Change Impact Analysis for Evolving
Ontology-based Content Management

Yalemisew Mintsnote Abgaz
BSc., MSc.
A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

DCU

Dublin City University
Faculty of Engineering and Computing,
School of Computing

Supervisor: Dr. Claus Pahl

January, 2013

Declaration

I hereby certify that this material, which | now submit for assessment orrtdggganme
of study leading to the award of Doctor of Philosophy is entirely my own wibid, | have
exercised reasonable care to ensure that the work is original, andolotesthe best of my
knowledge breach any law of copyright, and has not been taken frerwahk of others
save and to the extent that such work has been cited and acknowledbadtiae text of

my work.
Signed: Yalemisew Mintsnote Abgaz

Student ID: 58116745
Date: January, 2013

Examiners:

Dr. Paolo Ceravolo
Department of Information Technology
University of Milan

Italy

Dr. Gareth Jones
Faculty of Engineering and Computing
School of Computing
Dublin City University

Ireland

Dedication

To
My parents

Acknowledgements

The things | explore, the knowledge | amass and the secrets | fathom, theitivest
and the laziness | enjoyed, the mistakes | commit and the things | get them rrigihdg
relate to someone who have come to my life. There is someone who is with me tbubugh
my pursuit of knowledge. Someone shines on my way, and | see things viMglgeepest
gratitude goes to God. Dear God, as your word says, all things come intptheough you
and apart from you not one thing came into being (John1:3). ThankgswsJor helping
me in my entire endeavour.

| always appreciate the invaluable support | received from my sigmerit is my great
experience to work with you Claus. You are a superb and paragomvisgrewith great
patience and persistence. My extravagant appreciation is directed tolyaumk you for
everything. | would like to extend my deep gratitude to Dr. Gareth Jones an@&»lo
Ceravolo for your willingness to examine my work and give me feedbacks.

Would | forget your valuable inputs in my life? My mom and my dad, thank yau fo
standing beside me all the time. My brothers and sisters, your prayer hdsntiéeip to
this point. Thank you so much. Zemenu and Meklit, thank you for taking dareedamily
in my absence. Beza, | always value your input for my research amdyfdife during this
study. | would take this opportunity to thank you and acknowledge thaty@sence really
made a difference during my study.

| have received a lot from my colleagues in DCU, Javed, your inpute wetical and
made me think critically. You are a hard-working colleague and charged mepiitive
charge towards my work. AAkash and Pooyan, thank you for youlesadtollaborations
and mind boggling and eye opening discussions. Thank you Ewnetu fmrcgpnments
and discussions. My whole journey in DCU is accompanied by CNGLem@nK fou all.
My special thank goes to Eithne McCann, for your magnanimity.

Finally, thank you all my friends from the church. Your presence madenjuy eny
stay in Ireland. Lidya and Mitin, thank you for making my early days enjoyadtea and

Markella, | always remember the comfortable environment we had afteokhburs.

Abstract

Ontologies have become ubiquitous tools to embed semantics into content ¢ind-app
tions on the semantic web. They are used to define concepts in a domain andstio
reach at a common understanding on subjects of interest. Ontologiesvwideerange of
topics enabling both humans and machines to understand meanings anatoimediffer-
ent contexts. They cover topics such as semantic web, artificial intelligerfoemation
retrieval, machine translation, software development, content managerteniVe use
ontologies for semantic annotation of content to facilitate understandabilityeafahtent
by humans and machines. However, building ontology and annotations msaofteanual
process which is error prone and time consuming.

Ontologies and ontology-driven content management systems (OCMIS§ el to a
change in conceptualization, the representation or the specification obthaird knowl-
edge. These changes are often immense and frequent. Implementing tlge<lzad
adapting the OCMS accordingly require a huge effort. This is due to coniplpacts
of the changes on the ontologies, the content and dependent applicattors evolving
the OCMS with minimum and predictable impacts is among the top priorities of evolution
in OCMS.

We approach the problem of evolution by proposing a framework whidcrlgleep-
resents the interactions of the components of an OCMS. We proposedradd@€EMS
framework which contains an ontology layer, content layer and annotiayen. Further,
we propose a novel approach for analysing impacts of change opexatiopacts of atomic
change operations are assigned individually by analysing the target amtitstll the other
entities that are structurally or semantically dependent on it. Impacts of cimpbange
operations are analysed following three stage process. We use impaellaion, im-
pact balancing and impact transformation to analyse the impacts when two @rtoaric
changes are executed as part of a composite or domain-specific asargéon.

We build a model which estimates the impacts of a complete change operation gnablin

the ontology engineer to specify the weight associated with each optimizatieriecr Fi-

nally, the model identifies the implementation strategy with minimum cost of evolution. We
evaluate our system by building a prototype as a proof of concept ashddirencouraging

results.

Contents

1

Introduction 1
1.1 Motivation. e 1
1.2 ResearchContext i 3
1.3 Challenges and Problem Statements 4
1.4 OverviewoftheResearch. 7
1.4.1 ResearchHypothesis. 7
142 ResearchObjectives 7
1.5 ResearchApproach. 7
1.6 ContributionoftheResearch. 10
1.7 Outline 11
Background of the Study 13
2.1 Introduction. 13
2.2 SemanticWeblLanguages 14
2.2.1 XML, XML SchemaandDTDs. 14
222 RDFandRDFS 15
223 OlLand DAML+OIL. 17
2.3 Web Ontology Language (OWL) 17
231 OWLsublanguages 18
232 OWL2Profiles. 18
233 OWLSyntax. it e 19

2.3.4 OWLConstructs. e 19

2.4 Description Logic Syntaxand Semantics 24
2.5 Ontology Editorsand APIs 26
251 OntologyEditors. 27
252 OntologyAPIs. e 28
253 OntologyReasoners 29
2.6 Semantic Annotation Platformsand Toals. 30
2.6.1 Semantic Annotation Platforms 30
2.6.2 AnnotationTools. o 31
2.7 SUMMAIY o e e 32
Literature Review 34
3.1 Introduction. 34
3.2 Evolution in Ontology-based Content Management Systems. 35
3.2.1 Ontology Evolution 37
3.22 ContentEvolution. oo 38
3.2.3 AnnotationEvolution oL 39
3.3 Evolution Approaches in Related Domains. 40
3.3.1 SchemaEvolution. 40
3.3.2 Software Evolution 44
3.4 Evolution Approaches in Ontology-based Applications 47
3.4.1 General Ontology Evolution Approaches. a7
3.4.2 Consistency Management. 54
3.4.3 Ontology Change Loggingand Mining 55
3.4.4 Ontology Diffs and Content Versioning Systems. 55
3.4.5 Ontology Change Impact Analysis 58
3.5 Tools for Ontology Evolution 60
3.6 Summary 61

4 Ontology-based Content Management Framework 63

4.1 IntroduCtion. 63
4.2 Ontology-based Content Management System. 64
4.3 Layered OCMS Framework. 66
4.3.1 OntologylLayer 67
4.3.2 ContentlLayer. e 69
4.3.3 AnnotationLayer 72
4.4 Graph-based RepresentationofanOCMS 76
44.1 OntologyGraph. 76
442 ContentSet 79
443 AnnotationGraph. 80
4.4.4 AttributesoftheGraph o L oL 80
4.5 Change Operator Framework. 81
4.5.1 A Framework of Change Operators and Pattetns 81
45.2 Change Metamodel. 85
4.5.3 Graph-based Formalization of Change Operations 89
4.6 Evaluation. 92
4.6.1 Adequacy of the Layered Operator Framework 92
A7 SUMMAIY . . . ot e e e e e e e 94
5 Change Analysis Framework 96
5.1 Introduction. 96
5.2 The Change Impact Analysis Framework. 97
5.2.1 Change Request Capturing and Representation 98
5.2.2 ChangelmpactAnalysis. 98
5.2.3 Change Optimization and Implementation. 100
5.3 Dependency Analysis for Change Representation. 100
5.3.1 General Properties of Dependency 102
5.3.2 TypesofDependency., 103

5.3.3 Dependency Analysis Algorithm. 107

5.4 Evolution Strategies e 116
54.1 No-actionStrategy. 116
542 CascadeStrategy. o o i 117
5.4.3 Attach-to-Parent/Root Strategy 119
544 N-LevelCascading uio... 121
5.4.5 Combining Dependencies and Strategies 121

55 Evaluation. 123
5.5.1 Precision of the Dependency Analysis 123

5.6 Summary. e e e 127

Change Impact Analysis Process 129

6.1 Introduction. 129

6.2 Change Impact AnalysisProcess 130

6.3 Impacts of Change Operations. 132
6.3.1 Structurallmpacts. 133
6.3.2 Semanticlmpacts. 136
6.3.3 ABoxversusTBoxImpacts. 141
6.3.4 Addition versus DeletionImpacts 142

6.4 Individual Change ImpactAnalysis. 143
6.4.1 Impacts of Atomic Change Operations 143
6.4.2 Steps for Individual Change Impact Analysis. 147
6.4.3 Algorithm for Individual Change Impact Analysis 150

6.5 Composite Change Impact Analysis. 151
6.5.1 ImpactCancellation., 151
6.5.2 ImpactBalancing 154
6.5.3 Impact Transformation 156

6.6 Evaluation of the Change Impact Analysis 158
6.6.1 ExperimentSetup. 159

6.6.2 ExperimentalResults. 159
6.6.3 Comparison with Existing Tool. 162
6.6.4 Comparison of Individual and Composite Impact Analysis. . . 164
6.6.5 QuestionnaireResults, 165
6.7 SUMMAry e 166
Change Optimization and Implementation 168
7.1 Introduction. 168
7.2 Change Impact Optimization Framework 169
7.3 Change Optimization Criteria. 171
7.3.1 Severityoflmpacts 171
7.3.2 Type of Change Operation (Addition and Deletion) 176
7.3.3 Statement TypesiBoxand7Box) 177
7.3.4 Performance of Change Operations. 179
7.4 Cost of Evolution and Optimal Strategy Selection 179
7.4.1 CostofEvolution 179
7.4.2 Optimal Strategy Selection. 183
7.4.3 Effect of Severity Value on the Cost of Evolution. 184
7.5 Evaluation of Change Impact Optimization 184
7.5.1 Experimental Setup. o 184
7.5.2 QuestionnaireResults o L 0L 186
7.53 DISCUSSION. 188
7.6 SUMMANY e e e e e e e 188
Conclusion 190
8.1 Introduction. 190
8.2 Summary of the Problem and Contribution 190
8.2.1 Contributionofthe Research. 191
8.2.2 Capturing and Representation of Change Requests 191
8.2.3 Structural and Semantic Impact Analysis. 192

iX

8.2.4 Optimized Implementation of Changes. 192

8.25 Methodology. 193
8.3 Limitationand Futurework oL 193
Bibliography 197
A Software Help Management Case Study 217
Al Introduction. 217
A.2 Rationale and Significance ofthe Case Study. 221
A3 Experiment 222
A.3.1 Perspectives. 222
A3.2 Changes e 223
A4 Observation. 230
A.5 A Snapshot of Software Help Management Ontology 232
B Database Systems Course Case Study 234
B.1 Introduction. 234
B.2 CaseStudySetup 235
B.2.1 Perspectives. e 235
B.3 Experiment. 238
B.4 Observation. 239
B.5 Sample Database systemscourse OCMS. 240
C University Administration Case Study 242
C.1 Introduction. e 242
C.2 CaseStudySetup o i e 243
C.3 Experiment. 244
C.3.1 Changes in University Administration. 245
C.4 Observation. 246
C.5 Sample University Ontology. 247

D Additional Analysis Results 249

D.1 Severityoflmpacts. 249
D.1.1 Casel e 249

D.1.2 Case2 e 249

D.1.3 Case3 250

D.2 Weightof Criteria. 251
D.3 Cost of Evolution for Different Settings. 251

E Questionnaire 256
E.1 Change Operations for Evaluation. 256
E.2 Questionnaires. 257

Xi

Xli

List of Tables

4.1 Annotation triple representation L. 74
4.2 Adequacy of the layered operator framework. 94
5.1 Generated changes - No-actionstrategy 118
5.2 Generated changes -Cascade Strategy. 119
5.3 Generated changes - Attach strategy 120
5.4 Combination of dependency with evolution strategy 122
5.5 Complete change operations. 123
5.6 Comparison of the manual and automatic method. 125
5.7 Precision of OCMS dependency analysis (in 100%). 126
6.1 Structuralimpacts 133
6.2 Semanticimpacts e 141
6.3 Potential impacts of selected atomic change operations. 145
6.4 Impactanalysisoutput. 149
6.5 Candidate impacts for cancellation. 153
6.6 ImpactcancellationusingRule-1. 153
6.7 ImpactcancellationusingRule=2., . 154
6.8 Candidate impacts forbalancing. 155
6.9 ImpactbalancingusingRule-3. 156
6.10 ImpacttransformationusingRule-4 158
6.11 Precision of impacts of a single change operation. 160

Xiii

6.12

Average precision of impacts of multiple change operations 161

6.13 ldentified change impacts: A comparison between Protege and CIA . 163
6.14 Average precision of impacts of multiple change operations 164
6.15 Comparison of Individual and composite impacts 164
6.16 Users feedback onthe CIAframework 165
7.1 Default value for severity ofimpacts. 173
7.2 Severity value calculation. Lo 175
7.3 Severityvalue. 175
7.4 Severity value- different value for OCand Ol Impacts 175
7.5 Frequency of additions and deletions 177
7.6 Frequencies oflBox and7 Box statements. 178
7.7 Number of change operations 179
7.8 Different weights assigned forcriteria. 181
7.9 Cost of evolution analysis - equalweight 182
7.10 Summary of cost of evolution - differentweights. 182
7.11 Cost of evolution for Database systems OCMS. 182
7.12 Summary of cost of evolution for University OCMS 183
7.13 Percentage of identifying the first three optimal solutions. 185
7.14 Users feedback on the optimal strategy selection 187
Al Changescenarios v v v v it i 226
D.1 Severity value assignedtocase studies. 250
D.2 Different weights assigned forcriteria 251
D.3 Summary of cost of evolution-Case.1. 252
D.4 Summary of cost of evolution-Case.2. 253
D.5 Summary of cost of evolution-Case.3. 254

Xiv

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7

The semanticweblayers 15
RDF graphrepresentation, 16
A diagram summarizing existingresearch. 60
Layered framework of OCMS. 66
An example of a layered framework of OCMS 75
Graph-based representation of OCMS 77
Graph-based representation of the ontology layer. 78
Documentcollection. 79
Annotationgraph. e 80
Layered operator framework 82
A layered operator framework - detailed view. 83
A metadata model for change operations. 85
An example of atomic change operations. 86
The change impact analysis framework. 97
Software help OCMS -runningexample 103
Dependency analysisdiagram 107
Directdependentclasses. 108
Indirect dependentclasses., 109
Total dependent and partial dependentclasses 112
Dependency diagram 113

5.8 No-actionstrategy e 117
5.9 Cascadestrategy. e 118
5.10 Attach-to-parentstrategy 120
6.1 Change impactanalysiSprocess. 131
6.2 Example of structuralimpact. 134
6.3 Structuralimpacts e 136
6.4 Semanticimpacts 140
6.5 A flowchart: atomic change impactanalysis 148
7.1 Framework for selecting optimal strategy 170
7.2 Optimal strategies for all scenarios. 186
A.1 A high level view of software help management ontology 218
A.2 Software help management ontology hierarchy. 220
A.3 Software help management systems OCMS 233
B.1 A high level view of database ontology. 239
B.2 Database systemscourse OCMS 241
C.1 University ontology hierarchy. 244
C.2 UniversityontologyOCMS 248
D.1 Summary of cost of evolution-Case.l. 252
D.2 Summary of cost of evolution-Case.2. 253
D.3 Summary of cost of evolution-Case.3. 254

XVi

List of Publication

e Abgaz, Y., Javed, M., and Pahl, C. (2012). Analysing impacts of chapgeations
in evolving ontologies. Joint Workshop on Knowledge Evolution and Ontolog-

namics (EvoDyn), collocated at ISWC2012. Boston, USA. 12th Noven20d2.

e Javed, M., Abgaz, Y., and Pahl, C. (2012). Composite Ontology Chapgeat®rs
and their Customizable Evolution Strategies. Joint Workshop on Knowlegge E
lution and Ontology Dynamics (EvoDyn), collocated at ISWC2012. BodttSh.
12th November, 2012.

e Abgaz, V., Javed, M., and Pahl, C. (2012). Dependency analysisahogy-driven
content-based systems. In L. Rutkowski, M. Korytkowski, R. Sch&.efadeusiewicz,
L. Zadeh, and J. Zurada (Eds.), Artificial Intelligence and Soft Computialyime

7268 of Lecture Notes in Computer Science (pp. 3 - 12).

e Abgaz, Y., Javed, M., and Pahl, C. (2011). A framework for changeaananalysis
of ontology-driven content-based systems. In On the Move to Meaniigfrnet

Systems: OTM 2011 Workshops, Lecture Notes in Computer Science.

e Javed, M., Abgaz.Y. and Pahl. C. (2011). Graph-based discovemntalogy change
patterns. In ISWC Workshops: Joint Workshop on Knowledge Evolwimh Ontol-

ogy Dynamics (EvoDyn), 24th October, 2011, Bonn, Germany.

e Javed, M., Abgaz, Y. M., and Pahl, C. (2011). Towards implicit knowgedigcovery
from ontology change log data. In Knowledge Science, Engineeringviamhge-

ment (pp. 136 - 147).

e Javed, M., Abgaz, Y., and Pahl, C. (2011). A layered framework &ttepn-based
ontology evolution. In 3rd International Workshop Ontology-Drivefolmation Sys-

tem Engineering (ODISE), London, UK.

e Jones, D., Oconnor, A., Abgaz, Y., and Lewis, D. (2011). A semanticeifmd

integrated content management, localization and language technologggnocedn

2nd Workshop on the Multilingual Semantic Web (MSW2011).

Abgaz, Y., Javed, M., and Pahl, C. (2010). Empirical analysis of impdatstance-
driven changes in ontologies. In On the Move to Meaningful Internstedys: OTM

2010 Workshops, Lecture Notes in Computer Science.

Javed,M., Abgaz, Y., and Pahl, C. (2010). Ontology-based domain maylédin
consistent content change management. In International Conferar@etological

and Semantic Engineering (ICOSE).

Pahl, C., Javed, M., and Abgaz, Y. (2010). Utilizing ontology-based thogdor
learning content management. In Proceedings of World Conferencewsaional
Multimedia, Hypermedia and Telecommunications 2010 (pp. 1274 - 1279)nimr
Canada: AACE.

Javed, M., Abgaz, Y., and Pahl, C. (2009). A pattern-based frankewfochange
operators for ontology evolution. In On the Move to Meaningful Intei$gttems:
OTM 2009 Workshops, volume 5872 of Lecture Notes in Computer Scigpcéd4d
- 553).

XVviii

Glossary of Terms

ABoOX :

CMS:
Complete Change:

Consistency:

Derived Change:
Effect:

Entity:

Impact:

OCMS:

Requested Change:

Satisfiability :

Severity:

TBox :

The ABox contains extensional knowledge about the domain of
interest, that is, assertions about individuals, usually called mem-
bership assertiorBaader et al., 2003
Content management systems are systems that are built to orga-
nize, store, retrieve and present content.

Complete change is a change which is the union of thetezhjue
change and the derived changes.

An ABox A is consistent with respect to a TBox T , if there is
an interpretation that is a model of both A and T . We simply say
that A is consistent if it is consistent with respect to the TBox

Derived changes are changes that are automajieadlyated to
correctly implement the requested change in a given ontology.
Effect is the consequence of applying an action. In this context
the action is the implementation of a change operation.

Entity refers to the constructs of the ontology, the annotation and
the content. An entity refers to concepts, object properties, data
properties, instances, content documents, axioms and restrictions.
The term impact refers to the effect of change of entities due to the
application of a change operation on one or more of the entities
in the OCMS
Content management systems that use ontologies to enrich the se-
mantics of the content. OCMSs use the semantics for facilitating
information browsing, retrieval and reasoning services.

A requested change is a change which is cagaedeplicit
change request.
A concept C is satisfiable with respect to T if there exists a model
| of T such thatC! is non empty. In this case we say also that | is
a model of C Baader et al., 2003
Severity measures the intensity or the degree of an impact on an
OCMS inrelation to the problem it causes, the effort and the level
of expertise it requires to resolve the impact.
The TBox contains intentional knowledge in the form of a ter-
minology and is built through declarations that describe general
properties of concept8pader et al., 2003

List of Acronyms and Abbreviations

ABox :
CIA:
CMS .
CNGL :
CVA:
DAML :
DL :
DTD:
IRI:
KAON :
KR :
LOF:
MILO :
OCMS:
OIL :
OVA :
OWL :

RACER :

RDF :
SHOE:

SUMO :

T Box :
URI :
URL :
WIS :

XHTML :

XML :
XOL:

Assertion Box

Change Impact Analysis

Content Management System

Centre for Next Generation Localization
Close Vocabulary Assumption
DARPA Markup Language

Description Logic

Document Type Definition

Internationalized Resource ldentifier
KArlsruhe ONtology and semantic web tool kit
Knowledge Representation

Layered Operator Framework

MId-Level Ontology

Ontology-based Content Management System
Ontology Interchange Language

Open Vocabulary Assumption

Web Ontology Language

RenamedBox and Concept Expression Reasoner
Resource Description Framework

Simple HTML Ontology Extension
Suggested Upper Merged Ontology
Terminology Box

Uniform Resource Identifier

Uniform Resource Locater

Web Information System
eXtensible HyperText Markup Language
eXtensible Markup Language

Xml-based Ontology exchange Language

Chapter 1

Introduction

1.1 Motivation

Every day, new things emerge and others vanish or change. Thepéeatg of new in-
novations introducing new disciplines, concepts, objects, devices¢csgretc., or altering
existing ones to serve a new purpose. Despite the innovations, theteages that discard
existing entities that are not capable of adapting themselves to the changiirgneents of
the environment. Any human innovation is subject to a continuous evolutioadaptation
to the changing requirements of human beings over time.

Human knowledge is subject to change throughout history. Knowledgeoisirg
very fast introducing previously unknown information about entities, consolidatinst-ex
ing ones or abandoning the obsolete ones. The falsification of existing cladtsts and
theories that are found wrong, unfitting and useless become obsoledesestidcarded from
the existing knowledge repositories.

At this age of knowledge intensive societies, the use of systems, tools @ndgees
that facilitate efficient exploitation of the available knowledge for educatiosiness intelli-
gence, research, governance, etc., become ubiquitous on th8erelefs-Lee et al., 2001
[Shadbolt et al., 2006 Ontologies serve this purpose by representing human knowledge

in a formal language which ensures a common understanding among hunthasrass

http://www.economist.com/node/15557421

machines Jurisica et al., 1999 Leenheer & Mens, 20Q§ Gross et al., 2009 The use of
ontologies extends this to include very complex artificial intelligence applicati@tsen-
able machines to understand semantics and perform in a context.

We use ontologies for knowledge representation and semantic annotatimicto@n-
tent with information which can be interpreted by machines. Ontologies facilitatetr-
pretation of the content with a given context and extracting new knowl&dge existing
ones using semantic reasoning. This is achieved by explicit annotatiomoéis in doc-
uments with generic and domain-specific ontologies. However, the contimrogess of
change of content, annotations and ontologies poses a challenge todieaedkploitation
of many of these ontology-based applicationsifig et al., 200p[Flouris et al., 200B

Changes occur in the content, the annotation or the ontologies. Conteatsanthy
add new sections, edit existing ones or remove unwanted or erronexdsioptheir con-
tent. In ontologies, changes may occur on the concepts, propertiesiciestaxioms, etc.
Annotations change when either the target content changes or the senadtiie content
changes. For example, a personal home page of a professor siveimgrgever he/she adds
new publications, modifies his/her research interest or updates theescuetshe deliv-
ers. During the implementation of these changes, the semantics of the cantbetgage
changes accordingly. Another possibility of a change is when the pafehanges the
source of the semantics (the ontology). If the ontology evolves to includeliseoveries,
better representation of existing knowledge, etc., the annotation will becoimerable to
change.

In general, the changes are additions of new content, ontologies otraéione, modi-
fications of existing ones or removal of obsolete or erroneous rapetgms. Whenever
there is a change of one entity, it may cause many unseen and undesiretsimpather
related entitiesGruhn et al., 199 Stojanovic, 200} The term impact refers to the effect
of change of entities due to the application of a change operation on onererahthe
entities in a given systenP[essers et al., 20DFQin & Atluri, 2009] [Hassan et al., 2010
It is arduous and time consuming to manually catch these impacts. If we ignomettiey

may cause inconsistenciekdnstantinidis et al., 2048 invalidities [Qin & Atluri, 2009]

2

and changes of semantics in the ontology. Thus, before we implement thgeshat is
vital to conduct a change impact analysis to understand which entitiedectedfand how

they are affected{hattak et al., 201D

1.2 Research Context

An ontology is a specification of a shared conceptualization of a dontimber, 1998
Ontologies are used to explicitly represent human knowledge using fomggidges under-
standable by humans and machinBsrhers-Lee et al., 200LShadbolt et al., 2006 On-
tologies are further used to define concepts in a domain to reach at a comderstanding
on subjects of interest. Information retrieval, social networks, softdevelopment, con-
tent management, linked data, artificial intelligence, etc., are some of the ddimainse
ontologies to semantically enhance and to conceptually structure existindedyaaand
systematically infer a new one. Ontologies further serve as conceptuallsniod orga-
nizing concepts in different domains. They are also used to semanticatlsilieentities
using domain-specific contextslplohan et al., 200g Pahl et al., 2007

In content management systems, ontologies are used to semantically emtiht dxy
explicitly linking the content with the ontologydliver et al., 1999 [Noy & Klein, 2004
[Uren et al., 200p This semantically rich content is used by humans and computers to
better understand and exploit the content. The formal and explicit linkhfragments
of content with entities in an ontology is referred to as semantic annotation. niema
annotation embeds additional information to a given content. This informatioheased
to further describe and reason about the content.

Content refers to any information that is published or distributed in a digited,fon-
cluding text, sound recordings, photographs, images, motion picturex) gitd software
[Boyce & Pahl, 200] We adapted this definition to refer to any digital information that is
in a textual format that contains structured or semi-structured documesltspages, ex-
ecutable programs, software help files, etc. With semantic annotation ohtottte use

of ontologies is becoming widespread in content management systeets ¢t al., 200p

3

[Oren et al., 200p

Content management systems are systems that are built to organize ettaes and
present content. Such systems vary from a simple file-based system ttegatafabase
systems. Content management systems further vary in the service thégepr8ome of
them provide a simple store and search functionality and others go beyatrahthprovide
semantics to the content. They use the semantics for facilitating informationibgpwes-
trieval and reasoning services. We call such systems Ontology-basgenT Management
Systems (OCMS) to distinguish them from the traditional Content Managenysterss
(CMS). Thus, OCMS are content management systems that are built ugiggies and
semantic annotations to embed meaning and context in the content documents.

In OCMS, the ontologies play a major role in providing semantics to the concépta w
a given domain. The concepts in the ontologies aggregate instances \alila Isimilar
behaviour. The properties further explain the attributes of the concEmtse attributes can
be attributes that describe a concept or its relationship with other condéy@®ntologies
further provide a means to specify the nature of the relationship togetherasitictions
imposed on the relationship.

OCMS play an important role in realizing the accessibility, delivery and usdaima-
tion over the semantic web. OCMS not only provide content but also prévésemantics
associated with the content using a formal representation that can beetgerpy both
humans and computers. When we present the content, we encode additinoitions
which are useful for understanding the semantics and the properties adnitent and their
interpretation by systems that consume them. This is achieved by inferangethus on-

tologies and the annotations.

1.3 Challenges and Problem Statements

Since ontologies can be shared and reused across different appkcatid groups, they
are used frequently on the semantic web to ensure the consistent useeptsowithin and

among different systems$jojanovic et al., 2003aThis is achieved using ontologies as a

4

backbone for annotation of the content on the semantic Welk\e & Han, 2006 OCMS
provide such desired functionality. However, the use of OCMS forypungssuch a purpose
is a challenging task. Thus, our research focuses on addressirgilitieérig challenges.

The first challenge emanates from the changing nature of the content.ifiDoomaent
changes frequently introducing changes in the interpretation of the entitemnges that
occur in a domain content may trigger other changes in the content or in thlogn
The changes in the content introduce new concepts, a new way of ussaglyaexisting
concepts or remove existing concepts from the ontology. For example, ndve software
products, text books, reports, scientific results, etc., appear, eedhe content to support
such requirements.

The second challenge comes from the ontology. Ontology change tefirs change
in the specification, conceptualization or representation of the knowledte iontology
and the implementation of the changes and the management of their effecteiddap
ontologies, services, applications, agents, dttoris et al., 200p The overall process of
adaptation of ontologies to change patterns and the consistent managéthes¢changes
is called ontology evolutiongtojanovic, 2004 Researchers in the area of ontology evolu-
tion have made attempts to make ontology evolution a smooth process. Theyugave s
gested several solutions from different perspectiv@sip et al., 2003 [Stojanovic, 2001
[Plessers et al., 20pfKonstantinidis et al., 204§ Qin & Atluri, 2009]. The work done in
the area of ontology evolution is not yet mature. The analysis of impactsawiges in
evolving ontologies does not yet get significant coveragfeaftak et al., 2010 The first
change focuses on bottom-up changes and the second change isviopkh@mge.

The third challenge comes from the annotation. The annotation, which linksttent
with the ontology, changes frequently leaving the whole system in a consrexmiution
[Uren et al., 200p Whenever the semantics of the content changes or entities in the on-
tology change, the annotation needs to adapt to the changes. This é¢hémgrient and
needs to be addressed with sufficient depth.

The fourth challenge is the fast growth of semantic web applications. Bhgifawth

of semantic web applications serves to fuel a significant demand for systatse ontolo-

5

gies as a key tool to manage content-based systems. This fast growthtimalkseslution
difficult and time consuming. This is due to the huge effort associated witlvirgahe

ontologies and synchronizing the content to keep the service up-to-date.

In general, providing timely, consistent and reliable information to the us€dMS
is crucial. To ensure this, we need to come up with an efficient method whidilesnus to
respond to changes. To this end, changes need to be representgdhasige operations
that are capable of doing a specific task and which can be combined togetherform

complex change requests.

Additionally, it should be possible to analyse the impacts of the change operatio
other components and dependent systems of the OCMS. OCMS providetigeimarma-
tion to other systems. Such systems depend on the OCMS for getting the seraadtics
making decisions based on the semantics they receive. In such situat®mcbatiges in
the OCMS propagate to the dependent systems. It is crucial to undetses®dchanges

and identify their impacts before the changes are implemented.

Furthermore, whenever we have more than one implementation strategy biatingec
operation, it becomes important to measure the cost of evolution of each inmittioe
strategy and select the optimal one. An optimal solution uses criteria suamasen of
changes, impacts of changes, accuracy and adequacy. For syséraethuilt to run in
a real-time environment, identifying the optimal implementation of changes is important.

However, such requirements are not yet addressed and call farteoso

Thus, the main focus of this research is to examine and develop methodsqtexs)
tools and algorithms to analyse the impact of change operations in ontolsgg-bantent
management systems to ensure consistent and predictable evolution oftinet @nd the
ontologies. In line with this, we investigate how changes are represemedhky affect
the integrity and how we choose an optimal implementation of the change wheawse h

more than one implementation strategy to follow.

6

1.4 Overview of the Research

1.4.1 Research Hypothesis

The explicit representation of changes in ontology-based content iaueag systems and
the analysis of impacts of these changes before their implementation could @rgumdv
facilitate a consistent, transparent and predictable evolution of ontolaggelcontent man-

agement systems in terms of accuracy, adequacy and integrity of the system.

1.4.2 Research Objectives

The general objective of this research is to develop a change impdygsiamaethod for
evolving ontology-based content management systems to ensure cdrisisteparent and
predictable evolution to ensure accurate, adequate, reliable, and optiotédrs The spe-

cific objectives of the research are:

to capture and represent requested change operations accurdtalyeapuately.

to analyse dependency of entities and analyse impacts of individual, ctenpod

domain-specific change operations in an accurate and predictable way.

to develop methods that evolve ontology-based content management systams

consistent, accurate and transparent manner.

to build up methods for analysis and selection of an optimal implementation of

change operations in terms of impacts.

To achieve the above objectives, we use three case studies for prelatéation, require-

ment analysis and evaluation of the proposed solutions.

1.5 Research Approach

The change impact analysis framework presented in this dissertation falt®etom-up

impact analysis process. It begins with analysing impacts of atomic chareyatiops

7

and moves up to composite change operations. The framework begins wittt iamady-
sis by capturing the user’'s change request and representing thegnchisimge operations.
Requested changes are processed and additional change opexnagigarerated using dif-
ferent evolution strategies and dependency analysis. In this phasertiewvork generates
all change operations that are required to implement the requested chiaagalyses the
impacts of all change operations using the change impact analysis methally, Rime
framework uses the impacts for the selection of an optimal implementation stratetye f
requested change operation. Each of the stages uses differetedelgroaches to address
the specific problems at hand.

First, the change impact analysis framework captures the requestegechiath repre-
sents it using change operations. The change operations are otgsndzdifferent layers
using a layered operator framework. We use this framework to definelaady represent
atomic, composite, domain-specific and abstract changes.

The next stage employs an empirical study for the identification and chazatin
of the impacts of these atomic change operations. It is used to identify impadiffeof
ent change operations using different scenarios in various domegifisppntology-based
content management systems. We further identify the characteristics of thetsng his
includes identifying the change operations that cause a specific impaninddfie condi-
tions at which the impacts occur and identifying the entities that are impacted blgdhge
operations. We use a formal notation to represent the impacts and thedgitexts for the
impacts.

The core change impact analysis process uses dependency anatieisifp the depen-
dent entities that are affected by the change operation. The effectshainge propagate
to dependent entities. However, identifying those dependent entities argpth of the
dependency needs a detailed study of the characteristics of the depiesddhus, we con-
ducted an empirical study to understand the relationship between the éepasdand the
impacts. Dependency analysis allows us to understand the dependens emitienables
us to find the nature of the dependency. This further assists us to deteéhmimepact of

the change operation on the dependent entities.

8

The impact analysis begins from the bottom of the layered operator frarkdyyo
analysing the impacts of individual atomic change operations. Then, it gods de-
termine the impacts of two or more change operations as composite and domaificsp
change operations. The impacts of the atomic change operations rephesanpact of
the operation when a single change is implemented separately and individdeigver,
when the change is part of another composite change, it only tells us littlenafimn about
the overall impact. To get a full understanding of the impacts of the chamigexs they are
executed as composite and domain-specific change operations, we riegddpanalyse
the impacts using a composite change impact analysis method.

Composite change operations are aggregations of two or more atomic dpsrggons.
However, the impacts of composite change operations are not the atigmegfampacts of
atomic change operations. When a composite change operation is implementaghahts
of the composite change may not be the same as the sum of the impacts of its eonstitu
atomic change operations. Composite change impact analysis identifies texshtignal-
yse the impacts of composite change operations. To analyse these impaniplwe movel
techniques such as impact cancellation, impact balancing and impact traasétm.

Finally, the selection of optimal implementation of changes using differentgehap-
erations is conducted using quantitative analysis of severity of impaatstedf statement
types, types of change operations and number of change operatiensse/¢xperimental
observation to determine the optimal strategy for implementing change operations

This research covers change representation and analysis of impact®loigy-based
content management systems. It focuses on structural and semantic impiattsnclude
impacts on the satisfiability of tHEZ0x and the consistency of th&Box statements. The
research also focuses on proposing the optimal implementation strategyefaution of
changes at hand. For the empirical study, we used domain-specific gie®bnd content
which is organized using our OCMS architecture. Here, we specificatlysfon changes
that are requested by the user and excluded implicit detection of chafljlesugh visu-
alization of effects of changes is beneficial for the ontology engineéorahe user, we

focus on the analysis of the impacts and recommendation of alternative sslufitws,

9

visualization and presentation of the impacts is beyond the scope of thectesBaspite
the need for supporting all kinds of content, we restrict the scope totsteadcand semi-
structured content. For the purpose of the experiment, we specificallg tocHTML and

XML content.

1.6 Contribution of the Research

This research has the following major contributions.

e The first contribution is a layered OCMS framework. This framework stines the

components of the OCMS to ensure transparent, predictable and traeealoigon.

e The second contribution is a change impact analysis framework. TheViiakéol-
lows a novel approach to analyse impacts of change operations. Tievcak incor-
porates change representation, impact analysis and change implemenigditierto

with integrity analysis and ensures independent evolution of OCMS comfmne

e The third contribution is a bottom-up approach to analyse the impacts of change
in OCMS. The change impact analysis process begins by analysing thetsngbac
atomic change operations. Since it is built on top of the atomic change opstation
it ensures the maximum flexibility and expandability to introduce additional compos
ite change operations. This approach is a novel approach for argiyspacts of
changes in ontologies and ontology-based applications. The analysideéa@Lcon-
sistent evolution of the ontologies, the content and the annotations by getygin

overall integrity of the OCMS.

e The fourth contribution of the research is a better understanding of &repditions
of impacts and explanations why specific impacts occur. The impact analgsisss
further identifies the preconditions associated to each impact. When tlongdigans
are satisfied, we determine the reasons why that specific impact occuusarhe

information for exploring alternatives to solve the problem.

10

e Finally, we contribute toward a model which estimates the cost of evolution and
which is used to select an optimal evolution strategy using cost of evolutibe. T
change optimization and implementation model provides a quantitative measure of

impacts in ontology evolution.

1.7 Outline

The organization of this dissertation begins with introducing the available &g, tools
and techniques for delivering semantically rich content. Then, we moveitwstate-of-
the-art research conducted in the area. We discuss our framewark imbludes change
capturing and representation, change impact analysis and optimal dnguigenentation.
The last chapter gives conclusions and future directions. The oajamzof each of the
chapters is given below.

Chapter 2 discusses the available semantic web languages, their syntax and semantics.
It gives a brief overview of ontology languages, description logic, @QWbnstructs, on-
tology editors, ontology APIs and reasoners. Content managemennsyaiel annotation
tools and platforms are discussed in this chapter.

Chapter 3 gives an overview of content-based systems, ontology evolution andhsema
tic annotation in general. It presents a detailed account of related cesgarducted in the
area and identifies the gap which is not yet covered by the state-ofithe-a

Chapter 4 introduces ontology-based content management systems in generasand d
cusses the layered OCMS framework and its individual constructs in plartid he formal
representation of the OCMS using graphs is discussed in this chaptechBmter further
introduces a layered operator framework which organizes the charigegomic, compos-
ite, domain-specific and abstract layers.

Chapter 5 presents the change impact analysis framework. This chapter foqu#ies o
first phase of the framework which includes dependency analysis\aatien strategies.
Dependencies which are useful for change impact analysis are skstinsdetail. Different

dependency types and algorithms to identify dependent entities are @&idcudsis chap-

11

ter further discusses customized evolution strategies. The strategieseadepdndency
analysis results are the major inputs for representing requested chzamgéians.

Chapter 6 presents the change impact analysis process. The individual change im-
pact analysis, the composite change impact analysis and the rules thaedr® @analyse
structural and semantic impacts are presented. The novel contributias oh#pter is the
analysis of change impacts to identify the impacts of the requested changdiame on
the structure and the semantics of the OCMS. The analysis further idenkiiages that
create unsatisfiability of th& Box and inconsistency of thd 3ox statements.

Chapter 7 presents the implementation of the final change operations. This chapter
focuses on efficient utilization of the information gained from the changedtrapaalysis
and using it to select the optimal evolution strategy to implement the requestegecbp-
eration. This phase searches a strategy that minimizes the impacts of the opangtions
and allows the user to compare between different options.

Chapter 8 gives conclusions, recommendations, and discusses the limitations of the
research. It highlights future directions of the research.

Appendix A, B and C discuss the empirical study. The empirical study uses case
studies from three domains and exploits them to understand what, how,ambdemhy an
OCMS evolves. ltis also used to evaluate the proposed solution. Thetcakes enable
the reader to gain familiarity with the use cases and understand the solutisesiad in
this research.

Appendix D and E presents further analysis results and the questionnaire used for the

evaluation respectively.

12

Chapter 2

Background of the Study

2.1 Introduction

One of the challenges of the information age is the availability of too much informatio
called information overloadddmunds & Morris, 2000 Eppler & Mengis, 200§ The sheer
volume of information available and our ability to process and use the availdbtenation
has shown a wide gap. To curb this problem, the semantic web is propoaraatension
of the current web in which information is given well-defined meaning, batteessibility
and improved usag@grners-Lee et al., 2001

The semantic web represents the technological standard for operatwiggies in
modern information systems. It incorporates wide range of languagetoalsdthat are
used by ontologies. It is important to provide an overview of the semanticteatd and
technologies for a clear discussion of an OCMS.

The semantic web is defined as “A web of actionable information - informationede
from data through a semantic theory for interpreting the symbols. The sentla@tigy
provides an account of ‘meaning’ in which the logical connection of terstasbdishes in-
teroperability between systems3ljadbolt et al., 20Q60.1]. The semantic web provides
access to data to be shared and reused by humans and agents by atteethofega with
web resourcesHechhofer et al., 2042

In this chapter we briefly introduce semantic web technologies, languagetals

13

that are relevant to this research. The introduction highlights relevaguidaes and tech-
nologies that are used throughout this research to develop, implemeteisatite proposed
methods, techniques and algorithms using a prototype. This chapter asraggview of
existing tools and technologies. It is used as an input for systematic selettiools and
technologies to be used throughout this research.

This chapter is organized as follows. Sectib@ discusses the available semantic web
languages and their syntax and semantics. In Seeti®we describe the details of OWL
(Web Ontology Language) sub languages, profiles and constru@sction2.4we discuss
description logic constructs and Sect@Bfocuses on ontology editors, ontology APIs and
reasoners. Sectiah6 discusses the semantic annotation platforms and tools. Finally we

give a summary of the chapter in SectiiT.

2.2 Semantic Web Languages

There are various semantic web languages developed for the realizhtioe gemantic
web' [Gomez-Perez & Corcho, 20DZThey serve as a standard languages of communica-
tion on the semantic web (Figu2e1?). The semantic web uses these languages as a means
of delivering content, and more information about the content elementsy bfatnese
languages serve as standard for communicating information betweernlifegyents. The
widely used and standardized languages which are related to ontologidiseaseimantic

web are discussed below.

2.2.1 XML, XML Schema and DTDs

EXtensible Mark-up Language (XML) was developed and recommeng¥d3c in 1998.
XML was developed to overcome the limitations faced by Hypertext Mark-aipguage
(HTML). The major limitation was the lack of extensibility of HTML to include user de

fined features. XML is used to structure texts and exchange data on thallewing better

*hitp://www.w3.0rg
2http://www.w3.0rg
3http://www.w3.0rg/TR/1998/REC-xml-19980210

14

Figure 2.1: The semantic web layers

information exchange across information systems. XML tags are diffseentHTML tags

in that XML tags are user defined and extensible. When XML is used fiar @echange
between different agents (machines and software), the agents ragtéement on the vo-
cabulary and the meaning before they use the data. However, plain Xkt rou provide
such facility. To facilitate the agreement, XML schema and Document Typaibei
(DTD) are proposed. XML schema and DTD provide a solution for spegfthe structure
of XML documents and how they can be u$eXML schema and DTD further serve as a

mechanism for ensuring the validity of XML documents.

2.2.2 RDF and RDFS

Resource Description Framework (RDF) was developed by the W3C pwmHithe creation
of metadata for describing web resourc&®inez-Rrez et al., 20007 RDF is the widely

used standard semantic framework for representing information in theRiz#® describes
resources using object types which contain resources, propertdestatements. RDF is
intended to achieve a simple data model which uses formal semantics that pevvéé

using inference. It uses XML-based syntax and XML schema. RDF ili#el based

vocabulary and allows anyone to make a statement about a resource.

A single statement which contains a subject, a predicate and an object caprbe

“http://www.w3.0rg/XML/Schema

15

sented by RDF using a statement called triple. Each triple has three elemersishjeénet
indicating the resource we want to describe, a predicate, which is alsd egtleperty to
specify the relationships the subject has and an object to which the stddges to using
the predicate. All RDF triples can be represented using a graph data riibéejraph data
model contains nodes and directed edges from one node to anotheAmoE®F graph is
a set or RDF triples which contains subjects and objects as a node atchfFe@s edges.

Figure2.2illustrates the representation of RDF triples using RDF graphs.

http:/ /www.computing.dcu.ie/CNGL#
Person
4

/. http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Type
e

o
// ‘ Yalemisew AbgazJ

b4 : 4
o
vl -

@/www.computing.dcu.ie/~y@
N

L

/h&/p:/ /www.computing.dcu.ie/CNGL#fuliName

~
\\ h'ttp\:j /www.computing.dcu.ie/CNGL#personalTitle

N =

http:/ /www.computing.dcu.ie/CNGL#mailBox

Figure 2.2: RDF graph representation

The resource Description Framework Schema (RDFS) is a formal désorgb eligible
RDF expressions and a semantic extension of RB¥hjez-Ferez et al., 2007 An RDFS
provides semantics to describe groups of related resources and tienstigs between
these resources The schema is used to determine the characteristics of other resources.

The schema provides a list of vocabularies that specify these ch&tcseusing classes

and properties.

>w3.org/TR/rdf-schema

16

2.2.3 OIL and DAML+OIL

Ontology Interchange Language (OIL) is also known as Ontology btert.ayer. It is
a web-based Knowledge representation language that combines XMdaxsynodelling
primitives from the frame-based knowledge representation paradigtiaridrmal seman-
tics and reasoning support of descriptive logics. In OIL, the knovdettintained in the
ontology is organized into three parts. OIL combines formal semantics ficiéef reason-
ing support from description logic, rich modelling primitives from framedzhknowledge
representation and a standardized syntactic exchange of notatiornh&eveb community
[Fensel et al., 2041

DAML+OIL was developed in a collaboration between a joint committee fromoEur
pean Union and the United States of Americayies et al., 200§ Mcguinness et al., 2002
The knowledge representation in DAML+OIL exploits XML and RDF staddaand com-
bines formal semantics from description logic, ontological primitives of dlgjgented and
frame-based systems. DAML-ONT is the first version released in 200@AML-OIL is
the second version released in 2001. Another version was releadixéhgythe problems
which are related to the specifications in the second version. The DAMLt@rguage is
written in XML syntax, unlike the OIL which is written as plain English. The depeh@nt
of DAML+OIL is ceased.

2.3 Web Ontology Language (OWL)

OWL is a web ontology language designed by the W3C web ontology workimgpgfor
publishing and exchanging of ontologies on the web. It is derived frenDML+OIL by
the standardization efforts of W3C. OWL facilitates the interpretability of weattent by
providing additional vocabulary and formal semantiksuk & McDaniel, 2009. Unlike
the above languages, OWL can be used to represent meanings of tetinisgrand define
relationships among the termsaye, 201, OWL is an ontology language that allows
humans to represent semantics of content on the web. It also allows n&ichimerpret the

content. OWL has three sub languages based on the purpose andildig@ecanstructs.

17

2.3.1 OWL sub languages

OWL appears in three different sub languages. OWL Lite is a subsaiif DL and OWL
DL is a subset of OWL full. In general OWL refers to the complete OWL Fuiblaage.
Each of them is discussed as follows.

OWL Lite is a subset of OWL which is designed to provide easy implementation of
the OWL language. It is intended to provide classification of hierarchigsribarporate
simple constraints. OWL Lite is aimed at supporting users who want to build tculsisle
existing reasoners.

OWL DL is another subset of the OWL language that is designed to provide suppor
for existing description logic specification. OWL DL and OWL Full suppog #ame set
of OWL language constructs, but OWL DL requires the separation cdetaproperties, in-
dividuals and restrictions. OWL DL might be chosen over OWL Full due to Wadability
of powerful reasoners that use the restrictions provided by the.ul$dras computational
features such as completeness and decidability with maximum expressige\pithin the
description logic fragments.

OWL Full is a complete OWL language which allows the relaxation of the constraints
of the description logic reasoners. It provides maximum expressivity witrsyntactic
freedom. But, there is no means of getting full support of reasoning andat decidable.

OWL has some drawbacks. Some of its constructs are very complex. ioeréie
complexity, OWL has three different sublanguages which deal with this lexity It is
not easy to use and it is not intuitive to non-expert users. The decidadfli@WL is

achieved by trading-off its expressiveness.

2.3.2 OWL2 Profiles

OWL2 is the recommendation of the W3C since 2009. OWL2 is a successabi@nd
has three profilés Each of the profiles is restricted to a different sublanguage of OWL2.

The first profile is the OWL2 RL (Rule Language) which allows rule basadoning. The

Shttp://www.w3.org/TR/owl2-profiles/

18

second profile is the OWL2 QL (Query Language) which supports quegainst large
volumes of instance data that is stored in relational database systems. @herdtffiie is

the OWL2 EL which is aimed at applications that use large ontologies and eagténsive
reasoning capabilities. EL stands for the family of description logic thatiges\existential

and/or universal quantifications.

2.3.3 OWL Syntax

There are different syntaxes used to represent OWL. The firtsysthe RDF/XML syn-
tax and this is the only syntax which is mandatory to be supported by semantimaleb
The functional syntax is designed to provide easier specification and &s acfoundation
for the implementation of OWL2 tools and APIS. The Manchester syntax is ano#hi-
ant that is designed to provide easier readability for non-logicians. Tdrechester OWL
syntax is concise and does not use the description logic symHoilsifige et al., 200p
The OWL/XML syntax is an XML syntax for OWL defined by an XML schemaurfle
is a serialization for the RDF-based syntax. Turtle is a triple based notatih wktends
from N-Triples. It is designed to provide easier and compact textuatseptation of RDF
graph.

Translation between these abstract syntaxes is available. Most exisitioig ¢ille pro-
tege are able to process all the above syntaxes. RDF/XML is a mandatdax sind every

semantic web tool should support the syntax.

2.3.4 OWL Constructs

OWL has different constructs. Some of the constructs that are define@\/L Lite and

OWL DL are discussed below.

2.3.4.1 Entities

e Owl:Class represents a group of individuals that share some properties common

among them. A group of individuals who joined a university can be redeiveas

19

Student The top class which is the class of all individuals is usually referred to as

owl:Thingand the class that does not have any individual is refereed/aN othing

e Rdf:Property. is used to specify relationships between individuals or between in-
dividuals and data values. OWL distinguishes betwaehObjectProperty which
links instances of one class with instances of another clas®ahdataProperty
which links instances of a class to instances of a data type. For exdmapkgjendis
an object property which links orgtudentvith another andhasAges a data property

which links aStudentwith an integer data type.

e Owl:Individual represents instances of a class. For example, an individual named

Mark can be described as an instance of the ddE3Student

e Owl:Datatype represents the type of data a given property can take. This includes

built-in datatypes such as xsd:double, xsd:long, xsd:string, etc.

2.3.4.2 Boolean Connectives

e Owl:InteresectionOf is used to specify the things created by the intersection of
named classes and restrictions. For exanfitstYearPhDStuderis an intersection

of FirstYearStudenandPhDstudent

e Owl:unionOf is used to specify the things created by the union of named classes and

restrictions.

e Owl:complementOf is used to specify that one class is a complement of another

class.

e Owl:oneOf defines a class using a list of individuals belonging to the class. For
example, a class dhfluentialpersononeOf{Obama Blair, andMandelg which

defines an influential person as one of the individuals mentioned in the list.

20

2.3.4.3 Class Expression Axioms

e Rdfs:subclassOfis used to indicate specialization and generalization between classes.
For example, rdfs:subclassO&tudent Persor) indicatesStudentis a specialized

class ofPersonandPersonis a general class @tudent

e Owl.disjointClassesindicates two classes are different to each other. They do not
share a common individual. For example, owl:DisjointClastéal€, Femalg speci-

fies that individuals oMale class cannot be a memberfdgmaleclass.

e Owl:equvalentClassis used to indicate two classes are the same and have same in-
stances. AirstYearStudentan be stated to be equivalent clas§@shManStudent
If Johnis an instance oFirstYearStudentit can be inferred that he is alsoFeesh-

ManStudent

2.3.4.4 Property Axioms

e Rdfs:subPropertyOf is used to create a hierarchy between properties. It has subDat-

aProperty and subObjectProperty constructs.

e Owl:EquivalentProperty is used to specify that two properties are the same and

relate to the same set of individuals (domain) to another set of individwalgd€).

e Owl:DisjointProperty is used to specify that two individuals are not allowed to re-

late to each other with both properties at the same time.

e Rdfs:Domainis used to limit the individuals that are linked as a domain of a property.
When a class is specified as a domain of a property, the individuals thhnlerd
to the property must belong to that class. For example, if the domain of ant objec
propertyteachess a clasd_ecturer, and if Johnis related byteacheselationship,
then it follows thatJlohnis aLecturereven ifJohnis not explicitly stated an instance
of aLecturer. rdfs:domain is a universal restriction because the restriction is imposed

on the property.

21

e Rdfs:rangeis used to limit the individuals that are linked as a range of a property. A
property can have a class as a range. When a class is specified gs afraiproperty,
other individuals that are linked to the property must belong to the range ¢tathe
example above, if we set the range of teachegroperty to beCourse and if we
link Johnwith CS101by teacheroperty, the reasoner infe&S101as an instance

of aCourse

e Owl:InverseOf is used to specify the inverse property of a property. For example,
an object property calledasFriendmay have an inverse propeigFriendOf In this

case the domain of a property becomes a range of its inverse and viae vers

e Owl:TransitiveProperty is used to specify that the property is transitive. If a prop-
erty P is transitive and links two pairs of individuals P(l, J) and P(J, Kenth(l, K) is
also an instance of the property P. For exampleagAncestois stated as a transitive
property and ifl has ancestod, andJ has ancestoK, thenl has ancestoK. Such

kinds of relationships are expressed by setting the property transitive.

e Owl:SymmetricProperty is used to specify properties that are symmetric. A prop-
erty is symmetric if a pair of individuald, J) is an instance of a property, then the
pair (J ,1) is also instance of that property. HasFriendis defined as symmetric and
if Johnhas a friendviark ashasFriend(John, Markdhen it is also true tha¥lark has

a friend calledlohnashasFriend(Mark,John)

e Owl:FunctionalProperty is used to specify that a property has a unique value. When
a property is set to be functional, then each individual that uses this gyowill
have zero or one value. It is a short hand representation of minimurmabiyl O

and maximum cardinality 1.

e Owl:InverseFunctionalProperty Is used to state that the inverse of the property is
functional. It is used to state unambiguous propertieshaldNumbeiis inverse
functional for aStudentclass, then its inversisldNumberOfbecomes functional.

This states that a single ID number will not be given for more than one dtuden

22

2.3.4.5 Restriction Axioms

e Owl:AllValuesFrom is used to state that a property on a particular class has a local
range restriction associated with it. When an instance of a given classdisnute
property, all the ranges that participate in this relationship should come oty f
a specific class. For examplehildren hasFather AllValuesFrorvale means if an
instance of a child participate in the relationship hasFaibér{ Joseph then the
reasoner infers thalosephis aMale. The AllValuesFrom restriction is local to the
class involved in the relationship as a domain. The property can be useckdtfy
with another class. For exampl€at hasFather AllValuesFrorvialeCatwhich re-
strict only individuals ofMaleCat AllValuesFrom does not require a child to have a

Father, but when it has one, theathershould beMale.

e Owl:SomeValuesFromis used to state that a particular class may have a restriction
on a property that at least one value for that property is of a certain tifpe ex-
ample, TextBookhas Author someValuesFronprofessionalWriter This means for
all textbooks, they have at least one author whprifessionalWriter SomeValues-
From requires th@extBookclass to have at least one professional author. However,

it allows additional authors who are not professional writers.

e Owl:MinCardinality is used to state restriction on a property with respect to a par-
ticular class. If a minCardinality afis imposed on a property with respect to a class,
then any instance of that class will be related to at leastlividuals by that property.
Author hasPublicatiomin 1 Publication means an instance of an author should in-
volve thehasPublicatiorrelation at least once with an instancerafblication When
the reasoner gets an instancefaithor, it deduces that the instance has at least one

Publication

e Owl:MaxCardinality is used to state restriction on a property with respect to a par-
ticular class. If maxCardinality af is imposed on a property with respect to a class,

then any instance of that class will be related to at mastlividuals by that property.

23

Author hasPublicatiomaxCardinality ZPublication means an instance of &uthor
should involve in the hasPublication relation at most two times with an instance of

Publication

Owl:ExactCardinality is used to state a restriction on a property with respect to a
particular class. If exactCardinality ofis imposed on a property with respect to a
class, this means that any instance of that class will be related to eradwntlviduals
using the propertySinglePaperAuthor hasPublicationaxCardinality IResearchPa-

per, specify that all instances of@inglePaperAuthoclass participate exactly once

in (hasPublication ResearchPaper

2.3.4.6 Class Assertion Axioms

e Owl:SameAsis used to specify that two individuals are the same. For example, an

individual identified by CS101 is the same as an individual identifiedniypduc-

tion_to_.Computers SameAsCS10] Introductionto_.Computers

e Owl:DifferentFrom is used to specify that an individual is different from another in-

dividual. This is used to explicitly state the different individuals of a giverviddal.

e Owl:AllDifferent is used to represent that all the individuals involved in the list are

mutually distinct and are different from every other individual in the list. &@mple,
we may say AllDifferentCS10115101, BU101). This mean¥£S101is different from
IS101andIS101is different fromBU101andBU101is different fromCS101

2.4 Description Logic Syntax and Semantics

Description Logic (DL) represents a family of knowledge representakt) formalisms
that represent the knowledge of an application domain (the “world”) By diefining rele-
vant concepts of the domain (its terminology) and then using these concepexcity prop-

erties of objects and individuals occurring in the domain (the woideder et al., 2003

24

DL languages are equipped with formal logic-based semantics and enmghasgasoning
services.

A knowledge base comprises two sets of statemefitSox and.4B0x statements.
TBox (Terminology Box) statements are statements that introduce the terminology (v
cabulary) used in the application domain. ThBox statements focus on concepts (classes
in OWL) and roles (properties in OWL).

ABox statements are statements that contain existential knowledge about the dbmain
interest. They are assertions about individual§ox statements can be concept assertions
(class assertion in OWL). For exampkerson (Johnpasserts that an individual identified
asJohnis aPerson ABox statements can also be role assertions (property assertion). For
example hasFriend(John, Joseply a property assertion indicating the individual named
Johnhas an individual nameibsephas a friend.

DL languages allow building complex descriptions of concepts and roleaithaépre-
sented by other atomic concepts and roles. DL languages are distinghistiesdr descrip-
tion language and the descriptions they support. In DL, elementary désicsiare atomic
concepts and atomic rolesBdader et al., 20Q3liscusses the description logic languages
as follows. Elementary descriptions are atomic concepts (A and B) and atolesc(R).
Concept descriptions are represented using letters C and D. One Dlalpags different
from the other languages by the allowed constructors in the languageat&ib(tive lan-
guage) is introduced as a minimal language that is of practical int&eatlpr et al., 2093

[Schmidt-Schaub3& Smolka, 1991

AL supports the following Syntax rules:
C,D — A| (atomic concept)
T| (universal concept)
1| (bottom concept)
—A| (atomic negation)
C 1 D| (intersection)

VR.C| (value restriction)

25

JR.T (limited existential quantification)

AL languages allow negation only on atomic concepts and only the top cas@loiwved in
the scope of existential quantification over a role. OWL DL correspontiset&HOIN(D)

variant of DL languages.

SHOIN stands for:
S = ALC with transitive Role R+
H =role inclusion axiom
O = nominal (singleton class)
| = inverse role R-
N = number restriction

D = use of data type properties, data values or data properties

Reasoning in DL languagesDL systems focus on reasoning about the domain of knowl-
edge they represent. Reasoning abpiifox statements checks whether a givEBBox
statement is satisfiable (meaning not contradictory) with respect to othenstéte It also
checks whether ong Box statement is more general that another one (one subsuming the
other). Reasoning aboutBox statements checks whether the set of assertion statements
are consistent against tifé3ox statements. It checks whether the statements have a model.
Satisfiability checking in thg Box statements and consistency checking indif#ox state-
ments are useful to determine the overall consistency of the knowledge ®alssumption

in turn allows the vocabulary to be organized in a hierarchy. A detailedigésa of DL

language inference can be found Befder et al., 2003

2.5 Ontology Editors and APIs

OWL is a complex language and requires a tool support to create andydeqdcevolve
ontologies. There are different ontology editors available to create neelige and evolve

ontologies. We give a brief review of the available and widely used ontadggrs.

26

2.5.1 Ontology Editors
2.5.1.1 Protege

Protege is an open source ontology editor which is available in two forms odltimadon-
tology; protege-Frames and protege-OWL. It is based on a Java Afticarogramming
Interface (API) and thus can be incorporated into a number of applicatibis also exten-
sible and is available with a number of supportive plug-ins. It runs onrdiffeplatforms
such as Windows, Linux and UNIX. Protege-OWL is a knowledge modsliged with a
graphical user interface. Using this GUI, developers can create gigslon OWL. It is
closely linked with Jena3 which is a Java framework to build applications fose¢h&ntic
web. Jena provides RDF and OWL APIs, parsing and storage in relbtdatebases and
query engine for executing queries.

The user interface of protege-OWL allows users to create a new ontalilgylittle
effort. One can load ontologies of different format such as in XML, RIDBWL and on-
tologies can also be saved in different formats which include OWL, RDiex, durtle, etc.
Users may add annotations to ontologies which could be helpful for latestsparposes

using an annotation search plug-in.

2.5.1.2 KArlsruhe ONtology and Semantic Web Tool (KAON)

KAON was developed by Information Process Engineering (IPE) giaduiine research
centre for information technologies (FZI), Institute of Applied Informatind &ormal De-
scription Methods (AIFB) at the University of Karlsruhe and the InfatioraManagement
Group (IMG) at the University of Manchesterdlz et al., 2003.

KAON has an API for programmatic management of OWL-DL, SWRL, anddteldlt
includes an inference engine for answering conjunctive queries. NKpf@vides a stan-
dalone server to access distributed ontologies using Remote Method tiovo(aMI).
KAON further provides an interface to access other editors such &sgero

To support ontology evolution, KAON provides an option to set up the ¢éaviparam-

eters. An ontology programmer can decide how to respond to the chahgescancepts

27

are removed from the ontology, whether the orphaned concepts mustdmneeted to the

root concept, to a super concept or must be deleted.

2.5.1.3 NeON and Swoop

The NeOn Toolkit has been developed in the course of the EU-fundéxhlgenject and is
currently maintained and distributed by the NeOn Technologies Foundatias an open
source editor which supports development of ontologies in OWL/RDF. edaveloped
using the eclipse platform. Neon provides many plug-ins for visual modeltintplogy
evaluation, ontology learning, ontology matching and reasoning and aiomotand docu-
mentation. Neon uses the Pellete2 and HermiT3 reasoners to suppomdefere
Swoop Kalyanpur et al., 201Jlis a Java based ontology editor designed based on the

W3C OWL recommendations. It was developed by the Mindswap group birtiversity of
Maryland. Swoop is based on a web architecture and allows loading of multifdégies.

However, it is not any more supported by Mindswap group and its dewvedophas ceased.

2.5.2 Ontology APIs
2.5.2.1 OWL APl and Jena API

OWL APl is a Java based API for creating, manipulating and serializing O\WWiologies.
It is an open source software available under the LGPL or Apache ése@®NL API pro-
vides parsers for syntaxes defined in the W3C specification such a&RIDFOWL/XML,
OWL functional syntax, turtle, KRSS and OBO flat file formats. The origieabkion of
OWL API supports the OWL1 specifications and the current OWL API sugpall the
constructs of OWL2 profiles (OWL2 QL, OWL2 EL and OWL2 RL). The maljextive
of OWL APl is to provide OWL editors and OWL reasoners for people wiamtwto build
OWL based applications{orridge & Bechhofer, 201]1

OWL APl is designed to make ontology storage easier in flat files, in relatitatabases

and triple stores. It also provides an OWL Reasoner interface to intgithctlifferent rea-

"http://neon-toolkit.org/wiki/MainPage

28

soners. It provides incremental reasoning support that allowsneesto listen to ontology
changes and process them on the fly or queue them in a buffer for tatargsing. OWL
API provides a wrapper class for CEL, FaCT++, HermiT, RacerPdoRsilet.

The Jena APl is a programming toolkit developed using the Java programmqgige.
Jena supports semantic web languages such as RDF, DAML+OIL and @& provides

an interface to use reasoners.

2.5.3 Ontology Reasoners

This section focuses on introducing some of the available semantic wemeesasbat are
used to classify ontologies. Reasoners are characterized usinguliffaiteria such as,
reasoning method, the expressiveness, the time and space complexityaitabiléty of
explanation for inconsistencies and the supporiddfox reasoning Glimm et al., 201]
[Motik et al., 2007.

An ontology reasoner is a program that infers logical consequenaesd set of ex-
plicitly asserted facts or axioms and typically provides automated supporé&soning
tasks such as classification, debugging and quenian{ler et al., 201J1 7 Box reason-
ing corresponds to the reasoning®Box statements and50x reasoning includeg Sox

statements in the reasoning process.

2.5.3.1 HermiT

HermiT was developed at the University of OxférdHermiT is a description logic reason-
ing system based on an entirely new architecture which addresses tbessoficomplexity
of reasoning. It uses the Hypertableau calculus, which significantlycesdthe number of
models which must be considere@limm et al., 201D [Motik et al., 2007. HermiT can
determine whether a given ontology is consistent and identifies subsumglidiomships
between concepts among other features. HermiT is faster in classifyinigela@asy-to-

process ontologies and even faster when it is applied to more difficult egeldatologies.

8http://www.hermit-reasoner.com/

29

HermiT is an open source Java library and uses an OWL API as an irdenfigcas a parser

for OWL files.

2.5.3.2 FaCT++ (Fast Classification of Terminologies)

FaCT++ was developed by the University of Manchester. It is a newrgéon of OWL
DL reasoner. FaCT++ supports OWL DL and a subset of OWL2. The imgitation of

FaCT++ uses C++ based on an optimized tableaux algorittsarkov & Horrocks, 2006

2.5.3.3 Others

Pellet was developed by Clark & Parsia. Pellet is an open source e¥amod is written
using Java. It was the first reasoner that supported all OWL DL (8HO)) and has been
extended to OWL2 (SHOIQ (D)). Pellet supports all OWL2 profilgsip et al., 2007.

In addition to the above reasoners, there are other reasoners séWAs (tractable
reasoning infrastructure for OWL2Jhomas et al., 20JpRacerPro [Haarslev et al.} and

CEL (Classifier or EL+ ontologiesBaader et al., 2006

2.6 Semantic Annotation Platforms and Tools

Semantic annotation is a process of attaching semantics to a document degiostament
to provide additional information about the existing piece of data. Semantatation is
different from tagging in that it enriches the content in the document withaséc data
that is linked to formal and structured knowledge of a domain. It gets thergms&rom a
general or domain-specific ontology. Semantic annotation provides infiomia a formal

language which can be automatically evaluated and interpreted using tedosts.

2.6.1 Semantic Annotation Platforms

Currently, there are different kinds of annotations and annotation ptegfdHowever, there
is no unified model for semantic annotatidgdrgn et al., 2006 Annotation can be manual,

semi-automatic or fully automatic. Manual annotation allows users to attach &onsta

30

to documents manually. Users determine what semantics to add to the docuntemtd.at
Semi-automatic annotation is facilitated by a tool or a program that determinesritextc

or that attaches the semantic data to the documents. In semi-automatic annotet®is, th

a manual intervention to modify, approve or reject the proposed annatd@tioautomatic
annotation is based on a program that identifies the necessary semamtiitndo and au-
tomatically attaches it to the content. Semantic wikis and semantic blogs are exaraples th
attach semantic information to the documents to improve accessibility, retrievagreye

and reuse of the documents.

Semantic annotation in our context refers to the annotation triples that alfts resa
semantic annotation. An annotation triple contains a subject, a predicate abptan The
subject usually refers to the documents, the predicate refers to the a#trdfutee docu-
ments and the object refers to the semantics to which the content is assotraesdman-
tic annotation we refer is ontology-based semantic annotation. Ontologytisasnantic
annotation relies on ontologies as its main source of semantics. For examiplglieadsc-
ument can be annotated using an annotation triple as follows. The docurestifiéd by
http:www.cngl.ie/research/paper01.hthds subject ontology evolution which is defined in

a CNGL ontology.

<htt p: ww. cngl . i e/ research/ paper01. ht m >

<CNG.#hasSubj ect > <CNG_#Ont ol ogyEvol uti on>

2.6.2 Annotation Tools

There are different annotation tools available. Some of them are martaitzrs are semi-
automatic. Annotea OntoMat® and COHSE! are manual annotation tools and GATE is
semi-automatic annotation tool. The above mentioned tools do not require miatifica
of the original documents; however, the implementation mechanism is diffekanbtea

uses XPointer to store the annotations but GATE duplicates the documeiittantdes

®http://www.w3.0rg/2001/Annotea/
Ohttp://projects.semwebcentral.org/projects/ontomat/
Hhttp://www.aktors.org/technologies/cohse/

31

the annotations at the end of the duplicated document. Annotea uses 4 &ineatation

schema, but the other annotation tools use other schema like ontologies.

2.6.2.1 KIM and COHSE

KIM is a platform for semantic annotation of documents, data and knowleegelaped
by ontotext . The tool is based on open source platforms and comes witlhgiat) text
mining capabilities, annotation tools and user interfaces. Kl based on tools such as
GATE and OWLIM. KIM uses a number of ontologies designed for gdrmuigpose seman-
tic annotation Kiryakov et al., 2004 KIM uses the Sesame RDF repository for ontology
and knowledge storage. It uses a light weight ontology called KIMO. EBKConcep-
tual Open Hypermedia SErvice) is developed to provide an architectusefoantic web

[Bechhofer et al., 2042

2.6.2.2 Semantic Wikis

Semantic wikis use formally defined annotations and ontological terms. Thedifeer-
ent approaches to annotate content in a semantic wiki. Semantic MedtaVikigwikit4,

WIikSAR?®, SemperWiki® are among the wiki variants.

2.7 Summary

This chapter gives a brief introduction of the state-of-the-art semanticlamguages and
technologies. In this chapter we cover the history of different semantbdanguages. We
further discussed the detailed constructs of OWL. OWL2 is the languagseviiroughout
this document. We use the OWL DL variant to construct our ontologies fgouhgose of

the research and the experiments.

12phttp://www.ontotext.com/kim
Bhttp:/www.mediawiki.org/wiki/MediaWiki
http://semanticweb.org/wiki/lke Wiki
http://semanticweb.org/wiki/WikSAR
8http://semanticweb.org/wiki/Semperwiki

32

Among the semantic web tools, we use the protege ontology editor for ontotwgy ¢
struction and testing purposes. Protege is selected because it is a widélgditr for
research purposes and is built upon OWL API. We further use swodpgN@ON for the
purpose of comparative evaluation. We use OWL API and Java for thelajement of
prototypes and for the implementation of our algorithms. OWL API is selectealisedt
provides methods for dealing with ontology specification and change maeage OWL
API has active support from the research community and became a wtsptad ontol-
ogy API. The OWL API is written in the Java programming language. This ma&es
preferable for developing our prototype. The use of a reasonauégatin determining the
consistency of the ontology. Thus, we use the Hermit reasoner for i3 @gegration with
OWL API and its mentioned benefits. For the purpose of storage, we efRios/ XML and
the Sesame triple store. RDF/XML is used for storing the ontologies and Se$alestore
for storing the annotation triples. The W3C make RDF/XML a mandatory fornchaapli-
cations are required to support at least RDF/XML. Furthermore, thierdifferent tools to
translate RDF/XML into other formats. The Sesame triple store supports ititegveth

Java and OWL API. It is faster and compliant to existing semantic web teafieslo

33

Chapter 3

Literature Review

3.1 Introduction

The use of ontologies to represent knowledge in different domains ismgaionsiderable
acceptancelurisica et al., 1999 Uren et al., 200p[Mika, 2007. Ontologies are used as
knowledge representation tools for covering generic knowledge suspace, time, mea-
surement and domain-specific knowledge such as genes, publicatiamgdj etc. Ontolo-
gies serve as a means of exchanging knowledge between humans andersnop the
semantic web. Different tools and techniques emerge to support the oreaxmution,
maintenance and use of ontologies and ontology-based systems. Despiteihng num-
ber of tools, techniques, methods and systems, we face a dearth oftsagbsolution for
handling the evolution of the knowledgB¢ Leenheer & Meersman, 2007

There is a substantial gap between our requirements and existing soluabeaport
evolution in ontology-based applicationStpjanovic, 200i[Noy & Klein, 2004. When
the ontologies or the underlying systems evolve, there is limited support to leelsér
to understand and evaluate the impacts of the changes on the evolving gntdlay de-
pendent ontologies and systems that use the ontologies. Addressin@lienprequires
focusing on specific issues and unifying the already available and rproehods and
techniques. Though, there are available ontology evolution framewor&st of them

focus on ensuring the consistency of evolving ontologies. They give littenigon to

34

analysis of impacts and selection of optimal implementation strategies using seferity
impacts. Enhancing the frameworks and introducing new techniques anddseethin-
evitable to achieve the desired evolution. One of the inevitable researdtiatise pro-
posed by different researcheiStpjanovic & Motik, 2002 [Flouris & Plexousakis, 2005
[De Leenheer & Meersman, 20qRin & Atluri, 2009] [Djedidi & Aufaure, 2010bfocuses
on change impact analysis in evolving ontologies and ontology-based ajptis. In this
chapter, we review existing research and highlight their limitations.

This chapter is organized as follows. Secti®®2 gives a brief summary of evolu-
tion in ontology-based content management systems. Sedntroduces evolution in
other closely related disciplines. In SectiBi, we review existing ontology evolution
approaches in detail. In Secti@b, we give a review of available tools and support for

ontology evolution. Finally, we give a summary of the chapter in Se@ién

3.2 Evolution in Ontology-based Content Management Systems

Evolution in OCMS requires efficient tools, and techniques to addressitilecges. The
ever changing human knowledge, its specification and representatioaydhability of
large amounts of semantically rich data and the growing number of interdemtaolplica-
tions that consume the data make the evolution process complex, ardudimendnsum-
ing. This forces researchers to look for automatic or semi-automatic solttiefigciently
evolve OCMS together with dependent applications.

The need for handling changes in OCMS arises from different petigps. The first
one is from an application perspective. The ever growing volume arulgiy of content,
ontology and annotation demands a shift to a scientifically proven methodahaiver-
come the current problems faced by the manual systéang) et al., 200p

The second comes from the perspective of systems and users. timreakvironments,
up-to-date and accurate information is required. Many users and syaterdspendent on
the semantic data they gather, process and use from the semantic webualibe and

the accuracy of their services depend on how much up-to-date infornibggrare using

35

as an input. Up-to-date information can only be provided if changes in doctains are
handled, all the effects of the changes are identified and the integrity oitble system is
assured. Such systems rely on the availability of automatic or semi-automaticippalrs

to respond in a timely manner to the growing number of application domains and-sema
tic data which is in continuous state of changi@ejn et al., 2002 [Qin & Atluri, 2009]

[Afsharchi & Far, 2006

The third perspective comes from the nature of the content. Conterd tefa broader
collection of human knowledge. In some disciplines, the content evolveyg siveyle day
demanding addition of new and previously unknown content, modificationistirey one
or deletion of old content. Systems that deal with content of this type arec$tigecontin-
uous change which may even lead to the evolution of the ontologies theyudedgamic
and evolving disciplines, like computer science, become vulnerable to consirahange

that demands automated tool supp&tfjanovic et al., 2003 Leenheer & Mens, 2008

In addition to the above perspectives, the growing volume of content, apiphs,
domain-specific ontologies and the complexity of changes, the knowledg&arequired
to identify, understand and handle these changes manually is beyondripest@nsion of
human agents. Every minute, 571 new websites, 347 new blog posts, ¥3dfioew video
on YouTube, 204 million emails, 100,000 tweets, 2 million search queries and otlaery
content is produced on the webWikipedia alone contains around 4 millions of content
pages and around 28 million individual pages. The average edit peripd®.75. All
these new content pages and changes require a solution to systematicdlly dxdditions

of new content and deletion or modification of existing ones.

It is possible to collect changes over time and apply those changes togethataily
or weekly basis. For content-based systems that do not change ritlygieis solution
seems appealing. However, the current problem of such systems eymdithat. First,
current ontology-based applications are required to provide semanticalipformation to

make a real-time decision. Second, the volume of the changes the ontolaggearttas to

http://mashable.com/2012/06/22/data-created-every-minute/
2http://en.wikipedia.org/wiki/Special:Statistics

36

deal with is large. In fairly complex environments, such as Wikipedia, ther¢hausands
of changes, hundred thousands of cascaded changes and milliorisfatta, dependent
entities and interrelated components that will be affected. In such a situatamaging
changes manually becomes complex, error prone and beyond the cemgioehof a single
individual. In relation to this, systems that are required to deliver robdistriration do
not tolerate these errors. The structural and semantic interdeperttiahexists between
components of such systems requires an automated tool to preventealud iesues related
to the integrity of the system. Finally, the availability of tools and techniques caedr®
as an opportunity to build better automated systems for OCMS.

Evolution in OCMS mainly focuses on the evolution of the ontology, the contehttee
annotation. Ontology evolution, content evolution and annotation evolut®diacussed

in detail in the following section.

3.2.1 Ontology Evolution

Ontology evolution refers to the change in the specification, conceptuatizatioepre-
sentation of knowledge in the ontology and the implementation of the changethend
management of their effects in dependent ontologies, services, appligagents or other
elements. Ontology evolution is also defined as “the timely adaptation of an oytaholy
consistent propagation of changes to dependent artefétisiahovic et al., 2003a The
overall process of adaptation of ontologies to changed patterns anaiisestent man-
agement of these changes is referred to as ontology evolution. A cladated task is
ontology versioning. Thus, it is important to distinguish between ontologiugea and
ontology versioning. Following the definition given iygdgddick, 1995 ontology evolution
is different from ontology versioning in that ontology evolution is the pssocef changing
the ontology without affecting the dependent entities whereas ontologypnerg means
changing the ontology to a new version but provides access to both thaalthe new
versions.

Ontology evolution is a continuous proces$oly & Klein, 2004. Whenever there is

a change in the domain, its conceptualization or specification, the ontologig hede

37

changed. Ontologies built to give support for specific content withinraailo change as
the content and the embedded ontology instances ch&mygamins et al., 2042 When
new concepts are added, existing ones are deleted or modified in thetctrearspective
ontology needs to be updated. Implementing the changes requires undergtdéem cor-
rectly and representing them accurately using ontology change opetatimwever, this
solves a few of the associated problems. Changes can trigger furtioaideal changes and
affect one or more of interrelated ontologies. The effects of the chawaggropagate back
to the domain instances in the content, leaving the process in a vicious circttéliogy
engineer who detects a change of an instance in a content documenieartd tnaintain
the ontology accordingly may end up with many unseen changes. Thusguiee a better
understanding of the ontology change management probgssifli & Aufaure, 2010k

Researchers in the area of ontology evolution have made attempts to makeypntolo
evolution a well-organized process. latpjanovic, 200ithe authors proposed a six phase
ontology evolution process. Ontology evolution as a reconfigurationgmrols suggested
in [Stojanovic et al., 2003In [Plessers et al., 20DZhange detection approach is proposed
as a solution for efficient ontology evolution. 1Qin & Atluri, 2009] the authors approach
the problem from the view point of validity of instances at the time of evolutiohesg
attempts are discussed in detail in Sectoh

Ontology evolution further focuses on the impacts of the proposed chamyeelated
dependent entities in the ontology and dependent systems that use theanithe im-
pacts are not restricted to the structure of the ontology. But, they includethantics and

deal with the rationale behind the changegldidi & Aufaure, 2010k

3.2.2 Content Evolution

Content change refers to a change of the available content in a coatsd-bystem. The
change in the content can introduce new concepts, for example, whesafigvare prod-
ucts, text books, reports, scientific results, etc., appear, or whem wag of using already
existing concepts is introduced.

Evolution in a discipline invokes a change in the content used in that discipline.

38

evolution process may cause the previous content to be modified or fulbrdest Content
on the web evolves over time in an unpredictable manner due to its decentadizéois-
tration. Collaborative content management serves as an engine for ingaiag contin-
uous evolution of content. Users in a collaborative environment createcaopetent and
make it available for others for editing and improvement. Such contentp#sseigh dif-
ferent evolutionary stages before it becomes staliétgsch et al., 2047 In disciplines
that evolve frequently, the content evolves frequently. Researchtyical collaborative
content platform, Wikipedia, indicates that there are a continuous andenargber of
revisions (addition of new ones and deletion or modification of existing afelk§ content
[Curino et al., 200B

There are two types of content changes, changes that cause the dmiwdogy to
change and changes that cause only a specific content to changéabdcate on these
distinctions, let us look at the following examples. A change in a new verdieanhelp
file that includes video and audio formats requires a change in the domainotpadnate
such help file formats (in previous versions, help files come in text format)n#oduction
of a new software component further requires the taxonomy of the seftwde updated.
Such changes are changes that trigger a change in the domain ontolegygel€tion of a
component from a specific help file causes a change of all annotatidgrs¢iralated to that
topic. Not all content changes cause ontology change. If a step inedpédile is changed
to a procedure, it will only cause a change in the annotation of the docuthelttes not

cause or trigger a change in the domain or in the ontology.

3.2.3 Annotation Evolution

Annotations are frequently changing entities in OCMS. A large number ofsrgpleadded,
modified or deleted in this layer. Annotations are highly dependent on botiottient and
the ontology {5ross et al., 2009 Any change in the annotated content or in the ontology
that is used for the annotation affects the annotation triples that carry adlethantics
related to the content. Changes made on the triples may cause other chahgezkated

annotations. In such situations, the changes in the annotation requier gdysis and

39

evolution before they are implemented in the system.

The main reason for propagation of changes is that the annotationseapsemantic
and structural dependency between the entities involved in the annotatioexdample, if
we annotate a certain home page of a professor with a domain ontology thainexhis
discipline, we are creating a semantic link between the concepts in the homarnzhtjes
concepts in the ontology. The concepts in the ontology are interconnautedea their
semantics based on the interpretation of those edges that connect themwHdnever
there is a change in the home page of the professor, the change pesp@agal dependent
and related entities in the system. These changes affect the interpretatiercoftent and

all dependent systems that use this interpretation.

3.3 Evolution Approaches in Related Domains

Ontology evolution borrows different techniques from different diiegs. In this section
we review and compare literature from closely related disciplines sucthamscevolution

and software evolution.

3.3.1 Schema Evolution

Research in database schema evolution has shown the extent of therpaolbl¢he impor-
tance of schema evolutioiRpddick, 199% Typical schemas include relational database
schema, conceptual ER or UML models, ontologies, XML schema, sofini@races and
work flow specificationsNloy & Klein, 2004. [Hartung et al., 201,1p.1] defines schema
evolution as “the ability to change a deployed schema, i.e. metadata strucuresly
describing complex artefacts such as databases, messages, applicaji@amg or work-
flows”. Schema evolution has received a great emphasis for a long timleaana wider
support from both industrial and commercial systems. The rationale bebimdlicting

schema evolution is to deal with:

e new changes which are caused by a change in the requirement of the use

40

e deficiencies in the current schema or the old model may have errors.
e new insights, new ideas, etc.
e migration to a new platform, a new technology, etc.

Schema evolution is essential because the changes are frequent, tinnaiogsnd er-
ror prone Curino et al., 200B The authors identified the major problems faced by database
administrators at the time of evolution. Some of the challenges are attributed to af lac
software support for predicting and evaluating the effects of the gepechema change,
lack of analysis methods and tools for understanding change propagatependent ele-
ments and applications to address database schema evolution. In schamiareirogen-
eral and in database schema evolution in particular, the following solutiengraposed

[Bounif & Pottinger, 200p[Curino et al., 200B

e Concise change operation language to express schema change.

Tools that can determine the effects of the requested changes.

The optimization of the changes to ensure the optimal implementation.

Automatic implementation and propagation of changes.

Full documentation of implemented changes to ensure proper and acevextslil-

ity.

Schema evolution and ontology evolution share some common theoreticahfemsd
The similarities and the differences of the two are discusseldy [Klein, 2004. One
of the challenging aspects of schema evolution is the threat it poses to teensythat
make use of the schema. Some of the threats are unexpected and havednapaats on
the dependent elements and on the integrity of the system (within and amongehs).la
They require intensive human involvement to understand the impacts aider@gegrity
violations. These threats are also observed in ontology schema evolutiaeraain the

major challenges faced by ontology engineers and content managers.

41

[Curino et al., 200Bdentified the intensity of the change in Wikipedia’s database schema,
which is the best-known example of a large family of web information systemS)YWhey
identified 170+ documented schema versions over 4.5 years and ov@eB#f(data and
version of 88,397+ revisions in MediaWiki in 2007. They reported thevgrg frequency
of change as: “There is strong pressure toward change (from 3®@0&% more intense
than the traditional setting)”. To respond to the problem they built a simple adtiwol
to automate the analysis process. Their analysis suggests the needdimpi®y better
methods and tools to support schema evolution.

Research conducted byfrtung et al., 201Jlon recent advances in schema and on-
tology evolution points out the importance of effectively supporting scheroligon to
ensure the correct and efficient propagation of changes to instatecedeépendent schema
and dependent systems. They identified the major requirements of effectiema and on-
tology evolution. The support for expressive and detailed changaiiqes, the simplicity
of change specification, the transparency of the evolution processnatic generation of
evolution mapping and the predictability of effects of changes on instancesitdain data
integrity and avoid data loss are among the requirements.

According to the Hartung et al., 201]1criteria, powerful schema evolution support
needs to incorporate the following guidelines. The first ormimpletenessCompleteness
ensures the complete support for schema changes and the correfficiadt propagation
of the change to dependent elements and dependent systems. Thisecoimal user
interventionwhich ensures the minimal involvement and automatic evolution of dependent
elements and subsystems. The third criteriotraasparencywhich ensures the minimal
or no degradation of performance of the system. It should ensure dilalality of support
for backward compatibility, versioning or views.

[Hartung et al., 201J1focuses on XML schema evolution and identified systems that
provide XML schema evolution support such as Oracle, Microsoft SEves, IBM DB2.
Some native XML Databases also support XML schema evolution. Theseeccial soft-
ware companies are aware of the importance of schema evolution andeeovittans

to support the evolution process. Ontology evolution is another focws aréhe study.

42

Despite the differences between ontologies, databases and XML, themaavolution re-
guirements also apply for ontology evolution.

Justifications used in schema evolution highlight the need for ontology evol@zhema
evolution is used to keep the integrity of the data with the schema. Likewise,alxedte
ontology to provide integrity of the instances with the ontology. Compared tensatevo-

lution, the following challenges are identified in ontology evolutibioy & Klein, 2004.

e When an ontology evolves, it affects the data (instances that are linkecatadithe
semantics associated with the ontology. This is because ontologies themselves a

treated as a data.

e Ontologies incorporate semantics in their definitions, whenever the semarjcs th
incorporate changes, we need to change the ontologies. In many donsgimseth
relatively new or that deal with new knowledge and information, the chamgjee
semantics is continuous. That calls for a dynamic and continuous evolutithre of

ontologies to respond to the changing semantics in such domains.

e Current systems that provide semantic information require the annotatioa ocbth
tent using the selected ontology. But, it does not mean that once we @gesisacc
the annotated content we no more need to access the ontology. The ostalmgie
accessed by such systems for the purpose of reasoning and extiafctioplicit

knowledge.

e Due to the decentralization of the ontologies and the users of the ontologiss, it
difficult to know and maintain who makes changes and who needs to be notified

about the changes. It is also difficult to update them synchronously.

e Due to the richer semantics they contain, a single change in a single element of a
ontology, say on a concept, triggers more changes due to the semantinstigitso
like disjointness, intersection, transitivity, etc. Thus, managing the chargesies

complex and includes several cascaded change operations.

43

e Since instances and concepts are not distinctly separate, it is difficulowdpra
change management which treats the instances separately from thetsoridep

makes the evolution of ontologies difficult.

3.3.2 Software Evolution

Software evolution and ontology evolution share common grounds. Seftexariution
focuses on evolving the software without invalidating running systems sisting data.
In ontology evolution we focus on a similar problem. In software evolutioterd@ning
the impacts of the changes on dependent modules, classes and data is tleermaim.
In ontology evolution, identifying inconsistencies, invalidities and impacts ahghs on
entities and dependent systems is the main focus.

Software evolution integrates a multidimensional aspect of a software life tpm the
inception phase to maintenance. The dimension includes system propeh#} @bjects
of change (where), temporal properties (when) and change suppes) [Mens et al., 200R
[Buckley et al., 200p Software evolution needs a systematic and exhaustive description of
the change and the changing artefadtefs & Klein, 2012. Like schema evolution, the
process of handling evolution in software is time-consuming and errarepibhe main fo-
cus of software evolution is to identify the changing artefact in the softaadeto identify
the artefacts that are affected by the change. Researchers suothasah et al., 1997
[Sherriff & Williams, 200§ [Ahmad et al., 200Pfocus on classifying the different com-
ponents, analysing the dependency between the components and thgapiap of the
changes to other dependent software artefaétsmfad et al., 200Puses sets to represent
relationships between components$herriff & Williams, 200§ uses association clusters
from change records to analyse impacts of changes. These assodiagiens of files indi-
cate how the files are executed, tested and changed together.

Software systems that embed a software application in the real world, ka®&rtype
systems, evolve frequently. For such systems, researdhaisipn et al., 19974dentified
different laws of software evolution. The first law is abgohtinuing change E-type sys-

tems must continually adapt themselves to changes; otherwise they becamespnely

44

less satisfactory. His second law further reinforces the need for a@tewvolution, which

is increasing complexity As a program evolves, its complexity increases unless work is
done to maintain or reduce it. These two laws call for a solution to handle tingeband

to avoid the associated complexities.

Software change denotes a set of source files that are modified tog&tieereason
for the change may be removal of a defect or introduction of a new fe#tat reflects the
user’s requirement. The changes can be logical or structural chargeh may affect other
dependent components of the softwaféu[et al., 200}. According to the change data the
authors analysed on open source products, within 8 years (19974032005/09/09) they
identified 40,034 logical changes from the CVS repository of GCC. Thygesrlogical
change obtained from the NetBSD system is 86,280 logical changes 86810B/20 to
2005/08/17. Structural changes are also presented and 19,913stmrgdentified from
the Koffice system from 1999/01/01 to 2004/09/15.

These figures indicate that there is a high frequency of change. lidergwhat man-
aging changes and determining impacts of changes is becoming a time consunahing a
complex task. This implies the need for software tools that deal with the evojutomess
of software products.

Other research in software evolution focuses on change impact anialysiftware
systems using empirical analysisrhold, 1994 [Lee et al., 200D Software change or soft-
ware evolution has an impact on dependent systems. These impacts algsedmsing dif-
ferent techniques such as Pathimpact, Coveragelmpact and otheds@bboner, 200p
[Orso et al., 2004 Breech et al., 2004 Sherriff & Williams, 200§. The main aim of soft-
ware change impact analysis is to find out which dependent componeritenfspftware
are affected by a change and to take action before the new version sbftiaare is re-
leased. Reducing the time and effort of tracking and correcting theesusnmodules is
one reason for conducting impact analysis prior to the implementation of timgeh#\s
there are more changes and versions in a software product, thererarémpacts of these
changes on the dependent software components and this needs antediteohation to

reduce the impacts.

45

The author in Bohner, 200P conducts a change impact analysis on commercial-Off-
The-Shelf software. He identified different reasons for softwaesgh and classifies soft-
ware impacts as direct or indirect, and structural or semantic impacts. Thetianysis
method uses graphs to represent dependencies between softwam@eatsp He uses
graphs to analyse structural and semantic impacts of changes on defpgystems. He
further conducted structural analysis and semantic analysis usingatelityhgraphs by
implementing transitive closure algorithms. The work focuses on the syntadditon-
ship between software modules whereas we focus on structural andtge=aanges with
detailed semantics.

In[Hassan et al., 20]1(he authors present a knowledge base system for change impact
analysis on software architecture. They propose an architecturabsefcomponent model
(ASCM) on which they defined change propagation process. Thegraghs to represent
a software architecture description represented by ASCM. The grapbet$ to capture
architecture elements and their relationships. The authors conduct art emphsis using
rules that define change propagation. The change propagatiorsprases a knowledge-
base system which stimulates the impact on the software architecture and actube
code when the associated rules are fired. Their work is similar to oursithua wignificant
difference in the domain and in the impact determination approach.

To deal with software change and to understand and manage the effd@schanges,
different researchers conducted software change impact angiysiset al., 200¢develop
a tool for change impact analysis for Java programs. The authors idehéihges by com-
paring two versions of a program and represent the changes as atmniges. Using the
atomic changes, they analyse the affected elements that changed theiobedae to the
atomic changes and they explain the causes of the effects. The autbarsca$i graph
that represents methods using nodes and edges between nodes taadifteg relation-
ship between methods. Their approach starts with identifying affected teggst§), and
moves to identify affecting tests (causes). The method computes syntacticddegyzies to
determine the causes of the changes. Syntactic dependencies and sdefzarigencies

are independent of each other and are treated differently. Usingctigraad semantic de-

46

pendencies, they identify the impacts of the changes on the edited verBi®mpact of a
single change when executed alone has a different impact than whexétisted as part
of a composite change. However, it is not possible to apply this appraodebsuwe have

access to the original and the edited software.

3.4 Evolution Approaches in Ontology-based Applications

Attempts are made to enhance ontology evolution by adopting well establisletgiees
from other disciplines such as database schema evolution and softveduécev How-
ever, the techniques borrowed from such disciplines do not fully addte problems of
evolving ontologies and ontology-based applications. Ontology evolutidnvarsioning
in general and change detection, change representation, chapg@ation, semantics of
change, evolution in distributed ontologies and change impact analysisareyahe prob-

lems that require further investigatioBtpjanovic, 2000 Djedidi & Aufaure, 2010/

3.4.1 General Ontology Evolution Approaches

The requirements and the characteristics of ontology evolution have mmissed in dif-
ferent papersHBennett & Rajlich, 200D[Stojanovic & Motik, 2002 [Noy & Klein, 2004
[Stojanovic, 2001 [Flouris & Plexousakis, 2009 Noy et al., 200§ [Lee et al., 200]¢ In
all these investigations ontology evolution is treated as a complex and n@irioblem.
An ontology evolution begins with capturing a change request and endgwygtbmenting
the requested change without invalidating the ontology and dependégitnsysOntology
evolution involves several intermediate steps such as change reptiesgrgamantics of
change, change propagation, change validation and finally, changerientiztion.
Ontology evolution also distinguishes between different levels of chapgeations.
[Stojanovic, 200} for example, classifies changes as atomic, composite and complex changes
and provides support for the first two categories. Other reseliem[2004 distinguishes
between basic and complex change operations. Basic change operafisent simple

and atomic changes that modify only one specific feature of the ontologyc@mpos-

47

ite changes represent complex changes that are composed of atonge<lgaouped in
a certain logical order. Our ontology evolution approach considenslé»els of change
operations, atomic, composite, domain-specific and abstract. We mainlydoaddition
and deletion change operations. Atomic or elementary change operatofisitar based
on the available constructs of the ontology language. However, compositelex) and
domain-specific changes are infinite as there is no limit on their combination.

The ontology evolution process involves capturing change requeststidg changes
and version logging, change representation, semantics of changgecimaplementation,
change propagation, change validation, and other ta&&tkganovic, 200§ Zablith, 2009
[Flouris et al., 200H Konstantinidis et al., 20Q§Zablith et al., 2008 Qin & Atluri, 2009].
Ontology versioning Klein & Fensel, 200] [Klein et al., 2002, change impact analysis
and resolution, detection of patterns from change logs and othersaaiesasder investiga-
tion.

Six phase ontology evolution approaclis an ontology evolution approach proposed in
the literature and gained wider acceptance as a global evolution pracds8®N Ontol-
ogy [Stojanovic, 2001 The proposed ontology evolution methodology includes six phases
targeted for business-oriented ontology management. The six phasdisaussed as fol-
lows.

Change capturingThis phase focuses on the process of capturing ontology changes by
explicit request from users or implicit change detection and discoveryadetfThe change
detection and discovery method employs changes that are captured githdata-driven
method or by a usage-driven method which analyses the behaviour ofttilegynusage
patterns $tojanovic et al., 2003 Maedche et al., 20Q3Stojanovic, 2004

Change representationThis phase focuses on the representation of the change opera-
tions based on the KAON language. Elementary changes and compositestaan used
to represent the change operations. However, the proposed ctegrgsentation method
does not cover domain-specific change operations.

Semantics of changé&his phase deals with evaluation and resolving effects of changes

to ensure consistency of the whole ontolo@¢djanovic, 2004 This phase enforces con-

48

sistency rules as invariants that must be satisfied, soft constraints vemdiecviolated for
a period of time and user-defined constraints which are defined by theougaecommo-
date his/her requirements. This phase makes sure that these consteasatisfied with-
out introducing any inconsistencystojanovic, 2004 Qin & Atluri, 2009] have identified
structural and semantic inconsistencies. Structural inconsistencieaesdtatements in
the ontology that violate the structural constraints defined in the ontologylnfelmantic
inconsistencies are those statements that alter the meaning of the ontology. edtities
ever, the available methods do not fully deal with semantic inconsistencissisHecause,
handling inconsistencies is dependent on specific semantic information thatt éxplic-
itly expressed in a standard ontology mod&idjanovic, 2000 Djedidi & Aufaure, 2010h
[Djedidi & Aufaure, 2010h Here, our work also focuses on addressing semantic inconsis-
tencies and semantic impacts by analysing individual change operationsilaidg rules
for semantic inconsistencies. We further identify semantic impacts from a catidrirof
more than one atomic change operation.

To address the inconsistency problem, we need to identify the inconsiatént @eter-
mine possible alternative solutions and choose one, and proceed to its imfagarenA
posterior verification approach for consistency checking verifiesdahsistency of the on-
tology after every change is implemented. A priori approach checks teatp violations
of preconditions associated with each change operation before thgeshare applied. A
priori verification approach is cheap compared to a posteriori apprimathat posteriori
verification is applied to the whole ontology and the resolution needs rollinackanisms
[Flouris et al., 200p Furthermore, it is difficult to explain the change impacts and pinpoint
the inconsistency associated. In KAON, this phase is implemented as a priification
based on predefined preconditiodjanovic, 200} We also follow an apriori approach
for both semantic and structural inconsistency and impact identification.

Semantics of change also deals with procedural and declarative inentyisesolu-
tion approaches. The procedural approach is based on the catisidesf constraints of
the consistency model and the associated rules to satisfy the constraifgsapphoach

considers different evolution strategies to produce additional chgmgyations. Evolution

49

strategies play a major role in allowing the user to flexibly handle changesagliffgrent
set of change operations in response to the inconsistency introduftedalthe changes
are generated, they are implemented in the ontology. The declarativeaapgdodlows a
formal change request in the form of positive changes and negdtareges. The positive
changes are implemented directly in the ontology and when there are incoosstthe
resolution strategy is selected based on the two sets of requested cf@osijidge changes
and the negative changes). Finally, all the possible consistent states oftiblogy are
ranked based on the ontology engineer’s requirements.

Change propagationChange propagates to dependent artefacts, ontologies and systems
that exploit the ontologies. Thus, change propagation deals with pribpgdiae ontology
change to dependent artefacts.

Change implementationThe change implementation phase concentrates on the phys-
ical implementation of the requested and derived changes. This phasdeisdhgging
changes, undo and rollback services.

Change validation This phase is the final phase which is responsible for the final
validation of the applied changes and the acceptance and approval diahges by the
users.

This approach is widely used by ontology engineers. Its main focus is thagies of
change phase. We also focus on this phase to find out structural madtseimpacts and
to select optimal resolution strategies using different parameters.

Change detection approachfollows two widely used methods of change discovery.
The first approach is data-driven change discovery, which religh@mchanges that are
observed in the corpus data. This approach uses taxonomic analysisttaxtion, rela-
tionship mining, etc., to detect changé3rpiano & Volker, 2005 [Bloehdorn et al., 2006
[Enkhsaikhan et al., 200.7 The second approach is user-driven change discovery, where
the users submit change requests based on their common understaratingyvofving do-
main [Stojanovic et al., 2003a

BOEMIE. Bootstrapping Ontology Evolution with Multimedia Information Extrac-

tion (BOEMIE) is another ontology evolution approach proposeddnsfano et al., 2006

50

[Petasis et al., 2009 This approach aims at automating the process of knowledge acqui-
sition for multimedia content. BOEMIE uses ontology population (adding newrines)

and enrichment patterns (adding new concepts, relations and axioms. ti@nontology

is populated with new changes, the consistency of the ontology is checlainioate
contradicting and redundant information. Finally, BOEMIE producesvavezsion of the
ontology that reflects the updates and the newly acquired knowledge arabsbciated
change logCastano et al., 20Q6This approach does not explicitly support change impact
analysis.

Ontology evolution in a distributed environment is another approach proposed and
used for distributed ontologies and ontology-based syst&ihagy, 2004. In this approach
a global framework is used to manage requested changes and déraregks. Distributed
change management systems incorporate additional characteristicsetkdahar different
or not available in other approaches. These characteristics arethf@stature of propa-
gation of a change depends on whether the requested change modiBpsdHization or
conceptualization of the ontology and, second, the definition of consyséercconsistency
maintenance does not depend any more on one specific feature tospreser

Ontology evolution as reconfiguration-design problem solvings another approach
proposed by$tojanovic et al., 2003 The ontology evolution problem is reduced to a graph
search where the nodes are evolving ontologies and the edges ntfemeges that trans-
form the source node into the target node. The approach allows thesousdrmit complex
requests with positive changes and negative changes and provide pthghible ways to
resolve the request. The approach uses a consistency model and intpleh@ge resolu-
tion using an evolution graph that generates multiple options for implementing éimgeh
The selection of the best option is guided by heuristic information.

Belief change principles for ontology evolution. A different approach for ontology
evolution based on belief change principles is proposed-lyufis & Plexousakis, 2005
[Flouris et al., 200p The authors argue that the existing ontology evolution approaches
are unable to handle change representation and the semantics of chasgs.prhey crit-

icize current work on ontology evolution as a process specializing in helpers to per-

51

form changes manually rather than performing the changes automaticadly.pfbpose a
method to handle ontology evolution without human intervention. Belief charmeades
necessary formalization for change representation and deals with autawhapi@tion of a
knowledge base to new knowledge. The belief change theory theyggdmmbased on the
AGM theory initiated by three authors (Alchourron, Gardenfors andiNidn,1985). The
focus of belief change is on determining the most rational ways of dealingohéhges
and on the development of algorithms that automatically update knowledgs. bakes
approach has a deficiency in representing addition and deletion oftsnceles and in-
dividuals. To resolve this problem the authors suggest a proper seldetween Open
Vocabulary Assumption (OVA) and Close Vocabulary Assumption (CVA) arconsistent
use of the selected vocabulary.

Change detection approach using version logis another approach presented to ad-
dress the problem of ontology evolutioRlgssers et al., 20007A change detection is pro-
posed for OWL DL ontologies. It exploits change logs to detect changesatk not ex-
plicitly requested and automatically generates an overview of changesatiebhcurred
based on a set of change definitions. The authors proposed the heditggon Language
(CDL) which is used to represent and query a version Riggsers et al., 2007

This approach distinguishes between two kinds of evolution: evolutioreguest and
evolution-in-response. Evolution-on-request focuses on modifymgriology by forward-
ing a change request by the ontology engineers and evolution-inAssfmcuses on provid-
ing information about depending artefacts changed during the evolutioreguest phase.
Evolution-on-request has five phases: change request, congistexictenance, change
detection phase, change recovery phase and change implementatien phas

Evolution-in-response takes into account the changes applied by dogynengineer
and evaluates them to approve or reject the changes. The changgspheel and prop-
agated once they are approved, otherwise rejected. It has threewlifflhases: change
detection, cost of evolution and update approval.

Ontology Robustnesss an other approach which is suggested to reduce the number of

change in ontologies by designing a robust ontoldggrpvolo et al., 2008 This approach

52

is based on the distinction among stable components and contingent compaointres
ontology. Ontology robustness in evolution is explained as the minimization ofitnéer

of instances to be migrated in the new version of the ontology. The aim of thie ig/o
to reduce invalid assertions. This approach can be viewed as an alteraptiroach to
ontology evolution.

Formal RDF/S ontology evolution. This approach presents a formal approach for
RDF/s ontology evolutiononstantinidis et al., 2008 The work aims at providing an
algorithm to determine the effects and side effects of a requested elementagnplex
change operations. It focuses on change requests and tries teerésobvolution problem
by analysing the requested updates against the validity rules preserttezldoythors. The
work is inspired by belief revision principles such as validity, successwnignal change.
The authors challenge existing approaches for their lack of completandgskeir attempt
to address the ontology evolution problem focusing on change operaisesby case.
They further criticize existing work as error prone, hard coded awuhgino guarantee
whether the cases are exhaustive. The paper propose a new anehdiffpproach to handle
ontology evolution by identifying invalidities a given change could cause erugidated
ontology using a formal validity model. They further propose an approacteal with
various effects and side effects. The interpretation of effects andeffiglets is restricted
to the validity model which does not differentiate and include semantic efféctisamge
operations. The change implementation process they proposed woskscandtraints and
the constraints come from the validity model.

This work focuses on structural changes and excludes semanticeshahgch are cru-
cial in ontology evolution. Furthermore, the authors give emphasis to thetyatddel
and exclude other evolution factors such as the user prefereneesitysef the change
operations and sensitivity of the ontology #50x or 7 50x statements. An interesting
evolution criterion they identify is the minimal change criterion which ensures amin
number of changes to evolve ontologies.

The major difference between this work and our proposed solution is tieatlistin-

guish structural and semantic impacts, to which we give detailed coveragtefmnore,

53

our approach focuses on analysing impacts of change operationsusirfg on the im-
pacts and the change operations that cause the impacts. Our apprakctvitle empiri-
cally identified impacts and empirically identified atomic change operations thse the
impacts. For determining impacts we focus on a finite set of atomic changeiopsra his
allows us to identify impacts of atomic, composite and domain-specific changatiops
by combining atomic change impacts and further implementing fine grained chrapget
analysis. Our approach is capable of identifying impacts of composite andidespecific

change operations.

3.4.2 Consistency Management

Changes in an ontology may introduce inconsistencies in the ontology, inpkeadient sys-
tems and in the artefacts. Inconsistency management is one of the majoafeas s ontol-
ogy evolution Haase et al., 20QfHaase & Stojanovic, 20QpPlessers & De Troyer, 2006
[Bell et al., 2007 [Qin & Atluri, 2009]. The two approaches in inconsistency management
are the procedural and declarative approaches. The procegymaiach maintains consis-
tency by considering the constraints of the consistency model and thgealeflas that have
to be followed to satisfy them. In this approach, each requested changeciset! against
a precondition and inconsistency resolution is generated based ontedetealution strat-
egy. Once the resolutions are generated as additional change operétienmequested
change is implemented together with the generated change. The declgrptivach main-
tains consistency by considering a comprehensive set of inferrethaxi@his approach
treats change requests as changes that must be performed ands¢hahgeist not be per-
formed. The consistency of the ontology is checked against the firef senges and in-
consistency resolution is applied by considering both sets of changedudexhe changes
that must not be performed. Finally, the ontology engineer selects omedilahe pos-
sible consistent states of the ontologgtgjanovic et al., 20034 Leenheer & Mens, 2008

[Djedidi & Aufaure, 2010

54

3.4.3 Ontology Change Logging and Mining

Change logging refers to the activity of tracking and recording all chamnga change log
during evolution. The change log facilitates recovery of the ontology toég@us state by
undoing changed Eenheer & Mens, 20Q8It is also used to detect changes and discover
useful information that can be used later for tasks such as discovéramge patterns, co-

occurrences of changes and analysis of frequently occurringyelsdraved et al., 201]c

3.4.4 Ontology Diffs and Content Versioning Systems

Authors in Noy & Musen, 2002developed Promptdiff to compare different versions of an
ontology. It detects changes in two versions of an ontology and pregentifferences.
At the end of the evolution process, ontology editors use promptdiff towegleanges
and approve or reject those changes. Currently, promptdiff doesupgort OWL2 on-
tologies. However, there are different successors of prompfdiffigrache et al., 2008
[Redmond et al., 20Q&hat use the heuristics used in promptdifRgdmond et al., 2008
suggest a system that manages changes using version control sy&terasithors propose
a system which addresses the existing problems of ontology version lceygtems. This
includes addressing problems in concurrent editing, complete changagrascalability,
and performance. They focus on add, delete and rename operatobpgrdorm analysis
using diffs between two ontology versions.

The authorsiRedmond & Noy, 201]lpresent a pluggable difference engine which aligns
ontology entities before conducting comparison. The difference engie® an alignment
phase and explanation phase. The explanation phase organizes theobtite alignment
phase and presents the difference in a human understandable amdexigeay. The differ-
ence engine highlights additions, removals and renaming of entities. Thizaahmequires
two versions to compare changes. It does not consider the changgiope that are the
sources of the change.

The authorsRRuiz et al., 200Ppropose content CVS (Concurrent Versioning System)

for building and editing ontologies collaboratively. They use a CVS pamadiged in

55

software engineering to build ontologies and manage changes. In c@\&hthe most
recent version of the ontology is kept in a shared repository in a sangeeach developer
keeps a local copy. Whenever the developer makes a change to thedpgahe/she has to
submit the latest local version to the server. The system compares tlestredgtn the most
recent version. The developer can access the repository using,estprk-out, update and
commit operations. If the local version of the ontology is not changed, inmdzere is
no meaningful change committed. Otherwise, if the local version is up-toashateot in
conflict with the recent version, the local version will replace the recersion.

This approach uses change detection, conflict detection and condlidtitien. It uses
structural conflict resolution and a combination of structural and semaonitiat resolu-
tion. The authors implement deductive difference which computes the laginatquence
of the new version with the previous version to identify semantic differenkases rea-
soners to conduct deductive reasoning and semantic conflict reféne wonflict due to
inferred axioms. Once the difference is calculated, if there are confliasir@ms or unin-
tended entailments, the users are presented zero or more options to.ciibessontent
CVS allows the user to choose the most suitable minimal plan to avoid the conflicts. |
there is no plan, the conflict resolution process ends and the ontologypacksto the old
version.

A closely related work on concurrent development and editing of ontadagigiven
in [Ruiz et al., 201]L This work extends content CVS to incorporate several developers to
make changes concurrently. This work focuses on conflict detection@al@ange requests
from different developers, and resolving the conflicts by employinggitral and semantic
differences. Semantic conflicts are addressed using logical reasoner

The authorsiartung et al., 201propose a tool that allows determining semantic changes
between two versions of an ontology. A web-based tool, CODEX (COmphtalQy Diff
EXplorer), is proposed. The tool contains a repository for calculatiffig) at the backend.
The backend computes diffs and presents the changes using statistisak@sear his in-
cludes: number of changes, diff sizes and growth rates of the chahgédsws exploration

of elements that have been influenced by the changes. It further isctindage impact

56

analysis to find out the elements that are affected.

CODEX can provide information similar to our change impact analysis tool. Mexyve
it follows a similar approach used in diff and in content CVS. Even if we dofokow
the ubiquitous diff approach, our change impact analysis tool providesanalysis and
additional semantic impacts other than the semantic changes presented in CODEX
approach not only focuses on terminologies, but also analyses impaatstances and
annotation triples. Change impact analysis deals with impacts of changeshotataa
documents. It presents impacts of changes on ontology entities and infanrsatioces
that consume the ontologies.

The authors infonev et al., 201Ppropose a new version of CEX versioning tool which
extends the original CEXKonev et al., 200Bto incorporate three distinct logical differ-
ences. These are: concept inclusion, answers to instance queapsmdrs to conjunctive
query. CEX is applicable for acycli€L terminologies and the proposed version extends
it to ELH+ which admits role inclusion, range and domain restrictions. Thislegsaisers
to perform concept diff, instance diff and query dif. This work is cléseur work by
considering semantic changes on instangl8gx Statements).

In the above approaches, changes are made concurrently and twaeovensions of
ontologies are compared structurally and/or semantically. Semantic diféefecuses on
the logical difference of axioms based on inputs from a reasoner. fipuoach is different
in the following ways. We view impacts from change operations perspsctivast, we
focus on the impacts of the change operations that are requested bgtlmdgenerated
by the system. Second, our notion of structural and semantic impacts ibtbad the
structural and semantic changes discussed in the above papers. thiég focorporate
the implication and interpretation of the changes. Third, a minimal plan, in coG¥8t
refers to a plan that avoids inconsistencies and errors caused byp@greittailments with
minimum removal of additions or deletions.

Our approach provides detailed information about the requested andrthedichange
operations, the impacts of the change operations, the affected entitiesalgiwén change

operation and the severity of the impact on the entities in the system. Our n@soet only

57

finding the additions and deletions, but also how the entities are impacted, alacige
operations impact them, how two or more changes impact an entity and thiysef/ére
impacts.

In comparison to the CVS approach, a CVS presents “what” has chamgetie details
about how the changes affect the dependent entities, why a givenisrdftgcted and the
severity of the effect is missing. Evolution of ontologies using such anadgsé input for
selecting an optimal strategy and evolving ontologies is the major concern oédeiarch.

At this stage, this research does not analyse impacts of changes oadrdgioms.

3.4.5 Ontology Change Impact Analysis

Change impact analysis is a crucial activity in ontology evolution. Changecinapalysis

is defined as “the process of identifying potential consequences (§#atsg of a change,
estimating the cost of implementing the change and analysing alternatives t@ tbaliz
change” Bohner, 200 The change impact analysis process provides information related
to the effects of the required changes in the ontology, other related oi@®kryd dependent
systems that use the ontologies. It is also used to estimate the cost andeztored

to implement the requested change¢nheer & Mens, 20Q&nd serves as an input for
deciding whether to proceed to implement the requested change.

Change impact analysis uses requested changes and dependenaesvioiting on-
tology, dependent ontologies and artefacts to generate cascadsd.€effiee impact analy-
sis process includes structural and semantic impacts on all dependéattaréend should
present them for the ontology engineer. The change impact analysisatoble combined
with different evolution strategies to present different options and altbevsntology engi-
neer to choose the strategy which generates less impact and less cagtitbe.

Change impact can be viewed as a normal evolution that preserves ekisbwipdge
according to ontological continuity principle or a revolution that changéstieg true ax-
ioms. According toKlein, 2004 [Xuan et al., 200F change impacts depend on the user’s
requirement about what to preserve in the ontology. The user may equueiserving data

instances ABox statements) ontology concepfBfox statements), inferred facts or the

58

consistency of the overall system. This shows that the analysis andtresadfichange
impacts is subject to the views and requirements of the user.

Analysis of effects of changes involves checking one or more of theeabequire-
ments. It further involves maintenance of inconsistencies by proposifijcachl changes
that address the inconsistencies. This involves a manual procedure artelogy engi-
neers revise the ontology using ontology editors and reasoners to fitip@isources of
inconsistenciesjtojanovic et al., 2003b

Optimization of ontology evolution and optimal selection of evolution strategiesésgi
a little attention in the state-of-the-art literatureZhpng et al., 2008conduct a study on
user defined ontology change and propose an optimization strategy terddutime of
execution of changes. Their methodology focuses on eliminating reduatiemic change
operations. Using redundancy elimination, their methodology optimizes thgelhaple-
mentation in terms of time by reducing the number of change operations. Tharchs
explores a new area in ontology evolution covering optimal strategy selarding quanti-
tative analysis of parameters.

To summarize the literature review and to position our proposed researcé aoth
text of existing literature, we organized existing research in the followingrdia (Figure
3.1). The diagram presents the existing work in two dimensions. The horizdintahsion
begins with research approach on pure ontology evolution. Then, asowe to the right,
it shifts to research that includes annotations and OCMS evolution. In thisxdiarethe
approaches are unified to address the problem of evolution of an O8KI&tive to ex-
isting work, our research approach is built up on previous reseawttiuather pushes the
boundary to address the evolution problems in an OCMS.

The vertical dimension begins from basic ontology evolution problem. Asavepy
this dimension focuses on concurrent evolution, consistency and valfdifyotution, and
change impact analysis. There are existing researches focusingl@ssidg these prob-
lems in pure ontology evolution context. However, different reseascheygest the change
impact analysis approach for ontology evolution. This research expldrange impact

analysis as an extension of the existing research. It further focmspsoposing methods

59

Semfantics

Impact analysis

Noy et al., 2006]
Javedetal., 2009]

: [Djedidi & Aufaure,2010b] [Abgazetal] Abgaz Y,
and optimal ?
implementation [2hang SLarRa 008] 2010,11,12

o — [Haase etal., 2005] [Plessers & De Troyer,
2 y [Plessers & De Troyer, 2006] 2006]
Validity [Qin & Atluri, 2009].
[Zablithetal., 2008]
T — [Tudoracheetal., 2008] [Leenheer&
- [Redmond etal., 2008] Mens, 2008]
[Ruizetal., 2009] _aaedcheetal., 2003]
[JimenezRuizet al., 2011]. I
.
[Stojanovic& Motikﬁ] [Stojanovic, 2002, 2004] [Maedche et
Basic [Noy & Klein!<20§’;1" [Urenetal., 2006] al., 2003]
evolution [StOJa nOViC,"2004]
[Flouris & Plexousakis, 2005]
[l
[

Unified
>

Ontology oCcMS

Figure 3.1: A diagram summarizing existing research

for change impact analysis in a unified but centralized context.

3.5 Tools for Ontology Evolution

There are different tools (Sectighb) available for supporting ontology evolution. These
tools are designed to implement different ontology evolution approaclogeged by re-
searchers. The KAON ontology editor provides support for ontologyuéion based on
the proposed evolution strategytpjanovic, 200)[Maedche et al., 2003The KAON on-
tology editor allows the user to select different strategies to follow to resodemsistencies.
The user can configure those strategies before the changes are inmpldmEme KAON
editor shows the intermediate changes but does not cover explicit chmapget analysis.
Another tool that supports ontology evolution is the protege editor. Thegeceditor
allows the user to specify changes using the protege user interfaceneWdnethe user

requests a change, the editor asks if the user wants to implement only testextjaghange

60

or cascade the change to other dependent entities in the ontology. Thagepealitor has
different plug-ins that provide functionalities like change logging, unald i@edo services.
The main protege editor does not show the affected entities before aecisangplemented.
However, it provides reasoners that allow the user to check the camsigiéthe ontology

after the changes are applied. It allows the user to undo the changesiiftthegy becomes
inconsistent.

The NeON editor provides a graphical user interface for evolving ogieéo The
NeON toolkit allows the user to choose among three change implementation isgateg
and allows the user to approve or ignore the changes. It furthermovesdhe entities
that should be removed or added but does not give information abeuth® change
operation affects the entities and the overall ontology. PromptDiiffy[& Musen, 2002
[Noy & Klein, 2004 allows a comparison of two versions on ontology and lists all the dif-
ferences between the versions. PromptDiff requires two versions aft@ogy and does
not consider the change operations that evolve the ontology from agemwedo another

version. PromptDiff is also available as a plug-in in protege.

3.6 Summary

Existing research covers different problems related to schema evolstiitvware evolution,
ontology evolution and content evolution. Research in the area of onteladytion covers
change specification, change representation and consistency managéfagher focuses
on change logging, change discovery, change detection, etc.

However, change representation amenable for impact analysis, impéadiamf change
operations in evolving OCMS and optimal strategy selection are not yetssklt by exist-
ing research. Change implementation in terms of impacts of change operatwesty of
impacts, type of statements affected and number of change operatiorst ardfitiently
covered in existing research. However, an OCMS requires efficienagement of the
evolution of the overall system. This includes analysis of structural amausgéc impacts

of changes, analysis of impacts of changes using different scerfatias-if analysis) and

61

selection of optimal implementation strategies using different criteria.

To fulfil these requirements, we propose a layered operator frametvarkepresents
changes using different levels of composition; a change impact anapywisach that anal-
yses semantic and structural impacts and an optimal strategy selection methpmifihrans

optimal strategy selection by reducing side effects of the change on theSOCM

62

Chapter 4

Ontology-based Content

Management Framework

4.1 Introduction

Chapter 3 focused on a review of related literature in ontology-basddmananagement
systems (OCMS). In this chapter, we present a layered OCMS frameWbekconceptual
framework is organized into three layers: the ontology layer, the contgat End the
annotation layer. We discuss the constructs, the changes and the ewattitigs of the
layers. A formal representation of the OCMS and its layers using a drapéd formalism

is presented.

We further introduce a layered operator framework. The framewonkagas four lay-
ers organized as atomic change, composite change, domain-specifipe crah abstract
changes. The change operations at each layer are represeragddipas the graph-based
formalism used to represent the OCMS. The two frameworks are usepraseat the con-
text in which the change impact analysis is defined and used. They figpleeify the
interactions between changing entities and the interdependences withiorasd the lay-

ers.

This chapter is organized as follows. Sectb@ provides a general introduction of an

63

OCMS. SectioM.3 presents the layered OCMS framework and discusses the individual
constructs of the framework. The representation of the layered frarkavging graphs
is presented in Sectiof.4. Section4.5 presents the change operator Framework and its
formalization. We give an evaluation of the layered operator frameworkenti@ 4.6.

Finally we present the summary of the chapter in Sectign

4.2 Ontology-based Content Management System

Content management systems shift toward the use of ontologies to enricbahigint and
provide a better support for developers, designers and end @ersf al., 200P In such
systems, ontologies facilitate a common understanding and interpretationavea &mowl-
edge between human&ijuber, 1998 However, the use of ontologies is not restricted to
the exchange of semantic information between humans and computerthét tuanscends
that and incorporates the exchange of semantic information among autosidigdal de-
vices. This is achieved by annotating the target content using ontologieshrasvay that
both human and computer systems gain the same understanding of the semanmitiggmea
conveyed by the content.

The semantic information, which is available in OCMS, is used for differerpgaes.
It is used for creating taxonomically guided information organizatitomgs et al., 2031
discovering previously unknown information, conducting semanticallytaskiisformation
retrieval and so on\fallet et al., 2005 [Jun-feng et al., 2005 It is used to identify more
relevant documents to the user’s query. It is used to improve the precikibe results
by filtering content which is not relevant to the information nelde\jigli & Velardi, 2003
[Paralic & Kostial, 2008

The semantic information is used to classify content using taxonomies ancchiesa
[Ferrandez et al., 20]1 Semantically rich content is used to identify hidden relationships
between the content, authors, publications, eteah| et al., 2010 In other application
areas such as social networks, this semantic information is used to aneliysiea of

users, product preferences, patterns of usages \iica,[2007.

64

To achieve this, OCMSs make use of both generic and domain-specific gield he
generic ontologies provide semantics for concepts whose interpretatiant restricted
to a specific domain. Examples of such ontologies are SUMO and Mikfich give
semantic information about countries, measurement units, currencie® amd espite
their applicability to a wide range of disciplines, generic ontologies do notigecthe
detailed semantics required to describe content in specific domains. Cbasatt-systems,
that are built to support specific domains, make use of ontologies thgveciisally built
for those domains. This enables the content-based system to supplemeuoriterg with
rich semantics using domain-specific ontologies.

Thus, the primary objective of OCMSs is to make the content understandatae
pretable and interoperable by both humans and machines based on a copegcitication
and representation of concepts in a given domain.

An OCMS resides either on the web or on a private network. It may usendadtae
system where every required component is stored in one place or may atdiz&ibuted
environment where all the components or parts of components come fréaredifloca-
tions. Furthermore, the authors of the content may use one or more ontologsgcribe
the content. Semantic annotation of content is also done in different waykows of the
content may use in-line annotation which embeds the annotations in the origitiaht or
a stand-off annotation which stores the annotation separately from theabggntent.

We built the OCMS framework to have a common understanding of what we mean
by an OCMS. The OCMS framework defines the different layers of a&y@CMS, their
interaction and the conceptual location of each layer. Our framewopostgthe following

OCMS requirements. The framework needs to:

e allow extensibility of any of the layers namely the ontology, the annotation and the

content layers.
e ensure a transparent interaction of the layers and clear dependeeiiesn them.

e provide a method for simple evolution of the individual components.

http://www.ontologyportal.org/

65

e facilitate change implementation with minimum or predictable impact on the depen-

dent entities.
e maintain the consistency within and across the layers.

To realize these requirements, we propose a layered OCMS frameworkhwathdis-
tinct layers. The interaction between the layers is defined by the depseséhat exist
among the entities in the layers. The framework facilitates the evolution of thearemfs
with a visible and transparent effect on the dependent layers. Timedark further main-
tains the consistency of the system whenever there is a change in anycotippnents.

The following subsection introduces the different components of the OZéhSework.

4.3 Layered OCMS Framework

The first layer of the OCMS framework is the ontology layer. The annotddiger is the
second layer which contains annotation triples. The third layer is the cdatemtwhich

contains a set of documents. The framework is depicted in Figydre

==

Domain ontologies

&~

Ny
| Annotation triples |

Y

.../ Docl.xml .../ profile.xml .../pub_02_04_ 11.html

Figure 4.1: Layered framework of OCMS

66

4.3.1 Ontology Layer

The ontology layer is a layer which contains one or more ontologies thaitgreemantics
to a given content in the OCMS. Ontologies provide a common ground farataohding,
conceptualization, representation and interpretation of domain concefismiy across
different systems, languages and formats. ResearcRerarino, 1998 p.1] further ex-

plained an ontology as:

“An engineering artefact, constituted by a specific vocabulary used trithesa certain
reality, plus a set of explicit assumptions regarding the intended meafihg @ocabulary

words”

Our OCMS framework allows the use of one or more ontologies to descritterto
This is achieved by exploiting URIs to uniquely identify the ontologies. Ontologies
widely represented using web ontology language (O%W\We select OWL due to its expres-
siveness to represent domain-specific knowledge. Furthermore,atisgtbmmendation of
the W3C, widely used in many ontology applications and is expressive alith@ormal
semantics Grau et al., 200B[Ardil, 2005]. We can achieve maximum interoperability of
OCMS with other ontology-based applications by using OWL.

Single ontology versus multiple ontologiesThere is no single ontology that covers
every concept defined in the world. However, users generate ¢dhtanprovides deep
coverage of a single discipline or shallow coverage of multiple disciplineser®timay
cover anything in between the two extremes. The ontology layer shouldgugpgers to

benefit from both domain-specific and generic ontologies.

Thus, in a single ontology environment, the OCMS uses one ontology toiloesw-
erything in the content. A good example is the gene ontdlaged in medical sciences
which represents a single domain. However, there are other applicataingst multi-
ple ontologies. For example, the Semantic Web for Earth and Environmemtaintéogy

(SWEETY ontology merges several modular ontologies together to describe difteren

2http://www.w3.org/TR/owl2-primer/
3http://www.geneontology.org/
“http://sweet.jpl.nasa.gov/ontology/

67

cepts from different disciplines.

Generic versus domain-specific ontologied.he ontology layer needs to support both
domain-specific and generic ontologies. The support of domain-specifitogies can be
used for detailed and precise annotation of domain-specific content.riGenélogies
that cover concepts which are generic such as space, time and meagyetmeand can
be used to provide shallow annotation of a generic content.

Standalone versus distributed ontologies.Ontologies in the ontology layer can be
stored together on a single machine or distributed on different machines @reth When
publicly available ontologies are used in standalone environments, a Iqgnabtdhe on-
tologies is maintained, however, it is also common to use ontologies distributedifige
ent sites.

A choice has to be made before the implementation of an OCMS, becausedtiess f

determine the behaviour of the overall OCMS.

4.3.1.1 Changes in Ontologies

Ontologies change frequently and continuously throughout a life cy@da GFCMS. When-
ever there is a change in the domain, its conceptualization or specificat@edrentolo-
gies need to evolveNoy & Klein, 2004 [Benjamins et al., 202When new concepts are
added, existing ones are deleted or modified in the content, the respeattNegy needs
to be updated.

According to research conducted liydncalves et al., 201bn a biomedical ontology
of the National Cancer Institute (NCI), the most frequent changes imeotogy focus on
addition of new classes, renaming of existing classes and addition and delesiobclass
axioms. Whenever there is a substantial change in ontologies, the deletlassds, data
properties and object properties are frequently observed.

Other researchurino et al., 200Bidentifies the intensity of the change in Wikipedia’s
database schema, which is the best-known example of a large family of veematfon
systems (WIS). They identified 170+ documented schema versions owaatband over

700GB of data and more than 88,397 revisions in Mediawiki in 2007. Thegrted the

68

growing frequency of change as “There is strong pressure towsadge (from 39% to
500% more intense than the traditional setting)”.

Implementing the changes requires understanding them correctly ardeaping them
accurately using change operations. However, this only solves feve @sbociated prob-
lems. These changes can trigger further cascaded changes artdaéeor more interre-
lated ontologies. The impacts of the change may propagate to instances tbamgcess
in a vicious circle. An ontology engineer who detects a change of an irestareccontent
document and tries to maintain the ontology accordingly may end up with mangruasd
unexpected changes. Furthermore, when the size of the ontology isitdsgeomes diffi-
cult to understand and trace the propagation of the change and its impatbeomntities in
the ontology and on dependent systems. The manual management oéghartis case,
does not ensure the complete identification of the impacts and impacted entitikgs|t
not guarantee the implementation of the requested change without introcadditgpnal

changes which are not initially identified by the user.

4.3.2 Content Layer

The content layer contains content documents which are the subjectsaritseannotation
[Kiryakov et al., 2008t We define content as any digital information which is in a textual
format that contains structured or semi-structured documents, web, gxgesitable files,
software help files, etc. An OCMS essentially deals with content in the foloaks, web
pages, blogs, news papers, software products, documentationdiléegports, publica-
tions, etc. Gruhn et al., 1995 Abgaz et al., 2010 The content layer provides the follow-
ing services.

Storage of documents The content layer facilitates the storage of content. The storage
can be file-base or database storage. The content layer storest@mfiégs in folders or
tables in databases and are accessible from the web. In any of the tegthascontent
layer provides a permanent storage of the content.

Retrieval of the documents Another service provided by the content layer is the re-

trieval of the documents whenever users require theinyfkov et al., 2003 The retrieval

69

service provided by the content layer is crufcial in accessing a spdoifiement.

Unique identifiers for content. All documents and parts of documents should be iden-
tified uniquely. The unique identifiers serve as content identifiers to linkdhe&eat with
the ontology. Documents in the file-based storage are identified using tharmhthe file
names. However, in databases they are identified using the databasdh®table name
and the primary keyHImasri & Navathe, 2010 Documents that are stored on the web can
be accessed using the URI of the web combined with the file names. Howevdetailed
implementation is the decision of the content manager.

Content in OCMS can be categorized as structured content, semi-stductunent or
unstructured content.

Structured content. Structured content is content which is well defined with respect
to some data-centric structure. Data-centric structure defines the conteagments of
the content as data elements with a schema describing the elements. The getsté¢ne
structure by explicitly tagging parts of the content with the schema. A widelg toe
mat is XML. XML is supplemented by DTDs and XML schema (Sect®B to provide
further semantics about the data. In a structured document, it is possibleate land
retrieve a specific part of a document using the data elements. The otledy wad for-
mat for structured content is databases. Relational databases stooatiat in the form
of tables which are organized into columns and rows. The rows reprggbvidual in-
stances and the columns represent the attributes of the instances. Té1& oopart of the
content in databases is accessible using queries which extract spaeii@and columns
[Elmasri & Navathe, 201]0

In structured documents, there is interdependence between parts afntieatcdocu-
ments using tags/attributes that allow composition of new content from the dealaip-
pets. Since the fragments of content are highly structured and identifisiplg content
identifiers, it is possible to combine different content fragments into onepegsknt that
as a new content fragment. Such relation between different contebedaentified using

structures such as DocBook. DocBd8alefines the logical structure of a document in the

Shttp://www.docbook.org/

70

form of XML, HTML, XHTML, etc., (Section2.2).

Semi-structured content. Semi-structured content is content which is organized using
a document-centric structure. A document-centric structure gives steuctiithe whole
document or part of the document focusing on its presentation. In saminmeents, it is
possible to access information based on the available structure, butétadditional effort
to locate and retrieve specific data elements. Content in an HTML file camisedeoed as
semi-structured content which incorporates tags that give some strtcthieepresentation
of the content.

Unstructured content. Unstructured content refers to content which does not have any
structure defined for identifying components of the content. Unstructtoetént holds a
series of texts where there is no associated structural information tlest thig content a
structure.

Our OCMS layer allows any kind of content to be annotated including unated
content. However, for the purpose of this research, we focus ontptent which is either

structured or semi-structured.

4.3.2.1 Changes in the Content

Contentin OCMS evolves continuously and frequenitlygn et al., 200 Adler et al., 2008
[Krotzsch et al., 201]1 The evolution may cause a change in the semantics or in the struc-
ture of the content. Changes that affect the structure also cause gedhahe semantics.
In a dynamic content management system new documents are produstddgenes are
modified, edited or deleted frequently to provide up-to-date information.coh&ent layer
allows changes ranging from removal of the whole document to modificatiarsioigle el-
ement in the document. The changes of the content in the content layeorsedvailable
to the other layers to ensure the consistency of the OCMS systerad et al., 2070

We focus on structured and semi-structured content in the content |ayés. is to
avoid complications related to accessing and processing changes ircturstdidocuments.
Structured and semi-structured content further allow us to easily identfyiag elements

of the content and create a unique reference which can be used fgoriatessing. Thus,

71

in this research, we primarily focus on XML and HTML content documentse dontent
documents have associated URIs. In case of XML documents, the diffegetions are
identified by combining the URI with the element ID. Whereas, in HTML and XHTM
files, we identify specific parts of the content with an offset showing tlggnlpéng and the

end of the section relative to the documeviiynard, 2008

4.3.3 Annotation Layer

The annotation layer provides a means of handling semantic annot&tionef al., 200p
Semantic annotation is a process of linking content with ontology entities to éhaawon-
tent with the semanticgren et al., 2006 Semantic annotation is used to explicitly iden-
tify concepts and relationships between concepts discussed in the daimet al., 200p
[Krotzsch et al., 2047

The annotation process semantically enriches content by defining its attrimines
concepts and properties from the ontology. It further creates a link bativeo content
documents to indicate their semantic relationships. Annotation also refers tatthé of
the annotation process.

In any application that makes use of ontologies, the target content, whécis e be
semantically enriched, is required to have an explicit link, at least to one & ed@ments
in the ontology. The annotation becomes the major element of the OCMS follliheifg

reasons.

e In applications that make use of ontologies, the target content which hedus
semantically enriched is required to have an explicit link at least to one element

the ontology. This is achieved by annotations.

e Annotation provides semantics which can be used by humans and machines.

e Annotation provides traceability of the content fragment using the semasgosia

ated with it.

72

4.3.3.1 Annotation Storage

In semantic annotation, there are two approaches commonly used to stotat@mdata:
in-line annotation and stand-off annotatidfijcock, 2009. The in-line approach embeds
the annotation information in the content. Such annotations either modify thentafite
the original document to embed the annotation or maintain a copy of the origioahtent
together with the annotation data. Whenever the semantic data is requirggstdma seeds
to access the annotated document and extract the annotafidresdisadvantage of the in-
line annotation is that the annotation must be aligned withflf#ox statements which

requires additional effort to align the content with the ontology.

The stand-off annotation stores the annotations of the document in ateptirage
space. This approach uses the document URI as a unique identifieradddhments and
every annotation of that document is associated with a URI. This apphzechdvantages
and disadvantages. The first advantage is the separation of the serfrantitise content,
which allows independent evolution of either the content or the annotatfmnsdcond is, it
enables the annotation data to be accessed separately without readifgplbelecument.
Exhaustive annotation increases the size of the original document anthbe a problem
for accessibility of individual annotation$/aynard, 2008 Third, it is suitable to anno-
tate content when the annotator does not have the permission to modify tie@tcorhe
separate annotation layer further provides facilities such as queryirantizgation triples.

However, there are disadvantages associated withiiicpck, 2009.

The main disadvantage is, it requires a systematic synchronization of tiotation
with the content. When the document is modified or deleted, the annotation reydds
be updated accordingly. In a distributed environment, this task may intratidigonal
overhead. The other disadvantage is the separate storage of thet ematdime annotation.
The separation causes the content to get delivered separate fronmttateon. In fact, this
problem can be addressed by merging the content and the annotatiorudataantent

delivery.

Shttp://www.w3.org/TR/sawsdl/#Using

73

Table 4.1: Annotation triple representation

Subject Predicate Object context

CNGL:id-2.xml rdf:itype rdfs:Resource cngl:triple
CNGL:id-2.xml rdf:itype CNGL:Document cngl:triple
CNGL:id-2.xml CNGL:isAbout CNGL:DeletingEmail cngl:triple
CNGL:id-2.xml CNGL:hasTitle “Deleting email account” cngl:triple
CNGL:id-2.xml CNGL:Contains CNGL:id-6.xml cngl:triple
CNGL:id-2.xml CNGL:mediaType CNGL:Text cngl:triple

4.3.3.2 Annotation Triples

The annotation process uses RDF triples (subject, predicate and objecthdtate any
content document. It further stores the context of the annotation to dismpetween
different contexts. The subject of the annotation comes from the cdayeantand is usually
a URI. The predicate comes from the ontology or the schema defined fantbkgies.
The objects can be resources from the ontology or other contentastefasingle content
document can have multiple annotation triples. A single resource defined antbegy

can be used many times in the annotation layer.

Table4.1shows the structure of the annotation triple. The subjects of the annotation ar
content documents (xml files in this example) or parts of xml files. The predicaiginate
from OWL or RDF properties (rdf:Type) or properties from domainesjie ontologies
(CNGL:isAbout). The objects come from either the ontology (CNGL:Documantjom
the content layer (CNGL:id-6.xml). The user can provide different cdst® categories
of annotation triples. For example, the context of the triples is CNGL:triple, toatel that

they are triples for annotating resources in CNGL.

In the OCMS, we store the annotation triples in triple stores. Triple stores improv
the speed of the retrieval of the required information. They store largdars of triples
and are suitable for further expansi@ijer & Schultz, 2008 Furthermore, the annotation

triples are compliant to RDF and RDF/XML serializations.

74

4.3.3.3 Change in the Annotation

The annotation layer is the dynamic layer of an OCM®calves et al., 2011 The
changes in the annotation layer are frequent and include addition aridwd@eindividual
annotations. There are a number of triples added, modified or deleted inythis This
layer is highly dependent on both the content and the ontology layer. Bawyge in the
other two layers affect the annotation layer which carries all the semaetated to the
content. Changes made on the triples of this layer may cause other chamglesetd an-
notations within the layer. In such a situation, the changes in the annotatiarréaygre

proper analysis and evaluation before they are implemented in the system.

B —————
——r——— —_— e = ——
& OTopic_Concept g @Help File 4 5 @User =] @s;fé\::;;::ﬁ:;e & aHélp_and_querv_structure
= - 2ot Reference
Ontology { T ©Book_Info ' O Administrator ~-@Database =-OTask
Sine. ~Ocase . @-©Chapter i OCustomer OFile OCreatng < -
V! @ Comment - @Index ! -ODeligate ! = ocul ®Archiving '
L i i 1 -@Deveolper ! ©Button ®Assigning \
OData . ~Osubtitle i per | ®men OBuilding <— 1
OFolders - L @Title . mployee + ©Window Ocanceling 1 |
i i :
T v
— Administrator <ccmcepjt> <administrator, user> : :
Annotation — User <concept> <USEers i oy
Layer Message <concept> <message> i ! i
CNGL:1id-19221955.xml <Type> <Help_File> 1 !
Creating <Type> <Creating, building>..oma ’
|
Content
Layer Assign role to use About the Inbox
Administrator] Working with messages
console

¥ creating newmessaoes. Foemre e e
Searchusers Creating new messages oo

9 Working with attachments

Figure 4.2: An example of a layered framework of OCMS

Now, let us take a concrete OCMS representation and see how the theeg ilater-
act with each other. In Figur.2, the ontology layer contains an ontology which contains
concepts such adelp_file, User, Softward-eature etc. These concepts are used in the
annotation layer to describe help documents stored in the content layeexdople, the
document that contains information about an administrator is linked to the icawein-

istrator. Another document is linked to the task of creating and building.

75

4.4 Graph-based Representation of an OCMS

The OCMS is represented using a graph-based formalism. We chocggralmased formal-
ization over set theory or relational algebra for the following reasoinst, graphs provide
exhaustive theory support and reduce the problem to a well studieditogiaph theory
[Baresi & Heckel, 200R This includes mappings between structures and finding a minimal
representation of a given graph. In this research, we frequentigtseatities in the OCMS
to delete or add semantics. Graphs have some proven efficiency fohisepsubgraphs,
nodes and edges. There are generic implementations and algorithms availajykphs
[Heckel, 2008

Second, graphs provide appropriate data structure to represetigi@soand annota-
tions. The available ontology editors, such as protege, use graphsdéseapontologies in
RDF and OWL [lrinkunas & Vasilecas, 20Q7Bonstiom et al., 200B Finally graphs visu-
alize complex data in a simple and understandable way. In our OCMS, the@ntoid the
annotation are represented as graphs and the content is represeatsetaf documents.
The document set serves as a node (of type instances) in the annotation la

An OCMS is represented as graph= G, U G, U Cont, whereG, is the ontology
graph, G, is the annotation graph andont is the content set. An example of a graph
representation of an OCMS is given in Figdr8representing the ontology graph at the top,
annotation graph in the middle and the document set at the bottom. Each of théuabl

graphs and their descriptions are given below.

4.4.1 Ontology Graph

An Ontology Graphis represented by a directed labelled gréph= (N,, E,) whereN,

is a set of labelled nodes,, n.2, - - . , no; Which represent classes, data properties, object
properties and instancestjang et al., 2010 £, is a set of labelled edges:, eo2, . . . , €om.-

An edgee, is written agnq, o, no) whereny, ns € N, and the labels of an edge represented
bya e CAUDPAUOPAUIAU RA.

CA={subClassOf, disjointClasses, equivalentClasses

76

- legend
class 4 rdf:Type rdfs:sco= subclassOf

rdfs:SCO rdfs:SCO

class ~¢——rdf:Type Help_File paragraph [—rdf:Type B class

Ontology
& raph
rdfss:domain A ehealad
Data " _ - . rdfs:domain rdfs:_r;nge
Property -4 rdf:Type { has Title
P?:;f:f:v <t rdf:Type Contains
N rdfs:InstancOf
-——rdf: Type
Instance Annotation
~—cngl:hasTitle-—’[How to delete Mails J graph
ngl:Contai
v

CNGL:id-19221955.me| |CNGL:id-19221956.xml| |CNGL:id-19221956\para1 Content Sct

Figure 4.3: Graph-based representation of OCMS

DPA={subDataPropertyOf, dataPropertyRange, dataPropertyDomain, tistafrop-
erties, equivalentDataProperties, functionalDataProperty

OPA={subObjectPropertyOf, objectPropertyRange, objectPropertyDomajaind3-
bjectProperties, equivalentObjectProperties, inverseObjectPropsytiesierticObjectProp-
erties, functionalObjectProperty, inverseFunctionalObjectPropertassitiveObjectProp-

erty, reflexiveObjectProperty, irreflexiveObjectPropérty

IA={samelndividual, differentindividuals, classAssertion, dataPropesgrtion, ob-

jectPropertyAssertiof

RA={objectAllValuesFrom, objectSomeValuesFrom, objectHasValue, objectHasSe
objectExactCardinality, objectMaximumCardinality, objectMinimumCardinality, ditaA
ValuesFrom, dataSomeValuesFrom, dataHasValue, dataExactCardinatajakimum-
Cardinality, dataMinimumCardinality

In the ontology graph, properties are often represented as nodgsapetty instances
are represented as edg@&@dhstbm et al., 200 User defined property nodes link with
other class nodes using schema level property instances stdfs:demainandrdfs:range

For example, in Figurel.3, the object propertyContainsis a property node linked to

77

Help_File using a schema level instance propedjs:domainas an edge. This schema
level property instance defines the domain of the property node. Hoyvetwthe annotation
level, the property which is treated as a node in the ontology (now servsahasna for the
annotation graph) is treated as an edge in the annotation instead of a nodgample, an
instance oHelp_File CNGL:id-a9221956.xnik linked to an instance of a paragraph using
the edgecngl:Contains

In general, we treat properties as nodes and property instanceges (Eigures.6).
When we define properties as part of an ontology, we represent thaodas and when we
use those defined properties in the annotation, we represent themeaoétiye annotation
graph. We define the properties as a node and link them with other class and prop-
erty nodes in the ontology graph. We represent property instancafyas that link two

instances in the annotation graph.

OWL:class OWL:Thing Activity
rdfs :type rdfs :type rdfs :SCO rdfs :SCO owl{ EC
paragraph

paragraph

a. Types of the entities b. Hierarchy of classes c. Equivalent classes

OWL:Object Property OWL:Location [hasCity]
rdfs :type rdfs :type
owl: SOPO owl: SOPO owl: PO

rdfs :type

hasLocation isAbout [.] [h c]
hasCity asCountry isCityOf
hasCity

d. types of the entities e. Hierarchy of classes f. InversePropertyOf

nele o paragraph

rdfs :Demain Edge —#>

g. Domain and range of properties

rdfs :SCO—> = rdfs :SubClassOf ———»

owl: SOPO —#

——owl: EC—
—owl:IPO —

——owl: SubObjectPropertyOf —>

owl: EquivalentClasses —#»
owl: InversePropertyOf —

Figure 4.4: Graph-based representation of the ontology layer

In Figure4.4.a, the graph nodes represent entities that are linked to the owl:class node.
Universal classes and domain-specific classes are defined as awl:dlhs edge links

each of the entities to the owl:class node. Figdb shows the relationship among the

78

nodes. The edges represent a subclass axiom. In Fgdie the edges represent the
equivalence axiom between the two nodes, which are representedsssdia Figurd.4.a.
The representations of the property nodes and edges created b@rnoperties are given
in Figure4.4.d, Figure4.4.e and Figuret.4f. Figure4.4.g represents nodes and edges

between classes and properties.

4.4.2 Content Set

A Content Setcan be viewed as a set of content documelitent = {d;,d,...,d,}
where: d; represents a structured or semi-structured document or elements afraettc

In the content layer, such content is represented as a node.

<?xml version="1.0" encoding= "UTF-8"7> (CNGL:id-19221955.xml I
<!DOCTYPE section System "c:\docbook\docbookx.dtd> LY

_<5ect'<?xrnl version="1.0" encoding: "UTF-8"72> lCNGL:id—19221956.xml
<I!DOCTYPE section System "c:\docbook\docbookx.dtd>

<?xml version="1.0" encodmg-— "UTF-8"7?> [CNGL:id—19221956.xml

-<SecticIDOCTYPE section System "c:\docbook\docbookx.dtd>
<|:-<Sect|on id="v77" revision="1104" status="source" >
<p <title id="v771" Item prefech cache config < /title>
<paragraph id= "v772" use this setting to configure the productNameShort prefetch
<i cache mechangism. </paragraph>
<itemizedlist id="v815">

<listItem id="v8151">

<para> specifies whether to enable or disable the prefetch cache.

< /list item>

< </itemizedlist>

<informaltable id="v8153">
<tgroup id="v8154">
<tbody id="v8155" >

9 <row id="v8156">
< paragraph> catch enabied</paragraph>
< < /frow>
</sec! < /tbody>
</tgroup>

< </informaltable>

[F=mety <procedure id= "Va44">

I <step id="v441" >

<paragraph>Add the vault service account </paragraph>
<paragraph>Give the vault service account </paragraph>
<paragraph>Assign the database role</paragraph>

</step>
</procedure>
< /section>

Figure 4.5: Document collection

The content is represented as a set of documents either in a flat file, daialzase. We
represent the set of documents using their unique identifiers. The udieptdiers ensure
access to the exact location of the documents. However, the selectionagfesttructure is

the decision of the architects at the time of deployment of the OCMS.

79

4.4.3 Annotation Graph

An Annotation Graphis represented by a directed labelled grégh= (N,, E,) where
N, is asetof labelled nodes,;, n.2, . .., ny andE, is a set of labelled edges: , eq2, - - -, €am-
An annotation edge, is written as {41, aq, nq2) Wheren,; € Cont is a subjectp,s €
Cont U Gy is an object andy, € G is a predicate. The edges are referred as triples.
The user-defined properties are treated as labels of the edges whesréhesed in
the annotation layer to describe the document nodes. For example, in thé@iBL:id-
19221955.xml, cngl:ContainsCNGL:id-19221955para) in Figure4.6, the document is
treated as a node and the instance propsotytainsis represented as the label of the edge
in the annotation layer. Figu#.6 further depicts the sources of the objects in the triples.
The triples in the vertical ovals get their object from the ontology graplereds the triple

in the horizontal oval gets its object from the content set.

Object Ontology

Annotation
Predicate

Subject Predicate Object

Figure 4.6: Annotation graph

4.4.4 Attributes of the Graph

The type of a node is given ktype (n)that maps the node to its type which is defined in
the schema (class, instance, data property, object property). THeofadney edgee =
(n1,a,mn2), which isa , is a string given bylabel(e) The label of a node is the URI
associated with the node and is given lapel (n). All the edges of a node are given by

a functionedges (n) It returns all the edges &8, o, m) VvV (m, o, n) wheren is the target

node andn is any node linked ta via a.

80

4.5 Change Operator Framework

To process and implement a requested change properly, we needdsamthe changes in
relation to the OCMS framework (Secti@n3) and its graph-based formalization (Section
4.4). The change representation needs to ensure the correct and coraphegentation
of the requested change. The change request may vary depending objective of the
user and the size of the desired change. A change request can @ositagie task and can
be represented by a single change operation, but this is not alwaysGhagmge requests
may become complex and may not be represented by a single change opdfatisuch
change operations, we need to combine atomic change operations to faympadgite
change operation. For change requests in domain-specific ontologi@saybe interested
to represent changes that have similar patterns. Thus, we represenugiing domain-
specific change patterns.

Our change representation framework covers three main componenttstihempo-
nent provides a high level conceptual representation of changes asayered operator
framework (Sectiod.5.1). The framework specifies the organization of change operations
to represent changes in a suitable way. The second component gravidetamodel for
representing individual change operations (Sectidn?. It provides specification for the
attributes of the change such as target entities, parameters, owner, time ctderpetc.
The third component provides specification of change operations usamip gormaliza-
tions (Sectiom.5.3. This component represents the implementation of the actual change
in the OCMS graph and how the individual change operations change/¢nallosystem.

Each of these components are discussed from Set¢tiohto 4.5.3in detail.

4.5.1 A Framework of Change Operators and Patterns

To represent changes in a suitable format, we propose a layeredargeaeework which
contains four different levelsJhpved et al., 20Q9 Javed et al., 2011b The first level con-
tains elementary changes that represent atomic tasks. The secondigs@gigaggregation

of atomic change operations that represent composite and complex tdskshird level

81

contains a mix of atomic and composite change operations to create domaiic gpange
patterns. The fourth level focuses on generic categorization of theidespecific change
patterns. The first two levels are considered as generic changdiopsraTlhe last two

levels represent patterns of change operations.

e Level one: elementary changes which are atomic tasks.

e Level two: aggregated changes to represent composite, complex tasks.

e Level three: domain-specific change patterns.

e Level four: abstraction of the domain-specific change patterns.

Level 4 Change Operators Abstract
Patterns < T
Level 3 Change Operators Domain Specific

) {

Level 2 Change Operators

_/

Composite Changes

Operations T Generic Structural

Level 1 Change Operators

Atomic Changes

Figure 4.7: Layered operator framework

We observed thatJpved et al., 20Q%ntology changes are driven by certain types of
common, often frequent changes in the application domain. Therefqreyricey these
in the form of common and regularly occurring change patterns creataaidapecific
abstractions. A number of basic change patterns may be provided seénatay adapt
and generate their own change patterns to meet their own domain-spenifimdle This

makes the ontology evolution faster and easier.

82

45.1.1 Generic Structural Levels

Level One Change Operators - Element ChangesThese change operators are the ele-
mentary operations used to perform a single task by an ontology manag®ewolerithese
operators add or remove a single entity in the ontology. A single operatormsra single
task that can add or delete a single concept, a single property, etc.thmehnd level four
change patterns specified in Figuts are based on patterns observed in a university ad-

ministration domain (Appendi€) and can be abstracted to other domains that use similar

patterns.
Leovel 4 Ilanaze Parsan Manaze Shuchne
..................................... friancancansanonnsnnshaansannansnnsnsancsnsdananaansanannins
Lewel 3
| Manaze Famulby | | Manaze Studext | | |
Level 2 | Merge | | Split | | Copy | | Tlore |
= B
v ol w
Irtegpate Copcept Feamove Concept Irtegpate Property Integpate Integyate
Cortext Cordest Comtext Diormam Instamce
T T L
Lewll ¥ v v v v
Create Diclate Create Add pmp_erty Create
Concept Concept Propesty Dioatiam Instance
Add sub Drelete sub £dd sub 444 propeaty Add
concept corept property BRange Instance

Figure 4.8: A layered operator framework - detailed view

Level Two Change Operators - Element Context ChangesMany evolution tasks
cannot be done by a single atomic change operation. A set of relatedecbparations is
required. These change operations are identified by grouping atomitiops to perform
a composite task. Users request to implement changes that cannot bbydarsngle
atomic change. Such changes are composition of atomic change operataoospeaific
order. The combination of the atomic change operations are determined typéhef the
requested change. Itis possible to create an infinite number of compositgeaberations

from the atomic change operations. For example, when a user wants torsphisting

83

concept into two distinct concepts, he/she combines atomic change opeiataapecific
order to represent the requested changes. A single composite chaagdian can be
represented in many ways using different combinations of atomic charegatmms. In
this research, we focus on supporting composite change operationsurter provide
predefined and frequently used composite change operations sucihgas spdit and copy

[Stojanovic, 200} Javed et al., 201]1§Javed et al., 2042

4.5.1.2 Domain-Specific Level

Level Three Change Operators - Domain-specific. This domain-specific perspective
links the structural changes to the aspects represented in domain ontolbgisler to
execute a single domain-specific change, operations at level two atte Ti$e change
patterns are based on the viewpoints and preferences of the usersus&ws may have
different perspectives to view the ontology, which results in the use @ingbmation of
different operations from composite changes. As the perspectigeiffarent, the number
of operations or the sequence of operations may differ. This differassults in patterns of
changes based on the perspectives of the ontology engineers. Dgpeaifiec change pat-
terns are extracted from change logs over a long period of time thaseeyissthe patterns
of change operations used to implement changes. The extraction of thepditten the
change logs are discussed in detaillayed et al., 201]a

Level three operators enable us to treat domain-specific operaticarsssp and allow

us to define our own change patterns once and execute them many times.

45.1.3 Abstract Level

Level Four Change Operators - Generic Categorization.Level four change operators
are constructed based on the abstraction of the concepts in level thweenain objective
of introducing this level is to provide a facility that maps domain-specific ontetotp
available upper level ontologies (i.e. categorizing domain concepts in termisstrfact
ones) and to generalize and transfer patterns to other domains. Lev& flonsidered as

a framework aspect that guides the transfer of patterns to other donhiaimsiot directly

84

available for operational implementation. It provides abstract mappingasfgehpatterns

used in one domain to similar change patterns required in another domain.

4.5.2 Change Metamodel

Following the layered operator framework, we identify and represearigds and their at-
tributes using a metamodel. Whenever a change operation is executedrewhstchange
operations which are additions and deletions of classes, data propebiiest, properties,
instances, axioms, etc. The model captures information about the chpegdions. This
information is useful to handle composite changes and domain-specificgafidére meta-
model of a change is given in Figude9 and an example of an atomic change operation is

depicted in Figurél.10

has change Id
etes

= hasParanm
= ite . operatt Composite
Operation astper Change
hasEntity

|

Parameter
Merge

is A

Copy

Composed of

<J\>

2:n

has

R

reasoning type

é

AT

has order has vaiue

hasParameter e
Operation i
hasEntity has order
e Cim>
is An
is An
> isA =
Requested Generated
(Add] [Delete] [Change Change Class Property m
s a

i
Data Object
Property Property

Figure 4.9: A metadata model for change operations

45.2.1 Change

Atomic change represents a single change operation which performsla tsigk and is
represented by a single node. Composite change is an aggregation of elhamies. A

change contains metadata such as on which entity, by whom and wherge ¢hesquested

85

2/22/2012:
10:54
ArchivingBlog
has change Id
has time stamp has reasoning type

has Value

= TVDE9

has Order

SO

has creator has order
Add hasOperation

hasElement:

Target Element

Requested
Change

Figure 4.10: An example of atomic change operations

and implemented. It also contains the change operation, the OCMS elemeretiifics
entity and other related information about the change. This information is dreata
node in the graph and is linked to the change node using edges with desciapiels. A

complete specification for an atomic change operation has the following infiorma

Operation. The action we want to implement in the ontology is represented by the op-
eration. The operation can be addition, deletion or modification in case of atomic
change operations and merge, copy, split, etc., in case of compositeecbhpeg
ations. We represent modification as a series of additions and deletioss thiu
operation mainly contains addition and deletion operations. An addition operatio
introduces an entity which was not present in the OCMS in the previoumxer&

deletion operation removes an existing entity from the OCMS.

A change has an operation which can be either addition or deletion. Thgelhad
the operation nodes are connected by an edge represented as a dirsmtewith a

labelhasOperation

Target Entity. A target entity represents the changing entity of the OCMS. The type
of the entity can be a class, an object property, data property, restriatt@m, or
instance which are defined in the OCMS graph. The target element isesped
as a node and is connected to the change node with a directethasibrrgetEntity
For example, a change operation which adds a class can be reprasgntethree

nodes, the change node, the operation node, whieltlds and the target element

86

node, which ilass

Parameter. A parameter represents one or more of the actual entities involved in the
change, in our case the IRIs. A change may have one or more parantedetsof

the parameters has attributes to distinguish one from the other.

The parameter value attribute indicates the value of the specific parameter. For

example, the above change operation can be applied to the paramgtéperson

The parameter order indicates the order in which the parameters appear in the
change. The order indicates the dependent and antecedent entitiesxaFwmple, a
parameter with order equal to O indicates that the parameter appears egiineirg

of the change operation.

The parameter typeindicates the type of the parameter. In the above example, the
type of the parameter is class, which indicates that this specific parametédass anc

the OCMS. This attribute gives important information when we have mixturea-of p
rameters in the change. For example, Add classAssertingl#instl, cngl:#Person

the first parameter with order Olisstland its type is instance. The second parameter
with parameter order 1 iBersonand its type is class. A parameter is connected to
the change node using a directed edge labdlfessiParameteand a change operation

may have more than one parameter.

Creator. The creator represents the current user who requested the clpergéan. This
node is essential to provide information about who requested and implentbeted
change operation. This node is connected to the change node usingtadizdge

labelledhasCreator

Time stamp. A time stamp is used to record the time at which the change operation is
implemented. This node stores the date and the time the change is implemented. It
includes the seconds in microseconds. This node is connected to thee ainzatey

using a directed eddeasTimeStamp
Change Id. Every change needs to have a unique identifier to separate it from other

87

changes in a change log. Change Id represents the value that is usedtify id
given change uniquely. The change node is connected to the changdddvith a

directed edge labellesasChangeld

Change order. When we represent a composite change operation, we want to keep the
order at which an atomic change is executed. Change Order enabldsiositavhich

atomic change operation is executed first and which one follows next.

Statement type.The reasoning type represents the type of the statement the user is chang-
ing. The reasoning type is eithgiBox or 7 Box statement. This information serves

as an input for the change impact analysis process.

A change can be a requested change or a derived change. Tvial speles are used from
the change node to indicate the change is either a requested changerived deange.
A requested changes a change which is captured as an explicit change reqDestved
changesare changes that are automatically generated to correctly implement theteztjue
change in a given ontologyA complete changas a change which is the union of the
requested change and the derived changes. Capturing this informagieseistial to deter-
mine the order of execution of the complete change operation. The follovblegdaplains

the actual information stored about a change operation in an xml file.

<Fi nal Change>
<Change>
<Changel d>1</ Changel d>
<Ti meSt anp>2012/ 05/ 22 18: 59: 47: 5947</ Ti nmeSt anp>
<ChangeType>gener at edChange</ ChangeType>
<Cr eat or >Yal em sew</ Cr eat or >
<Order>1</ Order >
<ChangeQper at i on>Add</ ChangeQper at i on>
<Target Entity>SubC assO </ Target Entity>

<Par aneter Type="C ass" Porder="0">

88

<http://ww.cngl.ie/University.ow #Mast er sSt udent >

</ Par anet er >

<Par aneter Type="d ass" Porder="1">
<http://ww.cngl.ie/University.ow #Person>

</ Par anet er >

<St at enent Type>TBox</ St at ement Type>

</ Change>
<Change>

<Changel d>2</ Changel d>

<Ti meSt anp>2012/ 05/ 22 18: 59: 47: 5947</ Ti meSt anp>

<ChangeType>gener at edChange</ ChangeType>

<Cr eat or >Yal em sew</ Cr eat or >

<Order>2</ Or der >

<ChangeQper at i on>Add</ ChangeQper at i on>

<Target Entity>SubCd assCOf </ Target Entity>

<Par aneter Type="C ass" Porder="0">
<http://ww. cngl .ie/ University. ow #PHDSt udent >

</ Par anet er >

<Par aneter Type="C ass" Porder="1">
<http://ww. cngl.ie/University.ow #Per son>

</ Par anet er >

<St at enent Type>TBox</ St at enrent Type>

</ Change>

</ Fi nal Change>

4.5.3 Graph-based Formalization of Change Operations

The above change operations are applied to the OCMS gi@pldi§cussed in Section

4.4. The OCMS graph contains several nodé§ @nd edges k) which are subject to

89

change. The representation of each node and edge is given in detadtior8!.4. Thus,
all the changes are applied either on the nodes or on the edges of the @@pts For
example, when we delete a content document, we are deleting a node frocomteet graph.
When we remove a subClass axiom from the ontology graph, we are detetipgcific
edge that links two nodes. We formally represent change operations gisiphs. The
formalization process begins from atomic change operations since comaagdittiomain-
specific changes are constructed from atomic change operationsedie composite or
domain-specific changes, we need to combine atomic changes togethéargdtecontext
of the operations (Sectioh4) is an OCMS grapli: = (N, E) whereN is the set of nodes
Ni,Ny,...,N;and E is the set of edges;, Es, ..., E,, whereE, = (N;, oy, N;) and

i,7€{1,2,...,l}andk € {1,2,...,m}.

45.3.1 Atomic Change Representation

Atomic change can be viewed as a change operation that adds or rengingaiode or

edge from the ontology.

e Add Entity. Given an OCMS graplix = (N, E), an entityM and its node typé&’,
the Add Entity(M : T) operation results in a grapi’ = (N', E’) where N’ =
NU{M}ANE =EU{(M,«a,T)} wherea = rdf : type N'T € {owl : class, owl :

dataProperty, owl : object Property, owl : instance}.

e Add Axiom. Given an OCMS graphy = (N, E) and an axiomd = {(m;, a, m;)},
the Add Aziom(A) operation results in a graghf = (V, E') whereE’ = E U A.

e Delete Entity. Letn € N be the entity node to be deleted aAd= {(n,«,T)} € E
be the axiom defining the tydg] of the entity, theDelete Entity(n : T') operation
on an OCMS graplG = (N, E) results in a grapl’ = (N', E’) where N’ =
N—-{n}NE' =FE—-A.

e Delete Axiom.Given an OCMS graply = (XN, E') and an axiom to be deletetl=
{(ni,a,n;)} € E, the Delete Aziom(A) operation results in a gragh! = (N, E')

90

whereE’ = E — A.

The above formalization is very general and does not distinguish betsyesific im-
plementations of change operations on specific entities. Thus, a detaikdnvef the
formalization for specific entity types is given below. A detailed discussich@tiescrip-

tion and the semantics of entities is given in Secidh4

e Add Class. Given an OCMS grapltz = (N, E) and a class nod€’, the Add
Class(C') operation results in a grapfi’ = (N',E’) whereN' = N U {C} A
E' = EU{(C,rdf : type,owl : class)}.

e Add Data Property. Given an OCMS grapliy = (N,) and a data property node
DP, Add DataProperty(DP) operation results in a grap’ = (N’, E') where
N' = NU{DP} ANE" = EU{(DP,rdf : type,owl : dataProperty)}.

e Add ObjectProperty. Given an OCMS graplé = (NN, E) and an object property
nodeOP, Add Object Property(OP) operation results in a grapi’ = (N', E’)
whereN' = NUOP A E' = EU{(OP,rdf : type, owl : object Property}.

e Add Individual. Given an OCMS graplr = (N, E) and an individual nodé, Add
Individual(I) operation results in a grapgh’ = (N’, E') whereN’ = N U {I} A
E' = EU{(C,rdf : type, owl : individual)}.

e Delete Class. Let C € N be the class node to be deleted athd= {(C,rdf :
type,owl : class)} € E be the axiom defining the type of the node, the operation
Delete Class(C) applied on an OCMS grapfi = (IV, E) results in a grapld’’ =
(N',E")whereN' = N — {C} andE’' = E — A.

e Delete DataProperty. Let DP € N be the data property node to be deleted and
A = {(DP,rdf : type,owl : dataProperty)} € E be the axiom defining the type
of the node, then the operatidnelete DataProperty(DP) applied to an OCMS
graphG = (N, E) results in a graplez’ = (N’, E’) where N’ = N — {DP} A
E' =F — A.

91

e Delete ObjectProperty. Let OP € N be the object property node to be deleted and
A ={(OP,rdf : type,owl : object Property)} € E be the axiom defining the type
of the node, then the operatidpelete Object Property(OP) applied to an OCMS
graphG = (N, E) results in a graplt’ = (N', E') whereN' = N — {OP} A
E' =F - A.

e Delete Individual. Let I € N be the individual node to be deleted ard =
{(C,rdf : type,owl : individual)} € E be the axiom defining the type of the
node, the operatioWelete Individual(I) applied to an OCMS grapy = (N, E)
results in a graples’ = (N', E') whereN' = N — {I} NE' = E — A.

4.6 Evaluation

The layered operator framework is proposed to represent chaqgests and make them
available for implementation. The evaluation focuses on the adequacy oféredeopera-

tor framework. Details of the evaluation are presented in the following stibas.

4.6.1 Adequacy of the Layered Operator Framework

The research problem in this section focuses on the representatioamafeshusing change
operations that are adequate for implementation and suitable for change enpicsis.
Users of the OCMS require adequate change operations to represeigies and analyse
impacts.

Adequacy measures whether the proposed operator framework @esuffo represent
the requested change. We evaluate the adequacy of the layered ofraragwork using

an experiment.

4.6.1.1 Experimental Setup

We built a prototype which implements the proposed operator frameworlgra®tof con-

ceptwhich includes a facility to specify the change request using opesatigported in the

92

layered operator framework. The prototype supports a total of 62 additid deletion oper-
ations. This includes 14 change operations acting on classes, 12 opgeatimg on object
properties, 12 operations acting on data properties, 12 operationglrielanelividuals and
individual assertions, 6 operations dealing with cardinalities, 4 operatiealing with re-
strictions and 2 change operations dealing with content. There are twatiopsrdealing
with document change and the remaining operations apply across entities afttiogy
and the annotation. We further support 8 composite change operdiitmarovic, 200}
Any other evolving constructs supported by OWL 2.0, which are notreavia this experi-
ment (such as annotation properties), are the limitations of this experiment.

To evaluate the adequacy of the proposed layered operator framemetlse changes
derived from the Software Help File OCMS (Appendiy, which is built to semantically
enrich software help files with domain ontologies, the Database Course G&pp8ndix
B), which is built to describe content in database systems course wartheahlhiversity
OCMS (AppendixC), which focuses on enriching a university administration system using
semantics.

For the purpose of the experiment, we identified 10 change requestsfminically
identified scenariosAbgaz et al., 201]L These change requests represent the majority of
frequently observed operations and frequently evolving entities. Tl dlie bias of a
single user, we included additional users to participate in the implementation didinge
operations. The first user is an expert in ontology evolution and thexdecer has know-
how of ontologies and ontology applications, and the third user comes frersoftware
engineering domain. Each user spends sufficient time to represent thieuad change
requests using the operators provided at each layer. The system imfdetmerchange
requests and the users are asked to evaluate the adequacy of the aperagions.

Before the experiment, we provided a short introduction of ontologytoacts such
as classes, data properties, object properties, etc., and how to sgeuifye requests. We
introduced the users to the overall environment of the prototype. Durnedberiment, we
asked each user to implement the selected changes using the changjermppravided by

the system.

93

4.6.1.2 Experimental Results and Discussions

We evaluated the operator framework using all atomic change operatelasiesl com-
posite and domain-specific change operations. We further collectedagledrom users
who participated in the evaluation of the prototype. We asked the users to inmtleme
lected change operations (Talélel2) using the prototype and to evaluate the adequacy of
the change operations to represent change requests. The resuisusétrevaluation are

represented in Tabk.2

Table 4.2: Adequacy of the layered operator framework

Rating User 1| User 2| User 3
Fully Adequate 10 2 0
Adequate 0 8 3
Slightly Adequate 0 0 7
Slightly inadequate 0 0 0
Inadequate 0 0 0
Fully inadequate 0 0 0

The evaluation results show that all users agree on the adequacy oféhed@perator
framework. The users strongly agree on the adequacy of 40% of Hregehoperations,
agree on 36% of the change operation and 23% slightly agree on aglezfuhe change
operations. From the evaluation result, we found out that the layeredtopé&ramework
provides adequate change operations to represent change requesisdvantage of the
layered operator framework is that its composite and domain-specific elogegations are
composed from atomic change operations and the composition does naypastiction
on the number and order of atomic change operations. Thus, the layenedar framework

meets its objective and is capable of representing the changes captuned GMsS.

4.7 Summary

Two frameworks are proposed in this chapter. The first one focusdsfining the overall
framework of an OCMS system and provides specifications on how eaupanent is

viewed in this research and how the components communicate each othdrafrtes/ork

94

paves the way for understanding the interaction and dependency betveeentities in the
layers. It systematically organizes the OCMS and makes it suitable for theg®d change
impact analysis.

The proposed framework consists of the ontology layer at the top whichimaaypo-
rate a single or multiple ontologies distributed over the web or stored on a singlemaa
The ontologies can be generic ontologies or domain specific. This layeidpsoseman-
tics to the target content. The annotation layer uses triples to annotate camterdntent
artefacts. The annotation layer uses triples to annotate content. The tripimiszed as
subject, predicate and object. It further incorporates context informatiandicate the
context of the triple. The content layer provides storage and retrié¥heaontent in the
content-based system. Access to the content or part of the contenédsdrathe document
identifiers assigned to each content or part of the content. At this stagégythr supports
structured and semi-structured content.

The second framework focuses on defining the changes in OCMS gadipes them
using four layers. This framework identifies the atomic change operatimhthair actions
in the OCMS graph. It allows creation of composite and domain-specifigehaperations.
This framework lays a foundation for change request representaipendency analysis
and change impact analysis.

The two frameworks clarify the OCMS and help us to understand the intemdotio
tween different entities within and across the layers. They further cldrédycomposition
of changes from the atomic changes to abstract level changes. Thewoaks support
traceability of entities of each layer. The graph-based representatiditatas efficient
searching and processing of entities and changes. The evaluatidinafethe operator
framework shows that the framework is adequate to represent chemgests. It is useful
to represent composite and domain-specific change operations batwez pmeference of

the user.

95

Chapter 5

Change Analysis Framework

5.1 Introduction

In the previous chapter, we gave an overview of the OCMS architechadhe layered
operator framework. The framework identified the components of an Q@héSvolving
entities and the change operations. We represented the OCMS using grapiormalized
the change operations.

In this chapter, we present the change impact analysis framework. vEnallacchange
impact analysis framework includes the requested changes (Sédi@nl, evolving enti-
ties, dependency analysis, evolution strategies and the core changé amalgsis process.
This chapter contributes the major inputs for the change impact analysigtéC&gsand for
the change optimization and implementation phases (Chapter

Together with the framework, in this chapter, we cover the dependeratysi and
the evolution strategies. The dependency analysis identifies depemtiiesehat evolve
together. The evolution strategy determines how a requested changgiapés imple-
mented. A single change request can be implemented using different endtrédegies.
Each strategy composes changes differently and impacts the OCMSmtiffedgorithms
that are used to identify dependent entities, dependency rules and smé&hadmbining
dependency types with evolution strategies are the major focus.

This chapter is organized into six sections. Sectidtdiscusses the overall framework

96

of change impact analysis. SectibrB discusses dependency analysis algorithms used to
identify entities that are affected by a change operation. In Sebtihme present different
change strategies, which affect the implementation of the requested crahgee impacts

of the requested change used during evolution. In this section, a custbimiziementation

of strategies is presented. Secti®’ provides the evaluation of the dependency analysis
method and the overall change impact analysis framework. Finally we guenanary of

the chapter in Sectioh.6.

5.2 The Change Impact Analysis Framework

In this section, we give a brief introduction of the change impact analyaisdwork. The
overall change impact analysis framework contains three major phadesfir§t phase
receives change requests and represents them using changioaperdhis phase uses
evolution strategies and dependency analysis to generate complete opangi@ons. The
second phase takes the represented changes and analyses the ifthaathange opera-
tions. This phase merges integrity analysis and change impact analysistdgetficient
processing. Finally, we have the change implementation phase which allowsethi® im-
plement the changes based on the results of the impact analysis. Biguretlines the

phases of the change impact analysis framework and their interactions.

. Representation

-
’Evolution Strategy} Llntegrity Analysisl
=
@ | Change I ﬁﬁ' ‘ (?hgngg
B ==» Capturing and ' Change Impact Optimization
] |

Analysis ‘ and
\Implementation

Dependency \l
Analysis |

Figure 5.1: The change impact analysis framework

97

5.2.1 Change Request Capturing and Representation

The objective of this phase is to represent detected changes usindesciitabge operations
(Section4.5) that ensures the efficient implementation of the required change. Tha-exe
tion depends on how the change is represented and relies on two fathergirst factor

is the selection of the appropriate change oper&ujfnovic, 200§ The second factor is
the order of execution of the operations focusing on efficient ordefiagomic change op-
erations into composite and higher-level granularity to minimize impaets gt al., 200D
[Arnold, 19964. Change representation uses different evolution strategies and tiwt ou
of the dependency analysis. The detailed discussion of the changestegypturing and
representation including dependency analysis and evolution strateggsenped in Section

5.3and Sectiorb.4 respectively.

5.2.2 Change Impact Analysis

This step mainly focuses on determining the impacts of the captured changdiapeon
the entities of the ontology. The impact determination process focuses tysiagahe
nature of the operations and the target ontology entities using differesninpéers. Based
on these parameters, this phase categorizes change operations imemtiftdegories of
impacts. The impact determination process is done using two phases. Thhéise is
individual change impact analysis. When a compaosite change operationlemeed,
the impacts of the composite change may not be the same as the aggregatiamptitte
of its constituent individual atomic change operations. Thus, the sedw@s®fis composite
change impact analysis.

It further deals with the integrity of the overall system. Tiheegrity of the OCMS
focuses on theatisfiability of the ontology and theonsistencyof the annotation. In gen-
eral satisfiability, checks whether a class expression does not agbedsnote the empty
class and consistency refers to verifying whether every class in théogptoorresponds
to at least one individualHaader et al., 2003 Consistency checks any contradiction of

the facts in the annotation and shows the absence of contradiction foausindividuals

98

[Stojanovic, 200} Using the change impact analysis results, we analyse the satisfiability
of the ontology entities and tlmnsistencyf the annotation. Consistency is analysed based
on consistency rules that are defined for the ontology.

Thus, we deal with the following widely used rules related to satisfiability ofselsis

[Stojanovic, 200k
e Identity invariant: no two entities should have the same id (URI).
e Rootedness invariant: there should be a single root in the ontology.
e Concept hierarchy invariant: no entity should have a cyclic graph.

e Closure invariant: every class should have at least one parent glzesst ¢he root

class.

e Cardinality invariant: the cardinality of a constraint should be a non-negatte-
ger greater than or equal to the minimum cardinality and less than or equal to the

maximum cardinality.

e User-defined constraints: these constraints are user-defined aesidoniee stated in

the way they can be implemented like the other invariants.

Instances in OCMS are linked to the ontology using semantic annotation. déties;
mining the impact of change operations in relation to the instances is crucialdefbe
mination of the ABox validity is based on consistency rules. These rules determine how
instances/ instance properties should exist in the ontology structurallyaanthey should

be interpreted:

e Invalid instance: given a consistent ontology, if there is an instance thest dot

correspond to any of the classes, then that instance is invalid.

e Invalid interpretation: given a consistent ontology, if there is an instarfeesevin-
terpretation contradicts any interpretation denoted by the consistent onttihed

instance has an invalid interpretation.

99

For example, if the ontology specifies a student can not be k&bStudenand
PhDStudenat the same time, but if we hadehnas an instance d1ScStudenand
PhDStudentthe instance is considered as invalid instance and it introduces invalid

interpretation.

The change impact analysis process follows ex ante evaluation whictstzkging the
change request stage of the evolution by collecting and analysing thgecbparations, the
impacts and the causes of the impacts before the change is permanently impteimémgte
system. This reduces the effort required to roll back the changes hnted impacts are

observed after a permanent implementation of the changes.

5.2.3 Change Optimization and Implementation

The change implementation phase takes the final change operations antésteem in
the OCMS. This is done based on the user’s preference after the impabes change
operations are reviewed and approved by the user. This phas@egéoc optimal imple-
mentation using different optimization criteria such as severity of impactgnpeahce and

type of statements changed. Change implementation is discussed in Chapter

5.3 Dependency Analysis for Change Representation

The change representation process takes the requested changerdiiesdthe change
operation (addition, deletion), the target entity (class, property, insteesteiction, and ax-
iom) and the parameters. The requested change is represented usirgpthdigcussed in
the previous section. To implement the requested change, we need tegpaodedetermine

if there are dependent entities that need to be changed in responsedqubsted change.
The implementation of the requested change may vary depending on theetatigetthe
change operation and the evolution strategy (Sedidh Thus, the requested change op-
eration alone may not be enough to evolve the OCMS and may require addiihamee
operations. This forces us to conduct a dependency analysis to fieddient entities that

change together with the target entity.

100

Understanding how the entities in the OCMS depend on each other is a stepal
for analysing how the change of one entity affects the ot@eix[et al., 200]. Character-
ization, representation and analysis of dependencies within and amongttiegy, the
annotation and the content layers are crucial aspects of change impagis. In this sec-
tion, we present relevant dependencies which are identified from tietgte of the OCMS
system. These dependencies are useful for deriving additionajjeban complete the re-
guested changedpgaz et al., 201R[Abgaz et al., 201]L All the dependencies that exist
in the graph may not be important for dependency analysis. Thus, wefydénre depen-
dencies that are useful for implementing changes and analysing their impéctermally
define such dependencies and present an algorithm to identify thed#epemtities and
their dependency types from a given ontology. This phase, togethetheitimplementa-
tion strategies, forms an input for the change impact analysis process.

Dependencyis defined as a reliance of one node on another node to get its structural
and semantic meanings. For a node to be dependent on another nodejrés®ne or
more edges that link it to the target node.

Given a graphG = (N, F) and two nodesVy, No € N, N; is dependent onV,
represented byep(N1, No), if 3 E; € E whereE; = (N1, «, N2). N; is the dependent
entity and/Vs is the antecedent entity.

Dependency can be unidirectional or bidirectional. In the OCMS, we &dyges that
indicate bidirectional dependency ¢ B) called interdependence. Such interdependence
is represented by axioms such as equivalence, disjoint, sameAs, mliffere, etc. These
kinds of dependencies can be mapped to two unidirectional dependénhgiéd, B) and
Dep(B, A).

Dependency analysiss the process of identifying the dependent entities, the depen-
dency types and the characteristics of the dependencies of a givenrtiieyOCMS. The
dependency analysis process takes an entity and the OCMS graph asitaséarches all
dependent entities and returns a list of dependent entities for a gipendency. In OCMS,
the three layers are interdependent. There are intradependenceéesddpendence among

these components at a higher level. In such environments, we focustypéiseof available

101

dependencies, the formal representation of dependencies and ththalgdor identifying
the dependencies. Analysing dependencies using different caegpbeneficial in that
most of the categories are useful for determining impacts when diffeihanige implemen-
tation strategies and configurations are ugegubjaz et al., 201

Structural Dependency Structural dependency refers to the hierarchical dependency
or the taxonomic relationship between two nodes. When one node is depemdée
other node and if they are linked with edges that define the taxonomic relapsnsub-
ClassOf, subDataPropertyOf, subObjectPropertyOf, instance@f),tbcome structurally
dependent. These taxonomic relationships are expressed using iGirioms between
classes, subDataPropertyOf axioms between data properties, sutfbtpectyOf axiom
between object properties and classAssertion axioms between instadogasses. Struc-
tural dependency also implies the semantic relationship between the entities.

Formally, for a graphG = (IV, E) and nodesN;, N» € N, Nj is structurally de-
pendent onVs is given bystrDep(Ny, No) if 3Ns. Dep(Ny1, No) A (N1, «, No) where

a €{subClassOf, subDataPropertyOf, subObjectPropertyOf, instahiceOf

5.3.1 General Properties of Dependency

Indirect Dependency. A dependency is said to be indirect, if there exist transitive or
intermediate dependencies that link two nodes. Given a géaph (N, E) and nodes
Ny, N2, N3 € N, N; is indirectly dependent onVs; represented agidDep(Ny, N3),if
INs. Dep(Ny, Na) A Dep(Na, N3) A Ny # Na # Ni.

Total Dependency/ Partial Dependency. A total dependency refers a dependency
when an entity is fully dependent on another entity for its existence. Thahsnézere
is no other dependency that enables it to get its meaning. A total depgridestiserved
when a target node depends only on a single node (articulation node).

Given a graphG = (N, E) and nodesN;, No, N3 € N , Nj is totally dependent
on Ny, represented by’ Dep(Ny, Na), if IN3. Dep(N1, Na) A =3N3. Dep(N1, N3) A
(N # N3s).

A partial dependency refers to a dependency where the existencaaafeadepends

102

on more than one node. Given a gragh= (N, FE) and nodesV,, No, N3 € G, N; is
partially dependent onN,, represented by’dep(N1, Na), if INa, N3. Dep(N1, Na) A
Dep(N1, N3) A (No # N3). Partial dependency is a complement of total dependency over
all dependent entities. It is represented as:

PDep = Dep — T'Dep.

5.3.2 Types of Dependency

In this section we distinguish between different types of dependencissnad in an
OCMS system. The dependencies are organized in relation to the OCMS. layer
We will use the OCMS snapshot in Figube? to elaborate the dependency analysis

process throughout this chapter and the next chapter.

legend

rdfs :sco= subclassOf

rdfs :SCO rdfs :SCO rdfs :SCO rdfs :SCO

disjoint

A

rdfs :domain rdfs :range rdfs :SCC rdfs :SCO rdfs :SCC rdfs :SCO rdfs :SCO
g

Help_File

rdfss :domain

[Archiving J [Archiving J [Archiving) [Archlvlng] [Archiving]
\ / How to delete Mails <@—=cngl :hasTitle ——
rdfs :InstaneOf rdfs :InstaneOf
\ / cngl :Contains
| CNGL :id-19221956\ paral | | CNGL :id- 19221955.xml | | CNGL :id- 19221956.xml

Figure 5.2: Software help OCMS - running example

5.3.2.1 Dependency within a Layer

Dependency in the Ontology Layer. The following dependencies between ontology en-
tities are identified and their detailed definition is given below. The most freqiepen-
dencies are presented here and the list can grow more when we reépresglex class

relationships. The context of the dependency is an OCMS graph(V, E).

1. Concept-Concept Dependency:for a graphG and concept node€4,Cy € N,

103

C is dependent onCy represented by’'CDep(Cy, Cy), if 3Cy. Dep(Cy, Ca) A
(label(E; = (C1,a,C)) = “subClassOf”) A (type(C1) = type(Cs) = “class”).

For example, there is a concept-concept dependency betaasity and Archive
Archivedepends om\ctivity because there is an edge that links these two nodes with
type Classand with node labesubclassQf Concept-concept dependency is transi-

tive.

. Concept-Axiom Dependencyfor a graph(z, a class nod€’;, and any nod&V; € N

and an edgdy; € E, E; is dependent onC; represented by’ ADep(E;, C), if

(E; = (Ci,a,N;) V E; = (Njya,Ch)) A (type(Ch) = type(N;) = “class”). For
example, if we take the concept “Activity”, there are three dependehClassOf
edges, one dependenfs:range These axioms further characterize the dependency

types.

. Concept-Restriction Dependency:for a graphG, a class nod€’; and any node
N; € Nandanedgé); € FE, E; isdependent or’; represented b§ R Dep(E;, C1),

if B; = (N, a,Ch) A (type(Cy) = “class” AN a € RA). For example, if we have a
restriction(isAbout, allValuesFrom, Activityjhis specific restriction is dependent on

the concephActivity.

. Property-Property Dependency: for a graphG and a property node®;, P, €
N, P, is dependent onP, represented byPPDep(Py, P2) if 3P,. Dep(Py, P3)
A (label(E; = (P1,a, P2)) = “subPropertyOf”) A (type(P1) = type(Pa2) =

“property”). Here, property refers to both data property and object property.

. Property-Axiom Dependency: for a graphG, a property node”, and any node
N; € N andanedgé; € E, E; isdependent orP; represented by ADep(E;, Py),
if B, = (P1,a,N;)V E; = (N, o, Py) A (type(Py) = “property”).

. Property-Restriction Dependency:for a graphG, a property node?, € N and a
restriction edgeR; € E, R; is dependent onP; represented by’ RDep(Ry, P) if
E; = (N1,a,P1) V E; = (P, a, N1) A (type(P1) = “property”).

104

7. Axiom-Concept Dependency:Given an axiom edgé’; and a concept nod€; €
G, C is dependent onE; represented byAC Dep(Ch, E;), if E; = (C1,a, N;) A
(label(E;) = “subClassOf”) A (type(N1) = “class”). This dependency type is
used to catch orphan concepts. If orphan concepts are not allowed antblogy,

we use such dependencies to find them.

5.3.2.2 Dependency across Layers

Content-annotation dependency. Content-annotation dependency refers to the depen-
dency of the annotation on the actual content in the content layer. Thenteannotation
dependency occurs due to the fact that the annotation layer links thedest@ocuments)

in the content layer with the ontology layer for attaching semantics to the cortehe
content is changing, the dependent entities in the annotation layer (in teithcee triples
linked to the content) will be affected.

An annotation4; € G, isdependent onl; € Cont, represented byA\nCoDep(A4;, d;),
if exists £, = {Nai, 2, Naj} € G4 such that(Ny; = d;) V (Noj = d;). This means
A; is dependent on documei} if the document is used as a subject or an object of the
annotation triple.

For example, the content docum@nGL:id-19221955.xni§ annotated as anstanceOf
a Help_File and its type idf:type) is defined agnstancein the annotation layer. If the
subject CNGL:id-19221955.xmlof this annotation is removed all its dependent entities
(rdf:type instanceOj will be affected.

Ontology-annotation dependency.Ontology-annotation dependency refers to the de-
pendency of the annotation on the entities in the ontology layer. The anndtEmpro-
vides semantics for the content using entities from the ontology. Whenesearaye is
made to an entity in the ontology, all the dependent entities in the annotation |dlylee w
affected. Generally, this dependency is represented as follows.

An annotation4; € G, is dependent orO; € G, represented byAnOnDep(A;, 0;),
if exists E, = {Ngi, o, Nyj} € G4 such thatla, = 0;) V (Ng; = 0;). This dependency

across the layers is represented by three different dependencies @Ciil graphG as

105

follows.

1. Concept-Instance Dependencyfor a graphG and an instance nodg and a con-
cept nodeC; € N, I is dependent onC; represented by’I Dep(I;,C) if 3
E; € EwhereE; = (I, a,Cy) A (label(E;) = “classAssertion”) A (type(I1) =
“individual”) A (type(C1) = “class”). For example, if we remove the claBglp_file,
the dependent triplggCNGL:id-19221955.xmlinstanceO f, Help_file) and(CNGL:id-
19221956.xml, instanceOf elp_file)} will be affected. This indicates that those

annotations are dependent on the concept in the ontology layer.

2. Property-Instance property Dependency:for a graphG and an instance property
nodelP;, and any nodeV;, N; and a property nod® < N, I P is dependent on
P, represented by’I PDep(I Py, Py) if 3 E; € E whereE; = (N;, a, N;) such that
(label(E;) = P1) A (type(N;) = “instance”) V (type(N;) = “instance”). For
example, in CNGL : id19221956.xml, cngl:hasTitle “How to delete Mails”) the
instance propertgngl:hasTitleis dependent on the propettasTitlein the ontology

layer.

3. Instance-Axiom Dependency:for a graphG, an instance nodé,, and any node
N; € N and an edgé’; € E, E; is dependent orl; represented byADep(E;, I1),
if (B; = (I1,a,N;)V E; = (N, o, 1)) A (type(11) = type(N;) = “instance”).

4. Axiom-Instance Dependency:for a graphG and an instance nodg and an edge
E; € E, I isdependent on&; represented b\l Dep(I, E;) if E; = (I1, a, Na) A

(label(E;) = “instanceOf”) A (type(i1) = “instance”).

All edges that are linked to a node or all nodes that are linked togethertad@oessarily
show dependency. For example, an instance property is dependt® definition of the
corresponding property. However, a property is not dependeitsanstance properties.
The focus of this research is on identifying and formalizing dependetitédsepresent
propagation of impacts in the OCMS. Using these dependencies, we dedellgorithms

to identify dependent entities.

106

5.3.3 Dependency Analysis Algorithm

Itis important to formally identify the dependencies and their types to deterngnmgacts

of a change operation. However, manually identifying these dependgtie®and the type
of the dependency is difficult. Thus, we developed an algorithm whichifaesndependent
entities and the dependency types. The algorithm starts from the utigatig “Thing”
and filters out the dependent nodes based on the dependency definitieraistomized
the general tree search algorithhtelckel, 200§ to identify dependent entities. The search
algorithm checks the edges and the nodes which are linked to the targeanddanatches
it with the defined dependencies. We move to the dependent nodes aatittepsearch by
examining the types of the nodes. We end the search when there is no rderambedge

to be visited. The individual dependency analysis algorithms are distasdellows.

oCMS
Graph

\%

Target — Dependency
Node Analysis Algorithm

Dependent
Entities

/I\

Dependency
Rules

Figure 5.3: Dependency analysis diagram

5.3.3.1 Direct Dependent Entities

Getting direct dependent entities of a target entity is done by examining é#&oh edges
that point to the target entity. For example, if the target entity is a class nodef there

is an edge with labetubClassOf(represented as SC in Figused) that links other class
nodes to this target entity, and then based on concept-concept dapgnde can identify
the dependent entities. If there is a single edge with lahblClassOfbetween the two
edges, then we consider those dependent instances as directelgpamidies. In Figure

5.4 all the direct dependent concepts of the condegtivity are highlighted in gray and the

107

direct dependent axioms are represented by dotted lines.

A
sc
“SC“‘ .NSC.u
/SC
Archiving Archlvmg eletlng Deletlng Deletlng
Email File Directory File Email

Figure 5.4: Direct dependent classes

Not all nodes that are linked to the target entity may indicate dependencedretw
two nodes. Here, we need to examine the edges that connect othertadtiestarget
entity. A node is considered as a dependent node only when it satiskesranore of
the dependencies defined in SectB.2 The algorithm for identifying direct dependent
concepts is given below (Algorithd). This algorithm is tuned to identify direct dependent
classes. The identification of dependent instances, axioms and restriidone in a

similar way by customizing the parameters and the dependency rules.

Algorithm 1 getDirectDependentClasses(G,c)
1: Input: GraphG, Class node

2: Output: direct dependent classef (

3d+ 0

4: if the noder exists inG then

5. for each edgd?’; = (m, «, ¢) directed toc do

6: if label(E;) = “subClassOf” A type(m) = “class” then
7 addm tod

8: end if

9: endfor

10: end if

11: returnd

108

A

SC

Activity

..
-
e,
L2

.“

Archiving Archiving Deleting Deleting Deleting
Email File Directory File Email

Figure 5.5: Indirect dependent classes

5.3.3.2 Indirect/transitive Dependent Entities

Identifying indirect dependent entities of the target entity is done in the saayeaw the
method used for direct dependent entities. The main extension for idegtifgnsitively
dependent entities is taking all direct dependent entities as a target emtitp ann the
direct dependency on them recursively until we reach a leaf nodenathe that does not

have a dependent node.

For example, to get all the direct and transitive dependent entities offtdisgy, first,
we call get direct dependent entitigs'¢hivingandDeleting), then taking them as an input,
we further get direct dependent entities Af¢hiving) which areArchivingEmailandArchiv-
ingFile. Then, we further move tDeletingand we geDeletingDirectory DeletingFileand
DeletingEmail In Figure5.5, the nodes highlighted in gray are indirect dependent classes

of Activity and the edges represented by broken lines are the indirect depexaens.

We stop the process when we reach a node that contains no more depsodies. To
prevent infinite recursion, we store information about the previoushama@d nodes and
check if we already visited the nodes earlier. Here, we are interestedhndivect and
transitive dependent entities. In this case we expand the above algoritimtiude the

transitive dependent entities.

109

Algorithm 2 getAllDependentClasses(G,c)
1: Input: GraphG, Class node

2: Output: all dependent classeg=

3 d+ 0

4: Queueq

5: if the node: exists inG then

6: DirectDep+ getDirectDependentClasses(G,c)
7. for each concept; in DirectDepdo

8: Q.push(c;)

9: if ¢; notind then

10: addc; tod

11 end if

12: end for

13: while @ is not emptydo

14: Temp = Q.peek()

15: getAllDependentClasses(G,Temp)
16: Q.remove()
17: end while
18: end if
19: returnd

We used the breadth-first search strateggrinen et al., 20Q1 Heckel, 200§ to tra-
verse through the OCMS graph and identify the dependent entities ugrgdiency types
defined in Sectio®.3.2 Algorithm 2 requires the whole OCMS graph and the target node
or edge as an input and returns nodes and edges that are depamdemtarget entity. A
breadth-first algorithm fits our requirements for two reasons. First, lgogitam guaran-
tees identification of all dependent entities that exist in the graph. Seitaildws us to
preserve the vertical hierarchies of the graph. We get all the direqtigraent classes of
a class first rather than moving down to the indirect subclass at the nekt fdi/the sub-
classes at a given distance from the target entity can be identified usiadtb+first search.
We use the information to maintain the order of change operations. For examhe
case of deletion, we start deleting the class from the bottom nodes antcadya in the

hierarchy until we reach at the target node.

110

5.3.3.3 Total Dependent Entities

To find all totally dependent entities of a given entity, we need to get all therdkent
entities using Algorithm2 which returns all dependent entities. Meanwhile, we check the
dependent entities whether they are totally dependent on the given emtidy. ¢inding the
totally dependent entities of classes is done by checking whether a gieetiyddependent
class has more than one super class or not. If the directly dependenhaksnore than
one super class, it becomes a partially dependent class. Howevempphimeh does not
guarantee us totally dependent entities when it is extended to transitivelpdieqt classes.

A class can have more than one super class but can still be totally depemdargiven
class. A direct dependent class is totally dependent, if it has only orex sigss. But,
indirectly dependent classes may not satisfy this rule. A recursive imptati@nof the

algorithm requires further customization to identify the total dependent entities

Thus, we identified additional conditions to be checked to filter out the topadraent
entities. If an indirectly dependent class has only one super class,|bitsfsuper classes
are totally dependent classes of the given class, it is considered to baly dependent
class. However, if an indirect dependent class has a super clads iwhot in the depen-
dent class list of the given class, then we consider that class as a patépéyndent class.
Algorithm 3 returns all totally dependent entities. In addition to that, it keeps track of the
partially dependent entities. By changing the return value of the functipan@lDepCls

we can also get all the partially dependent classes.

In Figure 5.6, all the highlighted class nodes are dependent class nodes on the class
Activity. However, onlyDeleting DeletingDirectoryandDeletingFileare totally dependent
classes. All the other class nodésdhiving Archiving Email ArchivingFileandDeletingE-
mail) are partially dependent classes of the activity class. One interestinigmstap we
can see here is that the totally dependent clagsehif¢ingEmail ArchivingFile) of a par-
tially dependent clas#fchiving are excluded from the totally dependent class list due to
their parent clas$ask The classlaskis not dependent oActivity. This makes thérchiv-

ing class and its subclasses to be partially dependeActivity class. Algorithm3 returns

111

A
sc
|
% -- >

i

Archiving Archiving eletmg Deletmg Deletlng
Email File Dtrectory Fite: Email

Figure 5.6: Total dependent and partial dependent classes

|

i

1
sc

all class nodes that are totally dependent on the given class c.

5.3.3.4 Direct Total Dependent Entities

Direct total dependent entities are entities that are directly dependetdtatigd dependent
on a given entity. Direct total dependent entities are entities that are thie oéshe in-
tersection between total dependent and direct dependent entities. t&érseation of the

results of Algorithml and Algorithm3 gives us the direct total dependent entities.

5.3.3.5 Direct Partial Dependent Entities

Direct partial dependent entities are entities that are directly depenupeatially depen-
dent entities. These entities play a major role in the impact analysis procegeatifying

them is crucial. However, they can be easily extracted once the diretcbtbdlependent
entities are identified. This means that direct partial dependent clagstgedntersection
of direct dependent classes and partial dependent classes. Figshews the properties of
dependencies and their relationships. Any dependent entity, which tistathy dependent,

is partially dependent entity.

112

Algorithm 3 getTotalDependentClass(G,c)

1: Input : GraphG, Class node

2: Output: all total dependent classes=
3: d « (), contained=true

4: Set depClst ,totalDepCls# ,partialDepCls#, super#)
5. depCls— getAllDependentClasses(G,c)
6: for each concept; in depClsdo
7. if count(getSuperClassegElthen
8: super<— getSuperClasses(¢;)
9: if super not in partialDepckhen
10: addc; to totalDepCls

11 end if

12: else

13: super«— getSuperClasses(¢;)
14 contained=true

15: for eachsc in superdo

16: if sc notin depClghen

17: contained=false

18: end if

19: end for

20: endif

21: if contained=tru¢hen

22: addc; to totalDepCls

23: else

24: addc; to partialDepCls

25: endif

26: end for

27: return totalDepCls

Directly Dependent | Indirectl _I;q-arg*r‘ﬂa*‘i_r
Entities | '

Figure 5.7: Dependency diagram

113

Algorithm 4 getSuperClasses(G,c)

. Input : GraphG, Class node

2: Output: superclasses of a class

3: Set supCls-0

4: for each edg€(, a, ¢;)in G do

5. if a = “subClassOf” andtype(c;) = “class” then
6

7

8

9

[EnY

addc; to supCls
end if
. end for
. return supCls

5.3.3.6 Combining all together

Following a similar procedure, we conducted a dependency analysisdjpeies, axioms,
restrictions and instances. A complete dependency analysis of conoeqttines individ-
ual dependencies and generates all the dependent entities. To ideatikynith of depen-

dency we call those individual algorithms.

Algorithm 5 getTotalDependentEntities(G,E)

1: Input: GraphG, an entityF
Output: Total Dependent entities
Set totalDepEnRt-() , totalDepCls—()
Set totalDepProp-(), totalDeplnst—()
Set totalDepAxms-(
totalDepCls«+ totalDependentClasses(G,E)
totalDepProp— totalDependentProperties(G,E)
totalDeplnst— totalDependentinstances(G,E)
totalDepAxms«+ totalDependentAxioms(G,E)
. totalDepEnt— totalDepClsU totalDepPropu totalDeplnstU totalDepAxms
. return totalDepEnt

o
P O

This algorithm accepts a target entity, which can be a class, a properhstance, an
axiom or a restriction and returns all the dependent entities. This algorithphyscalls pre-
vious algorithms to do the task and return the results. Then, it collects tHesregether
and makes them ready for change representation based on the chalegeantptions strat-
egy selected. The difficulty associated with implementing this algorithm is that wken
have bidirectional dependencies, the algorithm may exhibit a nonterminaivayiour. To

avoid these cycles we store the already visited nodes. We check existingenseimithe

114

gueue to avoid duplication of entities. This increases the efficiency of tloeitalg.
Limitation of the Dependency Analysis Algorithm There are some limitations in-
volved in the analysis of total and partial dependency between clasdesxemms repre-
senting complex classes. If the dependent entities contain complex axioomeplex class
representations, the dependency analysis process involves comgiErmkeother than the
issues addressed above. When an entity is deleted, complex axioms tepanelent on
the entity may contain other entities. The relationship between the entities depehds
the complex axiom is formulated (conjunction or disjunction). To decide therdigmncy,
we need to determine two things. First, using the dependency analysis wes#idabove,
we have to determine whether the axiom is totally dependent or partially dexpteowl the
deleted entity. The second one and the more complex one is to determine whetieer
are other entities that are not yet captured but which are dependéin¢ @xiom (axiom-
concept dependency). A closer look at the following class expressgjlains the difficulty
involved in determining the dependent entities.
equi val ent d asses (http://cngl.ie/ EV-triples.ow #AdvancedUser
obj ectIntersectionOf (http://cngl.ie/ EV-triples.ow #User >

obj ect SoneVal uesFrom(http://cngl.ie/ EV-triples.ow ##hasExpertise>
http://cngl.ie/ EV-triples.ow #AdvancedExperi ence>)))

This axiom states thafdvancedUseis a user who has advanced Experience. Assume that
there is a change request that delé&tdsancedExperien¢but the above axiom is using the
concept in the propertyasExpertiself we deleteAdvancedExperiencéhis axiom will be

in the list of affected entities. If we do not conduct a further analysisywilemiss other
entities that are involved in the axiom. For example, the deletion of this class riakes
property very general because there is no domain defined for it. Tesmut distinguish
AdvancedUsefrom other users semantically. The subtlety lies in how to determine such
kinds of chained dependencies and identify the entities that are affeudeldoav they are
affected. Such kinds of complex axioms and representations requiherfiand detailed
investigation by looking at each candidate axiom and the extent of the ehangther

entities involved in the axiom.

115

5.4 Evolution Strategies

There are different ways of implementing a requested change in an OUMS]epends on
the selected change implementation strategy. These change implementatiofestexteg
used to specify how a given change request is implemented. The chaaiggiss deter-
mine how to fill the gap between the requested change and the changesdégjgorrectly
implement the user request. This includes consequential changes, whicbtaspecified
in the change request and corrective changes which are introduaeditbinconsistencies.
The different change implementation strategies are further used to avmichknolations
of ontology rules (Sectiof.3.1) and some of them are provided as change implementation
strategies in existing ontology editors such as KAGMNIf et al., 2003[Stojanovic, 2001
and Protege[Knublauch et al., 2004 The user can choose or set which strategy to follow
before or at the time of the change implementation.

We identified four different strategies used by existing systeshgdnovic, 200fand
customized them to provide additional implementation options for the userse Shase-
gies areno-actionstrategy,cascadestrategy,attach-to-parenstrategy, andttach-to-root
strategy. We will focus on the first three change implementation strategiesatidch-to-
root strategy uses a similar technique as the attach-to-parent strateggniyrdifference
between the two is that the attach-to-parent strategy uses the immediateguaityraind
the attach-to-root strategy uses the root entity (the top entity). We customiat¢téch and
cascade strategies to be applied to bbthox and.ABox statements or only t6 Box state-
ments. We further customize the strategies to N-level cascading (Séctighto make
the evolution process flexible. The details of each of the techniques ystn lIthange

implementation strategies are discussed below.

5.4.1 No-action Strategy

The no-action strategy states that a given change operation is implemeirntgdhesre-

guested change without adding consequential or corrective chafges$inal change oper-

http://protege.stanford.edu/

116

ation does not include any other change operation than the ones thaerédmeaeferences
of the target entity from the OCMS. For example, when the user requedtsl @ elass, it
will be implemented as it is, without adding a subclass axiom to link it to a paress.cla
Another example is, when the user wants to delete a class, and if that classhtdasses,
this strategy does not consider the subclasses of the target class biyt mpves the
target class and all the edges of the class. In our running example this maéemn the user
requests to delete the concejathiving we simply delete the concept by implementing
the requested atomic change, delete Concemthfving) and all the axioms that refer to

Archiving (Table5.1).

A A
sc s¢
Activity Activity

Delete class(Archiving)

e, R o,
= ,> T =
o

AR
SCO sCo SCO SCO sCoO, 2 2 SCO SCO sCO
g *,

4o v o v,
sco sco, 2" sco
o o, o “a,
o & o N
o
8

Archiving | |Archiving Deleting Deleting Deleting Archiving | |Archiving Deleting Deleting Deleting
Email File Directory File Email Email File Directory File Email
\ \ \ J

Figure 5.8: No-action strategy

Given the grapiG = (N, E) and a entity node: € N, the NO-ACTIONSstrategy is

defined as follows:

NO-ACTION(Delete Entity(n)) := {Delete Entity(n), Delete Aziom(A) |

A € directDependent Azioms(G,n)}

Using the above strategy, we generate a change operation which detetdagh as

follows.

5.4.2 Cascade Strategy

The cascade strategy states that whenever a change is requesté@niie gropagates to

all dependent entities of the target entity. In OCMS, this means when weelsome

117

Table 5.1: Generated changes - No-action strategy

Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)

Delete class(Archiving)

entity in the content-based system, we need to change all its dependent.elmitiase of

deletion, when we delete an entity, the deletion propagates to all its depemtities. In

case of addition, when we add an entity, we need to add all other entities tkatheanew

entity semantically and structurally meaningful. Thus, whenever we use $cadm strat-

egy, we identify the dependent entities of the target entity and we furthedinte change

operations that remove all these dependent entities. Thus, in cascaegysinge generate

intermediate change operations to implement the requested change in eedaswat: to

all dependent entities of the target entity (Tabl@). In this delete conceptdfchiving

results the deletion of all its subclasses and axioms.

sco

A

sC

sco

sco

sco

Delete class(Archiving)
>

SCO.

SCO scCo

SC

SCO.

SCO sCo sco

~

Email

LArchiving

J [Archiving

Deleting
File Directory

p
Deleting
File
~

Deleting ‘ Deleting Deleting
) Email Pirectory File

P

Deleting ‘
Email

J

Figure 5.9: Cascade strategy

Given the graphz = (N, F) and a entity node: € N, the CASCADEstrategy is

defined as follows:

CASCADE(Delete Entity(n)) := { Delete Entity(n’) | n’ =nV

n’ € allTotal Dependent Entities(G,n)}

Using the above strategy we generate a change operation which delatiEsthe

118

Table 5.2: Generated changes -Cascade Strategy

Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)

Delete class(ArchivingEmail)

Delete class(ArchivingFile)

Delete class(Archiving)

The cascade strategy can be further implemented in two ways. The firgtcadiag
the change only to the dependent classes leaving the instances of thawthdse second
one is cascading the change to the dependent classes and the instantdes.former
case, the change is applied to the classes without changing the instahtemay cause
the instances to lose some semantic meaning due to the removal of conceptsvetgch
providing additional meaning to the instances. It may even cause the instanoecome

orphan instances.

5.4.3 Attach-to-Parent/Root Strategy

The attach-to-parent strategy, or attach strategy in short, states thatantenge is re-
guested, link all the affected entities to the parent entity of the target classewér it
applies. This means, when a certain entity is deleted, link its dependent entities to
parent of the target entity whenever it applies. Thus, in the attach-empstrategy, we
generate intermediate change operations in addition to the requestedscbpagaions.
Given the graphG = (IV, E) and an entity node. € N, the ATTACH strategy is

defined as follows:

ATTACH (Delete Entity(n)) := {A, B,C |
A = Add Aziom(A’,n) | A" € direct Dependent Axioms(G,n) N
n’ € superEntity(n) A
B := Delete Axiom(A’,n) | A’ € directDependent Azioms(G,n) A
C' := Delete Entity(n) }

In this strategy for example, Delete clagschiving) causes the deletion of the class and

119

causes all the subclasses of thiehiving class to reconnect to the parehtcfivity) class.
Moreover, the classAfchiving) and all its related axioms will be deleted. Following the

attach-to-parent strategy, we generate the necessary changeomsaraTable5.3.

A A
sc sc
!
Activity ‘ Actlwty
sco sco
: Delete class(A chiving)
{Archiving {Deleting Deletmg ‘
\ . - \\\\ \\\
SCO SCO sco sco sco _sco sco 'sco_
- P PN
Archiving Archiving Deleting Deleting ‘ Deleting ‘ Archlvmg Archlvmg Delellng Deleting Deleting
Email File Directory | | File Email Email File D|rect0ry File Email

Figure 5.10: Attach-to-parent strategy

Table 5.3: Generated changes - Attach strategy
Add subClassOf(ArchivingFile,Activity)

Add subClassOf(ArchivingEmail,Activity)

Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)

There might be entities in the OCMS that are not compliant with the last two strategie
In such a situation, we further analyse the dependent entities and dodogglement one
of the other strategies. However, all requested changes are implemsitniggtileast one
strategy.

The change implementation strategy is dependent on a specific OCMS. fitestco
manager or the ontology engineer sets the change implementation strategyusethg
asked to confirm every time she/he requests a change. The change intplmmesirategy
tells the system what action to take when the requested change affects etticethan
itself. In this research, we deal with three change implementation stratedie&GVION
(N), CASCADE(C) and ATTACH (A). Two variants of the CASCADE an@FACH strate-
gies further distinguish betwee#Box and7 Box statements. These change implementa-

tion strategies are used for generating complete change operationxakRgle, when the

120

operation is delete class (DC) and the change implementation strategy isecastei (C),

we follow the DCC route and if the strategy is attach-to-parent, we follow DCA.

5.4.4 N-Level Cascading

N-level cascading is a customized form of the cascade strategy. ThHegstiGascades the
change up to nodes that are fouNddistances from the target node. For exampléY iis
set to be 2, the N-level cascading will cascade the change up to twodhiesrIn Figure
5.10 when N= 1, and a deletion of the cla&stivity is requested, the two class&schiving
andDeletingwill be removed with the target class. If N=2, all the subclasses down to two
levels of hierarchy will be deleted, which includaschivingEmail ArchivingFile Delet-
ingDirectory, DeletingFileand DeletingEmail When we use N-level cascading, we may
require using the attach-to-parent strategy to resolve orphan clas$be.above example,
when N=1, once we delete the classes the subclasses of those deleted blsome or-
phans. To avoid the orphan classes, we use attach-to-parent statetythem with the
parent ofActivity class.

There are different strategies for composite change operationsidiPigodetailed dis-
cussion of the strategies in composite change operations is not the scibye research.

However, for further details, we direct the readerlayed et al., 2012

5.4.5 Combining Dependencies and Strategies

A complete change operation is generated by taking the requested cti@ndependency
analysis and the selected evolution strategy. Determining the dependensénttierucial
step that enables us to decide the extent of the effect of the requesiggkobperation on
the remaining entities of the ontology. For each of the cases, we look atdbegsrof
finding affected entities using dependency analysis. After conductireyeliff experiments
using our case studies (Appendixto C), we determined the dependency types that can be
associated with the change implementation strategies. In the case of no-ationple-

ment the requested change by analysing direct dependent entities; asthefcascading,

121

we are interested only in total dependent classes.

Deleting all dependent entities without checking whether they are totally rtiniba
dependent entities causes a loss of entities that could still exist without vioth&rsyntax
or the semantics of the ontology. Thus, when we use the cascade-dedétg\stall total
dependent entities, whether direct or indirect, will be deleted. In the aladee attach-
to-parent strategy, our experiment showed that there are cases wheshould consider
partially dependent entities in addition to the total dependent entities. Hawesesnly

need the direct dependent entities.

Table 5.4: Combination of dependency with evolution strategy

Evolution Total Partial Direct Indirect
Strategy Dependency Dependency | Dependency Dependency
No-action Ignore Ignore Apply Ignore
Cascade Apply Ignore Apply Apply
Attach-to-pareny Apply Apply Apply Ignore
(with exception)

Table 5.4 shows the dependencies used in different strategies. In the caserd-the
action strategy we use direct dependent entities. In the case of thaleascategy, all
direct and indirect, but only total dependent entities are used. Partigidgndent entities
are not affected. In the case of the attach-to-parent, we use all thot diggendent entities
and attach them to the parent of the target entity. In this case, we use botefmeadent
entities and partial dependent entities with few exceptions. The exceppiiasfor partial

entities, which are already linked to the parent entity of the target entity.

A complete change operation contains the requested change operatibtiseeagen-
erated change operations. Based on the type of the change requistuaddchanges
are ordered accordingly to form a complete change operation. An exarhaleomplete

change operation in case of cascade-delete is given in Bable

122

Table 5.5: Complete change operations
Delete subClassOf(ArchivingFile, Archiving)
Delete subClassOf(ArchivingEmail, Archiving)
Delete subClassOf(Archiving, Activity)

Delete subClassOf(Archiving, Activity)
Delete class(ArchivingEmail)
Delete class(Archiving)

5.5 Evaluation

In this chapter, we evaluate the proposed dependency analysis mettedyalhation fo-

cuses on the precision of the dependency analysis method in identifyiegdiemt entities.

5.5.1 Precision of the Dependency Analysis

Dependency analysis identifies all dependent entities that change togétha changing
target entity. The main focus of our evaluation is to check whether the pedjatependency
analysis method correctly identifies the necessary dependent entitiebaingecbased on

the selected evolution strategy.

5.5.1.1 Experimental Evaluation

We extend the prototype (Secti@n6.1.) and implement the dependency analysis algo-
rithms. The prototype accepts a requested change operation, a tafg& & a strategy

to analyse the dependent entities of the target entity in the requested cliiegeototype
supports analysis of all types of dependencies for all types of entitizsalyses dependent
entities for all applicable strategies that are selected by the user.

Before conducting the main evaluation, we conducted unit testing on thetypettm
check the correct implementation of all the dependency rules and thetmebsf the
application. The prototype system passed through five iterations. Inoéaleh iterations,
we improve the implementation of the algorithm, corrected unidentified deperdeand
fixed wrongly identified entities and dependencies.

For the purpose of the experiment, we classify entities into five strata esyiiieg their

123

types. The five strata are classes, data properties, object propertasices (including
documents) and axioms. The classification enables us to observe théobelwdithe de-
pendencies for each evolving entity in the OCMS. For each stratum, weesklHz entities.
The entities were selected randomly and proportionally from the three tadiess(Ap-
pendixA, B andC) . We select entities from each case study because the OCMS in each
case study has different behaviours. A total of 50 evolving entitiessa@ in the evaluation
process.

The evaluation was conducted as follows. First, we identified the depeadgties
automatically using the prototype. Second, we identified all the dependéidseaf all the
selected entities manually. Third, we compared the results from the two meivedssed

precision to measure the accuracy of the algorithm.

|CID]|
P(DA) = —— 5.1
where:
P(DA)= Precision of the dependency analysis

|C'ID|= Number of correctly identified dependencies by the system

|C'D|= Number of identified dependencies

We further measured the average time (in milliseconds) of the dependealygsian
algorithm. Measuring the time allows us to estimate the response time of the application.
The response time determines the usability of the system in real time scenaritedsared
the time required to identify the dependent entities and their types. For etithvea
conducted dependency analysis 10 times with a total of 500 observatibasxperiment
is conducted on a 3.00 GHz Intel(R) Core 2 Duo CPU with 4.00 GB of RAMpingon a

64-bit Windows 7 operating system.

5.5.1.2 Experimental Results and Discussion

A result of the dependency analysis conducted for one selected étiiyity, is presented

in Table5.6. The table compares the analysis results of the automatic solution, expert solu

124

tion and non-expert solution. The automatic solution identifies dependim<following
the proposed dependency analysis approach implemented in the protdhgexpert so-
lution is conducted by an expert user and verified by other experts itoggtevolution
with sufficient time and effort to identify the dependent entities. To avoilidatihe expert
solution uses OWL API methods to list all axioms in the ontology. Then, the axielaizd
to the target entity are carefully examined to identify dependent entities. drirexpert so-
lution examines the dependencies by ontology users who are not exfesteesult shows
that the automatic method identifies all the dependent entities which are identifted b
expert solution. The automatic method further identifies all the dependeder@tfied by
non-experts. Compared to the manual solution, the automatic method identifieslezor
pendencies. This is mainly attributed to indirect dependent axioms that thexthaavalysis
overlooked or failed to recognize. We also found that identifying the rdiffedependency
types using the manual method is time consuming.

Table 5.6: Comparison of the manual and automatic method

Entity Automatic Solution Manual Solution
Expert Solution || Non-expert Solution

TD|PD|DD |ID | TD |PD| DD |ID || TD |PD | DD | ID
Concepts| 5 1 2 4 5 1 2 4 5 1 2 4
Axioms 14| 0 5 91 14| 0 5 9 9 0 5 4
Instances || 1 1 2 0 1 1 2 0 1 1 2 0
Properties|| 0 0 0 0 0 0 0 0 0 0 0 0

TD = Total Dependent, PD = Partial Dependent
DD = Direct Dependent, ID = Indirect Dependent

We followed a similar analysis on individual entities to measure the overaligowaof
the proposed solution. The second Tahléshows the average precision of the dependency
analysis over the selected 50 entities. We followed the above approachkltmtevthe
accuracy of the proposed solution. We organized the precision basdependency types.
Our dependency analysis algorithms enable us to achieve a 100% préaorsibe de-
pendencies defined in this research. This result meets the minimum requireenset for
the dependency analysis phase. The dependency analysis inclatig¢snisrmation about

the type of dependency, which is a crucial input for customization of gaperations.

125

Table 5.7: Precision of OCMS dependency analysis (in 100%)

| Entity | TD | PD | DD | ID | Average| Time(ms) |
MeetingRoom 100% | 100% | 100% | 100% | 100% 15
Person 100% | 100% | 100% | 100% | 100% 19
Building 100% | 100% | 100% | 100% | 100% 15
hasCourseNumber 100% | 100% | 100% | 100% | 100% 17
hasName 100% | 100% | 100% | 100% | 100% 9
hasTitle 100% | 100% | 100% | 100% | 100% 7
hasMembers 100% | 100% | 100% | 100% | 100% 7
hasOffice 100% | 100% | 100% | 100% | 100% 6
hasWebsite 100% | 100% | 100% | 100% | 100% 6
takesCourse 100% | 100% | 100% | 100% | 100% 5
teaches 100% | 100% | 100% | 100% | 100% 5
CA106 100% | 100% | 100% | 100% | 100% 2
CA147 100% | 100% | 100% | 100% | 100% 2
Invent 100% | 100% | 100% | 100% | 100% 2
Janet 100% | 100% | 100% | 100% | 100% 2
Javed 100% | 100% | 100% | 100% | 100% 2
Average | 100% | 100%| 100% | 100% | 100% | 10.3

The overall result of the dependency analysis process is encogragghis suitable for the
change impact analysis process.

Efficiency. The time on table 5.7 shows the average time (in milliseconds) the algo-
rithm took to identify all dependent entities of an entity. To calculate the aediage for
analyzing the dependency of a single entity, we run the program 10 times.cAtiteration,
we record the time and calculated the average time at the end. For example, tlertime
analysing the dependent entities of the class "meetingRoom” is 15ms. This nfeaas
run the application several times, the average time required will come closgmtiniites.

In Table 5.7 it is clear that the time required to analyse the dependent entitikzssés is
more than the time for analysing dependent entities of instances. The awnalbe time
for dependency analysis considers all entities including classes anddestarhus from
the experiment we calculated the overall average time for analysing deptesatities of
any entity. This average time is 10.3 milliseconds. This means, for a given O@MS
similar size as the case studies, it takes an average of 10.3 ms to identify adltedent

entities.

126

The result is encouraging in that it provides fast response rate to éneand can be
used in a real time environment. This result is dependent on the size of tM&@CGerms
of the depth and breadth of the OCMS graph.

Time and Space Complexity.To provide a formal and general time and space require-
ment of the algorithm, which can be applied to any OCMS, we analysed awidlpdathe
efficiency using time and space complexity. In the worst case scenarialgbethm ex-
hibits o(n"™) time complexity and(n"™) space complexity whereis the number of edges
of a node andn is the depth of the graph.

The limitation in relation to complex classes is that the dependency analysis aloes n
distinguish the dependency between entities in a complex class expredsioméans, as
complex classes are represented using axioms combining two or more claegesties
or restrictions, the analysis only considers the whole axiom as depestityit We do not
focus on each of the constructs of the axiom and analyse the depésieAtthis stage,
considering the whole axiom is sufficient to analyse the impacts. Howeue ifuture, if

we need to provide detailed explanation, we need to address this limitation.

5.6 Summary

The change impact analysis framework gives a high level descriptioreafithnge impact
analysis during evolution of the content, the annotation or the ontology. Hdmge impact
analysis process begins by capturing changes from the user aedenfing the changes
using requested and generated change operations which are sufficially implement
the desired change. Generation of a complete change operation depetius selected
evolution strategy and the dependency which exists between the compohtr@©OCMS.
To generate supplementary change operations, we need to understdegémdencies
that exist among the entities in the OCMS. The target entity of the requestadechad
the change operation determine how the dependency analysis shoulédudeelx The
dependency analysis stage enables us to get all the entities that depgbedanget entity.

These dependent entities need to be changed accordingly due to tiye @htire antecedent

127

entity. Thus, the dependency analysis process plays a major role in idepgidytities that
need to be changed in response to a requested change.

Determining what to do with the dependent entities is dictated by the evolutiorgstrate
The evolution strategy tells us either to link the dependent entities to a partégy} &n
delete them all or to leave it as it is. If we choose to link the dependent entit@sotber
entity in the OCMS, the change operations we use include addition of new stdtegven
if the user’s change request is deletion of an entity.

The evolution strategy plays a key role in determining the number and the oathee
change operations generated in response to a given change rddueestolution strategies
are further used to generate alternative change operations for dampad selecting the
different change impacts.

The evaluation result showed an encouraging result in the precisioafficidncy of
the dependency analysis method. The result meets the requirements otige ampact

analysis phase.

128

Chapter 6

Change Impact Analysis Process

6.1 Introduction

In Chapters, we introduced the change impact analysis framework and its individoa co
ponents. We further discussed the dependency analysis procese@avdlution strategies.
To understand the impacts of a requested change operation, we neaxtthienselected
evolution strategy and identify the dependent entities accordingly. Theisutput of the
dependency analysis process serves as an input for the change &malysis process. In
this chapter, we discuss the change impact analysis process. The éhaoagt analysis
process covers both the analytical and constructive aspects. Tothewnalytical aspects,
we study the impacts of atomic, composite and domain-specific change opgrafion
the construction of the solution, we propose a bottom-up change impacsesngbyproach.
This approach begins with the analysis of impacts of atomic change operatidmaoves
up to composite and domain-specific change operations. Atomic changgiopgrare or-
ganized to create composite change operations. Thus, the impacts of dengpasge
operations are derived from the impacts of atomic change operations.

The change impact analysis process applies the following steps. Firstentifydand
characterize potential impacts of change operations. Second, we thefiagsociation be-
tween these impacts and atomic change operations. Third, we study arelttefprecon-

ditions for the occurrence of each of the impacts. Finally, we assign tbeias=d impacts

129

to the atomic change operations when the preconditions are satisfied.

Although we can determine impacts of atomic change operations using thisajppito
is not sufficient to analyse the impacts of composite and domain-specifigeloperations.
The impacts of composite change operations may not be the same as a simgiaaggof
impacts of the atomic change operations. There are impacts that cancetleachimpacts
that balance or transform to another form. We investigate such behsandreuristically
identify the associated rules. By using the change operations, the tatgetseand the
parameters involved, we identify cancellation, balancing, and transfommaties. These
rules are applied to identify impacts of composite and domain-specific changes

This chapter is organized into seven different sections. Se6toovers the change
impact analysis process and its steps. Sed@i8mentifies structural and semantic impacts
and the associated rules. Analysis of impacts of individual changetaperand the algo-
rithm used to assign impacts of individual change operations are discusSection6.4.
Analysis of impacts of composite change operations and the associatedneilgisen in
Section6.5. We evaluate the proposed solution for its accuracy and adequacytinrSec

6.6. Finally, we give a summary of the chapter in Seciton

6.2 Change Impact Analysis Process

The change impact analysis process begins by defining the possible inpatisnges
in an OCMS system. Then, it uses change operations and their associtedditions
to identify the impacts. For each individual change operation, we peréoomange im-
pact analysis by considering the change operation, the target entity arghtameters
[Abgaz & Pahl, 201Pp
The change impact analysis process has two major steps. The first stepigual

change impact analysis, which takes single atomic change operations @gydeantheir
impacts individually. This process is done by matching the change operattothe struc-
tural and semantic impacts defined for atomic change operations. Once tlieisrfatend,

the associated preconditions (Tabl®) are checked. If the preconditions of the impacts

130

Operation I Graph

%

-\ -

(e (&
Complete Change J Change Impact J

/ pic
| Individual Change
Impact Analysis
\)
Integrity
Analysis ,L
. =
f
Composite Change
L Impact Analysis

v

| Impact

Figure 6.1: Change impact analysis process

are satisfied, we assign the impacts and the affected entities to the changgoopeNe
perform this process for all the atomic change operations contained iniig@e&te change

operations. A full discussion of atomic change impact analysis is presiengsttion6.4.

As part of the analysis, we identify change operations that have a pdtentialate the
satisfiability of the classes in the ontology, the consistency of the instancesantiotation
or the null references to the content and the ontology layers. Our eliamgact analysis
tool captures all individual change operations that introduce one oe imgracts on the
integrity of the OCMS and attach the impacts to the requested change opeaatlatef

processing.

The second step is composite change impact analysis, which takes the atange ch
impacts and looks for impact cancellation, impact balancing and/or impacfdraraion
of atomic change operations due to other change operations in the compesiteec We
use heuristics to analyse composite and domain-specific change operaftussphase
analyses all the impacts of change operations when they are implementeceicageth
single change operation. Individual change operations that havéeatab to introduce

unsatisfiability and inconsistency are further checked, if other chaogyations are applied

131

to resolve the inconsistencies created. Composite change impact analyissussdd in
Section6.5.

Finally, we present the impacts of the change operations in two levels of dataiénd-
ing on the users’ requirement, we present either a summarized or a detsilgdis of the

atomic and composite changes.

6.3 Impacts of Change Operations

Impacts of change operations in OCMS are diverse. We identify these tengad inves-
tigate their characteristics. In this section, we discuss the impacts, their Gategbe
change operations that cause the impacts and the preconditions at whiitipéogs occur.
Impact: The term impact refers to the effect of change of entities due to the appticatio
of a change operation on one or more of the entities in the OCORKS§ers et al., 20D7
[Hassan et al., 2010Qin & Atluri, 2009]. Thus, a given atomic change operatiohC'h)
will have an impactimp : (ACh, P) if the associated preconditidiP) is satisfied. The
change impact analysis process uses a single change operation asitaat i@ atomic
change operation level.
The impact functior{/mp) is a function that maps an atomic change operatiét to

its corresponding impact whenever a given precondiftde satisfied.

Imp :(ACh, P) — (Impact)
Where:
Impact = Strimp U SemImp

ACh = Atomic change P = precondition

Imp :(CCh) — {Imp : (AChy, P1),Imp : (AChg, P2), ... ,Imp(ACh,, P,) }
Where:
CCh ={AChy,AChs,...,AChy,}
AChy,...ACh, € ACh
CCh = Complete Change is a function diCh4, ..., ACh,, + strategy

132

A complete change{Ch) is a composition of requested change and derived changes using

a given evolution strategy.

6.3.1 Structural Impacts

Structural impacts are impacts that changestingctural dependendisection5.3) between
the entities. Structural impacts occur when we execute a change operalidritampacts
the structural dependency of entities in the OCMS. It can be causeddigtiod, addition
or updating of an entity in the OCMS. The structural impacts of change tigesand their
associated rules are discussed below. The first four are adopiedStojanovic, 2004
There are two types of structural impacts. The first type focuses octtalimpacts
that cause structural integrity violations. We call these impacts integrity-viglatipacts.
The second type focuses on changes, which are results or consequ# a given action.
These are caused by changes that add or remove entities. We call thestsiingegrity

non-violating impacts. However, both are structural impacts of changatqes.

Table 6.1: Structural impacts

No Structural Impact Acronym Type
1 | a | Addition + Orphan Class (0C) Integrity violating
b | Deletion + Orphan Class (OC) Integrity violating
2 | a | Addition + Orphan Instance (Qan Integrity violating
b | Deletion + Orphan Instance (o)) Integrity violating
3 | a | Addition + Property Cyclic Reference (OPCR/DPCR) Integrity violating
b | Deletion + Property Cyclic Reference (OPCR/DPCR) Integrity violating
4 | a | Addition + Class Cyclic Reference (CCR) Integrity violating
b | Deletion + Class Cyclic Reference (CCR) Integrity violating
5 | a | Addition + Null Reference to Content layer| (NRC) Integrity violating
b | Deletion + Null Reference to Content layer| (NRC) Integrity violating
6 | a | Addition + Null Reference to Ontology layefr (NRO) Integrity violating
b | Deletion+ Null Reference to Ontology layer (NRO) Integrity violating
7 Addition of new entity (AE) (AC,AILADP,AOP,AAAR) | Integrity non-violating
8 Deletion of existing entity (DE) (DC,DI,DDP,DOP,DA,DR)| Integrity non-violating

A given change operation causes a structural impact in two ways. Fieghetr adds a
new entity or removes an existing entity. Second, it violates the structuratiigtefjthe
OCMS. We use the following example to elaborate the situation.

In the first version (Figuré.2a), we can see that there are three entities. Due to a

change operatiodl D DClass(ArchivingEmail), the OCMS evolves to the second ver-

133

A

sC

Activity

+* *
s¢ sc,
Cd o,

A

sC

Activity
RN

Ab‘
sc
B

%
sc
%,

ADD class(ArchivingEmail)

[Archiving] [Deleting]
Archiving
Email

“Q' 0’..

>

Figure 6.2: Example of structural impact

sion (Figure6.2.b) which contains four entities.

When we compare the two versions, we can see the two impacts of the cheamgtan.
First, the change operation introduced a new class which was not availahkefirst ver-
sion (Figure6.2a). Second, the change operation introduced an orphan(élesvingE-
mail). Here, it is very important to distinguish between a change operation arichpaet
of a change operation. “Addition of new Entity (AE)” is an impact which isetiént from
the ADDClass(C) change operation, even if the impact is a straightforward consequence
of the change operation. This distinction is important to clarify impacts indegreraf
change operations. The separation is useful to systematically analysdsrmopasmposite
change operations. The first impact is integrity non-violating, whereaseittnd impact is
integrity violating impact.

To represent all the constructs of an ontology collectively, we use the Eettity (E).
However, to refer to a specific constructs, we replace the term Entityy(E)dss (C), Data
Property (DP), Object Property (OP), Instance (), Axiom (A) amsfction(R) whenever
appropriate. The Structural impacts4€'h are:

StrImp(ACh) = {OC,CCR,OPCR,DPCR,0I, NRC, NRO, AE, DE}

where:

e Orphan Class (OC) occurs when a given class is introduced without a super class

other than the default “Thing” class. Generally, OWL allows orphan elsbut

134

sometimes the application requirements do not. It violates the concept-closure in
variant, which states that every class naegén N, excluding the root class of the
ontology, should have at least one super class N, giving closure toc; : V

¢i € N\ {Root} A type(c;) = “Class” — 3¢ € N. CCDep(c;, c).

Class Cyclic Reference@C R) occurs when a change operation introduces a cyclic
reference to classes. It violates the class hierarchy invariant. Trelotarchy is a
directed acyclic graph. For two class nodesindcs € N, =3¢y, co. CCDep(cy, c2)

A CCDep(cg,cq).

Object Property Cyclic Reference O PC' R) occurs when a change operation in-
troduces a cyclic reference to object properties. It violates the pgsopararchy
invariant. The property hierarchy is a directed acyclic graph. For tyjecbproperty

nodesop; andopy € N, =Jopy, opa. PPDep(opi,op2) A PP Dep(ops, op1).

Data Property Cyclic Reference O PC'R) occurs when a change operation intro-
duces a cyclic reference to data properties. It violates the propergrtigrinvariant.
The property hierarchy is a directed acyclic graph. For two objectgstpmodesip;
anddps € N, =3dp1, dps. PP Dep(dpy,dps) AN PP Dep(dps,dp1).

Orphan Instance (O1) occurs when a change operation introduces an instance with
no link to a specific class. It violates the instance-closure invariant. Eustgnce

node: € N is associated to a class node N. such thavi € N, 3e. CIDep(i, c).

Null Reference to Content set (V RC). Every instancd in the annotation graph
should have a corresponding document or part of document it rieféhe content

set. GivenG 4 = (Ng, Ey), Vng1 € Eq. Ing € Cont whereE, = (ng1, g, Na2).

Null Reference to an Ontology layer (VRO). Every object nodey,, in the anno-
tation graph should have a corresponding class in the ontology grapbn Gj, =

(Ng, E,) andG, = (Ny, E,), Vnge € E,. Inge € N, whereE, = (ng1, g, nq2)-

Every instance property, in the annotation graph should have a corresponding prop-

erty in the ontology graph. Give@i 4 = (N,, E,) andG, = (N,, E,), Vo, € E,.

135

Ja, € N, whereE, = (nq1, aq, a2)-

e Addition of new Entity (AE) occurs when any entity is added to the OCMS.

e Deletion of new Entity (D E) occurs when any entity is removed from the OCMS.

Change Operations Structural Impacts

/—\ Orphan concepts(OC) \

Orphan Instance(OI)
Concepts

Concept cyclic reference(CCR)
Properties
Property cyclic reference(PCR)

e Instances I:‘
Ad;iltlorl Rootedness invariant(RI)
Deletion :
Axioms Null reference to content layer (NRC)
Restrictions

Null reference to ontology layer (NRO)
Documents /

e

Addition of new entity (AE)

deletion of existing entity (DE)

Figure 6.3: Structural impacts

The last two structural impacts directly correspond to the change operatimhare
straightforward. We consider them as impacts because they play a signibéa during

composite change impact analysis.

6.3.2 Semantic Impacts

Semantic impacts are impacts that change the semantics (interpretation) of entities in
OCMS. Whenever a structural change occurs, it causes a chartge oreaning of the tar-
get entity or dependent entities. We identify existing semantic chaqges{ Atluri, 2009]

and derived semantic impacts from the changes. The semantic impact oh@o eb@ange

operation is defined as:

136

SemImp(ACh) ={EMD,ELD,PMR,PLR, AME, ALE, EG, ES, EInc,UE,IE}
where
EM D = Entity More Described (class, property or instance)
ELD = Entity Less Described (class, property or instance)
PM R = Property More Restricted (object property, data property)
PLR = Property Less Restricted (object property, data property)
AME = Axiom More Expanded
ALFE = Axiom Less Expanded
EG = Entity Generalized (class, property or instance)
ES = Entity Specialized (class, property or instance)
EInc = Entity Incomparable (class, property or instance)
U FE = unsatisfiable Entity (class, property)

IFE = invalid Entity (instance, instance property)

e Entity More Described (EM D) occurs when we add previously unknown facts
about an entity. An entity nod&’; is more described?M D(N;) by a change op-
eration that transform& = (N,E) to G' = (N, E') if |edges(N;) € E'| >
ledges(N;) € E|. When the number of edgds’ € G’ containingN; as a sub-
ject or as an object is greater than the number of edges G containingN; as a
subject or as an object, we say entity is more described. This means, if there is
a new edge added to a given entity, then that entity is more described. &emSe

4.4.4for details of getting the edge of a node.

e Entity Less Described (£'L D) occurs when we remove an existing semantics (facts)
about the entity. An entity nod®/; is less described LD (N;) by a change operation
that transforms> = (N, E) to G’ = (N, E') if |edges(N;) € E'| < |edges(N;) €
E|. When the number of edgds € G containingN; as a subject or as an object is
greater than the number of edgBse G’ containingNV; as a subject or as an object,

we say entity/V; is less described. This means, if an existing edge is deleted from a

137

given entity, then that entity is less described.

Property More Restricted (P M R) occurs when the existing semantics is more re-
stricted. A property nodé’> € N is more restricted® M R(P) by a change opera-
tion that transforms> = (N, E) to G’ = (N, E'), for E = (N;,domainOf, P)
and E' = (Nj,domainOf,P), if N; C N; or for E = (Nj,rangeOf, P) and

E" = (Nj,rangeOf,P), if N; C N;). If the domain class{;) of a given prop-
erty is changed to a subclass of the original clagg,(the property becomes more
restricted. Likewise, if the range clasg() of a given property is changed to a sub-
class of the original class\;), the property becomes more restricted. A property
more restricted shows a covariant property that converts the domain @ne of a

property from a general class to a special cl&asstagna, 1995

Property Less Restricted (PLR) occurs when the existing semantics is less re-
stricted. A property nodé® € N is less restricted® LR(P) by a change opera-
tion that transforms? = (N, F) to G’ = (N, F’), for E = (N;,domainOf, P)
and E' = (Nj,domainOf,P), if N; C N; or for E = (N;,rangeOf, P) and

E' = (Nj,rangeOf, P), if N; C Nj). If the domain classy;) of a given prop-
erty is changed to a super class of the original cla§$, (the property becomes less
restricted. Likewise, if the range clasg() of a given property is changed to super
class of the original class\;), the property becomes less restricted. A property less
restricted shows a contravariant property that converts the domain caribe of a

property from a special class to a general cl&ssfagna, 1995

Axiom More Expanded (AM E) occurs when the axiom further extend its semantics
to other entities. When a given axiom includes more entities and allows the sesnantic
to apply for further entities, the axiom becomes semantically more expanded. A
axiom E; is more expanded M E(E;) by a change operation that transfortis=
(N,E)to G' = (N,E'), for E = (N;,, N;) andE' = (N/,o,N;) or £/ =
(Ni, o, N}), if Nj = N; + Ny or N = N; + Nj, whereNj, # 0.

138

e Axiom Less Expanded @A LFE) occurs when the axiom further restrict its semantics
to fewer entities. When a given axiom excludes existing entities and restricts th
semantics to apply for fewer entities, the axiom becomes semantically lesslexpan
or more restricted. An axion; is less expanded LE(E;) by a change operation
that transforms& = (N,E) to G’ = (N,E'), for E = (N;,a,N;) andE’ =
(N}, a, Nj) or E' = (N, , N7), if N] = N; — Ny, or N} = N; — Ni whereNy, # ().

e Entity Generalized (E'G) occurs when an entity become more general (move up
in the hierarchy). Generalization occurs for structural relationshipsdégne a
parent-child relationship. An Entity nod¥; is generalizedZG(N;) by a change
operation that transform§ = (N, E) to G’ = (N, E'), for E = (N;,«, N;) and
E' = (Nj,a, N}), if N; C N} wherea € {subClassOf, subDataPropertyOf, subOb-

jectPropertyOf, instance Qf.

e Entity Specialized (£'S) occurs when an entity become more specific (move down in
the hierarchy). An Entity nod#/; is specialized? S(N;) by a change operation that
transforms = (N, E)to G’ = (N, E'), for E = (N;, a, Nj) andE’ = (N;, o, N7),
if N; C N; wherea € {subClassOf, subDataPropertyOf, subObjectPropertyOf, in-

stanceO¥.

e Entity Incomparable (EInc) occurs when a change on an entity is neither gener-
alized nor specialized it. An Entity nod¥; becomes incomparablBS(N;) by a
change operation that transforiis= (N, E) to G’ = (N, E'), for E = (N;, a, N;)
andE’" = (N;, a, N7), if (N} ¢ N;j) A Nj ¢ N; wherea € {subClassOf, subDat-

aPropertyOf, subObjectPropertyOf, instancéOf

e Unsatisfiable Entity (U E)) occurs when a change on a given entity introduces con-

tradiction Baader et al., 20Q3

e Invalid Entity (/F) occurs when a change on a given instance or instance property

introduces invalid interpretatioriin & Atluri, 2009].

139

Researchersjtojanovic, 200§ Qin & Atluri, 2009] have already defined some seman-
tic changes in ontologies. In this research, we extend the semantic chanigestify
semantic impacts of change operations. However, we customized existiagodéntro-
duced new impacts for applicable entities. The expanded impacts deroradlie above

semantic changes are discussed in Téli?e

Change Operations Semantic Impacts
@ More described(MD) \
/ﬁ Entity Less Described(LD)
Entity More Restricted(MR)
Concepts
Entity Less Restricted(LR)
Properties
Entity More Expanded(ME)
o Instances
Adf't'on Entity Less Expanded(LE)
Deletion A ¥ TV ST
May Cause
Axioms Entity Generalized(G)
Restrictions Entity Specialized(S)
Documents Entity Incomparable(Inc)
/ Unsatisfiable Entity(UE)
Invalid(Inconsistent) Entity(IE) J

Figure 6.4: Semantic impacts

Semantic impacts are caused by structural changesd Atluri, 2009]. Some of the
structural changes, which involve axioms that specify relationships betalasses (sub-
class of, intersectionOf, disjointWith, complementOf) and relations betwemredies and

classes (domain, range) may cause semantic impacts.

The impact analysis process identifies one or more of the above struots®inantic
impacts of the requested change operation. The change operation mathedkgendent
entity an orphan entity. Two or more change operations can also causealjgation or

specialization of the dependent entities.

140

Table 6.2: Semantic impacts

No. | Semantic Impact Acronym

1 Entity More Described (EMD) (CMD,DPMD,OPMD,IMD)
2 Entity Less Described (ELD) (CLD,DPLD,OPLD,ILD)

3 Entity More Restricted (OPMR)

4 Entity Less Restricted (OPLR)

5 Entity More Expanded (AME)

6 Entity Less Expanded (ALE)

7 Entity Generalized (EG) (CG,DPG,0OPG,IG)

8 Entity Specialized (ES) (CS,DPS,0PS,IS)

9 Entity Incomparable (EI) (Clnc, DPInc, OPInc, linc)
10 | Unsatisfiable Class/Property (UE) (UC,UDP,UOP)

11 | Invalid Instance/Instance Property (IEXII, [IP)

6.3.3 .ABox versusT Box Impacts

Impacts of a change operation can be viewed from the perspective &irntieof state-
ment they affect. In description logic, we can classify statements7ii@ox and. A50x
[Horrocks, 200R The statements that focus on the ontology terminology are/tBex
statements and the statements that focus on the instances (individuals) imdtatian

layer are thedBox statements. Change operations may have an impact of3bz state-
ments or on thé Box statements. A separate treatment of the statements is important to
analyse impacts of the operations. It further helps us filter the statements¢haffected

by the change operation.

TBox Impacts. 7 Box statements are affected by operations that change the axioms
related to the terminology in the ontology. The terminology box is defined as statteme
that assert how classes or roles are related to each &hedgr et al., 20d3The impact of
such change operations revolve around the satisfiability and the cobkevkthe ontology.

This means, a change operation may violate the semantic integrity of the terminology

ABox Impacts. ABox statements are affected by operations that change the axioms
related to annotation instances or individuals in the assertion box. Asseot@statements,
in our case, are defined as statements related to instances and instartg@Enas#\ change
on the assertion statements may result inconsistency due to contradictonyestEst@bout

the instancesqorrocks, 200Bor invalidity of the interpretation of an instance with respect

141

to an ontology Qin & Atluri, 2009].

6.3.4 Addition versus Deletion Impacts

Impacts of addition and deletion operations are discussed under sttuctpagts. In this
section we discuss addition and deletion as change operations frompegiesms of the
effort and resource required to automatically implement them. In terms ofjehepera-
tions, adding a new entity and deleting an existing entity involves differemiepitores and

resources.

Impacts of Addition. The addition operation introduces a new ontology entity, anno-
tation entity or content entity in the OCMS. If a new entity is introduced in the OGMS,
can be a class, a property, an instance, an axiom, etc. Such kindsxgeshatroduce new
knowledge and may require an update of the overall system. The additione entity
involves creating that new entity. If the new entity needs to be linked with existitiges,
we need to search and find those entities in the OCMS. This involves extnarcesfor

searching. However, addition operation usually attaches the new entitg @CGMS.

Impacts of Deletion. A deletion operation removes existing entities from the OCMS.
The deletion operation in the ontology layer removes an existing class,rprogmdom or
restriction. The deletion operation in most of the cases is the source adssompacts.
The impact of the operation becomes complex depending on the position oélgted]
entity. When we delete an entity, we should search its usage in the OCMS letel alé
instances of usage. This involves searching the whole graph and defe¢éinginstance of

the entity.

Compared to addition operation, deletion operation requires more time angdaeso
If the deletion operation uses the cascade strategy, it requires motgaesa@nd time to

complete the execution of the change operation.

142

6.4 Individual Change Impact Analysis

Individual change impact analysis takes individual change operatindsanalyses their
impacts. The individual change impact analyses the atomic changes #gukadsgpacts
if they satisfy the preconditions. We identify atomic change operations aa&eddy the
type of operations and target entities. We analyse their potential impacts eridyidhe
preconditions of each impact in Sectiért.1 To analyse the impact of an atomic change,
we search the change operation and read the associated impact andatsdjiien. We
check if the precondition for the impact is satisfied in the OCMS. Whenevegsrdendi-
tion is satisfied, the impact is assigned to the change operation.

If associated preconditions are defined for the change, we checkebenglitions. If
the preconditions are satisfied, we take the impact and the target entity asat ohthe
change operation. For semantic impacts that cause unsatisfiability or irteangjthe indi-
vidual change operation may not be the sole reason for the unsatisfiabilityomsistency.
In such situations, we keep traces of those statements for explaining sloa feathe viola-
tion of the integrity and for resolving the problem. If the preconditions ateatisfied, we
move to the next impact defined for the change operation and continuedhe pincess

until we finish all the atomic change operations contained in the complete change

6.4.1 Impacts of Atomic Change Operations

We identified different atomic change operations and studied their semadtgtractural
impacts in Sectior6.3. To discuss atomic change impact analysis, we take frequently
observed Goncalves et al., 201 Thange operations. The list of the impacts of the other

atomic change operations and their preconditions is given in TaBle

e The structural impact oAdd Clas$c;) is the addition of new classAC(c;) and
thatclass being orpha®C (cy). Strimp(AddClass(ci)) = AC(c1) andOC(cy).
When a new class is added by théd Clasoperation, it means we introduced a new
class and that class becomes an orphan class. This is because this pangteon

does a single task of adding a new class.

143

e The structural impact oAdd SubClassg(, ¢) is the addition of a new axiond A
(Full Aziom)* and if 3c. CCDep(c, c1), this change introduces a cyclic reference.
This is defined as a precondition for this atomic change operation and if tisfiesd,
then we can assign a cyclic reference to both claé8€&(c;) andCCR(c). If the

precondition is false, the change does not introduce a cyclic refenepeet.

The semantic impact of this change operation makes the two classes moibeatescr
(CMD). This means now we know that is a special class @f' and we know more
information about the two classes. Thus, the semantic impactS'&fé(c;) and

CMD(c).

e The structural impact dDelete Class() is thedeletion of an existing clas®C(c),
StrImp(DeleteClass(c)) = DC(c). The semantic impact of the change operation
is SemImp(DeleteClass(c)) = UA(e;) if de;. CADep(e;, ¢). This means when a
class is deleted, all axioms that refer to this class will be impacted and may need to

be deleted or modified.

e The structural impact obelete SubClass(, ¢) is thedeletion of an existing axiom
DA(FullAziom) and anOrphan Clasée,), if the classe is the only super class of
c1. Thus,StrImp(DeleteSubClass(ci,c)) = DA(fullAxiom) andOC/(c;) if Jec.
CCDep(cy,c) A=3d. CCDep(c,d) A ¢ # d.

The semantic impact of the change operation is that both classes become-less d
scribed due to the removal of an existing fact about the two classes, Jawud mp

(Delete SubClass(c1,c¢)) = CLD(c;) andCLD(c).
e The semantic impact didd DisjointClassescy, c2) is:

— an unsatisfiable clas$UC) if there exists a class, which is in a subClass hi-
erarchy of bothc; andca. SemImp(AddDisjointClass(ci,c2)) = UC if

de:C,ceciNeced

Full Axiom represents the entire axiom, not individual entities constructiagixiom

144

— aninvalid instance(I1), if there exists an instance which is an instance of the
classe; andes or the subclass afi andey. SemImp(AddDisjointClass(cy, c2))

=ITif Ji: (i,¢7) A (4, ¢5). ¢* represents all the super classes in the hierarchy.

Table 6.3: Potential impacts of selected atomic change operations

No| Change Operation Impact Impact (Entity) Impact Precondition
Type
1 | Add Class (c) Structural] AC(c), OC(c) None
2 | Add SubClass Structural AA (FullAxiom) None
(c1,0) CCR(c1), CCR (c) Je. CCDep(c, ¢1)
Semantig UC (c1) Jei. CCDep(ct, d) A
disjointClasseg:, d)
CMD(c¢1), CMD(c) None
3 | Delete Class Structural DC (c) None
(c) Semantic UA (a;) Ja,;. CADep(as, c)
4 | Delete SubClass Structural DA (FullAxiom) None
(c1,¢) OC (c1) Je;. CCDep(ei,c¢) A—Jer.
CCDep(c1,d) Nc#d
Semantiq C'LD(c;), CLD (¢) None
5 | Add Instance (i) Structural Al(i), OI(i) None
6 | Add InstanceOf Structural AA (FullAxiom) None
(,¢) Semantig 1l (z) Jei. CIDep(i, d) A
disjointClasseg:, d)
IMD (), CMD(c) None
7 | Delete Instance Structural DI (i) None
(1) Semantia UA (a;) Ja;. IADep(a;, 1)
8 | Delete InstanceOf Structural DA (FullAxiom) None
(i, c) Ol (i) 3i. CIDep(i, ¢) A=3d.
CliDep(i,d) AN c # d
Semantig ILD(i), CLD (c) None
9 | Add ObjectProperty] Structura] AOP(op) None
(op)
10| Delete ObjectProperty | Structura| DOP (op) None
(op) Semantic UA (a;) Ja;. PADep(a;, op)

145

1P (ip)

Jip. PIPDep(ip, op)

11| Add SubObjectPropt Structura] AA (FullAxiom) None
erty
(op1, 0p) OPCRop1), OPCRop) Jop. PPDepop, op1)
Semantiq UOP (op1) Jop:1. PPDepop1,0q) A
disjointObjectPropertip, oq)
OPMD(op1), OPMD(op) | None
12| Delete SubObjectProp- Structura] DA (FullAxiom) None
erty
(op1, 0p) Semantiq OPLD(op:), OPLD (op) | None
13| Add DataProperty (dp)| Structura| ADP(dp) None
14| Add SubDataProperty | Structura] AA (FullAxiom) None
(dp1, dp) DPCR(dp;), DPCR(dp) | 3dp. PPDepdp, dp:)
Semantic UDP (dp1) Jdp1. PPDep(dp1, dq) A
disjointDataPropertylp, dq)
OPMD(dp;), OPMD(dp) | None
15| Delete DataProperty Structural| DDP (dp) None
(dp) Semantic UA (a;) Ja,. PADep(a;, dp)
1P (ip) Jip. PIPDep(ip, dp)
16| Delete SubDataProp- Structural] DA (FullAxiom) None
erty
(dp1,dp) Semantiq OPLD(dp:), OPLD (dp) | None
17| Add Disjoint Structural AA (FullAxiom) None
Class(ci, c2) Semantig UC (c¢1), UC(c2) Je. CCDep(c, c1)A CCDep(c, c2)
(1) Ji. CIDep(i, c1)A ClDep(i, c2)
CMD(c1),CMD(cz) None
18| Add Equivalent Structural AA (FullAxiom) None
Class(ci,c2) Semantig UC (c1), UC(c2) Je. CCDep(c1,)N

CCDep(c2, d)A
DisjointClasseg:, d)

CMD(c1), CMD(cs)

None

110

3i. CIDep(i, c1)A ClDep(4, c2)

146

Analysing the semantic and the structural impacts of atomic change operatipies
a careful analysis of all possible scenarios. We use different tasasntify the scenarios.
This approach is time consuming, but it is a one time task. The other main adwaftag
this approach is that, it is very fine-grained and it can be used to prieesapacts of any
composite and domain-specific changes composed of atomic change operéiice we
define the potential impacts of atomic change operations and the conditiornscht tive
impacts occur, the next step is to use them as an input to determine the actuakiwipa

change operations when an OCMS evolves.

6.4.2 Steps for Individual Change Impact Analysis

The individual change impact analysis process is done step by stetépteare outlined

here and discussed with a flowchart (Figusen) and an example in detail.
1. Select an individual change operation from a complete change

2. Search the corresponding change operation in the potential impacttarafecopera-

tions
3. Read its structural impacts
4. Assign the structural impact to the affected entity if the preconditionsaisdied
5. Read its semantic impacts

6. Assign the semantic impact to the affected entities if the preconditions afeeslatis

We will explain each of the steps in detail. We will use the case study desdribed
appendixA. Input: Requested change (consider the following complete changeringta

two atomic changes)

1. Delete Subd assOf (DeletingFile, Del eti ng)
2. Delete Cdass (DeletingFile)

Step 1. Get a change operation from a complete chang&ake the operation (Delete)

and the target entity (subClassOf).

147

Atomic Change
Operation
Process Atomic
Change Operation

Structural
Impacts and
Preconditions

No. Precondition Satisfied?

Yes

Assign Structural impact to
change operation

Semantic
Impacts and
preconditions

Yes

Assign Semantic Impact
to the change Operation
Impacts of

- —_————— Atomic change
operation

Figure 6.5: A flowchart: atomic change impact analysis

Step 2. Search the corresponding change operation in the poteat impacts of
change operations.From the potential impacts of change operations, find the correspond-
ing change operation.

Step 3. Read the structural impact.The structural impact of the change operation is
the Deletion of an Axiom (DA). The affected entity is the full axiom. The selcstnuctural

impact of the change operation is the introduction of an Orphan Class (OC).

Step 4. Check the structural impact precondition. This impact, however, has a pre-
condition that we need to check. DfeletingFileis totally dependent obBeleting then the
implementation of this operation introduces orphan class (OC) for the fiit. érhe struc-
tural impact parameter shows the entity which is structurally affected. Ifideopdition

is not satisfied, we simply ignore this impact.

148

Step 5. Read the semantic impact.The change operation makes the two classes
to be less described. This is because of a removal of the axiom, whigBscaemantic
information about both classes. With the presence of the axiom, we knoDeletingFile
is a subclass dbeleting i.e., now we know less about the two entities. This impact applies
for both entities (DeletingFile and Deleting).

Step 6. Check the semantic impact preconditionThere is no semantic impact pre-
condition associated with this change operation. This means this impact edoemgver
the change operation is implemented. When a subclass of an axiom that linkkasses
is removed, the two classes become less described. The output of thésipltaes original

change request together with the structural and semantic impacts attached.

Table 6.4: Impact analysis output

1 | ChangeOperation Delete
2 | TargetEntity subClassOf
3 | Parameter Type Class
Position 0
Value http://CNGL.ie#DeletingFile
4 | Parameter Type Class
Position 1
Value http://CNGL.ie#Deleting
5 | ReasoningType T Box
6 | Structurallmpact DA
7 | StructurallyAffectedEntity | FullAxiom
8 | Structurallmpact ocC
9 | StructurallyAffectedEntity | http://CNGL.ie#DeletingFile
10 | Semanticlmpact CLD
11 | SemanticallyAffectedEntity http://CNGL.ie#DeletingFile
12 | Semanticlmpact CLD
13 | SemanticallyAffectedEntity http://CNGL.ie#Deleting

When we check the preconditions, we also keep track of the entities patitigipa
the change operation. This information is used for further analysis of thgrity of the
OCMS. For example, if we are making two classes equivalent and if thests exdisjoint
axiom involving the classes, the semantic impact becomes unsatisfiable d2)ssTius,
we keep track of such statements and store them for the composite changeamgigsis

phase.

149

6.4.3 Algorithm for Individual Change Impact Analysis

A general algorithm that attaches the structural and the semantic impactarafecbper-
ations is given below. The algorithm takes the complete change operatiagses the
impacts of the atomic change operations and returns the associated impaetsiudige

operations.

Algorithm 6 Assign Individual Change Impacts (CCh, Impact)
1: Input: Complete Change operatig@’Ch), Change impacts(Impact)
2. Output: Complete Change operation with impacts
3: for each atomic change operatiotCh) in CCh do

4. if AChis found in change impacthen

5: assign corresponding impact to Imp

6: for each strimp in Immlo

7 if structural precondition(imp)=truden
8: attach the affected entity to the strimp
9: attach strimp toACh
10: end if
11: end for
12: for each semimp in Implo
13: if semantic precondition(imp)=truben
14: attach the affected entity to the semlimp
15: attach semlmp talCh

16: end if

17: end for

18: endif

19: end for

20: returnCCh

The change impact analysis approach at this stage is compliant with existlag A00
tool that generates change operations at an atomic level can exploit thieliradlichange
impact analysis step and can find both the structural and the semantic imp#etsirudi-
vidual changes. Individual change impact analysis generates thetsrgiatomic change
operations individually and gives us crucial information about the impéttigiever, when
changes are applied in a batch as a composite change operation, the ipaethange
operation depends on the other change operations. Individual elrapgct analysis yield
detailed impacts of atomic change operations. But it does not consideraVieys or the

following change operations. The impact of a composite change operation é&simple

150

collection of the impacts of the atomic change operations contained in it. Thusguee

a different impact analysis strategy at a composite level.

6.5 Composite Change Impact Analysis

Composite change impact analysis focuses on analysing impacts of two orch@rge
operations when they are executed together. The independent aoébysiatomic change
operation within a complete change representation indicates only the impacssgeicific
atomic change operation. When we implement a requested change, we raagdrathan
one change operation to fully implement the requested change. In suchteositto under-
stand and to find out the impacts of the complete change operation, as a singktion,
we need to go further to composite change impact analysis. Composite ¢haoege anal-
ysis considers the impacts of one change operation in relation to impacts oprgbeding
or following change operations. When a composite change operation is impkan¢he
impacts of the composite change may not be the same as the aggregation of ttts hpa
its constituent individual atomic change operations. The impacts may redumetmns-
formed to other impacts. Composite change impact analysis identifies techiuguedyse
the impacts of composite change operations. To analyse these impacts, wg aoyab
techniques, such as impact cancellation (Seddi@nl), impact balancing (Sectio8.5.2
and impact transformation (Secti@5.3, that exploit dependencies between individual

changes and impacts.

6.5.1 Impact Cancellation

Impact cancellation applies for two change operations. Impact cancelstooms when the
impact of one operation cancels or overrides the impact of the othertmpeom a given
entity. This means, the impact of a given change operation removes the impastxl by
another change operation, or one impact subsumes the other impact. trapeeliation
mainly focuses on impacts caused by similar operations. It occurs betweeadtlitions

or between two deletions. For example, if the impact of one change openaitioduces

151

anOrphan Entity (OE)Rnd a following change operation deletes the orphan entity resulting
in a structural impacbelete Entity (DE)then the impact of the second change operation
overrides the impact of first change operation. This means, the orptiiy is deleted

by the second change operation. In this case, we remove the impact ofsthehinge
operation Orphan Entity (OE) because that entity is deleted.

Identification of change impacts that cancel each other requires argailisiimpacts of
the change operations when they are applied on a single entity. We anaysgtcts, the
operations, the target entities, affected entities, and the order at whichppear in the pa-
rameter and in the complete change operation. By doing so, we identifyiassbchange
operations and impacts that are candidates to impact cancellation. Impeeliaton uses
the following rules to identify and cancel impacts of composite change opesatibhe

rules are derived from our observation of the case studies and validsitey experiments.

e Rule 1. When a target entity is affected by an operatid@'h,, and if that target
entity is deleted by another operatiéh”,, the applicable structural and semantic

impacts ofO P, on the target entity will be cancelled.

For CCh = {AChy, AChs}, Imp : {CCh} = Imp{AChs} if
Imp{AChy} = strimp(x) U (semImp(z)\DE(z)) A
imp{AChy} = DE(z).

e Rule 2. When a change operatiohCh; is executed, if it introduces an impadt,),
but if there is another change operatidd’'hs that changes the precondition of the

impact (1), the impact ;) will be cancelled.
ForCCh = {AChy, AChs}, Imp{AChy, AChy} = Imp{AChs} if
Imp{ACh1} = OE(z) N imp{AChs} = AA(«a)

wherea = (z, subclassOf,y) V (z, instanceO f,y).

We further identify pairs of cancelling and cancelled impacts for the two ruléms
following table gives the pairs of impacts that are candidates for cancelldtiaihe first

rule, if an entity is deleted, all the structural and semantic impacts associated with

152

be removed. In the second rule, we remove orphan entities when the fajlaenge

operations add an axiom that links the entity to a parent entity.

Table 6.5: Candidate impacts for cancellation

Rules | Cancelling Impact Candidates for cancellation
Rule 1| Delete Entity(DE) All Strimp exceptDE

All Semimp
Rule 2 | Axiom Added(AA) OE

A typical characteristics of cancellation is that the change operationshévat can-
celling impacts, have the same operation (addition and addition or deletion katithnle
but one acts on a node (e.g. class) and another on the edge (e.g.ssulicked to that
node. The rationale behind impact cancellation is to filter out impacts, whicduaseimed
by other impacts. In composite change impact analysis, keeping the impactsofity,
which is totally removed or overridden by another impact, is meaningless.

The following example elaborates how the impact cancellation process isaiaadl-
yse impacts of composite change operations. The impdaetefte SubClass (DeletingFile,
Deleting)andDelete Class (Deleting} given in Tables.6. The two atomic change opera-
tions are candidates for impact cancellation according to Rule 1. The tdageDeleting-

File is affected by the first change and is deleted by the second changgioper

Table 6.6: Impact cancellation using Rule-1

No | Change Operation Structural Impact| Semantic Impact
1 Delete SubClassOf OC(DeletingFilg | CLD(DeletingFilg
(DeletingFileDeleting CLD(Deleting

2 Delete Class DC(DeletingFil§ | None
(DeletingFile)
After Cancellation
1 | Delete SubClassOf None CLD(Deleting
(DeletingFile, Deleting)
2 Delete Class DC(DeletingFile) | None
(DeletingFile

If we look at the two change operations, the first change operation sétet&SubClas-
sOf axiom and introduces th@C(DeletingFilg impact. However, the following change

operation deletes the claBgletingFile The first change operation makes eletingFile

153

class an orphan class and semantically less described. The secogeé cipenation re-
moves the class from the ontology layer. Thus @& DeletingFilelandCLD(DeletingFile)
impacts are cancelled from the first operation.

To elaborate the impact cancellation process further, let us take two atoamgeh
operationAdd Class(GUlandAdd subClassOf(GUI, Userinterfaceéhe first change op-
eration introduces an orphan cla®€(GUI). However, the second operation falsifies the
precondition of orphan class impact by introducing an axiom that link thbaorlass
to Userinterfaceclass. Thus, the newly added axio®i\(FullAxiom) which is subClas-
sOf(GUI, Userinterface)overrides the orphan class impact and removes it from the list.
The impacts are reduced from 5 to 4 becausé€x@éGUI) impact is removed. The impacts

before and after cancellation are depicted in T&ble

Table 6.7: Impact cancellation using Rule-2

No | Change Operation Structural Impact Semantic Impact
1 | Add Class(GUI) OC(GUI) None
AC(GUI)

2 | Add SubClass(GUI, AA(FullAxiom) | CMD(GUI)

Userlinterface) CMD(UserInterface)
After Cancellation

1 | Add Class(GUI) AC(GUI) None

2 | Add SubClass(GUI, AA(FullAxiom) | CMD(GUI)
Userlinterface) CMD(UserInterface)

6.5.2 Impact Balancing

The impacts of two change operations balance each other when onesabgration in-
troduces an impact to an entity and another change operation removes tloé firopethe
entity. Unlike impact cancellation, impact balancing only occurs between ditiadand
a deletion operation with the same target entity (e.g. class with class and subitltas
subclass). The main difference between balancing and cancelling isalaatimg always
occurs either between two structural impacts or between two semantic impaetevet,
in the case of cancelling, a structural impact cancels both structural impadtseman-

tic impacts. To facilitate impact balancing, we identify counter-impacts for thdidate

154

impacts.

e Rule 3. When a given change operatioAh,) affects the target entity with an
impact, and when another change operatidi'fo) affects the same entity with a

counter-impact or vice versa, the two impacts may balance each other.
Imp{AChy, AChy} =0 if

(Imp{ACh\} = EMD(z) A Imp{AChs}= ELD(z)) V
(Imp{ACh1} = AME(z) A Imp{ AChs}= ALE(z)) V
(Imp{ACh\} = OPLR(z) A Imp{AChs}= OPMR(x)) V
(Imp{ACh} = AE(z) A Imp{ AChs}= DE(x)).

Impact balancing is commutative. This meahgp{AChy, AChs} =Imp{AChs, ACh;}.

Table 6.8: Candidate impacts for balancing

Impacts Counter-Impacts
Entity More Described (EMD) Entity Less Described (ELD)
Axioms More Expanded (AME) Axioms Less Expanded (ALE)
Object Property Less RestrictedObject Property More Restricted
(OPLR) (OPMR)
Addition of new Entity (AE) Deletion of existing Entity (DE)

For example, if a change operation deletes an existing entity, but that sdityeisen
added later or vice versa, the impacts of the two change operations caoéakch other.
An axiom ¢ subClassO f ¢) added to make a clask) @ subclass of another clas3,(and
an axiom ¢ subClassO f b) deleted to break the subclass relationship between the class
(¢) and its previous superclasy Can balance each other. In the example below, the first
operation introduced “cyclic class hierarchy”, but the second intreddforphan class”,
since these two change operations act on the same class, the impact edanoed and
both cyclic and orphan impacts can be removed.

To explain the impact balancing process, let us take two atomic changetiopsra
Add SubClassOf(DeletingFile, ActivitghdDelete SubclassOf(DeletingFile, Deletiraye
candidates for balancing. Thald SubClasmatchedelete SubClasand the clas®elet-

ingFile is a common entity in both operations. When we view these two change operations

155

together, they show a change in the subclass hierarcidetdtingFile from Deletingto
Activity. Thus, we can say that the subclass of an axiom is modified and we tarders
that the addition followed by deletion is just a modification. DeletingFile is morerithest
first and less described next, thus the semantic imp2ael® andCLD balance each other,
and thus both of them will be removed. TAdd Axiomand theDelete Axiommpacts are
also balanced, thus will be removed. However, we can see that thelAatgity is more
described (CMD) and the claBeletingis less described (CLD). This impact reflects what
is happening to the two classes and we do not balance the two impacts beéwguatect

different entities.

Table 6.9: Impact balancing using Rule-3

No | Change Operation Structural Impact Semantic Impact
1 | Add SubClassOf AA(FullAxiom) | CMD(DeletingFile)
(DeletingFile, Activity) CMD(Activity)

2 Delete SubClassOf DA(FullAxiom) | CLD(DeletingFile)
(DeletingFile, Deleting) CLD(Deleting)
After Balancing
1 | Add SubClassOf None CMD(Activity)

(DeletingFile, Activity)
2 | Delete S subClassOf None CLD(Deleting)
(DeletingFile, Deleting)

After balancing of the above two change operations, we remove the CLZBID se-
mantic impacts and the AA and AD structural impacts. However, when two ehangacts
balance each other, they introduce a higher level change impact, whasisdtby compos-
ite change operations. The change operations may introduce impactsspatalization
or generalization of the entities, more restriction or less restriction on céitidisaf prop-
erties, etc. Thus, the original change impacts are transformed to createachange

impacts. In such situations, we move to the impact transformation step.

6.5.3 Impact Transformation

When two impacts are balanced, they may introduce another impact thattisdcdeee to

the combination of the two change operations. The balancing of two or moretsnpay

156

transform existing impacts to other impacts, which are not observed at atbamge levels.
For example, in case of balancing impacts, even if we remove the impacts, élegiop
may indicate generalization or specialization in the case of operations thatiataichies.
Here after balancing impacts, we should check whether we are geneagaharentity by
allowing it to go up in the hierarchy (generalization) or specializing the entitglloying
it to go down in the hierarchy (specialization).

The major impacts created by impact transformation are semantic impacts s as g
eralization, specialization, and incomparable. These impacts are creatkdetipn and
addition of subclassof, subPropertyOf and instanceOf axioms. Fonggawhen an in-
stanceOf axiom is added to an instance which links it to a parent more témenaits
current parent and another operation deletes the instanceOf axiom iostance from its
previous parent, then we consider this as a generalization of the institdeeaomes an
instance of a super class.

When two operations are candidates of balancing and if the target inalbetassOf,
subPropertyOf and instanceOf axioms, then the change operatiorsnaidates for trans-

forming impacts.

e Rule 4. When impacts of two change operations balance and if the operations are
applied to subsumption (subClass, subDataProperty, subObjectPrapdrtjassAs-
sertion axioms), the balancing impacts will transform to generalization, djzatian

or incomparable impacts.
Imp{AChy, AChy} =ES(x) if ACh; and AChy balance and ify C v/
Imp{AChy, AChy} =EG(X) if AChy and AChs balance and if/ C y

Imp{AChy, AChs} =Inc(x) if ACh; and ACh, balance and) ¢ v/ Ay ¢ y for
AChy = AddSubclassO f(x,y) and AChy =DeleteSubclassO f(x,y')

Imp{AChl, AChQ} = Imp{AChQ, AChl}

To further elaborate the process of transforming the impacts, we usdltveifg rules.

157

In the example in tablé.1Q the second structural impact of the second change opera-
tion is removed due to impact balancing. As the class is more described withstiehfinge
operation and less described with the second change operation, it ididatarfor impact
transformation. Thus, the semantic impact of the first change operationaithbsformed
to another impact and the transformation is determined by the current loctiomtarget

entity. In this case, the semantic impact is generalization, because th®elatsggoes

Transformation =

up in the hierarchy.

El, otherwise

EG, if entity moves up in the hierarchy

ES, if entity moves down in the hierarchy

Table 6.10: Impact transformation using Rule-4

No | Change Operation Structural Impact Semantic Impact
1 | Add SubClassOf AA(FullAxiom) CMD(DeletingFile)
(DeletingFile, Activity) CMD(Activity)

2 Delete SubClassOf DA(FullAxiom) | CLD(DeletingFile)
(DeletingFile, Deleting) CLD(Deleting)
After Transformation
1 | Add SubClassOf None GC(DeletingFile)

(DeletingFile, Activity)
2 Delete SubClassOf None None
(DeletingFile, Deleting) None CLD(Deleting)

Finally, all the impacts balance each other. The candidate impacts transfgeneo
alization of the clas®eletingFile However, the other impacts still exist @D (Activity)

andCLD(Deleting) We assign the transformed impact only for the addition operation, be-

cause the addition change operation introduces the new position of the entity.

6.6 Evaluation of the Change Impact Analysis

The main research question focuses on finding an appropriate methatefdification

and analysis of impacts of change operations in OCMS. This includes idatiificof

158

impacts of individual atomic change operations and composite changeiopsran this
chapter, we proposed a change impact analysis method. We build a pectoippplement
the proposed method. The prototype takes an OCMS and a requestep apmration
and generates impacts of individual change operations and composigecbperations
separately. The prototype has passed through a standard unit testengesTincludes the
accuracy of the analysis using test cases. However, the primary gbjetthe evaluation

is not the unit testing of the prototype. But, using the prototype, we evaluatectturacy
of the proposed method in identifying impacts of atomic, composite and domaiifispec
change operations. We conduct experiments to evaluate the accuthageguacy of the
proposed solution and further compare the effectiveness of the cdmpbange impact

analysis with the individual change impact analysis.

6.6.1 Experiment Setup

To evaluate the change impact analysis method, we extend the experimeim S&etion

4.6.1.1 We select and present only 10 change operations, from more thaht2€e cases
used to evolve the respective ontologies. We analyse the impacts of thgeabperations
and evaluate the accuracy of the results using precision. The precdoniedes the number

of correctly identified impacts over the number of identified impacts by the system.

6.6.2 Experimental Results

Accuracy. We evaluate the accuracy of the CIA using precision. Precision in thisxdonte
measures the number of correctly identified impacts compared to the numbtfieden
impacts. The precision of the CIA is given as:

_|C1Imp|

P(CTA) = S (6.1)

where:
P(C1A)= Precision of the change impact analysis

|C'ITmp|= Number of Correctly Identified Impacts

159

|7 I'mp|= Number of Identified Impacts

An identified impact should satisfy the following criteria to be considered acily
identified impact. First, the method should identify the correct impact. This means th
associated impact should actually occur in the OCMS. Second, the sysbeid skentify
the affected entity correctly. When both criteria are satisfied, we considempact as
correctly identified impact.

Based on this, we present two levels of evaluation results. The firstpessénts the
precision of the CIA using a single change operation. The changetmpewsed iDelete
class (Activity)from the software help management case study. In this evaluation, the anal-
ysis is conducted using attach-to-parent, cascade and no-actionissatdf present the

precision of the framework in Tab&11

Table 6.11: Precision of impacts of a single change operation

Effect No-action Cascade Attach-to-parent
Climp| IImp | P(CIA)% | Climp| lImp | P(CIA)% | Climp| limp | P(CIA)%
Class Less Described 15 15 100 14 14 100 3 3 100
Object Property Less Described 1 1 100 1 1 100 1 1 100
Instance Less Described - - - 21 21 100 - - -
Class Generalized - - - - - - 12 12 100
Class Deleted 1 1 100 29 29 100 1 1 100
Axiom Deleted 15 15 100 60 60 100 3 2 100
Orphan Classes 12 12 100 - - - - - -
Instances Deleted - - - 7 7 100 - - -
Overall Precision - - 100 - - 100 - - 100

The precision result shows that the change impact analysis procetifiedghose im-
pacts of the change operations over three different change implemersatitegies. This
precision result is based on the change impact analysis method we ptoddse means,
for the impacts we defined, the change impact analysis method identifies thenewen
they occur during the evolution process. For a single change opertdt@rgsult shows a
100% precision and passes our requirements. The empty rows reprapacts that are
not observed in that specific strategy.

The second level presents the average precision of the CIA framévesdd on the
analysis result of 10 frequent change scenarios taken from all eestadies. We analysed

the individual change scenarios using CIA and compute the averagjsiprefor a number

160

of change scenarios. The average precision of the CIA frameworkda g Table6.12

Table 6.12: Average precision of impacts of multiple change operations

Change Operation No-action| Cascade | Attach-to-parent
P(CIA)% | P(CIA)% P(CIA)%
Delete Classhtudeny 100 100 100
Add DisjointClasse&taff Studeny 100 100 100
Delete Instancdphn 100 100 100
Delete ClassTablg 100 100 100
Add SubClassOfgchema, RelatioBchema 100 100 100
Delete ObjectProperthisSchema 100 100 100
Add Class GUI) 100 100 100
Delete DataPropertyn@sAverageSize 90 90 90
Delete Instancéq-123.xml 100 100 100
Add Instancei@-1234/xml, Filg 100 100 100
Average Precision 99 99 99

The results in Tablé.12 show the average precision of the change impact analysis
(CIA) method over 10 change operations taken from the three casesstdiese change
operations represent frequent scenarios and are used to evolvatdhegy using the three
selected strategies whenever the strategies are applicable. For eagk oparation, we
measure the precision as shown in Tabl&2 For 9 of the change operations, the result
shows 100% accuracy. However, in the case of one of the changatiops, the accuracy
of the change operation is 90%. This is because the impact analysis ideatifiethbact

which does not occur in the OCMS.

The 90% result is attributed to the impact analysis associated to data prap&Hiss
result is observed consistently throughout the three case studies. ¥g@igated the cause
of such exceptional result. The problem arises from the existenceatdegositive output.
This means, the change impact analysis approach identified and repoitegact that is
not actually occurring in the OCMS. We further examine the source of tke fasitive
result. The result is an outlier which may arise from the specification used @\tfiL API
or the interpretation of the OWL 2 specification. Further study needs to ducted to
understand and remove the false positive impacts identified by the change enjpéysis

method.

161

The result shows that the change impact analysis gives satisfactohofguecision
for implementing different change operations over different case stullethe evaluation
involves different case studies, it shows a promising result, which giyastification for

the applicability of the proposed solution in different domain areas.

6.6.3 Comparison with Existing Tool

To further validate the results of the change impact analysis processpmgace the re-
sults of our system with similar systems. The system we choose is the profegarso
We evolve the three ontologies using the change operations used in6laBleNe used
three evolution strategies to evolve the ontologies. The Protege 4.2 ontalitgy alows
comparison of two ontology versions and shows the additions, modificatichdedetions
in the new version. We present the result identified from Protege andhaunge impact
analysis (CIA) in Tables.13 The result shows that the change impact analysis approach
identified all impacts that are identified by protege. In addition to that, ouroappriden-
tified additional change impacts. There are additional structural and sermapacts that
are identified by our system. This is mostly attributed to semantic impacts which tare no
supported by protege ontology comparison tool.

Following the above procedure for the selected change operationsesenpthe over-
all accuracy of our system. We further present the additional stru@otasemantic im-
pacts. These additional impacts actually occur in the system and explain thetsropthe
change operations. Both the results show that our proposed approadaties accurate and

additional information to the ontology engineer.

162

Table 6.13: Identified change impacts: A comparison between Protegeland C

Protege

CIA

| Accuracy

No Action

Structural
Impacts

DC(Student)

DC(Student)

DA(Student subclassOf Person)

DA(Student subclassOf Person)

DA(UnderGraduateStudent subclassOf Stude

nfPA(UnderGraduateStudent subclassOf Studg

DA(PHDStudent subclassOf Student)

DA(PHDStudent subclassOf Student)

DA(MastersStudent subclassOf Student)

DA(MastersStudent subclassOf Student)

nt)

100%

OC(UnderGraduateStudent)

OC(PHDStudent)

OC(MastersStudent)

Additional
3

Semantic

Impacts

CLD(UnderGraduateStudent)

CLD(PHDStudent)

CLD(MastersStudent)

CLD(Person)

Additional
4

Cascade

Structural
Impacts

DC(Student)

DC(Student)

DC(UnderGraduateStudent)

DC(UnderGraduateStudent)

DC(MastersStudent)

DC(MastersStudent)

DC(PHDStudent)

DC(PHDStudent)

DA(Student subclassOf Person)

DA(Student subclassOf Person)

DA(UnderGraduateStudent subclassOf Stude

nPA(UnderGraduateStudent subclassOf Stude

DA(MastersStudent subclassOf Student)

DA(MastersStudent subclassOf Student)

DA(PHDStudent subclassOf Student)

DA(PHDStudent subclassOf Student)

Dl(Javed)

Di(Javed)

DI(Peter)

Dl(Peter)

DI(Pooyan)

DI(Pooyan)

DI(Tom)

DI(Tom)

DI(Yalemisew)

Dl(Yalemisew)

100%

Dl(Kosala)

DA(OPA(hasOddice Kosala,L204))

DA(DPA(hasFirstName Kosala “Kosala”

DA(DPA(hasLastName Kosala “Yapa Bandra’

DA(DPA(hasID Kosala “50505050”

DA(CA(PHDStudent, Javed))

DA(CA(UndergraduateStudent, Peter))

DA(CA(PHDStudent, Pooyan))

DA(CA(UndergraduateStudent, Tom))

DA(CA(PHDStudent, Kosala))

DA(CA(PHDStudent, Kosala))

DA(CA(MastersStudent, Janet))

DA(CA(MastersStudent, Mark))

Additional
13

Semantic

Impacts

OPLD(hasOffice)

DPLD(hasld)

DPLD(hasName)

DPLD(hasFirstName)

ILD(Mark)

ILD(Janet)

CLD(L204)

CLD(Person)

Additional
8

Attac

h to Parent

Impacts

DC(Student)

DC(Student)

DA(Student subclassOf Person)

DA(Student subclassOf Person)

Changed(superClassOf UnderGraduateStude

n@G(UnderGraduateStudent)

Changed(superClassOf PHDStudent)

CG(PHDStudent)

Changed(superClassOf MastersStudent)

CG(MastersStudent)

100%

Semantic|| Structural

Impacts

CLD(Person)

Additional
1

163

Table 6.14: Average precision of impacts of multiple change operations

Change Operation No-action Cascade Attach-to-parent
Accuracy Additional | Accuracy Additional | Accuracy Additional
(Str, Sem) (Str, Sem) (Str, Sem)
Delete Classgtudenyt 100% 3,4 100% 13,8 100% 0,1
Add DisjointClassestaff Studeny 100% 0,2 - - - -
Delete Instancéphn) 100% 0,1 100% 0,1 100% 0,1
Delete ClassTable 100% 1,7 100% 1,7 100% 1,7
Add SubClassOfchema, Relatiaschema | 100% 0,4 - - - -
Delete ObjectProperthiasSchema 100% 0,2 100% 0,2 100% 0,2
Add Class GUI) 100% 0,1 100% 0,2 - -
Delete DataPropertyh@sAverageSize 100% 1,14 100% 1,14 - -
Delete Instancég-123.xml 100% 0,9 - - - -
Add Instancei@-1234/xml, Fil¢ 100% 0,2 - - - -
Average Accuracy 100% - 100% - 100% -

6.6.4 Comparison of Individual and Composite Impact Analyss

To see how much the composite impact analysis filters the impacts we comparenibernu

of impacts identified by individual impact analysis and composite impact analyalde

6.15presents the results of the comparison for the change operations ussales. 12

Table 6.15: Comparison of Individual and composite impacts

Change No-action Cascade Attach-to-parent
Operation Indiv | Comp % Indiv | Comp % Indiv | Comp %

1 17 12 -29.4% 65 38 -41.4% | 26 6 -76.9%
2 4 4 0% - - - - - -

3 9 5 -44.4% 9 5 -44.4% - - -

4 26 24 -7.6% 26 24 -7.6% 26 24 -7.6%
5 3 3 0% - - - - - -

6 7 7 0% 7 7 0% 7 7 0%

7 2 2 0% - - - 5 4 -20.0%
8 29 29 0% 29 29 0% 29 29 0%

9 24 16 -33.3% 24 16 -33.3% - - -

10 2 2 0% - - - 5 4 -20.0%
Average - - -11.49% - - -21.1% - - -20.7%

The above table shows that the composite change operation removesrapnesam-

pacts of the individual change operations. This shows that the composgetianpalysis is

essential to filter out impacts that are cancelled, balanced or transfoithechumber of

impacts reduced by average of 11.49% in case of the no-action strale%p & case of

the cascading strategy and 20.7% in the case of the attach strategy. @hdsemay vary

depending on the OCMS and the number of entities used in the ontology. EQwiles

result shows that the composite change impact analysis always guarariess or equal

number of impacts compared to the individual impact analysis. This enablesdn¢o

164

focus on the refined impacts of the change request. A similar comparisomdsicted
between the time required to complete the identification of impacts of individualgeha
operations and composite change operations. The results show thaethgeatime re-
quired to finish individual change impact analysis and composite changetimpalysis,
respectively, is 82.7ms and 146ms for no-action strategy, 75.16 and31i85 iBe cascade
strategy and 72.3 and 136.6 for the attach-to-parent strategy regbeclihis shows that
composite change impact analysis takes twice as much time as individual dhgreay=
analysis. This is due to the additional iterations required to find cancellitandiag and
transforming impacts. In general, the time required to conduct composite inthatton-
tain up to 120 atomic change operations is less than 0.5 seconds which isdaghdor

change impact analysis.

6.6.5 Questionnaire Results

The precision measures the accuracy of the solution. However, wemeealuate whether
the solution is adequate. This includes evaluating whether the method is capatda-

tifying the impacts and affected entities, the understandability and usability otisipa
address inconsistencies and invalidities. We distributed questionnairsifarsers who
involve on the evaluation of the prototype. We further interviewed the usessd on the
guestionnaire results to further understand the rationale behind theimsesp After the
analysis of the impact of each change scenario, the users filled a questeo(Appendix

E) related to the adequacy, transparency and usability of the CIA frarkevibe average

responses of the users are presented in Tahig

Table 6.16: Users feedback on the CIA framework

Questions average response
CIA identified all occurring impacts 4.33
ClA identified all affected entities 4.67
CIA helps me understand the impagcts 4.67
CIA highlights Integrity problems 4.33
Strongly Agree= 5, Agree= 4, Slightly Agree=3
Slightly disagree= 2, disagree= 1, Strongly disagree=0

165

The result shows that the users strongly agree or agree about theaagef the solu-
tion. In both cases the respondents agree about the occurrencéngptats. Some of these
users; however, focused on the presentation of the impacts (Useag#éstue) which is
not the primary concern of the evaluation. The result from the quesiiestzows that the
change impact analysis method identifies the impacts and the affected entitiefielfis
the user understand the impacts of the changes they request befoimihemnent them
permanently. Whenever there are integrity problems, the analysis highlighpsdblems
and the change operations responsible for the violation. In generadpanse from the
users is encouraging.

The resultin Tablé.11and6.12shows that the proposed solution demonstrate a promis-
ing result, which can be used as an input for analysing impacts of chqegatimns. The
output of the analysis can be used for the selection of an optimal evolutategirbased

on the number of impacts.

6.7 Summary

The change impact analysis phase performs the analysis using two sthgesdividual
change impact analysis process takes an atomic change operation séstte impacts
of the individual change operations based on the preconditions defiiésiphase further
takes dependency analysis results to identify the dependent entities ahgirdg entity.
We further conduct composite change impact analysis and provide inforrebout the
detailed and the summarized impacts of a change operation. This allows orgalgiggers
to follow their own way of implementing changes and before they implement thegeka
they can run the change impact analysis to see the structural and semantitsiofigheir
change operations. This gives significant analysis results and flexilitthé ontology
engineer specially when there are complex change operations.

The change impact analysis process, in addition to analysing impacts afecbaer-
ations, allows the ontology engineer to easily pinpoint the causes of a igigatt. The

semantic impacts provide a wealth of information for the ontology engineer tersitachd

166

what a given change operation does beyond the obvious change smnutiire. This in-
formation can be exploited to search for optimized solutions that can be usedrth for
alternative ways of implementing the requested change using differelatievostrategies.

The exploitation of the information associated with the type of impact, the reapgtype

and the severity of the impacts serve as an input for optimized implementationesf a r
guested change operation. Given different evolution strategies, wanzdyse the impacts

of a change operation. Based on that, we can select the strategy theg<etie implemen-
tation of the requested change with a minimum impact. The implementation chapter will

discuss the details of the change implementation phase.

167

Chapter 7

Change Optimization and

Implementation

7.1 Introduction

When ontology engineers and content managers request a changeeéueto know the
impacts of the changes on dependent systems. They want to conduat-# armelysis and
determine how the entities are affected. Whenever they have differénhsmf imple-
menting a change, users tend to compare and choose the best optiohafgesthat have
complex and multiple impacts, understanding, comparing and selecting thephestrnan-
ually is error prone and time consuming. Thus, providing methods that cendjféerent

implementation options and select the optimal one are important for a better enolutio

In Section5.4, we pointed out that a requested change operation can be implemented
using different evolution strategies. These evolution strategies areetiitfey the type and
number of change operations they contain. In Chaftere analysed the impacts of change
operations in general. However, the selection of the best strategyesauirin-depth anal-
ysis of the nature of impacts, the statements affected, the entities added wed=amal the
number of change operations. The optimal strategy that meets the requiserhtre user

shall be selected based on these analysis results.

168

Depending on the change request, we present the user with differdahieptation op-
tions and the associated costs of evolution for each option. The cosblofiem measures
the overall effort required to implement a change in a given strategy. cobeis calcu-
lated by taking the impacts, operation types, statement types and perforimianaecount.
After the cost of each evolution strategy is calculated, the user canehio®best option
with the minimum cost or let the system decide the optimal solution automatically. Finally,
the user compares impacts of the change request in different evoluibvegsts based on
their associated cost and selects the optimal strategy. Once the optimalysisatelgcted,
the implementation can be performed using different editors and APIs thabaable of
implementing atomic change operations in a user-defined fashion.

This chapter is organized as follows. Sectib@ presents the optimization framework
and introduces its components. SectfoBdiscusses the optimization criteria and how each
criterion is measured separately. A formula used to measure the costutf@vthat serves
as a measure for the optimal strategy selection and implementation is discusgetion S
7.4. We evaluate the proposed solution and present the evaluation resultstionSe5.

Finally, Section7.6 presents the summary of the chapter.

7.2 Change Impact Optimization Framework

Ontology evolution often involves analysis and selection of different gfiegebefore im-
plementing the changes and evolving the ontology. In this section, we @@pasvel
approach for the selection of an optimal strategy to implement a requestagechiVe
propose an optimization framework, which utilizes evolution strategies,igewéchange
impacts, deductive and incremental changes, affected statement typdseamumber of
change operations.
The framework begins with identifying applicable implementation strategies to imple-

ment the requested change operation. Each strategy is evaluated wsiogtéyia, which
serve as an input for calculating cost of evolution. The severity valugeid to evaluate the

seriousness of an impact. The operation type measures the incrementg ¢Addition)

169

Requested
Change
[Evolution Strategy J

I
Strateoy 2 Strateoy s

Final change Final change Final change
operation 1 operation 2 operation 3
\ v \

v

Severity of Statement Operation
impacts types types

v

[Optimal strategy selection]

Selected
strategy

[Implementation J

Number of
change
operations

Figure 7.1: Framework for selecting optimal strategy

and decremental change (deletion). The statement type measures the atisiBex and
T Box statementsg(3.3 affected. The performance measures the total number of change
operations required to implement the change. The cost of evolution is nreddsucombin-

ing the above criteria based on their assigned weight in the evolving OCMS.

The optimal strategy selection process has the following major criteria. Therfies
is a severity criterion, which is responsible for calculating the severity of aispaf a
given strategySeveritymeasures the intensity or the degree of an impact on an OCMS in
relation to the problem it causes, the effort and the level of expertisquires to resolve
the impact. The second criterion is the performance, which focuses atiisglne optimal
way of executing the change in terms of the number of change operatiaigddy The
third criterion uses the statement type$3ox and7 5ox) that are affected. Finally, the
fourth criterion focuses on the incremental and decremental changessdéthe number
of additions and deletions. The optimal strategy selection stage estimates tak oyt
of evolution using the four criteria. It further compares the cost anlsréime strategies
according to their cost. The strategy with minimum cost is the strategy whichferalée

for implementation. Finally, the changes in the selected strategy will be implemented.

170

7.3 Change Optimization Criteria

Selection of optimal implementation strategy depends on the optimization criteriatbet b
ontology engineer. In this research we selected four different optimizatiteria, which
are included in the optimization framework. These criteria are discusseddit itethe

following sections.

7.3.1 Severity of Impacts

In Chaptei6, we identified structural and semantic impacts. We observed that some®f thes
impacts are severe and cause more problems than the others. Thuspmebeogortant
to distinguish between the impacts based on their severity. Severity measudegtbe of
seriousness of a given impact. To quantify the severity of impacts, wegeapquantitative
estimation on a scale of 0 to 100. A severity value 0 is assigned to impacts with minimum
severity and is interpreted as an impact, which does not create any priftilerocurs in
the OCMS. The value 100 refers to an impact with a high degree of impacthwia&es
the OCM erroneous or degrades its importance. Any value in betweenteslibe degree
of severity of the associated impact.

Assigning an exact value for severity of an impact is not a trivial taskedtires a
deep knowledge of the impact and the problems associated to the impact. Whetita
is impacted, we need to know how serious the impact is, how much time it requires to
address the problem, and what level of expertise it requires to underatal resolve it.
To facilitate the process of estimating the severity value, we propose faals lef/severity
categories. The categories are low impacts (0-25) moderate impacts) d@esOimpacts
(51-75) and crucial impacts (76-100). This categorization is used gghipgroup impacts
based on an estimated value. For example, if we have unsatisfiablel¢@sarfpact, first
we determine whether the impact is low, moderate, high or crucidl.dfis crucial, then
we determine how crucial it is and assign a value between 76 and 100AC kS where
UC impact is unacceptable, we assign a severity value close to 100. Thisasapgoides

the ontology engineer to group impacts using the four categories, andssignsa severity

171

value within the range of the category.

The severity value is not uniform across all OCMS. It is defined in reldtam given
OCMS. As we discussed in Sectidr®, there are different kinds of OCMS. In each OCMS,
the nature of the ontology, the annotation and the content are differemsitmilar way, the
objective of the OCMS is different. This difference may lead to an assighaietifferent
severity values for a single impact in different OCMS. Thus, a veryrsewmgpact in one
OCMS may not be that severe in another OCMS. For example, in one OCMydtem
orphan instances are not allowed. This makes the orphan instance (Cé&L} wepy severe
in that OCMS. However, in other OCMS orphan instances are allowed. raies the
orphan instance (OC) impact less severe.

Thus, setting severity values of impacts in a given OCMS depends on thieer@ents
defined by the ontology engineer or content manager. We use heuristiosasure the
severity value of the impacts. The heuristics consider criteria such as thanideof a
given OCMS to a given impact, the amount of time and expertise required tceent
avoid the impact and the semantic information we lose or gain due to a given impact.
general, there are impacts of change operations that introduce erroessgsiem unless
they are resolved. There are other impacts that cause the OCMS to irdrodegrity
violations in part without affecting the whole. Other impacts only cause theolfossme
semantics.

A severity value is assigned by experts who are designing the OCMS.sBigneent
may vary according to the design specification, the purpose and otherstaEor the pur-
pose of the experiment, we calculated the average severity value of impantslifferent
estimations by experts. This average value is used as a default valuésfexpleriment.
However, the actual severity values assigned by the user may signifieangijrom the
average value depending on the target OCMS and the user’s pradergvhen the user
does not supply the values, the average will be taken as a default @dpending on the
nature of the OCMS, the preference of the ontology engineer and thentananager, the
values can be configured.

Calculating the severity of the requested change operation is the lastptbet needs

172

Table 7.1: Default value for severity of impacts
| No. | Semantic Impact | Acronym

Severity |

1 Entity More Described | (CMD,DPMD,OPMD,IMD) | 15
2 Entity Less Described (CLD,DPLD,OPLD,ILD) 75
3 Entity More Restricted | (OPMR) 75
4 Entity Less Restricted (OPLR) 35
5 Entity More Expanded | (AME) 60
6 Entity Less Expanded (ALE) 80
7 Entity Generalized (CG,DPG,0PG,IG) 50
8 Entity Specialized (CS,DPS,0PS,IS) 70
9 Entity Incomparable (CInc, DPInc, OPInc, linc) | 70
10 | Unsatisfiable (UC,UDP,UOP) 100
Class/Property
11 | Invalid Instance/ Instance (Il, 1IP) 80
Property
| No. | Structural Impact | Acronym | Severity|
1 Orphan Classes (0O 80
2 Orphan Instance (o))} 75
3 Property Cyclic Refert (OPCR/DPCR) 90
ence
4 Class Cyclic Reference | (CCR) 95
5 Null Reference to Content (NRC) 70
Layer
6 Null Reference to Ontol+r (NRO) 70
ogy Layer

to be done. We analyse the severity of the impacts after the composite charage anal-

ysis is performed. Severity of impacts of change operations is assigneddb individual
impact identified in Sectiof.3. These observed impacts are the actual impacts that occur
at the implementation phase of the change operation. We take the defauitysesteie
assigned for each structural and semantic impact in Tadlend assign them to the re-
spective impacts of a change operation. The selection of the optimal solej@mnds on

the quality of the severity value assigned to the impacts. This means, if agpiathge
severity value is assigned to an impact, the selection of the optimal solution wdlireec
accurate. Thus, ontology engineers need to carefully select a eajpage severity value

for the impacts.

Severity Threshold. A given change operation may contain two or more impacts.

173

Among the impacts, there may be a few severe impacts, which need to be desolve
avoided at all cost. To calculate a representative measure of the sefaitrategy, we
define a severity threshold. The severity thresh@ljigets a severity value which serves as
a cutting point for impacts that are not allowed to occur in a given OCMSwéfar more
impacts have a severity value greater than the threshold value, we take timeumesever-
ity value as a representative value for that specific stratégfyr{son, 201J1 Trivedi, 2003
[Sacks et al., 1999 A representative severity valu@) for a strategy is selected based on
the severity of the individual impacts in the strategy= {s1, s2, ..., si} represents the
severity of the individual impacts contained in the strategy . If the individeeérity value
(s;), wherei € {1,2,... k} is greater than the threshold’y, we select the maximum
severityM AX (s), otherwise we calculate an average severity vallig=(s). Note thatk

represents the number of individual impacts of a change operation.

MAX(s) if MAX (s) > T
AVG(S) otherwise

For example, if a threshold is set to e75, anything greater than 75 will be considered
as crucial impact and will be picked as the severity value of the strateggyvatde we
calculate the average severity. If there is unsatisfiable class (UC) witveatgevalue of
100, andIl" = 75 then, we select the severity value of 100 as a representative value.

If the maximum severity of the individual impacts in a strategy is less than thétiices

we take the average severity valyerepresents the frequency of

AVG(s) = M (7.1)
>t fi
We take this approach to reduce the effects of frequent but lesseseweacts on the
overall estimation of impacts. By definition, crucial impacts should be avoigednly
means. To ensure this we should set a threshold that serve as a psevdoity. Anything
which is less than the threshold is represented by the average severitys t&ke an

example (Tabler.2) to show how the severity calculation works and compare severity of

174

impacts of a change operation.

Table 7.2: Severity value calculation

Strategy 1 Strategy 2
Impacts Severity Impacts Severity
CLD 75 ocC 100
CMD 75 CMD 75
OPLR 35 uc 100
Il 80
Average 61.6 Max 100

Let us set the severity threshold to 80. In the first strategy, since alktrezity of the
impacts is less than 80 we calculate the average severity as a represesatai@/eThus,
the representative value is 61.6. However, in the second strategy,tsereeare OC, UC
and Il impacts which are greater than or equal to the threshold value, eé&i@knaximum
severity as a representative value, which is 100.

Based on the above calculation, we present the severity values oktdiffetrategies
for the change operatio®g¢lete Class Activityimplemented in our case study (Appendix
A). This change operation has the following representative severityssédueach of the
applicable strategies.

Table 7.3: Severity value

Strategy 1| Strategy 2| Strategy 3
80.00 56.00 56.00

Strategy 4
75.00

Strategy 5
75.00

Severity

Let us tune the severity value to represent OCMS that gives less setefyphan
classes and orphan instances. To do this we modify the values in Tdbés follows.
Severity of OC is changed from 80 to 10 and Ol impact is changed from 18.tdr his
shows that the OCMS is not sensitive to the existence of orphan classestamnces. Thus,

the severity value become different from the above result in Tal3le

Table 7.4: Severity value- different value for OC and Ol Impacts
Strategy 1| Strategy 2| Strategy 3| Strategy 4| Strategy 5
47.00 56.00 56.00 68.00 68.00

Severity

175

7.3.2 Type of Change Operation (Addition and Deletion)

Addition and deletion operations are used as criteria for selecting an optmaialy. If the
ontology evolution favours incremental evolution, which adds new knaydexvery time
without deleting existing knowledge, the final change operations are®g# introduce
more addition operations compared to deletion operations. In this casenbealeof a
given entity and the introduction of a new entity may not be considered tothaveame
impact. Thus, the type of the operation is considered as another factotetonitee the
optimal implementation strategy. The addition operation is different from delétitime
following ways. When we add a new entity, we may need to search existing giiethe
search is specific to an entity. This means, there may not be much time andeesasted
to add the new entity in the OCMS. However, when we delete an entity, firsteed to
conduct a dependency analysis, which includes searching all depeeidtities. Second,
cascade the change to all dependent entities. In terms of time and resaufekstion
operation incurs extra cost compared to addition.

Whenever there is a difference of performance between addition datiodeopera-
tions, we assign a different weight to the change operatibmaddi, 2003 [Sacks et al., 1999
We assign W (A) for the associated weight of addition operations and Vib(le associ-
ated weight of deletion operations. The lesser the weight, the higher thalukisirof the
change operation. Higher weight indicates the less desirability of the el@pegyation in
the strategy. Thus, for a given final change operation, the weigtegddncy of addition op-
erations and deletion operations are used. This measure makes this pataraetéiable

and facilitates comparison of one strategy with another in terms of changatiops.

WE(A) = W(A) * |A] (7.2)
WF(D) =W (D) * |D| (7.3)
OT = WF(A) + WF(D) (7.4)

Where:

176

OT= Operation Type

WEF(A) is weighted frequency of Additions

WF(D) is weighted frequency of Deletions

0<W(A) <1,0<W(D) <1andW(A)+ W (D) =1

|A| = number of additions and>| = number of deletions

Let us look at the weighted calculation for addition and deletion operatiortsw(49

=0.25 and W(D) = 0.75 as shown in Takléb.

Table 7.5: Frequency of additions and deletions

Strategy 1| Strategy 2| Strategy 3| Strategy 4| Strategy 5
Number of Additions | O 12 12 0 0
Number of Deletions | 16 16 16 96 89
Weighted Frequency of Additions and Deletions
Number of Additions | O 4.80 4.80 0.00 0.00
Number of Deletions | 9.60 9.60 9.60 57.60 53.60
Operation type
Operation Type | 9.60 1440 [1440 |57.60 |53.40

7.3.3 Statement TypesABox and 7 Box)

In ontologies, changing thg Box statements may affect all thé5ox statements associ-
ated with it. However, changing thd53ox statements does not change fhBox. From
all the empirical studies, we found that tfigsox and thedBox statements are not equally
important in different application domains and do not have equal weightexample, in
the university administration case study, it is preferable to chang@ Bux statements to
amend inconsistency than tbéBox statements. Changing th&5ox statements means
changing the information of an individual student or department. In théddsg¢ecase study,
the classes define the individuals, thus, large weight is given tH Bax statements. Other
applications treat both statements as equally important. This indicates that statgmeen
serves as a means of selecting an optimal implementation strategy wheneges thelis-
tinction on changingdBox statements an@ 3ox statements. This criteria correspond to

the OWL profiles discussed in Secti@B.2 Ontologies adhering to OWL-QL are more

177

sensitive taABox statements and OWL2 EL are more sensitivg 8ox statements.

Thus, the weight of thel5ox and theT Box statements depend on the application and
the preference of the ontology engineer. We take the weighted fregjoétite strategies
to measured5ox and7 Box. These weighted frequencies will be used to compare final
change operations in terms of statement types. The weightRuix statements is given
by W (ABox) and the weight off Box statements is given by (7 Box). The weight is a

value between 0 and 1.

W F(ABox) = W (ABox) * |ABoz| (7.5)
W F(TBox) = W(TBox) * |T Bozx| (7.6)
ST = WF(ABox) + W F (T Box) (7.7)

Where:
ST= Statement Type
W F(ABox) is weighted frequency oflBox statements
W F (T Box) is weighted frequency of Box statements
0 <W(ABox) <1AN0< W(TBox)<1

| ABox|= number ofABox statementd;7 Boxz|= number of7 Box statements

The number ofABox and7 Box statements and the weighted frequencyl@ox and
T Box statements, for a given weighit (ABox) = 0.4 andw(7 Box) = 0.6, is as pre-
sented in Tabl&.6.

Table 7.6: Frequencies of3ox and7 Box statements

Strategy 1| Strategy 2| Strategy 3| Strategy 4| Strategy 5
ABox statements | 0.00 0.00 0.00 34.00 27.00

T Box statements | 16.00 28.00 28.00 62.00 62.00

Weighted frequency afl3ox and7 Box statements

ABox statements 0.00 0.00 0.00 13.60 12.80

T Box statements 9.80 16.80 16.80 37.20 37.20
Statement type

Statementtype [9.80 16.80 [16.80 50.80 48.00

178

7.3.4 Performance of Change Operations

Performance measures the number of atomic change operation requiredemanpthe

change. This is calculated by counting the number of atomic change operiatithe final

change operation. The assumption behind this criterion is to compare the tinedfamd
required to implement change operations especially for those contert-bgstems that
have large number of instances or for classes with many dependenaiesadh evolution
strategy, we count the number of atomic change operations in the finajeloperation.
This measure is useful when there is a need to compare strategies usingr rdrcitange

operations irrespective of their type or the statements they affect.

P = |ACh € CCh| (7.8)

Where:
P= Performance
ACh= Atomic change operations

C'Ch = Composite change operations

Table 7.7: Number of change operations

Strategy 1| Strategy 2| Strategy 3| Strategy 4| Strategy 5
Number of change op-16 28 28 96 89
erations

7.4 Cost of Evolution and Optimal Strategy Selection

7.4.1 Cost of Evolution

Measuring the cost of evolution to select the optimal strategy based on impalysis is
the central process of the implementation phase. We suggest two apgsdadtalculate
the cost of evolution.

The first one is by comparing strategies using a selected individual critéramrexam-

ple, strategies can be compared using severity criterion. If there ategssawith equal

179

severity, we can further compare them with a second criterion, say stdtgmperand con-
tinue including the next criterion until we identify the best strategy. Our sygtevides
analysis and selection of impacts based on a single criterion or a cascaleatéd criteria.
In this approach, to determine the cost of evolution, we compare the stsabggiascading
the selected criteria. The user ranks the criteria with priority and we evaiop#ets using
the highest priority criteria first and the lowest priority criteria last. The implaatéon of

this approach is straightforward and it exploits the analysis results ofcegetion.

The second approach uses all the criteria to measure the cost of evolidioreasure
the cost of evolution, we need to evaluate all of the above criteria togetiner.cost of
evolution becomes important as it includes all the criteria that affect theide@$ the
ontology engineer. All the criteria and the measures discussed aboveanbg equally
important. An ontology engineer may assign a higher weight for the sevédritgpacts
and ignore the number of change operations, or give more weight to tieenstat types
and ignore additions and deletions. Thus, we need to compare each dfategiss at
an individual basis to select the optimal strategy for the given criteriarad.hBlowever,
a single criterion does not characterize the requested change operatbimmprehensive
measure that takes all the above criteria into account is important. To athigwse assign
a weight to each criterion. The ontology engineer sets a weight for altiariiased on their

importance in a given OCMS.

We assign weights to each criterid, wo, ws, wys} for each of the criteria chosen
by the ontology engineer. Once the weights are assigned, the next stageaisulate
the cost of implementing the change operation using the given strategye Wegghts are
different from the previous individual weights. The weights here meahe importance
of a criterion compared to the other three criteria. The individual weightsunes the
weights of individual criteria compared to its pair, Addition with Deletion adfox with

T Box.

4
cost(strategy) = Z wy, * Cry, (7.9)
k=1

180

Where:
Cry € {S, ST, OT, P
wy, € {w1, w2, w3, wa}

wy +we +w3+wy =1and0 < wg <1

This cost is used to measure the overall impact of the change operation.leiNas
look at how the weights of the criteria affect the cost estimation. To demomshia we
will use four different scenarios. The first one is when all criteriaghegual weight. The
second represents a weight customized for Software Help Manager@dns QAppendix
A). The third one has its weights customized for the database OCMS (App@)dihere
more weight is given to statements than to severity values. The last one ighehemright
is customized for the university ontology (Appendi, where performance and statement
types are given more weight than to severity and operation type. Thargze@nd the

associated weights for each scenario are presented in Table

Table 7.8: Different weights assigned for criteria

Scenario OCMS Severity Operation| Statement Performance
Type Type
Scenario 1 | Software 0.25 0.25 0.25 0.25
help OCMS
Scenario 2 | Software 0.70 0.10 0.10 0.10
help OCMS
Scenario 3 | Database 0.50 0.10 0.30 0.10
OCMS
Scenario 4 | University 0.30 0.30 0.20 0.20
OCMS

Scenario 1. This scenario assigns equal weight for each criterion. This means each
criterion is given a weight of 0.25. The cost estimation of the strategies themgriterion
is given in Tabler.9
Scenario 2.This scenario assigns different weights for each criterion for thegsarpf
the experiment. These weights are assigned based on the assumption weattwe keep
the semantic and structural integrity of the OCMS compared to the other crité@acost

estimation of the strategies using this criterion is given in Tabl@®

181

Table 7.9: Cost of evolution analysis - equal weight

Criteria Weight | Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

Severity 0.25 20 14 14 18.75 18.75
Operation 0.25 2.40 3.60 3.60 14.40 13.35
Type

Statement | 0.25 2.40 4.20 4.20 12.7 12.00
Type

Performance| 0.25 4.00 7.00 7.00 24.00 22.25
Cost 28.8 28.80 28.80 69.85 66.35

Table 7.10: Summary of cost of evolution - different weights

Criteria Weight | Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

Severity 0.70 56.00 39.20 39.20 52.50 52.50

Operation 0.10 0.96 1.44 1.44 5.76 5.34

Type

Statement | 0.10 0.96 1.68 1.68 5.08 4.8

Type

Performance| 0.10 1.60 2.80 2.80 9.60 8.90

Cost 59.52 45.12 45.12 72.94 71.54

Scenario 3. This scenario assigns different weights for each criterion based on the
database OCMS. These weights are assigned based on the assumptiva Wt to
keep the semantic and structural integrity of the OCMS and the statement Typesost

estimation of the strategies using this criterion is given in Taklé.

Table 7.11: Cost of evolution for Database systems OCMS

Criteria Weight | Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

Severity 0.50 37.50 37.50 37.50 37.50 37.50

Operation 0.10 0.54 0.54 0.54 0.54 0.54

Type

Statement | 0.30 1.62 1.62 1.62 1.62 1.62

Type

Performance| 0.10 0.90 0.90 0.90 0.90 0.90

Cost 40.55 40.55 40.55 40.55 40.55

Scenario 4. This scenario assigns different weights for each criteria based orethe r

quirements of the university OCMS. In this OCMS severity of impacts andpagnce

182

are given more weight than the other two. The cost estimation of the strategngsthis

criterion is given in Tablg.12

Table 7.12: Summary of cost of evolution for University OCMS

Criteria Weight | Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

Severity 0.30 24.00 16.80 16.80 22.50 22.50

Operation 0.30 0.90 1.26 1.26 4.68 3.60

Type

Statement | 0.20 0.96 1.68 1.68 5.08 4.8

Type

Performance| 0.20 1.60 1.60 1.60 5.20 4.00

Cost 26.5 20.62 20.62 34.78 32.02

7.4.2 Optimal Strategy Selection

The optimal strategy selection exploits the four criteria for finding the optimal immgiea-
tion strategy. The cost of a strategy measures the cost of evolving gebperation using
the four criteria defined. The selection of the best strategy is based @eldwion of a

strategy with a minimum cost.

BestStrategy = MIN{Cost(Strategy:),...,Cost(Strategyy)} (7.10)

Based on this, in scenario 1, there is more than one best strategy. Stdiegiand 3
have equal cost of evolution. Strategies 2 and 3 have exactly the samgeoberations
and change impacts, thus the actual selection is between strategy 1 angiySr&eenario
2 represents a real-world selection of weights. Based on scenario 2shstkategies are
strategy 2 and 3. In this case, strategies 2 and 3 do not have anyntdsecause even if
we attachy Box statements only, since there is A#ox statement, the two strategies yield
exactly the same change operations. Thus, strategy 2 is the optimal chafgmémiation
solution based on the cost of evolution and the weights assigned by théruseenario 3,

based on the estimated weights, all the strategies yield equal weight, thus, siategies

183

have an equal cost of evolution. In scenario 4, the minimum cost conressfrategy 2 and
strategy 3. In this case, the two strategies yield the optimal solution. Whetheveris no
ABox statement affected in the OCMS, strategy 2 and strategy 3 yields the sangech

operations thus, yields equal cost.

7.4.3 Effect of Severity Value on the Cost of Evolution

The severity value assignment plays a major role in calculating the cost lotiewo The
experiment used a default severity value, which is an average valuetedlfigom experts.
To demonstrate how a change in the severity value affects the cost ofiemplue take two
impacts and change their value. The change of the values reflects tiveor&hkituation
where some engineers allow orphan classes and orphan instances ito tvxaOCMS.

The different cases of severity assignment and the different soenair weights of
criteria are presented in Appendix We identified three different severity cases where
severity is assigned differently and four weighting criteria, which assifjerent weights
for the individual criterion. Finally we presented the cost of evolution #redoptimal

strategy.

7.5 Evaluation of Change Impact Optimization

The change impact optimization process focuses on the selection of thehb@ste im-
plementation strategy based on the cost of evolution of the OCMS system. o§hefc
evolution includes the severity of impacts, td#88ox and7 Box statements, the additions

and deletions, and the number of change operations involved.

7.5.1 Experimental Setup

We extend the experiment used for evaluating the previous two phagbss jpinase we use
the same number of change operations and OCMS. Based on the changeangbgsis re-

sults, we implement change impact optimization to find the optimal change implementation

184

strategy. We evaluate the accuracy of the system for selecting the optiatabgtbased on

the selected criteria.

7.5.1.1 Precision of Optimal Strategy Selection

We evaluate whether the proposed method achieves its objective by eglitichange
impact optimization process. The evaluation mainly focuses on checking evhiibthsys-
tem identifies the optimal solution. We select the optimal solution according tonpétees
selected by the user of the OCMS. We use the change operations thaedra Section
6.6. For each change scenario used in the evaluation of the CIA, the pretapgs the
strategies based on their cost of evolution as first optimal, second optimaletvaluate
whether the proposed change operation is the optimal solution by manudlativg the

change operations.

Table 7.13: Percentage of identifying the first three optimal solutions

. Accuracy of Optimal strategy selection
Change Operation First Second Third
Delete Classgtudent vV vV Vv
Add DisjointClass(Staff, Student) V - -
Delete Instancdphn) V vV -
Delete ClassTable V V
Add SubClassOfchema, RelatiaSchema | / - -
Delete ObjectProperthsSchenja V V
Add Class GUI) V V -
Delete DataPropertyh@sAverageSize vV V
Delete Instancéd-123.xml V V -
Add Instanceif-1234/xml, Filg V V -

Table7.13shows the evaluation result. Thg\mark indicates that the system identified
the optimal strategy correctly and the)(represents the absence of additional strategy. This
means the change is implemented using the available strategy and does rentyhatteer
way of implementing the change. From the result, it is possible to conclude éhaptimal
strategy selection identifies the optimal strategy for all the changes to be impézEmen

The graphical representation of strategies and their comparison is\fese Figure

7.2 The figure shows different scenarios taken from different dom&inall these OCMS

185

systems, the weight assignment has a significant effect on the selecttbe efrategy.
When all criteria are given equal weight the graph is evenly distributeaveder, when
the weights are assigned a different value, the graph becomes skethedstverity value.
This is due to the large value of severity as compared to the other criterisasymérfor-

mance, statement types and operation types.

—Strategyl
—Strategy 2
—strategy 3
—strategy 4

——Strategy 5

Operation Type

Scenario 12

Scenariol

— Strategyl Ve W Nee s Strategyl

— Strategy 2 === Strategy 2

— Operation — - Strategy3 Performance < = = Strategy3

=== Strategy 4 — Strategy4

—— Strategy 5 — Strategy 5

Scenario3 Scenario4

Figure 7.2: Optimal strategies for all scenarios

7.5.2 Questionnaire Results

To evaluate the usability of the CIO framework, at the end of each scemagidistributed
a questionnaire. The questionnaire aims at answering whether the dhgrayp analysis
is useful and suitable for selecting optimal strategy to evolve an OCMS.

The users evaluated the accuracy of the CIO by comparing the seledied wjth

the other available options. If the users find the proposed option optimalprgder the

186

CIO accurate and if it does not identify the optimal change implementation strateg
consider the CIO not accurate. TalZld 3shows the number of times the CIO identified the

first, second and third optimal change operations. Talldgives a summary of the users’

feedback.
Table 7.14: Users feedback on the optimal strategy selection
Questions Average response
The cost estimation is suitable to measure impacts 4.0

| understand what | am doing at each step and understand 4.0
the effects of my actions during evolution
CIO helps me find optimal strategy 3.33
Strongly Agree= 5, Agree= 4, Slightly Agree=3

Slightly disagree= 2, disagree= 1, Strongly disagree=0

The users further provide the following feedback for the open endestipns.

e The separate presentation of the impacts of individual and compositeecbpea-

tions is vital to understand the impacts of the changes.

e Providing a better interface to allow users to compare all the strategies Irepaith

further enhance the selection of the optimal strategy.

e The prototype needs to be customizable. This is related to setting weights aacrite

and customizing the severity of the impacts.

The users agree that the optimal strategy selection is helpful to undevgtands hap-
pening when a change is implemented and is useful to select the optimal stize=gpyte
the effort made to avoid the bias arising from the user interface, some af#éne pointed
out that the presentation of the optimal strategy has affected their respbims responses
for the open ended questions reinforce the need for customizability efisewsf impacts
and the cost of evolution to fit the requirements of the users. A compam@isentation
of the alternative strategies in a single view is an important aspect. Hovieralgtes to
the user interface issue, which is not the primary objective of the protolgmgeneral, the

system provides us with an encouraging result in relation to selecting an bptiatagy.

187

7.5.3 Discussion

The experimental result shows that the optimal strategy selection methodaisieayh se-
lecting optimal strategies based on an individual criterion or a combinatiore @ivilable
criteria. The first advantage of the method is, it allows users to assigritgexsues to im-
pacts and to tune the estimation towards their requirements. This means wheDiigaD
hand tolerates specific impacts, the user can assign a minimum severity Jedne (@hen
the impact is very sensitive, the user can assign a large severity val)egf¢t that specific
impact. The second advantage of the method is its adaptability to assign weigtit/td-in
ual criterion by the user. This makes the method to be flexible to differeimtoaments.
The evaluation result demonstrates that the optimal strategy selection istcdire user re-
sponse shows that the system helps users to understand impacts aast thayg strategies
with minimum impact. However, users who patrticipated in the evaluation furtlygyes
improvements to be made to the presentation of the analysis results. Even ifatési e

user interface issues, the users further suggest a parallel conmpaeiszeen the strategies.

7.6 Summary

Change implementation is the last phase of the analysis process. In thiswdhasener-
ically analysed the impacts of change operations and provided a compafistange
operations generated using different evolution strategies. We defirfecedif criteria for
analysing and selecting the change operations that implement the change wittumin
impact. The first criterion is the severity of the impacts of the change opesattar this
criterion we assign a severity value for each of the impacts and use thatteatompare
severity of impacts among alternative change operations. The secontboritethe type

of statement affected. We ugd30x and7 Box statements and compare strategies based on
the number off Box and.ABox statements they affect. Third, we use whether the change
operations introduce new class or remove existing ones. Finally, we upertftemance
criteria to measure the time and effort required to implement the changes.eéWlgeusum-

ber of atomic change operations to measure the performance of the avaitaldgies of

188

implementing the changes.

Finally, we build a method to combine all the criteria to measure the impact of change
operations using inputs from the user about the weight of each of theamiia the given
OCMS. For example, in an environment where severe impacts are not dJlewen if
strategies have less number of operations and few deletions, we stilltfedsetstrategies
when they introduce severe impacts. In other domains, we may tend to phefgges on
ABox statements oveF 5ox statements. Once the user sets weights for the criteria, we use
the input to calculate the cost of evolution.

This approach will benefit us in the following ways. First, it allows us to sdlee
optimal implementation strategy depending on the user’s requirement. Seétcendbles
us to quantify impacts, required change operations and the statementsfdoty Hien, it
permits us build an optimization technique, which is flexible and which can beroizstd
based on the requirements of the user and the nature of the target OCMS.

In this approach, the user knows the consequences of his/her cledace the changes
are implemented in the system. It quantifies the impacts of change operatioposiutts
both qualitative and quantitative comparison of impacts. Finally, it allows thretaiset the
parameters flexibly and test different what-if analysis before the @wage implemented

persistently.

189

Chapter 8

Conclusion

8.1 Introduction

This chapter presents the conclusion of the work. The chapter is oeghinito 3 sections.
Section8.2 discusses the major research questions and the contribution of thechesear
answering the major questions. Secti®3 focuses on discussing the limitation of the

research and possible future research work.

8.2 Summary of the Problem and Contribution

Ontologies are recognized as tools for enriching content serving asreesof semantics.
They are used in annotations as an explicit means of embedding meaning iotmtaast.

However, due to the dynamic nature of the content and the ontologies, @&\sbibject to

continuous evolution. The evolution process impacts entities and systemiettapandent
on evolving entities.

The main aim of this research is the contribution of methods, tools and teckrigue
facilitate the evolution of OCMS systems by analysing impacts of change operatiwl
selecting optimal evolution strategy before the changes are permanently impdein€his
enables users to understand the semantic and structural impacts of tge oparations on

the integrity of the system by allowing a transparent, predictable and canisstdution.

190

8.2.1 Contribution of the Research

This work contributes frameworks, techniques and algorithms to enhamsetboth, trans-
parent and consistent evolution of OCMS. In this work both novel apgves and new
combinations of existing research are included. This research haslitheirig contribu-

tions.

e An OCMS framework that organizes the content, the annotation and the giet®lo

into separate but interdependent layers.

e A layered operator framework that represents changes based ogrtnaitarities. It

facilitates the representation of domain-specific and abstract changes.

e A dependency analysis algorithm which identifies dependent entities in &nSOC
The algorithm serves as a means to identify affected entities and to gereaiatgec

operations to supplement requested changes.

e A bottom-up change impact analysis approach which analyses the sttaridrae-

mantic impacts of change operations.

e Algorithms that identify impacts of composite and domain-specific change -opera

tions.

e Quantitative estimation of severity of impacts which measures the seriousgngss o

specific impact.
e Quantitative estimation of cost of evolution of a given change operation.

e A method to select optimal implementation strategy for evolving ontologies.

The research questions and the proposed solutions are discusetdves f

8.2.2 Capturing and Representation of Change Requests

The main research question focuses on the capturing and represeotati@mge requests

from the user. The question mainly focuses on how a requested chamdpe cepresented

191

using executable and suitable change operations.

This research addresses the problem by proposing different salufibe first solution
is a layered operator framework which treats changes as atomic, compusitkomain-
specific changes. The representation further addresses the pilopksparating requested
changes from generated changes. The second solution is the deperaalysis algo-
rithms. The algorithms identify dependent entities and assist the generatibaraje oper-

ations that are required to supplement the requested change.

8.2.3 Structural and Semantic Impact Analysis

The major question of the research is how to analyse the impacts of chaerions
when a given change is implemented in the system. This research question ineuskgs
on analysing the structural and semantic impacts of change operationsainy the
impacts of the changes on the OCMS to the user.

In relation to this question, the research identifies possible structuraleamansic im-
pacts and analyses the causes of the impacts. This phase answer$lm pyoexploiting
the proposed layered framework of change operations. It analysésgacts of atomic
change operations first. Second, it analyses the impact of compositeecbparations.
This phase exploits the output of the atomic change impact analysis phasa\tseaim-
pacts when two or more change operations are implemented together. Toadps
flexible and is applicable to any change operation composition based on atioamgec

operations. This includes domain-specific changes and patterns.

8.2.4 Optimized Implementation of Changes

Once the impacts are identified, the question is how the user can select optirghenp
tation strategy which ensures the minimum impact. To address this problem, wtleeuse
change impact optimization approach which quantitatively measures thé&gevanpacts.
This severity value is combined with other criteria to identify the optimal implementation

strategy.

192

In this phase, the selection of an optimal strategy is done using individilatian
or combining different criteria. The user can use individual criterionaimgare different
implementation strategies. It is also possible to combine all the criteria and calthdate
cost of evolution to compare different implementation strategies. One of siédagures of
this approach is that the users are allowed to set the severity values of tretsmgative to
the OCMS at hand, assign weights to different criteria used to calculateshefevolution

and select the optimal implementation strategy.

8.2.5 Methodology

The method used for analysis of impacts of changes in OCMS is anotheibcdiotm of
the study. In this research, we explored different methods to efficientlieimgnt the evo-
lution of ontology-based content management systems. The contribut®ss@amarized

as follows.

e The change impact analysis method applied in the context of a layered O@M8&-f
work, layered operator framework and the change impact analysis irarkes a

contribution to existing research.

e The dependency analysis and the customization of evolution strategieddétreral

contributions of the method.

e The method further combines the change impact analysis approach with tjétynte

analysis.

e Finally, the method integrates optimal strategy selection and implementation of the
changes. Our method allows accurate, transparent and efficientienatian OCMS

by providing empirical evidence from three real world case studies.

8.3 Limitation and Future work

This research does not address all the problems associated with evaliBonOCMS.

There are areas that are not covered in this research. We pressaiteas as limitations

193

that this research does not address with the required depth.

e Sometimes ontologies use complex expressions to represent complextscaoep
semantics. These complex classes are composed of two or more clasagspga
erties, object properties or restrictions. When a change occurs infone complex
classes, we need to identify which specific entities are affected and whahare
not. This makes the change impact analysis process very complex. Trusp-0
proach does not go deep into analysing the constructs of the classsrprebut
we treat the whole expression as a single entity. Due to this, the reseasmadob
provide an analysis of complex expressions. However, researcluctd in the area
of description logic Konev et al., 200B[Koneyv et al., 201Pwith different levels of
expressiveness could benefit to address the limitations. Based origliesdiogic
expressiveness, addressing complex class expression step byulgpecuce the
complexity of the expression&pnev et al., 201p In addition to this, it is worth
considering the approach used to process logical implications betweetasises;

individuals and properties involved in complex class expressioas Et al., 2006

e This research does not cover content change to a lower level detaifods on
the higher level changes in the content such as addition and deletiontehtdoc-
uments, identifiable parts of documents and their attributes. We also focusronly
structured and semi-structured documents. Thus, content change fabiges on

trivial textual changes is not supported.

This work addresses many of the problems identified; however, throtgeresearch,
we discovered areas that would benefit from further investigation inutieef. These areas

are presented as future work in the following sections.

Change Impact Analysis

The future work in change impact analysis is to investigate detailed impactamgeh
on complex class expressions. We would investigate the inconsistencies riela

changes on complex class expressions. The problem with complex ciagbes

194

determination of an impact on the constituent classes of a complex class. This in
cludes analysing which classes in the class expressions are affedtedhigh ones
are not, and how those classes are affected. This process invob@spiesing the
classes and further investigating the possible logical connectors andtifusitural

and semantic importance in a given class expression.

Optimal Change Implementation

The optimal change implementation process takes four criteria to evaluatesthad co
evolution of a given OCMS. The possible future work would focus on tikigion

of additional user-defined criteria. A related research direction is tigasg the
importance of each criterion and proposing a general formula for asgigreights
based on the characteristics of the OCMS. This relieves users froifyspgdetails

of the weights of the impacts and the criteria. However, preparing a daaraula
requires observation from different OCMS and input from differexperts in the

area.

A potential future direction is the selection of change operations to avoidrityteg
violating change operations based on #Box and7 Box weight assigned to the
OCMS. There are situations when all strategies introduce impacts with cseviel-

ity. Then there is a possibility to select the operations to be add or removepo kee
the integrity of the system. This approach enables the system to choosesbetwe
operations that affect thd Box or 7 Box statement to avoid or reduce the observed

impacts of a given strategy.

Another future direction is to investigate the selection of optimal implementation
strategy using the amount of change on the inferred semantics of the OQMS.
approach only uses asserted semantics to identify impacts. However, urtuhes ft

is possible to estimate the cost of evolution based on the amount of changedeiriod

in the inferred semantics. This requires the use of reasoners to infesamantics

after implementing the changes.

There are recent developmerit®ndylakis & Plexousakis, 201 the area of ontol-

195

ogy evolution which focuses on query rewriting, and data integration. dgpsoach
is a possible direction to follow to further enable users to analyse impactsinfek
in ontologies. Such directions can be followed to address further evoli&ome of
the proposed methods in belief revisidrduris, 200§ are also worth to be consid-

ered.

Evaluation Benchmark for Change Impact Analysis One of the challengimects of im-
pact analysis is the bias introduced due to the interpretation of impacts. T bia
reflected on the evaluation of change impact analysis method. An evaluatioh-be
mark for evaluating the performance of change impact analysis tools is atipbte
future direction. This may include defining evaluation criteria. Currently tra-e
uation criteria are subjective and qualitative. To estimate the impacts of change
guantitatively, developing an all-inclusive evaluation bench mark is andtitere
direction. The experience of the Ontology Alignment Evaluation Initiative FEQA
could serve as a starting point to introduce benchmarks for evaluatingtrass of

tools for ontology evolution and change impact analyBisqoiu et al., 201]L

Yhttp://oaei.ontologymatching.org/

196

Bibliography

[Abgaz & Pahl, 2012] Abgaz, Y.M.and Javed, M. & Pahl, C. (2012).aBming impacts
of change operations in evolving ontologies. IBWC Workshops: Joint Workshop on
Knowledge Evolution and Ontology Dynamics (EvoDyn), 12th Nover2d&2, Boston,
USA.

[Abgaz et al., 2010] Abgaz, Y., Javed, M., & Pahl, C. (2010). Empireellysis of impacts
of instance-driven changes in ontologiesOn the Move to Meaningful Internet Systems:

OTM 2010 Workshopt.ecture Notes in Computer Science.

[Abgaz et al., 2011] Abgaz, Y., Javed, M., & Pahl, C. (2011). A framewfor change im-
pact analysis of ontology-driven content-based system&nlithe Move to Meaningful

Internet Systems: OTM 2011 Workshgdpscture Notes in Computer Science.

[Abgaz et al., 2012] Abgaz, Y., Javed, M., & Pahl, C. (2012). Depeagl analysis in
ontology-driven content-based systems. In L. Rutkowski, M. Kory#awR. Scherer, R.
Tadeusiewicz, L. Zadeh, & J. Zurada (Ed#\tificial Intelligence and Soft Computing

volume 7268 ol ecture Notes in Computer Scien@p. 3—-12).

[Adler et al., 2008] Adler, B. T., Chatterjee, K., de Alfaro, L., Faella, MiePl., & Raman,
V. (2008). Assigning trust to wikipedia content. Rtoceedings of the 4th International

Symposium on Wiki§VikiSym '08 (pp. 1-12). New York, NY, USA: ACM.

[Afsharchi & Far, 2006] Afsharchi, M. & Far, B. H. (2006). Autoea ontology evolution
in a multi-agent system. IRroceedings of the 1st international conference on Scalable

information systemsnfoScale '06 New York, NY, USA: ACM.

197

[Ahmad et al., 2009] Ahmad, A., Basson, H., Deruelle, L., & Bouneffa, (R009). A
knowledge-based framework for software evolution control.INRORSID (pp. 111-

126).

[Ardil, 2005] Ardil, C., Ed. (2005).The Second World Enformatika Conference, WEC'05,
February 25-27, 2005, Istanbul, Turkey, CDROBhformatika, Canakkale, Turkey.

[Arnold, 1996] Arnold, R. S. (1996).Software Change Impact Analysidos Alamitos,
CA, USA: IEEE Computer Society Press.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D.drdiND., & Patel-
Schneider, P. F., Eds. (2003)he Description Logic Handbook: Theory, Implementation,
and Applications New York, NY, USA: Cambridge University Press.

[Baader et al., 2006] Baader, F., Lutz, C., & Suntisrivaraporn, B0&. CEL-a
polynomial-time reasoner for life science ontologies. In U. Furbach & Nan®ar
(Eds.), Proceedings of the 3rd International Joint Conference on Automatedie
ing (IJCAR’06) volume 4130 of_ecture Notes in Artificial Intelligencgp. 287-291).:

Springer-Verlag.

[Baresi & Heckel, 2002] Baresi, L. & Heckel, R. (2002). Tutorial oduction to graph
transformation: A software engineering perspective Ptaceedings of the First Inter-
national Conference on Graph Transformatjd@GT '02 (pp. 402—429). London, UK,

UK: Springer-Verlag.

[Bechhofer et al., 2002] Bechhofer, S., Carr, L., Goble, C. A., Kangpa& Miles-Board,
T. (2002). The semantics of semantic annotatiorDinthe Move to Meaningful Internet
Systems, 2002 - DOA/CooplS/ODBASE 2002 Confederated InternaGomé¢rences
DOA, CooplS and ODBASE 20Q@p. 1152-1167). London, UK, UK: Springer-Verlag.

[Bell et al., 2007] Bell, D., Qi, G., & Liu, W. (2007). Approaches to inc@mtency handling

in description logic-based ontologies. Rioceedings of the 2007 OTM Confederated

198

international conference on On the move to meaningful internet systeaismé/ Part

II, OTM’07 (pp. 1303-1311). Berlin, Heidelberg: Springer-Verlag.

[Benjamins et al., 2002] Benjamins, V., Contreras, J., Corcho, O., & G@aezz, A.
(2002). ’six challenges for the semantic welCristani, M(ED): KR2002 Workshop

on the Semantic Web, Toulouse, France.

[Bennett & Rajlich, 2000] Bennett, K. H. & Rajlich, V. T. (2000). Softwamaintenance
and evolution: a roadmap. FProceedings of the Conference on The Future of Software

Engineering ICSE '00 (pp. 73—-87). New York, NY, USA: ACM.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., & Laglil§2001). The semantic
web. Scientific Americaj284(5), 34-43.

[Bizer & Schultz, 2008] Bizer, C. & Schultz, A. (2008). Benchmarking tterformance
of storage systems that expose sparqgl endpointBrdneedings of the ISWC Workshop

on Scalable Semantic Web Knowledgebase

[Bloehdorn et al., 2006] Bloehdorn, S., Haase, P., Sure, Y., & VoelkéR006).Ontology
Evolution (pp. 51-70). John Wiley and Sons, Ltd.

[Bohner, 2002] Bohner, S. (2002). Extending software change étrgoaalysis into cots
components. IiBoftware Engineering Workshop, 2002. Proceedings. 27th AnnuaANA
Goddard/IEEE(pp. 175 — 182).

[Bonstibm et al., 2003] Bnstom, V., Hinze, A., & Schweppe, H. (2003). Storing rdf as
a graph. InProceedings of the First Conference on Latin American Web Condréss

WEB '03 (pp. 27-36). Washington, DC, USA: IEEE Computer Society.

[Bounif & Pottinger, 2006] Bounif, H. & Pottinger, R. (2006). Schemgpasitory for
database schema evolution. Pmoceedings of the 17th International Conference on
Database and Expert Systems Applicatius 647—651). Washington, DC, USA: IEEE

Computer Society.

199

[Boyce & Pahl, 2007] Boyce, S. & Pahl, C. (2007). The developmésiubject domain
ontologies for educational technology systemsurnal of Educational Technology and

Society (ETS) IEEELO(3), 275-288.

[Breech et al., 2005] Breech, B., Tegtmeyer, M., & Pollock, L. (2008)comparison of
online and dynamic impact analysis algorithms.Pilmceedings of the Ninth European
Conference on Software Maintenance and Reenginee@@MR '05 (pp. 143-152).
Washington, DC, USA: IEEE Computer Society.

[Buckley et al., 2005] Buckley, J., Mens, T., Zenger, M., Rashid, A., &dsel, G. (2005).
Towards a taxonomy of software change: Research arti¢l&oftw. Maint. Evo].17(5),

309-332.

[Cao et al., 2006] Cao, C., Sui, Y., & Sun, Y. (2006). Logical connextiof statements
in ontologies. In Y. Yao, Z. Shi, Y. Wang, & W. Kinsner (EdsBroceedings of the
Fifth IEEE International Conference on Cognitive Informatics, ICCI 200dy 17-19,
Beijing, China(pp. 440-446).: IEEE.

[Castagna, 1995] Castagna, G. (1995). Covariance and conare@r conflict without a

cause ACM Transactions on Programming Languages and Systen(8), 431-447.

[Castano et al., 2006] Castano, S., Ferrara, A., & Hess, G. N. (20DBcovery-driven
ontology evolution. In G. Tummarello, P. Bouquet, & O. Signore (E®&emantic Web
Applications and Perspectivesolume 201 ofCEUR Workshop Proceeding€EUR-
WS.org.

[Ceravolo et al., 2008] Ceravolo, P., Damiani, E., & Leida, M. (2008)alaryy robustness
in evolution. In R. Meersman, Z. Tari, & P. Herrero (Ed®) the Move to Meaningful
Internet Systems: OTM 2008 Workshopslume 5333 ofLecture Notes in Computer
Sciencgpp. 1010-1017). Springer.

200

[Ceravolo et al., 2007] Ceravolo, P., Damiani, E., & Viviani, M. (2007dtBm-up extrac-
tion and trust-based refinement of ontology metad&BE Transactions on Knowledge

and Data Engineeringl9(2), 149 —-163.

[Chu et al., 2009] Chu, H.-C., Chen, M.-Y., & Chen, Y.-M. (2009). A satiagbased
approach to content abstraction and annotation for content manageegert Syst.

Appl., 36(2), 2360—2376.

[Cimiano & Volker, 2005] Cimiano, P. & Wlker, J. (2005). Text2onto - a framework
for ontology learning and data-driven change discovery. In E. Mdrds Montoyo,
Rafael Munoz (Ed.)Proceedings of the 10th International Conference on Applications
of Natural Language to Information Systems (NLDB)lume 3513 otf_ecture Notes in

Computer Sciencgp. 227-238). Alicante, Spain: Springer.

[Cormen et al., 2001] Cormen, T. H., Stein, C., Rivest, R. L., & Leisergbrt. (2001).

Introduction to AlgorithmsMcGraw-Hill Higher Education, 2nd edition.

[Cox et al., 2001] Cox, L., Harry, D., Skipper, D., & Delugach, H. 0¢2). Dependency
analysis using conceptual graphs Piroceedings of the 9th International Conference on

Conceptual Structures, ICCS 2Q@pringer.

[Sah & Wade, 2010] Sah, M. & Wade, V. (2010). Automatic metadataetitn from mul-
tilingual enterprise content. IAroceedings of the 19th ACM international conference on
Information and knowledge manageme@tKM "10 (pp. 1665-1668). New York, NY,
USA: ACM.

[Curino et al., 2008] Curino, C. A., Tanca, L., Moon, H. J., & Zaniolo(#008). Schema
evolution in wikipedia: Toward a web information system benchmarkniernational

Conference on Enterprise Information Systems

[Davies et al., 2003] Davies, J., Fensel, D., & Harmelen, F. v., Eds.3j20lbwards the
Semantic Web: Ontology-driven Knowledge Managembsietv York, NY, USA: John

Wiley & Sons, Inc.

201

[De Leenheer & Meersman, 2007] De Leenheer, P. & Meersman, G07{2 Towards

community-based evolution of knowledge-intensive systemBrdaeedings of the 2007
OTM Confederated international conference on On the move to meanintgtién sys-
tems: CooplS, DOA, ODBASE, GADA, and IS - Volume R&TIM’07 (pp. 989-1006).
Berlin, Heidelberg: Springer-Verlag.

[Dentler et al., 2011] Dentler, K., Cornet, R., ten Teije, A., & de Keizer,201(1). Com-

parison of reasoners for large ontologies in the owl 2 el proff@mantic Web2(2),

71-87.

[Djedidi & Aufaure, 2010a] Djedidi, R. & Aufaure, M.-A. (2010a). @revoal an ontol-
ogy evolution approach guided by pattern modeling and quality evaluatidhrobeed-

ings of the 6th international conference on Foundations of Informationkarmivledge
SystemsF0lKS’10 (pp. 286—305). Berlin, Heidelberg: Springer-Verlag.
[Djedidi & Aufaure, 2010b] Djedidi, R. & Aufaure, M.-A. (2010b)Ontology Evolution
State of the Art and Future Directiongp. 179—207). Ontology Theory, Management
and Design: Advanced Tools and Models. IGI Global. ID: 42890.

[Edmunds & Morris, 2000] Edmunds, A. & Morris, A. (2000). The ple of information

overload in business organisations: a review of the literatlmrnational Journal of
Information Managemen20(1), 17 — 28.
[Elmasri & Navathe, 2010] Elmasri, R. & Navathe, S. (201Bundamentals of Database
SystemsUSA: Addison-Wesley Publishing Company, 6th edition.

[Enkhsaikhan et al., 2007] Enkhsaikhan, M., Wong, W., Liu, W., & RégeoM. (2007).
Measuring data-driven ontology changes using text miningAusDM (pp. 39-46).

[Eppler & Mengis, 2004] Eppler, M. J. & Mengis, J. (2004). The agpicof information

overload: A review of literature from organization science, accountimyketing, mis,

and related disciplineslhe Information Society20(5), 325-344.

202

[Fensel et al., 2001] Fensel, D., van Harmelen, F., Horrocks, I., Nfutggs, D., & Patel-
Schneider, P. (2001). Oil: an ontology infrastructure for the semantic Wweelligent
Systems, IEEEL6(2), 38 — 45.

[Fermandez et al., 2011] Feandez, M., Cantador, |.,dpez, V., Vallet, D., Castells, P.,
& Motta, E. (2011). Semantically enhanced information retrieval: An ontcloased
approachWeb Semant9(4), 434-452.

[Flouris, 2006] Flouris, G. (2006). On belief change in ontology evotutidhesis. Al
Communication19(4), 395-397.

[Flouris et al., 2008] Flouris, G., Manakanatas, D., Kondylakis, H., Rleakis, D., & An-
toniou, G. (2008). Ontology change: Classification and suridepwledge Engineering
Review 23(2), 117-152.

[Flouris & Plexousakis, 2005] Flouris, G. & Plexousakis, D. (2005)anHling ontology
change: Survey and proposal for a future research directi@rtificial Intelligence

(September), 1-55.

[Flouris et al., 2006] Flouris, G., Plexousakis, D., & Antoniou, G. (200%klassification
of ontology change.Poster Proceedings of the 3rd Italian Semantic Web Workshop,

Semantic Web Applications and Perspectives(SWAP-2006)

[Glimm et al., 2010] Glimm, B., Horrocks, I., Motik, B., & Stoilos, G. (2010). Optimg
Ontology Classification. In P. F. Patel-Schneider, Y. Pan, P. Hitzler,ila,NL. Zhang,
J. Z. Pan, |. Horrocks, & B. Glimm (EdsProceeding of the 9th International Semantic
Web Conference (ISWC 201@plume 6496 oLLNCS(pp. 225-240). Shanghai, China:
Springer.

[Gomez-Perez & Corcho, 2002] Gomez-Perez, A. & Corcho, O. Z200ntology lan-

guages for the semantic welltelligent Systems, IEER7(1), 54 — 60.

[Gomez-Rerez et al., 2007] Gmez-Rrez, A., Ferandez-lbpez, M., & Corcho, O. (2007).

Ontological Engineering: with examples from the areas of Knowledge hEmant, e-

203

Commerce and the Semantic Web. (Advanced Information and Knowredigessing)

Secaucus, NJ, USA: Springer-Verlag New York, Inc.

[Goncalves et al., 2011] Goncalves, R. S., Parsia, B., & Sattler, U1lj2nalysing the
evolution of the nci thesaurus. roceedings of the 2011 24th International Sympo-
sium on Computer-Based Medical SysteGBMS 11 (pp. 1-6). Washington, DC, USA:

IEEE Computer Society.

[Grau et al., 2008] Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Pathneider, P., &
Sattler, U. (2008). Owl 2: The next step for oMieb Semant6(4), 309-322.

[Gross et al., 2009] Gross, A., Hartung, M., Kirsten, T., & Rahm, E. @0Bstimating the
quality of ontology-based annotations by considering evolutionary @sarigProceed-
ings of the 6th International Workshop on Data Integration in the Life ScengkS

'09 (pp. 71-87). Berlin, Heidelberg: Springer-Verlag.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach tagide ontology specifi-
cations.Knowledge Acquisitiorb(2), 199-220.

[Gruhn et al., 1995] Gruhn, V., Pahl, C., & Wever, M. (1995). Data nh@delution as
basis of business process managemen®riceedings of the 14th International Confer-
ence on Object-Oriented and Entity-Relationship Model]l@@ER '95 (pp. 270-281).

London, UK, UK: Springer-Verlag.

[Guarino, 1998] Guarino, N. (1998¥ormal Ontology in Information Systems: Proceed-
ings of the 1st International Conference June 6-8, 1998, Trento, Ifatysterdam, The

Netherlands, The Netherlands: IOS Press, 1st edition.

[Haarslev et al., | Haarslev, V., Hidde, K.,Mer, R., & Wessel, M. The RacerPro Knowl-

edge Representation and Reasoning Systemantic Web

[Haase & Stojanovic, 2005] Haase, P. & Stojanovic, L. (2005). Coarsisevolution of

OWL ontologies. In A. Gmez-Rerez & J. Euzenat (Eds.Rroceedings of the Sec-

204

ond European Semantic Web Conferenamtume 3532 (pp. 182—-197). Heraklion, Crete,

Greece: Springer.

[Haase et al., 2005] Haase, P., van Harmelen, F., Huang, Z., StubkeidscH., & Sure,
Y. (2005). A framework for handling inconsistency in changing ontolegla Proceed-
ings of the 4th international conference on The Semantic V8 C’05 (pp. 353-367).
Berlin, Heidelberg: Springer-Verlag.

[Hartung et al., 2012] Hartung, M., Gross, A., & Rahm, E. (2012). C&DExploration

of semantic changes between ontology versi@isinformatics 26(6), 895-896.

[Hartung et al., 2011] Hartung, M., Terwilliger, J. F., & Rahm, E. (20Hé¢ advances

in schema and ontology evolution. thema Matching and Mappirigp. 149-190).

[Hassan et al., 2010] Hassan, M. O., Deruelle, L., & Basson, H. (R020knowledge-
based system for change impact analysis on software architectutReskarch Chal-
lenges in Information Science (RCIS), 2010 Fourth International Cenfar or(pp. 545
-556).

[Heckel, 2006] Heckel, R. (2006). Graph transformation in a nutskddictronic Notes in
Theoretical Computer Scienci48(1), 187-198.

[Holohan et al., 2006] Holohan, E., Melia, M., McMullen, D., & Pahl, C. (8D0 The
generation of e-learning exercise problems from subject ontologthsmnced Learning

Technologies, 2006. Sixth International Conferencg(pp. 967-969).

[Horridge & Bechhofer, 2011] Horridge, M. & Bechhofer, S. (201 The owl api: A java

api for owl ontologies Semantic wel®2, 11-21.

[Horridge et al., 2006] Horridge, M., Drummond, N., Goodwin, J., Red&arStevens, R.,
& Wang, H. (2006). The manchester owl syntax.OWLED2006 Second Workshop on
OWL Experiences and Directiodghens, GA, USA.

205

[Horrocks, 2003] Horrocks, I., P.-S. P. (2003). Reducing owh#ment to description
logic satisfiability. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformati@§70, 17-29.

[Javed et al., 2009] Javed, M., Abgaz, Y., & Pahl, C. (2009). A pattersed framework
of change operators for ontology evolution. @n the Move to Meaningful Internet
Systems: OTM 2009 Workshop®lume 5872 ofLecture Notes in Computer Science
(pp. 544-553).

[Javed et al., 2010] Javed, M., Abgaz, Y., & Pahl, C. (2010). Ontologsed domain mod-
elling for consistent content change managemeninternational Conference on Onto-

logical and Semantic Engineering (ICOSE)

[Javed et al., 2011a] Javed, M., Abgaz, Y., & Pahl, C. (2011a). elesed discovery of
ontology change patterns. IBWC Workshops: Joint Workshop on Knowledge Evolution

and Ontology Dynamics (EvoDyn), 24th October, 2011, Bonn, Geyman

[Javed et al., 2011b] Javed, M., Abgaz, Y., & Pahl, C. (2011b). Aregydramework for
pattern-based ontology evolution. 3rd International Workshop Ontology-Driven Infor-

mation System Engineering (ODISE), London,. UK

[Javed et al., 2012] Javed, M., Abgaz, Y., & Pahl, C. (2012). Compaositelogy change
operators and their customizable evolution strategiesSWMC Workshops: Joint Work-
shop on Knowledge Evolution and Ontology Dynamics (EvoDyn), 12tkerNibsr, 2012,
Boston, USA.

[Javed et al., 2011c] Javed, M., Abgaz, Y. M., & Pahl, C. (2011cjvaras implicit knowl-
edge discovery from ontology change log datakhiowledge Science, Engineering and

Managemen(pp. 136-147).

[Johnson, 2011] Johnson, J. L. (2011Brobability and Statistics for Computer Science
Hoboken: John Wiley & Sons.

206

[Jones et al., 2011] Jones, D., Oconnor, A., Abgaz, Y., & Lewis, D113. A semantic
model for integrated content management, localisation and language tephpotn

cessing. I2nd Workshop on the Multilingual Semantic Web (MSW2011)

[Jun-feng et al., 2005] Jun-feng, S., Wei-ming, Z., Wei-dong, X., Gup-L., & Zhen-
ning, X. (2005). Ontology-based information retrieval model for the sgimaveb. In
Proceedings of the 2005 IEEE International Conference on e-Téopyoe-Commerce
and e-Service (EEE’05) on e-Technology, e-Commerce andwe§dfEE '05 (pp. 152—
155). Washington, DC, USA: IEEE Computer Society.

[Jurisica et al., 1999] Jurisica, |., Mylopoulos, J., & Yu, E. (1999).ingsOntologies for
Knowledge Management: An Information Systems Perspective. Pasampee at the
Annual Conference of the American Saociety for Information Science®rdceedings
of the 62nd Annual Meeting of the American Society for Information Sc(@rﬁjé§99),
Oct. 31 - Noyvolume 4 (pp. 482-496).

[Kalyanpur et al., 2011] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.&Hendler, J.
(2011). Swoop: A web ontology editing browsEveb Semantics: Science, Services and

Agents on the World Wide Weh(2).

[Khattak et al., 2010] Khattak, A., Pervez, Z., Lee, S., & Lee, Y.-K. @01After effects
of ontology evolution. InFuture Information Technology (FutureTech), 2010 5th Inter-

national Conference ofpp. 1 —6).

[Kiryakov et al., 2004] Kiryakov, A., Popov, B., Terziev, I., Manov,,[& Ognyanoff, D.

(2004). Semantic annotation, indexing, and retrieVétéb Semantj@, 49—79.

[Klein, 2004] Klein, M. (2004). Change Management for Distributed OntologieBhD

thesis, Vrije Universiteit Amsterdam.

[Klein & Fensel, 2001] Klein, M. & Fensel, D. (2001). Ontology versiagpian the se-
mantic web. InProceedign of 1st International Semantic Web Working Sympognon.
75-91). Stanford University, CA, USA.

207

[Klein et al., 2002] Klein, M., Fensel, D., Kiryakov, A., & Ognyanov, D.O@). Ontol-
ogy versioning and change detection on the web13th International Conference on

Knowledge Engineering and Knowledge Management (EKA(p2Y197—-212).

[Knublauch et al., 2004] Knublauch, H., Fergerson, R., Noy, N., & 8fydV. (2004). The
protg owl plugin: An open development environment for semantic web ajaits. In
S. Mcllraith, D. Plexousakis, & F. van Harmelen (Ed$he Semantic Web ISWC 2004
volume 3298 ofLecture Notes in Computer Scien@m. 229-243). Springer Berlin /
Heidelberg.

[Kondylakis & Plexousakis, 2013] Kondylakis, H. & Plexousakis, D012). Ontology
evolution without tears.Web Semantics: Science, Services and Agents on the World

Wide Web(in press).

[Konev et al., 2012] Konev, B., Ludwig, M., Walther, D., & Wolter, F. (Z)1 The logi-
cal difference for the lightweight description logic elournal of Atrtificial Intelligence

Research (JAIR¥4, 633—708.

[Konev et al., 2010] Koneyv, B., Lutz, C., Ponomaryov, D., & Wolter, RXQ). Decompos-

ing description logic ontologies. IKknowledge Representation

[Konev et al., 2008] Konev, B., Walther, D., & Wolter, F. (2008). Theitad difference
problem for description logic terminologies. Rroceedings of the 4th international
joint conference on Automated Reasonid@€AR '08 (pp. 259-274). Berlin, Heidelberg:

Springer-Verlag.

[Konstantinidis et al., 2008] Konstantinidis, G., Flouris, G., Antoniou, G., &
Christophides, V. (2008). A formal approach for rdf/s ontology etiolu In
Proceedings of the 2008 conference on ECAI 2008: 18th Europeanfiefdmce on
Artificial Intelligence(pp. 70—74). Amsterdam, The Netherlands, The Netherlands: 10S

Press.

208

[Krotzsch et al., 2011] Krotzsch, M., Vrandecic, D., Volkel, M., Haller, & Studer, R.
(2011). Semantic wikipedialeb Semantics: Science, Services and Agents on the World

Wide Web5(4).

[Krotzsch et al., 2007] Kitzsch, M., Vrandé&c¢, D., Volkel, M., Haller, H., & Studer, R.
(2007). Semantic wikipediaieb Semantic$(4), 251-261.

[Kruk & McDaniel, 2009] Kruk, S. R. & McDaniel, B., Eds. (2009). Spger.

[Lee et al., 2000] Lee, M., Offutt, A. J., & Alexander, R. T. (2000). étghmic analysis
of the impacts of changes to object-oriented softward2rbteedings of the Technology
of Object-Oriented Languages and Systems (TOOLS 34TOPLS '00 (pp. 61-70).
Washington, DC, USA: IEEE Computer Society.

[Lee et al., 2007] Lee, S., Seo, W., Kang, D., Kim, K., & Lee, J. Y. (2087 yamework for
supporting bottom-up ontology evolution for discovery and descriptiorridfgervices.

Expert Systems with Applicatiqr2(2), 376 — 385.

[Leenheer & Mens, 2008] Leenheer, P. D. & Mens, T. (2008). (g evolution: State
of the art and future directions. In M. Hepp, P. D. Leenheer, A. d®i& Y. Sure
(Eds.),Ontology Management for the Semantic Web, Semantic Web Serviceyysind B

ness ApplicationsSpringer.

[Lehman et al., 1997] Lehman, M., Ramil, J., Wernick, P., Perry, D., & Tiuk&k (1997).
Metrics and laws of software evolution-the nineties view. Slwftware Metrics Sympo-

sium, 1997. Proceedings., Fourth Internatioifap. 20 —32).

[Liang et al., 2006] Liang, Y., Alani, H., Dupplaw, D., & Shadbolt, N. (200&n approach
to cope with ontology changes for ontology-based applicatidPsaceedings Second

Advanced Knowledge Technologies DTA Sympadipm 1-8).

[Maedche et al., 2003] Maedche, A., Motik, B., Stojanovic, L., Studer,&R\olz, R.
(2003). Ontologies for enterprise knowledge managemkntelligent Systems, IEEE.
18(2), 22-33.

209

[Maynard, 2008] Maynard, D. (2008). Benchmarking textual aniataools for the se-
mantic web. In B. M. J. M. J. O. S. P. D. T. Nicoletta Calzolari (Confeee@@hair),
Khalid Choukri (Ed.),Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC'OBlarrakech, Morocco: European Language Re-

sources Association (ELRA). http://www.Irec-conf.org/proceedingsZég/.

[Mcguinness et al., 2002] Mcguinness, D., Fikes, R., Hendler, J., & Stein(2002).
Daml+oil: an ontology language for the semantic wigthelligent Systems, IEER7(5),
72 —80.

[Mens et al., 2002] Mens, T., Buckley, J., Rashid, A., & Zenger, MO@0 Towards a

taxonomy of software evolution. M/orkshop on Unanticipated Software Evolution
[Mens & Klein, 2012] Mens, T. & Klein, J. (2012). Evolving softwareRCIM News88.

[Mika, 2007] Mika, P. (2007). Ontologies are us: A unified model ofislogetworks and

semanticsWeb Semanti¢®, 5-15.

[Motik et al., 2007] Motik, B., Shearer, R., & Horrocks, I. (2007). A pirtableau Calcu-
lus for SHIQ. In D. Calvanese, E. Franconi, V. Haarslev, D. Lembd/&ik, S. Tessaris,
& A.-Y. Turhan (Eds.),Proceeding of the 20th International Workshop on Description
Logics (DL 2007)pp. 419-426). Brixen/Bressanone, Italy: Bozen/Bolzano Unityers

Press.

[Navigli & Velardi, 2003] Navigli, R. & Velardi, P. (2003). An analysis ohtology-based
guery expansion strategies. Rroceedings of Workshop on Adaptive Text Extraction
and Mining (ATEM) in thel4** European Conference on Machine Learning (ECML)
(pp. 42—-49). Cavtat-Dubrovnik, Croatia.

[Noy et al., 2006] Noy, N. F., Chugh, A., Liu, W., & Musen, M. A. (2006} framework
for ontology evolution in collaborative environments.5th International Semantic Web

Conferencépp. 544-558).: Springer-LNCS.

210

[Noy & Klein, 2004] Noy, N. F. & Klein, M. (2004). Ontology evolution: Nohe same as

schema evolutionKnowledge and Information Systeng{(4), 328—440.

[Noy & Musen, 2002] Noy, N. F. & Musen, M. A. (2002). Promptdiff: fixed-point algo-
rithm for comparing ontology versions. WAAI/IAAI’2002(pp. 744—750).

[Oliver et al., 1999] Oliver, D. E., Shahar, Y., Shortliffe, E. H., & MuseM. A. (1999).
Representation of change in controlled medical terminologiesficial Intelligence in

Medicine, 15(1), 53-76.

[Oren et al., 2006] Oren, E., Mller, K., Scerri, S., Handschuh, S., & &jnt& (2006).

What are semantic annotatior&ttificial Intelligence 8.

[Orso et al., 2004] Orso, A., Apiwattanapong, T., Law, J., Rothermel, Gla&old, M. J.
(2004). An empirical comparison of dynamic impact analysis algorithmBrdneedings
of the 26th International Conference on Software Engineefi@G&E '04 (pp. 491-500).
Washington, DC, USA: IEEE Computer Society.

[Pahl et al., 2007] Pahl, C., Giesecke, S., & Hasselbring, W. (200T).oitology-based
approach for modelling architectural styles. In F. Oquendo & F. Oquéds.),ECSA
volume 4758 oLecture Notes in Computer Scieng@p. 60—75).: Springer.

[Pahl et al., 2010] Pahl, C., Javed, M., & Abgaz, Y. (2010). Utilising twgg-based
modelling for learning content management. Aroceedings of World Conference on
Educational Multimedia, Hypermedia and Telecommunications Zpp01274-1279).
Toronto, Canada: AACE.

[Paralic & Kostial, 2003] Paralic, J. & Kostial, 1. (2003). Ontology-bas$eformation re-
trieval. In Proc. of the 14th International Conference on Information and Intelligent

systems, 1IS 200(p. 23-28).

[Petasis et al., 2009] Petasis, G., Karkaletsis, V., Krithara, A., PalioGras; Spyropou-
los, C. D. (2009). Semi-automated Ontology Oearning: the BOEMIE Ambrodn

211

Proceedings of the First ESWC Workshop on Inductive Reasoning acHiig Learn-

ing on the Semantic Web

[Plessers & De Troyer, 2006] Plessers, P. & De Troyer, O. (20B&solving inconsisten-
cies in evolving ontologies. IfProceedings of the 3rd European conference on The
Semantic Web: research and applicatipBSWC’06 (pp. 200-214). Berlin, Heidelberg:

Springer-Verlag.

[Plessers et al., 2007] Plessers, P., De Troyer, O., & CasteleynQ&7)2Understanding

ontology evolution: A change detection approadfeb Semant5(1), 39—49.

[Qin & Atluri, 2009] Qin, L. & Atluri, V. (2009). Evaluating the validity of data gtances
against ontology evolution over the semantic walormation and Software Technology.

51(1), 83-97.

[Redmond & Noy, 2011] Redmond, T. & Noy, N. (2011). Computing thengfes between
ontologies. InWorkshop on Knowledge Evolution and Ontology Dynamics, ISWC.2011

[Redmond et al., 2008] Redmond, T., Smith, M., Drummond, N., & Tudorach@0D8).
Managing change: An ontology version control system.Inlf©®WL: Experiences and

Directions, 5th Intl. Workshop, OWLED 2008

[Reeve & Han, 2005] Reeve, L. & Han, H. (2005). Survey of semaamticotation plat-
forms. INSAC '05: Proceedings of the 2005 ACM symposium on Applied comgpiing
1634-1638).

[Ren et al., 2004] Ren, X., Shah, F., Tip, F., Ryder, B. G., & Chesley2004). Chianti:

a tool for change impact analysis of java progra®&sPLAN Notice39(10), 432—448.

[Roddick, 1995] Roddick, J. F. (1995). A survey of schema veisppissues for database
systemsInformation and Software Technolad7(7), 383—-393.

[Rosoiu et al., 2011] Rosoiu, M.-E., dos Santos, C. T., & Euzenat, 11{200ntology

matching benchmarks: generation and evaluation. In P. Shvaiko, h&uZeHeath, C.

212

Quix, M. Mao, & I. F. Cruz (Eds.)Pntology Matchingvolume 814 ofCEUR Workshop
ProceedingsCEUR-WS.org.

[Ruiz et al., 2009] Ruiz, E. J., Grau, B. C., Horrocks, 1., & Berlanga(ZR09). Building
ontologies collaboratively using contentcvs. Proceedings of the 22nd International

Workshop on Description Logics (DL 2009)

[Ruiz et al., 2011] Ruiz, E. J., Grau, B. C., Horrocks, I., & Berlanga(2R11). Supporting
concurrent ontology development: Framework, algorithms and tDakta Knowledge

Engineering 70(1), 146-164.

[Sacks et al., 1989] Sacks, J., Welch, W., Mitchell, T., & Wynn, H. (198Bgsign and

Analysis of Computer ExperimentStatistical sciencet(4), 409—-423.

[Schmidt-SchaubR& Smolka, 1991] Schmidt-Schaub3, M. & Smolka, G.1()198ttribu-

tive concept descriptions with complemenstif. Intell., 48(1), 1-26.

[Shadbolt et al., 2006] Shadbolt, N., Berners-Lee, T., & Hall, W. (2006he semantic
web revisited.|[EEE Intelligent System&1, 96-101.

[Sherriff & Williams, 2008] Sherriff, M. & Williams, L. (2008). Empirical stfare
change impact analysis using singular value decompositioRrdoeedings of the 2008
International Conference on Software Testing, Verification, and Valida(ign 268—

277). Washington, DC, USA: IEEE Computer Society.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz(2007).

Pellet: A practical owl-dl reasoneWeb Semanti¢$(2), 51-53.

[Stojanovic, 2004] Stojanovic, L. (2004Methods and tools for ontology evolutioRhD

thesis, University of Karlsruhe.

[Stojanovic et al., 2002a] Stojanovic, L., Maedche, A., Motik, B., & Stojaoow.
(2002a). User-driven ontology evolution managemen®roceedings of the 13th Inter-
national Conference on Knowledge Engineering and Knowledge Mamage Ontolo-

gies and the Semantic WEbKAW 02 (pp. 285—-300). London, UK: Springer-Verlag.

213

[Stojanovic et al., 2003] Stojanovic, L., Maedche, A., Stojanovic, N., & Stu. (2003).
Ontology evolution as reconfiguration-design problem solving Pioceedings of the
2nd international conference on Knowledge captufeCAP '03 (pp. 162—171). New
York, NY, USA: ACM.

[Stojanovic & Motik, 2002] Stojanovic, L. & Motik, B. (2002). Ontology ewtion within
ontology editors Proceedings of the OntoWebSIG3 Workslag) 568-580.

[Stojanovic et al., 2002b] Stojanovic, L., Stojanovic, N., & Handschul{2@02b). Evolu-
tion of the metadata in the ontology-based knowledge management systdtnscéed-
ings of the 1st German Workshop on on Experience Managementn§laperiences

about the Sharing of Experien¢ep. 65-77).

[Taye, 2010] Taye, M. M. (2010). The state of the art: Ontology wabell languages:
Xml based.Computing Research Repositpaps/1006.4563.

[Thomas et al., 2010] Thomas, E., Pan, J. Z., & Ren, Y. (2010). TrOWactable OWL 2
Reasoning Infrastructure. the Proceeding of the Extended Semantic Web Conference

(ESWC2010)

[Trinkunas & Vasilecas, 2007] Trinkunas, J. & Vasilecas, O. (200A) graph oriented
model for ontology transformation into conceptual data mo@iethnology36(1), 126—

132.

[Trivedi, 2002] Trivedi, K. S. (2002) Probability and Statistics with Reliability, Queuing
and Computer Science Application€hichester, UK: John Wiley and Sons Ltd., 2nd

edition edition.

[Tsarkov & Horrocks, 2006] Tsarkov, D. & Horrocks, I. (200&act++ description logic
reasoner: System description. Pnoc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2006) volume 4130 of_ecture Notes in Atrtificial Intelligencép. 292—-297).:
Springer.

214

[Tudorache et al., 2008] Tudorache, T., Noy, N. F.,, Tu, S., & Mu$&nA. (2008). Sup-
porting collaborative ontology development in protege Plceedings of the 7th Inter-
national Conference on The Semantic W&WC 08 (pp. 17-32). Berlin, Heidelberg:

Springer-Verlag.

[Uren et al., 2006] Uren, V., Cimiano, P., Iria, J., Handschuh, S., \@xgma, M.,
Motta, E., & Ciravegna, F. (2006). Semantic annotation for knowledge gsana
ment:requirements and survey of the state of the\Wdb Semantics: Science, Services

and Agents on World Wide Wel(1), 14-28.

[Vallet et al., 2005] Vallet, D., Feandez, M., & Castells, P. (2005). An ontology-based
Information Retrieval Model. IiExtended Semantic Web Conferena#ume 3532 (pp.
455-470).

[Volz et al., 2003] \Wolz, R., Oberle, D., Staab, S., & Motik, B. (2003). Keserver - a
semantic web management systemAlternate Track Proceedings of the Twelfth Inter-
national World Wide Web Conference, WWW2003, Budapest, Hun@ayl Ray 2003
ACM.

[Wilcock, 2009] Wilcock, G. (2009)Introduction to Linguistic Annotation and Text Ana-

Iytics. Morgan & Claypool Publishers, 1st edition.

[Wu et al., 2007] Wu, J., Holt, R., & Hassan, A. E. (2007). Empirical enmefor SOC
dynamics in software evolution. Proceedings of the International Conference on Soft-

ware Maintenancépp. 244—-254).. IEEE Computer Society.

[Xuan et al., 2006] Xuan, D. N., Bellatreche, L., & Pierra, G. (2006)veksioning man-
agement model for ontology-based data warehousedntémnational Conference on

Data Warehousing and Knowledge Discovery(DaWgif). 195-206).

[Zablith, 2008] Zzablith, F. (2008). Dynamic ontology evolution.liiernational Semantic

Web Conference Doctoral Consortium

215

[Zablith et al., 2008] Zablith, F., Sabou, M., & Motta, E. (2008). Using lmaokind knowl-
edge for ontology evolution. [Proceedings of the ISWC International Workshop on

Ontology Dynamics (IWOD)

[Zhang et al., 2010] Zhang, H., Li, Y.-F., & Tan, H. B. K. (2010). Maesg design com-

plexity of semantic web ontologied. Syst. Softw83(5), 803—814.

[Zhang et al., 2008] Zhang, L., Xia, S., Zhou, Y., & Xia, Z. (2008). Udefined ontology
change and its optimization. l@ontrol and Decision Conference, 2008. CCDC 2008.

Chinesgpp. 3586 —3590).

216

Appendix A

Software Help Management Case

Study

A.1 Introduction

This case study covers a software help management domain. A softwarsystem is
part of a software product which focuses on delivery of help tosuska software product.
Software products are released with associated help files that explainetel @urpose
of the software and its components. The help files describe the productrjisse, the
components in the software, the tasks, the procedures and stepsadquise the software
and to troubleshoot a problem. The help files are prepared by prafessiaftware devel-
opers to assist users to efficiently use the software. The help files inbhsdeiption about
concepts used in the software, locations of items and GUI elements, stepsoardures,

shortcut keys and a lot other information useful to users of the product.

Software help files are content files which describe a software. Thédileslare created
by domain experts who specialize in the domain of the software producte Tilesscontain
structured content in an XML format or semi-structured content in HTMinfat. Help files
are released together with the associated software or become availab&welitior on-

line users. Searching, indexing, and browsing based on a table oht®uteich organizes

217

the content using DocBook structures are used to efficiently accessificpontent.

Software help files evolve dynamically. Whenever a software evolvesadckeanges,
the associated help files evolve together. The evolution is in response thahegirng be-
haviour of the software system. The evolution in the content affects théogigs. The
ontologies reflect the current semantics in the content and in the softwWaes: further
reflect existing structure of concepts in both the content and the softWémes, when a
software evolves, the help files evolve together. This causes the ongtogieolve in turn
propagating all the changes to annotations and dependent systems.

Our empirical study uses Symantec Enterprise Vault (EV) software hefp filaese
help files are prepared by Symantec Enterprise Vault software develdfe help files fur-
ther contain major concepts used in the software. The developers reohkeepts based on
percentage of similarities among each other, and organized them usirepttaamnomies.

For this study, we gain access to two versions of the EV software helpTitesversions
are EV version 7 and EV version 8. Version 7 contains 162 HTML fileswoiged into 4
folders. The folders contain help files which represent four compsnafinthe software.
Version 8 contains 839 files organized in 17 folders. The folders a@ tascategorize the
help files based on the available software components.

Using the information provided on the help files and the associated conaepisiild
ontologies which describe the overall structure and semantics of the seftystem. We
developed four ontologies representing different aspects of thensy#tehigh level view

of the ontologies is given in Figu.1.

Ontology Ontology Ontology Ontology
DocBook Help Software Domain
— IEEEEE——
structures guides implements
document topic GUl archive
structure procedure function backup

Figure A.1: A high level view of software help management ontology

The first ontology is the DocBook ontology which describes the overalttire of

the help files Pahl et al., 2010 The DocBook ontology is constructed by extracting the

218

structural entities from available DocBook files. A similar approach has hseed to au-
tomatically extract a DocBook ontology from the DocBook structiger & Wade, 2010
and XML files [Ceravolo et al., 2007 The second ontology is the help ontology. The help
ontology is designed to guide the software ontology by providing semanticg #ie help
files and their content. The third ontology is a software ontology which istamied
considering a general software system specification. This ontologgdstasddescribe the
different behaviours and components of a standard software. Jide® semantics about
software related concepts. The fourth is a domain ontology which spdgificeuses on
the domain area of a software at hand. The domain ontology is also knoapphsation
ontology. In our case study the domain of the software is digital archivimghwincludes
backup, searching, sharing, etc.

These ontologies are constructed using different information souncésas the differ-
ent versions of the software help files, topic matrix, the document struetndeso on. A

snapshot of the ontology is presented in Fighr2.

219

0¢ce

| —ue— |
(D peletingDir ... ;

id-SFES0180888 j ...

!

T 1 iecion | P | = e
@Empluyeeemup i @ i @Permmon | @Foldel - @3.!“,..;! up_ . @A‘mlenﬂnr_ i |
| @An:llive_Exp &=

| D Register value |

- SF2003507T80_j

@Hailﬂoﬂ{

¥ 4 [eman| T

(E) Creatinglise __ id-Sr3eE2ee0aT .

A (D eolicy |
-JL
g Yeaain ., e

e

wl

| {E) peletingFile |

s

| B restonng

I 1
| D) petetingEmail |

| {2 sonting

o

Figure A.2: Software help management ontology hierarchy

A.2 Rationale and Significance of the Case Study

This case study is selected because it has a wide coverage of topiestafnom the appli-
cation domain to software systems domain. There are different softwdseitiadifferent
disciplines covering different subjects within the disciplines. In these soéwwroducts,
the help files are associated to the knowledge and activities representidgs¢igines.
Help files are organized using document structures borrowing corfcept®ther domains.
They further contain software concepts such as GUI elements, comntardsyare and
software requirements, etc. This case study covers one or more ofdhe edincepts.

Moreover, the concepts and instances are distributed throughoutpHddsand create
a strong link between the instances in the content and the concepts in theg@#olbhis
makes it of great interest to investigate instance-driven change impaetsdecthe changes
made in the content of the help files will have an impact on the ontology and visa.ve

This case study is different from the other two case studies. First, iséscon changes
in both the content and the ontology. The changes in the content of the leslpifithe
software cause a change in the ontologies. Second, we have diffen@@in ontologies.
These ontologies are interrelated and interdependent. Third, the inaividip files are
treated as individuals that are used to explain one or more concepts indesduals are
linked to different concepts from the ontologies. These features makedtriain suitable
to investigate the effects of changes in ontologies or in content documents.

The purpose of this case study is to investigate changes and the impaasgéslin the
software help files in different versions of a software. This is part@ftfder investigation
of changes in different versions of an OCMS. In this case study, weifsgally focus on

investigating the following issues.

¢ |dentification of changes from the versions which affect other layeas @ CMS.
e Investigation of effects of these change operation.

e Identification of dependencies that characterize the propagatiorectetif changes

to dependent entities and systems.

221

e Investigation of implementation options using different strategies and investggd

important criteria which can be used to to identify optimal implementation strategies.

A.3 Experiment

We used different perspectives for a better understanding of thdepncand the behaviour
of the evolution of an OCMS system. These perspectives are used ttigateshanges
at different layers, the strategies used to handle the changes andi¢herdiéffects of the

evolution process. The perspectives are discussed as follows.

A.3.1 Perspectives

The first perspective deals with the organization of the help file using BoikcBtructures.
It organizes the help file into chapters, sections, paragraphis & Wade, 2010 It pro-
vides steps, procedures, tips to perform a task. Tables, figuredeamahstrations are also
included in this perspective. The DocBook ontology gives structure dodefines how
elements in the help ontology are organized.

The second perspective is the help management systems perspeaisiagaan pro-
viding information on what a given concept is, how it is used. It explaow the software
ontology makes use of the topics, procedures, etc. The help ontologgsgihie software
ontology in a way that explains the system. What makes this perspectiveediffeom the
others is, it focuses on help contents specific to the software at hand.

The third perspective is the software systems perspective. This pavepeiews the
help files as part of a software functionality which provides better facilityuging an
application. It provides explanations, steps and procedures on hoseta gpecific part
of the application, where to find a GUI button, how to activate a given paetc. This
perspective focuses on generic software features that are availabitferent software
systems.

The fourth perspective also focuses on the organization of the comisooiethe soft-

ware in a given domain. For a software, we explain the different subcoenis of the

222

software, what the individual components do and how they are relateattoather. For
example, in the case of EV customer help, we have different subcomisahahdeal with
emails, files, folders etc. The perspective allows us to implement the ontotmggid
which is specific to the components in each application. These componemmganized
based on the concept structures in the domain or based on the activiestedpn the

software.

A.3.2 Changes

We studied the changes from one version to another version and trasse ¢hanges to
find the frequency, the importance and the impacts of the changes. We &tbstfieral
changes but focused on 15 selected scenarios that cover all therftmiogies. These
scenarios represent the different evolutions in the OCMS. The seledteach scenario is
based on the frequency of the change, their cascaded impacts, thémpemnvolved and
the number of ontologies affected. The analysis of the change scepaposes different

kinds of changes.

A.3.2.1 Changes among Versions

We compare the two versions of the help files (version 7 and version 8lowkny the
analysis result, we categorize the changes into three different categorie

Changes in the Content. A change in the content refers to the change in the actual
contents of the help files. This includes the introduction of new help files tpostithe
new components and functionalities of the new version of the EV softwame®f these
changes are the addition of teceleratorClient Help, AdministratorGuide and so on.
All these components have their own associated help files that are intcbdtutiee new
version. Old concepts which are not included in the new version areexisoved.

Changes in the Structure of the DocbooksThese categories of changes are identified
in the new version. This is due to the fact that the whole help file structurarged from

HTML based help files to XML based help files. Because of this changthebections,

223

subsections, paragraphs, tables, lists, etc., are introduced in the @obBacorporating
new tags that were not available in the previous versions.

Changes in the Formats of the FilesThese categories of changes are identified when
the formats of the help files evolve and include pictures, graphs, chadsnast impor-
tantly video and audio help files that illustrate steps and procedures on hperftorm
tasks. To illustrate the above changes, we use the following two scengmsskd in
[Abgaz et al., 201

Scenario 1.The new version of the software resulted in a change of compohehich
contains other two sub componeitandZ. The componenX and its subcomponeivtare
removed but the subcomponehts moved up. Here, all the previous instances (help files)
of X andY are preserved as instancesZoiX, Y andZ stand for different components that
change following a similar pattern. The desired output is an updated ontetugh reflects

the requested change. The change operations are:

e Move up @)

— Add instance ofifistance of X2) ...

— Add instance ofifstance of YZ) ...
e Delete conceptY)

e Delete conceptX)

Scenario 2. The software engineers introduced a new software compadwenihe
new component has new associated help files. The desired output isvarsohpplica-
tion ontology that has a description of the new component and its propeFtieschange

operations are:

e Add ConceptC)
e Add sub conceptNC, softwareApplicatioh
e Add instancelfelpfile)...

e Add instance oflfelp_file, NC)

224

A.3.2.2 Changes within a Single Version

Software life cycle involves different development stages. At eactestathe life cycle

there are changes. At the construction stage of the software, diffesencomponents will

be included. The help files and documents of the respective componeais@pmoduced

in parallel. As the software components passes through different stagecumentation

and the help files also update synchronously. Furthermore once theasoftnoduct at

a certain stable version is released, it is not an exception to find subvena patches

following the release of that version. With such subversions and patitteekelp files and

associated ontologies that are used to support the software systeno headpdated.
Scenario 3.The enterprise vault software engineers splitBaekup and restorenenu

item into two separate menu items: back-up, and restore menu items for simplicig of u

within the existing version. The change is represented as follows.
e Split concept Backupand.Restore Backup Restorg

— Add conceptBackup ...

— Add conceptRestorg. ..
e Delete Backup and Restoye

From the software help management case study and following the ab@esipre, we
identified 15 frequent change scenarios to evolve the system. Therisseai@ selected
based on their frequency and the number of ontologies they affect iyskens. They also
represent the deletion and addition operations and mix them evenly. Tfet isfalso

taken into consideration to identify the changes. The overall changesesented in Table

Al

225

9¢¢

Table A.1: Change scenarios

No Change Scenario Change Operations Affected On- | Impact Frequency of
tology Type change
The enterprise vault software engineers introduced a ndtwa®| - Add Conceptiiew component
component. The new component has associated help files. - Add sub conceptrew component, software Applicatjon o
1 Application Structural | Very Frequent
Desired output : the software application ontology needs to have a Add instance Klelp_file)
Ontology and Se-
description about the new component and its properties. - Add instance oflgelp-file, new componeht i
mantic
The new version of the Enterprise Vault software applicatias made
a change on a component which contains two other sub compagnents
) Move up 6ubcomponenj2
The component and one of its subcomponents are removed but the
- Add instance ofifistance of component, subcompongnt2
other subcomponent is upgraded as a full component. Here westi n L
2 - Add instance ofifistance of subcomponent1, subcomponent2 Application Structural | Very Frequent
to link all the previous instances associated with the remi@emcepts
- Delete conceptGomponent Ontology and Se-
to the upgraded concept. .
)) - Delete conceptsubcomponenjl mantic
Desired output : an updated ontology which reflects the requested
change.
))] o - Add concept oftware featurg
Replacing function by software feature in the applicatiototogy. !
- Add subclass ofgoftware feature, super class of functjon o
3 Desired output : the function is changed to software feature in the Application Structural | Frequent
- Add subclass ofgubclass of function, software featyre
ontology. Ontology and Se-

- Delete conceptfgnction

mantic

Lcc

A new reference mechanism (eg fi file_uri) is added to identify

help files in the help management and cross references.

- Add data propertyfile id)
- Add data propertyfile uri)

Application Structural | Frequent
Desired output : the new properties (filed and file URI) are added - Add range file_id, Integei)
and Doc-| and Se-
into the DocBook ontology. - Add range file_uri, String) .
Book Ontol- | mantic
ogy
The software engineers added additional help formats (vichebaut - Add conceptformaf)
dio) to enhance the functionality. - Add sub class offormat, some super classfy) .
Help and | Structural | Medium
Desired output: the ontology help infrastructure needs to introduce a- Add subclass ofub class of (z) the super class(y), forinat
DocBook and Se-
new concept format. - Add instance ofifistance of format, format .
Ontology mantic
In the previous version of the softwaparagraphwas treated as a di-
rect sub concept athapterconcept. However in the new version |of
- Add subclass offfaragraph, section .
the help file it is treated under section. Help Ontol-| Structural | Medium
- Delete subclass op@ragraph, chapter
Desired output : the help infrastructure ontology removes paragfaph ogy and Se-
from chapter and redirect it to section. mantic
Merge concepttopic query, concept query, subject
- Add concept $ubjecj
In the new version, the concequieryandtopic are merged together - Add subclass oftppic_query subclass, subjgct
and are calledubjects - Add subclass ofqonceptquery subclass, subjgct .
Help Ontol-| Structural | Medium
Desired output : the conceptjueryandtopic and all their properties - Add instance oftppic_query instance, subject 4 s
ogy an e-
and instances merged insobjectin the software system ontology - Add subclass ofqonceptquery instance, subject i
mantic

- Delete concepttépic_query)

- Delete conceptdonceptquery)

8¢¢

The new version of the enterprise vault included snapstsoaspécture
in the help file. A single picture can be used one or more time

illustrate steps and procedures. Pictures have descriplile picture

- Add concept ficture)

- Add subclass offome super clays
s te Add property picture.numbe)

- Add property picture.nameg

8 Help Ontol-| Structural | Less Frequent
number and name. - Add domain picture.number, picturg
ogy and Se-
Desired output : the concept picture and its properties are included in- Add domain picture.name, picturg i
mantic
the software system ontology - Add range picture.name, Striny
- Add range picture.number, Integer
The enterprise vault software engineers have changed sopre\of|
ously known functionalities provided by buttons into fuonoglities
9 provided by menus. Furthermore they removed the buttons that|we- Delete concepthuttong Software On-| Structural | Frequent
providing those functionalities. tology and Se-
Desired output : all the buttons need to be removed from the ontolpgy. mantic
Continuing from the above (6), the contents (instancescéstsal with
the removed buttons) are redirected to the menu items.
10 - Add instance ofifistances of button”, "Men) Software On-| Structural | Frequent
Desired output : all the instances that are linked to the buttons should
tology and Se-
be linked to the respective menu.)
mantic
The enterprise vault software engineers removed an old veprieenu
item.)
1 - Delete conceptt¢p level menu itejn Software On-| Structural | Medium
Desired output : the menu item is removed from the ontology, and its
tology and Se-

sub classes linked to the appropriate super class.

mantic

6¢¢

The enterprise vault software engineers split blaekup and restor

Split conceptifackup and restore, backup, restpre

11

- Add conceptlpackup

12 menu item intdback-up andrestoremenu items. Software and| Structural | Frequent
- Add concept festorg o
Desired output : the two concepts treated separately as siblings. Application and Se-
- Delete packup and restode .
Ontology mantic
Removing a certain GUI feature (toolbar).
- Delete conceptt6olbar)
13 Desired output : the GUI feature and its instances are removed ffom Software On-| Structural | Frequent
- Delete instancesr{stance of toolbar
the software system ontology. tology and Se-
mantic
The new versions of the software removed the command line &tur
- Delete conceptdfommandine)
of the software and its associated contents.
14 - Delete conceptsub class of commanriihe) Software On-| Structural | Less Frequent
Desired output : the concept command line is removed from the soft-
- Delete individual individual of commandine) tology and Se-
ware ontology with all its instances.)
mantic
When a new version of the software is released, the strucfuteeo
DocBook has been changed into a different structure. Thestewg-
ture pulled up some of the elements and merged the others. Same-dPull concept upgome concept
15 DocBook Structural | Less Frequent
the elements are also split into different elements. - Merge conceptdonceptl, concept2, concept3
Ontology and Se-
Desired output : the changes are implemented according to the re- i
mantic

quested changes.

We implement changes based on the scenarios and evolve the OCMSiaglgoithe
summary of our observation on the changes, dependencies and impaetseisted in the

following section.

A.4 Observation

Using the above change categories we identify individual changesuatheif analyse the
frequency, the complexity and the error prone nature of the changesiniéktigate the
types of impacts the changes have on the overall content-based system.

We find changes that are occurring frequently whenever there is auleversion of
the software component. The phenomenon that requires an intens*aeates$ocus is the
complexity of the changes, and the propagation of their effects. Manyeoftianges in
such systems have effects that propagate to other components due to rithepieelence
between the components of the systems.

In this case study we observe that one help file can be used to illustrateofasie

or more components of the system. One component of the system is linked ta two o

more other components. If there is a change in one of such componenii$ siigdenly
become complex and beyond the comprehension of the content manger amrtdiheagy
engineer to find all the dependent components and to see the changpsofiegate to
other components.

We identify such dependencies between elements of the ontology, the tcantktihe
annotations that define the relationship between the content and the ordoldbese de-
pendencies explain the impacts of a change on other components and tieeafigiopa-
gation of the impacts.

In addition to this, the interdependence that exists between the conteneaomtdfogy
is very high (as the ontologies are built to reflect the interaction and thetwteuaf the
software system at hand). This means, a change in one or more of tivargofomponent
hierarchies will affect the ontology taxonomy and vice versa.

Dealing with such kinds of changes in the ontology manually is beyond thesitapa

230

of both the ontology engineer and the content manager. In softwararsystat have
large number of components, developers require an intensive toasdpphandling the
changes and analysing and determining the impacts of the changes. Fisoftwese point
of view, to support such systems, there are different tools for contgatlifierent versions
such as CVS and others. However, from OCMS’s view point, thesdqrabare not yet
solved. This case study reveals the following major problems and explaimsaheorld

challenges associated with OCMS.

1. Characterizing changes. This case study explains how contert-fagems evolve
by analysing different versions of software help management systemcidnges
are not restricted to software help management files but include other rajaikca-
tions. We identify basic changes that add new concepts and remove egmticepts.
All other changes can be explained by a series of additions and deletionmosed
in a certain way. Many of the changes involve either addition or removakaf n
instances, concepts, and properties of concepts or their descripthimsave also
observed that changes include restructuring existing entities and splittimgrging

of existing concepts, etc., which can be considered as composite changes

2. Representation of changes. Using the ontology and the content, éhstedg served
as a means to represent the actual changes using change operdiives idethe
OCMS. The changes can be represented at different levels oflgriywuvhich in-
cludes atomic level and composite level changes. It is evident that a ¢iarge
can be represented using different compositions of the atomic changgiops. It
also reveals the different strategies of implementing change operationm the
concrete scenarios, we identify strategies that cascade the chandledejpeadent
entities, only to the instances or apply the change only on the target entity &riladin
dependents to the root or the parent entities. Such scenarios seryastification
for the implementation of a change operation using different strategied bashe
requirements of the user. To meet the requirements of users, OCMS sinovide

such flexibility to the users.

231

3. Identification of dependencies. The case study clarifies the importdrbeeply
understanding the dependencies between entities in the OCMS system. dlfissen
us to efficiently implement the change operations and select a strategy thattheee
requirement of the user. We identify direct dependencies, indireerigmcies and
partial and total dependencies between entities. The case study presicsd world

scenarios that distinguish dependencies between different typesteen

4. Identification of impacts and nature of impacts. This case study furtheowdiss the
differentimpacts of change operations. Some of the change operatiomsthuctural
impacts which affect the taxonomy of the OCMS and others affect the semaitic
the concepts and instances. We identify different structural impactseamaiic im-
pacts using the case study. Explaining the impacts of the change operaiibidea-
tifying the preconditions and the affected entities of the change operationil@
crucial information for selecting the optimal implementation from different ojgtion
Finally, the case study revealed that which entities are important in the OCMS an
need to be preserved and which ones are less important and canifieeshcihis
includes thedBox versusT Box statements, additions versus deletions and unsatisfi-

abilities and inconsistencies.

A.5 A Snapshot of Software Help Management Ontology

232

€ee

| (http://CNGLie)

File Edt Ortologies Ressoner Tools Refactor Tabs View Window Help

Eia![@cmmweuéj -Jaﬁ| | &

fﬂ:‘ﬂvu Ortology | Ertties | Classes r'_Oth:‘ Properties antu Properties r\ndlvlduu\u | ALYz rDL Query

Object Properties: isAbout

| Aasarted olase hisrarohy |11
Asserted Class Hisrar

nad lass hlararchy |

(][]

ol @ [™=Contains @ id-5F650192322_ja_jp_19232321.xml [a]
wRestwnng)| |- msanout * e
: ‘R.u::;t;rmgmchwe # Installing
v-©searching = Finding ¢ ItemizedList B
®advanced_Search 4 MailBox .

SearchingEmail

Object Property Usage: isdbaut

®searchingEmployee

- @ gearchingUser Usage for: IsAbout lUsage for: Installing

®sorting v $id-123.xml ¥ #id-5F390865942_ja_jp_19229687.xml
--@8ynchronize - lg-123 xml [sAbout Employee .. I6-SF390565942_ja_jp_19229667 xml isAout Instaling
.Appendix Id-123 xml IsAbout Group .
® chapter = 1d-123 xml IsAbout Creating -#1d-5F390592578_ja_jp_19230083.xml
®command 1d-123 x¥ml IsAbout EmployeeGraup |g-SF390592678_ja_jp_19230083 ¥ml IsAbout Installing

v @concept

:':d“"fi_"i“’:_“"“ v- #1d-8F200430882_ja_jp_19221949.xm v #14.5F380595524_ja_jp_19227059.xml

.D:t’;ﬂ;:ﬂ ien | I0-SF200430082_ja_jo_19221949.xm| [sAnout User . Io-SF390595524_Ja_jp_19227058 xml IsAbaut Instaling
3 ©Department v #1d-5F200460780_ja_jp_18221955.xm

| I0-SF200460780_ja_jp_19221855 xml [sAbout Creating]

@Employee

L OEﬁI'E’II‘l;:ng;:fur:up .JIE Delete selected properties iy OFile
~@Folder [~ mnasaveragesize - 4 d-5FE50115722_ja_jp_19232612.xml
Group ..mmpas|D -~ #id-5F200462860_ja_jp_19221947.xml
©EmployeeGroup ‘mmhasName - #id-5F390565942_ja_jp_19229687.xml
OHelp mmhasStartDate i 4 MAP-Getting_up_File_System_Archiving_Ja_JP.xml
- @ Index . mmnasTitle - 4id-5F420149680_ja_jp_19296206.1ml
®List mhasTotalsize -~ #1d-SF390576692_ja_jp_19229695.xml |
- ©MailBox = Email L - & id-SF380732426 ia i 1¢ xml -
- @ Permission Data Property Usage: hasdverageSize
"____g::::v:F:::l; 71| lUsage for: hasaverageSize
L. @ ArchivingRule v #id-8F200460780_ja_jp_19221955.xml
v-®Server 1d-5F200480780_ja_jn_19221855 xml hasAverageSize "Opening cases"
- @ MicrosoftSharePoint
s v #id-5F200462860_ja_jp_19221947.xml
- @ User 1d-SF200462860_ja_jp_19221947 xml hasAveragesSize "About the permissions"
----- @userName
@ Definition v #d-5F380284937_ja_jp_19225732.xml
®pocument 10-5F380284937_ja_jp_18225732 Xxml hasAverageSize "Directory Service"
©File ~

[Tr || ||y #id-8F320813540_ja_jp_19226936.2m

18:30
20/08/2012

AR N)

Figure A.3: Software help management systems OCMS

Appendix B

Database Systems Course Case Study

B.1 Introduction

This case study focuses on an e-learning system that deals with a @asglbsns course.
The database systems course covers theoretical, practical, techncdsgieets of database
design, implementation and management. Database systems courses intuctidcesvl-
edge to the students by providing books, course notes, tutorials, madeissnstrations,
exercises, questions and sample exams and answers. It furthes ceveresearch and
future directions in the field of database systems and related domains.

The content in this domain is created by different stakeholders. Instsumitthe course
may compile lecture materials, authors write books, software developmentio@espre-
pare software and produce books, help files and documentations fawfthare, etc.

The evolution in database systems domain is dynamic. There are differezgptaal
models introduced since the inception of the concept, design specificatmipsogposed,
languages are created. Software systems that support both the desigmpéementation
are produced and are evolving dynamically to support the currenireagents. A typical
evolution related to database models starts from hierarchical data modéhtrkenodel
then to relational model. Now the relational data model evolves to suppodtabjented
specifications. The domain continues to evolve to support current eegeints and techno-

logical advancements in the field of computer science.

234

This case study covers a domain which focuses more on conceptualiZdtieomeans,
the database course ontology defines concepts that are used in dagdtems. This do-
main enables us to cover OCMS that focuses morg Box statements thad5ox state-
ments. In this OCMS, the definition of the concepts in the domain are much impthréant

the individuals associated with those concepts.

B.2 Case Study Setup

Similar to the other case studies, we explore different perspectives éostadd how the do-
main changes and what changes are observed frequently. We idéffiéifgrtt perspectives

but categorize them into three.

B.2.1 Perspectives

The Publishing Perspective.The publishing perspective focuses on preparation and pub-
lishing of content in different media such as books, video tutorials, etc.sty the
publications related to database systems course. The database comrsadglae courses
that exhibit frequent changes, updates and modifications. The databsdogy was de-
rived from the taxonomy arising from the table of content and the indeXb® dext books.
In the past 20 years, there are lots of changes obsedaed et al., 2049 Addition of
new concepts, technologies, techniques, applications and languabesnaoval of obso-
lete concepts and modification of existing ones are observed frequentgse Trequent
changes cause the database systems OCMS to evolve frequently.

The situation gets worse when the course content is subject to modificatidiffdry
ent stakeholders in different places. A database system book writes the changes as
changes in taxonomy represented in the table of content or in the index etdhef his
book. A concept treated under one section can be moved to anothensedii®m concepts
merged together and create a new concept. The following examplesaejpcbanges in
the taxonomy of table of contenidved et al., 2049

Atomic changes

235

e create conce@QLusing Create ConcepsQL

e makeSQLsubconcept oDatabaseusing Subconce®QL, Database
Composite changes

e Merge ConceptDL, DML, Databasg

— Integrate Concept Context by creating condeptabaseusing Create Concept
(Databaség

— Integrate Property Context by creating propestasedOrusing Create Prop-
erty (sBasedOh

— Integrate Domain/Range Context by adding a domaisBasedOnusing Add
Domain(isBasedOn,Database)

— Adding rangeRelational Algebrao isBasedOrusing Add RanggisBasedOn,
RelationalAlgebra)

— Remove Concept Context by deleting condeptL using Delete Conce(®ML)

— Deleting concepbDDL using Delete Conce(DL)

The Technology PerspectiveTechnological advancement in the area causes a change
in the overall structure and semantics of the content and the ontologies. &y tthe
change in the technology is dynamic that a continuous update is requireguieeeéhe up-
to-datedness of such content-based systems. The emergence ofooigjetsd databases,
web-based databases and a lot other technologies and softward¢imeecause systems to
update themselves synchronous with the changes.

Example:
e Add ConcepfWeb-BasedDatabase)
e Add subclass(fveb-BasedDatabases, Database)

The Teaching Perspective.ln the teaching and research perspectives, there are huge

number of course outlines produced which differ in their depth and ageerThese outlines

236

are also subject to modification each semester. In addition to this, there amatzemn
of new research papers contributed in the area, reports about nisy texxhniques and
technologies, and a number of case studies, experiments, etc., thaeadksawledge to
the domain. Professors prepare examples, mock questions and exarsitizdioserve as
instances of concepts. These materials change frequently and contoibtiie evolution
of the system. For example, the teacher wants to merge relational algebralatmhal

calculus and give it a name relational operation.

e Merge concep(RelationalAlgebra, RelationalCalculus, RelationalOperations)

To implement an efficient content-based system, which can deal with suamily
content, it requires a careful understanding of the ongoing chaagk=sailed analysis and
a sound solution that reflects and propagate changes to dependenitslefitbe system.
To achieve such requirements, we need to deal with the following challenigess first
challenge is the frequency of the changes. The changes in such sys®msntinuous
that we need to provide a continuous means of tracking, understandinghpfementing
the changes. For example a continuous release of new research fregiesontains new
topics in the area needs to be incorporated as soon as the contributionsepted by the
scientific community and domain experts in the area.

The second challenge is the volume of change. For relatively large ¢drdsad sys-
tems, the amount of change the systems deal with is numerous. Especiajlgtéons that
are used in a multi user environments where different stakeholdergetiae content and
others access the same content, the amount of change that needs ttt bélldescome
very large and beyond the comprehension of the users. The third admiethe complex-
ity of the change. It requires a detailed research to understand tloctseifehe changes on
other entities. There are changes that can be implemented easily and ¢hehareges that
are complex and require an expert involvement to implement them.

Such kinds of changes are not only complex by themselves but also biansex cas-
caded effects on the dependent systems and contexts. The complexiycbitiges leads

to errors. As the changes and the cascaded effects of those climugase complex, the

237

chance of introducing error into both the structure and the semantics of/skers will

increase. That leaves the systems inaccurate and unreliable.

e merge two concepts in one concept

create a new concept.

add the new concept as a sibling concept

add subclasses of the concepts to the new concept

add instances of the concepts to the new concept

add properties of the concepts to the new concept

delete the old concepts

e split a concept into many concepts

add the new concepts as sibling

add the subclasses of the split concept to the sibling

add the instances of the split concept to the sibling

repeat the above steps for all the sibling concepts

Example:
e Merge conceffRelationalAlgebra, RelationalCalculus, RelationaDperations)

When we look at the above operation, it seems a single and a simple operatioByve,
it contains many atomic change operations in it. The merging of relational algetar
relational calculus involves the merging of all their subclasses too. Whilegdbat we

have to look at axioms and constraints that should be kept valid beforafi@manerging.

B.3 Experiment

We conducted empirical investigation to understand what changes aeeth®nd which
entities are changing frequently. The experiment tries to identify the ceadng® each

perspective. The partial representation of the ontology hierarchggepted in FigurB.1

238

Thing

-3
{
i

..

Database :
DatabaseModels Laiguaagses RelationalDatabase
z]z . -

A

RecordbasedLogical

Objectbasedlogical ataDefinition |DataManipulation e
Model i Model F Language Language SChemas_ : RelationzlAlgebra
H A A A
Phy:ligglgata Constraints
UnifyingModel} FrarneMemoryJ [Create [i] Select] | J PrimaryKey FureignKey]

Figure B.1: A high level view of database ontology

B.4 Observation

In publishing perspective, we identified changes from differentierssof published text-
books over the past 20 years. The changes can be generalizedragestihat include
emerging concepts, changes that remove obsolete concept, andstiatgaerge or split
existing concepts.

In publishing, the changes are more related to the taxonomy and relatiobshipsen
entities. The publishing contributes much content to the content layer.

From technology perspective, we identified changes that are relatettdduntion of
new technology, what it does and how it does, where and when it is apfgicWe further
identify emerging technologies that are used to implement concepts disauisedomain.
Further obsolete technology solutions are removed from contemporagnsysnd are
replaced by the new ones.

The changes in this perspective add new concepts and terminologies totthagy.

239

This facilitates the annotation of the content with new terminologies.

The teaching perspective is the one that evolves frequently by covesingesearch
results, new innovations and modifications of existing knowledge to fit ferdifit perspec-
tives depending on the aim of the course. In this perspective, we lnaveyes whenever
the semester changes or whenever the students change. The aim ofhivegtparspective
is to make students familiar to concepts and enable them to successfully worthevitk-
isting tools. This requires providing definitions, about the concepts, resdtip between
concepts and the properties of the concepts.

The teaching perspective incorporates changes in both the ontologi#seatwhtents.

B.5 Sample Database systems course OCMS

240

e

File Ecit Ortologies Ressoner Tools Refactor Taks Wiew Window Help

EI¢‘ [© dteuicncLie) -] :ﬁ| | &
((hetive Ortalogy |/ Ertlies | Classes | Object Properties || bata Properties || Inalvidusls | CYWLYiz | DL Guery |

Il ctect Prope: it

(" Peserted olass hisrarohy | Infaried olass hiararshy |

Asserted Class Histarchy! Fils EEEE ||
LS E (- WmGontains
Res || || - m—isan out
\.-@RestoringArchive
B RuARiInA - — - ——— o— - —— - —

< OntologyDs Tttt ; iS008/ 107 OrtologyDaTaEasEw) = [EOR T ABP\EV GntologiesAEvalustion\Crtblogy Datab

Fle Edt Ortologies Reasoner Tools Refactor Tabs “ew ‘Aindow Helo

ﬂ' :,‘ [® ortologyDatab A (1t e tiowe 10 ovl) - m| |

i |

Active Ortology || Ertties | Classes | Oblect Properties || Data Properties || Individuals | CLviz | DL Guery |

(" Assarted olass hiararohy | Infaried olase hiararohy | | Okjsct Progerties. steOperations:
Asgerted Class Hierarchy. MEE T [
[s] EIE3|ES
% " ¥ _E{‘ ™=hasUpdateOperations]
v-@Th [+]| || +™=hasvalue
v-@patabe_Ontology ®Winserts
v ®Database_Models =intersects
‘@ Object_Based_Logical_Model inRelatedRowsFrom
- @Binary_Model =mayContain Ll
- @ER_Model == mayViolate
@ Object_Oriented_Model ---Minl.!s_
L @ Semantic_Data_Meodel =modifies (S
@ Physical_Data_Model ::emuves Ll

+-@Frame_Memory

L @ Unifying_Model
@ Record_Based_Logical_Model
+- @ Hierarchical_Model |
- @ Network_Model
- @ Relational_Model

Domains tnterseation) L8

®Relational_Database

v @DB_Languages Ranges intersection) ()
@ Data_Definition_Language ® updateOperations
-@Data_Manipulation_Language
i~ @ Higher_Level DML
L. @Lower_Level DML
® storage_Definition_Language
@®View_Definition_Language
v.. @ Relational_Database
-@columns
Constraints
@ Explicit_Constraints IS i

v- @implicit_Constraints
Interpretation_Of_Relation
® Ordering_Of_Tuples

. @ Semantic_Censtraints
Data_Type

Figure B.2: Database systems course OCMS

Appendix C

University Administration Case

Study

C.1 Introduction

In this case study, we investigate a university administration domain. A @itiyedmin-
istration focuses on administration of large number of students, staffrtdegras, courses,
and examinations. It manages campuses, buildings, class rooms to efficamtlyme re-
sources in a university. The case study incorporates differenttailtlars of a university
system such as students, research institutes, funding institutes, etcniVéisity system
covers concepts, relationships and constraints on relationships awnidlirads. Unlike the
previous case studies, this case study focuses more on instancestanddranotations.
The annotations are used to semantically enrich related content with ontdlogiiespre-

sent the domain knowledge.

In this case study, the ontologies represent the organization structaregtinse cur-
riculum and the administration procedures. These ontologies are relagbeddle and do
not evolve frequently unless there is a structural change or a revisigheocurriculum.
However, the instances evolve dynamically. Since the registration of atnelerg to the

graduation, the instance passes through different changes. Thgeshiaclude additions

242

of annotation data about the student, the department, the courses, tiieacétc.

This domain is selected for the following reasons. First, this domain refseaeral
world organization that evolves dynamically. The dynamic change in the doatiaims
us to investigate the changes. Second, this domain represents OCMS watimiemndper
of data instances. This corresponds to OWL QL profile which is optimizeddaonains
with large number of instances. Unlike the other domains, the evolution in thisidoma
primarily focuses on instances. Third, the evolution of the terminologytaffarge number
of instances that are related to each other via relationships. This furthleles us to study

the impacts of the changes on the instances.

C.2 Case Study Setup

We modelled the university ontology using Dublin City University (DCU) as secstudy.
This case study allows us to expla#3ox changes and their effects. Some of the features
that make the university ontology suitable for the case study are discasgeliows. The
university administration domain focuses on people, physical resoarcksvents which
are represented as assertion statements, thus represent more dtttierassthan the termi-
nologies. Many of the changes related to this domain focus on the instdfaresxample,
a new faculty joins a department, a new student get registered and agethgraduated
and all the related information of the student become inactive. In this domaiontiolo-
gies are relatively stable, but the content evolves frequently causirnigstiagces to change
from time to time.

The ontology is created based on the perspectives of managing thesitgiggystem.
This enables us to restrict the ontology to focus on the major areas that aygantgor
administering the university system and the proper execution of the dadgytactivities of
a university.

Accordingly, we studied the different major entities and their relationshipsuim\aer-
sity system. The concepts give semantic definition for the actual entities idviolvie

administration process. For example, a concept researcher is defireddtion to person

243

and someone who is conducting research. The concept researdssgmantic definition
to all individuals who are conducting research in the university. To takéhar example we
have concepts such as department and course. These concejals peovantic information

about individual departments such as school of computing and scheongmeering.

C.3 Experiment

For the purpose of the experiment we built a university ontology. Theeuwsity ontol-
ogy covers basic concepts such as faculty, department, coursessidénts and research
groups. Each of these concepts is specialized into different spedifiepts. The ontology
further covers relationship between the concepts, domains and raintpesrelationships
and identifies instance properties that apply for specific instances. Xbeotay of the

ontology is presented in Figufe.1

Thing

Student Department Faculty Course

Undergraduate Post Professor = Short PostGraduate | yndergraduate
(iaduate lecturer T Course —
fa !t A dA)
. Assistant | Associate HE
i i i b ¢ [Professor Professor Professor it Poit
i S W | A r Y I
LA T4y

‘
d "%
Y
s

H .
HE 1
H H
F H
. B
H H

H s

H

HE

H H
] H
I H
H— H

H 5
H g H
o .
- .
H .
H H
H .
H .
H H

ag

Package | | Package | |Package || Package

Figure C.1: University ontology hierarchy

Once the ontology is built, it passes through different evolutionary chanthe changes

244

incorporate addition and deletions. These changes are discussddws.fo

C.3.1 Changes in University Administration

The changes in university administration come from changes in the coatedpfinition or
changes in the characteristics of the instances. Most of the frequemgein this domain
are related to instance changes. These instance changes include aafditon students,
staff, department, etc., and deletion of obsolete instances. Howevenribeptual defini-
tion of these instances changes seldom. We identified three different tdw&anges in
the university administration domain. These changes are presented here.
Level 1is constructed to fit for lower level operation such as creating hew pisice

deleting old concepts, etc., which are single and atomic tasks that changgesesitity of

the ontology. The atomic changes are presented using a natural language

1. Create Instance

2. Make the instance an instance of a concept

3. Remove instance from the a concept

4. Create object property Assertion

5. Remove instance object property assertion

6. Create data Property assertion

7. Remove instance data property assertion

8. Add value of property from an instance

9. Remove value of property from instance
10. Change value of property from instance
11. Setthe maximum cardinality of a property
12. Set the minimum cardinality of a property

245

Level 2is constructed to fit for middle level operations like creating new instancehwh

may include different calls to the first level operations For example, cgeatirew instance

involves, creating the instance as a new node and making it as instancemndept We

present some of the change operations observed at this level.

1. Creating instance dfniversitycalledDCU

e Create instancBCU

e Create instance ¢DCU, University)

In principle, it is possible to create infinite number of level two change dpaaby

combining the atomic change operations. But, in practice we use only thasgecbpera-

tions that are used frequently to make changes.

Level 3is constructed to fit for higher level operations like modifying the structure of

the university administration, opening a new department or closing an aldtyfacThis

level is constructed based on different perspectives we identified icotgtruction stage

of the ontology. This level makes use of one or more operation from levieéb2deleting

a certain super concept, we may need to delete the concept, remove thdetepes from

the ontology, check the consistency, and amend the inconsistencies if¢hayraduced in

the system. Sample lists of changes in this level are listed below.

1.

Manage Student:

. Manage Courses:

. Manage Faculty:

Manage Research Groups

. Manage Committees:

C.4 Observation

In this case study, it is observed that most of the changes are relatedviduads. Thus,

the change is usually attributed to the annotation triples which carry frequarglying

246

semantic information about the individuals. Some of the instance changatrdreted to
addition of information about new faculty and students. In the case of qawiw faculty,
they create a web content about their research interest, the courgdeable, their publi-
cation, contact information, etc. When the students finish their studies, tf@mimiation

becomes inactive and later deleted from the web server.

The concepts in the ontology are relatively stable as compared to the ffiteziusnges
in the instances. Instructors add course content such as lecture refegsnce materi-
als, demonstrations, guidelines, laboratory manuals, sample quizzesansd. eXll these
resources evolve frequently forcing the overall OCM system to evomamically. How-
ever, it does not mean that the ontologies used in this domain are permartablty dt
only means, as compared to the changes in the content, the changes in tbgiesitare
rare.

This OCMS system is sensitive to changes that delete individuals. Wherndiunalis
are deleted the information associated with them will be lost. Due to the nature of th
information, any deletion which is not originally intended by the user cream®ldem
on the overall system. When concepts are changed, we further neéddh whether
there are dependent individuals associated with the changing entityrdfaie dependent
individuals, then we consider preserving the individuals before chgng deleting the
entities.

In ontologies that focus on more on individuals, changingfilsox statements is prefer-
able to amend inconsistencies. This means, to resolve inconsistencyferecheging the
T Box definition than changing the assertion statements related to individuaksxdfople,
if we find a staff who is a student, but if ogrBox statement makes the staff and student
concepts disjoint, to resolve the inconsistency, we prefer to delete the tesyeam (which
is a7 Box statement) than to delete the instance from either of the classes. Inlgeneha

OCMS are sensitive to changes in tA&ox than the7 3ox statements.

C.5 Sample University Ontology

247

81¢

[(http//CNGLIE) =

File Edt Ortologies Ressoner Tools Refactor Tabs View Window Help

E‘ > | [@ mmreLis CIL] | &
fﬁm\‘vu-cmé\nuy “Ertties | Classes FQhJu:t‘Pfupuhlui r:Da:u Properties [’Wndlvldu‘u\u ']""OWL\;‘I: T/’DL-duary

[Assartad class hisrarchy | Infard class hiararohy | ject Properties:

ﬂil‘ |#]
kS @ mContaing [# id-sFes50192322_ja_jp_19232321.xm
-n.eal.vllng a|| || ~m=isAbout | # Index
i @ RestoringArchive
s 0 Installing

< University.owl (http://www.cngl.ie/University.owl) = [E} \Opr\E\I—malnglmEnlumm\Unmemty nwﬂm

File Ecdit Ortologies Ressoner Tools Refactor Tabs View ‘iindow Help

@‘ ¢| \@ University owl (http: e crglieUniversty owl) 'J ; N\ “

((stive Grclogy || Entties. | Cissses r‘ommpmpams | ote Pragerties. | Individusle | owLviz | DL Guery |

- @hasReomNumber
- EmhasTitle

¢ CAB44
¢ chs4a7

(Infarrad olass hierarohy = 1| .
I Asserted olass mumhv | | |— | E(\ Usage for: Department el
Y =1 v ®Course
na =]
ol | ® Course subClassOf Department
IE.E @ | : biology : R
v-®Thing bistechnology
‘@ ey # businessschool i esch:"éepar‘tment equivalentTe School
- ®campus ¢ ca0s =
v EDepartment = School | & cA147
L. @ Course I. cAles I Cte Properties: has:
®Examination |
- ®Facuty ¢ caice =] I:J
3
Lecture || ¢ caas? - mmhasCourseTitle
v @Person || # cadet - mmhagCraditHour
|| caass > ®mhasDescription
|| ¢ cae2s | m=hasd
|
|

|| # computerscience

. SupportStaff . Data Property Usag:
- @ Student ¢ facuttyOfEnginesringdndCong | roeme e
.. @ MastersBtudent [¢ facultyOfHumanitiesAndSoci| || | ¥ $.CA108
@ PHDStudent || ¢ facultyotSeienceAndHealth | CAID8 hasCourseTttie "eb Design'
' @UnderGraduatestu| | % 626
@ Project | ¢ cs12 v #cales -
v-®Room [¢ 65122 ~Adea i Titi I Pisital Lo =
-~ @LectureRoom
‘, .Mee\ingRool‘n | : Ihenrv::rittan Jhject Properties: hashie
nven!
""" ®orfice 4 Janet :“— |—
fs:r_wol =Department || |lg | oa mhasDepartment
Unluaristy : & John ‘mhashembers
|| ® journaiism : ::::;cﬂh:;
4 Kosala
| & L204 -MhasWebsite
| - =mgpecializeln
|| # L208 EEtalacranves

Figure C.2: University ontology OCMS

Appendix D

Additional Analysis Results

This appendix contains additional results of the change impact analysisgstoThe re-
sults reflect different severity values and different weights of criferi@alculating cost of

evolution.

D.1 Severity of Impacts

We take three cases where the severity of impacts is assigned. This astiggbased on
the nature of the OCMS and the preference of the ontology engineercaBes and their

descriptions are discussed below.

D.1.1 Casel

The first case collects severity values of impacts for the three case stagigsndix 1 to
3) from expert ontology engineers. The collected severity valuessa® to calculate the
average severity value that can serve as a default severity valuavétage severity value

is given inD. 1.

D.1.2 Case?2

This case represents another severity value tuned to specific requirdméns case, the

integrity of the OCMS is crucial and the ontology engineers assign a higle valthe

249

severity values corresponding to the impacts related to integrity values eVeetg values

are presented in Tabl.1

D.1.3

Case 3

This case represents a different severity value tuned to semantics ofokS @Ghan the

integrity of the ontology. This case represents OCMS that are less affiegtienpacts that

violate the integrity. Such OCMS give priority to the availability of description tfoe

entities. The severity values of this case are given in TRhle

Table D.1: Severity value assigned to case studies

No. | Semantic Impact Acronym Severity| severity | Severity
casel | case?2 | case3
1 Entity More described (CMD,DPMD,OPMD,IMD) | 15 50 25
2 Entity Less described (CLD,DPLD,OPLD,ILD) 75 50 75
3 Entity More restricted (OPMR) 75 50 75
4 Entity Less restricted (OPLR) 35 50 25
5 Entity More expanded (AME) 60 50 25
6 Entity Less expanded (ALE) 80 50 50
7 Entity generalized (CG,DPG,0OPG,IG) 50 50 50
8 Entity specialized (CS,DPS,0PS,IS) 70 50 50
9 Entity Incomparable (Clnc, DPInc, OPInc, linc) | 70 100 15
10 | Unsatisfiable (UC,UDP,UOP) 100 100 15
class/property
11 | Invalid instance/ instance (Il, 11P) 80 100 15
property
| No. | Structural Impact
1 Orphan concepts (e]®)] 80 100 10
2 Orphan Instance (o)) 75 100 10
3 Property cyclic reference| (OPCR/DPCR) 90 90 10
4 Concept cyclic reference| (CCR) 95 90 10
5 Null reference to content (NRC) 70 75 10
layer
6 Null reference to ontology (NRO) 70 75 10
layer

250

D.2 Weight of Criteria

In Chapter7 we identified four different scenarios where weight is assigned to ftes cr

ria. We further use those scenarios to combine them with the three castiadexbove.

Exploring the different combination of cases and scenarios is usedItaeydow the pro-

posed system applies for different OCMS with different settings.

Table D.2: Different weights assigned for criteria

Scenario Severity Operation| Statement Performarice
Type Type

Scenariol | 0.25 0.25 0.25 0.25

Scenario2 | 0.70 0.10 0.10 0.10

Scenario3 | 0.50 0.10 0.30 0.10

Scenario4 | 0.30 0.30 0.20 0.20

D.3 Cost of Evolution for Different Settings

We analyse and identify the cost of evolution of OCMS systems by combininthtbe

cases for severity setting and the four cases of weights of criteria. Véetivalve different

settings combining the cases with the scenarios. The cost is presentddvas. fo

251

80 -~

B No Action
B Attach All
I Attach TBox
H Cascade Al

u Cascade TBox

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure D.1: Summary of cost of evolution - Case 1

Table D.3: Summary of cost of evolution - Case 1

Scenario Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

1 28.8 28.8 28.8 69.8 66.35

2 49.5 45.1 45.1 72.9 715

3 45.4 36.8 36.8 69.4 67.2

4 32.0 30.3 30.3 68.4 65.3

In the first case, the scenarios are compared based on the averagy salues as-
signed in TableD.3. In this case no-action and attach strategies yield the same cost. But,
when the weight assigned to the second scenario changes, favowseytrity of impacts
(0.7), no-action strategy becomes costly, thus the preferable stratetigcis strategy (At-
tach all and attacli Box). Scenario 3 and Scenario 4 also yield a similar result but with a

slight difference in the values.

252

B No Action
B Attach Al
I Attach TBox
H Cascade Al

B Cascade TBox

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure D.2: Summary of cost of evolution - Case 2

Table D.4: Summary of cost of evolution - Case 2

Scenario Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

1 33.8 27.3 27.3 69.8 63.5

2 73.5 40.9 40.9 55.4 89.0

3 55.4 33.8 33.8 56.9 79.7

4 38.0 28.5 28.5 60.9 72.8

In the second case, the scenarios are compared based on the selagtassigned
which gives a high severity value for impacts that affect integrity. In tls¢ $itenario, attach
strategy (attach all and attaghBox) yields the optimal implementation option. When we
look at scenario 2, the first strategy yields a higher value than the @astrategy. Cascade
strategy gives the second best value because; the severity of intrgaupimans is higher
than deleting the instances. The comparison between cascade all aadecasategies
also reflect this fact. When we cascade changes onfy2ox statements, we leave the
ABox statements unchanged and may introduce orphan instances. This neakesttto

go higher. In all the scenarios, the weight assignment does not makiegedde on the

253

best strategy selection.

80 +~
70
60
. .
50 No Action
B Attach All
40 [Attach TBox
H Cascade All
30
B Cascade TBox
20
10
0 : : :
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Figure D.3: Summary of cost of evolution - Case 3

Table D.5: Summary of cost of evolution - Case 3

Scenario Strategy | Strategy | Strategy | Strategy | Strategy
1 2 3 4 5

1 20.5 28.8 28.8 59.8 64.6

2 36.4 45.1 45.1 72.9 66.6

3 28.9 36.8 36.8 69.4 63.7

4 22.0 30.2 30.2 68.4 63.2

In the third case, we give less attention to orphans, unsatisfiable class€his setting
yields a different result. In all the four scenarios, the best strategyindkaction strategy
which yields a minimum cost. This strategy is known for introducing orpharts paphan
instances. But, in situations where it is possible to allow orphan classes statdas
(which is possible in OWL 2), this strategy is preferable over the other giesteFrom this
case one can conclude that trying to attach the orphan classes andéadtaitte parent
classes is even costly. However, similar to the second case, the weigirieas$o the

criteria does not make a significance difference on the order of the ogiragtgy, even if

254

the cost of evolution is visibly different.

This might attribute to the high values of the severity criteria as compared to the oth
criteria. This happens because we use a small OCMS for the purposssxftériment. The
value of the other criteria will grow large if we use complex OCMS where largabers
of instances or classes are defined in it.

The analysis result clearly shows that the change impact analysis mettholoeaopti-
mal strategy selection depends on the severity values assigned to the irtip@etsights
of the criteria and the size of the entities in a given OCMS. It further shoaiglile analysis
is customizable and allows users to conduct a what-if analysis using diffeatues and

weights.

255

Appendix E

Questionnaire

This appendix contains questionnaire used to evaluate the differerdspbihe research.

We present the whole evaluation setting and the questionnaires in the follseagtigns.

E.1 Change Operations for Evaluation

Instruction
Load the respective ontologies using the system and implement the followamgyeh
operations following the information provided for each stage of the evolptiocess.

Use University OCMS
1. Change scenario 1. Delete class (Student)
2. Change scenario 2 Add disjoint Class (Staff, Student)
3. Change scenario 3 Delete instance (John)
Use Ontology Database OCMS
1. Change scenario 4 Delete class (Table)
2. Change scenario 5 Add subclassOf (Schema, Rel&abrema)

3. Change scenario 6 Delete Object Property (hasSchema)

256

Use EV_ Triples OCMS

1. Change scenario 7 Add Class (GUI)
2. Change scenario 8 Delete data Property (hasAverageSize)
3. . Change scenario 9 Delete instance (ID-123.xml)

4. Change scenario 10 Add instance (ID-1234.xml, File)

E.2 Questionnaires

Change impact analysis for Ontology-based Content managementsgms

Instructions:

e this questionnaire is to be filled after the attached change operations are imfgdme

using the editor provided.

e Please complete the following question by putting/anark in the box [] next to

your preferred answer.
e Please use the spaces available for writing your comments and observations
1. The change representation allow me to choose between different impéioeop-

tions for my original change request.

[] Strongly Agree

[]Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

257

2. The system has provided all the change operations | need to implemeiatihge

requests.

[] Strongly Agree
[]1Agree

[] Slightly Agree

[] Slightly disagree
[] Disagree

[] Strongly Disagree

Other

3. The Change impact analysis identifies the impacts of my change requgsopgly
Agree

[]Agree

[] Slightly Agree

[] Slightly disagree
[] Disagree

[] Strongly Disagree

Please specify if there is an incorrect impact:

4. The change impact analysis helps me better understand the effects dfamgyec

request

[] Strongly Agree
[]Agree

[] Slightly Agree

[] Slightly disagree
[] Disagree

258

[] Strongly Disagree

Other

. The change impact analysis identifies all the entities in the system thafertedf
[] Strongly Agree

[1Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

. The change impact analysis correctly highlights the impacts of the changeo

integrity of the OCMS (unsatisfiable classes and invalid instances)
[] Strongly Agree

[1Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

. The evolution process provides me the information related to my changestdug-

fore | execute the change
[] Strongly Agree
[]Agree

[] Slightly Agree

259

[] Slightly disagree
[] Disagree
[] Strongly Disagree

Other

. The system helps me to find the optimal implementation strategy
[] Strongly Agree

[]1Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

. The cost estimation is suitable to measure the impacts
[] Strongly Agree

[]Agree

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

. I understand what | am doing at each step and understand tlts effany action

during the evolution process.
[] Strongly Agree

[]Agree

260

[] Slightly Agree

[] Slightly disagree

[] Disagree

[] Strongly Disagree

Other

261

	Introduction
	Motivation
	Research Context
	Challenges and Problem Statements
	Overview of the Research
	Research Hypothesis
	Research Objectives

	Research Approach
	Contribution of the Research
	Outline

	Background of the Study
	Introduction
	Semantic Web Languages
	XML, XML Schema and DTDs
	RDF and RDFS
	OIL and DAML+OIL

	Web Ontology Language (OWL)
	OWL sub languages
	OWL2 Profiles
	OWL Syntax
	OWL Constructs

	Description Logic Syntax and Semantics
	Ontology Editors and APIs
	Ontology Editors
	Ontology APIs
	Ontology Reasoners

	Semantic Annotation Platforms and Tools
	Semantic Annotation Platforms
	Annotation Tools

	Summary

	Literature Review
	Introduction
	Evolution in Ontology-based Content Management Systems
	Ontology Evolution
	Content Evolution
	Annotation Evolution

	Evolution Approaches in Related Domains
	Schema Evolution
	Software Evolution

	Evolution Approaches in Ontology-based Applications
	General Ontology Evolution Approaches
	Consistency Management
	Ontology Change Logging and Mining
	Ontology Diffs and Content Versioning Systems
	Ontology Change Impact Analysis

	Tools for Ontology Evolution
	Summary

	Ontology-based Content Management Framework
	Introduction
	Ontology-based Content Management System
	Layered OCMS Framework
	Ontology Layer
	Content Layer
	Annotation Layer

	Graph-based Representation of an OCMS
	Ontology Graph
	Content Set
	Annotation Graph
	Attributes of the Graph

	Change Operator Framework
	A Framework of Change Operators and Patterns
	Change Metamodel
	Graph-based Formalization of Change Operations

	Evaluation
	Adequacy of the Layered Operator Framework

	Summary

	Change Analysis Framework
	Introduction
	The Change Impact Analysis Framework
	Change Request Capturing and Representation
	Change Impact Analysis
	Change Optimization and Implementation

	Dependency Analysis for Change Representation
	General Properties of Dependency
	Types of Dependency
	Dependency Analysis Algorithm

	Evolution Strategies
	No-action Strategy
	Cascade Strategy
	Attach-to-Parent/Root Strategy
	N-Level Cascading
	Combining Dependencies and Strategies

	Evaluation
	Precision of the Dependency Analysis

	Summary

	Change Impact Analysis Process
	Introduction
	Change Impact Analysis Process
	Impacts of Change Operations
	Structural Impacts
	Semantic Impacts
	ABox versus TBox Impacts
	Addition versus Deletion Impacts

	Individual Change Impact Analysis
	Impacts of Atomic Change Operations
	Steps for Individual Change Impact Analysis
	Algorithm for Individual Change Impact Analysis

	Composite Change Impact Analysis
	Impact Cancellation
	Impact Balancing
	Impact Transformation

	Evaluation of the Change Impact Analysis
	Experiment Setup
	Experimental Results
	Comparison with Existing Tool
	Comparison of Individual and Composite Impact Analysis
	Questionnaire Results

	Summary

	Change Optimization and Implementation
	Introduction
	Change Impact Optimization Framework
	Change Optimization Criteria
	Severity of Impacts
	Type of Change Operation (Addition and Deletion)
	Statement Types (ABox and TBox)
	Performance of Change Operations

	Cost of Evolution and Optimal Strategy Selection
	Cost of Evolution
	Optimal Strategy Selection
	Effect of Severity Value on the Cost of Evolution

	Evaluation of Change Impact Optimization
	Experimental Setup
	Questionnaire Results
	Discussion

	Summary

	Conclusion
	Introduction
	Summary of the Problem and Contribution
	Contribution of the Research
	Capturing and Representation of Change Requests
	Structural and Semantic Impact Analysis
	Optimized Implementation of Changes
	Methodology

	Limitation and Future work

	Bibliography
	Software Help Management Case Study
	Introduction
	Rationale and Significance of the Case Study
	Experiment
	Perspectives
	Changes

	Observation
	A Snapshot of Software Help Management Ontology

	Database Systems Course Case Study
	Introduction
	Case Study Setup
	Perspectives

	Experiment
	Observation
	Sample Database systems course OCMS

	University Administration Case Study
	Introduction
	Case Study Setup
	Experiment
	Changes in University Administration

	Observation
	Sample University Ontology

	Additional Analysis Results
	Severity of Impacts
	Case 1
	Case 2
	Case 3

	Weight of Criteria
	Cost of Evolution for Different Settings

	Questionnaire
	Change Operations for Evaluation
	Questionnaires

