay   among the factors. The estimates of these 

augmented specifications are reported in Table 4-3 and Table 4-4. The only 

qualitatively important difference is that now the point estimate of the b2 parameter of 

the 3M-(C)CAPM is positive, in accordance with NIARA. This suggests that there 
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might be additional factors with which both 1tcay   and the square of the 

consumption growth rate are correlated. We leave for future research the 

identification of the extra factor (factors) and, more importantly, of whether it is 

should enter the rational or the sentiment-related component of the SDF.  

 

4.6. Conclusions	

This chapter shows that augmenting the (C)CAPM with sentiment, and thus allowing 

for systematic investor error in forming beliefs about the distribution of returns, 

permits to largely reconcile investors’ optimizing behaviour with the cross-section of 

average returns. This implies that investors must either commit systematic errors in 

assessing the joint distribution of stock returns and aggregate consumption or behave 

in a way that, at the aggregate level, is inconsistent with expected utility maximization 

and with standard risk aversion assumptions, as formulated for example by Kimball 

(1993). We leave for future research to ascertain whether these systematic (ex-post) 

errors might have been avoided making full use of available information, thus 

implying a violation of the Efficient Market Hypothesis, as formulated by Fama (1970, 

1976). 
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Table	4‐1	
Second	Pass	Regressions	(1966‐2005)	Estimates	

25	Size	and	Book‐to‐Market	Portfolios	

Beta‐Pricing	Representation	

	

Model 
, 1c tR   , 1t c tcay R   1 , 1t c ts R   2

, 1c tR   2R  

(Adj. 2R ) 

      

(C)CAPM 0.48 0.02   26.1 

 (3.21) (5.97)   (22.8) 

 (0.99) (1.83)    

      

3M(C)CAPM 0.21 0.01  0.01 33.7 

 (1.36) (4.71)  (4.63) (27.6) 

 (0.45) (1.53)  (1.57)  

      

Sentiment-(C)CAPM 0.84 0.01 -1.35  56.5 

 (5.59) (3.70) (-6.22)  (52.6) 

 (1.76) (1.21) (-1.96)   

      

Sentiment-3M(C)CAPM 0.67 0.01 -1.22 0.01 56.5 

 (4.61) (3.25) (-5.74) (5.00) (50.3) 

 (1.59) (1.16) (-1.99) (1.78)  

 

 

 

 

 

 
  

Notes. This Table reports 2-step regression estimates of the beta-pricing representation of various 
factor models for the period 1966-2005. The second pass regressions are estimated without an 
intercept term. The top row indicates the factors included in each model. For each included 
factor, we report the risk premia point estimates in percentage and two sets of t-statistics in 
brackets. These statistics are computed using OLS standard errors that account for correlated 
errors across test portfolios while the second set of t-statistics also uses Shanken’ (1992) 
correction for the fact that the beta coefficients are estimated. The third and second last columns 
report the percent coefficient of determination R2, both unadjusted and adjusted for the degrees of 
freedom. All the variables are defined as in the text. The data frequency is quarterly.  



 130

 

 

 

 

 

Table	4‐2	
Second	Pass	Regressions	(1966‐2005)	Estimates	

25	Size	and	Book‐to‐Market	Portfolios	

Implied	SDF	Parameters	

 

Model 
, 1c tR   , 1t c tcay R   1 , 1t c ts R   2

, 1c tR   TJShanken 
m  mc

ms  

        
(C)CAPM -418.00 -37,904.00   17.00 629.8 629.8 
 (0.000) (0.000)   (0.763)   629.8 
        
3M(C)CAPM 284.00 -30,117.00  -70,956.00 24.28 632.2 632.2 
 (0.399) (0.003)  (0.038) (0.230)  632.2 
        
Sentiment-(C)CAPM -526.00 -13,219.00 305.00  15.08 617.5 446.8 
 (0.000) (0.309) (0.007)  (0.772)   383.5 
        
Sentiment-3M(C)CAPM -209.00 -14,153.00 252.00 -30,205.00 24.25 433.84 239.25 
 (0.987) (0.319) (0.056) (0.450) (0.232)   316.76 

 

 

 

 

 

  

Notes. This Table reports the elements of the b vector, the negative of the risk prices, implied by 2-pass 
regression estimates (without intercept in the second pass regression) and, in brackets, associated p-values. These 
are computed using standard errors based on a weighting matrix equal to the inverse of the sample (first stage) 
estimate of the pricing errors variance-covariance matrix. The same weighting matrix is used in the computation 
of the average pricing errors TJ reported in the third last column. The last two columns report the annualized 
volatility of the estimated stochastic discount factor (in percentage) and its decomposition in a rational and 
sentiment-related component. The market Sharpe ratio is about 40 percent. All the variables are defined as in the 
text. The data frequency is quarterly.  
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Table	4‐3	
Augmentation	by	cayt	and	st	

Beta‐Pricing	Representation	

	

Model tcay  , 1c tR   , 1t c tcay R   1ts   1 , 1t c ts R   2
, 1c tR   

2R  
2( . )Adj R  

        

1 2.34 0.41 0.02 22.8 

(4.86) (2.6) (6.41) (15.8) 

(1.49) (0.79) (1.93) 

2 0.86 0.64 0.01 0.003 34.3 

(2.23) (3.87) (4.22) (2.13) (24.9) 

(0.74) (1.27) (1.39) (0.71) 

3 1.16 0.71 0.01 -1.46 54.7 

(3.18) (4.54) (4.2) (-6.43) (48.2) 

(1.34) (1.71) (1.52) (-3.10)  

4 1.09 0.65 0.01 -1.39 0.01 55.16 

(3.32) (4.44) (3.59) (-7.91) (4.2) (46.2) 

(1.02) (1.47) (1.44) (-2.11) (1.43) 

5 0.84 0.6 0.01 -80.61 -1.12 58.9 

(2.59) (3.93) (4.36) (-3.36) (-6.45) (50.7) 

(0.97) (1.43) (1.62) (-1.25) (-2.38) 

6 0.86 0.64 0.01 -74.86 -1.13 0.003 59.2 

(2.61) (4.33) (4.41) (-3.19) (-6.42) (2.13) (48.5) 

(0.92) (1.49) (1.52) (-1.12) (-2.24) (0.73) 

 

 

 

 

 

  

Notes. This Table reports 2-step regression estimates of the beta-pricing representation of various 
factor models for the period 1966-2005. The second pass regressions are estimated without an 
intercept term. The top row indicates the factors included in each model. For each included factor, 
we report the risk premia point estimates in percentage and two sets of t-statistics in brackets. These 
statistics are computed using OLS standard errors that account for correlated errors across test 
portfolios while the second set of t-statistics also uses Shanken’ (1992) correction for the fact that 
the beta coefficients are estimated. The third and second last columns report the percent coefficient 
of determination R2, both unadjusted and adjusted for the degrees of freedom. All the variables are 
defined as in the text. The data frequency is quarterly.  
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Table	4‐4	
Augmentation	by	cayt	and	st	

Implied	SDF	Parameters	

 

Model 
tcay  

, 1c tR   , 1t c tcay R   1ts   
1 , 1t c ts R   2

, 1c tR   TJShanken ( )m  mc  

ms
          

1 -21.67 -391.61 -36,754.60    24.14 636.6 636.6 

 (0.655) (0.000) (0.000)     (0.340)   636.6 

          

2 -31.00 -510.00 -10,945.00   14,812.00 25.34 364.2 364.2 

 (0.536) (0.132) (0.284)   (0.672) (0.189)   364.2 

          

3 -55.40 -468.80 -7,893.20  334.00  16.24 616.8 409.2 

 (0.270) (0.000) (0.568)  (0.004)  (0.756)  419.9 

          

4 -48.00 -342.00 -8,977.00  308.00 -12,772.00 16.23 544.2 332.4 

 (0.393) (0.448) (0.531)  (0.037) (0.775) (0.702)  387.2 

          

5 -27.96 -381.17 -11,457.46 -1.22 387.55  20.46 524.9 350.3 

 (0.633) (0.002) (0.426) (0.368) (0.003)   (0.429)   340.3 

          

6 -31.00 -510.00 -10,945.00 -1.00 429.00 14,812.00 12.56 556.6 298.91 

 (0.600) (0.297) (0.451) (0.618) (0.033) (0.785) (0.895)  410.82 

 

 

 

 

 

 

 

  

Notes. This Table reports the elements of the b vector, the negative of the risk prices, implied by 2-pass regression 
estimates (without intercept in the second pass regression) and, in brackets, associated p-values. These are 
computed using standard errors based on a weighting matrix equal to the inverse of the sample (first stage) estimate 
of the pricing errors variance-covariance matrix. The same weighting matrix is used in the computation of the 
average pricing errors TJ reported in the third last column. The last two columns report the annualized volatility of 
the estimated stochastic discount factor (in percentage) and its decomposition in a rational and sentiment-related 
component. The market Sharpe ratio is about 40 percent. All the variables are defined as in the text. The data 
frequency is quarterly.  
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Figure	4‐1	 	 	
(C)CAPM	
Panel	A	

(Estimated	SDF)	

 

	

Panel	B	

(Estimated	b1,t)	
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Notes. Panel A of this figure reports the SDF implied by the 2-step regression estimates of the 
(C)CAPM. Panel B reports the estimate of the conditional b1t parameter for the same model and 
its linear interpolation (denoted as “linear”). The sample period is 1966-2005.  
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Figure	4‐2	
Sentiment‐(C)CAPM	

	

Panel	A	

(Estimated	SDF)	

 

	

Panel	B	

(Estimated	b1,t)	
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Notes. Panel A of this figure reports the SDF implied by the 2-step regression estimates of the 
Sentiment-(C)CAPM, and its rational component. Panel B reports the estimate of the conditional b1t 
parameter for the same model and its linear interpolation (denoted as “linear”). The sample period is 
1966-2005. 
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Figure	4‐3	
The	Sentiment	Adjustment	
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Notes. This figure reports the sentiment component of the SDF implied by the 2-step regression 
estimates of the Sentiment-(C)CAPM. The sample period is 1966-2005.  
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5. SDF	and	Transaction	Costs	

5.1. Introduction	

In this chapter, we compare several competing pricing kernels using a modified 

version of Hansen-Jagannathan distance (Hansen & Jagannathan, 1997), which not 

only accounts for conditional information but also allows for transaction costs. The 

competing pricing kernels we consider here include linear and quadratic models, 

together with the relevant conditional version. The assessment of candidate pricing 

kernels in this chapter is preceded by the discussion of extensions of the 

Hansen-Jagannathan (henceforth HJ) bound and distance measure allowing for both 

conditional information and transactions costs. On the one hand, it is shown how the 

payoff space is extended, by including scaled asset returns, when the investment 

opportunity set considered in deriving the bound includes dynamic investment 

strategies that exploit conditioning information. This modification leads to a sharper 

bound. On the other hand, we discuss the implications for the bound of allowing for 

the presence of transaction costs, which are assumed to be absent by a large part of the 

earlier literature. This modification leads to a loosening of the bound. Although 

former literature has already delt with these two issues separately (see Gallant et al. 

(1990), Bekaert and Liu (2004), and He and Modest (1995)), no study, to our 

knowledge, addresses both. . 

 

The remaining of this chapter is organized as follows. Section 5.2 reviews the 

tradidtional Hansen-Jagannathan volatility bounds as well as the version that allows 

for transaction costs. Section 5.3 discusses the HJ Distance and the testing procedure 
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followed in this chapter. Section 5.4 presents the dataset and the empirical results. 

Finally, Section 5.5 concludes the chapter. 

 

5.2. Volatility	Bounds	and	Transaction	Costs	

He and Modest (1995) generalized the equilibrium condition for the optimal 

intertemporal consumption-investment problem by allowing for transaction costs, 

which include both bid-ask spreads and commissions. Over a one period horizon, each 

unit investment leads to the end of period return , 1(1 )
(1 )

i i t

i

R



 . Here i  

denotes the rate of transaction costs in the price of asset i. Similarly, a one unit 

borrowing generates the end of period payment , 1(1 )
(1 )

i i t

i

R



 . For a portfolio, 

long and short positions must therefore satisfy the following pricing condition,  

 1
, 1

1 ( ) 1
[ ]

1 ( ) 1
i t i

t i t
i t i

U C
E R

U C

 
 




 
 

 
.  	 (5‐1)	 	

Assuming transaction costs are the same across all assets and equal to  , Equation 

(4-2) becomes 

 1 , 1[ ]L U
i t t i t iE m R    .  	 (5‐2)	 	

where (1 )
1

L
i

  
   and (1 )

1
U
i

  
   represent the lower and upper 

bounds, respectively, on the initial outlay for future payoffs, 1tR  . And   is a  

vector of 1N   ones. 
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Hansen and Jagannathan (1991) suggested a non-parametric technique to find the 

projection of the admissible pricing kernels on the payoff space, based on the fact that 

 1
1 1 1 1 1 1( ) [ ( ) ( )] [ ( )]t t t t t t t t t tm E m E m E R R E R 
           .  	 (5‐3)	 	

where 1 1( ,  )t t tcov R R    represents the covariance matrix of asset returns. This 

results derives directly from the Law of One Price. By a well known property of even 

powers, 2 ( )t   is non-negative and therefore 

 2 1
1 1 1 1 1( ) [ ( ) ( )] [ ( ) ( )]t t t t t t t t t tm E m E R E m E R  
        .  	 (5‐4)	 	

This inequality has been used as one of the most popular diagnostic tools for 

inspecting unconditional pricing models. As a relatively week selection requirement, 

however, it fails to capture the implications of conditional information, and it does not 

take into account market frictions such as transaction costs, including bid-ask spreads, 

commission fees, taxation and so on. Many authors have examined the implications 

for the admissibility of candidate pricing models of either the use of conditioning 

information in dynamic investment strategies (Lettau and Ludvigson (2001b), Bekaert 

and Liu (2004), Ferson and Siegel (2003), and Dittmar (2002)) or of frictions such as 

the transaction costs (He & Modest, 1995). To our knowledge, however, no empirical 

study has considered the two issues at the same time.  

 

We consider a payoff space augmented by the inclusion of dynamic strategies based 

on conditioning information. Lettau and Ludvigson (2001b) pointed out that the 

consumption-wealth ratio summarizes the return expectations of the representative 

agent and, as a result, it must be strongly linked to the expected stock market return, 

i.e.  
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i
t t w m t i

i

cay E r





  ,  	 (5‐5)	 	

where tcay  denotes deviations from the long run value of the consumption-wealth 

ratio. We therefore consider conditioning information summarized by this variable 

and an augmented payoff space given by , 1 , 1( ,  )i t t i tR cay R    . If we set 1
new
tR   equals 

, 1 , 1( ,  )i t t i tR cay R    , and the price vector new  equals ( ,  )tcay    , (5-2) then can be 

rewritten as follows, 

 
1 , 1

1 , 1

[ ]

[ ( )]

L U
i t t i t i

L U
t i t t t i t t i

E m R

cay E m cay R cay

 

 
 

 

 

 
.  	 (5‐6)	 	

The conditional expectation can be dropped, since the extended payoff space includes 

the dynamic strategies in the basis of the conditional expectations. The corresponding 

pricing kernel volatility bound, accounting for transaction costs and conditional 

information, is as follows, 

 

2 1
1 1 1 1 1( ) inf[ ( ) ( )] [ ( ) ( )]

1 1
. .           

1 1

new new new new
t t t new t t

new new new

m E m E R E m E R

s t

  
   
 


       

 
 

 

.  	 (5‐7)	 	

where 1 1( ,  )new new
new t tcov R R 

  . 

 

5.3. Estimation	and	Diagnostic	Tests	

Hansen and Jagannathan (1997) proposed the so-called Hansen–Jagannathan (HJ) 

distance to measure the pricing error for any particular candidate pricing model. 

Setting families of pricing kernels that price assets correctly as the benchmark, the HJ 

distance shows the maximum pricing error per unit norm on a set of portfolio with n 

risky assets and takes the form 
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1( ) [ ( )] [ ( )]T T THJ E g G E g   ,  	 (5‐8)	 	

where the weighting matrix 1 1( )new new
t tG E R R 

  is assumed to be nonsingular and 

 1 1

1

( ) [( ( ) ) ]

. .     ( )

new new
T t t t

t

g E m R I

s t m f

  
 

 



  


, 	 (5‐9)	 	

here tI
 
stands for the conditioning variables tcay  and tz  in this chapter. This 

distance measure is equivalent to p , where p  is the correction to the proxy 

stochastic discount factor necessary to make it consistent with the data. As such, the 

HJ-distance is typically interpreted as the least-square distance between the given 

candidate pricing kernel and the true pricing kernel. The first order condition for its 

minimization criteria is 

 1 ( ) 0T T TD G g   ,  	 (5‐10)	 	

which gives, 

 1 1 1ˆ ˆ ˆˆ ˆ ˆ( ) new
T T T T T TD G D D G      ,  	 (5‐11)	 	

where 1( )T tD E R f  . The asymptotic distribution of HJ Distance, as shown by  

Jagannathan & Wang (1996) differs from the 2  distribution of the pricing errors 

under the optimal weighting matrix Hansen (1982). It follows a combination of 2  

distributions weighted by the nonzero eigenvalues of a particular matrix. 

Mathematically, 

 
2

1

[ ( )]
N K

d
T j j

j

T HJ v 




 ,  	 (5‐12)	 	

where jv  is random variable drawn from a 2 (1)  distribution, and j  are the 

nonzero eigenvalues of the following matrix: 
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1 1 1 1 1 1
2 2 2 2 2 21 1[ ( ) ( ) ]( ) ( )S G I G D D G D D G G S           ,  	 (5‐13)	 	

where S  is the variance matrix of pricing errors, with sample counterpart 

1
1

ˆ ˆ ˆ[ ( ) ( )]
T

T TTS g g   . 
1
2S  and 

1
2G  are the upper-triangle matrices obtained from a 

cholesky decomposition of matrices S  and G , respectively. The testing procedure 

involves the simulation on M  sets of N K  random 2 (1)  variables. Then the 

p-value is 

 
2

1 1

{ [ ( )] }
M N K

j ij T
i j

p I v T HJ M 


 

   ,  	 (5‐14)	 	

where ( )I �  is the discrete choice function, which is equal to one when the underlying 

condition holds, and zero otherwise. This provides a diagnostic test based on the 

HJ-distance, which should be not statistically significant for the null that the model is 

correctly specified not to be rejected. This approach differs from the conventional 

two-stage GMM estimation by Hansen (1982). The HJ distance, as a measure of the 

departure between the candidate pricing kernels and the set of true pricing kernels, has 

a more intuitive interpretation than the spefification error statistic based on the GMM 

estimator that uses the optimal weighting matrix or it two-stage 

approximation..Perhaps more importantly, since the distance measure is formed on a 

weighting matrix that is invariant across all models tested, it can be used to directly 

compare the performance not only of nested models, but nonnested models as well. 

 

Another advantage of the Hansen-Jagannathan approach is that it largely avoids the 

pitfall of favoring pricing models that produce volatile pricing errors. The 

Hansen-Jagannathan criterion is a function of the inverse of the second moment 

matrix of returns rather than the inverse of the second moment matrix of pricing errors. 
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Consequently, the HJ distance will fall only if the least-square distance to an 

admissible pricing kernel is reduced, and not if the proxy pricing kernel generates 

volatile pricing errors. Thus, the distance rewards models exclusively for improving 

pricing and not for adding noise.  

 

One caveat is in order. The distribution of the Hansen-Jagannathan test statistic is a 

function of the optimal GMM weighting matrix. Consequently, when testing the 

significance of the Hansen-Jagannathan distance, one may find a high p-value because 

the parameters imply a “small” optimal GMM weighting matrix; that is, a weighting 

matrix characterized by highly volatile pricing errors. One potential safeguard against 

failing to reject a model due simply to noise in the pricing kernel is to analyze the 

significance of the parameter estimates. Whereas the distribution of the distance 

measure is rewarded for a small GMM weighting matrix, the distribution of the 

parameter estimates is penalized by a small GMM weighting matrix. That is, although 

a model may be accepted due to volatile pricing errors, the volatility will tend to 

reduce the significance of the parameter estimates. Consequently, we perform Wald 

tests to assess the significance of adding each marginal term in the pricing kernel. 

These tests provide some surety not only that a pricing kernel is not rewarded simply 

for being noisy, but also provides evidence as to the importance of adding polynomial 

terms, potentially alleviating concerns about overfitting.  

 

A final advantage to the Hansen-Jagannathan distance measure is that the results may 

be more robust than in standard GMM estimates (Cochrane, 2001). Since the 

weighting matrix is not a function of the parameters, the results should be more stable. 
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Despite this advantage, Ahn and Gadarowski (2004) suggest that the size of the test 

statistic is poor in finite samples; the distance measure rejects correctly specified 

models too often. These results suggest the possibility that using the HJ GMM 

estimator rather than the optimal or two-stage GMM estimators may trade size for 

power. To gauge the possible impact of this trade-off, we also estimate the models 

using two-stage GMM. 

 

5.4. Data	and	Empirical	Results	

5.4.1 Data 

The data used in this chapter includes the logarithmic quarterly returns of 30 

value-weighted industry-sorted portfolios of the stocks listed on the NYSE, AMEX, 

and NASDAQ for the period from the first quarter of 1954 to the third quarter of 2002, 

the quarterly return on the three-month Treasury Bill to proxy for the risk-free rate, 

the individual quarterly non-durable and services consumption expenditure from 

DataStream to proxy for the representative agent’s intertemporal consumption stream. 

Finally, we use the consumption-wealth ratio series, tcay  as the proxy of conditional 

information to scale the factors. Empirically, the choice of conditioning variables has 

been discussed in many studies. The variables should reflect investors’ expectations 

about future market conditions and predict asset returns. To check the robustness of 

our results, we also replicate the work of Dittmar (2002), i.e. we include the set of 

instruments ,{1,  ,  ,  ,  }t m t t t tz r dy ys dp  as another information set differing from 

tcay . In detail, the ,m tr  represents the market excess return, tdy  is the aggregate 

dividend yield, tys  measures the yield term spread between three-month treasury bill 
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return and one-month treasury bill return, and tdp  captures the industrial production 

growth. Table 5-1 is the statistic summary of conditioning factors. 

 

To test the predictive ability of tz , we project all returns 1tR   on the conditioning 

variable set tz  through the following regression, 

 , 1 1i t t tR b z e   ,  	 (5‐15)	 	

Table 5-2 provides Wald statistics, computed using the Newey and West 

heteroskedasticity and autocorrelation consistent covariance matrix, and the 

corresponding p-values. The null hypothesis for the test is that the lagged conditioning 

variables set has no predictive power for asset returns. Statistically, the coefficients b  

of the predictive regressions are jointly zero. The null is rejected at 1 percent critical 

level for all 30 industry portfolios. 

 

5.4.2 Empirical Results 

5.4.2.1 Estimation of pricing kernels 

A traditional GMM procedure is employed to estimate the coefficients of the 

candidate pricing kernels, which include the linear, quadratic and cubic specifications 

with time-varying coefficients, with and without human capital , 1c tr   as a component 

of the return on aggregate wealth. Moreover, two alternative sets of conditioning 

variables, i.e. { }tcay  and tz , are employed in estimation. 

 

Table 5-3 presents results of specification tests when the measure of aggregate wealth 

does not include human capital , 1c tr  . The table presents average values of the 
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coefficients ta  and ,i tb , 1,  2,  3i   corresponding to the thi  order term of the 

return on the market portfolio polynomial. The table also presents the TTJ  measure, 

i.e. T times the weighted average pricing error with the weighting given by the inverse 

of the error variance-covariance matrix ˆ ˆ[ ( ) ( )]S E u u  , and associated p-values 

under the null that the candidate model is correctly specified. Panel A reports the 

coefficients of the linear conditional pricing models, with SDF 1 1, , 1t t t m tm a b r   ,
 

where the , 1m tr   stands for the market return proxy, i.e. the market index return, and 

ta  and ,i tb  are time-varing as linear functions of the conditioning variable tcay , as 

defined in Lettau and Ludvigson (2001b). Both these two coefficients are statistically 

significant, and the coefficient of maket return is negative, in accordance with the 

CAPM. The mispecification test statistic is not significant at conventional levels. As 

shown in Panel B, the linear market return term is significant in the quadratic model 

too and dominates the quadratic term. The p-values of the TTJ  statistic and of the 

individual coefficients suggest marginal improvement in the model fit in moving from 

a linear specification to a nonlinear one. The quadratic pricing kernel reduces the TTJ  

measure from 75.25 to 74.99, and furthermore, the additional cubic term reduces TTJ  

by another 0.65 drop. However, the addition of either the quadratic or cubic term does 

not materially improve the performance of the conditional pricing kernel. If we 

choose 10 percent as the critical p-value, none of the above models can generate the 

admissible pricing kernel which prices the cross section of returns on the 30 

value-weighted industry-sorted portfolios. 
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We next analyse the impact of incorporating a measure of human capital in the return 

on aggregate wealth. These results are displayed in Table 5-4. The outcomes of the 

specification tests are markedly different from those in Table 5-3. The fit of all three 

pricing kernels improves relative to the case in which human capital is not included in 

the measure of aggregate wealth. The TTJ  measure implied by the linear pricing 

kernel falls to 74.81. This result is consistent with the findings of Jagannathan and 

Wang (1996), who find that incorporating human capital improves the performance of 

the conditional CAPM. However, the linear pricing kernel and the quadratic pricing 

kernel are rejected at the 10 percent significance level.  

 

We subsequently re-estimated by mimimizing the HJ-distance and using the set of 

information variables zt . Estimation results are qualitatively unchanged. Consistent 

with the two-stage GMM estimation, the distance measures and p-values for the tests 

of significance of the coefficients suggest marginal improvement in moving from a 

linear specification to a nonlinear specification. As shown in Panel B of Table 5-5, a 

cubic specification of the pricing kernel with human capital results in a decrease in the 

distance measure of 4.27 percent relative to the linear kernel without human capital. 

The same measure in Table 5-6 improves by 16.35 percent, which is in line with the 

improvement of 12.50 percent reported by Dittmar (2002). In either case, the cubic 

pricing kernel cannot be rejected at the 10 level. These results suggest that the 

performance of a pricing kernel grounded in preference theory, i.e. estimated 

imposing preference restrictions implied by decreasing absolute risk aversion and 

decreasing absolute prudence, can capture cross-sectional variation in returns. The 

results of Table 5-5 and Table 5-6 suggest that incorporating only nonlinear functions 

of the return on the value-weighted index or a linear function of the return on labour is 
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insufficient to generate an admissible pricing kernel. However, consistently with 

Dittmar (2002), by utilizing both the return on labour and the nonlinearities implied 

by the series expansion, we are able to generate an admissible pricing kernel. 

 

5.4.2.2 Volatility of pricing kernels and the HJ Bounds with Transaction Costs 

Dittmar (2002) examines the relation of the estimated pricing kernels to the volatility 

bounds of Hansen and Jagannathan (1991), and shows that the cubic pricing kernel 

with human capital is able to generate sufficient volatility that meets the 

Hansen-Jagannathan bound for a certain range of values of the mean, but the 

estimated value of the latter is slightly too high for the pricing kernel to actually lie 

within the bound. This finding essentially implies that the cubic pricing kernel, even 

with human capital, is not volatile enough to be admissible though it is very close. 

 

In order to cope with this problem, and gather some insight into the role of market 

frictions in asset pricing, we compare the estimated pricing kernels with the HJ 

bounds in the presence of transaction costs. As indicated in Section 5.2, the bounds 

represent the minimum volatility that a pricing kernel must exhibit, given its mean, to 

be admissible. In this respect, the bounds depict the set of admissible pricing kernels 

in mean-standard deviation space. Since the pricing kernel approach relates the first 

moment of returns to the second moment of the discount factor, this provides further 

insight into the specification of the model. The analysis differs from the specification 

test of the Hansen-Jagannathan distance measure, which asks whether there is some 

specific admissible pricing kernel that is statistically indistinguishable from that of the 

model. 
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The Hansen-Jagannathan bounds for the 30 value-weighted industry-sorted portfolios 

augmented by the three-month T-bill return are presented in Figure	5‐1 panel A and 

panel B. The assumption of 0.80 percent transaction costs per quarter is similar to the 

one made by He and Modest (1995), which is reasonable given the existence of stamp 

duty, brokage commissions (or the bid-ask spread) and slippage costs. As suggested 

by Table 5-5 and Table 5-6, the conditional cubic pricing kernels with human capital 

dominate the others in terms of mean-volatility pairs, although neither of them reaches 

the HJ bounds in the absence of transaction costs. In contrast, the conditional cubic 

and quadratic pricing kernels lie insider the HJ bounds when transaction costs are 

taken into account. In detail, Panel A of Figure	5‐1 shows that the conditional cubic 

pricing kernel with human capital is admissible when the conditioning information set 

is tcay  and transaction costs are 0.8 percent, and Panel B shows that the conditional 

cubic and quadratic pricing kernels either with or without human capital are all 

admissible when the conditioning information set is tz  and transaction costs are 0.8 

percent. These findings are novel relative to those reported by Dittmar (2002). 

 

The Hansen-Jagannathan bounds plot, together with the decomposition of the distance 

measure, indicate that incorporating human capital and transaction costs substantially 

improves the nonlinear pricing kernels’ ability to match the volatility of the set of 

pricing kernels that are admissible for the industry portfolios. That is, it substantially 

lowers the standard deviation of the adjustment necessary to make the nonlinear 

pricing kernels admissible. 
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5.5. Conclusion	

In this chapter, we follow the approach of He and Modest (1995) and Luttmer (1996), 

who showed how to adapt the the Hansen-Jagannathan volatility bounds to economies 

with the kinked budget constraints that arise in the presence of proportional 

transaction costs, to assess whether allowing for transaction costs can help solve the 

coskewness puzzle. Since these bounds do not depend on a particular model for the 

stochastic discount factor, but only on the form of the budget constraint, this provides 

a robust way to quantify the extent to which market frictions affect inferences about 

important features of asset pricing models.  

 

Like in the study of Dittmar (2002), we consider nonlinear pricing kernels that can be 

seen as providing a link between nonparametric and parametric approaches to 

describing cross sectional variation in equity returns. The common element in these 

pricing kernels and those of nonparametric models is nonlinearity in priced risk 

factors. In contrast to these nonparametric approaches, and in common with 

parametric approaches, the pricing kernels are defined over an endogenous risk factor, 

and preference restrictions govern the sign of the relationship between returns and the 

terms in the pricing kernel. The risk factor is the return on aggregate wealth, and the 

nonlinearity arises from an expansion of a representative investor’s Euler equations 

for portfolio and consumption choice. Adding the additional assumption that the 

agent’s preferences exhibit decreasing absolute prudence allows us to restrict the sign 

of the first three terms of this expansion. We show that this framework is consistent 

with a setting in which agents are averse to kurtosis, and consequently asset returns 
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are affected by covariance, coskewness, and cokurtosis with the return on aggregate 

wealth. 

 

Tests of the model show that incorporating nonlinearity substantially improves upon 

the pricing kernel’s ability to describe the cross section of returns. In particular, when 

human capital is incorporated into the measure of aggregate wealth, a cubic pricing 

kernel is able to fit the cross section of industry-sorted portfolio returns. Moreover, 

the conditioning information set is the crucial factor to the effect of determining the 

volatility of pricing kernel. Although the information set tcay   and the information 

set tz  generate similar admissible cubic pricing kernels, they perform differently 

under the HJ bounds framework. The success of former depends on the inclusion of 

human capital, while for the later it does not. 

 

The main finding is that the conditional quadratic pricing kernel, given by the 

quadratic polynomial approximation of the representative investor’s IMRS that arises 

in the 3M-CAPM, dominates the competing kernels under both the sharpened HJ 

bound and the sharpened HJ distance and it is admissible under relatively high, 

though not unrealistically so, proportional transaction costs. The pricing errors, as 

summarized by the HJ distance, are not significant for the conditional quadratic 

pricing model for a quarterly transaction cost rate as low as 2 percent when the risk 

factor is the return on the stock market portfolio. This break-even rate increases to 3 

percent per quarter when the risk factor is the growth rate of aggregate consumption 

In contrast, if the market is assumed frictionless (i.e., under the no transaction cost 

assumption), the volatility of the admissible nonparametric pricing kernels is so high 
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that cannot be matched even by any of the models we consider. This suggests that 

market friction consisting of proportional transaction costs can explain, at least in part, 

the coskewness puzzle. . 
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6. Fund	Evaluation	

6.1. Introduction	

The evaluation of fund performance has attracted lots of attention from both 

practitioners and scholars. The essential concern of this part of the thesis, as in Ahn 

and Shivdasani (1999), is to provide an empirical assessment of fund performance in 

the Chinese market. Although research on fund performance evaluation has seen 

countless contributions over the years, applications are somewhat limited 

geographically (Leite & Cortez, 2009). This is especially the case of Chinese funds. 

The reason may be traced to the lesser development of the Chinese security exchange 

market34. The lack of an efficient regulatory framework during the early stage after 

the birth of the Chinese stock exchange inevitably discouraged the emerging of 

open-end funds during 1990s. But since 2000, the open-end mutual fund industry has 

become one of the fastest growing segments of the financial sector in China. The first 

fund, called Hua’an Innovation, was introduced with the assistance of J.P. Morgan in 

September, 2001. According to the WIND financial Database35, the biggest financial 

data service provider in China, by the end of 2011, the number of listed open-end 

funds had risen to 992, and more than 400 mutual funds are heavily invested in 

equities. 

 

                                                 
 
34 The Shanghai stock exchange rebegan to operate on December 19th, 1990, after the founding of the People's 
Republic of China. And the Shenzhen stock exchange is founded on December 1st, 1990. 
35 Please check http://www.wind.com.cn/En/Default.aspx for more details. 
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In analysis of the trading practices in China, Kang et al. (2002) pointed out that the 

trading decisions of most individual investors in the Chinese market are mainly driven 

by sentiment and market rumours. Then the question is whether fund managers in the 

Chinese market construct their portfolio more efficiently than the ordinary individual 

investors. Most studies of mutual funds rely on Jensen’s alpha as a measures of risk 

adjusted performance. As noted by Grinblatt and Titman (1989), however, Jensen’s 

alpha may assigns erroneously negative performance to a market timer. The reason is, 

as shwon by Grant (1977), that the estimate of the CAPM beta coefficient is biased 

upwards, and therefore the estimation of performance is downward-biased. In order to 

cope with this weakness, recent studies of mutual fund returns have moved beyond 

performance measures based on Jensen’s alpha derived from the ordinary CAPM. As 

emphasized by Lee and Rahman (1990), the basis for a mutual fund manager to 

generate superior performance consists of two components: microforecasting (security 

analysis ability) and macroforecasting (market timing ability). In their paper, the 

authors allow for the risk coefficient to be time-varying in order to reflect 

market-timing ability. In this chapter, we apply the approach of Chen and Knez (1996) 

to analyse the open-end fund performance in the Chinese market. Following Dahlquist 

and Söderlind (1999), we examine the hypothesis that the open-end fund managers in 

Chinese market process information more professionally than individual investors to 

generate significant superior returns and also try to establish whether their 

performance could be replicated by employing some simple strategies that make use 

of public information. This analysis makes several contributions to the fund 

performance literature. Firstly, we extend our understanding of the trade-off between 
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risk and return to the Chinese open-end fund industry. Instead of using, as in many 

studies, the the Sharpe ratio36, our approach echoes the newly emerging literature (see 

Dahlquist and Söderlind (1999), Ahn et al. (2003) and Ferson et al. (2006)) and 

defines performance relative to a pre-specified SDF. As discussed by Dahlquist and 

Söderlind (1999), given an pre-derived SDF, a measure of abnormal return (SDF 

alpha) is easily obtained. Secondly, by adding conditioning information, we test the 

fund performance conditional on ex-ante economic states (Ferson et al., 2006). In fact, 

due to the short history of the open-end fund in Chinese market, the conditional 

performance of this industry is still largely unexplored. A few studies challenge the 

pertinence of the use of conditioning information in fund performance evaluation 

outside the US market (see, Bauer et al. (2006), Blake et al. (2002), Otten and Bams 

(2002), and Sawicki and Ong (2000)), then the question is whether this argument 

applies to the Chinese market as well.  

 

6.2. Theoretical	Framework	

For the identification of superior return, Chen and Knez (1996) require two conditions: 

a) the existence of a reference portfolio set ox , which is available to both fund 

managers and retail investors, b) the existence of an admissible pricing kernel m  

which assigns an identical performance measure for portfolios constructed through 

simple replication strategies from the reference portfolio set by using public 

                                                 
 
36 Chen and Knez (1996) proposed four basic conditions for the legitimacy of evaluation measure. In fact, the 
Sharpe measure, and the RAROC (risk adjusted rate of return) index violate at least one of these conditions. For 
instance, the RAROC does not satisfy the condition II in Chen and Knez (1996): the measure function   must be 
linear. 
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information. If the law of one price (LOP) holds, the price for a portfolio equals the 

value-weighted price of each individual stock. Mathematically, 

 
1 1

( ) ( )
N N

i i i i
i i

p x p x 
 

  .  	 (6‐1)	

where ( )p �  denotes the linear pricing function which is a projection from payoff 

space to price space :  op x  , i  
represents the investment weight of each 

individual stock, and ix
 
is the payoff of each individual stock, i.e., i ox x . If we 

define the future return on the asset with payoff ix  as ( )i i iR x p x , where iR
 

forms the return space oR , then for any two iR  and jR , we have, 

 ( ) ( ) [ ] [ ] 0
( ) ( )

ji
i j

i j

xx
p R p R p p

p x p x
    .  	 (6‐2)	

For a fund manager, whose performance *R
 
lies inside the reference return space 

oR , the assessment of superior investment ability is zero, i.e. *( ) 0op R R  . If the 

generated performance *R
 
lies inside the managed superior return space sR , which 

indicates the existence of *
0( ) ( ) 0R R    for at least one state of the world  , 

then under the assumption of NA, *( ) 0op R R  . In fact, Chen and Knez (1996) 

point out that the only way for fund managers to achieve superior performance is to 

exploit superior information. Chen and Knez (1996) define the superior return affine 

hull as 

 { | ( )   and  ( ) 1}
( )

s
s s s i i i

i N i Ns

x
R R x w s x w s

p x  

     .  	 (6‐3)	

Here, the fund manager can generate dynamic trading strategies ( )w s  by using the 

superior information set s . By contrast, the reference return affine hull is 
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 { | ( )   and  ( ) 1}
( )

o
o o o i i i

i N i No

x
R R x w o x w o

p x  

     ,  	 (6‐4)	

where the information set o  is publicly available to the retail investors. Inevitably, 

some fund managers may only follow a passive constant strategy or the dynamic 

trading strategies on the basis of public information. In this case, the superior return 

space sR  should contain the reference return affine hull oR  and the passive return 

affine hull cR . More precisely, c o sR R R   where cR  is the constant 

composition return by a passive strategy. Chen and Knez (1996) propose a 

generalized performance measure m   which satisfies 

 ( ) 1       0oE m R m   ,  	 (6‐5)	

According to (6-5), we have: 

 
0

0

[ ( )] 0       if ( ) 0

and  [ ( )] 0       if ( ) 0

s o s

s o s

E m R R R R

E m R R R R





   

   
. 	 (6‐6)	

 

6.3. Conditional	Performance	Evaluation	

Traditional or unconditional alphas compare returns and risks measured as averages 

over an evaluation period, and these averages are taken “unconditionally” or without 

regard to variations in the state of financial markets or the broader economy. In the 

conditional performance evaluation approach, the state of the economy is measured 

using predetermined, public information variables. This takes the view that a managed 

portfolio strategy that can be replicated using readily available public information 

should not be judged as having superior performance.  
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Similarly, when the fund manager predicts the price movement, ideally he will adjust 

his portfolio in an attempt to fully explore beneficial opportunities. Literally, if the 

market has a high probability to generate positive (negative) return over the next 

investment period, the manager will reconstruct his portfolio by including more (less) 

high-risk stocks and less (more) low-risk stocks. The analysis of mean-variance 

efficient sets with respect to conditioning information is developed by Hansen and 

Richard (1987). In their paper, they state that unconditional efficiency can be treated 

as a special case of conditionally efficiency, but not the converse. In fact, a number of 

papers have since extended Jensen’s (1968) work by including conditioning 

information to evaluate the timing ability. Grinblatt and Titman (1989) suggest that 

the excess return of the manager’s portfolio should be expressed as 

 , 1 , 1 , 1 , 1p t t p t m t p tr J r        , 	 (6‐7)	

where J  denotes the Jansen’s alpha. Ferson and Harvey (1999) provide an 

empirical study on the ability of the Fama-French model to capture common dynamic 

patterns in returns by using a set of lagged, economy-wide predictor variables. The 

betas in the asset pricing model are allowed to be time-varying and depend linearly on 

the predetermined instruments, 

 
, 1 , , 1 1 , 1

, 0, 1, 1 , 1( )

p t p t p t t p t

p t p p t t p t

r J b f

J b b z f

 

 
   

 

  

   
, 	 (6‐8)	

Here, 1tf   is a vector of excess returns on the risk factor-mimicking portfolios over 

the risk-free rate ,f tR , and 1 ,t f t of R R   . Assume , 1 , , 1p t f t p tR R r    is in the 

affine hull oR , then ,p tJ  is statistically insignificant. Otherwise, , 1p tR   

outperforms the basis assets oR  and lies inside the superior return affine hull sR , if 

,p tJ
 
is significant positive in measure. According to Ferson and Siegel (2009), both 
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of the above cases (6-7) and (6-8) can be represented conditionally, in a similar way 

as in (6-6), In fact, 

 

1 , 1 1 , 1 , 1 , 1 , 1

, 1 , 1 , 1
, 1

, , 1 1 , 1 , 1
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      


  




   

  

 

 

, 	 (6‐9)	

or equivalently, we could write (6-9) as, 

 , , 1 1 , 1 , 1 , 1( )          p t f t t t p t f t p t sJ R E m R R R R 
        , 	 (6‐10)	

Therefore, a natural hypothesis to test is whether ,p tJ  is equal to zero. 

 

Through equation (6-3), we know that an investment manager forms a portfolio of the 

primitive assets with gross return , 1 , 1( )p t i i t
i N

R w s R 


  , here, ( ) 1i
i N

w s


  and 

, 1i t oR R  . To see how a manager with superior information can generate alpha, 

substitute portfolio , 1p tR   
into (6-10) and use the definition of covariance and 

equation (6-5) to obtain 

 
, 1 1 , 1 , 1 1 , 1 , 1

, 1 1 , 1

( ) [ ( )] [ , ( )]

[ , ( )]
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
  

  


. 	 (6‐11)	

If the trading strategy ( )iw s
 
is based on the public information set o , the trading 

strategy is predetermined at time t  and tJ
 
is zero. Otherwise, if the fund manager 

has the access to the superior information set s , then an abnormal return can be 

generated.  
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6.4. Estimation	of	Alpha	

Similarly to Ahn et al. (2003), the method that we employ follows Chen and Knez 

(1996) in that, to measure risk-adjusted performance, we use a stochastic discount 

factor retrieved from a set of basis assets. It is important to note the differences 

between this method and other parametric approaches in assessing the abnormal 

performance of superior strategies employed by fund managers. Nonparametric 

performance measures attempt to recover a set of admissible stochastic discount 

factors based on minimal conditions such as the law of one price or no arbitrage 

conditions. Parametric approaches put forth instead a particular parametric pricing 

model, which is assumed to price all basis assets, and then test whether the strategy of 

interest outperforms the efficient portfolio relative to this model. 

 

As discussed by Ahn et al. (2003), the nonparametric approach has several advantages. 

First, as mentioned above, estimating a stochastic discount factor from a set of basis 

assets imposes equilibrium pricing conditions without the need to specify a parametric 

benchmark. This can help avoid the problem that the success of superior performance 

might be only conditional on a particular parametric pricing model assumed to be true. 

Second, the estimation of a discount factor leads to natural measures of risk-adjusted 

abnormal performance. If the funds considered outperform when measured in this 

manner, then it is more likely that their performance is due to investor irrationality. 

However, if these funds cannot outperform the benchmark, their success may be 

consistent with rational asset pricing. Third, the nonparametric measures I use can be 

easily extended to conditional measures which incorporate the possibility that risk 

premiums are time varying.  
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Hansen and Jagannathan (1991) investigate how to retrieve the stochastic discount 

factors 1tm   from a given set of tradable, or basis, assets. The key underlying 

assumption therein is that there is no pricing inconsistency among the basis assets: 

that is, the SDFs are admissible. Hansen and Jagannathan (1991) suggest two 

particular solutions for 1tm   which are the minimum-norm discount factors defined 

in different metrics. The first is defined as the 1tm   that is in the space oR . That is, 

 1 , 1 , 1    T
t i t i t om R R R     . 	 (6‐12)	

Here , 1i tR   is the basis assets in oR , and   usually equals 1
1 1( )t t tE R R 
   . We 

follow Chen and Knez (1996) and term this solution for the SDF the law of one price 

(LOP) discount factor, since its existence necessitates only that the law of one price 

holds. The second SDF satisfies equation (6-5), and the further requirement that 1tm   

is strictly positive, 

 1 , 1 , 1max[ , 0]    T
t i t i t om R R R
     . 	 (6‐13)	

This SDF satisfies the stronger condition of no arbitrage, thereby ruling out 

investment opportunities with positive payoffs and non-positive prices. We refer to 

this discount factor as the no-arbitrage SDF.  

 

The method for estimating tJ  in a GMM setting is taken directly from Farnsworth 

et al. (2002a), and it is based on the system of moment conditions listed below,  

 
, 1

, 1 , 1 , 1
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. 	 (6‐14)	

The parameters can be estimated by minimizing the criterion function ( )G  ,  
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where the weighting matrix W  is,  

 1( )
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g


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
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. 	 (6‐16)	

As shown by Hansen (1982), under the null of no model mispecification 

2( ) ~ n kTG    , where T
 
is the number of the observation in the sample period, n  is 

the number of moment conditions and k  is the number of parameters. Each of the n  

assets is associated with one moment condition. We incorporate the return on a 

risk-free asset among the test asset payoffs, since Dahlquist and Söderlind (1999) 

emphasize the importance of doing this in order to fix the mean of the stochastic 

discount factor at a reasonable level. The fund performance return adds an additional 

moment condition so that 2
1( ) ~TG   . 

 

6.5. Data	

All the data we use here are provided by WIND37, which is the most famous and 

reliable financial data provider in the Chinese market. Due to the short period during 

which the open-end fund industry in China has been in existence, we only focus on 

the relatively high weekly frequency in order to have a sufficiency large number of 

observations in our sample period. The latter runs from January 1, 2006 to December 

                                                 
 
37 The official website of WIND is: http://www.wind.com.cn/En/Default.aspx 
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31, 2011, for a total of 306 observations. We choose the fund performances and the 

basis portfolios as follows. 

 

6.5.1 The Fund Performance 

We only focus on the funds whose main investment holdings are stocks, and 

meanwhile we exclude the funds with passive trading strategies, such as the ETFs, 

and index-tracking funds. In fact, the trading purpose of the ETFs or the 

index-tracking funds is to replicate the targeted index. The fund managers follow a 

predetermined passive strategy, and rebalance the investment portfolio according to 

the change in the index components. It seems relatively pointless to include such 

funds in an assessment of investment ability of active fund managers. After these 

filters are applied, we are left with only 12 open-end funds. Summay statistics on 

these funds are given in Table 6-1. 

 

6.5.2 The Basis Portfolios 

The choice of the basis portfolios effectively determines the measure of abnormal 

performance. In complete markets, the SDF is unique. However, when markets are 

incomplete, there exists a multiplicity of SDFs that correctly price the assets in the 

economy (Harrison & Kreps, 1979). If the reference set from which the SDF is 

formed spans the payoff opportunity set which is available to investors, then 

measuring abnormal performance relative to this reference set will provide a correct 

(and unique) inference. However, if the reference set does not span the payoffs, it is 

possible to incorrectly reject the null hypothesis of zero abnormal performance (Ahn 

& Shivdasani, 1999). 
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Ideally, to prevent an incorrect rejection of the null, the reference assets should mimic 

the entire opportunity set from which the trading strategies are chosen. However, this 

approach is not implementable in practice. Therefore we must choose a more 

parsimonious set of reference assets that capture as much of the investment 

opportunity set as possible; that is, we wish to group securities in a manner that 

maximizes intragroup correlation and minimizes intergroup correlation. King (1966) 

demonstrates that industry groupings do precisely what we need. In an exhaustive 

analysis of factors important in the determination of stock returns, he concludes that 

market and industry factors capture most, if not all, of the common variation in stock 

returns. For example, he demonstrates that “large” positive covariance in returns 

cluster strongly within industry groupings, and negative covariances are observed 

exclusively across industry groupings. Therefore we form the reference set by 

forming portfolios on the basis of industry. In this part, we choose Shen & Wan 23 

Industry portfolio groups, which are published everyday and treated as the standard 

industry portfolios in Chinese market.  

 

6.6. Empirical	Findings	

6.6.1 Unconditional Performance Measures 

We examine unconditional performance based on no-arbitrage first. The purpose of 

the unconditional estimation is to investigate whether the fund manager is able to 

achieve superior performance compared with the passive strategy. In this case, we are 

testing the fund performance , 1i t cR R  . As discussed previously, the basis assets 

used for the tests consist of the 23 industry-sorted portfolios plus the return on the 

riskless asset. Results of this test are shown in Table 4-1. 
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The results in Table 6-1 suggest that the abnormal performances of all the listed funds 

are trivial when the unconditional performance measure is used, as none of the tJ  

is significant at any conventional level. These results suggest that the fund managers 

of the selected funds add no superior performance to their managed investment. 

 

6.6.2 Conditional Performance Measures 

In order to further assess performance, we now apply the conditional measure used by 

Ahn et al. (2003) and check whether our results are affected if we allow investors’ 

expectations to vary conditional on three publicly known information variables: the 

one-week lag market excess return over risk-free rate, the return on the Treasury bill 

with maturity closest to one month, and the term spread, measured as the difference in 

yields on three-year maturity Treasury bonds over one-year maturity Treasury bills, 

i.e., { ,  ,  }t t t tZ rm tb ys . These results are presented in Table 6-3. All the funds 

appear to display significant negative performances. These results, combined with 

those in Table 6-1, show that the fund performances , 1i tR   
only belong to cR , but 

are outside oR  and even sR . These results suggest that the open-end fund purchaser 

in Chinese market is largely wasting money by buying these funds, since their 

performance can be simply replicated by the individual investor through passive 

strategies.  
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6.7. Conclusion	

In this part, we followed the approach of Chen and Knez (1996), and in a similar spirit 

to Dahlquist and Söderlind (1999), to analyse the open-end fund performance in the 

Chinese market. The results of our analysis show that the fund managers of active  

open-ended funds in fact add no superior performance to the managed portfolios. 

Even the naive buy-and-hold trading strategy is able to replicate their performance 

easily. Then the question is why we assist to the phenomenon of the rapid expansion 

of the open-fund industry in spite of the poor fund performance. Tight restrictions on 

admissible investment policies apply to all fund managers in China. Frequent 

rebalancing, short selling and leverage trading are banned by the CSRC (China 

Securities Regulatory Commission) for the open-end funds. These restrictiction might 

help explain the poor performce of the mutual fund industry. Other possible 

explanations include high transaction costs, and in this respect a comparison with non 

active mutual funds would be useful, and investors inexperience and limited 

monitoring ability. We leave the investigation of these possibilities for future 

research. 
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Table	6‐1	

Statistical	Summary	of	the	Fund	Performances	

Quotation 

Codes 
Mean Stdev 

Quotation 

Codes 
Mean Stdev 

160106.OF 0.456 4.570 percent 161706.OF 0.495 4.220 percent 

160211.OF 0.604 3.892 percent 161810.OF 0.440 3.988 percent 

160314.OF 0.542 3.435 percent 161903.OF 0.181 5.008 percent 

160505.OF 0.517 3.757 percent 162006.OF 0.496 3.825 percent 

161607.OF 0.364 4.466 percent 162605.OF 0.445 4.581 percent 

161610.OF 0.430 4.044 percent 162703.OF 0.502 4.496 percent 

 

 

 

 

 

  

Notes. This table presents weekly means and standard deviation of the returns to the 12 target funds. In 
fact, only the funds whose main investment holdings are stocks are included, and meanwhile the funds 
with passive trading strategies, such as the ETFs, and index-tracing funds are excluded. The sample 
period is from January 1, 2006 to December 31, 2011. The “.OF” in quotation codes stands for 
“open-end fund”. 
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Table	6‐2	

NA‐based	Performance	Measures	(Unconditional)	

Quotation 

Codes 
tJ  p-value 

Quotation 

Codes 
tJ  p-value 

160106.OF 0.0011 0.9009 161706.OF 0.0017 0.8231 

160211.OF 0.0032 0.6359 161810.OF 0.0016 0.8127 

160314.OF 0.0037 0.5496 161903.OF 0.0001 0.9906 

160505.OF 0.0033 0.6160 162006.OF 0.0034 0.6140 

161607.OF 0.0012 0.8806 162605.OF 0.0009 0.9141 

161610.OF 0.0024 0.7434 162703.OF 0.0022 0.7762 

 

 

 

 

 

 

 

  

Notes. This table presents results from the unconditional no arbitrage estimation of performance 
measures.  represents average weekly excess performance over the portfolio of basis assets for 

the passive strategy. The p-value represent a chi-squared test of the hypothesis . The 

basis assets in this sample consist of 23 industry sorted portfolios plus the risk-free rate. 
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Table	6‐3	

NA‐based	Performance	Measures	(Conditional)	

Quotation 

Codes 
tJ  p-value 

Quotation 

Codes 
tJ  p-value 

160106.OF -0.0336 0.0077 161706.OF -0.0322 0.0086 

160211.OF -0.0309 0.0076 161810.OF -0.0322 0.0087 

160314.OF -0.0305 0.0051 161903.OF -0.0336 0.0077 

160505.OF -0.0319 0.0087 162006.OF -0.0301 0.0051 

161607.OF -0.0338 0.0072 162605.OF -0.0337 0.0076 

161610.OF -0.0308 0.0060 162703.OF -0.0329 0.0084 

 

 

 

 

  

Notes. This table presents results from the conditional no arbitrage estimation of performance 
measures.  represents average weekly excess performance over the portfolio of basis assets for 

the active strategies. The p-value represent a chi-squared test of the hypothesis . The 

basis assets in this sample consist of 23 industry sorted portfolios plus the risk-free rate, augmented by 
managed portfolios based on the instrumental variables .  
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7. Implication,	Limitations	and	Future	Work	

7.1. Introduction	

In this Chapter I summarize my main findings and discuss their implications for asset 

pricing. I start, in the next Section, by reviewing the main findings and the important 

analytical results. Section 7.3 discusses their implications. In Section 7.4, I then 

outline the main limitation of this study, I suggest possible extensions and I highlight 

opportunities for future research. The final Section presents some final remarks and 

draws together the main conclusions. 

 

7.2. The	Main	Findings	Restated	

My thesis contributes to depict a representation of the multivariate distribution of 

stock returns where the relations between moments and their dynamics are important 

in explaining their cross-sectional differences. More innovatively, we explore whether 

the SDF implied by the 3 and 4-moment CAPM is plausible under restrictions that are 

weaker than those considered by Dittmar (2002) yet sufficient to rule out implausible 

curvature of the representative investor’s utility functions. We find that, even under 

these weaker restrictions, the 3 and 4-moment CAPM cannot solve well known 

puzzles which plague the empirical performance of extant rational asset pricing 

models, even though the higher order terms do generate considerable additional 

explanatory power. In chapter 3, our findings confirm that the quadratic and cubic 
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market factors help explain observed stock returns. They play an important role in the 

pricing of certain payoffs, including strategies characterized by relatively high SRs, 

such as those spanned by a fine industry-level diversification, most notably until the 

late 90s, or by dynamic portfolios managed on the basis of available conditioning 

information, as well as momentum portfolios. They do so, however, by generating 

high levels of SDF volatility. To rationalize this evidence within a higher moment 

CAPM framework, we would need to postulate implausibly high levels of investors’ 

risk aversion. We conclude, therefore, that the 3M and 4M-CAPM provide at best a 

partial explanation of the differences in average returns on stocks and stock strategies. 

This gives rise to a coskewness (and cokurtosis) puzzle. The solution of the latter 

requires an explanation, different from the 3M and 4M-CAPM, for why the quadratic 

and cubic market factors are priced in the cross-section of stock returns. 

 

Faced with this difficulty, we then explore whether the failure to fully account for 

cross-sectional differences in average returns can be explained by the presence of 

either transaction costs or a behavioural component of the SDF, reflecting investors’ 

systematic mistakes in processing information. In chapter 4, we show that augmenting 

the (C)CAPM with sentiment, and thus allowing for systematic investor error in 

forming beliefs about the distribution of returns, permits to largely reconcile investors’ 

optimizing behaviour with the cross-section of average returns. In fact, The 

Sentiment-(C)CAPM and Sentiment-3M(C)CAPM are empirically more successful, 

and most of the increase in the explanatory power is due to the inclusion of sentiment. 
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This implies that investors must either commit systematic errors, at least ex-post, in 

assessing the joint distribution of stock returns and aggregate consumption or they 

must behave in a way that, at the aggregate level, is inconsistent with expected utility 

maximization and with standard risk aversion assumptions. 

 

In chapter 5, we compare several competing pricing kernels using a modified version 

of Hansen-Jagannathan distance (Hansen & Jagannathan, 1997), which not only 

accounts for the conditional information but also recognizes the existence of 

transaction costs. We follow the approach of He and Modest (1995) and Luttmer 

(1996), who show how the Hansen-Jagannathan volatility bounds can be derived for 

economies with the kinked budget constraints that arise from proportional transaction 

costs. Since these bounds do not depend on a particular model for the stochastic 

discount factor, but only on the form of the budget constraint, this provides a robust 

way to quantify the extent to which market frictions affect inferences about important 

features of asset pricing models. In fact, if the market is frictionless (i.e., there are no 

transaction costs), the volatility of the admissible nonparametric pricing kernels is so 

high that even the candidate kernels with nonlinear terms cannot match it, however, a 

number of the estimated pricing kernels reach the minimum volatility requirement 

when transaction costs are assumed to be 0.8 percent per quarter. 

 

In chapter 6, we follow the approach of Chen and Knez (1996) to analyse the 

open-ended fund performance in the Chinese market. In a similar spirit to Dahlquist 
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and Söderlind (1999), we examine the validity of the hypothesis that the open-ended 

fund managers in the Chinese market process information more efficiently than 

individual investors do, so as to generate significantly superior returns, and also try to 

observe whether their performance can be replicated by employing some simple 

strategies that make use of publicly available information. Our results show that the 

fund managers’ performance is significantly negative and is outperformed even by a 

naive buy-and-hold trading strategy. While these findings supports the view that the 

stock market is efficient, they beg the question why there has been such a rapid 

expansion of the open-fund industry in spite of such a poor performance of the mutual 

funds.  

 

7.3. Implications	

The main implications of our results are in the field of asset pricing. The candidate 

pricing kernel specification in (3.1), estimated using the 30 Fama and French US 

Industry portfolios and the CRSP index as a proxy for the market portfolio, implies a 

‘coskewness puzzle’. The puzzle arises because, while the ,i tb
 
parameter estimates 

fit the cross section of industry returns relatively well, they imply risk seeking over 

gains and thus a non-concave utility function. Given the shape of the utility function 

implied by these estimates, the market portfolio is not necessarily efficient for the 

representative investor. In turn, if the market portfolio is inefficient, the 3M-CAPM 

and 4M-CAPM do not hold. 
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Pending the investigation into the theoretical explanation of these findings, the 

interesting question is then whether we should price assets based on expected returns 

that reflect a coskewness premium and, in particular, the large coskewness premium 

implied by the unrestricted quadratic SDF specification. It is clear that, as long as we 

do not have an equilibrium asset pricing model that can account for this large 

coskewness premium, we cannot strictly consider coskewness a risk measure. 

However, since 2,tb
 
and 3,tb  are the factor loadings of a multifactor model that 

explains the cross-section of industry returns relatively well, we might draw pricing 

implications for other assets based on no-arbitrage arguments.  

 

Alternatively, in performance attribution, we may follow the approach of Chen and 

Knez (1996) adopted in Chapter 6, based on constructing a non parametric kernel 

from a set of traded asset payoffs.  

 

7.4. Limitations	of	the	Analysis	and	Future	Work	 	

 

Predictability and time varying risk premia likely reflects a premium for holding 

macroeconomic risk associated with the business cycle, for holding assets that do 

poorly in times of high volatility and financial distress and for holding assets that do 

poorly when the market portfolio is negatively skewed. Therefore, they seem to be 

closely related to the issue of asymmetry and thick tails in the multivariate return 
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distribution and hence to asset coskewness. The exploration of the link between 

aggregate idiosyncratic risk, higher moments and asymmetries of the multivariate 

distribution of asset returns opens fascinating yet challenging possibilities for future 

research. For example, further research might suitably expand the set of conditioning 

variables to better model variation in the utility function parameters and might use a 

more meaningful proxy for the market portfolio of all risky assets. This, beside 

improving the fit of the model, might lead to a 3M-(C)CAPM specification with 

parameter estimates that do not violate RA and NIARA. I leave these developments, 

however, for future research.  

 

Turning to the ‘coskewness puzzle’, its solution requires a theory that predicts a 

stochastic discount factor quadratic in the market return without implying that the 

market portfolio is efficient. We might appeal to Harrison and Krepp’s (1979) 

theorem to motivate the stochastic discount factor representation of the asset pricing 

problem without requiring that the market portfolio maximizes investors’ expected 

utility. Recall that this theorem states that, given free portfolio formation and under 

the law of one price, there exists an 1tm   such that, for every payoff 1tx  , 

1 1( )t t t tp E m x  . This approach, however, rises the problem of motivating why (2.74) 

specifies 1tm   as a function of the market excess return and its square. Alternatively, 

we might specify individual utility functions that exhibit DIARA and then determine 

equilibrium prices without imposing restrictive assumptions such as investors’ 

homogeneity and market completeness or the equivalent representative investor 
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assumption. The interesting question then becomes why the market return and its 

square should be good proxies for aggregate marginal utility growth even though the 

market portfolio is not necessarily efficient for the representative investor. I leave the 

investigation of these issues for further research. 

 

7.5. Final	Comments	and	Conclusion	

 

This Chapter reviewed and summarized the main findings reported by this thesis and 

their implications for theoretical asset pricing. The unifying theme of this thesis is 

about asset pricing from a cross-sectional perspective. In the cross-section of average 

returns, assets with negative coskewness, and therefore with exposure to volatility risk, 

command a risk premium on top of the reward for market risk. This relation, as shown 

in Chapter 3, is empirically strong and bears puzzling implications for the shape of the 

stochastic discount factor, and thus for the possibility that prices are set by a 

representative investor. A deeper understanding of the relation between ‘good deal’ 

opportunities and the volatility of the SDFs contributes to the formulation of a richer 

investment advice and more meaningful fund evaluation system. From this 

perspective, Chapter 4 and 5 have explored whether the failure to fully account for 

cross-sectional differences in average returns can be explained by the presence of 

either transaction costs or a behavioural component of the SDF, reflecting investors’ 

systematic mistakes in processing information. We find evidence of both problems, 

though our analysis is not conclusive in this respect. Finally, in a more applied 

exercise, we employ the SDF-framework to test whether Chinese fund managers 

generate superior investment performance, and find that Chinese fund managers 
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generate significantly negative performance under both the unconditional and the 

conditional measure.  
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8. Appendix	

8.1. Appendix	A：Higher	Co‐moments	in	IMRS	

Consider the local variation in a marginal utility function defined over wealth tW , 

( )tU U W  , given by a third order Taylor’s expansion: 
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Thus,  
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It is easy to have the following restrictions on the parameters of the candidate SDF by 

identification of (A-3): 
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,
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.  	 (A‐4)	

Then the admissible SDF should be rewritten as  
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4
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1

( ) ( )i
t t t i t t m t

i
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  .  	 (A‐5)	

In (A-4), )(iU  denotes the i-th derivative of the utility function )( ,tmWU . Arrow 

(1971) argues that desirable properties of this function are non satiation (NS), risk 

aversion (RA) and non-increasing absolute risk aversion (NIARA). NS implies 

0U , RA implies decreasing MU, i.e. 0U , whereas NIARA implies that the 

rate of decrease of MU does not increase in wealth and thus 0U . Hence, NIARA 

implies aversion to negative skewness of the distribution of the return on wealth. 

Kimball (1993) adds non-increasing absolute prudence (NIAP) to the set of desirable 

properties of a ‘well behaved’ utility function. Under NIARA, NIAP implies '''' 0U   

and thus aversion to kurtosis. Together, NS, RA, NIARA and NIAP yield standard 

risk aversion, as defined by Kimball (1993). Preferences of rational expected utility 

maximizers will necessarily display the first of these properties, namely NS. This 

implies a no-arbitrage (NA) positivity restriction on the sign of the admissible SDFs, 

and hence 1 0tm   , to avoid assigning a zero or negative price to strictly positive 

payoffs and thus to rule out unexploited arbitrage opportunities. NIAP, NIARA and 

RA rule out counter-intuitive behaviour and can be used to further restrict 1tm  , but 

they are not necessary conditions for the CAPM. When 0U , and thus under NS, 

NIAP implies 03 b . Under NS, a necessary condition for 0U , and thus for 

NIARA, is b2 ≥ 0. Finally, a necessary condition for 0U , and thus for RA, is 

1 0b  . The latter condition guarantees local risk aversion, a milder requirement than 

concave utility (i.e., global risk aversion).  

 



187 
 

 

Since utility functions are equivalent up to a linear transformation, we might let 

( ) 0tU W   and ( ) 1tU W  . This standardization is often very useful when working 

with utility functions in that it simplifies their manipulation. From (A-2), the third 

order Taylor expansion of this standardized marginal utility function around an initial 

level of wealth 1tW  is therefore: 
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.  	 (A‐6)	

According to the above discussion, we can easily find 1 0  , 2 0  , and 3 0  . 

 

8.2. Appendix	B:	The	Pratt‐Arrow	Risk	Premium	

In this Appendix, I provide a derivation of the equilibrium relation between expected 

variance and expected return. Define the simple gamble (an actuarially neutral 

gamble) as follows: 

 2~ (0, )zZ  .  	 (B‐1)	

with: 

 
2 2

:   the random variable

(0, ) :  a probability distribution with zero mean and  variance.z z

Z

 
.  	 	

I then assume that investors’ utility is a function of wealth W  only: 

 ( )U U W .  	 (B‐2)	

Now we can define the condition for the investor to accept the gamble according to 

the following equation: 
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In equation (B-3) the expression ( )Z  represents the risk premium that makes the 

investor indifferent between accepting the actuarially neutral gamble Z  and not 

accepting. It is assumed to be a function solely of wealth and of the gamble itself. 

Now, writing out the Taylor expansion of the left-hand side and right-hand side of 

equation (B-3): 
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.  	 (B‐4)	

Here, the terms WU   and WU   are the first and second total derivatives of the utility 

function. Now, since [ ( )] ( )E U W U W  and [ ] 0E Z  , equating and simplifying 

(B-4) we get: 

 2 21 1
( ) ( ) ( )

2 2W W WU E Z U Z U Z      .  	 (B‐5)	

If we further assume the term 
2 ( )

2
WU Z  to be negligible, we can solve for  , 

the risk premium: 

 2 21
( ) ( )

2 2
W W

Z
W W

U U
Z E Z

U U
 

 
   

 
.  	 (B‐12)	

The above expression W

W

U
U

   is analogous to the Pratt-Arrow absolute 

risk-aversion (ARA) coefficient. Therefore, using equation (B-12) we can write: 

 21

2 Z ARA  .  	 (B‐7)	

Denoting by Zr W  the return on the gamble given the risk premium, we can 

write: 
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 2 2 2 2 2( ) { [ ( )] } ( )Z E Z E W r E r W var r     .  	 (B‐8)	

Therefore, using (B-8) in (B-7) we can write: 

 21
( )

2
W var r ARA  .  	 (B‐9)	

Then, 
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where: 
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
. 	 (B‐11)	

Here, the quantity 
W


 denotes negative expected return that the investor is willing to 

accept to remove the risk of an otherwise actuarially neutral gamble. The coefficient 

RRA in equation (B-11) denotes relative risk aversion. As long as the ‘local shape’ of 

the utility function does not change, it should be constant against changes in wealth. 

Equation (B-11) displays a linear relation between risk and expected excess-return 

that is valid only locally since the relation has been derived on the basis of a second 

order Taylor expansion of a potentially non-linear equation.  
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