
Change Impact Analysis for Evolving
Ontology-based Content Management

Yalemisew Mintsnote Abgaz

BSc., MSc.

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing,

School of Computing

Supervisor: Dr. Claus Pahl

January, 2013

Declaration

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Doctor of Philosophy is entirely my own work,that I have

exercised reasonable care to ensure that the work is original, and doesnot to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed: Yalemisew Mintsnote Abgaz

Student ID: 58116745

Date: January, 2013

Examiners:

Dr. Paolo Ceravolo

Department of Information Technology

University of Milan

Italy

Dr. Gareth Jones

Faculty of Engineering and Computing

School of Computing

Dublin City University

Ireland

ii

Dedication

To

My parents

Acknowledgements

The things I explore, the knowledge I amass and the secrets I fathom, the time Iinvest

and the laziness I enjoyed, the mistakes I commit and the things I get them right or wrong

relate to someone who have come to my life. There is someone who is with me throughout

my pursuit of knowledge. Someone shines on my way, and I see things vividly. My deepest

gratitude goes to God. Dear God, as your word says, all things come into being through you

and apart from you not one thing came into being (John1:3). Thank you Jesus for helping

me in my entire endeavour.

I always appreciate the invaluable support I received from my supervisor. It is my great

experience to work with you Claus. You are a superb and paragon supervisor with great

patience and persistence. My extravagant appreciation is directed to you. Thank you for

everything. I would like to extend my deep gratitude to Dr. Gareth Jones and Dr. Paolo

Ceravolo for your willingness to examine my work and give me feedbacks.

Would I forget your valuable inputs in my life? My mom and my dad, thank you for

standing beside me all the time. My brothers and sisters, your prayer has lifted me up to

this point. Thank you so much. Zemenu and Meklit, thank you for taking care of the family

in my absence. Beza, I always value your input for my research and for my life during this

study. I would take this opportunity to thank you and acknowledge that yourpresence really

made a difference during my study.

I have received a lot from my colleagues in DCU, Javed, your inputs were critical and

made me think critically. You are a hard-working colleague and charged me witha positive

charge towards my work. AAkash and Pooyan, thank you for your endless collaborations

and mind boggling and eye opening discussions. Thank you Ewnetu for your comments

and discussions. My whole journey in DCU is accompanied by CNGLers, Thank you all.

My special thank goes to Eithne McCann, for your magnanimity.

Finally, thank you all my friends from the church. Your presence made me enjoy my

stay in Ireland. Lidya and Mitin, thank you for making my early days enjoyable. Ana and

Markella, I always remember the comfortable environment we had after school hours.

ii

Abstract

Ontologies have become ubiquitous tools to embed semantics into content and applica-

tions on the semantic web. They are used to define concepts in a domain and allow us to

reach at a common understanding on subjects of interest. Ontologies coverwide range of

topics enabling both humans and machines to understand meanings and to reason in differ-

ent contexts. They cover topics such as semantic web, artificial intelligence, information

retrieval, machine translation, software development, content management, etc. We use

ontologies for semantic annotation of content to facilitate understandability of the content

by humans and machines. However, building ontology and annotations is often a manual

process which is error prone and time consuming.

Ontologies and ontology-driven content management systems (OCMS) evolve due to a

change in conceptualization, the representation or the specification of the domain knowl-

edge. These changes are often immense and frequent. Implementing the changes and

adapting the OCMS accordingly require a huge effort. This is due to compleximpacts

of the changes on the ontologies, the content and dependent applications. Thus, evolving

the OCMS with minimum and predictable impacts is among the top priorities of evolution

in OCMS.

We approach the problem of evolution by proposing a framework which clearly rep-

resents the interactions of the components of an OCMS. We proposed a layered OCMS

framework which contains an ontology layer, content layer and annotationlayer. Further,

we propose a novel approach for analysing impacts of change operations. Impacts of atomic

change operations are assigned individually by analysing the target entityand all the other

entities that are structurally or semantically dependent on it. Impacts of composite change

operations are analysed following three stage process. We use impact cancellation, im-

pact balancing and impact transformation to analyse the impacts when two or more atomic

changes are executed as part of a composite or domain-specific changeoperation.

We build a model which estimates the impacts of a complete change operation enabling

the ontology engineer to specify the weight associated with each optimization criteria. Fi-

nally, the model identifies the implementation strategy with minimum cost of evolution. We

evaluate our system by building a prototype as a proof of concept and find out encouraging

results.

iv

Contents

1 Introduction 1

1.1 Motivation. 1

1.2 Research Context. 3

1.3 Challenges and Problem Statements. 4

1.4 Overview of the Research. 7

1.4.1 Research Hypothesis. 7

1.4.2 Research Objectives. 7

1.5 Research Approach. 7

1.6 Contribution of the Research. 10

1.7 Outline . 11

2 Background of the Study 13

2.1 Introduction. 13

2.2 Semantic Web Languages. 14

2.2.1 XML, XML Schema and DTDs. 14

2.2.2 RDF and RDFS. 15

2.2.3 OIL and DAML+OIL. 17

2.3 Web Ontology Language (OWL). 17

2.3.1 OWL sub languages. 18

2.3.2 OWL2 Profiles . 18

2.3.3 OWL Syntax . 19

v

2.3.4 OWL Constructs. 19

2.4 Description Logic Syntax and Semantics. 24

2.5 Ontology Editors and APIs. 26

2.5.1 Ontology Editors. 27

2.5.2 Ontology APIs . 28

2.5.3 Ontology Reasoners. 29

2.6 Semantic Annotation Platforms and Tools. 30

2.6.1 Semantic Annotation Platforms. 30

2.6.2 Annotation Tools. 31

2.7 Summary . 32

3 Literature Review 34

3.1 Introduction. 34

3.2 Evolution in Ontology-based Content Management Systems. 35

3.2.1 Ontology Evolution. 37

3.2.2 Content Evolution . 38

3.2.3 Annotation Evolution. 39

3.3 Evolution Approaches in Related Domains. 40

3.3.1 Schema Evolution. 40

3.3.2 Software Evolution. 44

3.4 Evolution Approaches in Ontology-based Applications. 47

3.4.1 General Ontology Evolution Approaches. 47

3.4.2 Consistency Management. 54

3.4.3 Ontology Change Logging and Mining. 55

3.4.4 Ontology Diffs and Content Versioning Systems. 55

3.4.5 Ontology Change Impact Analysis. 58

3.5 Tools for Ontology Evolution. 60

3.6 Summary . 61

vi

4 Ontology-based Content Management Framework 63

4.1 Introduction. 63

4.2 Ontology-based Content Management System. 64

4.3 Layered OCMS Framework. 66

4.3.1 Ontology Layer. 67

4.3.2 Content Layer. 69

4.3.3 Annotation Layer. 72

4.4 Graph-based Representation of an OCMS. 76

4.4.1 Ontology Graph . 76

4.4.2 Content Set. 79

4.4.3 Annotation Graph. 80

4.4.4 Attributes of the Graph. 80

4.5 Change Operator Framework. 81

4.5.1 A Framework of Change Operators and Patterns. 81

4.5.2 Change Metamodel. 85

4.5.3 Graph-based Formalization of Change Operations. 89

4.6 Evaluation. 92

4.6.1 Adequacy of the Layered Operator Framework. 92

4.7 Summary . 94

5 Change Analysis Framework 96

5.1 Introduction. 96

5.2 The Change Impact Analysis Framework. 97

5.2.1 Change Request Capturing and Representation. 98

5.2.2 Change Impact Analysis. 98

5.2.3 Change Optimization and Implementation. 100

5.3 Dependency Analysis for Change Representation. 100

5.3.1 General Properties of Dependency. 102

5.3.2 Types of Dependency. 103

vii

5.3.3 Dependency Analysis Algorithm. 107

5.4 Evolution Strategies. 116

5.4.1 No-action Strategy. 116

5.4.2 Cascade Strategy. 117

5.4.3 Attach-to-Parent/Root Strategy. 119

5.4.4 N-Level Cascading. 121

5.4.5 Combining Dependencies and Strategies. 121

5.5 Evaluation. 123

5.5.1 Precision of the Dependency Analysis. 123

5.6 Summary . 127

6 Change Impact Analysis Process 129

6.1 Introduction. 129

6.2 Change Impact Analysis Process. 130

6.3 Impacts of Change Operations. 132

6.3.1 Structural Impacts. 133

6.3.2 Semantic Impacts. 136

6.3.3 ABox versusT Box Impacts . 141

6.3.4 Addition versus Deletion Impacts. 142

6.4 Individual Change Impact Analysis. 143

6.4.1 Impacts of Atomic Change Operations. 143

6.4.2 Steps for Individual Change Impact Analysis. 147

6.4.3 Algorithm for Individual Change Impact Analysis. 150

6.5 Composite Change Impact Analysis. 151

6.5.1 Impact Cancellation. 151

6.5.2 Impact Balancing. 154

6.5.3 Impact Transformation. 156

6.6 Evaluation of the Change Impact Analysis. 158

6.6.1 Experiment Setup. 159

viii

6.6.2 Experimental Results. 159

6.6.3 Comparison with Existing Tool. 162

6.6.4 Comparison of Individual and Composite Impact Analysis. 164

6.6.5 Questionnaire Results. 165

6.7 Summary . 166

7 Change Optimization and Implementation 168

7.1 Introduction. 168

7.2 Change Impact Optimization Framework. 169

7.3 Change Optimization Criteria. 171

7.3.1 Severity of Impacts. 171

7.3.2 Type of Change Operation (Addition and Deletion). 176

7.3.3 Statement Types (ABox andT Box) 177

7.3.4 Performance of Change Operations. 179

7.4 Cost of Evolution and Optimal Strategy Selection. 179

7.4.1 Cost of Evolution. 179

7.4.2 Optimal Strategy Selection. 183

7.4.3 Effect of Severity Value on the Cost of Evolution. 184

7.5 Evaluation of Change Impact Optimization. 184

7.5.1 Experimental Setup. 184

7.5.2 Questionnaire Results. 186

7.5.3 Discussion . 188

7.6 Summary . 188

8 Conclusion 190

8.1 Introduction. 190

8.2 Summary of the Problem and Contribution. 190

8.2.1 Contribution of the Research. 191

8.2.2 Capturing and Representation of Change Requests. 191

8.2.3 Structural and Semantic Impact Analysis. 192

ix

8.2.4 Optimized Implementation of Changes. 192

8.2.5 Methodology. 193

8.3 Limitation and Future work. 193

Bibliography 197

A Software Help Management Case Study 217

A.1 Introduction . 217

A.2 Rationale and Significance of the Case Study. 221

A.3 Experiment . 222

A.3.1 Perspectives. 222

A.3.2 Changes. 223

A.4 Observation. 230

A.5 A Snapshot of Software Help Management Ontology. 232

B Database Systems Course Case Study 234

B.1 Introduction . 234

B.2 Case Study Setup. 235

B.2.1 Perspectives. 235

B.3 Experiment . 238

B.4 Observation. 239

B.5 Sample Database systems course OCMS. 240

C University Administration Case Study 242

C.1 Introduction. 242

C.2 Case Study Setup. 243

C.3 Experiment . 244

C.3.1 Changes in University Administration. 245

C.4 Observation. 246

C.5 Sample University Ontology. 247

x

D Additional Analysis Results 249

D.1 Severity of Impacts. 249

D.1.1 Case 1. 249

D.1.2 Case 2. 249

D.1.3 Case 3. 250

D.2 Weight of Criteria. 251

D.3 Cost of Evolution for Different Settings. 251

E Questionnaire 256

E.1 Change Operations for Evaluation. 256

E.2 Questionnaires. 257

xi

xii

List of Tables

4.1 Annotation triple representation. 74

4.2 Adequacy of the layered operator framework. 94

5.1 Generated changes - No-action strategy. 118

5.2 Generated changes -Cascade Strategy. 119

5.3 Generated changes - Attach strategy. 120

5.4 Combination of dependency with evolution strategy. 122

5.5 Complete change operations. 123

5.6 Comparison of the manual and automatic method. 125

5.7 Precision of OCMS dependency analysis (in 100%). 126

6.1 Structural impacts. 133

6.2 Semantic impacts. 141

6.3 Potential impacts of selected atomic change operations. 145

6.4 Impact analysis output. 149

6.5 Candidate impacts for cancellation. 153

6.6 Impact cancellation using Rule-1. 153

6.7 Impact cancellation using Rule-2. 154

6.8 Candidate impacts for balancing. 155

6.9 Impact balancing using Rule-3. 156

6.10 Impact transformation using Rule-4. 158

6.11 Precision of impacts of a single change operation. 160

xiii

6.12 Average precision of impacts of multiple change operations. 161

6.13 Identified change impacts: A comparison between Protege and CIA. . . . 163

6.14 Average precision of impacts of multiple change operations. 164

6.15 Comparison of Individual and composite impacts. 164

6.16 Users feedback on the CIA framework. 165

7.1 Default value for severity of impacts. 173

7.2 Severity value calculation. 175

7.3 Severity value. 175

7.4 Severity value- different value for OC and OI Impacts. 175

7.5 Frequency of additions and deletions. 177

7.6 Frequencies ofABox andT Box statements. 178

7.7 Number of change operations. 179

7.8 Different weights assigned for criteria. 181

7.9 Cost of evolution analysis - equal weight. 182

7.10 Summary of cost of evolution - different weights. 182

7.11 Cost of evolution for Database systems OCMS. 182

7.12 Summary of cost of evolution for University OCMS. 183

7.13 Percentage of identifying the first three optimal solutions. 185

7.14 Users feedback on the optimal strategy selection. 187

A.1 Change scenarios. 226

D.1 Severity value assigned to case studies. 250

D.2 Different weights assigned for criteria. 251

D.3 Summary of cost of evolution - Case 1. 252

D.4 Summary of cost of evolution - Case 2. 253

D.5 Summary of cost of evolution - Case 3. 254

xiv

List of Figures

2.1 The semantic web layers. 15

2.2 RDF graph representation. 16

3.1 A diagram summarizing existing research. 60

4.1 Layered framework of OCMS. 66

4.2 An example of a layered framework of OCMS. 75

4.3 Graph-based representation of OCMS. 77

4.4 Graph-based representation of the ontology layer. 78

4.5 Document collection. 79

4.6 Annotation graph. 80

4.7 Layered operator framework. 82

4.8 A layered operator framework - detailed view. 83

4.9 A metadata model for change operations. 85

4.10 An example of atomic change operations. 86

5.1 The change impact analysis framework. 97

5.2 Software help OCMS - running example. 103

5.3 Dependency analysis diagram. 107

5.4 Direct dependent classes. 108

5.5 Indirect dependent classes. 109

5.6 Total dependent and partial dependent classes. 112

5.7 Dependency diagram. 113

xv

5.8 No-action strategy. 117

5.9 Cascade strategy. 118

5.10 Attach-to-parent strategy. 120

6.1 Change impact analysis process. 131

6.2 Example of structural impact. 134

6.3 Structural impacts. 136

6.4 Semantic impacts. 140

6.5 A flowchart: atomic change impact analysis. 148

7.1 Framework for selecting optimal strategy. 170

7.2 Optimal strategies for all scenarios. 186

A.1 A high level view of software help management ontology. 218

A.2 Software help management ontology hierarchy. 220

A.3 Software help management systems OCMS. 233

B.1 A high level view of database ontology. 239

B.2 Database systems course OCMS. 241

C.1 University ontology hierarchy. 244

C.2 University ontology OCMS. 248

D.1 Summary of cost of evolution - Case 1. 252

D.2 Summary of cost of evolution - Case 2. 253

D.3 Summary of cost of evolution - Case 3. 254

xvi

List of Publication

• Abgaz, Y., Javed, M., and Pahl, C. (2012). Analysing impacts of changeoperations

in evolving ontologies. Joint Workshop on Knowledge Evolution and Ontology Dy-

namics (EvoDyn), collocated at ISWC2012. Boston, USA. 12th November, 2012.

• Javed, M., Abgaz, Y., and Pahl, C. (2012). Composite Ontology Change Operators

and their Customizable Evolution Strategies. Joint Workshop on Knowledge Evo-

lution and Ontology Dynamics (EvoDyn), collocated at ISWC2012. Boston,USA.

12th November, 2012.

• Abgaz, Y., Javed, M., and Pahl, C. (2012). Dependency analysis in ontology-driven

content-based systems. In L. Rutkowski, M. Korytkowski, R. Scherer,R. Tadeusiewicz,

L. Zadeh, and J. Zurada (Eds.), Artificial Intelligence and Soft Computing, volume

7268 of Lecture Notes in Computer Science (pp. 3 - 12).

• Abgaz, Y., Javed, M., and Pahl, C. (2011). A framework for change impact analysis

of ontology-driven content-based systems. In On the Move to Meaningful Internet

Systems: OTM 2011 Workshops, Lecture Notes in Computer Science.

• Javed, M., Abgaz.Y. and Pahl. C. (2011). Graph-based discovery of ontology change

patterns. In ISWC Workshops: Joint Workshop on Knowledge Evolutionand Ontol-

ogy Dynamics (EvoDyn), 24th October, 2011, Bonn, Germany.

• Javed, M., Abgaz, Y. M., and Pahl, C. (2011). Towards implicit knowledge discovery

from ontology change log data. In Knowledge Science, Engineering andManage-

ment (pp. 136 - 147).

• Javed, M., Abgaz, Y., and Pahl, C. (2011). A layered framework for pattern-based

ontology evolution. In 3rd International Workshop Ontology-Driven Information Sys-

tem Engineering (ODISE), London, UK.

• Jones, D., Oconnor, A., Abgaz, Y., and Lewis, D. (2011). A semantic model for

integrated content management, localization and language technology processing. In

2nd Workshop on the Multilingual Semantic Web (MSW2011).

• Abgaz, Y., Javed, M., and Pahl, C. (2010). Empirical analysis of impacts of instance-

driven changes in ontologies. In On the Move to Meaningful Internet Systems: OTM

2010 Workshops, Lecture Notes in Computer Science.

• Javed,M., Abgaz, Y., and Pahl, C. (2010). Ontology-based domain modelling for

consistent content change management. In International Conference on Ontological

and Semantic Engineering (ICOSE).

• Pahl, C., Javed, M., and Abgaz, Y. (2010). Utilizing ontology-based modelling for

learning content management. In Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications 2010 (pp. 1274 - 1279). Toronto,

Canada: AACE.

• Javed, M., Abgaz, Y., and Pahl, C. (2009). A pattern-based framework of change

operators for ontology evolution. In On the Move to Meaningful InternetSystems:

OTM 2009 Workshops, volume 5872 of Lecture Notes in Computer Science (pp. 544

- 553).

xviii

Glossary of Terms

ABox : The ABox contains extensional knowledge about the domain of
interest, that is, assertions about individuals, usually called mem-
bership assertion [Baader et al., 2003]

CMS: Content management systems are systems that are built to orga-
nize, store, retrieve and present content.

Complete Change: Complete change is a change which is the union of the requested
change and the derived changes.

Consistency: An ABox A is consistent with respect to a TBox T , if there is
an interpretation that is a model of both A and T . We simply say
that A is consistent if it is consistent with respect to the TBox

Derived Change: Derived changes are changes that are automaticallygenerated to
correctly implement the requested change in a given ontology.

Effect: Effect is the consequence of applying an action. In this context
the action is the implementation of a change operation.

Entity: Entity refers to the constructs of the ontology, the annotation and
the content. An entity refers to concepts, object properties, data
properties, instances, content documents, axioms and restrictions.

Impact: The term impact refers to the effect of change of entities due to the
application of a change operation on one or more of the entities
in the OCMS

OCMS: Content management systems that use ontologies to enrich the se-
mantics of the content. OCMSs use the semantics for facilitating
information browsing, retrieval and reasoning services.

Requested Change: A requested change is a change which is captured as an explicit
change request.

Satisfiability : A concept C is satisfiable with respect to T if there exists a model
I of T such thatCI is non empty. In this case we say also that I is
a model of C [Baader et al., 2003].

Severity: Severity measures the intensity or the degree of an impact on an
OCMS in relation to the problem it causes, the effort and the level
of expertise it requires to resolve the impact.

TBox : The TBox contains intentional knowledge in the form of a ter-
minology and is built through declarations that describe general
properties of concepts [Baader et al., 2003].

List of Acronyms and Abbreviations

ABox : Assertion Box
CIA: Change Impact Analysis
CMS : Content Management System
CNGL : Centre for Next Generation Localization
CVA : Close Vocabulary Assumption
DAML : DARPA Markup Language
DL : Description Logic
DTD : Document Type Definition
IRI : Internationalized Resource Identifier
KAON : KArlsruhe ONtology and semantic web tool kit
KR : Knowledge Representation
LOF: Layered Operator Framework
MILO : MId-Level Ontology
OCMS : Ontology-based Content Management System
OIL : Ontology Interchange Language
OVA : Open Vocabulary Assumption
OWL : Web Ontology Language
RACER : RenamedABox and Concept Expression Reasoner
RDF : Resource Description Framework
SHOE: Simple HTML Ontology Extension
SUMO : Suggested Upper Merged Ontology
T Box : Terminology Box
URI : Uniform Resource Identifier
URL : Uniform Resource Locater
WIS : Web Information System
XHTML : eXtensible HyperText Markup Language
XML : eXtensible Markup Language
XOL : Xml-based Ontology exchange Language

Chapter 1

Introduction

1.1 Motivation

Every day, new things emerge and others vanish or change. There areplenty of new in-

novations introducing new disciplines, concepts, objects, devices, services, etc., or altering

existing ones to serve a new purpose. Despite the innovations, there are changes that discard

existing entities that are not capable of adapting themselves to the changing requirements of

the environment. Any human innovation is subject to a continuous evolution andadaptation

to the changing requirements of human beings over time.

Human knowledge is subject to change throughout history. Knowledge is growing

very fast1 introducing previously unknown information about entities, consolidating exist-

ing ones or abandoning the obsolete ones. The falsification of existing claims, beliefs and

theories that are found wrong, unfitting and useless become obsolete andare discarded from

the existing knowledge repositories.

At this age of knowledge intensive societies, the use of systems, tools and techniques

that facilitate efficient exploitation of the available knowledge for education,business intelli-

gence, research, governance, etc., become ubiquitous on the web [Berners-Lee et al., 2001]

[Shadbolt et al., 2006]. Ontologies serve this purpose by representing human knowledge

in a formal language which ensures a common understanding among humans and across

1http://www.economist.com/node/15557421

1

machines [Jurisica et al., 1999] [Leenheer & Mens, 2008] [Gross et al., 2009]. The use of

ontologies extends this to include very complex artificial intelligence applicationsthat en-

able machines to understand semantics and perform in a context.

We use ontologies for knowledge representation and semantic annotation to enrich con-

tent with information which can be interpreted by machines. Ontologies facilitate the inter-

pretation of the content with a given context and extracting new knowledgefrom existing

ones using semantic reasoning. This is achieved by explicit annotation of concepts in doc-

uments with generic and domain-specific ontologies. However, the continuous process of

change of content, annotations and ontologies poses a challenge to the efficient exploitation

of many of these ontology-based applications [Liang et al., 2006] [Flouris et al., 2008].

Changes occur in the content, the annotation or the ontologies. Content authors may

add new sections, edit existing ones or remove unwanted or erroneous parts of their con-

tent. In ontologies, changes may occur on the concepts, properties, instances, axioms, etc.

Annotations change when either the target content changes or the semantics of the content

changes. For example, a personal home page of a professor changes whenever he/she adds

new publications, modifies his/her research interest or updates the courses he/she deliv-

ers. During the implementation of these changes, the semantics of the content on the page

changes accordingly. Another possibility of a change is when the professor changes the

source of the semantics (the ontology). If the ontology evolves to include new discoveries,

better representation of existing knowledge, etc., the annotation will become vulnerable to

change.

In general, the changes are additions of new content, ontologies or annotations, modi-

fications of existing ones or removal of obsolete or erroneous representations. Whenever

there is a change of one entity, it may cause many unseen and undesired impacts on other

related entities [Gruhn et al., 1995] [Stojanovic, 2004]. The term impact refers to the effect

of change of entities due to the application of a change operation on one or more of the

entities in a given system [Plessers et al., 2007] [Qin & Atluri, 2009] [Hassan et al., 2010].

It is arduous and time consuming to manually catch these impacts. If we ignore them, they

may cause inconsistencies [Konstantinidis et al., 2008], invalidities [Qin & Atluri, 2009]

2

and changes of semantics in the ontology. Thus, before we implement the changes, it is

vital to conduct a change impact analysis to understand which entities are affected and how

they are affected [Khattak et al., 2010].

1.2 Research Context

An ontology is a specification of a shared conceptualization of a domain [Gruber, 1993].

Ontologies are used to explicitly represent human knowledge using formal languages under-

standable by humans and machines [Berners-Lee et al., 2001] [Shadbolt et al., 2006]. On-

tologies are further used to define concepts in a domain to reach at a common understanding

on subjects of interest. Information retrieval, social networks, softwaredevelopment, con-

tent management, linked data, artificial intelligence, etc., are some of the domainsthat use

ontologies to semantically enhance and to conceptually structure existing knowledge and

systematically infer a new one. Ontologies further serve as conceptual models for orga-

nizing concepts in different domains. They are also used to semantically describe entities

using domain-specific contexts [Holohan et al., 2006] [Pahl et al., 2007].

In content management systems, ontologies are used to semantically enrich content by

explicitly linking the content with the ontology [Oliver et al., 1999] [Noy & Klein, 2004]

[Uren et al., 2006]. This semantically rich content is used by humans and computers to

better understand and exploit the content. The formal and explicit linkage of fragments

of content with entities in an ontology is referred to as semantic annotation. Semantic

annotation embeds additional information to a given content. This information can be used

to further describe and reason about the content.

Content refers to any information that is published or distributed in a digital form, in-

cluding text, sound recordings, photographs, images, motion pictures, video and software

[Boyce & Pahl, 2007]. We adapted this definition to refer to any digital information that is

in a textual format that contains structured or semi-structured documents, web pages, ex-

ecutable programs, software help files, etc. With semantic annotation of content, the use

of ontologies is becoming widespread in content management systems [Uren et al., 2006]

3

[Oren et al., 2006].

Content management systems are systems that are built to organize, store, retrieve and

present content. Such systems vary from a simple file-based system to complex database

systems. Content management systems further vary in the service they provide. Some of

them provide a simple store and search functionality and others go beyond that and provide

semantics to the content. They use the semantics for facilitating information browsing, re-

trieval and reasoning services. We call such systems Ontology-based Content Management

Systems (OCMS) to distinguish them from the traditional Content Management Systems

(CMS). Thus, OCMS are content management systems that are built using ontologies and

semantic annotations to embed meaning and context in the content documents.

In OCMS, the ontologies play a major role in providing semantics to the concepts within

a given domain. The concepts in the ontologies aggregate instances which have a similar

behaviour. The properties further explain the attributes of the concepts.These attributes can

be attributes that describe a concept or its relationship with other concepts.The ontologies

further provide a means to specify the nature of the relationship together withrestrictions

imposed on the relationship.

OCMS play an important role in realizing the accessibility, delivery and use ofinforma-

tion over the semantic web. OCMS not only provide content but also providethe semantics

associated with the content using a formal representation that can be interpreted by both

humans and computers. When we present the content, we encode additional annotations

which are useful for understanding the semantics and the properties of the content and their

interpretation by systems that consume them. This is achieved by inference using the on-

tologies and the annotations.

1.3 Challenges and Problem Statements

Since ontologies can be shared and reused across different applications and groups, they

are used frequently on the semantic web to ensure the consistent use of concepts within and

among different systems [Stojanovic et al., 2002a]. This is achieved using ontologies as a

4

backbone for annotation of the content on the semantic web [Reeve & Han, 2005]. OCMS

provide such desired functionality. However, the use of OCMS for pursuing such a purpose

is a challenging task. Thus, our research focuses on addressing the following challenges.

The first challenge emanates from the changing nature of the content. Domain content

changes frequently introducing changes in the interpretation of the entities.Changes that

occur in a domain content may trigger other changes in the content or in the ontology.

The changes in the content introduce new concepts, a new way of using already existing

concepts or remove existing concepts from the ontology. For example, when new software

products, text books, reports, scientific results, etc., appear, we evolve the content to support

such requirements.

The second challenge comes from the ontology. Ontology change refersto the change

in the specification, conceptualization or representation of the knowledge inthe ontology

and the implementation of the changes and the management of their effects in dependent

ontologies, services, applications, agents, etc. [Flouris et al., 2006]. The overall process of

adaptation of ontologies to change patterns and the consistent management of these changes

is called ontology evolution [Stojanovic, 2004]. Researchers in the area of ontology evolu-

tion have made attempts to make ontology evolution a smooth process. They have sug-

gested several solutions from different perspectives [Klein et al., 2002] [Stojanovic, 2004]

[Plessers et al., 2007] [Konstantinidis et al., 2008] [Qin & Atluri, 2009]. The work done in

the area of ontology evolution is not yet mature. The analysis of impacts of changes in

evolving ontologies does not yet get significant coverage [Khattak et al., 2010]. The first

change focuses on bottom-up changes and the second change is top-down change.

The third challenge comes from the annotation. The annotation, which links thecontent

with the ontology, changes frequently leaving the whole system in a continuous evolution

[Uren et al., 2006]. Whenever the semantics of the content changes or entities in the on-

tology change, the annotation needs to adapt to the changes. This changeis frequent and

needs to be addressed with sufficient depth.

The fourth challenge is the fast growth of semantic web applications. The fast growth

of semantic web applications serves to fuel a significant demand for systemsthat use ontolo-

5

gies as a key tool to manage content-based systems. This fast growth makesthe evolution

difficult and time consuming. This is due to the huge effort associated with evolving the

ontologies and synchronizing the content to keep the service up-to-date.

In general, providing timely, consistent and reliable information to the users of OCMS

is crucial. To ensure this, we need to come up with an efficient method which enables us to

respond to changes. To this end, changes need to be represented using change operations

that are capable of doing a specific task and which can be combined together to perform

complex change requests.

Additionally, it should be possible to analyse the impacts of the change operations on

other components and dependent systems of the OCMS. OCMS provide semantic informa-

tion to other systems. Such systems depend on the OCMS for getting the semanticsand

making decisions based on the semantics they receive. In such situations, the changes in

the OCMS propagate to the dependent systems. It is crucial to understandthese changes

and identify their impacts before the changes are implemented.

Furthermore, whenever we have more than one implementation strategy of the change

operation, it becomes important to measure the cost of evolution of each implementation

strategy and select the optimal one. An optimal solution uses criteria such as number of

changes, impacts of changes, accuracy and adequacy. For systems that are built to run in

a real-time environment, identifying the optimal implementation of changes is important.

However, such requirements are not yet addressed and call for a solution.

Thus, the main focus of this research is to examine and develop methods, techniques,

tools and algorithms to analyse the impact of change operations in ontology-based content

management systems to ensure consistent and predictable evolution of the content and the

ontologies. In line with this, we investigate how changes are represented, how they affect

the integrity and how we choose an optimal implementation of the change when we have

more than one implementation strategy to follow.

6

1.4 Overview of the Research

1.4.1 Research Hypothesis

The explicit representation of changes in ontology-based content management systems and

the analysis of impacts of these changes before their implementation could improve and

facilitate a consistent, transparent and predictable evolution of ontology-based content man-

agement systems in terms of accuracy, adequacy and integrity of the system.

1.4.2 Research Objectives

The general objective of this research is to develop a change impact analysis method for

evolving ontology-based content management systems to ensure consistent transparent and

predictable evolution to ensure accurate, adequate, reliable, and optimal solution. The spe-

cific objectives of the research are:

• to capture and represent requested change operations accurately and adequately.

• to analyse dependency of entities and analyse impacts of individual, composite and

domain-specific change operations in an accurate and predictable way.

• to develop methods that evolve ontology-based content management systemsin a

consistent, accurate and transparent manner.

• to build up methods for analysis and selection of an optimal implementation of

change operations in terms of impacts.

To achieve the above objectives, we use three case studies for problemelicitation, require-

ment analysis and evaluation of the proposed solutions.

1.5 Research Approach

The change impact analysis framework presented in this dissertation followsa bottom-up

impact analysis process. It begins with analysing impacts of atomic change operations

7

and moves up to composite change operations. The framework begins with impact analy-

sis by capturing the user’s change request and representing them using change operations.

Requested changes are processed and additional change operationsare generated using dif-

ferent evolution strategies and dependency analysis. In this phase, theframework generates

all change operations that are required to implement the requested change. It analyses the

impacts of all change operations using the change impact analysis method. Finally, the

framework uses the impacts for the selection of an optimal implementation strategy for the

requested change operation. Each of the stages uses different selected approaches to address

the specific problems at hand.

First, the change impact analysis framework captures the requested change and repre-

sents it using change operations. The change operations are organized into different layers

using a layered operator framework. We use this framework to define andclearly represent

atomic, composite, domain-specific and abstract changes.

The next stage employs an empirical study for the identification and characterization

of the impacts of these atomic change operations. It is used to identify impacts ofdiffer-

ent change operations using different scenarios in various domain-specific ontology-based

content management systems. We further identify the characteristics of the impacts. This

includes identifying the change operations that cause a specific impact, defining the condi-

tions at which the impacts occur and identifying the entities that are impacted by thechange

operations. We use a formal notation to represent the impacts and the preconditions for the

impacts.

The core change impact analysis process uses dependency analysis toidentify the depen-

dent entities that are affected by the change operation. The effects of achange propagate

to dependent entities. However, identifying those dependent entities and the type of the

dependency needs a detailed study of the characteristics of the dependencies. Thus, we con-

ducted an empirical study to understand the relationship between the dependencies and the

impacts. Dependency analysis allows us to understand the dependent entities and enables

us to find the nature of the dependency. This further assists us to determinethe impact of

the change operation on the dependent entities.

8

The impact analysis begins from the bottom of the layered operator framework by

analysing the impacts of individual atomic change operations. Then, it goesup to de-

termine the impacts of two or more change operations as composite and domain-specific

change operations. The impacts of the atomic change operations represent the impact of

the operation when a single change is implemented separately and individually.However,

when the change is part of another composite change, it only tells us little information about

the overall impact. To get a full understanding of the impacts of the changeswhen they are

executed as composite and domain-specific change operations, we need tofurther analyse

the impacts using a composite change impact analysis method.

Composite change operations are aggregations of two or more atomic changeoperations.

However, the impacts of composite change operations are not the aggregation of impacts of

atomic change operations. When a composite change operation is implemented, the impacts

of the composite change may not be the same as the sum of the impacts of its constituent

atomic change operations. Composite change impact analysis identifies techniques to anal-

yse the impacts of composite change operations. To analyse these impacts we employ novel

techniques such as impact cancellation, impact balancing and impact transformation.

Finally, the selection of optimal implementation of changes using different change op-

erations is conducted using quantitative analysis of severity of impacts, affected statement

types, types of change operations and number of change operations. We use experimental

observation to determine the optimal strategy for implementing change operations.

This research covers change representation and analysis of impacts ofontology-based

content management systems. It focuses on structural and semantic impactswhich include

impacts on the satisfiability of theT Box and the consistency of theABox statements. The

research also focuses on proposing the optimal implementation strategy for execution of

changes at hand. For the empirical study, we used domain-specific ontologies and content

which is organized using our OCMS architecture. Here, we specifically focus on changes

that are requested by the user and excluded implicit detection of changes.Although visu-

alization of effects of changes is beneficial for the ontology engineer orfor the user, we

focus on the analysis of the impacts and recommendation of alternative solutions. Thus,

9

visualization and presentation of the impacts is beyond the scope of the research. Despite

the need for supporting all kinds of content, we restrict the scope to structured and semi-

structured content. For the purpose of the experiment, we specifically focus on HTML and

XML content.

1.6 Contribution of the Research

This research has the following major contributions.

• The first contribution is a layered OCMS framework. This framework structures the

components of the OCMS to ensure transparent, predictable and traceableevolution.

• The second contribution is a change impact analysis framework. The framework fol-

lows a novel approach to analyse impacts of change operations. The framework incor-

porates change representation, impact analysis and change implementation together

with integrity analysis and ensures independent evolution of OCMS components.

• The third contribution is a bottom-up approach to analyse the impacts of changes

in OCMS. The change impact analysis process begins by analysing the impacts of

atomic change operations. Since it is built on top of the atomic change operations,

it ensures the maximum flexibility and expandability to introduce additional compos-

ite change operations. This approach is a novel approach for analysing impacts of

changes in ontologies and ontology-based applications. The analysis includes a con-

sistent evolution of the ontologies, the content and the annotations by keeping the

overall integrity of the OCMS.

• The fourth contribution of the research is a better understanding of the preconditions

of impacts and explanations why specific impacts occur. The impact analysis process

further identifies the preconditions associated to each impact. When the preconditions

are satisfied, we determine the reasons why that specific impact occurs and use the

information for exploring alternatives to solve the problem.

10

• Finally, we contribute toward a model which estimates the cost of evolution and

which is used to select an optimal evolution strategy using cost of evolution. The

change optimization and implementation model provides a quantitative measure of

impacts in ontology evolution.

1.7 Outline

The organization of this dissertation begins with introducing the available languages, tools

and techniques for delivering semantically rich content. Then, we move to review state-of-

the-art research conducted in the area. We discuss our framework which includes change

capturing and representation, change impact analysis and optimal changeimplementation.

The last chapter gives conclusions and future directions. The organization of each of the

chapters is given below.

Chapter 2 discusses the available semantic web languages, their syntax and semantics.

It gives a brief overview of ontology languages, description logic, OWL2 constructs, on-

tology editors, ontology APIs and reasoners. Content management systems and annotation

tools and platforms are discussed in this chapter.

Chapter 3 gives an overview of content-based systems, ontology evolution and seman-

tic annotation in general. It presents a detailed account of related research conducted in the

area and identifies the gap which is not yet covered by the state-of-the-art.

Chapter 4 introduces ontology-based content management systems in general and dis-

cusses the layered OCMS framework and its individual constructs in particular. The formal

representation of the OCMS using graphs is discussed in this chapter. Thischapter further

introduces a layered operator framework which organizes the changesinto atomic, compos-

ite, domain-specific and abstract layers.

Chapter 5 presents the change impact analysis framework. This chapter focuses on the

first phase of the framework which includes dependency analysis and evolution strategies.

Dependencies which are useful for change impact analysis are discussed in detail. Different

dependency types and algorithms to identify dependent entities are discussed. This chap-

11

ter further discusses customized evolution strategies. The strategies and the dependency

analysis results are the major inputs for representing requested change operations.

Chapter 6 presents the change impact analysis process. The individual change im-

pact analysis, the composite change impact analysis and the rules that are used to analyse

structural and semantic impacts are presented. The novel contribution of this chapter is the

analysis of change impacts to identify the impacts of the requested change operations on

the structure and the semantics of the OCMS. The analysis further identifies changes that

create unsatisfiability of theT Box and inconsistency of theABox statements.

Chapter 7 presents the implementation of the final change operations. This chapter

focuses on efficient utilization of the information gained from the change impact analysis

and using it to select the optimal evolution strategy to implement the requested change op-

eration. This phase searches a strategy that minimizes the impacts of the change operations

and allows the user to compare between different options.

Chapter 8 gives conclusions, recommendations, and discusses the limitations of the

research. It highlights future directions of the research.

Appendix A, B and C discuss the empirical study. The empirical study uses case

studies from three domains and exploits them to understand what, how, whenand why an

OCMS evolves. It is also used to evaluate the proposed solution. The casestudies enable

the reader to gain familiarity with the use cases and understand the solutions presented in

this research.

Appendix D and E presents further analysis results and the questionnaire used for the

evaluation respectively.

12

Chapter 2

Background of the Study

2.1 Introduction

One of the challenges of the information age is the availability of too much information

called information overload [Edmunds & Morris, 2000] [Eppler & Mengis, 2004]. The sheer

volume of information available and our ability to process and use the available information

has shown a wide gap. To curb this problem, the semantic web is proposed asan extension

of the current web in which information is given well-defined meaning, betteraccessibility

and improved usage [Berners-Lee et al., 2001].

The semantic web represents the technological standard for operating ontologies in

modern information systems. It incorporates wide range of languages andtools that are

used by ontologies. It is important to provide an overview of the semantic webtools and

technologies for a clear discussion of an OCMS.

The semantic web is defined as “A web of actionable information - information derived

from data through a semantic theory for interpreting the symbols. The semantictheory

provides an account of ‘meaning’ in which the logical connection of terms establishes in-

teroperability between systems” [Shadbolt et al., 2006, p.1]. The semantic web provides

access to data to be shared and reused by humans and agents by attachingmetadata with

web resources [Bechhofer et al., 2002].

In this chapter we briefly introduce semantic web technologies, languages and tools

13

that are relevant to this research. The introduction highlights relevant languages and tech-

nologies that are used throughout this research to develop, implement andtest the proposed

methods, techniques and algorithms using a prototype. This chapter servesas a review of

existing tools and technologies. It is used as an input for systematic selectionof tools and

technologies to be used throughout this research.

This chapter is organized as follows. Section2.2discusses the available semantic web

languages and their syntax and semantics. In Section2.3 we describe the details of OWL

(Web Ontology Language) sub languages, profiles and constructs. InSection2.4we discuss

description logic constructs and Section2.5focuses on ontology editors, ontology APIs and

reasoners. Section2.6 discusses the semantic annotation platforms and tools. Finally we

give a summary of the chapter in Section2.7.

2.2 Semantic Web Languages

There are various semantic web languages developed for the realization of the semantic

web1 [Gomez-Perez & Corcho, 2002]. They serve as a standard languages of communica-

tion on the semantic web (Figure2.12). The semantic web uses these languages as a means

of delivering content, and more information about the content elements. Many of these

languages serve as standard for communicating information between different agents. The

widely used and standardized languages which are related to ontologies andthe semantic

web are discussed below.

2.2.1 XML, XML Schema and DTDs

EXtensible Mark-up Language (XML) was developed and recommended by W3C in 19983.

XML was developed to overcome the limitations faced by Hypertext Mark-up Language

(HTML). The major limitation was the lack of extensibility of HTML to include user de-

fined features. XML is used to structure texts and exchange data on the web allowing better

1http://www.w3.org
2http://www.w3.org
3http://www.w3.org/TR/1998/REC-xml-19980210

14

Figure 2.1: The semantic web layers

information exchange across information systems. XML tags are differentfrom HTML tags

in that XML tags are user defined and extensible. When XML is used for data exchange

between different agents (machines and software), the agents requireagreement on the vo-

cabulary and the meaning before they use the data. However, plain XML does not provide

such facility. To facilitate the agreement, XML schema and Document Type Definition

(DTD) are proposed. XML schema and DTD provide a solution for specifying the structure

of XML documents and how they can be used4. XML schema and DTD further serve as a

mechanism for ensuring the validity of XML documents.

2.2.2 RDF and RDFS

Resource Description Framework (RDF) was developed by the W3C to support the creation

of metadata for describing web resources [Gómez-Ṕerez et al., 2007]. RDF is the widely

used standard semantic framework for representing information in the web.RDF describes

resources using object types which contain resources, properties and statements. RDF is

intended to achieve a simple data model which uses formal semantics that can beproved

using inference. It uses XML-based syntax and XML schema. RDF utilizes URI based

vocabulary and allows anyone to make a statement about a resource.

A single statement which contains a subject, a predicate and an object can berepre-

4http://www.w3.org/XML/Schema

15

sented by RDF using a statement called triple. Each triple has three elements, thesubject

indicating the resource we want to describe, a predicate, which is also called a property to

specify the relationships the subject has and an object to which the subjectrelates to using

the predicate. All RDF triples can be represented using a graph data model.The graph data

model contains nodes and directed edges from one node to another node. An RDF graph is

a set or RDF triples which contains subjects and objects as a node and predicates as edges.

Figure2.2 illustrates the representation of RDF triples using RDF graphs.

Figure 2.2: RDF graph representation

The resource Description Framework Schema (RDFS) is a formal description of eligible

RDF expressions and a semantic extension of RDF [Gómez-Ṕerez et al., 2007]. An RDFS

provides semantics to describe groups of related resources and the relationships between

these resources5. The schema is used to determine the characteristics of other resources.

The schema provides a list of vocabularies that specify these characteristics using classes

and properties.

5w3.org/TR/rdf-schema

16

2.2.3 OIL and DAML+OIL

Ontology Interchange Language (OIL) is also known as Ontology Interface Layer. It is

a web-based Knowledge representation language that combines XML syntax, modelling

primitives from the frame-based knowledge representation paradigm andthe formal seman-

tics and reasoning support of descriptive logics. In OIL, the knowledge contained in the

ontology is organized into three parts. OIL combines formal semantics and efficient reason-

ing support from description logic, rich modelling primitives from frame-based knowledge

representation and a standardized syntactic exchange of notations fromthe web community

[Fensel et al., 2001].

DAML+OIL was developed in a collaboration between a joint committee from Euro-

pean Union and the United States of America [Davies et al., 2003] [Mcguinness et al., 2002].

The knowledge representation in DAML+OIL exploits XML and RDF standards and com-

bines formal semantics from description logic, ontological primitives of object oriented and

frame-based systems. DAML-ONT is the first version released in 2000 and DAML-OIL is

the second version released in 2001. Another version was released byfixing the problems

which are related to the specifications in the second version. The DAML+OIL Language is

written in XML syntax, unlike the OIL which is written as plain English. The development

of DAML+OIL is ceased.

2.3 Web Ontology Language (OWL)

OWL is a web ontology language designed by the W3C web ontology working group for

publishing and exchanging of ontologies on the web. It is derived from the DAML+OIL by

the standardization efforts of W3C. OWL facilitates the interpretability of web content by

providing additional vocabulary and formal semantics [Kruk & McDaniel, 2009]. Unlike

the above languages, OWL can be used to represent meanings of terms explicitly and define

relationships among the terms [Taye, 2010]. OWL is an ontology language that allows

humans to represent semantics of content on the web. It also allows machines to interpret the

content. OWL has three sub languages based on the purpose and the available constructs.

17

2.3.1 OWL sub languages

OWL appears in three different sub languages. OWL Lite is a subset of OWL DL and OWL

DL is a subset of OWL full. In general OWL refers to the complete OWL Full language.

Each of them is discussed as follows.

OWL Lite is a subset of OWL which is designed to provide easy implementation of

the OWL language. It is intended to provide classification of hierarchies that incorporate

simple constraints. OWL Lite is aimed at supporting users who want to build tools that use

existing reasoners.

OWL DL is another subset of the OWL language that is designed to provide support

for existing description logic specification. OWL DL and OWL Full support the same set

of OWL language constructs, but OWL DL requires the separation of classes, properties, in-

dividuals and restrictions. OWL DL might be chosen over OWL Full due to the availability

of powerful reasoners that use the restrictions provided by the users. It has computational

features such as completeness and decidability with maximum expressive power within the

description logic fragments.

OWL Full is a complete OWL language which allows the relaxation of the constraints

of the description logic reasoners. It provides maximum expressivity with full syntactic

freedom. But, there is no means of getting full support of reasoning and itis not decidable.

OWL has some drawbacks. Some of its constructs are very complex. To reduce the

complexity, OWL has three different sublanguages which deal with this complexity. It is

not easy to use and it is not intuitive to non-expert users. The decidabilityof OWL is

achieved by trading-off its expressiveness.

2.3.2 OWL2 Profiles

OWL2 is the recommendation of the W3C since 2009. OWL2 is a successor or OWL1 and

has three profiles6. Each of the profiles is restricted to a different sublanguage of OWL2.

The first profile is the OWL2 RL (Rule Language) which allows rule based reasoning. The

6http://www.w3.org/TR/owl2-profiles/

18

second profile is the OWL2 QL (Query Language) which supports queries against large

volumes of instance data that is stored in relational database systems. The third profile is

the OWL2 EL which is aimed at applications that use large ontologies and require intensive

reasoning capabilities. EL stands for the family of description logic that provides existential

and/or universal quantifications.

2.3.3 OWL Syntax

There are different syntaxes used to represent OWL. The first syntax is the RDF/XML syn-

tax and this is the only syntax which is mandatory to be supported by semantic webtools.

The functional syntax is designed to provide easier specification and to act as a foundation

for the implementation of OWL2 tools and APIS. The Manchester syntax is another vari-

ant that is designed to provide easier readability for non-logicians. The Manchester OWL

syntax is concise and does not use the description logic symbols [Horridge et al., 2006].

The OWL/XML syntax is an XML syntax for OWL defined by an XML schema. Turtle

is a serialization for the RDF-based syntax. Turtle is a triple based notation which extends

from N-Triples. It is designed to provide easier and compact textual representation of RDF

graph.

Translation between these abstract syntaxes is available. Most existing editors like pro-

tege are able to process all the above syntaxes. RDF/XML is a mandatory syntax and every

semantic web tool should support the syntax.

2.3.4 OWL Constructs

OWL has different constructs. Some of the constructs that are defined for OWL Lite and

OWL DL are discussed below.

2.3.4.1 Entities

• Owl:Class represents a group of individuals that share some properties common

among them. A group of individuals who joined a university can be referred to as

19

Student. The top class which is the class of all individuals is usually referred to as

owl:Thingand the class that does not have any individual is refereed asowl:Nothing.

• Rdf:Property. is used to specify relationships between individuals or between in-

dividuals and data values. OWL distinguishes betweenowl:ObjectProperty which

links instances of one class with instances of another class andowl:dataProperty

which links instances of a class to instances of a data type. For example,hasFriendis

an object property which links oneStudentwith another andhasAgeis a data property

which links aStudentwith an integer data type.

• Owl:Individual represents instances of a class. For example, an individual named

Mark can be described as an instance of the classPhDStudent.

• Owl:Datatype represents the type of data a given property can take. This includes

built-in datatypes such as xsd:double, xsd:long, xsd:string, etc.

2.3.4.2 Boolean Connectives

• Owl:InteresectionOf is used to specify the things created by the intersection of

named classes and restrictions. For example,FirstYearPhDStudentis an intersection

of FirstYearStudentandPhDstudent.

• Owl:unionOf is used to specify the things created by the union of named classes and

restrictions.

• Owl:complementOf is used to specify that one class is a complement of another

class.

• Owl:oneOf defines a class using a list of individuals belonging to the class. For

example, a class ofInfluential persononeOf{Obama, Blair, andMandela} which

defines an influential person as one of the individuals mentioned in the list.

20

2.3.4.3 Class Expression Axioms

• Rdfs:subclassOfis used to indicate specialization and generalization between classes.

For example, rdfs:subclassOf (Student, Person) indicatesStudentis a specialized

class ofPersonandPersonis a general class ofStudent.

• Owl:disjointClasses indicates two classes are different to each other. They do not

share a common individual. For example, owl:DisjointClasses (Male, Female) speci-

fies that individuals ofMaleclass cannot be a member ofFemaleclass.

• Owl:equvalentClassis used to indicate two classes are the same and have same in-

stances. AFirstYearStudentcan be stated to be equivalent class ofFreshManStudent.

If John is an instance ofFirstYearStudent, it can be inferred that he is also aFresh-

ManStudent.

2.3.4.4 Property Axioms

• Rdfs:subPropertyOf is used to create a hierarchy between properties. It has subDat-

aProperty and subObjectProperty constructs.

• Owl:EquivalentProperty is used to specify that two properties are the same and

relate to the same set of individuals (domain) to another set of individuals (range).

• Owl:DisjointProperty is used to specify that two individuals are not allowed to re-

late to each other with both properties at the same time.

• Rdfs:Domain is used to limit the individuals that are linked as a domain of a property.

When a class is specified as a domain of a property, the individuals that arelinked

to the property must belong to that class. For example, if the domain of an object

propertyteachesis a classLecturer, and if John is related byteachesrelationship,

then it follows thatJohnis aLecturereven ifJohnis not explicitly stated an instance

of aLecturer. rdfs:domain is a universal restriction because the restriction is imposed

on the property.

21

• Rdfs:range is used to limit the individuals that are linked as a range of a property. A

property can have a class as a range. When a class is specified as a range of a property,

other individuals that are linked to the property must belong to the range class. In the

example above, if we set the range of theteachesproperty to beCourse, and if we

link Johnwith CS101by teachesproperty, the reasoner infersCS101as an instance

of aCourse.

• Owl:InverseOf is used to specify the inverse property of a property. For example,

an object property calledhasFriendmay have an inverse propertyisFriendOf. In this

case the domain of a property becomes a range of its inverse and vice versa.

• Owl:TransitiveProperty is used to specify that the property is transitive. If a prop-

erty P is transitive and links two pairs of individuals P(I, J) and P(J, K), then P(I, K) is

also an instance of the property P. For example, ifhasAncestoris stated as a transitive

property and ifI has ancestorJ, andJ has ancestorK, thenI has ancestorK. Such

kinds of relationships are expressed by setting the property transitive.

• Owl:SymmetricProperty is used to specify properties that are symmetric. A prop-

erty is symmetric if a pair of individuals(I, J) is an instance of a property, then the

pair (J ,I) is also instance of that property. IfhasFriendis defined as symmetric and

if Johnhas a friendMark ashasFriend(John, Mark)then it is also true thatMark has

a friend calledJohnashasFriend(Mark,John).

• Owl:FunctionalProperty is used to specify that a property has a unique value. When

a property is set to be functional, then each individual that uses this property will

have zero or one value. It is a short hand representation of minimum cardinality 0

and maximum cardinality 1.

• Owl:InverseFunctionalProperty Is used to state that the inverse of the property is

functional. It is used to state unambiguous properties. IfhasIdNumberis inverse

functional for aStudentclass, then its inverseisIdNumberOfbecomes functional.

This states that a single ID number will not be given for more than one student.

22

2.3.4.5 Restriction Axioms

• Owl:AllValuesFrom is used to state that a property on a particular class has a local

range restriction associated with it. When an instance of a given class is used in the

property, all the ranges that participate in this relationship should come only from

a specific class. For example,ChildrenhasFather AllValuesFromMale means if an

instance of a child participate in the relationship hasFather(John, Joseph) then the

reasoner infers thatJosephis aMale. The AllValuesFrom restriction is local to the

class involved in the relationship as a domain. The property can be used differently

with another class. For example,Cat hasFather AllValuesFromMaleCatwhich re-

strict only individuals ofMaleCat. AllValuesFrom does not require a child to have a

Father, but when it has one, theFathershould beMale.

• Owl:SomeValuesFromis used to state that a particular class may have a restriction

on a property that at least one value for that property is of a certain type. For ex-

ample,TextBookhasAuthor someValuesFromprofessionalWriter. This means for

all textbooks, they have at least one author who isprofessionalWriter. SomeValues-

From requires theTextBookclass to have at least one professional author. However,

it allows additional authors who are not professional writers.

• Owl:MinCardinality is used to state restriction on a property with respect to a par-

ticular class. If a minCardinality ofn is imposed on a property with respect to a class,

then any instance of that class will be related to at leastn individuals by that property.

Author hasPublicationmin 1 Publication, means an instance of an author should in-

volve thehasPublicationrelation at least once with an instance ofPublication. When

the reasoner gets an instance ofAuthor, it deduces that the instance has at least one

Publication.

• Owl:MaxCardinality is used to state restriction on a property with respect to a par-

ticular class. If maxCardinality ofn is imposed on a property with respect to a class,

then any instance of that class will be related to at mostn individuals by that property.

23

Author hasPublicationmaxCardinality 2Publication, means an instance of anAuthor

should involve in the hasPublication relation at most two times with an instance of

Publication.

• Owl:ExactCardinality is used to state a restriction on a property with respect to a

particular class. If exactCardinality ofn is imposed on a property with respect to a

class, this means that any instance of that class will be related to exactlyn individuals

using the property.SinglePaperAuthor hasPublicationmaxCardinality 1ResearchPa-

per, specify that all instances of aSinglePaperAuthorclass participate exactly once

in (hasPublication ResearchPaper).

2.3.4.6 Class Assertion Axioms

• Owl:SameAs is used to specify that two individuals are the same. For example, an

individual identified by CS101 is the same as an individual identified byIntroduc-

tion to Computers. SameAs(CS101, Introduction to Computers).

• Owl:DifferentFrom is used to specify that an individual is different from another in-

dividual. This is used to explicitly state the different individuals of a given individual.

• Owl:AllDifferent is used to represent that all the individuals involved in the list are

mutually distinct and are different from every other individual in the list. For example,

we may say AllDifferent(CS101, IS101, BU101). This meansCS101is different from

IS101andIS101is different fromBU101andBU101is different fromCS101.

2.4 Description Logic Syntax and Semantics

Description Logic (DL) represents a family of knowledge representation (KR) formalisms

that represent the knowledge of an application domain (the “world”) by first defining rele-

vant concepts of the domain (its terminology) and then using these concepts tospecify prop-

erties of objects and individuals occurring in the domain (the world) [Baader et al., 2003].

24

DL languages are equipped with formal logic-based semantics and emphasize in reasoning

services.

A knowledge base comprises two sets of statements:T Box andABox statements.

T Box (Terminology Box) statements are statements that introduce the terminology (vo-

cabulary) used in the application domain. TheT Box statements focus on concepts (classes

in OWL) and roles (properties in OWL).

ABox statements are statements that contain existential knowledge about the domainof

interest. They are assertions about individuals.ABox statements can be concept assertions

(class assertion in OWL). For example,Person (John)asserts that an individual identified

asJohnis aPerson. ABox statements can also be role assertions (property assertion). For

example,hasFriend(John, Joseph)is a property assertion indicating the individual named

Johnhas an individual namedJosephas a friend.

DL languages allow building complex descriptions of concepts and roles thatare repre-

sented by other atomic concepts and roles. DL languages are distinguishedby their descrip-

tion language and the descriptions they support. In DL, elementary descriptions are atomic

concepts and atomic roles. [Baader et al., 2003] discusses the description logic languages

as follows. Elementary descriptions are atomic concepts (A and B) and atomic roles (R).

Concept descriptions are represented using letters C and D. One DL language is different

from the other languages by the allowed constructors in the language. AL (attributive lan-

guage) is introduced as a minimal language that is of practical interest [Baader et al., 2003]

[Schmidt-Schaubß& Smolka, 1991].

AL supports the following Syntax rules:

C,D−→ A| (atomic concept)

⊤| (universal concept)

⊥| (bottom concept)

¬A| (atomic negation)

C ⊓D| (intersection)

∀R.C| (value restriction)

25

∃R.⊤ (limited existential quantification)

AL languages allow negation only on atomic concepts and only the top conceptis allowed in

the scope of existential quantification over a role. OWL DL corresponds tothe SHOIN(D)

variant of DL languages.

SHOIN stands for:

S = ALC with transitive Role R+

H = role inclusion axiom

O = nominal (singleton class)

I = inverse role R-

N = number restriction

D = use of data type properties, data values or data properties

Reasoning in DL languages.DL systems focus on reasoning about the domain of knowl-

edge they represent. Reasoning aboutT Box statements checks whether a givenT Box

statement is satisfiable (meaning not contradictory) with respect to other statements. It also

checks whether oneT Box statement is more general that another one (one subsuming the

other). Reasoning aboutABox statements checks whether the set of assertion statements

are consistent against theT Box statements. It checks whether the statements have a model.

Satisfiability checking in theT Box statements and consistency checking in theABox state-

ments are useful to determine the overall consistency of the knowledge base. Subsumption

in turn allows the vocabulary to be organized in a hierarchy. A detailed description of DL

language inference can be found in [Baader et al., 2003].

2.5 Ontology Editors and APIs

OWL is a complex language and requires a tool support to create and deploy and evolve

ontologies. There are different ontology editors available to create, edit,merge and evolve

ontologies. We give a brief review of the available and widely used ontologyeditors.

26

2.5.1 Ontology Editors

2.5.1.1 Protege

Protege is an open source ontology editor which is available in two forms of modelling on-

tology; protege-Frames and protege-OWL. It is based on a Java Application Programming

Interface (API) and thus can be incorporated into a number of applications. It is also exten-

sible and is available with a number of supportive plug-ins. It runs on different platforms

such as Windows, Linux and UNIX. Protege-OWL is a knowledge model provided with a

graphical user interface. Using this GUI, developers can create ontologies in OWL. It is

closely linked with Jena3 which is a Java framework to build applications for thesemantic

web. Jena provides RDF and OWL APIs, parsing and storage in relational databases and

query engine for executing queries.

The user interface of protege-OWL allows users to create a new ontologywith little

effort. One can load ontologies of different format such as in XML, RDFor OWL and on-

tologies can also be saved in different formats which include OWL, RDF, Latex, Turtle, etc.

Users may add annotations to ontologies which could be helpful for later search purposes

using an annotation search plug-in.

2.5.1.2 KArlsruhe ONtology and Semantic Web Tool (KAON)

KAON was developed by Information Process Engineering (IPE) groupat the research

centre for information technologies (FZI), Institute of Applied Informatics and Formal De-

scription Methods (AIFB) at the University of Karlsruhe and the Information Management

Group (IMG) at the University of Manchester [Volz et al., 2003].

KAON has an API for programmatic management of OWL-DL, SWRL, and F-logic. It

includes an inference engine for answering conjunctive queries. KAON provides a stan-

dalone server to access distributed ontologies using Remote Method Invocation (RMI).

KAON further provides an interface to access other editors such as protege.

To support ontology evolution, KAON provides an option to set up the evolution param-

eters. An ontology programmer can decide how to respond to the changes when concepts

27

are removed from the ontology, whether the orphaned concepts must be reconnected to the

root concept, to a super concept or must be deleted.

2.5.1.3 NeON and Swoop

The NeOn Toolkit has been developed in the course of the EU-funded NeOn project and is

currently maintained and distributed by the NeOn Technologies Foundation7. It is an open

source editor which supports development of ontologies in OWL/RDF. Neonis developed

using the eclipse platform. Neon provides many plug-ins for visual modelling,ontology

evaluation, ontology learning, ontology matching and reasoning and annotation and docu-

mentation. Neon uses the Pellete2 and HermiT3 reasoners to support inference.

Swoop [Kalyanpur et al., 2011] is a Java based ontology editor designed based on the

W3C OWL recommendations. It was developed by the Mindswap group at theUniversity of

Maryland. Swoop is based on a web architecture and allows loading of multiple ontologies.

However, it is not any more supported by Mindswap group and its development has ceased.

2.5.2 Ontology APIs

2.5.2.1 OWL API and Jena API

OWL API is a Java based API for creating, manipulating and serializing OWL Ontologies.

It is an open source software available under the LGPL or Apache licenses. OWL API pro-

vides parsers for syntaxes defined in the W3C specification such as RDF/XML, OWL/XML,

OWL functional syntax, turtle, KRSS and OBO flat file formats. The originalversion of

OWL API supports the OWL1 specifications and the current OWL API supports all the

constructs of OWL2 profiles (OWL2 QL, OWL2 EL and OWL2 RL). The main objective

of OWL API is to provide OWL editors and OWL reasoners for people who want to build

OWL based applications [Horridge & Bechhofer, 2011].

OWL API is designed to make ontology storage easier in flat files, in relationaldatabases

and triple stores. It also provides an OWL Reasoner interface to interactwith different rea-

7http://neon-toolkit.org/wiki/MainPage

28

soners. It provides incremental reasoning support that allows reasoners to listen to ontology

changes and process them on the fly or queue them in a buffer for later processing. OWL

API provides a wrapper class for CEL, FaCT++, HermiT, RacerPro and Pellet.

The Jena API is a programming toolkit developed using the Java programming language.

Jena supports semantic web languages such as RDF, DAML+OIL and OWL. Jena provides

an interface to use reasoners.

2.5.3 Ontology Reasoners

This section focuses on introducing some of the available semantic web reasoners that are

used to classify ontologies. Reasoners are characterized using different criteria such as,

reasoning method, the expressiveness, the time and space complexity, the availability of

explanation for inconsistencies and the support ofABox reasoning [Glimm et al., 2010]

[Motik et al., 2007].

An ontology reasoner is a program that infers logical consequences from a set of ex-

plicitly asserted facts or axioms and typically provides automated support forreasoning

tasks such as classification, debugging and querying [Dentler et al., 2011]. T Box reason-

ing corresponds to the reasoning ofT Box statements andABox reasoning includesABox

statements in the reasoning process.

2.5.3.1 HermiT

HermiT was developed at the University of Oxford8. HermiT is a description logic reason-

ing system based on an entirely new architecture which addresses the sources of complexity

of reasoning. It uses the Hypertableau calculus, which significantly reduces the number of

models which must be considered [Glimm et al., 2010] [Motik et al., 2007]. HermiT can

determine whether a given ontology is consistent and identifies subsumption relationships

between concepts among other features. HermiT is faster in classifying relatively easy-to-

process ontologies and even faster when it is applied to more difficult and large ontologies.

8http://www.hermit-reasoner.com/

29

HermiT is an open source Java library and uses an OWL API as an interface and as a parser

for OWL files.

2.5.3.2 FaCT++ (Fast Classification of Terminologies)

FaCT++ was developed by the University of Manchester. It is a new generation of OWL

DL reasoner. FaCT++ supports OWL DL and a subset of OWL2. The implementation of

FaCT++ uses C++ based on an optimized tableaux algorithm [Tsarkov & Horrocks, 2006].

2.5.3.3 Others

Pellet was developed by Clark & Parsia. Pellet is an open source reasoner and is written

using Java. It was the first reasoner that supported all OWL DL (SHOIN (D)) and has been

extended to OWL2 (SHOIQ (D)). Pellet supports all OWL2 profiles [Sirin et al., 2007].

In addition to the above reasoners, there are other reasoners such astrOWL (tractable

reasoning infrastructure for OWL2) [Thomas et al., 2010], RacerPro [Haarslev et al.,] and

CEL (Classifier or EL+ ontologies) [Baader et al., 2006].

2.6 Semantic Annotation Platforms and Tools

Semantic annotation is a process of attaching semantics to a document or part of a document

to provide additional information about the existing piece of data. Semantic annotation is

different from tagging in that it enriches the content in the document with semantic data

that is linked to formal and structured knowledge of a domain. It gets the semantics from a

general or domain-specific ontology. Semantic annotation provides information in a formal

language which can be automatically evaluated and interpreted using inference tools.

2.6.1 Semantic Annotation Platforms

Currently, there are different kinds of annotations and annotation platforms. However, there

is no unified model for semantic annotation [Oren et al., 2006]. Annotation can be manual,

semi-automatic or fully automatic. Manual annotation allows users to attach annotations

30

to documents manually. Users determine what semantics to add to the documents athand.

Semi-automatic annotation is facilitated by a tool or a program that determines the context

or that attaches the semantic data to the documents. In semi-automatic annotation, there is

a manual intervention to modify, approve or reject the proposed annotation. An automatic

annotation is based on a program that identifies the necessary semantic information and au-

tomatically attaches it to the content. Semantic wikis and semantic blogs are examples that

attach semantic information to the documents to improve accessibility, retrieval, exchange

and reuse of the documents.

Semantic annotation in our context refers to the annotation triples that are results of a

semantic annotation. An annotation triple contains a subject, a predicate and anobject. The

subject usually refers to the documents, the predicate refers to the attributes of the docu-

ments and the object refers to the semantics to which the content is associated.The seman-

tic annotation we refer is ontology-based semantic annotation. Ontology-based semantic

annotation relies on ontologies as its main source of semantics. For example, a single doc-

ument can be annotated using an annotation triple as follows. The document identified by

http:www.cngl.ie/research/paper01.htmlhas subject ontology evolution which is defined in

a CNGL ontology.

<http:www.cngl.ie/research/paper01.html>

<CNGL#hasSubject> <CNGL#OntologyEvolution>

2.6.2 Annotation Tools

There are different annotation tools available. Some of them are manual and others are semi-

automatic. Annotea9, OntoMat10 and COHSE11 are manual annotation tools and GATE is

semi-automatic annotation tool. The above mentioned tools do not require modification

of the original documents; however, the implementation mechanism is different.Annotea

uses XPointer to store the annotations but GATE duplicates the document andattaches

9http://www.w3.org/2001/Annotea/
10http://projects.semwebcentral.org/projects/ontomat/
11http://www.aktors.org/technologies/cohse/

31

the annotations at the end of the duplicated document. Annotea uses a “fixed” annotation

schema, but the other annotation tools use other schema like ontologies.

2.6.2.1 KIM and COHSE

KIM is a platform for semantic annotation of documents, data and knowledge developed

by ontotext . The tool is based on open source platforms and comes with ontologies, text

mining capabilities, annotation tools and user interfaces. KIM12 is based on tools such as

GATE and OWLIM. KIM uses a number of ontologies designed for general-purpose seman-

tic annotation [Kiryakov et al., 2004]. KIM uses the Sesame RDF repository for ontology

and knowledge storage. It uses a light weight ontology called KIMO. COHSE (Concep-

tual Open Hypermedia SErvice) is developed to provide an architecture for semantic web

[Bechhofer et al., 2002].

2.6.2.2 Semantic Wikis

Semantic wikis use formally defined annotations and ontological terms. There are differ-

ent approaches to annotate content in a semantic wiki. Semantic MediaWiki13, IkeWiki14,

WikSAR15, SemperWiki16 are among the wiki variants.

2.7 Summary

This chapter gives a brief introduction of the state-of-the-art semantic web languages and

technologies. In this chapter we cover the history of different semantic web languages. We

further discussed the detailed constructs of OWL. OWL2 is the language weuse throughout

this document. We use the OWL DL variant to construct our ontologies for thepurpose of

the research and the experiments.

12Phttp://www.ontotext.com/kim
13http://www.mediawiki.org/wiki/MediaWiki
14http://semanticweb.org/wiki/IkeWiki
15http://semanticweb.org/wiki/WikSAR
16http://semanticweb.org/wiki/SemperWiki

32

Among the semantic web tools, we use the protege ontology editor for ontology con-

struction and testing purposes. Protege is selected because it is a widely used editor for

research purposes and is built upon OWL API. We further use swoop and NeON for the

purpose of comparative evaluation. We use OWL API and Java for the development of

prototypes and for the implementation of our algorithms. OWL API is selected because it

provides methods for dealing with ontology specification and change management. OWL

API has active support from the research community and became a widely accepted ontol-

ogy API. The OWL API is written in the Java programming language. This makesJava

preferable for developing our prototype. The use of a reasoner is crucial in determining the

consistency of the ontology. Thus, we use the Hermit reasoner for its easier integration with

OWL API and its mentioned benefits. For the purpose of storage, we choose RDF/XML and

the Sesame triple store. RDF/XML is used for storing the ontologies and Sesametriple store

for storing the annotation triples. The W3C make RDF/XML a mandatory format and appli-

cations are required to support at least RDF/XML. Furthermore, there are different tools to

translate RDF/XML into other formats. The Sesame triple store supports integration with

Java and OWL API. It is faster and compliant to existing semantic web technologies.

33

Chapter 3

Literature Review

3.1 Introduction

The use of ontologies to represent knowledge in different domains is gaining considerable

acceptance [Jurisica et al., 1999] [Uren et al., 2006] [Mika, 2007]. Ontologies are used as

knowledge representation tools for covering generic knowledge such as space, time, mea-

surement and domain-specific knowledge such as genes, publications, finance, etc. Ontolo-

gies serve as a means of exchanging knowledge between humans and computers on the

semantic web. Different tools and techniques emerge to support the creation, evolution,

maintenance and use of ontologies and ontology-based systems. Despite thegrowing num-

ber of tools, techniques, methods and systems, we face a dearth of support and solution for

handling the evolution of the knowledge [De Leenheer & Meersman, 2007].

There is a substantial gap between our requirements and existing solutions that support

evolution in ontology-based applications [Stojanovic, 2004] [Noy & Klein, 2004]. When

the ontologies or the underlying systems evolve, there is limited support to help the user

to understand and evaluate the impacts of the changes on the evolving ontology, other de-

pendent ontologies and systems that use the ontologies. Addressing the problem requires

focusing on specific issues and unifying the already available and proven methods and

techniques. Though, there are available ontology evolution frameworks,most of them

focus on ensuring the consistency of evolving ontologies. They give little attention to

34

analysis of impacts and selection of optimal implementation strategies using severityof

impacts. Enhancing the frameworks and introducing new techniques and methods is in-

evitable to achieve the desired evolution. One of the inevitable research directions pro-

posed by different researchers [Stojanovic & Motik, 2002] [Flouris & Plexousakis, 2005]

[De Leenheer & Meersman, 2007] [Qin & Atluri, 2009] [Djedidi & Aufaure, 2010b] focuses

on change impact analysis in evolving ontologies and ontology-based applications. In this

chapter, we review existing research and highlight their limitations.

This chapter is organized as follows. Section3.2 gives a brief summary of evolu-

tion in ontology-based content management systems. Section3.3 introduces evolution in

other closely related disciplines. In Section3.4, we review existing ontology evolution

approaches in detail. In Section3.5, we give a review of available tools and support for

ontology evolution. Finally, we give a summary of the chapter in Section3.6.

3.2 Evolution in Ontology-based Content Management Systems

Evolution in OCMS requires efficient tools, and techniques to address the challenges. The

ever changing human knowledge, its specification and representation, theavailability of

large amounts of semantically rich data and the growing number of interdependent applica-

tions that consume the data make the evolution process complex, arduous andtime consum-

ing. This forces researchers to look for automatic or semi-automatic solutionsto efficiently

evolve OCMS together with dependent applications.

The need for handling changes in OCMS arises from different perspectives. The first

one is from an application perspective. The ever growing volume and diversity of content,

ontology and annotation demands a shift to a scientifically proven method that can over-

come the current problems faced by the manual system [Liang et al., 2006].

The second comes from the perspective of systems and users. In real-time environments,

up-to-date and accurate information is required. Many users and systemsare dependent on

the semantic data they gather, process and use from the semantic web. The quality and

the accuracy of their services depend on how much up-to-date informationthey are using

35

as an input. Up-to-date information can only be provided if changes in suchdomains are

handled, all the effects of the changes are identified and the integrity of thewhole system is

assured. Such systems rely on the availability of automatic or semi-automatic tool support

to respond in a timely manner to the growing number of application domains and seman-

tic data which is in continuous state of change [Klein et al., 2002] [Qin & Atluri, 2009]

[Afsharchi & Far, 2006].

The third perspective comes from the nature of the content. Content refers to a broader

collection of human knowledge. In some disciplines, the content evolves every single day

demanding addition of new and previously unknown content, modification of existing one

or deletion of old content. Systems that deal with content of this type are subject to a contin-

uous change which may even lead to the evolution of the ontologies they use. Such dynamic

and evolving disciplines, like computer science, become vulnerable to continuous change

that demands automated tool support [Stojanovic et al., 2002b] [Leenheer & Mens, 2008].

In addition to the above perspectives, the growing volume of content, applications,

domain-specific ontologies and the complexity of changes, the knowledge and time required

to identify, understand and handle these changes manually is beyond the comprehension of

human agents. Every minute, 571 new websites, 347 new blog posts, 48 hours of new video

on YouTube, 204 million emails, 100,000 tweets, 2 million search queries and manyother

content is produced on the web1. Wikipedia alone contains around 4 millions of content

pages and around 28 million individual pages. The average edit per page is 19.752. All

these new content pages and changes require a solution to systematically handle additions

of new content and deletion or modification of existing ones.

It is possible to collect changes over time and apply those changes togetheron a daily

or weekly basis. For content-based systems that do not change frequently, this solution

seems appealing. However, the current problem of such systems goes beyond that. First,

current ontology-based applications are required to provide semanticallyrich information to

make a real-time decision. Second, the volume of the changes the ontology engineer has to

1http://mashable.com/2012/06/22/data-created-every-minute/
2http://en.wikipedia.org/wiki/Special:Statistics

36

deal with is large. In fairly complex environments, such as Wikipedia, there are thousands

of changes, hundred thousands of cascaded changes and millions of artefacts, dependent

entities and interrelated components that will be affected. In such a situation,managing

changes manually becomes complex, error prone and beyond the comprehension of a single

individual. In relation to this, systems that are required to deliver robust information do

not tolerate these errors. The structural and semantic interdependencethat exists between

components of such systems requires an automated tool to prevent and resolve issues related

to the integrity of the system. Finally, the availability of tools and techniques can beseen

as an opportunity to build better automated systems for OCMS.

Evolution in OCMS mainly focuses on the evolution of the ontology, the content and the

annotation. Ontology evolution, content evolution and annotation evolution are discussed

in detail in the following section.

3.2.1 Ontology Evolution

Ontology evolution refers to the change in the specification, conceptualization or repre-

sentation of knowledge in the ontology and the implementation of the changes andthe

management of their effects in dependent ontologies, services, applications, agents or other

elements. Ontology evolution is also defined as “the timely adaptation of an ontology and

consistent propagation of changes to dependent artefacts” [Stojanovic et al., 2002a]. The

overall process of adaptation of ontologies to changed patterns and the consistent man-

agement of these changes is referred to as ontology evolution. A closely related task is

ontology versioning. Thus, it is important to distinguish between ontology evolution and

ontology versioning. Following the definition given by [Roddick, 1995], ontology evolution

is different from ontology versioning in that ontology evolution is the process of changing

the ontology without affecting the dependent entities whereas ontology versioning means

changing the ontology to a new version but provides access to both the old and the new

versions.

Ontology evolution is a continuous process [Noy & Klein, 2004]. Whenever there is

a change in the domain, its conceptualization or specification, the ontology needs to be

37

changed. Ontologies built to give support for specific content within a domain change as

the content and the embedded ontology instances change [Benjamins et al., 2002]. When

new concepts are added, existing ones are deleted or modified in the content, the respective

ontology needs to be updated. Implementing the changes requires understanding them cor-

rectly and representing them accurately using ontology change operations. However, this

solves a few of the associated problems. Changes can trigger further cascaded changes and

affect one or more of interrelated ontologies. The effects of the changemay propagate back

to the domain instances in the content, leaving the process in a vicious circle. Anontology

engineer who detects a change of an instance in a content document and tries to maintain

the ontology accordingly may end up with many unseen changes. Thus, we require a better

understanding of the ontology change management process [Djedidi & Aufaure, 2010b].

Researchers in the area of ontology evolution have made attempts to make ontology

evolution a well-organized process. In [Stojanovic, 2004] the authors proposed a six phase

ontology evolution process. Ontology evolution as a reconfiguration problem is suggested

in [Stojanovic et al., 2003]. In [Plessers et al., 2007] change detection approach is proposed

as a solution for efficient ontology evolution. In [Qin & Atluri, 2009] the authors approach

the problem from the view point of validity of instances at the time of evolution. These

attempts are discussed in detail in Section3.4.

Ontology evolution further focuses on the impacts of the proposed changes on related

dependent entities in the ontology and dependent systems that use the ontology. The im-

pacts are not restricted to the structure of the ontology. But, they include thesemantics and

deal with the rationale behind the changes [Djedidi & Aufaure, 2010b].

3.2.2 Content Evolution

Content change refers to a change of the available content in a content-based system. The

change in the content can introduce new concepts, for example, when new software prod-

ucts, text books, reports, scientific results, etc., appear, or when a new way of using already

existing concepts is introduced.

Evolution in a discipline invokes a change in the content used in that discipline.The

38

evolution process may cause the previous content to be modified or fully discarded. Content

on the web evolves over time in an unpredictable manner due to its decentralizedadminis-

tration. Collaborative content management serves as an engine for managing the contin-

uous evolution of content. Users in a collaborative environment create new content and

make it available for others for editing and improvement. Such content passes through dif-

ferent evolutionary stages before it becomes stable [Krötzsch et al., 2007]. In disciplines

that evolve frequently, the content evolves frequently. Research on atypical collaborative

content platform, Wikipedia, indicates that there are a continuous and a large number of

revisions (addition of new ones and deletion or modification of existing ones)of the content

[Curino et al., 2008].

There are two types of content changes, changes that cause the domainontology to

change and changes that cause only a specific content to change. To elaborate on these

distinctions, let us look at the following examples. A change in a new version of a help

file that includes video and audio formats requires a change in the domain to incorporate

such help file formats (in previous versions, help files come in text format). An introduction

of a new software component further requires the taxonomy of the software to be updated.

Such changes are changes that trigger a change in the domain ontology. The deletion of a

component from a specific help file causes a change of all annotations that are related to that

topic. Not all content changes cause ontology change. If a step in one help file is changed

to a procedure, it will only cause a change in the annotation of the document.It does not

cause or trigger a change in the domain or in the ontology.

3.2.3 Annotation Evolution

Annotations are frequently changing entities in OCMS. A large number of triples are added,

modified or deleted in this layer. Annotations are highly dependent on both thecontent and

the ontology [Gross et al., 2009]. Any change in the annotated content or in the ontology

that is used for the annotation affects the annotation triples that carry all thesemantics

related to the content. Changes made on the triples may cause other changes tothe related

annotations. In such situations, the changes in the annotation require proper analysis and

39

evolution before they are implemented in the system.

The main reason for propagation of changes is that the annotations represent semantic

and structural dependency between the entities involved in the annotation. For example, if

we annotate a certain home page of a professor with a domain ontology that explains his

discipline, we are creating a semantic link between the concepts in the home pageand the

concepts in the ontology. The concepts in the ontology are interconnected and get their

semantics based on the interpretation of those edges that connect them. Thus whenever

there is a change in the home page of the professor, the change propagates to all dependent

and related entities in the system. These changes affect the interpretation ofthe content and

all dependent systems that use this interpretation.

3.3 Evolution Approaches in Related Domains

Ontology evolution borrows different techniques from different disciplines. In this section

we review and compare literature from closely related disciplines such as schema evolution

and software evolution.

3.3.1 Schema Evolution

Research in database schema evolution has shown the extent of the problem and the impor-

tance of schema evolution [Roddick, 1995]. Typical schemas include relational database

schema, conceptual ER or UML models, ontologies, XML schema, softwareinterfaces and

work flow specifications [Noy & Klein, 2004]. [Hartung et al., 2011, p.1] defines schema

evolution as “the ability to change a deployed schema, i.e. metadata structures formally

describing complex artefacts such as databases, messages, application programs or work-

flows”. Schema evolution has received a great emphasis for a long time andhas a wider

support from both industrial and commercial systems. The rationale behindconducting

schema evolution is to deal with:

• new changes which are caused by a change in the requirement of the user.

40

• deficiencies in the current schema or the old model may have errors.

• new insights, new ideas, etc.

• migration to a new platform, a new technology, etc.

Schema evolution is essential because the changes are frequent, time consuming and er-

ror prone [Curino et al., 2008]. The authors identified the major problems faced by database

administrators at the time of evolution. Some of the challenges are attributed to a lack of

software support for predicting and evaluating the effects of the proposed schema change,

lack of analysis methods and tools for understanding change propagationto dependent ele-

ments and applications to address database schema evolution. In schema evolution in gen-

eral and in database schema evolution in particular, the following solutions are proposed

[Bounif & Pottinger, 2006] [Curino et al., 2008].

• Concise change operation language to express schema change.

• Tools that can determine the effects of the requested changes.

• The optimization of the changes to ensure the optimal implementation.

• Automatic implementation and propagation of changes.

• Full documentation of implemented changes to ensure proper and accurate reversibil-

ity.

Schema evolution and ontology evolution share some common theoretical foundations.

The similarities and the differences of the two are discussed in [Noy & Klein, 2004]. One

of the challenging aspects of schema evolution is the threat it poses to the systems that

make use of the schema. Some of the threats are unexpected and have dramatic impacts on

the dependent elements and on the integrity of the system (within and among the layers).

They require intensive human involvement to understand the impacts and resolve integrity

violations. These threats are also observed in ontology schema evolution and remain the

major challenges faced by ontology engineers and content managers.

41

[Curino et al., 2008] identified the intensity of the change in Wikipedia’s database schema,

which is the best-known example of a large family of web information systems (WIS). They

identified 170+ documented schema versions over 4.5 years and over 700GB of data and

version of 88,397+ revisions in MediaWiki in 2007. They reported the growing frequency

of change as: “There is strong pressure toward change (from 39% to500% more intense

than the traditional setting)”. To respond to the problem they built a simple software tool

to automate the analysis process. Their analysis suggests the need for developing better

methods and tools to support schema evolution.

Research conducted by [Hartung et al., 2011] on recent advances in schema and on-

tology evolution points out the importance of effectively supporting schema evolution to

ensure the correct and efficient propagation of changes to instance data, dependent schema

and dependent systems. They identified the major requirements of effective schema and on-

tology evolution. The support for expressive and detailed change operations, the simplicity

of change specification, the transparency of the evolution process, automatic generation of

evolution mapping and the predictability of effects of changes on instances tomaintain data

integrity and avoid data loss are among the requirements.

According to the [Hartung et al., 2011] criteria, powerful schema evolution support

needs to incorporate the following guidelines. The first one iscompleteness. Completeness

ensures the complete support for schema changes and the correct andefficient propagation

of the change to dependent elements and dependent systems. The second is minimal user

interventionwhich ensures the minimal involvement and automatic evolution of dependent

elements and subsystems. The third criterion istransparencywhich ensures the minimal

or no degradation of performance of the system. It should ensure the availability of support

for backward compatibility, versioning or views.

[Hartung et al., 2011] focuses on XML schema evolution and identified systems that

provide XML schema evolution support such as Oracle, Microsoft SQL Server, IBM DB2.

Some native XML Databases also support XML schema evolution. These commercial soft-

ware companies are aware of the importance of schema evolution and provide a means

to support the evolution process. Ontology evolution is another focus area of the study.

42

Despite the differences between ontologies, databases and XML, the schema evolution re-

quirements also apply for ontology evolution.

Justifications used in schema evolution highlight the need for ontology evolution. Schema

evolution is used to keep the integrity of the data with the schema. Likewise, we evolve the

ontology to provide integrity of the instances with the ontology. Compared to schema evo-

lution, the following challenges are identified in ontology evolution [Noy & Klein, 2004].

• When an ontology evolves, it affects the data (instances that are linked to it)and the

semantics associated with the ontology. This is because ontologies themselves are

treated as a data.

• Ontologies incorporate semantics in their definitions, whenever the semantics they

incorporate changes, we need to change the ontologies. In many domains that are

relatively new or that deal with new knowledge and information, the changein the

semantics is continuous. That calls for a dynamic and continuous evolution ofthe

ontologies to respond to the changing semantics in such domains.

• Current systems that provide semantic information require the annotation of the con-

tent using the selected ontology. But, it does not mean that once we get access to

the annotated content we no more need to access the ontology. The ontologies are

accessed by such systems for the purpose of reasoning and extractionof implicit

knowledge.

• Due to the decentralization of the ontologies and the users of the ontologies, itis

difficult to know and maintain who makes changes and who needs to be notified

about the changes. It is also difficult to update them synchronously.

• Due to the richer semantics they contain, a single change in a single element of an

ontology, say on a concept, triggers more changes due to the semantic relationships

like disjointness, intersection, transitivity, etc. Thus, managing the changes becomes

complex and includes several cascaded change operations.

43

• Since instances and concepts are not distinctly separate, it is difficult to provide a

change management which treats the instances separately from the concepts. This

makes the evolution of ontologies difficult.

3.3.2 Software Evolution

Software evolution and ontology evolution share common grounds. Software evolution

focuses on evolving the software without invalidating running systems and existing data.

In ontology evolution we focus on a similar problem. In software evolution, determining

the impacts of the changes on dependent modules, classes and data is the mainconcern.

In ontology evolution, identifying inconsistencies, invalidities and impacts of changes on

entities and dependent systems is the main focus.

Software evolution integrates a multidimensional aspect of a software life cycle from the

inception phase to maintenance. The dimension includes system properties (what), objects

of change (where), temporal properties (when) and change support (how) [Mens et al., 2002]

[Buckley et al., 2005]. Software evolution needs a systematic and exhaustive description of

the change and the changing artefacts [Mens & Klein, 2012]. Like schema evolution, the

process of handling evolution in software is time-consuming and error-prone. The main fo-

cus of software evolution is to identify the changing artefact in the softwareand to identify

the artefacts that are affected by the change. Researchers such as [Lehman et al., 1997]

[Sherriff & Williams, 2008] [Ahmad et al., 2009] focus on classifying the different com-

ponents, analysing the dependency between the components and the propagation of the

changes to other dependent software artefacts. [Ahmad et al., 2009] uses sets to represent

relationships between components. [Sherriff & Williams, 2008] uses association clusters

from change records to analyse impacts of changes. These associationclusters of files indi-

cate how the files are executed, tested and changed together.

Software systems that embed a software application in the real world, knownas E-type

systems, evolve frequently. For such systems, researchers [Lehman et al., 1997] identified

different laws of software evolution. The first law is aboutcontinuing change. E-type sys-

tems must continually adapt themselves to changes; otherwise they become progressively

44

less satisfactory. His second law further reinforces the need for software evolution, which

is increasing complexity. As a program evolves, its complexity increases unless work is

done to maintain or reduce it. These two laws call for a solution to handle the changes and

to avoid the associated complexities.

Software change denotes a set of source files that are modified together. The reason

for the change may be removal of a defect or introduction of a new feature that reflects the

user’s requirement. The changes can be logical or structural changes which may affect other

dependent components of the software [Wu et al., 2007]. According to the change data the

authors analysed on open source products, within 8 years (1997/08/11to 2005/09/09) they

identified 40,034 logical changes from the CVS repository of GCC. The largest logical

change obtained from the NetBSD system is 86,280 logical changes from 1993/03/20 to

2005/08/17. Structural changes are also presented and 19,913 changes are identified from

the Koffice system from 1999/01/01 to 2004/09/15.

These figures indicate that there is a high frequency of change. It is evident that man-

aging changes and determining impacts of changes is becoming a time consuming and

complex task. This implies the need for software tools that deal with the evolutionprocess

of software products.

Other research in software evolution focuses on change impact analysisin software

systems using empirical analysis [Arnold, 1996] [Lee et al., 2000]. Software change or soft-

ware evolution has an impact on dependent systems. These impacts were analysed using dif-

ferent techniques such as PathImpact, CoverageImpact and other methods [Bohner, 2002]

[Orso et al., 2004] [Breech et al., 2005] [Sherriff & Williams, 2008]. The main aim of soft-

ware change impact analysis is to find out which dependent components of given software

are affected by a change and to take action before the new version of thesoftware is re-

leased. Reducing the time and effort of tracking and correcting the erroneous modules is

one reason for conducting impact analysis prior to the implementation of the change. As

there are more changes and versions in a software product, there are more impacts of these

changes on the dependent software components and this needs an automated solution to

reduce the impacts.

45

The author in [Bohner, 2002] conducts a change impact analysis on commercial-Off-

The-Shelf software. He identified different reasons for software change and classifies soft-

ware impacts as direct or indirect, and structural or semantic impacts. The impact analysis

method uses graphs to represent dependencies between software components. He uses

graphs to analyse structural and semantic impacts of changes on dependent systems. He

further conducted structural analysis and semantic analysis using reachability graphs by

implementing transitive closure algorithms. The work focuses on the syntactic relation-

ship between software modules whereas we focus on structural and semantic changes with

detailed semantics.

In [Hassan et al., 2010], the authors present a knowledge base system for change impact

analysis on software architecture. They propose an architectural software component model

(ASCM) on which they defined change propagation process. They usegraphs to represent

a software architecture description represented by ASCM. The graph isused to capture

architecture elements and their relationships. The authors conduct an impact analysis using

rules that define change propagation. The change propagation process uses a knowledge-

base system which stimulates the impact on the software architecture and on theactual

code when the associated rules are fired. Their work is similar to ours but with a significant

difference in the domain and in the impact determination approach.

To deal with software change and to understand and manage the effects of the changes,

different researchers conducted software change impact analysis.[Ren et al., 2004] develop

a tool for change impact analysis for Java programs. The authors identify changes by com-

paring two versions of a program and represent the changes as atomic changes. Using the

atomic changes, they analyse the affected elements that changed their behaviour due to the

atomic changes and they explain the causes of the effects. The authors use a call graph

that represents methods using nodes and edges between nodes to reflect calling relation-

ship between methods. Their approach starts with identifying affected tests (targets), and

moves to identify affecting tests (causes). The method computes syntactic dependencies to

determine the causes of the changes. Syntactic dependencies and semanticdependencies

are independent of each other and are treated differently. Using syntactic and semantic de-

46

pendencies, they identify the impacts of the changes on the edited version. The impact of a

single change when executed alone has a different impact than when it is executed as part

of a composite change. However, it is not possible to apply this approach unless we have

access to the original and the edited software.

3.4 Evolution Approaches in Ontology-based Applications

Attempts are made to enhance ontology evolution by adopting well established techniques

from other disciplines such as database schema evolution and software evolution. How-

ever, the techniques borrowed from such disciplines do not fully address the problems of

evolving ontologies and ontology-based applications. Ontology evolution and versioning

in general and change detection, change representation, change propagation, semantics of

change, evolution in distributed ontologies and change impact analysis are among the prob-

lems that require further investigation [Stojanovic, 2004] [Djedidi & Aufaure, 2010b].

3.4.1 General Ontology Evolution Approaches

The requirements and the characteristics of ontology evolution have been discussed in dif-

ferent papers [Bennett & Rajlich, 2000] [Stojanovic & Motik, 2002] [Noy & Klein, 2004]

[Stojanovic, 2004] [Flouris & Plexousakis, 2005] [Noy et al., 2006] [Lee et al., 2007]. In

all these investigations ontology evolution is treated as a complex and non-trivial problem.

An ontology evolution begins with capturing a change request and ends withimplementing

the requested change without invalidating the ontology and dependent systems. Ontology

evolution involves several intermediate steps such as change representation, semantics of

change, change propagation, change validation and finally, change implementation.

Ontology evolution also distinguishes between different levels of change operations.

[Stojanovic, 2004], for example, classifies changes as atomic, composite and complex changes

and provides support for the first two categories. Other research [Klein, 2004] distinguishes

between basic and complex change operations. Basic change operationsrepresent simple

and atomic changes that modify only one specific feature of the ontology, and compos-

47

ite changes represent complex changes that are composed of atomic changes grouped in

a certain logical order. Our ontology evolution approach considers four levels of change

operations, atomic, composite, domain-specific and abstract. We mainly focuson addition

and deletion change operations. Atomic or elementary change operations are finite based

on the available constructs of the ontology language. However, composite (complex) and

domain-specific changes are infinite as there is no limit on their combination.

The ontology evolution process involves capturing change requests, detecting changes

and version logging, change representation, semantics of change, change implementation,

change propagation, change validation, and other tasks [Stojanovic, 2004] [Zablith, 2008]

[Flouris et al., 2006] [Konstantinidis et al., 2008] [Zablith et al., 2008] [Qin & Atluri, 2009].

Ontology versioning [Klein & Fensel, 2001] [Klein et al., 2002], change impact analysis

and resolution, detection of patterns from change logs and others areasare under investiga-

tion.

Six phase ontology evolution approachis an ontology evolution approach proposed in

the literature and gained wider acceptance as a global evolution process for KAON Ontol-

ogy [Stojanovic, 2004]. The proposed ontology evolution methodology includes six phases

targeted for business-oriented ontology management. The six phases arediscussed as fol-

lows.

Change capturing. This phase focuses on the process of capturing ontology changes by

explicit request from users or implicit change detection and discovery methods. The change

detection and discovery method employs changes that are captured either by a data-driven

method or by a usage-driven method which analyses the behaviour of the ontology usage

patterns [Stojanovic et al., 2003] [Maedche et al., 2003] [Stojanovic, 2004].

Change representation. This phase focuses on the representation of the change opera-

tions based on the KAON language. Elementary changes and composite changes are used

to represent the change operations. However, the proposed changerepresentation method

does not cover domain-specific change operations.

Semantics of change. This phase deals with evaluation and resolving effects of changes

to ensure consistency of the whole ontology [Stojanovic, 2004]. This phase enforces con-

48

sistency rules as invariants that must be satisfied, soft constraints which can be violated for

a period of time and user-defined constraints which are defined by the user to accommo-

date his/her requirements. This phase makes sure that these constraints are satisfied with-

out introducing any inconsistency. [Stojanovic, 2004] [Qin & Atluri, 2009] have identified

structural and semantic inconsistencies. Structural inconsistencies are those statements in

the ontology that violate the structural constraints defined in the ontology model. Semantic

inconsistencies are those statements that alter the meaning of the ontology entities. How-

ever, the available methods do not fully deal with semantic inconsistencies. This is because,

handling inconsistencies is dependent on specific semantic information that isnot explic-

itly expressed in a standard ontology model [Stojanovic, 2004] [Djedidi & Aufaure, 2010a]

[Djedidi & Aufaure, 2010b]. Here, our work also focuses on addressing semantic inconsis-

tencies and semantic impacts by analysing individual change operations andutilizing rules

for semantic inconsistencies. We further identify semantic impacts from a combination of

more than one atomic change operation.

To address the inconsistency problem, we need to identify the inconsistent entity, deter-

mine possible alternative solutions and choose one, and proceed to its implementation. A

posterior verification approach for consistency checking verifies the consistency of the on-

tology after every change is implemented. A priori approach checks the potential violations

of preconditions associated with each change operation before the changes are applied. A

priori verification approach is cheap compared to a posteriori approach in that posteriori

verification is applied to the whole ontology and the resolution needs roll backmechanisms

[Flouris et al., 2006]. Furthermore, it is difficult to explain the change impacts and pinpoint

the inconsistency associated. In KAON, this phase is implemented as a priori verification

based on predefined preconditions [Stojanovic, 2004]. We also follow an apriori approach

for both semantic and structural inconsistency and impact identification.

Semantics of change also deals with procedural and declarative inconsistency resolu-

tion approaches. The procedural approach is based on the consideration of constraints of

the consistency model and the associated rules to satisfy the constraints. This approach

considers different evolution strategies to produce additional change operations. Evolution

49

strategies play a major role in allowing the user to flexibly handle changes usinga different

set of change operations in response to the inconsistency introduced. After all the changes

are generated, they are implemented in the ontology. The declarative approach follows a

formal change request in the form of positive changes and negative changes. The positive

changes are implemented directly in the ontology and when there are inconsistencies the

resolution strategy is selected based on the two sets of requested changes(positive changes

and the negative changes). Finally, all the possible consistent states of the ontology are

ranked based on the ontology engineer’s requirements.

Change propagation. Change propagates to dependent artefacts, ontologies and systems

that exploit the ontologies. Thus, change propagation deals with propagating the ontology

change to dependent artefacts.

Change implementation. The change implementation phase concentrates on the phys-

ical implementation of the requested and derived changes. This phase includes logging

changes, undo and rollback services.

Change validation. This phase is the final phase which is responsible for the final

validation of the applied changes and the acceptance and approval of thechanges by the

users.

This approach is widely used by ontology engineers. Its main focus is the semantics of

change phase. We also focus on this phase to find out structural and semantic impacts and

to select optimal resolution strategies using different parameters.

Change detection approachfollows two widely used methods of change discovery.

The first approach is data-driven change discovery, which relies onthe changes that are

observed in the corpus data. This approach uses taxonomic analysis, text extraction, rela-

tionship mining, etc., to detect changes [Cimiano & Völker, 2005] [Bloehdorn et al., 2006]

[Enkhsaikhan et al., 2007]. The second approach is user-driven change discovery, where

the users submit change requests based on their common understanding ofan evolving do-

main [Stojanovic et al., 2002a].

BOEMIE. Bootstrapping Ontology Evolution with Multimedia Information Extrac-

tion (BOEMIE) is another ontology evolution approach proposed by [Castano et al., 2006]

50

[Petasis et al., 2009]. This approach aims at automating the process of knowledge acqui-

sition for multimedia content. BOEMIE uses ontology population (adding new instances)

and enrichment patterns (adding new concepts, relations and axioms). Once the ontology

is populated with new changes, the consistency of the ontology is checked toeliminate

contradicting and redundant information. Finally, BOEMIE produces a new version of the

ontology that reflects the updates and the newly acquired knowledge and the associated

change log [Castano et al., 2006]. This approach does not explicitly support change impact

analysis.

Ontology evolution in a distributed environment is another approach proposed and

used for distributed ontologies and ontology-based systems [Klein, 2004]. In this approach

a global framework is used to manage requested changes and derived changes. Distributed

change management systems incorporate additional characteristics that are either different

or not available in other approaches. These characteristics are: first,the nature of propa-

gation of a change depends on whether the requested change modifies thespecification or

conceptualization of the ontology and, second, the definition of consistency and consistency

maintenance does not depend any more on one specific feature to preserve.

Ontology evolution as reconfiguration-design problem solvingis another approach

proposed by [Stojanovic et al., 2003]. The ontology evolution problem is reduced to a graph

search where the nodes are evolving ontologies and the edges represent changes that trans-

form the source node into the target node. The approach allows the userto submit complex

requests with positive changes and negative changes and provide all the possible ways to

resolve the request. The approach uses a consistency model and implements change resolu-

tion using an evolution graph that generates multiple options for implementing the change.

The selection of the best option is guided by heuristic information.

Belief change principles for ontology evolution.A different approach for ontology

evolution based on belief change principles is proposed by [Flouris & Plexousakis, 2005]

[Flouris et al., 2006]. The authors argue that the existing ontology evolution approaches

are unable to handle change representation and the semantics of change phases. They crit-

icize current work on ontology evolution as a process specializing in helping users to per-

51

form changes manually rather than performing the changes automatically. They propose a

method to handle ontology evolution without human intervention. Belief change provides

necessary formalization for change representation and deals with automaticadaptation of a

knowledge base to new knowledge. The belief change theory they proposed is based on the

AGM theory initiated by three authors (Alchourron, Gardenfors and Makinson,1985). The

focus of belief change is on determining the most rational ways of dealing withchanges

and on the development of algorithms that automatically update knowledge bases. This

approach has a deficiency in representing addition and deletion of concepts, roles and in-

dividuals. To resolve this problem the authors suggest a proper selection between Open

Vocabulary Assumption (OVA) and Close Vocabulary Assumption (CVA) and a consistent

use of the selected vocabulary.

Change detection approach using version logsis another approach presented to ad-

dress the problem of ontology evolution [Plessers et al., 2007]. A change detection is pro-

posed for OWL DL ontologies. It exploits change logs to detect changes that are not ex-

plicitly requested and automatically generates an overview of changes that have occurred

based on a set of change definitions. The authors proposed the ChangeDefinition Language

(CDL) which is used to represent and query a version log [Plessers et al., 2007].

This approach distinguishes between two kinds of evolution: evolution-on-request and

evolution-in-response. Evolution-on-request focuses on modifying the ontology by forward-

ing a change request by the ontology engineers and evolution-in-response focuses on provid-

ing information about depending artefacts changed during the evolution-on-request phase.

Evolution-on-request has five phases: change request, consistency maintenance, change

detection phase, change recovery phase and change implementation phase.

Evolution-in-response takes into account the changes applied by an ontology engineer

and evaluates them to approve or reject the changes. The changes areapplied and prop-

agated once they are approved, otherwise rejected. It has three different phases: change

detection, cost of evolution and update approval.

Ontology Robustnessis an other approach which is suggested to reduce the number of

change in ontologies by designing a robust ontology [Ceravolo et al., 2008]. This approach

52

is based on the distinction among stable components and contingent componentsof the

ontology. Ontology robustness in evolution is explained as the minimization of the number

of instances to be migrated in the new version of the ontology. The aim of the work is

to reduce invalid assertions. This approach can be viewed as an alternative approach to

ontology evolution.

Formal RDF/S ontology evolution. This approach presents a formal approach for

RDF/s ontology evolution [Konstantinidis et al., 2008]. The work aims at providing an

algorithm to determine the effects and side effects of a requested elementaryor complex

change operations. It focuses on change requests and tries to resolve the evolution problem

by analysing the requested updates against the validity rules presented bythe authors. The

work is inspired by belief revision principles such as validity, success andminimal change.

The authors challenge existing approaches for their lack of completenessand their attempt

to address the ontology evolution problem focusing on change operationscase by case.

They further criticize existing work as error prone, hard coded and giving no guarantee

whether the cases are exhaustive. The paper propose a new and different approach to handle

ontology evolution by identifying invalidities a given change could cause on the updated

ontology using a formal validity model. They further propose an approachto deal with

various effects and side effects. The interpretation of effects and sideeffects is restricted

to the validity model which does not differentiate and include semantic effects of change

operations. The change implementation process they proposed works under constraints and

the constraints come from the validity model.

This work focuses on structural changes and excludes semantic changes which are cru-

cial in ontology evolution. Furthermore, the authors give emphasis to the validity model

and exclude other evolution factors such as the user preferences, severity of the change

operations and sensitivity of the ontology toABox or T Box statements. An interesting

evolution criterion they identify is the minimal change criterion which ensures a minimum

number of changes to evolve ontologies.

The major difference between this work and our proposed solution is that, we distin-

guish structural and semantic impacts, to which we give detailed coverage. Furthermore,

53

our approach focuses on analysing impacts of change operations by focusing on the im-

pacts and the change operations that cause the impacts. Our approach deals with empiri-

cally identified impacts and empirically identified atomic change operations that cause the

impacts. For determining impacts we focus on a finite set of atomic change operations. This

allows us to identify impacts of atomic, composite and domain-specific change operations

by combining atomic change impacts and further implementing fine grained changeimpact

analysis. Our approach is capable of identifying impacts of composite and domain-specific

change operations.

3.4.2 Consistency Management

Changes in an ontology may introduce inconsistencies in the ontology, in the dependent sys-

tems and in the artefacts. Inconsistency management is one of the major focusareas in ontol-

ogy evolution [Haase et al., 2005] [Haase & Stojanovic, 2005] [Plessers & De Troyer, 2006]

[Bell et al., 2007] [Qin & Atluri, 2009]. The two approaches in inconsistency management

are the procedural and declarative approaches. The proceduralapproach maintains consis-

tency by considering the constraints of the consistency model and the definite rules that have

to be followed to satisfy them. In this approach, each requested change is checked against

a precondition and inconsistency resolution is generated based on a selected evolution strat-

egy. Once the resolutions are generated as additional change operations, the requested

change is implemented together with the generated change. The declarative approach main-

tains consistency by considering a comprehensive set of inferred axioms. This approach

treats change requests as changes that must be performed and changes that must not be per-

formed. The consistency of the ontology is checked against the first setof changes and in-

consistency resolution is applied by considering both sets of changes to exclude the changes

that must not be performed. Finally, the ontology engineer selects one from all the pos-

sible consistent states of the ontology [Stojanovic et al., 2002a] [Leenheer & Mens, 2008]

[Djedidi & Aufaure, 2010b].

54

3.4.3 Ontology Change Logging and Mining

Change logging refers to the activity of tracking and recording all changes in a change log

during evolution. The change log facilitates recovery of the ontology to its previous state by

undoing changes [Leenheer & Mens, 2008]. It is also used to detect changes and discover

useful information that can be used later for tasks such as discovering change patterns, co-

occurrences of changes and analysis of frequently occurring changes [Javed et al., 2011c].

3.4.4 Ontology Diffs and Content Versioning Systems

Authors in [Noy & Musen, 2002] developed Promptdiff to compare different versions of an

ontology. It detects changes in two versions of an ontology and presentsthe differences.

At the end of the evolution process, ontology editors use promptdiff to review changes

and approve or reject those changes. Currently, promptdiff does notsupport OWL2 on-

tologies. However, there are different successors of promptdiff [Tudorache et al., 2008]

[Redmond et al., 2008] that use the heuristics used in promptdiff. [Redmond et al., 2008]

suggest a system that manages changes using version control systems.The authors propose

a system which addresses the existing problems of ontology version control systems. This

includes addressing problems in concurrent editing, complete change tracking, scalability,

and performance. They focus on add, delete and rename operations and perform analysis

using diffs between two ontology versions.

The authors [Redmond & Noy, 2011] present a pluggable difference engine which aligns

ontology entities before conducting comparison. The difference engine uses an alignment

phase and explanation phase. The explanation phase organizes the output of the alignment

phase and presents the difference in a human understandable and organized way. The differ-

ence engine highlights additions, removals and renaming of entities. This approach requires

two versions to compare changes. It does not consider the change operations that are the

sources of the change.

The authors [Ruiz et al., 2009] propose content CVS (Concurrent Versioning System)

for building and editing ontologies collaboratively. They use a CVS paradigm used in

55

software engineering to build ontologies and manage changes. In contentCVS the most

recent version of the ontology is kept in a shared repository in a serverand each developer

keeps a local copy. Whenever the developer makes a change to the localcopy, he/she has to

submit the latest local version to the server. The system compares the request with the most

recent version. The developer can access the repository using export, check-out, update and

commit operations. If the local version of the ontology is not changed, it means there is

no meaningful change committed. Otherwise, if the local version is up-to-dateand not in

conflict with the recent version, the local version will replace the recentversion.

This approach uses change detection, conflict detection and conflict resolution. It uses

structural conflict resolution and a combination of structural and semantic conflict resolu-

tion. The authors implement deductive difference which computes the logicalconsequence

of the new version with the previous version to identify semantic differences. It uses rea-

soners to conduct deductive reasoning and semantic conflict refers tothe conflict due to

inferred axioms. Once the difference is calculated, if there are conflictingaxioms or unin-

tended entailments, the users are presented zero or more options to choose. The content

CVS allows the user to choose the most suitable minimal plan to avoid the conflicts. If

there is no plan, the conflict resolution process ends and the ontology rollsback to the old

version.

A closely related work on concurrent development and editing of ontologies is given

in [Ruiz et al., 2011]. This work extends content CVS to incorporate several developers to

make changes concurrently. This work focuses on conflict detection among change requests

from different developers, and resolving the conflicts by employing structural and semantic

differences. Semantic conflicts are addressed using logical reasoners.

The authors [Hartung et al., 2012] propose a tool that allows determining semantic changes

between two versions of an ontology. A web-based tool, CODEX (COmplex Ontology Diff

EXplorer), is proposed. The tool contains a repository for calculating diffs at the backend.

The backend computes diffs and presents the changes using statistical measures. This in-

cludes: number of changes, diff sizes and growth rates of the changes. It allows exploration

of elements that have been influenced by the changes. It further includes change impact

56

analysis to find out the elements that are affected.

CODEX can provide information similar to our change impact analysis tool. However,

it follows a similar approach used in diff and in content CVS. Even if we do not follow

the ubiquitous diff approach, our change impact analysis tool provides rich analysis and

additional semantic impacts other than the semantic changes presented in CODEX. Our

approach not only focuses on terminologies, but also analyses impacts oninstances and

annotation triples. Change impact analysis deals with impacts of changes on annotated

documents. It presents impacts of changes on ontology entities and information sources

that consume the ontologies.

The authors in [Konev et al., 2012] propose a new version of CEX versioning tool which

extends the original CEX [Konev et al., 2008] to incorporate three distinct logical differ-

ences. These are: concept inclusion, answers to instance query andanswers to conjunctive

query. CEX is applicable for acyclicEL terminologies and the proposed version extends

it to ELH+ which admits role inclusion, range and domain restrictions. This enables users

to perform concept diff, instance diff and query dif. This work is closeto our work by

considering semantic changes on instances (ABox Statements).

In the above approaches, changes are made concurrently and two or more versions of

ontologies are compared structurally and/or semantically. Semantic difference focuses on

the logical difference of axioms based on inputs from a reasoner. Our approach is different

in the following ways. We view impacts from change operations perspectives. First, we

focus on the impacts of the change operations that are requested by the user and generated

by the system. Second, our notion of structural and semantic impacts is broader than the

structural and semantic changes discussed in the above papers. We further incorporate

the implication and interpretation of the changes. Third, a minimal plan, in contentCVS,

refers to a plan that avoids inconsistencies and errors caused by arbitrary entailments with

minimum removal of additions or deletions.

Our approach provides detailed information about the requested and the derived change

operations, the impacts of the change operations, the affected entities due toa given change

operation and the severity of the impact on the entities in the system. Our concern is not only

57

finding the additions and deletions, but also how the entities are impacted, whichchange

operations impact them, how two or more changes impact an entity and the severity of the

impacts.

In comparison to the CVS approach, a CVS presents “what” has changed, but the details

about how the changes affect the dependent entities, why a given entityis affected and the

severity of the effect is missing. Evolution of ontologies using such analysisas an input for

selecting an optimal strategy and evolving ontologies is the major concern of thisresearch.

At this stage, this research does not analyse impacts of changes on inferred axioms.

3.4.5 Ontology Change Impact Analysis

Change impact analysis is a crucial activity in ontology evolution. Change impact analysis

is defined as “the process of identifying potential consequences (side effects) of a change,

estimating the cost of implementing the change and analysing alternatives to realize the

change” [Bohner, 2002]. The change impact analysis process provides information related

to the effects of the required changes in the ontology, other related ontologies and dependent

systems that use the ontologies. It is also used to estimate the cost and effortrequired

to implement the requested change [Leenheer & Mens, 2008] and serves as an input for

deciding whether to proceed to implement the requested change.

Change impact analysis uses requested changes and dependencies in the evolving on-

tology, dependent ontologies and artefacts to generate cascaded effects. The impact analy-

sis process includes structural and semantic impacts on all dependent artefacts and should

present them for the ontology engineer. The change impact analysis toolcan be combined

with different evolution strategies to present different options and allowsthe ontology engi-

neer to choose the strategy which generates less impact and less cost of evolution.

Change impact can be viewed as a normal evolution that preserves existingknowledge

according to ontological continuity principle or a revolution that changes existing true ax-

ioms. According to [Klein, 2004] [Xuan et al., 2006], change impacts depend on the user’s

requirement about what to preserve in the ontology. The user may require preserving data

instances (ABox statements) ontology concepts (T Box statements), inferred facts or the

58

consistency of the overall system. This shows that the analysis and resolution of change

impacts is subject to the views and requirements of the user.

Analysis of effects of changes involves checking one or more of the above require-

ments. It further involves maintenance of inconsistencies by proposing additional changes

that address the inconsistencies. This involves a manual procedure where ontology engi-

neers revise the ontology using ontology editors and reasoners to pinpoint the sources of

inconsistencies [Stojanovic et al., 2002b].

Optimization of ontology evolution and optimal selection of evolution strategies is given

a little attention in the state-of-the-art literature. [Zhang et al., 2008] conduct a study on

user defined ontology change and propose an optimization strategy to reduce the time of

execution of changes. Their methodology focuses on eliminating redundant atomic change

operations. Using redundancy elimination, their methodology optimizes the change imple-

mentation in terms of time by reducing the number of change operations. This research

explores a new area in ontology evolution covering optimal strategy selectionusing quanti-

tative analysis of parameters.

To summarize the literature review and to position our proposed research in the con-

text of existing literature, we organized existing research in the following diagram (Figure

3.1). The diagram presents the existing work in two dimensions. The horizontaldimension

begins with research approach on pure ontology evolution. Then, as wemove to the right,

it shifts to research that includes annotations and OCMS evolution. In this dimension the

approaches are unified to address the problem of evolution of an OCMS.Relative to ex-

isting work, our research approach is built up on previous research and further pushes the

boundary to address the evolution problems in an OCMS.

The vertical dimension begins from basic ontology evolution problem. As we go up,

this dimension focuses on concurrent evolution, consistency and validity of evolution, and

change impact analysis. There are existing researches focusing on addressing these prob-

lems in pure ontology evolution context. However, different researchers suggest the change

impact analysis approach for ontology evolution. This research explores change impact

analysis as an extension of the existing research. It further focuses on proposing methods

59

Figure 3.1: A diagram summarizing existing research

for change impact analysis in a unified but centralized context.

3.5 Tools for Ontology Evolution

There are different tools (Section2.5) available for supporting ontology evolution. These

tools are designed to implement different ontology evolution approaches proposed by re-

searchers. The KAON ontology editor provides support for ontology evolution based on

the proposed evolution strategy [Stojanovic, 2004] [Maedche et al., 2003]. The KAON on-

tology editor allows the user to select different strategies to follow to resolveinconsistencies.

The user can configure those strategies before the changes are implemented. The KAON

editor shows the intermediate changes but does not cover explicit changeimpact analysis.

Another tool that supports ontology evolution is the protege editor. The protege editor

allows the user to specify changes using the protege user interface. Whenever the user

requests a change, the editor asks if the user wants to implement only the requested change

60

or cascade the change to other dependent entities in the ontology. The protege editor has

different plug-ins that provide functionalities like change logging, undo and redo services.

The main protege editor does not show the affected entities before a change is implemented.

However, it provides reasoners that allow the user to check the consistency of the ontology

after the changes are applied. It allows the user to undo the changes if theontology becomes

inconsistent.

The NeON editor provides a graphical user interface for evolving ontologies. The

NeON toolkit allows the user to choose among three change implementation strategies

and allows the user to approve or ignore the changes. It furthermore shows the entities

that should be removed or added but does not give information about how the change

operation affects the entities and the overall ontology. PromptDiff [Noy & Musen, 2002]

[Noy & Klein, 2004] allows a comparison of two versions on ontology and lists all the dif-

ferences between the versions. PromptDiff requires two versions of anontology and does

not consider the change operations that evolve the ontology from one version to another

version. PromptDiff is also available as a plug-in in protege.

3.6 Summary

Existing research covers different problems related to schema evolution,software evolution,

ontology evolution and content evolution. Research in the area of ontologyevolution covers

change specification, change representation and consistency management. It further focuses

on change logging, change discovery, change detection, etc.

However, change representation amenable for impact analysis, impact analysis of change

operations in evolving OCMS and optimal strategy selection are not yet addressed by exist-

ing research. Change implementation in terms of impacts of change operations,severity of

impacts, type of statements affected and number of change operations are not sufficiently

covered in existing research. However, an OCMS requires efficient management of the

evolution of the overall system. This includes analysis of structural and semantic impacts

of changes, analysis of impacts of changes using different scenarios(what-if analysis) and

61

selection of optimal implementation strategies using different criteria.

To fulfil these requirements, we propose a layered operator frameworkthat represents

changes using different levels of composition; a change impact analysis approach that anal-

yses semantic and structural impacts and an optimal strategy selection method that performs

optimal strategy selection by reducing side effects of the change on the OCMS.

62

Chapter 4

Ontology-based Content

Management Framework

4.1 Introduction

Chapter 3 focused on a review of related literature in ontology-based content management

systems (OCMS). In this chapter, we present a layered OCMS framework. The conceptual

framework is organized into three layers: the ontology layer, the content layer and the

annotation layer. We discuss the constructs, the changes and the evolvingentities of the

layers. A formal representation of the OCMS and its layers using a graph-based formalism

is presented.

We further introduce a layered operator framework. The framework contains four lay-

ers organized as atomic change, composite change, domain-specific change and abstract

changes. The change operations at each layer are represented based upon the graph-based

formalism used to represent the OCMS. The two frameworks are used to represent the con-

text in which the change impact analysis is defined and used. They furtherspecify the

interactions between changing entities and the interdependences within and across the lay-

ers.

This chapter is organized as follows. Section4.2provides a general introduction of an

63

OCMS. Section4.3 presents the layered OCMS framework and discusses the individual

constructs of the framework. The representation of the layered framework using graphs

is presented in Section4.4. Section4.5 presents the change operator Framework and its

formalization. We give an evaluation of the layered operator framework in Section 4.6.

Finally we present the summary of the chapter in Section4.7.

4.2 Ontology-based Content Management System

Content management systems shift toward the use of ontologies to enrich theircontent and

provide a better support for developers, designers and end users [Chu et al., 2009]. In such

systems, ontologies facilitate a common understanding and interpretation of a shared knowl-

edge between humans [Gruber, 1993]. However, the use of ontologies is not restricted to

the exchange of semantic information between humans and computers. It further transcends

that and incorporates the exchange of semantic information among autonomous digital de-

vices. This is achieved by annotating the target content using ontologies in such a way that

both human and computer systems gain the same understanding of the semantic meaning

conveyed by the content.

The semantic information, which is available in OCMS, is used for different purposes.

It is used for creating taxonomically guided information organization [Jones et al., 2011],

discovering previously unknown information, conducting semantically assisted information

retrieval and so on [Vallet et al., 2005] [Jun-feng et al., 2005]. It is used to identify more

relevant documents to the user’s query. It is used to improve the precisionof the results

by filtering content which is not relevant to the information need [Navigli & Velardi, 2003]

[Paralic & Kostial, 2003].

The semantic information is used to classify content using taxonomies and hierarchies

[Ferńandez et al., 2011]. Semantically rich content is used to identify hidden relationships

between the content, authors, publications, etc. [Pahl et al., 2010]. In other application

areas such as social networks, this semantic information is used to analyse activities of

users, product preferences, patterns of usages, etc. [Mika, 2007].

64

To achieve this, OCMSs make use of both generic and domain-specific ontologies. The

generic ontologies provide semantics for concepts whose interpretation is not restricted

to a specific domain. Examples of such ontologies are SUMO and MILO1 which give

semantic information about countries, measurement units, currencies and so on. Despite

their applicability to a wide range of disciplines, generic ontologies do not provide the

detailed semantics required to describe content in specific domains. Content-based systems,

that are built to support specific domains, make use of ontologies that are specifically built

for those domains. This enables the content-based system to supplement thecontent with

rich semantics using domain-specific ontologies.

Thus, the primary objective of OCMSs is to make the content understandable, inter-

pretable and interoperable by both humans and machines based on a common specification

and representation of concepts in a given domain.

An OCMS resides either on the web or on a private network. It may use a standalone

system where every required component is stored in one place or may utilizea distributed

environment where all the components or parts of components come from different loca-

tions. Furthermore, the authors of the content may use one or more ontologyto describe

the content. Semantic annotation of content is also done in different ways. Authors of the

content may use in-line annotation which embeds the annotations in the original content or

a stand-off annotation which stores the annotation separately from the original content.

We built the OCMS framework to have a common understanding of what we mean

by an OCMS. The OCMS framework defines the different layers of a typical OCMS, their

interaction and the conceptual location of each layer. Our framework supports the following

OCMS requirements. The framework needs to:

• allow extensibility of any of the layers namely the ontology, the annotation and the

content layers.

• ensure a transparent interaction of the layers and clear dependenciesbetween them.

• provide a method for simple evolution of the individual components.

1http://www.ontologyportal.org/

65

• facilitate change implementation with minimum or predictable impact on the depen-

dent entities.

• maintain the consistency within and across the layers.

To realize these requirements, we propose a layered OCMS framework withthree dis-

tinct layers. The interaction between the layers is defined by the dependencies that exist

among the entities in the layers. The framework facilitates the evolution of the components

with a visible and transparent effect on the dependent layers. The framework further main-

tains the consistency of the system whenever there is a change in any of thecomponents.

The following subsection introduces the different components of the OCMSframework.

4.3 Layered OCMS Framework

The first layer of the OCMS framework is the ontology layer. The annotationlayer is the

second layer which contains annotation triples. The third layer is the contentlayer which

contains a set of documents. The framework is depicted in Figure4.1.

.../
 Doc1.xml
 .../
 profile.xml
 .../pub_02_04_
 11.html

MILO

 Dublin Core

SUMO

Domain
 ontologies

Ontology Layer

Annotation

Layer

Content Layer

Annotation triples

Figure 4.1: Layered framework of OCMS

66

4.3.1 Ontology Layer

The ontology layer is a layer which contains one or more ontologies that provide semantics

to a given content in the OCMS. Ontologies provide a common ground for understanding,

conceptualization, representation and interpretation of domain concepts uniformly across

different systems, languages and formats. Researchers [Guarino, 1998, p.1] further ex-

plained an ontology as:

“An engineering artefact, constituted by a specific vocabulary used to describe a certain

reality, plus a set of explicit assumptions regarding the intended meaning of the vocabulary

words”

Our OCMS framework allows the use of one or more ontologies to describe content.

This is achieved by exploiting URIs to uniquely identify the ontologies. Ontologiesare

widely represented using web ontology language (OWL)2. We select OWL due to its expres-

siveness to represent domain-specific knowledge. Furthermore, it is the recommendation of

the W3C, widely used in many ontology applications and is expressive along with a formal

semantics [Grau et al., 2008] [Ardil, 2005]. We can achieve maximum interoperability of

OCMS with other ontology-based applications by using OWL.

Single ontology versus multiple ontologies.There is no single ontology that covers

every concept defined in the world. However, users generate content that provides deep

coverage of a single discipline or shallow coverage of multiple disciplines. Others may

cover anything in between the two extremes. The ontology layer should support users to

benefit from both domain-specific and generic ontologies.

Thus, in a single ontology environment, the OCMS uses one ontology to describe ev-

erything in the content. A good example is the gene ontology3 used in medical sciences

which represents a single domain. However, there are other applications that use multi-

ple ontologies. For example, the Semantic Web for Earth and Environmental Terminology

(SWEET)4 ontology merges several modular ontologies together to describe different con-

2http://www.w3.org/TR/owl2-primer/
3http://www.geneontology.org/
4http://sweet.jpl.nasa.gov/ontology/

67

cepts from different disciplines.

Generic versus domain-specific ontologies.The ontology layer needs to support both

domain-specific and generic ontologies. The support of domain-specificontologies can be

used for detailed and precise annotation of domain-specific content. Generic ontologies

that cover concepts which are generic such as space, time and measurement, etc., and can

be used to provide shallow annotation of a generic content.

Standalone versus distributed ontologies.Ontologies in the ontology layer can be

stored together on a single machine or distributed on different machines on the web. When

publicly available ontologies are used in standalone environments, a local copy of the on-

tologies is maintained, however, it is also common to use ontologies distributed over differ-

ent sites.

A choice has to be made before the implementation of an OCMS, because these factors

determine the behaviour of the overall OCMS.

4.3.1.1 Changes in Ontologies

Ontologies change frequently and continuously throughout a life cycle ofan OCMS. When-

ever there is a change in the domain, its conceptualization or specification, related ontolo-

gies need to evolve [Noy & Klein, 2004] [Benjamins et al., 2002]. When new concepts are

added, existing ones are deleted or modified in the content, the respective ontology needs

to be updated.

According to research conducted by [Goncalves et al., 2011] on a biomedical ontology

of the National Cancer Institute (NCI), the most frequent changes in an ontology focus on

addition of new classes, renaming of existing classes and addition and deletion of subclass

axioms. Whenever there is a substantial change in ontologies, the deletion ofclasses, data

properties and object properties are frequently observed.

Other research [Curino et al., 2008] identifies the intensity of the change in Wikipedia’s

database schema, which is the best-known example of a large family of web information

systems (WIS). They identified 170+ documented schema versions over 4.5years and over

700GB of data and more than 88,397 revisions in Mediawiki in 2007. They reported the

68

growing frequency of change as “There is strong pressure toward change (from 39% to

500% more intense than the traditional setting)”.

Implementing the changes requires understanding them correctly and representing them

accurately using change operations. However, this only solves few of the associated prob-

lems. These changes can trigger further cascaded changes and affect one or more interre-

lated ontologies. The impacts of the change may propagate to instances leavingthe process

in a vicious circle. An ontology engineer who detects a change of an instance in a content

document and tries to maintain the ontology accordingly may end up with many unseen and

unexpected changes. Furthermore, when the size of the ontology is large, it becomes diffi-

cult to understand and trace the propagation of the change and its impact onother entities in

the ontology and on dependent systems. The manual management of changes, in this case,

does not ensure the complete identification of the impacts and impacted entities. Itdoes

not guarantee the implementation of the requested change without introducingadditional

changes which are not initially identified by the user.

4.3.2 Content Layer

The content layer contains content documents which are the subjects of semantic annotation

[Kiryakov et al., 2004]. We define content as any digital information which is in a textual

format that contains structured or semi-structured documents, web pages, executable files,

software help files, etc. An OCMS essentially deals with content in the form ofbooks, web

pages, blogs, news papers, software products, documentations, helpfile reports, publica-

tions, etc. [Gruhn et al., 1995] [Abgaz et al., 2010]. The content layer provides the follow-

ing services.

Storage of documents. The content layer facilitates the storage of content. The storage

can be file-base or database storage. The content layer stores content as files in folders or

tables in databases and are accessible from the web. In any of the two cases the content

layer provides a permanent storage of the content.

Retrieval of the documents. Another service provided by the content layer is the re-

trieval of the documents whenever users require them [Kiryakov et al., 2004]. The retrieval

69

service provided by the content layer is crufcial in accessing a specificdocument.

Unique identifiers for content. All documents and parts of documents should be iden-

tified uniquely. The unique identifiers serve as content identifiers to link the content with

the ontology. Documents in the file-based storage are identified using the pathand the file

names. However, in databases they are identified using the database name,the table name

and the primary key [Elmasri & Navathe, 2010]. Documents that are stored on the web can

be accessed using the URI of the web combined with the file names. However,the detailed

implementation is the decision of the content manager.

Content in OCMS can be categorized as structured content, semi-structured content or

unstructured content.

Structured content. Structured content is content which is well defined with respect

to some data-centric structure. Data-centric structure defines the contentor fragments of

the content as data elements with a schema describing the elements. The contentgets the

structure by explicitly tagging parts of the content with the schema. A widely used for-

mat is XML. XML is supplemented by DTDs and XML schema (Section2.2) to provide

further semantics about the data. In a structured document, it is possible to locate and

retrieve a specific part of a document using the data elements. The other widely used for-

mat for structured content is databases. Relational databases store the content in the form

of tables which are organized into columns and rows. The rows represent individual in-

stances and the columns represent the attributes of the instances. The content or part of the

content in databases is accessible using queries which extract specific rows and columns

[Elmasri & Navathe, 2010].

In structured documents, there is interdependence between parts of the content docu-

ments using tags/attributes that allow composition of new content from the available snip-

pets. Since the fragments of content are highly structured and identifiable using content

identifiers, it is possible to combine different content fragments into one andpresent that

as a new content fragment. Such relation between different content canbe identified using

structures such as DocBook. DocBook5 defines the logical structure of a document in the

5http://www.docbook.org/

70

form of XML, HTML, XHTML, etc., (Section2.2).

Semi-structured content.Semi-structured content is content which is organized using

a document-centric structure. A document-centric structure gives structure to the whole

document or part of the document focusing on its presentation. In such documents, it is

possible to access information based on the available structure, but it needs additional effort

to locate and retrieve specific data elements. Content in an HTML file can be considered as

semi-structured content which incorporates tags that give some structureto the presentation

of the content.

Unstructured content. Unstructured content refers to content which does not have any

structure defined for identifying components of the content. Unstructuredcontent holds a

series of texts where there is no associated structural information that gives the content a

structure.

Our OCMS layer allows any kind of content to be annotated including unstructured

content. However, for the purpose of this research, we focus only oncontent which is either

structured or semi-structured.

4.3.2.1 Changes in the Content

Content in OCMS evolves continuously and frequently [Uren et al., 2006] [Adler et al., 2008]

[Krotzsch et al., 2011]. The evolution may cause a change in the semantics or in the struc-

ture of the content. Changes that affect the structure also cause a change in the semantics.

In a dynamic content management system new documents are produced, existing ones are

modified, edited or deleted frequently to provide up-to-date information. Thecontent layer

allows changes ranging from removal of the whole document to modification ofa single el-

ement in the document. The changes of the content in the content layer needto be available

to the other layers to ensure the consistency of the OCMS system [Javed et al., 2010].

We focus on structured and semi-structured content in the content layer.This is to

avoid complications related to accessing and processing changes in unstructured documents.

Structured and semi-structured content further allow us to easily identify evolving elements

of the content and create a unique reference which can be used for later processing. Thus,

71

in this research, we primarily focus on XML and HTML content documents. The content

documents have associated URIs. In case of XML documents, the different sections are

identified by combining the URI with the element ID. Whereas, in HTML and XHTML

files, we identify specific parts of the content with an offset showing the beginning and the

end of the section relative to the document [Maynard, 2008].

4.3.3 Annotation Layer

The annotation layer provides a means of handling semantic annotation [Chu et al., 2009].

Semantic annotation is a process of linking content with ontology entities to enrichthe con-

tent with the semantics [Oren et al., 2006]. Semantic annotation is used to explicitly iden-

tify concepts and relationships between concepts discussed in the content[Uren et al., 2006]

[Krötzsch et al., 2007].

The annotation process semantically enriches content by defining its attributesusing

concepts and properties from the ontology. It further creates a link between two content

documents to indicate their semantic relationships. Annotation also refers to the output of

the annotation process.

In any application that makes use of ontologies, the target content, which needs to be

semantically enriched, is required to have an explicit link, at least to one or more elements

in the ontology. The annotation becomes the major element of the OCMS for the following

reasons.

• In applications that make use of ontologies, the target content which needsto be

semantically enriched is required to have an explicit link at least to one elementin

the ontology. This is achieved by annotations.

• Annotation provides semantics which can be used by humans and machines.

• Annotation provides traceability of the content fragment using the semantics associ-

ated with it.

72

4.3.3.1 Annotation Storage

In semantic annotation, there are two approaches commonly used to store annotation data:

in-line annotation and stand-off annotation [Wilcock, 2009]. The in-line approach embeds

the annotation information in the content. Such annotations either modify the content of

the original document to embed the annotation or maintain a copy of the original document

together with the annotation data. Whenever the semantic data is required, the system needs

to access the annotated document and extract the annotations6. The disadvantage of the in-

line annotation is that the annotation must be aligned with theT Box statements which

requires additional effort to align the content with the ontology.

The stand-off annotation stores the annotations of the document in a separate storage

space. This approach uses the document URI as a unique identifier of thedocuments and

every annotation of that document is associated with a URI. This approachhas advantages

and disadvantages. The first advantage is the separation of the semanticsfrom the content,

which allows independent evolution of either the content or the annotation. The second is, it

enables the annotation data to be accessed separately without reading the whole document.

Exhaustive annotation increases the size of the original document and becomes a problem

for accessibility of individual annotations [Maynard, 2008]. Third, it is suitable to anno-

tate content when the annotator does not have the permission to modify the content. The

separate annotation layer further provides facilities such as querying theannotation triples.

However, there are disadvantages associated with it [Wilcock, 2009].

The main disadvantage is, it requires a systematic synchronization of the annotation

with the content. When the document is modified or deleted, the annotation layer should

be updated accordingly. In a distributed environment, this task may introduceadditional

overhead. The other disadvantage is the separate storage of the content and the annotation.

The separation causes the content to get delivered separate from the annotation. In fact, this

problem can be addressed by merging the content and the annotation data during content

delivery.

6http://www.w3.org/TR/sawsdl/#Using

73

Table 4.1: Annotation triple representation

Subject Predicate Object context
CNGL:id-2.xml rdf:type rdfs:Resource cngl:triple
CNGL:id-2.xml rdf:type CNGL:Document cngl:triple
CNGL:id-2.xml CNGL:isAbout CNGL:DeletingEmail cngl:triple
CNGL:id-2.xml CNGL:hasTitle “Deleting email account” cngl:triple
CNGL:id-2.xml CNGL:Contains CNGL:id-6.xml cngl:triple
CNGL:id-2.xml CNGL:mediaType CNGL:Text cngl:triple

4.3.3.2 Annotation Triples

The annotation process uses RDF triples (subject, predicate and object) toannotate any

content document. It further stores the context of the annotation to distinguish between

different contexts. The subject of the annotation comes from the contentlayer and is usually

a URI. The predicate comes from the ontology or the schema defined for theontologies.

The objects can be resources from the ontology or other content artefacts. A single content

document can have multiple annotation triples. A single resource defined in theontology

can be used many times in the annotation layer.

Table4.1shows the structure of the annotation triple. The subjects of the annotation are

content documents (xml files in this example) or parts of xml files. The predicates originate

from OWL or RDF properties (rdf:Type) or properties from domain-specific ontologies

(CNGL:isAbout). The objects come from either the ontology (CNGL:Document)or from

the content layer (CNGL:id-6.xml). The user can provide different contexts to categories

of annotation triples. For example, the context of the triples is CNGL:triple, to indicate that

they are triples for annotating resources in CNGL.

In the OCMS, we store the annotation triples in triple stores. Triple stores improve

the speed of the retrieval of the required information. They store large numbers of triples

and are suitable for further expansion [Bizer & Schultz, 2008]. Furthermore, the annotation

triples are compliant to RDF and RDF/XML serializations.

74

4.3.3.3 Change in the Annotation

The annotation layer is the dynamic layer of an OCMS [Goncalves et al., 2011]. The

changes in the annotation layer are frequent and include addition and deletion of individual

annotations. There are a number of triples added, modified or deleted in this layer. This

layer is highly dependent on both the content and the ontology layer. Any change in the

other two layers affect the annotation layer which carries all the semantics related to the

content. Changes made on the triples of this layer may cause other changes torelated an-

notations within the layer. In such a situation, the changes in the annotation layer require

proper analysis and evaluation before they are implemented in the system.

Figure 4.2: An example of a layered framework of OCMS

Now, let us take a concrete OCMS representation and see how the three layers inter-

act with each other. In Figure4.2, the ontology layer contains an ontology which contains

concepts such asHelp file, User, SoftwareFeature, etc. These concepts are used in the

annotation layer to describe help documents stored in the content layer. Forexample, the

document that contains information about an administrator is linked to the concept admin-

istrator. Another document is linked to the task of creating and building.

75

4.4 Graph-based Representation of an OCMS

The OCMS is represented using a graph-based formalism. We choose a graph-based formal-

ization over set theory or relational algebra for the following reasons. First, graphs provide

exhaustive theory support and reduce the problem to a well studied topicin graph theory

[Baresi & Heckel, 2002]. This includes mappings between structures and finding a minimal

representation of a given graph. In this research, we frequently search entities in the OCMS

to delete or add semantics. Graphs have some proven efficiency for searching subgraphs,

nodes and edges. There are generic implementations and algorithms availablefor graphs

[Heckel, 2006].

Second, graphs provide appropriate data structure to represent ontologies and annota-

tions. The available ontology editors, such as protege, use graphs to represent ontologies in

RDF and OWL [Trinkunas & Vasilecas, 2007] [Bönstr̈om et al., 2003]. Finally graphs visu-

alize complex data in a simple and understandable way. In our OCMS, the ontology and the

annotation are represented as graphs and the content is represented as a set of documents.

The document set serves as a node (of type instances) in the annotation layer.

An OCMS is represented as graphG = Go ∪ Ga ∪ Cont, whereGo is the ontology

graph,Ga is the annotation graph andCont is the content set. An example of a graph

representation of an OCMS is given in Figure4.3representing the ontology graph at the top,

annotation graph in the middle and the document set at the bottom. Each of the individual

graphs and their descriptions are given below.

4.4.1 Ontology Graph

An Ontology Graph is represented by a directed labelled graphGo = (No, Eo) whereNo

is a set of labelled nodesno1, no2, . . . , nol which represent classes, data properties, object

properties and instances [Zhang et al., 2010]. Eo is a set of labelled edgeseo1, eo2, . . . , eom.

An edgeeo is written as(n1, α, n2) wheren1, n2 ∈ No and the labels of an edge represented

by α ∈ CA ∪DPA ∪OPA ∪ IA ∪RA.

CA={subClassOf, disjointClasses, equivalentClasses}

76

Figure 4.3: Graph-based representation of OCMS

DPA={subDataPropertyOf, dataPropertyRange, dataPropertyDomain, disjointDataProp-

erties, equivalentDataProperties, functionalDataProperty}

OPA={subObjectPropertyOf, objectPropertyRange, objectPropertyDomain, disjointO-

bjectProperties, equivalentObjectProperties, inverseObjectProperties, symmerticObjectProp-

erties, functionalObjectProperty, inverseFunctionalObjectProperties, transitiveObjectProp-

erty, reflexiveObjectProperty, irreflexiveObjectProperty}

IA={sameIndividual, differentIndividuals, classAssertion, dataPropertyAssertion, ob-

jectPropertyAssertion}

RA={objectAllValuesFrom, objectSomeValuesFrom, objectHasValue, objectHasSelf,

objectExactCardinality, objectMaximumCardinality, objectMinimumCardinality, dataAll-

ValuesFrom, dataSomeValuesFrom, dataHasValue, dataExactCardinality, dataMaximum-

Cardinality, dataMinimumCardinality}

In the ontology graph, properties are often represented as nodes andproperty instances

are represented as edges [Bönstr̈om et al., 2003]. User defined property nodes link with

other class nodes using schema level property instances such asrdfs:domainandrdfs:range.

For example, in Figure4.3, the object propertyContains is a property node linked to

77

Help File using a schema level instance propertyrdfs:domainas an edge. This schema

level property instance defines the domain of the property node. However, at the annotation

level, the property which is treated as a node in the ontology (now serving asschema for the

annotation graph) is treated as an edge in the annotation instead of a node. For example, an

instance ofHelp File CNGL:id-a9221956.xmlis linked to an instance of a paragraph using

the edgecngl:Contains.

In general, we treat properties as nodes and property instances as edges (Figure4.6).

When we define properties as part of an ontology, we represent them as nodes and when we

use those defined properties in the annotation, we represent them as edges of the annotation

graph. We define the properties as a node and link them with other class nodes and prop-

erty nodes in the ontology graph. We represent property instances as edges that link two

instances in the annotation graph.

OWL:Thing

rdfs
:
SCO

Help_File

paragraph

Activity

OWL:class

rdfs
:type
rdfs
:type

rdfs
:type

Help_File

paragraph

Activity

rdfs
:
SCO
rdfs
:
SCO

Activity

Task

owl:
EC

a. Types of the entities
 b. Hierarchy of classes
 c
. Equivalent classes

OWL:Location

hasLocation

hasCity

isAbout

OWL:Object Property

rdfs
:type
rdfs
:type

rdfs
:type

hasCity
 hasCountry

owl:
SOPO

hasCity

isCityOf

owl:IPO

d. types of the entities
 e. Hierarchy of classes
 f
.
 InversePropertyOf

Contains

Help_File
 paragraph

g
. Domain and range of properties

rdfs
:Domain
 rdfs
:Range

Node

Edge

rdfs
:
SCO
 rdfs
:
SubClassOf

owl:
SOPO
 owl:
SubObjectPropertyOf

owl:
SOPO

=

=

owl:
EC
 owl:
EquivalentClasses
=

owl:IPO
 owl:
 InversePropertyOf
=

Figure 4.4: Graph-based representation of the ontology layer

In Figure4.4.a, the graph nodes represent entities that are linked to the owl:class node.

Universal classes and domain-specific classes are defined as owl:class. The edge links

each of the entities to the owl:class node. Figure4.4.b shows the relationship among the

78

nodes. The edges represent a subclass axiom. In Figure4.4.c, the edges represent the

equivalence axiom between the two nodes, which are represented as classes in Figure4.4.a.

The representations of the property nodes and edges created betweenproperties are given

in Figure 4.4.d, Figure4.4.e and Figure4.4.f. Figure 4.4.g represents nodes and edges

between classes and properties.

4.4.2 Content Set

A Content Setcan be viewed as a set of content documents.Cont = {d1, d2, . . . , dn}

where:di represents a structured or semi-structured document or elements of a document.

In the content layer, such content is represented as a node.

Figure 4.5: Document collection

The content is represented as a set of documents either in a flat file, or in adatabase. We

represent the set of documents using their unique identifiers. The uniqueidentifiers ensure

access to the exact location of the documents. However, the selection of storage structure is

the decision of the architects at the time of deployment of the OCMS.

79

4.4.3 Annotation Graph

An Annotation Graph is represented by a directed labelled graphGa = (Na, Ea) where

Na is a set of labelled nodesna1, na2, . . . , nal andEa is a set of labelled edgesea1, ea2, . . . , eam.

An annotation edgeea is written as (na1, αa, na2) wherena1 ∈ Cont is a subject,na2 ∈

Cont ∪GO is an object andαa ∈ GO is a predicate. The edges are referred as triples.

The user-defined properties are treated as labels of the edges when they are used in

the annotation layer to describe the document nodes. For example, in the triple(CNGL:id-

19221955.xml, cngl:Contains, CNGL:id-19221955\para) in Figure4.6, the document is

treated as a node and the instance propertycontainsis represented as the label of the edge

in the annotation layer. Figure4.6 further depicts the sources of the objects in the triples.

The triples in the vertical ovals get their object from the ontology graph, whereas the triple

in the horizontal oval gets its object from the content set.

Figure 4.6: Annotation graph

4.4.4 Attributes of the Graph

The type of a node is given bytype (n)that maps the node to its type which is defined in

the schema (class, instance, data property, object property). The label of any edgee =

(n1, α, n2), which isα , is a string given by label(e). The label of a noden is the URI

associated with the node and is given bylabel (n). All the edges of a noden are given by

a functionedges (n). It returns all the edges as(n, α,m) ∨ (m,α, n) wheren is the target

node andm is any node linked ton via α.

80

4.5 Change Operator Framework

To process and implement a requested change properly, we need to represent the changes in

relation to the OCMS framework (Section4.3) and its graph-based formalization (Section

4.4). The change representation needs to ensure the correct and completerepresentation

of the requested change. The change request may vary depending onthe objective of the

user and the size of the desired change. A change request can containa single task and can

be represented by a single change operation, but this is not always true. Change requests

may become complex and may not be represented by a single change operation. For such

change operations, we need to combine atomic change operations to form a composite

change operation. For change requests in domain-specific ontologies, we may be interested

to represent changes that have similar patterns. Thus, we represent them using domain-

specific change patterns.

Our change representation framework covers three main components. Thefirst compo-

nent provides a high level conceptual representation of changes using a layered operator

framework (Section4.5.1). The framework specifies the organization of change operations

to represent changes in a suitable way. The second component provides a metamodel for

representing individual change operations (Section4.5.2). It provides specification for the

attributes of the change such as target entities, parameters, owner, time stamp, order, etc.

The third component provides specification of change operations using graph formaliza-

tions (Section4.5.3). This component represents the implementation of the actual change

in the OCMS graph and how the individual change operations change the overall system.

Each of these components are discussed from Section4.5.1to 4.5.3in detail.

4.5.1 A Framework of Change Operators and Patterns

To represent changes in a suitable format, we propose a layered operator framework which

contains four different levels [Javed et al., 2009] [Javed et al., 2011b]. The first level con-

tains elementary changes that represent atomic tasks. The second level contains aggregation

of atomic change operations that represent composite and complex tasks. The third level

81

contains a mix of atomic and composite change operations to create domain-specific change

patterns. The fourth level focuses on generic categorization of the domain-specific change

patterns. The first two levels are considered as generic change operations. The last two

levels represent patterns of change operations.

• Level one: elementary changes which are atomic tasks.

• Level two: aggregated changes to represent composite, complex tasks.

• Level three: domain-specific change patterns.

• Level four: abstraction of the domain-specific change patterns.

Level 1 Change Operators

Atomic Changes

Level 2 Change Operators

Composite Changes

Level 3 Change Operators

Level 4 Change Operators

Generic S
tructural
Operations

Patterns

Domain Specific

Abstract

Figure 4.7: Layered operator framework

We observed that [Javed et al., 2009] ontology changes are driven by certain types of

common, often frequent changes in the application domain. Therefore, capturing these

in the form of common and regularly occurring change patterns creates domain-specific

abstractions. A number of basic change patterns may be provided so that users may adapt

and generate their own change patterns to meet their own domain-specific demand. This

makes the ontology evolution faster and easier.

82

4.5.1.1 Generic Structural Levels

Level One Change Operators - Element Changes.These change operators are the ele-

mentary operations used to perform a single task by an ontology managementtool. These

operators add or remove a single entity in the ontology. A single operator performs a single

task that can add or delete a single concept, a single property, etc. Levelthree and level four

change patterns specified in Figure4.8 are based on patterns observed in a university ad-

ministration domain (AppendixC) and can be abstracted to other domains that use similar

patterns.

Figure 4.8: A layered operator framework - detailed view

Level Two Change Operators - Element Context Changes.Many evolution tasks

cannot be done by a single atomic change operation. A set of related change operations is

required. These change operations are identified by grouping atomic operations to perform

a composite task. Users request to implement changes that cannot be doneby a single

atomic change. Such changes are composition of atomic change operations ina specific

order. The combination of the atomic change operations are determined by thetype of the

requested change. It is possible to create an infinite number of composite change operations

from the atomic change operations. For example, when a user wants to split an existing

83

concept into two distinct concepts, he/she combines atomic change operations in a specific

order to represent the requested changes. A single composite change operation can be

represented in many ways using different combinations of atomic change operations. In

this research, we focus on supporting composite change operations. Wefurther provide

predefined and frequently used composite change operations such as merge, split and copy

[Stojanovic, 2004] [Javed et al., 2011a] [Javed et al., 2012].

4.5.1.2 Domain-Specific Level

Level Three Change Operators - Domain-specific.This domain-specific perspective

links the structural changes to the aspects represented in domain ontologies. In order to

execute a single domain-specific change, operations at level two are used. The change

patterns are based on the viewpoints and preferences of the users. Two users may have

different perspectives to view the ontology, which results in the use of a combination of

different operations from composite changes. As the perspectives are different, the number

of operations or the sequence of operations may differ. This difference results in patterns of

changes based on the perspectives of the ontology engineers. Domain-specific change pat-

terns are extracted from change logs over a long period of time that represents the patterns

of change operations used to implement changes. The extraction of the patterns from the

change logs are discussed in detail in [Javed et al., 2011a]

Level three operators enable us to treat domain-specific operations separately and allow

us to define our own change patterns once and execute them many times.

4.5.1.3 Abstract Level

Level Four Change Operators - Generic Categorization.Level four change operators

are constructed based on the abstraction of the concepts in level three. The main objective

of introducing this level is to provide a facility that maps domain-specific ontologies to

available upper level ontologies (i.e. categorizing domain concepts in terms ofabstract

ones) and to generalize and transfer patterns to other domains. Level four is considered as

a framework aspect that guides the transfer of patterns to other domains.It is not directly

84

available for operational implementation. It provides abstract mapping of change patterns

used in one domain to similar change patterns required in another domain.

4.5.2 Change Metamodel

Following the layered operator framework, we identify and represent changes and their at-

tributes using a metamodel. Whenever a change operation is executed, we store the change

operations which are additions and deletions of classes, data properties,object properties,

instances, axioms, etc. The model captures information about the change operations. This

information is useful to handle composite changes and domain-specific patterns. The meta-

model of a change is given in Figure4.9and an example of an atomic change operation is

depicted in Figure4.10.

Figure 4.9: A metadata model for change operations

4.5.2.1 Change

Atomic change represents a single change operation which performs a single task and is

represented by a single node. Composite change is an aggregation of atomicchanges. A

change contains metadata such as on which entity, by whom and when a change is requested

85

Figure 4.10: An example of atomic change operations

and implemented. It also contains the change operation, the OCMS element, the specific

entity and other related information about the change. This information is treated as a

node in the graph and is linked to the change node using edges with descriptive labels. A

complete specification for an atomic change operation has the following information.

Operation. The action we want to implement in the ontology is represented by the op-

eration. The operation can be addition, deletion or modification in case of atomic

change operations and merge, copy, split, etc., in case of composite change oper-

ations. We represent modification as a series of additions and deletions, thus, the

operation mainly contains addition and deletion operations. An addition operation

introduces an entity which was not present in the OCMS in the previous version. A

deletion operation removes an existing entity from the OCMS.

A change has an operation which can be either addition or deletion. The change and

the operation nodes are connected by an edge represented as a directed arrow with a

labelhasOperation.

Target Entity. A target entity represents the changing entity of the OCMS. The type

of the entity can be a class, an object property, data property, restriction, axiom, or

instance which are defined in the OCMS graph. The target element is represented

as a node and is connected to the change node with a directed edgehasTargetEntity.

For example, a change operation which adds a class can be representedusing three

nodes, the change node, the operation node, which isadd, and the target element

86

node, which isclass.

Parameter. A parameter represents one or more of the actual entities involved in the

change, in our case the IRIs. A change may have one or more parameters.Each of

the parameters has attributes to distinguish one from the other.

The parameter value attribute indicates the value of the specific parameter. For

example, the above change operation can be applied to the parametercngl:#person

The parameter order indicates the order in which the parameters appear in the

change. The order indicates the dependent and antecedent entities. For example, a

parameter with order equal to 0 indicates that the parameter appears at the beginning

of the change operation.

The parameter type indicates the type of the parameter. In the above example, the

type of the parameter is class, which indicates that this specific parameter is a class in

the OCMS. This attribute gives important information when we have mixtures of pa-

rameters in the change. For example, Add classAssertion (cngl:#inst1, cngl:#Person)

the first parameter with order 0 isInst1and its type is instance. The second parameter

with parameter order 1 isPersonand its type is class. A parameter is connected to

the change node using a directed edge labelledhasParameterand a change operation

may have more than one parameter.

Creator. The creator represents the current user who requested the change operation. This

node is essential to provide information about who requested and implementedthe

change operation. This node is connected to the change node using a directed edge

labelledhasCreator.

Time stamp. A time stamp is used to record the time at which the change operation is

implemented. This node stores the date and the time the change is implemented. It

includes the seconds in microseconds. This node is connected to the change node

using a directed edgehasTimeStamp.

Change Id. Every change needs to have a unique identifier to separate it from other

87

changes in a change log. Change Id represents the value that is used to identify a

given change uniquely. The change node is connected to the change Idnode with a

directed edge labelledhasChangeId.

Change order. When we represent a composite change operation, we want to keep the

order at which an atomic change is executed. Change Order enables us toknow which

atomic change operation is executed first and which one follows next.

Statement type.The reasoning type represents the type of the statement the user is chang-

ing. The reasoning type is eitherABox orT Box statement. This information serves

as an input for the change impact analysis process.

A change can be a requested change or a derived change. Two special nodes are used from

the change node to indicate the change is either a requested change or a derived change.

A requested changeis a change which is captured as an explicit change request.Derived

changesare changes that are automatically generated to correctly implement the requested

change in a given ontology.A complete changeis a change which is the union of the

requested change and the derived changes. Capturing this information isessential to deter-

mine the order of execution of the complete change operation. The following table explains

the actual information stored about a change operation in an xml file.

<FinalChange>

<Change>

<ChangeId>1</ChangeId>

<TimeStamp>2012/05/22 18:59:47:5947</TimeStamp>

<ChangeType>generatedChange</ChangeType>

<Creator>Yalemisew</Creator>

<Order>1</Order>

<ChangeOperation>Add</ChangeOperation>

<TargetEntity>SubClassOf</TargetEntity>

<Parameter Type="Class" Porder="0">

88

<http://www.cngl.ie/University.owl#MastersStudent>

</Parameter>

<Parameter Type="Class" Porder="1">

<http://www.cngl.ie/University.owl#Person>

</Parameter>

<StatementType>TBox</StatementType>

</Change>

<Change>

<ChangeId>2</ChangeId>

<TimeStamp>2012/05/22 18:59:47:5947</TimeStamp>

<ChangeType>generatedChange</ChangeType>

<Creator>Yalemisew</Creator>

<Order>2</Order>

<ChangeOperation>Add</ChangeOperation>

<TargetEntity>SubClassOf</TargetEntity>

<Parameter Type="Class" Porder="0">

<http://www.cngl.ie/University.owl#PHDStudent>

</Parameter>

<Parameter Type="Class" Porder="1">

<http://www.cngl.ie/University.owl#Person>

</Parameter>

<StatementType>TBox</StatementType>

</Change>

...

</FinalChange>

4.5.3 Graph-based Formalization of Change Operations

The above change operations are applied to the OCMS graph (G) discussed in Section

4.4. The OCMS graph contains several nodes (N) and edges (E) which are subject to

89

change. The representation of each node and edge is given in detail in Section4.4. Thus,

all the changes are applied either on the nodes or on the edges of the OCMSgraph. For

example, when we delete a content document, we are deleting a node from thecontent graph.

When we remove a subClass axiom from the ontology graph, we are deletinga specific

edge that links two nodes. We formally represent change operations using graphs. The

formalization process begins from atomic change operations since compositeand domain-

specific changes are constructed from atomic change operations. To create composite or

domain-specific changes, we need to combine atomic changes together. Thetarget context

of the operations (Section4.4) is an OCMS graphG = (N,E) whereN is the set of nodes

N1, N2, . . . , Nl andE is the set of edgesE1, E2, . . . , Em whereEk = (Ni, αk, Nj) and

i, j ∈ {1, 2, . . . , l} andk ∈ {1, 2, . . . ,m}.

4.5.3.1 Atomic Change Representation

Atomic change can be viewed as a change operation that adds or removes asingle node or

edge from the ontology.

• Add Entity. Given an OCMS graphG = (N,E), an entityM and its node typeT ,

theAdd Entity(M : T) operation results in a graphG′ = (N ′, E′) whereN ′ =

N ∪{M} ∧ E′ = E∪{(M,α, T)} whereα = rdf : type ∧ T ∈ {owl : class, owl :

dataProperty, owl : objectProperty, owl : instance}.

• Add Axiom. Given an OCMS graphG = (N,E) and an axiomA = {(mi, α,mj)},

theAdd Axiom(A) operation results in a graphG′ = (N,E′) whereE′ = E ∪A.

• Delete Entity. Let n ∈ N be the entity node to be deleted andA = {(n, α, T)} ∈ E

be the axiom defining the type(T) of the entity, theDelete Entity(n : T) operation

on an OCMS graphG = (N,E) results in a graphG′ = (N ′, E′) whereN ′ =

N − {n} ∧ E′ = E −A .

• Delete Axiom.Given an OCMS graphG = (N,E) and an axiom to be deletedA =

{(ni, α, nj)} ∈ E, theDelete Axiom(A) operation results in a graphG′ = (N,E′)

90

whereE′ = E −A.

The above formalization is very general and does not distinguish betweenspecific im-

plementations of change operations on specific entities. Thus, a detailed version of the

formalization for specific entity types is given below. A detailed discussion ofthe descrip-

tion and the semantics of entities is given in Section2.3.4.

• Add Class. Given an OCMS graphG = (N,E) and a class nodeC, the Add

Class(C) operation results in a graphG′ = (N ′, E′) whereN ′ = N ∪ {C} ∧

E′ = E ∪ {(C, rdf : type, owl : class)}.

• Add Data Property. Given an OCMS graphG = (N,E) and a data property node

DP , Add DataProperty(DP) operation results in a graphG′ = (N ′, E′) where

N ′ = N ∪ {DP} ∧ E′ = E ∪ {(DP, rdf : type, owl : dataProperty)}.

• Add ObjectProperty. Given an OCMS graphG = (N,E) and an object property

nodeOP , Add ObjectProperty(OP) operation results in a graphG′ = (N ′, E′)

whereN ′ = N ∪OP ∧ E′ = E ∪ {(OP, rdf : type, owl : objectProperty}.

• Add Individual. Given an OCMS graphG = (N,E) and an individual nodeI, Add

Individual(I) operation results in a graphG′ = (N ′, E′) whereN ′ = N ∪ {I} ∧

E′ = E ∪ {(C, rdf : type, owl : individual)}.

• Delete Class. Let C ∈ N be the class node to be deleted andA = {(C, rdf :

type, owl : class)} ∈ E be the axiom defining the type of the node, the operation

Delete Class(C) applied on an OCMS graphG = (N,E) results in a graphG′ =

(N ′, E′) whereN ′ = N − {C} andE′ = E −A.

• Delete DataProperty. Let DP ∈ N be the data property node to be deleted and

A = {(DP, rdf : type, owl : dataProperty)} ∈ E be the axiom defining the type

of the node, then the operationDelete DataProperty(DP) applied to an OCMS

graphG = (N,E) results in a graphG′ = (N ′, E′) whereN ′ = N − {DP} ∧

E′ = E −A.

91

• Delete ObjectProperty.Let OP ∈ N be the object property node to be deleted and

A = {(OP, rdf : type, owl : objectProperty)} ∈ E be the axiom defining the type

of the node, then the operationDelete ObjectProperty(OP) applied to an OCMS

graphG = (N,E) results in a graphG′ = (N ′, E′) whereN ′ = N − {OP} ∧

E′ = E −A.

• Delete Individual. Let I ∈ N be the individual node to be deleted andA =

{(C, rdf : type, owl : individual)} ∈ E be the axiom defining the type of the

node, the operationDelete Individual(I) applied to an OCMS graphG = (N,E)

results in a graphG′ = (N ′, E′) whereN ′ = N − {I} ∧ E′ = E −A.

4.6 Evaluation

The layered operator framework is proposed to represent change requests and make them

available for implementation. The evaluation focuses on the adequacy of the layered opera-

tor framework. Details of the evaluation are presented in the following subsections.

4.6.1 Adequacy of the Layered Operator Framework

The research problem in this section focuses on the representation of changes using change

operations that are adequate for implementation and suitable for change impact analysis.

Users of the OCMS require adequate change operations to represent changes and analyse

impacts.

Adequacy measures whether the proposed operator framework is sufficient to represent

the requested change. We evaluate the adequacy of the layered operator framework using

an experiment.

4.6.1.1 Experimental Setup

We built a prototype which implements the proposed operator framework, as aproof of con-

cept which includes a facility to specify the change request using operations supported in the

92

layered operator framework. The prototype supports a total of 62 addition and deletion oper-

ations. This includes 14 change operations acting on classes, 12 operations acting on object

properties, 12 operations acting on data properties, 12 operations related to individuals and

individual assertions, 6 operations dealing with cardinalities, 4 operationsdealing with re-

strictions and 2 change operations dealing with content. There are two operations dealing

with document change and the remaining operations apply across entities of the ontology

and the annotation. We further support 8 composite change operations [Stojanovic, 2004].

Any other evolving constructs supported by OWL 2.0, which are not covered in this experi-

ment (such as annotation properties), are the limitations of this experiment.

To evaluate the adequacy of the proposed layered operator framework, we use changes

derived from the Software Help File OCMS (AppendixA), which is built to semantically

enrich software help files with domain ontologies, the Database Course OCMS(Appendix

B), which is built to describe content in database systems course ware, andthe University

OCMS (AppendixC), which focuses on enriching a university administration system using

semantics.

For the purpose of the experiment, we identified 10 change requests fromempirically

identified scenarios [Abgaz et al., 2011]. These change requests represent the majority of

frequently observed operations and frequently evolving entities. To avoid the bias of a

single user, we included additional users to participate in the implementation of thechange

operations. The first user is an expert in ontology evolution and the second user has know-

how of ontologies and ontology applications, and the third user comes from the software

engineering domain. Each user spends sufficient time to represent the individual change

requests using the operators provided at each layer. The system implements the change

requests and the users are asked to evaluate the adequacy of the change operations.

Before the experiment, we provided a short introduction of ontology constructs such

as classes, data properties, object properties, etc., and how to specifychange requests. We

introduced the users to the overall environment of the prototype. During the experiment, we

asked each user to implement the selected changes using the change operations provided by

the system.

93

4.6.1.2 Experimental Results and Discussions

We evaluated the operator framework using all atomic change operations, selected com-

posite and domain-specific change operations. We further collected feedback from users

who participated in the evaluation of the prototype. We asked the users to implement se-

lected change operations (Table6.12) using the prototype and to evaluate the adequacy of

the change operations to represent change requests. The results of the user evaluation are

represented in Table4.2.

Table 4.2: Adequacy of the layered operator framework
Rating User 1 User 2 User 3
Fully Adequate 10 2 0
Adequate 0 8 3
Slightly Adequate 0 0 7
Slightly inadequate 0 0 0
Inadequate 0 0 0
Fully inadequate 0 0 0

The evaluation results show that all users agree on the adequacy of the layered operator

framework. The users strongly agree on the adequacy of 40% of the change operations,

agree on 36% of the change operation and 23% slightly agree on adequacy of the change

operations. From the evaluation result, we found out that the layered operator framework

provides adequate change operations to represent change requests. The advantage of the

layered operator framework is that its composite and domain-specific change operations are

composed from atomic change operations and the composition does not put any restriction

on the number and order of atomic change operations. Thus, the layered operator framework

meets its objective and is capable of representing the changes captured in an OCMS.

4.7 Summary

Two frameworks are proposed in this chapter. The first one focuses on defining the overall

framework of an OCMS system and provides specifications on how each component is

viewed in this research and how the components communicate each other. Thisframework

94

paves the way for understanding the interaction and dependency between the entities in the

layers. It systematically organizes the OCMS and makes it suitable for the proposed change

impact analysis.

The proposed framework consists of the ontology layer at the top which mayincorpo-

rate a single or multiple ontologies distributed over the web or stored on a single machine.

The ontologies can be generic ontologies or domain specific. This layer provides seman-

tics to the target content. The annotation layer uses triples to annotate contentand content

artefacts. The annotation layer uses triples to annotate content. The triple is organized as

subject, predicate and object. It further incorporates context information to indicate the

context of the triple. The content layer provides storage and retrieval of the content in the

content-based system. Access to the content or part of the content is based on the document

identifiers assigned to each content or part of the content. At this stage, this layer supports

structured and semi-structured content.

The second framework focuses on defining the changes in OCMS and organizes them

using four layers. This framework identifies the atomic change operations and their actions

in the OCMS graph. It allows creation of composite and domain-specific change operations.

This framework lays a foundation for change request representation,dependency analysis

and change impact analysis.

The two frameworks clarify the OCMS and help us to understand the interaction be-

tween different entities within and across the layers. They further clarifythe composition

of changes from the atomic changes to abstract level changes. The frameworks support

traceability of entities of each layer. The graph-based representation facilitates efficient

searching and processing of entities and changes. The evaluation result of the operator

framework shows that the framework is adequate to represent change requests. It is useful

to represent composite and domain-specific change operations based onthe preference of

the user.

95

Chapter 5

Change Analysis Framework

5.1 Introduction

In the previous chapter, we gave an overview of the OCMS architecture and the layered

operator framework. The framework identified the components of an OCMS, the evolving

entities and the change operations. We represented the OCMS using graphs and formalized

the change operations.

In this chapter, we present the change impact analysis framework. The overall change

impact analysis framework includes the requested changes (Section4.5.2.1), evolving enti-

ties, dependency analysis, evolution strategies and the core change impact analysis process.

This chapter contributes the major inputs for the change impact analysis (Chapter6) and for

the change optimization and implementation phases (Chapter7).

Together with the framework, in this chapter, we cover the dependency analysis and

the evolution strategies. The dependency analysis identifies dependent entities that evolve

together. The evolution strategy determines how a requested change operation is imple-

mented. A single change request can be implemented using different evolution strategies.

Each strategy composes changes differently and impacts the OCMS differently. Algorithms

that are used to identify dependent entities, dependency rules and methods for combining

dependency types with evolution strategies are the major focus.

This chapter is organized into six sections. Section5.2discusses the overall framework

96

of change impact analysis. Section5.3 discusses dependency analysis algorithms used to

identify entities that are affected by a change operation. In Section5.4, we present different

change strategies, which affect the implementation of the requested changeand the impacts

of the requested change used during evolution. In this section, a customized implementation

of strategies is presented. Section5.5 provides the evaluation of the dependency analysis

method and the overall change impact analysis framework. Finally we give asummary of

the chapter in Section5.6.

5.2 The Change Impact Analysis Framework

In this section, we give a brief introduction of the change impact analysis framework. The

overall change impact analysis framework contains three major phases. The first phase

receives change requests and represents them using change operations. This phase uses

evolution strategies and dependency analysis to generate complete changeoperations. The

second phase takes the represented changes and analyses the impacts of the change opera-

tions. This phase merges integrity analysis and change impact analysis together for efficient

processing. Finally, we have the change implementation phase which allows theuser to im-

plement the changes based on the results of the impact analysis. Figure5.1 outlines the

phases of the change impact analysis framework and their interactions.

Change

Capturing and

Representation

Change Impact

Analysis

Integrity Analysis

Change

Optimization

and

Implementation

Dependency

Analysis

Evolution Strategy

Figure 5.1: The change impact analysis framework

97

5.2.1 Change Request Capturing and Representation

The objective of this phase is to represent detected changes using suitable change operations

(Section4.5) that ensures the efficient implementation of the required change. The execu-

tion depends on how the change is represented and relies on two factors.The first factor

is the selection of the appropriate change operator [Stojanovic, 2004]. The second factor is

the order of execution of the operations focusing on efficient orderingof atomic change op-

erations into composite and higher-level granularity to minimize impacts [Lee et al., 2000]

[Arnold, 1996]. Change representation uses different evolution strategies and the output

of the dependency analysis. The detailed discussion of the change request capturing and

representation including dependency analysis and evolution strategy is presented in Section

5.3and Section5.4respectively.

5.2.2 Change Impact Analysis

This step mainly focuses on determining the impacts of the captured change operations on

the entities of the ontology. The impact determination process focuses on analysing the

nature of the operations and the target ontology entities using different parameters. Based

on these parameters, this phase categorizes change operations into different categories of

impacts. The impact determination process is done using two phases. The first phase is

individual change impact analysis. When a composite change operation is implemented,

the impacts of the composite change may not be the same as the aggregation of theimpacts

of its constituent individual atomic change operations. Thus, the second phase is composite

change impact analysis.

It further deals with the integrity of the overall system. Theintegrity of the OCMS

focuses on thesatisfiabilityof the ontology and theconsistencyof the annotation. In gen-

eral satisfiability, checks whether a class expression does not necessarily denote the empty

class and consistency refers to verifying whether every class in the ontology corresponds

to at least one individual [Baader et al., 2003]. Consistency checks any contradiction of

the facts in the annotation and shows the absence of contradiction focusingon individuals

98

[Stojanovic, 2004]. Using the change impact analysis results, we analyse the satisfiability

of the ontology entities and theconsistencyof the annotation. Consistency is analysed based

on consistency rules that are defined for the ontology.

Thus, we deal with the following widely used rules related to satisfiability of classes

[Stojanovic, 2004].

• Identity invariant: no two entities should have the same id (URI).

• Rootedness invariant: there should be a single root in the ontology.

• Concept hierarchy invariant: no entity should have a cyclic graph.

• Closure invariant: every class should have at least one parent class except the root

class.

• Cardinality invariant: the cardinality of a constraint should be a non-negative inte-

ger greater than or equal to the minimum cardinality and less than or equal to the

maximum cardinality.

• User-defined constraints: these constraints are user-defined and need to be stated in

the way they can be implemented like the other invariants.

Instances in OCMS are linked to the ontology using semantic annotation. Thus,deter-

mining the impact of change operations in relation to the instances is crucial. Thedeter-

mination of theABox validity is based on consistency rules. These rules determine how

instances/ instance properties should exist in the ontology structurally andhow they should

be interpreted:

• Invalid instance: given a consistent ontology, if there is an instance that does not

correspond to any of the classes, then that instance is invalid.

• Invalid interpretation: given a consistent ontology, if there is an instance whose in-

terpretation contradicts any interpretation denoted by the consistent ontology, that

instance has an invalid interpretation.

99

For example, if the ontology specifies a student can not be bothMScStudentand

PhDStudentat the same time, but if we haveJohnas an instance ofMScStudentand

PhDStudent, the instance is considered as invalid instance and it introduces invalid

interpretation.

The change impact analysis process follows ex ante evaluation which begins during the

change request stage of the evolution by collecting and analysing the change operations, the

impacts and the causes of the impacts before the change is permanently implemented in the

system. This reduces the effort required to roll back the changes if unwanted impacts are

observed after a permanent implementation of the changes.

5.2.3 Change Optimization and Implementation

The change implementation phase takes the final change operations and executes them in

the OCMS. This is done based on the user’s preference after the impacts of the change

operations are reviewed and approved by the user. This phase searches for optimal imple-

mentation using different optimization criteria such as severity of impacts, performance and

type of statements changed. Change implementation is discussed in Chapter7

5.3 Dependency Analysis for Change Representation

The change representation process takes the requested change and identifies the change

operation (addition, deletion), the target entity (class, property, instance, restriction, and ax-

iom) and the parameters. The requested change is represented using the graph discussed in

the previous section. To implement the requested change, we need to process and determine

if there are dependent entities that need to be changed in response to the requested change.

The implementation of the requested change may vary depending on the targetentity, the

change operation and the evolution strategy (Section5.4). Thus, the requested change op-

eration alone may not be enough to evolve the OCMS and may require additional change

operations. This forces us to conduct a dependency analysis to find dependent entities that

change together with the target entity.

100

Understanding how the entities in the OCMS depend on each other is a crucialstep

for analysing how the change of one entity affects the other [Cox et al., 2001]. Character-

ization, representation and analysis of dependencies within and among the ontology, the

annotation and the content layers are crucial aspects of change impact analysis. In this sec-

tion, we present relevant dependencies which are identified from the structure of the OCMS

system. These dependencies are useful for deriving additional changes to complete the re-

quested change [Abgaz et al., 2012] [Abgaz et al., 2011]. All the dependencies that exist

in the graph may not be important for dependency analysis. Thus, we identify the depen-

dencies that are useful for implementing changes and analysing their impacts. We formally

define such dependencies and present an algorithm to identify the dependent entities and

their dependency types from a given ontology. This phase, together withthe implementa-

tion strategies, forms an input for the change impact analysis process.

Dependencyis defined as a reliance of one node on another node to get its structural

and semantic meanings. For a node to be dependent on another node, it requires one or

more edges that link it to the target node.

Given a graphG = (N,E) and two nodesN1, N2 ∈ N , N1 is dependent onN2

represented byDep(N1, N2), if ∃ Ei ∈ E whereEi = (N1, α,N2). N1 is the dependent

entity andN2 is the antecedent entity.

Dependency can be unidirectional or bidirectional. In the OCMS, we haveedges that

indicate bidirectional dependency (A↔ B) called interdependence. Such interdependence

is represented by axioms such as equivalence, disjoint, sameAs, differentfrom, etc. These

kinds of dependencies can be mapped to two unidirectional dependenciesDep(A,B) and

Dep(B,A).

Dependency analysisis the process of identifying the dependent entities, the depen-

dency types and the characteristics of the dependencies of a given entityin the OCMS. The

dependency analysis process takes an entity and the OCMS graph as an input, searches all

dependent entities and returns a list of dependent entities for a given dependency. In OCMS,

the three layers are interdependent. There are intradependence and interdependence among

these components at a higher level. In such environments, we focus on thetypes of available

101

dependencies, the formal representation of dependencies and the algorithms for identifying

the dependencies. Analysing dependencies using different categories is beneficial in that

most of the categories are useful for determining impacts when different change implemen-

tation strategies and configurations are used [Abgaz et al., 2010].

Structural DependencyStructural dependency refers to the hierarchical dependency

or the taxonomic relationship between two nodes. When one node is dependent on the

other node and if they are linked with edges that define the taxonomic relationships (sub-

ClassOf, subDataPropertyOf, subObjectPropertyOf, instanceOf), they become structurally

dependent. These taxonomic relationships are expressed using subClassOf axioms between

classes, subDataPropertyOf axioms between data properties, subObjectPropertyOf axiom

between object properties and classAssertion axioms between instances and classes. Struc-

tural dependency also implies the semantic relationship between the entities.

Formally, for a graphG = (N,E) and nodesN1, N2 ∈ N , N1 is structurally de-

pendent onN2 is given bystrDep(N1, N2) if ∃N2. Dep(N1, N2) ∧ (N1, α,N2) where

α ∈{subClassOf, subDataPropertyOf, subObjectPropertyOf, instanceOf}.

5.3.1 General Properties of Dependency

Indirect Dependency. A dependency is said to be indirect, if there exist transitive or

intermediate dependencies that link two nodes. Given a graphG = (N,E) and nodes

N1, N2, N3 ∈ N , N1 is indirectly dependent onN3 represented asindDep(N1, N3), if

∃N2. Dep(N1, N2) ∧ Dep(N2, N3) ∧ N1 6= N2 6= N3.

Total Dependency/ Partial Dependency.A total dependency refers a dependency

when an entity is fully dependent on another entity for its existence. That means, there

is no other dependency that enables it to get its meaning. A total dependency is observed

when a target node depends only on a single node (articulation node).

Given a graphG = (N,E) and nodesN1, N2, N3 ∈ N , N1 is totally dependent

on N2, represented byTDep(N1, N2), if ∃N2. Dep(N1, N2) ∧ ¬∃N3. Dep(N1, N3) ∧

(N2 6= N3).

A partial dependency refers to a dependency where the existence of anode depends

102

on more than one node. Given a graphG = (N,E) and nodesN1, N2, N3 ∈ G, N1 is

partially dependent onN2, represented byPdep(N1, N2), if ∃N2, N3. Dep(N1, N2) ∧

Dep(N1, N3) ∧ (N2 6= N3). Partial dependency is a complement of total dependency over

all dependent entities. It is represented as:

PDep = Dep− TDep.

5.3.2 Types of Dependency

In this section we distinguish between different types of dependencies observed in an

OCMS system. The dependencies are organized in relation to the OCMS layers.

We will use the OCMS snapshot in Figure5.2 to elaborate the dependency analysis

process throughout this chapter and the next chapter.

legend

rdfs
:
sco
=
 subclassOf

Help_File
 paragraph

Thing

rdfs
:
SCO

rdfss
:domain
 rdfs
:domain
 rdfs
:range

rdfs
:
SCO

CNGL
:id-
19221956.xml

cngl
:
hasTitle

CNGL
:id-19221956\
 para1

has Title
 Contains

CNGL
:id-
19221955.xml

cngl
:
Contains

How to delete Mails

Archiving
 Deleting

rdfs
:
SCO
 rdfs
:
SCO

Archiving
 Archiving

rdfs
:
SCO
rdfs
:
SCO

Archiving
 Archiving

rdfs
:
SCO
rdfs
:
SCO

disjoint

with

rdfs
:
InstaneOf
 rdfs
:
InstaneOf

Archiving

rdfs
:
SCO

Figure 5.2: Software help OCMS - running example

5.3.2.1 Dependency within a Layer

Dependency in the Ontology Layer.The following dependencies between ontology en-

tities are identified and their detailed definition is given below. The most frequent depen-

dencies are presented here and the list can grow more when we represent complex class

relationships. The context of the dependency is an OCMS graphG = (N,E).

1. Concept-Concept Dependency:for a graphG and concept nodesC1, C2 ∈ N ,

103

C1 is dependent onC2 represented byCCDep(C1, C2), if ∃C2. Dep(C1, C2) ∧

(label(Ei = (C1, α, C2)) = “subClassOf”) ∧ (type(C1) = type(C2) = “class”).

For example, there is a concept-concept dependency betweenActivity andArchive.

Archivedepends onActivity because there is an edge that links these two nodes with

type Classand with node labelsubclassOf. Concept-concept dependency is transi-

tive.

2. Concept-Axiom Dependency:for a graphG, a class nodeC1, and any nodeNi ∈ N

and an edgeEi ∈ E, Ei is dependent onC1 represented byCADep(Ei, C1), if

(Ei = (C1, α,Ni) ∨ Ei = (Ni, α, C1)) ∧ (type(C1) = type(Ni) = “class”). For

example, if we take the concept “Activity”, there are three dependentsubClassOf

edges, one dependentrdfs:range. These axioms further characterize the dependency

types.

3. Concept-Restriction Dependency:for a graphG, a class nodeC1 and any node

Ni ∈ N and an edgeEi ∈ E,Ei isdependent onC1 represented byCRDep(Ei, C1),

if Ei = (Ni, α, C1) ∧ (type(C1) = “class” ∧ α ∈ RA). For example, if we have a

restriction(isAbout, allValuesFrom, Activity), this specific restriction is dependent on

the conceptActivity.

4. Property-Property Dependency: for a graphG and a property nodesP1, P2 ∈

N , P1 is dependent onP2 represented byPPDep(P1, P2) if ∃P2. Dep(P1, P2)

∧ (label(Ei = (P1, α, P2)) = “subPropertyOf”) ∧ (type(P1) = type(P2) =

“property”). Here, property refers to both data property and object property.

5. Property-Axiom Dependency: for a graphG, a property nodeP1, and any node

Ni ∈ N and an edgeEi ∈ E,Ei is dependent onP1 represented byPADep(Ei, P1),

if Ei = (P1, α,Ni) ∨ Ei = (Ni, α, P1) ∧ (type(P1) = “property”).

6. Property-Restriction Dependency: for a graphG, a property nodeP1 ∈ N and a

restriction edgeR1 ∈ E , R1 is dependent onP1 represented byPRDep(R1, P1) if

Ei = (N1, α, P1) ∨ Ei = (P1, α,N1) ∧ (type(P1) = “property”).

104

7. Axiom-Concept Dependency:Given an axiom edgeEi and a concept nodeC1 ∈

G,C1 is dependent onEi represented byACDep(C1, Ei), if Ei = (C1, α,Ni) ∧

(label(Ei) = “subClassOf”) ∧ (type(N1) = “class”). This dependency type is

used to catch orphan concepts. If orphan concepts are not allowed in the ontology,

we use such dependencies to find them.

5.3.2.2 Dependency across Layers

Content-annotation dependency. Content-annotation dependency refers to the depen-

dency of the annotation on the actual content in the content layer. The content-annotation

dependency occurs due to the fact that the annotation layer links the instances (documents)

in the content layer with the ontology layer for attaching semantics to the content.If the

content is changing, the dependent entities in the annotation layer (in this case those triples

linked to the content) will be affected.

An annotationAi ∈ Ga is dependent ondi ∈ Cont, represented byAnCoDep(Ai, di),

if existsEa = {Nai, αa, Naj} ∈ Ga such that(Nai = di) ∨ (Naj = di). This means

Ai is dependent on documentdi if the document is used as a subject or an object of the

annotation triple.

For example, the content documentCNGL:id-19221955.xmlis annotated as aninstanceOf

a Help F ile and its type (rdf:type) is defined asInstancein the annotation layer. If the

subject (CNGL:id-19221955.xml) of this annotation is removed all its dependent entities

(rdf:type, instanceOf) will be affected.

Ontology-annotation dependency.Ontology-annotation dependency refers to the de-

pendency of the annotation on the entities in the ontology layer. The annotationlayer pro-

vides semantics for the content using entities from the ontology. Whenever achange is

made to an entity in the ontology, all the dependent entities in the annotation layer will be

affected. Generally, this dependency is represented as follows.

An annotationAi ∈ Ga is dependent onOi ∈ Go represented byAnOnDep(Ai, oi),

if existsEa = {Nai, αa, Naj} ∈ Ga such that(αa = oi) ∨ (Naj = oi). This dependency

across the layers is represented by three different dependencies in the OCM graphG as

105

follows.

1. Concept-Instance Dependency:for a graphG and an instance nodeI1 and a con-

cept nodeC1 ∈ N , I1 is dependent onC1 represented byCIDep(I1, C1) if ∃

Ei ∈ E whereEi = (I1, α, C1) ∧ (label(Ei) = “classAssertion”) ∧ (type(I1) =

“individual”)∧ (type(C1) = “class”). For example, if we remove the classHelp file,

the dependent triples{(CNGL:id-19221955.xml,instanceOf, Help file) and(CNGL:id-

19221956.xml, instanceOf,Help file)} will be affected. This indicates that those

annotations are dependent on the concept in the ontology layer.

2. Property-Instance property Dependency:for a graphG and an instance property

nodeIP1, and any nodeNi, Nj and a property nodeP1 ∈ N , IP1 is dependent on

P1 represented byPIPDep(IP1, P1) if ∃ Ei ∈ E whereEi = (Ni, α,Nj) such that

(label(Ei) = P1) ∧ (type(Ni) = “instance”) ∨ (type(Nj) = “instance”). For

example, in (CNGL : id19221956.xml, cngl:hasTitle, “How to delete Mails”) the

instance propertycngl:hasTitleis dependent on the propertyhasTitlein the ontology

layer.

3. Instance-Axiom Dependency:for a graphG, an instance nodeI1, and any node

Ni ∈ N and an edgeEi ∈ E, Ei is dependent onI1 represented byIADep(Ei, I1),

if (Ei = (I1, α,Ni) ∨ Ei = (Ni, α, I1)) ∧ (type(I1) = type(Ni) = “instance”).

4. Axiom-Instance Dependency:for a graphG and an instance nodeI1 and an edge

Ei ∈ E, I1 is dependent onEi represented byAIDep(I1, Ei) if Ei = (I1, α,N2) ∧

(label(Ei) = “instanceOf”) ∧ (type(i1) = “instance”).

All edges that are linked to a node or all nodes that are linked together do not necessarily

show dependency. For example, an instance property is dependent onthe definition of the

corresponding property. However, a property is not dependent onits instance properties.

The focus of this research is on identifying and formalizing dependenciesthat represent

propagation of impacts in the OCMS. Using these dependencies, we developed algorithms

to identify dependent entities.

106

5.3.3 Dependency Analysis Algorithm

It is important to formally identify the dependencies and their types to determine the impacts

of a change operation. However, manually identifying these dependent entities and the type

of the dependency is difficult. Thus, we developed an algorithm which identifies dependent

entities and the dependency types. The algorithm starts from the universal entity “Thing”

and filters out the dependent nodes based on the dependency definitions. We customized

the general tree search algorithm [Heckel, 2006] to identify dependent entities. The search

algorithm checks the edges and the nodes which are linked to the target node and matches

it with the defined dependencies. We move to the dependent nodes and repeat the search by

examining the types of the nodes. We end the search when there is no more node and edge

to be visited. The individual dependency analysis algorithms are discussed as follows.

Dependency

Analysis Algorithm

OCMS

 Graph

Target

Node

Dependency

Rules

Dependent

Entities

Figure 5.3: Dependency analysis diagram

5.3.3.1 Direct Dependent Entities

Getting direct dependent entities of a target entity is done by examining each of the edges

that point to the target entity. For example, if the target entity is a class node, and if there

is an edge with labelsubClassOf(represented as SC in Figure5.4) that links other class

nodes to this target entity, and then based on concept-concept dependency, we can identify

the dependent entities. If there is a single edge with labelsubClassOfbetween the two

edges, then we consider those dependent instances as direct dependent entities. In Figure

5.4all the direct dependent concepts of the conceptActivityare highlighted in gray and the

107

direct dependent axioms are represented by dotted lines.

Activity

Archiving
 Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SC
 SC

SC
 SC
 SC
 SC
SC

SC

Figure 5.4: Direct dependent classes

Not all nodes that are linked to the target entity may indicate dependency between

two nodes. Here, we need to examine the edges that connect other nodesto the target

entity. A node is considered as a dependent node only when it satisfies one or more of

the dependencies defined in Section5.3.2. The algorithm for identifying direct dependent

concepts is given below (Algorithm1). This algorithm is tuned to identify direct dependent

classes. The identification of dependent instances, axioms and restrictions is done in a

similar way by customizing the parameters and the dependency rules.

Algorithm 1 getDirectDependentClasses(G,c)
1: Input: GraphG, Class nodec
2: Output: direct dependent classes (d)
3: d← ∅
4: if the nodec exists inG then
5: for each edgeEi = (m,α, c) directed toc do
6: if label(Ei) = “subClassOf” ∧ type(m) = “class” then
7: addm to d

8: end if
9: end for

10: end if
11: return d

108

Activity

Archiving
 Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SC
 SC

SC
 SC
 SC
 SC
SC

SC

Figure 5.5: Indirect dependent classes

5.3.3.2 Indirect/transitive Dependent Entities

Identifying indirect dependent entities of the target entity is done in the same way as the

method used for direct dependent entities. The main extension for identifying transitively

dependent entities is taking all direct dependent entities as a target entity and to run the

direct dependency on them recursively until we reach a leaf node - thenode that does not

have a dependent node.

For example, to get all the direct and transitive dependent entities of classActivity, first,

we call get direct dependent entities (ArchivingandDeleting), then taking them as an input,

we further get direct dependent entities of (Archiving) which areArchivingEmailandArchiv-

ingFile. Then, we further move toDeletingand we getDeletingDirectory, DeletingFileand

DeletingEmail. In Figure5.5, the nodes highlighted in gray are indirect dependent classes

of Activityand the edges represented by broken lines are the indirect dependentaxioms.

We stop the process when we reach a node that contains no more dependent nodes. To

prevent infinite recursion, we store information about the previously expanded nodes and

check if we already visited the nodes earlier. Here, we are interested in both direct and

transitive dependent entities. In this case we expand the above algorithm toinclude the

transitive dependent entities.

109

Algorithm 2 getAllDependentClasses(G,c)
1: Input : GraphG, Class nodec
2: Output: all dependent classes=d
3: d← ∅
4: QueueQ
5: if the nodec exists inG then
6: DirectDep← getDirectDependentClasses(G,c)
7: for each conceptci in DirectDepdo
8: Q.push(ci)
9: if ci not ind then

10: addci to d

11: end if
12: end for
13: while Q is not emptydo
14: Temp = Q.peek()
15: getAllDependentClasses(G,Temp)
16: Q.remove()
17: end while
18: end if
19: return d

We used the breadth-first search strategy [Cormen et al., 2001] [Heckel, 2006] to tra-

verse through the OCMS graph and identify the dependent entities using dependency types

defined in Section5.3.2. Algorithm 2 requires the whole OCMS graph and the target node

or edge as an input and returns nodes and edges that are dependenton the target entity. A

breadth-first algorithm fits our requirements for two reasons. First, the algorithm guaran-

tees identification of all dependent entities that exist in the graph. Second,it allows us to

preserve the vertical hierarchies of the graph. We get all the directly dependent classes of

a class first rather than moving down to the indirect subclass at the next level. All the sub-

classes at a given distance from the target entity can be identified using breadth-first search.

We use the information to maintain the order of change operations. For example, in the

case of deletion, we start deleting the class from the bottom nodes and advance up in the

hierarchy until we reach at the target node.

110

5.3.3.3 Total Dependent Entities

To find all totally dependent entities of a given entity, we need to get all the dependent

entities using Algorithm2 which returns all dependent entities. Meanwhile, we check the

dependent entities whether they are totally dependent on the given entity ornot. Finding the

totally dependent entities of classes is done by checking whether a given directly dependent

class has more than one super class or not. If the directly dependent class has more than

one super class, it becomes a partially dependent class. However, this approach does not

guarantee us totally dependent entities when it is extended to transitively dependent classes.

A class can have more than one super class but can still be totally dependent on a given

class. A direct dependent class is totally dependent, if it has only one super class. But,

indirectly dependent classes may not satisfy this rule. A recursive implementation of the

algorithm requires further customization to identify the total dependent entities.

Thus, we identified additional conditions to be checked to filter out the total dependent

entities. If an indirectly dependent class has only one super class, or if all its super classes

are totally dependent classes of the given class, it is considered to be a totally dependent

class. However, if an indirect dependent class has a super class which is not in the depen-

dent class list of the given class, then we consider that class as a partiallydependent class.

Algorithm 3 returns all totally dependent entities. In addition to that, it keeps track of the

partially dependent entities. By changing the return value of the function topartialDepCls,

we can also get all the partially dependent classes.

In Figure5.6, all the highlighted class nodes are dependent class nodes on the class

Activity. However, onlyDeleting, DeletingDirectoryandDeletingFileare totally dependent

classes. All the other class nodes (Archiving, Archiving Email, ArchivingFileandDeletingE-

mail) are partially dependent classes of the activity class. One interesting relationship we

can see here is that the totally dependent classes (ArchivingEmail, ArchivingFile) of a par-

tially dependent class (Archiving) are excluded from the totally dependent class list due to

their parent classTask. The classTaskis not dependent onActivity. This makes theArchiv-

ing class and its subclasses to be partially dependent onActivity class. Algorithm3 returns

111

Activity

Archiving
 Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SC
 SC

SC
 SC
 SC
 SC
SC

SC

Task

SC

Button

SC

SC
 SC

DC

Figure 5.6: Total dependent and partial dependent classes

all class nodes that are totally dependent on the given class c.

5.3.3.4 Direct Total Dependent Entities

Direct total dependent entities are entities that are directly dependent andtotally dependent

on a given entity. Direct total dependent entities are entities that are the result of the in-

tersection between total dependent and direct dependent entities. The intersection of the

results of Algorithm1 and Algorithm3 gives us the direct total dependent entities.

5.3.3.5 Direct Partial Dependent Entities

Direct partial dependent entities are entities that are directly dependent and partially depen-

dent entities. These entities play a major role in the impact analysis process andidentifying

them is crucial. However, they can be easily extracted once the direct andtotal dependent

entities are identified. This means that direct partial dependent classes are the intersection

of direct dependent classes and partial dependent classes. Figure5.7shows the properties of

dependencies and their relationships. Any dependent entity, which is nottotally dependent,

is partially dependent entity.

112

Algorithm 3 getTotalDependentClass(G,c)
1: Input : GraphG, Class nodec
2: Output: all total dependent classes=d

3: d← ∅, contained=true
4: Set depCls=∅ ,totalDepCls=∅ ,partialDepCls=∅, super=∅
5: depCls← getAllDependentClasses(G,c)
6: for each conceptci in depClsdo
7: if count(getSuperClasses(ci)=1 then
8: super← getSuperClasses(G, ci)
9: if super not in partialDepclsthen

10: addci to totalDepCls
11: end if
12: else
13: super← getSuperClasses(G, ci)
14: contained=true
15: for eachsc in superdo
16: if sc not in depClsthen
17: contained=false
18: end if
19: end for
20: end if
21: if contained=truethen
22: addci to totalDepCls
23: else
24: addci to partialDepCls
25: end if
26: end for
27: return totalDepCls

Figure 5.7: Dependency diagram

113

Algorithm 4 getSuperClasses(G,c)
1: Input : GraphG, Class nodec
2: Output: superclasses of a class
3: Set supCls←∅
4: for each edge(C, α, ci)in G do
5: if α = “subClassOf” andtype(ci) = “class” then
6: addci to supCls
7: end if
8: end for
9: return supCls

5.3.3.6 Combining all together

Following a similar procedure, we conducted a dependency analysis for properties, axioms,

restrictions and instances. A complete dependency analysis of concepts combines individ-

ual dependencies and generates all the dependent entities. To identify that kind of depen-

dency we call those individual algorithms.

Algorithm 5 getTotalDependentEntities(G,E)
1: Input : GraphG, an entityE
2: Output: Total Dependent entities
3: Set totalDepEnt←∅ , totalDepCls←∅
4: Set totalDepProp←∅, totalDepInst←∅
5: Set totalDepAxms←∅
6: totalDepCls← totalDependentClasses(G,E)
7: totalDepProp← totalDependentProperties(G,E)
8: totalDepInst← totalDependentInstances(G,E)
9: totalDepAxms← totalDependentAxioms(G,E)

10: totalDepEnt← totalDepCls∪ totalDepProp∪ totalDepInst∪ totalDepAxms
11: return totalDepEnt

This algorithm accepts a target entity, which can be a class, a property, aninstance, an

axiom or a restriction and returns all the dependent entities. This algorithm simply calls pre-

vious algorithms to do the task and return the results. Then, it collects the results together

and makes them ready for change representation based on the change implementations strat-

egy selected. The difficulty associated with implementing this algorithm is that whenwe

have bidirectional dependencies, the algorithm may exhibit a nonterminating behaviour. To

avoid these cycles we store the already visited nodes. We check existing members in the

114

queue to avoid duplication of entities. This increases the efficiency of the algorithm.

Limitation of the Dependency Analysis Algorithm There are some limitations in-

volved in the analysis of total and partial dependency between classes and axioms repre-

senting complex classes. If the dependent entities contain complex axioms or complex class

representations, the dependency analysis process involves complex decisions other than the

issues addressed above. When an entity is deleted, complex axioms that aredependent on

the entity may contain other entities. The relationship between the entities dependson how

the complex axiom is formulated (conjunction or disjunction). To decide the dependency,

we need to determine two things. First, using the dependency analysis we discussed above,

we have to determine whether the axiom is totally dependent or partially dependent on the

deleted entity. The second one and the more complex one is to determine whetherthere

are other entities that are not yet captured but which are dependent onthe axiom (axiom-

concept dependency). A closer look at the following class expressionexplains the difficulty

involved in determining the dependent entities.

equivalentClasses (http://cngl.ie/ EV-triples.owl#AdvancedUser

objectIntersectionOf (http://cngl.ie/ EV-triples.owl#User>

objectSomeValuesFrom(http://cngl.ie/ EV-triples.owl##hasExpertise>

http://cngl.ie/ EV-triples.owl#AdvancedExperience>)))

This axiom states thatAdvancedUseris a user who has advanced Experience. Assume that

there is a change request that deletesAdvancedExperience, but the above axiom is using the

concept in the propertyhasExpertise. If we deleteAdvancedExperience, this axiom will be

in the list of affected entities. If we do not conduct a further analysis, wewill miss other

entities that are involved in the axiom. For example, the deletion of this class makesthe

property very general because there is no domain defined for it. This does not distinguish

AdvancedUserfrom other users semantically. The subtlety lies in how to determine such

kinds of chained dependencies and identify the entities that are affected and how they are

affected. Such kinds of complex axioms and representations require further and detailed

investigation by looking at each candidate axiom and the extent of the change to other

entities involved in the axiom.

115

5.4 Evolution Strategies

There are different ways of implementing a requested change in an OCMS.This depends on

the selected change implementation strategy. These change implementation strategies are

used to specify how a given change request is implemented. The change strategies deter-

mine how to fill the gap between the requested change and the changes required to correctly

implement the user request. This includes consequential changes, which are not specified

in the change request and corrective changes which are introduced toavoid inconsistencies.

The different change implementation strategies are further used to avoid known violations

of ontology rules (Section6.3.1) and some of them are provided as change implementation

strategies in existing ontology editors such as KAON [Volz et al., 2003] [Stojanovic, 2004]

and Protege1 [Knublauch et al., 2004]. The user can choose or set which strategy to follow

before or at the time of the change implementation.

We identified four different strategies used by existing systems [Stojanovic, 2004] and

customized them to provide additional implementation options for the users. These strate-

gies areno-actionstrategy,cascadestrategy,attach-to-parentstrategy, andattach-to-root

strategy. We will focus on the first three change implementation strategies. The attach-to-

root strategy uses a similar technique as the attach-to-parent strategy. The only difference

between the two is that the attach-to-parent strategy uses the immediate parententity and

the attach-to-root strategy uses the root entity (the top entity). We customize the attach and

cascade strategies to be applied to bothT Box andABox statements or only toT Box state-

ments. We further customize the strategies to N-level cascading (Section5.4.4) to make

the evolution process flexible. The details of each of the techniques used by the change

implementation strategies are discussed below.

5.4.1 No-action Strategy

The no-action strategy states that a given change operation is implemented using the re-

quested change without adding consequential or corrective changes. The final change oper-

1http://protege.stanford.edu/

116

ation does not include any other change operation than the ones that remove the references

of the target entity from the OCMS. For example, when the user requests to add a class, it

will be implemented as it is, without adding a subclass axiom to link it to a parent class.

Another example is, when the user wants to delete a class, and if that class has subclasses,

this strategy does not consider the subclasses of the target class but simply removes the

target class and all the edges of the class. In our running example this means, when the user

requests to delete the conceptArchiving, we simply delete the concept by implementing

the requested atomic change, delete Concept (Archiving) and all the axioms that refer to

Archiving(Table5.1).

Activity

Archiving
 Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SCO
 SCO

SCO
 SCO
 SCO
 SCO
SCO

SC

Activity

Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

?
 SCO

?
 ?
 SCO
 SCO
SCO

SC

 ?

Delete class(Archiving)

Figure 5.8: No-action strategy

Given the graphG = (N,E) and a entity noden ∈ N , theNO-ACTIONstrategy is

defined as follows:

NO-ACTION(Delete Entity(n)) := {Delete Entity(n), Delete Axiom(A) |

A ∈ directDependentAxioms(G,n)}

Using the above strategy, we generate a change operation which deletes the class as

follows.

5.4.2 Cascade Strategy

The cascade strategy states that whenever a change is requested, the change propagates to

all dependent entities of the target entity. In OCMS, this means when we change some

117

Table 5.1: Generated changes - No-action strategy

Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)
Delete class(Archiving)

entity in the content-based system, we need to change all its dependent entities. In case of

deletion, when we delete an entity, the deletion propagates to all its dependententities. In

case of addition, when we add an entity, we need to add all other entities that make the new

entity semantically and structurally meaningful. Thus, whenever we use the cascade strat-

egy, we identify the dependent entities of the target entity and we further introduce change

operations that remove all these dependent entities. Thus, in cascade strategy, we generate

intermediate change operations to implement the requested change in a cascaded mode to

all dependent entities of the target entity (Table5.2). In this delete concept (Archiving)

results the deletion of all its subclasses and axioms.

Activity

Archiving
 Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SCO
 SCO

SCO
 SCO
 SCO
 SCO
SCO

SC

Activity

Deleting

Deleting

Directory

Deleting

Email

Deleting

File

SCO

SCO
 SCO
SCO

SC

Delete class(Archiving)

Figure 5.9: Cascade strategy

Given the graphG = (N,E) and a entity noden ∈ N , the CASCADEstrategy is

defined as follows:

CASCADE(Delete Entity(n)) := {Delete Entity(n′) | n′ = n ∨

n′ ∈ allTotalDependentEntities(G,n)}

Using the above strategy we generate a change operation which deletes theclass.

118

Table 5.2: Generated changes -Cascade Strategy

Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)
Delete class(ArchivingEmail)
Delete class(ArchivingFile)
Delete class(Archiving)

The cascade strategy can be further implemented in two ways. The first is cascading

the change only to the dependent classes leaving the instances of the class, and the second

one is cascading the change to the dependent classes and the instances.In the former

case, the change is applied to the classes without changing the instances. This may cause

the instances to lose some semantic meaning due to the removal of concepts whichwere

providing additional meaning to the instances. It may even cause the instances to become

orphan instances.

5.4.3 Attach-to-Parent/Root Strategy

The attach-to-parent strategy, or attach strategy in short, states that when a change is re-

quested, link all the affected entities to the parent entity of the target class whenever it

applies. This means, when a certain entity is deleted, link its dependent entities tothe

parent of the target entity whenever it applies. Thus, in the attach-to-parent strategy, we

generate intermediate change operations in addition to the requested changes operations.

Given the graphG = (N,E) and an entity noden ∈ N , the ATTACH strategy is

defined as follows:

ATTACH(Delete Entity(n)) := {A,B,C |

A := Add Axiom(A′, n′) | A′ ∈ directDependentAxioms(G,n) ∧

n′ ∈ superEntity(n) ∧

B := Delete Axiom(A′, n) | A′ ∈ directDependentAxioms(G,n) ∧

C := Delete Entity(n) }

In this strategy for example, Delete class (Archiving) causes the deletion of the class and

119

causes all the subclasses of theArchiving class to reconnect to the parent (Activity) class.

Moreover, the class (Archiving) and all its related axioms will be deleted. Following the

attach-to-parent strategy, we generate the necessary change operations in Table5.3.

Activity

Archiving
 Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SCO
 SCO

SCO
 SCO
 SCO
 SCO
SCO

SC

Activity

Deleting

Deleting

Directory

Archiving

File

Archiving

Email

Deleting

Email

Deleting

File

SC

SCO
 SCO

SCO
 SCO
SCO

SC

Delete class(Archiving)

Figure 5.10: Attach-to-parent strategy

Table 5.3: Generated changes - Attach strategy

Add subClassOf(ArchivingFile,Activity)
Add subClassOf(ArchivingEmail,Activity)
Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)

There might be entities in the OCMS that are not compliant with the last two strategies.

In such a situation, we further analyse the dependent entities and chooseto implement one

of the other strategies. However, all requested changes are implemented using at least one

strategy.

The change implementation strategy is dependent on a specific OCMS. The content

manager or the ontology engineer sets the change implementation strategy or theuser is

asked to confirm every time she/he requests a change. The change implementation strategy

tells the system what action to take when the requested change affects entitiesother than

itself. In this research, we deal with three change implementation strategies: NO-ACTION

(N), CASCADE(C) and ATTACH (A). Two variants of the CASCADE and ATTACH strate-

gies further distinguish betweenABox andT Box statements. These change implementa-

tion strategies are used for generating complete change operations. For example, when the

120

operation is delete class (DC) and the change implementation strategy is cascade-delete (C),

we follow the DCC route and if the strategy is attach-to-parent, we follow DCA.

5.4.4 N-Level Cascading

N-level cascading is a customized form of the cascade strategy. This strategy cascades the

change up to nodes that are foundN distances from the target node. For example, ifN is

set to be 2, the N-level cascading will cascade the change up to two hierarchies. In Figure

5.10, when N= 1, and a deletion of the classActivity is requested, the two classesArchiving

andDeletingwill be removed with the target class. If N=2, all the subclasses down to two

levels of hierarchy will be deleted, which includesArchivingEmail, ArchivingFile, Delet-

ingDirectory, DeletingFileandDeletingEmail. When we use N-level cascading, we may

require using the attach-to-parent strategy to resolve orphan classes.In the above example,

when N=1, once we delete the classes the subclasses of those deleted classes become or-

phans. To avoid the orphan classes, we use attach-to-parent strategyto link them with the

parent ofActivityclass.

There are different strategies for composite change operations. Providing detailed dis-

cussion of the strategies in composite change operations is not the scope ofthis research.

However, for further details, we direct the reader to [Javed et al., 2012].

5.4.5 Combining Dependencies and Strategies

A complete change operation is generated by taking the requested change,the dependency

analysis and the selected evolution strategy. Determining the dependent entities is a crucial

step that enables us to decide the extent of the effect of the requested change operation on

the remaining entities of the ontology. For each of the cases, we look at the process of

finding affected entities using dependency analysis. After conducting different experiments

using our case studies (AppendixA to C), we determined the dependency types that can be

associated with the change implementation strategies. In the case of no-action,we imple-

ment the requested change by analysing direct dependent entities; in the case of cascading,

121

we are interested only in total dependent classes.

Deleting all dependent entities without checking whether they are totally or partially

dependent entities causes a loss of entities that could still exist without violatingthe syntax

or the semantics of the ontology. Thus, when we use the cascade-delete strategy, all total

dependent entities, whether direct or indirect, will be deleted. In the caseof the attach-

to-parent strategy, our experiment showed that there are cases where we should consider

partially dependent entities in addition to the total dependent entities. However, we only

need the direct dependent entities.

Table 5.4: Combination of dependency with evolution strategy
Evolution Total Partial Direct Indirect
Strategy Dependency Dependency Dependency Dependency

No-action Ignore Ignore Apply Ignore
Cascade Apply Ignore Apply Apply

Attach-to-parent Apply Apply Apply Ignore
(with exception)

Table5.4 shows the dependencies used in different strategies. In the case of theno-

action strategy we use direct dependent entities. In the case of the cascade strategy, all

direct and indirect, but only total dependent entities are used. Partially dependent entities

are not affected. In the case of the attach-to-parent, we use all the direct dependent entities

and attach them to the parent of the target entity. In this case, we use both total dependent

entities and partial dependent entities with few exceptions. The exception applies for partial

entities, which are already linked to the parent entity of the target entity.

A complete change operation contains the requested change operations and the gen-

erated change operations. Based on the type of the change request, individual changes

are ordered accordingly to form a complete change operation. An exampleof a complete

change operation in case of cascade-delete is given in Table5.5.

122

Table 5.5: Complete change operations

Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)
Delete subClassOf(Archiving, Activity)
Delete class(ArchivingEmail)
Delete class(Archiving)

5.5 Evaluation

In this chapter, we evaluate the proposed dependency analysis method. The evaluation fo-

cuses on the precision of the dependency analysis method in identifying dependent entities.

5.5.1 Precision of the Dependency Analysis

Dependency analysis identifies all dependent entities that change together with a changing

target entity. The main focus of our evaluation is to check whether the proposed dependency

analysis method correctly identifies the necessary dependent entities that change based on

the selected evolution strategy.

5.5.1.1 Experimental Evaluation

We extend the prototype (Section4.6.1.1) and implement the dependency analysis algo-

rithms. The prototype accepts a requested change operation, a target OCMS and a strategy

to analyse the dependent entities of the target entity in the requested change. The prototype

supports analysis of all types of dependencies for all types of entities. It analyses dependent

entities for all applicable strategies that are selected by the user.

Before conducting the main evaluation, we conducted unit testing on the prototype to

check the correct implementation of all the dependency rules and the robustness of the

application. The prototype system passed through five iterations. In eachof the iterations,

we improve the implementation of the algorithm, corrected unidentified dependencies and

fixed wrongly identified entities and dependencies.

For the purpose of the experiment, we classify entities into five strata representing their

123

types. The five strata are classes, data properties, object properties,instances (including

documents) and axioms. The classification enables us to observe the behaviour of the de-

pendencies for each evolving entity in the OCMS. For each stratum, we selected 10 entities.

The entities were selected randomly and proportionally from the three case studies (Ap-

pendixA, B andC) . We select entities from each case study because the OCMS in each

case study has different behaviours. A total of 50 evolving entities are used in the evaluation

process.

The evaluation was conducted as follows. First, we identified the dependent entities

automatically using the prototype. Second, we identified all the dependent entities of all the

selected entities manually. Third, we compared the results from the two methods.We used

precision to measure the accuracy of the algorithm.

P (DA) =
|CID|
|CD| (5.1)

where:

P (DA)= Precision of the dependency analysis

|CID|= Number of correctly identified dependencies by the system

|CD|= Number of identified dependencies

We further measured the average time (in milliseconds) of the dependency analysis

algorithm. Measuring the time allows us to estimate the response time of the application.

The response time determines the usability of the system in real time scenario. Wemeasured

the time required to identify the dependent entities and their types. For each entity we

conducted dependency analysis 10 times with a total of 500 observations. The experiment

is conducted on a 3.00 GHz Intel(R) Core 2 Duo CPU with 4.00 GB of RAM, running on a

64-bit Windows 7 operating system.

5.5.1.2 Experimental Results and Discussion

A result of the dependency analysis conducted for one selected entity,Activity, is presented

in Table5.6. The table compares the analysis results of the automatic solution, expert solu-

124

tion and non-expert solution. The automatic solution identifies dependent entities following

the proposed dependency analysis approach implemented in the prototype.The expert so-

lution is conducted by an expert user and verified by other experts in ontology evolution

with sufficient time and effort to identify the dependent entities. To avoid faults, the expert

solution uses OWL API methods to list all axioms in the ontology. Then, the axioms related

to the target entity are carefully examined to identify dependent entities. The non-expert so-

lution examines the dependencies by ontology users who are not experts.The result shows

that the automatic method identifies all the dependent entities which are identified by the

expert solution. The automatic method further identifies all the dependenciesidentified by

non-experts. Compared to the manual solution, the automatic method identifies more de-

pendencies. This is mainly attributed to indirect dependent axioms that the manual analysis

overlooked or failed to recognize. We also found that identifying the different dependency

types using the manual method is time consuming.

Table 5.6: Comparison of the manual and automatic method
Entity Automatic Solution Manual Solution

Expert Solution Non-expert Solution

TD PD DD ID TD PD DD ID TD PD DD ID
Concepts 5 1 2 4 5 1 2 4 5 1 2 4
Axioms 14 0 5 9 14 0 5 9 9 0 5 4
Instances 1 1 2 0 1 1 2 0 1 1 2 0
Properties 0 0 0 0 0 0 0 0 0 0 0 0

TD = Total Dependent, PD = Partial Dependent
DD = Direct Dependent, ID = Indirect Dependent

We followed a similar analysis on individual entities to measure the overall precision of

the proposed solution. The second Table5.7shows the average precision of the dependency

analysis over the selected 50 entities. We followed the above approach to evaluate the

accuracy of the proposed solution. We organized the precision based on dependency types.

Our dependency analysis algorithms enable us to achieve a 100% precisionfor the de-

pendencies defined in this research. This result meets the minimum requirement we set for

the dependency analysis phase. The dependency analysis includes useful information about

the type of dependency, which is a crucial input for customization of change operations.

125

Table 5.7: Precision of OCMS dependency analysis (in 100%)
Entity TD PD DD ID Average Time(ms)

MeetingRoom 100% 100% 100% 100% 100% 15
Person 100% 100% 100% 100% 100% 19
Building 100% 100% 100% 100% 100% 15
hasCourseNumber 100% 100% 100% 100% 100% 17
hasName 100% 100% 100% 100% 100% 9
hasTitle 100% 100% 100% 100% 100% 7
hasMembers 100% 100% 100% 100% 100% 7
hasOffice 100% 100% 100% 100% 100% 6
hasWebsite 100% 100% 100% 100% 100% 6
takesCourse 100% 100% 100% 100% 100% 5
teaches 100% 100% 100% 100% 100% 5
CA106 100% 100% 100% 100% 100% 2
CA147 100% 100% 100% 100% 100% 2
Invent 100% 100% 100% 100% 100% 2
Janet 100% 100% 100% 100% 100% 2
Javed 100% 100% 100% 100% 100% 2

. . .
Average 100% 100% 100% 100% 100% 10.3

The overall result of the dependency analysis process is encouraging and is suitable for the

change impact analysis process.

Efficiency. The time on table 5.7 shows the average time (in milliseconds) the algo-

rithm took to identify all dependent entities of an entity. To calculate the average time for

analyzing the dependency of a single entity, we run the program 10 times. Ateach iteration,

we record the time and calculated the average time at the end. For example, the timefor

analysing the dependent entities of the class ”meetingRoom” is 15ms. This means, if we

run the application several times, the average time required will come closer to 15 minutes.

In Table 5.7 it is clear that the time required to analyse the dependent entities ofclasses is

more than the time for analysing dependent entities of instances. The overallaverage time

for dependency analysis considers all entities including classes and instances. Thus from

the experiment we calculated the overall average time for analysing dependent entities of

any entity. This average time is 10.3 milliseconds. This means, for a given OCMSwith

similar size as the case studies, it takes an average of 10.3 ms to identify all the dependent

entities.

126

The result is encouraging in that it provides fast response rate to the user and can be

used in a real time environment. This result is dependent on the size of the OCMS in terms

of the depth and breadth of the OCMS graph.

Time and Space Complexity.To provide a formal and general time and space require-

ment of the algorithm, which can be applied to any OCMS, we analysed and provided the

efficiency using time and space complexity. In the worst case scenario, thealgorithm ex-

hibitso(nm) time complexity ando(nm) space complexity wheren is the number of edges

of a node andm is the depth of the graph.

The limitation in relation to complex classes is that the dependency analysis does not

distinguish the dependency between entities in a complex class expression. This means, as

complex classes are represented using axioms combining two or more classes, properties

or restrictions, the analysis only considers the whole axiom as dependententity. We do not

focus on each of the constructs of the axiom and analyse the dependencies. At this stage,

considering the whole axiom is sufficient to analyse the impacts. However, inthe future, if

we need to provide detailed explanation, we need to address this limitation.

5.6 Summary

The change impact analysis framework gives a high level description of the change impact

analysis during evolution of the content, the annotation or the ontology. The change impact

analysis process begins by capturing changes from the user and representing the changes

using requested and generated change operations which are sufficient to fully implement

the desired change. Generation of a complete change operation dependson the selected

evolution strategy and the dependency which exists between the componentsof the OCMS.

To generate supplementary change operations, we need to understand the dependencies

that exist among the entities in the OCMS. The target entity of the requested change and

the change operation determine how the dependency analysis should be executed. The

dependency analysis stage enables us to get all the entities that depend onthe target entity.

These dependent entities need to be changed accordingly due to the change in the antecedent

127

entity. Thus, the dependency analysis process plays a major role in identifying entities that

need to be changed in response to a requested change.

Determining what to do with the dependent entities is dictated by the evolution strategy.

The evolution strategy tells us either to link the dependent entities to a parent entity, to

delete them all or to leave it as it is. If we choose to link the dependent entities toanother

entity in the OCMS, the change operations we use include addition of new statements even

if the user’s change request is deletion of an entity.

The evolution strategy plays a key role in determining the number and the natureof the

change operations generated in response to a given change request.The evolution strategies

are further used to generate alternative change operations for comparing and selecting the

different change impacts.

The evaluation result showed an encouraging result in the precision andefficiency of

the dependency analysis method. The result meets the requirements of the change impact

analysis phase.

128

Chapter 6

Change Impact Analysis Process

6.1 Introduction

In Chapter5, we introduced the change impact analysis framework and its individual com-

ponents. We further discussed the dependency analysis process andthe evolution strategies.

To understand the impacts of a requested change operation, we need to know the selected

evolution strategy and identify the dependent entities accordingly. Thus, the output of the

dependency analysis process serves as an input for the change impact analysis process. In

this chapter, we discuss the change impact analysis process. The change impact analysis

process covers both the analytical and constructive aspects. To cover the analytical aspects,

we study the impacts of atomic, composite and domain-specific change operations. For

the construction of the solution, we propose a bottom-up change impact analysis approach.

This approach begins with the analysis of impacts of atomic change operationsand moves

up to composite and domain-specific change operations. Atomic change operations are or-

ganized to create composite change operations. Thus, the impacts of composite change

operations are derived from the impacts of atomic change operations.

The change impact analysis process applies the following steps. First, we identify and

characterize potential impacts of change operations. Second, we definethe association be-

tween these impacts and atomic change operations. Third, we study and define the precon-

ditions for the occurrence of each of the impacts. Finally, we assign the associated impacts

129

to the atomic change operations when the preconditions are satisfied.

Although we can determine impacts of atomic change operations using this approach, it

is not sufficient to analyse the impacts of composite and domain-specific change operations.

The impacts of composite change operations may not be the same as a simple aggregation of

impacts of the atomic change operations. There are impacts that cancel eachother, impacts

that balance or transform to another form. We investigate such behaviours and heuristically

identify the associated rules. By using the change operations, the target entities and the

parameters involved, we identify cancellation, balancing, and transformation rules. These

rules are applied to identify impacts of composite and domain-specific changes.

This chapter is organized into seven different sections. Section6.2 covers the change

impact analysis process and its steps. Section6.3identifies structural and semantic impacts

and the associated rules. Analysis of impacts of individual change operations and the algo-

rithm used to assign impacts of individual change operations are discussed in Section6.4.

Analysis of impacts of composite change operations and the associated rulesare given in

Section6.5. We evaluate the proposed solution for its accuracy and adequacy in Section

6.6. Finally, we give a summary of the chapter in Section6.7.

6.2 Change Impact Analysis Process

The change impact analysis process begins by defining the possible impactsof changes

in an OCMS system. Then, it uses change operations and their associated preconditions

to identify the impacts. For each individual change operation, we performa change im-

pact analysis by considering the change operation, the target entity and the parameters

[Abgaz & Pahl, 2012].

The change impact analysis process has two major steps. The first step is individual

change impact analysis, which takes single atomic change operations and analyses their

impacts individually. This process is done by matching the change operation with the struc-

tural and semantic impacts defined for atomic change operations. Once the match is found,

the associated preconditions (Table6.3) are checked. If the preconditions of the impacts

130

Figure 6.1: Change impact analysis process

are satisfied, we assign the impacts and the affected entities to the change operation. We

perform this process for all the atomic change operations contained in the complete change

operations. A full discussion of atomic change impact analysis is presentedin Section6.4.

As part of the analysis, we identify change operations that have a potential to violate the

satisfiability of the classes in the ontology, the consistency of the instances in the annotation

or the null references to the content and the ontology layers. Our change impact analysis

tool captures all individual change operations that introduce one or more impacts on the

integrity of the OCMS and attach the impacts to the requested change operation for later

processing.

The second step is composite change impact analysis, which takes the atomic change

impacts and looks for impact cancellation, impact balancing and/or impact transformation

of atomic change operations due to other change operations in the composite change. We

use heuristics to analyse composite and domain-specific change operations. This phase

analyses all the impacts of change operations when they are implemented together as a

single change operation. Individual change operations that have a potential to introduce

unsatisfiability and inconsistency are further checked, if other change operations are applied

131

to resolve the inconsistencies created. Composite change impact analysis is discussed in

Section6.5.

Finally, we present the impacts of the change operations in two levels of detail.Depend-

ing on the users’ requirement, we present either a summarized or a detailed analysis of the

atomic and composite changes.

6.3 Impacts of Change Operations

Impacts of change operations in OCMS are diverse. We identify these impacts and inves-

tigate their characteristics. In this section, we discuss the impacts, their categories, the

change operations that cause the impacts and the preconditions at which theimpacts occur.

Impact: The term impact refers to the effect of change of entities due to the application

of a change operation on one or more of the entities in the OCMS [Plessers et al., 2007]

[Hassan et al., 2010] [Qin & Atluri, 2009]. Thus, a given atomic change operation(ACh)

will have an impactImp : (ACh, P) if the associated precondition(P) is satisfied. The

change impact analysis process uses a single change operation as an input at the atomic

change operation level.

The impact function(Imp) is a function that maps an atomic change operationACh to

its corresponding impact whenever a given preconditionP is satisfied.

Imp :(ACh, P)→ (Impact)

Where:

Impact = StrImp ∪ SemImp

ACh = Atomic change,P = precondition

Imp :(CCh)→ {Imp : (ACh1, P1), Imp : (ACh2, P2), . . . , Imp(AChn, Pn) }

Where:

CCh = {ACh1, ACh2, . . . , AChn}

ACh1, . . . AChn ∈ ACh

CCh = Complete Change is a function ofACh1, . . . , AChn + strategy

132

A complete change (CCh) is a composition of requested change and derived changes using

a given evolution strategy.

6.3.1 Structural Impacts

Structural impacts are impacts that change thestructural dependency(Section5.3) between

the entities. Structural impacts occur when we execute a change operation and if it impacts

the structural dependency of entities in the OCMS. It can be caused by a deletion, addition

or updating of an entity in the OCMS. The structural impacts of change operations and their

associated rules are discussed below. The first four are adopted from [Stojanovic, 2004].

There are two types of structural impacts. The first type focuses on structural impacts

that cause structural integrity violations. We call these impacts integrity-violating impacts.

The second type focuses on changes, which are results or consequences of a given action.

These are caused by changes that add or remove entities. We call these impacts integrity

non-violating impacts. However, both are structural impacts of change operations.

Table 6.1: Structural impacts
No Structural Impact Acronym Type

1 a Addition + Orphan Class (OC) Integrity violating
b Deletion + Orphan Class (OC) Integrity violating

2 a Addition + Orphan Instance (OI) Integrity violating
b Deletion + Orphan Instance (OI) Integrity violating

3 a Addition + Property Cyclic Reference (OPCR/DPCR) Integrity violating
b Deletion + Property Cyclic Reference (OPCR/DPCR) Integrity violating

4 a Addition + Class Cyclic Reference (CCR) Integrity violating
b Deletion + Class Cyclic Reference (CCR) Integrity violating

5 a Addition + Null Reference to Content layer (NRC) Integrity violating
b Deletion + Null Reference to Content layer (NRC) Integrity violating

6 a Addition + Null Reference to Ontology layer (NRO) Integrity violating
b Deletion+ Null Reference to Ontology layer (NRO) Integrity violating

7 Addition of new entity (AE) (AC,AI,ADP,AOP,AA,AR) Integrity non-violating
8 Deletion of existing entity (DE) (DC,DI,DDP,DOP,DA,DR) Integrity non-violating

A given change operation causes a structural impact in two ways. First, iteither adds a

new entity or removes an existing entity. Second, it violates the structural integrity of the

OCMS. We use the following example to elaborate the situation.

In the first version (Figure6.2.a), we can see that there are three entities. Due to a

change operationADDClass(ArchivingEmail), the OCMS evolves to the second ver-

133

Activity

Archiving
 Deleting

SC
 SC

SC

Activity

Archiving
 Deleting

SC
 SC

SC

Archiving

Email

a
 b

ADD class(
 ArchivingEmail
)

Figure 6.2: Example of structural impact

sion (Figure6.2.b) which contains four entities.

When we compare the two versions, we can see the two impacts of the change operation.

First, the change operation introduced a new class which was not availablein the first ver-

sion (Figure6.2.a). Second, the change operation introduced an orphan class(ArchivingE-

mail). Here, it is very important to distinguish between a change operation and theimpact

of a change operation. “Addition of new Entity (AE)” is an impact which is different from

theADDClass(C) change operation, even if the impact is a straightforward consequence

of the change operation. This distinction is important to clarify impacts independent of

change operations. The separation is useful to systematically analyse impacts of composite

change operations. The first impact is integrity non-violating, whereas thesecond impact is

integrity violating impact.

To represent all the constructs of an ontology collectively, we use the term Entity (E).

However, to refer to a specific constructs, we replace the term Entity (E) by Class (C), Data

Property (DP), Object Property (OP), Instance (I), Axiom (A) and Restriction(R) whenever

appropriate. The Structural impacts ofACh are:

StrImp(ACh) = {OC,CCR,OPCR,DPCR,OI,NRC,NRO,AE,DE}

where:

• Orphan Class (OC) occurs when a given class is introduced without a super class

other than the default “Thing” class. Generally, OWL allows orphan classes, but

134

sometimes the application requirements do not. It violates the concept-closure in-

variant, which states that every class nodeci in N , excluding the root class of the

ontology, should have at least one super classc in N , giving closure toci : ∀

ci ∈ N \ {Root} ∧ type(ci) = “Class”→ ∃c ∈ N. CCDep(ci, c).

• Class Cyclic Reference (CCR) occurs when a change operation introduces a cyclic

reference to classes. It violates the class hierarchy invariant. The class hierarchy is a

directed acyclic graph. For two class nodesc1 andc2 ∈N , ¬∃c1, c2. CCDep(c1, c2)

∧ CCDep(c2, c1).

• Object Property Cyclic Reference (OPCR) occurs when a change operation in-

troduces a cyclic reference to object properties. It violates the property hierarchy

invariant. The property hierarchy is a directed acyclic graph. For two object property

nodesop1 andop2 ∈ N , ¬∃op1, op2. PPDep(op1, op2) ∧ PPDep(op2, op1).

• Data Property Cyclic Reference (DPCR) occurs when a change operation intro-

duces a cyclic reference to data properties. It violates the property hierarchy invariant.

The property hierarchy is a directed acyclic graph. For two object property nodesdp1

anddp2 ∈ N , ¬∃dp1, dp2. PPDep(dp1, dp2) ∧ PPDep(dp2, dp1).

• Orphan Instance (OI) occurs when a change operation introduces an instance with

no link to a specific class. It violates the instance-closure invariant. Everyinstance

nodei ∈ N is associated to a class nodec ∈ N . such that∀i ∈ N , ∃c. CIDep(i, c).

• Null Reference to Content set (NRC). Every instanceI in the annotation graph

should have a corresponding document or part of document it refersin the content

set. GivenGA = (Na, Ea), ∀na1 ∈ Ea. ∃na1 ∈ Cont whereEa = (na1, αa, na2).

• Null Reference to an Ontology layer (NRO). Every object nodena2 in the anno-

tation graph should have a corresponding class in the ontology graph. GivenGA =

(Na, Ea) andGo = (No, Eo), ∀na2 ∈ Ea. ∃na2 ∈ No whereEa = (na1, αa, na2).

Every instance propertyαa in the annotation graph should have a corresponding prop-

erty in the ontology graph. GivenGA = (Na, Ea) andGo = (No, Eo), ∀αa ∈ Ea.

135

∃αa ∈ No whereEa = (na1, αa, na2).

• Addition of new Entity (AE) occurs when any entity is added to the OCMS.

• Deletion of new Entity (DE) occurs when any entity is removed from the OCMS.

Figure 6.3: Structural impacts

The last two structural impacts directly correspond to the change operations and are

straightforward. We consider them as impacts because they play a significant role during

composite change impact analysis.

6.3.2 Semantic Impacts

Semantic impacts are impacts that change the semantics (interpretation) of entities inthe

OCMS. Whenever a structural change occurs, it causes a change onthe meaning of the tar-

get entity or dependent entities. We identify existing semantic changes [Qin & Atluri, 2009]

and derived semantic impacts from the changes. The semantic impact of an atomic change

operation is defined as:

136

SemImp(ACh) ={EMD,ELD,PMR,PLR,AME,ALE,EG,ES,EInc, UE, IE}

where

EMD = Entity More Described (class, property or instance)

ELD = Entity Less Described (class, property or instance)

PMR = Property More Restricted (object property, data property)

PLR = Property Less Restricted (object property, data property)

AME = Axiom More Expanded

ALE = Axiom Less Expanded

EG = Entity Generalized (class, property or instance)

ES = Entity Specialized (class, property or instance)

EInc = Entity Incomparable (class, property or instance)

UE = unsatisfiable Entity (class, property)

IE = invalid Entity (instance, instance property)

• Entity More Described (EMD) occurs when we add previously unknown facts

about an entity. An entity nodeNi is more describedEMD(Ni) by a change op-

eration that transformsG = (N,E) to G′ = (N,E′) if |edges(Ni) ∈ E′| >

|edges(Ni) ∈ E|. When the number of edgesE′ ∈ G′ containingNi as a sub-

ject or as an object is greater than the number of edgesE ∈ G containingNi as a

subject or as an object, we say entityNi is more described. This means, if there is

a new edge added to a given entity, then that entity is more described. See Section

4.4.4for details of getting the edge of a node.

• Entity Less Described (ELD) occurs when we remove an existing semantics (facts)

about the entity. An entity nodeNi is less describedELD(Ni) by a change operation

that transformsG = (N,E) to G′ = (N,E′) if |edges(Ni) ∈ E′| < |edges(Ni) ∈

E|. When the number of edgesE ∈ G containingNi as a subject or as an object is

greater than the number of edgesE′ ∈ G′ containingNi as a subject or as an object,

we say entityN1 is less described. This means, if an existing edge is deleted from a

137

given entity, then that entity is less described.

• Property More Restricted (PMR) occurs when the existing semantics is more re-

stricted. A property nodeP ∈ N is more restrictedPMR(P) by a change opera-

tion that transformsG = (N,E) to G′ = (N,E′), for E = (Ni, domainOf, P)

andE′ = (Nj , domainOf, P), if Nj ⊂ Ni or for E = (Ni, rangeOf, P) and

E′ = (Nj , rangeOf, P), if Nj ⊂ Ni). If the domain class(Nj) of a given prop-

erty is changed to a subclass of the original class (Ni), the property becomes more

restricted. Likewise, if the range class(Nj) of a given property is changed to a sub-

class of the original class (Ni), the property becomes more restricted. A property

more restricted shows a covariant property that converts the domain or therange of a

property from a general class to a special class [Castagna, 1995].

• Property Less Restricted (PLR) occurs when the existing semantics is less re-

stricted. A property nodeP ∈ N is less restrictedPLR(P) by a change opera-

tion that transformsG = (N,E) to G′ = (N,E′), for E = (Ni, domainOf, P)

andE′ = (Nj , domainOf, P), if Ni ⊂ Nj or for E = (Ni, rangeOf, P) and

E′ = (Nj , rangeOf, P), if Ni ⊂ Nj). If the domain class(Nj) of a given prop-

erty is changed to a super class of the original class (Ni), the property becomes less

restricted. Likewise, if the range class(Nj) of a given property is changed to super

class of the original class (Ni), the property becomes less restricted. A property less

restricted shows a contravariant property that converts the domain or therange of a

property from a special class to a general class [Castagna, 1995].

• Axiom More Expanded (AME) occurs when the axiom further extend its semantics

to other entities. When a given axiom includes more entities and allows the semantics

to apply for further entities, the axiom becomes semantically more expanded. An

axiomEi is more expandedAME(Ei) by a change operation that transformsG =

(N,E) to G′ = (N,E′), for E = (Ni, α,Nj) andE′ = (N ′

i , α,Nj) or E′ =

(Ni, α,N
′

j), if N ′

i = Ni +Nk orN ′

j = Nj +Nk whereNk 6= ∅.

138

• Axiom Less Expanded (ALE) occurs when the axiom further restrict its semantics

to fewer entities. When a given axiom excludes existing entities and restricts the

semantics to apply for fewer entities, the axiom becomes semantically less expanded

or more restricted. An axiomEi is less expandedALE(Ei) by a change operation

that transformsG = (N,E) to G′ = (N,E′), for E = (Ni, α,Nj) andE′ =

(N ′

i , α,Nj) orE′ = (Ni, α,N
′

j), if N ′

i = Ni−Nk orN ′

j = Nj −Nk whereNk 6= ∅.

• Entity Generalized (EG) occurs when an entity become more general (move up

in the hierarchy). Generalization occurs for structural relationships that define a

parent-child relationship. An Entity nodeNi is generalizedEG(Ni) by a change

operation that transformsG = (N,E) to G′ = (N,E′), for E = (Ni, α,Nj) and

E′ = (Ni, α,N
′

j), if Nj ⊂ N ′

j whereα ∈ {subClassOf, subDataPropertyOf, subOb-

jectPropertyOf, instanceOf} .

• Entity Specialized (ES) occurs when an entity become more specific (move down in

the hierarchy). An Entity nodeNi is specializedES(Ni) by a change operation that

transformsG = (N,E) toG′ = (N,E′), forE = (Ni, α,Nj) andE′ = (Ni, α,N
′

j),

if N ′

j ⊂ Nj whereα ∈ {subClassOf, subDataPropertyOf, subObjectPropertyOf, in-

stanceOf}.

• Entity Incomparable (EInc) occurs when a change on an entity is neither gener-

alized nor specialized it. An Entity nodeNi becomes incomparableES(Ni) by a

change operation that transformsG = (N,E) to G′ = (N,E′), for E = (Ni, α,Nj)

andE′ = (Ni, α,N
′

j), if (N ′

j 6⊂ Nj) ∧ Nj 6⊂ N ′

j whereα ∈ {subClassOf, subDat-

aPropertyOf, subObjectPropertyOf, instanceOf}.

• Unsatisfiable Entity (UE) occurs when a change on a given entity introduces con-

tradiction [Baader et al., 2003].

• Invalid Entity (IE) occurs when a change on a given instance or instance property

introduces invalid interpretation [Qin & Atluri, 2009].

139

Researchers [Stojanovic, 2004] [Qin & Atluri, 2009] have already defined some seman-

tic changes in ontologies. In this research, we extend the semantic changesto identify

semantic impacts of change operations. However, we customized existing ones and intro-

duced new impacts for applicable entities. The expanded impacts derived from the above

semantic changes are discussed in Table6.2.

Figure 6.4: Semantic impacts

Semantic impacts are caused by structural changes [Qin & Atluri, 2009]. Some of the

structural changes, which involve axioms that specify relationships between classes (sub-

class of, intersectionOf, disjointWith, complementOf) and relations between properties and

classes (domain, range) may cause semantic impacts.

The impact analysis process identifies one or more of the above structuralor semantic

impacts of the requested change operation. The change operation may makethe dependent

entity an orphan entity. Two or more change operations can also cause generalization or

specialization of the dependent entities.

140

Table 6.2: Semantic impacts
No. Semantic Impact Acronym
1 Entity More Described (EMD) (CMD,DPMD,OPMD,IMD)
2 Entity Less Described (ELD) (CLD,DPLD,OPLD,ILD)
3 Entity More Restricted (OPMR)
4 Entity Less Restricted (OPLR)
5 Entity More Expanded (AME)
6 Entity Less Expanded (ALE)
7 Entity Generalized (EG) (CG,DPG,OPG,IG)
8 Entity Specialized (ES) (CS,DPS,OPS,IS)
9 Entity Incomparable (EI) (CInc, DPInc, OPInc, IInc)
10 Unsatisfiable Class/Property (UE) (UC,UDP,UOP)
11 Invalid Instance/Instance Property (IE)(II, IIP)

6.3.3 ABox versusT Box Impacts

Impacts of a change operation can be viewed from the perspective of thekind of state-

ment they affect. In description logic, we can classify statements intoT Box andABox

[Horrocks, 2003]. The statements that focus on the ontology terminology are theT Box

statements and the statements that focus on the instances (individuals) in the annotation

layer are theABox statements. Change operations may have an impact on theABox state-

ments or on theT Box statements. A separate treatment of the statements is important to

analyse impacts of the operations. It further helps us filter the statements thatare affected

by the change operation.

T Box Impacts. T Box statements are affected by operations that change the axioms

related to the terminology in the ontology. The terminology box is defined as statements

that assert how classes or roles are related to each other [Baader et al., 2003]. The impact of

such change operations revolve around the satisfiability and the coherence of the ontology.

This means, a change operation may violate the semantic integrity of the terminology.

ABox Impacts. ABox statements are affected by operations that change the axioms

related to annotation instances or individuals in the assertion box. Assertionbox statements,

in our case, are defined as statements related to instances and instance assertions. A change

on the assertion statements may result inconsistency due to contradictory statements about

the instances [Horrocks, 2003] or invalidity of the interpretation of an instance with respect

141

to an ontology [Qin & Atluri, 2009].

6.3.4 Addition versus Deletion Impacts

Impacts of addition and deletion operations are discussed under structural impacts. In this

section we discuss addition and deletion as change operations from a perspective of the

effort and resource required to automatically implement them. In terms of change opera-

tions, adding a new entity and deleting an existing entity involves different procedures and

resources.

Impacts of Addition. The addition operation introduces a new ontology entity, anno-

tation entity or content entity in the OCMS. If a new entity is introduced in the OCMS,it

can be a class, a property, an instance, an axiom, etc. Such kinds of changes introduce new

knowledge and may require an update of the overall system. The addition ofa new entity

involves creating that new entity. If the new entity needs to be linked with existingentities,

we need to search and find those entities in the OCMS. This involves extra resource for

searching. However, addition operation usually attaches the new entity on the OCMS.

Impacts of Deletion. A deletion operation removes existing entities from the OCMS.

The deletion operation in the ontology layer removes an existing class, property, axiom or

restriction. The deletion operation in most of the cases is the source of cascaded impacts.

The impact of the operation becomes complex depending on the position of the deleted

entity. When we delete an entity, we should search its usage in the OCMS and delete all

instances of usage. This involves searching the whole graph and deletingevery instance of

the entity.

Compared to addition operation, deletion operation requires more time and resource.

If the deletion operation uses the cascade strategy, it requires more resources and time to

complete the execution of the change operation.

142

6.4 Individual Change Impact Analysis

Individual change impact analysis takes individual change operationsand analyses their

impacts. The individual change impact analyses the atomic changes and assigns impacts

if they satisfy the preconditions. We identify atomic change operations categorized by the

type of operations and target entities. We analyse their potential impacts and identify the

preconditions of each impact in Section6.4.1. To analyse the impact of an atomic change,

we search the change operation and read the associated impact and its precondition. We

check if the precondition for the impact is satisfied in the OCMS. Whenever theprecondi-

tion is satisfied, the impact is assigned to the change operation.

If associated preconditions are defined for the change, we check the preconditions. If

the preconditions are satisfied, we take the impact and the target entity as an impact of the

change operation. For semantic impacts that cause unsatisfiability or inconsistency, the indi-

vidual change operation may not be the sole reason for the unsatisfiability or inconsistency.

In such situations, we keep traces of those statements for explaining the reason for the viola-

tion of the integrity and for resolving the problem. If the preconditions are not satisfied, we

move to the next impact defined for the change operation and continue the above process

until we finish all the atomic change operations contained in the complete change.

6.4.1 Impacts of Atomic Change Operations

We identified different atomic change operations and studied their semantic and structural

impacts in Section6.3. To discuss atomic change impact analysis, we take frequently

observed [Goncalves et al., 2011] change operations. The list of the impacts of the other

atomic change operations and their preconditions is given in Table6.3.

• The structural impact ofAdd Class(c1) is the addition of new classAC(c1) and

thatclass being orphanOC(c1). StrImp(AddClass(c1)) = AC(c1) andOC(c1).

When a new class is added by theAdd Classoperation, it means we introduced a new

class and that class becomes an orphan class. This is because this single operation

does a single task of adding a new class.

143

• The structural impact ofAdd SubClass(c1, c) is the addition of a new axiomAA

(FullAxiom)1 and if ∃c. CCDep(c, c1), this change introduces a cyclic reference.

This is defined as a precondition for this atomic change operation and if it is satisfied,

then we can assign a cyclic reference to both classesCCR(c1) andCCR(c). If the

precondition is false, the change does not introduce a cyclic referenceimpact.

The semantic impact of this change operation makes the two classes more described

(CMD). This means now we know thatc1 is a special class ofC and we know more

information about the two classes. Thus, the semantic impacts areCMD(c1) and

CMD(c).

• The structural impact ofDelete Class(c) is thedeletion of an existing classDC(c),

StrImp(DeleteClass(c)) = DC(c). The semantic impact of the change operation

is SemImp(DeleteClass(c)) = UA(ei) if ∃ei. CADep(ei, c). This means when a

class is deleted, all axioms that refer to this class will be impacted and may need to

be deleted or modified.

• The structural impact ofDelete SubClass(c1, c) is thedeletion of an existing axiom

DA(FullAxiom) and anOrphan Class(c1), if the classc is the only super class of

c1. Thus,StrImp(DeleteSubClass(c1, c)) = DA(fullAxiom) andOC(c1) if ∃c.

CCDep(c1, c) ∧¬∃d. CCDep(c, d) ∧ c 6= d.

The semantic impact of the change operation is that both classes become less de-

scribed due to the removal of an existing fact about the two classes. Thus, SemImp

(Delete SubClass(c1, c)) = CLD(c1) andCLD(c).

• The semantic impact ofAdd DisjointClasses(c1, c2) is:

– an unsatisfiable class(UC) if there exists a class, which is in a subClass hi-

erarchy of bothc1 andc2. SemImp(AddDisjointClass(c1, c2)) = UC if

∃c : C, c ∈ c∗
1
∧ c ∈ c∗

2

1Full Axiom represents the entire axiom, not individual entities constructingthe axiom

144

– an invalid instance(II), if there exists an instance which is an instance of the

classc1 andc2 or the subclass ofc1 andc2. SemImp(AddDisjointClass(c1, c2))

= II if ∃i : (i, c∗
1
) ∧ (i, c∗

2
). c∗ represents all the super classes in the hierarchy.

Table 6.3: Potential impacts of selected atomic change operations

No Change Operation Impact

Type

Impact (Entity) Impact Precondition

1 Add Class (c) Structural AC(c), OC(c) None

2 Add SubClass Structural AA (FullAxiom) None

(c1, c) CCR(c1), CCR (c) ∃c. CCDep(c, c1)

Semantic UC (c1) ∃c1. CCDep(c1, d) ∧

disjointClasses(c, d)

CMD(c1), CMD(c) None

3 Delete Class Structural DC (c) None

(c) Semantic UA (ai) ∃ai. CADep(ai, c)

4 Delete SubClass Structural DA (FullAxiom) None

(c1, c) OC (c1) ∃c1. CCDep(c1, c) ∧¬∃c1.

CCDep(c1, d) ∧ c 6= d

Semantic CLD(c1), CLD (c) None

5 Add Instance (i) Structural AI(i), OI(i) None

6 Add InstanceOf Structural AA (FullAxiom) None

(i, c) Semantic II (i) ∃c1. CIDep(i, d) ∧

disjointClasses(c, d)

IMD(i), CMD(c) None

7 Delete Instance Structural DI (i) None

(i) Semantic UA (ai) ∃ai. IADep(ai, i)

8 Delete InstanceOf Structural DA (FullAxiom) None

(i, c) OI (i) ∃i. CIDep(i, c) ∧¬∃d.

CIDep(i, d) ∧ c 6= d

Semantic ILD(i), CLD (c) None

9 Add ObjectProperty

(op)

Structural AOP(op) None

10 Delete ObjectProperty Structural DOP (op) None

(op) Semantic UA (ai) ∃ai. PADep(ai, op)

145

IIP(ip) ∃ip. PIPDep(ip, op)

11 Add SubObjectProp-

erty

Structural AA (FullAxiom) None

(op1, op) OPCR(op1), OPCR(op) ∃op. PPDep(op, op1)

Semantic UOP(op1) ∃op1. PPDep(op1, oq) ∧

disjointObjectProperty(op, oq)

OPMD(op1), OPMD(op) None

12 Delete SubObjectProp-

erty

Structural DA (FullAxiom) None

(op1, op) Semantic OPLD(op1), OPLD(op) None

13 Add DataProperty (dp) Structural ADP(dp) None

14 Add SubDataProperty Structural AA (FullAxiom) None

(dp1, dp) DPCR(dp1), DPCR(dp) ∃dp. PPDep(dp, dp1)

Semantic UDP (dp1) ∃dp1. PPDep(dp1, dq) ∧

disjointDataProperty(dp, dq)

OPMD(dp1), OPMD(dp) None

15 Delete DataProperty Structural DDP (dp) None

(dp) Semantic UA (ai) ∃ai. PADep(ai, dp)

IIP(ip) ∃ip. PIPDep(ip, dp)

16 Delete SubDataProp-

erty

Structural DA (FullAxiom) None

(dp1, dp) Semantic OPLD(dp1), OPLD(dp) None

17 Add Disjoint Structural AA (FullAxiom) None

Class(c1, c2) Semantic UC (c1), UC(c2) ∃c. CCDep(c, c1)∧ CCDep(c, c2)

II(I) ∃i. CIDep(i, c1)∧ CIDep(i, c2)

CMD(c1), CMD(c2) None

18 Add Equivalent Structural AA (FullAxiom) None

Class(c1, c2) Semantic UC (c1), UC(c2) ∃c. CCDep(c1, c)∧

CCDep(c2, d)∧

DisjointClasses(c, d)

CMD(c1), CMD(c2) None

II(I) ∃i. CIDep(i, c1)∧ CIDep(i, c2)

146

Analysing the semantic and the structural impacts of atomic change operations requires

a careful analysis of all possible scenarios. We use different casesto identify the scenarios.

This approach is time consuming, but it is a one time task. The other main advantage of

this approach is that, it is very fine-grained and it can be used to processthe impacts of any

composite and domain-specific changes composed of atomic change operations. Once we

define the potential impacts of atomic change operations and the conditions at which the

impacts occur, the next step is to use them as an input to determine the actual impacts of

change operations when an OCMS evolves.

6.4.2 Steps for Individual Change Impact Analysis

The individual change impact analysis process is done step by step. Thesteps are outlined

here and discussed with a flowchart (Figure.6.5) and an example in detail.

1. Select an individual change operation from a complete change

2. Search the corresponding change operation in the potential impacts of change opera-

tions

3. Read its structural impacts

4. Assign the structural impact to the affected entity if the preconditions are satisfied

5. Read its semantic impacts

6. Assign the semantic impact to the affected entities if the preconditions are satisfied

We will explain each of the steps in detail. We will use the case study describedin

appendixA. Input: Requested change (consider the following complete change containing

two atomic changes)

1. Delete SubClassOf (DeletingFile, Deleting)

2. Delete Class (DeletingFile)

Step 1. Get a change operation from a complete change.Take the operation (Delete)

and the target entity (subClassOf).

147

Yes

Yes

Yes

Yes

Precondition
 Satisfied
 ?

Stop

Assign Semantic Impact

to the change Operation

Semantic Impact

found?

Assign Structural impact to

change operation

Precondition Satisfied?

Structural Impact

found?

Process Atomic

Change Operation

Start

Atomic Change

Operation

Structural

Impacts and

Preconditions

Semantic

Impacts and

preconditions

No

No

Impacts of

Atomic change

operation

Figure 6.5: A flowchart: atomic change impact analysis

Step 2. Search the corresponding change operation in the potential impacts of

change operations.From the potential impacts of change operations, find the correspond-

ing change operation.

Step 3. Read the structural impact.The structural impact of the change operation is

the Deletion of an Axiom (DA). The affected entity is the full axiom. The second structural

impact of the change operation is the introduction of an Orphan Class (OC).

Step 4. Check the structural impact precondition.This impact, however, has a pre-

condition that we need to check. IfDeletingFileis totally dependent onDeleting, then the

implementation of this operation introduces orphan class (OC) for the first entity. The struc-

tural impact parameter shows the entity which is structurally affected. If the precondition

is not satisfied, we simply ignore this impact.

148

Step 5. Read the semantic impact.The change operation makes the two classes

to be less described. This is because of a removal of the axiom, which carries semantic

information about both classes. With the presence of the axiom, we know thatDeletingFile

is a subclass ofDeleting, i.e., now we know less about the two entities. This impact applies

for both entities (DeletingFile and Deleting).

Step 6. Check the semantic impact precondition.There is no semantic impact pre-

condition associated with this change operation. This means this impact occurswhenever

the change operation is implemented. When a subclass of an axiom that links twoclasses

is removed, the two classes become less described. The output of this phase is the original

change request together with the structural and semantic impacts attached.

Table 6.4: Impact analysis output
1 ChangeOperation Delete
2 TargetEntity subClassOf
3 Parameter Type Class

Position 0
Value http://CNGL.ie#DeletingFile

4 Parameter Type Class
Position 1
Value http://CNGL.ie#Deleting

5 ReasoningType T Box
6 StructuralImpact DA
7 StructurallyAffectedEntity FullAxiom
8 StructuralImpact OC
9 StructurallyAffectedEntity http://CNGL.ie#DeletingFile
10 SemanticImpact CLD
11 SemanticallyAffectedEntity http://CNGL.ie#DeletingFile
12 SemanticImpact CLD
13 SemanticallyAffectedEntity http://CNGL.ie#Deleting

When we check the preconditions, we also keep track of the entities participating in

the change operation. This information is used for further analysis of the integrity of the

OCMS. For example, if we are making two classes equivalent and if there exists a disjoint

axiom involving the classes, the semantic impact becomes unsatisfiable class (UC). Thus,

we keep track of such statements and store them for the composite change impact analysis

phase.

149

6.4.3 Algorithm for Individual Change Impact Analysis

A general algorithm that attaches the structural and the semantic impacts of change oper-

ations is given below. The algorithm takes the complete change operation, analyses the

impacts of the atomic change operations and returns the associated impacts of the change

operations.

Algorithm 6 Assign Individual Change Impacts (CCh, Impact)

1: Input : Complete Change operation(CCh), Change impacts(Impact)
2: Output: Complete Change operation with impacts
3: for each atomic change operation(ACh) in CCh do
4: if ACh is found in change impactsthen
5: assign corresponding impact to Imp
6: for each strImp in Impdo
7: if structural precondition(imp)=truethen
8: attach the affected entity to the strImp
9: attach strImp toACh

10: end if
11: end for
12: for each semImp in Impdo
13: if semantic precondition(imp)=truethen
14: attach the affected entity to the semImp
15: attach semImp toACh

16: end if
17: end for
18: end if
19: end for
20: returnCCh

The change impact analysis approach at this stage is compliant with existing tools. A

tool that generates change operations at an atomic level can exploit the individual change

impact analysis step and can find both the structural and the semantic impacts ofthe indi-

vidual changes. Individual change impact analysis generates the impacts of atomic change

operations individually and gives us crucial information about the impacts.However, when

changes are applied in a batch as a composite change operation, the impact of one change

operation depends on the other change operations. Individual change impact analysis yield

detailed impacts of atomic change operations. But it does not consider the previous or the

following change operations. The impact of a composite change operation isnot a simple

150

collection of the impacts of the atomic change operations contained in it. Thus, werequire

a different impact analysis strategy at a composite level.

6.5 Composite Change Impact Analysis

Composite change impact analysis focuses on analysing impacts of two or morechange

operations when they are executed together. The independent analysisof an atomic change

operation within a complete change representation indicates only the impacts of that specific

atomic change operation. When we implement a requested change, we may have more than

one change operation to fully implement the requested change. In such a situation, to under-

stand and to find out the impacts of the complete change operation, as a single transaction,

we need to go further to composite change impact analysis. Composite changeimpact anal-

ysis considers the impacts of one change operation in relation to impacts of other preceding

or following change operations. When a composite change operation is implemented, the

impacts of the composite change may not be the same as the aggregation of the impacts of

its constituent individual atomic change operations. The impacts may reduce or be trans-

formed to other impacts. Composite change impact analysis identifies techniquesto analyse

the impacts of composite change operations. To analyse these impacts, we employ novel

techniques, such as impact cancellation (Section6.5.1), impact balancing (Section6.5.2)

and impact transformation (Section6.5.3), that exploit dependencies between individual

changes and impacts.

6.5.1 Impact Cancellation

Impact cancellation applies for two change operations. Impact cancellationoccurs when the

impact of one operation cancels or overrides the impact of the other operation on a given

entity. This means, the impact of a given change operation removes the impactscaused by

another change operation, or one impact subsumes the other impact. Impactcancellation

mainly focuses on impacts caused by similar operations. It occurs between two additions

or between two deletions. For example, if the impact of one change operationintroduces

151

anOrphan Entity (OE)and a following change operation deletes the orphan entity resulting

in a structural impactDelete Entity (DE), then the impact of the second change operation

overrides the impact of first change operation. This means, the orphan entity is deleted

by the second change operation. In this case, we remove the impact of the first change

operation (Orphan Entity (OE)) because that entity is deleted.

Identification of change impacts that cancel each other requires analysing the impacts of

the change operations when they are applied on a single entity. We analyse the impacts, the

operations, the target entities, affected entities, and the order at which they appear in the pa-

rameter and in the complete change operation. By doing so, we identify associated change

operations and impacts that are candidates to impact cancellation. Impact cancellation uses

the following rules to identify and cancel impacts of composite change operations. The

rules are derived from our observation of the case studies and validated using experiments.

• Rule 1. When a target entity is affected by an operationACh1, and if that target

entity is deleted by another operationOP2, the applicable structural and semantic

impacts ofOP1 on the target entity will be cancelled.

ForCCh = {ACh1, ACh2}, Imp : {CCh} = Imp{ACh2} if

Imp{ACh1} = strImp(x) ∪ (semImp(x)\DE(x)) ∧

imp{ACh2} = DE(x).

• Rule 2. When a change operationACh1 is executed, if it introduces an impact(I1),

but if there is another change operationACh2 that changes the precondition of the

impact (I1), the impact (I1) will be cancelled.

ForCCh = {ACh1, ACh2}, Imp{ACh1, ACh2} = Imp{ACh2} if

Imp{ACh1} = OE(x) ∧ imp{ACh2} = AA(α)

whereα = (x, subclassOf, y) ∨ (x, instanceOf, y).

We further identify pairs of cancelling and cancelled impacts for the two rules. The

following table gives the pairs of impacts that are candidates for cancellation. In the first

rule, if an entity is deleted, all the structural and semantic impacts associated withit will

152

be removed. In the second rule, we remove orphan entities when the following change

operations add an axiom that links the entity to a parent entity.

Table 6.5: Candidate impacts for cancellation
Rules Cancelling Impact Candidates for cancellation
Rule 1 Delete Entity(DE) All StrImp exceptDE

All SemImp
Rule 2 Axiom Added(AA) OE

A typical characteristics of cancellation is that the change operations, thathave can-

celling impacts, have the same operation (addition and addition or deletion and deletion),

but one acts on a node (e.g. class) and another on the edge (e.g. subclass) linked to that

node. The rationale behind impact cancellation is to filter out impacts, which aresubsumed

by other impacts. In composite change impact analysis, keeping the impacts of an entity,

which is totally removed or overridden by another impact, is meaningless.

The following example elaborates how the impact cancellation process is usedto anal-

yse impacts of composite change operations. The impact ofDelete SubClass (DeletingFile,

Deleting)andDelete Class (Deleting)is given in Table6.6. The two atomic change opera-

tions are candidates for impact cancellation according to Rule 1. The targetclassDeleting-

File is affected by the first change and is deleted by the second change operation.

Table 6.6: Impact cancellation using Rule-1
No Change Operation Structural Impact Semantic Impact
1 Delete SubClassOf OC(DeletingFile) CLD(DeletingFile)

(DeletingFile,Deleting) CLD(Deleting)
2 Delete Class DC(DeletingFile) None

(DeletingFile)

After Cancellation
1 Delete SubClassOf None CLD(Deleting)

(DeletingFile, Deleting)
2 Delete Class DC(DeletingFile) None

(DeletingFile)

If we look at the two change operations, the first change operation deletes the SubClas-

sOf axiom and introduces theOC(DeletingFile) impact. However, the following change

operation deletes the classDeletingFile. The first change operation makes theDeletingFile

153

class an orphan class and semantically less described. The second change operation re-

moves the class from the ontology layer. Thus, theOC(DeletingFile)andCLD(DeletingFile)

impacts are cancelled from the first operation.

To elaborate the impact cancellation process further, let us take two atomic change

operationsAdd Class(GUI)andAdd subClassOf(GUI, UserInterface). The first change op-

eration introduces an orphan classOC(GUI). However, the second operation falsifies the

precondition of orphan class impact by introducing an axiom that link the orphan class

to UserInterfaceclass. Thus, the newly added axiomAA(FullAxiom), which is subClas-

sOf(GUI, UserInterface), overrides the orphan class impact and removes it from the list.

The impacts are reduced from 5 to 4 because theOC(GUI) impact is removed. The impacts

before and after cancellation are depicted in Table6.7

Table 6.7: Impact cancellation using Rule-2
No Change Operation Structural Impact Semantic Impact
1 Add Class(GUI) OC(GUI) None

AC(GUI)
2 Add SubClass(GUI, AA(FullAxiom) CMD(GUI)

UserInterface) CMD(UserInterface)

After Cancellation
1 Add Class(GUI) AC(GUI) None
2 Add SubClass(GUI, AA(FullAxiom) CMD(GUI)

UserInterface) CMD(UserInterface)

6.5.2 Impact Balancing

The impacts of two change operations balance each other when one change operation in-

troduces an impact to an entity and another change operation removes the impact from the

entity. Unlike impact cancellation, impact balancing only occurs between an addition and

a deletion operation with the same target entity (e.g. class with class and subclass with

subclass). The main difference between balancing and cancelling is that balancing always

occurs either between two structural impacts or between two semantic impacts. However,

in the case of cancelling, a structural impact cancels both structural impactsand seman-

tic impacts. To facilitate impact balancing, we identify counter-impacts for the candidate

154

impacts.

• Rule 3. When a given change operation (ACh1) affects the target entity with an

impact, and when another change operation (ACh2) affects the same entity with a

counter-impact or vice versa, the two impacts may balance each other.

Imp{ACh1, ACh2} = ∅ if

(Imp{ACh1} = EMD(x) ∧ Imp{ACh2}= ELD(x)) ∨

(Imp{ACh1} = AME(x) ∧ Imp{ACh2}= ALE(x)) ∨

(Imp{ACh1} = OPLR(x) ∧ Imp{ACh2}= OPMR(x)) ∨

(Imp{ACh1} = AE(x) ∧ Imp{ACh2}= DE(x)).

Impact balancing is commutative. This means,Imp{ACh1, ACh2} =Imp{ACh2, ACh1}.

Table 6.8: Candidate impacts for balancing
Impacts Counter-Impacts

Entity More Described (EMD) Entity Less Described (ELD)
Axioms More Expanded (AME) Axioms Less Expanded (ALE)
Object Property Less Restricted
(OPLR)

Object Property More Restricted
(OPMR)

Addition of new Entity (AE) Deletion of existing Entity (DE)

For example, if a change operation deletes an existing entity, but that same entity is

added later or vice versa, the impacts of the two change operations can balance each other.

An axiom (b subClassOf c) added to make a class (b) a subclass of another class (c), and

an axiom (c subClassOf b) deleted to break the subclass relationship between the class

(c) and its previous superclass (b) can balance each other. In the example below, the first

operation introduced “cyclic class hierarchy”, but the second introduced “orphan class”,

since these two change operations act on the same class, the impact can be balanced and

both cyclic and orphan impacts can be removed.

To explain the impact balancing process, let us take two atomic change operations:

Add SubClassOf(DeletingFile, Activity)andDelete SubclassOf(DeletingFile, Deleting)are

candidates for balancing. TheAdd SubClassmatchesDelete SubClassand the classDelet-

ingFile is a common entity in both operations. When we view these two change operations

155

together, they show a change in the subclass hierarchy ofDeletingFile from Deleting to

Activity. Thus, we can say that the subclass of an axiom is modified and we understand

that the addition followed by deletion is just a modification. DeletingFile is more described

first and less described next, thus the semantic impactsCMD andCLD balance each other,

and thus both of them will be removed. TheAdd Axiomand theDelete Axiomimpacts are

also balanced, thus will be removed. However, we can see that the classActivity is more

described (CMD) and the classDeletingis less described (CLD). This impact reflects what

is happening to the two classes and we do not balance the two impacts becausethey affect

different entities.

Table 6.9: Impact balancing using Rule-3
No Change Operation Structural Impact Semantic Impact
1 Add SubClassOf AA(FullAxiom) CMD(DeletingFile)

(DeletingFile, Activity) CMD(Activity)
2 Delete SubClassOf DA(FullAxiom) CLD(DeletingFile)

(DeletingFile, Deleting) CLD(Deleting)
After Balancing

1 Add SubClassOf None CMD(Activity)
(DeletingFile, Activity)

2 Delete S subClassOf None CLD(Deleting)
(DeletingFile, Deleting)

After balancing of the above two change operations, we remove the CLD and CMD se-

mantic impacts and the AA and AD structural impacts. However, when two change impacts

balance each other, they introduce a higher level change impact, which is caused by compos-

ite change operations. The change operations may introduce impacts such as specialization

or generalization of the entities, more restriction or less restriction on cardinalities of prop-

erties, etc. Thus, the original change impacts are transformed to create another change

impacts. In such situations, we move to the impact transformation step.

6.5.3 Impact Transformation

When two impacts are balanced, they may introduce another impact that is created due to

the combination of the two change operations. The balancing of two or more impacts may

156

transform existing impacts to other impacts, which are not observed at atomic change levels.

For example, in case of balancing impacts, even if we remove the impacts, the operation

may indicate generalization or specialization in the case of operations that alterhierarchies.

Here after balancing impacts, we should check whether we are generalizing the entity by

allowing it to go up in the hierarchy (generalization) or specializing the entity byallowing

it to go down in the hierarchy (specialization).

The major impacts created by impact transformation are semantic impacts such as gen-

eralization, specialization, and incomparable. These impacts are created bydeletion and

addition of subclassof, subPropertyOf and instanceOf axioms. For example, when an in-

stanceOf axiom is added to an instance which links it to a parent more general than its

current parent and another operation deletes the instanceOf axiom of the instance from its

previous parent, then we consider this as a generalization of the instance as it becomes an

instance of a super class.

When two operations are candidates of balancing and if the target involvessubclassOf,

subPropertyOf and instanceOf axioms, then the change operations are candidates for trans-

forming impacts.

• Rule 4. When impacts of two change operations balance and if the operations are

applied to subsumption (subClass, subDataProperty, subObjectPropertyand classAs-

sertion axioms), the balancing impacts will transform to generalization, specialization

or incomparable impacts.

Imp{ACh1, ACh2} =ES(x) ifACh1 andACh2 balance and ify ⊂ y′

Imp{ACh1, ACh2} =EG(x) if ACh1 andACh2 balance and ify′ ⊂ y

Imp{ACh1, ACh2} =Inc(x) if ACh1 andACh2 balance andy 6⊂ y′ ∧ y′ 6⊂ y for

ACh1 = AddSubclassOf(x, y) andACh2 =DeleteSubclassOf(x, y′)

Imp{ACh1, ACh2} = Imp{ACh2, ACh1}

To further elaborate the process of transforming the impacts, we use the following rules.

157

Transformation =































EG, if entity moves up in the hierarchy

ES, if entity moves down in the hierarchy

EI, otherwise

In the example in table6.10, the second structural impact of the second change opera-

tion is removed due to impact balancing. As the class is more described with the first change

operation and less described with the second change operation, it is a candidate for impact

transformation. Thus, the semantic impact of the first change operation will be transformed

to another impact and the transformation is determined by the current location of the target

entity. In this case, the semantic impact is generalization, because the classDeletinggoes

up in the hierarchy.

Table 6.10: Impact transformation using Rule-4
No Change Operation Structural Impact Semantic Impact
1 Add SubClassOf AA(FullAxiom) CMD(DeletingFile)

(DeletingFile, Activity) CMD(Activity)
2 Delete SubClassOf DA(FullAxiom) CLD(DeletingFile)

(DeletingFile, Deleting) CLD(Deleting)

After Transformation
1 Add SubClassOf None GC(DeletingFile)

(DeletingFile, Activity)
2 Delete SubClassOf None None

(DeletingFile, Deleting) None CLD(Deleting)

Finally, all the impacts balance each other. The candidate impacts transform togener-

alization of the classDeletingFile. However, the other impacts still exist asCMD(Activity)

andCLD(Deleting). We assign the transformed impact only for the addition operation, be-

cause the addition change operation introduces the new position of the entity.

6.6 Evaluation of the Change Impact Analysis

The main research question focuses on finding an appropriate method foridentification

and analysis of impacts of change operations in OCMS. This includes identification of

158

impacts of individual atomic change operations and composite change operations. In this

chapter, we proposed a change impact analysis method. We build a prototype to implement

the proposed method. The prototype takes an OCMS and a requested change operation

and generates impacts of individual change operations and composite change operations

separately. The prototype has passed through a standard unit testing. The test includes the

accuracy of the analysis using test cases. However, the primary objective of the evaluation

is not the unit testing of the prototype. But, using the prototype, we evaluate the accuracy

of the proposed method in identifying impacts of atomic, composite and domain specific

change operations. We conduct experiments to evaluate the accuracy and adequacy of the

proposed solution and further compare the effectiveness of the composite change impact

analysis with the individual change impact analysis.

6.6.1 Experiment Setup

To evaluate the change impact analysis method, we extend the experiment used in Section

4.6.1.1. We select and present only 10 change operations, from more than 2,000 tests cases

used to evolve the respective ontologies. We analyse the impacts of the change operations

and evaluate the accuracy of the results using precision. The precision calculates the number

of correctly identified impacts over the number of identified impacts by the system.

6.6.2 Experimental Results

Accuracy. We evaluate the accuracy of the CIA using precision. Precision in this context

measures the number of correctly identified impacts compared to the number identified

impacts. The precision of the CIA is given as:

P (CIA) =
|CIImp|
|IImp| (6.1)

where:

P (CIA)= Precision of the change impact analysis

|CIImp|= Number of Correctly Identified Impacts

159

|IImp|= Number of Identified Impacts

An identified impact should satisfy the following criteria to be considered as correctly

identified impact. First, the method should identify the correct impact. This means the

associated impact should actually occur in the OCMS. Second, the system should identify

the affected entity correctly. When both criteria are satisfied, we considerthe impact as

correctly identified impact.

Based on this, we present two levels of evaluation results. The first levelpresents the

precision of the CIA using a single change operation. The change operation used isDelete

class (Activity)from the software help management case study. In this evaluation, the anal-

ysis is conducted using attach-to-parent, cascade and no-action strategies. We present the

precision of the framework in Table6.11.

Table 6.11: Precision of impacts of a single change operation
Effect

No-action Cascade Attach-to-parent
CIImp IImp P(CIA)% CIImp IImp P(CIA)% CIImp IImp P(CIA)%

Class Less Described 15 15 100 14 14 100 3 3 100
Object Property Less Described 1 1 100 1 1 100 1 1 100
Instance Less Described - - - 21 21 100 - - -
Class Generalized - - - - - - 12 12 100
Class Deleted 1 1 100 29 29 100 1 1 100
Axiom Deleted 15 15 100 60 60 100 3 2 100
Orphan Classes 12 12 100 - - - - - -
Instances Deleted - - - 7 7 100 - - -
Overall Precision - - 100 - - 100 - - 100

The precision result shows that the change impact analysis process identifies those im-

pacts of the change operations over three different change implementationstrategies. This

precision result is based on the change impact analysis method we proposed. This means,

for the impacts we defined, the change impact analysis method identifies them whenever

they occur during the evolution process. For a single change operation,the result shows a

100% precision and passes our requirements. The empty rows represent impacts that are

not observed in that specific strategy.

The second level presents the average precision of the CIA frameworkbased on the

analysis result of 10 frequent change scenarios taken from all the case studies. We analysed

the individual change scenarios using CIA and compute the average precision for a number

160

of change scenarios. The average precision of the CIA framework is given in Table6.12.

Table 6.12: Average precision of impacts of multiple change operations

Change Operation
No-action Cascade Attach-to-parent
P(CIA)% P(CIA)% P(CIA)%

Delete Class(Student) 100 100 100
Add DisjointClasses(Staff, Student) 100 100 100
Delete Instance(John) 100 100 100
Delete Class (Table) 100 100 100
Add SubClassOf(Schema, RelationSchema) 100 100 100
Delete ObjectProperty(hasSchema) 100 100 100
Add Class (GUI) 100 100 100
Delete DataProperty (hasAverageSize) 90 90 90
Delete Instance(id-123.xml 100 100 100
Add Instance (id-1234/xml, File) 100 100 100
Average Precision 99 99 99

The results in Table6.12 show the average precision of the change impact analysis

(CIA) method over 10 change operations taken from the three case studies. These change

operations represent frequent scenarios and are used to evolve theontology using the three

selected strategies whenever the strategies are applicable. For each change operation, we

measure the precision as shown in Table6.12. For 9 of the change operations, the result

shows 100% accuracy. However, in the case of one of the change operations, the accuracy

of the change operation is 90%. This is because the impact analysis identifiedan impact

which does not occur in the OCMS.

The 90% result is attributed to the impact analysis associated to data properties. This

result is observed consistently throughout the three case studies. We investigated the cause

of such exceptional result. The problem arises from the existence of a false positive output.

This means, the change impact analysis approach identified and reported an impact that is

not actually occurring in the OCMS. We further examine the source of the false positive

result. The result is an outlier which may arise from the specification used in the OWL API

or the interpretation of the OWL 2 specification. Further study needs to be conducted to

understand and remove the false positive impacts identified by the change impact analysis

method.

161

The result shows that the change impact analysis gives satisfactory level of precision

for implementing different change operations over different case studies. As the evaluation

involves different case studies, it shows a promising result, which givesa justification for

the applicability of the proposed solution in different domain areas.

6.6.3 Comparison with Existing Tool

To further validate the results of the change impact analysis process, we compare the re-

sults of our system with similar systems. The system we choose is the protege software.

We evolve the three ontologies using the change operations used in Table6.12. We used

three evolution strategies to evolve the ontologies. The Protege 4.2 ontology editor allows

comparison of two ontology versions and shows the additions, modifications and deletions

in the new version. We present the result identified from Protege and ourchange impact

analysis (CIA) in Table6.13. The result shows that the change impact analysis approach

identified all impacts that are identified by protege. In addition to that, our approach iden-

tified additional change impacts. There are additional structural and semantic impacts that

are identified by our system. This is mostly attributed to semantic impacts which are not

supported by protege ontology comparison tool.

Following the above procedure for the selected change operations, we present the over-

all accuracy of our system. We further present the additional structural and semantic im-

pacts. These additional impacts actually occur in the system and explain the impacts of the

change operations. Both the results show that our proposed approachprovides accurate and

additional information to the ontology engineer.

162

Table 6.13: Identified change impacts: A comparison between Protege and CIA
Protege CIA Accuracy

No Action

S
tr

uc
tu

ra
l

Im
pa

ct
s

DC(Student) DC(Student)
DA(Student subclassOf Person) DA(Student subclassOf Person)
DA(UnderGraduateStudent subclassOf Student)DA(UnderGraduateStudent subclassOf Student)
DA(PHDStudent subclassOf Student) DA(PHDStudent subclassOf Student)
DA(MastersStudent subclassOf Student) DA(MastersStudent subclassOf Student) 100%

OC(UnderGraduateStudent)
OC(PHDStudent) Additional
OC(MastersStudent) 3

S
em

an
tic

Im
pa

ct
s CLD(UnderGraduateStudent)

CLD(PHDStudent)
CLD(MastersStudent) Additional
CLD(Person) 4

Cascade

S
tr

uc
tu

ra
l

Im
pa

ct
s

DC(Student) DC(Student)
DC(UnderGraduateStudent) DC(UnderGraduateStudent)
DC(MastersStudent) DC(MastersStudent)
DC(PHDStudent) DC(PHDStudent)
DA(Student subclassOf Person) DA(Student subclassOf Person)
DA(UnderGraduateStudent subclassOf Student)DA(UnderGraduateStudent subclassOf Student)
DA(MastersStudent subclassOf Student) DA(MastersStudent subclassOf Student)
DA(PHDStudent subclassOf Student) DA(PHDStudent subclassOf Student)
DI(Javed) DI(Javed)
DI(Peter) DI(Peter)
DI(Pooyan) DI(Pooyan)
DI(Tom) DI(Tom)
DI(Yalemisew) DI(Yalemisew) 100%

DI(Kosala)
DA(OPA(hasOddice Kosala,L204))
DA(DPA(hasFirstName Kosala “Kosala”
DA(DPA(hasLastName Kosala “Yapa Bandra”
DA(DPA(hasID Kosala “50505050”
DA(CA(PHDStudent, Javed))
DA(CA(UndergraduateStudent, Peter))
DA(CA(PHDStudent, Pooyan))
DA(CA(UndergraduateStudent, Tom))
DA(CA(PHDStudent, Kosala))
DA(CA(PHDStudent, Kosala))
DA(CA(MastersStudent, Janet)) Additional
DA(CA(MastersStudent, Mark)) 13

S
em

an
tic

Im
pa

ct
s OPLD(hasOffice)

DPLD(hasId)
DPLD(hasName)
DPLD(hasFirstName)
ILD(Mark)
ILD(Janet)
CLD(L204) Additional
CLD(Person) 8

Attach to Parent

S
tr

uc
tu

ra
l

Im
pa

ct
s

DC(Student) DC(Student)
DA(Student subclassOf Person) DA(Student subclassOf Person)
Changed(superClassOf UnderGraduateStudent)CG(UnderGraduateStudent)
Changed(superClassOf PHDStudent) CG(PHDStudent)
Changed(superClassOf MastersStudent) CG(MastersStudent) 100%

S
em

an
tic

Im
pa

ct
s CLD(Person)

Additional
1

163

Table 6.14: Average precision of impacts of multiple change operations
Change Operation No-action Cascade Attach-to-parent

Accuracy Additional
(Str, Sem)

Accuracy Additional
(Str, Sem)

Accuracy Additional
(Str, Sem)

Delete Class(Student) 100% 3,4 100% 13,8 100% 0,1
Add DisjointClasses(Staff, Student) 100% 0,2 - - - -
Delete Instance(John) 100% 0,1 100% 0,1 100% 0,1
Delete Class (Table) 100% 1,7 100% 1,7 100% 1,7
Add SubClassOf(Schema, RelationSchema) 100% 0,4 - - - -
Delete ObjectProperty(hasSchema) 100% 0,2 100% 0,2 100% 0,2
Add Class (GUI) 100% 0,1 100% 0,2 - -
Delete DataProperty (hasAverageSize) 100% 1,14 100% 1,14 - -
Delete Instance(id-123.xml 100% 0,9 - - - -
Add Instance (id-1234/xml, File) 100% 0,2 - - - -
Average Accuracy 100% - 100% - 100% -

6.6.4 Comparison of Individual and Composite Impact Analysis

To see how much the composite impact analysis filters the impacts we compare the number

of impacts identified by individual impact analysis and composite impact analysis. Table

6.15presents the results of the comparison for the change operations used in Table6.12.

Table 6.15: Comparison of Individual and composite impacts
Change No-action Cascade Attach-to-parent
Operation Indiv Comp % Indiv Comp % Indiv Comp %
1 17 12 -29.4% 65 38 -41.4% 26 6 -76.9%
2 4 4 0% - - - - - -
3 9 5 -44.4% 9 5 -44.4% - - -
4 26 24 -7.6% 26 24 -7.6% 26 24 -7.6%
5 3 3 0% - - - - - -
6 7 7 0% 7 7 0% 7 7 0%
7 2 2 0% - - - 5 4 -20.0%
8 29 29 0% 29 29 0% 29 29 0%
9 24 16 -33.3% 24 16 -33.3% - - -
10 2 2 0% - - - 5 4 -20.0%
Average - - -11.49% - - -21.1% - - -20.7%

The above table shows that the composite change operation removes one ormore im-

pacts of the individual change operations. This shows that the composite impact analysis is

essential to filter out impacts that are cancelled, balanced or transformed.The number of

impacts reduced by average of 11.49% in case of the no-action strategy, 21.1% in case of

the cascading strategy and 20.7% in the case of the attach strategy. These results may vary

depending on the OCMS and the number of entities used in the ontology. However, the

result shows that the composite change impact analysis always guarantees a less or equal

number of impacts compared to the individual impact analysis. This enables theuser to

164

focus on the refined impacts of the change request. A similar comparison is conducted

between the time required to complete the identification of impacts of individual change

operations and composite change operations. The results show that the average time re-

quired to finish individual change impact analysis and composite change impact analysis,

respectively, is 82.7ms and 146ms for no-action strategy, 75.16 and 185.83 for the cascade

strategy and 72.3 and 136.6 for the attach-to-parent strategy respectively. This shows that

composite change impact analysis takes twice as much time as individual changeimpact

analysis. This is due to the additional iterations required to find cancelling, balancing and

transforming impacts. In general, the time required to conduct composite impactsthat con-

tain up to 120 atomic change operations is less than 0.5 seconds which is fast enough for

change impact analysis.

6.6.5 Questionnaire Results

The precision measures the accuracy of the solution. However, we needto evaluate whether

the solution is adequate. This includes evaluating whether the method is capableof iden-

tifying the impacts and affected entities, the understandability and usability of impacts to

address inconsistencies and invalidities. We distributed questionnaires forfour users who

involve on the evaluation of the prototype. We further interviewed the usersbased on the

questionnaire results to further understand the rationale behind their responses. After the

analysis of the impact of each change scenario, the users filled a questionnaire (Appendix

E) related to the adequacy, transparency and usability of the CIA framework. The average

responses of the users are presented in Table6.16

Table 6.16: Users feedback on the CIA framework
Questions average response
CIA identified all occurring impacts 4.33
CIA identified all affected entities 4.67
CIA helps me understand the impacts 4.67
CIA highlights Integrity problems 4.33
Strongly Agree= 5, Agree= 4, Slightly Agree=3
Slightly disagree= 2, disagree= 1, Strongly disagree=0

165

The result shows that the users strongly agree or agree about the adequacy of the solu-

tion. In both cases the respondents agree about the occurrence of theimpacts. Some of these

users; however, focused on the presentation of the impacts (User interface issue) which is

not the primary concern of the evaluation. The result from the questionnaire shows that the

change impact analysis method identifies the impacts and the affected entities. This helps

the user understand the impacts of the changes they request before theyimplement them

permanently. Whenever there are integrity problems, the analysis highlights the problems

and the change operations responsible for the violation. In general, a response from the

users is encouraging.

The result in Table6.11and6.12shows that the proposed solution demonstrate a promis-

ing result, which can be used as an input for analysing impacts of change operations. The

output of the analysis can be used for the selection of an optimal evolution strategy based

on the number of impacts.

6.7 Summary

The change impact analysis phase performs the analysis using two stages.The individual

change impact analysis process takes an atomic change operation and analyses the impacts

of the individual change operations based on the preconditions defined. This phase further

takes dependency analysis results to identify the dependent entities of a changing entity.

We further conduct composite change impact analysis and provide information about the

detailed and the summarized impacts of a change operation. This allows ontologyengineers

to follow their own way of implementing changes and before they implement the changes,

they can run the change impact analysis to see the structural and semantic impacts of their

change operations. This gives significant analysis results and flexibility for the ontology

engineer specially when there are complex change operations.

The change impact analysis process, in addition to analysing impacts of change oper-

ations, allows the ontology engineer to easily pinpoint the causes of a givenimpact. The

semantic impacts provide a wealth of information for the ontology engineer to understand

166

what a given change operation does beyond the obvious change on thestructure. This in-

formation can be exploited to search for optimized solutions that can be used tosearch for

alternative ways of implementing the requested change using different evolution strategies.

The exploitation of the information associated with the type of impact, the reasoning type

and the severity of the impacts serve as an input for optimized implementation of a re-

quested change operation. Given different evolution strategies, we can analyse the impacts

of a change operation. Based on that, we can select the strategy that ensures the implemen-

tation of the requested change with a minimum impact. The implementation chapter will

discuss the details of the change implementation phase.

167

Chapter 7

Change Optimization and

Implementation

7.1 Introduction

When ontology engineers and content managers request a change, they need to know the

impacts of the changes on dependent systems. They want to conduct a what-if analysis and

determine how the entities are affected. Whenever they have different options of imple-

menting a change, users tend to compare and choose the best option. For changes that have

complex and multiple impacts, understanding, comparing and selecting the best option man-

ually is error prone and time consuming. Thus, providing methods that compare different

implementation options and select the optimal one are important for a better evolution.

In Section5.4, we pointed out that a requested change operation can be implemented

using different evolution strategies. These evolution strategies are different by the type and

number of change operations they contain. In Chapter6, we analysed the impacts of change

operations in general. However, the selection of the best strategy requires an in-depth anal-

ysis of the nature of impacts, the statements affected, the entities added or removed and the

number of change operations. The optimal strategy that meets the requirements of the user

shall be selected based on these analysis results.

168

Depending on the change request, we present the user with different implementation op-

tions and the associated costs of evolution for each option. The cost of evolution measures

the overall effort required to implement a change in a given strategy. Thecost is calcu-

lated by taking the impacts, operation types, statement types and performanceinto account.

After the cost of each evolution strategy is calculated, the user can choose the best option

with the minimum cost or let the system decide the optimal solution automatically. Finally,

the user compares impacts of the change request in different evolution strategies based on

their associated cost and selects the optimal strategy. Once the optimal strategy is selected,

the implementation can be performed using different editors and APIs that are capable of

implementing atomic change operations in a user-defined fashion.

This chapter is organized as follows. Section7.2 presents the optimization framework

and introduces its components. Section7.3discusses the optimization criteria and how each

criterion is measured separately. A formula used to measure the cost of evolution that serves

as a measure for the optimal strategy selection and implementation is discussed in Section

7.4. We evaluate the proposed solution and present the evaluation results in Section 7.5.

Finally, Section7.6presents the summary of the chapter.

7.2 Change Impact Optimization Framework

Ontology evolution often involves analysis and selection of different strategies before im-

plementing the changes and evolving the ontology. In this section, we propose a novel

approach for the selection of an optimal strategy to implement a requested change. We

propose an optimization framework, which utilizes evolution strategies, severity of change

impacts, deductive and incremental changes, affected statement types and the number of

change operations.

The framework begins with identifying applicable implementation strategies to imple-

ment the requested change operation. Each strategy is evaluated using four criteria, which

serve as an input for calculating cost of evolution. The severity value is used to evaluate the

seriousness of an impact. The operation type measures the incremental change (Addition)

169

Requested

Change

Evolution Strategy

Strategy 1
 Strategy 2
 Strategy 3

Optimal strategy selection

Implementation

...

Final change

operation 1

Final change

operation 2

Final change

operation 3
 ...

Severity of

impacts

Statement

types

 Operation

types

Number of

change

operations

Selected

strategy

Figure 7.1: Framework for selecting optimal strategy

and decremental change (deletion). The statement type measures the number of ABox and

T Box statements (6.3.3) affected. The performance measures the total number of change

operations required to implement the change. The cost of evolution is measured by combin-

ing the above criteria based on their assigned weight in the evolving OCMS.

The optimal strategy selection process has the following major criteria. The first one

is a severity criterion, which is responsible for calculating the severity of impacts of a

given strategy.Severitymeasures the intensity or the degree of an impact on an OCMS in

relation to the problem it causes, the effort and the level of expertise it requires to resolve

the impact. The second criterion is the performance, which focuses on selecting the optimal

way of executing the change in terms of the number of change operations involved. The

third criterion uses the statement types (ABox andT Box) that are affected. Finally, the

fourth criterion focuses on the incremental and decremental changes in terms of the number

of additions and deletions. The optimal strategy selection stage estimates the overall cost

of evolution using the four criteria. It further compares the cost and ranks the strategies

according to their cost. The strategy with minimum cost is the strategy which is preferable

for implementation. Finally, the changes in the selected strategy will be implemented.

170

7.3 Change Optimization Criteria

Selection of optimal implementation strategy depends on the optimization criteria set by the

ontology engineer. In this research we selected four different optimization criteria, which

are included in the optimization framework. These criteria are discussed in detail in the

following sections.

7.3.1 Severity of Impacts

In Chapter6, we identified structural and semantic impacts. We observed that some of these

impacts are severe and cause more problems than the others. Thus, it becomes important

to distinguish between the impacts based on their severity. Severity measures the degree of

seriousness of a given impact. To quantify the severity of impacts, we propose a quantitative

estimation on a scale of 0 to 100. A severity value 0 is assigned to impacts with minimum

severity and is interpreted as an impact, which does not create any problemif it occurs in

the OCMS. The value 100 refers to an impact with a high degree of impact, which makes

the OCM erroneous or degrades its importance. Any value in between indicates the degree

of severity of the associated impact.

Assigning an exact value for severity of an impact is not a trivial task. Itrequires a

deep knowledge of the impact and the problems associated to the impact. When an entity

is impacted, we need to know how serious the impact is, how much time it requires to

address the problem, and what level of expertise it requires to understand and resolve it.

To facilitate the process of estimating the severity value, we propose four levels of severity

categories. The categories are low impacts (0-25) moderate impacts (26-50), high impacts

(51-75) and crucial impacts (76-100). This categorization is used to roughly group impacts

based on an estimated value. For example, if we have unsatisfiable class (UC) impact, first

we determine whether the impact is low, moderate, high or crucial. IfUC is crucial, then

we determine how crucial it is and assign a value between 76 and 100. In anOCMS where

UC impact is unacceptable, we assign a severity value close to 100. This approach guides

the ontology engineer to group impacts using the four categories, and then assigns a severity

171

value within the range of the category.

The severity value is not uniform across all OCMS. It is defined in relationto a given

OCMS. As we discussed in Section4.2, there are different kinds of OCMS. In each OCMS,

the nature of the ontology, the annotation and the content are different. Ina similar way, the

objective of the OCMS is different. This difference may lead to an assignment of different

severity values for a single impact in different OCMS. Thus, a very severe impact in one

OCMS may not be that severe in another OCMS. For example, in one OCMS thesystem

orphan instances are not allowed. This makes the orphan instance (OC) impact very severe

in that OCMS. However, in other OCMS orphan instances are allowed. Thismakes the

orphan instance (OC) impact less severe.

Thus, setting severity values of impacts in a given OCMS depends on the requirements

defined by the ontology engineer or content manager. We use heuristics tomeasure the

severity value of the impacts. The heuristics consider criteria such as the tolerance of a

given OCMS to a given impact, the amount of time and expertise required to reduce or

avoid the impact and the semantic information we lose or gain due to a given impact.In

general, there are impacts of change operations that introduce errors in the system unless

they are resolved. There are other impacts that cause the OCMS to introduce integrity

violations in part without affecting the whole. Other impacts only cause the lossof some

semantics.

A severity value is assigned by experts who are designing the OCMS. The assignment

may vary according to the design specification, the purpose and other factors. For the pur-

pose of the experiment, we calculated the average severity value of impacts from different

estimations by experts. This average value is used as a default value for this experiment.

However, the actual severity values assigned by the user may significantlyvary from the

average value depending on the target OCMS and the user’s preference. When the user

does not supply the values, the average will be taken as a default value.Depending on the

nature of the OCMS, the preference of the ontology engineer and the content manager, the

values can be configured.

Calculating the severity of the requested change operation is the last process that needs

172

Table 7.1: Default value for severity of impacts
No. Semantic Impact Acronym Severity

1 Entity More Described (CMD,DPMD,OPMD,IMD) 15
2 Entity Less Described (CLD,DPLD,OPLD,ILD) 75
3 Entity More Restricted (OPMR) 75
4 Entity Less Restricted (OPLR) 35
5 Entity More Expanded (AME) 60
6 Entity Less Expanded (ALE) 80
7 Entity Generalized (CG,DPG,OPG,IG) 50
8 Entity Specialized (CS,DPS,OPS,IS) 70
9 Entity Incomparable (CInc, DPInc, OPInc, IInc) 70
10 Unsatisfiable

Class/Property
(UC,UDP,UOP) 100

11 Invalid Instance/ Instance
Property

(II, IIP) 80

No. Structural Impact Acronym Severity

1 Orphan Classes (OC) 80
2 Orphan Instance (OI) 75
3 Property Cyclic Refer-

ence
(OPCR/DPCR) 90

4 Class Cyclic Reference (CCR) 95
5 Null Reference to Content

Layer
(NRC) 70

6 Null Reference to Ontol-
ogy Layer

(NRO) 70

to be done. We analyse the severity of the impacts after the composite change impact anal-

ysis is performed. Severity of impacts of change operations is assigned for each individual

impact identified in Section6.3. These observed impacts are the actual impacts that occur

at the implementation phase of the change operation. We take the default severity value

assigned for each structural and semantic impact in Table7.1 and assign them to the re-

spective impacts of a change operation. The selection of the optimal solution depends on

the quality of the severity value assigned to the impacts. This means, if a representative

severity value is assigned to an impact, the selection of the optimal solution will become

accurate. Thus, ontology engineers need to carefully select a representative severity value

for the impacts.

Severity Threshold. A given change operation may contain two or more impacts.

173

Among the impacts, there may be a few severe impacts, which need to be resolved or

avoided at all cost. To calculate a representative measure of the severityof a strategy, we

define a severity threshold. The severity threshold (T) sets a severity value which serves as

a cutting point for impacts that are not allowed to occur in a given OCMS. If one or more

impacts have a severity value greater than the threshold value, we take the maximum sever-

ity value as a representative value for that specific strategy [Johnson, 2011] [Trivedi, 2002]

[Sacks et al., 1989]. A representative severity value (S) for a strategy is selected based on

the severity of the individual impacts in the strategy.s = {s1, s2, . . . , sk} represents the

severity of the individual impacts contained in the strategy . If the individualseverity value

(si), wherei ∈ {1, 2, . . . , k} is greater than the threshold (T), we select the maximum

severityMAX(s), otherwise we calculate an average severity valueAV G(s). Note thatk

represents the number of individual impacts of a change operation.

S =















MAX(s) if MAX(s) ≥ T

AVG(s) otherwise

For example, if a threshold is set to beT=75, anything greater than 75 will be considered

as crucial impact and will be picked as the severity value of the strategy, otherwise we

calculate the average severity. If there is unsatisfiable class (UC) with a severity value of

100, andT = 75 then, we select the severity value of 100 as a representative value.

If the maximum severity of the individual impacts in a strategy is less than the threshold,

we take the average severity value.fi represents the frequency ofsi

AV G(s) =

∑k
i=1

si × fi
∑k

i=1
fi

, (7.1)

We take this approach to reduce the effects of frequent but less severe impacts on the

overall estimation of impacts. By definition, crucial impacts should be avoided by any

means. To ensure this we should set a threshold that serve as a pivot for severity. Anything

which is less than the threshold is represented by the average severity. Let us take an

example (Table7.2) to show how the severity calculation works and compare severity of

174

impacts of a change operation.

Table 7.2: Severity value calculation
Strategy 1 Strategy 2

Impacts Severity Impacts Severity
CLD 75 OC 100
CMD 75 CMD 75
OPLR 35 UC 100

II 80
Average 61.6 Max 100

Let us set the severity threshold to 80. In the first strategy, since all the severity of the

impacts is less than 80 we calculate the average severity as a representativevalue. Thus,

the representative value is 61.6. However, in the second strategy, sincethere are OC, UC

and II impacts which are greater than or equal to the threshold value, we take the maximum

severity as a representative value, which is 100.

Based on the above calculation, we present the severity values of different strategies

for the change operation (Delete Class Activity) implemented in our case study (Appendix

A). This change operation has the following representative severity values for each of the

applicable strategies.

Table 7.3: Severity value
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Severity 80.00 56.00 56.00 75.00 75.00

Let us tune the severity value to represent OCMS that gives less severityto Orphan

classes and orphan instances. To do this we modify the values in Table7.1 as follows.

Severity of OC is changed from 80 to 10 and OI impact is changed from 75 to10. This

shows that the OCMS is not sensitive to the existence of orphan classes and instances. Thus,

the severity value become different from the above result in Table7.3

Table 7.4: Severity value- different value for OC and OI Impacts
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Severity 47.00 56.00 56.00 68.00 68.00

175

7.3.2 Type of Change Operation (Addition and Deletion)

Addition and deletion operations are used as criteria for selecting an optimal strategy. If the

ontology evolution favours incremental evolution, which adds new knowledge every time

without deleting existing knowledge, the final change operations are expected to introduce

more addition operations compared to deletion operations. In this case, the removal of a

given entity and the introduction of a new entity may not be considered to havethe same

impact. Thus, the type of the operation is considered as another factor to determine the

optimal implementation strategy. The addition operation is different from deletionin the

following ways. When we add a new entity, we may need to search existing entities, but the

search is specific to an entity. This means, there may not be much time and resource wasted

to add the new entity in the OCMS. However, when we delete an entity, first we need to

conduct a dependency analysis, which includes searching all dependent entities. Second,

cascade the change to all dependent entities. In terms of time and resource, a deletion

operation incurs extra cost compared to addition.

Whenever there is a difference of performance between addition and deletion opera-

tions, we assign a different weight to the change operations [Trivedi, 2002] [Sacks et al., 1989].

We assign W (A) for the associated weight of addition operations and W (D)for the associ-

ated weight of deletion operations. The lesser the weight, the higher the desirability of the

change operation. Higher weight indicates the less desirability of the change operation in

the strategy. Thus, for a given final change operation, the weighted frequency of addition op-

erations and deletion operations are used. This measure makes this parameter quantifiable

and facilitates comparison of one strategy with another in terms of change operations.

WF (A) = W (A) ∗ |A| (7.2)

WF (D) = W (D) ∗ |D| (7.3)

OT = WF (A) +WF (D) (7.4)

Where:

176

OT= Operation Type

WF(A) is weighted frequency of Additions

WF(D) is weighted frequency of Deletions

0 ≤W (A) ≤ 1, 0 ≤W (D) ≤ 1 andW (A)+ W (D) = 1

|A| = number of additions and|D| = number of deletions

Let us look at the weighted calculation for addition and deletion operations. Let w(A)

= 0.25 and W(D) = 0.75 as shown in Table7.5.

Table 7.5: Frequency of additions and deletions
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Number of Additions 0 12 12 0 0
Number of Deletions 16 16 16 96 89

Weighted Frequency of Additions and Deletions
Number of Additions 0 4.80 4.80 0.00 0.00
Number of Deletions 9.60 9.60 9.60 57.60 53.60

Operation type
Operation Type 9.60 14.40 14.40 57.60 53.40

7.3.3 Statement Types (ABox andT Box)

In ontologies, changing theT Box statements may affect all theABox statements associ-

ated with it. However, changing theABox statements does not change theT Box. From

all the empirical studies, we found that theT Box and theABox statements are not equally

important in different application domains and do not have equal weight. For example, in

the university administration case study, it is preferable to change theT Box statements to

amend inconsistency than theABox statements. Changing theABox statements means

changing the information of an individual student or department. In the database case study,

the classes define the individuals, thus, large weight is given to theT Box statements. Other

applications treat both statements as equally important. This indicates that statement type

serves as a means of selecting an optimal implementation strategy whenever there is a dis-

tinction on changingABox statements andT Box statements. This criteria correspond to

the OWL profiles discussed in Section2.3.2. Ontologies adhering to OWL-QL are more

177

sensitive toABox statements and OWL2 EL are more sensitive toT Box statements.

Thus, the weight of theABox and theT Box statements depend on the application and

the preference of the ontology engineer. We take the weighted frequency of the strategies

to measureABox andT Box. These weighted frequencies will be used to compare final

change operations in terms of statement types. The weight ofABox statements is given

by W (ABox) and the weight ofT Box statements is given byW (T Box). The weight is a

value between 0 and 1.

WF (ABox) = W (ABox) ∗ |ABox| (7.5)

WF (T Box) = W (T Box) ∗ |T Box| (7.6)

ST = WF (ABox) +WF (T Box) (7.7)

Where:

ST= Statement Type

WF (ABox) is weighted frequency ofABox statements

WF (T Box) is weighted frequency ofT Box statements

0 ≤W (ABox) ≤ 1 ∧ 0 ≤W (T Box) ≤ 1

|ABox|= number ofABox statements,|T Box|= number ofT Box statements

The number ofABox andT Box statements and the weighted frequency ofABox and

T Box statements, for a given weightW (ABox) = 0.4 andw(T Box) = 0.6, is as pre-

sented in Table7.6.

Table 7.6: Frequencies ofABox andT Box statements
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

ABox statements 0.00 0.00 0.00 34.00 27.00
T Box statements 16.00 28.00 28.00 62.00 62.00

Weighted frequency ofABox andT Box statements
ABox statements 0.00 0.00 0.00 13.60 12.80
T Box statements 9.80 16.80 16.80 37.20 37.20

Statement type
Statement type 9.80 16.80 16.80 50.80 48.00

178

7.3.4 Performance of Change Operations

Performance measures the number of atomic change operation required to implement the

change. This is calculated by counting the number of atomic change operations in the final

change operation. The assumption behind this criterion is to compare the time andeffort

required to implement change operations especially for those content-based systems that

have large number of instances or for classes with many dependencies. For each evolution

strategy, we count the number of atomic change operations in the final change operation.

This measure is useful when there is a need to compare strategies using number of change

operations irrespective of their type or the statements they affect.

P = |ACh ∈ CCh| (7.8)

Where:

P= Performance

ACh= Atomic change operations

CCh = Composite change operations

Table 7.7: Number of change operations
Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Number of change op-
erations

16 28 28 96 89

7.4 Cost of Evolution and Optimal Strategy Selection

7.4.1 Cost of Evolution

Measuring the cost of evolution to select the optimal strategy based on impactanalysis is

the central process of the implementation phase. We suggest two approaches to calculate

the cost of evolution.

The first one is by comparing strategies using a selected individual criterion. For exam-

ple, strategies can be compared using severity criterion. If there are strategies with equal

179

severity, we can further compare them with a second criterion, say statement type and con-

tinue including the next criterion until we identify the best strategy. Our system provides

analysis and selection of impacts based on a single criterion or a cascade ofselected criteria.

In this approach, to determine the cost of evolution, we compare the strategies by cascading

the selected criteria. The user ranks the criteria with priority and we evaluateimpacts using

the highest priority criteria first and the lowest priority criteria last. The implementation of

this approach is straightforward and it exploits the analysis results of eachcriterion.

The second approach uses all the criteria to measure the cost of evolution. To measure

the cost of evolution, we need to evaluate all of the above criteria together.The cost of

evolution becomes important as it includes all the criteria that affect the decision of the

ontology engineer. All the criteria and the measures discussed above may not be equally

important. An ontology engineer may assign a higher weight for the severity of impacts

and ignore the number of change operations, or give more weight to the statement types

and ignore additions and deletions. Thus, we need to compare each of the strategies at

an individual basis to select the optimal strategy for the given criteria at hand. However,

a single criterion does not characterize the requested change operation. A comprehensive

measure that takes all the above criteria into account is important. To achievethis, we assign

a weight to each criterion. The ontology engineer sets a weight for all criteria based on their

importance in a given OCMS.

We assign weights to each criterion{w1, w2, w3, w4} for each of the criteria chosen

by the ontology engineer. Once the weights are assigned, the next stage isto calculate

the cost of implementing the change operation using the given strategy. These weights are

different from the previous individual weights. The weights here measure the importance

of a criterion compared to the other three criteria. The individual weights measures the

weights of individual criteria compared to its pair, Addition with Deletion andABox with

T Box.

cost(strategy) =
4

∑

k=1

wk ∗ Crk (7.9)

180

Where:

Crk ∈ {S, ST, OT, P}

wk ∈ {w1, w2, w3, w4}

w1 + w2 + w3 + w4 = 1 and0 ≤ wk ≤ 1

This cost is used to measure the overall impact of the change operation. Now let us

look at how the weights of the criteria affect the cost estimation. To demonstrate this we

will use four different scenarios. The first one is when all criteria have equal weight. The

second represents a weight customized for Software Help Management OCMS (Appendix

A). The third one has its weights customized for the database OCMS (AppendixB), where

more weight is given to statements than to severity values. The last one is whenthe weight

is customized for the university ontology (AppendixC), where performance and statement

types are given more weight than to severity and operation type. The scenarios and the

associated weights for each scenario are presented in Table7.8.

Table 7.8: Different weights assigned for criteria

Scenario OCMS Severity Operation
Type

Statement
Type

Performance

Scenario 1 Software
help OCMS

0.25 0.25 0.25 0.25

Scenario 2 Software
help OCMS

0.70 0.10 0.10 0.10

Scenario 3 Database
OCMS

0.50 0.10 0.30 0.10

Scenario 4 University
OCMS

0.30 0.30 0.20 0.20

Scenario 1. This scenario assigns equal weight for each criterion. This means each

criterion is given a weight of 0.25. The cost estimation of the strategies usingthis criterion

is given in Table7.9

Scenario 2.This scenario assigns different weights for each criterion for the purpose of

the experiment. These weights are assigned based on the assumption that wewant to keep

the semantic and structural integrity of the OCMS compared to the other criteria.The cost

estimation of the strategies using this criterion is given in Table7.10.

181

Table 7.9: Cost of evolution analysis - equal weight
Criteria Weight Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

Severity 0.25 20 14 14 18.75 18.75
Operation
Type

0.25 2.40 3.60 3.60 14.40 13.35

Statement
Type

0.25 2.40 4.20 4.20 12.7 12.00

Performance 0.25 4.00 7.00 7.00 24.00 22.25
Cost 28.8 28.80 28.80 69.85 66.35

Table 7.10: Summary of cost of evolution - different weights
Criteria Weight Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

Severity 0.70 56.00 39.20 39.20 52.50 52.50
Operation
Type

0.10 0.96 1.44 1.44 5.76 5.34

Statement
Type

0.10 0.96 1.68 1.68 5.08 4.8

Performance 0.10 1.60 2.80 2.80 9.60 8.90
Cost 59.52 45.12 45.12 72.94 71.54

Scenario 3. This scenario assigns different weights for each criterion based on the

database OCMS. These weights are assigned based on the assumption thatwe want to

keep the semantic and structural integrity of the OCMS and the statement types.The cost

estimation of the strategies using this criterion is given in Table7.11.

Table 7.11: Cost of evolution for Database systems OCMS
Criteria Weight Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

Severity 0.50 37.50 37.50 37.50 37.50 37.50
Operation
Type

0.10 0.54 0.54 0.54 0.54 0.54

Statement
Type

0.30 1.62 1.62 1.62 1.62 1.62

Performance 0.10 0.90 0.90 0.90 0.90 0.90
Cost 40.55 40.55 40.55 40.55 40.55

Scenario 4. This scenario assigns different weights for each criteria based on the re-

quirements of the university OCMS. In this OCMS severity of impacts and performance

182

are given more weight than the other two. The cost estimation of the strategiesusing this

criterion is given in Table7.12.

Table 7.12: Summary of cost of evolution for University OCMS
Criteria Weight Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

Severity 0.30 24.00 16.80 16.80 22.50 22.50
Operation
Type

0.30 0.90 1.26 1.26 4.68 3.60

Statement
Type

0.20 0.96 1.68 1.68 5.08 4.8

Performance 0.20 1.60 1.60 1.60 5.20 4.00
Cost 26.5 20.62 20.62 34.78 32.02

7.4.2 Optimal Strategy Selection

The optimal strategy selection exploits the four criteria for finding the optimal implementa-

tion strategy. The cost of a strategy measures the cost of evolving a change operation using

the four criteria defined. The selection of the best strategy is based on theselection of a

strategy with a minimum cost.

BestStrategy = MIN{Cost(Strategy1), . . . , Cost(Strategyn)} (7.10)

Based on this, in scenario 1, there is more than one best strategy. Strategies 1, 2 and 3

have equal cost of evolution. Strategies 2 and 3 have exactly the same change operations

and change impacts, thus the actual selection is between strategy 1 and Strategy 2. Scenario

2 represents a real-world selection of weights. Based on scenario 2 the best strategies are

strategy 2 and 3. In this case, strategies 2 and 3 do not have any difference because even if

we attachT Box statements only, since there is noABox statement, the two strategies yield

exactly the same change operations. Thus, strategy 2 is the optimal change implementation

solution based on the cost of evolution and the weights assigned by the user. In scenario 3,

based on the estimated weights, all the strategies yield equal weight, thus, all the strategies

183

have an equal cost of evolution. In scenario 4, the minimum cost comes from strategy 2 and

strategy 3. In this case, the two strategies yield the optimal solution. Wheneverthere is no

ABox statement affected in the OCMS, strategy 2 and strategy 3 yields the same change

operations thus, yields equal cost.

7.4.3 Effect of Severity Value on the Cost of Evolution

The severity value assignment plays a major role in calculating the cost of evolution. The

experiment used a default severity value, which is an average value collected from experts.

To demonstrate how a change in the severity value affects the cost of evolution, we take two

impacts and change their value. The change of the values reflects the real-world situation

where some engineers allow orphan classes and orphan instances to exist in the OCMS.

The different cases of severity assignment and the different scenarios of weights of

criteria are presented in AppendixD. We identified three different severity cases where

severity is assigned differently and four weighting criteria, which assign different weights

for the individual criterion. Finally we presented the cost of evolution andthe optimal

strategy.

7.5 Evaluation of Change Impact Optimization

The change impact optimization process focuses on the selection of the bestchange im-

plementation strategy based on the cost of evolution of the OCMS system. The cost of

evolution includes the severity of impacts, theABox andT Box statements, the additions

and deletions, and the number of change operations involved.

7.5.1 Experimental Setup

We extend the experiment used for evaluating the previous two phases. Inthis phase we use

the same number of change operations and OCMS. Based on the change impact analysis re-

sults, we implement change impact optimization to find the optimal change implementation

184

strategy. We evaluate the accuracy of the system for selecting the optimal strategy based on

the selected criteria.

7.5.1.1 Precision of Optimal Strategy Selection

We evaluate whether the proposed method achieves its objective by evaluating the change

impact optimization process. The evaluation mainly focuses on checking whether the sys-

tem identifies the optimal solution. We select the optimal solution according to parameters

selected by the user of the OCMS. We use the change operations that are used in Section

6.6. For each change scenario used in the evaluation of the CIA, the prototype ranks the

strategies based on their cost of evolution as first optimal, second optimal, etc. We evaluate

whether the proposed change operation is the optimal solution by manually evaluating the

change operations.

Table 7.13: Percentage of identifying the first three optimal solutions

Change Operation
Accuracy of Optimal strategy selection

First Second Third
Delete Class(Student)

√ √ √

Add DisjointClass(Staff, Student)
√

- -
Delete Instance(John)

√ √
-

Delete Class (Table)
√ √ √

Add SubClassOf(Schema, RelationSchema)
√

- -
Delete ObjectProperty(hasSchema)

√ √ √

Add Class (GUI)
√ √

-
Delete DataProperty (hasAverageSize)

√ √ √

Delete Instance(id-123.xml
√ √

-
Add Instance (id-1234/xml, File)

√ √
-

Table7.13shows the evaluation result. The (
√

) mark indicates that the system identified

the optimal strategy correctly and the (−) represents the absence of additional strategy. This

means the change is implemented using the available strategy and does not haveany other

way of implementing the change. From the result, it is possible to conclude that the optimal

strategy selection identifies the optimal strategy for all the changes to be implemented.

The graphical representation of strategies and their comparison is presented in Figure

7.2. The figure shows different scenarios taken from different domains. In all these OCMS

185

systems, the weight assignment has a significant effect on the selection ofthe strategy.

When all criteria are given equal weight the graph is evenly distributed. However, when

the weights are assigned a different value, the graph becomes skewed tothe severity value.

This is due to the large value of severity as compared to the other criteria suchas perfor-

mance, statement types and operation types.

Figure 7.2: Optimal strategies for all scenarios

7.5.2 Questionnaire Results

To evaluate the usability of the CIO framework, at the end of each scenario, we distributed

a questionnaire. The questionnaire aims at answering whether the changeimpact analysis

is useful and suitable for selecting optimal strategy to evolve an OCMS.

The users evaluated the accuracy of the CIO by comparing the selected option with

the other available options. If the users find the proposed option optimal, we consider the

186

CIO accurate and if it does not identify the optimal change implementation strategy, we

consider the CIO not accurate. Table7.13shows the number of times the CIO identified the

first, second and third optimal change operations. Table7.14gives a summary of the users’

feedback.

Table 7.14: Users feedback on the optimal strategy selection
Questions Average response
The cost estimation is suitable to measure impacts 4.0
I understand what I am doing at each step and understand
the effects of my actions during evolution

4.0

CIO helps me find optimal strategy 3.33
Strongly Agree= 5, Agree= 4, Slightly Agree=3
Slightly disagree= 2, disagree= 1, Strongly disagree=0

The users further provide the following feedback for the open ended questions.

• The separate presentation of the impacts of individual and composite change opera-

tions is vital to understand the impacts of the changes.

• Providing a better interface to allow users to compare all the strategies in parallel will

further enhance the selection of the optimal strategy.

• The prototype needs to be customizable. This is related to setting weights of criteria

and customizing the severity of the impacts.

The users agree that the optimal strategy selection is helpful to understandwhat is hap-

pening when a change is implemented and is useful to select the optimal strategy. Despite

the effort made to avoid the bias arising from the user interface, some of theusers pointed

out that the presentation of the optimal strategy has affected their response. The responses

for the open ended questions reinforce the need for customizability of severity of impacts

and the cost of evolution to fit the requirements of the users. A comparativepresentation

of the alternative strategies in a single view is an important aspect. However,it relates to

the user interface issue, which is not the primary objective of the prototype. In general, the

system provides us with an encouraging result in relation to selecting an optimal strategy.

187

7.5.3 Discussion

The experimental result shows that the optimal strategy selection method is capable of se-

lecting optimal strategies based on an individual criterion or a combination of the available

criteria. The first advantage of the method is, it allows users to assign severity values to im-

pacts and to tune the estimation towards their requirements. This means when the OCMS at

hand tolerates specific impacts, the user can assign a minimum severity value (0) and when

the impact is very sensitive, the user can assign a large severity value (100) for that specific

impact. The second advantage of the method is its adaptability to assign weight to individ-

ual criterion by the user. This makes the method to be flexible to different environments.

The evaluation result demonstrates that the optimal strategy selection is correct. The user re-

sponse shows that the system helps users to understand impacts and suggest them strategies

with minimum impact. However, users who participated in the evaluation further suggest

improvements to be made to the presentation of the analysis results. Even if it is related to

user interface issues, the users further suggest a parallel comparison between the strategies.

7.6 Summary

Change implementation is the last phase of the analysis process. In this phasewe numer-

ically analysed the impacts of change operations and provided a comparisonof change

operations generated using different evolution strategies. We defined different criteria for

analysing and selecting the change operations that implement the change with minimum

impact. The first criterion is the severity of the impacts of the change operations. For this

criterion we assign a severity value for each of the impacts and use that value to compare

severity of impacts among alternative change operations. The second criterion is the type

of statement affected. We useABox andT Box statements and compare strategies based on

the number ofT Box andABox statements they affect. Third, we use whether the change

operations introduce new class or remove existing ones. Finally, we use theperformance

criteria to measure the time and effort required to implement the changes. We use the num-

ber of atomic change operations to measure the performance of the availablestrategies of

188

implementing the changes.

Finally, we build a method to combine all the criteria to measure the impact of change

operations using inputs from the user about the weight of each of the criterion in the given

OCMS. For example, in an environment where severe impacts are not allowed, even if

strategies have less number of operations and few deletions, we still rejectthese strategies

when they introduce severe impacts. In other domains, we may tend to preferchanges on

ABox statements overT Box statements. Once the user sets weights for the criteria, we use

the input to calculate the cost of evolution.

This approach will benefit us in the following ways. First, it allows us to select the

optimal implementation strategy depending on the user’s requirement. Second,it enables

us to quantify impacts, required change operations and the statements they affect. Then, it

permits us build an optimization technique, which is flexible and which can be customized

based on the requirements of the user and the nature of the target OCMS.

In this approach, the user knows the consequences of his/her choice before the changes

are implemented in the system. It quantifies the impacts of change operations andprovides

both qualitative and quantitative comparison of impacts. Finally, it allows the user to set the

parameters flexibly and test different what-if analysis before the changes are implemented

persistently.

189

Chapter 8

Conclusion

8.1 Introduction

This chapter presents the conclusion of the work. The chapter is organized into 3 sections.

Section8.2 discusses the major research questions and the contribution of the research in

answering the major questions. Section8.3 focuses on discussing the limitation of the

research and possible future research work.

8.2 Summary of the Problem and Contribution

Ontologies are recognized as tools for enriching content serving as a source of semantics.

They are used in annotations as an explicit means of embedding meaning into thecontent.

However, due to the dynamic nature of the content and the ontologies, OCMSare subject to

continuous evolution. The evolution process impacts entities and systems that are dependent

on evolving entities.

The main aim of this research is the contribution of methods, tools and techniques to

facilitate the evolution of OCMS systems by analysing impacts of change operations and

selecting optimal evolution strategy before the changes are permanently implemented. This

enables users to understand the semantic and structural impacts of the change operations on

the integrity of the system by allowing a transparent, predictable and consistent evolution.

190

8.2.1 Contribution of the Research

This work contributes frameworks, techniques and algorithms to enhance the smooth, trans-

parent and consistent evolution of OCMS. In this work both novel approaches and new

combinations of existing research are included. This research has the following contribu-

tions.

• An OCMS framework that organizes the content, the annotation and the ontologies

into separate but interdependent layers.

• A layered operator framework that represents changes based on theirgranularities. It

facilitates the representation of domain-specific and abstract changes.

• A dependency analysis algorithm which identifies dependent entities in an OCMS.

The algorithm serves as a means to identify affected entities and to generate change

operations to supplement requested changes.

• A bottom-up change impact analysis approach which analyses the structural and se-

mantic impacts of change operations.

• Algorithms that identify impacts of composite and domain-specific change opera-

tions.

• Quantitative estimation of severity of impacts which measures the seriousness of a

specific impact.

• Quantitative estimation of cost of evolution of a given change operation.

• A method to select optimal implementation strategy for evolving ontologies.

The research questions and the proposed solutions are discussed as follows.

8.2.2 Capturing and Representation of Change Requests

The main research question focuses on the capturing and representationof change requests

from the user. The question mainly focuses on how a requested change can be represented

191

using executable and suitable change operations.

This research addresses the problem by proposing different solutions. The first solution

is a layered operator framework which treats changes as atomic, composite and domain-

specific changes. The representation further addresses the problemby separating requested

changes from generated changes. The second solution is the dependency analysis algo-

rithms. The algorithms identify dependent entities and assist the generation ofchange oper-

ations that are required to supplement the requested change.

8.2.3 Structural and Semantic Impact Analysis

The major question of the research is how to analyse the impacts of change operations

when a given change is implemented in the system. This research question mainlyfocuses

on analysing the structural and semantic impacts of change operations and providing the

impacts of the changes on the OCMS to the user.

In relation to this question, the research identifies possible structural and semantic im-

pacts and analyses the causes of the impacts. This phase answers the problem by exploiting

the proposed layered framework of change operations. It analyses the impacts of atomic

change operations first. Second, it analyses the impact of composite change operations.

This phase exploits the output of the atomic change impact analysis phase to analyse im-

pacts when two or more change operations are implemented together. The approach is

flexible and is applicable to any change operation composition based on atomic change

operations. This includes domain-specific changes and patterns.

8.2.4 Optimized Implementation of Changes

Once the impacts are identified, the question is how the user can select optimal implemen-

tation strategy which ensures the minimum impact. To address this problem, we usethe

change impact optimization approach which quantitatively measures the severity of impacts.

This severity value is combined with other criteria to identify the optimal implementation

strategy.

192

In this phase, the selection of an optimal strategy is done using individual criterion

or combining different criteria. The user can use individual criterion to compare different

implementation strategies. It is also possible to combine all the criteria and calculatethe

cost of evolution to compare different implementation strategies. One of the best features of

this approach is that the users are allowed to set the severity values of the impacts relative to

the OCMS at hand, assign weights to different criteria used to calculate the cost of evolution

and select the optimal implementation strategy.

8.2.5 Methodology

The method used for analysis of impacts of changes in OCMS is another contribution of

the study. In this research, we explored different methods to efficiently implement the evo-

lution of ontology-based content management systems. The contributions are summarized

as follows.

• The change impact analysis method applied in the context of a layered OCMS frame-

work, layered operator framework and the change impact analysis framework is a

contribution to existing research.

• The dependency analysis and the customization of evolution strategies are additional

contributions of the method.

• The method further combines the change impact analysis approach with the integrity

analysis.

• Finally, the method integrates optimal strategy selection and implementation of the

changes. Our method allows accurate, transparent and efficient evolution of an OCMS

by providing empirical evidence from three real world case studies.

8.3 Limitation and Future work

This research does not address all the problems associated with evolutionof an OCMS.

There are areas that are not covered in this research. We present these areas as limitations

193

that this research does not address with the required depth.

• Sometimes ontologies use complex expressions to represent complex concepts and

semantics. These complex classes are composed of two or more classes, data prop-

erties, object properties or restrictions. When a change occurs in one of the complex

classes, we need to identify which specific entities are affected and which ones are

not. This makes the change impact analysis process very complex. Thus, our ap-

proach does not go deep into analysing the constructs of the class expression, but

we treat the whole expression as a single entity. Due to this, the research does not

provide an analysis of complex expressions. However, research conducted in the area

of description logic [Konev et al., 2008] [Konev et al., 2012] with different levels of

expressiveness could benefit to address the limitations. Based on Description logic

expressiveness, addressing complex class expression step by step could reduce the

complexity of the expressions [Konev et al., 2010]. In addition to this, it is worth

considering the approach used to process logical implications between the classes,

individuals and properties involved in complex class expressions [Cao et al., 2006].

• This research does not cover content change to a lower level detail. Wefocus on

the higher level changes in the content such as addition and deletion of content doc-

uments, identifiable parts of documents and their attributes. We also focus onlyon

structured and semi-structured documents. Thus, content change whichfocuses on

trivial textual changes is not supported.

This work addresses many of the problems identified; however, throughout the research,

we discovered areas that would benefit from further investigation in the future. These areas

are presented as future work in the following sections.

Change Impact Analysis

The future work in change impact analysis is to investigate detailed impacts of changes

on complex class expressions. We would investigate the inconsistencies related to

changes on complex class expressions. The problem with complex classesis the

194

determination of an impact on the constituent classes of a complex class. This in-

cludes analysing which classes in the class expressions are affected and which ones

are not, and how those classes are affected. This process involves decomposing the

classes and further investigating the possible logical connectors and theirstructural

and semantic importance in a given class expression.

Optimal Change Implementation

The optimal change implementation process takes four criteria to evaluate the cost of

evolution of a given OCMS. The possible future work would focus on the inclusion

of additional user-defined criteria. A related research direction is investigating the

importance of each criterion and proposing a general formula for assigning weights

based on the characteristics of the OCMS. This relieves users from specifying details

of the weights of the impacts and the criteria. However, preparing a general formula

requires observation from different OCMS and input from differentexperts in the

area.

A potential future direction is the selection of change operations to avoid integrity

violating change operations based on theABox andT Box weight assigned to the

OCMS. There are situations when all strategies introduce impacts with crucialsever-

ity. Then there is a possibility to select the operations to be add or remove to keep

the integrity of the system. This approach enables the system to choose between

operations that affect theABox or T Box statement to avoid or reduce the observed

impacts of a given strategy.

Another future direction is to investigate the selection of optimal implementation

strategy using the amount of change on the inferred semantics of the OCMS.Our

approach only uses asserted semantics to identify impacts. However, in the future, it

is possible to estimate the cost of evolution based on the amount of change introduced

in the inferred semantics. This requires the use of reasoners to infer newsemantics

after implementing the changes.

There are recent developments [Kondylakis & Plexousakis, 2013] in the area of ontol-

195

ogy evolution which focuses on query rewriting, and data integration. Thisapproach

is a possible direction to follow to further enable users to analyse impacts of changes

in ontologies. Such directions can be followed to address further evolution. Some of

the proposed methods in belief revision [Flouris, 2006] are also worth to be consid-

ered.

Evaluation Benchmark for Change Impact Analysis One of the challenging aspects of im-

pact analysis is the bias introduced due to the interpretation of impacts. The bias is

reflected on the evaluation of change impact analysis method. An evaluation bench-

mark for evaluating the performance of change impact analysis tools is a potential

future direction. This may include defining evaluation criteria. Currently the eval-

uation criteria are subjective and qualitative. To estimate the impacts of changes

quantitatively, developing an all-inclusive evaluation bench mark is anotherfuture

direction. The experience of the Ontology Alignment Evaluation Initiative (OAEI)1

could serve as a starting point to introduce benchmarks for evaluating robustness of

tools for ontology evolution and change impact analysis [Rosoiu et al., 2011] .

1http://oaei.ontologymatching.org/

196

Bibliography

[Abgaz & Pahl, 2012] Abgaz, Y.M.and Javed, M. & Pahl, C. (2012). Analyzing impacts

of change operations in evolving ontologies. InISWC Workshops: Joint Workshop on

Knowledge Evolution and Ontology Dynamics (EvoDyn), 12th November,2012, Boston,

USA.

[Abgaz et al., 2010] Abgaz, Y., Javed, M., & Pahl, C. (2010). Empiricalanalysis of impacts

of instance-driven changes in ontologies. InOn the Move to Meaningful Internet Systems:

OTM 2010 Workshops, Lecture Notes in Computer Science.

[Abgaz et al., 2011] Abgaz, Y., Javed, M., & Pahl, C. (2011). A framework for change im-

pact analysis of ontology-driven content-based systems. InOn the Move to Meaningful

Internet Systems: OTM 2011 Workshops, Lecture Notes in Computer Science.

[Abgaz et al., 2012] Abgaz, Y., Javed, M., & Pahl, C. (2012). Dependency analysis in

ontology-driven content-based systems. In L. Rutkowski, M. Korytkowski, R. Scherer, R.

Tadeusiewicz, L. Zadeh, & J. Zurada (Eds.),Artificial Intelligence and Soft Computing,

volume 7268 ofLecture Notes in Computer Science(pp. 3–12).

[Adler et al., 2008] Adler, B. T., Chatterjee, K., de Alfaro, L., Faella, M., Pye, I., & Raman,

V. (2008). Assigning trust to wikipedia content. InProceedings of the 4th International

Symposium on Wikis, WikiSym ’08 (pp. 1–12). New York, NY, USA: ACM.

[Afsharchi & Far, 2006] Afsharchi, M. & Far, B. H. (2006). Automated ontology evolution

in a multi-agent system. InProceedings of the 1st international conference on Scalable

information systems, InfoScale ’06 New York, NY, USA: ACM.

197

[Ahmad et al., 2009] Ahmad, A., Basson, H., Deruelle, L., & Bouneffa, M.(2009). A

knowledge-based framework for software evolution control. InINFORSID(pp. 111–

126).

[Ardil, 2005] Ardil, C., Ed. (2005).The Second World Enformatika Conference, WEC’05,

February 25-27, 2005, Istanbul, Turkey, CDROM. Enformatika, Çanakkale, Turkey.

[Arnold, 1996] Arnold, R. S. (1996).Software Change Impact Analysis. Los Alamitos,

CA, USA: IEEE Computer Society Press.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-

Schneider, P. F., Eds. (2003).The Description Logic Handbook: Theory, Implementation,

and Applications. New York, NY, USA: Cambridge University Press.

[Baader et al., 2006] Baader, F., Lutz, C., & Suntisrivaraporn, B. (2006). CEL–a

polynomial-time reasoner for life science ontologies. In U. Furbach & N. Shankar

(Eds.), Proceedings of the 3rd International Joint Conference on Automated Reason-

ing (IJCAR’06), volume 4130 ofLecture Notes in Artificial Intelligence(pp. 287–291).:

Springer-Verlag.

[Baresi & Heckel, 2002] Baresi, L. & Heckel, R. (2002). Tutorial introduction to graph

transformation: A software engineering perspective. InProceedings of the First Inter-

national Conference on Graph Transformation, ICGT ’02 (pp. 402–429). London, UK,

UK: Springer-Verlag.

[Bechhofer et al., 2002] Bechhofer, S., Carr, L., Goble, C. A., Kampa, S., & Miles-Board,

T. (2002). The semantics of semantic annotation. InOn the Move to Meaningful Internet

Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated InternationalConferences

DOA, CoopIS and ODBASE 2002(pp. 1152–1167). London, UK, UK: Springer-Verlag.

[Bell et al., 2007] Bell, D., Qi, G., & Liu, W. (2007). Approaches to inconsistency handling

in description logic-based ontologies. InProceedings of the 2007 OTM Confederated

198

international conference on On the move to meaningful internet systems - Volume Part

II , OTM’07 (pp. 1303–1311). Berlin, Heidelberg: Springer-Verlag.

[Benjamins et al., 2002] Benjamins, V., Contreras, J., Corcho, O., & Gomez-perez, A.

(2002). ’six challenges for the semantic web’.Cristani, M(ED): KR2002 Workshop

on the Semantic Web, Toulouse, France.

[Bennett & Rajlich, 2000] Bennett, K. H. & Rajlich, V. T. (2000). Software maintenance

and evolution: a roadmap. InProceedings of the Conference on The Future of Software

Engineering, ICSE ’00 (pp. 73–87). New York, NY, USA: ACM.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., & Lassila,O. (2001). The semantic

web. Scientific American, 284(5), 34–43.

[Bizer & Schultz, 2008] Bizer, C. & Schultz, A. (2008). Benchmarking the performance

of storage systems that expose sparql endpoints. InProceedings of the ISWC Workshop

on Scalable Semantic Web Knowledgebase.

[Bloehdorn et al., 2006] Bloehdorn, S., Haase, P., Sure, Y., & Voelker, J. (2006).Ontology

Evolution, (pp. 51–70). John Wiley and Sons, Ltd.

[Bohner, 2002] Bohner, S. (2002). Extending software change impact analysis into cots

components. InSoftware Engineering Workshop, 2002. Proceedings. 27th Annual NASA

Goddard/IEEE(pp. 175 – 182).

[Bönstr̈om et al., 2003] B̈onstr̈om, V., Hinze, A., & Schweppe, H. (2003). Storing rdf as

a graph. InProceedings of the First Conference on Latin American Web Congress, LA-

WEB ’03 (pp. 27–36). Washington, DC, USA: IEEE Computer Society.

[Bounif & Pottinger, 2006] Bounif, H. & Pottinger, R. (2006). Schema repository for

database schema evolution. InProceedings of the 17th International Conference on

Database and Expert Systems Applications(pp. 647–651). Washington, DC, USA: IEEE

Computer Society.

199

[Boyce & Pahl, 2007] Boyce, S. & Pahl, C. (2007). The development of subject domain

ontologies for educational technology systems.Journal of Educational Technology and

Society (ETS) IEEE, 10(3), 275–288.

[Breech et al., 2005] Breech, B., Tegtmeyer, M., & Pollock, L. (2005).A comparison of

online and dynamic impact analysis algorithms. InProceedings of the Ninth European

Conference on Software Maintenance and Reengineering, CSMR ’05 (pp. 143–152).

Washington, DC, USA: IEEE Computer Society.

[Buckley et al., 2005] Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel, G. (2005).

Towards a taxonomy of software change: Research articles.J. Softw. Maint. Evol., 17(5),

309–332.

[Cao et al., 2006] Cao, C., Sui, Y., & Sun, Y. (2006). Logical connections of statements

in ontologies. In Y. Yao, Z. Shi, Y. Wang, & W. Kinsner (Eds.),Proceedings of the

Fifth IEEE International Conference on Cognitive Informatics, ICCI 2006,July 17-19,

Beijing, China(pp. 440–446).: IEEE.

[Castagna, 1995] Castagna, G. (1995). Covariance and contravariance: conflict without a

cause.ACM Transactions on Programming Languages and Systems, 17(3), 431–447.

[Castano et al., 2006] Castano, S., Ferrara, A., & Hess, G. N. (2006). Discovery-driven

ontology evolution. In G. Tummarello, P. Bouquet, & O. Signore (Eds.),Semantic Web

Applications and Perspectives, volume 201 ofCEUR Workshop Proceedings: CEUR-

WS.org.

[Ceravolo et al., 2008] Ceravolo, P., Damiani, E., & Leida, M. (2008). Ontology robustness

in evolution. In R. Meersman, Z. Tari, & P. Herrero (Eds.),On the Move to Meaningful

Internet Systems: OTM 2008 Workshops, volume 5333 ofLecture Notes in Computer

Science(pp. 1010–1017). Springer.

200

[Ceravolo et al., 2007] Ceravolo, P., Damiani, E., & Viviani, M. (2007). Bottom-up extrac-

tion and trust-based refinement of ontology metadata.IEEE Transactions on Knowledge

and Data Engineering, 19(2), 149 –163.

[Chu et al., 2009] Chu, H.-C., Chen, M.-Y., & Chen, Y.-M. (2009). A semantic-based

approach to content abstraction and annotation for content management.Expert Syst.

Appl., 36(2), 2360–2376.

[Cimiano & Völker, 2005] Cimiano, P. & V̈olker, J. (2005). Text2onto - a framework

for ontology learning and data-driven change discovery. In E. M. Andres Montoyo,

Rafael Munoz (Ed.),Proceedings of the 10th International Conference on Applications

of Natural Language to Information Systems (NLDB), volume 3513 ofLecture Notes in

Computer Science(pp. 227–238). Alicante, Spain: Springer.

[Cormen et al., 2001] Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson,C. E. (2001).

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition.

[Cox et al., 2001] Cox, L., Harry, D., Skipper, D., & Delugach, H. S. (2001). Dependency

analysis using conceptual graphs. InProceedings of the 9th International Conference on

Conceptual Structures, ICCS 2001: Springer.

[Şah & Wade, 2010] Şah, M. & Wade, V. (2010). Automatic metadata extraction from mul-

tilingual enterprise content. InProceedings of the 19th ACM international conference on

Information and knowledge management, CIKM ’10 (pp. 1665–1668). New York, NY,

USA: ACM.

[Curino et al., 2008] Curino, C. A., Tanca, L., Moon, H. J., & Zaniolo, C.(2008). Schema

evolution in wikipedia: Toward a web information system benchmark. InInternational

Conference on Enterprise Information Systems.

[Davies et al., 2003] Davies, J., Fensel, D., & Harmelen, F. v., Eds. (2003). Towards the

Semantic Web: Ontology-driven Knowledge Management. New York, NY, USA: John

Wiley & Sons, Inc.

201

[De Leenheer & Meersman, 2007] De Leenheer, P. & Meersman, R. (2007). Towards

community-based evolution of knowledge-intensive systems. InProceedings of the 2007

OTM Confederated international conference on On the move to meaningful internet sys-

tems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I, OTM’07 (pp. 989–1006).

Berlin, Heidelberg: Springer-Verlag.

[Dentler et al., 2011] Dentler, K., Cornet, R., ten Teije, A., & de Keizer, N. (2011). Com-

parison of reasoners for large ontologies in the owl 2 el profile.Semantic Web, 2(2),

71–87.

[Djedidi & Aufaure, 2010a] Djedidi, R. & Aufaure, M.-A. (2010a). Onto-evoal an ontol-

ogy evolution approach guided by pattern modeling and quality evaluation. InProceed-

ings of the 6th international conference on Foundations of Information andKnowledge

Systems, FoIKS’10 (pp. 286–305). Berlin, Heidelberg: Springer-Verlag.

[Djedidi & Aufaure, 2010b] Djedidi, R. & Aufaure, M.-A. (2010b).Ontology Evolution:

State of the Art and Future Directions, (pp. 179–207). Ontology Theory, Management

and Design: Advanced Tools and Models. IGI Global. ID: 42890.

[Edmunds & Morris, 2000] Edmunds, A. & Morris, A. (2000). The problem of information

overload in business organisations: a review of the literature.International Journal of

Information Management, 20(1), 17 – 28.

[Elmasri & Navathe, 2010] Elmasri, R. & Navathe, S. (2010).Fundamentals of Database

Systems. USA: Addison-Wesley Publishing Company, 6th edition.

[Enkhsaikhan et al., 2007] Enkhsaikhan, M., Wong, W., Liu, W., & Reynolds, M. (2007).

Measuring data-driven ontology changes using text mining. InAusDM(pp. 39–46).

[Eppler & Mengis, 2004] Eppler, M. J. & Mengis, J. (2004). The concept of information

overload: A review of literature from organization science, accounting,marketing, mis,

and related disciplines.The Information Society, 20(5), 325–344.

202

[Fensel et al., 2001] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., & Patel-

Schneider, P. (2001). Oil: an ontology infrastructure for the semantic web. Intelligent

Systems, IEEE, 16(2), 38 – 45.

[Ferńandez et al., 2011] Fernández, M., Cantador, I., Ĺopez, V., Vallet, D., Castells, P.,

& Motta, E. (2011). Semantically enhanced information retrieval: An ontology-based

approach.Web Semant., 9(4), 434–452.

[Flouris, 2006] Flouris, G. (2006). On belief change in ontology evolution: Thesis. AI

Communication, 19(4), 395–397.

[Flouris et al., 2008] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., & An-

toniou, G. (2008). Ontology change: Classification and survey.Knowledge Engineering

Review, 23(2), 117–152.

[Flouris & Plexousakis, 2005] Flouris, G. & Plexousakis, D. (2005). Handling ontology

change: Survey and proposal for a future research direction.Artificial Intelligence,

(September), 1–55.

[Flouris et al., 2006] Flouris, G., Plexousakis, D., & Antoniou, G. (2006). A classification

of ontology change.Poster Proceedings of the 3rd Italian Semantic Web Workshop,

Semantic Web Applications and Perspectives(SWAP-2006).

[Glimm et al., 2010] Glimm, B., Horrocks, I., Motik, B., & Stoilos, G. (2010). Optimising

Ontology Classification. In P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang,

J. Z. Pan, I. Horrocks, & B. Glimm (Eds.),Proceeding of the 9th International Semantic

Web Conference (ISWC 2010), volume 6496 ofLNCS(pp. 225–240). Shanghai, China:

Springer.

[Gomez-Perez & Corcho, 2002] Gomez-Perez, A. & Corcho, O. (2002). Ontology lan-

guages for the semantic web.Intelligent Systems, IEEE, 17(1), 54 – 60.

[Gómez-Ṕerez et al., 2007] Ǵomez-Ṕerez, A., Ferńandez-Ĺopez, M., & Corcho, O. (2007).

Ontological Engineering: with examples from the areas of Knowledge Management, e-

203

Commerce and the Semantic Web. (Advanced Information and KnowledgeProcessing).

Secaucus, NJ, USA: Springer-Verlag New York, Inc.

[Goncalves et al., 2011] Goncalves, R. S., Parsia, B., & Sattler, U. (2011). Analysing the

evolution of the nci thesaurus. InProceedings of the 2011 24th International Sympo-

sium on Computer-Based Medical Systems, CBMS ’11 (pp. 1–6). Washington, DC, USA:

IEEE Computer Society.

[Grau et al., 2008] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., &

Sattler, U. (2008). Owl 2: The next step for owl.Web Semant., 6(4), 309–322.

[Gross et al., 2009] Gross, A., Hartung, M., Kirsten, T., & Rahm, E. (2009). Estimating the

quality of ontology-based annotations by considering evolutionary changes. InProceed-

ings of the 6th International Workshop on Data Integration in the Life Sciences, DILS

’09 (pp. 71–87). Berlin, Heidelberg: Springer-Verlag.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifi-

cations.Knowledge Acquisition, 5(2), 199–220.

[Gruhn et al., 1995] Gruhn, V., Pahl, C., & Wever, M. (1995). Data model evolution as

basis of business process management. InProceedings of the 14th International Confer-

ence on Object-Oriented and Entity-Relationship Modelling, OOER ’95 (pp. 270–281).

London, UK, UK: Springer-Verlag.

[Guarino, 1998] Guarino, N. (1998).Formal Ontology in Information Systems: Proceed-

ings of the 1st International Conference June 6-8, 1998, Trento, Italy. Amsterdam, The

Netherlands, The Netherlands: IOS Press, 1st edition.

[Haarslev et al.,] Haarslev, V., Hidde, K., M̈oller, R., & Wessel, M. The RacerPro Knowl-

edge Representation and Reasoning System.Semantic Web.

[Haase & Stojanovic, 2005] Haase, P. & Stojanovic, L. (2005). Consistent evolution of

OWL ontologies. In A. Ǵomez-Ṕerez & J. Euzenat (Eds.),Proceedings of the Sec-

204

ond European Semantic Web Conference, volume 3532 (pp. 182–197). Heraklion, Crete,

Greece: Springer.

[Haase et al., 2005] Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., & Sure,

Y. (2005). A framework for handling inconsistency in changing ontologies. InProceed-

ings of the 4th international conference on The Semantic Web, ISWC’05 (pp. 353–367).

Berlin, Heidelberg: Springer-Verlag.

[Hartung et al., 2012] Hartung, M., Gross, A., & Rahm, E. (2012). CODEX: Exploration

of semantic changes between ontology versions.Bioinformatics, 26(6), 895–896.

[Hartung et al., 2011] Hartung, M., Terwilliger, J. F., & Rahm, E. (2011).Recent advances

in schema and ontology evolution. InSchema Matching and Mapping(pp. 149–190).

[Hassan et al., 2010] Hassan, M. O., Deruelle, L., & Basson, H. (2010). A knowledge-

based system for change impact analysis on software architecture. InResearch Chal-

lenges in Information Science (RCIS), 2010 Fourth International Conference on(pp. 545

–556).

[Heckel, 2006] Heckel, R. (2006). Graph transformation in a nutshell.Electronic Notes in

Theoretical Computer Science, 148(1), 187–198.

[Holohan et al., 2006] Holohan, E., Melia, M., McMullen, D., & Pahl, C. (2006). The

generation of e-learning exercise problems from subject ontologies.Advanced Learning

Technologies, 2006. Sixth International Conference on, (pp. 967–969).

[Horridge & Bechhofer, 2011] Horridge, M. & Bechhofer, S. (2011). The owl api: A java

api for owl ontologies.Semantic web, 2, 11–21.

[Horridge et al., 2006] Horridge, M., Drummond, N., Goodwin, J., Rector,A., Stevens, R.,

& Wang, H. (2006). The manchester owl syntax. InOWLED2006 Second Workshop on

OWL Experiences and DirectionsAthens, GA, USA.

205

[Horrocks, 2003] Horrocks, I., P.-S. P. (2003). Reducing owl entailment to description

logic satisfiability. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2870, 17–29.

[Javed et al., 2009] Javed, M., Abgaz, Y., & Pahl, C. (2009). A pattern-based framework

of change operators for ontology evolution. InOn the Move to Meaningful Internet

Systems: OTM 2009 Workshops, volume 5872 ofLecture Notes in Computer Science

(pp. 544–553).

[Javed et al., 2010] Javed, M., Abgaz, Y., & Pahl, C. (2010). Ontology-based domain mod-

elling for consistent content change management. InInternational Conference on Onto-

logical and Semantic Engineering (ICOSE).

[Javed et al., 2011a] Javed, M., Abgaz, Y., & Pahl, C. (2011a). Graph-based discovery of

ontology change patterns. InISWC Workshops: Joint Workshop on Knowledge Evolution

and Ontology Dynamics (EvoDyn), 24th October, 2011, Bonn, Germany.

[Javed et al., 2011b] Javed, M., Abgaz, Y., & Pahl, C. (2011b). A layered framework for

pattern-based ontology evolution. In3rd International Workshop Ontology-Driven Infor-

mation System Engineering (ODISE), London, UK.

[Javed et al., 2012] Javed, M., Abgaz, Y., & Pahl, C. (2012). Compositeontology change

operators and their customizable evolution strategies. InISWC Workshops: Joint Work-

shop on Knowledge Evolution and Ontology Dynamics (EvoDyn), 12th November, 2012,

Boston, USA.

[Javed et al., 2011c] Javed, M., Abgaz, Y. M., & Pahl, C. (2011c). Towards implicit knowl-

edge discovery from ontology change log data. Inknowledge Science, Engineering and

Management(pp. 136–147).

[Johnson, 2011] Johnson, J. L. (2011).Probability and Statistics for Computer Science.

Hoboken: John Wiley & Sons.

206

[Jones et al., 2011] Jones, D., Oconnor, A., Abgaz, Y., & Lewis, D. (2011). A semantic

model for integrated content management, localisation and language technology pro-

cessing. In2nd Workshop on the Multilingual Semantic Web (MSW2011).

[Jun-feng et al., 2005] Jun-feng, S., Wei-ming, Z., Wei-dong, X., Guo-hui, L., & Zhen-

ning, X. (2005). Ontology-based information retrieval model for the semantic web. In

Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce

and e-Service (EEE’05) on e-Technology, e-Commerce and e-Service, EEE ’05 (pp. 152–

155). Washington, DC, USA: IEEE Computer Society.

[Jurisica et al., 1999] Jurisica, I., Mylopoulos, J., & Yu, E. (1999). Using Ontologies for

Knowledge Management: An Information Systems Perspective. Paper presented at the

Annual Conference of the American Society for Information Sciences. In Proceedings

of the 62nd Annual Meeting of the American Society for Information Science(ASIŠS99),

Oct. 31 - Nov, volume 4 (pp. 482–496).

[Kalyanpur et al., 2011] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B. C., & Hendler, J.

(2011). Swoop: A web ontology editing browser.Web Semantics: Science, Services and

Agents on the World Wide Web, 4(2).

[Khattak et al., 2010] Khattak, A., Pervez, Z., Lee, S., & Lee, Y.-K. (2010). After effects

of ontology evolution. InFuture Information Technology (FutureTech), 2010 5th Inter-

national Conference on(pp. 1 –6).

[Kiryakov et al., 2004] Kiryakov, A., Popov, B., Terziev, I., Manov, D., & Ognyanoff, D.

(2004). Semantic annotation, indexing, and retrieval.Web Semantic, 2, 49–79.

[Klein, 2004] Klein, M. (2004). Change Management for Distributed Ontologies. PhD

thesis, Vrije Universiteit Amsterdam.

[Klein & Fensel, 2001] Klein, M. & Fensel, D. (2001). Ontology versioning on the se-

mantic web. InProceedign of 1st International Semantic Web Working Symposium.(pp.

75–91). Stanford University, CA, USA.

207

[Klein et al., 2002] Klein, M., Fensel, D., Kiryakov, A., & Ognyanov, D. (2002). Ontol-

ogy versioning and change detection on the web. In13th International Conference on

Knowledge Engineering and Knowledge Management (EKAW02)(pp. 197–212).

[Knublauch et al., 2004] Knublauch, H., Fergerson, R., Noy, N., & Musen, M. (2004). The

protg owl plugin: An open development environment for semantic web applications. In

S. McIlraith, D. Plexousakis, & F. van Harmelen (Eds.),The Semantic Web ISWC 2004,

volume 3298 ofLecture Notes in Computer Science(pp. 229–243). Springer Berlin /

Heidelberg.

[Kondylakis & Plexousakis, 2013] Kondylakis, H. & Plexousakis, D. (2013). Ontology

evolution without tears.Web Semantics: Science, Services and Agents on the World

Wide Web, (in press).

[Konev et al., 2012] Konev, B., Ludwig, M., Walther, D., & Wolter, F. (2012). The logi-

cal difference for the lightweight description logic el.Journal of Artificial Intelligence

Research (JAIR), 44, 633–708.

[Konev et al., 2010] Konev, B., Lutz, C., Ponomaryov, D., & Wolter, F. (2010). Decompos-

ing description logic ontologies. InKnowledge Representation.

[Konev et al., 2008] Konev, B., Walther, D., & Wolter, F. (2008). The logical difference

problem for description logic terminologies. InProceedings of the 4th international

joint conference on Automated Reasoning, IJCAR ’08 (pp. 259–274). Berlin, Heidelberg:

Springer-Verlag.

[Konstantinidis et al., 2008] Konstantinidis, G., Flouris, G., Antoniou, G., &

Christophides, V. (2008). A formal approach for rdf/s ontology evolution. In

Proceedings of the 2008 conference on ECAI 2008: 18th European Conference on

Artificial Intelligence(pp. 70–74). Amsterdam, The Netherlands, The Netherlands: IOS

Press.

208

[Krotzsch et al., 2011] Krotzsch, M., Vrandecic, D., Volkel, M., Haller, H., & Studer, R.

(2011). Semantic wikipedia.Web Semantics: Science, Services and Agents on the World

Wide Web, 5(4).

[Kr ötzsch et al., 2007] Kr̈otzsch, M., Vranděcić, D., Völkel, M., Haller, H., & Studer, R.

(2007). Semantic wikipedia.Web Semantics, 5(4), 251–261.

[Kruk & McDaniel, 2009] Kruk, S. R. & McDaniel, B., Eds. (2009). Springer.

[Lee et al., 2000] Lee, M., Offutt, A. J., & Alexander, R. T. (2000). Algorithmic analysis

of the impacts of changes to object-oriented software. InProceedings of the Technology

of Object-Oriented Languages and Systems (TOOLS 34’00), TOOLS ’00 (pp. 61–70).

Washington, DC, USA: IEEE Computer Society.

[Lee et al., 2007] Lee, S., Seo, W., Kang, D., Kim, K., & Lee, J. Y. (2007). A framework for

supporting bottom-up ontology evolution for discovery and description of grid services.

Expert Systems with Applications, 32(2), 376 – 385.

[Leenheer & Mens, 2008] Leenheer, P. D. & Mens, T. (2008). Ontology evolution: State

of the art and future directions. In M. Hepp, P. D. Leenheer, A. de Moor, & Y. Sure

(Eds.),Ontology Management for the Semantic Web, Semantic Web Services, and Busi-

ness Applications. Springer.

[Lehman et al., 1997] Lehman, M., Ramil, J., Wernick, P., Perry, D., & Turski, W. (1997).

Metrics and laws of software evolution-the nineties view. InSoftware Metrics Sympo-

sium, 1997. Proceedings., Fourth International(pp. 20 –32).

[Liang et al., 2006] Liang, Y., Alani, H., Dupplaw, D., & Shadbolt, N. (2006). An approach

to cope with ontology changes for ontology-based applications.Proceedings Second

Advanced Knowledge Technologies DTA Symposium, (pp. 1–8).

[Maedche et al., 2003] Maedche, A., Motik, B., Stojanovic, L., Studer, R.,& Volz, R.

(2003). Ontologies for enterprise knowledge management.Intelligent Systems, IEEE.,

18(2), 22–33.

209

[Maynard, 2008] Maynard, D. (2008). Benchmarking textual annotation tools for the se-

mantic web. In B. M. J. M. J. O. S. P. D. T. Nicoletta Calzolari (Conference Chair),

Khalid Choukri (Ed.),Proceedings of the Sixth International Conference on Language

Resources and Evaluation (LREC’08)Marrakech, Morocco: European Language Re-

sources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2008/.

[Mcguinness et al., 2002] Mcguinness, D., Fikes, R., Hendler, J., & Stein, L. (2002).

Daml+oil: an ontology language for the semantic web.Intelligent Systems, IEEE, 17(5),

72 – 80.

[Mens et al., 2002] Mens, T., Buckley, J., Rashid, A., & Zenger, M. (2002). Towards a

taxonomy of software evolution. InWorkshop on Unanticipated Software Evolution.

[Mens & Klein, 2012] Mens, T. & Klein, J. (2012). Evolving software.ERCIM News, 88.

[Mika, 2007] Mika, P. (2007). Ontologies are us: A unified model of social networks and

semantics.Web Semantics, 5, 5–15.

[Motik et al., 2007] Motik, B., Shearer, R., & Horrocks, I. (2007). A Hypertableau Calcu-

lus for SHIQ. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembo, B. Motik, S. Tessaris,

& A.-Y. Turhan (Eds.),Proceeding of the 20th International Workshop on Description

Logics (DL 2007)(pp. 419–426). Brixen/Bressanone, Italy: Bozen/Bolzano University

Press.

[Navigli & Velardi, 2003] Navigli, R. & Velardi, P. (2003). An analysis ofontology-based

query expansion strategies. InProceedings of Workshop on Adaptive Text Extraction

and Mining (ATEM) in the14th European Conference on Machine Learning (ECML)

(pp. 42–49). Cavtat-Dubrovnik, Croatia.

[Noy et al., 2006] Noy, N. F., Chugh, A., Liu, W., & Musen, M. A. (2006). A framework

for ontology evolution in collaborative environments. In5th International Semantic Web

Conference(pp. 544–558).: Springer-LNCS.

210

[Noy & Klein, 2004] Noy, N. F. & Klein, M. (2004). Ontology evolution: Not the same as

schema evolution.Knowledge and Information Systems., 6(4), 328–440.

[Noy & Musen, 2002] Noy, N. F. & Musen, M. A. (2002). Promptdiff: Afixed-point algo-

rithm for comparing ontology versions. InAAAI/IAAI’2002(pp. 744–750).

[Oliver et al., 1999] Oliver, D. E., Shahar, Y., Shortliffe, E. H., & Musen, M. A. (1999).

Representation of change in controlled medical terminologies.Artificial Intelligence in

Medicine., 15(1), 53–76.

[Oren et al., 2006] Oren, E., Mller, K., Scerri, S., Handschuh, S., & Sintek, M. (2006).

What are semantic annotations.Artificial Intelligence, 8.

[Orso et al., 2004] Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., &Harrold, M. J.

(2004). An empirical comparison of dynamic impact analysis algorithms. InProceedings

of the 26th International Conference on Software Engineering, ICSE ’04 (pp. 491–500).

Washington, DC, USA: IEEE Computer Society.

[Pahl et al., 2007] Pahl, C., Giesecke, S., & Hasselbring, W. (2007). An ontology-based

approach for modelling architectural styles. In F. Oquendo & F. Oquendo (Eds.),ECSA,

volume 4758 ofLecture Notes in Computer Science(pp. 60–75).: Springer.

[Pahl et al., 2010] Pahl, C., Javed, M., & Abgaz, Y. (2010). Utilising ontology-based

modelling for learning content management. InProceedings of World Conference on

Educational Multimedia, Hypermedia and Telecommunications 2010(pp. 1274–1279).

Toronto, Canada: AACE.

[Paralic & Kostial, 2003] Paralic, J. & Kostial, I. (2003). Ontology-based information re-

trieval. In Proc. of the 14th International Conference on Information and Intelligent

systems, IIS 2003(pp. 23–28).

[Petasis et al., 2009] Petasis, G., Karkaletsis, V., Krithara, A., Paliouras,G., & Spyropou-

los, C. D. (2009). Semi-automated Ontology Oearning: the BOEMIE Approach. In

211

Proceedings of the First ESWC Workshop on Inductive Reasoning and Machine Learn-

ing on the Semantic Web.

[Plessers & De Troyer, 2006] Plessers, P. & De Troyer, O. (2006). Resolving inconsisten-

cies in evolving ontologies. InProceedings of the 3rd European conference on The

Semantic Web: research and applications, ESWC’06 (pp. 200–214). Berlin, Heidelberg:

Springer-Verlag.

[Plessers et al., 2007] Plessers, P., De Troyer, O., & Casteleyn, S. (2007). Understanding

ontology evolution: A change detection approach.Web Semant., 5(1), 39–49.

[Qin & Atluri, 2009] Qin, L. & Atluri, V. (2009). Evaluating the validity of data instances

against ontology evolution over the semantic web.Information and Software Technology.,

51(1), 83–97.

[Redmond & Noy, 2011] Redmond, T. & Noy, N. (2011). Computing the changes between

ontologies. InWorkshop on Knowledge Evolution and Ontology Dynamics, ISWC 2011.

[Redmond et al., 2008] Redmond, T., Smith, M., Drummond, N., & Tudorache, T. (2008).

Managing change: An ontology version control system. InIn OWL: Experiences and

Directions, 5th Intl. Workshop, OWLED 2008.

[Reeve & Han, 2005] Reeve, L. & Han, H. (2005). Survey of semanticannotation plat-

forms. InSAC ’05: Proceedings of the 2005 ACM symposium on Applied computing(pp.

1634–1638).

[Ren et al., 2004] Ren, X., Shah, F., Tip, F., Ryder, B. G., & Chesley, O.(2004). Chianti:

a tool for change impact analysis of java programs.SIGPLAN Notice, 39(10), 432–448.

[Roddick, 1995] Roddick, J. F. (1995). A survey of schema versioning issues for database

systems.Information and Software Technology, 37(7), 383–393.

[Rosoiu et al., 2011] Rosoiu, M.-E., dos Santos, C. T., & Euzenat, J. (2011). Ontology

matching benchmarks: generation and evaluation. In P. Shvaiko, J. Euzenat, T. Heath, C.

212

Quix, M. Mao, & I. F. Cruz (Eds.),Ontology Matching, volume 814 ofCEUR Workshop

Proceedings: CEUR-WS.org.

[Ruiz et al., 2009] Ruiz, E. J., Grau, B. C., Horrocks, I., & Berlanga, R. (2009). Building

ontologies collaboratively using contentcvs. InProceedings of the 22nd International

Workshop on Description Logics (DL 2009).

[Ruiz et al., 2011] Ruiz, E. J., Grau, B. C., Horrocks, I., & Berlanga, R. (2011). Supporting

concurrent ontology development: Framework, algorithms and tool.Data Knowledge

Engineering, 70(1), 146–164.

[Sacks et al., 1989] Sacks, J., Welch, W., Mitchell, T., & Wynn, H. (1989). Design and

Analysis of Computer Experiments.Statistical science, 4(4), 409–423.

[Schmidt-Schaubß& Smolka, 1991] Schmidt-Schaubß, M. & Smolka, G. (1991). Attribu-

tive concept descriptions with complements.Artif. Intell., 48(1), 1–26.

[Shadbolt et al., 2006] Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The semantic

web revisited.IEEE Intelligent Systems, 21, 96–101.

[Sherriff & Williams, 2008] Sherriff, M. & Williams, L. (2008). Empirical software

change impact analysis using singular value decomposition. InProceedings of the 2008

International Conference on Software Testing, Verification, and Validation(pp. 268–

277). Washington, DC, USA: IEEE Computer Society.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007).

Pellet: A practical owl-dl reasoner.Web Semantics, 5(2), 51–53.

[Stojanovic, 2004] Stojanovic, L. (2004).Methods and tools for ontology evolution.PhD

thesis, University of Karlsruhe.

[Stojanovic et al., 2002a] Stojanovic, L., Maedche, A., Motik, B., & Stojanovic, N.

(2002a). User-driven ontology evolution management. InProceedings of the 13th Inter-

national Conference on Knowledge Engineering and Knowledge Management. Ontolo-

gies and the Semantic Web, EKAW ’02 (pp. 285–300). London, UK: Springer-Verlag.

213

[Stojanovic et al., 2003] Stojanovic, L., Maedche, A., Stojanovic, N., & Studer, R. (2003).

Ontology evolution as reconfiguration-design problem solving. InProceedings of the

2nd international conference on Knowledge capture, K-CAP ’03 (pp. 162–171). New

York, NY, USA: ACM.

[Stojanovic & Motik, 2002] Stojanovic, L. & Motik, B. (2002). Ontology evolution within

ontology editors.Proceedings of the OntoWebSIG3 Workshop, 68, 568–580.

[Stojanovic et al., 2002b] Stojanovic, L., Stojanovic, N., & Handschuh, S.(2002b). Evolu-

tion of the metadata in the ontology-based knowledge management systems. InProceed-

ings of the 1st German Workshop on on Experience Management: Sharing Experiences

about the Sharing of Experience(pp. 65–77).

[Taye, 2010] Taye, M. M. (2010). The state of the art: Ontology web-based languages:

Xml based.Computing Research Repository, abs/1006.4563.

[Thomas et al., 2010] Thomas, E., Pan, J. Z., & Ren, Y. (2010). TrOWL:Tractable OWL 2

Reasoning Infrastructure. Inthe Proceeding of the Extended Semantic Web Conference

(ESWC2010).

[Trinkunas & Vasilecas, 2007] Trinkunas, J. & Vasilecas, O. (2007). A graph oriented

model for ontology transformation into conceptual data model.Technology, 36(1), 126–

132.

[Trivedi, 2002] Trivedi, K. S. (2002).Probability and Statistics with Reliability, Queuing

and Computer Science Applications. Chichester, UK: John Wiley and Sons Ltd., 2nd

edition edition.

[Tsarkov & Horrocks, 2006] Tsarkov, D. & Horrocks, I. (2006). Fact++ description logic

reasoner: System description. InProc. of the Int. Joint Conf. on Automated Reasoning

(IJCAR 2006), volume 4130 ofLecture Notes in Artificial Intelligence(pp. 292–297).:

Springer.

214

[Tudorache et al., 2008] Tudorache, T., Noy, N. F., Tu, S., & Musen,M. A. (2008). Sup-

porting collaborative ontology development in protege. InProceedings of the 7th Inter-

national Conference on The Semantic Web, ISWC ’08 (pp. 17–32). Berlin, Heidelberg:

Springer-Verlag.

[Uren et al., 2006] Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M.,

Motta, E., & Ciravegna, F. (2006). Semantic annotation for knowledge manage-

ment:requirements and survey of the state of the art.Web Semantics: Science, Services

and Agents on World Wide Web., 4(1), 14–28.

[Vallet et al., 2005] Vallet, D., Ferńandez, M., & Castells, P. (2005). An ontology-based

Information Retrieval Model. InExtended Semantic Web Conference, volume 3532 (pp.

455–470).

[Volz et al., 2003] Volz, R., Oberle, D., Staab, S., & Motik, B. (2003). Kaon server - a

semantic web management system. InAlternate Track Proceedings of the Twelfth Inter-

national World Wide Web Conference, WWW2003, Budapest, Hungary, 20-24 May 2003:

ACM.

[Wilcock, 2009] Wilcock, G. (2009).Introduction to Linguistic Annotation and Text Ana-

lytics. Morgan & Claypool Publishers, 1st edition.

[Wu et al., 2007] Wu, J., Holt, R., & Hassan, A. E. (2007). Empirical evidence for SOC

dynamics in software evolution. InProceedings of the International Conference on Soft-

ware Maintenance(pp. 244–254).: IEEE Computer Society.

[Xuan et al., 2006] Xuan, D. N., Bellatreche, L., & Pierra, G. (2006). Aversioning man-

agement model for ontology-based data warehouses. InInternational Conference on

Data Warehousing and Knowledge Discovery(DaWaK)(pp. 195–206).

[Zablith, 2008] Zablith, F. (2008). Dynamic ontology evolution. InInternational Semantic

Web Conference Doctoral Consortium.

215

[Zablith et al., 2008] Zablith, F., Sabou, M., & Motta, E. (2008). Using background knowl-

edge for ontology evolution. InProceedings of the ISWC International Workshop on

Ontology Dynamics (IWOD).

[Zhang et al., 2010] Zhang, H., Li, Y.-F., & Tan, H. B. K. (2010). Measuring design com-

plexity of semantic web ontologies.J. Syst. Softw., 83(5), 803–814.

[Zhang et al., 2008] Zhang, L., Xia, S., Zhou, Y., & Xia, Z. (2008). User defined ontology

change and its optimization. InControl and Decision Conference, 2008. CCDC 2008.

Chinese(pp. 3586 –3590).

216

Appendix A

Software Help Management Case

Study

A.1 Introduction

This case study covers a software help management domain. A software help system is

part of a software product which focuses on delivery of help to users of a software product.

Software products are released with associated help files that explain the overall purpose

of the software and its components. The help files describe the product, its purpose, the

components in the software, the tasks, the procedures and steps required to use the software

and to troubleshoot a problem. The help files are prepared by professional software devel-

opers to assist users to efficiently use the software. The help files includedescription about

concepts used in the software, locations of items and GUI elements, steps andprocedures,

shortcut keys and a lot other information useful to users of the product.

Software help files are content files which describe a software. The helpfiles are created

by domain experts who specialize in the domain of the software product. These files contain

structured content in an XML format or semi-structured content in HTML format. Help files

are released together with the associated software or become available on the web for on-

line users. Searching, indexing, and browsing based on a table of contents which organizes

217

the content using DocBook structures are used to efficiently access a specific content.

Software help files evolve dynamically. Whenever a software evolves dueto changes,

the associated help files evolve together. The evolution is in response to the changing be-

haviour of the software system. The evolution in the content affects the ontologies. The

ontologies reflect the current semantics in the content and in the software.They further

reflect existing structure of concepts in both the content and the software. Thus, when a

software evolves, the help files evolve together. This causes the ontologies to evolve in turn

propagating all the changes to annotations and dependent systems.

Our empirical study uses Symantec Enterprise Vault (EV) software help files. These

help files are prepared by Symantec Enterprise Vault software developers. The help files fur-

ther contain major concepts used in the software. The developers rankedconcepts based on

percentage of similarities among each other, and organized them using concept taxonomies.

For this study, we gain access to two versions of the EV software help files.The versions

are EV version 7 and EV version 8. Version 7 contains 162 HTML files organized into 4

folders. The folders contain help files which represent four components of the software.

Version 8 contains 839 files organized in 17 folders. The folders are used to categorize the

help files based on the available software components.

Using the information provided on the help files and the associated concepts,we build

ontologies which describe the overall structure and semantics of the software system. We

developed four ontologies representing different aspects of the system. A high level view

of the ontologies is given in FigureA.1.

Figure A.1: A high level view of software help management ontology

The first ontology is the DocBook ontology which describes the overall structure of

the help files [Pahl et al., 2010]. The DocBook ontology is constructed by extracting the

218

structural entities from available DocBook files. A similar approach has been used to au-

tomatically extract a DocBook ontology from the DocBook structure [Şah & Wade, 2010]

and XML files [Ceravolo et al., 2007]. The second ontology is the help ontology. The help

ontology is designed to guide the software ontology by providing semantics about the help

files and their content. The third ontology is a software ontology which is constructed

considering a general software system specification. This ontology is used to describe the

different behaviours and components of a standard software. It provides semantics about

software related concepts. The fourth is a domain ontology which specifically focuses on

the domain area of a software at hand. The domain ontology is also known asapplication

ontology. In our case study the domain of the software is digital archiving which includes

backup, searching, sharing, etc.

These ontologies are constructed using different information sources such as the differ-

ent versions of the software help files, topic matrix, the document structure, and so on. A

snapshot of the ontology is presented in FigureA.2.

219

Figure A.2: Software help management ontology hierarchy

220

A.2 Rationale and Significance of the Case Study

This case study is selected because it has a wide coverage of topics that range from the appli-

cation domain to software systems domain. There are different software tools in different

disciplines covering different subjects within the disciplines. In these software products,

the help files are associated to the knowledge and activities representing thedisciplines.

Help files are organized using document structures borrowing conceptsfrom other domains.

They further contain software concepts such as GUI elements, commands,hardware and

software requirements, etc. This case study covers one or more of the above concepts.

Moreover, the concepts and instances are distributed throughout the help files and create

a strong link between the instances in the content and the concepts in the ontologies. This

makes it of great interest to investigate instance-driven change impacts because the changes

made in the content of the help files will have an impact on the ontology and vice versa.

This case study is different from the other two case studies. First, it focuses on changes

in both the content and the ontology. The changes in the content of the help files or the

software cause a change in the ontologies. Second, we have differentdomain ontologies.

These ontologies are interrelated and interdependent. Third, the individual help files are

treated as individuals that are used to explain one or more concepts. These individuals are

linked to different concepts from the ontologies. These features make thisdomain suitable

to investigate the effects of changes in ontologies or in content documents.

The purpose of this case study is to investigate changes and the impacts of changes in the

software help files in different versions of a software. This is part of the wider investigation

of changes in different versions of an OCMS. In this case study, we specifically focus on

investigating the following issues.

• Identification of changes from the versions which affect other layers of an OCMS.

• Investigation of effects of these change operation.

• Identification of dependencies that characterize the propagation of effects of changes

to dependent entities and systems.

221

• Investigation of implementation options using different strategies and investigating of

important criteria which can be used to to identify optimal implementation strategies.

A.3 Experiment

We used different perspectives for a better understanding of the problem and the behaviour

of the evolution of an OCMS system. These perspectives are used to investigate changes

at different layers, the strategies used to handle the changes and the different effects of the

evolution process. The perspectives are discussed as follows.

A.3.1 Perspectives

The first perspective deals with the organization of the help file using DocBook structures.

It organizes the help file into chapters, sections, paragraphs [Şah & Wade, 2010]. It pro-

vides steps, procedures, tips to perform a task. Tables, figures, anddemonstrations are also

included in this perspective. The DocBook ontology gives structure to and defines how

elements in the help ontology are organized.

The second perspective is the help management systems perspective focusing on pro-

viding information on what a given concept is, how it is used. It explains how the software

ontology makes use of the topics, procedures, etc. The help ontology guides the software

ontology in a way that explains the system. What makes this perspective different from the

others is, it focuses on help contents specific to the software at hand.

The third perspective is the software systems perspective. This perspective views the

help files as part of a software functionality which provides better facility for using an

application. It provides explanations, steps and procedures on how to use a specific part

of the application, where to find a GUI button, how to activate a given process, etc. This

perspective focuses on generic software features that are availablein different software

systems.

The fourth perspective also focuses on the organization of the components of the soft-

ware in a given domain. For a software, we explain the different subcomponents of the

222

software, what the individual components do and how they are related to each other. For

example, in the case of EV customer help, we have different subcomponents that deal with

emails, files, folders etc. The perspective allows us to implement the ontology domain

which is specific to the components in each application. These components areorganized

based on the concept structures in the domain or based on the activities supported in the

software.

A.3.2 Changes

We studied the changes from one version to another version and trace those changes to

find the frequency, the importance and the impacts of the changes. We identified several

changes but focused on 15 selected scenarios that cover all the fourontologies. These

scenarios represent the different evolutions in the OCMS. The selectionof each scenario is

based on the frequency of the change, their cascaded impacts, the operations involved and

the number of ontologies affected. The analysis of the change scenariosexposes different

kinds of changes.

A.3.2.1 Changes among Versions

We compare the two versions of the help files (version 7 and version 8). Following the

analysis result, we categorize the changes into three different categories.

Changes in the Content.A change in the content refers to the change in the actual

contents of the help files. This includes the introduction of new help files to support the

new components and functionalities of the new version of the EV software. Some of these

changes are the addition of theAcceleratorClient Help, AdministratorGuideand so on.

All these components have their own associated help files that are introduced in the new

version. Old concepts which are not included in the new version are also removed.

Changes in the Structure of the Docbooks.These categories of changes are identified

in the new version. This is due to the fact that the whole help file structure is changed from

HTML based help files to XML based help files. Because of this change, allthe sections,

223

subsections, paragraphs, tables, lists, etc., are introduced in the DocBook by incorporating

new tags that were not available in the previous versions.

Changes in the Formats of the Files.These categories of changes are identified when

the formats of the help files evolve and include pictures, graphs, charts, and most impor-

tantly video and audio help files that illustrate steps and procedures on how toperform

tasks. To illustrate the above changes, we use the following two scenarios discussed in

[Abgaz et al., 2010]

Scenario 1.The new version of the software resulted in a change of componentX which

contains other two sub componentsY andZ. The componentX and its subcomponentY are

removed but the subcomponentZ is moved up. Here, all the previous instances (help files)

of X andY are preserved as instances ofZ. X, Y andZ stand for different components that

change following a similar pattern. The desired output is an updated ontologywhich reflects

the requested change. The change operations are:

• Move up (Z)

– Add instance of (instance of X, Z) . . .

– Add instance of (instance of Y, Z) . . .

• Delete concept (Y)

• Delete concept (X)

Scenario 2. The software engineers introduced a new software componentNC. The

new component has new associated help files. The desired output is a software applica-

tion ontology that has a description of the new component and its properties.The change

operations are:

• Add Concept (NC)

• Add sub concept (NC, softwareApplication)

• Add instance (Help file). . .

• Add instance of (Help file, NC)

224

A.3.2.2 Changes within a Single Version

Software life cycle involves different development stages. At each stage of the life cycle

there are changes. At the construction stage of the software, different new components will

be included. The help files and documents of the respective components arealso produced

in parallel. As the software components passes through different stages, the documentation

and the help files also update synchronously. Furthermore once the software product at

a certain stable version is released, it is not an exception to find subversions and patches

following the release of that version. With such subversions and patches, the help files and

associated ontologies that are used to support the software system needto be updated.

Scenario 3.The enterprise vault software engineers split theBackup and restoremenu

item into two separate menu items: back-up, and restore menu items for simplicity of use

within the existing version. The change is represented as follows.

• Split concept (Backupand Restore, Backup, Restore)

– Add concept (Backup) . . .

– Add concept (Restore) . . .

• Delete (Backup and Restore)

From the software help management case study and following the above procedure, we

identified 15 frequent change scenarios to evolve the system. The scenarios are selected

based on their frequency and the number of ontologies they affect in the system. They also

represent the deletion and addition operations and mix them evenly. Their effect is also

taken into consideration to identify the changes. The overall changes arepresented in Table

A.1

225

Table A.1: Change scenarios

No Change Scenario Change Operations Affected On-

tology

Impact

Type

Frequency of

change

1

The enterprise vault software engineers introduced a new software

component. The new component has associated help files.

Desired output : the software application ontology needs to have a

description about the new component and its properties.

- Add Concept (new component)

- Add sub concept (new component, software Application)

- Add instance (Help file)

- Add instance of (help file, new component)

Application

Ontology

Structural

and Se-

mantic

Very Frequent

2

The new version of the Enterprise Vault software application has made

a change on a component which contains two other sub components.

The component and one of its subcomponents are removed but the

other subcomponent is upgraded as a full component. Here we do need

to link all the previous instances associated with the removed concepts

to the upgraded concept.

Desired output : an updated ontology which reflects the requested

change.

Move up (subcomponent2)

- Add instance of (instance of component, subcomponent2)

- Add instance of (instance of subcomponent1, subcomponent2)

- Delete concept (Component)

- Delete concept (subcomponent1)

Application

Ontology

Structural

and Se-

mantic

Very Frequent

3

Replacing function by software feature in the application ontology.

Desired output : the function is changed to software feature in the

ontology.

- Add concept (software feature)

- Add subclass of (software feature, super class of function)

- Add subclass of (subclass of function, software feature)

- Delete concept (function)

Application

Ontology

Structural

and Se-

mantic

Frequent

226

4

A new reference mechanism (eg fileid, file uri) is added to identify

help files in the help management and cross references.

Desired output : the new properties (fileid and fileURI) are added

into the DocBook ontology.

- Add data property (file id)

- Add data property (file uri)

- Add range (file id, Integer)

- Add range (file uri, String)

Application

and Doc-

Book Ontol-

ogy

Structural

and Se-

mantic

Frequent

5

The software engineers added additional help formats (videoand au-

dio) to enhance the functionality.

Desired output: the ontology help infrastructure needs to introduce a

new concept format.

- Add concept (format)

- Add sub class of (format, some super class(y))

- Add subclass of (sub class of (z) the super class(y), format)

- Add instance of (instance of format, format)

Help and

DocBook

Ontology

Structural

and Se-

mantic

Medium

6

In the previous version of the softwareparagraphwas treated as a di-

rect sub concept ofchapterconcept. However in the new version of

the help file it is treated under section.

Desired output : the help infrastructure ontology removes paragraph

from chapter and redirect it to section.

- Add subclass of (paragraph, section)

- Delete subclass of (paragraph, chapter)
Help Ontol-

ogy

Structural

and Se-

mantic

Medium

7

In the new version, the conceptqueryand topic are merged together

and are calledsubjects.

Desired output : the conceptqueryandtopic and all their properties

and instances merged intosubjectin the software system ontology

Merge concept (topic query, concept query, subject)

- Add concept (subject)

- Add subclass of (topic query subclass, subject)

- Add subclass of (conceptquery subclass, subject)

- Add instance of (topic query instance, subject)

- Add subclass of (conceptquery instance, subject)

- Delete concept (topic query)

- Delete concept (conceptquery)

Help Ontol-

ogy

Structural

and Se-

mantic

Medium

227

8

The new version of the enterprise vault included snapshots as a picture

in the help file. A single picture can be used one or more times to

illustrate steps and procedures. Pictures have descriptions like picture

number and name.

Desired output : the concept picture and its properties are included in

the software system ontology

- Add concept (picture)

- Add subclass of (some super class)

- Add property (picture number)

- Add property (picture name)

- Add domain (picture number, picture)

- Add domain (picture name, picture)

- Add range (picture name, String)

- Add range (picture number, Integer)

Help Ontol-

ogy

Structural

and Se-

mantic

Less Frequent

9

The enterprise vault software engineers have changed some ofprevi-

ously known functionalities provided by buttons into functionalities

provided by menus. Furthermore they removed the buttons that were

providing those functionalities.

Desired output : all the buttons need to be removed from the ontology.

- Delete concept (buttons) Software On-

tology

Structural

and Se-

mantic

Frequent

10

Continuing from the above (6), the contents (instances associated with

the removed buttons) are redirected to the menu items.

Desired output : all the instances that are linked to the buttons should

be linked to the respective menu.

- Add instance of (instances of button”, ”Menu) Software On-

tology

Structural

and Se-

mantic

Frequent

11

The enterprise vault software engineers removed an old top level menu

item.

Desired output : the menu item is removed from the ontology, and its

sub classes linked to the appropriate super class.

- Delete concept (top level menu item) Software On-

tology

Structural

and Se-

mantic

Medium

228

12

The enterprise vault software engineers split thebackup and restore

menu item intoback-up, andrestoremenu items.

Desired output : the two concepts treated separately as siblings.

Split concept (backup and restore, backup, restore)

- Add concept (backup)

- Add concept (restore)

- Delete (backup and restore)

Software and

Application

Ontology

Structural

and Se-

mantic

Frequent

13

Removing a certain GUI feature (toolbar).

Desired output : the GUI feature and its instances are removed from

the software system ontology.

- Delete concept (toolbar)

- Delete instances (instance of toolbar)
Software On-

tology

Structural

and Se-

mantic

Frequent

14

The new versions of the software removed the command line features

of the software and its associated contents.

Desired output : the concept command line is removed from the soft-

ware ontology with all its instances.

- Delete concept (commandline)

- Delete concept (sub class of commandline)

- Delete individual (individual of commandline)

Software On-

tology

Structural

and Se-

mantic

Less Frequent

15

When a new version of the software is released, the structure of the

DocBook has been changed into a different structure. The newstruc-

ture pulled up some of the elements and merged the others. Some of

the elements are also split into different elements.

Desired output : the changes are implemented according to the re-

quested changes.

- Pull concept up (some concept)

- Merge concept (concept1, concept2, concept3)
DocBook

Ontology

Structural

and Se-

mantic

Less Frequent

229

We implement changes based on the scenarios and evolve the OCMS accordingly. The

summary of our observation on the changes, dependencies and impacts is presented in the

following section.

A.4 Observation

Using the above change categories we identify individual changes and further analyse the

frequency, the complexity and the error prone nature of the changes. We investigate the

types of impacts the changes have on the overall content-based system.

We find changes that are occurring frequently whenever there is a newsubversion of

the software component. The phenomenon that requires an intensive research focus is the

complexity of the changes, and the propagation of their effects. Many of the changes in

such systems have effects that propagate to other components due to the interdependence

between the components of the systems.

In this case study we observe that one help file can be used to illustrate tasksof one

or more components of the system. One component of the system is linked to two or

more other components. If there is a change in one of such components, it will suddenly

become complex and beyond the comprehension of the content manger or theontology

engineer to find all the dependent components and to see the changes thatpropagate to

other components.

We identify such dependencies between elements of the ontology, the content and the

annotations that define the relationship between the content and the ontologies. These de-

pendencies explain the impacts of a change on other components and the nature of propa-

gation of the impacts.

In addition to this, the interdependence that exists between the content and the ontology

is very high (as the ontologies are built to reflect the interaction and the structure of the

software system at hand). This means, a change in one or more of the software component

hierarchies will affect the ontology taxonomy and vice versa.

Dealing with such kinds of changes in the ontology manually is beyond the capacity

230

of both the ontology engineer and the content manager. In software systems that have

large number of components, developers require an intensive tool support for handling the

changes and analysing and determining the impacts of the changes. From thesoftware point

of view, to support such systems, there are different tools for controlling different versions

such as CVS and others. However, from OCMS’s view point, these problems are not yet

solved. This case study reveals the following major problems and explains thereal world

challenges associated with OCMS.

1. Characterizing changes. This case study explains how content-based systems evolve

by analysing different versions of software help management system. The changes

are not restricted to software help management files but include other relatedapplica-

tions. We identify basic changes that add new concepts and remove existingconcepts.

All other changes can be explained by a series of additions and deletions composed

in a certain way. Many of the changes involve either addition or removal of new

instances, concepts, and properties of concepts or their descriptions.We have also

observed that changes include restructuring existing entities and splitting ormerging

of existing concepts, etc., which can be considered as composite changes.

2. Representation of changes. Using the ontology and the content, the case study served

as a means to represent the actual changes using change operations defined in the

OCMS. The changes can be represented at different levels of granularity which in-

cludes atomic level and composite level changes. It is evident that a givenchange

can be represented using different compositions of the atomic change operations. It

also reveals the different strategies of implementing change operations. From the

concrete scenarios, we identify strategies that cascade the changes to all dependent

entities, only to the instances or apply the change only on the target entity and link the

dependents to the root or the parent entities. Such scenarios serve as ajustification

for the implementation of a change operation using different strategies based on the

requirements of the user. To meet the requirements of users, OCMS shouldprovide

such flexibility to the users.

231

3. Identification of dependencies. The case study clarifies the importanceof deeply

understanding the dependencies between entities in the OCMS system. This enables

us to efficiently implement the change operations and select a strategy that meets the

requirement of the user. We identify direct dependencies, indirect dependencies and

partial and total dependencies between entities. The case study providesus real world

scenarios that distinguish dependencies between different types of entities.

4. Identification of impacts and nature of impacts. This case study further discovers the

different impacts of change operations. Some of the change operations have structural

impacts which affect the taxonomy of the OCMS and others affect the semantics of

the concepts and instances. We identify different structural impacts and semantic im-

pacts using the case study. Explaining the impacts of the change operations and iden-

tifying the preconditions and the affected entities of the change operations provide

crucial information for selecting the optimal implementation from different options.

Finally, the case study revealed that which entities are important in the OCMS and

need to be preserved and which ones are less important and can be sacrificed. This

includes theABox versusT Box statements, additions versus deletions and unsatisfi-

abilities and inconsistencies.

A.5 A Snapshot of Software Help Management Ontology

232

Figure A.3: Software help management systems OCMS

233

Appendix B

Database Systems Course Case Study

B.1 Introduction

This case study focuses on an e-learning system that deals with a database systems course.

The database systems course covers theoretical, practical, technologicalaspects of database

design, implementation and management. Database systems courses introduce such knowl-

edge to the students by providing books, course notes, tutorials, manuals,demonstrations,

exercises, questions and sample exams and answers. It further covers new research and

future directions in the field of database systems and related domains.

The content in this domain is created by different stakeholders. Instructors of the course

may compile lecture materials, authors write books, software development companies pre-

pare software and produce books, help files and documentations for thesoftware, etc.

The evolution in database systems domain is dynamic. There are different conceptual

models introduced since the inception of the concept, design specifications are proposed,

languages are created. Software systems that support both the design and implementation

are produced and are evolving dynamically to support the current requirements. A typical

evolution related to database models starts from hierarchical data model to network model

then to relational model. Now the relational data model evolves to support object oriented

specifications. The domain continues to evolve to support current requirements and techno-

logical advancements in the field of computer science.

234

This case study covers a domain which focuses more on conceptualization.This means,

the database course ontology defines concepts that are used in database systems. This do-

main enables us to cover OCMS that focuses more onT Box statements thanABox state-

ments. In this OCMS, the definition of the concepts in the domain are much importantthan

the individuals associated with those concepts.

B.2 Case Study Setup

Similar to the other case studies, we explore different perspectives to understand how the do-

main changes and what changes are observed frequently. We identify different perspectives

but categorize them into three.

B.2.1 Perspectives

The Publishing Perspective.The publishing perspective focuses on preparation and pub-

lishing of content in different media such as books, video tutorials, etc. Westudy the

publications related to database systems course. The database course is among the courses

that exhibit frequent changes, updates and modifications. The database ontology was de-

rived from the taxonomy arising from the table of content and the indexes of the text books.

In the past 20 years, there are lots of changes observed [Javed et al., 2009]. Addition of

new concepts, technologies, techniques, applications and languages and removal of obso-

lete concepts and modification of existing ones are observed frequently. These frequent

changes cause the database systems OCMS to evolve frequently.

The situation gets worse when the course content is subject to modification bydiffer-

ent stakeholders in different places. A database system book writer views the changes as

changes in taxonomy represented in the table of content or in the index at theend of his

book. A concept treated under one section can be moved to another section or two concepts

merged together and create a new concept. The following examples represent changes in

the taxonomy of table of content [Javed et al., 2009].

Atomic changes

235

• create conceptSQLusing Create Concept (SQL)

• makeSQLsubconcept ofDatabaseusing Subconcept(SQL, Database)

Composite changes

• Merge Concept (DDL, DML, Database):

– Integrate Concept Context by creating conceptDatabaseusing Create Concept

(Database)

– Integrate Property Context by creating propertyisBasedOnusing Create Prop-

erty (isBasedOn)

– Integrate Domain/Range Context by adding a domain toisBasedOnusing Add

Domain(isBasedOn,Database)

– Adding rangeRelational Algebrato isBasedOnusing Add Range(isBasedOn,

RelationalAlgebra)

– Remove Concept Context by deleting conceptDML using Delete Concept(DML)

– Deleting conceptDDL using Delete Concept(DDL)

The Technology Perspective.Technological advancement in the area causes a change

in the overall structure and semantics of the content and the ontologies. Now days, the

change in the technology is dynamic that a continuous update is required to ensure the up-

to-datedness of such content-based systems. The emergence of object-oriented databases,

web-based databases and a lot other technologies and software everytime cause systems to

update themselves synchronous with the changes.

Example:

• Add Concept(Web-BasedDatabase)

• Add subclassOf(web-BasedDatabases, Database)

The Teaching Perspective.In the teaching and research perspectives, there are huge

number of course outlines produced which differ in their depth and coverage. These outlines

236

are also subject to modification each semester. In addition to this, there are a number

of new research papers contributed in the area, reports about new tools, techniques and

technologies, and a number of case studies, experiments, etc., that adds new knowledge to

the domain. Professors prepare examples, mock questions and examinations that serve as

instances of concepts. These materials change frequently and contributefor the evolution

of the system. For example, the teacher wants to merge relational algebra andrelational

calculus and give it a name relational operation.

• Merge concept(RelationalAlgebra, RelationalCalculus, RelationalOperations)

To implement an efficient content-based system, which can deal with such dynamic

content, it requires a careful understanding of the ongoing changes,a detailed analysis and

a sound solution that reflects and propagate changes to dependent elements of the system.

To achieve such requirements, we need to deal with the following challenges. The first

challenge is the frequency of the changes. The changes in such systemsare continuous

that we need to provide a continuous means of tracking, understanding and implementing

the changes. For example a continuous release of new research papers that contains new

topics in the area needs to be incorporated as soon as the contributions are accepted by the

scientific community and domain experts in the area.

The second challenge is the volume of change. For relatively large content-based sys-

tems, the amount of change the systems deal with is numerous. Especially for systems that

are used in a multi user environments where different stakeholders change the content and

others access the same content, the amount of change that needs to be dealt will become

very large and beyond the comprehension of the users. The third challenge is the complex-

ity of the change. It requires a detailed research to understand the effects of the changes on

other entities. There are changes that can be implemented easily and there are changes that

are complex and require an expert involvement to implement them.

Such kinds of changes are not only complex by themselves but also have complex cas-

caded effects on the dependent systems and contexts. The complexity of the changes leads

to errors. As the changes and the cascaded effects of those changesbecome complex, the

237

chance of introducing error into both the structure and the semantics of the system will

increase. That leaves the systems inaccurate and unreliable.

• merge two concepts in one concept

– create a new concept.

– add the new concept as a sibling concept

– add subclasses of the concepts to the new concept

– add instances of the concepts to the new concept

– add properties of the concepts to the new concept

– delete the old concepts

• split a concept into many concepts

– add the new concepts as sibling

– add the subclasses of the split concept to the sibling

– add the instances of the split concept to the sibling

– repeat the above steps for all the sibling concepts

Example:

• Merge concept(RelationalAlgebra, RelationalCalculus, RelationalOperations)

When we look at the above operation, it seems a single and a simple operation. However,

it contains many atomic change operations in it. The merging of relational algebra and

relational calculus involves the merging of all their subclasses too. While doing that we

have to look at axioms and constraints that should be kept valid before andafter merging.

B.3 Experiment

We conducted empirical investigation to understand what changes are observed and which

entities are changing frequently. The experiment tries to identify the changes from each

perspective. The partial representation of the ontology hierarchy is presented in FigureB.1

238

Figure B.1: A high level view of database ontology

B.4 Observation

In publishing perspective, we identified changes from different versions of published text-

books over the past 20 years. The changes can be generalized as changes that include

emerging concepts, changes that remove obsolete concept, and changes that merge or split

existing concepts.

In publishing, the changes are more related to the taxonomy and relationshipsbetween

entities. The publishing contributes much content to the content layer.

From technology perspective, we identified changes that are related to introduction of

new technology, what it does and how it does, where and when it is applicable. We further

identify emerging technologies that are used to implement concepts discussedin the domain.

Further obsolete technology solutions are removed from contemporary systems and are

replaced by the new ones.

The changes in this perspective add new concepts and terminologies to the ontology.

239

This facilitates the annotation of the content with new terminologies.

The teaching perspective is the one that evolves frequently by coveringnew research

results, new innovations and modifications of existing knowledge to fit for different perspec-

tives depending on the aim of the course. In this perspective, we have changes whenever

the semester changes or whenever the students change. The aim of the teaching perspective

is to make students familiar to concepts and enable them to successfully work withthe ex-

isting tools. This requires providing definitions, about the concepts, relationship between

concepts and the properties of the concepts.

The teaching perspective incorporates changes in both the ontologies andthe contents.

B.5 Sample Database systems course OCMS

240

Figure B.2: Database systems course OCMS

241

Appendix C

University Administration Case

Study

C.1 Introduction

In this case study, we investigate a university administration domain. A university admin-

istration focuses on administration of large number of students, staff, departments, courses,

and examinations. It manages campuses, buildings, class rooms to efficientlyconsume re-

sources in a university. The case study incorporates different stakeholders of a university

system such as students, research institutes, funding institutes, etc. The university system

covers concepts, relationships and constraints on relationships and individuals. Unlike the

previous case studies, this case study focuses more on instances and instance annotations.

The annotations are used to semantically enrich related content with ontologiesthat repre-

sent the domain knowledge.

In this case study, the ontologies represent the organization structure, the course cur-

riculum and the administration procedures. These ontologies are relativelystable and do

not evolve frequently unless there is a structural change or a revision on the curriculum.

However, the instances evolve dynamically. Since the registration of a new student to the

graduation, the instance passes through different changes. The changes include additions

242

of annotation data about the student, the department, the courses, the activities, etc.

This domain is selected for the following reasons. First, this domain represents a real

world organization that evolves dynamically. The dynamic change in the domainallows

us to investigate the changes. Second, this domain represents OCMS with large number

of data instances. This corresponds to OWL QL profile which is optimized fordomains

with large number of instances. Unlike the other domains, the evolution in this domain

primarily focuses on instances. Third, the evolution of the terminology affects large number

of instances that are related to each other via relationships. This further enables us to study

the impacts of the changes on the instances.

C.2 Case Study Setup

We modelled the university ontology using Dublin City University (DCU) as a case study.

This case study allows us to exploreABox changes and their effects. Some of the features

that make the university ontology suitable for the case study are discussedas follows. The

university administration domain focuses on people, physical resourcesand events which

are represented as assertion statements, thus represent more of the assertions than the termi-

nologies. Many of the changes related to this domain focus on the instances.For example,

a new faculty joins a department, a new student get registered and anothergets graduated

and all the related information of the student become inactive. In this domain, the ontolo-

gies are relatively stable, but the content evolves frequently causing theinstances to change

from time to time.

The ontology is created based on the perspectives of managing the university system.

This enables us to restrict the ontology to focus on the major areas that are important for

administering the university system and the proper execution of the day-to-day activities of

a university.

Accordingly, we studied the different major entities and their relationships in auniver-

sity system. The concepts give semantic definition for the actual entities involved in the

administration process. For example, a concept researcher is defined inrelation to person

243

and someone who is conducting research. The concept researcher gives semantic definition

to all individuals who are conducting research in the university. To take another example we

have concepts such as department and course. These concepts provide semantic information

about individual departments such as school of computing and school of engineering.

C.3 Experiment

For the purpose of the experiment we built a university ontology. The university ontol-

ogy covers basic concepts such as faculty, department, course, staff, students and research

groups. Each of these concepts is specialized into different specific concepts. The ontology

further covers relationship between the concepts, domains and ranges of the relationships

and identifies instance properties that apply for specific instances. The taxonomy of the

ontology is presented in FigureC.1.

Thing

Student
 Faculty
Department
 Course

Undergraduate

Post

Graduate
 Professor

Senior

lecturer

Assistant

Professor

Associate

Professor

Full

Professor

Undergraduate

course

Post Graduate

Course

Short

Course

Package
 Package
 Package
Package

Package
 Package
 Package
Package

Figure C.1: University ontology hierarchy

Once the ontology is built, it passes through different evolutionary changes. The changes

244

incorporate addition and deletions. These changes are discussed as follows.

C.3.1 Changes in University Administration

The changes in university administration come from changes in the conceptual definition or

changes in the characteristics of the instances. Most of the frequent changes in this domain

are related to instance changes. These instance changes include additionof new students,

staff, department, etc., and deletion of obsolete instances. However, the conceptual defini-

tion of these instances changes seldom. We identified three different levelsof changes in

the university administration domain. These changes are presented here.

Level 1 is constructed to fit for lower level operation such as creating new concepts,

deleting old concepts, etc., which are single and atomic tasks that change a single entity of

the ontology. The atomic changes are presented using a natural language.

1. Create Instance

2. Make the instance an instance of a concept

3. Remove instance from the a concept

4. Create object property Assertion

5. Remove instance object property assertion

6. Create data Property assertion

7. Remove instance data property assertion

8. Add value of property from an instance

9. Remove value of property from instance

10. Change value of property from instance

11. Set the maximum cardinality of a property

12. Set the minimum cardinality of a property

245

Level 2 is constructed to fit for middle level operations like creating new instance, which

may include different calls to the first level operations For example, creating a new instance

involves, creating the instance as a new node and making it as instance of a concept. We

present some of the change operations observed at this level.

1. Creating instance ofUniversitycalledDCU

• Create instanceDCU

• Create instance of(DCU, University)

In principle, it is possible to create infinite number of level two change operations by

combining the atomic change operations. But, in practice we use only those change opera-

tions that are used frequently to make changes.

Level 3 is constructed to fit for higher level operations like modifying the structure of

the university administration, opening a new department or closing an old faculty. This

level is constructed based on different perspectives we identified in theconstruction stage

of the ontology. This level makes use of one or more operation from level 2. For deleting

a certain super concept, we may need to delete the concept, remove the dependencies from

the ontology, check the consistency, and amend the inconsistencies if they are introduced in

the system. Sample lists of changes in this level are listed below.

1. Manage Student:

2. Manage Courses:

3. Manage Faculty:

4. Manage Research Groups

5. Manage Committees:

C.4 Observation

In this case study, it is observed that most of the changes are related to individuals. Thus,

the change is usually attributed to the annotation triples which carry frequentlyevolving

246

semantic information about the individuals. Some of the instance changes areattributed to

addition of information about new faculty and students. In the case of adding new faculty,

they create a web content about their research interest, the courses they teach, their publi-

cation, contact information, etc. When the students finish their studies, their information

becomes inactive and later deleted from the web server.

The concepts in the ontology are relatively stable as compared to the frequent changes

in the instances. Instructors add course content such as lecture notes,reference materi-

als, demonstrations, guidelines, laboratory manuals, sample quizzes and exams. All these

resources evolve frequently forcing the overall OCM system to evolve dynamically. How-

ever, it does not mean that the ontologies used in this domain are permanently stable. It

only means, as compared to the changes in the content, the changes in the ontologies are

rare.

This OCMS system is sensitive to changes that delete individuals. When individuals

are deleted the information associated with them will be lost. Due to the nature of the

information, any deletion which is not originally intended by the user creates aproblem

on the overall system. When concepts are changed, we further need to check whether

there are dependent individuals associated with the changing entity. If there are dependent

individuals, then we consider preserving the individuals before changing or deleting the

entities.

In ontologies that focus on more on individuals, changing theT Box statements is prefer-

able to amend inconsistencies. This means, to resolve inconsistency, we prefer changing the

T Box definition than changing the assertion statements related to individuals. Forexample,

if we find a staff who is a student, but if ourT Box statement makes the staff and student

concepts disjoint, to resolve the inconsistency, we prefer to delete the disjoint axiom (which

is aT Box statement) than to delete the instance from either of the classes. In general, such

OCMS are sensitive to changes in theABox than theT Box statements.

C.5 Sample University Ontology

247

Figure C.2: University ontology OCMS

248

Appendix D

Additional Analysis Results

This appendix contains additional results of the change impact analysis process. The re-

sults reflect different severity values and different weights of criteriafor calculating cost of

evolution.

D.1 Severity of Impacts

We take three cases where the severity of impacts is assigned. This assignment is based on

the nature of the OCMS and the preference of the ontology engineer. Thecases and their

descriptions are discussed below.

D.1.1 Case 1

The first case collects severity values of impacts for the three case studies(Appendix 1 to

3) from expert ontology engineers. The collected severity values are used to calculate the

average severity value that can serve as a default severity value. Theaverage severity value

is given inD.1.

D.1.2 Case 2

This case represents another severity value tuned to specific requirement. In this case, the

integrity of the OCMS is crucial and the ontology engineers assign a high value to the

249

severity values corresponding to the impacts related to integrity values. The severity values

are presented in TableD.1

D.1.3 Case 3

This case represents a different severity value tuned to semantics of the OCMS than the

integrity of the ontology. This case represents OCMS that are less affected by impacts that

violate the integrity. Such OCMS give priority to the availability of description forthe

entities. The severity values of this case are given in TableD.1

Table D.1: Severity value assigned to case studies
No. Semantic Impact Acronym Severity

case 1
severity
case 2

Severity
case 3

1 Entity More described (CMD,DPMD,OPMD,IMD) 15 50 25
2 Entity Less described (CLD,DPLD,OPLD,ILD) 75 50 75
3 Entity More restricted (OPMR) 75 50 75
4 Entity Less restricted (OPLR) 35 50 25
5 Entity More expanded (AME) 60 50 25
6 Entity Less expanded (ALE) 80 50 50
7 Entity generalized (CG,DPG,OPG,IG) 50 50 50
8 Entity specialized (CS,DPS,OPS,IS) 70 50 50
9 Entity Incomparable (CInc, DPInc, OPInc, IInc) 70 100 15
10 Unsatisfiable

class/property
(UC,UDP,UOP) 100 100 15

11 Invalid instance/ instance
property

(II, IIP) 80 100 15

No. Structural Impact

1 Orphan concepts (OC) 80 100 10
2 Orphan Instance (OI) 75 100 10
3 Property cyclic reference (OPCR/DPCR) 90 90 10
4 Concept cyclic reference (CCR) 95 90 10
5 Null reference to content

layer
(NRC) 70 75 10

6 Null reference to ontology
layer

(NRO) 70 75 10

250

D.2 Weight of Criteria

In Chapter7 we identified four different scenarios where weight is assigned to the crite-

ria. We further use those scenarios to combine them with the three cases identified above.

Exploring the different combination of cases and scenarios is used to evaluate how the pro-

posed system applies for different OCMS with different settings.

Table D.2: Different weights assigned for criteria

Scenario Severity Operation
Type

Statement
Type

Performance

Scenario 1 0.25 0.25 0.25 0.25
Scenario 2 0.70 0.10 0.10 0.10
Scenario 3 0.50 0.10 0.30 0.10
Scenario 4 0.30 0.30 0.20 0.20

D.3 Cost of Evolution for Different Settings

We analyse and identify the cost of evolution of OCMS systems by combining thethree

cases for severity setting and the four cases of weights of criteria. We have twelve different

settings combining the cases with the scenarios. The cost is presented as follows.

251

0

10

20

30

40

50

60

70

80

Scenario 1
 Scenario 2
 Scenario 3
 Scenario 4

No Action

Attach All

Attach TBox

Cascade All

Cascade TBox

Figure D.1: Summary of cost of evolution - Case 1

Table D.3: Summary of cost of evolution - Case 1
Scenario Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

1 28.8 28.8 28.8 69.8 66.35
2 49.5 45.1 45.1 72.9 71.5
3 45.4 36.8 36.8 69.4 67.2
4 32.0 30.3 30.3 68.4 65.3

In the first case, the scenarios are compared based on the average severity values as-

signed in TableD.3. In this case no-action and attach strategies yield the same cost. But,

when the weight assigned to the second scenario changes, favouring the severity of impacts

(0.7), no-action strategy becomes costly, thus the preferable strategy is attach strategy (At-

tach all and attachT Box). Scenario 3 and Scenario 4 also yield a similar result but with a

slight difference in the values.

252

0

10

20

30

40

50

60

70

80

90

Scenario 1
 Scenario 2
 Scenario 3
 Scenario 4

No Action

Attach All

Attach TBox

Cascade All

Cascade TBox

Figure D.2: Summary of cost of evolution - Case 2

Table D.4: Summary of cost of evolution - Case 2
Scenario Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

1 33.8 27.3 27.3 69.8 63.5
2 73.5 40.9 40.9 55.4 89.0
3 55.4 33.8 33.8 56.9 79.7
4 38.0 28.5 28.5 60.9 72.8

In the second case, the scenarios are compared based on the severity value assigned

which gives a high severity value for impacts that affect integrity. In the first scenario, attach

strategy (attach all and attachT Box) yields the optimal implementation option. When we

look at scenario 2, the first strategy yields a higher value than the cascade strategy. Cascade

strategy gives the second best value because; the severity of introducing orphans is higher

than deleting the instances. The comparison between cascade all and cascade strategies

also reflect this fact. When we cascade changes only toT Box statements, we leave the

ABox statements unchanged and may introduce orphan instances. This makes the cost to

go higher. In all the scenarios, the weight assignment does not make a difference on the

253

best strategy selection.

0

10

20

30

40

50

60

70

80

Scenario 1
 Scenario 2
 Scenario 3
 Scenario 4

No Action

Attach All

Attach TBox

Cascade All

Cascade TBox

Figure D.3: Summary of cost of evolution - Case 3

Table D.5: Summary of cost of evolution - Case 3
Scenario Strategy

1
Strategy
2

Strategy
3

Strategy
4

Strategy
5

1 20.5 28.8 28.8 59.8 64.6
2 36.4 45.1 45.1 72.9 66.6
3 28.9 36.8 36.8 69.4 63.7
4 22.0 30.2 30.2 68.4 63.2

In the third case, we give less attention to orphans, unsatisfiable classes etc. This setting

yields a different result. In all the four scenarios, the best strategy is the no-action strategy

which yields a minimum cost. This strategy is known for introducing orphans, and orphan

instances. But, in situations where it is possible to allow orphan classes and instances

(which is possible in OWL 2), this strategy is preferable over the other strategies. From this

case one can conclude that trying to attach the orphan classes and instances to the parent

classes is even costly. However, similar to the second case, the weight assigned to the

criteria does not make a significance difference on the order of the optimalstrategy, even if

254

the cost of evolution is visibly different.

This might attribute to the high values of the severity criteria as compared to the other

criteria. This happens because we use a small OCMS for the purpose of the experiment. The

value of the other criteria will grow large if we use complex OCMS where largenumbers

of instances or classes are defined in it.

The analysis result clearly shows that the change impact analysis method and the opti-

mal strategy selection depends on the severity values assigned to the impacts,the weights

of the criteria and the size of the entities in a given OCMS. It further shows that the analysis

is customizable and allows users to conduct a what-if analysis using different values and

weights.

255

Appendix E

Questionnaire

This appendix contains questionnaire used to evaluate the different phases of the research.

We present the whole evaluation setting and the questionnaires in the followingsections.

E.1 Change Operations for Evaluation

Instruction

Load the respective ontologies using the system and implement the following change

operations following the information provided for each stage of the evolutionprocess.

Use University OCMS

1. Change scenario 1. Delete class (Student)

2. Change scenario 2 Add disjoint Class (Staff, Student)

3. Change scenario 3 Delete instance (John)

Use Ontology Database OCMS

1. Change scenario 4 Delete class (Table)

2. Change scenario 5 Add subclassOf (Schema, RelationSchema)

3. Change scenario 6 Delete Object Property (hasSchema)

256

Use EV Triples OCMS

1. Change scenario 7 Add Class (GUI)

2. Change scenario 8 Delete data Property (hasAverageSize)

3. . Change scenario 9 Delete instance (ID-123.xml)

4. Change scenario 10 Add instance (ID-1234.xml, File)

E.2 Questionnaires

Change impact analysis for Ontology-based Content management systems

Instructions:

• this questionnaire is to be filled after the attached change operations are implemented

using the editor provided.

• Please complete the following question by putting a
√

mark in the box [] next to

your preferred answer.

• Please use the spaces available for writing your comments and observations.

1. The change representation allow me to choose between different implementation op-

tions for my original change request.

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

257

2. The system has provided all the change operations I need to implement thechange

requests.

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

3. The Change impact analysis identifies the impacts of my change request []Strongly

Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Please specify if there is an incorrect impact:

4. The change impact analysis helps me better understand the effects of my change

request

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

258

[] Strongly Disagree

Other

5. The change impact analysis identifies all the entities in the system that are affected

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

6. The change impact analysis correctly highlights the impacts of the change on the

integrity of the OCMS (unsatisfiable classes and invalid instances)

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

7. The evolution process provides me the information related to my change request be-

fore I execute the change

[] Strongly Agree

[] Agree

[] Slightly Agree

259

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

8. The system helps me to find the optimal implementation strategy

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

9. The cost estimation is suitable to measure the impacts

[] Strongly Agree

[] Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

10. I understand what I am doing at each step and understand the effects of my action

during the evolution process.

[] Strongly Agree

[] Agree

260

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

261

	Introduction
	Motivation
	Research Context
	Challenges and Problem Statements
	Overview of the Research
	Research Hypothesis
	Research Objectives

	Research Approach
	Contribution of the Research
	Outline

	Background of the Study
	Introduction
	Semantic Web Languages
	XML, XML Schema and DTDs
	RDF and RDFS
	OIL and DAML+OIL

	Web Ontology Language (OWL)
	OWL sub languages
	OWL2 Profiles
	OWL Syntax
	OWL Constructs

	Description Logic Syntax and Semantics
	Ontology Editors and APIs
	Ontology Editors
	Ontology APIs
	Ontology Reasoners

	Semantic Annotation Platforms and Tools
	Semantic Annotation Platforms
	Annotation Tools

	Summary

	Literature Review
	Introduction
	Evolution in Ontology-based Content Management Systems
	Ontology Evolution
	Content Evolution
	Annotation Evolution

	Evolution Approaches in Related Domains
	Schema Evolution
	Software Evolution

	Evolution Approaches in Ontology-based Applications
	General Ontology Evolution Approaches
	Consistency Management
	Ontology Change Logging and Mining
	Ontology Diffs and Content Versioning Systems
	Ontology Change Impact Analysis

	Tools for Ontology Evolution
	Summary

	Ontology-based Content Management Framework
	Introduction
	Ontology-based Content Management System
	Layered OCMS Framework
	Ontology Layer
	Content Layer
	Annotation Layer

	Graph-based Representation of an OCMS
	Ontology Graph
	Content Set
	Annotation Graph
	Attributes of the Graph

	Change Operator Framework
	A Framework of Change Operators and Patterns
	Change Metamodel
	Graph-based Formalization of Change Operations

	Evaluation
	Adequacy of the Layered Operator Framework

	Summary

	Change Analysis Framework
	Introduction
	The Change Impact Analysis Framework
	Change Request Capturing and Representation
	Change Impact Analysis
	Change Optimization and Implementation

	Dependency Analysis for Change Representation
	General Properties of Dependency
	Types of Dependency
	Dependency Analysis Algorithm

	Evolution Strategies
	No-action Strategy
	Cascade Strategy
	Attach-to-Parent/Root Strategy
	N-Level Cascading
	Combining Dependencies and Strategies

	Evaluation
	Precision of the Dependency Analysis

	Summary

	Change Impact Analysis Process
	Introduction
	Change Impact Analysis Process
	Impacts of Change Operations
	Structural Impacts
	Semantic Impacts
	ABox versus TBox Impacts
	Addition versus Deletion Impacts

	Individual Change Impact Analysis
	Impacts of Atomic Change Operations
	Steps for Individual Change Impact Analysis
	Algorithm for Individual Change Impact Analysis

	Composite Change Impact Analysis
	Impact Cancellation
	Impact Balancing
	Impact Transformation

	Evaluation of the Change Impact Analysis
	Experiment Setup
	Experimental Results
	Comparison with Existing Tool
	Comparison of Individual and Composite Impact Analysis
	Questionnaire Results

	Summary

	Change Optimization and Implementation
	Introduction
	Change Impact Optimization Framework
	Change Optimization Criteria
	Severity of Impacts
	Type of Change Operation (Addition and Deletion)
	Statement Types (ABox and TBox)
	Performance of Change Operations

	Cost of Evolution and Optimal Strategy Selection
	Cost of Evolution
	Optimal Strategy Selection
	Effect of Severity Value on the Cost of Evolution

	Evaluation of Change Impact Optimization
	Experimental Setup
	Questionnaire Results
	Discussion

	Summary

	Conclusion
	Introduction
	Summary of the Problem and Contribution
	Contribution of the Research
	Capturing and Representation of Change Requests
	Structural and Semantic Impact Analysis
	Optimized Implementation of Changes
	Methodology

	Limitation and Future work

	Bibliography
	Software Help Management Case Study
	Introduction
	Rationale and Significance of the Case Study
	Experiment
	Perspectives
	Changes

	Observation
	A Snapshot of Software Help Management Ontology

	Database Systems Course Case Study
	Introduction
	Case Study Setup
	Perspectives

	Experiment
	Observation
	Sample Database systems course OCMS

	University Administration Case Study
	Introduction
	Case Study Setup
	Experiment
	Changes in University Administration

	Observation
	Sample University Ontology

	Additional Analysis Results
	Severity of Impacts
	Case 1
	Case 2
	Case 3

	Weight of Criteria
	Cost of Evolution for Different Settings

	Questionnaire
	Change Operations for Evaluation
	Questionnaires

