
Operational Change Management and
Change Pattern Identification for

Ontology Evolution

Muhammad Javed

MSc. Electrical Engineering (FHD, Germany)

BSc. Electrical & Electronic Engineering (IIT, Bangladesh)

A dissertation submitted in fulfilment of the requirements for the award of degree

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Advisor: Dr. Claus Pahl

May 2013

Examiners:

Dr. Mark Roantree

Head of Interoperable Systems Group (ISG),

Faculty Of Engineering & Computing,

School of Computing,

Dublin City University,

Ireland.

Dr. Sören Auer

Leader of Agile Knowledge Engineering and Semantic Web (AKSW),

Head of the Chair Information Systems & Software Technology,

Department of Computer Science,

Chemnitz University of Technology,

Germany.

iii

Acknowledgment

First of all, I would like to thank God Almighty (Allah), for giving me the strength and

courage to complete my research work. In last four years, I had a life-time experience of

gaining knowledge and sharing few unforgettable moments with some wonderful people.

I was lucky to have explored not only a new field of knowledge but also a new country,

a new language and different cultures. Foremost, I am extremely thankful to my super-

visor, Claus Pahl, whose support, guidance and encouragement from first to the final

level enabled me to develop an understanding of the subject and without him this work

would not have been possible. I am really thankful to my colleagues at Centre for Next

Generation Localisation1, who supported and encouraged me at each level of research.

In my daily work, I had been blessed with a friendly and cheerful group of fellow col-

leagues. Yalemisew, I will really miss our conversations regarding research philosophies

and most especially the Ethiopian coffee. To my colleagues Veronica, Aakash, Kosala,

Pooyan and Wong in Software and System Engineering Group, I sincerely offer my re-

gards and blessings to you who supported me in all aspects during my research work. I

wish to acknowledge Science Foundation Ireland2 for funding my research (under grant

no. 07/CE/I1142). Whenever I look back at my past, I always felt myself as a blessed

man. It would not have been possible for me to focus and work confidently without the

continuous support of my wife Arshia and my children Yahya, Mustafa and Fatima. I

believe, I couldn’t give much time to you in past few years but I promise that I will try

my best to recuperate and fill your life with joy. Last but not the least; I would like to

thank my parents for their unconditional love, devotion and support towards my studies.

Though I lived one third of my life away from you, but there was not a single day when

I didn’t remember you. Many times I used to get upset, but your prayers and love kept

me going. May Allah give you the best of this life and hereafter.

1www.cngl.ie
2www.sfi.ie

iv

To

My Family

Arshia, Yahya, Fatima and Mustafa

v

Abstract:

Ontologies can support a variety of purposes, ranging from capturing the conceptual

knowledge to the organization of digital content and information. However, information

systems are always subject to change and ontology change management can pose chal-

lenges. In this sense, the application and representation of ontology changes in terms

of higher-level change operations can describe more meaningful semantics behind the

applied change. We propose a four phase process that covers the operationalization,

representation and detection of higher-level changes in ontology evolution life cycle.

We present different levels of change operators based on the granularity and domain-

specificity of changes. The first layer is based on generic atomic level change operators,

whereas the next two layers are user-defined (generic/domain-specific) change patterns.

We introduce the layered change logs for an explicit and complete operational represen-

tation of ontology changes. The layered change log model has been used to achieve two

purposes, i.e. recording of ontology changes and mining of implicit knowledge such as

intent of change, change patterns etc. We formalize the change log using a graph-based

approach. We introduce a technique to identify composite changes that not only assist

in formulating ontology change log data in a more concise manner, but also help in real-

izing the semantics and intent behind any applied change. Furthermore, we discover the

reusable ordered/unordered domain-specific change patterns. We describe the pattern

mining algorithms and evaluate their performance.

Keywords: semantic ontology evolution, ontology change patterns, pattern-based on-

tology evolution, change log graph, graph-based composite change detection, change

pattern discovery algorithms.

vi

Contents

Acknowledgement iv

Dedication v

Abstract vi

List of Figures xii

List of Tables xiv

List of Publications xv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem definition . 3

1.2.1 Research hypothesis . 4
1.2.2 Research questions . 5

1.3 Contribution . 5
1.4 Organization of the thesis . 7

2 Background 10
2.1 Introduction . 10
2.2 Knowledge representation languages for the web 12

2.2.1 RDF . 12
2.2.2 OWL . 13

2.3 Query language . 13
2.3.1 SPARQL . 13

2.4 Web Ontology Language (OWL) . 14
2.4.1 OWL sublanguages . 15
2.4.2 OWL ontology syntaxes . 17
2.4.3 OWL ontology elements . 18
2.4.4 OWL ontology editing APIs . 22

2.5 Ontology editors . 23
2.5.1 Protégé . 23

vii

2.5.2 TopBraid Composer . 24
2.5.3 Semantic Media Wiki (SMW) . 24
2.5.4 KAarlsruhe ONtology (KAON) . 24

2.6 Graphs for ontology change representation 25
2.6.1 Directed/Undirected Graphs . 25
2.6.2 Multi Graphs . 26
2.6.3 Labelled Graphs . 26
2.6.4 Attribute Type Graphs . 26

2.7 Summary . 27

3 Literature review 29
3.1 Ontology evolution . 30

3.1.1 Different phases of ontology evolution process 30
3.1.2 Ontology evolution vs. schema evolution 33
3.1.3 Evolution strategies . 35

3.2 Ontology change operationalisation . 36
3.2.1 Elementary, composite and complex change operations 36
3.2.2 Atomic and composite change operations - basic and complex . . . 39
3.2.3 Atomic, entity and complex change operations 40

3.3 Ontology change representation . 41
3.3.1 Evolution logs . 42
3.3.2 Version logs . 42
3.3.3 PromptDiff - capturing the structural differences 43
3.3.4 Transformation set . 44

3.4 Higher level ontology change identification 45
3.4.1 Change detection algorithm . 46

3.5 Pattern mining . 46
3.5.1 Frequent subgraph mining . 47
3.5.2 String matching algorithms . 48

3.6 Discussion . 49

4 Pattern-based framework of change operators 52
4.1 Introduction . 53

4.1.1 Introduction of case study domains 54
4.2 Framework of change operators and patterns 56

4.2.1 Generic structural levels . 57
4.2.2 Domain-specific level . 62
4.2.3 Abstract level . 64

4.3 Consistency constraints . 65
4.3.1 Generic structural constraints . 66
4.3.2 Domain-specific restriction constraints 67
4.3.3 Abstract restriction constraints . 68

4.4 Summary . 68

viii

5 A layered log model for ontology change representation and mining 70
5.1 Layered change log model (LCLM) . 71
5.2 RDF framework format . 73
5.3 Recording of ontology changes . 76

5.3.1 Recording of atomic changes in ACL 76
5.3.2 Recording of change patterns in PCL 78

5.4 Incompleteness in the structure of analytical PCL data 82
5.4.1 Evolution gaps in PCL . 83
5.4.2 Pattern overlapping in PCL . 85

5.5 Summary . 86

6 Knowledge extraction from the atomic change log (ACL) 89
6.1 Knowledge extraction process . 90

6.1.1 Data cleaning and filtering . 90
6.1.2 Data transformation . 91

6.2 Graph-based ontology change formalization 93
6.2.1 Formalization . 94

6.3 Analysis of change log graph . 96
6.3.1 Ordered/Unordered change sequences 96
6.3.2 Node-distance value . 98
6.3.3 Type categorization of change operations 101
6.3.4 Variation between change sequences 102

6.4 Mining of sequential abstractions . 105
6.4.1 Identification of change sequences 106
6.4.2 Detection of composite change patterns 110
6.4.3 Discovery of domain-specific change patterns 112

6.5 Summary . 114

7 Composite change detection algorithms 116
7.1 Composite change . 117
7.2 Graph-based specification of a composite change 119

7.2.1 Graph-based ontology specification 120
7.2.2 Graph-based composite change specification 122

7.3 DPO adaptation - re-attachment of dangling edges 126
7.3.1 Motivation . 126
7.3.2 Extended DPO - definition . 128
7.3.3 Applying DPO to composite change patterns 129
7.3.4 “Split class” change scenario . 130

7.4 Detection of composite changes . 133
7.4.1 Algorithm for composite change detection 134

7.5 Limitations and illustration of results . 138
7.5.1 Limitations . 138
7.5.2 Illustration of the results . 138

7.6 Summary . 139

ix

8 Change patterns discovery algorithms 141
8.1 Empirical analysis of atomic change log graph 142

8.1.1 Types of ontology change patterns 142
8.2 Metrics for ontology change pattern discovery 143
8.3 Complete change pattern discovery algorithms 145

8.3.1 OCP discovery algorithm . 146
8.3.2 UCP discovery algorithm . 152

8.4 Illustration of results and practical benefits 157
8.4.1 Illustration of algorithm’s results 158
8.4.2 Practical benefits . 160

8.5 Summary . 161

9 Experimental results and evaluation 163
9.1 Evaluation criteria and strategy . 163

9.1.1 Aim . 163
9.1.2 Evaluation strategies . 165

9.2 Evaluation of the change operator framework 166
9.2.1 Objective . 166
9.2.2 Experimental setup . 166
9.2.3 Results . 169
9.2.4 Discussion . 175

9.3 Evaluation of the layered change log model 178
9.3.1 Objective . 178
9.3.2 Experimental setup . 178
9.3.3 Results . 178
9.3.4 Discussion . 180

9.4 Evaluation of composite change detection algorithms 182
9.4.1 Objective . 182
9.4.2 Experimental setup . 182
9.4.3 Results . 183
9.4.4 Discussion . 185

9.5 Evaluation of change pattern discovery algorithms 186
9.5.1 Objective . 186
9.5.2 Experimental Setup . 186
9.5.3 Results . 188
9.5.4 Discussion . 191

9.6 Summary . 192

10 Conclusions 194
10.1 Summary of contribution . 195
10.2 Discussion . 195
10.3 Future work . 197

10.3.1 Enhanced reusability through domain transfer. 198
10.3.2 Change pattern specification. 199

x

10.3.3 Pattern-level causal dependencies. 199

A Metadata Ontology 218

B Java Code: OrderedChangePatternFinder() 225

C Java Code: UnorderedChangePatternFinder() 229

D University Administration Ontology 233

E Database System Ontology 239

F Software Application Ontology 247

G Composite-level Evolution Strategies 254

H Results of Composite change pattern detection algorithms 260

xi

List of Figures

1.1 Organization of the Thesis . 9

2.1 Functional style syntax - An example . 17
2.2 Manchester OWL syntax - An example . 18
2.3 RDF/XML Syntax - An Example . 18

3.1 Composite change operation ‘‘Split class’’ 37

4.1 Different levels of change operators . 57
4.2 Architecture of layered change operators (university ontology) 58
4.3 Atomic level change operations . 59
4.4 Composite level change operation ‘‘Merge classes’’ 61

5.1 Layered Change Log Model (LCLM) . 72
5.2 Change metadata ontology . 74
5.3 Operational setup of ontology change logging 76
5.4 Sample representation of an atomic ontology change 77
5.5 RDF triple store data schema (operational change log data) 81
5.6 Core classes and their relationships . 82
5.7 Incompleteness in the structure of PCL (analytical change log data) . . . 83

6.1 Knowledge identification process from ontology change log data 91
6.2 Data transformation and mining of higher level change patterns 92
6.3 Attribute Type Graph (ATG) for an ontology change 95
6.4 Nodes of Attributed Graph (AG) typed over ATG 96
6.5 Step-by-step graph node comparison of sequence s1 and s4 100
6.6 Type sets of s and t . 104

7.1 Type graph for ontology entity relationships 123
7.2 Typed ontology subgraph . 123
7.3 Double-pushout approach for graph transformation 124
7.4 Split class (x, (x1, x2)) - double push out (DPO) approach 128
7.5 Identified composite change - ‘‘Split class’’ 139
7.6 Identified composite change- ‘‘Pull up property’’ 140

xii

8.1 Change log session and associated (graph-based) discovery of change pat-
terns . 159

9.1 Schema level vs. instance level ontology changes (university ontology) . . 171
9.2 Protege Vs. OnE - Number of steps performed 173
9.3 Framework window of “merge” composite change operator 175
9.4 Framework window - ontology change logging 179
9.5 Pull up property - composite change case scenario 182
9.6 Overlapping between identified composite change patterns 185
9.7 No. of identified ordered complete change patterns (Quantitative) 188
9.8 No. of identified unordered complete change patterns (Quantitative) . . . 189
9.9 No. of identified ordered complete change patterns (Qualitative) 190
9.10 No. of identified unordered complete change patterns (Qualitative) 191

10.1 Identification of pattern-level causal dependency 200

G.1 Pull up class (X, C) . 255
G.2 Pull down class (A, B) . 256
G.3 Split class (X, (C1, C2)) . 256
G.4 Merge classes ((C1, C2), X) . 257
G.5 Pull up property(P, A, B) . 258
G.6 Pull down property(P, X, Y) . 258

xiii

List of Tables

3.1 Change operations and the intent . 38

4.1 Examples of consistency constraints . 67

5.1 Triple-based representation of an atomic change 78
5.2 Triple-based description of (domain-specific) change pattern 80

6.1 A section of university ontology change log graph 97
6.2 Node sets for PhD student registration . 98
6.3 Referenced change sequence and conditions for Pull up property 112

7.1 List of composite change patterns and their definitions 131
7.2 Formal definition of composite change Split class(x, (x1, x2)) 132

8.1 Input parameters for pattern discovery algorithms. 145
8.2 ABox-based change pattern (extracted from university ontology) 160
8.3 TBox-based change pattern (extracted from software ontology) 160

9.1 A list of observed changes in university domain ontology 170
9.2 List of change operations and their type 172
9.3 Comparison between OnE and Protégé (min:sec) 174
9.4 Questionnaire-based evaluation of the layered framework 180
9.5 Comparison between manual vs. automated composite change detection . 184
9.6 Comparison b/w OCP and UCP algorithms with minimum pattern sup-

port (min supp) = 5 and minimum pattern length (min len) = 5. 189

xiv

List of Publications

- [Javed et al., 2012a] Muhammad Javed, Yalemisew Mintesnote Abgaz and Claus
Pahl: Composite Ontology Change Operators and their Customizable Evolution
Strategies. ISWC Workshops: Joint Workshop on Knowledge Evolution and On-
tology Dynamics (EvoDyn), Boston, USA, (2012).

- [Abgaz et al., 2012a] Yalemisew Mintesnote Abgaz, Muhammad Javed and Claus
Pahl: Dependency Analysis in Ontology-driven Content-based Systems. 12th In-
ternational Conference Artificial Intelligence and Soft Computing, Lecture Notes of
Computer Science, Volume 7268, L. Rutkowski et al. (Eds.), pages 3–12, Springer-
Verlag, (2012).

- [Abgaz et al., 2012b] Yalemisew Mintesnote Abgaz, Muhammad Javed and Claus
Pahl: Analyzing Impacts of Change Operations in Evolving Ontologies. ISWC
Workshops: Joint Workshop on Knowledge Evolution and Ontology Dynamics
(EvoDyn), Boston, USA, (2012).

- [Javed et al., 2011a] Muhammad Javed, Yalemisew Mintesnote Abgaz and Claus
Pahl: A Layered Framework for Pattern-Based Ontology Evolution. 3rd Interna-
tional Workshop on Ontology-Driven Information System Engineering (ODISE),
London, UK, (2011).

- [Javed et al., 2011b] Muhammad Javed, Yalemisew Mintesnote Abgaz and Claus
Pahl: Graph-based Discovery of Ontology Change Patterns. ISWC Workshops:
Joint Workshop on Knowledge Evolution and Ontology Dynamics (EvoDyn), Bonn,
Germany, (2011).

- [Abgaz et al., 2011] Yalemisew Mintesnote Abgaz, Muhammad Javed and Claus
Pahl: A Framework for Change Impact Analysis of Ontology-driven Content-based
Systems. On the Move to Meaningful Internet Systems: OTM 2011 Workshops.
Volume 7046 of Lecture Notes in Computer Science, pages 402–411, Springer-
Berlin/Heidelberg, (2011).

- [Javed et al., 2011c] Muhammad Javed, Yalemisew Mintesnote Abgaz and Claus
Pahl: Towards Implicit Knowledge Discovery from Ontology Change Log Data.
5th International Conference on Knowledge Science, Engineering and Management
(KSEM), Lecture Notes of Artificial Intelligence, Volume 7091, Xiong, Hui; Lee,
W.B. (Eds.), pages 136–147, Springer-Verlag, (2011).

- [Javed et al., 2010] Muhammad Javed, Yalemisew Mintesnote Abgaz and Claus
Pahl: Ontology-based Domain Modelling for Consistent Content Change Manage-
ment. International Conference on Ontological and Semantic Engineering (ICOSE),
Venice, Italy, (2010).

- [Abgaz et al., 2010] Yalemisew Mintesnote Abgaz, Muhammad Javed and Claus
Pahl: Empirical Analysis of Impacts of Instance-Driven Changes in Ontologies. On

xv

the Move to Meaningful Internet Systems: OTM 2010 Workshops. Lecture Notes
of Computer Science, Volume 6428, R. Meersman et. al. (Eds.), pages 368–377,
Springer-Verlag, Springer-Berlin/Heidelberg, (2010).

- [Pahl et al., 2010] Claus Pahl, Muhammad Javed and Yalemisew Mintesnote Abgaz:
Utilising Ontology-based Modelling for Learning Content Management. ED-MEDIA
2010-World Conference on Educational Multimedia, Hypermedia & Telecommuni-
cations, Toronto, Canada, (2010).

- [Javed et al., 2009] Muhammad Javed, Yalemisew Mintesnote Abgaz and Claus
Pahl: A Pattern-Based Framework of Change Operators for Ontology Evolution.
On the Move to Meaningful Internet Systems: OTM Workshops. Lecture Notes of
Computer Science, Volume 5872, R. Meersman, P. Herrero, and T. Dillon (Eds.),
pages 544-553, Springer-Verlag, (2009).

xvi

List of Abbreviations

ACL : Atomic Change Log
AG : Attributed Graph
ATG : Attribute Type Graph
DPO : Double PushOut
LCLM : Layered Change Log Model
OCBS : Ontology-driven Content based Systems
OCP : Ordered Complete Change Patterns
OCS : Ordered Complete Change Sequence
OP : Ordered Change Patterns
OPP : Ordered Partial Change Patterns
OPS : Ordered Partial Change Sequence
OS : Ordered Change Sequence
OWL : Web Ontology Language
PCL : Pattern Change Log
RDF : Resource Description Framework
RDFa : Resource Description Framework in attributes
SPARQL : Simple Protocol and RDF Query Language
SPO : Subject-Predicate-Object
UCP : Unordered Complete Change Patterns
UCS : Unordered Complete Change Sequence
UP : Unordered Change Patterns
UPP : Unordered Partial Change Patterns
UPS : Unordered Partial Change Sequence
US : Unordered Change Sequence

xvii

Glossary of Definitions

ABox - ABox statements in a domain ontology represent knowledge about in-
stances of (TBox) classes.

Atomic change - An atomic change in an ontology adds or deletes one single axiom.

Attributed graphs - A basic graph is a set of nodes and edges. In attributed graph,
one can attach a number of attributes to the nodes and edges of the graph.

Composite change - A composite change is a generic change containing a sequence
of atomic ontology change operations.

Consistent atomic change - An atomic change is consistent if the existential condi-
tions of its input parameters are satisfied. For example, in case of Add subclassOf

(Student, Person), where the entities Student and Person must exist in the do-
main ontology as domain classes.

Dangling condition - The dangling conditions for an ontology graph transformation
ensures the resultant graph has no dangling edges, i.e. without a source or target
graph node.

DPO node - A double pushout node represent an entity from ontology graph (i.e.
class, object property, data property or individual).

Graph node - The term “graph node” represent a node from the change log graph,
representing an atomic ontology change operation.

N-distance - Node distance between two adjacent graph nodes n1 and n2 of an
ontology change sequence s refers to the number of graph nodes exist between n1

and n2 in the change log graph.

Ontology axiom - Axioms are the coherent statements that can be made in a
domain ontology representing certain specific knowledge.

RDF triple - An RDF triple contain three parts i.e. subject, predicate and object.
The predicate part is also known as “property” as it represents a property of the
subject; where, object is the actual value for such property.

Semantically identical change sequence - Two ontology change sequences are se-
mantically identical to each other if the impact of their application to the domain
ontology is same.

Structurally identical change sequence - Two ontology change sequences are struc-
turally identical if the order of the existing change operations (in both sequences)
is the same.

TBox - TBox statements in a domain ontology represent schema level conceptual-
ization of classes and properties of these classes.

xviii

Chapter 1

Introduction

Ontology-driven modelling is beneficial for a wide range of content-based information

systems. Ontology-based data models have helped researchers to take a step forward

from traditional content management systems (CMS) to conceptual knowledge modelling

to meet the requirements of the semantically aware information systems. Ontology-

based approaches are used to capture architecture and process patterns [Gacitua-Decar

et al., 2009]. Research as presented in [Filipowska et al., 2009] and [Hesse et al., 2008]

stress the contribution of domain ontologies for content modelling. Domain ontologies

can support tasks ranging from capturing conceptual knowledge to the organization of

digital content and other information artefacts. Domain ontologies can convey useful

semantic information for ontology engineers to understand and process.

As described by Gruber “An ontology is a specification of a conceptualization”, it is

a specification of concepts in a particular domain and the relationships between these

concepts through defined properties. In Web Ontology Language (OWL), concepts are

regarded as classes. Domain ontologies represent the concrete classes of a domain and

describe (in the form of properties) how these classes are linked to each other. The

main aim of a domain ontology is to capture consensual knowledge of a given domain

in a generic and formal way to be reused and shared across applications and groups of

1

people [Gomez-Perez et al., 2006]. Classes in a domain ontology are categorized into

more specific subclasses for explanation of specialized elements, creating a taxonomy

architecture. Similarly, the properties, providing more explanation about a class, can

also be subdivided into subproperties. Domain ontologies are developed to provide

a semantic network sharing a common understanding of a concept amongst ontology

engineers, domain experts, other users and software agents. An ontology engineer is

responsible for developing and maintaining the domain ontologies. He provides semantic

support, by mapping the domain ontologies with the various terminologies used in the

domain. In contrast, a domain expert is a person with valuable functional knowledge

and skills in a particular domain, often called domain knowledge.

The development of domain ontologies is a continuous process. As time passes, the

domains evolve, requiring new classes to be added in the domain ontology and also

relationships among newly added classes.

1.1 Motivation

Ontologies become essential for knowledge sharing activities in areas such as the seman-

tic web, bio-informatics and educational technology systems. Such information systems

are always subject to change and ontology change management can pose challenges. As

there exists a dependency between the content and the domain ontologies, a change in

the content may lead to a change in the domain ontologies. The reason for change in a

domain ontology can be the change in the domain, the specification, the conceptualiza-

tion or any combination of them [Noy et al., 2004]. Some of the changes are about the

introduction of new classes, removal of outdated classes and change in the structures and

the meanings of classes. A change in an ontology may initiate from a domain knowledge

expert, a user of the ontology or a change in the application area [Liang et al., 2005].

This requires an effective ontology change management approach.

2

Ontology evolution is defined in different ways [Stojanovic et al., 2003, Haase et al.,

2003, Flouris et al., 2006]. A comprehensive definition is given as “the timely adapta-

tion of an ontology to changed business requirements, to trends in ontology instances

and patterns of usage of the ontology based application, as well as the consistent man-

agement/propagation of these changes to dependent elements” [Stojanovic et al., 2002].

Based on the different perspectives of the researchers, there are different solutions pro-

vided to handle ontology evolution [Stojanovic et al., 2002, 2003, Zablith, 2008, Plessers

et al., 2007]. Different phases of ontology evolution have been identified [Stojanovic

et al., 2002]. These phases include change capturing, change representation, semantics

of change, change propagation, change implementation and change validation. Basic

changes in the evolving ontology can be captured using operators. However, the identi-

fied change operators focus on generic and structural changes lacking domain-specificity

and abstraction. Moreover, these solutions lack adequate support for different levels of

granularity at different levels of abstraction.

1.2 Problem definition

Content management systems have received a considerable attention due to appearance

of different types of multilingual, multi-formatted content. Domain ontologies can be

used to add the semantics and express the inter-linkages between the content elements.

Domain ontologies capture and organize the different properties and perspectives on a

content unit. The ontology-based semantic annotation is a key approach for adding

semantics to content and their guided access. The currently developed models deal

with semantic annotation. However, none of them deals with the change consistency

issues, i.e. if there is a change in the content, it must be reflected in the respective

domain ontology and vice versa. Consistency has to be established during content change

management. We distinguish two categories of changes - changes to the content artefacts

3

(content management infrastructure artefacts) and changes to the domain ontologies as

the knowledge on top of the artefact layer. In this thesis, we focus on ontology change

management only.

The changes in the domain ontology have to be operationalized in a suitable manner.

There is no single ontology change management system which is widely accepted and

provides different levels of change operators based on granularity, domain specificity

and abstraction. There is a wide range of ontology change models which can be used

for ontology evolution. However, all of them provide generic level change operations.

Similarly, ontology changes represented in the form of change logs etc. also provide

details only at the elementary level. Such elementary level change operators and their

representation are not adequate for domain experts who have less technical knowledge

of ontology languages. Change representation procedures are not sufficient to represent

how an ontology evolves over time. The clear representation of intuition behind any

of the applied changes is missing in such change representation of an evolving domain

ontology.

1.2.1 Research hypothesis

To respond to the research challenges, we have defined the research hypotheses as,

A Pattern-based ontology change framework, supporting

- change customization and

- layered representation,

can lead to an effective* ontology change operationalisation and representation

mechanism.

*The effectiveness can be measured in terms of reusability, functional suitability, com-

pleteness and correctness of the proposed solution.

4

1.2.2 Research questions

To answer research issues and to achieve the main goals, we have defined a set of research

questions which are divided into two sections based on the problem context mentioned

earlier.

Section 1: Ontology Change Customization

Research Question 1: How can the change operators be represented (as building blocks

for ontology evolution) so that they are suitable for the domain experts and ontology

engineers?

Research Question 2: How to represent domain-specific ontology change patterns so that

the user can adapt, customize and reuse them easily?

Section 2: Ontology Change Representation

Research Question 3: How can the ontology changes be recorded in a way that is suitable

for the ontology engineers and other users to clearly understand the evolution of domain

ontologies?

Research Question 4: How can the intent behind the applied ontology changes be cap-

tured?

Research Question 5: How can the higher level change patterns be identified?

1.3 Contribution

Layered ontology change operator framework: Change operators are the building

blocks in ontology evolution. In this regard, having atomic (elementary) level change

operations only in an ontology editing framework are not sufficient. Such low level

change operations can provide only one type of information i.e. addition or deletion

of any element of the ontology. Semantics of an applied change are missing from such

ontology change representation. We identified four different levels of change operators in

order to capture the semantics of an ontology change. These change operators are based

5

on different levels of granularity, domain-specificity and abstraction. The first two layers

are based on generic change operators; whereas the next two layers are domain-specific

change patterns. These layers of change patterns are specific to a domain and capture

the real changes in the selected domain.

Layered change representation model: To date, there is no ontology change man-

agement system exist that records the ontology changes based on different levels of

granularity. Once changes are performed using elementary level change operations, they

are recorded in the database at the elementary level accordingly. Such a change repre-

sentation procedure is not sufficient to represent the intuition behind any applied change

and thus, cannot capture the semantic impact of a change. We support the implemen-

tation of the layered change operator framework through layered change logs. Layered

change logs capture the objective of ontology changes at a higher level of granularity

and support a comprehensive understanding of ontology evolution. The layered change

logs are formalised using a graph-based approach.

Algorithms to identify generic composite change patterns: The strategy to

maintain the consistency and the validity of the ontology elements vary at elementary

and composite level. This is due to the change in realization of intuition of an applied

change. We provide the composite change detection algorithms that identify the higher

level changes from the ontology change log. Such detection of higher level composite

changes not only assist in formulating the ontology change log data in a more concise

manner, but also helps in realizing the semantics and intuitions behind any applied

change. We opt for a graph-based pattern matching approach in order to capture the

composite changes. Detecting the composite level changes from an ontology change log

also facilitates the validation of the content (data) in more suitable mode.

6

Algorithms to discover domain-specific change patterns: Good patterns always

arise from practical experience. Change patterns, created in a collaborative environment,

provide guidelines to ontology change management. Discovery of recurring change se-

quences from an ontology change log provides an opportunity to define reusable domain-

specific change patterns that can be implemented in existing knowledge management

systems. The aim here is the discovery of usage-driven change patterns in order to

record the ontology changes at a higher level and support the pattern-based ontology

evolution. We identify recurring change sequences from an ontology change log that

captures changes at an operational level. We formalize the ontology change log using a

graph-based approach. We use attributed graphs, which are typed over a generic graph

with node and edge attribution. Each graph node represents an atomic ontology change

and the attributes of such graph node provide metadata and change data details. We

analyze ontology change logs, represented as graphs, and identify ordered/unordered

change patterns.

1.4 Organization of the thesis

The organization of the thesis document is summarized in Figure 1.1.

- Chapter 2 presents the background in the area of semantic technologies and the

evolution of domain ontologies. We discuss semantic languages, syntax for ontology

representation, ontology elements and the existing ontology editors etc.

- Chapter 3 gives the literature review within the scope of the thesis and discusses

state of the art in the area of ontology change operators, ontology change repre-

sentation, graph-based pattern discovery etc.

- Chapter 4 presents the proposed layered change operator framework that can be

used as the basis of the ontology evolution process.

7

- Chapter 5 describes a layered ontology change log model that logs the applied

ontology changes at two different levels of abstraction.

- Chapter 6 describes our approach towards change pattern identification from the

lower level change log. The chapter works as a bridge between layered ontology

change framework (discussed in Chapter 4 and 5) and the algorithms for change

pattern identification (given in Chapter 7 and 8).

- Chapter 7 presents the graph-based algorithm for the detection of generic compos-

ite change patterns from the lower-level change log.

- Chapter 8 presents the graph-based algorithm for the discovery of domain-specific

change patterns from the lower-level change log.

- Chapter 9 presents the experimental results and the evaluation of the main con-

tributions.

- Chapter 10 summarizes the contribution of the thesis and discusses future work

and directions.

8

Chapter 1: Introduction

Chapter 2: Background

Chapter 3: Literature Review

Chapter 4: Pattern-based Framework of Change Operators

[Generic / Domain-specific Change Operations]

[Atomic / Higher Level Change Patterns]

Chapter 6: Knowledge Extraction from Atomic Change Log (ACL)

[Knowledge Extraction Process]

[Graph-based Formalization of Atomic Change Log]

Chapter 5: A Layered Log Model for Ontology Change

Representation and Mining

[Atomic vs. Pattern Change Log (ACL/PCL)]

[
RDF
 triple-based Ontology Change Representation]

Chapter 7: Composite Change Detection

Algorithms

[
DPO
 Adaptation]

[Algorithm for Composite Change Detection]

Chapter 8: Change Patterns Discovery

Algorithms

[Ordered/Unordered Change Patterns (OP/UP)]

[Algorithms for Change Pattern Discovery]

Chapter 9: Experimental Results and

Evaluation

Contribution

Chapter 10: Conclusion

Experiment-based Evaluation

(Correctness, Performance)

Experiment-based Evaluation

(Correctness, Completeness, Performance)

Empirical Case study-based

Evaluation

(Functional Suitability, Usability)

Empirical Case study-based

Evaluation

(Functional Suitability)

Figure 1.1: Organization of the Thesis

9

Chapter 2

Background

The aim of this chapter is to present a brief background for non-professionals having

no background of semantic technologies, more specifically of Web Ontology Language

(OWL), ontology elements and editors. The chapter is structured as follows: In Section

2.1, we introduce the semantic web and its two-part vision. In Section 2.2, we discuss

the two web languages, i.e. RDF and OWL. In Section 2.4.2, few OWL syntaxes are

discussed. We discuss the ontology elements (including OWL constructs and axioms)

and ontology editors in Section 2.4.3 and 2.5, respectively. OWL API is briefly discussed

in Section 2.4.4. In Section 2.6, we give an overview of different type of graphs (that

can be used to represent the domain ontologies and ontology changes). We end with a

summary in Section 2.7.

2.1 Introduction

Tim Berners-Lee, the inventor of the World Wide Web, has a two-part vision of the

Semantic Web i.e. first, to make the web a more collaborative environment and second,

to make the content more understandable, semantically enriched and thus processable

by machines. This vision involves more than simply retrieving Hyper Text Markup

10

Language (HTML) pages from the web servers. There are relationships involved between

the difference types of information content. For example, a document isAbout a certain

entity (Thing) of the world, the entity is included in a certain document, the document

isWrittenBy a certain author etc. Such relationships are missing from the current web.

Plus, additional metadata (about the information items) is required in order to make the

content machine processable. In order to convert a data into a smarter (vz. semantically

enriched) data, it passes through mainly four stages [Michael et al., 2003]. These stages

are discussed below. In order to capture the knowledge from the data at these stages,

a number of languages have been developed. These languages include HTML, XML,

RDF, OWL etc.

1. First stage is the database records and text documents. Such documents are

linked to a single application and cannot be used by any other application. The

information entities of such documents are represented as unique Uniform Resource

Identifiers (URIs). In such a case, the core knowledge of usage of such content lies

in the application rather than in the content.

2. The second stage involves the eXtensible Markup Language (XML) documents that

use a single vocabulary. XML documents provide the description of the isolated

data values. Such isolated data is not linked to one single application; however,

can be used by other applications within the same domain only. In such cases,

different application within the same domain can use such data.

3. In the third stage, we move from data modeling to knowledge modeling. Here, data

can be brought together from multiple domains and can be represented in the form

of hierarchical taxonomies. Such hierarchical taxonomies of isolated data do not

only help in accurate classification and retrieval of the data, but the relationships

among the different categories of data items can also be built. In this case, data

becomes smarter, as the documents not only represent the classified data, but

11

also the relationships among such classified data items. We use the Resource

Description Framework (RDF) for such knowledge modeling (discussed in Section

2.2.1). The explicit representation of associations among entities do not exist in

XML documents and is therefore a major advantage of RDF.

4. The last stage is to extract more knowledge from the existing data by using means

of logical rules and inference. To apply such techniques of knowledge extraction,

data can be represented in the form of ontologies using the Web Ontology Language

(OWL), discussed in Section 2.2.2. Now, data is not only smart enough to describe

the entities of the world and the relationship among them, but semantic techniques

can also be used on such data to infer more concrete knowledge from it.

2.2 Knowledge representation languages for the web

In this section, we discuss Resource Description Framework (RDF) and Web Ontology

Language (OWL).

2.2.1 RDF

The Resource Description Framework (RDF1) is used for modeling the conceptual de-

scription of content using an XML-based language. Originally, it was designed as a

metadata model that defines the metadata about certain document (externals of a doc-

ument) such as, author, creation date, last modification date etc. But later, it is used

as a concrete data model similar to other conceptual modelling approaches such as

entity-relationship or class diagrams. The basic idea of RDF data modelling is to make

statements about a certain entity. These statements are in the form of subject-predicate-

object expressions, known as triples. For example, triple (Sky, hasColor, blue) represents

that the sky has the color blue. An RDF specification consists of a well-defined vocabu-

1http://www.w3.org/RDF

12

lary of classes and properties which is used to link the knowledge available in a document

to its formal semantics.

2.2.2 OWL

The Web Ontology Language is a family of knowledge representation languages that

are designed for use by the applications that need to process the content of information

rather than just a data model [W3C, 2004]. OWL adds more meaning/semantic richness

than that supported by XML, RDF, RDF/S by providing additional vocabulary along

with other formal semantics. One example of such vocabulary is the functional property.

The OWL language also allows inferring more knowledge about the content from the

ontology using inference and automatic reasoning techniques. OWL comes in three

different flavours, i.e. OWL Lite, OWL DL and OWL Full.

2.3 Query language

2.3.1 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a query language for RDF

graphs (where, an RDF graph is a set of triples). It can be used for retrieving and

accessing the data stored in the RDF format. SPARQL-based queries allow combinations

of triple patterns, conjunctions, disjunctions and optional patterns2. The result of a

query is an unordered set of the solutions. Each solution represents one possible way in

which the variables of the SPARQL query can be bound to the RDF terms. The query

may result in zero, one or many solution sequences. SPARQL query has four query forms

that use the output from the pattern matching to form the result sets or RDF graphs.

These query forms are SELECT, CONSTRUCT, ASK and DESCRIBE. SPARQL is a

data-oriented query language that only queries the explicitly available information and

2http://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004

13

there is no inference involved in the query language itself. SPARQL is an official W3C

Recommendation.

Example 2.1: Below, the formal representation of a SPARQL query is given which

retrieves all the exclusion type change patterns that use the cascade strategy.

select ?p from <http://www.cngl.ie/plog/University_Administration.owl>

where{

?p rdf:type M_O:PatternChange .

?p M_O:changeType M_O:Exclusion .

?p M_O:usedStrategy M_O:cascade .

}

2.4 Web Ontology Language (OWL)

OWL is one of the knowledge representation languages and is intended to be used when

the information contained in documents needs to be processed by applications, as op-

posed to situations where the content only needs to be presented to humans. To date,

two versions of the OWL has been introduced, i.e. OWL 1 and OWL 2. OWL 1 al-

lows users to add semantics to the content. It allows specifying far more about classes,

properties and individuals in a domain ontology. A class can be a subclass, superclass,

disjoint or equivalent to another defined class. A property can be transitive, inverse or

symmetric etc. Individuals can be the same or different from each other. OWL 2 extends

OWL 1 and inherits the language features.

As described by W3C, OWL 2 contains following additional features:

1. Syntactic sugar to make common statements easier to say: New constructs are in-

troduced to represent common changes. These constructs includes DisjointUnion,

DisjointClasses, NegativeObjectPropertyAssertion, NegativeDataPropertyAssertion.

14

2. Introduction of new constructs for properties: For example, self reflexivity, quali-

fied cardinality restrictions, reflexive, irreflexive and asymmetric object properties,

disjointness among properties etc.

3. Keys: OWL 2 allows defining keys to uniquely identify the named individuals. A

HasKey axiom states that each named individual of a class is uniquely identified

by a (data or object) property or a set of properties.

4. Extended support for datatypes: OWL 1 support only integers and strings as data

types. OWL 2 includes support of different types of numbers (including, positive

integer, decimal, float, double etc.) and strings (including PlainLiteral etc.).

5. Extended annotation capabilities.

2.4.1 OWL sublanguages

OWL specification includes three levels of expressiveness, i.e. OWL Lite, OWL DL and

OWL Full.

2.4.1.1 OWL Lite

OWL Lite3 is intended for those users who mainly require an entity classification (in the

form of a hierarchical taxonomy) and few simple restrictions. For example, one restric-

tion can be cardinality constraints which can have value either 0 or 1. The cardinality

constraints are subdivided into minimum cardinality, maximum cardinality or general

cardinality constraints. One can also construct restrictions on how properties can be

used for certain instances of a class (known as Property Restrictions). The property

restrictions include allValuesFrom and someValuesFrom restrictions.

3http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2.1

15

2.4.1.2 OWL DL

OWL DL4 is intended for those users who require full expressivity while keeping the

computational completeness (all conclusions are guaranteed to be computable) and de-

cidability (all computations will finish in finite time) [W3C, 2004]. OWL DL includes

all existing constructs; however, they can only be used within certain restrictions. For

example, an entity cannot be used as a class and instance at same time. In contrast to

OWL Lite, fillers for cardinality constraints are not restricted to values 0 and 1 only.

OWL DL consists of a number of extra synopses which can be used for additional expres-

siveness and for defining complex expressions. This includes hasValue restrictions on a

certain property. For example, the property Gender can have only two values as a filler,

i.e. Male or Female. Furthermore, we have the concept of Class Expression that repre-

sents a complex class. A complex class can be constructed using boolean combinations

of class expression synopsis5 unionOf, complementOf, intersectionOf.

2.4.1.3 OWL Full

OWL Full supports the same set of synopsis as OWL DL but is designed for maximum

RDF compatibility. The main difference between OWL DL and OWL Full lies in re-

strictions on the ways some of the OWL and RDF features can be used. OWL Full

allows mixing of OWL and RDF constructs. For example, similar to RDF Schema and

in contrast to OWL DL, any resource can be used as a class, property or individual

at any specific time. The benefit of OWL DL over OWL Full is the development of

reasoning tools that can infer more knowledge from the ontologies and are supported by

a strong combination of constraints. Similar to OWL DL, the classes can be represented

as class expressions using available boolean combinations, i.e. unionOf, complementOf,

intersectionOf.

4http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2.2
5http://www.ksl.stanford.edu/people/dlm/webont/OWLFeatureSynopsisJan22003.htm

16

2.4.2 OWL ontology syntaxes

The OWL language is not defined with a specific syntax in mind. It is defined as a

high level structural specification that can be mapped into a range of concrete syntaxes

[Matthew, 2010]. We discuss three of them below.

2.4.2.1 Functional Style Syntax

Functional syntax is one example of a concrete syntax for OWL ontologies. It closely

follows the structural specification and is used in the definition of the semantics of OWL

ontologies. Figure 2.1 below shows an example of an equivalent class which specifies that

the Supervisor class is equivalent to a person who supervises another person.

EquivalentClasses(:Supervisor
ObjectIntersectionOf(:Person

DataSomeValueFrom(:supervises
 :Person)
)
)

Figure 2.1: Functional style syntax - An example

2.4.2.2 Manchester OWL Syntax

Manchester OWL syntax is a text-based specification of OWL ontologies. This represen-

tation of OWL ontologies are easy to understand and write. The core motivation behind

the development of Manchester OWL syntax was the demand from the users, who do

not have much knowledge of Description Logic and would like to edit class expressions in

tools such as Protégé. The benefit of Manchester OWL syntax is its simplicity and ease

of its use. The Figure 2.2 shows an example of an equivalent class Supervisor (same as

given in Figure 2.1) in Manchester OWL syntax.

17

Class: Supervisor
EquivalentTo: Person and (supervises some Person)

Figure 2.2: Manchester OWL syntax - An example

2.4.2.3 RDF/XML Syntax

There are a number of RDF-based syntaxes available in order to share, edit and construct

OWL ontologies. RDF/XML is the standard exchange syntax, which any OWL-based

ontology editing tool must comply with. Ontology documents written in RDF/XML

syntax are actually XML documents that represent certain domain ontology using RDF

and OWL synopses. Most of the ontology editing tools use this syntax as a default syntax

for saving ontologies. Figure 2.3 represents the above given example of an equivalent

class of Supervisor in the RDF/XML format.

<owl:Class rdf:about="http://www.cngl.ie/ontology/organisation.owl#Supervisor">
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="http://www.cngl.ie/ontology/organisation.owl#supervises"/>
 <owl:someValuesFrom rdf:resource="http://www.cngl.ie/ontology/organisation.owl#Person"/>
 </owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

Figure 2.3: RDF/XML Syntax - An Example

2.4.3 OWL ontology elements

In terms of computer science, the widely referred definition of ontology is given by Gruber

as a formal explicit specification of a shared conceptualization [Gruber, 1993]. According

to the OWL 2.0 specification, the main component of an ontology is a set of axioms.

Each ontology is uniquely identified by its IRI. Different versions of a domain ontology

can be recorded. Thus, to differentiate between each version of an ontology, each version

can be represented using a versionIRI. An ontology can also import other ontologies

18

in order to get access to their entities, axioms and expressions. Every ontology can

also be annotated using annotation properties, such as the creator of the ontology, last

modification date etc.

2.4.3.1 OWL constructs

Entities are the building blocks for any given axiom. Before detailing axioms, we first

discuss different types of entities.

Class: The term class (known as concept in description logic (DL)) refers to a set of

individuals. They are represented using IRIs in the ontology. Examples of a class can

be univeristy or organization that represent the set of all universities and organizations,

respectively. In the ontology, classes can be used to generate axioms such as subClas-

sOf(University, Organisation) representing that “every university is an organisation”.

There exist two pre-defined classes in OWL 2.0, i.e. OWL:Thing and OWL:Nothing.

OWL:Thing represents the set of all individuals and OWL:Nothing represents an empty

set. Different classes may have relationship among each other such as disjointness, equiv-

alence etc.

In OWL 2.0, classes and properties can be used to construct class expressions, in

other words, complex classes. For example, one can define a complex class (as a super-

class) of Parent by adding a minimum cardinality restriction on property hasChild (i.e.

(hasChild min 1 Person)).

Individuals: Individuals represent the instances of a defined class. They are actual

objects from the domain. OWL 2.0 divides the individuals into two types, i.e. Named

Individuals and Anonymous Individuals. Named individuals are those individuals

that are defined explicitly in the domain ontology and given a name to refer to. They

are defined using IRIs, thus considered as an entity in OWL 2.0 specification. The ex-

ample of a named individual in an axiom could be classAssertion (PhD Student,

19

Javed) representing that individual Javed is a PhD student. Anonymous Individ-

uals are used to represent such instances whose identity is of no use. For example,

ObjectPropertyAssertion(isMarriedTo, Javed, :a1), DataPropertyAssertion

(hasGivenName, :a1,‘‘Arshia’’), DataPropertyAssertion(hasFamilyName, :a1,

‘‘Javed’’) represents that Javed is married to some unknown person. This unknown

person has the given name Arshia and the family name Javed. Anonymous individuals

are similar to the blank nodes in a RDF graph. Anonymous Individuals are represented

using nodeID. The type of the nodeID of any anonymous individual is String. As anony-

mous individuals are not defined using IRIs, they are not considered as an entity in the

OWL 2.0 specification.

Object property: Object properties are used in order to represent a relationship be-

tween two classes and at the instance level, they are instantiated to represent a relation-

ship between two individuals. For example, ObjectPropertyAssertion (isSupervisorOf,

Claus, Javed). Object properties are represented using IRIs. There are two pre-defined

object properties in OWL 2.0, i.e. topObjectProperty and bottomObjectProperty.

The topObjectProperty connects all possible pair of individuals. bottomObjectProperty

represents an empty set and does not connect any pair of individuals.

In OWL 2.0, the object properties can be used to construct object property expres-

sions, in other words, complex object properties. So far, OWL 2 supports only two types

of object property expressions, i.e. i) object properties itself as the simplest form of an

object property expression and ii) inverse object properties that allow a bi-directional

navigation.

Data property: Data properties are used to represent the data about a class in the

form of a literal value. For example, a data property hasAge can be used to represent

the age of an individual of type Person. Similar to an object property, there are two pre-

defined data properties in OWL 2.0, i.e. topDataProperty and bottomDataProperty.

20

Datatype: As the name indicates, datatypes are the entities that represent the type

of a literal value. The type of the data value can be string, number, Id etc. In this sense,

datatypes are actually data ranges which allows them to be used in certain restrictions.

Similar to classes, data types are also represented using IRIs in the ontology. An example

of a datatype used in an axiom can be DataPropertyRange(hasAge, xsd:integer),

representing that the range of data property hasAge is xsd:integer.

Annotation property: An annotation property can be used to annotate the ontol-

ogy itself, an axiom or a single IRI-based entity. Some of the pre-defined annotation

properties are rdfs:label, rdfs:comment, owl:versionInfo, owl:priorVersion etc.

2.4.3.2 OWL axioms

An ontology is a collection of axioms6. Each axiom represents certain knowledge in a

domain. Axioms are divided into a number of categories based on the OWL constructs.

These categories include class axiom, data property axiom, object property axiom

and facts. In OWL 2.0, more categories have been added in the list which includes

declaration axioms, HasKey and annotation axioms. The fact axioms are renamed

into assertion axioms in OWL 2.0 specification. The declaration axioms are used

to declare (add) a new entity (IRI) in the domain ontology.

The class axioms are used to create relationships among different classes (such

as, disjoint classes, equivalent classes, subclasses etc.). object property

axioms can be used to define relationships between two object properties. Examples of

such axioms are sub-object property, equivalent object properties, disjoint

object properties etc. They can also be used to define a relationship between an

object property and a class. Examples of such axioms are object property domain

and object property range. Data property axioms are basically used to define re-

6http://www.w3.org/TR/owl2-syntax/\#Axioms

21

lationships among the data properties. Examples of such axioms are equivalent data

properties, disjoint data properties and sub-data property. They can also be

used to define a data property domain relationship between a data property and a

class. Furthermore, we can also define a data property range relationship between

a data property and a data range. Assertions are used to define axioms about in-

dividuals. Examples of such axioms are same individual (stating that two individual

are equivalent), different individuals (stating that two individuals are different from

each other), object property assertion (that allows to join one individual to another

using an object property) etc.

2.4.4 OWL ontology editing APIs

Two widely used ontology APIs are OWL API and the Jena API. We discuss the OWL

API below.

2.4.4.1 OWL API

OWL API7 is an open-source Java API for creating and editing OWL ontologies. Cur-

rently, it is used worldwide as a reference API for ontology development in the OWL

language. The OWL API is in line with published W3C recommendations. To date, two

main versions of the OWL API have been released, i.e, OWL 1.0 and OWL 2.0. The latest

version of the API focuses on OWL 2.0 specifications which cover OWL-Lite, OWL-DL

and a few sections of OWL-Full. The current and previous versions of the OWL API are

available for download and use under the LGPL and Apache licenses. The components

of OWL API include RDF/XML (parser and writer), OWL/XML (parser and writer),

OWL Functional Syntax (parser and writer), Turtle (parser and writer), KRSS (parser

only), OBO file format (parser only) and interfaces for FaCT++, HermiT, Pellet and

Racer reasoners. The API is maintained by the University of Manchester.

7http://owlapi.sourceforge.net/

22

2.5 Ontology editors

A number of ontology editing tools have emerged over time. Based on their purpose and

application, they can be categorized in six different groups [Gomez-Perez et al., 2006].

These are ontology development tools, ontology evaluation tools, ontology merge and

alignment tools, ontology based annotation tools, ontology querying tools and inference

engines and ontology learning tools. Among the existing tools are Protégé, TopBraid

Composer, KAarlruhe ONtology and Semantic web Tool (KAON), NeOn, OBO-Edit,

Semantic Media Wiki (SMW), AmiGO, Ontolingua, Semantic Web Ontology Editor

(SWOOP). In this section, we give a brief summary of two of them.

2.5.1 Protégé

Among all the existing ontology editors, Protégé8 is the most prominent and widely used

tool. The Protégé framework is written in Java, extensible and is based on the OWL API.

It provides the basic foundation layer of functionalities (in the form of Plug-ins), such

as change visualization, difference determination, consistency management etc. Protégé

provides two ways of modeling ontologies i.e. Protégé-Frames and Protégé-OWL.

In Protégé-OWL editor user can create classes, class expressions, properties, property

expressions and individuals etc. It is provided with two reasoning applications, i.e.

Fact++ and Pellet, which can be used to infer knowledge which is not explicitly given

in the ontology. As suggested in the W3C OWL recommendation, the default storage

syntax of any ontology is RDF/XML.

The Protégé-Frames editor provides a complete user framework to aid ontology devel-

opment, customizing the data entry forms (for entering instance level data) and storing

the domain ontologies. The data entry forms are very useful to enter recurrent data

about any particular type of class. For example, a user can create a data entry form

8http://protege.stanford.edu/

23

for a PhD student, in which s/he can add entries such as student id, student name,

supervisor, affiliation (research group) etc.

2.5.2 TopBraid Composer

The TopBraid Composer is an industry-based data modelling environment. It can be

used for connecting multiple data sources, defining rules and queries for semantic data

processing. The TB Composer is fully compliant with W3C standards and can be used

for developing semantic application including domain ontologies, knowledge models and

their instance-level knowledge bases.

2.5.3 Semantic Media Wiki (SMW)

The Semantic Media Wiki (SMW9) is another application that is an extension to Me-

diaWiki - a wiki application that allows browsing, tagging, evaluating and sharing the

wiki content. SMW allows user to add semantic annotations to the presented wiki con-

tent. By adding semantic annotations, SMW supports a visual display of information,

improved data structure, search and external reuse of the data.

2.5.4 KAarlsruhe ONtology (KAON)

KAON10 (KArlsruhe ONtology and Semantic web Tool) is an ontology management

tool specifically developed for business applications. It gives a graphical environment

for the support of ontology creation and maintenance, known as “OI-Modeler”. The

ontology constructs such class, properties etc. can be created by selecting the specific

element from the menu item. Users can drag and drop the selected ontology elements

into the graphical environment in order to construct the ontology hierarchy. To support

ontology evolution, KAON provides an option to setup the evolution parameters. The

9http://semantic-mediawiki.org/
10http://kaon.semanticweb.org/

24

ontology editor can propose how the ontology must react for the change management.

For example, when a class is removed from the ontology, whether the orphaned subclasses

must be reconnected to the ontology root, to a superclass or must be deleted. These

decisions can be taken into consideration using an evolution parameter setup (known

as evolution strategies). Such decisions are to be taken before an ontology change take

place. At the time of change, one can only either accept or reject the change by looking

into the provided impact of change. The tool allows storing ontologies in the KAON file

format only (.kaon extension).

2.6 Graphs for ontology change representation

Ontologies and the (recorded) ontology changes can be represented in the form of a

graph. In this section, we give a brief background on the graphs and different types of

graphs.

In its simplest form, a graph G is a set of nodes and edges G = (N,E). The nodes

represent the core entities of a domain (covered by the graph) and the edges represent the

links (relationships) among the different defined nodes. One may have one or multiple

edges between a pair of graph nodes, depending on the type of the graph. A node

without any edge (linked to it) is called an orphaned node. Each edge must have a

source and a target node attached to it. Graphs can be of different types including

directed, undirected, labelled, mixed, multi, attributed etc. Below we discuss few of

them.

2.6.1 Directed/Undirected Graphs

The nodes of the graph are linked to each other using edges. Such edges can be directed

or undirected that leads to two types of graph, i.e. directed and undirected graphs. An

undirected graph is the one in which graph edges have no orientation. In such case, the

25

edge e(a, b) is identical to the edge e(b, a) as there is not fixed source or target node stated

for the specific edge. In contrast, edges in the directed graphs have specific orientation

and thus, edge e(a, b) is not identical to the edge e(b, a). Here, edge e(a, b) is considered

to be directed from a (source node) to b (target node). b is called the head of the edge

and a is called the tail of the edge. In other words, b is said to be direct successor of a

and a is said to be direct predecessor of b. A mixed graph G is the one in which some

edges may be directed and some other may be undirected.

2.6.2 Multi Graphs

One may find single or multiple edges between two nodes of a graph. It is also possible

to have an edge which starts and ends on the same graph node. Such edges are called

loops. A loop can be directed or undirected. The loops in a graph may or may not be

permitted, depending on the requirements of the domain/application. In this sense, a

multi graph is a graph that allows multiple edges and loops.

2.6.3 Labelled Graphs

The nodes and edges of a graph can also be labelled. This leads to two new types

of graphs, i.e. node-labelled graphs and edge-labelled graphs. If used without defined

qualifications, the term “labelled graph” refer to a node-labelled graph and means that

each node of the graph is distinct and is labelled differently. For many applications,

nodes and edges are given labels that are meaningful in those particular domains. Edges

may also be assigned weights representing the “cost” of traversing between the two linked

graph nodes.

2.6.4 Attribute Type Graphs

Attributes can be associated to nodes and edges of a graph. In this regard, nodes can

be categorised into (actual) graph nodes and the attribute nodes. The attribute nodes

26

can represent some property/data about the content represented by a graph node/edge.

The attributed graphs with the notion of typing lead to a category of attributed graphs

typed over an attributed type graph [Ehrig et al., 2004].

2.7 Summary

The vision of semantic web has two parts. First, to make the web a more collaborative

environment and second, to make the content of the existing web more intelligent, under-

standable and semantically rich so that it can be processed by different agents including

machines. To do so, a number of web languages have been developed including XML,

RDF and OWL. Unlike HTML, the XML language allows to construct user-defined tags

for content description. RDF uses XML-based syntax for adding description to web con-

tent. OWL is the standard language for creation of domain ontologies. It adds further

semantics to the content and makes use of XML and RDF-based content description.

The OWL language comes in three categories, i.e. OWL Lite, OWL DL and OWL Full.

Domain ontologies written in OWL can be stored in different formats. Most common

syntaxes are the Functional style syntax, Manchester OWL syntax, RDF/XML syntax

and Turtle syntax.

An ontology is a set of axioms where classes, individuals, object properties and data

properties are the main components of such axioms. We differentiate between entity

declaration axioms, cardinality restriction axioms and others. Currently, there exist a

number of ontology editing tools. Most of them are based on the OWL API, written

in the Java programming language. The most common of them are Protégé and the

NeOn Toolkit. The consistency of a domain ontology can be checked using ontology

reasoners. These generally are available within an ontology editing toolkit. The most

common ontology reasoners are FaCT++, Pellet, Hermit and RacerPro.

Graphs are the ordered pairs of nodes and edges. They can be used to represent

27

the domain ontologies and the applied ontology changes. Graphs can be of different

types including labeled/unlabeled graphs, directed/undirected graphs, multi graphs and

attributed graphs. In this thesis, we used attributed graphs to represent the applied

ontology changes, discussed in Chapter 6.

28

Chapter 3

Literature review

In the previous chapter, we discussed the research area background, in particular the

ontology web language (OWL), different syntaxes for ontology representation, ontology

constructs and existing ontology editing frameworks. As our main research topic is

ontology evolution, in this chapter we review the related work in terms of the existing

operational and analytical support for the ontology evolution process.

In the first part (Section 3.1), we discuss the ontology evolution in general. We give

a brief summary of the different phases of the ontology evolution process proposed in

the literature. We review the proposed evolutionary strategies that can be utilized for

keeping the ontology (structurally) consistent. In the subsequent two sections (Sections

3.2 and 3.3), we review the operational side of the ontology evolution process. First, we

discuss the ontology change operators proposed in the literature and, later, the recording

of ontology changes, in terms of evolution logs, change logs, ontology versions etc.

In Sections 3.4 and 3.5, we review the analytical support for ontology evolution

in terms of higher-level ontology change identification. In Section 3.4, we look at the

necessity of representation of ontology changes as higher-level change patterns (in the

light of published work). We briefly talk about the frequent subgraph mining and string

matching algorithms in Section 3.5.

29

3.1 Ontology evolution

With the increase in usage of ontologies as a conceptual backbone by a large number of

content-based applications, ontology change management becomes very vital. In terms

of user-driven ontology change management, the requirements of the ontology evolution

include

- ensuring the consistency of ontology and depending artifacts [Stojanovic et al.,

2002],

- supervised ontology change application to support users [Tallis et al., 1999] and

- continual ontology refinement by advising users through evolution process [Noy et

al., 2004].

In this section, we discuss proposed different phases of ontology evolution and briefly

talk about the similarities and the differences between ontology and schema evolution.

At the end, we examine different evolution strategies that can be utilized to meet the

above mentioned requirements.

3.1.1 Different phases of ontology evolution process

Stojanovic [Stojanovic, 2004] proposed a six phase, cyclic ontology evolution process.

The phases include change capturing, change representation, semantics of change, change

implementation, change propagation and change validation.

- Change Capturing : The first stage is to detect the changes. Two types of changes

can be distinguished, i.e. top-down changes and bottom-up changes.

i. Top-down changes are those changes that are explicitly described by the

user in the form of a “change request”.

ii. Bottom-up changes are implicit and must be discovered by examining the

underline data. For example, if some ontology classes are not used for quite a period

30

of time then it is reasonable that such classes are not necessary and are obsolete

and can be removed from the ontology. Such changes help with the continual

improvement of the ontology and symbolize the needs of the evolving domain.

- Change Representation: Change representation is an important phase of ontology

evolution process. Changes must be identified and represented in a suitable format

[Maedche et al., 2002]. The ontology changes are usually described at the atomic

level. However, more often the intent of change is described and visible at a higher

level of granularity. Such higher levels of change representation help in expressing

the objective of the change request explicitly. For example, to merge two classes

c1 and c2, one may perform a list of atomic change operations, i.e.

1. Add class mc.

2. Add subclassOf relationship between mc and superclass of c1 and c2.

3. Transfer all subclasses, properties and individuals (which were earlier related

to c1 and c2) to new class mc.

4. Delete subclassOf relation between c1, c2 and their current superclass.

5. Delete classes c1 and c2.

It is required to merge two classes, but translating such an operation into five

individual change operations (though, steps 3-5 itself are composite changes) leads

to the loss of the intent of change and makes the whole process error prone. For

example, the combination of change operations 1 and 2 exhibits that a sibling of

classes c1 and c2 is added to the ontology, grouping of change operations 1, 2 and

3 depict as copying the classes c1, c2 into mc. Thus, in order to make the intent of

change explicit, it is preferable that changes must be represented at a higher level

in the form of composite changes.

- Semantics of Change: The aim of the semantics of change phase is to resolve

31

any issues that occurred during the application of ontology changes so that the

consistent state of the edited ontology version is preserved. As defined by Sto-

janovic, “a single ontology is defined to be consistent with respect to its model

if and only if it preserves the constraints defined for underlying ontology model”

[Stojanovic, 2004]. Researchers have identified two types of inconsistencies, i.e.

syntactic inconsistency and semantic inconsistency [Qin et al., 2009].

i. Syntactic inconsistencies - also known as structural inconsistencies, arise

due to the existence of orphaned entities in the ontology or invalidation of defined

constraints/restrictions. For example, the deletion of a subclassOf relationship

from a class c, that had a single parent class, will lead to a syntactic inconsistency.

ii. Semantic inconsistency - occurs when the meaning of an entity is changed

or gets ambiguous. For example, removal of object property isCapitalOf as a

domain of class Washington leads to an ambiguity, e.g. whether such class refers

to the city “Washington DC” or to a person “George Washington”. Such kind of

ambiguities leads to semantic inconsistencies and must be removed from the ontol-

ogy. One of the possible solutions is to represent the object property isCapitalOf

as a necessary property for the class. Furthermore, introducing the class City

as a superclass for Washington will eliminate any ambiguity. Another proposed

potential solution is to store the metadata information along with the entities.

In [Stojanovic et al., 2002], the authors identified a number of branch points such

as, what to do with the orphaned classes, what to do with the instances whose

parent class is deleted, what to do with the properties without any domain and

range etc. For each branch point, a number of evolutionary strategies are proposed,

which can be used against the possible inconsistencies. For example, in the case of

any orphaned subclasses of a deleted class c, in order to preserve the child classes,

they can be attached to the parent of deleted class c or to the root class of the

32

ontology. Evolutionary strategies are discussed in detail in Section 3.1.3.

- Change Implementation: This phase aims to provide the details of an ontology

change. That means, what are the requested change operations and what are the

consequences of such a change request (i.e. what other change operations will be

performed along with the change request operations, in order to keep the ontol-

ogy consistent). Such a list of change operations, user-requested or induced, is

provided. A user can either accept the change operation list or cancel it. For

example, a user is willing to delete a class c which contains two individuals as

instances, and also acts as domain of an object property p. Before real imple-

mentation of this change request, a change impact analysis is performed and the

user is informed that to keep the ontology (structurally) consistent, three more

change operations will be induced (i.e. delete class assertions for two individuals

and delete domainOf axiom for object property p). Once the user accepts the

combined list of change operations, the change is applied.

- Change Propagation: The objective of the change propagation stage is to propagate

the applied change request to the ontology instances, dependant ontologies and

other artifacts.

- Change Validation: The last phase in the ontology evolution process is to validate

the applied changes and confirm that once the changes have been applied, the

ontology is back in a consistent state.

3.1.2 Ontology evolution vs. schema evolution

Ontology evolution is closely related to database schema evolution, specifically, to object

oriented databases (OODB). Banerjee and Kim earlier addressed the semantics and

implementation of schema evolution in object oriented databases [Banerjee et al., 1987].

They implemented a prototype, called ORION. They identified schema change taxonomy

33

and described different types of schema level changes in it. This taxonomy of schema

changes is adopted in most of the current schema evolution research for OODBs. One

of the key characteristics of their approach is that the schema evolution is under a set

of properties known as “invariants”. These invariants are the rules to construct the

schema. However, there are a several differences between schema evolution and ontology

evolution [Noy et al., 2004]. A few of them are given as follows:

- In object oriented database, there is clear distinction between schema and instance

level data. However, in many knowledge representation languages (such as RDF),

it is difficult to separate and distinguish between schema and instance level data.

- In the case of object oriented databases, instances and the classes are at different

levels. A user performs a query about the database objects (instances). However, in

the case of ontologies, instances and classes can be used, manipulated and queried

together [Klein, 2004].

- Ontologies can be reused by merging them into other domain ontologies [Sto-

janovic, 2004]. In case of OODB, schemas cannot be incorporated into other

schemas.

- In case of ontologies, reasoning mechanism can be applied. This helps in identifying

the implicit knowledge which is not explicitly given in the domain ontologies.

- In terms of change propagation, the change propagation in OODB is only limited

to the instances whereas, in case of ontologies, the change propagation is not only

propagated to subclasses, direct instances but also on other dependant artifact

which may include, linked ontologies, annotations and other applications [Djedidi

et al., 2010].

- Different strategies can be used in order to meet the user/domain needs and main-

tain the consistency of the ontology [Abgaz et al., 2011].

34

3.1.3 Evolution strategies

To perform an ontology change, different combinations of change operations may lead

to different consistent states of an ontology. Thus, it is not reasonable to limit the user

to resolve the consistency issue in one way only. For example, a user may be interested

in applying ontology changes so that there are a minimum number of effected ontology

entities, while other users may be interested in preserving the ontology instances etc. To

resolve the ontology changes based on a user’s needs, user intervention is necessary.

Stojanovic introduced the notion of evolutionary strategies [Stojanovic et al., 2002],

allowing a user to customize the ontology evolution process according to his/her needs.

A user can choose one of the provided evolution strategy from the list, which meets

his/her requirements. For example, in the case of an orphan property, the property can

be connected to the super properties, can be deleted from the ontology or can be left as

it is.

Two categories of evolutionary strategies has been proposed, i.e. elementary evolu-

tion strategy and advanced evolution strategy.

- Elementary Evolution Strategies - As described by the author, the elementary

evolution strategy EES is a set of possible ways for resolving resolution points.

Resolution points are those points during ontology evolution, from where different

resolution ways lead to different versions of ontology. The resolution ways are the

set of evolution strategies for resolving a particular resolution point. For example,

how to deal with orphan classes is one resolution point and possibilities of linking

the orphan classes to the parent of the deleted class, linking to the root of ontology

or deleting the orphan classes as well, are different resolution ways of such reso-

lution points. The author identified six different resolution points in the ontology

which includes handling of orphan classes, orphan properties, properties without

a domain etc.

35

- Advanced Evolution Strategies - The advances evolution strategies are based on

the real business strategies which automatically combine the elementary evolu-

tion strategies. It defines how the evolving ontology must look like at the end of

the evolution process. For example, single child class is allowed or not, depth of

the class hierarchy should be as small as possible etc. The author classified the

identified advance evolution strategies into structure-driven, process-driven and

frequency-driven strategies.

Some more work with regard to evolution strategies is done by Elmer P. Wach. In

[Wach, 2011], Wach proposed evolution strategies that dictate when and how to evolve

the domain ontology by evaluating the impact of the evolution and without human

intervention. The aim here is to automatically update and evolve the underlying product

domain ontology (PDO), based on the proposed strategies and user feedback cycle.

3.2 Ontology change operationalisation

Change operators are the building blocks of the ontology evolution. The changes in an

evolving ontology are performed using change operators. In order to explicitly provide

semantics of the ontology changes, researchers have emphasized on classifying the on-

tology changes into a number of categories. The purpose of such categorisation is to

define a layered taxonomy of change operators in order to provide adequate support for

ontology users, having different types of background knowledge and reducing the effort

(in terms of time and consistency) required in ontology evolution process.

3.2.1 Elementary, composite and complex change operations

The most prominent categorization of ontology changes is given by Stojanovic [Sto-

janovic, 2004] in the KAON project where changes are separated into three levels of

abstraction, i.e. elementary, composite and complex changes.

36

- Elementary Changes - An elementary change performs an atomic change on a single

entity of the ontology. The examples of elementary change operations would be Add

class, Add individual, Delete subclassOfAxiom etc. Stojanovic argues that

such elementary level change representation is not suitable at all times. In most

often cases, the intent of change is represented at a higher level. If we represent

changes as a sequence of elementary level changes, the intent of change can be

interpreted in different ways and can mislead. Moreover, there is a mismatch in

the objective of change and how the objective is actually achieved. For example in

Figure 3.1, the goal is to split a class Research Student into two, i.e. PhD Student

and MSByResearchStudent, however, the goal can be interpreted differently at

different time slots during the change operations (Table 3.1). The combination of

the first 2 (and the first 4) change operations in the table describes a different intent

of change operations, which is to add a new sibling to class ResearchStudent.

Similarly, different other intents of change operations can be acknowledged through

the process of a composite ontology change.

ResearchStudent

Student

Javed Abgaz Zubair

studentId

PhD_Student

Student

Javed Abgaz Zubair

studentId

MSByResearchStudent

assigned

Course assigned

Course

Figure 3.1: Composite change operation ‘‘Split class’’

To represent the intent of ontology change more explicitly at a higher level, Sto-

janovic proposed composite change operations.

- Composite Changes - A composite change applies changes to the target entity and

37

Change Operations Intent of Change

1 Add class (PhD Student)
Add sibling to “Research Student”

2 Add subclassOfAxiom (Phd Student, Student)

3 Add class (MSByResearchStudent)
Add sibling to “Research Student”

4 Add subclassOfAxiom (MSByResearchStudent,

Student)

5 Add classAssertionAxiom (Javed, PhD Student) Move instance (Javed, ResearchStudent,

PhD Student)

6 Delete classAssertionAxiom (Javed, ResearchStu-

dent)

7 Add classAssertionAxiom (Abgaz, PhD Student) Move instance (Abgaz, ResearchStudent,

PhD Student)

8 Delete classAssertionAxiom (Abgaz, ResearchStu-

dent)

9 Add classAssertionAxiom (Zubair, MSByRe-

searchStudent)

Move instance (Zubair, ResearchStudent, MS-

ByResearchStudent)

10 Delete classAssertionAxiom (Zubair, ResearchStu-

dent)

11 Delete subclassOfAxiom (ResearchStudent, Stu-

dent)

12 Delete class (ResearchStudent) Split class “ResearchStudent”

Table 3.1: Change operations and the intent

its neighborhood. As described by Stojanovic, The neighborhood of a class consists

of its subclasses, superclasses, properties, for which it is specified as a domain or as

a range class, and instances defined for that class. The neighborhood of a property

contains its domain class, range classes, subproperties, superpropeties, instances it

is defined for as well as instances it points to. The neighborhood of an individual

includes its (rdf:type) classes, properties that are instantiated for it as well as

properties that point to it.

Examples of composite ontology changes (related to the class-class relationship)

include Merge classes, Split class, Move up class, Group classes etc. It is not fea-

sible to present a comprehensive list of useful composite change operations, as in

future, different combinations of elementary change operations may lead to new

composite change operations. For example, splitting a class into two and making

38

individuals as instances of both split classes may be extended into splitting a class

into n (more than two) ontology classes and individuals may be split into all n on-

tology classes. Stojanovic argues that some extensions can also be domain-specific,

for example, grouping of subclasses, which are parent of a concrete individual in

an ontology model. Therefore, there exist another higher layer of abstraction of

ontology changes, i.e. complex changes.

- Complex Changes - apply a change that is an arbitrary combination of at least two

elementary and composite ontology changes.

In addition to the classification of ontology changes given above, the author catego-

rized the ontology changes into Additive and Subtractive changes. The additive changes

are those changes which add a new element in the ontology without altering the existing

ontology elements. Whereas, the subtractive ontology change involve the deletion of few

of the existing ontology elements.

3.2.2 Atomic and composite change operations - basic and complex

A similar categorisation of changes for OWL ontologies is given by Klein [Klein, 2004].

The author classifies the OWL ontology changes into atomic and composite types.

- Atomic change operations are similar to elementary change operations that can

modify one single entity of OWL ontology model (e.g. Delete subclassOfAxiom,

Add class). The author states that such atomic change operations can further be

classified as simple or rich in content.

- An atomic simple change operation is a basic change operation that can

be determined from the ontology structure. Adding a new class, properties, indi-

viduals or creating relationships between classes (i.e. subclass, equivalent classes,

disjoint classes) etc. are examples of atomic simple change operations.

39

- An atomic rich change operation is a complex change operation that expresses

the implications of the applied changes. For example, an atomic rich change oper-

ation may specify that the range of property is enlarged (i.e. the range class of a

particular property is changed to the superclass of the original range class).

- Composite change operations are composed of several atomic change operations

and are of complex category. Such composite change operations can also be simple

or rich in content, incorporating the implications of the change operations on the

ontology model (e.g. add subtree, move siblings, restrict domain, merge multiple

siblings, split into multiple siblings etc.).

The major difference between the KAON ontology change classification (given by

Stojanovic) and the OWL ontology change classification (given by Klein) is, that Klein

considers modification as a distinct type of change operation in order to provide complete

specification that allows reversing the changes and is often available in the logs of changes

provided by the tools. Change operation modify takes two arguments, one the old value

and the other the new value. The old value is replaced by a new value.

3.2.3 Atomic, entity and complex change operations

Compared to the above given classification of ontology changes, Palma proposed a

slightly different taxonomy of ontology changes comprising of atomic, entity and com-

posite changes in his proposed generic change ontology [Palma et al., 2009].

- Atomic changes - Palma proposed a lower layer below the elementary change op-

eration layer (as proposed by Stojanovic and Klein) and argues that elementary

(atomic) change operations had been introduced as operations that cannot be sub-

divided into smaller operations; however, such change operations are all at the

entity level. In his change ontology, an atomic change includes the applied ax-

ioms which later at the entity level can be associated to a specific ontology entity.

40

Addition of the class axioms, assertions, declaration, object property axioms are

examples of atomic change operations.

- Entity changes - The next level at the top of atomic changes is the entity level. En-

tity level associates ontology changes to the ontology elements. The changes such

as Add subclassOf, Add disjointClasses, Add inverseObjectProperty are examples

of the entity level change operations as they are linked to a particular ontology

element, which can be class, object property, data type property or individual.

- Complex changes - Similar to the previous approaches, the final level is comprised

of complex changes. Complex changes are groups of entity changes that are applied

together and constitute a logical entity, e.g. merge a set of siblings, group a set of

classes etc. Similar to the past literature, s/he also mentioned that providing an

exhaustive list of composite change operations is impracticable as entity and com-

posite changes can be combined together in different ways to create new composite

changes.

3.3 Ontology change representation

Once changes are implemented in the ontology model, the next step is to log the changes

in a suitable format for explicit ontology change operational representation. In this sense,

ontology change log data is a valuable source of information, based on which domain

ontologies can evolve in order to reflect the changes in the domain, the user requirements,

flaws in the initial design or the need to incorporate additional information [Haase et

al., 2003]. In the past, researchers have opted different approaches to record ontology

changes. We will discuss a few of them below.

41

3.3.1 Evolution logs

Stojanovic chooses evolution logs in order to record the applied changes [Stojanovic,

2004]. An evolution log keeps track of applied ontology changes in the exact order in

which changes have been applied to the domain ontology. In case of any failure, an

evolution log makes ontology recovery possible and is also used for traceability such as

undo/redo functionalities. Each change entry contains the metadata of the change such

as timestamp, author, version etc. The author mentions that as an evolution log is used

for undo/redo functionalities, it is essential to differentiate between applied changes and

the reverted changes. As one change may induce other additional changes to be applied,

the change representation in an evolution log is in a hierarchical tree-like structure

rather than in a linear form. A change which is requested by the user is represented

using property requestedChange, whereas a property causedChange represents the cause-

consequence relationship between a requested and a caused change.

3.3.2 Version logs

Plessers took a different approach and selects a version log in order to represent the

evolutionary aspects of domain ontologies [Plessers et al., 2005]. According to the given

definition, a version log stores different versions of every entity (which includes classes,

properties and individuals) ever defined in a domain ontology. The purpose of a version

log is to keep records of the different phases the entities pass through, from their cre-

ation, modification to deletion. The evolution of an ontology is recorded by preserving

the history of each entity of the domain ontology. Two mechanisms can be used, i.e.

timestamp or snapshot. In the case of timestamps, each ontology change is labeled with

a timestamp which represents the sequence of ontology changes. Using the timestamp

technique also helps in undo/redo functionality. In the case of snapshots, different states

of the evolving ontology are captured by taking the snapshots of the ontology over time.

The history of the ontology is then described by a sequence of snapshots. The snapshot

42

technique can be used in two ways. First, to take a snapshot of the whole ontology

over time and, second, by taking snapshots of each evolving entity over time. Using the

first snapshot approach is very inefficient as one needs to store the whole ontology over

time. Further, one can move from one state of the ontology to the other only and cannot

switch to any state in between the two snapshot versions of the ontology. Thus, the

author has adopted the snapshot approach that keeps records of each version of entity,

instead of the whole ontology.

A version log also keeps records of the time (known as transaction time) when a

new entity is introduced or an existing entity has been modified in the ontology. Each

entity version has a status tag that can be pending, confirmed or implemented. The

Pending state indicates that the change request has neither yet been implemented nor the

consistency check has been made. The Confirmed state points out that the consistency

check has been made, but change has not yet been implemented and the Implemented

state indicates that the consistency check has been made and change has also been

implemented in the public version of the ontology.

3.3.3 PromptDiff - capturing the structural differences

While some researchers have focused on the representation of ontology changes using

change logs, others highlight the evolutionary aspects of an ontology by comparing two

different versions of it. Noy proposed a fixed point algorithm in order to capture the

structural differences between two ontology versions in the absence of ontology change

logs [Noy et al., 2004]. This method compares two versions of the ontology and checks

for each frame that whether ontology A contains any corresponding frame (its image)

in ontology B. The technique represents the results in the form of a table, called the

PromptDiff Table. The PromptDiff table is a set of tuples < F1, F2, rename value,

operation value, mapping level > where F1 and F2 are frames in ontology version 1

and ontology version 2, respectively. rename value is a boolean value which is true if

43

the frame has been renamed, otherwise false. operation value represents the applied

operation which can be either add, delete, split, merge or map. mapping level indi-

cates whether the two frames are different enough from each other and can have value

unchanged, changed or isomorphic. Noy presented a set of heuristics matchers, where

each matcher looks for a particular ontology structure, such as is-a hierarchy, properties

attached to classes. The efficiency of the overall algorithm was enhanced by identifying

the dependency relationships among the heuristics matcher. It was identified that not

all the heuristics matcher are dependent on each other. Thus, as a result, a table was

generated to realize that which matchers affect the other matchers and whom they affect.

The PromptDiff algorithms were implemented as a plugin in the Protégé-2000 on-

tology editing framework. An empirical evaluation strategy was selected in order to

evaluate the algorithm and its results. Different ontology versions of two large projects

(i.e. EON and PharmGKB) were considered as a case study. In total 10 matchers

were used in their experiments and on average each matcher executed 2.3 times in each

experiment. To evaluate the accuracy, only those frames which were changed within

the versions were considered. On average, 96% of the matches between two frames of

the ontology versions were identified. Among them, 93% of the matches were identified

correctly. An important observation to mention here is that the performance of the

algorithm did not decline even if two versions which are further apart from each other

were selected.

3.3.4 Transformation set

Klein proposed a transformation set [Klein et al., 2003] that provides a list of change op-

erations that if applied to the Vold (old version of ontology), the set transforms it to Vnew

(the new version of ontology). Such a transformation set can include elementary change

operations, complex change operations or combination of them. Transformation sets are

different from the basic change logs due to a number of reasons. First, basic change logs

44

contain the record of all the applied changes, however, the transformation sets contain

only the necessary set of change operations for achieving the resulting change. Second,

basic change logs contain the ordered sequence of change operations. In a transforma-

tion set, such an ordering is very limited, which is primarily because all the additive

operations will take place before any other change operation. Third, a change log is a

distinctive representation of the exact applied change operations, whereas there can be

several unique transformation sets that can produce the same resulting change.

3.4 Higher level ontology change identification

Recently, some researchers have focused on detection of higher level generic ontology

changes [Papavassiliou et al., 2009, Groner et al., 2010]. In [Papavassiliou et al., 2009],

the authors proposed a framework for defining changes in a formal language for RDF/S

ontologies which considers change operations (in the form of RDF triples) in both schema

and data. The RDF graph represents knowledge in the form of triples (subject, predicate,

object). A set of all triples in an RDF graph can be given as a cross product.

Triple Set (τ) = U X U X (U ∪ L)

where U denotes the URIs and L repesent the Literal values.

As low-level changes alone may not be enough to fully capture the intuition behind

a change, the authors proposed an algorithm which detects composite changes based

on comparison of two versions of an ontology. For example, we need to capture high

level changes, such as renaming of an entity, generalisation of the domain etc, whose

intuitions are not clear at the low level change representation. To capture the intuitions

behind any change, it is necessary to represent a change at a higher level. As discussed

before, a higher-level representation of a change is preferable than a lower-level one,

as it is more intuitive, concise and closer to the intentions of the ontology editor and

captures more accurately the semantics of a change. The representation of changes at a

45

higher-level can help in checking the validity of the data. For example, if we only know

that the domain of a property is changed we cannot presume anything about the validity

of the existing data. But, if we know that the domain is generalised, we can assume that

the validity of the data is not violated.

3.4.1 Change detection algorithm

In [Papavassiliou et al., 2009], the authors designed a change detection algorithm to

capture the higher-level changes with respect to the proposed formal language. S/he

mentions that the low level change triples can be associated with one and only one high

level change. The author defines the changes ∆ into two categories, the triples that

are added in the new version (∆1) and the triples that are deleted (∆2). Thus, overall

changes in a version correspond to the set of (∆1) and (∆2). A change is a set of addition

changes (∆1), deletion changes (∆2) and the conditions for a certain composite changes

to be true (φ).

Change(C) = (∆1,∆2, φ) (3.1)

The algorithm works as follows: It reads one single low level change and looks for

all potential changes that could lead to a high level change. Once potential changes are

found, for each captured change, it is to determine whether its conditions are satisfied

or not. Based on the satisfied conditions, the set of potential higher level changes are

generated.

3.5 Pattern mining

The mining of sequential patterns was first proposed by Agrawal and Srikant in [Agrawal

et al., 1995] and later, the authors proposed the GSP algorithm based on an apriori

property [Srikant et al., 1996]. Since then, many sequential pattern mining algorithms

46

often based on specific domains [Li et al., 2008, Plantevit et al., 2010, Stefanowski, 2007,

Zhu et al., 2007, Altschul et al., 1990, Zhang et al., 2007] have been suggested.

In the domain of DNA or protein sequences, BLAST [Altschul et al., 1990] is one of

the most famous algorithms. Given a query sequence (candidate sequence), it searches

for a matching sequence from the databases. In contrast, we focus on mining of change

sequences (patterns) from an ontology change database. The MPPm algorithm [Zhang

et al., 2007] focuses on mining frequent gap-constrained sequential patterns in a single

genome sequence. In [Zhu et al., 2007], the authors proposed the MCPaS algorithm to

answer the problems of mining complex patterns with gap requirements. Similar to our

approach, it allows pattern generation and growing to be conducted step by step using

gap-constrained pattern search.

3.5.1 Frequent subgraph mining

Several algorithms focus on graph-based pattern discovery [Inokuchi et al., 2000, Yan et

al., 2002, Kuramochi et al., 2001, Huan, 2006]. In [Inokuchi et al., 2000], the author pro-

pose an apriori-based algorithm, called AGM, to discover frequent substructures. In [Yan

et al., 2002], the authors proposed the gSpan (graph-based Substructure pattern mining)

algorithm for mining frequent closed graphs and adopted a depth-first search strategy. In

contrast to our work, their focus is on discovering frequent graph substructures without

candidate sequence generation. A chemical compound dataset is compared with results

of the FSG [Kuramochi et al., 2001] algorithm. The performance study shows that the

gSpan outperforms FSG algorithm and is capable of mining large frequent subgraphs.

The Fast Frequent Subgraph Mining (FFSM) algorithm [Huan, 2006] is an algorithm

for graph-based pattern discovery. FFSM can be applied to protein structures to derive

structural patterns. Their approach facilitates families of proteins demonstrating similar

function to be analyzed for structural similarity. Compared with gSpan [Yan et al., 2002]

and FSG [Kuramochi et al., 2001] algorithms using various support thresholds, FFSM

47

is an order of magnitude faster. gSpan is more suitable for small graphs (with no more

than 200 edges).

3.5.2 String matching algorithms

String matching is a fundamental part of text processing applications and databases.

String pattern matching is similar to ontology change pattern matching in database,

where a single word of the input string may refer to a single atomic change operation

of the domain ontology. Given an input text string s = s1, s2 · · · sm of length m, and

a pattern string p = p1, p2 · · · pn of length n, a string matching algorithm finds the

instances of the pattern p in the text string s. A number of string matching algorithms

have emerged with time. Frequently used algorithms include Brute Force, Boyer-Moore,

Knuth-Morris-Pratt (KMP) and Karp-Rabin.

The simplest string matching algorithm is Brute Force. Starting from the first char-

acter of the given text string s, algorithm matches the first character of the pattern p.

If the match is confirmed, the algorithm matches the remaining characters of the string

using an iteration process. If the match fails during an iteration, the algorithm slides

over one character ahead in string s and again starts the iteration from the first char-

acter. If the complete pattern string match is found, the algorithm returns the starting

location of the pattern in string s.

Our algorithms for ontology change pattern identification differ from the brute force

algorithm in the sense that we first iterate over the complete change log graph once and

identify the locations of the seed (i.e., the locations in the change log graph from where

a matched change sequence w.r.t. the referenced change sequence may start). Once such

seed locations are identified, similar to the brute force algorithm, we perform the step

by step matching task which includes comparing the change operation, change element

and parameter types. Further, we introduce the notion of node-distance that allow us

to define the search space for a match. The metrics and the change pattern mining

48

algorithms are discussed in detail in chapters 6, 7 and 8.

3.6 Discussion

In this chapter, we discussed different phases of ontology evolution including change

capturing, change representation, semantics of change etc. The ontology changes are

categorized into top-down and bottom-up changes. The top-down changes are explicitly

defined by the ontology engineers. Whenever there is a change in the domain, underlying

domain ontologies need to be evolved accordingly. Bottom-up changes can only be

identified through observations. One can exploit the ontology query log and can learn

which classes or the areas of the domain ontology are more frequently visited. Based

on such knowledge, the ontology engineer can add further knowledge in such areas of

the domain ontology. By looking into ontology change logs, one can learn which domain

classes are frequently changed. These changes indicate an evolving conceptualization

of specific domain classes. Furthermore, change patterns can be identified from the

ontology change logs (discussed in Chapter 7 and 8). In contrast, those classes of the

domain ontologies which are not visited for a period of time can be considered as obsolete.

Data mining approaches can be explored for such knowledge extraction processes (c.f.

Section 6.1). Graphs are useful here as they support and can communicate information

visually (c.f. Section 6.2).

Many evolution tasks cannot be applied using a single ontology change operator

and requires a combination of them. Though, higher-level change operators have been

suggested in the past (discussed in Section 3.2), changes are usually represented at the

atomic level. To date, no ontology editing framework exist that allows users to perform

and record ontology changes at a higher level of granularity. For each composite change

to be performed, ontology engineers need to utilize atomic level change operations. This

has a major impact on the ontology change operational cost in terms of number of steps

49

to be performed (c.f. Section 9.2.3.2). Furthermore, performing each step manually

makes the whole process error prone and leads to a risk of loss of ontology consistency

and validity of instances [Qin et al., 2009]. Evolution strategies have been proposed in

the past that help in resolving the consistency issues [Stojanovic et al., 2003]. These

evolution strategies can only be applied at the atomic level and can resolve consistency

issues at the structural level. For example, they can resolve the consistency issue of an

orphan class by attaching it to the parent class or to the root class. However, “what to

do with the subclasses, properties and individuals when a class is split into two sibling

classes”, “what to do when a class is pulled down in the class hierarchy and becomes a

subclass of an earlier disjoint sibling class” etc. are still open issues. Such observations

lead to our proposal, that evolution strategies are required at each level of granularity

of ontology change operators (c.f. Section 7.3).

Different approaches have been used in order to record the ontology changes. One can

utilize the evolution logs, where the applied ontology changes are recorded in the form

of a sequence. As evolution logs record every single applied change including requested

and caused changes, they can also be utilized for undo/redo functionalities or recovery

processes. In contrast, version logs record the different versions of the ontology. Here, one

can identify the difference between two versions. However, such representation does not

illustrate how one reaches a version of the ontology. Different sets of change operations

can be performed to reach a final version of the ontology. Another approach is to record

structural differences between two versions of the ontology, rather than recording the

complete ontology versions. Such an approach is more useful and preferable in case of

large size domain ontologies. Again, similar to the version logs, structural differences

between two versions of the domain ontologies illustrate the differences between the

two versions, but what changes are actually been performed (that lead to differences)

are missing from the representation. Another possibility is the transformation sets that

record the necessary set of ontology change operations that, if applied to previous version

50

of the domain ontology, will lead to the current version.

Similar to change operationalisation, the techniques to log the ontology changes

record them at the atomic level. Though, few of such ontology change representations

are complete (i.e. evolution and version logs), the intent of change request is not explicit

and requires considering the applied ontology changes in a composite setup. A higher-

level change log approach can fill this gap and can present the intent of change request

explicitly (discussed in Chapter 5). Such higher-level abstraction of applied ontology

changes helps in a comprehensive understanding of ontology evolution.

Similar to the higher-level change operators discussed in this chapter, composite

change operators are suggested in our research. These change operators are generic

and can be applied to any domain ontology. Higher-level ontology change operators are

useful at the structural level. However, we believe that the changes at a higher level

of granularity, which are frequent in a domain, can be represented as domain-specific

patterns (discussed in Chapter 4). These change patterns are based on the viewpoints

and activities of the users. They can either be explicitly defined by the users (user-defined

change patters) or can be identified from the ontology change logs (usage-driven change

patterns). Pattern mining approaches are required to identify such change patterns from

the ontology change logs. In this regards, graphs are very useful to represent the change

log data and to identify patterns from them. A number of graph-based pattern mining

approaches already exist (a few are discussed in Section 3.5). These techniques need to

be adapted and cannot be directly applied. One of the reason is the existence of type-

equivalent ordered and unordered change sequences in ontology change logs (discussed in

Chapter 6). Differences in two type-equivalent change sequences lead to sequence gaps

[Zhang et al., 2007, Li et al., 2008]. Such sequence gaps have to be identified and dealt

accordingly.

51

Chapter 4

Pattern-based framework of

change operators

Change operationalization is a vital part of the ontology evolution process. In this

chapter, we define a layered change operator framework, consisting of lower-level change

operators and higher-level change patterns, that deals with ontology evolution, and

in particular change customization and operationalisation. We identify four different

levels of change operators based on the granularity, domain-specificity and abstraction

of changes. The bottom two layers present the generic atomic and composite change

operations. While compositional changes have been considered in the past, we added

a domain-specific perspective through domain-specific change patterns that link the

structural changes to the aspects represented in the domain ontologies. The top two

layers present the domain-specific change patterns and the abstractions of such change

patterns. Abstractions of the change patterns provide support for the transferability

of the change patterns to a similar domain. We also present a coherent treatment of

preservation of constraints throughout the compositional layers.

The chapter is structured as follows: In Section 4.1, we introduce the ontology change

operations as the building blocks for ontology change management. In Section 4.2, we

52

discuss the proposed layered change operator framework using some examples from the

university administration and database systems domains. In Section 4.3, we introduce

the constraints (data/value restrictions) that can be applied at each level. We conclude

by giving a small summary at the end of the chapter.

4.1 Introduction

Ontology change operators are the building blocks of ontology evolution. Different lev-

els of change operators have been suggested in the past [Stojanovic, 2004, Klein, 2004,

Palma et al., 2009]. Such levels include atomic, composite and complex change opera-

tions. Atomic level change operations perform a single change on a single entity of the

ontology. Such change operations can either add or delete an axiom (related to a target

entity) from the domain ontology. Composite change operations are performed on the

core building blocks (i.e. classes, properties and individuals) of the ontology hierarchy.

They perform a set of atomic changes on the elements of the ontology hierarchy. “Mod-

ification” change operations (such as, renaming a class) are not considered here. At a

fine-grained level, they are actually a combination of add and delete change operations

and, thus, are considered as a composite change operation. Complex change operations

perform changes in the ontology hierarchy at an arbitrary level.

In large domain ontologies, as a single change may violate multiple (structural and

semantic) consistency constraints [Qin et al., 2009] due to its diverse and cascaded impact

on other ontology elements and artifacts, manual ontology maintenance is error-prone,

time consuming and, thus, not practically valid. Furthermore, as the domain experts

normally are concerned with the evolution of information systems as a whole, they often

have little knowledge of the ontology-based domain modelling. This restricts the usage

of ontology change operations to ontology engineers only and reduces their usability.

A semi-automatic approach with proper human intervention (in terms of selecting

53

change parameters and evolution strategies [Javed et al., 2012a, Stojanovic et al., 2002])

is the solution undertaken here that resolves the issues of time consumption and consis-

tency management of the domain ontologies. The functional suitability and the adequacy

of the solution are the core challenges for the proposed solution. The usage of ontology

change operations may be extended to the domain experts and content managers. Higher

level change operations can be applied to represent the semantics (intent) of the applied

changes at a higher level. Further, constraints (c.f. Section 4.3) can be deployed at each

level of change operations in order to keep the structural and semantic correctness of

the underlying domain ontologies.

4.1.1 Introduction of case study domains

In this section, we briefly discuss the domains being used in the empirical case studies

for the analysis and evaluation of our research work.

The main objective here is to study, identify and classify the changes that occur in

the domain ontologies. As case studies, the domains university administration, database

systems and software application were taken into consideration.

- The “university” as a domain represents an organisation involving people, organi-

zational units and processes. The university ontology covers the core constituents

of the domain which includes students, faculties, departments, schools etc. We con-

sidered Dublin City University (DCU1) as our case study and we conceptualized

most of the activities and the processes in DCU for the construction of the domain

ontology. Currently, the ontology consists of 61 classes, 22 object properties, 15

data properties and more than 450 individuals. In the university ontology, the

changes are frequent at instance level due to employees joining or leaving, the in-

troduction of new courses, student enrolment or graduation etc., but do also occur,

albeit more irregular at schema level such as the introduction of a new employee

1www.dcu.ie

54

type, opening of new department etc. We distinguish between the schema-level

and instance-level data of university ontology. We record the instance-level data

(i.e. owl individual declarations and class/property assertions) into a separate

RDF triple store. For our case study and pattern mining experiments (discussed

in Chapter 8), we gathered the data of the faculty members, research students and

administrative staff at the School of Computing2 at DCU. The university ontology

was developed by our research team.

- The “database systems” is a technical domain ontology that can be looked at from

different perspectives - for instance being covered in a course or a textbook on the

subject. The database textbook ontology was derived from the taxonomy arising

from the table of content and the index [Elmasri et al., 2006]. Different database

classes, such as relational algebra, relational calculus, database languages, etc. are

specified in the database textbook ontology. In the database textbook, we iden-

tified a number of relationships between the different sections. For example, the

prerequisite relationship among the different chapters, i.e. the topics covered in a

chapter are necessary to understand the advanced topics available in another chap-

ter (broader/narrower relationships). Such observations helped us in constructing

the database course outline ontology. The technical database domain ontology was

developed by the domain experts.

- The “software application” domain ontology is based on our work with an indus-

trial partner where we took a content-centric perspective of a software application.

The application system is a content management and archiving system. We specif-

ically focused on the help system of the software application which contains help

files. These help files contain a number of task components such as archiving,

searching, sorting, messaging etc. One can find the key entities, such as GUI ele-

2www.computing.dcu.ie

55

ments, commands, procedures, role etc. of different software components in these

help files. We identified such entities from the help files and added them to the

software application domain ontology, constructing a class hierarchy. Furthermore,

the software application domain ontology was extended by looking into the help

management of the application as it contains the key components to provide def-

initions and solutions in the form of procedures, corresponding to the problems

encountered in the software system.

More details about the empirical case study and the results are given in Chapter 9.

The case study domain ontologies in RDF/XML format are given in appendices D - F

. In the next section, while describing the layered change operator framework, different

examples from the university and database domain ontologies are discussed.

4.2 Framework of change operators and patterns

Changes have to be identified and represented in a suitable format to resolve ontology

change management issues [Oliver et al., 1999]. An explicit representation of ontology

changes allows one to clearly analyze and understand a change request. A change in

an ontology reflects the flaws in the earlier conceptualization of a domain, addition of

new classes in the domain, removal of outdated classes from the domain etc. Based on

our observation of common changes in all versions of the domain ontologies (c.f. Section

9.2), we studied the patterns they have in common, resulting in a framework of change

operators (Figure 4.1):

- level one: elementary changes which are atomic tasks.

- level two: aggregated changes to represent composite, complex tasks.

- level three: domain-specific change patterns.

- level four: abstraction of the domain specific change patterns.

56

Level 1: Atomic Change Operators

Level 2: Composite Change Operators

Level 3: Domain-Specific Change Operators

Level 4: Abstract Change Operators

Patterns

Operators

Abstract

Domain-Specific

Generic

Figure 4.1: Different levels of change operators

The operators in level one and level two are similar to the types of change opera-

tions identified by Stojanovic [Stojanovic, 2004]. These change operators reflect generic

structural changes; however, the change operators in level three and level four need to be

customized (domain-specific change patterns). We observed that ontology changes are

driven by certain types of common, often frequent changes in the application domain.

Therefore, capturing these in the form of common and regularly occurring change pat-

terns creates domain-specific abstractions. An example of such an abstraction from the

university ontology domain is given in Figure 4.2. A number of basic change patterns

may be provided so that users may adapt and generate their own change patterns to

meet the domain demand. This makes the ontology evolution faster and easier. The

dots at each level in Figure 4.2 represent that change operators are extensible.

Below, we discuss the layered change operations in general, using examples from the

case study domains, for better clarification. More formalization of the layered change

operations will follow in Chapter 5.

4.2.1 Generic structural levels

The first two layers of change operations are generic. These layers include atomic and

composite level change operations. As these change operations are generic, such change

operations can be used on any specified domain ontology. Below, we discuss each layer.

57

Add Class

Add
subclassOf

Delete
Class

Delete
subclassOf

Add Object
Property

Delete
Object

Property

Add
Individual

Delete
Individual

.....

Integrate Class
Context

Integrate
Property Context

Remove Class
Context

.....
Integrate
Individual

Merge MoveCopySplit

LEVEL 1

LEVEL 2

LEVEL 3

Manage Faculty Manage Student
Research Student

Registration
Add New

Department
.....

Mange Person
Manage

Structure
.....

LEVEL 4

.....

Figure 4.2: Architecture of layered change operators (university ontology)

4.2.1.1 Level one - atomic changes

Definition 4.1: Level one change operators are the atomic operators that can be used to

perform a single ontology change. These operators add or remove a single axiom about

a target entity in the domain ontology. A single change operator performs a single task

that can add a single class, a single property or delete a single cardinality axiom, etc.

One can identify the atomic change operations based on the constituent components

of the ontology. In terms of RDF triples, an atomic change can be represented using a

single RDF triple. The subject and the objects of such RDF triple can be the named

entities or the blank nodes (that point to other resources). An example of atomic change

could be addition/deletion of a declaration axiom.

58

Example 4.1: Every defined class in a domain ontology is (at least) a subclass of

owl:Thing. This can be accomplished using classDeclarationAxiom. However, in order

to create a new class as a subclass of an existing one, implementation of such change

operation alone is not sufficient. To do so, the change operations are always applied in

a set where a class is declared in the ontology and added as a subclass of an existing

class in the class hierarchy. For example, one can create a new class PhD Student as a

subclass of Student by using two atomic level change operations (Figure 4.3):

- creating a class PhD Student using Add classDeclarationAxiom(PhD Student)

and

- making PhD Student as a subclass of Student using Add subClassOfAxiom

(PhD Student, Student)

Student

Person

Student

Person

PhD_Student (1)

(2)

Figure 4.3: Atomic level change operations

4.2.1.2 Level two - composite changes

Many evolution tasks cannot be done by a single atomic change operation. A sequence

of atomic change operations, defining a generic change pattern, is required. In terms

of defining a composite change operation, there are two main approaches prominent

in the literature. In the first approach, a user can combine different atomic change

operations in different numbers depending on the specific goal in an ontology evolution

situation. Such specific goals may come with their own set of atomic change operations

59

and represent a “mental” operation [Klein, 2004]. Adding disjointness among the sibling

classes (addDisjointness), stating that all individuals are different (allDifferent)

or moving siblings (moveSiblings) are examples of such an approach. In the second

approach, a composite change specifies a target entity in the form of “context” of the

change and modifies (creates, removes or changes) the neighborhood of that target entity

in the domain ontology [Stojanovic, 2004]. Such composite changes can be identified by

looking into the neighborhood of any ontology entity. Splitting a class into two or more

sibling classes (Split class), moving a property higher in the class hierarchy (Pull

up property) or merging two or more classes into one (Merge classes) are examples

of such an approach. In our research, we adopted the first approach as the composite

change operations identified using second approach are actually a subset of the former.

Definition 4.2: We consider the composite change operations as generic change patterns

that are identified by grouping atomic change operations to perform a composite task.

For example “Remove Class Context” not only deletes a class from the class hierarchy,

but also deletes all its roles3. To delete a single class Faculty in the university ontology,

removing the class from the class hierarchy is not sufficient. Before we remove the class,

we have to remove it from the domain and the range of properties like hasPublication

or supervises that are attached to it. In addition, we need to either delete its subclasses

(cascade delete) or attach them to the parent class. Depending on this context of an

element, we use different operators from level one, resulting in a generic change pattern.

Example 4.2: In the database teaching domain, if an instructor wants to add a single

chapter SQL to his/her course outline, the operator “Integrate Class Context” can be

used. For example,

- create class SQL using Add classDeclarationAxiom(SQL)

3a role is an ontology axiom by which an entity (Class, Property, Individual) is attached to another
entity of the domain ontology.

60

- make SQL subclass of QueryLanguage using Add subClassOfAxiom (SQL,

QueryLanguage)

Example 4.3: If an ontology engineer wants to merge two or more classes, the opera-

tion requires operators higher than the “Integrate Class Context”. For example, if the

ontology engineer wants to combine two sibling categories of students, i.e. PhD Student

and MSStudent, into one single class ResearchStudent, the Merge classes composite

change pattern can be used (Figure 4.4).

Merge classes((PhD Student, MSStudent), ResearchStudent):

- Integrate Class Context by creating class ResearchStudent using

Add classDeclarationAxiom(ResearchStudent) and then adding a subclass re-

lationship using Add subClassOfAxiom(ResearchStudent, Student)

- Add Object Property Domain by adding domain ResearchStudent to affiliatedTo

using Add domainOfAxiom(affiliatedTo, ResearchStudent)

- Add Object Property Range by adding range ResearchStudent to isSupervisorOf

using Add rangeOfAxiom(isSupervisorOf, ResearchStudent)

- Remove Class Context by deleting class PhD Student using Delete Class

(PhD Student) and then deleting class MSStudent using Delete Class (MSStudent)

PhD_Student

Student Student

ResearchStudent (1)

(2)

MSStudent

affiliatedTo isSupervisorOf isSupervisorOfaffiliatedTo

(3) (4)

Figure 4.4: Composite level change operation ‘‘Merge classes’’

61

4.2.2 Domain-specific level

4.2.2.1 Level three - domain-specific change patterns

Definition 4.3: Level three change operations link the structural changes to the domain-

specific aspects represented in the domain ontologies. In order to execute a single

domain-specific change pattern, operations from level one and two are used. In ad-

dition, level three is constructed on the perspectives we identified in the construction

stage of the domain ontologies. The change patterns are based on the viewpoints and

activities of the users. Two users may have different perspectives to view the domain

ontology which results in the use of a different combination of operations from level one

and two. As the perspectives are different, the number of operations or the sequence

of operations might differ. This difference results in patterns of change based on the

perspectives of the ontology engineers.

Below, we discuss a few examples from our case study domains.

Example 4.4 - database systems: In the database system domain, the different perspec-

tives we mentioned define their own patterns. From the teaching perspective, “manage

chapter” has a pattern of calls such as create class “chapter X” for a specific topic, create

properties such as “isRequiredBy”, “isAlternateTo” and “isBasedOn” to sequence topics

in a course. From the perspectives of an author, a pattern to create class “chapter X”

and Pull Up Class “chapter X” is often used. A technology domain expert only needs

to include the technology as a new class and calls to create a class “new technology”.

Level three operators enable us to treat domain-specific operations separately and

allow an ontology engineer to define his/her own change patterns once, which can be

executed many times. For example, an instructor wants to manage the contents of

his/her database course. S/he has different ways of managing the chapters by adding new

chapters, altering the prerequisites, merging or splitting the chapters or a combination

of one or more of the above.

62

Example 4.5 - university administration: In the case of the university administration

domain, level three may contain change patterns such as “manage faculty”, “open new

department” or “PhD student registration”. If a user needs to register a new PhD student

in the university, then s/he creates a new individual of class “PhD Student” and assigns

a student id, email id, supervisor and department to him/her.

PhD Student Registration (John,‘‘5810638’’,‘‘john2@dcu.ie’’,Gray,Computing)

- Integrate Individual Context by creating a new individual ‘‘John’’ using

Add Individual(‘‘John’’) and then

Add classAssertionAxiom(John, PhD Student)

- Assign a student id using

Add dataPropertyAssertionAxiom(John, studentId, ‘‘5810638’’)

- Assign an email id using

Add dataPropertyAssertionAxiom(John, emailId, ‘‘john2@dcu.ie’’)

- Assign a faculty supervisor using

Add objectPropertyAssertionAxiom(John, hasSupervisor, Gray)

- Assign a university department using

Add objectPropertyAssertionAxiom(John, isMemberOf, Computing)

Example 4.6 - university administration: In the case of a new managerial employee

joining the university, the user can create a new individual of class “StaffMember” and

assign the department, email id and supervisory function to him/her.

Joining of a new Employee (Mark, Registry, ‘‘a.mark@dcu.ie’’, Finance)

- Integrate Individual Context by creating a new individual ‘‘Mark’’ using

Add Individual(‘‘Mark’’) and then

Add classAssertionAxiom(Mark, StaffMember)

63

- Assign a department using

Add objectPropertyAssertionAxiom(Mark, isMemberOf, Registry)

- Assign an email id using

Add dataPropertyAssertionAxiom(Mark, emailId, ‘‘a.mark@dcu.ie’’)

- Assign a supervisory function using

Add objectPropertyAssertionAxiom(Mark, isDirectorOf, Finance)

The change pattern mentioned above is domain-specific and can be reused at instance

level for the addition of new faculty or managerial employees. However, these variations

are similar within a domain. A generic employee change pattern with common operations

emerges (Level four change pattern).

4.2.3 Abstract level

4.2.3.1 Level four - generic categorisation

Definition 4.4: Level four change patterns are constructed based on the abstraction

of the domain classes in level three. The main objective of introducing this level is to

provide a facility that allows us to map domain-specific ontologies to existing upper level

ontologies (i.e. categorizing domain classes in terms of abstract ones) and that helps to

generalize and transfer patterns to other domains.

Example 4.7: The university administration ontology can be mapped and linked to any

other organization that has a similar conceptual structure. In the university domain, one

can identify classes such as students, faculties and employees; a production company may

have employees, customers, owners or shareholders. Level four provides an abstraction

to represent all these classes using a general class “Person”. In a similar fashion, the

university system has research groups, departments, and committees; whereas a company

may have research groups, departments and board of directors. We can abstract them

64

as “Structures”. Furthermore, we have admission, examination, teaching, auditing in

a university system and production, auditing and recruitments in an organization. We

can abstract them to “Processes”. In the database systems ontology, one can identify

relational algebra, relational calculus and SQL classes, whereas an ontology for Java

programming may have classes such as control statements, class and thread. Level

four provides an abstraction to represent all these classes using a general class such as

“Theory”.

The benefit is the reuse of domain-specific patterns and their re-purposing for other,

related domains, i.e. the transfer between domains. Level four provides a common ground

to link the ontology with existing higher-level ontologies such as the Suggested Upper

Merged Ontology (SUMO4) or MIddle Level Ontology (MILO) that provide the bridge

between domains. It provides change patterns that can be applied to any subject domain

ontology that is composed of a similar conceptual structure. Level four is constructed

on top of level three and level two. Figure 4.2 represents the architecture of how the

four levels are integrated and interconnected to each other.

This can actually be seen as part of the evaluation, where genericity and transferabil-

ity are important criteria. Level four is actually a framework aspect that guides transfer

of patterns to other domains (rather than being of specific importance for the user of a

concrete application ontology).

4.3 Consistency constraints

The evolution of the domain ontologies with time is inevitable. Importing new classes

into a domain, change of the conceptualization of a domain, adaptation to different

applications etc. cause the execution of changes [Liang et al., 2005]. As the domain

ontologies contain the commonly shared knowledge about a domain, the ontology evolu-

4Available at http://www.ontologyportal.org

65

tion process must maintain the consistency of the domain ontology and its entities. The

consistency of the domain ontology can be preserved by introducing constraints at each

level of change operators. These constraints are the conditions imposed on the structure

of the domain ontology and the value restrictions for any specific ontology entity. The

constraints not only aid in preserving the structural consistency of the domain classes,

but also assist to keep the semantic consistency [Qin et al., 2009] at the domain-specific

and abstract level.

Similar to our categorisation of change operators, we subdivided the constraints into

generic, domain-specific and abstract (Table 4.1). As the change operators at level

one and two are generic, the constraints introduced at these levels are the conditions

to keep the structural consistency of the domain ontology (i.e. structural consistency

constraints). As structural consistency constraints are not part of any specific domain,

they can be introduced in the form of customizable evolution strategies [Stojanovic,

2004] in any ontology editing toolkit. The constraints at level three are domain-specific

and can be utilized to keep the semantic consistency of the domain ontology entities

(i.e. semantic consistency constraints). As semantic consistency constraints are domain-

specific, they are part of the domain ontology and can be introduced in the form of value

restrictions, cardinality restrictions, property characteristics etc.

4.3.1 Generic structural constraints

The consistency constraints at the generic level of layered change operator framework

(i.e. level 1 and level 2 change operations) are used for keeping the structure of the

ontology consistent according to the requirements of the user. For example, having a

user-defined constraint that “a parent class cannot be a subclass to any of its child

classes” ensures that there is no cyclic structure in the ontology hierarchy. A few of

such generic consistency constraints are already defined in the existing ontology editing

frameworks. “A class without any defined parent class (i.e. orphaned class) is always a

66

Type Constraints Example

Class fan-out A class cannot have more than four sub-
classes

Subclass
Depth

A superclass cannot have a depth of more
than five subclasses.

Generic structural
constraints for Level
1, 2.

Loopback
Constraint

A broader class cannot be narrower to any
of its subclasses.

Orphaned
Classes

Every defined class is at least a subclass
of owl:Thing.

Value Con-
straint

Age of any faculty member must be be-
tween 25 and 60.

Domain-specific re-
striction constraints
for Level 3.

Participation
Constraints

A student cannot take more than 6 courses
a semester.

(university adminis-
tration)

Participation
Constraints

At least 15 elective courses must be offered
in the final year of each undergraduate de-
gree.

Cardinality
Constraints

A person cannot have more than one birth
date.

Abstract restriction
constraints for Level
4.

Cardinality
Constraints

An organization department cannot have
more than one Head.

Value Con-
straints

The instantiation for the property age
may have only positive integer values.

Table 4.1: Examples of consistency constraints

subclass of owl:Thing” and “an entity of the domain ontology cannot be deleted until

all its roles are deleted”, are the examples of such already defined constraints.

4.3.2 Domain-specific restriction constraints

The consistency constraints at level three of the change operator framework are domain-

specific. They are directly applicable to the underlying domain of the ontology. Most

of such constraints are defined either on the relationship restrictions among the defined

classes (i.e. participation constraints) or on the values of the property instantiations

at the instance level (i.e. value constraints). “A student cannot register for more than

67

6 courses in a semester”, “the age of a faculty member must be between 25 and 60”

are examples of level three domain-specific consistency constraints for the university

administration ontology.

4.3.3 Abstract restriction constraints

The constraints at level four of the change operator framework are mainly the abstraction

of the defined constraints at level three. At level four, one may add value constraints

such as, that the data property Age defined for a class Person may only have positive

integer values (value constraint), a person cannot have more than one date of birth

(cardinality constraint), etc.

4.4 Summary

The ontology change operation can be atomic, composite or complex [Noy et al., 2004,

Stojanovic, 2004, Qin et al., 2009]. This indicates that the effectiveness of a change is

significantly dependent on the granularity, how the change operators are combined and

the extent of their effect in the ontology. The impact of the change operators can affect

the consistency of the ontology. Thus, a coherent treatment of the change operators and

their effect on the consistency at each level of granularity becomes vital.

In this chapter, we introduced a framework to deal with ontology evolution through

a framework of compositional operators and change patterns, based on the empirical

evaluation of changes in a number of domain ontologies. We selected the university ad-

ministration (as an organizational domain) and database systems (as a technical domain)

as two key domains of our empirical case studies. The layered change operator frame-

work has been empirically developed by looking into actual changes being applied in

these domains. In this regard, domain experts and ontology engineers have contributed

to the study. Different perspectives were identified based on the different viewpoints of

68

the users that lead us to a layered change operator framework.

We discussed our approach for ontology evolution as a pattern-based compositional

framework. The approach focuses on four levels of change operators and patterns which

are based on granularity, domain-specificity and abstraction. We focus on domain-

specific perspective-linking structural changes in domain ontologies. The changes at

a higher level of granularity, which are frequent in a domain, can be represented as

domain-specific change patterns, which are often neglected by the lower-level composi-

tional change operators addressed in the literature. Thus, while ontology engineers typ-

ically deal with generic changes at level one and level two, domain experts and content

managers can focus on domain-specific change patterns at level three. The abstraction

of level three change patterns enable us to map the domain-specific level to abstract

level and facilitate the smooth linking of domain ontologies with higher level ontologies,

like SUMO and MILO.

We evaluated the proposed framework through empirical case studies, based on the

practical validity and adequacy of the solution (discussed in Chapter 9). The empirical

study indicates that the solution is applicable and adequate to efficiently handle ontology

evolution. Our framework benefits in different ways. First, it enables us to deal with

structural and semantic changes at two separate levels without loosing their interdepen-

dence. Second, it enables us to define a set of domain-specific change patterns. These

domain-specific change patterns can be shared among other domain ontologies that have

similar conceptualizations and specifications (our future work).

69

Chapter 5

A layered log model for ontology

change representation and mining

Ontology-based information models helped researchers to take a step forward from tradi-

tional content management systems (CMS) to conceptual knowledge modelling to meet

the requirements of semantically aware information system. Ontology-based approaches

can be used to capture the architecture and process patterns [Gacitua-Decar et al., 2009].

Research as presented in [Filipowska et al., 2009] and [Hesse et al., 2008] stresses the

contribution of ontologies to conceptual knowledge modelling. In this chapter, we discuss

recording of the applied ontology changes in the form of a change log. Ontology change

log data is a valuable source of information which reflects the changes in the domain,

the user requirements, flaws in the initial design or the need to incorporate additional

information. Ontology change logs can provide operational as well as analytical support

in the ontology evolution process. We utilize an ontology change log in two ways, i.e.

recording of applied ontology changes (operational) and mining of higher level change

patterns (analytical).

We present a layered change log model approach to deal with customization and ab-

straction of ontology-based model evolution. The implementation of the change operator

70

framework (discussed in Chapter 4) is supported through a layered change log model.

The layered change log model at a higher level records the objective of the applied on-

tology changes and supports a comprehensive understanding of ontology evolution. We

look into different knowledge gathering aspects to capture different facets of ontology

change. The knowledge-based change log facilitates the detection of similarities within

different time series, mining of change patterns and reuse of knowledge.

The chapter is structured as follows: In Section 5.1, we present the layered change log

model. We discuss the RDF framework format, that is used to construct and represent

the applied changes in RDF triple-form, in Section 5.2. In Section 5.3, we discuss the

layered change log in terms of recording of applied changes. We talk about the fuzziness

in the structure of higher level change log in Section 5.4. At the end, we give a brief

summary of the layered change log model in Section 5.5.

5.1 Layered change log model (LCLM)

Recording the ontology changes at the atomic level is not sufficient. The atomic level

representation of applied ontology changes can only present addition or deletion of an

axiom from the domain ontology. The representation of intent behind an applied ontol-

ogy change is missing from such a change log and mostly specified/deduced at a higher

level of granularity. It is hard for an ontology engineer to understand why changes were

performed, whether it is an atomic level change or a part of composite change and what

is the impact of such change. Based on Figure 4.1(given in Chapter 4), we propose a

layered change log model (LCLM), containing two different levels of granularity, i.e. an

atomic change log (ACL) and a pattern change log (PCL)- Figure 5.1.

- Atomic change log (ACL): The atomic change log represents an ontology change

using atomic level (level 1) change operations. The benefit of storing ontology

changes at an atomic level is their fine-grained and complete representation. Fine-

71

Atomic Change Operators

(Level 1)

Change Patterns

 (Level 2 & 3)Pattern Change

Log

Atomic Change

Log

Ontology

Engineer

Figure 5.1: Layered Change Log Model (LCLM)

grained representation of ontology changes helps ontology engineers to understand

the impact of the ontology changes at the atomic level. However, in most of

the cases, the ontology changes are being applied as a group. Thus, the impact

of the grouped changes must be identified at a higher level rather than atomic.

One can extract such higher level change operations from the atomic change log,

using pattern matching and discovery approaches, that leads to a comprehensive

ontology change management approach.

- Pattern change log (PCL): Pattern change log represents an ontology change using

higher level (level 2 and 3) change operations, i.e. composite and domain-specific

change patterns. Using the pattern change log, one can capture the objective of

the ontology changes at a higher level of abstraction that help in a comprehensive

understanding of ontology evolution. The intent behind any applied change is more

visible at pattern level as compared to atomic.

The layered change log works with the layered change operator framework presented in

previous chapter. The layered change log model has been used to achieve two purposes,

i.e. change recording and pattern mining.

- recording ontology changes at different levels based on the utilized change operators

- representing operational change log data (discussed in Section 5.3) and

- mining of valuable knowledge such as intent behind any applied change, domain-

specific change patterns etc. from analytical change log data (discussed in Chapters

72

7 and 8).

5.2 RDF framework format

We use the RDF triple-based representation, i.e. subject - predicate - object (spo), to

conceptualize the domain ontology changes in the change logs.

In order to keep a transparent record of applied ontology changes, we record two

types of core metadata, i.e. who performed the change (User) and when the change

was performed (Timestamp). To record such metadata, Provenance Vocabulary Core

Ontology1 terms can be used. In this regard, an ontology change can be considered

as an activity (rdf:type :Activity) that is performed by a certain agent (:Activity

:performedBy :Agent) where an agent can be a user (i.e., :HumanActor) or an applica-

tion (:NonHumanActor). Further, a timestamp can be attached to such activity using the

completedAt datatype proprerty (:Acitivity :completedAt xsd:dateTime). Similar

to the provenance vocabulary core ontology, we constructed a change metadata model2

using the OWL language. As we conceptualize the change metadata model in the form

of an ontology, we use term “change metadata ontology” to represent the change meta-

data model. In order to maintain a fine granular ontology change representation, we

distinguish five different knowledge gathering aspects (five W’s), i.e.

- WHO performed the ontology change (User)

- WHEN the change is performed (Timestamp)

- HOW one can find the particular change in the change list (Session & Change Id)

- WHAT is the change (Operation & Element)

- WHERE particular change is applied in the ontology (Parameters)

1http://trdf.sourceforge.net/provenance/ns.html
2Available at http://www.computing.dcu.ie/∼mjaved/MO.owl

73

The classes and properties available in the change metadata ontology assist the on-

tology engineer to construct the RDF triples, representing an applied ontology change.

Similar to the approaches opted for by [Palma et al., 2009] and [Pedrinaci et al., 2007],

the idea here is to provide a metadata model that is generic, independent and extend-

able to represent the changes of the domain ontologies. We used an RDF triple store

to record the change logs, domain ontologies and change metadata ontology. Thus, all

ontology changes, stored in the ontology change log, are in a form of triples. The main

classes and properties of our change metadata model are given in Figure 5.2.

AtomicChange

CompositeChange

PatternChange

Delete

Group

Classes
Split Class

......

Change

Element

Entity

Axiom

ClassAxiom

Class
Object

Property

IndividualAxiom ObjectPropertyAxiomDataPropertyAxiom

User

xsd:Id

xsd:dataTime

xsd:Id

Thing

hasOperation

sessionId

changeId

Timestamp

......

hasParam

Classes

Properties
where, direction of arrow depicts
domain and range of the property.

Class Hierarchy

Add

hasAtomicChange

ChangeOperation

hasElement

xsd:String

*Entity

PatternParticipants

Restriction

PatternName

PatternPurpose

Individual
Data

Property

Metadata DescriptionChange Data Description

hasCreator

Data

type

hasCompositeChange

Figure 5.2: Change metadata ontology

The central class in the change metadata model is Change. Based on our proposed

change operator framework (c.f. Section 4.2), where we recommended a layered represen-

tation of ontology changes, the class ChangeOperation is subdivided into AtomicChange,

CompositeChange and PatternChange. The metadata details of an applied change,

i.e. session Id, change Id, user and timestamp are given using properties sessionId,

changeId, hasCreator, Timestamp, respectively. The core change data details of any

74

applied ontology change, i.e. operation, element and parameters, are given using ob-

ject properties hasOperation, hasElement (which is further subdivided into hasEntity

and hasAxiom) and hasParam, respectively. The object property hasAxiom is further

categorized into hasClassAxiom, hasObjectPropertyAxiom, hasDataPropertyAxiom

and hasIndividualAxiom. The object property hasParam is further categorized into

hasTargetParam, hasAuxParam1 and hasAuxParam2.

In order to express that the domain-specific change pattern is the combination

of lower level change operations, the class PatternChange is associated to the class

AtomicChange and the class CompositeChange using object properties hasAtomicChange

and hasCompositeChange, respectively. Each stored domain-specific change pattern is

an instance of (rdf:type) class PatternChange. The descriptive data of a change pattern,

such as label, change Id, purpose are given using properties PatternName, changeId,

PatternPurpose, respectively. For each composite or pattern change, its constituent

atomic or composite changes are recorded; however, a complete decomposition is not in-

tended. A reconstruction of lower levels can be facilitated through a pattern/composite

change definition repository to be kept separate from the operational data.

We differentiate between declaration/remover axioms, property restriction axioms

and other axioms. An atomic change can perform three kinds of actions, i.e. (i) ad-

dition/deletion of an entity (declaration/remover axioms), (ii) addition/deletion of a

constraint (restriction axiom) or (iii) addition/deletion of an other (general) axiom.

Therefore, we categorize the class Ontology Elements in change metadata model into

three subclasses, i.e. Entity, Axiom, Restriction. The class Axiom is further divided

into ClassAxiom, ObjectPropertyAxiom, DataPropertyAxiom and IndividualAxiom.

The domain ontology changes can be logged either at the instance level (Abox)

of the change metadata model or can be logged separately in the form of a change

log. In our research, we separate the instance level data from the schema level data.

Thus, the changes being applied on the domain ontologies are stored as RDF triples in

75

ontology change logs. (<Change> <hasParam> <Entity>), (<Change> <sessionId>

<XSD:Id>) are the examples of such RDF triple types.

5.3 Recording of ontology changes

Based on the utilized change operators, the applied ontology changes are recorded at

two different levels of abstraction. If a user employs level one atomic change operators,

the applied changes are recorded in the atomic change log (ACL). ACL is a sequential

change log where each ontology change operation is executed one after the other. If

a user makes use of higher level (level 2 or 3) change operators, the applied change

is recorded as a change pattern in the pattern change log (PCL). Furthermore, for a

complete representation of applied ontology changes, the applied change patterns are

recorded as a sequence of atomic change operations in the atomic change log (Figure

5.3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Recorded PCL

Recorded ACL

pc
1

< 4, 5, 6 ,7>

pc
2

< 11, 12, 13 >

representation of applied
change patterns in ACL

representation of applied
change patterns in PCL

complete fine-grained representation of applied ontology changes

Figure 5.3: Operational setup of ontology change logging

5.3.1 Recording of atomic changes in ACL

The atomic change log reflects the atomic level change representation of the applied

ontology changes. The five aspects, mentioned in the previous section, are combined

76

together to represent a single atomic level ontology change (Figure 5.4).

5.3.1.1 Formalization

Definition 5.1: An atomic change log consists of an ordered list of atomic ontology

changes, ACL = < ac1, ac2, ac3 · · · acn > where n refers to the sequence of ontology

changes in a change log.

Each atomic ontology change is an instance of class AtomicChange of the change

metadata ontology. The change consists of two types of data, i.e. metadata (MA) and

the change data (CA) (Figures 5.2 and 5.4). As we can see in the change metadata

ontology (given in Figure 5.2), the metadata provides the common details of the change,

i.e. who performed the change, when the change was applied and how to identify such

change from the change log. Thus, it can be given as MA = (ids, idc, u, t) where ids,

idc, u and t represent sessionId, changeId, User and Timestamp, respectively. The

change data contains the central information about the change request and can be given

as CA = (op, e, p) where, op, e and p represent the ChangeOperation, Element and

Parameter Set of a particular change. In Figure 5.2, such information is represented

using object properties hasOperation, hasElement and hasParam.

1326367473421 Javed Thu Mar 10 15:52:49 GMT 2011 12997739 Add classAssertion (John, PhD_Student)

Metadata

Change DatasessionId								User																												Timestamp changeId

Operation			Element									Parameter	Set

Figure 5.4: Sample representation of an atomic ontology change

5.3.1.2 Triple-based representation of atomic changes

Based on the atomic level change operation example given in Figure 5.4, the atomic

change log entries for change operation Add classAssertion (John, PhD Student) stored

in the triple store are given in Table 5.1.

77

Table 5.1: Triple-based representation of an atomic change
Subject Predicate Object

MO:12997739 rdf:type MO:AtomicChange

MO:12997739 MO:sessionId “1326367473421”

MO:12997739 MO:hasCreator MO:Javed

MO:12997739 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997739 MO:changeId “12997739”

MO:12997739 MO:hasOperation MO:Add

MO:12997739 MO:hasIndividualAxiom MO:classAssertion

MO:12997739 MO:hasTargetParam University:John

MO:12997739 MO:hasAuxParam1 MO:PhD Student

5.3.2 Recording of change patterns in PCL

The pattern change log refers to the recorded change patterns being applied using higher

level change operations of the layered change operator framework. Such specification of

the applied change patterns help ontology engineers to i) distinguish between the applied

similar changes and ii) in understanding the purpose and consequences of the changes.

5.3.2.1 Formalization

Definition 5.2: A pattern change log consists of an ordered list of ontology change

patterns, PCL=< pc1, pc2, pc3 · · · pcn > where n refers to the number of change patterns

available in a pattern change log.

The change patterns in PCL can either be level two generic composite change patterns

or level three domain-specific change patterns (c.f. Figure 5.1). Similar to ACL, each

ontology change pattern pc consists of two types of data, i.e. Metadata (MP) and

Pattern data (CP). The metadata provides meta-level details about the change pattern

and can be given as MP = (ids, idc, u, t, pu) where, ids, idc, u, t and pu represent the

sessionId, changeId, User, Timestamp and PatternPurpose, respectively. The pattern

data (CP) provides a specification of the involved change operations. Here, CP refers to

the sequence of the change operations available in a change pattern CP = (c1, c2, . . . cs)

78

where s is the total number of change operations in a change pattern.

5.3.2.2 Triple-based representation of change patterns

Similar to the atomic change log, an RDF triple store can be used for recording of

applied change patterns. In this sense, every applied change pattern is being recorded as

an instance of either class CompositeChange or PatternChange, available in the change

metadata ontology. Other common details, such as session Id, change Id, time of the

applied change pattern are recorded using defined object and data properties in the

change metadata ontology. Table 5.2 represents a section of a domain-specific change

pattern log entries, representing the instantiation of a “PhD Student Registration”change

pattern in the university administration domain. Such a change pattern consist of a

number of atomic change operations. First, a new individual “John” is being added

as an instance of class PhD Student. Next, the details about the student Id, assigned

supervisor etc. have been added to the specified student. The application of a change

pattern is a single transaction on a domain ontology. In such a case, either the whole

change pattern will be applied on the domain ontology, or will be discarded (rollback)

completely if the pre and post conditions [Stojanovic et al., 2003] of any of the applied

change pattern are not satisfied.

Figure 5.5 represents how the layered change operator framework (given in Figure

4.2) is mapped into the RDF Schema. The figure consists of three sections. On the left

hand side, the layered change operator framework is given. In the middle, the mapping

of ontology change operators in the form of RDF triples is given. On the right hand

side, the purpose of the specific RDF triples is mentioned.

79

Table 5.2: Triple-based description of (domain-specific) change pattern
Subject Predicate Object

MO:13238651 rdf:type MO:PatternChange

MO:13238651 MO:sessionId “1326367473421”

MO:13238651 MO:hasCreator MO:Javed

MO:13238651 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:13238651 MO:changeId “13238651”

MO:13238651 MO:PatternName “PhD Student Registration”

MO:13238651 MO:PatternPurpose “Purpose is to register a new PhD student in school”

MO:13238651 MO:containAtomicChange MO:12997738

MO:13238651 MO:containAtomicChange MO:12997739

MO:13238651 MO:containAtomicChange MO:12997740

MO:13238651 MO:containAtomicChange MO:12997741

MO:13238651 MO:containCompositeChange MO:12997742

MO:12997738 rdf:type MO:AtomicChange

MO:12997738 MO:sessionId “1326367473421”

MO:12997738 MO:hasCreator MO:Javed

MO:12997738 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997738 MO:changeId “12997738”

MO:12997738 MO:hasOperation MO:Add

MO:12997739 MO:hasEntity MO:Individual

MO:12997739 MO:hasTargetParam “John”

MO:12997739 rdf:type MO:AtomicChange

MO:12997739 MO:sessionId “1326367473421”

MO:12997739 MO:hasCreator MO:Javed

MO:12997739 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997739 MO:changeId “12997739”

MO:12997739 MO:hasOperation MO:Add

MO:12997739 MO:hasIndividualAxiom MO:classAssertion

MO:12997739 MO:hasTargetParam University:John

MO:12997739 MO:hasAuxParam1 MO:PhD Student

MO:12997740 rdf:type MO:AtomicChange

MO:12997740 MO:sessionId “1326367473421”

MO:12997740 MO:hasCreator MO:Javed

MO:12997740 MO:Timestamp “Thu Mar 10 15:52:49 GMT 2011”

MO:12997740 MO:changeId “12997740”

MO:12997740 MO:hasOperation MO:Add

MO:12997740 MO:hasIndividualAxiom MO:dataPropertyAssertionAxiom

MO:12997739 MO:hasTargetParam University:John

MO:12997739 MO:hasAuxParam1 MO:studentId

MO:12997739 MO:hasAuxParam2 “5810638”

80

<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.cngl.ie/ontology/MO.owl#PatternChange> .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#PatternName> "Manage Course Outline" .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#Purpose> "Purpose is to reformulate a course outline"
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#sessionId> "7536902801513" .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#changeId> "1323865264484" .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#hasCreator> <http://www.cngl.ie/ontology/MO.owl#Javed> .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#Timestamp> "Wed Dec 14 12:21:04 GMT 2011" .

<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#containAtomicChange> <http://www.cngl.ie/ontology/MO.owl#13238652644840> .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#containAtomicChange> <http://www.cngl.ie/ontology/MO.owl#13238652644841> .
<http://www.cngl.ie/ontology/MO.owl#1323865264484> <http://www.cngl.ie/ontology/MO.owl#containCompositeChange> <http://www.cngl.ie/ontology/MO.owl#13238652644842> .

<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.cngl.ie/ontology/MO.owl#CompositeChange> .
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#PatternName> "Split Class" .
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#Purpose> "Purpose is to split a class into two or more sibling classes"
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#sessionId> "1326367473421" .
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#changeId> "13587038638632" .
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#hasCreator> <http://www.cngl.ie/ontology/MO.owl#Javed> .
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#Timestamp> "Thu Mar 10 15: 16: 09 GMT 2011" .

<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#containAtomicChange> <http://www.cngl.ie/ontology/MO.owl#1326037295603> .
<http://www.cngl.ie/ontology/MO.owl#13587038638632> <http://www.cngl.ie/ontology/MO.owl#containAtomicChange> <http://www.cngl.ie/ontology/MO.owl#1326037295604> .

<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.cngl.ie/ontology/MO.owl#AtomicChange> .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#sessionId> "1326367473421" .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#changeId> "12997739" .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#hasCreator> <http://www.cngl.ie/ontology/MO.owl#Javed> .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#Timestamp> "Thu Mar 10 15: 52: 49 GMT 2011" .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#hasOperation> <http://www.cngl.ie/ontology/MO.owl#Add> .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#hasClassAxiom> <http://www.cngl.ie/ontology/MO.owl#classAssertion> .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#hasTargetParam> <http://www.cngl.ie/ontology/University.owl#John> .
<http://www.cngl.ie/ontology/MO.owl#12997739> <http://www.cngl.ie/ontology/MO.owl#hasAuxParam1> <http://www.cngl.ie/ontology/University.owl#PhdStudent> .

Level 3: Domain-Specific

Change Operations

Level 2: Composite Change

Operations

Level 1: Atomic Change

Operations Atomic Change

Structure

Composition

Composite Change

Structure

Composition

Domain-Specific

Change Structure

TRIPLES

IN RDF TRIPLE STORE

PURPOSE

OF TRIPLES

CHANGE OPERATOR

FRAMEWORK

consistOf

consistOf

1

n

1

n

n

Figure 5.5: RDF triple store data schema (operational change log data)

81

5.4 Incompleteness in the structure of analytical PCL data

Pattern change logs not only capture the explicitly applied ontology change patterns, but

also the implicit change patterns. In this sense, we distinguish between the operational

(recorded) and the analytical (mined) data of the change log. In terms of the PCL,

the operational data of PCL records the applied pre-defined ontology change patterns,

whereas analytical data of PCL records the ontology change patterns that are mined from

the atomic change log. Figure 5.6 shows the joint information model as a class diagram,

consisting of domain ontology, change metadata ontology, change log and triple store as

core classes of the model. In this section, we focus on the analytical data of the ontology

change log only.

Domain Ontology

- domain classes
- domain Properties
- domain Individuals

Metadata Ontology

- metadata classes
- metadata Properties
- metadata Individuals

RDF Triple Store

- RepositoryId
- Context

storedIn storedIn

Change

- sessionId
- changeId
- Timestamp
- User
- Operation
- Element
- Parameter Set

storedIn

representedIn explainedIn

appliedOn

* 1..*

1 11..* 1

1..*

1..*

1..*

1

1..* 1

1

Change Log

- logId

RDF Triple

- Subject
- Predicate
- Object

1..*

formalize

Figure 5.6: Core classes and their relationships

We utilize graph-based algorithms for change patterns discovery and matching from

the atomic change log and allowed a gap between two adjacent change operations of a

change pattern (i.e. permissible node-distance - c.f. Section 6.3.2). The analytical data

of the pattern change log can be complex due to the overlapping of change patterns and

possible gaps (Figure 5.7).

82

5.4.1 Evolution gaps in PCL

The objective of PCL analytical data is to identify those segments of ontology evolution

where an implicit change pattern is being applied. This leads to the ontology evolution

gaps in PCL. For a comprehensive understanding of the evolution of a domain ontology,

where a user can visualize each step being taken during the ontology evolution, the

user needs to go through the atomic change log. For a higher level of understanding

of ontology evolution, where the change patterns capture the semantics of the ontology

evolution steps, the user can make use of the pattern change log.

1 2 3 4 5 6 7 8 9 10 11 12

pc
1.1

pc
1

pc
2

13 14 15

pc
3

inter-pattern gap
change operations

intra-pattern gap
change operation

partial overlapped
change patten

non overlapped
change patten

complete overlapped
change patten

Discovered PCL

Analytical ACL

pc
1

< 1, 2, 3, 4, 5, 6 >

pc
2

< 6, 7, 9, 10 >

pc
3

< 13, 14, 15 >

pc
1.1

< 1, 2, 3, 4 >

pc
1.2

pc
1.2

< 1, 2, 5, 6 >

complete overlapped change patten
with intra-pattern gap change operations

Figure 5.7: Incompleteness in the structure of PCL (analytical change log data)

PCL contains two types of evolution gaps, i.e. inter-pattern evolution gaps and intra-

pattern evolution gaps. The change operations exist in such evolution gaps are termed as

“evolution gap change operations” - formulating an evolution gap change subsequence.

Identification of such evolution gap change subsequences is necessary for the completion

of the mined pattern change log. In Figure 5.7, each node represents an atomic change

operation recorded in the atomic change log.

83

5.4.1.1 Inter-pattern evolution gaps

As all the atomic change operations recorded in ACL will not be extracted as a part

of any identified change pattern, one can find the gaps between the adjacent change

patterns of an analytical PCL. In Figure 5.7, change operations 11 and 12 are member

of such an inter-pattern evolution gap change subsequence as they are not part of any

identified change pattern of the PCL.

Definition 5.3: For the given atomic change log ACL =< ac1, ac2, ac3 · · · acn > and

the pattern change log PCL =< pc1, pc2, pc3 · · · pcm >, an atomic change operation ack

is the member of an inter-pattern evolution gap change subsequence if

- ack ∈ ACL for k = 1, 2 · · ·n, then

- ack /∈ pci for all values of i, where, i = 1, 2 · · ·m

i.e. ack /∈ PCL

5.4.1.2 Intra-pattern evolution gaps

One of our main objectives of ACL mining is to identify and capture semantically iden-

tical change sequences (in the form of change patterns). To achieve this, we allow a gap

between two adjacent change operations of an identified change pattern sequence, called

“node-distance” (c.f. Section 6.3.2). The maximum allowed node-distance is a user in-

put to the change pattern discovery algorithms. Based on the permissible evolution gap,

there may exist a change operation subsequence in ACL, between two adjacent change

operations of a pattern, which is not part of the identified change pattern sequence. For

example in Figure 5.7, change operation 8 is a member of such an intra-pattern gap

change subsequence as it exists within pattern pc2 in ACL, but is actually not a part of

it (in PCL).

84

Definition 5.4: For the given atomic change log ACL =< ac1, ac2, ac3 · · · acn > and an

identified change pattern pck =< acp1, acp2, acp3 · · · acpm >, an atomic change operation

acpi is a member of an intra-pattern evolution gap change subsequence if

- acpi ∈ ACL for i = 2 · · ·m− 1, and

- pos(acp1) < pos(acpi) < pos(acpm) in ACL, and

- acpi /∈ pck in PCL

Things become more complex when an atomic change operation acts as an element

of an identified change pattern in one case but acts as a evolution gap change operation

in another identified change pattern. For example in Figure 5.7, change operations 3

and 4 act as an element of identified change pattern pc1.1 but as an evolution gap change

operations in case of change pattern pc1.2.

5.4.2 Pattern overlapping in PCL

The change patterns available in PCL can overlap each other. That means, a set of

atomic change operations can exist as part of two or more identified change patterns.

Such overlapping can be either complete or partial.

5.4.2.1 Complete change pattern overlapping

If the sequence of atomic change operations in a change pattern p is actually a subse-

quence of atomic change operations available in an another change pattern q, we can say

that change pattern p is completely overlapped by change pattern q (i.e. change pattern

p is a subpattern of q).

Definition 5.5: For the given two change patterns p1 =< ac1, ac2, ac3 · · · acn > and

p2 =< bc1, bc2, bc3 · · · bcm >, the change pattern p1 is completely overlapped by change

pattern p2 if

85

- ack ∈ p1 for k = 1, 2 · · ·n, then

- ack ∈ p2 for all values of k.

i.e. p2 ∩ p1 = p1.

Example 5.1: In Figure 5.7, change patterns pc1.1 and pc1.2 are completely overlapped

by change pattern pc1.

5.4.2.2 Partial change pattern overlapping

Two change patterns are partially overlapped if they share one or more atomic change

operations.

Definition 5.6: For the given two change patterns p1 =< ac1, ac2, ac3 · · · acn > and

p2 =< bc1, bc2, bc3 · · · bcm >, the change pattern p1 is partially overlapped by change

pattern p2 if

- ack ∈ p1 for k = 1, 2 · · ·n, then

- ack ∈ p2 for at least one value of k.

i.e. p2 ∩ p1 6= ∅.

Example 5.2: In Figure 5.7, change patterns pc1 and pc2 are partially overlapped as

they share the atomic change operation “6” among their change pattern sequences.

5.5 Summary

The impact of an applied change operation can affect the consistency of the ontology.

Thus, a definition of the ontology change operators that supports preservation of con-

sistency and maintenance of overall integrity at each level of granularity becomes vital.

Most of the time, the intent of an ontology change is not explicitly defined in lower-level

86

change operators, thus requires representation of changes at higher levels. A layered

change log framework fills this gap and helps an ontology engineer in explicitly under-

standing ontology changes.

In this chapter, we introduced the layered change log model for explicit operational

representation of applied ontology changes. These layered ontology change logs not only

provide operational support during the evolution of an ontology, but can also be utilized

to extract implicit knowledge, such as change patterns, composite change patterns, causal

dependencies among the ontology taxonomy etc. The atomic changes that perform a

single change on a single entity of the ontology are stored in a lower level atomic change

log (ACL). We utilized five different knowledge gathering aspects (five W’s) in order to

represent a single atomic ontology change. We distinguished between the metadata and

the change data of the atomic change. The metadata refers to the Id of the change, user

and timestamp etc., whereas the change data refers to the change operation, element

and the set of parameters.

The changes on a higher level of granularity are stored as change patterns in the

pattern change log (PCL). The pattern change log represents and captures the semantics

of the applied atomic change operations. To do so, the PCL includes only those segments

of evolution of a domain ontology where a generic or domain-specific change pattern has

been applied. Similar to the atomic changes, we distinguish between the descriptive data

and the pattern data. The descriptive data refers to the metadata of the pattern change

(which includes details of the user, label of the pattern, change Id, etc.) and pattern data

refers to the involved atomic change operations. The structure of the pattern change

log can get complicated due to the existence of overlapping among the identified change

patterns (from ACL) and the evolution gaps.

Ontology changes can be stored in RDF triple format. Such triple-based storage

facilitates the storage of ontology changes at fine-grained level and can easily be queried

using a query language such as SPARQL. One can utilize our pattern mining mechanism

87

in order to extract higher level change patterns from atomic change logs. We extract

the composite changes and the domain-specific change patterns from the atomic change

log, which is discussed in detail in Chapters 7 and 8.

88

Chapter 6

Knowledge extraction from the

atomic change log (ACL)

This chapter acts as an inter-linkage between operational aspects of ontology evolution

(discussed in Chapter 4 and 5) and the analytical aspects (discussed in Chapter 7 and

8). The aim here is to give an overview of our approach and discuss the metrics used

for mining of change patterns from atomic change log (ACL). We discuss a graph-based

formalization of atomic change log data and introduce the metrics utilized for the iden-

tification of sequential abstractions from the change log graph. The algorithms for the

identification of higher level (level two and three) change patterns are not given here

and are discussed in detail in Chapter 7 and 8.

The chapter is structured as follows: In Section 6.1, we discuss the atomic change

log data processing steps. It consists of various stages including data cleaning, session

identification and data transformation. In Section 6.2, we discuss the formalization of

processed atomic change log data into a change log graph. In Section 6.3, we present

the analysis of the ontology change log graph and discuss a number of metrics that are

used for pattern mining. We discuss the mining of the sequential abstractions from the

ontology change log graph in Section 6.4. A brief summary is given in Section 6.5.

89

6.1 Knowledge extraction process

In this section, we discuss the steps taken for the extraction of the higher level change

patterns from the atomic change log. One of the main stages is the data preparation,

which overall consists of several steps including necessary data cleaning and filtering and

data transformation (Figure 6.1). Researchers use different steps in different arrange-

ments based on their viewpoints and requirements. We adopt the main data preparation

steps from knowledge discovery for web log data [Ivancsy et al., 2006, Pabarskaite et al.,

2007]. For our discussion here, we assume that the unnecessary and incorrect entries

from the atomic change log data have been removed.

6.1.1 Data cleaning and filtering

The first task in the data preparation step is the data cleaning and filtering, which

includes filtering and extracting essential features from the ontology change logs and

removing the unwanted data. The definition of unwanted data may vary depending

on the output goals of the change log mining framework. In our case, it includes the

exclusion of auxiliary RDF triples, such as those which provide information about the

number of change operations and parameters in a change request and triples linking the

ACL with the PCL recorded data.

Although the change patterns can be stretched across the session boundaries, we opt

for a restrictive approach, where a change pattern is applied completely within a session.

In this sense, we divide the sequential changes available in an atomic change log based

on their session ids (c.f. Figure 5.4). We used SPARQL queries for extracting the change

log sessions.

90

Session Identification

MJaved

YAbgaz

Kosala

Data Cleaning and

Filtering
 Transformation

(
RDF
 Triples -> Graph)
DATA PREPROCESSING

DATA MINING

Composite Change

Detection

Discovery of Different

Types of Change Sequences

Domain-specific Change

Pattern Discovery

Correlations, Dependencies

&

Association Rules

A

B

(
RDF
 Triples)

Change Log Data

Original Data

Filtered Data

N5

Att1

Att2

Att3

N6

Att1

Att2

Att3

Figure 6.1: Knowledge identification process from ontology change log data

6.1.2 Data transformation

The last step in the knowledge extraction process is the data transformation. Atomic

change log data provides operational as well as analytical support in the ontology evo-

lution process. One can mine the higher level change patterns from the ontology change

log data. For this purpose, graphs enable efficient search and analysis and can also com-

municate information visually. We transformed the change log triples into an attributed

graph [Ehrig et al., 2004] (formalization is discussed in next section). SPARQL queries

are used for filtering the ACL recorded data. Below, three sample SPARQL queries have

been given that extract different attributes of an atomic change from the atomic change

log.

1. select ?x from <http://www.cngl.ie/log/university.owl>

where {

?x rdf:type MO:AtomicChange .

}

91

11..*1..* *
representedIn availableInOntology Change RDF Triples Change Log

Change Log Graph

formalizedInto

Domain-specific

Change Patterns
discoveredfrom

Composite

Change Patterns
detectedfrom

Domain Ontology appliedOn

1..* 1 1
1

1..*

11..**

Figure 6.2: Data transformation and mining of higher level change patterns

2. select ?c from <http://www.cngl.ie/log/university.owl>

where {

MO:12383422 rdf:type MO:AtomicChange .

MO:12383422 MO:hasCreator ?c .

}

3. select ?t from <http://www.cngl.ie/log/university.owl>

where {

MO:12383422 rdf:type MO:AtomicChange .

MO:12383422 MO:TimeStamp ?t .

}

A linear directed graph (in GraphML1 format) is then generated from the extracted

ACL data using a graph API.

A graph-based formalization is an operational representation for the ontology changes.

We considered identifying change patterns from an atomic change log as a problem of

recognition of a pattern in a graph. The identification of change patterns from an atomic

change log is operationalized in the form of graph-based algorithms (discussed in next

two chapters).

1http://graphml.graphdrawing.org/primer/graphml-primer.html

92

6.2 Graph-based ontology change formalization

One of the benefits of the RDF triple format is its fine-grained level representation and

interoperability (i.e. conversion from triple format to others standard formats such as

RDF and XML). The fine-grained representation of ontology changes helps the ontol-

ogy engineer to construct complex queries and extract different types of knowledge from

the change log. However, as RDF triples represent the ontology changes at fine-grained

level (1 ontology change is represented by 8 to 10 triples), visualizing and navigating

through the change log alone is time consuming. Graphs can cover this gap. Graph

techniques provide the ability to visualize and navigate through large network struc-

tures. They enable efficient search and analysis and can also communicate information

visually. Moreover, the benefit of a graph-based representation is the availability of well

established algorithms/metrics (for pattern discovery and detection) and its well-known

characteristics such as performance (for querying the ontology changes effectively). A

data warehouse mechanism can be applied here, where the data warehouse collects the

operational domain ontologies and the change log data from different distributed loca-

tions and reformulates it into a graph on a periodic basis for analytical processing.

A graph-based formalization is an operational representation for the ontology changes.

In order to identify the higher level change patterns from the atomic change log, we refor-

mulate the triple-based representation of atomic changes using a graph-based approach.

We use attributed graphs [Ehrig et al., 2004]. Graphs with node and edge attribution

are typed over an attribute type graph (ATG). Attributed graphs (AG) ensure that all

edges and nodes of a graph are typed over the ATG and each node is either a source

or target, connected by an edge (Figure 6.3). Each graph node represents an atomic

ontology change and the attributes of such graph node provide meta-level and change

data details. The benefit of using ATGs and AGs is their similarity with object oriented

programming languages, where one can assign each element of the graph a type. Similar

93

to the objects of any class, having a number of class variables, one can attach a number

of attributes to a graph node in an AG. The data types of such attributes can be de-

fined in an ATG. Furthermore, one can borrow other object oriented concepts, such as

inheritance relations, for any defined element in an ATG.

6.2.1 Formalization

Based on the idea of attributed graphs, a change log graph G can be given as G =

(NG, NA, EG, ENA, EEA) where:

- NG = {ni
g|i = 1, . . . , p} is the set of graph nodes. Each node represents a single

ontology change log entry (i.e. representing a single atomic ontology change).

The term p refers to the total number of atomic change operations present in

the atomic change log. Our overall assumption is that the concurrent ontology

change operations (if any) are sequenced, where each ontology change operation is

executed one after the other (i.e. sequenced change log).

- NA = {ni
a|i = 1, . . . , q} is the set of attribute nodes. Attribute nodes are of two

types, i) attribute nodes which symbolize the metadata (e.g. change Id, user, times-

tamp) and ii) attribute nodes which symbolize the change data and its subtypes

(e.g. operation, element, target parameter, auxiliary parameters) - c.f. Figure 5.4.

The term q refers to the total number of attribute nodes in a change log graph.

- EG = {eig|i = 1, . . . , p−1} is the set of graph edges which connects two graph nodes

ng. The graph edges eg represent the sequence of the ontology change operations

in which they have been applied on the domain ontology.

- ENA = {eina|i = 1, . . . , r} is the set of node attribute edges which join an attribute

node na to a graph node ng. Term r refers to the total number of node attribute

edges in a change log graph.

94

Element

Restriction

Parameter

Entity

hasRestriction

Integer

hasParameter

order

StringInteger

Operation

hasElement

ChangehasOperation

Cardinality

Axiom

Class Axiom
Data Prop.

Axiom

Object Prop.

Axiom

Individual

Axiom

hasAxiom

No. of Parameters

Integer

hasCreatorhasID

String

timeStamp

DateTime

Atomic

Composite

Domain-Specific

User

Entity

hasEntity Graph Node

Attribute Node - Metadata

Attribute Node - Change data

Graph Edge

Node Attribute Edge

Edge Attribute Edge

Object Prop. Data Prop.Class Individual

Figure 6.3: Attribute Type Graph (ATG) for an ontology change

- EEA = {eiea|i = 1, . . . , s} is the set of edge attribute edges which joins an attribute

node na to a node attribute edge ena. Term s refers to the total number of edge

attribute edges in a change log graph.

Example 6.1: Two graph nodes of an attributed graph (AG) typed over an ATG are

given in Figure 6.4. The first graph node, having change Id “1299732463318”, represents

the atomic change operation Add NamedIndividual (‘‘John’’). The second graph

node, having change Id “1299732463423”, represents the atomic change operation Add

classAssertion (John, PhD Student). The attribute nodes na (representing metadata

and change data properties (c.f. Section 5.3.1)) are linked to the graph nodes ng using

node attribute edges ena. The graph nodes are linked to each other using a graph edge eg,

constructing a sequenced ontology change log graph. The types defined on the attribute

nodes can be given as t(Add)=Operation, t(classAssertion) = Element, t(John) =

Individual and t(PhD Student) = Class.

95

2

Change:1299732463423

hasCreatorhasID

129973...

timeStamp

Tue: 24/03/2011:

12:03:24
MJaved

hasOperation

Add

hasAxiom

classAsserion

No. of Parameters

hasAuxParam1

2
order

PhD_Student

hasTargetParam

1order

John1

Change:1299732463318

hasCreatorhasID

129973...

timeStamp

Tue: 24/03/2011:

12:02:41
MJaved

hasOperation

Add

hasEntity

NamedIndividual

No. of Parameters hasTargetParam

1
order

John

Figure 6.4: Nodes of Attributed Graph (AG) typed over ATG

6.3 Analysis of change log graph

In this section, we discuss our methods to analyze the change log graph by using examples

from the university ontology case study domain (c.f. Section 4.1.1). A small portion of

the university ontology change log graph (in a form of listing) is given in Table 6.1. Each

line in the table represents a single graph node (ng), representing a single atomic change

request. The id in each line represents the graph node identification key, representing the

order of the change operations in which they have been applied. Note, that the example

here was chosen as it can fit on a small scale and metadata attributes (e.g. sessionId,

User and Timestamp) attached to each graph node, have not been mentioned. Below we

discuss the metrics that lead us to the mining of (generic and domain-specific) change

patterns.

6.3.1 Ordered/Unordered change sequences

A change in an ontology can be modeled and performed in different ways using different

names and different steps [Palma et al., 2009]. In Table 6.1, one can identify multiple

occurrences of the process of “PhD student registration”. Such registration processes

have been extracted from the change log graph table and are given in the form of a node

96

set in Table 6.2. The numbers in Table 6.2 represent the graph node ids and the order

in which they are listed in the change log graph (from left to right). The user performed

the identical change by using a different order of atomic change operations at different

times. For example, in Table 6.1, sequences s1 and s2 have the same order of change

operations. First, the user adds the individual x to the domain ontology. In the next

step, s/he adds individual x as an instance of class PhD Student and in the last step, s/he

adds an individual x as a member of a university department y and assigns a student id.

On other hand, change sequence s4 is unordered with respect to the change sequence s1.

In change sequence s4, the user assigns a university department to the individual first

(node 18) and later adds the individual as an instance of class PhD Student (node 19).

As the overall intent behind the two applied change sequences is same, we can say that,

although change sequences s1 and s4 are structurally different (due to different order of

atomic change operations), they are semantically identical.

Table 6.1: A section of university ontology change log graph

 Id Change Operations (extracted from ontology change log graph)

 01 Add class (“PhD_Student”)

 02 Add
 subclassOf
 (PhD_Student, Student)

 03 Add
 NamedIndividual
 (“Javed”)

 04 Add
 classAssertion
 (Javed, PhD_Student)

 05 Delete
 subclassOf
 (
PostGraduate
 , Student)

 06 Delete class (
 PostGraduate
)

 07 Add
 objectPropertyAssertion
 (Javed,
 isMemberOf
 , Computing)

 08 Add
 dataPropertyAssertion
 (Javed,
 studentId
 , “58120348”)

 09 Add
 NamedIndividual
 (“
Yalemisew
 ”)

 10 Add
 classAssertion
 (
Yalemisew
 , PhD_Student)

 11 Add
 objectPropertyAssertion
 (
Yalemisew
 ,
 isMemberOf
 ,
 ElectricalEngineering
)

 12 Add
 dataPropertyAssertion
 (
Yalemisew
 ,
 studentId
 , “58123857”)

 13 Add
 NamedIndividual
 (“
Kosala
”)

 14 Add
 classAssertion
 (
Kosala
, PhD_Student)

 15 Add
 NamedIndividual
 (“
ECOWS2009
”)

 16 Add
 objectPropertyAssertion
 (
Kosala
,
 isMemberOf
 ,
 ElectronicEngineering
)

 17 Add
 NamedIndividual
 (“
Aakash
”)

 18 Add
 objectPropertyAssertion
 (
Aakash
,
 isMemberOf
 ,
 MechanicalEngineering
)

 19 Add
 classAssertion
 (
Aakash
, PhD_Student)

 20 Delete
 inverseObjectProperty
 (
hasSupervisor
 ,
 isSupervisorOf
)

 21 Add
 dataPropertyAssertion
 (
Aakash
,
 studentId
 , “58121143”)

 22 Add
 domainOfObjectProperty
 (
studentId
 , Student)

 23 Delete
 domainOfObjectProperty
 (
studentId
 , PhD_Student)

 24 Add
 NamedIndividual
 (“Wong”)

 25 Add
 dataPropertyAssertion
 (Wong,
 studentId
 , “58129070”)

 26 Add
 classAssertion
 (Wong, PhD_Student)

 27 Add
 NamedIndividual
 (“
Pooyan
”)

 28 Add
 classAssertion
 (
Pooyan
, PhD_Student)

 29 Add
 objectPropertyAssertion
 (
Pooyan
,
 isMemberOf
 ,
 ElectronicEngineering
)

 30 Add
 objectPropertyAssertion
 (
Pooyan
,
 isMemberOf
 ,
 ElectricalEngineering
)

s
1

s
2

s
3

s
4

s
5

s
6

c

97

Table 6.2: Node sets for PhD student registration

Seq
. Node Set (
 PhD Student Enrolment
)

s
1
 03 - 04- 07 - 08

s
2
 09 - 10- 11 - 12

s
3
 13 - 14- 16

s
4
 17 - 18- 19 - 21

s
5
 24 - 25- 26

s
6
 27 - 28- 29 - 30

6.3.2 Node-distance value

As we discussed in the previous section, users adopt different orders of atomic change

operations to perform semantically equivalent tasks. For example, sequence s4 is a

semantically equivalent sequence to s1. However, due to the different order to atomic

change operations in these sequences, comparing their two graph node sequences (i.e.

step-by-step graph node comparison), we find a mismatch at step two. The first graph

node of sequence s1 will match to the first graph node of sequence s4. However, at step

two, the second graph node of sequence s1 will find a mismatch with the second graph

node of sequence s4. In such cases, to find the matching graph node, we need to discard

mismatching graph nodes, called “intra-pattern gap node”(c.f. Section 5.4.1), and move

to the next nodes of the sequence to find a match, if available. In the above example, a

matching graph node will be found at step three of the sequence s4. Thus, we can say

that in comparison to the graph nodes 03 and 04 of sequence s1, the distance between

the type equivalent graph nodes (i.e. nodes 17 and 19) of sequence s4 is 1 (as there is

one additional graph node between them, i.e. node 18). We call it the node-distance

(or in short n-distance), as it refers to the distance (gap) between two adjacent nodes

of a sequence in comparison to another change sequence. We adopted the node-distance

approach from sequential pattern mining in the biology domain where subsequences are

restricted by a predefined gap constraint range [Li et al., 2008, Zhu et al., 2007]. In our

case, the gap between two nodes of a sequence is not defined as a constraint but as a

98

permissible and the maximum allowed node-distance between two adjacent nodes is a

user-defined value. Defining the node-distance value as a user input allows users to mine

the ontology change patterns with zero, one or multiple intra-pattern gaps among the

adjacent ontology change operations of a sequence.

Though in our case the permissible node-distance value is a user input value, the

node-distance value can also be computed by performing an iterative pattern mining

process. For the fixed user input values of pattern support and pattern length, node-

distance value can be varied from value 0 to a specific threshold value x such that the

increase in value x does not make any difference in the output result. Further, a user

may perform the same step in different settings, i.e. for different pattern support and

pattern length values.

For a change sequence s in a change log graph G, the node gap between two

adjacent nodes can be represented by a series of wild-cards (denoted by symbol x),

where a wild-card x is a special symbol that represents an intra-pattern gap node and

matches a graph node in the change log graph. Thus, given a change sequence g =

n1, x1, x2 · · ·xn, n2, · · ·np, where p is the total number of graph nodes in g and n1, n2 are

two adjacent graph nodes in an identified graph node change sequence s, the node dis-

tance between adjacent graph nodes n1 and n2 in change sequence s (s = n1, n2 · · ·nm)

can be given as α1,2 = |x1 · · ·xn|. For example, sequence s4 of Table 6.2 can be written

as s4 = {n17, n18, n19, x1, n21} and α19,21 = +1.

The overall n-distance of the sequence is denoted by upper case alpha A. It represents

the number of wild-cards present in the whole sequence, whereas lower case alpha α refers

to the distance between two distinct adjacent graph nodes of a sequence. An ordered

sequence s with n-distance As =
m∑

i=1

αa,b
i (where a and b refer to the Ids of the adjacent

graph nodes and m refers to the number of graph nodes in the change sequence) can

be given as s = (n1, α
1,2
1 , n2, α

2,3
2 , · · · , nm). Thus, sequence s4 in Table 6.2 can also be

written as s4 = {n17,+0, n18,+0, n19,+1, n21}. Here, ‘+’ sign refers to the order of the

99

 03 Add NamedIndividual

 04 Add classAssertion (Javed, PhD_Student)

 07 Add objectPropertyAssertion (Javed, isMemberOf, Computing)

 08 Add dataPropertyAssertion (Javed, studentId

 17 Add NamedIndividual Aakash

 18 Add objectPropertyAssertion (Aakash, isMemberOf, MechanicalEngineering)

 19 Add classAssertion(Aakash, PhD_Student)

 20

 21 Add dataPropertyAssertion (Aakash, studentId

Match 1

Match 2

+1

- 0

Match 3

Match 4

+2

[Sequence s
1

]

[Sequence s
4

]

Figure 6.5: Step-by-step graph node comparison of sequence s1 and s4

graph nodes in a change sequence. Sequence s4 is an unordered sequence in comparison to

the reference sequence s1. In such a case, the node distance between two adjacent graph

nodes can be either positive or negative (Figure 6.5). Thus, in a step-by-step comparison

to s1, sequence s4 can also be written as s4 = {n17,+1, n19,−0, n18,+2, n21}. Here, −0

node-distance means that the node id of the next matched node is one less than the node

id of the current graph node. In other words, the position of the next matched node n18

in ACL is prior to the current matched node n19.

Node-distance is a measure for capturing the structural differences between two iden-

tical change sequences. The structural differences between two semantically identical

change sequences are caused by the existence of additional change operations within

the sequence (which must be discarded during matching) or by the unordered change

operations [Javed et al., 2011b]. The benefit of the metric is clearly visible in the case

of change patterns discovery (c.f. Section 8.3.2), where one can map a given change

sequence with other identified ordered change sequences with additional change opera-

100

tions or with semantically identical unordered change sequences. The gap nodes, that

were discarded earlier, may either be mapped with other subsequent graph nodes of the

referenced change sequence (in the case of unordered change sequences) or may be dis-

carded completely (in the case of ordered change sequences) (discussed more in Section

6.4.1).

6.3.3 Type categorization of change operations

Identifying the semantically identical changes of a domain ontology is an important

part of the ontology change mapping and clustering [Tury et al., 2006]. We distinguish

between type-equivalent and distinct (non-type equivalent) change operations.

Definition 6.1: Two ontology change operations can be type-equivalent (or non-type

equivalent) based on the type of their operations (o), elements (e) and parameters (p).

Given two atomic change operations a = (oa, ea, pa) and b = (ob, eb, pb), the change

operations a and b are distinct if they are type-distinct in at least one of their components,

i.e. if type(oa) 6= type(ob) or type(ea) 6= type(eb) or type(pa) 6= type(pb).

The type categorization metrics benefits us in terms of measuring the variations be-

tween two change sequences (discussed in Section 6.3.4). Below, three change operations

are given.

1- Add DataPropertyAssertion(John, hasTitle, ‘‘Prof.’’)

2- Add DataPropertyAssertion(Conor, hasTitle, ‘‘Engr.’’)

3- Add DataPropertyAssertion(RefBook, hasTitle, ‘‘Intro to Java’’)

Each change operation instantiates a data property “hasTitle” for a certain individual.

Here, operations 1 and 2 are type-equivalent as both of them have the same operation

type (Add), the same element type (DataPropertyAssertion) and the same type of in-

dividuals (i.e. John and Conor are instances of class Person). Operation 3 is distinct

in comparison to operations 1 and 2, as parameter RefBook is not an instance of class

Person, but of class Book, which does not exist in the class hierarchy of Person.

101

6.3.4 Variation between change sequences

Two change sequences can be different from each other in terms of their length, order

or type of operations involved. We identified three types of variation which can occur

between two change sequences, i.e. Len-variation, ST-variation and DT-variation.

Len-Variation: The length variation (Len-variation) captures the variation between

two change sequences based on the number of graph nodes present in them.

Definition 6.2: Given two change sequences s = s1, s2 · · · sn and t = t1, t2 · · · tm, the

Len-variation of change sequence s in relation to t can be given as Len(s, t) = n −m,

where n and m are the number of graph nodes in change sequences s and t, respectively.

Example 6.2: In Table 6.2, the Len-variation of change sequence s1 in relation to s3 is

Len(s1, s3) = (4 − 3) = +1. The ’+’ sign refers that the latter sequence is shorter (in

length) in relation to the former sequence and a ’-’ sign refers that former sequence is

shorter (in length) in relation to the latter sequence.

ST-Variation: The same-type variation (ST-variation) is a measure to capture the

differences between two change sequences based on the sets of type-equivalent change

operations that exist in both change sequences, but in different numbers (see Figure

6.6).

Definition 6.3: Given two change sequences s = s1, s2 · · · sn and t = t1, t2 · · · tm, the

ST-variation can be given as

ST (s, t) =

type max∑

i=1

|sSTi \t
ST
i | (6.1)

We describe the above given equation with an example. The change operations of

the two change sequences (s and t) along with their types can be given as,

102

s = s1 : type1, s2 : type2, s3 : type2, s4 : type3, s5 : type4 (6.2)

t = t1 : type1, t2 : type1, t3 : type2, t4 : type4, t5 : type5 (6.3)

Let, sST be a type-sorted subset of types of s with type(si) in types(t) and tST be a

type-sorted subset of types of t with type(ti) in types(s). Based on the change sequences

given in equation 6.2 and 6.3, the sST and tST can be given as

sST = {{type1
s1}, {type2

s2 , type2
s3}, {type4

s5}}

tST = {{type1
t1 , type1

t2}, {type2
t3}, {type4

t4}}

The set difference sST \tST (i.e. complement of tST in sST) can be identified as

stype1\ttype1 = {{type1
s1}\{type1

t1 , type1
t2}} = {}

stype2\ttype2 = {{type2
s2 , type2

s3}\{type2
t3}} = {type2

s3}

stype4\ttype4 = {{type4
s5}\{type4

t4}} = {}

Thus, ST (s, t) = |{}|+ |{type2
s3}|+ |{}| = 0 + 1 + 0 = 1.

Similarly, the set difference tST \sST can be given as

ttype1\stype1 = {{type1
t1 , type1

t2}\{type1
s1}} = {type1

t2}

ttype2\stype2 = {{type2
t3}\{type2

s2 , type2
s3}} = {}

ttype4\stype4 = {{type4
t4}\{type4

s5}} = {}

Thus, ST (t, s) = |{type1
t2}|+ |{}|+ |{}| = 1 + 0 + 0 = 1.

Example 6.3: In Table 6.2, the type-sorted subsets s1
ST and s6

ST can be given as

s1
ST = {{type1

n3}, {type2
n4}, {type3

n7}}

s6
ST = {{type1

n27}, {type2
n28}, {type3

n29 , type3
n30}}

The set difference s1
ST \s6

ST can be identified as

s1type1\s6type1 = {{type1
n3}\{type1

n27}} = {}

s1type2\s6type2 = {{type2
n4}\{type2

n28}} = {}

s1type3\s6type3 = {{type3
n7}\{type3

n29 , type3
n30}} = {}

103

Figure 6.6: Type sets of s and t

Thus, ST (s1, s6) = |{}|+ |{}|+ |{}| = 0 + 0 + 0 = 0.

On the other hand, the set difference s6
ST \s1

ST can be identified as

s6type1\s1type1 = {{type1
n27}\{type1

n3}} = {}

s6type2\s1type2 = {{type2
n28}\{type2

n4}} = {}

s6type3\s1type3 = {{type3
n29 , type3

n30}\{type3
n7}} = {type3

n30}

Thus, ST (s6, s1) = |{}|+ |{}|+ |{type3
n30}| = 0 + 0 + 1 = 1.

DT-Variation: The distinct-type variation (DT-variation) captures the differences

between two change sequences based on the sets of distinct (non-type equivalent) change

operations that are present in one change sequence, but are missing from the other.

Definition 6.4: Given two change sequences s = s1, s2 · · · sn and t = t1, t2 · · · tm, the

DT-variation of change sequence s in relation to change sequence t can be given as

DT (s, t) = |s\t|. Here s\t refers to the set difference of s and t. In comparison to

change sequence t, s is actually a combination of change operations that exist or do not

exist in t, and vice versa (see Figure 6.6). Hence, the DT-variations can also be given

104

DT (s, t) = |s− sST | and DT (t, s) = |t− tST |.

For explanation, we make use of changes sequences given above in equations 6.2 and

6.3. Let, sDT be a type-sorted subset of types of s with type(si) not in types(t) and tDT

be a type-sorted subset of types of t with type(ti) not in types(s). The sDT and tDT can

be given as

sDT = {type3
s4}

tDT = {type5
t5}

The set difference sDT \tDT (i.e. complement of tDT in sDT) can be given as

sDT \tDT = {type3
s4} and DT (s, t) = 1.

Similarly, the set difference tDT \sDT can be given as

tDT \sDT = {type5
t5} and DT (t, s) = 1.

Example 6.4: In Table 6.2, the s1
DT and s6

DT can be given as

s1
DT = {type4

n8}

s6
DT = {}

The set difference s1
DT \s6

DT can be given as

sDT
1 \s

DT
6 = {type4

n8} and DT (s1, s6) = 1.

On the other hand, the set difference s6
DT \s1

DT can be given as

sDT
6 \s

DT
1 = {} and DT (s6, s1) = 0.

6.4 Mining of sequential abstractions

Several data mining methods are used to discover the implicit information in the log

data, especially in web log data [Ivancsy et al., 2006, Pabarskaite et al., 2007, Yu, 2009,

Jiang et al., 2010, Agostiet al., 2007]. In this section, we discuss the mining of sequential

abstractions from the preprocessed change log data. Based on our analysis of change log

graph data, we categorize the ontology change sequences in two basic divisions and use

them as the basis for change pattern discovery algorithms. Furthermore, we exploit the

105

change log graph to detect the generic composite change patterns across the ontology

taxonomy. Here, we distinguish between the terms “discovery” and “matching”. The

term “change pattern discovery” refers to identifying the change patterns from the change

log graph without having any prior knowledge about them and is based on their size and

frequency of occurrence. The term “change pattern matching” refers to identifying a pre-

defined (existing) change pattern from the ontology change log graph. Here, Sections

6.4.2 and 6.4.3 provide only an overview of the approaches and details are given in

Chapter 7 and 8.

6.4.1 Identification of change sequences

As we have seen in Table 6.1, users can use a different order of atomic change operations

to perform the task “PhD student registration”. For change sequences s1 and s2, the

user first adds a newly created individual as an instance of class PhD Student, assigns

a university department to him/her and then assigns a student Id. Comparing these

change sequences with sequence s4, the user first assigns the university department to

the newly created individual and later make it an instance of class PhD Student. This

makes the change sequence s4 an unordered change sequence in comparison to the change

sequences s1 and s2.

Based on our ordered/unordered change sequence observation (c.f. Section 6.3.1), we

identified four types of the change sequences (in comparison to a referenced candidate se-

quence) based on the ordering of the graph nodes and completeness (i.e. Len-Variation).

We merged these different types of change sequences into two basic divisions:

- Ordered change sequences (OS)

Type 1 - Ordered complete change sequence (OCS)

Type 2 - Ordered partial change sequence (OPS)

- Unordered change sequences (US)

106

Type 3 - Unordered complete change sequence (UCS)

Type 4 - Unordered partial change sequence (UPS)

6.4.1.1 Ordered change sequences (OS)

OSs comprise ordered graph node change sequences from a change log graph. Such

change sequences may only have a positive node distance between two adjacent graph

nodes (w.r.t. a referenced change sequence). Ordered change sequences can be complete

(OCS) or partial (OPS).

- Ordered complete change sequence (OCS): Given two graph node change sequences

a and ā, the change sequence ā is an ordered complete change sequence in relation

to the referenced change sequence a, if

i. each graph node of the change sequence ā is type-equivalent to the same

indexed graph node of the change sequence a (i.e. DT (ā, a) = 0, ST (ā, a) = 0

and α = +ve value) and

ii. both change sequences have the same number of graph nodes (i.e. Len(ā, a) =

0).

Definition 6.5: Given two change sequences a = a1, a2, · · · ap and ā = ā1, ā2, · · · āq,

the change sequence ā is an OC-match of change sequence a, if q = p and there

exist integers 1 ≤ j1 < j2 · · · jq ≤ p such that a1 ≡ āj1, a2 ≡ āj2, · · · ap ≡ ājq. Here

≡ refers to a type equivalence between two graph nodes [Spiliopoulos et al., 2010].

Example 6.5: In Table 6.2, change sequence s2 is an OC-match of change sequence

s1, as the sequence s2 is complete (i.e. Len(ā, a) = 0) and type-equivalent change

operations are in the same order (i.e. α = +ve value).

107

- Ordered partial change sequence (OPS): Given two graph node change sequences

a and ā, the change sequence ā is an ordered partial change sequence (OPS) in

relation to the referenced change sequence a, if

i. each graph node of the change sequence ā is type-equivalent to the same

indexed graph node of the change sequence a (i.e. DT (ā, a) = 0, ST (ā, a) = 0

and α = +ve value) and

ii. change sequence ā is a subset of the change sequence a (i.e. Len(ā, a) 6= 0).

Definition 6.6: Given two change sequences a = a1, a2, · · · ap and ā = ā1, ā2, · · · āq,

the change sequence ā is an OP-match of change sequence a, if q < p and there

exist integers 1 ≤ j1 < j2 · · · jp ≤ q such that ā1 ≡ aj1, ā2 ≡ aj2, · · · āq ≡ ajp.

Example 6.6: In Table 6.2,, sequence s3 is an OP-match of change sequence s1,

as the type-equivalent graph nodes in change sequence s3 are in the same or-

der as change sequence s1 (i.e. α = +ve value), but the sequence is partial (i.e.

Len(ā, a) 6= 0) (due to the absence of a change operation assigning a student id to

the PhD student).

6.4.1.2 Unordered change sequences (US)

USs comprise unordered graph node change sequences from a change log graph. These

change sequences (complete or partial) may have positive or negative node distances

between two adjacent graph nodes (w.r.t the referenced change sequences).

- Unordered complete change sequence (UCS): Given two graph node change se-

quences a and ā, the change sequence ā is an unordered complete change sequence

in relation to the referenced change sequence a, if

108

i. each graph node of the change sequence ā is type equivalent to one of the

graph nodes in the change sequence a (i.e. DT (ā, a) = 0 and α = +ve/− ve

value) and

ii. both change sequences have the same number of graph nodes (i.e. Len(ā, a) =

0).

Definition 6.7: Given two change sequences a = a1, a2, · · · ap and ā = ā1, ā2, · · · āq,

the change sequence ā is an UC-match of change sequence a, if p = q and (āi ∈

ā⇒ aj ∈ a with āi ≡ aj), where 1 ≤ i ≤ q, 1 ≤ j ≤ p.

Example 6.7: In Table 6.2, sequence s4 is a UC-match of change sequence s1,

as s4 is complete (i.e. contains all the type-equivalent graph nodes in relation to

change sequence s1) and the graph nodes are unordered (i.e. α = +ve/−ve value).

- Unordered partial change sequence (UPS): Given two graph node change sequences

a and ā, the change sequence ā is an unordered partial change sequence in relation

to the referenced change sequence a, if

i. each graph node of the change sequence ā is type equivalent to one of the

graph nodes in the change sequence a (i.e. DT (ā, a) = 0 and α = +ve/− ve

value) and

ii. change sequence ā is a subset of the change sequence a (i.e. Len(ā, a) 6= 0).

Definition 6.8: Given two change sequences a = a1, a2, · · · ap and ā = ā1, ā2, · · · āq,

the change sequence ā is an UP-match of change sequence a, if p > q and (āi ∈

ā⇒ aj ∈ a with āi ≡ aj), where 1 ≤ i ≤ q, 1 ≤ j ≤ p.

Example 6.8: In Table 6.2, change sequence s5 is an UP-match of change sequence

s1, as the change operations are in different order as well as the change sequence

109

is partial.

The identification of the above mentioned change sequences has a number of benefits.

First, it helps documenting evolving ontologies, i.e. representing how entities evolve over

time (entity evolution). Second, these change sequences can be used to discover the

correlations and the causal dependencies between different ontological entities which

evolve together. Third, and most importantly, the identified change sequences can be

used in discovering usage-driven change patterns.

6.4.2 Detection of composite change patterns

Many evolution tasks cannot be done by applying a single atomic change operation

on a domain ontology. A set of related atomic change operations is required. In this

sense, composite change operations are the aggregated changes to represent a composite

task. Composite change patterns are represented in the atomic change log (ACL) as an

ordered/unordered list of atomic level change operations. Composite change patterns

are generally applied at the entity level and, thus, are generic (non domain-specific). As

different atomic level change operations can be combined together in different order, pro-

viding an exhaustive list of composite level change patterns is not feasible. Split class,

Pull up property, Group classes are examples of commonly used generic composite

change patterns.

The composite changes can be mined from the atomic change log using a pattern

matching approach. Here, the term “pattern matching” refers to the mining of occur-

rences of a pre-defined change pattern sequence from an atomic change log. The aim

here is the identification of already defined composite change patterns [Stojanovic, 2004,

Klein, 2004] from the atomic change log. Identifying the composite changes from the

atomic change log gives an ontology engineer an indication about the intent of the ap-

plied changes. Once a user has a clear understanding of semantics of a change, s/he can

select appropriate evolution strategy [Javed et al., 2012a] for consistent ontology change

110

management. One may find (complete or partial) overlapping among the mined change

patterns (c.f. Section 5.4.2). This is due to the possibility that a subset of a change

pattern satisfies the conditions (to be identified) of another change pattern.

Our solution is based on the identification of a graph node change sequence that

matches a referenced composite change sequence. In the next step, we ensure that

the identified graph nodes in a candidate change sequence fulfill the conditions of the

referenced composite change. Here, the term conditions refers to the existence and

the correlations among the change parameters (discussed in detail in Section 7.1). The

correlations, among the change operations of the change log, are not visible at atomic

level and are defined at a higher level of abstraction. For example, by identifying two

atomic change operations that replace the domain class of an object property are not

enough to declare it as a detection of “Pull up property” composite change. To confirm

it, one needs to ensure that the newly added domain class is actually a superclass of the

previous domain class (i.e. correlation among the parameters of the two atomic change

operations).

A candidate change sequence sc is a detected composite change pattern if each of the

graph nodes in the candidate change sequence sc has a type equivalent graph node in

the referenced change sequence sr and the candidate change sequence sc fulfills all the

correlation conditions φc (c.f. Section 7.1) defined for the referenced composite change

sequence sr.

Definition 6.9: Given two graph node change sequences, candidate change sequence

sc = n1
g, n

2
g, · · · , n

p
g and referenced change sequence sr = (n̄1

g, n̄
2
g, · · · , n̄

q
g), the change

sequence sc is a detected (ordered/unordered) composite change pattern w.r.t the ref-

erence change sequence sr if, n1
g ≡ n̄x

g , n
2
g ≡ n̄x

g · · ·n
m
g ≡ n̄x

g , where p = q and φc are

satisfied.

Detection of composite change patterns supports the representation of the intent

111

of the changes at a higher level. Below in Table 6.3, for the detection of the Pull up

property composite change pattern, a referenced change sequence sr and the correlation

condition φc for the referenced change sequence are given. In order to detect the Pull

Table 6.3: Referenced change sequence and conditions for Pull up property

- Add
 domainOfObjectProperty
 (P,
 X

1

)

- Delete
 domainOfObjectProperty
 (P,
 X

2

)

-
 X

2

 subClassOf
 X

1

up property composite change pattern from the change log graph, the given referenced

change sequence and the conditions are given as an input to the composite change detec-

tion algorithm. The algorithm detects the type equivalent candidate graph nodes from

the change log graph and ensures that the conditions are satisfied by the identified candi-

date change sequence. For example, in Table 6.1, change sequence c, consisting of graph

nodes 22 and 23, is actually a “Pull up property (studentId, PhD Student, Student)”

composite change operation, where class PhD Student is a subclass of Student. The al-

gorithms for the composite change pattern detection are discussed in detail in Chapter

7.

6.4.3 Discovery of domain-specific change patterns

An atomic change log can also be utilized to discover the new domain-specific change

patterns using a pattern discovery approach. Such usage-driven domain-specific change

patterns provide guidelines to content change management systems in a domain and

support in the evolution process [Gruhn et al., 1995]. The discovered domain-specific

change patterns can also be utilized in the future as once-off change pattern specifications

that can be instantiated whenever a user needs to apply similar changes on the underlying

domain ontology. Here, the term “pattern discovery” (as opposed to “pattern matching”)

refers to the mining of a change pattern from the atomic change log without having any

prior knowledge about them. One of the main objective here is, not only to capture

112

the recurrent change subsequences from the ACL that are applied in the same order

(i.e. structurally identical change patterns), but also the change subsequences that may

contain different orders of change operations, but have the same effect on the domain

ontology (i.e. semantically identical change patterns).

We consider identifying domain-specific change patterns from the atomic change log

as a problem of recognizing frequent patterns from a graph [Kuramochi et al., 2001, De

Leenheer et al., 2007, Rudolf et al., 2000, Yan et al., 2002]. The discovery of change

patterns from the ontology change log graph has been formalized in the form of dis-

covery algorithms (discussed in detail in Chapter 8). There are two main criteria used

in the discovery of domain-specific change patterns, i.e. sequence support and length.

The support (supp) of a change sequence s refers to the number of occurrences of or-

dered/unordered complete change sequences (in the change log graph) that are type

equivalent to the change sequence s, whereas the length (len) of a change sequence s

refers to the number of graph nodes in such change sequence.

Definition 6.10: Given a candidate change sequence sc = n1
g, n

2
g, · · · , n

p
g (where p is the

number of graph nodes in sequence sc), the change sequence sc is an instantiation of a

discovered change pattern if i) the length of the change sequence sc and each identified

type equivalent change sequence st (i.e. st ≡ sc) is equal to or greater than the threshold

value set for the pattern length lenmin, (i.e. len(sc) ≥ lenmin) and ii) the support of the

candidate change sequence sc is above the threshold value set for the pattern support of

a pattern suppmin, (i.e. supp(sc) ≥ suppmin).

Example 6.9: Now, we illustrate the above given formalization using an example from

Table 6.1. Let the minimum change pattern support (suppmin) and the minimum change

pattern length (minlen) be 2 and 4, respectively, and the change sequence s1 make the

candidate change sequence. In this case scenario, the change sequence s1 will be selected

as a change pattern instantiation because

113

- the change sequences s2 and s4 are identified as (ordered/unordered) type equivalent

change sequences (i.e. the supp(s1) = 2) and

- the length of each change sequence is equal to the minimum length threshold value

(i.e. len(s1), len(s2) and len(s4) ≥ 4).

The basic idea of the domain-specific change pattern discovery algorithms is to

i) start an iteration process on each graph node, ii) construct the candidate change

pattern sequence (sc) starting from that particular graph node and iii) search the or-

dered/unordered type equivalent change sequences (st) within the change log graph.

The discovered change patterns are based on the operations that have been utilized fre-

quently by the user and reduce the effort (in terms of time) required to apply similar

change operations on the domain ontology. Once the change patterns are associated

with the user category, patterns will be more effective since classified patterns are often

more useful [Pinto et al., 2001].

6.5 Summary

Activity log mining is not restricted to creating new formal process models [Jiang et

al., 2010, Pabarskaite et al., 2007, Tao et al., 2000] but can be extended to extract

other implicit knowledge. Ontology change logs play a significant role and can provide

operational as well as analytical support in the ontology evolution process. In this sense,

atomic change log data can be re-used to capture change patterns, frequently evolving

areas of the ontology and implicit dependencies between ontological entities.

In this chapter, we discussed the different steps taken in order to identify the implicit

knowledge from the atomic change log. We adopted a graph mining approach to identify

knowledge from the atomic change log. As the ontology changes are stored in the form

of RDF triples in an atomic change log, we first discarded the unwanted RDF triples and

extracted the required change log triples only. Second, the change log triples are then

114

formalized into a change log graph. We selected the attributed graph here that is typed

over an attribute type graph. The benefit of attribute type graphs is its similarity with

the object oriented programming (OOP) formalism where one can attach a number of

attributes (i.e. class variables) to each node (i.e. object) of the attributed graph (i.e.

class).

We utilized ontology change log graphs to empirically identify different types of

change sequences. These identification of change sequences lead us to the identification

of pre-defined generic (i.e. composite) and usage-driven (i.e. domain-specific) change

patterns. The detected composite change patterns can be utilized for ontology change

logging at a higher level of granularity with a clear representation of the intent of changes

and for a better ontology change management in ontology evolution process. The dis-

covered domain-specific change patterns can be used as pre-defined ontology change

operators (to perform similar tasks in the future), pattern redesign (in case, similar

change patterns already exist), documentation of changes at a higher level, classification

of ontology users etc. The algorithms for identification of composite and domain-specific

change patterns are given in Chapter 7 and 8, respectively.

115

Chapter 7

Composite change detection

algorithms

Ontology change log data is a valuable source of information that reflects the changes in

the domain, the user requirements, flaws in the initial design or the need to incorporate

additional information [Haase et al., 2003]. Ontology change logs can play a significant

role and can provide operational as well as analytical support in the ontology evolution

process. Representing the ontology changes at a higher level is beneficial as it is more

concise, more intuitive and the intent of change is more visible [Papavassiliou et al.,

2009]. The composite change operations provide more explicit information about how

an ontology changes as well as the specific reasons and consequences of the change

operations. Higher level composite change operators are more powerful since an ontology

engineer does not have to go through each step of the atomic change in order to achieve

the desired effect [Stojanovic, 2004].

Representation of ontology changes at a higher level also help in certifying the valid-

ity1 of the instances at any specific time. For example, it would be more useful for an

1The term validity of instances indicates that certain individuals, available in the ontology, can
consistently be inferred as instances of a specific class.

116

ontology engineer to know that a domain of an object property is generalised to a higher

class in the class hierarchy than to know that domain of a property is detached from

one class and is attached to another. In this case, knowing the semantics of a change

(through higher level composite change description) one can assure that the validity of

the instances is not violated [Klein, 2004].

We consider the composite change operations as pre-defined generic change patterns.

In this chapter, we give a graph-based specification of composite ontology changes and

present the composite change pattern detection algorithms. We discuss how we exploited

a graph transformation approach and utilized it for a graph-based composite change

specification. Identification of composite change patterns from an ontology change log

- helps in formulating the ontology change log data in a more concise manner.

- assists in realizing the intuition behind any applied change.

- facilitates in realizing the consistency of an evolving domain ontology.

The chapter is structured as follows: In Section 7.1, we give a formal definition of

a composite change. We discuss the graph-based specification of a composite change

(using a graph transformation approach) in Section 7.2. In Section 7.3, we discuss how

we adapt the graph transformation approach to our needs. We present a composite

change scenario for a detailed explanation. The composite change detection algorithms

are given in Section 7.4. We end with a brief summary of the chapter.

7.1 Composite change

A composite change is a sequence containing a group of atomic (level one) change op-

erations that are applied on a domain ontology, where the change operations can be of

inclusion or exclusion type. The inclusion type change operations add new knowledge to

the domain ontology, whereas the exclusion type change operations remove some knowl-

117

edge from the domain ontology. Thus, a composite change c can be given as a sequence

of si, where each si is either

- an (atomic level) exclusion change operation (δ1) or (exclusively)

- an (atomic level) inclusion change operation (δ2).

An exclusion change operation deletes a certain axiom from the target ontology entity

and an inclusion change operation adds some new axiom for the target ontology entity.

These exclusion and inclusion change operations can be applied in different order -

making the composite changes in ordered/unordered form in relation to a reference

composite change operation sequence.

In terms of detection of a composite change from atomic change log, i.e. to consider

a group of (add/delete) atomic change operations as a composite change, the change

operations must satisfy certain conditions φ. The term φ refers to the conditions on the

existence of any knowledge in the ontology. Such conditions can either be existential

conditions (φe) or correlations (φc) among the parameters of the composite change op-

erations. The existential conditions (φe) of any ontology change operation can be given

in terms of pre and post conditions [Stojanovic et al., 2003]. For example, in case of

change operation Add class (Researcher), Researcher must not exist in the current

version (O1) of the ontology (as a class) and must exist (as a class) in the next version

of the ontology (O2).

- Pre-Cond: (Researcher rdf:type owl:Class) /∈ O1

- Post-Cond: (Researcher rdf:type owl:Class) ∈ O2

Next, for change operation Add subclassOf (Researcher , Person), class Researcher

(and Person) must exist in the current version of ontology (Post-Cond (Op1) =⇒

Pre-Cond (Op2)) and Researcher should be a subclass (rdfs:subClassOf) of Person in

the subsequent version of the ontology (O2).

118

- Pre-Cond: (Researcher rdf:type owl:Class) ∈ O1

(Person rdf:type owl:Class) ∈ O1

- Post-Cond: (Researcher rdfs:subClassOf Person) ∈ O2

The correlations (φc) refer to the relationships among the parameters of the existing

atomic change operations and works as invariants during the operationalization of a

composite change. Such relationships are not explicitly given in the atomic change

log. For example, in case of composite change operation Pull up class (Researcher,

Student), where the class Researcher is being pulled up in the class hierarchy and

becomes a sibling class to its previous parent Student, the change is actually a group of

two atomic change operations, i.e.

- Delete subclassOf(Researcher, Student). (δ1)

- Add subclassOf(Researcher, Person). (δ2)

the invariant correlation can be given as

- Student subclassOf Person. (φc)

If the above given correlation among the parameters is satisfied, we can consider the

given two atomic change operations as a Pull up class composite change. We utilized

the given definition of a composite change in defining the graph transformation rules and

the conditions. In other words, we can say that a source ontology subgraph has been

transformed into a target ontology subgraph (by applying a composite change) based on

the given conditions, i.e. existential and correlation conditions.

7.2 Graph-based specification of a composite change

We specify the composite ontology changes using a graph transformation approach where

a source ontology subgraph is transformed into a target ontology subgraph, while pre-

119

serving the defined conditions. Below, we present the graph-based specification of an

ontology and a composite change one after the other.

7.2.1 Graph-based ontology specification

OWL 2.0 structural specification can be found in Chapter 2. Here, we are mainly

interested in representing how different ontology entities (i.e. classes, object properties,

data properties and individuals) are linked to each other in OWL 2.0, constructing a

domain ontology hierarchy. Similar to the approach adopted by few researchers [D’Aquin

et al., 2007, Mitra et al., 2000, Patil et al., 2004, De Leenheer et al., 2007], we use

directed typed graphs (where ontology nodes and edges are labeled) to represent the

ontology entity relationships (Figures 7.1 - 7.2). A class is the central element of the

ontology hierarchy. Different classes link each other using the subclassOf relationship,

constructing a class hierarchy. The features (characteristics) of an ontology class are

given using object and data properties. Each object property links two classes using a

domainOf and rangeOf relationship. For example, the classes PhD Student and Faculty

can be domain and range (respectively) of the object property hasSupervisor. The

data property links an ontology class to an XML schema datatype. For example, the

class PhD Student can be domain of the data property hasFirstName and XML schema

datatype String can be range of such a property. Furthermore, each ontology class can

have a number of instances (termed as “Individuals”) linked to it. For example, the

class PhD Student can have an individual John as its instance, representing that John

is a PhD student.

The (object and data) properties can be represented as nodes [Flury et al., 2004,

Burleson et al., 2007] or edges [Shaban-Nejad et al., 2011, Trinkunas et al., 2007]. If

properties are represented as nodes, one may have orphaned nodes in the ontology graph

due to properties without any domain and range. On other hand, if properties are

represented as edges, one may find orphaned edges for the above case. Furthermore, each

120

attachment of a (property) edge with a class will refer to addition of a domain/range

axiom in the ontology. Though, it is easier to represent the object and data properties

as edges at the instance level (to represent a property assertion axiom, one instance

must be linked to another instance through given property), we represent properties as

distinct nodes and allowed existence of orphaned node.

Based on the given description, an ontology graph GO can be given as a set of nodes

and edges GO = (N,E) where:

- N = (C,O,D, I,X) is the set of ontology entities, represented as nodes in ontology

graph. An ontology node n ∈ N either represent a class C, object property O,

data property D, individual I or an XML schema data type X.

- E is the set of edges that represents the ontology axioms connecting two ontology

nodes where each edge e ∈ E can be given as (ns, e, nt). Here, ns, nt ∈ N refer to

the source and target ontology nodes, respectively. As we have different types of

axioms in an ontology, an ontology edge e can be of different types. It may link

two classes to each other, a class to an individual, a property to a class etc. An

ontology edge set can be given as E = (Ec
c , E

o
c , E

c
o, E

o
o , E

d
c , E

x
d , E

d
d , E

c
i , E

i
i , Eo, Ed).

The subscript and the superscript values here refer to the type of the source and

target nodes of an edge, respectively.

- The edge type Ec
c represents a class-class relationship. Such relationship can

be either of subclassOf , disjointClasses or equivalentClasses type.

- The edge type Eo
c represents a class-object property relationship, i.e. repre-

senting a domainOf axiom for an object property O.

- The edge type Ec
o represents an object property-class relationship, i.e. rep-

resenting a rangeOf axiom for an object property O.

- The edge type Eo
o represents an object property-object property relation-

ship. Such relationship can either be of equivalentObjectProperties, subObjectP -

121

roperties, inverseObjectProperties or disjointObjectProperties type.

- The edge type Ed
c represents a class-data property relationship, i.e. repre-

senting a domainOf axiom for a data property D.

- The edge type Ex
d represents a data property-XML schema data type rela-

tionship, i.e. representing a rangeOf axiom for a data property D.

- The edge type Ed
d represents a data property-data property relationship.

Such relationship can either be of equivalentDataProperties, subDataProperties

or disjointDataProperties type.

- The edge type Ec
i represents an individual-class relationship, i.e. representing

an classAsserion axiom for an individual I.

- The edge type Ei
i represents an individual-individual relationship. These

edges are further divided into two categories. First, those edges (axioms) that link

two ontology individuals directly. Such edges can either be of sameIndividual

or differentIndividual type. The second type of edges are those that link two

individuals through a ontology property instantiation. Such edges can either be of

objectPropertyAssertion or dataPropertyAssertion type.

- The edge type Eo represents an attribute of an object property. Such

edges can either be of Functional, InverseFunctional, Transitive, Symmetric,

Asymmetric, Reflexive or Irreflexive type.

- The edge type Ed represents a Functional attribute of a data property.

7.2.2 Graph-based composite change specification

Usage of graph-based transformation for the representation of atomic ontology changes

has been suggested in the past [Mitra et al., 2000, Shaban-Nejad et al., 2011, De Leen-

heer et al., 2007]. In [De Leenheer et al., 2007], the authors adopt the idea of utilizing

122

Class
Object

Property

Individual

instanceOf

domainOf

rangeOf

Data

Property

domainOf

rangeOf

XSD:Datatype

subclassOf

Figure 7.1: Type graph for ontology entity relationships

PhD_StudenthasSupervisor

John

instanceOf

hasFirstName

rangeOf

XSD:String

subClassof

rangeOf

Faculty

Student

domainOf domainOf

Figure 7.2: Typed ontology subgraph

a graph transformation approach for software evolution and applied it to ontology evo-

lution. Similar to our work, they construct a metamodel for the domain ontologies in a

form of type graph and domain ontologies itself are represented as typed graphs. The

ontology changes are represented using graph transformation rules in AGG - a general

purpose graph transformation tool. In [Shaban-Nejad et al., 2011], the authors present

a graph-oriented double pushout (DPO) formalization and evolution of bio-ontologies.

The authors made use of a rule-based hierarchical distributed graph transformation ap-

proach. In this case, the DPO approach has been extended from flat to hierarchical

graphs [Drewes et al., 2002] where transformation rules can be applied on a hierarchical

level.

For the composite ontology change specification, we follow the double pushout (DPO)

123

approach, but adapt it to our needs. The DPO approach allows us to specify the graph

transformation rules and gluing conditions (discussed below), for an applied composite

ontology change, in a form of pairs of graph morphisms (L
l
←− K

r
−→ R) – Figure 7.3.

First, we describe the core DPO approach following Ehrig et al. [Ehrig et al., 1973].

m
1

m
2

m
3

g

l

h

r

pushout (1) pushout (2)

(3)(1) (2) (1) (2) (1) (2)(3) (3)

(3)

(1) (2)

(4)

(3)

(1) (2)

(4)

(3)(1) (2)

(4)

G D H

L K R

Figure 7.3: Double-pushout approach for graph transformation

Referenced and ontology subgraphs. The DPO approach is called “double pushout”

as the complete transformation of an input ontology subgraph G into a target ontology

subgraph H is translated into two types of changes, i.e. exclusion and inclusion change

operations. The DPO approach uses a graph homomorphism approach where L, K and

R represent the referenced subgraphs and G, D and H represent the ontology input

subgraphs. If the match m1 finds an occurrence of L in a given ontology subgraph G,

then G
l,m1

=⇒ D denotes the derivation where l is applied to G leading to a derived graph

D (Figure 7.3). Similarly, if the match m2 finds an occurrence of K in derived ontology

subgraph D, then D
r,m2

=⇒ H denotes the derivation where r is applied to D leading to

the output subgraph H.

The graph L is the referenced input subgraph representing items (i.e. ontology nodes

or edges) that must exist in the ontology input subgraph G for the application of the

composite change. In other words, graph G represents the initial state of the ontology,

124

i.e. the preconditions to be satisfied by the input ontology subgraph. The graph R is the

referenced output subgraph representing the items that must exist in the resulting target

ontology subgraph H, after the application of a composite change. In other words, graph

H represents the final state of the ontology, i.e. the postconditions to be satisfied by

the output ontology subgraph. The referenced graph K represents the “gluing graph”

(L ∩R), also known as interface graph, representing the graph items that must be read

during the transformation but are not consumed, i.e. representing the intermediate state

after the application of exclusion type atomic change operations.

Note, the graph transformation here represents the transformation of an input ontol-

ogy subgraph into a target ontology subgraph. Each node here represents an ontology

entity; whereas the set of graph nodes of change log subgraph (discussed in Chapter 6),

are mentioned here in the form of productions (discussed below).

Graph transformation rules. The graph transformation rules, also known as produc-

tions (p), refer to the change operations being applied to the subgraphs during the two

pushouts. It defines the correspondence between the source and the target subgraph de-

termining what is to be deleted, preserved or constructed. For example in Figure 7.3, the

first production (represented as l) refers to the exclusion change operations of pushout 1

that deletes certain items (ontology nodes or edges) from the reference input subgraph

L. The second production (represented as r) refers to the inclusion change operations

of pushout 2 that adds certain items (ontology nodes or edges) into the reference gluing

graph K. The productions representing the changes being applied to the input ontology

subgraph G are known as co-productions and are given as g and h in Figure 7.3.

Match (m). In order to apply production l to the ontology graph, first we need to

identify the occurrence of subgraph L in the ontology graph, called a “match”. For

example, m1 : L −→ G for a production l is a graph homomorphism, i.e. each ontology

node/edge of subgraph L is mapped to a distinct ontology node/edge in subgraph G in

125

such a way that graphical structure and labels are preserved [Corradini et al., 1996]. The

context gluing graph D is obtained by deleting all items (ontology nodes and edges) from

the subgraph G which have a match (image) in the subgraph L but not in subgraph K -

pushout 1. Intuitively, we can say that if a match m1 finds an occurrence of subgraph L

in a given ontology subgraph G, then G
l,m1

=⇒ D represent the derivation (co-production)

g where l is applied to G leading to a derived graph D. Informally, the subgraph

D is achieved by replacing the occurrence of L in G by K. Similarly in pushout 2,

the subgraph H is obtained by inserting distinct items (ontology nodes and edges) of

subgraph R that do not have any match (image) in subgraph K (h = D
r,m2

=⇒ H).

Gluing conditions. The possible conflicts in the graph matching step are resolved by

applying certain matching constraints, known as “gluing conditions”. A gluing condition

consists of two parts, i.e. a dangling condition and an identification condition. The

dangling condition (Cd) ensures that the graphD, obtained by applying the production l,

contains no “dangling” edge, i.e. an edge without a source or a target node. For example,

if an ontology node v is deleted from graph G, all the edges that contain ontology node v

as a source or target node, will also be deleted. The identification condition (Ci) ensures

that every item of graph G that has to be deleted by the application of production l,

must have only one distinct match in the graph L, i.e. a 1:1 matching. Thus, we can say

that the items from the left-hand side graph L may only be identified in resultant graph

R if they also belong to the gluing graph (i.e. preserved items) [Heckel et al., 2002].

7.3 DPO adaptation - re-attachment of dangling edges

7.3.1 Motivation

A modification of the DPO approach is necessary to deal with the preservation of prop-

erties under change. A composite change is a combination of inclusion and exclusion

126

type atomic change operations. In the DPO approach, exclusion and inclusion type

change operations are applied in pushout 1 and pushout 2, respectively. The nodes and

edges to be deleted (from an ontology graph) in pushout 1 can be given as L\K (i.e.

the elements that are present in the subgraph L, but not in K) and the set of change

operations of pushout 1 (l) can be given as l = C−

r +Cd. Here, C
−

r refers to the exclusion

type change operations of a user’s change request and Cd refers to the change opera-

tions added in pushout 1 to satisfy dangling conditions. We take pushout 1 of the DPO

approach as a “structural pushout”, as the pushout (including gluing conditions) refers

to the completeness and correctness of the structure of a graph. The dangling condition

for edges in pushout 1 ensures that the interface graph D is a proper graph by deleting

the dangling edges. However, the semantics behind the applied composite change may

be lost in the case where newly added entities (of pushout 2) adopt properties from the

deleted/edited entities (of pushout 1), e.g. in the case of the Split class change.

Let x be an ontology class that is split into two sibling classes x1 and x2 (Figure 7.4).

In pushout 1 of the split class change, class x is removed from the class hierarchy and

deleted. In order to satisfy the dangling condition, the roles of the class x are also being

deleted. Here, the term “role” refers to the properties of an ontology entity (represented

in the form of edges) that relates it to other entities of the domain ontology. In Figure

7.4, the class x (in the ontology input subgraph G) has three roles i.e. b1 (domainOf),

b2 (rangeOf) and b3 (instanceOf) that are deleted to satisfy the dangling condition.

In pushout 2, two new classes x1 and x2 are added, replacing the class x in the class

hierarchy. As classes x1 and x2 adopt relationships from the split class x, the deleted

edges (for satisfying dangling condition) are actually not the consumed entities in this

graph transformation. Thus, the deleted edges must be added back to the newly added

sibling classes x1 and x2.

127

s

l

c

s
2s

1

r

g h

z

x

m
1

a
1

LEFT HAND SIDE (L) RIGHT HAND SIDE (R)GLUING GRAPH (K)

(L R)

U

pushout (1) pushout (2)

a
1

a
4

a
3

m
2

m
3

INPUT GRAPH (G) OUTPUT GRAPH (H)GLUING GRAPH (D)

(G H)

U

cc

u
1 u

2

i
1

z

u
1 u

2

i
1

b
1

b
2

b
3

z

x
2

x
1

a
3

a
4

u
1

u
2i

1

w
1
w
2

w
3

w
4

w
5

w
6

structural pushout semantic pushout

Figure 7.4: Split class (x, (x1, x2)) - double push out (DPO) approach

7.3.2 Extended DPO - definition

We extended the DPO approach by adding the re-attachment of the dangling edges (C ′

d)

that formulates the pushout 2 as a “semantic pushout” allowing a user to preserve the

non-consumed entities that were deleted due to the dangling edge effect in pushout 1.

Thus,

- the nodes and edges to be added (in ontology graph) in pushout 2 can be given as

a set difference of R and K, denoted as R\K (i.e. the elements that are present

in the subgraph R, but not in K), and

- the set of change operations of pushout 2 (r) can be given as r = C+
r + C

′

d. Here,

C+
r refers to the inclusion type change operations included in a user’s change

request and C
′

d refers to the change operations added in pushout 2 to re-attach the

dangling edges that were deleted in pushout 1.

Evolution Strategies: The question that arises here is how to make sure that intent

of change is correctly achieved, e.g. in cases where newly added classes adopt proper-

128

ties from deleted ones, a class becomes a subclass of its previous sibling disjoint class,

properties are moved in the class hierarchy and inferred instances are not valid anymore

etc. To resolve this issue, different sets of atomic change operations, in the form of an

evolution strategy [Javed et al., 2012a], can be utilized to achieve a consistent state of

the domain ontology. However, each solution may lead to a distinct consistent ontology

version. Here, the term consistent state not only refers to a structural consistency, but

also a semantic consistency [Qin et al., 2009]. For example, in the split change case

scenario (given in Figure 7.4), where classes x1 and x2 adopt properties from deleted

class x, a user can either

- distribute the deleted roles of class x among the newly added replacement classes,

OR

- re-attach the roles to one of the newly added replacement class, OR

- re-attach roles to both the newly added replacement classes, OR

- do nothing.

As in our running example, we chose option 3, the nodes u1, u2 and i1 are attached

to the nodes x1 and x2 resulting into the output graph H (i.e. h = D
r,m2

=⇒ H).

As different users may have different perspectives of a domain ontology and differ-

ent objectives of an ontology change, given evolution strategies are customizable and

extendable. A list of composite level evolution strategies is given in Appendix G.

7.3.3 Applying DPO to composite change patterns

We applied the DPO approach to composite change patterns. There exist no agreed

standard set of composite change patterns. One can combine different atomic level

change operations in order to construct new patterns. Thus, providing an exhaustive

list of composite change patterns is not feasible. In our current work, we select the

129

composite change patterns and their definitions from [Stojanovic, 2004] which are given

in Table 7.1.

As we discussed earlier, a composite change pattern can be applied using different

order of inclusion and exclusion type change operation. However, in order to adapt

to DPO, we presume that exclusion type change operations have been applied prior to

inclusion type change operations. This assumption allows us to define an association

between pushout 1 and exclusion type change operations and between pushout 2 and

inclusion type change operations. For example, for the Pull up class (x, x1) change

pattern, two pushouts of DPO can be given as:

Op.1: Delete subclassOfAxiom (x, x1) – [pushout 1]

Op.2: Add suclassOfAxiom (x, y) – [pushout 2]

Op.3: Add suclassOfAxiom (x, z) – [pushout 2]

*assuming class x1 has two super classes, i.e. y and z.

Similarly, for the Pull down property (p, x1, x2) change pattern, two pushouts

of DPO can be given as:

Op.1: Delete domainOfAxiom(p, x1) – [pushout 1]

Op.2: Add domainOfAxiom (p, x2) – [pushout 2]

7.3.4 “Split class” change scenario

In this section, we provide the details of our extended DPO approach using the “split

class” composite change as a case scenario. The composite change split class refers

to splitting a class into two (or more) sibling classes (Table 7.1). For example in Figure

7.4, the class x (x ∈ G) has been split into two sibling classes x1 and x2 (x1, x2 ∈ H).

The nodes and edges, given in Figure 7.4, represent the following ontology elements:

square node −→ class(c), oval node −→ property (t), diamond node −→ individual (i),

edge [src(e) = c & tar(e) = c] −→ is-a relationship, edge [src(e) = t & tar(e) = c] −→

range of a property, edge [src(e) = c & tar(e) = t] −→ domain of a property and edge

130

[src(e) = i & tar(e) = c] −→ instanceOf relationship.

Table 7.1: List of composite change patterns and their definitions
Composite Change Description

Split class (x, (x1, x2)) Split a class x into two newly created sibling classes x1 and
x2.

Merge classes ((x1, x2), x) Merge two existing classes x1 and x2 into one newly created
class x and cumulate all roles of x1 and x2 into x.

Pull up class (x, x1) Pull class x up in its class hierarchy and attach it to all
parents of its previous parent x1.

Pull up class (x) Pull class x up in its class hierarchy and attach it to all
parents of all its previous parents.

Pull down class (x, x1) Pull class x down in its class hierarchy and attach it as a
child to its previous sibling class x1.

Pull down class (x) Pull class x down in its class hierarchy and attach it as a
child to all its previous sibling classes.

Move class (x, x1) Detach class x from its previous superclass and attach it
as a subclass to a class x1 (which previously was not a di-
rect/indirect superclass of class x).

Group classes (x, (x1, x2)) Create a common parent class x for sibling classes x1 and
x2 and transfer the common properties to it.

Add Generalisation class (x, x1) Add a new class x between x1 and all its super classes.

Add Specialization class (x, x1) Add a new class x between x1 and all its subclasses.

Pull up property (p, x1, x2) Pull a property p up in the class hierarchy and attach it to
the superclass x2 of its previous domain/range class x1.

Pull down property (p, x1, x2) Pull a property p down in the class hierarchy and attach it
to the subclass x2 of its previous domain/range class x1.

Table 7.2 gives the formal definition of the split class composite change example,

given in Figure 7.4, in terms of ontology and DPO graph changes and conditions. Now,

we discuss each pushout and the involved change operations.

pushout 1 : First, we identify the occurrence of the reference subgraph L in the

ontology graph (i.e. m1 : L −→ G). Once the match is found, production l is being

applied to the matched ontology subgraph G (through co-production g) resulting in a

gluing graph D (i.e. g = G
l,m1

=⇒ D). The co-production g represents the deletion of class

x from the class hierarchy. Thus, in Figure 7.4, node x and edge a1 are deleted from the

input ontology subgraph G. Furthermore, to satisfy the dangling conditions, edges b1,

b2 and b3 are also deleted.

131

Table 7.2: Formal definition of composite change Split class(x, (x1, x2))
Split class (x, (x1, x2))

Intuition: Splitting a class x into two sibling classes x1

and x2.

Exclusion Changes (δ1) Pushout–1 (Type)

x rdf:type OWL:Class delete node x (m2)

x rdfs:subClassOf z delete edge a1 (m2)

u1 rdfs:domain z delete edge b1 (Cd)

u2 rdfs:range z delete edge b2 (Cd)

i1 rdf:type z delete edge b3 (Cd)

Inclusion Changes (δ2) Pushout–2 (Type)

x1 rdf:type OWL:Class add node x1 (m3)

x1 rdfs:subClassOf z add edge a3 (m3)

x2 rdf:type OWL:Class add node x2 (m3)

x2 rdfs:subClassOf z add edge a4 (m3)

u1 rdfs:domain x1, x2 add edges w1, w2 (C′

d
)

u2 rdfs:range x1, x2 add edges w3, w4 (C′

d
)

i1 rdf:type x1, x2 add edges w5, w6 (C′

d
)

Ontology Conditions (φ) Identification Conditions (Ci)

x1, x2 /∈ O — x1, x2 ∈ O′ x1, x2 /∈ G — x1, x2 ∈ H

x ∈ O — x /∈ O′ x ∈ G — x /∈ H

z ∈ (O, O′) z ∈ D

(x rdfs:subClassOf z) ∈ O src(a1) = x & tar(a1) = z in G

(x1 rdfs:subClassOf z) ∈ O′ src(a3) = x1 & tar(a3) = z in H

(x2 rdfs:subClassOf z) ∈ O′ src(a4) = x2 & tar(a4) = z in H

pushout 2 : Similar to pushout 1, first we identify the match of the reference gluing

graph K in the ontology gluing subgraph D (i.e. m2 : K −→ D). Once a match is

confirmed, production r is applied to the ontology subgraph D (through co-production

h). The co-production h represents the addition of two classes x1 and x2 in the ontology

class hierarchy. Thus, in Figure 7.4, the nodes x1 and x2 are added to the gluing graph

D and are linked to node z through edges a3 and a4.

In order to ensure that the non-consumed roles (edges) of the deleted class x have

been transferred to the newly added classes, the deleted dangling edges of pushout 1

must be added back in pushout 2. To do this, a user can select different evolution

strategies [Javed et al., 2012a] that guide in adopting the roles of the deleted class by

132

the newly added classes.

7.4 Detection of composite changes

Little work has been done in the area of the detection of composite changes [Plessers et

al., 2005, Papavassiliou et al., 2009]. Based on the work mentioned in [Plessers et al.,

2005], ontology changes are recorded in the form of a version log2 and each change is

detected based on its comparison to a specified change definition. In [Papavassiliou et

al., 2009], ontology changes are captured using different ontology versions. The authors

focused on identifying composite changes by detecting the differences between (two)

versions of the same ontology. In contrast to their work, we record ontology changes in

the form of a change log and we operationalize the composite change detection in terms

of graph matching algorithms.

The DPO approach can be applied directly, if one preserves the different versions of

the ontology (such as in [Papavassiliou et al., 2009]). As we log the applied change oper-

ations, rather than the different versions of the ontology, we provide productions as an

input to the composite change detection algorithm, rather than the ontology and refer-

enced ontology subgraphs. Thus, the input to the composite change detection algorithm

is the change log graph (representing the applied atomic changes on the domain ontol-

ogy) and the referenced composite change graph (representing the sequence of atomic

changes to be identified) along with the specified conditions (φ).

In terms of graph-based pattern matching, there exist a number of basic and fre-

quently used algorithms [Wen et al., 2010, Van der Aalst et al., 2006, Baggenstos et al.,

2006, Rudolf et al., 2000, Valiente et al., 1997]. However, as the composite changes are

mainly detected from a sequential atomic change log, we adopt the ideas from string

pattern matching and utilized the algorithms to our needs. The most prominent algo-

2a version log keeps record of different versions of an ontology entity during its lifespan

133

rithms in the area of string pattern matching include Brute-force exact pattern match,

Boyer-Moore algorithm, Karp-Rabin and Knuth-Morris-Pratt’s algorithm. Similar to

a string, where a string is a sequence of characters, in our case, we have a sequence

of atomic change operations stored in a sequential atomic change log. By symbolizing

an atomic change operation as a single character, an existing string pattern matching

algorithm can be directly applied.

7.4.1 Algorithm for composite change detection

The ontology change log graph is a collection of sessions (S), where each session (s ∈ S)

consists of the change log entries, from the time the domain ontology is loaded into the

ontology editor until the time it is closed. As we mentioned in the previous chapter, we

opt for a restrictive approach where a composite change pattern is applied completely

within a session. In this regard, we divided the change log graph into a sequence of

sessions from where a composite change pattern can be identified.

The presented algorithm for the composite change pattern detection is similar to the

Brute-force exact pattern matching algorithm, where the overall approach is based on

Depth First Search (DFS) strategy. We try to match the first node of the referenced

graph with the first node of a change log session. If the node is matched, we try to

match second node, and so on. If we hit a failure, we slide the pattern over one graph

nodes and repeat the process. In addition to the general matching of the graph nodes,

our algorithm ensures that the conditions (i.e. existential and correlations) defined for

any composite change pattern are satisfied. This is done by comparing the parameters

of the change operations and their roles in the ontology class hierarchy. Furthermore,

the algorithm is extendable to cover the unordered composite change patterns that are

semantically identical to the reference composite change operation.

The basic idea of the presented composite change detection algorithm is to iterate

over each session of the change log graph and find the location where an applied com-

134

posite change may start. We pass the identified location and the reference graph Gr to a

function that extracts the sequence of change nodes that completely map to Gr. In the

mapping step, it ensures that the correlations among the parameters of the identified

change operations are satisfied.

Description of algorithm : The composite change algorithm is given in listings 1.1

and 1.2, where listing 1.1 describes the main algorithm and listing 1.2 presents the al-

gorithm for one of the functions (method). Below, we describe the algorithm in steps

(and sub-steps):

Listing 1.1:

Step A: The algorithm takes the change log graph G and reference graph Gr as an input

and groups the graph nodes into a set of sessions (line 1–2).

Step B: Once we have the session set S, the algorithm iterates over each session s (line

3–18).

Step B.1: Within each iteration over session s, first we get the range of the session by

extracting the node ids of the first and the last node of the session. The parameter

currentId (representing the id of the currently visited graph node) is initialized with

the first node id (line 4–6).

Step B.2: We iterate over the graph nodes of the session, until the id of the currently

visited node is less than the id of the last node of the session (line 7–17).

Step B.2.1: In each iteration, we extract the first node nr from the reference graph G−r

and identify a matching node to nr from the log session s (line 8–9).

135

Step B.2.2: If no matching node is identified from the session, the algorithm goes back

to step 3 to selects the next session from the session set (line 10–11).

Step B.2.3: If a matching node is identified from the session, the algorithm passes the

matched node ng, reference composite change graph Gr and the session s to the method

matchPattern(), that identifies the complete composite change sequence (line 13).

Step B.2.4: The method matchPattern() returns a list of change operations (represent-

ing a detected composite change operation) that is passed as an output of the algorithm

or returns a null value (representing that a composite change was not identified at par-

ticular location of the session) (line 13–16).

Algorithm 7.4.1 Composite Change Detection Algorithm

Input: Change Log Graph (G) and Reference Graph (Gr)

Output: Set of Identified Composite Changes (SC)

1: set← getGraphNodeSet(G)

2: S ← getSessionSet(set)

3: for each session s in session set S do

4: firstNodeId← getF irstNodeId(s)

5: lastNodeId← getLastNodeId(s)

6: currentId = firstNodeId

7: while currentId < lastNodeId do

8: nr ← getF irstNode(Gr)

9: ng ← findMatchingNode(nr, s)

10: if ng == null then

11: go back to step 3.

12: end if

13: list = matchPattern(ng, Gr, s)

14: if list 6= null then

136

15: SC ← list

16: end if

17: end while

18: end for

Listing 1.2:

Step A: First, we save the passed graph node ng in an extendable list (line 1).

Step B: We iterate over the session s, as long as the complete composite change reference

graph is not identified (line 2–12).

Step B2.1: In each iteration, we select the subsequent nodes of the reference graph Gr

and the session s (line 3–4).

Step B2.2: We match the selected nodes. If the nodes are matched and the correlations

are satisfied, the selected node ng is added into the list and the next subsequent node

of the session s is selected as a current node (line 5–7).

Step B2.3: If the nodes do not match (in above step B2.2), the next subsequent node

of the session s is selected as a current node (line 5–7) and the algorithm goes back to

Listing 1.1 (from where this method was called) with a null value returned.

Algorithm 7.4.2 Method: matchPattern()

Input: Matched Graph Nodes ng, nr and session s

Output: List of Identified Composite Changes

1: list← ng

2: while list is not complete do

3: nr ← getNextNode(Gr)

4: ng ← getNextNode(s)

137

5: if matched(ng, nr) and correlation is satisfied then

6: list.add(ng)

7: currentNode = currentNode+ 1

8: else

9: currentNode = currentNode+ 1

10: return null

11: end if

12: end while

13: return list

7.5 Limitations and illustration of results

7.5.1 Limitations

There are two main limitations of the presented algorithm.

1. The algorithm does not cover the complex classes created using logical class con-

structors (i.e. intersection, union and complement). The algorithm considers all

defined classes as simple classes.

2. As we opt for the pattern matching approach here, unordered changes are not

covered by the composite change detection algorithm. The algorithm only matches

the change sequences that completely overlap (in terms of order and number of

ontology change operations) with the referenced change sequence of the composite

change operation.

7.5.2 Illustration of the results

Two examples from the identified composite changes are given in Figures 7.5 and 7.6.

The example given in Figure 7.5 represents an identified Split class change, where

“Distribute the roles” was the selected evolution strategy. In the previous version of the

ontology V1, class Student was classified into MSStudent, PhD Student and UGStudent.

138

Thus, all the master’s students (OWL:Individual), whether taught or research-based,

were direct instances of class MSStudent. In a subsequent version of ontology V2, in

order to distinguish between research-based and course-based students of a master’s

degree, the class MSStudent is split into two sibling classes (i.e. MSByResearchStudent

and MSTaughtStudent). Based on the selected evolution strategy, the direct instances

of the deleted class MSStudent are distributed among the newly added classes.

Student

MSStudent

Student

MSTaughtStudent MSByResearchStudent

Zubair Robert Zubair Robert

Figure 7.5: Identified composite change - ‘‘Split class’’

The example given in Figure 7.6 represents an identified Pull up property change

on class PhD Student, where MSByResearchStudent and PhD Student were direct sub-

classes of Student. In the previous version of the ontology V1, MSByResearchStudent

and PhD Student were grouped under the class ResearchStudent. In this regard, the

next step is to pull up the common properties of PhD Student and MSbyResearchStudent

to the common superclass ResearchStudent in the subsequent version V2. Thus, com-

mon properties (such as, ResearchTrack (object property), Affiliation (object prop-

erty), isSupervisorOf (object property), ResearchTitle (data property) etc.) are

pulled up.

7.6 Summary

Activity log mining is not restricted to creating new formal process models, but can be

extended to discover implicit semantic knowledge from the change log. For example,

139

ResearchStudent

PhD_Student

Researcher

ResearchStudent

PhD_Student

ResearchTrack

isSupervisorOf

ResearchTrack

Affiliation

isSupervisorOf

MSByResearchStudent MSByResearchStudent

Affiliation

Researcher

Figure 7.6: Identified composite change- ‘‘Pull up property’’

such knowledge may give an ontology engineer clues about semantics/reasons behind

any of the applied change, based on the actual current data of change activities.

In this chapter, we presented our research towards identification of the composite

change patterns from an ontology change log in the form of pattern matching algorithms.

We formalised the ontology change log data using a graph-based approach, where each

graph node represents an atomic change operations. We adapted the double pushout

(DPO) graph transformation, where an input ontology subgraph is transformed into

a target ontology subgraph based on the applied change operations and conditions to

be satisfied. We presented the change detection algorithms that capture the composite

change patterns from the change log graph.

We analyzed the detected composite changes of different types. It has been realized

that learning about semantics behind any of the applied change helps us in keeping the

ontology consistent in a more appropriate manner. To do so, higher level evolutionary

strategies are essential [Javed et al., 2012a]. Furthermore, a composite change can be

applied in different ways, that leads to application of different change operations (from

atomic or composite level change operations).

140

Chapter 8

Change patterns discovery

algorithms

In this chapter, we discuss our approach towards discovery of domain-specific change

patterns (level 3 change operators) from an Atomic Change Log (ACL). For the stor-

age of ontology changes, we employ an RDF triple-based storage system in order to

maintain a complete, fine granular ontology change representation and to identify the

re-usable domain-specific change patterns which cannot be identified by simply navigat-

ing or querying the ontology changes. We formalize the change log using a graph-based

approach and analyze the ontology change log graph in order to identify the frequent

change sequences that occur during evolution as a combination of single atomic change

operations. Such sequences are then applied as a reference in order to discover reusable

usage-driven domain-specific change patterns. We describe the pattern discovery algo-

rithms and measure their performance using experimental results.

141

8.1 Empirical analysis of atomic change log graph

We studied the atomic change log empirically. The atomic change log graph allows

us to identify and classify frequent changes that occur in domain ontologies over a

period of time. Initially, we analyzed the change log graph manually and observed

the groups of atomic change operations that occur repeatedly during the evolution of

domain ontologies. We identified these as frequent recurring change patterns that can

be reused. While patterns are sometimes used in their exact form, often more flexibility

is needed. Users often use different orderings of change operations to perform the same

(semantically identical) change at different times. To capture semantically identical, but

operationally different change patterns, we introduce a metric, called node-distance (c.f.

Section 6.3.2). This help us to a more flexible notion of a pattern.

Definition 8.1: Node-Distance refers to the distance between two adjacent nodes of a

sequence in a change log graph. In order to identify the recurrent change patterns, the

value of a node distance is a user input and is denoted by an uppercase letter X.

8.1.1 Types of ontology change patterns

We organized the different types of patterns into two basic subdivisions, i.e. Ordered

Change Patterns (OP) and Unordered Change Patterns (UP).

- Ordered Change Patterns (OP) comprise ordered change operations from the change

log graph. Such (complete or partial) change sequences (c.f. Section 6.4.1) may

have positive node distance value, starting from zero to a user given value (X).

Type 1: Ordered Complete Change Patterns (OCP).

Type 2: Ordered Partial Change Patterns (OPP).

- Unordered Change Patterns comprise unordered change operation from change

log graph. These (complete or partial) change sequences may have node distance

142

whose range is from (user-defined) negative node distance value (−X) to positive

node distance value (+X).

Type 3: Unordered Complete Change Patterns (UCP).

Type 4: Unordered Partial Change Patterns (UPP).

8.2 Metrics for ontology change pattern discovery

We consider identifying recurring change operations from a change log as a problem

of recognition of a frequent pattern in a graph. Identifying recurring sets of applied

changes can provide an opportunity to define reusable domain-specific change patterns

that can be implemented encapsulating existing knowledge-based systems [Javed et al.,

2011a]. The motivation behind it is the reusability of recurrent domain-specific changes

(patterns), in line with the basic idea of software reuse and to support pattern-based

ontology evolution [Javed et al., 2009]. First, we describe some metrics by introducing

the following definitions.

Pattern Support: The support of a change pattern p is the number of occurrences

of such a pattern in the change log graph G [Agrawal et al., 1995, Zhao et al., 2003].

Pattern support is denoted by supp(p). The minimum number of occurrences required

for a sequence s in change log graph G to qualify as a change pattern p is the minimum

pattern support, denoted by min supp(p).

Pattern Length: The length of a change pattern p is the number of atomic change

operations in it, denoted by len(p) [Agrawal et al., 1994, Hirate et al., 2006]. The

minimum length required for a sequence s in a change log graph G to qualify as a member

of a candidate pattern set is the minimum pattern length, denoted by min len(p).

Candidate Change Pattern Sequence: For a given ACL = < ac1, ac2, ac3 · · · acn

>, a candidate change pattern sequence cs is a sequence < acp1, acp2, acp3 · · · acpk >

143

with

- acpi ∈ ACL for i = 1, 2 · · · k and

- if pos(acpi) < pos(acpj) in cs, then

pos(acpi) < pos(acpj) in ACL . . .

for all i = 1 · · · k − 1 and j = 2 · · · k.

Change Pattern Sequence: A candidate change pattern sequence cs is a discovered

change pattern p if

- len(cs) ≥ min len(p).

i.e. the length of the candidate change pattern sequence cs is equal to or greater

than the threshold value set by the minimum pattern length.

- supp(cs) ≥ min supp(p).

i.e. the support for the candidate change pattern sequence cs in a change log graph

G is above the threshold value of the minimum pattern support.

Ordered Change Pattern: Let p = {s1, s2 · · · sd} be a set consisting of a candidate

change pattern sequence cs (cs = s1) and the change pattern sequences {s2, s3 · · · sd}

that support cs in ACL. The candidate change pattern sequence cs is a discovered

ordered change pattern (OP) with

- si =< aci1, aci2 · · · acin > ∈ p for i = 1 · · · d

- if pos(acix) < pos(aciy) in si then

pos(acix) < pos(aciy) in ACL . . .

for all x = 1 · · ·n− 1, y = 2 · · ·n.

Unordered Change Pattern: Unordered change patterns are those patterns where

in comparison to a candidate change pattern sequence cs, the existing type-equivalent

graph nodes in a discovered change sequence s are not in same sequential order (c.f.

Section 6.4.1).

Let p = {s1, s2 · · · sd} be a set consisting of a candidate change pattern sequence cs

144

Table 8.1: Input parameters for pattern discovery algorithms.
Input Parameters Type

Graph representing Change log triples - G Graph

Minimum Pattern support - min supp Integer

Minimum Pattern Length - min len Integer

Maximum n-distance - X Integer

(cs = s1) and the change pattern sequences {s2, s3 · · · sd} that support cs in ACL and

u and v be the first and the last positions in a discovered change pattern sequence si

(for i = 2 · · · d), respectively. The candidate change pattern sequence cs is a discovered

unordered change pattern (UP) with

- si =< ac1, ac2 · · · acn > ∈ p for i = 2 · · · d

- if u = pos(ac1) in si and

v = pos(acn) in si, then

u ≤ pos(acx) ≤ v in ACL, for all x = 1 · · ·n

8.3 Complete change pattern discovery algorithms

This section describes the algorithms used for the discovery of complete change patterns

(CP). The section is divided into two parts, i.e. an algorithm for searching ordered

complete change patterns (OCP) and an algorithm for searching unordered complete

change patterns (UCP). The inputs to the pattern discovery algorithms are given in

Table 8.1.

Before we give a description of each algorithm in detail, it is necessary to introduce

some frequently used terms.

Definition 8.2- Target Entity, Primary and Auxiliary Context : The word target entity

refers to the ontology entity to which the change has actually been applied, whereas

the primary and auxiliary context refer to the ontology entities which will be affected

145

by such change. For example, in change operation Add rangeOfAxiom(hasSupervisor,

Faculty), object property hasSupervisor is the target entity (to which change has been

applied) and concept Faculty is the primary context. Similarly, in change operation Add

dataPropertyAssertionAxiom(Javed, studentId, ‘58106383’), Individual Javed is

the target entity, data property studentId is the primary context and the literal value

‘58106383’ is the auxiliary context.

Definition 8.3- Candidate Node (cn): A candidate node cn is a node from the graph

which will be selected at the start of the graph node’s iteration process. Each node of

the graph will act as a candidate node cn in one iteration each of the algorithm.

Definition 8.4- Candidate Sequence (cs): The candidate sequence cs is the context-aware

set of graph nodes starting from particular candidate node cn.

Definition 8.5- Discovered Node (dn): The discovered node dn is a node which matches

the candidate node cn (in a particular iteration) in terms of its operation, element and

type of context. Capital letter DN refers to the set of discovered nodes.

Definition 8.6- Discovered Sequence (ds): The discovered sequence ds is the context-

aware set of graph nodes starting from particular discovered node dn and matches can-

didate sequence cs (in a particular iteration). Capital letter DS refers to the set of

discovered node sequences.

8.3.1 OCP discovery algorithm

The OCP discovery algorithm is similar to the Brute-force exact pattern matching algo-

rithms due to the assumption that the discovered sequence is an ordered change sequence,

where the (searched) graph nodes are one after the other (in comparison to the candi-

date sequence). However, the difference lies in i) identifying the locations from where a

matching discovered sequence may start and ii) the search space of a graph node. This

is described below.

After generating a candidate sequence, OCP algorithm first identifies the locations in

146

the change log graph from where a discovered sequence may start (Breadth First Search

(BFS)). Once these locations are identified, we iterate over each of them. Here, we opt

for the Depth First Search (DFS) approach. In each iteration, we try to match the first

node of the candidate sequence with the first node present at particular location. If the

node is matched, we try to match the second node of the candidate sequence, and so

on. If we hit a failure, rather sliding the candidate sequence over the next graph node

and restart the whole pattern matching process (as in case of Brute-force), we search

for the unmatched graph node further in the search space specified by the permissible

node-distance value (c.f. Section 6.3.2). This approach has been adapted from the state

of the art sequential pattern mining algorithms with gap-constrained [Zhu et al., 2007,

Zhang et al., 2007, Li et al., 2008]. Thus, if the candidate node is matched to any graph

node in the search space, it is added in the discovered sequence and we try to match the

next node of the candidate sequence. On the other hand, if the candidate node is yet

not matched to a graph node in the search space, we stop the search process and move

to the next iteration.

To discover ordered complete change patterns (OCP), the identified sequences are

of same length and contain change operations in the exact same sequential order. The

pseudo-code of the OCP algorithm is described in algorithm lists (8.3.3 – 8.3.5) and

explained below in detail in a form of steps and sub-steps.

8.3.1.1 Description of algorithm

Step A: The algorithm iterates over each node of the graph and selects it as a

candidate node (cnk), where k refers to the identification key of the node in graph

G.

Step B: Once the candidate node and its target entity are captured, an iteration

process of an extension of a candidate node cnk to its adjacent nodes cnk++ starts

and it continues until no more extension is possible (i.e. an adjacent node does

147

not share the same target entity).

Step B.1: If the target entity of the adjacent node is matched with the target

entity of candidate node, it will be taken as the next node of the candidate sequence

cs. If the target entity does not match, an iterative process will start to find the

next node whose target entity matches with the target entity of the candidate node.

The iterations will continue based on the user-given value X, i.e. the allowed gap

between two adjacent nodes of a pattern (n-distance).

Algorithm 8.3.3 Ordered Complete Change Pattern Discovery Algorithm

Input: Graph (G), Minimum Pattern Support (min supp), Minimum Pattern Length

(min len), Maximum n-distance (X)

Output: Set of Domain-Specific Change Patterns (S)

1: for i = 0 to NG.size do

2: k = 0

3: cs← GenerateCandidateSequence(cnk))

4: if (cs.size < min len) then

5: go back to step 1.

6: end if

7: DN ← DiscoverMatchingNodes(cnk)

8: DS ← DN

9: if (DS.size < min supp) then

10: go back to step 1.

11: end if

12: while (DS.size ≥ min supp) do

13: for each discovered sequence ds in DS do

14: t← getTargetEntity(ds)

15: Expand(dnj , X)

148

16: Match(dnj++, cnk++, t)

17: if (Expanded && Matched) then

18: ds← dnj++

19: else

20: break while loop.

21: end if

22: end for

23: if (ds.size < min len) then

24: discard ds from DS

25: end if

26: end while

27: max ← get Maximum Size of Sequences such that (max ≥ min supp)

28: for each sequence ds in DS do

29: if (ds.size < max) then

30: discard ds

31: else

32: trimSequence(ds, max)

33: end if

34: end for

35: Pdomain specific ← (ds+ cs)

36: S ← Pdomain specific

37: end for

Step C : Once the candidate sequence is constructed and is above the threshold

value of minimum pattern length (min len), next step is to search for the matching

nodes (i.e. discovered nodes dn) of the same type as candidate node cnk.

Step D: If the number of discovered nodes dn is above the threshold value set for the

149

minimum pattern support (min supp), next step is to expand the discovered nodes

and match them to parallel candidate nodes. Each discovered node is expanded

one after another. Similar to the expansion of candidate nodes, the identification

of next node of discovered sequence ds is an iterative process (depending on the

input value of X).

- Step D.1: The expansion of a discovered node dn stops if either no further

extension of that particular discovered node is possible or expansion has reached

the size of candidate sequence (i.e. length of ds becomes equal to length of cs).

Algorithm 8.3.4 Method:GenerateCandidateSequence()

Input: Graph (G), Maximum n-distance (X), Graph Node (n)

Output: Candidate Sequence (cs)

1: k = 0

2: cnk ← n

3: cs← cnk

4: context = true

5: while (context) do

6: Expand(cnk, X)

7: if (Exanded) then

8: cs← cnk++

9: else

10: context = false

11: end if

12: end while

13: return cs

Step E: At the end of the expansion of a discovered sequence, if the length of an

expanded discovered sequence is less than the threshold value of minimum pattern

150

length, it is discarded from the set of discovered sequences.

Algorithm 8.3.5 Method:DiscoverMatchingNodes()

Input: Graph Node (n), Graph G

Output: Array of Candidate Nodes(CN)

1: for each graph node x of graph G do

2: if (n.id 6= x.id) then

3: if (matchOperation(n, x) && matchElement(n, x)) then

4: if (matchContext(n, x)) then

5: DN ← x

6: end if

7: end if

8: end if

9: end for

Step F: Once the expansion process of discovered nodes is finished, the next step

is to find the maximum length of the sequences (max) such that the value of max

is greater than or equal to threshold value of minimum pattern length (min len)

and the number of identified sequences is greater than or equal to the threshold

value of minimum pattern support (min sup).

Step F.1: All discovered sequences, whose length is less than the value max,

are discarded from the set of discovered sequences. Those discovered sequences

whose length is greater than the value max, are truncated to the size max.

Step G: As a last step, a candidate sequence along with discovered sequences is

saved as a domain-specific change pattern in result list S and the algorithm goes

back to step 1 and selects next graph node as a candidate node.

151

8.3.2 UCP discovery algorithm

To perform a group of change operations in same order over time is very unlikely. In a real

world scenario, users perform ontology changes by opting for different orders of change

operations. However, the end result (i.e. impact) of the change operation sequences may

be the same (i.e. semantically identical sequences). The main difference between OCP

and UCP discovery algorithm is the definition of the search space for a specific graph

node search. As the change operations in a sequence can be in an unordered form, the

basic idea to discover the unordered complete patterns (Type 3 - c.f. Section 8.1.1) is

to modify the node search space in each iteration containing the earlier nodes as well

as subsequent nodes based on the permissible node distance value. The pseudo code of

UCP algorithm is described in algorithm lists (8.3.6 – 8.3.8) and is explained in rest of

the section.

8.3.2.1 Description of algorithm

Step A: Similar to the OCP algorithm, the UCP algorithm iterates over each

node of the graph and selects it as a candidate node (cnk), where k refers to the

identification key of the node in graph G.

Step B: An iteration process is used to construct a candidate sequence cs by

extending candidate node cnk to its subsequent context-matching nodes cnk++.

Step C : The next step is to identify the discovered nodes dn and add them as a

first member to the discovered sequence set DS. There are two main differences

in the extension of discovered sequences ds in the UCP and OCP algorithms, i.e.

i. The area of change log graph in which the mapping node will be searched

(step D).

ii. Introduction of an unidentified nodes list ul, which will keep record of un-

identified candidate nodes.

152

Algorithm 8.3.6 Unordered Complete Change Pattern Discovery Algorithm

Input: Graph (G), Minimum Pattern Support (min supp), Minimum Pattern Length

(min len), Maximum n-distance (X)

Output: Set of Domain-Specific Change Patterns (S)

1: for i = 0 to NG.size do

2: k = 0

3: cs← GenerateCandidateSequence(n(gi))

4: if (cs.size < min len) then

5: go back to step 1.

6: end if

7: DN ← DiscoverMatchingNodes(cnk)

8: DS ← DN

9: if (DS.size < min sup) then

10: go back to step 1.

11: end if

12: while (DS.size ≥ min supp) do

13: for each discovered sequence ds in DS do

14: t← getTargetEntity(ds)

15: setSearchSpace(ds)

16: a← searchInSpace(ds, cnk++, t)

17: if (found) then

18: ds← a

19: ascendSequence(ds)

20: setSearchSpace(ds)

21: if (!ul.isEmpty()) then

22: nodeFound = true

23: while (!ul.isEmpty() && nodeFound) do

153

24: nodeFound← searchUnidentifiedNodes(ul, ds)

25: ascendSequence(ds)

26: setSearchSpace(ds)

27: end while

28: end if

29: else

30: ul← cnk++

31: end if

32: end for

33: if (ds.size < min len) then

34: discard ds from DS

35: end if

36: end while

37: for each discovered sequence ds in DS do

38: if (ds.size < cs.size) then

39: discard ds from DS

40: end if

41: end for

42: Pdomain specific ← (ds+ cs)

43: S ← Pdomain specific

44: end for

Step D: Before the extension process on any discovered node starts, the search

space (i.e. the range of graph nodes in which a particular node will be searched) has

to be set. The search space is described using two integer variables, i.e. start range

(rs) and end range (re) where, rs and re represent the node ids of the starting and

ending graph nodes of the search space. The range of the search space can be

154

calculated as;

rs = min(id)−X − 1 (8.1)

re = max(id) +X + 1 (8.2)

Where, min(id) and max(id) are the minimum and maximum id values of the

existing graph nodes in the discovered sequence ds at any particular iteration.

Step E: New values of rs and re are calculated at the start of each iteration of

the discovered node expansion process. For example, given the gap constraint (X)

user input value as 1 and a discovered sequence ds contains two graph nodes, ds =

{n9, n11} at any particular iteration, then the space in which next candidate node

will be searched will be the sequence of graph nodes n7 − n13. As the algorithm

scans the whole graph only once (i.e. in step 7 to get the discovered node set)

and narrows the search space later, the search space defining technique helps us in

achieving a good performance of the algorithm.

Step F: The unidentified nodes list ul keeps record of all candidate nodes which

were not matched in the ds expansion process. If a new node is added to the

discovered sequence ds, the sequence will be converted into ascending form (based

on their id values) and the search space is reset. If the match becomes false and ds

is not expanded, the respective candidate node cnk++ is added to the unidentified

nodes list.

Step G: Once the discovered sequence ds is expanded, an iteration process is applied

to the ul to search for the unidentified nodes in the updated search space. If

an unidentified candidate node is found and matched (to a discovered node) in

the updated search space, the node will be added into the discovered sequence

and removed from the unidentified node list. Based on the modified discovered

sequence, the values of rs and re are re-calculated.

155

Step H : At the end of the expansion of any particular discovered sequence, if the

length of any expanded discovered sequence is less than the minimum threshold

value of pattern length, it must be discarded from the set of discovered sequences.

Step I : In next step, all discovered sequences whose length is less than the length

of the candidate sequence are discarded.

Step J : As a last step, a candidate sequence along with discovered sequences is

saved as a domain-specific change pattern in the result list S and the algorithm

goes back to step 1 and selects next graph node as a candidate node.

Algorithm 8.3.7 Method:setSearchSpace()

Input: Graph G, Discovered Sequence ds, Sequence Gap Contraint X

Output: Updated search space (minId - maxId)

1: n1← getF irstNodeOfSequence(ds)

2: n2← getLastNodeOfSequence(ds)

3: minId = n1.getNodeID()−X − 1

4: if (minId ≤ 0) then

5: minId = 1

6: end if

7: maxId = n2.getNodeID() +X + 1

8: if (maxId > G.size) then

9: maxId = G.size

10: end if

Algorithm 8.3.8 Method:Method:searchInSpace()

Input: Graph Node n, Discovered Sequence ds

Output: Updated Discovered Sequence ds

1: t← getTargetEntity(ds)

156

2: for each node w in range from minId to maxId do

3: if (ds.contains(w)) then

4: go back to step 2

5: else

6: if (matchOperation(n,w) && matchElement(n,w)) then

7: if (matchContext(n,w, t)) then

8: ds← w

9: return ds

10: end if

11: end if

12: end if

13: end for

8.4 Illustration of results and practical benefits

When ontologies are large and in a continuous process of change, our pattern discovery

algorithms can automatically detect change patterns. Such patterns are based on oper-

ations that have been used frequently. This reduces the effort required in terms of time

consumption and consistency management. Earlier, we presented pattern-based ontol-

ogy change operators and motivated the benefits of pattern-based change management

where patterns are usually domain-specific compositions of change operators. Our work

here can be utilized to determine these patterns and make them available for reuse.

- The key concern is the identification of frequent change patterns from change

logs. Generally, these are frequent operator combinations and can result in generic

patterns. However, our observation is that many of these are domain-specific, as

the example below will illustrate.

- This can be extended to identify semantically equivalent changes in the form of a

157

change pattern. For instance, a reordering of semantically equivalent operations

needs to be recognized by the algorithms (i.e. discovery of unordered change

patterns).

8.4.1 Illustration of algorithm’s results

Figure 8.1 presents a part of a change log session of the university ontology and the

identification of a change pattern, represented as a sequence of graph nodes. The fre-

quency of the usage of a change operation set specifies an opportunity for a potential

reuse of the set. The change operation set can be extracted and specified as a change

pattern and can be applied in the future whenever the same change has to be performed.

Identification of change patterns from a change log session of a small size is relatively

easy, but as the size of the atomic change log increases, an automated approach for

change patterns discovery is a necessity. Furthermore, the change operations present in

the change pattern support sequences can either be in the exact same order (i.e. ordered

change patterns) or can be unordered (i.e. unordered change patterns). Unordering of

change operations makes manual discovery of change patterns more complex.

Two examples from discovered change pattern sequences, one from each level, i.e.

ABox-based change patterns and TBox-based change patterns, are given in Tables 8.2

and 8.3. The example in Table 8.2 is the ABox-based change pattern from the uni-

versity ontology, representing the registration procedure of a new PhD student to the

department. First, the student has been registered as a PhD student of a particular de-

partment. Then, a student Id, email Id and a supervisor (which is a faculty member of

the university) is assigned to the student. At the end, the student is added as a member

of a particular research group of the university. We captured such change patterns and

stored them in the ontology evolution framework for their reuse. Hence, whenever a new

PhD student has to be registered, a stored change pattern can be applied as a single

transaction (ensuring cross-ontology integrity constraints to be met).

158

 Add class ("PhD_Student")

 Add subclassOf (PhD_Student, Student)

Add NamedIndividual ("Ankit")

 Add classAssertion (Ankit, PhD_Student)

 Add dataPropertyAssertion (Ankit, studentId, "58120348")

 Add dataPropertyAssertion (Ankit, hasSupervisor, Andy)

 Add NamedIndividual (Computing)

 Add classAssertionAxiom (Computing, School)

 Add class ("InternationalResearcher")

 Add NamedIndividual (NCLT)

 Add domainOfObjectPropertyAxiom (registeredIn, TaughtStudent)

 Add domainOfDataPropertyAxiom (hasTitle, Publication)

 Delete domainOfDataPropertyAxiom (hasTitle, Content)

 Add NamedIndividual (CloudCore)

Add NamedIndividual ("Yahya")

 Add classAssertion (Yahya, PhD_Student)

 Add dataPropertyAssertion (Yahya, studentId, "58763137")

 Add dataPropertyAssertion (Yahya, hasSupervisor, Joseph)

 Add class (ResearchPaper)

 Add subClassAxiom (ResearchPaper, Publication)

 Add classAssertionAxiom (CloudCore, ResearchCentre)

 Add classAssertionAxiom (NCLT, ResearchCentre)

 add classAssertionAxiom (CNGL, ResearchCentre)

Atomic Change Log

T
1.2

T
1.3

T
1.1

T
1.4

T
2.2

T
2.3

T
2.1

T
2.4

Ordered Change Pattern
(support = 2, length = 4)

Change Log Graph

Figure 8.1: Change log session and associated (graph-based) discovery of change patterns

The example in Table 8.3 is a TBox-based change pattern from the software appli-

cation ontology, representing the introduction of a new software activity. First, a new

class (TargetEntity c1) has been added as a subclass of Software:Activity. Later, to per-

form this activity, a new procedure has been added as a subclass of Software:Procedure

in the help infrastructure section of the ontology. Finally, the activity and the proce-

dure to perform such activity are linked to each other using an object property Soft-

ware:hasProcedure.

159

Table 8.2: ABox-based change pattern (extracted from university ontology)
Change Operations

(<TargetEntity i> <rdf:type> <owl:individual)>

(<TargetEntity i> <rdf:type> <Univ:PhD Student>)

(<TargetEntity i> <Univ:isStudentOf> <Univ:Department i>)

(<TargetEntity i> <Univ:StudentID> <xsd:int>)

(<TargetEntity i> <Univ:EmailID> <xsd:string>)

(<TargetEntity i> <Univ:hasSupervisor> <Univ:Faculty i>)

(<TargetEntity i> <Univ:MemberOf> <Univ:ResearchGroup i>)

Table 8.3: TBox-based change pattern (extracted from software ontology)
Change Operations

(<TargetEntity c1> <rdf:type> <owl:class>)

(<TargetEntity c1> <rdfs:subClassOf> <Software:Activity>)

(<TargetEntity c2> <rdf:type> <owl:class>)

(<TargetEntity c2> <rdfs:subClassOf> <Software:Procedure>)

(<Software:hasProcedure> <rdfs:domain> <TargetEntity c1>)

(<Software:hasProcedure> <rdfs:range> <TargetEntity c2>)

8.4.2 Practical benefits

Tool Support for Change Tracking: One of the key benefits of our change patterns

discovery approach is its integration with an existing ontology change tracking toolkit

(such as Protégé, Neon etc.). We incorporated the change capturing and pattern dis-

covery algorithms (as a plugin) in OnE, our Ontology Editing framework. We executed

the change pattern discovery algorithms on the recorded ontology changes and discov-

ered change patterns. Users can choose a suitable change patterns from the discovered

change pattern list and store them in their user profile. Later, whenever users load that

particular ontology, they get the list of stored change patterns in their profile and can

apply them in the form of transactions.

Change Request Recommendation: The identified change patterns can also be

used for change request recommendations. For example, whenever a user adds a new

PhD student to the university ontology, based on the identified PhD Student Registra-

160

tion change pattern, it can be recommended to the user to add student id, email id of

the student and assign a supervisor to him/her (using object property hasSupervisor).

Similarly, in the software application domain, whenever a user deletes certain activity

from the domain, deletion of the relevant help files can also be recommended to the user.

8.5 Summary

In this chapter, we presented a graph-based approach for the discovery of the ontology

change patterns. Graphs are suitable (to represent ontology change logs) as they can

easily be analyzed and are efficiently processable. The ontology changes are formalized

using Attributed Graphs (AG) which are typed over a generic Attributed Type Graph

(ATG).

We studied the ontology change log graphs empirically and noticed that the users

perform identical group of atomic change operations recurrently as a combination of

ordered/unordered atomic change operations. Such group of atomic change operations

can be presented at a higher level in a form of domain-specific change patterns. The

major contribution of this chapter in this regard is the algorithms for the discovery of

domain-specific change patterns to support pattern-based ontology evolution.

We identify two fundamental types of change patterns, i.e. Ordered Change Pat-

terns (OCP) and Unordered Change Patterns (UCP). Ordered change patterns consist

of ordered change operation sequences from the change log, such that the node-distance

between two adjacent graph nodes of the sequence is a positive (integer) value only. In

case of unordered change patterns, the node-distance between two adjacent graph nodes

of a sequence, can be positive or a negative (integer) value.

The change pattern discovery algorithms provide support in a number of ways. They

can easily integrate within an existing ontology change tracking tool, where the discov-

ered change patterns can be stored in an user profile and can be instantiated whenever

161

a similar group of change operations has to be performed by the user. Discovered

change patterns benefited us in terms of identification of correlations and the causal

dependencies (which can be integrity constraints) across the ontology taxonomy. Causal

dependencies across the ontology subsumption hierarchy can easily be overlooked. Pat-

tern discovery can identify successful changes based on these dependencies. These are

association rules that capture non-obvious relationships.

162

Chapter 9

Experimental results and

evaluation

9.1 Evaluation criteria and strategy

9.1.1 Aim

Previous chapters have presented a pattern-driven ontology evolution life cycle that

includes change operationalisation (using a layered change operator and pattern frame-

work), recording of ontology changes (using a layered change log framework) and mining

of higher level (composite and domain-specific) change patterns. In this chapter, we

evaluate the proposed layered ontology change operator and pattern framework, layered

ontology change log model and our contribution towards mining of ontology change pat-

terns. The generic international standard model of evaluation process ISO/IEC 14598 1

(of a software product), supported by the quality measurements, defines a set of evalu-

ation process characteristics [Suryn et al., 2003]. The standard assists in an evaluation

where different actors need to understand, accept and trust the results of evaluation.

ISO/IEC 14598 is used to apply the evaluation characteristics described in the standard

1http://www.cse.dcu.ie/essiscope/sm4/14598-5.html

163

ISO/IEC 9126-1. Considering the defined categorisation for quality characteristics in

ISO/IEC 9126-1, we explored quality characteristics from the usability, functional suit-

ability and performance efficiency categories. Standard ISO/IEC FCD 9126-1 defines

these characteristics as follows:

- Usability : The capability of the solution to be understood, learned, used and liked

by the user, when used under specified conditions.

- Functional suitability : The capability of the solution to provide functions which

meet stated and implied needs when the solution is used under specified condi-

tions. The functional suitability of a solution can be assessed in terms of validity,

correctness and completeness.

Validity : The capability of the solution to resolve the real-world problems

faced by the users.

Correctness: For each given input, the capability of the solution to produce a

free of error, accurate output.

Completeness: The capability of the solution to provide a result if one exists,

and if not, to report that no result is available.

- Performance efficiency : The capability of the solution to provide the required

performance (in terms of processing time), relative to the amount of resources

used, under stated conditions.

The main concerns in evaluating the layered ontology change framework is its us-

ability and functional suitability. That is, how useful the proposed solution is and how

effectively it solves the problems faced by the users in the real world. The usability of

the solution is to be understandable, attractive and useful to the ontology engineers and

domain experts. The functional suitability of the solution is to be suitable for answering

the real-world problems faced by the domain experts and ontology engineers. In terms

164

of change pattern identification algorithms, correctness, completeness and performance

are the key factors for evaluating the efficiency of the algorithms. The completeness of

the algorithms is to identify all types of higher-level change patterns from the atomic

change log. There must not be any unidentified change patterns left out. The correctness

of the algorithms is that the result list of the algorithms should not contain any false

identified change patterns and the performance of the pattern identification algorithms

is measured based on their process execution time.

9.1.2 Evaluation strategies

Empirical case studies and lab-based experiments, in a controlled environment, can be

used to evaluate any software system and to accept or reject the effectiveness of methods,

techniques or tools [Easterbrook et al., 2004]. The overall evaluation strategies adopted

in our work involve the following three methods:

- Empirical case studies: We performed case studies in two different domains in

order to examine the evolution of domain ontologies and to evaluate the proposed

layered ontology change framework. The framework is evaluated in terms of its

usability and functional suitability. The objectives of the empirical case studies

and the results are discussed in Sections 9.2 and 9.3.

- Tool support : To evaluate the proposed framework, we made use of our ontology

editing tool (OnE) that we built using OWL API. The tool provides most of the

ontology editing functionalities. It allows the declaration of new classes, object

properties, data type properties and individuals in the loaded domain ontology. A

user can create relations between two or more classes by using defined object and

data type properties. The properties can be instantiated at the instance level using

assertions. For storage and querying of domain ontologies and the change logs, the

tool has been integrated with the RDF Sesame repository. Applied changes and the

165

loaded domain ontologies are stored in the form of triples in a Sesame repository.

The ontology change triples are later retrieved and reformulated into an attributed

graph for the change pattern identification purposes.

- Experiments: We used an experiment-based approach for evaluating the functional

suitability and performance efficiency of the change pattern mining algorithms.

The results of the lab experiments have been evaluated from both quantitative

and qualitative perspectives. In Section 9.4, the results and evaluation of our

controlled lab experiments, conducted in order to identify predefined composite

changes from the atomic change log, are given. In Section 9.5, the domain-specific

change pattern discovery algorithms are evaluated.

9.2 Evaluation of the change operator framework

9.2.1 Objective

The objective is to evaluate the layered change operator framework based on the usability

and functional suitability of the solution. In this regard, first we need to confirm that the

proposed framework is valid and represents real-world changes. Second, we evaluate how

useful the framework is for the ontology engineers and domain experts and how easily

it could be understood, learnt and adapt by the users. We evaluate the layered change

operator framework using empirical case studies in two different domains. Below, we

discuss the experimental setup (in terms of domain selection and ontology development),

empirical results and analysis of the empirical results.

9.2.2 Experimental setup

Domain selection: As case studies, the domains university administration and database

systems were taken into consideration.

166

University ontology: The domain university administration was selected because it

represents an organization involving people, organizational units and processes. Three

main subcategories of the involved people are students, faculty members and the ad-

ministrative staff. The student category can be subdivided into undergraduate, masters

and PhD students. Similarly, faculty members can be categorized into lecturer, senior

lecturer, associate professor and (full) professor. The ontology covers the key activities

of the university as an organization. At the start of each year, students register for

different courses where each course consists of a number of subjects. New students enrol

in the university and new student Ids and email Ids are assigned. At the end of each

academic year, final year students graduate and their data is removed (from the active

version of the domain ontology). Every year, new faculty members join the university

and are assigned specific teaching, supervisory and/or administrative duties.

We started building the university ontology in early 2009. In order to construct

the first version, we made use of the Academic Institution Internal Structure Ontology

(AIISO2) and the ontology constructed at Lehigh University3 [Guo et al., 2005]. The

core classes consist of terms such as College, Course, Department, Module, Subject

and Faculty. The core properties include code, name, teaches, description etc. We

kept updating the ontology by using Dublin City University (DCU4) as an example, but

also included other realistic constructed items in order to broaden the experimental base.

We conceptualized most of the activities and the processes in DCU for the construction

of the ontology. We added new classes, object properties, data properties and, most

importantly, populated the ontology by adding data at the instance level.

To perform the case study on a small scale, we loaded two types of instance level

data (of our research centre CNGL5) into our university ontology, i.e. research group

members (people) and published content (publications). Currently, the ontology consists

2http://vocab.org/aiiso/schema#
3http://swat.cse.lehigh.edu/onto/univ-bench.owl
4www.dcu.ie
5www.cngl.ie

167

of 61 classes, 22 object properties, 15 data properties and over 450 named individuals.

The university domain ontology is reasonably stable at the schema level. We observed

very few schema level changes (in comparison to instance level changes) in the domain.

These changes include merging of multiple schools under a single department, addition

of new research groups and addition of new faculty types. In contrast, changes occur at

the instance level on a daily basis. Recording details about all the defined individuals

into a database defines a large knowledge base. In this regard, the university domain

ontology corresponds to OWL 2 QL profile6. The current version of the (schema level)

university ontology is given in appendix D.

Database ontology: The database systems is a technical domain that can be looked

at from different perspectives – for example being a topic in a course curriculum or a

textbook on the subject.

The database textbook ontology was derived from the taxonomy arising from the

table of content and the index of a database course book [Elmasri et al., 2006]. The

classes are categorized based on the prescribed chapters in the course book and different

broader/narrower relationships have been defined representing the pre-requisite topics

and chapters. These broader/narrower relationships depict that the topic of a given

chapter is necessary to understand the advanced topic available in another chapter.

Such relationships supported an instructor in constructing an outline of the database

course.

The technical database domain ontology was developed by the domain experts [Boyce

et al., 2007]. The ontology consists of 109 classes, 31 object properties and in total more

than 100 axioms. Classes in the database domain ontology include database language,

database model, algebra operations, update operations, relational calculus,

logical operators and relational database. The class database language is fur-

6OWL 2 QL profile is aimed for the applications that consist of very large size of instance level data.

168

ther categorized into data definition language (DDL), data manipulation language

(DML), storage definition language (SDL) and view definition language (VDL).

Similarly, the database model class is further categorized into object-based logi-

cal models, physical data models and record-based logical models. The class

update operations is divided into delete, insert and modify subclasses. Object

properties are used to define the relationships between them. The database system

domain ontology corresponds to OWL 2 EL profile7. The current version of database

ontology (technical) is given in appendix E.

9.2.3 Results

In this section, first we outline the empirical observations on the evolution in the univer-

sity domain ontology and later discuss the user-based evaluation of empirical observations

in general.

9.2.3.1 Empirical observations (university ontology)

The objective of the university domain ontology is to help administer the proper execu-

tion of the day-to-day activities of a university. In this sense, the university ontology is

used to represent the university content as a large-scale information system. Changes

at the instance level happen on a daily basis and less frequently and more irregularly at

the schema level. A list of observed inclusion type changes from the university ontology

is given in Table 9.1. The table is based on the actual changes carried out in DCU. The

frequent changes involve joining or leaving of faculty, student or staff, introduction of

new courses, organisation of events etc.

Empirical observations showed that at the start of the ontology development process,

conceptual level (i.e. schema level) changes were much larger in number compared to

instance level changes, but they gradually decreased (Figure 9.1). Creating the hierarchy

7OWL 2 EL profile is aimed for the applications that contain very large number of classes and
properties.

169

Table 9.1: A list of observed changes in university domain ontology

Changes in the Domain Ontology (University)
 Changes in the Domain

Add individual (X)

Add classAssertionAxiom (X, Faculty)

Delete classAssertionAxiom (X, Faculty)

Delete individual (X)

Add individual (X)

Add classAssertionAxiom (X, UGStudent)

Add dataPropertyAssertionAxiom (X, emailId, XSD:String)
 Assign an email Id

Add dataPropertyAssertionAxiom (X, studentId, XSD:Int)
 Assign a student Id

Add individual (X)

Add classAssertionAxiom (X, PhD_Student)

Add objectPropertyAssertionAxiom (X, hasSupervisor, type:Faculty)
 Assign a supervisor to PhD Student

Add objectPropertyAssertionAxiom (X, isMemberOf, type:School)
 Assign a School to the Student

Add class (X)

Add subClassOfAxiom (X, type:Department)

Transfer Roles (X, (X1, X2))

Delete subClassOfAxiom (X1, type:Department)

Delete class(X1)

Delete subClassOfAxiom (X2, type:Department)

Delete class(X2)

Add individual (X)

Add classAssertionAxiom (X, Course)

Add dataPropertyAssertionAxiom (X, courseCode, XSD:String)
 Assign a Course Code

Add individual (X)

Add classAssertionAxiom (X, StaffMember)

Add objectPropertyAssertionAxiom (X, isMemberOf, type:Department)
 Assign a department

Add objectPropertyAssertionAxiom (X, isManagerOf, type:Department)
 Assign a managerial role

Add individual (X)

Add classAssertionAxiom (X, Event)

Add dataPropertyAssertionAxiom (X, time, XSD:DateTime)

Add objectPropertyAssertionAxiom (X, venue, type:Building)

Delete objectPropertyAssertionAxiom (X, isMemberOf, type:Department)

Add objectPropertyAssertionAxiom (X, isMemberOf, type:Department)

Add individual (X)

Add classAssertionAxiom (X, Vacancy)

Add dataPropertyAssertionAxiom (X, descrip, XSD:String)
 Add description of a vacancy

Add class(X)

Add subClassOfAxiom(X, Faculty)

Add a new Faculty category

Add a new Faculty

Remove a Faculty

Enrol a new undergraduate Student

Enrol a new PhD Student

Merge
two
 Departments
into
 a
single

Derpartmet

Add a new Course

Add a new Staff Member

Create a new university event

Add details of the event

Change Department of a Staff Member

Create a a new vacancy

170

0

100

200

300

400

500

600

700

800

v1
 v2
 v3
 v4
 v5
 v6
 v7
 v8

Instance Level Changes

Schema Level Changes

Figure 9.1: Schema level vs. instance level ontology changes (university ontology)

that represents the domain’s core elements is a once-off event. Therefore, the cost is high

only for the first few versions of the ontology.

In subsequent versions, addition of the students, faculty, courses, events, staff etc.

(at the instance level) is the actual function of the ontology. This is quite realistic as

at the start of the ontology development, ontology engineers add more content at the

schema level and once the schema level is stable, the next step is for content managers

to provide the data to populate the ontology at instance level. The cost of adding such

information is part of the running cost of the ontology.

9.2.3.2 User-based evaluation of the framework

Different levels of change patterns emerge by clustering the empirically observed frequent

changes in the domain ontology. These change patterns are useful for the ontology

engineers to modify domain ontologies more easily and more correctly. We evaluated

the usability and functional suitability of the framework in two steps.

Step one: We involved five ontology engineers in the evaluation of the framework

in terms of its change operational cost. The change operational cost has been

evaluated in two ways, i.e. in terms of the number of steps to be performed and

171

the time required to perform the specified steps. To do so, we selected eight

different ontology change operations, two from the atomic level (level one), four

from the composite level (level two) and two from the domain-specific level (level

three) - Table 9.2.

Table 9.2: List of change operations and their type
No. Type Change

1 Atomic Add class (Lecturer), Add subClassOf (Lecturer, Faculty)

2 Atomic Add individual (John), Add classAssertion (John, UGStudent)

3 Composite Split class (ResearchStudent, (MSByResearchStudent, PhDResearchStu-
dent)), Strategy: Split the Roles

4 Composite Merge classes ((MSByResearchStudent, PhDResearchStudent), Research-
Student), Strategy: Aggregate all roles

5 Composite Copy class (ResearchStudent, ResearchIntern, Researcher)

6 Composite Split class (ResearchStudent, (MSByResearchStudent, PhDResearchStu-
dent)), Strategy: Attach to both classes

7 Domain-
specific

PhD Student Registration (Tylor Kane, 58106382, tylor@computing.dcu.ie,
Joe Morris, Computing, CNGL, Irish)

8 Domain-
specific

Add New University Event (AICS 2012, ResearchEvent, 17 Sep 2012, 19 Sep
2012, 23rd Irish Conference on Artificial Intelligence and Cognitive Science,
Ray Walshe, aisc2012@comuting.dcu.ie, +353-1 700 597)

Operational cost in terms of number of steps: First, we evaluated the

framework on the basis of the number of steps required to perform the specific

changes given in Table 9.2. To do so, we make use of our Ontology Editor (OnE)

and widely used Protégé8 framework. Results are given in Figure 9.2 in the form

of a bar chart. It is evident that in the case of atomic level change operations,

both frameworks require the same number of steps to be performed. However,

usage of evolution strategies and pattern-driven data entry forms (for performing

higher-level change operations) significantly reduces the evolution effort in terms

of the number of required steps. For example, in the case of the composite change

operation Merge classes (change 4), the ontology engineer needed to perform

eight (8) steps (in OnE) in comparison to fifteen (15) steps in Protégé. The biggest

difference was seen in the case of the Split class composite change operation

8http://protege.stanford.edu/

172

where the selected strategy was to join the roles to both the newly added classes

(change 6). The result is fairly understandable as in the case of Protégé, ontology

engineers needed to attach each role one after the other and hence increased the

number of required steps. The more the roles (to be attached), the more the steps

it requires. On the other hand, in the case of OnE, ontology engineers only needed

to select the appropriate evolution strategy and all the roles were automatically

attached to the newly added split classes. Hence, increase or decrease of roles (to

be attached) does not have any effect on the number of required steps.

0

5

10

15

20

25

30

35

1
 2
 3
 4
 5
 6
 7
 8

Protégé

OnE

Change No.

No.

Of

Steps

Performed

Figure 9.2: Protege Vs. OnE - Number of steps performed

Operational cost in terms of time: Second, we evaluated the framework

based on the time required to perform the different level of change operations.

We compared the time taken by the ontology engineers (minimum, maximum and

average) for performing the changes in both ontology editing frameworks. The

performance comparison is given in Table 9.3. Learning effects on the performance

of different users have been considered and factored into our controlled experi-

173

ment. We observed that on average the time occupied by the two ontology editing

frameworks to perform an ontology change using atomic change operators, is in a

similar range; however, the usage of higher level change operators and the evolution

strategies had a reasonable impact on the required time (change nos. 3–6). For

example, in the case of performing Merge classes (change 4) in Protégé, ontology

engineers needed to attach each role one after the other. As we mentioned earlier,

the more roles, the more time it is going to take. On the other hand, selecting

evolution strategy “Aggregate all roles” (by one single operation - c.f. Figure 9.3)

reduced the time required for attaching all the roles. Similarly, in the case of Split

class (change 6), by selecting the evolution strategy “Attach to both classes” the

user did not need to attach the roles to the split classes one after the other.

Table 9.3: Comparison between OnE and Protégé (min:sec)
Change No. Protégé OnE

Min. Max. Avg. Min. Max. Avg.

1 0:03 0:12 0:06 0:04 0:10 0:06

2 0:11 0:34 0:21 0:07 0:24 0:17

3 0:55 3:21 1:53 0:22 2:08 0:57

4 0:35 1:18 1:05 0:11 0:39 0:20

5 0:37 1:55 1:09 0:07 0:21 0:12

6 1:03 1:42 1:26 0:09 0:39 0:19

7 0:51 2:34 1:40 0:17 1:40 0:57

8 1:26 2:59 2:00 0:31 1:52 1:08

Step two: While the selection of evolution strategies makes the evolution process

fast and reduces the effort, the user-based evaluation of change patterns confirms

that using change patterns as a defined data entry forms also makes the evolu-

tion process intuitive and simple. We requested ontology engineers to complete a

questionnaire based on their experience of performing specified ontology changes

by utilizing the change patterns. Users agree that the framework is easy to un-

derstand and reduces the complexity in terms of change operationalization. The

questionnaire and results of step 2 are discussed in Section 9.3.3.

174

Figure 9.3: Framework window of “merge” composite change operator

9.2.4 Discussion

Based on our empirical observations of common changes in the domain ontologies and

different perspectives of the users towards a domain, we studied the patterns that are

common, resulting in a layered change operator framework, as discussed in Chapter 4.

The change operators and patterns are based on actual changes being carried out

by ontology engineers and observed by us in both the university administration and

database systems ontologies. This makes the proposed change operator framework valid

from a practical perspective. We identified different levels of change operations for those

who focus on the generic as well as the domain-specific changes. In this regard, the

change operators at lower levels (i.e. level one and level two) are generic and can be

applied in any domain ontology. The change patterns at level three and level four need

175

to be customized. These change patterns can be used as data entry forms, in order to

apply some common and frequent changes in the application domain. Performing such

frequent changes, in a form of change patterns, makes the ontology change management

faster and easier.

We observed during the user-based evaluation that ontology engineers perform se-

mantically equivalent composite change operations using different orders of atomic level

change operations (c.f. Section 6.3). Thus, the empirical results confirm that the lower-

level (level one and two) change operators are useful to ontology engineers to suitably

define their own change patterns, i.e. provide an adequate customization solution. Do-

main experts (who have less knowledge of the underlying ontology language and its

specification) can use the level three domain-specific change patterns and customize

them to meet their requirements. In such cases, domain-specific change patterns are at

the right level of abstraction and consequently, more useful for the domain experts. This

proves the functional suitability of the proposed change operator framework. Change

patterns are useful for reducing maintenance workload, especially for ontologies that

change very frequently and in a systematic way. It will be costly for instance that for

a new addition one needs to restructure (using lower level change operators) the whole

hierarchy, which can be expensive to develop, test and validate, and then redeploy. A

systematic approach, such as the use of change patterns, is a necessity here.

We evaluated the usability of the framework from its implementation’s point of view.

To do this, we deployed a few higher level change patterns in our ontology editing

framework (OnE) as an optional setting and involved five ontology engineers in order

to test the usability of the framework. An ontology engineer can select an appropriate

change pattern from the given list. Each defined change pattern consists of its own

user interface. Figure 9.3 explains the use of an implemented merge composite change

pattern from the given list. Once the merge change pattern is selected, the ontology

engineer can select the entities to be merged. Interface support (such as tool tips etc.)

176

is implemented to support a transparent, easy and understandable evolution process.

As we discussed above, different ontology engineers may have different perspectives on a

domain ontology, different evolution strategies (c.f. Section 7.3) have been implemented.

This makes the evolution process customizable to meet the needs of an ontology engineer

and significantly reduces the manual effort. The feedback from the ontology engineers

(c.f. Section 9.3.3) acknowledged that the system is easy to understand, learn and can

easily be adopted. The results in Table 9.2 illustrate that the use of change patterns

(along with the evolution strategies at the composite level) reduces the required effort in

terms of time and consistency management and gives a free hand to evolve the ontology

based on their own needs.

In summary, the effectiveness of an ontology change is considerably dependent on

the granularity, how the change operators are combined and the extent of their impact

on the domain ontology. We proposed a layered change operator framework (in Chapter

4) where change operators can be atomic, composite or domain-specific. In this section,

we evaluated the layered change operator framework in terms of its validity, efficiency

and usability. We performed the empirical case studies in two domains. The changes in

the two domains had been empirically observed resulting in a layered operator frame-

work. The results indicate that the framework is valid and adequate to efficiently handle

ontology evolution. While ontology engineers who are more interested in step by step

changes and defining their own change patterns, other users can focus on domain-specific

changes at level three. Higher level change patterns are customizable and are based on

the actual changes carried out in the domains, which makes them functionally suitable

to meet the needs of a user. The proposed operator framework has been implemented

in our ontology editing framework.

177

9.3 Evaluation of the layered change log model

9.3.1 Objective

The objective here is to evaluate the layered change log model based on its functional

suitability. The changes must be represented in such a way that it is useful and under-

standable by the domain experts and ontology engineers. In this regard, the functional

suitability of the layered change log model is, first, to maintain a comprehensive un-

derstanding of the evolution of domain ontologies and, second, to explicitly present the

intent behind any applied change. We made use of user feedback as a metric in order to

evaluate and answer the specified questions. Below, we discuss the experimental setup

(in terms of change log construction) and the results.

9.3.2 Experimental setup

To validate the change log model, we made use of the existing empirical case study

data from the university domain ontology. Our ontology editing framework provides

functionality to record the ontology changes in a repository (Figure 9.4). We recorded

the ontology changes in the form of triples and in order to construct the change triples,

we made use of a metadata model using the OWL language (c.f. Section 5.2). We

used an RDF-based triple store to record the changes applied to the university ontology.

The change log framework works in line with the proposed layered change operator

framework. If a user makes use of level one atomic change operators, changes are being

recorded in the atomic change log (c.f. Table 5.1) and if a user makes use of a change

pattern, the change is recorded in the pattern change log (c.f. Table 5.2).

9.3.3 Results

We utilized a user-based evaluation, as discussed in Section 9.2.3.2, in order to empir-

ically evaluate the layered change logs. The ontology engineers performed the given

178

Figure 9.4: Framework window - ontology change logging

change operations using atomic change operators and higher-level change patterns. The

applied changes had been logged into atomic and pattern change logs accordingly. We

presented the two change logs to the users in order to manually analyze how the changes

have been recorded and represented in layered logs. Do the layered logs maintain a

fine-grained representation of ontology changes? Is representation of ontology change

at a higher-level in the form of patterns more intuitive? To answer these questions, we

involved five ontology engineers who have expertise in the area of software engineering

and large databases. We requested the participants to give a rating to the claims we

made about the functional suitability and usability of the layered change log framework.

The claims are rated separately by each ontology engineer from 1 to 5 (where rating 5

represents “strongly agree”, 4 “agree”, 3 “neutral”, 2 “agree” and 1 “strongly agree”).

The claims and the user-based ratings (average) are given in Table 9.4.

The feedback from the participants confirm that the solution is useful and func-

tionally suitable for the ontology engineers and domain expert. The highest rating was

given to claim 1 (i.e. ACL presents a complete fine-grained representation of ontology

changes). Participants agree that the representation of the ontology changes at a higher

179

Table 9.4: Questionnaire-based evaluation of the layered framework
No. Claim User’s feedback

(1 to 5) - Average

1 Atomic Change Log (ACL) presents a complete and fine-grained
representation of applied ontology changes (Completeness).

4.67 (93.33%)

2 Pattern Change Log (PCL) supports in understanding the intent
behind an applied ontology change (Validity).

4.00 (80.00%)

3 The ontology changes recorded in ACL and PCL are easily under-
standable (Validity).

4.33 (86.67%)

4 Recording of domain ontology and change log in a single RDF
repository allows the user to concurrently navigate through them
(Functional suitability).

3.67 (73.33%)

5 The framework is easy to understand, learn and use (Usability). 4.33 (86.66%)

6 The customizable evolution strategies allow users to evolve the on-
tology based on their own needs (Adequacy).

4.33 (86.66%)

level helped them to understand the intent behind the applied changes - making the

solution practically valid. The lowest rating was given to claim 4 (i.e. recording of on-

tology and change logs in a single RDF repository allows user to concurrently navigate).

Participants agree that the framework does allow concurrent navigation. However, a

graph-based illustration of associations between change log and domain ontologies would

be more intuitive for the users.

9.3.4 Discussion

The layered change log maintains the structural and semantic representation of ontol-

ogy changes at two separate levels without losing their interdependence. On the one

hand, the atomic change log is used for a fine-granular representation of applied ontol-

ogy changes. Each atomic change is recorded in a form of a triple set where each triple

represent a single attribute of the applied change. Furthermore, as change patterns are

not only recorded in the pattern change log, but also at the atomic level, the atomic

change log depicts a complete representation of the applied ontology changes. On the

other hand, the pattern change log presents a higher level picture of the ontology evolu-

tion. PCL represents the user’s intent of applied ontology changes more explicitly. To

do so, the attributes such as PatternName, PatternPurpose are being attached to each

180

recorded change pattern (c.f. Section 5.3.2).

The RDF-triple format supports fine-grained representation of applied ontology changes.

Such storage of ontology changes at a fine-grained level is adequate in terms of extracting

specific knowledge from the change logs. Recording of metadata details allowed us to

learn about the users as an additional advantage. One can generate user profiles and

can understand in which section (or entities) of domain ontology the users are most

interested in and thus can populate the domain ontology accordingly.

Recording the ontology changes at a higher level as change patterns, helps in knowing

the intent and the impact of ontology changes more precisely. Thus, more accurate

evolution strategies can be applied to keep the schema-level and instance-level data

consistent and valid. In the case of the Pull up property composite change (Figure

9.5), a user can select an evolution strategy “do nothing” as the previous property

instantiations are still valid or “assert the instances explicitly as defined instances of

earlier domain class” to not lose any existing knowledge, rather than deleting all previous

instantiations. In the case of the Pull down property composite change, a user can

“revalidate” as some of the previous property instantiations will still be valid. Thus,

rather than deleting all of the previous instantiations, it is better to revalidate manually

and delete only those which are not valid anymore.

Our research is not only focused on determining the ontology differences between the

versions, but also how it has changed from an operational perspective and to support an

ontology engineer in executing the changes (through identified patterns). We conducted

experiments (discussed in next two sections) on a number of atomic change log case

scenarios empirically, in order to identify the frequent (composite and domain-specific)

change patterns. The results acknowledged that the proposed layered change log model

facilitates a structured ontology evolution process.

181

Person

Thing

hasTitle

Person

Thing

Student

hasTitle

Property Instantiation:

 - James hasTitle "Dr."

Semantics:

 - James is a Student. (Inference)

 - James is a Person. (Inference)

 - James hasTitle "Dr. (Property Instantiation)

Faculty StudentFaculty

Property Instantiation:

 - James hasTitle "Dr."

Semantics:

 - James is a Person. (Inference)

 - James hasTitle "Dr. (Property Instantiation)

Figure 9.5: Pull up property - composite change case scenario

9.4 Evaluation of composite change detection algorithms

9.4.1 Objective

The composite change detection algorithm given in Chapter 7 identifies the occurrences

of pre-defined composite changes in an atomic change log. To do so, the atomic change

log was transformed into a linear sequential graph and a graph-based matching algorithm

was applied to identify the defined composite changes. The aim here is to evaluate the

given composite change detection algorithm based on its performance. In this regard,

we selected correctness and completeness as the two main evaluation criterion.

9.4.2 Experimental setup

We measured the completeness and correctness of our composite change pattern detec-

tion algorithms by comparing their results with the manual approach. In this regard, we

gathered five ontology engineers and gave them a brief description of the domain (i.e.

university administration), the composite changes and their definitions. Once the ontol-

ogy engineers had a clear idea about the domain ontology and the composite changes,

we performed the evaluation in three steps:

182

- Step 1: Amongst the ontology engineers, we distributed five sessions of the ontology

change log and asked them to identify the discussed composite changes from these

change log sessions. To perform the evaluation on a small scale, we selected only

six types of composite change patterns (i.e. split class, add specialize class, group

classes, add interior class, pull up property and pull down property) and selected

a small subset of the atomic change log (i.e. 120 atomic ontology changes).

- Step 2: At the end of step 1, we gave the ontology engineers the results of our

controlled experiments (i.e. results of the automated approach) and asked them

to testify whether the detected composite changes are valid - (correctness).

- Step 3: In last step, we asked ontology engineers to verify their results against the

results of the auto approach - (completeness).

9.4.3 Results

A complete list of identified composite change patterns is given in appendix H. Table

9.5 gives the details of the comparison between manual and automated detection of

composite change patterns. Here in the table, the term “candidate” change pattern

refers to the identified change patterns that as a whole or partially can be acknowledged

as a composite change pattern. The candidate change patterns identified through the

manual or automated approach need to be reviewed again by an expert ontology engineer,

before confirming them as a correctly identified composite change pattern.

The comparison of manually identified change patterns with the automated approach

confirms the completeness of the algorithm, i.e. there is no single change pattern omitted

by the algorithm (row 6 - Table 9.5). Further, the feedback of ontology engineers in step

two of the experimental setup, where we requested the ontology engineers to verify the

identified change patterns, confirms that identified change patterns are correct and valid

(row 7 - Table 9.5). The ontology engineers were able to identify ten composite changes

183

Table 9.5: Comparison between manual vs. automated composite change detection
No. Type Manual Automated

1 Change Log size 120 atomic changes

2 Total identified change patterns 10 15

3 sub change patterns 0 4

4 Candidate change patterns 1 1

5 Complete change patterns 9 10

6 Missed change patterns 1 0

7 False change patterns 0 0

8 Time taken > 55 min < 1 sec

in comparison to the automated approach where the number of detected composite

changes was fifteen. The ontology engineers were able to identify almost all complete

change patterns (row 5 - Table 9.5), but the main difference lies in three cases, i.e. i) the

time taken to identify these changes (from a small change log), ii) the omitted composite

change patterns having positive n-distance (c.f. Section 6.3.2) and omitted overlapped

change patterns.

- The ontology engineers took almost an hour to go through a small subset of atomic

ontology changes and to identify correct change patterns (row 8 - Table 9.5). This

result shows that identifying composite change pattern manually is possible, but

at a very high cost of time consumption (as the ontology engineers took almost

thirty seconds to go through and relate a single atomic ontology change with other

changes).

- All ontology engineers missed the identification of an “add specialize class” com-

posite change pattern, due to the availability of a few extra change operations in

between the change operations of the composite change (row 6 - Table 9.5). This

shows that the manual identification of a composite change pattern where all the

atomic change operations are in a sequence with zero n-distance between them, is

relatively easier in comparison to the identification of a composite change pattern

where atomic change operations have some positive node distance between them.

184

Group Classes
 :

75:Add class (
 ResearchStudent
)

76:Add
 subClassAxiom
 (
ResearchStudent
 , Student)

77:Add
 subClassAxiom
 (
PhDStudent
 ,
 ResearchStudent
)

79:Delete
 subClassAxiom
 (
PhDStudent
 , Student)

78:Add
 subClassAxiom
 (
MSByResearchStudent
 ,
 ResearchStudent
)

80:Delete
 subClassAxiom
 (
MSByResearchStudent
 , Student)

Add Interior Class
 :

75:Add class (
 ResearchStudent
)

76:Add
 subClassAxiom
 (
ResearchStudent
 , Student)

77:Add
 subClassAxiom
 (
PhDStudent
 ,
 ResearchStudent
)

79:Delete
 subClassAxiom
 (
PhDStudent
 , Student)

Figure 9.6: Overlapping between identified composite change patterns

- We observed four cases in the result list where an identified composite change was

also detected completely or partially as a different category of identified composite

change (row 3 - Table 9.5). In other words, a subset of a composite change fulfills

the conditions (to be identified) of another category of composite change. This

finding acknowledges our specification of a pattern change log, where a change

pattern can overlap (completely or partially) with other identified change pat-

terns. An example of such overlapped change patterns is given in Figure 9.6. The

identification of such sub change patterns were missed by the manual approach.

9.4.4 Discussion

Identification of composite change patterns (discussed in Chapter 7) not only helps in

understanding the evolution of domain ontologies, but also reduces the manual effort

required in terms of time and consistency management. In this sense, the identified

change patterns can be utilized as pre-defined change patterns to perform specific com-

posite tasks in a specific way. Furthermore, based on the identified composite changes,

more appropriate (composite level) strategies can be employed in order to keep the va-

lidity and consistency of the ontology and instances. In this section, we evaluated the

composite change pattern detection algorithms in terms of their performance. To do so,

we performed a user case study where we compared the results of the composite change

detection algorithm with the manual approach in terms of its correctness and complete-

ness. In comparison to manual approach, the automated approach in identifying the

185

composite change patterns is beneficial in different ways. This is because the manual

identification of change patterns from a large scale ontology change log is time consum-

ing and practically infeasible. As the size of the change log increases, the time required

to identify composite change pattern manually will increase intensively and using some

automated approach is inevitable. Furthermore, the manual approach is error-prone.

While the results of the algorithms were complete, ontology engineers failed to manu-

ally identify the overlapping change patterns and the change pattern with a sequence

gap. The identified change patterns can be utilized in an ontology editing framework

as a recommender system. The output of the algorithm was verified by taking ontology

engineers feedback to confirm the correctness and the completeness of the algorithm.

9.5 Evaluation of change pattern discovery algorithms

9.5.1 Objective

In Chapter 8, we presented the domain-specific change pattern discovery algorithms for

ordered complete (OCP) and unordered complete (UCP) change patterns. To do so,

we transformed the atomic change log into a linear sequential graph (c.f. Section 6.2)

and a graph-based pattern discovery approach was utilized. In this section, we evaluate

the pattern discovery algorithms based on three criteria, i.e. effectiveness, efficiency and

correctness. We measured the effectiveness of the algorithms in terms of the number

of identified change patterns (quantitative). The efficiency of the algorithms has been

measured based on the processing time (speed) and the correctness of the algorithms

has been evaluated in terms of correctly identified change patterns (qualitative).

9.5.2 Experimental Setup

Change pattern discovery algorithms identify the change patterns from the ontology

change log graph based on the input threshold values of minimum length of change pat-

186

tern (min len), minimum support of a change pattern (min supp) and the permissible

node-distance (c.f. Section 6.3.2) between two adjacent nodes of a change pattern se-

quence in a change log graph. The evaluation of the algorithms has been achieved in

three separate steps.

- Step 1: The effectiveness of the two algorithms has been measured in terms of

number of identified change patterns (quantitative). We analyzed the effect of

varying the input parameter values on the overall results. To do so, for a fixed

minimum pattern support value, we varied the threshold values for the minimum

pattern length and the permissible node-distance and compared their results.

- Step 2: In order to evaluate the efficiency of the two algorithms, we kept the

minimum pattern support (min supp) and minimum pattern length (min len)

static and varied the node distance value and compared the algorithm’s results.

This allowed us to analyze how an increase in the permissible sequence gap affects

the number of identified change patterns and the overall processing time.

- Step 3: In order to verify the correctness of the results of the two algorithms, we

made use of ontology engineers feedback. The ontology engineers looked into the

discovered change patterns manually and examined how many of them are sound

and correct (qualitative).

All experiments with the change pattern discovery algorithms was conducted on a

3.0 GHz Intel Core 2 Duo CPU with 3.25 GB of RAM, running MS Windows XP. We

used SPARQL queries in order to capture more than five hundred ontology changes from

the university atomic change log (>5000 log triples) and converted them into a linear

graph using a graph API. We utilized our algorithms to discover the domain-specific

change patterns in ontology change log graphs.

187

9.5.3 Results

Quantitative evaluation: The results of the two algorithms, in terms of number of

identified change patterns, are given in Figures 9.7 and 9.8. The results show that in

both cases (i.e. ordered and unordered change pattern discovery approach) the number

of identified change patterns (P) increases with the increase in the permissible node

distance (N-distance) value and decreases with the increase in the threshold value of

the pattern length (min len) (Figure 9.7–9.8). Thus, we can say that P is directly

proportional to N-distance (P ∝ N-distance) and inversely proportional to minimum

change pattern length (P ∝ 1/min len).

No. of

identified

ordered change

patterns

Minimum change pattern length (min_
len
)

0

2

4

6

8

10

12

14

3
 4
 5
 6

N
-
distance = 0

N
-
distance = 1

N
-
distance = 2

N
-
distance = 3

Figure 9.7: No. of identified ordered complete change patterns (Quantitative)

These results are quite realistic as the increase in the permissible node distance

value increases the range where a change pattern can be identified. This also allows

the capturing of those patterns that have a few extra ontology changes within them.

Similarly, the increase in the minimum pattern length threshold makes sure that the

discovered change patterns are of greater size and cover most of the identical change

sequences, but in doing so the number of identified change patterns decreases.

188

No. of

identified

unordered change

patterns

Minimum change pattern length (min_
len
)

0

1

2

3

4

5

6

7

8

9

3
 4
 5
 6

N
-
distance = 0

N
-
distance = 1

N
-
distance = 2

N
-
distance = 3

Figure 9.8: No. of identified unordered complete change patterns (Quantitative)

Efficiency-based evaluation: The comparison between the two algorithms in terms

of time consumption is given in Table 9.6. Though the UCP algorithm takes more time

to process the change log data, it is more effective in terms of numbers of discovered

change patterns. It discovers more change patterns in comparison to OCP. Similarly, in

terms of the size of maximal patterns and coverage of identical change sequences, UCP

is superior to OCP.

Table 9.6: Comparison b/w OCP and UCP algorithms with minimum pattern support
(min supp) = 5 and minimum pattern length (min len) = 5.

a - OCP Algorithm b - UCP Algorithm

Node Patterns Time Seq. in a Patterns Time Seq. in a
Dist. Found (ms) Pattern Found (ms) Pattern

0 0 469 0 4 1359 9

1 3 609 8 7 2282 13

2 5 875 16 6 3906 18

3 5 985 15 8 4968 21

4 5 1110 17 8 6078 21

5 5 1203 17 9 7141 21

189

Qualitative evaluation: The correctness of the algorithms has been verified by using

a manual approach. The results of the qualitative evaluation (in comparison to the

quantitative results given in Figure 9.7 and 9.8) are given in Figure 9.9 and 9.10. We

observed that the number of (manually) identified change patterns reduced slightly.

This is due to the multiple extraction of completely overlapped change patterns by the

algorithms. Though the result list contained only a few completely overlapped change

patterns, the overall results of the algorithms are correct. The identified change patterns

were recorded in a pattern repository. A user can browse through, select and apply a

change pattern from the list. We applied some of the stored change patterns in the

domain ontology to confirm that they are valid and are useful to perform a frequent

ontology change.

No. of

identified

ordered change

patterns

Minimum change pattern length (min_
len
)

0

2

4

6

8

10

12

3
 4
 5
 6

N
-
distance = 0

N
-
distance = 1

N
-
distance = 2

N
-
distance = 3

Figure 9.9: No. of identified ordered complete change patterns (Qualitative)

Limitations: The known limitation of the algorithms is that they cannot be applied

to the change parameters which are represented as complex expressions. Our algorithms

consider all parameters as atomic classes, properties or individuals. Secondly, our algo-

rithms used an assumption, i.e. the target entity is always the first parameter of any

190

No. of

identified

unordered change

patterns

Minimum change pattern length (min_
len
)

0

1

2

3

4

5

6

7

3
 4
 5
 6

N
-
distance = 0

N
-
distance = 1

N
-
distance = 2

N
-
distance = 3

Figure 9.10: No. of identified unordered complete change patterns (Qualitative)

ontology change operations. This assumption does not suit, for example in the case of

inverse properties, such as hasSupervisor and isSupervisorOf. In our future work, deep

comparison of ontology change operations will be made in order to identify the target

entity (context) in relation to identified change operations of a sequence.

9.5.4 Discussion

In this section, we evaluated the ordered complete (OCP) and unordered complete (UCP)

change pattern discovery algorithms based on their effectiveness, efficiency and correct-

ness. The UCP algorithm is effective in terms of the number of identified change patterns.

This is due to the coverage of change sequences that are unordered (with respect to the

reference change sequence) and are used to perform identical changes in the domain on-

tology. On the other hand, the OCP algorithm is efficient in terms of time consumption

due to the permissibility of only positive node distances (x), i.e. the iteration process

for the search of the next adjacent sequence node only operates in forward direction of

the change log graph. However, in the case of UCP, for the search of the next adja-

cent sequence node, the algorithm also operates in a backward direction. This is due to

191

the possibility of change operations in an unordered form compared to the referenced

candidate change sequence. Another reason for the efficiency of OCP is the immediate

termination of node search iterations once the next adjacent sequence node is not iden-

tified in the search space. However, in the case of UCP, if the next adjacent node is

not identified, it is saved in the unidentified node list and the iteration moves forward

to search for the next adjacent node until the whole change sequence ends. Unordered

change operations make the UCP algorithm more complex in comparison to OCP as

UCP needs to i) keep record of all change operations of the sequence (even if they are

not identified), ii) recalculate the search space in each iteration, iii) search the next se-

quence node not only in the search space of the graph, but also in the unidentified list

of change nodes and iv) convert a sequence to ascending form in each iteration.

9.6 Summary

In this chapter, we presented the results of the case study and lab experiments and

evaluated our contribution. The main concern in evaluating the layered ontology change

framework is its usefulness. Is it useful for different actors involved in ontology-driven

content based systems and how effectively can the layered framework be used in a real

world scenario? With regard to the higher level change pattern identification algorithms,

the main concern is their effectiveness. We selected usability, functional suitability and

performance efficiency as three key evaluation criteria. We performed empirical case

studies in two domains in order to evaluate the practical suitability and usability of the

proposed layered ontology change framework. Lab experiments were used to evaluate the

effectiveness and performance of the ontology change pattern identification algorithms.

We selected university administration and database systems as domains for our case

study. The university ontology represents an organization consisting of classes such as

students, faculty, departments, research centers, courses etc. The database ontology

192

represents a technical domain that can be looked at from different perspectives, such

as concepts being covered in a course outline or a text book on the subject etc. The

empirical results in both domains confirm that the layered framework is adequate and

valid from a practical perspective. The higher level change operators, representing the

ontology changes in the form of a domain-specific change pattern, are useful for the

domain experts and the low level change operators are suitable for ontology engineers.

Furthermore, logging the ontology changes at two different levels of granularity helps in

two ways, i.e. first, recording the fine-grained representation of each ontology change

in a lower level atomic change log and, second, recording the intent behind applied

change operations in a higher level pattern change log. Capturing the intent of ontology

changes at a higher level of abstraction leads to using more accurate evolution strategies

for applied ontology change operations.

We compared the results of our composite change detection algorithms with the re-

sults of a manual detection approach. The comparison shows that an ontology engineer

can detect the change patterns manually from a small scale ontology change log. How-

ever, in a real world scenario, the manual detection approach from a large scale ontology

changes logs is not feasible and error-prone. An automated approach is a necessity here.

On the one hand, the detected composite change patterns can be used to capture the

intent behind the applied changes, on the other hand, the discovered domain-specific

change patterns can be used as once-off change pattern specifications that can be in-

stantiated in the future, whenever similar changes are to be applied.

193

Chapter 10

Conclusions

In development of tools and methods for ontology evolution, researchers initially focused

on the fine-grained representation of ontology changes and capturing the differences

between different versions of the domain ontologies. However, an explicit and semantic

representation of an applied ontology change requires ontology changes to be captured

at a higher level of abstraction. In this thesis, we focused on operationalisation and

representation of ontology changes not only at the lower level, but also at a higher level

(in the form of change patterns). We presented the layered change operator framework

that allows users to perform ontology changes based on different levels of abstraction.

We proposed a layered change log model that works in line with the change operator

framework. Finally, change pattern identification algorithms are given that support the

semantic representation of applied ontology changes by recording them in a higher level

change log.

In Section 10.1, we describe a summary of the contribution based on our objectives,

given solutions and the implementation. In Section 10.2, we discuss our approach. At

the end, some future directions including an extension of our current work is given in

Section 10.3.

194

10.1 Summary of contribution

Ontologies can support a variety of purposes, ranging from capturing the conceptual

knowledge to the organisation of digital content and information. However, information

systems are always subject to change and ontology change management can pose chal-

lenges. This thesis contributes a pattern-based ontology evolution framework focusing on

ontology change operationalisation and representation phases of the ontology evolution

life cycle. The contribution of this thesis can be summarized as,

- A layered ontology change operator framework based on the granularity, domain-

specificity and abstraction of changes.

- A layered ontology change log model that captures the objective of ontology

changes at a higher level of granularity and abstraction and supports a compre-

hensive understanding of ontology evolution.

- Graph-based algorithms for the detection of defined composite changes from the

lower level change log that supports the identification of the intent behind any of

the applied changes.

- Graph-based algorithms for discovery of recurring domain-specific change patterns

that support in defining new usage-driven change patterns.

10.2 Discussion

Ontology-based content models help researchers to take a step forward from traditional

digital content management systems to conceptual knowledge modelling to meet the

requirements of the semantically aware content-based systems. In this regard, domain

ontologies become essential for knowledge sharing activities, especially in areas such as

bio-informatics, educational technology systems, indexing and retrieval, etc. We have

195

been working with non-public domain ontologies used to annotate the content in large-

scale information systems. As information systems will evolve with time, the underlying

domain ontologies need to be synchronized.

The change in the domain ontology reflects the general changes in the information

systems, flaws in an earlier conceptualization of information system, addition of new

classes in the domain etc. The changes in the domain ontologies may include changes

in the class hierarchy; some classes may get removed, modified, pulled up/down in the

hierarchy etc. More description (in a form of object/data properties) can be added to

the existing classes. In this thesis, we presented an ontology change management system,

organized as a four-phase ontology evolution life cycle. The ontology change management

system focuses on the ontology change operationalisation and on the representation and

identification of ontology change patterns from ontology change logs.

To the best of our knowledge, currently there exist no ontology editing tool that

provides ontology change operators based on different levels of granularity and abstrac-

tion. Ontology editing frameworks, such as Protégé, NeON, OBO-Edit etc., perform

ontology changes at an atomic level. This restricts the usage of domain ontologies to

specialized ontology engineers. We presented a layered change framework consisting of

a layered change log model that works in line with the given layered change operator

framework. While ontology engineers typically deal with generic changes at lower lev-

els, other users can focus on domain-specific changes at higher levels. Such a layered

change operator framework enables us to deal with structural and semantic changes at

two separate levels without losing their interdependence. Additionally, it enables us to

define a set of domain-specific changes which can be stored in a pattern catalogue, using

a pattern template, as a consistent specification of domain-specific change patterns. The

empirical study indicates that the solution is valid and efficiently adequate to handle on-

tology evolution. We found that a significant portion of ontology change and evolution

is represented in our framework.

196

Identification of higher level change operations gives an ontology engineer clues about

semantics / reasons behind any of the applied changes, based on the actual change

activity data from a change log. We operationalized the identification of higher level

changes using graph-based matching and pattern discovery approaches. Learning about

semantics behind any of the applied change helped us in keeping the ontology consistent

in a more appropriate manner. To do so, higher level evolutionary strategies are essential.

Constructing and storing the domain knowledge using a frame-based approach was in-

troduced in the Protégé-Frames editor. It allows users to construct customizable domain-

specific data entry forms and enter the instance-level data. As the class hierarchy as

well as the description about any class will evolve over time, such data-entry forms will

get obsolete unless customized through time. Discovery of the domain-specific change

patterns from the change log can assist in this regard. It not only allows defining new

“usage-driven” change patterns, but can also aid in customizing and editing of already

existing “user-defined” data entry forms. As good patterns always arise from practical

experience [36], such change patterns, created in a collaborative environment, provide

guidelines to ontology change management and can be used in any change recommen-

dation system.

We evaluated our contribution based on the empirical case studies and the experi-

ments in a controlled environment. The change operators and patterns we found were

based on actual changes being carried out by the users. The empirical results confirmed

that the layered change framework is useful and suitable for ontology engineers and

domain experts.

10.3 Future work

In this section, we discuss a few directions for the future work:

- Enhanced reusability of domain-specific change patterns through domain transfer

197

- Change pattern specification

- Identification of pattern-level causal dependencies

10.3.1 Enhanced reusability through domain transfer.

The benefit of a change pattern reuse is not only a saving in time, cost, and effort, but

also an increase in “reliability” [Hemmann et al., 1993]. A highly reusable domain specific

change pattern indicates that it is generally accepted within the domain. The reusabil-

ity of the discovered domain-specific change patterns can be enhanced through domain

transfer. During our empirical study, we observed similarities of patterns across domains

which are similar to each other. For example, in the university domain, one can identify

classes such as students, faculties and employees; a production company may have em-

ployees, customers, owners or shareholders. The change patterns provided at higher level

can be applied to any subject domain ontology that is composed of a similar conceptual

structure. The domain specific change patterns may require a small customization to

meet the domain’s own requirements. Similarity between two domain ontologies can

be acknowledged by analyzing conceptual and syntactical structures within the domain

ontologies. A number of algorithms are already developed to capture the similarities

between classes of domain ontologies [Castano et al., 2003, Andrejko et al., 1990]. Some

text engineering algorithms, e.g. Levenshtein’s edit distance, may be used for textual

comparisons of the named entities. An algorithm will be developed that distinguishes

the similarities between two domains and validates how feasible it is to transfer it to

other domain. During the refinement process, change operations can be added, deleted

or modified. The sequence or parameters of change operations can also be altered to

meet user needs.

198

10.3.2 Change pattern specification.

Good documentation is vital for effective reuse of any framework. In this regard, our

future work includes a specification of the (user-defined/usage-driven) domain-specific

change patterns to support the notion of pattern-based ontology evolution. More specif-

ically, we are interested in the once-off specification of the domain-specific change pat-

terns that assist the ontology engineer to choose the appropriate change pattern in a

given ontology evolution context. This can be achieved by utilizing a pattern template

that enables a consistent change pattern specification for change patterns comprising

of descriptive data (including pattern’s name, its purpose, related change patterns etc.)

and change data information (including definition along with pre/post conditions etc

of involved change operations). In addition, change patterns available in the catalogue

may also be classified based on the categorisation of available change operations in a

domain-specific change pattern.

10.3.3 Pattern-level causal dependencies.

A causal dependency is related to the identification of ontological entities which fre-

quently (if not always) evolve together. That means, change in one part of the domain

ontology has a direct impact on another section of the ontology. In the future, we are

interested in detecting pattern-level causal dependencies where one change pattern leads

to the application of another change pattern. For example, whenever a new course is

introduced in a university department, new subjects (and subject codes) are introduced

simultaneously, course-related books have to be purchased and added to the library, new

vacancies have been advertised in order to provide the expertise etc.

These causal dependencies are actually the association rules [Agrawal et al., 1995]

that represent the relationships among the different discovered change patterns, defining

a pattern language. These association rules can be used to capture causally depen-

dent ontological entities. Such causal dependencies can be deployed in existing ontology

199

N1

N2

N3

N4

N5

N1

N2

N3

N4

N5

Atomic

Change Log

Change Log

Graph

Change Pattern

Identification

Graph-based

Formalization

Change Capturing

RDF
-triples

Change Patterns

Discovery

N1

P2

P1

.

.

Causal Dependency

Identification

Identification of

Pattern-level Causal

Dependency

Figure 10.1: Identification of pattern-level causal dependency

change management systems in order to discover new trends within the domain, change

request recommendations etc. This, in turn, can also serve as basis for process im-

provement actions, e.g. it may trigger patterns redesign or better control mechanisms

[Guenther et al., 2006].

200

Bibliography

– Abgaz, Y.M., Javed, M., Pahl, C.: Analyzing Impacts of Change Operations in Evolving

Ontologies. ISWCWorkshops: Joint Workshop on Knowledge Evolution and Ontology

Dynamics (EvoDyn), Boston, USA, (2012).

– Abgaz, Y.M., Javed, M., Pahl, C.: Dependency Analysis in Ontology-driven Content-

based Systems. In: 12th International Conference on Artificial Intelligence and Soft

Computing (ICAISC), Zakopane, Poland, (2012).

– Abgaz, Y.M., Javed, M., Pahl, C.: A Framework for Change Impact Analysis of

Ontology-driven Content-based Systems. In: On the Move to Meaningful Internet

Systems. OTM Workshops: 7th International IFIP Workshop on Semantic Web and

Web Semantics (SWWS), Crete, Greece, (2011).

– Abgaz, Y.M., Javed, M., Pahl, C.: Empirical Analysis of Impacts of Instance-driven

Changes in Ontologies. In: Proceedings of On the Move to Meaningful Internet

Systems (OTM) Workshops: Volume 6428 of Lecture Notes in Computer Science,

Springer-Berlin/Heidelberg, pages 368–377, (2010).

– Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Inter-

national Conference of Very Large Data Bases (VLDB94), pages 487-499, Santiago,

Chile, (1994).

– Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the 11th

201

International Conference on Data Engineering (ICDE). Philip S. Yu and Arbee L. P.

Chen (Edition). IEEE Computer Society, Washington DC, USA, pages 3–14, (1995).

– Agosti, M., Di Nunzio, G.M.: Web Log Mining: A Study of User Sessions. In:

10th DELOS Thematic Workshop on Personalized Access, Profile Management, and

Context Awareness in Digital Libraries (PersDL), Corfu, Greece, pages 70–74, (2007).

– Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic Local Alignment

Search Tool. In Journal of Molecular Biology, Volume 215(3), pages 403–410, (1990).

– Andrejko A., Bielikova M.: Comparing Instances of the Ontological Concepts. In: Pro-

ceedings of Second Workshop on Tools for Acquisition, Organisation and Presenting

Info. and Knowledge, pages 26–35, (2007).

– Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis,

A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L.,

Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M.,

Sherlock, G.: Gene ontology: Tool for the Unification of Biology. Nature Genet.

Volume 25, pages 25-29, (2000).

– Auer, S., Herre, H.: A Versioning and Evolution Framework for RDF Knowledge

Bases In: Proceedings of the 6th International Andrei Ershov Memorial Conference

on Perspectives of Systems Informatics, pages 55-69, Springer-Verlag, (2007).

– Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and Implementation of

Schema Evolution in Object-Oriented Databases. In: Proceedings of the ACM SIG-

MOD International Conference on Management of Data, pages 311-322, (1987).

– Bandara, K.Y., Wang, M., Pahl, C.: Context Modeling and Constraints Binding in

Web Service Business Processes. In: Proceedings of the First International Workshop

on Context-Aware Software Technology and Applications (CASTA), Amsterdam, The

Netherlands, (2009).

202

– Baumgartner, P., Furbach, U., Niemelá, I.: Hyper Tableaux. In: Orlowska, E., Alferes,

J.J., Moniz Pereira, L. (eds.) JELIA 1996. Volume 1126 of Lecture Notes in Computer

Science, Springer-Heidelberg, pages 1-17, (1996).

– Baggenstos, D.: Implementation and Evaluation of Graph Isomorphism Algorithms

for RDF-Graphs. Diploma Thesis, University of Zurich, (2006).

– Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouaras, V., Avrithis, Y.,

Handschuh, S., Kompatsiaris, Y., Staab, S., Strintzis, M.G.: Semantic Annotation

of Images and Videos for Multimedia Analysis. In: Proceedings of the 2nd European

Semantic Web Conference (ESWC), Heraklion, Greece, (2005).

– Bechhofer, S., Yesilada, Y., Horan, B., Goble, C.: Knowledge-driven Hyperlinks:

Linking in the Wild. In: 4th International Conference on Adaptive Hypermedia and

Adaptive Web-Based Systems (AH), Volume 4018 of Lecture Notes in Computer Sci-

ence, Springer, pages 1–10, (2006).

– Burleson, C.: Introduction to the Semantic Web Vision and Technologies - Part 3 -

The Resource Description Framework. A Semantic focus blog: Available at http:

//www.semanticfocus.com/blog

– Boyce, S., Pahl, C.: The Development of Subject Domain Ontologies for Educational

Technology Systems. In Journal of Educational Tech. & Society, Volume 10(3), pages

275–288, (2007).

– Boyer, R.S., Moore, J.S.: A Fast String Searching Algorithm. Communications of the

ACM, Volume 20(10), pages 762–772, (1977).

– Castano, S., Ferrara, A. Montanelli, S.: H-MATCH: An Algorithm for Dynamically

Matching Ontologies in Peer-based System. In: Proceedings of the 1st International

Workshop on Semantic Web and Databases (SWDB), (2003).

203

– Carr, L., Bechhofer, S., Goble, C., Hall, W.: Conceptual Linking: Ontology-based Open

Hypermedia. In: 10th International World Wide Web Conference, Hong Kong, pages

334–342, (2001).

– Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-based

Data. In: ACM Transactions on Software Engineering and Methodology. Volume 5(3),

pages 215–249, (1998).

– Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Loew, M.: Algebraic

Approaches to Graph Transformation, Part-I: Basic Concepts and Double Pushout

Approach. Technical Report Tr-96-17, Universita di Pisa, Dipartimento di Informatica,

(1996).

– Daconta, M.C., Obrst, L.J., Smith, K.T.: The Semantic Web: A guide to the future of

XML, Web Services and Knowledge Management. Wiley Computer Publishing, ISBN

0-471-43257-1, (2003).

– De Leenheer, P., Mens, T.: Using Graph Transformation to Support Collaborative

Ontology Evolution In: A. Schurr, M. Nagl, A. Zundorf (Eds.), Proceedings of Agtive

(Kassel, Germany), Volume 5088 of Lecture Notes in Computer Science, Springer,

pages 44-58, (2007).

– Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T.,

Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: SemTag and Seeker: Boot-

strapping the Semantic Web via Automated Semantic Annotation. In: Proceedings

of the 12th International Conference on World Wide Web (WWW’03), Budapest,

Hungary, ACM Press, pages 178–186, (2003).

– Djedidi, R., Aufaure, M-A.: Ontology Evolution: State of the Art and Future Di-

rections. In Book: Ontology Theory, Management and Design: Advanced Tools and

204

Models, F. Gargouri and W. Jaziri (Eds.), Section III. Chapter 8, Information Science

Reference Publisher, (2010).

– D’Aquin, M., Doran, P., Motta, E., Tamma, V.A.M.: Towards a Parametric On-

tology Modularization Framework based on Graph Transformation. In: B.C. Grau,

V. Honavar, A. Schlicht, F. Wolter (Eds.), WoMO, CEUR Workshop Proceedings,

Volume 315, (2007).

– Drewes, F., Hoffmann, B., Plump, D.: Hierarchical Graph Transformation. In: Journal

of Computer System Science, Volume 64(2), pages 249-283, (2002).

– Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting Empirical Methods for

Software Engineering Research. Guide to Advanced Empirical Software Engineering,

pages 285–311, (2008).

– Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph

Transformation. In: Proceedings of the International Conference on Graph Transfor-

mation, pages 161–177, (2004).

– Ehrig, H., Pfender, M., Schneider, H.J.: Graph Grammars: An Algebraic Approach. In:

14th Annual IEEE Symposium on Switching and Automata Theory, pages 167-180,

(1973).

– Elmasri, R., Navathe, S.M.: Fundamentals of Database Systems. Fifth Edition -

Addison Wesley, (2007).

– Espinoza, M., Gómez-Pérez, A., Mena, E.: LabelTranslator A Tool to Automatically

Localize an Ontology.. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,

M. (eds.) ESWC 2008. Volume 5021 of Lecture Notes in Computer Science, Springer-

Heidelberg, pages 792-796, (2008).

205

– Falconer, S., Tudorache, T., Noy, N.F.: An Analysis of Collaborative Patterns in

Large-scale Ontology Development Projects. In: Proceedings of the 6th International

Conference on Knowledge Capture (K-CAP ’11), pages 25–32, (2011).

– Filipowska, A., Kaczmarek, M., Markovic, I.: Organisational Ontology Framework for

Semantic Business Process Management. In: Proceedings of the 12th International

Business Information Systems Conference (BIS 2009). Volume 21 of Lecture Notes on

Business Information Processing (LNBIP), Springer, pages 1–12, (2009).

– Flouris, G., Plexousakis, D., Antoniou, G.: A Classification of Ontology Change. In

SWAP: Poster Proceedings of the 3rd Italian Semantic Web Workshop, Semantic Web

Applications and Perspectives, (2006).

– Flury, T., Privat, G., Ramparany, F.: OWL-based Location Ontology for Context-aware

Services. In: Artificial Intelligence in Mobile Systems, Nottingham, UK, (2004).

– Gacitua-Decar, V., Pahl, C.: Ontology-based Patterns for the Integration of Business

Processes and Enterprise Application Architectures. In: G. Mentzas et al. (Eds),

Semantic Enterprise Application Integration for Business Processes: Service-Oriented

Frameworks, IGI Pub. (2009).

– Gómez-Pérez, A., Fernandez-López, M., Corcho, O.: Ontological Engineering: With

Examples from the Areas of Knowledge Management, E-commerce and the Semantic

Web. Springer - Business and Economics, (2006).

– Groner, G., Staab, S.: Categorization and Recognition of Ontology Refactoring Pattern.

Arbeitsberichte aus dem Fachbereich Informatik, Number 09/2010, Institut WeST,

University of Koblenz-Landau, (2010).

– Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, Volume 5(2), pages 199-220, (1993).

206

– Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Pro-

cess Management. In: Proceedings of the 14th International Conference on Object-

Oriented and Entity-Relationship Modelling (OOER ’95), Springer, pages 270–281,

(1995).

– Guenther, C., Rinderle, S., Reichert, M., Van der Aalst, W.: Change Mining in

Adaptive Process Management Systems. In: Proceedings of the 14th International

Conference on Cooperative Information Systems, Volume 4275 of Lecture Notes in

Computer Science, Springer, pages 309–326, (2006).

– Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.

In: Journal of Web Semantics, Volume 3, Issue 2-3, pages 158-182, (2005).

– Haarslev, V., Hidde, K., Móller, R., Wessel, M.: The RacerPro Knowledge Repre-

sentation and Reasoning System. In Semantic Web Journal, Volume 2, pages 1–11,

(2011).

– Haase, P., Lewen, H., Studer, R., Erdmann, M., d’Aquin, M., Motta, E.: The NeOn

Ontology Engineering Toolkit. In: Demo Session of Developers Track at WWW’ 2008,

Beijing, China, (2008).

– Haase, P., Sure, Y.: Usage Tracking for Ontology Evolution. EU IST Project SEKT

Deliverable D3.2.1, Work Package 3.2, (2003).

– Handschuh, S., Staab, S., Studer, R.: Leveraging Metadata Creation for the Semantic

Web with CREAM. In: KI 2003–Advances in Artificial Intelligence. Volume 2821 of

Lecture Notes in Computer Science, Springer Berlin/Heidelberg, pages 19–33, (2003).

– Hemmann, T., Voss, H.: A Reusable and Specializable Interpretation Model for Model-

Based Diagnosis. In: 3rd KADS Meeting Siemens AG. Munich, pages 189–205, (1993).

207

– He, D., Goker, A.: Detecting Session Boundaries from Web User Logs. In: Proceedings

of the 22nd Annual Colloquium on Information Retrieval Research, Cambridge, UK.

British Computer Society, pages 57–66, (2000).

– Heckel, R., Kster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph Trans-

formation Systems. In: Proceedings of the 1st International Conference on Graph

Transformation (ICGT), Volume 2505 of Lecture Notes in Computer Science, Springer,

pages 161–176, (2002).

– Hesse, W.: Engineers Discovering the “Real World” From Model-Driven to Ontology-

Based Software Engineering. In: Proceedings of the 2nd International United In-

formation Systems Conference (UNISCON), Volume 5 of Lecture Notes in Business

Information Processing. Springer, pages 136–147, (2008).

– Hirate, Yu., Yamana, H.: Sequential Pattern Mining with Time Intervals. In: Volume

3918 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pages 775–

779, (2006).

– Holohan, E., McMullen, D., Melia, M., Pahl, C.: Adaptive E-Learning Content Gener-

ation based on Semantic Web Technologies. In: Proceeding of the International Work-

shop on Applications of Semantic Web Technologies for E-Learning (SW-EL’2005) at

the 12th International Conference on Artificial Intelligence in Education (AIED), IOS

Press, (2005).

– Horridge, M.: OWL Syntaxes. (2010), http://ontogenesis.knowledgeblog.org/88.

– Huan, J.: Graph Based Pattern Discovery in Protein Structures. PhD Thesis, Depart-

ment of Computer Science, University of North Carolina, (2006).

– Inokuchi, A., Washio, T., Motoda, H.: An Apriori-based Algorithm for Mining Frequent

Substructures from Graph Data. In: Proceedings of the 4th European Conference on

Principles of Data Mining and Knowledge Discovery, pages 13–23, (2000).

208

– Ivancsy, I., Vajk, I.: Frequent Pattern Mining in Web Log Data. Acta Polytechnica

Hungarica. Journal of Applied Sciences, Volume 3(1), pages 77–90, (2006).

– Javed, M., Abgaz, Y.M., Pahl, C.: Composite Ontology Change Operators and their

Customizable Evolution Strategies. ISWC Workshops: Joint Workshop on Knowledge

Evolution and Ontology Dynamics (EvoDyn), Boston, USA, (2012).

– Javed, M., Abgaz, Y.M., Pahl, C.: Towards Implicit Knowledge Discovery from On-

tology Change Log Data. In: 5th International Conference on Knowledge Science,

Engineering and Management (KSEM), Volume 7091 of Lecture Notes in Computer

Science, Springer-Verlag, pages 136–147, (2011).

– Javed, M., Abgaz, Y.M., Pahl, C.: Graph-based Discovery of Ontology Change Pat-

terns. ISWC Workshops: Joint Workshop on Knowledge Evolution and Ontology

Dynamics (EvoDyn), Bonn, Germany, (2011).

– Javed, M., Abgaz, Y.M., Pahl, C.: A Layered Framework for Pattern-based Ontology

Evolution. In: 3rd International Workshop on Ontology-Driven Information System

Engineering (ODISE), London, UK, (2011).

– Javed, M., Abgaz, Y.M., Pahl, C.: Ontology-based Domain Modelling for Consis-

tent Content Change Management. In: International Conference on Ontological and

Semantic Engineering, Venice, Italy, (2010).

– Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-based Framework of Change Operators

for Ontology Evolution. In: On the Move to Meaningful Internet Systems: OTM

Workshops. Volume 5872 of Lecture Notes in Computer Science, Springer, pages 544-

553, Algarve, Portugal, (2009).

– Jiang, D., Pei, J., Li, H.: Web Search/Browse Log Mining: Challenges, Methods, and

Applications. In: Proceedings of the 19th International Conference on World Wide

Web, pages 1351–1352, (2010).

209

– Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation,

Indexing, and Retrieval. In: Journal of Semantic Web, Volume 2, pages 49–79, (2004).

– Kahan, J., Koivunen, M.J., Prud’Hommeaux, E., Swick, R.R.: Annotea: An open RDF

Infrastructure for Shared Web Annotations. In: Proceedings of the 10th International

World Wide Web Conference (WWW 2001), Hong Kong, (2001).

– Klein, M.: Change Management for Distributed Ontologies. PhD Thesis, Vrije Uni-

versity Amsterdam, (2004).

– Klein, M. and Noy, N.F.: A Component-Based Framework for Ontology Evolution. In:

Proceedings of the IJCAI-03 Workshop on Ontologies and and Distribution Systems,

Volume 71, (2003).

– Kosala, R., Blockeel, H.: Web Mining Research: A Survey: Newsletter of the Special

Interest Group (SIG) on Knowledge Discovery and Data Mining, ACM, Volume 2(1),

pages 1–15, (2000).

– Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In: 1st IEEE Conference

on Data Mining (ICDM ’01), pages 313–320, (2001).

– Li, C., Wang, J.: Efficiently Mining Closed Subsequences with Gap Constraints. In:

Proceedings of the SIAM International Conference on Data Mining (SDM), pages

13–322, (2008).

– Liang, Y., Alani, H., Shadbolt, N.: Ontology Change Management in Protégé. In:

Proceedings of AKT DTA Colloquium, Milton Keynes, UK, (2005).

– Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Managing Multiple

Ontologies and Ontology Evolution in Ontologging. In: Proceedings of the Intelligent

Information Processing, Montreal, Canada, pages 51–68, (2002).

210

– Montgomery, A.L., Faloutsos, C.: Identifying Web Browsing Trends and Patterns. In:

Proceedings of the IEEE Journal Computer, Volume 34, Issue 7, pages 94-95, (2001).

– Mitra, P., Wiederhold, G., Kersten, M.: A Graph-oriented Model for Articulation of

Ontology Interdependencies. In: Proceedings of the Conference on Extending Database

Technology (EDBT’ 2000), Konstanz, Germany, (2000).

– Noy, N.F., Klein, M.: Ontology evolution: Not the Same as Schema Evolution. In:

Knowledge and Information Systems, Volume 6(4), pages 428–440, July, (2004).

– Oliver, D. E., Shahar, Y., Shortliffe, E. H., Musen, M. A.: Representation of Change

in Controlled Medical Terminologies. In: Journal of Artificial Intelligence in Medicine,

Volume 15(1), pages 53–76, (1999).

– Pabarskaite, Z., Raudys, A.: A Process of Knowledge Discovery from Web Log Data:

Systematization and Critical Review. In: Journal of Intelligent Information Systems,

Volume 28(1), pages 79–104, (2007).

– Pahl, C., Javed, M., Abgaz, Y.M.: Utilising Ontology-based Modelling for Learning

Content Management. In: Proceedings of ED-MEDIA 2010-World Conference on Ed-

ucational Multimedia, Hypermedia & Telecommunications, Toronto, Canada, (2010).

– Palma, R., Haase, P., Corcho, O., Gomez-Perez, A.: Change Representation For OWL

2 Ontologies. In: Proceedings of the 6th International Workshop on OWL: Experiences

and Directions (OWLED), (2009).

– Papavassiliou, V. ,Flouris, G.,Fundulaki, I., Kotzinos, D., Christophides, V.: On

Detecting High-Level Changes in RDF/S KBs. In: Proceedings of the 8th Interna-

tional Semantic Web Conference, Volume 5823 of Lecture Notes in Computer Science,

Springer, pages 473–488, (2009).

211

– Patil, A.A., Oundhakar, S., Sheth, A, Verma, K.: Meteor-S: Web Service Annotation

Framework. In: WWW ’04 - Proceedings of the 13th International Conference on

World Wide Web, pages 553-562, ACM Press, (2004).

– Pedrinaci, C., Domingue, J.: Towards an Ontology for Process Monitoring and Mining.

In: Proceedings of the Workshop on Semantic Business Process and Product Life Cycle

Management, (2007).

– Peng, W., Li, T., Ma, S.: Mining Logs Files for Data-driven System Management. In:

Journal of SIGKDD Explorations, Volume 7(1), pages 44–51, (2005).

– Petridis, K., Bloehdorn, S., Saathoff, C., Simou, N., Dasiopoulou, S., Tzouvaras, V.,

Handschuh, S., Avrithis, Y., Kompatsiaris, I., Staab, S.: Knowledge Representation

and Semantic Annotation of Multimedia Content. In: IEEE Proceedings Vision, Image

and Signal Processing, Special issue on Knowledge-Based Digital Media Processing.

Volume 153(3), pages 255–262, (2006).

– Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-dimensional Sequen-

tial Pattern Mining. In: ACM International Conference on Information and Knowledge

Management (CIKM ’01), pages 81–88, (2001).

– Pitkow, J., Margaret, R.: Integrating Bottom-up and Top-down Analysis for Intelligent

Hypertext. In: Intelligent Knowledge Management, Intelligent Hypertext Workshop,

National Institute of Standard Technology, (1994).

– Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining Multi-

dimensional and Multilevel Sequential Patterns. In: Proceedings of the ACM Trans-

actions on Knowledge Discovery from Data, Article 4, Volume 4(1), (2010).

– Plessers, P., De Troyer, O., Casteleyn, S.: Understanding Ontology Evolution: A

Change Detection Approach. In Web Semantics: Science, Services and Agents on the

World Wide Web, Volume 5(1), pages 39–49, (2007).

212

– Plessers, P., De Troyer, O.: Ontology Change Detection Using a Version Log. In:

Proceedings of the 4th International Semantic Web Conference, Springer, pages 578–

592, (2005).

– Qin, L., Atluri, V.: Evaluating the Validity of Data Instances Against Ontology Evo-

lution Over the Semantic Web. In: Journal Information and Software Technology.

Volume 51(1), pages 83–97, (2009).

– Quint, V., Vatton, I.: An Introduction to Amaya. W3C NOTE, (1997).

– Reeve, L., Han, H.: Semantic Annotation for Semantic Social Networks Using Com-

munity Resources. In: Journal AIS SIGSEMIS Bulletin. Volume 2, No. 3-4, pages

52–56, (2005).

– Rieß, C., Heino, N., Tramp, S., Auer, S.: EvoPat - Pattern-based Evolution and Refac-

toring of RDF knowledge Bases. In: Proceedings of the 9th International Semantic

Web Conference on The semantic Web - Volume Part I, ISWC10, pages 647-662.

Springer-Verlag, (2010).

– Ritcher, J.D.: The OBO Flat File Format Specification - Version 1.2. http://www.

geneontology.org/GO.format.obo-1_2.shtml, (2006).

– Rudolf, M.: Utilizing Constraint Satisfaction Techniques for Efficient Graph Pattern

Matching. In: Proceeding of 6th International Workshop on Theory and Application of

Graph Transformation, Volume 1764 of Lecture Notes in Computer Science, Springer-

Verlag, pages 381–394, (2000).

– Schmidt-Schauss, M., Smolka, G.: Attributive Concept Descriptions with Comple-

ments.. In Artificial Intelligence, Volume 48(1), pages 1-26, (1991).

– Schmidt, D., Fayad, M., Johnson, R.: Software Patterns. In: Communications of

213

the ACM, Special Issue on Patterns and Pattern Lang. Volume 39(10), pages 37-39,

(1996).

– Schroeter, R., Hunter, J., Kosovic, D.: Vannotea–A Collaborative Video Indexing,

Annotation and Discussion System for Broadband Networks. In: Proceedings of the

K-CAP 2003 Workshop on Knowledge Markup and Semantic Annotation, Florida,

USA, (2003).

– Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-

DL Reasoner. In: Journal of Web Semantics, Volume 5(2), pages 51-53, (2007).

– Shaban-Nejad, A., Haarslev, V.: An Enhanced Graph-oriented Approach for Change

Management in Distributed Biomedical Ontologies and Linked Data. In: Proceedings

of the IEEE International Conference on Bioinformatics and Biomedicine Workshops

(BIBMW), pages 615–622, (2011).

– Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly Efficient OWL Reasoner. In:

OWLED 2008, Volume 432 of CEUR Workshop Proceedings, (2008).

– Spiliopoulos, V., Vouros, G.A., Karkaletsis, V.: On the Discovery of Subsumption

Relations for the Alignment of Ontologies. In: Journal of Web Semantics, Volume

8(1), pages 69–88, (2010).

– Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Perfor-

mance Improvements. In: Proceedings of the International Conference on Extending

Data Base Technology. Volume 1057 of Lecture Notes in Computer Science, Springer

Verlag, pages 3–17, (1996).

– Stefanowski, J.: Algorithms for Context Based Sequential Pattern Mining. In: Funda-

menta Informaticae, Volume 76(4), pages 495–510, (2007).

214

– Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD Thesis, University of

Karlsruhe, (2004).

– Stojanovic, L., Maedche, A., Stojanovic, N., Studer, R.: Ontology Evolution as

Reconfiguration-design Problem Solving. In: Proceedings of the 2nd International

Conference on Knowledge Capture (KCAP), (2003).

– Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven Ontology Evolu-

tion Management. In: Proceedings of the 13th International Conference on Knowledge

Engineering and Knowledge Management (EKAW). Volume 2473 of Lecture Notes in

Computer Science, Springer, pages 285–300, (2002).

– Suryn, W., Abran, A.: ISO/IEC SQuaRE. The Second Generation of Standards for

Software Product Quality. In: 12th International Conference on Software Engineering

and Applications (SEA), Marina del Rey, California, USA (2003).

– Tao, F., Murtagh, F.: Towards Knowledge Discovery From WWW Log Data. In: IEEE

International Conference on Information Technology: Coding and Computing, pages

302–307, (2000).

– Tallis, M., Gil, Y.: Designing Scripts to Guide Users in Modifying Knowledge-based

Systems. In: Proceedings of the 16th National Conference on Artificial Intelligence and

11th Conference on Innovative Applications of Artificial Intelligence, pages 242–249,

Florida, USA, (1999).

– Trinkunas, J., Vasilecas, O.: A Graph Oriented Model for Ontology Transformation

into Conceptual Data Model. In: Journal of Information Technology and Control,

Volume 36, pages 126–132, (2007).

– Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-

tion. In: Proceedings of the International Joint Conference on Automated Reasoning

(IJCAR), Springer, pages 292–297, (2006).

215

– Tury, M., Bielikova, M.: An Approach to Detect Ontology Changes. In: Proceedings of

the 6th International Conference on Web Engineering (ICWE), Palo Alto, California,

ACM Press, (2006).

– Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., Ciravegna,

F.: Semantic Annotation for Knowledge Management: Requirements and a Survey of

the State of the Art. In: Journal of Web Semantics. Volume 4, Issue 1, pages 14–28,

(2006).

– Van der Aalst, W.M.P.: Matching Observed Behaviour and Modelled Behaviour. An

Approach Based on Petri Nets and Integer Programming. In: Journal on Decision

Support Systems, Volume 42(3), pages 1843-1859, (2006).

– Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna,

F.: MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic

Markup. In: 13th International Conference on Knowledge Engineering and Manage-

ment (EKAW 2002), ed Gomez-Perez, A., Volume 2473 of Lecture Notes on Artificial

Intelligence, Springer Berlin/Heidelberg, pages 379–391, (2002).

– Valiente, G., Mart́ınez, C.: An Algorithm for Graph Pattern-Matching. In: Proceed-

ings of the 4th South American Workshop on String Processing. Volume 8 of Int.

Informatics Series, pages 180–197, (1997).

– Wach, E. P.: Automated Ontology Evolution for an E-Commerce Recommender.

In: Proceedings of the 14th International Conference on Business Information Sys-

tems (BIS), Volume 97 of Lecture Notes in Business Information Processing, Springer

Berlin/Heidelberg, pages 166–177, (2011).

– Wen, L., Wang, J., Van der Aalst, W.M.P., Huang, B., Sun, J.: Mining Process Models

with Prime Invisible Tasks. In: Journal of Data Knowledge Engineering, Volume 69,

No. 10, pages 999–1021, (2010).

216

– W3C 2004: OWL Web Ontology Language - Overview. W3C Recommendation, World

Wide Web Consortium, (2004), http://www.w3.org/TR/owl-features/.

– W3C 2009: OWL 2 Web Ontology Language - Structural Specification and Functional-

Style Syntax. W3C Recommendation, World Wide Web Consortium, (2009), http:

//www.w3.org/TR/owl2-syntax/.

– W3C 2004: OWL Web Ontology Language - Reference. W3C Recommendation, World

Wide Web Consortium,(2004), http://www.w3.org/TR/owl-ref/\#Sublanguages.

– Yan, X., Han, J.: gSpan: Graph-based Substructure Pattern Mining. In: IEEE Inter-

national Conference on Data Mining, pages 721–724, (2002).

– Yu, L.: Mining Change Logs and Release Notes to Understand Software Maintenance

and Evolution. In: CLEI Electron Journal, Volume 12, No. 2, pages 1–10, (2009).

– Zablith, F.: Dynamic Ontology Evolution. In: International Semantic Web Conference

(ISWC) Doctoral Consortium, Karlsruhe, Germany, (2008).

– Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining Periodic Patterns with Gap

Requirement from Sequences. In: Proceedings of the ACM Transactions on Knowledge

Discovery from Data (TKDD), Article 2, Volume 1(2), (2007).

– Zhu, X., Wu, X.: Mining Complex Patterns Across Sequences with Gap Requirements.

In: Proceedings of the 20th International Joint Conference on Artificial Intelligence,

pages 2934–2940, (2007).

– Zhao, Q., Bhowmick, S.S.: Sequential Pattern Mining: A Survey. In: Technical

Report, CAIS, Nanyang Technological University, Singapore, No. 2003118, (2003).

217

Appendix A

Metadata Ontology

In this appendix, we give the metadata ontology change model (discussed in Section 5.2)

that has been implemented in form of an ontology using OWL language. The entities

of the metadata ontology are being used to construct the RDF triples - representing the

ontology changes at different level of granularity.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY MO "http://www.cngl.ie/ontology/MO.owl#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.cngl.ie/ontology/MO.owl#"

xml:base="http://www.cngl.ie/ontology/MO.owl"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:MO="http://www.cngl.ie/ontology/MO.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about=""/>

<!--

///

//

// Object Properties

//

///

-->

<owl:ObjectProperty rdf:about="#docRef">

<rdfs:domain rdf:resource="#Trace"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasAuxParam1">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="#Entity"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

218

<owl:ObjectProperty rdf:about="#hasAuxParam2">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasAxiom">

<rdfs:range rdf:resource="#Axiom"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasClassAxiom">

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasCreator">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="#User"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDataPropertyAxiom">

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasEntity">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="#Entity"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasIndividualAxiom">

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasObjectPropertyAxiom">

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasOperation">

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRestriction">

<rdfs:range rdf:resource="#Restriction"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTargetParam">

<rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="#Entity"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#ontRef">

<rdfs:domain rdf:resource="#Trace"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#patternParticipants">

<rdfs:range rdf:resource="#Entity"/>

<rdfs:domain rdf:resource="#PatternChange"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#relatedPattern">

<rdfs:domain rdf:resource="#PatternChange"/>

<rdfs:range rdf:resource="#PatternChange"/>

<rdfs:subPropertyOf rdf:resource="&owl;topObjectProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="&owl;topObjectProperty"/>

<!--

///

//

// Data properties

//

///

-->

<!-- http://www.cngl.ie/ontology/MO.owl#changeId -->

219

<owl:DatatypeProperty rdf:about="#changeId">

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasDescription">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#noOfOperations">

<rdfs:domain rdf:resource="#ChangeOperation"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#noOfParameters">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#patternLabel">

<rdfs:domain rdf:resource="#PatternChange"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#patternPurpose">

<rdfs:domain rdf:resource="#PatternChange"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#sessionId">

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#timestamp">

<rdfs:domain rdf:resource="#Change"/>

<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#traceId"/>

<!--

///

//

// Classes

//

///

-->

<!-- http://www.cngl.ie/ontology/MO.owl#AddConceptGeneralization -->

<owl:Class rdf:about="#AddConceptGeneralization">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#AddConceptSpecialization">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#AddInteriorConcept">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#Administrator">

<rdfs:subClassOf rdf:resource="#User"/>

</owl:Class>

<owl:Class rdf:about="#AtomicChange">

<rdfs:subClassOf rdf:resource="#ChangeOperation"/>

</owl:Class>

<owl:Class rdf:about="#AuxParam1">

<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

<owl:Class rdf:about="#AuxParam2">

<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

<owl:Class rdf:about="#Axiom">

<rdfs:subClassOf rdf:resource="#OntologyElements"/>

</owl:Class>

<owl:Class rdf:about="#Cardinality">

220

<rdfs:subClassOf rdf:resource="#Restriction"/>

</owl:Class>

<owl:Class rdf:about="#Change"/>

<owl:Class rdf:about="#ChangeCondition">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#ChangeOperation"/>

<owl:Class rdf:about="#ClassAxioms">

<rdfs:subClassOf rdf:resource="#Axiom"/>

</owl:Class>

<owl:Class rdf:about="#CompositeChange">

<rdfs:subClassOf rdf:resource="#ChangeOperation"/>

</owl:Class>

<owl:Class rdf:about="#DataPropertyAxioms">

<rdfs:subClassOf rdf:resource="#Axiom"/>

</owl:Class>

<owl:Class rdf:about="#Document">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Entity">

<rdfs:subClassOf rdf:resource="#OntologyElements"/>

</owl:Class>

<owl:Class rdf:about="#GroupConcept">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#Guest">

<rdfs:subClassOf rdf:resource="#User"/>

</owl:Class>

<owl:Class rdf:about="#IndividualAxioms">

<rdfs:subClassOf rdf:resource="#Axiom"/>

</owl:Class>

<owl:Class rdf:about="#MergeConcept">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#MoveDownConcept">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#MoveUpConcept">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#ObjectPropertyAxioms">

<rdfs:subClassOf rdf:resource="#Axiom"/>

</owl:Class>

<owl:Class rdf:about="#Ontology">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#OntologyElements"/>

<owl:Class rdf:about="#Parameter">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#PatternChange">

<rdfs:subClassOf rdf:resource="#ChangeOperation"/>

</owl:Class>

<owl:Class rdf:about="#PhDStudentRegistration">

<rdfs:subClassOf rdf:resource="#PatternChange"/>

</owl:Class>

<owl:Class rdf:about="#PullDownProperty">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#PullUpProperty">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

221

</owl:Class>

<owl:Class rdf:about="#RenameEntity">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#Restriction">

<rdfs:subClassOf rdf:resource="#OntologyElements"/>

</owl:Class>

<owl:Class rdf:about="#SplitConcept">

<rdfs:subClassOf rdf:resource="#CompositeChange"/>

</owl:Class>

<owl:Class rdf:about="#TargetParam">

<rdfs:subClassOf rdf:resource="#Parameter"/>

</owl:Class>

<owl:Class rdf:about="#Trace">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#User"/>

<owl:Class rdf:about="#add">

<rdfs:subClassOf rdf:resource="#AtomicChange"/>

</owl:Class>

<owl:Class rdf:about="#classAssertionAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#concept">

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:Class rdf:about="#dataProperty">

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:Class rdf:about="#dataPropertyAssertionAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#delete">

<rdfs:subClassOf rdf:resource="#AtomicChange"/>

</owl:Class>

<owl:Class rdf:about="#differentFromAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#disjointClassAxiom">

<rdfs:subClassOf rdf:resource="#ClassAxioms"/>

</owl:Class>

<owl:Class rdf:about="#disjointDataPropertyAxiom">

<rdfs:subClassOf rdf:resource="#DataPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#disjointObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#domainOfDataPropertyAxiom">

<rdfs:subClassOf rdf:resource="#DataPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#domainOfObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#equivalentClassAxiom">

<rdfs:subClassOf rdf:resource="#ClassAxioms"/>

</owl:Class>

<owl:Class rdf:about="#equivalentDataPropertyAxiom">

<rdfs:subClassOf rdf:resource="#DataPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#equivalentObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

222

<owl:Class rdf:about="#functionalDataPropertyAxiom">

<rdfs:subClassOf rdf:resource="#DataPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#functionalObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#invFunctionalObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#inverseObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#maxCardinality">

<rdfs:subClassOf rdf:resource="#Cardinality"/>

</owl:Class>

<owl:Class rdf:about="#minCardinality">

<rdfs:subClassOf rdf:resource="#Cardinality"/>

</owl:Class>

<owl:Class rdf:about="#namedIndividual">

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:Class rdf:about="#negativeDataPropertyAssertionAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#negativeObjectPropertyAssertionAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#objectProperty">

<rdfs:subClassOf rdf:resource="#Entity"/>

</owl:Class>

<owl:Class rdf:about="#objectPropertyAssertionAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#postCondition">

<rdfs:subClassOf rdf:resource="#ChangeCondition"/>

</owl:Class>

<owl:Class rdf:about="#preCondition">

<rdfs:subClassOf rdf:resource="#ChangeCondition"/>

</owl:Class>

<owl:Class rdf:about="#rangeOfDataPropertyAxiom">

<rdfs:subClassOf rdf:resource="#DataPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#rangeOfObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#sameAsAxiom">

<rdfs:subClassOf rdf:resource="#IndividualAxioms"/>

</owl:Class>

<owl:Class rdf:about="#subDataPropertyAxiom">

<rdfs:subClassOf rdf:resource="#DataPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#subObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#subclassOfAxiom">

<rdfs:subClassOf rdf:resource="#ClassAxioms"/>

</owl:Class>

<owl:Class rdf:about="#symmetricObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

</owl:Class>

<owl:Class rdf:about="#transitiveObjectPropertyAxiom">

<rdfs:subClassOf rdf:resource="#ObjectPropertyAxioms"/>

223

</owl:Class>

<owl:Class rdf:about="#valueRestriction">

<rdfs:subClassOf rdf:resource="#Restriction"/>

</owl:Class>

<owl:Class rdf:about="&owl;Thing"/>

<!--

///

//

// Individuals

//

///

-->

<Administrator rdf:about="#Javed"/>

<Administrator rdf:about="#Yalemisew"/>

<!--

///

//

// General axioms

//

///

-->

<rdf:Description>

<rdf:type rdf:resource="&owl;AllDisjointClasses"/>

<owl:members rdf:parseType="Collection">

<rdf:Description rdf:about="#Change"/>

<rdf:Description rdf:about="#ChangeCondition"/>

<rdf:Description rdf:about="#ChangeOperation"/>

<rdf:Description rdf:about="#OntologyElements"/>

<rdf:Description rdf:about="#Parameter"/>

<rdf:Description rdf:about="#User"/>

</owl:members>

</rdf:Description>

</rdf:RDF>

<!-- Generated by the OWL API (version 2.2.1.842) http://owlapi.sourceforge.net -->

224

Appendix B

Java Code:

OrderedChangePatternFinder()

In this appendix, we give the Java implementation of discovering the ordered complete

(OC) domain-specific change patterns (c.f. Section 8.2). The input to the Java method is

minimum pattern length (min l), minimum pattern support (min s), and the permissible

sequence gap between two adjacent nodes of a sequence (gap).

Input:

- Minimum Pattern Support (min_s),

- Minimum Pattern Length (min_l),

- Permissible node distance (gap)

Output:

- List of Ordered Change Patterns

public static void OrderedChangePatternFinder(int min_s, int min_l, int gap){

min_sup = min_s;

min_len = min_l;

gap_const = gap;

resultList = new ArrayList();

resultList.clear();

Set s = GraphCreator.graph.vertexSet();

ArrayList Cand_Sequence = null;

ArrayList Supp_sequence = null;

ArrayList Result = null;

//Iterator to select a node from the graph set as a candidate nodes

225

iteration: for(Iterator i = s.iterator(); i.hasNext();) {

Cand_Sequence = new ArrayList();

Cand_Sequence.clear();

Supp_sequence = new ArrayList();

Supp_sequence.clear();

Result = new ArrayList();

Result.clear();

Cand_Context = new ArrayList();

Cand_Context.clear();

cContext = new ArrayList();

cContext.clear();

GraphNode Cand_Node = (GraphNode)i.next();

int Cand_Node_Id = Cand_Node.getNodeID();

Cand_Context.add(Cand_Node.getParam1());

Cand_Sequence.add(Cand_Node);

boolean ctx = true;

while(ctx == true)

{

GraphNode Nxt_Cand_Node =

PatternSearcher.findNode(++Cand_Node_Id);

if(Nxt_Cand_Node != null)

{

Nxt_Cand_Node =

GraphNodeMatcher.contextXMatch(Nxt_Cand_Node, gap_const);

} //end of if

if (Nxt_Cand_Node == null)

{

ctx = false;

} //end of if

else

{

Cand_Sequence.add(Nxt_Cand_Node);

Cand_Node_Id = Nxt_Cand_Node.getNodeID();

} //end of else

}// end of while loop

if(Cand_Sequence.size() < min_len)

continue iteration;

Supp_sequence =

CandidateNodeSearcher.searchCandidateNodes(Cand_Node);

if(Supp_sequence.size()+1 < min_sup)

continue iteration;

GraphNode nxtNode = null;

GraphNode nxtCNode = null;

int c_id;

int counter1 = 0;

226

a: while(counter1<Supp_sequence.size()&&Supp_sequence.size()+1>=min_sup){

ArrayList a = (ArrayList) Supp_sequence.get(counter1);

nxtCNode = (GraphNode)a.get(0);

c_id = nxtCNode.getNodeID();

String target = nxtCNode.getParam1();

GraphNode match2 = null;

int count = 1;

b: while (count < Cand_Sequence.size()) {

nxtNode = (GraphNode) Cand_Sequence.get(count++);

GraphNode cn2 = PatternSearcher.findNode(++c_id);

if(nxtNode != null && cn2 != null) {

match2 =

GraphNodeMatcher.contextMatch(nxtNode,cn2,gap_const,target);

if(match2 != null) {

a.add(match2);

c_id = match2.getNodeID();

}// end of if

else

break b;

}// end of if

}//end of b: while loop

if(a.size() < min_len) {

Supp_sequence.remove(counter1);

counter1--;

}// end of if

counter1++;

}// end of a: while

int counting = 0 ;

int max = Cand_Sequence.size();

int min = 0;

x: while (max >= min_len){

counting = 0 ;

for (int u = 0; u < Supp_sequence.size(); u++){

ArrayList cp = (ArrayList) Supp_sequence.get(u);

if(cp.size() >= max)

counting++;

} // end of for loop

if (counting >= min_sup) {

min = max;

break x;

}// end of if

if(counting < min_sup) {

max--;

}// end of if

}// end of x:while loop

227

for(int u = 0; u<Supp_sequence.size();u++)

{

ArrayList cp = (ArrayList) Supp_sequence.get(u);

if(cp.size() < min){

Supp_sequence.remove(u);

u--;

}// end of if

}// end of for loop

if(min >= min_len){

int r1 = Cand_Sequence.size()-1;

while(r1 >= min)

{ Cand_Sequence.remove(r1--); }

for(int u = 0; u<Supp_sequence.size();u++){

ArrayList cp = (ArrayList) Supp_sequence.get(u);

int r2 = cp.size()-1;

while(r2 >= min)

{ cp.remove(r2--); }

}// end of for loop

}

if(Supp_sequence.size()+1 >= min_sup) {

Result.add(0, Cand_Sequence);

for(int d = 0; d<Supp_sequence.size(); d++){

ArrayList a = (ArrayList) Supp_sequence.get(d);

if((a.size()>= min_len)){

Result.add(a);

}// end of if

}// end of for

}// end of if

if(!subset && Result.size()>1)

resultList = removeSubsets(Result, resultList);

else if (Result.size()>1)

resultList.add(Result);

}// end of Iterations

printResult(resultList);

}

228

Appendix C

Java Code:

UnorderedChangePatternFinder()

In this appendix, we give the Java implementation of discovering the unordered complete

(UC) domain-specific change patterns (c.f. Section 8.2). The input to the Java method is

minimum pattern length (min l), minimum pattern support (min s), and the permissible

sequence gap between two adjacent nodes of a sequence (gap).

Input:

- Minimum Pattern Support (min_s),

- Minimum Pattern Length (min_l),

- Permissible node distance (gap)

Output:

- List of Unordered Change Patterns

public static void UnorderedChangePatternFinder(int min_s, int min_l, int gap)

{

min_sup = min_s;

min_len = min_l;

gap_const = gap;

resultList = new ArrayList();

resultList.clear();

s = GraphCreator.graph.vertexSet();

ArrayList Cand_Sequence = null;

ArrayList Supp_Sequence = null;

ArrayList StandeByList = null;

ArrayList Result = null;

229

//Iteration to get all the nodes of graph and passing them

iteration:for(Iterator i = s.iterator(); i.hasNext();) {

Cand_Sequence = new ArrayList(); Cand_Sequence.clear();

Supp_Sequence = new ArrayList(); Supp_Sequence.clear();

StandeByList = new ArrayList(); StandeByList.clear();

Result = new ArrayList(); Result.clear();

Cand_Context = new ArrayList(); Cand_Context.clear();

cContext = new ArrayList(); cContext.clear();

GraphNode node = (GraphNode)i.next();

int Cand_Node_Id = node.getNodeID();

Cand_Context.add(node.getParam1());

Cand_Sequence.add(node);

boolean ctx = true;

while(ctx == true)

{

GraphNode Nxt_Cand_Node = PatternSearcher.findNode(++Cand_Node_Id);

if(Nxt_Cand_Node != null){

Nxt_Cand_Node =

GraphNodeMatcher.contextQMatch(Nxt_Cand_Node, gap_const);

}// end of if

if (Nxt_Cand_Node == null) {

ctx = false;

}// end of if

else {

Cand_Sequence.add(Nxt_Cand_Node);

Cand_Node_Id = Nxt_Cand_Node.getNodeID();

}// end of else

}// end of while loop

if(Cand_Sequence.size() < min_len)

continue iteration;

Supp_Sequence = CandidateNodeSearcher.searchCandidateNodes(node);

if(Supp_Sequence.size()+1 < min_sup)

continue iteration;

for(int h=0; h<Supp_Sequence.size(); h++){

ArrayList s = new ArrayList();

s.clear();

StandeByList.add(s);

}// end of for loop

GraphNode nxtNode = null;

int counter = 0;

a: while(counter<Supp_Sequence.size() && Supp_Sequence.size() +1 >= min_sup){

ArrayList a = (ArrayList) Supp_Sequence.get(counter);

ArrayList sb = (ArrayList) StandeByList.get(counter);

int count = 1;

b: while(count < Cand_Sequence.size()){

nxtNode = (GraphNode) Cand_Sequence.get(count++);

230

setRange(a);

ArrayList na = searchInRange(a, nxtNode);

if(na != null) {

a = ascendingForm(na);

setRange(a);

if(!sb.isEmpty()) {

int size_bsb, size_asb;

if(sb.size()>0 && a.size()>0){

do{

size_bsb = sb.size();

ArrayList next = searchinStandBy(sb, a);

sb = (ArrayList) next.get(0);

a = (ArrayList) next.get(1);

a = ascendingForm(a);

setRange(a);

size_asb = sb.size();

}while(sb.size()>0 && size_bsb > size_asb);

}//end of if

} //end of if

}//end of if

else {

sb.add(nxtNode);

}

}// end of b: while

if(a.size() < min_len) {

Supp_Sequence.remove(counter);

StandeByList.remove(counter);

counter--;

}// end of if

counter++;

}// end of a: while

for(int d = 0; d < Supp_Sequence.size(); d++){

ArrayList a = (ArrayList) Supp_Sequence.get(d);

if(a.size() < Cand_Sequence.size()){

Supp_Sequence.remove(d);

StandeByList.remove(d);

d--;

}

}// end of for loop

if(Supp_Sequence.size()+1 >= min_sup && Cand_Sequence.size() >= min_len) {

Result.add(0, Cand_Sequence);

for(int d = 0; d<Supp_Sequence.size(); d++) {

ArrayList a = (ArrayList) Supp_Sequence.get(d);

if((a.size()>= min_len)){

Result.add(a);

}// end of if

}// end of for loop

231

}//end of if

if(!subset && Result.size()>1)

resultList = removeSubsets(Result, resultList);

else if (Result.size()>1)

resultList.add(Result);

}// end of all iterations

printResult(resultList);

}

232

Appendix D

University Administration

Ontology

In this appendix, we give the current version of university case study ontology. The

ontology covers the main constituents of the university domain. The entities such as

faculty, student, departments courses, subjects, staff members have been defined and

relate to each other.

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.cngl.ie/ontology/University.owl#"

xml:base="http://www.cngl.ie/ontology/University.owl"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:University_Administration="http://www.cngl.ie/ontology/University.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about="http://www.cngl.ie/ontology/University.owl"/>

<!--

///

//

// Object Properties

//

///

-->

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#CourseContact">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#EventVenue">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#School"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#OfferedBySchool">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#School"/>

</owl:ObjectProperty>

233

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#RegisteredIn">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Taught_Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#ResearchMemberOf">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Group"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancyContact">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancyOfferedIn">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#School"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasCountryOfOrigin">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Country"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasCourseCode">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#CourseCode"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasEligibilityReq">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#DegreeLevel"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasPreRequisite">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasSubject">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasSubjectCode">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#SubjectCode"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#hasSupervisor">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isCommitteeMemberOf">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Committee"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isFacultyOf">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#School"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isOfferedInCourse">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isStudentOf">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#School"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isStudying">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Taught_Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isSupervisorOf">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Student"/>

234

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isTakingSubject">

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Taught_Student"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://www.cngl.ie/ontology/University.owl#isTeaching">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

<rdfs:range rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

</owl:ObjectProperty>

<!--

///

//

// Data properties

//

///

-->

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#CourseTitle">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#CreditHours">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#DurationOfCourse">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#long"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#EmailID">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#EventDate">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#EventDescription">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#EventLink">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#Ref.Material">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#StudentID">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#long"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#SubjectTitle">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Subject"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancyClosingDate">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancyDescription">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancyPostedOn">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

235

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancySalary">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#double"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://www.cngl.ie/ontology/University.owl#VacancyTitle">

<rdfs:domain rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<!--

///

//

// Classes

//

///

-->

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#AcademicVacancy">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#AdministrativeVacancy">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#AssociateProfessor">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Committee">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Country"/>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Course">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#CourseCode">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#DegreeLevel"/>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#EuropeanStudent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#InternationalStudent"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Event">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Faculty">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#InternationalStudent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Lecturer">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Library">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#MS_Course">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#MS_Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Taught_Student"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#MSbyResearch_Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Student"/>

236

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Non-EuropeanStudent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#InternationalStudent"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#OtherEvent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#PhD_Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Student"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Professor">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#ResearchEvent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#ResearchVacancy">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Vacancy"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Research_Group">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Research_Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#School">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Semester">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#SeniorLecturer">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Faculty"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#SocietyEvent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#SportsEvent">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Event"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Subject">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#SubjectCode">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#SummerSemester">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Semester"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Taught_Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Student"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#UG_Course">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Course"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#UG_Student">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Taught_Student"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#University"/>

237

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#Vacancy">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#University"/>

</owl:Class>

<owl:Class rdf:about="http://www.cngl.ie/ontology/University.owl#WinterSemester">

<rdfs:subClassOf rdf:resource="http://www.cngl.ie/ontology/University.owl#Semester"/>

</owl:Class>

<!--

///

//

// Individuals

//

///

-->

<owl:NamedIndividual rdf:about="http://www.cngl.ie/ontology/University.owl#CNGL">

<rdf:type rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Group"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://www.cngl.ie/ontology/University.owl#ClausPahl">

<rdf:type rdf:resource="http://www.cngl.ie/ontology/University.owl#Research_Group"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://www.cngl.ie/ontology/University.owl#Javed">

<rdf:type rdf:resource="http://www.cngl.ie/ontology/University.owl#PhD_Student"/>

<StudentID rdf:datatype="http://www.w3.org/2001/XMLSchema#float">5.8106384E7</StudentID>

<EmailID rdf:datatype="http://www.w3.org/2001/XMLSchema#string">mjaved@computing.dcu.ie</EmailID>

<hasSupervisor rdf:resource="http://www.cngl.ie/ontology/University.owl#ClausPahl"/>

<isStudentOf rdf:resource="http://www.cngl.ie/ontology/University.owl#SchoolOfComputing"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://www.cngl.ie/ontology/University.owl#SchoolOfComputing">

<rdf:type rdf:resource="http://www.cngl.ie/ontology/University.owl#School"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://www.cngl.ie/ontology/University.owl#Yalemisew">

<rdf:type rdf:resource="http://www.cngl.ie/ontology/University.owl#PhD_Student"/>

</owl:NamedIndividual>

</rdf:RDF>

238

Appendix E

Database System Ontology

In this appendix, we give the current version of database (technical) case study ontology

(c.f. Section 4.1.1).

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY OntologyDatabase "http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#" >

<!ENTITY Modify "http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#Modify/" >

<!ENTITY Values "http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#Values&" >

<!ENTITY Formula "http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#Formula/" >

<!ENTITY Inner_Join "http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#Inner_Join/" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#"

xml:base="http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:Values="&OntologyDatabase;Values&"

xmlns:OntologyDatabase="http://www.semanticweb.org/ontologies/2008/10/OntologyDatabase.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:Inner_Join="&OntologyDatabase;Inner_Join/"

xmlns:Modify="&OntologyDatabase;Modify/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:Formula="&OntologyDatabase;Formula/"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about=""/>

<!--

///

//

// Object Properties

//

///

-->

<owl:ObjectProperty rdf:about="#Minus">

<rdfs:range rdf:resource="#Rows"/>

<rdfs:domain rdf:resource="#SET_DIFFERENCE"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#Renames">

<rdfs:range rdf:resource="#Columns"/>

<rdfs:domain rdf:resource="#Rename"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#changesValuesOf">

<rdfs:range rdf:resource="#Table"/>

<rdfs:domain rdf:resource="#UpdateOperations"/>

239

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasColumn">

<rdfs:range rdf:resource="#Columns"/>

<rdfs:domain rdf:resource="#Table"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasConstraints">

<rdfs:range rdf:resource="#Constraints"/>

<rdfs:domain rdf:resource="#Value"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDatatype">

<rdfs:range rdf:resource="#Data_Type"/>

<rdfs:domain rdf:resource="#Domain"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDomain">

<rdfs:domain rdf:resource="#Column"/>

<rdfs:range rdf:resource="#Domain"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasDomainConstraint">

<rdfs:domain rdf:resource="#Domain"/>

<rdfs:range rdf:resource="#Domain_Constraint"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasEntityIntegrityConstraint">

<rdfs:range rdf:resource="#Entity_Integrity_Constraint"/>

<rdfs:domain rdf:resource="#Primary_Key"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasKey">

<rdfs:range rdf:resource="#Key"/>

<rdfs:domain rdf:resource="#Table"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasKeyConstraint">

<rdfs:domain rdf:resource="#Key"/>

<rdfs:range rdf:resource="#Key_Constraint"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasNULLConstraint">

<rdfs:range rdf:resource="#Constraint_On_NULL"/>

<rdfs:domain rdf:resource="#NULL_Value"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasQueryLanguage">

<rdfs:domain rdf:resource="#Relational_Database"/>

<rdfs:range rdf:resource="#Structure_Query_Language"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRetrievalOperations">

<rdfs:range rdf:resource="#Relational_Algebra_Operations"/>

<rdfs:domain rdf:resource="#Relational_Database"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRow">

<rdfs:range rdf:resource="#Rows"/>

<rdfs:domain rdf:resource="#Table"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSchema">

<rdfs:domain rdf:resource="#Relational_Database"/>

<rdfs:range rdf:resource="#Relational_Database_Schema"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTable">

<rdfs:domain rdf:resource="#Relational_Database"/>

<rdfs:range rdf:resource="#Table"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasUpdateOperations">

<rdfs:domain rdf:resource="#Relational_Database"/>

<rdfs:range rdf:resource="#UpdateOperations"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasValue">

<rdfs:domain rdf:resource="#Data_Type"/>

<rdfs:range rdf:resource="#Value"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#inserts">

240

<rdfs:domain rdf:resource="#Insert"/>

<rdfs:range rdf:resource="#Rows"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#intersects">

<rdfs:domain rdf:resource="#INTERSECTION"/>

<rdfs:range rdf:resource="#Rows"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#joinRelatedRowsFrom">

<rdfs:domain rdf:resource="#Join"/>

<rdfs:range rdf:resource="#Table"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#mayContain">

<rdfs:domain rdf:resource="#Formula/Condition"/>

<rdfs:range rdf:resource="#Logical_Operators"/>

<rdfs:range rdf:resource="#Quantifiers"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#mayViolate"/>

<owl:ObjectProperty rdf:about="#modifies">

<rdfs:domain rdf:resource="#Modify/Update"/>

<rdfs:range rdf:resource="#Rows"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#removes">

<rdfs:domain rdf:resource="#Delete"/>

<rdfs:range rdf:resource="#Rows"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#retrievesValuesFrom">

<rdfs:domain rdf:resource="#Relational_Algebra_Operations"/>

<rdfs:range rdf:resource="#Table"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#selectC">

<rdfs:range rdf:resource="#Columns"/>

<rdfs:domain rdf:resource="#Project"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#selectR">

<rdfs:range rdf:resource="#Rows"/>

<rdfs:domain rdf:resource="#Select"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#unite">

<rdfs:range rdf:resource="#Rows"/>

<rdfs:domain rdf:resource="#UNION"/>

</owl:ObjectProperty>

<!--

///

//

// Classes

//

///

-->

<owl:Class rdf:about="#AND">

<rdfs:subClassOf rdf:resource="#Logical_Operators"/>

</owl:Class>

<owl:Class rdf:about="#Additional_Relational_Operations">

<rdfs:subClassOf rdf:resource="#Relational_Algebra_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Aggregate_Function">

<rdfs:subClassOf rdf:resource="#Additional_Relational_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Alternate_Key">

<rdfs:subClassOf rdf:resource="#Key"/>

</owl:Class>

<owl:Class rdf:about="#Binary_Model">

<rdfs:subClassOf rdf:resource="#Object_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Bit_String">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

241

<owl:Class rdf:about="#Boolean">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

<owl:Class rdf:about="#CARTESIAN_PRODUCT">

<rdfs:subClassOf rdf:resource="#Set_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Character_String">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

<owl:Class rdf:about="#Column">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

<owl:Class rdf:about="#Columns">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Constraint_On_NULL">

<rdfs:subClassOf rdf:resource="#Explicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Constraints">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#DB_Languages">

<rdfs:subClassOf rdf:resource="#Databe_Ontology"/>

</owl:Class>

<owl:Class rdf:about="#DB_Operations">

<rdfs:subClassOf rdf:resource="#Relational_Algebra_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Data_Definition_Language">

<rdfs:subClassOf rdf:resource="#DB_Languages"/>

</owl:Class>

<owl:Class rdf:about="#Data_Manipulation_Language">

<rdfs:subClassOf rdf:resource="#DB_Languages"/>

</owl:Class>

<owl:Class rdf:about="#Data_Type">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Database_Models">

<rdfs:subClassOf rdf:resource="#Databe_Ontology"/>

</owl:Class>

<owl:Class rdf:about="#Databe_Ontology">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Date">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

<owl:Class rdf:about="#Degree_Of_Relation">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Delete">

<rdfs:subClassOf rdf:resource="#UpdateOperations"/>

</owl:Class>

<owl:Class rdf:about="#Division">

<rdfs:subClassOf rdf:resource="#DB_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Domain">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Domain_Constraint">

<rdfs:subClassOf rdf:resource="#Explicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Domain_Relational_Calculus">

<rdfs:subClassOf rdf:resource="#Relational_Calculus"/>

242

</owl:Class>

<owl:Class rdf:about="#ER_Model">

<rdfs:subClassOf rdf:resource="#Object_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Entity_Integrity_Constraint">

<rdfs:subClassOf rdf:resource="#Integrity_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Existential_Quantifier">

<rdfs:subClassOf rdf:resource="#Quantifiers"/>

</owl:Class>

<owl:Class rdf:about="#Explicit_Constraints">

<rdfs:subClassOf rdf:resource="#Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Formula/Condition">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Frame_Memory">

<rdfs:subClassOf rdf:resource="#Physical_Data_Model"/>

</owl:Class>

<owl:Class rdf:about="#Full_Outer_Join">

<rdfs:subClassOf rdf:resource="#Outer_Join"/>

</owl:Class>

<owl:Class rdf:about="#Generalized_Projection">

<rdfs:subClassOf rdf:resource="#Additional_Relational_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Grouping">

<rdfs:subClassOf rdf:resource="#Additional_Relational_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Hierarchical_Model">

<rdfs:subClassOf rdf:resource="#Record_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Higher_Level_DML">

<rdfs:subClassOf rdf:resource="#Data_Manipulation_Language"/>

</owl:Class>

<owl:Class rdf:about="#INTERSECTION">

<rdfs:subClassOf rdf:resource="#Set_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Implicit_Constraints">

<rdfs:subClassOf rdf:resource="#Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Inner_Join/Equi_Join">

<rdfs:subClassOf rdf:resource="#Theta_Join"/>

</owl:Class>

<owl:Class rdf:about="#Insert">

<rdfs:subClassOf rdf:resource="#UpdateOperations"/>

</owl:Class>

<owl:Class rdf:about="#Integrity_Constraints">

<rdfs:subClassOf rdf:resource="#Explicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Interpretation_Of_Relation">

<rdfs:subClassOf rdf:resource="#Implicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Join">

<rdfs:subClassOf rdf:resource="#DB_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Key">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Key_Constraint">

<rdfs:subClassOf rdf:resource="#Explicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Left_Outer_Join">

243

<rdfs:subClassOf rdf:resource="#Outer_Join"/>

</owl:Class>

<owl:Class rdf:about="#Logical_Operators">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Lower_Level_DML">

<rdfs:subClassOf rdf:resource="#Data_Manipulation_Language"/>

</owl:Class>

<owl:Class rdf:about="#Modify/Update">

<rdfs:subClassOf rdf:resource="#UpdateOperations"/>

</owl:Class>

<owl:Class rdf:about="#NOT">

<rdfs:subClassOf rdf:resource="#Logical_Operators"/>

</owl:Class>

<owl:Class rdf:about="#NULL_Value">

<rdfs:subClassOf rdf:resource="#Value"/>

</owl:Class>

<owl:Class rdf:about="#Natural_Join">

<rdfs:subClassOf rdf:resource="#Inner_Join/Equi_Join"/>

</owl:Class>

<owl:Class rdf:about="#Network_Model">

<rdfs:subClassOf rdf:resource="#Record_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Numeric">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

<owl:Class rdf:about="#OR">

<rdfs:subClassOf rdf:resource="#Logical_Operators"/>

</owl:Class>

<owl:Class rdf:about="#Object_Based_Logical_Model">

<rdfs:subClassOf rdf:resource="#Database_Models"/>

</owl:Class>

<owl:Class rdf:about="#Object_Oriented_Model">

<rdfs:subClassOf rdf:resource="#Object_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Ordering_Of_Tuples">

<rdfs:subClassOf rdf:resource="#Implicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Ordering_Of_Values">

<rdfs:subClassOf rdf:resource="#Implicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Outer_Join">

<rdfs:subClassOf rdf:resource="#Theta_Join"/>

</owl:Class>

<owl:Class rdf:about="#Physical_Data_Model">

<rdfs:subClassOf rdf:resource="#Database_Models"/>

</owl:Class>

<owl:Class rdf:about="#Primary_Key">

<rdfs:subClassOf rdf:resource="#Key"/>

</owl:Class>

<owl:Class rdf:about="#Project">

<rdfs:subClassOf rdf:resource="#DB_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Quantifiers">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Range">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Record_Based_Logical_Model">

<rdfs:subClassOf rdf:resource="#Database_Models"/>

</owl:Class>

244

<owl:Class rdf:about="#Recursive_Closure">

<rdfs:subClassOf rdf:resource="#Additional_Relational_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Referential_Integrity_Constraint">

<rdfs:subClassOf rdf:resource="#Integrity_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Relation_Schema">

<rdfs:subClassOf rdf:resource="#Schema"/>

</owl:Class>

<owl:Class rdf:about="#Relational_Algebra_Operations">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Relational_Calculus">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Relational_Database">

<rdfs:subClassOf rdf:resource="#Databe_Ontology"/>

</owl:Class>

<owl:Class rdf:about="#Relational_Database_Schema">

<rdfs:subClassOf rdf:resource="#Schema"/>

</owl:Class>

<owl:Class rdf:about="#Relational_Model">

<rdfs:subClassOf rdf:resource="#Record_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Rename">

<rdfs:subClassOf rdf:resource="#DB_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Right_Outer_Join">

<rdfs:subClassOf rdf:resource="#Outer_Join"/>

</owl:Class>

<owl:Class rdf:about="#Rows">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#SET_DIFFERENCE">

<rdfs:subClassOf rdf:resource="#Set_Operations"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Alter">

<rdfs:subClassOf rdf:resource="#SQL_DDL_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Commands">

<rdfs:subClassOf rdf:resource="#Structure_Query_Language"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Create">

<rdfs:subClassOf rdf:resource="#SQL_DDL_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_DDL_Commands">

<rdfs:subClassOf rdf:resource="#SQL_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_DML_Commands">

<rdfs:subClassOf rdf:resource="#SQL_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Delete">

<rdfs:subClassOf rdf:resource="#SQL_DML_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Drop">

<rdfs:subClassOf rdf:resource="#SQL_DDL_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Insert">

<rdfs:subClassOf rdf:resource="#SQL_DML_Commands"/>

</owl:Class>

<owl:Class rdf:about="#SQL_Select">

<rdfs:subClassOf rdf:resource="#SQL_DML_Commands"/>

</owl:Class>

245

<owl:Class rdf:about="#SQL_Update">

<rdfs:subClassOf rdf:resource="#SQL_DML_Commands"/>

</owl:Class>

<owl:Class rdf:about="#Schema">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Select">

<rdfs:subClassOf rdf:resource="#DB_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Semantic_Constraints">

<rdfs:subClassOf rdf:resource="#Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Semantic_Data_Model">

<rdfs:subClassOf rdf:resource="#Object_Based_Logical_Model"/>

</owl:Class>

<owl:Class rdf:about="#Semantic_Integrity_Constraints">

<rdfs:subClassOf rdf:resource="#Integrity_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#Set_Operations">

<rdfs:subClassOf rdf:resource="#Relational_Algebra_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Storage_Definition_Language">

<rdfs:subClassOf rdf:resource="#DB_Languages"/>

</owl:Class>

<owl:Class rdf:about="#Structure_Query_Language">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Table">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Theta_Join">

<rdfs:subClassOf rdf:resource="#Join"/>

</owl:Class>

<owl:Class rdf:about="#Time">

<rdfs:subClassOf rdf:resource="#Data_Type"/>

</owl:Class>

<owl:Class rdf:about="#Tuple_Relational_Calculus">

<rdfs:subClassOf rdf:resource="#Relational_Calculus"/>

</owl:Class>

<owl:Class rdf:about="#UNION">

<rdfs:subClassOf rdf:resource="#Set_Operations"/>

</owl:Class>

<owl:Class rdf:about="#Unifying_Model">

<rdfs:subClassOf rdf:resource="#Physical_Data_Model"/>

</owl:Class>

<owl:Class rdf:about="#Universal_Quantifier">

<rdfs:subClassOf rdf:resource="#Quantifiers"/>

</owl:Class>

<owl:Class rdf:about="#UpdateOperations">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Value">

<rdfs:subClassOf rdf:resource="#Relational_Database"/>

</owl:Class>

<owl:Class rdf:about="#Values&NullValue_In_Tuple">

<rdfs:subClassOf rdf:resource="#Implicit_Constraints"/>

</owl:Class>

<owl:Class rdf:about="#View_Definition_Language">

<rdfs:subClassOf rdf:resource="#DB_Languages"/>

</owl:Class>

<owl:Class rdf:about="&owl;Thing"/>

</rdf:RDF>

246

Appendix F

Software Application Ontology

In this appendix, we give the current version of software application case study ontology

(c.f. Section 4.1.1).

<?xml version="1.0"?>

<!DOCTYPE Ontology [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY Ontology1242290150984 "http://www.semanticweb.org/ontologies/2009/4/14/Ontology1242290150984.owl#" >

]>

<Ontology xmlns="http://www.w3.org/2006/12/owl2-xml#"

xml:base="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:Ontology1242290150984="http://www.semanticweb.org/ontologies/2009/4/14/Ontology1242290150984.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

URI="http://www.semanticweb.org/ontologies/2009/4/14/Ontology1242290150984.owl">

<SubClassOf>

<Class URI="&Ontology1242290150984;Administrator"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Administrator"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Archiving"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Archiving"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Assigning"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Assigning"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Book_Info"/>

<Class URI="&Ontology1242290150984;Help_File"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Book_Info"/>

</Declaration>

247

<SubClassOf>

<Class URI="&Ontology1242290150984;Building"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Building"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Button"/>

<Class URI="&Ontology1242290150984;GUI"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Button"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Canceling"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Canceling"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Case"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Case"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Chapter"/>

<Class URI="&Ontology1242290150984;Help_File"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Chapter"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Checking"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Checking"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Closing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Closing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;CommandLine"/>

<Class URI="&Ontology1242290150984;Software_Feature"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;CommandLine"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Comment"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Comment"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Configuring"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Configuring"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Copying"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Copying"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Creating"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Creating"/>

248

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Customer"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Customer"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Customizing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Customizing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Data"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Data"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Database"/>

<Class URI="&Ontology1242290150984;Software_Feature"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Database"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Deleting"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Deleting"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Deligate"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Deligate"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Deveolper"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Deveolper"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Downloading"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Downloading"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Editing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Editing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Employee"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Employee"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;End_User"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;End_User"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Exporting"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

249

<Class URI="&Ontology1242290150984;Exporting"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;File"/>

<Class URI="&Ontology1242290150984;Software_Feature"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;File"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Folders"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Folders"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;GUI"/>

<Class URI="&Ontology1242290150984;Software_Feature"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;GUI"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Guidelines"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Guidelines"/>

</Declaration>

<Declaration>

<Class URI="&Ontology1242290150984;Help_File"/>

</Declaration>

<Declaration>

<Class URI="&Ontology1242290150984;Help_and_query_Structure"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Hot_Words"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Hot_Words"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Importing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Importing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Index"/>

<Class URI="&Ontology1242290150984;Help_File"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Index"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Items"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Items"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Marks_and_Schemes"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Marks_and_Schemes"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Menu"/>

<Class URI="&Ontology1242290150984;GUI"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Menu"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Messages"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

250

<Class URI="&Ontology1242290150984;Messages"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Opening"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Opening"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Para"/>

<Class URI="&Ontology1242290150984;Chapter"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Para"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Pausing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Pausing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Permissions"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Permissions"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Procedure"/>

<Class URI="&Ontology1242290150984;Chapter"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Procedure"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Reference"/>

<Class URI="&Ontology1242290150984;Help_and_query_Structure"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Reference"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Removing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Removing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Renaming"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Renaming"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Reports"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Reports"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Responsibilities"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Responsibilities"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Restoring"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Restoring"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Resuming"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

251

<Declaration>

<Class URI="&Ontology1242290150984;Resuming"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Reviewer"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Reviewer"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Roles"/>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Roles"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Searching"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Searching"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Section"/>

<Class URI="&Ontology1242290150984;Chapter"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Section"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Sharing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Sharing"/>

</Declaration>

<Declaration>

<Class URI="&Ontology1242290150984;Software_Application"/>

</Declaration>

<Declaration>

<Class URI="&Ontology1242290150984;Software_Feature"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Steps"/>

<Class URI="&Ontology1242290150984;Procedure"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Steps"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Subtitle"/>

<Class URI="&Ontology1242290150984;Help_File"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Subtitle"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Supervisor"/>

<Class URI="&Ontology1242290150984;User"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Supervisor"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Task"/>

<Class URI="&Ontology1242290150984;Help_and_query_Structure"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Task"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Title"/>

<Class URI="&Ontology1242290150984;Help_File"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Title"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

<Class URI="&Ontology1242290150984;Help_and_query_Structure"/>

</SubClassOf>

252

<Declaration>

<Class URI="&Ontology1242290150984;Topic_Concept"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Turning_Off"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Turning_Off"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Turning_On"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Turning_On"/>

</Declaration>

<Declaration>

<Class URI="&Ontology1242290150984;User"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Viewing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Viewing"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;Window"/>

<Class URI="&Ontology1242290150984;GUI"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;Window"/>

</Declaration>

<SubClassOf>

<Class URI="&Ontology1242290150984;synchronizing"/>

<Class URI="&Ontology1242290150984;Task"/>

</SubClassOf>

<Declaration>

<Class URI="&Ontology1242290150984;synchronizing"/>

</Declaration>

</Ontology>

253

Appendix G

Composite-level Evolution

Strategies

In this appendix, we give a list of proposed composite-level evolution strategies for

composite change operators that can be utilized to perform a composite change according

to the needs of a user. As different atomic change operators can be combined together

to define new composite changes, the proposed evolution strategies are customizable to

meet one’s own needs.

Pull up class (X, C)

Definition: Attach a class (as a child) to the parent(s) of its previous parent(s).

Structural impact: The class X is pulled up in the class hierarchy and became a sibling of its
previous parent class C.

Semantic impact: Instances of X are not instance of C anymore (inference).

Resolution point: Given, a class X is disjoint to class C,
type(I) = X ⇒ ¬ type(I) = C (and vice versa)

The composite change may make ontology inconsistent if a predefined disjointness exists among
the siblings of the class C (i.e. X and C become disjoint classes in version 2). In such case, any
instantiation of a property P whose domain/range consist class C, by any instance of class X, is
not valid anymore. If such instantiations of property P exists, ontology will become inconsistent.

Evolution Strategies:

254

A

B

A

B
 C
C

X
 X

primitive siblings disjoint (B, C)
 primitive siblings disjoint (B, C, X)

P
 P

I

InstanceOf

(Inference)

initiates property P

InstanceOf

(defined)

I

InstanceOf

(Inference)

initiates property P

InstanceOf

(defined)

Resolution Point:

Given, a class X is disjoint with class C

type(I) = X ¬ type(I) = C (and vice versa)
=
>

Figure G.1: Pull up class (X, C)

If the property P does not fit for the class C anymore, user can delete the instantiation of the
property P for the instances of C, OR

If the instances of class X can still be instances of C, user can delete the disjointness between
the classes C and X, OR

If instances of class X cannot be considered as instances of class C anymore however the
property P is still valid for the instances of class C, in such case user can explicitly add class X as
domain/range of the property P i.e. domainOf(P) = C or X.

Pull down class (A, B)

Definition: Attach a class (as a child) to its previous sibling class(s).

Structural impact: The class A is pulled down in the class hierarchy and became a child of its
previous sibling class B.

Semantic impact: Instances of class A are instances of class B as well (inference).

Resolution point: Given two classes A and B,
subclassOf(A,B) ⇒ ¬ disjointClasses(A,B)

Domain ontology will become inconsistent if the classes A and B were disjoint to each other before
the execution of the composite change. In such case, instances of class A cannot be referred as
instances of class B.

Evolution Strategies:

In order to resolve the resolution point, user may delete the disjointness between the classes
A and B.

Split class (X, (C1, C2))

Definition: Split a class into two (or more) classes.

255

X

Y

X

Y
 B

B

A

A

primitive siblings disjoint (Y, B, A)
primitive siblings disjoint (Y, B, A)

I

InstanceOf

(Inference)
InstanceOf

(defined)

I

InstanceOf

(defined)

Resolution Point:

Given two classes A and B

if A is
subclassOf
 B ¬ A is disjoint to B
=
>

Figure G.2: Pull down class (A, B)

Structural impact: Class X is replaced by two sibling classes C1 and C2.

Semantic impact: Class X is split into two sibling classes and the roles (relationships) of class X

(that had to be inherited by the newly added classes) become unattached.

Resolution point: The newly added sibling classes C1 and C2 inherit relationships from the split
class X. Thus, the deleted relationships (axioms) of class X must be preserved and re-attached to
the newly added classes.

A

Y X

I

Resolution Point:

Given a class X split into two classes C1 and C2,
how to re-attach the roles of deleted class X ?

P A

Y C1

I

C2

P

Figure G.3: Split class (X, (C1, C2))

Evolution Strategies: In order to resolve the resolution point, user can either

distribute the deleted roles of class X among the newly added replacement classes, OR

re-attach the roles to one of the newly added replacement class, OR

re-attach roles to all the newly added replacement classes, OR

do nothing.

Note, a role can be re-attached to two or more newly added classes using “or” or “and” prop-
erty. For example, if a class “person” is split into two sibling classes “male” and “female”, we
can re-attach property “hasAge” as domainOf(hasAge) = male or female. That means, if an
individual instantiate the property “hasAge”, the individual is either a male or a female. If a
class “ResearchStudent” is split into two sibling classes “Student” and “Researcher”, we can

256

re-attach property “hasAuthor” for PhD and MS by research students as rangeOf(hasAuthor)

= Student and Researcher. That means, if an individual instantiate the property “hasAuthor”,
the individual is a student as well as a researcher.

Merge classes ((C1, C2), X)

Definition: Merge two (or more) classes into one single class.

Structural impact: Classes C1 and C2 are replaced by one single class X.

Semantic impact: Classes C1 and C2 are merged into one single class X and the roles (relationships)
of classes C1 and C2 (that had to be inherited by the class X) become unattached.

Resolution point: The newly added class X inherits relationships from the classes C1 and C2. Thus,
the deleted relationships (axioms) of classes C1 and C2 must be preserved and re-attached to the
newly added class X.

Resolution Point:

Given classes C1 and C2 merged into a single class X,
how to re-attach the roles of deleted classes ?

A

Y C1 C2

I

P

J

A

Y X

I

P

J

Figure G.4: Merge classes ((C1, C2), X)

Evolution Strategies: In order to resolve the resolution point, user can either

aggregate all the deleted roles of classes C1 and C2 to the replacement class X, OR

aggregate selected roles classes C1 and C2 to the replacement class X, OR

do nothing.

Pull up property (P, A, B)

Definition: Pull a property higher in the class hierarchy and attach it to a parent class of its
previous domain/range class.

Structural impact: The property P is attached to the parent class A of its earlier domain/range
class B.

Semantic impact: Earlier, the individuals that instantiate property P, were inferred as instances of
class B as well as instances of class A (due to subclass hierarchy). After replacing the domain/range
of the property P (i.e. class B) by the parent class A, the individuals will be inferred as instances
of class A but not of class B.

Resolution point: Earlier (inferred) instances of class B (through instantiation of property P) are
not valid anymore.

257

Resolution Point:

Once the property P is pulled up in the class hierarchy from class B to A,
the individuals (that instantiate P) is no more (inferred) instance of subclass B.
loss of knowledge ?

A

B

P

I

InstanceOf

(Inference)

InstanceOf

(Inference)

initiates property P

A

B

P

I
initiates property P

InstanceOf

(Inference)

Figure G.5: Pull up property(P, A, B)

Resolution Point:

Once a property is pulled down in the class hierarchy,
disjoint sibling classes may share a common instance.

Y

Z

P

I

initiates property P

InstanceOf

(Inference)

X

primitive siblings disjoint (X, Z)

InstanceOf

(defined)

Y

Z

P

I

initiates property P

InstanceOf

(Inference)

X

primitive siblings disjoint (X, Z)

InstanceOf

(defined)

Figure G.6: Pull down property(P, X, Y)

Evolution Strategies:

In cases, where a user like to make sure that there is no loss of previous knowledge, i.e. all
earlier inferred instances of child class B may still be recognized, user can assert the instances
explicitly as defined instances of class B.

Pull down property (P, X, Y)

Definition: Pull a property down in the class hierarchy and attach it to a child class of its previous
domain/range class.

Structural impact: The property P is attached to the child class X of its earlier domain/range class
Y.

Semantic impact: Earlier, the individuals that instantiate property P could be inferred as instances
of class Y only. After replacing the domain/range of the property P (i.e. class Y) by the child
class X, the individuals will be inferred as instances of class X as well as of class Y (due to subclass
hierarchy).

258

Resolution point: Given,
type(I) = Z ∧ siblingClasses(X, Z) ∧ disjointClasses (X, Z)
if, I instantiates P ⇒ type(I) = X.

This unsatisfied disjointness rule (i.e. two disjoint classes cannot share a common instance).

Evolution Strategies: In order to resolve such resolution point, a user can

remove the disjointness between class X and its sibling classes. In such case, an (inferred/defined)
individual of X’s sibling class, that instantiate property P, will also be inferred as instance of class
X. OR

where disjointness between the class X and its sibling classes is desired, a user can delete the
instantiation of the property P by the instances of disjoint sibling classes of class X. In such case,
the (inferred/defined) individuals of X’s sibling classes will no longer be inferred as instances of
class X.

259

Appendix H

Results of Composite change

pattern detection algorithms

We performed a user case study in order to evaluate the composite change detection

algorithm. The algorithm has been implemented using Java language. In this appendix,

we give the result list of the case study. The results have be compared with the manual

approach to verify the algorithm’s performance.

Split class - Result (Candidate):

59:Add class (MSTaughtStudent)

60:Add subClassAxiom (MSTaughtStudent, Student)

63:Add class (MSByResearchStudent)

64:Add subClassAxiom (MSByResearchStudent, Student)

67:Delete subClassAxiom (MSStudent, Student)

68:Delete class (MSStudent)

69:Add class (TaughtStudent)

70:Add subClassAxiom (TaughtStudent, Student)

75:Add class (ResearchStudent)

76:Add subClassAxiom (ResearchStudent, Student)

Split class - Result (Roles Distributed):

59:Add class (MSTaughtStudent)

60:Add subClassAxiom (MSTaughtStudent, Student)

61:Delete classAssertionAxiom (Zubair, MSStudent)

62:Add classAssertionAxiom (Zubair, MSTaughtStudent)

63:Add class (MSByResearchStudent)

64:Add subClassAxiom (MSByResearchStudent, Student)

260

65:Add classAssertionAxiom (Robert, MSByResearchStudent)

66:Delete classAssertionAxiom (Robert, MSStudent)

67:Delete subClassAxiom (MSStudent, Student)

68:Delete class (MSStudent)

Add specialise class - Result:

106:Add class (Publication)

107:Add subClassAxiom (Publication, Content)

110:Add subClassAxiom (Article, Publication)

111:Delete subClassAxiom (Article, Content)

131:Add class (AcademicOrganisation)

132:Add subClassAxiom (AcademicOrganisation, Organisation)

133:Add subClassAxiom (ResearchCentre, AcademicOrganisation)

134:Delete subClassAxiom (ResearchCentre, Organisation)

135:Add subClassAxiom (University, AcademicOrganisation)

136:Delete subClassAxiom (University, Organisation)

Add interior class - Result:

69:Add class (TaughtStudent)

70:Add subClassAxiom (TaughtStudent, Student)

73:Add subClassAxiom (UGStudent, TaughtStudent)

74:Delete subClassAxiom (UGStudent, Student)

75:Add class (ResearchStudent)

76:Add subClassAxiom (ResearchStudent, Student)

77:Add subClassAxiom (PhDStudent, ResearchStudent)

79:Delete subClassAxiom (PhDStudent, Student)

92:Add class (SocialEvent)

93:Add subClassAxiom (SocialEvent, Event)

94:Add subClassAxiom (SocietyEvent, SocialEvent)

96:Delete subClassAxiom (SocietyEvent, Event)

131:Add class (AcademicOrganisation)

132:Add subClassAxiom (AcademicOrganisation, Organisation)

133:Add subClassAxiom (ResearchCentre, AcademicOrganisation)

134:Delete subClassAxiom (ResearchCentre, Organisation)

Group classes - Result:

69:Add class (TaughtStudent)

70:Add subClassAxiom (TaughtStudent, Student)

71:Add subClassAxiom (MSTaughtStudent, TaughtStudent)

72:Delete subClassAxiom (MSTaughtStudent, Student)

73:Add subClassAxiom (UGStudent, TaughtStudent)

74:Delete subClassAxiom (UGStudent, Student)

75:Add class (ResearchStudent)

76:Add subClassAxiom (ResearchStudent, Student)

77:Add subClassAxiom (PhDStudent, ResearchStudent)

261

79:Delete subClassAxiom (PhDStudent, Student)

78:Add subClassAxiom (MSByResearchStudent, ResearchStudent)

80:Delete subClassAxiom (MSByResearchStudent, Student)

92:Add class (SocialEvent)

93:Add subClassAxiom (SocialEvent, Event)

94:Add subClassAxiom (SocietyEvent, SocialEvent)

96:Delete subClassAxiom (SocietyEvent, Event)

95:Add subClassAxiom (SportsEvent, SocialEvent)

97:Delete subClassAxiom (SportsEvent, Event)

131:Add class (AcademicOrganisation)

132:Add subClassAxiom (AcademicOrganisation, Organisation)

133:Add subClassAxiom (ResearchCentre, AcademicOrganisation)

134:Delete subClassAxiom (ResearchCentre, Organisation)

135:Add subClassAxiom (University, AcademicOrganisation)

136:Delete subClassAxiom (University, Organisation)

Pull up property - Result:

Pull up object property (Domain):

81:Delete domainOfObjectPropertyAxiom (hasSupervisor, PhDStudent)

82:Add domainOfObjectPropertyAxiom (hasSupervisor, ResearchStudent)

85:Delete domainOfObjectPropertyAxiom (affiliatedTo, PhDStudent)

86:Add domainOfObjectPropertyAxiom (affiliatedTo, ResearchStudent)

Pull down property - Result:

Pull down object property (Domain):

122:Delete domainOfObjectPropertyAxiom (registeredIn, Student)

123:Add domainOfObjectPropertyAxiom (registeredIn, TaughtStudent)

262

