
A Framework for User-Assisted Knowledge Acquisition

from Sensor Data

Kenneth Conroy, B.Sc., M.Sc.

A Dissertation submitted in fulfilment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Mark Roantree

August 2013

Declaration

I hereby certify that this material, which I now submit for assessment on

the programme of study leading to the award of Doctor of Philosophy is

entirely my own work, and that I have exercised reasonable care to ensure

that the work is original, and does not to the best of my knowledge breach

any law of copyright, and has not been taken from the work of others save

and to the extent that such work has been cited and acknowledged within

the text of my work.

Signed: ID No.: 58117016 Date: 21/08/2013

Acknowledgements

Firstly, I would like to thank my supervisor Dr. Mark Roantree for his

excellent supervision and for all his guidance and advice over the course of

my PhD. I would like to thank Clarity and Science Foundation Ireland who

provided the funding for this research.

I would also like to thank the members of the Interoperable Systems Group

(ISG) and Clarity who I’ve worked with for their support and advice dur-

ing my time at DCU. A special thanks to Greg May, who was essential in

gathering valuable sensor data and interesting case studies.

I would also like to thank my friends and family for all of their support and

encouragement.

Finally, I would like to thank my fiancée Doireann for her constant love,

support and understanding.

This dissertation is dedicated to Doireann and my parents.

Contents

Abstract xii

1 Introduction 1

1.1 Sensors and Sensor Networks 1

1.2 Research Problem . 3

1.3 Aims and Objectives . 6

1.3.1 Research Questions . 6

1.3.2 Goals . 7

1.3.3 Scope and Contributions 9

1.4 Thesis Structure . 9

2 Related Research 13

2.1 Overview . 13

2.2 Ontological Approaches . 14

2.2.1 CoOL: Context Ontology Language 14

2.2.2 CONtext ONtology (CONON) 16

2.2.3 SOUPA: Standard Ontology for Ubiquitous and Per-

vasive Applications . 18

2.2.4 OntoSensor . 20

2.3 Context-Aware Systems . 22

2.3.1 CXMS . 22

2.3.2 AlarmNet . 23

iii

2.3.3 User Interface Context Model 24

2.3.4 SCAFOS . 26

2.4 Object Role Modelling . 27

2.4.1 CML: Context Modelling Language 27

2.5 Domain Specific Approaches 30

2.5.1 GeoAIDA . 30

2.5.2 Other Domain Specific Context 31

2.6 Standardization . 32

2.6.1 Sensor Web Enablement 33

2.7 Summary . 35

3 Problem Description 36

3.1 Overview . 37

3.1.1 Sensor Description and Usage 37

3.2 Sensing Movement and Position in Tennis 43

3.2.1 Background and Requirements 44

3.2.2 Information Collected 45

3.3 Sensor Deployments in the Cycling Domain 47

3.3.1 Background and Requirements 48

3.3.2 Information Collected 49

3.4 Using Sensors in Horse-Racing 52

3.4.1 Background and Requirements 52

3.4.2 Information Collected 54

3.5 Using Sensors in Search and Rescue 56

3.5.1 Background and Requirements 56

3.5.2 Information Collected 57

3.6 Groundwork Approach . 59

3.6.1 Overall Issues and Approach 59

3.6.2 Commonalities Across Multiple Deployments 59

3.6.3 Differences Across Multiple Deployments 61

iv

3.7 Summary . 63

4 The AREA Framework 64

4.1 Overview . 65

4.1.1 Design Criteria . 66

4.1.2 Chapter Roadmap . 67

4.2 Context Initialisation (P0) . 68

4.2.1 Sensor Profile . 69

4.2.2 Subject Profile . 72

4.2.3 Deployment Profile . 75

4.3 Sensor Enablement (P1) . 78

4.3.1 Imposing a Standard Format on Sensor Data 79

4.4 Context Integration (P2) . 83

4.4.1 Normalisation and Synchronisation Steps 84

4.4.2 Pairing Sensor Output with Subjects 85

4.4.3 Merging Sensors and Subjects with a Deployment . . 87

4.5 Transforming Sensor Data and Metadata (P3) 89

4.6 Automated Activity Analysis (P4) 90

4.7 Summary . 91

5 User-Controlled Transformations 93

5.1 Generating Context in AREA 94

5.2 Using Profiles to Query and Extend the Dataset 96

5.2.1 Specifying Conditions 98

5.2.2 Generating the Metadata 100

5.2.3 Content Transformation 101

5.3 Transforming AREA Commands 106

5.3.1 Introduction . 106

5.3.2 Command 1: Read Queries 107

5.3.3 Command 2: Update Queries 108

v

5.3.4 Command 3: Metadata Update Queries 112

5.4 Summary . 113

6 Automated Activity Analysis 115

6.1 Broad Strategy to Automating Analysis 116

6.2 Baseline Analysis of Activity Data 118

6.2.1 Analysing Sets of Sensor and Transformation Data . 118

6.2.2 Evaluating the Set of Data Obtained 119

6.3 Cluster Analysis . 124

6.4 Metadata Analysis . 131

6.4.1 Interpreting the Update Construct 131

6.4.2 Adapting Values of Variables 132

6.5 Summary . 134

7 Experimental Analysis 135

7.1 Strategy for Query Enablement 135

7.1.1 Horse-Racing . 136

7.1.2 Search and Rescue . 145

7.1.3 Cycling . 150

7.1.4 Tennis . 152

7.2 Summary . 156

8 Evaluation 157

8.1 Meeting the Functional Requirements 157

8.1.1 Setup . 157

8.1.2 Querying . 159

8.1.3 On-the-fly Context . 159

8.1.4 Knowledge Worker Interaction 160

8.1.5 Incremental Enrichment 161

8.2 Evaluating AREA Across Domains 162

8.3 Measuring Efficiency of Data Transformation 164

vi

9 Conclusions 167

9.1 Summary and Reassessment 167

9.1.1 Thesis Summary . 167

9.1.2 Reassessing the Aims and Objectives 169

9.2 Future Research . 172

9.2.1 Limitations . 172

9.2.2 Further Research . 172

Appendix A Publications arising from this work 175

Appendix B XML Schema 177

Appendix C Enablement Profiles 184

Appendix D Query Profile Instances 190

vii

List of Figures

1.1 Diverse Sensors and Sporting Scenarios 2

2.1 Aspect-Scale-Concept model for CoOL [55] 15

2.2 Partial Definition of CONON Ontology [66] 16

2.3 The SOUPA Ontology [6] . 19

2.4 OntoSensor Sensor Hierarchy [42] 21

2.5 The AlarmNet Architecture [72] 24

2.6 Three layered context model [68] 25

2.7 Modelling context for communication channel using CML [24] 28

2.8 GeoAIDA System Components [5] 31

3.1 A GT3X accelerometer and its deployment on an ankle . . . 38

3.2 A Ubisense sensor (left) and its Ubitags (right) 40

3.3 A Sensewear sensor . 40

3.4 PowerTap Hub . 41

3.5 The GCDC Accelerometer . 42

3.6 The Garmin 405 (left) and Garmin Geko (right) 43

3.7 Cosmed k4b2 Metabolic Sensor 44

3.8 Court Ubisense Setup . 46

3.9 Cycling Deployment: Race Around Ireland 51

3.10 Jockey Riding the Simulator 54

4.1 The AREA System Architecture (High level) 66

viii

4.2 The AREA Operating Architecture 67

4.3 Sensor Enablement . 80

6.1 Initial mapping of heart and respiration rates 129

6.2 Mapping the first three clusters 130

8.1 Defining a GT3X Accelerometer Profile Instance 158

8.2 Defining a Subject Profile Instance for a Jockey 158

8.3 Defining a Cycling Deployment Instance 159

8.4 User Interface: Defining an Update Query Profile 161

8.5 User Interface: Applying a Query Profile 161

ix

List of Tables

2.1 An Analysis of Functional Requirements 35

3.1 Tennis Coach Queries . 45

3.2 Tennis Data Gathered . 46

3.3 Cycling Requirements . 49

3.4 Sensors Used in Cycling Tests 50

3.5 Sample Horse Racing Queries 53

3.6 Horse Racing Data Gathered 55

3.7 Requirements in the Search and Rescue Domain 57

3.8 Search and Rescue Data Gathered 57

3.9 Sensors Deployed in Each Domain 60

4.1 Design Criteria for AREA . 68

5.1 AREA Transformation Functions 102

6.1 Baseline Analysis Operations 120

6.2 Two sets of data and their distance from 3 initial centroids . 128

6.3 The results of three slightly altered algorithms 133

7.1 Detecting a Serve with Initial (v1) Boundaries [12] 154

7.2 Detecting a Serve with Modified (v2) Boundaries [12] 156

8.1 Conversion from Csv to XML 164

8.2 Dataset properties for each domain 165

x

8.3 Time to Apply Queries . 166

8.4 Time and Result of Read Queries 166

xi

Abstract

The availability of a new generation of accurate, low-cost sensors to scien-

tists has resulted in widespread deployment of these sensors in a variety of

environments. Data generated by these devices are often in a raw, propri-

etary or unstructured format. As a result, it is difficult for scientists to

analyse or query across various biological and physiological sensor data val-

ues. There exists both a physical-digital divide between sensor data with

related real-world conditions, and a knowledge divide between the informa-

tion needs of domain specialists. A key challenge is to bridge these divisions

in order to allow scientists to make better decisions based on the sensed in-

formation. The goal of this research is to show that low level data collection

resources such as sensors can be used for high level query expressions and

knowledge extraction, without the need for expensive human-based opera-

tions. To achieve this goal, it was necessary to deliver a generic approach to

enriching raw sensor data, providing information services to enable the end

user to acquire knowledge from low-level sensor data and defining an inte-

gration framework for sensor data and related contextual information. As

a result, key research questions of interpreting heterogeneous sensor data,

enriching sensor data with contextual information, and integrating sensor

data with related participant and environmental information, are tackled

over the course of this dissertation.

Chapter 1

Introduction

1.1 Sensors and Sensor Networks

Advances in manufacturing technologies in recent times has led to the pro-

liferation of low cost, portable and reliable sensors. These devices sense a

wide variety of environmental, physiological and contextual factors and have

been deployed in a variety of situations across multiple domains. The result

is the ability to document multiple factors relating to some activity. Sensor

deployments may consist of independent devices using different protocols to

gather data for later off-line analysis. There are several advantages to the

emergence of these sensors. They include the flexibility to deploy in inhos-

pitable situations, replacing expensive solutions with a cheaper alternative

and the gathering of massive volumes of potentially interesting information.

Modern Wireless Sensor Networks (WSN) consist of spatially distributed

autonomous sensors and have been deployed in a variety of scenarios such

as ambient assisted living [37], environmental monitoring [76] and energy

management applications [44]. This network of sensors can allow wireless

communication between each node and may include real-time analysis of

data using tools such as Infoshere Streams [28]. The research presented in

this dissertation is more focussed on off-the-shelf sensors which do not com-

1

municate directly with each other, and are instead analysed post deployment

with an aim to improving techniques for discovering new knowledge. The

key advantage of sensors is the automated sensing of information, sometimes

for data which is not feasible for a human observer to acquire (such as an

accelerometer sensing at 30 Hertz), or information which could be identified

but would require long-term observation (such as identifying when a human

is running).

Figure 1.1: Diverse Sensors and Sporting Scenarios

The inexpensive nature of sensors has also contributed to their wide emer-

gence. Replacing expensive lab equipment with simple sensors means more

monitoring can take place and thus, improves efficiency. Large scale deploy-

ments - such as fitting out a house with Ambient Assisted Living (AAL)

based sensors, or weather monitoring - are now feasible. New sensor tech-

nologies have also resulted in greater flexibility in monitoring certain situa-

tions. More experiments can be performed in the field, such as monitoring

2

the health of employees while they works, or observing a cyclist as he/she

climbs a mountain, rather than trying to duplicate a real world environment

in the laboratory. The combination of these advantages provided by the new

generation of sensors has resulted in an explosion in their use in real-world

scenarios.

1.2 Research Problem

As a consequence of the wider usage of sensors and their deployments, large

volumes of data are being generated which scientists or other interested

parties wish to analyse. This requires harvesting, normalisation, synchroni-

sation, management of high volumes of data, and a mechanism for free form

queries.

Typically, non-IT scientists deploying off-the-shelf sensors make use of pro-

prietary software such as SPSS Statistics [29] or Microsoft Excel [16] for

analysing sensor streams. This allows them to identify some patterns (by

graphing data), providing the data streams are individually aligned, nor-

malised and synchronised. This is routinely performed in cases where there

is a very small (less than 10) number of sensors deployed, each of which

is understood by the scientist working with the data. When another sci-

entist or end user wishes to interact or query the sensor data, they must

familiarise themselves with the data and its capabilities. There is a lack

of clarity between what has been detected previously by the initial knowl-

edge worker. For instance, the knowledge worker may have introduced a

new column aggregating information from several other columns (in Excel).

This new column is not clearly defined in a way an end user can understand.

More advanced systems [42] [66] [53] make use of pre-defined ontological rea-

soning between sensors and their output and environment. However, such

approaches are generally geared towards a specific domain and a defined

set of sensors and environment. They are not scalable and are not widely

3

applicable. Every time a new form of analysis of experiment is devised, it

requires somebody to write a new piece of software. This is not a feasible

solution to domain experts and scientists who wish to express their informa-

tion needs in a high-level format. For example, there is a query expressed by

a sports scientist: “Estimate the total energy expenditure of a Jockey n in

training session x”. This query, specified in English is not straightforward

as it requires the analysis of the available sensor for that deployment, an

accelerometer - with data such as that shown in Example 1.1.

Example 1.1 Sample Extract of GT3X data (in csv format):

x y z lux incline

488 198 47 1 1

467 186 49 2 1

494 155 80 1 1

479 272 22 2 1

192 187 24 1 1

492 163 45 2 1

This device (GT3X accelerometer) records movement in space, not physio-

logical characteristics so the scientists wishes to combine data entries from

this sensor with additional context not present in the data. Thus, there is

a significant gap between the sensor data gathered in this deployment, and

the real-world requirements of those wishing to utilise this data to answer

queries such as this total energy expenditure estimation.

This research involved close collaboration with sport and health physiolo-

gists, who wish to analyse human actions and physiological attributes of

people as they engage in sport and other activities (such as the personal

health of an employee at work). There has also been collaboration with

coaches who wish to segment training sessions or matches in order to au-

tomate the discovery of certain events such as a player serve in tennis and

detecting energy expenditure during various activities. At a basic level, it

is the use of sensors which can potentially generate information of interest,

4

which can then be analysed to detect more complex information or context.

For instance, in the domain of a worker in a Search and Rescue helicopter, a

requirement is to detect when that worker is resting. Determining this infor-

mation requires analysing the position of the worker and their physiological

properties of heart rate and respiration rate, details which are monitored

by separate sensors. If properly understood and analysed, the sensor infor-

mation can be used by scientists to identify this resting state and influence

future experimental deployments.

The calculation of the total energy expenditure introduced earlier involves

several iterations of calculation. For instance, another concept in the sports

science domain: work energy must be determined first using accelerometer

data before the detection of total energy expenditure can take place. Thus,

any generic solution must include both read and write capabilities and allow

the scientist to iteratively impose context on sensor data which can later

be queried using a standard format. To provide the necessary functional

requirements (later identified in chapter 2), a framework comprising a series

of components which allow the interpretation, integration, updating and

analysis of data is presented in this work.

There are two types of users wishing to query and interact with the data

generated by sensors. A knowledge worker is a scientist who understands the

sensor data and the application domain. They wish to analyse the data and

use it to discover interesting, higher-level information. A second type of user

is a scientist or other interested party who wishes to query the sensor data

at a high level using simple means. These read-only queries do not require

detailed knowledge of the sensor data in its initial form. It is the role of

the knowledge worker to enable these queries by discovering the high-level

information.

An ideal solution would also assist the scientist in identifying complex algo-

rithms. For example, if a number of sensors are being used to estimate the

5

energy expenditure of a subject, some variable may be included as part of

the calculation. Generic functions may improve the results by altering this

variable (providing it is not a verified value). The scientists would like this

feedback to help them make decisions and finalise algorithms.

1.3 Aims and Objectives

The hypothesis put forward in this research is that by using a framework to

structure and contextualise low level data acquisition tools such as sensors,

this information can be used for high level query expressions and knowledge

extraction using basic user-interactions rather than expensive human-based

operations.

The Semantic Gap is the gap between scientist information needs (or query

requirements) and the data output from sensors. It is not possible to apply

high level or free form queries on a set of semi-structured sensor data and

therefore bridging the semantic gap is the key to verifying this hypothesis.

1.3.1 Research Questions

There are four main research questions which must be answered to bridge

this gap between user needs and the raw data collected by sensors.

1. Is it possible to enable sensors such that their output can be queried

at a high level?

2. How is it possible to facilitate the data transformation necessary to

facilitate highly complex queries?

3. How can one enable the user to provide the missing semantics neces-

sary to support higher level queries?

4. Can all of this be provided in a framework that allows heterogeneous

sensor devices (sensors of varying types and configurations) used in

6

heterogeneous domains to meet the needs of different user types?

The first question illustrates the need for a framework to manage data output

from sensors. How can one interpret the information based on the activi-

ties and participants involved? How does one define location or orientation

of different sensors? In what format can one store the information gath-

ered? What is an acceptable level of granularity for the domain specialists?

Any solution will have to be adaptable to the diverse potential deployment

environments.

The second research question addresses the need to facilitate data transfor-

mations to meet complex requirements. These requirements include detect-

ing events, actions and specific body or equipment properties. How can one

allow the user to define event detection algorithms?

The third research question to be answered is how to leverage user interac-

tion to provide yet more information. How is user input interpreted, and

what is the process for acquiring this input? In which cases are algorithms

or sensor data related to one another?

The fourth research question asks how to ensure that these processes are

generic? In other words, different sensors can be deployed in different envi-

ronments without reprogramming. How can one ensure it will work across

domains, and ensure it is customizable?

1.3.2 Goals

In order to meet these challenges, a framework is proposed for the automatic

transformation of raw sensor data to embed user semantics, and through a

small level of user interaction, provide a mechanism by which semantics can

be embedded in queries and interpreted by the system to extract results

from data. In order to deliver this overall contribution, it is necessary to

deliver a degree of novelty in specific parts of the framework, addressing the

research questions.

7

1. Implement a metadata driven process to structure sensor data output.

2. Implement a generic mechanism to provide extensibility for new levels

of context and understanding of the data.

3. Support the scientist in discovering new information by combining

multiple sources of sensor data.

4. Automate a process of discovering new information by combining user-

defined metadata without any need for human interaction.

Achieving these goals will involve addressing issues such as context provision,

semantic enablement, integration and user assisted updating and querying.

The result should be a framework to allow user-interaction for the definition

of queries of differing complexities, which when applied to multiple sources

of both sensed and non-sensed data, detect events or actions and assist the

user with improving their algorithms.

Discussions with knowledge workers and users from a variety of domains

have identified a set of functional requirements for the solution. Related

work will be evaluated against this criteria in chapter 2, as will the frame-

work described in this research (in chapter 8). A detailed discussion of the

different case studies and the reasoning behind the following functions is

provided in chapter 3.

• Setup: Allow on-the-fly setup of new sensors, subjects and deployments pertaining to a

sensor deployment

• Query: Query the sensed data using different criteria

• On-the-fly Context: Integrate new information discovered as context within the sensor

dataset

• KW Interaction: Allow non-IT knowledge workers to query and add new context or knowl-

edge

• Incremental Enrichment: Allow the incremental construction of queries and context based

on previously discovered context/knowledge.

8

1.3.3 Scope and Contributions

The framework defined by this research is to provide the necessary func-

tionality for a wide range of off-the-shelf sensor devices when deployed in

a wide range of environments. There is an assumption that those wish-

ing to lead the deployment of these sensors (such as scientists) understand

their function and how they can meet their individual requirements using

the data output from these sensors. Once necessary transformations of data

are performed by such a knowledge worker, the data format itself describes

the information contained and thus, those who are less knowledgeable of

the data and the deployment description will be able to query for their own

requirements.

As will be discussed throughout this dissertation, meeting the requirements

of a diverse set of users, while maintaining support for heterogeneous sen-

sor devices and domains led to a framework which provides the following

contributions to the state of the art.

1. Provision of a generic framework (AREA) for the semantic enrichment

of low-level sensor data

2. A generic, rule-based mechanism for allowing a knowledge worker to

semantically enrich the data with new terms with appropriate data

values. (both user and system driven)

3. Provision of an environment that facilitates free-form queries

1.4 Thesis Structure

This dissertation will demonstrate how the goals outlined in this chapter

have been achieved, and by doing so, new levels of functionality have been

provided to different types of end users who deploy sensor technology. The

remainder of this thesis is structured as follows:

9

Chapter 2

This chapter presents a detailed analysis of the related research in the fields

of contextual enrichment, context definition and efforts to manage and com-

bine data sources. Each approach is evaluated against the functional re-

quirements identified in section 1.3.2.

Chapter 3

In order to rigorously test the framework presented in this dissertation, a

number of end-users in a number of different domains were engaged. They

were asked to specify their requirements which are described in chapter 3.

In each case, an overview of the sensors deployed, the deployment environ-

ment and how these users currently assess the performance and behaviours

of subjects during these activities in an effort to improve their capabilities

is provided. In explaining the differences and commonalities involved for

different domains, this chapter aims to show how a data analysis frame-

work requires both a combination of automated system operations and user

interaction.

Chapter 4

The AREA framework, with the goal of managing both the information

needs of the knowledge workers while facilitating the heterogeneous envi-

ronments posed by the different case studies is detailed in chapter 4. Each

component, tasked with providing structure, integrating and applying con-

text to sensor data is described. Chapter 4 also outlines the user controlled

transformation and automated activity analysis functionality which are fully

described in chapters 5 and 6.

10

Chapter 5

As one of the core components in the framework, the evaluation of AREAs

user controlled transformation functionality needs to be described in more

detail. This part of the process exploits user-defined update and extension

queries to the dataset which facilitates the incorporation of context and in-

teresting events and observations. Chapter 5 describes how these queries are

applied on scenario datasets, thus altering both content and structure, and

enabling subsequent querying for complex information using simple meth-

ods.

Chapter 6

Chapter 6 details the approach to automated activity analysis. The generic

functions used to analyse the data and detect potentially interesting infor-

mation are discussed. Chapter 6 also describes the automated mechanism

devised to analyse the metadata (generated previously by the user) using

techniques such as clustering to potentially improve algorithms proposed by

the scientists.

Chapter 7

In this chapter each of the case studies are revisited in order to evaluate the

functionality and flexibility of the AREA framework.

Chapter 8

In chapter 8, the AREA framework is analysed and evaluated against the

functional requirements identified in this chapter (section 1.3.2). Chapter

8 also includes an analysis of the time taken to enrich sensor data and to

determine if this time is reasonable.

11

Chapter 9

The final chapter presents the conclusions and reassess the hypothesis and

research questions. Limitations of the AREA framework are discussed as

is future work which could be undertaken to broaden the overall impact of

this work and extend AREA with new functionality.

12

Chapter 2

Related Research

2.1 Overview

The aim of this chapter is to evaluate related work against the list of func-

tional requirements identified in chapter 1. In each case, a description of

the approach taken is provided along with a critical evaluation with respect

to the support for these requirements. The approaches are structured into

the following different sections. Research based on ontological approaches

to interpreting sensor data is presented in section 2.2. These solutions rely

on a hierarchical structure to determine context, and in some cases allow

the discovery of higher-level knowledge [55] [66] [6]. Section 2.3 describes a

number of solutions developed for context-aware environments, representing

a large area of active research [78] [72]. Section 2.4 then describes efforts

in the object-role modeling of context, focusing on the Context Modeling

Language (CML) approach [23]. Following this, section 2.5.2 details a num-

ber of efforts to representing sensor data in a number of domain-specific

applications. Section 2.6 presents the standardization efforts of bodies such

as the Open Geospatial Consortium to sensor data, in particular aspects of

Sensor Web Enablement.

What is required is a framework which allows a user to adapt their analy-

13

sis, customise their approach and fine tune algorithms of analysis of sensor

data. An approach which requires a new system to be built for each and

every domain or application is not suitable. Instead, a system which is in

place before the user arrives with their information needs and deployment

characteristics will satisfy the requirements of dynamic applications. Section

2.7 summarizes related work and includes a comparison of the functionality

of each system with respect to the requirements of a complete solution.

2.2 Ontological Approaches

As summarised in chapter 1, context can be any information used to charac-

terise the situation of service users, which includes information about users,

their environment or their tasks [14]. Ontologies can enable applications to

interpret contexts based on semantics. An ontology’s hierarchical structure

lets developers reuse domain ontologies in describing context and build a

practical context model without starting from scratch. Because contexts

described in ontologies have explicit semantic representations, semantic web

tools such as federated query, reasoning and knowledge bases can support

context interpretation [65]. There have been a number of ontology based

approaches to dealing with multiple sensor data files. The first analysed is

the Context Ontology Language (CoOL).

2.2.1 CoOL: Context Ontology Language

CoOL is derived from an Aspect-Scale-Concept model, and is used to enable

context-awareness and contextual interoperability [55]. Specifically, it is de-

signed as a generic mechanism for modelling the context of entities such as

person, place or objects and the states they can reach through a changing

environment. The context modelling approach aims to close the formality

gap, that is the lack of a well designed model to describe contextual facts and

14

relationships. To do this, CoOL uses ontologies to describe contextual facts

and interrelationships. The core concepts of context modelling are Aspect,

Scale and Concept. An Aspect is a set of one or more scales, a Scale is an

unordered set of objects defining a valid range of context information and a

Concept represents context information as content with some metadata. A

useful function of CoOL is the ability to scale measurements automatically

(such as conversion of nautical miles to kilometres). The formality achieved

using ontologies ensures good support for automated interpretation capabili-

ties of an implementation of the system. It can be used with a service model,

and by extension, make service interactions on that model context-aware.

The Aspect-Scale-Concept model is shown in Figure 2.1 (taken from [55]).

Figure 2.1: Aspect-Scale-Concept model for CoOL [55]

Critical Evaluation

The focus of CoOL is on formal semantics and automatic services rather

than enabling a user to customise transformations of the data. There is no

mechanism for altering or updating context either through interaction with

the user or through some automated process. Any alteration to context

requires programming which goes beyond the capabilities of a typical user. It

is also targeted more at context-aware systems where dynamically changing

requirements are less of a concern, as are adaptation capabilities to suit

changing environments or domains. Thus, while a useful tool for developers,

it cannot adapt to requirements or domains which are not initially defined.

15

2.2.2 CONtext ONtology (CONON)

CONON is a Web Ontology Language (OWL) encoded context ontology for

modelling context in pervasive computing environments [66]. The applica-

tion domain is a smart phone which can alter its behaviours (ringtone, call

forwarding, etc.) based on the preferences of the user. General context is

provided in an upper context ontology level, and extensibility is provided

by adding domain-specific context hierarchically [66]. While acknowledging

the difficulty in providing support for any contextual information, entities

such as location, user, activity and computational are used as core context

within the upper level ontology. This provides the high-level ontology from

which individual domain ontologies can be extended.

Figure 2.2: Partial Definition of CONON Ontology [66]

Figure 2.2 (taken from [66]) shows the upper and domain-specific ontologies

in CONON. The upper ontology is a high-level ontology capturing general

features of the entities. The domain-specific ontology are different environ-

ments where the smartphone might be used - such as home or office. A

16

different set of rules can apply based on these different locations. A key

aspect of their system is context reasoning which acts to check the consis-

tency of context and to deduce high-level implicit context from low-level

explicit context [66]. This means low-level sensor data can be used to derive

rules which correspond to some high-level information. CONON achieves

this using first order predicates, where a (subject, verb, object) triple

defines context information. The context reasoning can be either ontology

reasoning using description logic, or user-defined reasoning using first-order

logic.

Example 2.1 Situation: Cooking [66]

(?u locatedIn Kitchen) /\ (ElectricOven locatedIn Kitchen) /\

(ElectricOven status ON) => (?u situation COOKING)

Example 2.1 shows the user defined context reasoning corresponding to a

situation of cooking. In this example, if the user is located in the Kitchen,

the oven is also located in the Kitchen, and the oven is turned on (status

ON), a situation of cooking is identified. Based on this situation, the phone

may have its ring volume increased, or be set to ignore incoming calls if

these rules are specified by the developer.

Critical Evaluation

CONON is aimed at a location-based smart phone domain where all aspects

of a system are continuously in communication with each other, in (close

to) real time. As a result, it is designed to react to events as they happen

in real time. Much of the focus is on performance rather than functionality

ensuring results are acquired in close to real time. While the upper ontology

is a useful baseline for context modelling, the system would need to be re-

programmed considerably in order to allow the user to define context. The

approach to context reasoning is suitable for many context-aware applica-

tions, but for detailed offline requirements, such as allowing customisation

17

of algorithms or updating data with new context, CONON is not applicable.

While the iterative definition of more complex context reasoning is possi-

ble, CONON cannot perform iterative transformations of the data on which

further context reasoning is based. For example, a query which requires the

calculation of energy expenditure based on three input parameters cannot

be implemented using CONON. Some simple read-only queries are possible,

but would require further programming and development of a user interface.

2.2.3 SOUPA: Standard Ontology for Ubiquitous and Per-

vasive Applications

The Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA)

describes an OWL-based modular vocabulary for intelligent agents and their

beliefs, desires and intentions as well as time, space, events, user profiles,

actions and policies [6]. The prototype application includes a smart meeting

room environment, which utilises bluetooth devices to monitor location of

participants, light sensors, and schedule and meeting information to deter-

mine when a presentation can begin. Another application is a smartphone

(PDA) which interacts with other devices to discover information to ensure

a schedule or readline is met. The ontology consists of two distinct ontolo-

gies: Core and Extension. Core attempts to define a generic vocabulary

to different pervasive computing applications such as Person, Policies and

Events. A Policy is a set of rules that are specified by a user or entity to

restrict or guide the execution of actions [6]. This is a mechanism for describ-

ing how low-level system behaviours can be adjusted using high-level rules.

In SOUPA, rules can be set to permit or forbid the execution of actions.

Domain specific or application information is stored in the the extension

ontology.

The goal of SOUPA is to present a shared ontology which can be used by

developers to reduce the requirement of defining an ontology from its basic

18

Figure 2.3: The SOUPA Ontology [6]

elements, and instead focus their efforts on the implementation details of

their application. In other words, SOUPA provides the basics for ontology

building. SOUPA provides a good starting point for an application developer

in the context-aware domain, from which application specific context can be

extended. Figure 2.3 (taken from [6]) shows the SOUPA ontology with core

and extension ontologies clearly illustrated.

Critical Evaluation

For an end user, the functionality to incrementally add context to the model

is not provided by SOUPA. Their approach is suitable for defining context

for different domains from the beginning of development, controlled by an

end user. New domains requires re-working the system from the Core base,

adding the required context for that domain. If SOUPA was extended for

use in sporting applications, each sporting term and state would need to be

pre-defined as part of a SOUPA extension. There is no support for allowing

the user to customise their approach by adding their own terms. Results

from previously identified knowledge cannot effect the development of rules,

and there is little support for complex event definition, such as mathemat-

19

ical equations involving multiple data elements as parameters. Complex

events can only be identified if the developer or programmer, as opposed to

a knowledge worker, knows from the beginning of development which con-

ditions correspond to an event for every information need. As a result, it

is not suited to dynamic deployment environments where the information

needs of the user evolve over time. SOUPA is appropriate as a tool for de-

velopers wishing to define an ontology for a domain or set of domains where

all relevant information is known from the initial set of available data.

2.2.4 OntoSensor

The research in [42] and [43] describes the approach to building OntoSensor,

a prototype sensor knowledge repository compatible with evolving sensor

web infrastructure. They propose OntoSensor as a component of the sup-

port knowledge base for military applications - specifically those which make

use of heterogeneous data sources to counteract enemy tactics and strate-

gies. These data sources include high-level information obtained by satellite

imagery. OntoSensor includes definitions of concepts and properties adopted

in part from SensorML [48], the Web Ontology Language (OWL) [39] and

extensions to IEEE Suggested Upper Merged Ontology (SUMO) [56]. Sensor

ontology’s are used to establish a terminology for sensors, their properties,

capabilities and services. The authors have implemented an ontology with

basic querying capabilities using Protege 2000 [40] and Prolog.

In [1], the authors describe a semantic model for heterogeneous sensor data

representation. Figure 2.4 (taken from [42]) shows an OntoSensor hierarchy.

The researchers aim to establish a terminology for sensors, properties, capa-

bilities and services. A sensor data ontology is created based on the Sensor

web Enablement (SWE) and SensorML data component models. Semantic

relationships and operational constraints are deployed in a uniform struc-

ture to describe the sensor data. OntoSensor has a number of advantages,

20

Figure 2.4: OntoSensor Sensor Hierarchy [42]

including self-descriptive metadata embedded in the descriptions, which can

be used in various sensor discovery and reasoning applications. OntoSen-

sor illustrates a semantic approach to sensor description and provides an

extensive knowledge model [1]. This model allows machines to process and

interpret the emerging semantics to create intelligent sensor network appli-

cations.

Critical Evaluation

Despite providing a semantic approach to sensor description, OntoSensor has

no facility for an end user, or knowledge worker to update existing context

using an iterative process. A knowledge worker (for each domain) must be

involved from the beginning of development in order to ensure the initial

information needs can be achieved. As a result, it is not sufficient to meet

the goal of allowing generic or flexible deployment’s context to be updated by

a knowledge worker where necessary during analysis. The ultimate result is

the development of different systems for different domains and requirements.

21

2.3 Context-Aware Systems

2.3.1 CXMS

In [78], CXMS is introduced as a base framework with tools for design-

ing context managing applications. This framework integrates user mod-

elling and context modelling, combining personalisation and contextualisa-

tion. The target domains are ubiquitous environments - thus location forms

a core part of determining context. An example application is an adver-

tisement board in a train station which reacts to sensed properties such as

time, noise levels and train times in order to decide what to display. To

address the issues of strong dependence of domain and a lack of standard

interfaces or representation of context, CXMS provides a general framework

where context knowledge acquired, domain inference and adaptive methods

for personalisation and contextualisation can be combined. This enables

the user to define application information sources, sensors, parameters and

rules for adaptive behaviours. The user can therefore define when and how

a system is to react to new information such as behaviours.

Context-aware systems can be developed and maintained by CXMS, with

complex technical details hidden from developers and end users. CXMS’s

toolkit has a layered approach to defining a context-aware system. Sim-

ple sets of rules set by the end user can lead to complex output following

development.

Critical Evaluation

While this framework addresses many of the problems involved with domain

dependant system development, it still requires the input of domain specific

or end user defined rules at the development stage, as opposed to reacting

to the changing information needs of the users. What CXMS provides is

a structured approach to the development of a context-aware system. It is

22

not designed to be modified once a system has been developed (apart from

maintaining and altering an existing context-aware system). Thus, a new

source of information or sensor data cannot be easily integrated by the user

throughout its use. Similarly, the adapting analysis of the user cannot be

met without re-engineering a new system. It is also heavily dependant on

location based context (due to its focus on ubiquitous environments).

2.3.2 AlarmNet

Ambient Assisted Living (AAL) is a topical application area in the context-

aware domain. AAL is a term used to describe technologies which help

to extend the time where older people can live in their home environment.

AlarmNet [72] is a context-aware wireless sensor network for the AAL do-

main and residential monitoring applications. It is a monitoring system for

AAL environments, relying on sensors such as temperature, dust, light and

motion, to improve the health of residents. It provides a 2-way flow of data

and analysis between front and back ends to enable context-aware protocols

to suit individual living patterns. The AlarmNet architecture is illustrated

in Figure 2.5 (taken from [72]). AlarmNet integrates environmental, physi-

ological and activity sensors in a scalable heterogeneous architecture. The

SenQ Query protocol [75] provides AlarmNet with real time access to data

and in-network processing. Activity information is fed back into the system

to identify patterns and aid with power management and dynamic privacy

policies. The key contributions of AlarmNet is an extensive heterogeneous

network middleware for widescale deployment, integrating devices, backend

systems, online analysis and user interfaces. In the Ambient Assisted Liv-

ing domain, the benefits are power management, real-time communications,

extensibility and learning patterns.

23

Figure 2.5: The AlarmNet Architecture [72]

Critical Evaluation

Due to its application domain, context gathered is subject to privacy con-

straints, and updating the kind of data to be observed or identified is a

complex process. AlarmNet provides a basic User Interface for interacting

with and setting parameters to basic functions. However, this is limited to

basic settings, such as setting alarms or reminders and does not provide a

mechanism for defining concepts or complex events. The user interface may

be suitable for some scientists as it provides basic functionality, but is un-

suitable for many knowledge workers who wish to extend the data with new

information or context based on lower-level sources. In addition, AlarmNet

does not allow for mathematical functions or specialised notation or text

mark-up based on conditions.

2.3.3 User Interface Context Model

The research in [68] [69] presents a system which supports an end user

interface for describing context dependant services in the field of Ambient

24

Assisted Living (AAL). In particular, a smart home which can have its func-

tionality extended using a user interface. A scenario is introduced where a

user wishes to add reminders to their AAL services and also requests to turn

on the light when the room they are in is dark while the user is not sleeping.

Due to the target demographic of those using the system, it had to be usable

without context modelling expertise. To achieve this, they devised a layered

context model. As with most context-aware applications, AAL is dependant

on a smart space. The three layered context model is illustrated in Figure

2.6 (taken from [68]). The model includes context entities, dimensions, at-

tributes and relations. In the User Interface Layer, alteration of predefined

situation descriptions is permitted, using a taxonomy of terms. This model

does have advantages of usability, specifically by non-scientists in the field

of AAL.

Figure 2.6: Three layered context model [68]

Critical Evaluation

This system allows corrections and alterations but this is only useful where

the entire context model has been defined in advance. The target user is not

assumed to have scientific knowledge, or knowledge about the data so there

is also no mechanism for adding context dynamically. It serves more as an

expert system rather than a decision support system that interacts with the

25

user.

2.3.4 SCAFOS

In [34], [33] the authors present SCAFOS, a model-based approach for dis-

tributed heterogeneous environments. The application domain is real-time

context-aware environment, where users are monitored and, for instance,

reminded to do tasks if in the same room as someone required to perform

those tasks. They propose a deductive component as a bridge between the

application layer abstraction and sensor data [33]. This reasons with low-

level sensor data to deduce high-level abstract knowledge, which can then

be used by the application layer. As with previous systems designed for

context-aware environments, the focus is on linking location with users.

Arguments such as UserAtPosition, UserInRegion are abstracted using

first-order logic evaluated as true or false. Based on these observed states,

more abstract information can be derived by using combinations of asserta-

tions.

Critical Evaluation

The notation used to derive abstract, high-level information is not easily

understood. While its functionality can be used in the application layer, a

new system must be built for each domain. The context-aware focus means

it is highly focused on location and smart space environments and a real-

time data analysis. There is no support to alter existing context data and

thus, customisation of information needs is limited to the initial setup.

26

2.4 Object Role Modelling

2.4.1 CML: Context Modelling Language

The Context Modelling Language (CML) is an object role modelling ap-

proach to query processing and reasoning [23]. Context-aware applications,

such as a commications tool which suggests contact information for someone

most appropriate based on aspects such as priority, topic and list of peo-

ple available [24] [25]. CML is based on the Object-Role Modelling (ORM)

conceptual modelling method and provides a graphical notation designed

to support the software engineer in analysing and formally specifying the

context requirements of a context-aware application [3]. CML supports the

evaluation of simple assertions. This includes the ability to support querying

over uncertain information using three-valued logic (triples). A grammar for

high-level abstraction of context in real world conditions is defined in [23].

This context is denoted as a Situation by Henricksen [23], defined using

predicate logic. Expressions are either equalities, inequalities or assertions

and high-level context can be combined to form more complex logical expres-

sions. A CML Situation for identifying if a channel can be used is shown

below in Example 2.2 (taken from [24]). This situation is taken from a

communications application. CanUseChannel is satisfied for a person and

channel when all devices required to use that channel are located near to

the person and the person is permitted to use those devices.

Example 2.2 CML Situation

CanUseChannel(person, channel)

: \forall device RequiresDevice[channel, device]

LocatedNear[person, device] PermittedT oUse[person,device]

The graphical notation (as shown in Figure 2.7 [24]) supports the analysis

and design of context requirements of a context-aware application. The

grammar for high-level context abstractions is another advantage in cases

27

where CML provides the necessary reasoning model, and CML also provides

support for evaluating imperfect and historical data.

The research presented by Henricksen in [26] focusses on addressing the need

to improve ontological context-aware systems and their general inability to

combine ontology concepts with context modelling and reasoning. In a hy-

brid approach, they attempt to map their previously defined context model

(CML) to the interoperable ontology-based reasoning approaches. In doing

so, they aim to eliminate the shortcomings of ontological approaches, in par-

ticular addressing the immature standards and tools available for supporting

ontology-based reasoning and the problems associated with reasoning over

ontology languages such as Object Query Language (OQL) and the Se-

mantic Web Rule Language (SWRL) [46]. Another weakness identified by

Henricksen is the lack of support for reasoning over imperfect information.

To combine the advantages of their CML approach with ontologies, their

hybrid solution is presented in [26].

Figure 2.7: Modelling context for communication channel using CML [24]

28

They examined the possibility of converting their CML Situation definitions

(such as CanUseChannel in Example 2.2) to an SWRL rule. As previously

explained, these Situations derive additional context from context previ-

ously defined. The resulting SWRL rule is much more complex, not user

friendly and according to Henricksen, provides no real benefit to the system

compared to the CML notation. As a result, they dismiss using SWRL rules

for notating situation abstractions. Instead, the ontological aspect of the hy-

brid system is more focused on reasoning about context models - checking

for errors, inconsistencies and supporting interoperation with relationships.

Critical Evaluation

The focus of CML is in context modelling and reasoning. While context

modelling is expressive and can be applied in any domain, it is in the hands

of the developer and not the knowledge worker. This is crucial as many

projects and applications will involve both changing information needs and

non-IT users. Incremental updates are limited to combined high-level as-

sertations. CML is focused on providing solutions to specific domains or

applications rather than a flexible, user-driven solution. An improvement to

CML proposed in [26], and takes a hybrid approach which is now discussed.

For context-aware applications, the context reasoning aspect (the key aspect

of the hybrid approach) is useful as the required functionality is built-in.

However, as knowledge workers require a framework for the gradual devel-

opment of context, the verbose and non user-friendly aspect of using SWRL

is unsuitable. The proposal for supporting interoperation through relation-

ships is planned, but not developed or specified. In the cases examined in

this research (chapter 3), a knowledge worker knows the type of information

they wish to discover but not necessarily the approach required to achieve

this. Feedback from previous queries or analysis of multiple context may

be required. Finally, the CML approach does not permit the addition or

29

extension of context by users.

2.5 Domain Specific Approaches

2.5.1 GeoAIDA

In [5], the authors describe the GeoAIDA system, which aims to provide

intelligent, concise and flexible control of scene interpretation by using se-

mantic scene descriptions. The system’s target domain is geographic and

mapping applications. It aims to allow the structural definition of scenes,

generate hierarchical thematic maps and analyse multiple sensors. They

include external objects related to the analysis and also include previous

knowledge of geographic information systems. They allow for the integra-

tion of different image processing operators and aim to have a clear and

concise structure for the system. A key aspect of GeoAIDA is the seman-

tic network, which is knowledge provided to the system in order to help

interpret the input data. The semantic network contains nodes and edges

where nodes represent objects and edges represent relations between objects.

During analysis, the generic sensor network generates an instance network.

Analysis takes place in two steps, a bottom up step and a top down step.

An overview of the system is shown in Figure 2.8 (taken from [5]), where

the top-down analysis is model based and generates a network of hypothesis

based on the semantic network. The bottom-up step groups these hypothesis

into verifications and falsifications.

Critical Evaluation

While its deployment is generic for any scene, GeoAIDA uses existing image

processing operations and is thus, limited to the image processing domain.

There is limited interaction between the knowledge worker and the system is

essentially a solution specifically for the image processing domain. Thus, the

30

Figure 2.8: GeoAIDA System Components [5]

two main issues with GeoAIDA are its limitation to the geographic/mapping

domain and the semantic network is pre-defined and cannot be changed by

the knowledge worker. There is also no facility for incrementally improving

or building hypothesis or algorithms, even within the mapping domain.

2.5.2 Other Domain Specific Context

In [77], the authors represent context with varying granularity with a tuple

consisting of an Resource Description Framework (RDF) [41] triple defining

the relationship, a lifespan and a conditional confidence value. The main

aim was to reduce uncertainty in context integration. The method used

to achieve this was to combining multiple sources of information and using

Bayes theorem in a data-mining approach to calculate conditional confidence

values. In [32], the authors present a simple approach to determining the

context in which two accelerometers are present in an ubiquitous environ-

ment. The research is based on modelling the mechanical characteristics

of the human body to determine if two low-cost accelerometers are carried

by the same person. In [45], a framework for real-time context provision

in ubiquitous sensing environments is presented. This metadata-based ap-

proach structures context in a relational database. The research was applied

in an ubiquitous environment where context is defined as zones, where each

zone is a subset of a smart space. The event or feature detection approaches

detailed illustrate only a small subset of the research in the field of domain

31

specific event or action detection.

Critical Evaluation

Due to the diversity of initial requirements, domain based systems are not

sufficiently abstract for changing requirements. This also applies to the on-

tology approaches where the ontology is initially hard-coded to work for a

specific number of instances. These approaches are highly specialised, de-

pendant on specific hardware setups and not suited to changes in domain or

algorithms. They also do not provide a facility for end users to define the

features of interest for a certain deployment. The wide variety of require-

ments and domains required by knowledge workers exclude a domain-based

approach. Extending a solution to be able to utilise any sensor, any envi-

ronment and any domain or event provides a key strength of flexibility for

the knowledge worker. It allows them to adjust algorithms based on their

ever changing needs, driven by their scientific advances based on previous

results.

2.6 Standardization

A number of standardization bodies have devised standards for the represen-

tation and monmitoring of sensor data, primarily with the aim of enabling

interoperability across the sensor web. The Sensor Web Enablement (SWE)

group is a working group of the Open Geospatial Consortium (OGC) [57]

and is responsible for specifying interoperable interfaces and metadata en-

codings for the integration of heterogeneous sensor data. The Sensor In-

terface Standards (IEEE 1451) [35] have been defined by IEEE, involving

some collaboration with the OGC. They provide low level physical sensor

interfaces. The Emergency Interoperability Consortium of OASIS have also

provided standards including the Common Alerting Protocol (CAP) [9] and

32

the Emergency Data Exchange Language (EDXL) [17]. ISO have defined

the Sensor Data Model for Impages and Gridded Data (ISO 19130) [15].

This section describes some of the details of these standards along with a

query processor which can run on the nodes of a sensor network.

2.6.1 Sensor Web Enablement

OGC members have developed and tested a suite of 7 candidate specifi-

cations which act as a framework to web accessible sensor networks and

archived sensor data that can be discovered, accessed and controlled using

open standard protocols and interfaces [4]. Each standard tackles a par-

ticular aspect of managing sensor networks, such as the descriptions of the

sensors which are defined by the Sensor Model Language (SensorML) [49].

XML is a key part of the infrastructure, with XML Schemas defined using

SWE standards, used to publish formal descriptions of a sensors capabilities,

location and interfaces. Sensor Web Enablement has been applied in a num-

ber of applications [7], [8]. A real world deployment of the SWE technology,

in parallel with an existing approach built around a Java Messaging Service

(JMS) [30] middleware, is performed in order to evaluate the effectiveness

of the SWE approach.

The SWE approach has a number of advantages. The SensorML, Obser-

vations and Measurements (O&M) and Sensor Observation Service (SOS)

provide a flexible mechanism for describing and querying sensor data. Sen-

sorML provides a standard model to describing sensors. O&M can then be

used to enable sensor data. This is a useful technology for building shared

sensor information spaces [7]. In [8] the authors note SWE can enable sen-

sor data to be virtualised, providing a common, self-describing data format

and access protocol. In addition, the emergence of domain-agnostic toolkits

indicate that the overhead in creating new applications based on SWE can

be lowered.

33

A number of weaknesses of the SWE approach were described in [7]. Prob-

lems centred on the immaturity of the standards, such as the Sensor Alert

Service (SAS) lacking a stable implementation. In addition, the SOS does

not directly provide support for streaming data to clients. Additional mid-

dleware must be designed to facilitate this. The sensors are designed for a

static geographic location, and problems associated with context arise when

the sensor is dynamic. The SOS interface also provides no means of ac-

cess control, so sensitive data must be encrypted, with key management

procedures applied externally to the system.

As the focus on this work is a functioning system in which the knowledge

worker can drive the contextual enrichment process, a verbose representation

of the sensor data does not offer substantial benefits. A simplified, stream-

lined description of sensors provides the user a quick setup for new sensors

in different domains, which can be easily incorporated into new deployments

when required.

TinyDB

TinyDB [60] is a distributed query processor that runs on each of the nodes

of a sensor network. It allows the functionality of a traditional database,

such as the ability to select, join, project and aggregate data. As it is based

on each node it prioritises efficiency over functionality, ensuring results can

be obtained in real time. TinyDB uses a sensor networks smart sensors to

customise sampling rates among other properties to increase accuracy [36].

The approach in this dissertation is not focused on maintaining real-time

query capabilities. Instead, the incremental addition and analysis of context

will provide the necessary knowledge for subsequent querying by users.

34

2.7 Summary

Tabe 2.1 summarises the approaches described in this chapter, showing sup-

port for each of the functional requirements first described in chapter 1. In

each case, a tick represents support, or partial support for that functional

requirement.

• Setup: Allow on-the-fly setup of new sensors, subjects and deployments pertaining to a

sensor deployment

• Query: Query the sensed data using different criteria

• On-the-fly Context: Integrate new information discovered as context within the sensor

dataset

• Knowledge Worker (KW) Interaction: Allow non-IT knowledge workers to query and add

new context or knowledge

• Incremental Enrichment: Allow the incremental construction of queries and context based

on previously discovered context/knowledge.

Approach Setup Query On-the-fly KW Incremental

Context Interaction Enr.

CoOL 4 4

CONON 4

SOUPA 4

OntoSensor 4

CXMS 4 4

AlarmNet

UI Context Model

SCAFOS 4 4

CML 4 4

GeoAIDA

Table 2.1: An Analysis of Functional Requirements

Analysis of related work has concluded there is no existing system suited

for the deployment of multiple sensors, on multiple participants, in multiple

environments with the aim of providing a framework for a user to define

domain specific context and subsequently meet their information needs.

35

Chapter 3

Problem Description

This chapter illustrates a number of evaluation sites provided by sport and

health physiologists. In each case, there is a description of the activity be-

ing monitored, requirements of scientists in this domain, how they currently

assess performance and behaviours during these activities and the suite of

sensors deployed to discover information of interest. The purpose and for-

mat of each sensor is detailed, along with the size of the datasets collected

in each domain. Both domain-specific queries and requirements common to

all deployments are examined. In explaining the differences and commonal-

ities involved for different domains, this chapter shows how a data analysis

framework requires both a combination of automated system operations and

user interaction.

Section 3.1 explains how the case studies were chosen and introduces some

sensor specific terminology. Sections 3.2, 3.3, 3.4 and 3.5 detail the require-

ments and current approaches to meeting these requirements in the tennis,

cycling, horse-racing and search and rescue domains respectively. Section 3.6

describes the overall issues and approach to solving the user requirements,

explaining both the differences and commonalities across deployments. Sec-

tion 3.7 presents a summary of this chapter.

36

3.1 Overview

In this chapter, a number of case studies and sensor technologies are de-

scribed, chosen to illustrate the difficulties involved with typical heteroge-

neous sensor deployments. These deployments, in the sporting and health

domains, and including a smart space environment, are representative of the

nature of such sensor usage and the sensors are similarly varied in terms of

output format, sampling rates and data properties recorded. [54]

The criteria for selecting these sensors were the availability of real-world

problems along with a knowledge worker from which domain knowledge

could be obtained. In addition, these sensors provide a representative ex-

ample of the problems associated with heterogeneous devices [2]. In section

3.6 these problems are summarised along with the commonalities and simi-

larities across typical sensor deployments.

As will be shown in this chapter, there are many areas in which scientists

can deploy sensors in an effort to extract better levels of knowledge. Exten-

sive data sets can be collected, which coupled with the diverse requirements

of the domains, result in a situation where specialised applications are then

required to extract the necessary information. In each case, this chapter

will describe the problems which arise when sensors are used to gather in-

formation. In addition, the gap between end user requirements and the data

generated by these devices will be discussed.

3.1.1 Sensor Description and Usage

The purpose of this chapter is to demonstrate the scope of this research as

it plays a part in the experiments which follow in chapter 7. The evaluation

sites were quite different and the sensors used varied a great deal in out-

put. This section introduces the sensors used within the experiments and

explains the terminology relating to these sensors. Measurements required

by the scientists include sensing the position and movement of a subject.

37

This is achieved for movement using accelerometer sensors: GT3X, GT3X+

and GCDC. For position, GPS sensors (Garmin 405, Garmin Geko) can be

used outdoors. Indoor deployments can make use of the indoor localisa-

tion sensing device, Ubisense. Physiological data is also required, for this a

Sensewear armband sensor can be deployed, as can the Cosmed metabolic

sensing system. Finally, the scientists wish to measure the power trans-

mitted to a bicycle during a cycling event. This can be measured with a

PowerTap sensor mounted on the wheel. The remainder of this section will

detail each sensor involved in the evaluation sites.

ActiLife GT3X and GT3X+ Accelerometers

Figure 3.1: A GT3X accelerometer and its deployment on an ankle

The ActiLife GT3X [21] and GT3X+ [22] are tri-axial (x,y,z) accelerom-

eters which monitor human activity or movement. The GT3X samples at

30 Hertz (Hz) and the GT3X+ can be set at up to 100Hz prior to de-

ployment. The sampling rate may be reduced by scientists deploying the

devices to save memory space on the device, which may be necessary for

longer deployments. This means each GT3X/GT3X+ deployment may have

slightly different output based on initial configuration. All records are as-

signed a timestamp measured in milliseconds. Each device includes an in-

clinometer sensor which measures device orientation information such as

38

standing/sitting/lying down. The GT3X+ includes a lux sensor, which is

a measure of ambient light. Before the scientist uses a GT3X/GT3X+ ac-

celerometer in any domain, they can configure whether or not to measure

inclinometer and lux. Both accelerometers are lightweight, look identical

and are strapped to a body. Figure 3.1 shows a GT3X accelerometer posi-

tioned on the ankle. A sample of data recorded is shown in Example 3.1 in

.csv format.

Example 3.1 Sample Extract of GT3X data:

x y z lux incline

488 198 47 1 1

467 186 49 2 1

494 155 80 1 1

479 272 22 2 1

192 187 24 1 1

492 163 45 2 1

The Ubisense Localisation Device

Ubisense is an indoor localisation sensing device. It tracks the 3-D position

of Ubisense Tags (Ubitags) which are worn by subjects as they move around

a smart space. Position is tracked in real time by Ubisense sensors, which

are placed around the smart space and data is output in XML to a server.

The information recorded is: (UbitagID, x, y, z, timestamp) where the

(x, y, z) are coordinates in space. Timing is recorded in milliseconds and

the sampling rate is variable (based on the movement of the device). Figure

3.2 shows a Ubisense sensor and two Ubitags.

Bodymedia Sensewear Armband

The Sensewear armband device has a number of sensors, such as a dual-axial

accelerometer, heat-flux and temperature sensors which gather information,

including an estimate of energy expenditure and physical activity. These

39

Figure 3.2: A Ubisense sensor (left) and its Ubitags (right)

armbands are worn by subjects on their upper arm. They are suitable for

real-world experiments due to their portability, but are not considered the

most reliable solution for measuring energy expenditure. Laboratory based

sensors are superior in terms of accuracy but cannot be readily deployed in a

real scenario. 20 different measurements are output by the Sensewear arm-

band, time is measured using real-time timestamps (date-HH:MM:SS) and

samples are taken at 0.25Hz. Figure 3.3 shows the device and its positioning

on a subject.

Figure 3.3: A Sensewear sensor

CycleOps PowerTap power sensor

The PowerTap sensor is a power measuring device placed within the rear

hub (center part of the wheel) of a bicycle. PowerTap provides an accurate

40

(within 2.5%) measure of power applied to a bike by a cyclist. The sam-

pling rate is variable, and sensor entries are timestamped using minute (and

fractions of minutes) units. Measurements gathered include watts (power),

speed and cadence. Figure 3.4 shows a PowerTap hub, and example 3.2

shows some sample output in .csv format.

Figure 3.4: PowerTap Hub

Example 3.2 Sample Extract of PowerTap data (in csv format):

Time Speed Power Distance Cadence

22.893 14.67 185 34 99

22.935 14.67 184 36 99

22.977 17 164 38 99

23.019 17 162 40 98

Gulf Coast Data Concepts (GCDC) X6-2A Accelerometer

The X6-2A is a tri-axial accelerometer with a sample rate of 320Hz. Move-

ment of each axis is monitored in x, y, z fields, each marked with a time

(in seconds). This accelerometer is lightweight and is used to monitor precise

movement of the body it is placed. This accelerometer is preferred where

extremely precise measurements of movement are required.

41

Figure 3.5: The GCDC Accelerometer

Garmin 405 and Geko GPS devices

Two Garmin devices were used in monitoring outdoor activities. The Garmin

Forerunner 405 has a variable sample rate and measures lattitude, longitude

and altitude. It also has an integrated heart rate monitor which can be dis-

abled if not required. The device outputs data in the XML compliant GPS

eXchange format (.gpx), and timestamps are in real time format (Date-

HH:MM:SS). The Garmin Geko records the same data as the 405 (exclud-

ing the heart rate) and has a set sample rate of 0.1Hz. Both devices are

deployed by the scientists, the Garmin Geko is used where it can be attached

to a bicycle, and the Garmin 405 is worn by the subject in cases where the

a heart rate monitor is to be paired with it.

Cosmed k4b2 Metabolic Sensor

The Cosmed k4b2 [13] is considered the most accurate semi-portable sensor

for measuring energy expenditure available at present. The breathing of

the wearer is analysed during an activity, and data such as VO2, Heart

Rate and O2 (oxygen) are recorded. The data is sampled by the sensor at

a variable sample rate (a sample every 3-6 seconds) and timestamps are in

HH:MM:SS format. The Cosmed sensor is worn over the nose and mouth

42

Figure 3.6: The Garmin 405 (left) and Garmin Geko (right)

and has a bulky appearance as can be seen in Figure 3.7. This means it

is not possible to deploy in many instances where weight or visibility is a

priority to ensure best performance.

3.2 Sensing Movement and Position in Tennis

The sport of tennis takes place on a court (grass, hard-court or clay-based),

in an indoors or outdoors environment and can be individual or team (dou-

bles) based. Tennis is not set with fixed time boundaries and the game is

driven forward by the scoring of points. The scoring system can be complex,

with games, sets and matches making up the structure of the sport. The

role of serving alternates between players at defined point-based intervals,

and the players switch sides at regular set-based intervals. Serving players

stand in a defined space behind the baseline prior to each serve, a full list of

tennis rules are published by the International Tennis Federation (ITF), the

governing body of tennis [59]. Tracking the players movement can help the

scientists to deduce these events. As a result of these differences and rules,

each tennis activity may have different and diverse requirements. Thus any

solution must be flexible to adapt to the changing environment and require-

ments.

43

Figure 3.7: Cosmed k4b2 Metabolic Sensor

3.2.1 Background and Requirements

Sports scientists and tennis coaches each have a range of requirements when

it comes to analysing and querying behaviours during training and compe-

tition matches. Table 3.1 provides a list of the queries the coaches wish to

execute. For a coach, the key requirement is the analysis and segmenta-

tion of important occurrences, or events throughout a period of play. These

include breaking each match into its game, set and serve boundaries and

detecting who has scored points. For instance, query 4 requires the identi-

fication of the length of a rally prior to a point being scored. The scientists

require that all occurrences are identifiable by a time stamp, to be later

retrieved when necessary.

Currently, this analysis is carried out manually, checking video recordings

for serves, points and game breakdown. Records are then stored in a spread-

sheet format and graphed in an attempt to discover interesting information.

44

Query

1 Return all serves for Player N in Game N

2 Return the time for each point scored in Game N

3 What part of the court is Player N in at game time T?

4 What is the duration of the rally prior to the point at 05:02 being scored?

5 What is the average duration of a rally resulting in a point scored in Game N?

6 How many points were scored in Game N?

7 What is the average duration of a rally in games where Player N is taking part?

8 Which player covers most ground during Game N?

Table 3.1: Tennis Coach Queries

This is a highly user-intensive process which the scientists wish to avoid by

automating using sensor information. The goal is to automate this process

as much as possible.

3.2.2 Information Collected

In an effort to automate the process for gathering player and match data,

scientists installed a Ubisense [64] system on an indoor tennis court. This

Ubisense setup consists of a number of static sensors located around the

court which triangulate a signal omitted from each of two Ubitag receivers,

carried by each player as they move around the court. Ubisense tracks each

player throughout both matches and training sessions. This setup is shown

in Figure 3.8 where each player is wearing a Ubitag receiver. Additionally,

cameras were set at multiple angles around the court to record each match.

A summary of the data gathered from the Ubisense sensor setup from de-

ployments is shown in Table 3.2. To aid with the manipulation of sensor

data, additional ‘basic’ context was recorded for each deployment by the sci-

entists. In this domain, this information is a record of the 19 players taking

part describing their age, weight, height etc. (anthropometric information)

and a record for each of 15 deployments describes information such as the

start and end time. This is useful information to later allow the scientist

45

Figure 3.8: Court Ubisense Setup

to focus queries based on individual properties, or to query across sets of

similar players and is gathered for all deployment.

Name Purpose Frequency Files Data Pts. Total Size Max Size

Deployment info. Context N/A 15 75 5kB 3kB

Subject info. Context N/A 19 114 20kB 3kB

Ubisense Location var. 36 845,000 14MB 1.2MB

Table 3.2: Tennis Data Gathered

Table 3.2 displays the name of each sensor or information type and its pur-

pose (what it is used to detect). The Frequency field refers to the sample

rate in Hertz. Ubisense has a variable (var.) sample rate, and sample rate

does not apply to simple context information. The Files column shows how

many individual records for each sensor have been gathered and the set of

deployment and subject anthropometric data documented. Data Pts. refers

to the total number of data points (or entries) for each sensor. Total Size is

the size of the dataset gathered for that sensor, and Max Size is the size of

46

the single biggest file in that set. In this case, the sensed data consists of 36

individual Ubisense sensor data documents, with 845,000 data points and a

total size of 14MB.

While the sensor deployment automates the recording of movement within a

spatial environment, interpreting its semantics remains a problem. Using the

camera feed as a ground truth, locations of players can be mapped to zones

using a manual analysis and annotation process. This is not a substantial

improvement on the previous method of real-time or video based manual

analysis. Relating the basic context recorded to the sensor data recorded

is another problem which remains, as it remains external to the automated

data collection of sensor values. At a domain level, identifying how to detect

certain occurrences using the data available is also an issue, as there is no

mechanism (other than spreadsheet and graph analysis) to gain feedback

from experimental algorithms using multiple data sources. Basic context

information such as a subjects age, weight, or deployment location remains

outside the sensor dataset and has to be added manually where required.

For instance, basic Ubitag output values (x,y,z) cannot be easily mapped

to the game structure (Game/Set/Point boundaries) as required in query 1

from Table 3.1. More complex queries such as query 5 require the detection

of a rally and point-score, which requires human analysis. To overcome these

issues it is necessary to provide a system to represent data in a canonical

form, integrate context and sensor data and a method of allowing a scientist

to specify and add new customised levels of context.

3.3 Sensor Deployments in the Cycling Domain

Cycling has many activity formats, such as track sessions, endurance road

races and off-road mountain bike races. Events can be individual or team

based, and training is usually a combination of fitness improvements and

devising race strategies. Scientists may have a number of deployments they

47

wish to use as evidence for a number of sport science based experiments with

the aim of discovering and improving existing detection algorithms. They

also want to segment and classify interesting occurrences throughout these

activities.

3.3.1 Background and Requirements

In the cycling domain, context necessary for the analysis of sensor data

are the different properties (height, weight, etc) of the participants, as well

as some environmental factors, such as terrain information. The most ad-

vanced methods of measuring direct and indirect calorimetry in the cycling

domain are laboratory setups with expensive specialised mechanisms such

as a bicycle power meter such as Wattbike [67]. In the field, non-laboratory

based experimental analysis is typically performed by devices such as the

Bodymedia SenseWear sensor which estimates the energy expenditure of

the wearer. Other sensors are often used to discover basic information such

as location (GPS), heart rate (HRM), speed (GPS) and distance monitors

(GPS / Accelerometers). Scientists use manual analysis of these sources

using 3rd party software along with related contextual information to try to

cross reference with gold standard (i.e. best available) solutions currently

available with an aim to replicate this accuracy using different sources of

data. The advantage of this is that portable, low cost sensors can replace

expensive lab-based sensors.

Requirements also includes the calculation of Total Energy Expenditure (TEE),

which is the overall aim of scientists in this field. The goal is to detect and

measure energy used using direct or indirect calorimetry (measuring phys-

ical changes). TEE is the sum of Resting Metabolic Rate (RMR)(energy

expended at rest), Thermic Effect of Food (TEF) (energy expended pro-

cessing food) and energy expended by Physical Activity (PA). Each of the

algorithms for measuring energy-related information terms apply across any

48

human based deployment, yet calculation may depend on an individuals

characteristics, or may have to take into account external factors affecting

accuracy. In order to calculate TEE using basic sensors, scientists require

the ability to first define and later alter the algorithms for RMR, TEF and

PA. In addition, they are required to detect domain context such as climbs,

climb categories, sleeping and sleep quality. A more specific list of require-

ments is shown in Table 3.3.

Queries

1 Find total amount of time spent above 250W (Power-measuring)

2 Find total amount of time spent above 165BPM (Heart rate)

3 Calculate average heart rate where power above 200W and

cyclist type=’endurance’

4 Find the total amount of time where pedal pivot = ’pivot range 1’

5 Find ’best intervals’ for highest ’1minute’ heart rate and return

values for distance covered.

6 Find the average performance factors (Power/Heart Rate/Speed)

for each gradient of type = ’hill’

7 Find the average Power value when pedal vector magnitude = ’peak’

8 Find the average speed when braking activity = ’none’

9 Find all occurrences where gradient profile = ’flat’ and cycle

cadence = ’high’

10 Find all occurrences where effort intensity = ”peak”

Table 3.3: Cycling Requirements

Query 7 requires the average power value where pedal vector magnitude

=‘peak’. To answer this query, some definition for detecting a peak vector

magnitude is required. Information used as input to algorithms will often

be a mix of sensor generated data and background context information.

3.3.2 Information Collected

In a series of experiments, a set of sensors were attached to a group of

cyclists in a number of scenarios. The list of the sensors used is shown in

Table 3.4 where two different types of accelerometer were deployed: Actilife

49

GT3X accelerometers positioned on the cyclist, and GCDC accelerometers

positioned on the bicycle frame. The Garmin Geko GPS device was also

placed on the bicycle. The SenseWear and PowerTap sensors were used to

estimate energy expenditure and power respectively.

Physiological data (e.g. heart rate) was gathered by the scientists using sen-

sors, and contextual data was entered manually. Sensor data was gathered

from three separate deployments; two training sessions for one participant

in a mountainous and on-road environment. The third was gathered as four

cyclists took part in the Race Around Ireland [58] endurance event. Figure

3.9 shows the typical deployment, with the accelerometers located on the

cyclist and bike, the GPS located on the bike, a heart rate monitor on the

cyclist, and PowerTap located on the bike hub to measure power.

Table 3.4 shows the data recorded by the sensors during the cycling deploy-

ments. The dataset includes some cyclist specific information which are key

properties relevant to cycling, including the cyclist type. Finally each of the

sensor data outputs are listed under their sensor type. The table columns

are the same as those in Table 3.2, described in Section 3.2.2.

Name Purpose Hz Files Data Pts. Total Size Max Size

Deployment info. Context N/A 3 24 40kB 2kB

Garmin GPS Location 0.4 2 30,000 589kB 922kB

GCDC Accelerometer Measure position 100 8 800,000 16MB 2MB

GT3X Accelerometer Measure position 30 8 7,800,000 200MB 80MB

Heart Rate Monitor Measure heart rate 0.4 1 675 322kB 322kB

PowerTap Measure Power 1 10 161,000 1.6MB 314kB

Subject info. Context N/A 5 30 10kB 2kB

Video Camera Ground truth record N/A 1 N/A 1GB 1GB

Table 3.4: Sensors Used in Cycling Tests

The data format and sample rates differ across sensors deployed. Finding a

good (or optimal) algorithm for detecting energy expenditure may require

many iterations which is very time consuming for scientists due to the large

50

Figure 3.9: Cycling Deployment: Race Around Ireland

volume and varied nature of the sensor data gathered. The data in its ini-

tial format can be input to potential algorithms but building up iterative

strategies (where one result feeds into another algorithm) remains a problem.

Context such as the cyclist property information has to be manually added

to relevant datasets, which can become an issue where algorithms require

this information for personalised results, or when comparisons across multi-

ple participants are required. For instance, query 4 is aimed at endurance

cyclists only.

51

3.4 Using Sensors in Horse-Racing

In horse-racing, the majority of performance related research has been fo-

cussed on the training and breeding of the horse. Recently, more focus has

been put on those who control the horse, the jockeys. In preparation for

races, extensive training is undertaken by jockeys to meet the needs of a

particular race or horse. There are many factors which may affect the per-

formance the jockies (as they ride the horse) such as the going, which is

the condition of the track (firm, soft, heavy etc.) or the energy levels of

the jockey and horse. Scientists wish to analyse the effects of these factors

and experiment with new algorithms for detecting the energy expenditure

of jockeys. In doing so, they aim to replace expensive, bulky or laboratory

based techniques with affordable, lightweight and portable sensors.

3.4.1 Background and Requirements

As with cycling, a key requirement of scientists in horse-racing is to generate

algorithms for estimating Total Energy Expenditure (TEE) using sensors.

Another requirement is to determine the energy expenditure values, both

those calculated through new algorithms and the measurements provided

by the SenseWear armband (or the more precise measurements obtained

using the Cosmed k2b4 sensor), by assigning stages of the activity with an

intensity metric. Scientists also require querying abilities over a defined

time period. They want to analyse the performance of jockeys in a simu-

lated indoor setting, and compare this with performance outdoors in various

environments with different weather conditions, and in race situations with

various horses. They wish to perform standard data analysis algorithms to

detect standard deviation, median, or peaks and troughs of values across

time bounds.

Table 3.5 shows some of these queries expressed during these analyses. There

are some events that underpin their understanding of the data. For instance,

52

Queries

1 What is the maximum heart rate of jockey N while the horse gait was fast-cantering?

2 Which trainee jockey aged under 16 had the highest energy expenditure for

training race N?

3 Calculate the Total Energy Expenditure for apprentice Jockey 2 for a training

session.

4 How accurate (%) is the current algorithm for Total Energy Expenditure relative to the

Cosmed values?

5 Identify all instances of a jockey whipping the horse / simulator.

6 Calculate the TEE value for all jockeys aged N, while on the simulator.

Table 3.5: Sample Horse Racing Queries

horse gait classification is required to detect a canter in query 1. This fea-

ture is not directly sensed or tracked by a sensor and must be identified

using a separate algorithm. The requirements are varied, from domain al-

gorithms for detecting specific horse-racing activities to standard analysis

of human physiological factors applicable to any domain where a human is

being monitored.

Currently, the ’gold standard’ method for measuring the key requirement -

Total Energy Expenditure - is to use a Cosmed K4 b2 metabolic system on

a jockey. This can be performed during a training deployment on a horse or

simulator. The measurement of breathing during an activity provides a good

measure of energy expenditure for that individual. However, this system is

bulky and difficult to deploy as it impairs vision and adds weight to the

jockey. As a result it is not suitable for large scale analysis in outdoor envi-

ronments or during races. Scientists also measure other metrics of a jockey

during training, such as heart rate and various accelerometer values. This

information is currently interpreted using spreadsheets to compare multiple

sets of information. Requirements based on a jockeys individual properties

must be manually entered into each relevant set of data.

53

GT3X Accelerometer

COSMED

SenseWear Armband

Crossbow
Accelerometer

Figure 3.10: Jockey Riding the Simulator

3.4.2 Information Collected

In an effort to provide a more complete set of information and more choice

to the scientist, a number of sensor experiments in the horse-racing domain

were undertaken. The sensor deployments in the horse-racing domain were

extensive, including 11 subjects, each equipped with a variety of sensing de-

vices during both indoor and outdoor training sessions. Indoor sessions took

place on the simulator, and each participant was equipped with a Cosmed,

SenseWear and 6 GT3X accelerometers, five of which were located around

the body and one on the saddle of the horse. Outdoor sessions included

a GPS system for location. Figure 3.10 illustrates the typical setup of the

deployment on the indoor simulator. The deployment was performed on a

set of 11 trainee and apprentice jockeys using the sensors in table 3.6.

Table 3.6 shows a summary of data gathered during these experiments. As

with the other domains, activity information, such as start / end times were

manually recorded for each of the 22 training sessions performed. The jockey

information was gathered and included domain-specific information such as

54

the qualification (trainee / apprentice) of the jockey and other human based

properties (height, weight, BMI etc.). The sensor data gathered amounted

to 2.1GB, with the Cosmed sensor generating the most content.

Name Purpose Hz Files Data Pts. Total Size Max Size

Cosmed k4b2 Breath analysis 10 22 4,000,000 20MB 1MB

Deployment info. Context N/A 22 110 38kB 3kB

Garmin GPS Location 0.4 11 14,300 2MB 300kB

GT3X Accelerometer Measuring position 30 110 240,000,000 231MB 13MB

Sensewear Energy Expenditure 0.3 1 16,000 1.4MB 1.4MB

Subject info. Context N/A 11 66 20kB 2kB

Table 3.6: Horse Racing Data Gathered

There are a number of problems which remain after gathering this dataset.

Normalisation and integration must be undertaken to deal with different for-

mats and sample rates. Often external tools are required to analyse multiple

data sources. Outliers must be manually identified. Interpreting or visual-

ising what some information, such as the coordinates from an accelerometer

takes considerable time as the values are not at a high (abstract) level. A

problem with the horse-racing environment is that it involves a considerable

external force (that of the horse) which makes things more complex when

trying to measure the activity of the jockey using movement-based sensors.

For instance, the total energy expenditure is the product of both jockey

and horse energy expenditure when measured solely on movement. This

makes the TEE algorithms Physical Activity (PA) metric different for a cy-

clist than for a running athlete. Basic context information such as a jockeys

properties are recorded externally to sensor data which leads to hard-coding

algorithms requiring this information. As a result, adapting or modifying

these algorithms may involve significant effort from the scientist.

55

3.5 Using Sensors in Search and Rescue

The Search and Rescue (SAR) base of the Irish Coast Guard serves as a

launching point for helicopter based rescues of those in difficulty in the sea

or in mountainous/remote areas. The members are often on call either on

site or at home, awaiting a rescue mission. It is a physically demanding job,

and maintaining high fitness levels is a key requirement of those working in

this field. There are limits in place for the amount of time the employees

may work, and hours they can fly, based on energy and fatigue levels. Thus,

scientists wish to study and evaluate these limits using energy expenditure

algorithms in order to improve operations.

3.5.1 Background and Requirements

Health scientists monitor the behaviour of these workers as they conduct

their work, either on call (at home or on site) or while engaging in a rescue

mission. The key goal is to analyse their work and downtime behaviours in

order to identify ways in which their work-life could be balanced and energy

levels optimised. For instance, it may be advantageous to be on call while

resting on site rather than at home. Table 3.7 shows the queries required

by the scientists. As with the sporting domains, energy expenditure was

again a key feature the scientists wish to measure using accelerometers.

A requirement for the SAR domain was to measure the Sleep Quantity and

Sleep Quality of the participants (Query 3). This can be estimated physically

by measuring other events, such as time spent moving, and intensity of

motion over a given time span. Together, these calculations can be used as

part of a sleep quality algorithm. Discovering energy expenditure intensity

information across user-defined time boundaries is also a requirement in the

SAR domain.

56

Queries

1 Calculate Total Energy Expenditure for each employee using direct calorimetry

2 What proportion of a specified day is spent at an energy intensity level of

moderate or higher?

3 Which employees have a good quality of sleep?

4 What is the relationship between sleep quality and energy use on

the day before and after sleep?

5 What alterations to the Physical Activity algorithm is required

to compensate for external factors?

6 Compare algorithms for energy to SenseWear measurements, what is

the average error?

Table 3.7: Requirements in the Search and Rescue Domain

3.5.2 Information Collected

Scientists placed a set of sensors on each SAR worker. Two ActiLife GT3X+

accelerometers were used: one positioned on the right side of the participants

waist and the second located on the right ankle. Each accelerometer was

aligned to face forward. A SenseWear armband with a sample rate set to

15Hz, but the output set to 1 minute intervals was also placed on each

worker. These are worn on the upper arm of all subjects (participants) at

all times (24hrs/day), for a period of 24 or 48 hours set for each deployment.

They also wore a SenseCam, which records an image based on movement

or change of scenery, during the day. The SenseCam is used as a ground

truth rather than as a parameter for the formation of algorithms. External

information about each of the participants was also recorded, including age,

weight, mass, height and their dominant side (right/left handedness).

Name Purpose Hz Files Data Pts. Total Size Max Size

Deployment info. Context N/A 44 220 80kB 2kB

GT3X+ Accelerometer Measuring Position 100 88 900,000,000 1.8GB 90MB

SenseWear Energy Expenditure 0.3 44 1,440,000 9MB 600kB

Subject info. Context N/A 11 66 20kB 2kB

Table 3.8: Search and Rescue Data Gathered

57

The data set gathered in the SAR deployment is shown in Table 3.8. Through-

out deployment, the workers go about their day as usual, engaging in rescue

missions where required and resting on base or at home while on call. The

devices are also worn while sleeping. Initially, the scientists decided to ag-

gregate data at a sample rate of 100Hz. Over the deployment, the two

GT3X+ Accelerometers, SenseWear armband and SenseCam were deployed

on 11 different workers a total of 30 times, for an average of 24 hours each

time. The standard setup was a 24 hour work day deployment followed by

a 24 hour rest day.

While the range of sensors deployed in the SAR domain is not as extensive

as the cycling and horse-racing domain, challenges still exist in allowing the

scientist to achieve their requirements by analysing the dataset. It remains

a challenge to allow the application of automated data analysis and iterative

improvement of detection algorithms using the scientists knowledge of the

domain. The SenseWear armband provides an estimation for energy expen-

diture, on which algorithms utilising the GT3X+ could at first be modelled.

This information forms part of the evidence the scientist will use to improve

their event detection capabilities. For instance, a correlation between an

accelerometers (x,y,z) values and the Sensewear output could allow for an

initial algorithm to be defined. The different sample rate and output format

(in terms of units) requires changes to previous TEE and PA algorithms,

but the broad algorithm can remain the same. This illustrates the benefit

of a system which would reuse algorithms, such as energy expenditure in

different scenarios, while allowing key parameters to be included or altered.

58

3.6 Groundwork Approach

3.6.1 Overall Issues and Approach

Across each of the case studies described, there are a number of problems

to be addressed.

• Sensor data is low level

• Context must be integrated

• There is no method for defining or locating patterns or events of in-

terest

• Data is heterogeneous and must be integrated

• Data is not suited to a high-level query language

The approach taken in this research is to close the gap between low-level sen-

sor data and a high-level query language, by first examining commonalities

across the different domains and then determine where they differ. Doing so

will identify where the system requires no user input and where the system

needs some level of user interaction to provide domain knowledge.

3.6.2 Commonalities Across Multiple Deployments

Table 3.9 lists the number of sensors used in each deployment. As can be seen

there was some overlap for some of the sensors deployed in multiple scenarios.

Each number represents an individual sensor data output file. This section

describes the commonalities across the multiple sensor deployments.

Sensor Data is Raw: How a user interacts with sensor data remains an

issue. In some cases, the sensor data is raw or unstructured. If more

than two types of sensor are involved in the deployment, as is the case

in all but the tennis deployments, then multiple sensor data outputs

59

Sensor Cycling Horse-Racing Search and Rescue Tennis

GT3X / GT3x+ 8 110 88 -

Ubisense - - - 36

SenseWear - 1 44 -

GCDC 15 - - -

PowerTap 10 - - -

Cosmed - 22 - -

Garmin Geko GPS 2 - - -

Garmin 405 GPS 2 11 - -

Table 3.9: Sensors Deployed in Each Domain

must be analysed independently and manually cross checked by a sci-

entist if required. Where many sensors are deployed, keeping track of

this information manually is a considerable problem for the scientists

who wish to use the data. To address these issues, sensor data must

be enabled by representing it in canonical format. In chapter 4, the

approach to providing a standard structure for sensor data is described

as is the single process which enables all sensor data.

Context is Missing: Multiple datasets, each available for analysis in iso-

lation are often missing key semantic information. Information which

may only be known to the scientist at the time of deployment is often

embedded in manual records and this information may be required

multiple times in order to detect or identify some requirements (as

part of an algorithm). Semantics relating to the deployment environ-

ment, such as the sensor configuration, in addition to the technical

details of the data output are sometimes not included in the sensor

data. Those involved as participants (subjects) and the activity infor-

mation is known by the scientists at deployment time, but utilising

this semantic knowledge remains an issue as there is a gap between

this information and the sensor data. Chapter 4, presents the enable-

ment process of providing a standard mechanism for the scientists to

60

input basic context.

Requirements are Complex: The evaluation sites provide an extensive

set of requirements and queries for multiple sensor outputs. Some of

these queries apply in multiple deployment instances (e.g. measuring

distance based on time and speed), while others are specific to suit

a certain deployment (e.g. classifying a horses gait). The require-

ments of the scientists are dynamic, changing with the introductions

of new sensors, new environments and new subjects. Results from

some algorithms may lead to the discovery of new information to be

used as part of the construction of a new algorithm. As a result, a

generic method of applying context to sensor data is provided to meet

the varied requirements of the users. To achieve this, extension pro-

files are defined which provide a standard mechanism for user driven

contextual enrichment in chapter 5.

3.6.3 Differences Across Multiple Deployments

The differences across the multiple sensor deployments are summarised in

this section.

Structural issues: There are structural issues associated with the different

output format of the various deployed sensor devises. These differences

include different sample rates (e.g. 100Hz for a GT3X+ accelerometer

to 1/3Hz for a SenseWear armband), or inconsistent sample rates, such

as for Ubisense where samples are taken only when movement is de-

tected rather than at a set period. Others, such as the Actilife GT3X+

accelerometer, can have their sampling rates changed during config-

uration pre-deployment, or can aggregate values in a reduced sample

rate post-deployment. The scientist decides on a plan for analysis us-

ing various individuals, sensors and scenarios. Thus it is necessary to

61

facilitate the specification of these entities. This is enablement and is

described in chapter 4.

Units of measurements: Timing is often measured by timestamps based

on time and date (Garmin GPS), others offset time from a master

time (stored as a header, e.g. GT3X accelerometer), or measure time

in terms of fractions of a minute or second. Following deployment it

is the scientist who must synchronise and normalise the sensor data.

This is an issue to the scientist as it is time consuming, and requires

considerable effort. Chapter 4, describes how the timing protocol for

each sensor is defined, and now this information is normalised to a

common standard. The user has the ability to further alter the data

if they wish to use a different time format.

Semantic issues: This relates both to the ambiguous terminology in sen-

sor data files as well as ambiguous identification of the context in which

the sensor was deployed. An accelerometer located on a wrist has an

output different to one located on an ankle. Defining the context in

which the data has been gathered helps the scientist to later anal-

yse and interpret their datasets. However, there remains issues with

clearly defining and formalising this sensor information and automat-

ing the integration process. Chapter 4 describes how location and

other basic context can be encoded as part of the enablement process.

Domains and Queries are Different: To discover knowledge such as clas-

sifying a horse gait, multiple sensors are required. Data gathered from

sensors can be manually examined, using a ground truth, to try to

discover patterns in the data corresponding to this kind of knowl-

edge. Applying algorithms to detect this information across multiple

instances requires using third party software such as a spreadsheet to

track changes in different data sources and changes must be made in

62

multiple locations to improve existing algorithms. Once this informa-

tion is discovered, there is no standard way of querying the results, or

to use this knowledge to further enrich, or discover new information.

Thus, there is a substantial semantic gap between the sensor data,

context and the users complex requirements for each deployment. For

example, it is difficult to ascertain the metric of physical activity, as

required by Query 5 in Table 3.5, using the sensor (GT3X) required,

as its output are limited to simple (x,y,x) values. Thus, it is nec-

essary to facilitate user driven extensions of the schema which drives

the contextual enrichment. The approach to achieving this is detailed

in chapter 5.

3.7 Summary

This chapter has described the range of both sensor types and the domains

in which they were deployed. The requirements of each of these deploy-

ments have driven this research. Clearly a solution which meets the specific

requirements of a single scientist, user or domain will not suffice.

To tackle these issues, a generic framework for transforming sensor data

from its initial format to an intelligent format which can be queried using a

simple user interface and a standard query language is presented. To achieve

this in each of the domains listed as deployments, the scientists must be en-

abled to be the driver of this process, implementing algorithms and updating

context directly, enriching the sensor data sufficiently to achieve the require-

ments and expand the knowledge available to discover previously unknown

information. In doing so, any dataset from any activity can be monitored,

interpreted, analysed and enriched by a knowledge worker, substantially im-

proving their ability to discover new knowledge in any domain. This led to

the development of the AREA Framework, as explained in the next chapter.

63

Chapter 4

The AREA Framework

The previous chapter presented multiple evaluation sites, assessed the simi-

larities and differences across user requirements and the data gathered from

these deployments. In doing so, the need for an abstract method of trans-

forming sensor and context information to a format where a high level query

language could be used to integrate the data was identified. The challenge

is to provide a framework that manages both the information needs of the

knowledge workers while also facilitating the heterogeneous environments

posed by the different case studies. A key goal is to deliver a method to

allow the analysis of activities with an aim to observe the past and subse-

quently, adapt future behaviour.

Section 4.1, introduces the AREA architecture. Section 4.2 illustrates the

steps required to describe the sensors and their environment. Section 4.3

describes the process of providing structure to the sensor data. Section 4.4

explains how sensor data is integrated with related context. Sections 4.5 and

4.6 present a brief overview of the application of user-defined enrichment and

the automated system-defined enrichment processes respectively, which are

covered in more detail in chapters 5 and 6. AREA is summarised in Section

4.7.

64

4.1 Overview

The core contribution of this dissertation is the Activity Retrieval for En-

richment and Analysis (AREA) framework. The motivation behind AREA

is to allow scientists to structure, interpret, query and analyse heteroge-

neous sensor data using a simple set of tools. As described in chapter 3,

the data output from multiple sensors presents a number of issues, relat-

ing to the requirements of the scientists deploying sensors. The challenge

is to provide a generic mechanism for modelling sensors and other concepts

(subject and deployments) and their relationships which can be understood

and used by knowledge workers wishing to analyse this data. The broad

aims are: integrating multiple sources of information, enabling a knowledge

worker to design and improve techniques for discovering new knowledge (us-

ing user-controlled query profiles), allowing the sensor data to be queried

using a standard query language and deploying automated activity analysis

to discover new information (using dataset profiles).

There are three types of profile. Enablement profiles include sensor, sub-

ject and deployment profiles. User-controlled enrichment is performed by

applying update and extension query profiles. Finally, metadata analy-

sis allows system-defined enrichment to take place using an approach where

AREA generates another profile: the dataset profile.

A high-level illustration of the approach taken is shown in Figure 4.1. What

the AREA framework provides is a generic process for bridging the seman-

tic gap between user requirements and the basic sensor output. While there

will always be some level of user interaction, AREA provides the necessary

structure and tools to allow sensor output and semantics to be integrated

irrespective of the deployment environment, subject or sensors. As illus-

trated, there are sensors deployed in multiple instances, each measuring

different subjects. To represent this context are the following concepts: the

sensors, deployments and subjects (or participants) involved. Each con-

65

Figure 4.1: The AREA System Architecture (High level)

cept is modelled as a profile. This context information is recorded by a

user prior to a deployment. Having a standard mechanism for describing

the {sensor, subject, deployment} triple allows a generic transformation of

sensor data to take place following any deployment. Later stages allow a

knowledge worker to extend the dataset structure. These structural updates

are then available to all user types (as defined in chapter 1).

An overview of the operating architecture is shown in Figure 4.2, which

shows the flow of sensor data and user interaction throughout AREA. Each

process is numbered for ease of discussion. The approach ensures that once

the required context (profiles) are defined during context initialisation (sec-

tion 4.2), any sensor data can be interpreted by a scientist without the need

for manual annotation for each experiment.

4.1.1 Design Criteria

Following on from the analysis of the information needs of different knowl-

edge workers and the technical restraints of the sensors used in the previous

66

Figure 4.2: The AREA Operating Architecture

chapter, there is a need for a complete framework to structure, interpret,

query and analyse these sensor sources. The AREA framework takes these

four broad requirements as input to the overall design. The solution must

be modular, allowing additional sensors or participants when necessary. In

addition, queries must be simple to express to an average user. Due to the

different domain requirements, a knowledge worker is always going to be part

of the solution. The challenge is in enabling this worker to impose context

on the sensor data, thus allowing simple querying for complex information

needs. Therefore, a solution must be extensible in terms of context. Table

4.1 shows the design criteria for AREA, which when complete will meet the

functional requirments first introduced in section 1.3.2.

4.1.2 Chapter Roadmap

The AREA framework, defined by this dissertation, is presented in this

chapter. Each of the processors involved in bridging the semantic gap are

67

Criteria Description

Simple Setup Definition of sensors, subjects and deployments

Interoperable format Structured data format to allow querying

Simple Querying User can query data directly

On-the-fly Update Allow the user to change structure and content of the dataset

Automated Analysis Analysis of data and user-defined context to suggest improvements

Table 4.1: Design Criteria for AREA

labelled P0 - P5 in Figure 4.2. In this chapter, section 4.2 describes context

initialisation (P0). Section 4.3 details the process of sensor enablement (P1)

and section 4.4 the process of context integration (P2). The data transfor-

mation process (P3) and automated activity analysis (P4) are covered in

sections 4.5 and 4.6 respectively with further discussion in chapters 5 and

6. Finally, query formulation (P5) is detailed later in chapter 7.

The chapter will proceed with a full description of the basic processes and

finish with an overview of the complex components which form the basis of

subsequent chapters.

4.2 Context Initialisation (P0)

Before processing of sensor data takes place, it is necessary that the system

has some knowledge of the activity taking place. Thus, an initialisation

of basic information about the hardware setup (sensors), deployments and

subjects is specified and stored in the metabase as context data. Context

initialisation generates an instance of sensor, deployment and subject

profiles for each scenario or activity. These profiles have the role of provid-

ing relevant structural and contextual information to a deployment of sensor

devices. Profiles are stored in the metabase, to be later used as query param-

eters or to be used by knowledge workers to update with additional context

if necessary. They are also necessary in the process of sensor enablement

(P1) and context integration (P2).

68

It is necessary to identify information required to describe any sensor, de-

ployment or subject in order to provide generic descriptions of these con-

cepts. In the case of sensors, it is assumed that the scientist identifies each

sensor with a name, id and type. To interpret sensor readings it is necessary

to model the timing protocol for each sensor. As sensors record a vast range

of properties, any framework must be able to interpret sensor data in terms

of its output. Thus, an expandable list of sensor fields are defined in terms

of their format and scale. This solution will provide a framework to define

sensor output, deployment environments, and subject properties, which can

later be merged as necessary using a wrapper class - which encapsulates the

underlying subject and deployment information with sensor data.

4.2.1 Sensor Profile

A Sensor profile is an XML template formally describing the output from

a sensor. The sensor profile defines the sensors involved in the deployment

in terms of its key properties: what it is recording, in what measuring unit,

what these values represent. Once a sensor profile is defined it can be used

as the basis for describing that type of sensor in any environment. These

profiles are used to perform the necessary data operations in the sensor

enablement stage, providing the basic structure to sensor data. Definition

4.1 shows the XML Schema for a sensor profile.

Definition 4.1 Sensor Profile Schema

1<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="value"><xs:simpleType><xs:restriction base="xs:string"/>

3 </xs:simpleType></xs:element>

4 <xs:element name="type"><xs:simpleType><xs:restriction base="xs:string"/>

5 </xs:simpleType></xs:element>

6 <xs:element name="timing"><xs:complexType><xs:sequence>

7 <xs:element ref="format"/>

8 <xs:element ref="sampleRate"/>

9 <xs:element ref="startTime"/>

10 </xs:sequence></xs:complexType>

69

11 </xs:element>

12 <xs:element name="startTime">

13 <xs:simpleType><xs:restriction base="xs:dateTime"/></xs:simpleType>

14 </xs:element><xs:element name="scale">

15 <xs:simpleType><xs:restriction base="xs:string"/></xs:simpleType>

16 </xs:element>

17 <xs:element name="sampleRate"><xs:simpleType><xs:restriction base="xs:string"/>

18 </xs:simpleType></xs:element>

19 <xs:element name="name"><xs:simpleType><xs:restriction base="xs:string"/>

20 </xs:simpleType></xs:element>

21 <xs:element name="id"><xs:simpleType><xs:restriction base="xs:int"/>

22 </xs:simpleType></xs:element>

23 <xs:element name="format"><xs:simpleType><xs:restriction base="xs:string"/>

24 </xs:simpleType></xs:element>

25 <xs:element name="fields"><xs:complexType>

26 <xs:sequence><xs:element ref="field" maxOccurs="unbounded"/>

27 </xs:sequence></xs:complexType>

28 </xs:element>

29 <xs:element name="field"><xs:complexType><xs:sequence>

30 <xs:element ref="name"/>

31 <xs:element ref="scale"/>

32 <xs:element ref="value"/>

33 </xs:sequence></xs:complexType></xs:element>

34 <xs:element name="SensorProfile"><xs:complexType><xs:sequence>

35 <xs:element ref="id"/>

36 <xs:element ref="name"/>

37 <xs:element ref="type"/>

38 <xs:element ref="timing"/>

39 <xs:element ref="fields"/>

40 </xs:sequence></xs:complexType>

41</xs:element>

42</xs:schema>

The sensor profile has five main elements used to describe a sensors output.

They are shown in Definition 4.1. The sub-elements of the <SensorProfile>

and <timing> and at least one field element are present in every sensor

profile definition. In XML schema terminology the default number of oc-

curences for an element is 1. If an element and its sub-elements occur

multiple times, MaxOccurs can be set to unbounded as is the case for the

70

field element on line 26 of Example 4.1. Similarly, setting MinOccurs = 0

defines an optional element. A brief description of each of the key elements

of the sensor profile is shown below:

• id: An integer input representing an identification value for that sensor (line 21, 35)

• name: The name of the sensor (e.g. Garmin 405) (line 36, 19)

• type: Specifies the type of sensor. Out deployments include types: accelerometer, GPS,

Ubisense, physiological, metabolic, powermeter (line 37)

• timing: Is an element to describe the timing protocol of the sensor and contains 3 sub-

elements: (lines 6-10, 38)

– format: Specifies the unit used to represent time. e.g ms (milliseconds)

– sampleRate: Specifies the sample rate set on the sensor. e.g. 30Hz (Hertz)

– startTime: Specifies the real-time that the sensor was deployed, using XML Schemas

dateTime datatype.

• fields: Consists of one or more field elements, which are individual sensor records. Each

field is defined by sub-elements: (lines 25, 29-33)

– name: Specifies the name of the field being recorded (data field)

– scale: Specifies the format of the value recorded. e.g. cm, kg, g

– value: Specifies the expected type of value for this field. e.g. integer, text

In Example 4.1, the sensor profile for a GT3X is displayed. Different

usages are presented by changing the <startTime> element. The example

shows the compulsory elements defined: id is assigned ‘1’, the profile is

named gt3x+ and is an accelerometer <type>. Timing details are set,

with 30Hz milliseconds starting at 1.30pm on 11th January specified (line

6-9). The sensor specific information is then defined, with three <field>

elements listed named (x,y and z), corresponding to a force in 3 dimensional

space, each of which have a scale of ‘g’ (g-force) as a double data input (line

11-37).

Example 4.1 Sensor Profile for ActiLife GT3X+ Accelerometer (30Hz)

1<sensorProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNames

2paceSchemaLocation="file:///C:/NewWorkspace/csv2xml/ch7/sensorProfile.xsd">

3 <id>2</id>

4 <name>gt3x+</name>

71

5 <type>accelerometer</type>

6 <timing>

7 <format>ms</format>

8 <sampleRate>30</sampleRate>

9 <startTime>2010-01-11T13:30:00</startTime>

10 </timing>

11 <fields>

12 <field>

13 <name>x</name>

14 <scale>g</scale>

15 <value>int</value>

16 </field>

17 <field>

18 <name>y</name>

19 <scale>g</scale>

20 <value>int</value>

21 </field>

22 <field>

23 <name>z</name>

24 <scale>g</scale>

25 <value>int</value>

26 </field>

27 <field>

28 <name>lux</name>

29 <scale/>

30 <value>int</value>

31 </field>

32 <field>

33 <name>incline</name>

34 <scale/>

35 <value>int</value>

36 </field>

37 </fields>

38</sensorProfile>

4.2.2 Subject Profile

A subject profile is an XML template, defined by an XML schema as shown

in Definition 4.2, of key features of a subject involved in a sensor deployment.

This includes properties such as age, weight, height and Body Mass Index

72

(BMI). Participant properties specified in the subject profiles can be reused

for multiple deployments where that participant was the subject of interest.

Definition 4.2 shows the structure of a subject profile.

Definition 4.2 Subject Profile

1<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="value" type="xs:string"/>

3 <xs:element name="subject">

4 <xs:complexType><xs:sequence>

5 <xs:element ref="id"/>

6 <xs:element ref="name"/>

7 <xs:element ref="activity"/>

8 <xs:element ref="properties"/>

9 </xs:sequence></xs:complexType>

10 </xs:element>

11 <xs:element name="scale" type="xs:string"/>

12 <xs:element name="property">

13 <xs:complexType><xs:sequence>

14 <xs:element ref="name"/>

15 <xs:element ref="scale"/>

16 <xs:element ref="value"/>

17 </xs:sequence></xs:complexType>

18 </xs:element>

19 <xs:element name="properties">

20 <xs:complexType><xs:sequence>

21 <xs:element ref="property" maxOccurs="unbounded"/>

22 </xs:sequence></xs:complexType>

23 </xs:element>

24 <xs:element name="name" type="xs:string"/>

25 <xs:element name="id" type="xs:integer"/>

26 <xs:element name="activity" type="xs:string"/>

27</xs:schema>

The subject profile has 4 main elements, all of which are compulsory. There

can be multiple <property> elements, which are extensible properties al-

lowing new characteristics to be added for each subject. For instance, an-

thropometric data such as height, weight, body mass index, etc. may be

required when querying for sensor data relating to a certain physiological

73

grouping, or where these metrics feed into personalised algorithms. The key

elements are now described:

• id: An integer input represents an identification value for that profile (line 5)

• name: A text representation that names the subject profile (line 6)

• activity: Specifies the activity type the subject engages in (horse-racing, athletics etc) (line

7)

• properties: One or more property elements representing properties of the subject. Its

sub-elements are: (lines 8, 12-23)

– name: Specifies the name of the property

– scale: Specifies the format of the value recorded

– value: Specifies a value for this property

Example 4.2 shows an instance of a subject profile for a trainee jockey. In

this case, the standard compulsory elements: <id>, <name> and <activity>

are specified as ‘1’, ‘James’ and ‘horse-racing’ respectively. Domain-specific

information can be captured in the sensor profile by using property ele-

ments. There are also five jockey-specific features as individual <property>

elements. Each of these assign a name for an element, a value for this ele-

ment and a scale for that value. For instance, the first <property> specifies

a qualification element which is defined as a text value ‘trainee’. Similarly

height and weight are assigned 145cm and 50kg respectively.

Example 4.2 Subject Profile for a trainee Jockey

1<subject xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespa

2ceSchemaLocation="file:///C:/NewWorkspace/csv2xml/ch7/subject.xsd">

3 <id>1</id>

4 <name>James</name>

5 <activityType>horse-racing</activityType>

6 <properties>

7 <property>

8 <name>qualification</name>

9 <scale>text</scale>

10 <value>trainee</value>

11 </property>

12 <property>

13 <name>sex</name>

74

14 <scale>text</scale>

15 <value>male</value>

16 </property>

17 <property>

18 <name>height</name>

19 <scale>cm</scale>

20 <value>145</value>

21 </property>

22 <property>

23 <name>weight</name>

24 <scale>kg</scale>

25 <value>50</value>

26 </property>

27 <property>

28 <name>vo2max</name>

29 <scale>mlkg</scale>

30 <value>57</value>

31 </property>

32 </properties>

33</subject>

4.2.3 Deployment Profile

A deployment profile is a formal XML representation defining interesting

features and properties of an activity and its environment such as location,

or the different sub-activities of some sport. Standard information recorded

in a deployment includes start/end times/dates, deployment ID and loca-

tion details. Specific information pertaining to an activity or deployment

is defined within the <properties> element. Definition 4.3 illustrates the

structure of the deployment profile.

Definition 4.3 Deployment Profile

1<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="value" type="xs:string"/>

3 <xs:element name="startdatetime" type="xs:dateTime"/>

4 <xs:element name="scale" type="xs:string"/>

5 <xs:element name="property">

6 <xs:complexType><xs:sequence>

75

7 <xs:element ref="name"/>

8 <xs:element ref="scale"/>

9 <xs:element ref="value"/>

10 </xs:sequence></xs:complexType>

11 </xs:element>

12 <xs:element name="properties">

13 <xs:complexType><xs:sequence>

14 <xs:element ref="property" maxOccurs="unbounded"/>

15 </xs:sequence></xs:complexType>

16 </xs:element>

17 <xs:element name="name" type="xs:string"/>

18 <xs:element name="location" type="xs:string"/>

19 <xs:element name="id" type="xs:integer"/>

20 <xs:element name="enddatetime" type="xs:dateTime"/>

21 <xs:element name="deployment">

22 <xs:complexType><xs:sequence>

23 <xs:element ref="id"/>

24 <xs:element ref="name"/>

25 <xs:element ref="location"/>

26 <xs:element ref="startdatetime"/>

27 <xs:element ref="enddatetime"/>

28 <xs:element ref="properties"/>

29 </xs:sequence></xs:complexType>

30 </xs:element>

31</xs:schema>

A deployment profile has 6 primary elements, of which 5 are compulsory.

There can be multiple deployment <property> elements. As with the

fields in the sensor profile description, the property elements are un-

bounded, and so multiple properties corresponding to a deployment can be

present.

• id: An integer input represents an identification value for that profile (line 23).

• location: Basic information about location of deployment. Can be address or indoor/outdoor

(line 25).

• name: A text representation that names the deployment profile (line 24).

• startdatetime: A start date and time is defined using the dateTime datatype for XML

schema (line 3).

• enddatetime: An end date and time is defined (line 20).

• properties: One or more properties about the deployment (line 12-16). Sub-elements:

76

– name: Specifies the name of the property.

– scale: Specifies the format of the value recorded. For example: kg.

– value: Specifies a value for this property. For example: 10.5.

Example 4.3 shows an instance of a deployment profile for an off-road

cycle race. Each of the standard elements are specified, with the start

and end times 19:30 and 09:30 on the 5th/6th January (startdatetime,

enddatetime). The domain specific properties of interest are the terrain and

cycle type details which are named in the <name> sub-element of <property>

and have their values in the <value> element, specified by the format in

scale. This structure allows any number of properties to be defined by the

end user.

Example 4.3 Deployment Profile for an off-road cycle

1<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespa

2ceSchemaLocation="file:///C:/NewWorkspace/csv2xml/ch7/deployment.xsd">

3 <id>1</id>

4 <location>outdoors</location>

5 <name>cycling</name>

6 <startdatetime>05-12-2010T19:30:00</startdatatime>

7 <enddatetime>06-12-2010T09:30:00</enddatatime>

8 <properties>

9 <property>

10 <name>terrain</name>

11 <scale>text</scale>

12 <value>offroad</value>

13 </property>

14 <property>

15 <name>cycle_type</name>

16 <scale>text</scale>

17 <value>endurance</value>

18 </property>

19 </properties>

20</deployment>

Example 4.4 shows a typical deployment profile for a search and rescue

worker based deployment. In this case the base is identified as Dublin, and

77

the workers are on call for a period of 1 day, in a dynamically changing

location.

Example 4.4 Deployment Profile for a Search and Rescue worker

1<deploymentProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespa

2ceSchemaLocation="file:///C:/NewWorkspace/csv2xml/ch7/deployment.xsd">

3 <id>1</id>

4 <name>SAR7</name>

5 <location>dynamic</location>

6 <startdatetime>2011-10-25T13:00:00</startdatetime>

7 <enddatetime>2011-10-26T13:00:00</enddatetime>

8 <properties>

9 <property>

10 <name>oncall</name>

11 <scale>text<scale/>

12 <value>true</value>

13 </property>

14 <property>

15 <name>base</name>

16 <scale>text<scale/>

17 <value>Dublin</value>

18 </property>

19 </properties>

20</deployment>

Ultimately, the end user is enabled to create their own schema, which rep-

resents the interesting features of a deployment. These features can later

form part of a condition criteria or be used as a parameter to query for other

information.

4.3 Sensor Enablement (P1)

As discussed in chapter 1, a key goal of this research is to provide services

to close the semantic gap between high level, complex information needs

and low level sensor data. As a first step a standard structured format is

applied to the initial sensed data to enable the interpretation and analysis

78

of this data. The goal of sensor enablement is to provide structure to sensor

data so that it can be interpreted and queried. At a high level, the process

transforms data using the properties specified in the profile from its initial

format (exported from sensors in csv) to XML. Sensor enablement results

in the transformation of sensor data to the Sensor Web Enablement (SWE)

compatible Extensible Markup Language. This section explains how the

Sensor Enablement Processor (SEP) overcomes the problems involved with

dealing with multiple heterogeneous sensors and shows how all sensor data is

converted to a standard format to support interoperability. Data conforming

to a standard is easier to interpret, modify and aids with normalisation.

Following context initialisation, the scientist has described a sensor’s basic

output. Sensor enablement puts in place the mechanism to automatically

impose a structured data format on raw data. This is performed using a

metadata driven approach, where sensor profiles defined during context

initialisation are used to describe the sensor data. A sample sensor profile

for an ActiLife GT3X Accelerometer was shown earlier in example 4.1.

4.3.1 Imposing a Standard Format on Sensor Data

AREA achieves the goal of providing structure to sensor data using XML

terminology. This is a two-step process:

Normalise sensor data by time Each sensors output is converted to a

.csv file representation where each row represents a set of values for a

specific time interval. Each column represents some sensed data point.

Map sensor entries to generate XML An AREA system process uses

the sensor profile and mapping rules from the repository to map each

row of the .csv file to a corresponding position in XML. A time

element is generated for each row of entries if not explicitly sensed

in the raw sensor data.

79

The process of imposing this format is illustrated in Figure 4.3. The first

step is a simple reorganisation of sensor data from its initial text based

data (comma or tab delimited) to the .csv format. The csv organises the

data in rows of entries, which can be subsequently mapped to XML. The

system then begins mapping the basic header information - the id, name,

type, timing, scale and value elements from the sensor profile to XML.

There follows a 1-to-1 mapping of every entry on each row of the csv to

a corresponding named element in the XML document. The scale and

value details are omitted from each sensor entry and are instead recorded

in an entryproperties element in order to avoid unnecessary duplication.

In some cases, the time is not directly recorded by a sensor, but is inferred

based on its sample rate and other entries. In these situations, a time will

be assigned for each entry later, during normalisation, and is not performed

during sensor enablement.

22.893, 14.67, 185, 34,

Initial format (.txt)
<SensorProfile >
<id>5</id>
<name>powertap</name>

Sensor Profile (.xsd)
, , , ,

99, 22.935, 14.67, 184,
34, 99, 22.977, 17, 184,

40, 99,

<type>power</type>
<timing>
<format>mins</format>
<sampleRate>0.5</sampleRate>
<startTime>05‐02‐11‐12:30:00</startTime>

</timing>
<fields>
<field><name>speed</name><scale>kmh</scale><value>double</value></field>
<field><name>power</name><scale>watts</scale><value>int</value></field>
<field><name>distance</name><scale>km</scale><value>int</value></field>
<field><name>cadence</name><scale>rpm</scale><value>int</value></field>

</fields>
</SensorProfile>

1Convert to Csv

For (Row 1 to N) {
Mapping Rules

22.893 14.67 185 34 99

22.935 14.67 184 34 99

22.977 17 184 40 99 ...

Csv format (csv)

For (Row 1 to N) {
map[Row i (Time i, "//entry/time")]
map[Row i (speed i, "//entry/speed")]
map[Row i (power i, "//entry/power")]
map[Row i (distance i, "//entry/distance")]
map[Row i (cadence i, "//entry/cadence")]
}

pp g

Csv format (.csv)

...<sos:time> 1373580 </sos:time>
Map to Generate
Template

2

Database

<sos:speed>14.67</sos:speed>
<sos:power>185</sos:power>

<sos:distance>34</sos:distance>
<sos:cadence>99</sos:cadence>

...

Template

Database

Figure 4.3: Sensor Enablement

80

Thus, the problem has been reduced to a simple engineering function where

sensor data is to be mapped to XML using profiles and mapping rules defined

during context initialisation.

Example 4.5 Sample Extract of PowerTap data (in csv format):

Time Speed Power Distance Cadence

22.893 14.67 185 34 99

22.935 14.67 184 34 99

22.977 17 164 40 99

23.019 17 162 40 98

To further illustrate the process, a sample set of data from a Powertap sensor

is shown in its (post step 1) .csv format in Example 4.5. The sensor profile

for this sensor is shown in Example 4.6.

Example 4.6 Sensor Profile for a Powertap

1<SensorProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/sensorProfile.xsd">

3 <id>5</id>

4 <name>powertap</name>

5 <type>power</type>

6 <timing>

7 <format>mins</format>

8 <sampleRate>0.5</sampleRate>

9 <startTime>05-02-11-12:30:00</startTime>

10 </timing>

11 <fields>

12 <field>

13 <name>speed</name>

14 <scale>kmh</scale>

15 <value>double</value>

16 </field>

17 <field>

18 <name>power</name>

19 <scale>watts</scale>

20 <value>int</value>

21 </field>

22 <field>

23 <name>distance</name>

81

24 <scale>km</scale>

25 <value>int</value>

26 </field>

27 <field>

28 <name>cadence</name>

29 <scale>rpm</scale>

30 <value>int</value>

31 </field>

32 </fields>

33</SensorProfile>

This sensor profile is then used to populate the mapping rules shown in

Definition 4.4. Finally, the sensor data itself is mapped to the new ele-

ments. The mapping function maps csv rows in sequence. In this example,

the mapping pairs are straightforward: (Time, //entry/time), (speed,

//entry/speed), (power, //entry/power), (distance, //entry/distance),

(cadence, //entry/cadence).

Definition 4.4 Pseudocode for mapping PowerTap values to XML

For (Row 1 to N)

{

map[Row i(Time i, "//entry/time")]

map[Row i(speed i, "//entry/speed")]

map[Row i(power i, "//entry/power")]

map[Row i(distance i, "//entry/distance")]

map[Row i(cadence i, "//entry/cadence")]

}

In Example 4.7, sensor data conforms to the Sensor Web Enablement (SWE)

[51] standard. In particular, the Sensor Observations Service (SOS) [50]

component is used in the transformation process (on archived data, rather

than real-time streams). SOS is used to request, filter, and retrieve obser-

vations and sensor system information from the data repositories and this,

it provides new levels of interoperability with other SWE based networks.

82

Example 4.7 PowerTap Output after Sensor Enablement

1<sos:Sensor>

2 <sos:id>5</sos:id>

3 <sos:name>powertap</sos:name>

4 <sos:type>power</sos:type>

5 <sos:timing>

6 <sos:format>mins</sos:format>

7 <sos:sampleRate>0.5</sos:sampleRate>

8 <sos:startTime>2011-02-05T12:30:00</sos:startTime>

9 </sos:timing>

10 <sos:fields>

11 <sos:entrypropterties>

12 <sos:speed><scale>kmh</scale></sos:speed>

13 <sos:power><scale>watts</scale></sos:power>

14 <sos:distance><scale>km</scale></sos:distance>

15 <sos:cadence><scale>rpm</scale></sos:cadence>

16 </sos:entrypropterties>

17 <sos:entry>

18 <sos:time>22.893</sos:time>

19 <sos:speed>14.6</sos:speed>

20 <sos:power>185</sos:power>

21 <sos:distance>34</sos:distance>

22 <sos:cadence>99</sos:cadence>

23 </sos:entry>

24 ...

25 </sos:fields>

26</sos:Sensor>

4.4 Context Integration (P2)

The role of the Context Integration Processor (CIP) is to apply initial con-

textual information to the sensor data. Typically, this is the deployment

environment details and information about the subjects (participants) be-

ing monitored. The context added is basic knowledge specified in the profiles

during context initialisation and is necessary to facilitate queries. The in-

put to the CIP is the sensor enabled data output from sensor enablement.

This section explains how profile information is merged with sensor data

83

and shows the relationships between these concepts and the sensor data.

As explained in Section 4.2, the deployment and subject profiles describe

the environmental information and participant properties associated with a

sensor deployment and are specified during context initialisation by scien-

tists. The integration of this information with sensor data, is a three step

process:

1. Time is normalised on all datasets to a millisecond (ms) offset from

the deployment start time.

2. Sensor data output from Sensor Enablement is paired with both a

subject (participant) and a deployment (activity) profile.

3. AREA transforms the sensor data and encodes contextual information

using rules from the subject and deployment profiles and the XQuery

Update Facility.

4.4.1 Normalisation and Synchronisation Steps

Normalisation rules can be deployed to provide uniform structure to the

multiple sensor outputs. For instance, a function can duplicate sensor read-

ings, providing an estimation for a higher-sampling sensor’s timestamp. A

heart rate value may only be recorded every second by a monitor. A num-

ber of functions have been devised for normalising sensor data such as a

function which averages the pre and post entries to provide a new interme-

diate entry (used for heart rate normalisation). These averages might not

always be appropriate, such as when the data is in text format, or where a

non-integer representation is not valid. In cases where duplication is not re-

quired, elements are simply omitted, saving space and improving efficiency.

Other normalisation functions convert numbers from arbitrary proprietary

ranges to a more manageable percentage representation. For the purposes

of demonstrating the AREA framework, a number of built in functions syn-

84

chronise and normalise the required information to allow deployment based

querying capabilities.

4.4.2 Pairing Sensor Output with Subjects

As a first step to contextual enrichment, it is necessary to pair the rele-

vant subject profile to the corresponding sensor output. Each subject is

described by the basic subject profile information (as they are human) and

also relevant domain-specific information, such as a job role or cyclist type

(Example 4.2). If one was to add a new user, for instance an elderly per-

son in an ambient assisted living environment, information relevant to that

profile would extend the subject profile, such as a medical condition field.

As AREA adapts a schema-less (XML) approach, this is simply a matter of

adding a new element to the subject profile.

Example 4.8 The Subject Profile (Cyclist)

1<SubjectProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/subject.xsd">

3 <id>2</id>

4 <name>cyclist02</name>

5 <activityType>Cyclist</activityType>

6 <properties>

7 <property>

8 <name>BMI</name>

9 <scale>kgm</scale>

10 <value>22</value>

11 </property>

12 <property>

13 <name>vo2max</name>

14 <scale>mlkg</scale>

15 <value>60</value>

16 </property>

17 <property>

18 <name>weight</name>

19 <scale>kg</scale>

20 <value>80</value>

21 </property>

85

22 <property>

23 <name>age</name>

24 <scale>years</scale>

25 <value>21</value>

26 </property>

27 <property>

28 <name>cyclist_type</name>

29 <scale>text</scale>

30 <value>endurance</value>

31 </property>

32 </properties>

33</SubjectProfile>

To use contextual information relating to deployment scenarios, deployment

profiles are paired with a group of sensor outputs and one or more subjects

(participants). Pairing the relevant data to the deployment profile provides

the information needed ahead of transforming the sensor data to include

this context. This step will allow the next step of merging context with

sensor data to allow queries required by the end users. The subject and

deployment profiles for the Powertap data output from sensor enablement

(Example 4.7) are shown in Examples 4.8 and 4.9.

Example 4.9 The Deployment Profile (Cycling training)

1<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/deployment.xsd">

3 <id>3</id>

4 <location>outdoors</location>

5 <name>cycling</name>

6 <startdatetime>05-12-2010-19:30:00</startdatatime>

7 <enddatetime>06-12-2010-09:30:00</enddatatime>

8 <properties>

9 <property>

10 <name>terrain</name>

11 <scale>text</scale>

12 <value>mountainous</value>

13 </property>

14 <property>

15 <name>cycle_type</name>

86

16 <scale>text</scale>

17 <value>fitness</value>

18 </property>

19 </properties>

20</deployment>

4.4.3 Merging Sensors and Subjects with a Deployment

The integration of context with sensor data is performed using an equi-

join of a triple {sensors, subjects, deployment}. In each scenario,

a deployment can have multiple subject participants and each participant

can wear multiple heterogeneous sensors. To show the impact of context

integration, a sample enriched data segment is presented in example 4.10.

The transformation embeds the subject and deployment profiles in the sce-

nario. The sensor data is then listed as a series of entries output from the

sensor enablement process. The transformation is performed using a com-

bination of Java and the XQuery Update Facility [73]. The result is a single

XML document nesting the sensors, subject, deployment details. The

steps taken to integrate the sensors is as follows:

1. A scenario is created.

2. Each subject involved with a deployment and the deployment details

are added to the scenario.

3. The sensor data for each subject are appended to their entry in the

scenario.

An example of sensor data following the merge is shown in Example 4.10.

This shows the PowerTap sensor output merged with a deployment profile

and the relevant subject profile. In this example, the scenario (id=3) in the

cycling domain corresponds to a period of time from 19:30 on 5th December

2010 to 9:30 the following day. The subject involved (cyclist02) is added

to the deployment, and a profile for the Powertap sensor is added to that

87

subject. At this point, the scenario contains all the relevant information for

the activity: deployment, subjects and sensors in one XML document.

Example 4.10 Sensor Data following Context Integration

1<sos:scenario xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/AREA.xsd">

3 <sos:id>3</sos:id>

4 <sos:location>outdoors</sos:location>

5 <sos:name>cycling</sos:name>

6 <sos:startdatetime>05-12-2010T19:30:00</sos:startdatatime>

7 <sos:enddatetime>06-12-2010T09:30:00</sos:enddatatime>

8 <sos:SubjectProfile>

9 <sos:id>2</sos:id>

10 <sos:name>cyclist02</sos:name>

11 <sos:activityType>Cyclist</sos:activityType>

12 <sos:properties>

13 <sos:property>

14 <sos:name>BMI</sos:name><sos:scale>kgm</sos:scale><sos:value>22</sos:value>

15 </sos:property>

16 <sos:property>

17 <sos:name>vo2max</sos:name><sos:scale>mlkg</sos:scale>

18 <sos:value>60</sos:value>

19 </sos:property>

20

21 </sos:properties>

22 </sos:SubjectProfile>

23 <sos:SensorDevice>

24 <sos:id>5</sos:id>

25 <sos:name>powertap</sos:name>

26 <sos:type>power</sos:type>

27 <sos:timing>

28 <sos:format>mins</sos:format>

29 <sos:sampleRate>0.5</sos:sampleRate>

30 <sos:startTime>05-12-2010T19:30:00</sos:startTime>

31 </sos:timing>

32 <sos:fields>

33 <sos:entrypropterties>

34 <sos:speed><scale>kmh</scale></sos:speed>

35 <sos:power><scale>watts</scale></sos:power>

36 <sos:distance><scale>km</scale></sos:distance>

37 <sos:cadence><scale>rpm</scale></sos:cadence>

88

38 </sos:entrypropterties>

39 <sos:entry>

40 <sos:time>22.893</sos:time>

41 <sos:speed>14.6</sos:speed>

42 <sos:power>185</sos:power>

43 <sos:distance>34</sos:distance>

44 <sos:cadence>99</sos:cadence>

45 </sos:entry>

46 ...

47 </sos:fields>

48 </sos:SensorDevice>

49</sos:scenario>

The application of context is a necessary step to add a layer of semantics

to sensor data to allow more complex analysis. Following the application

of basic contextual enrichment, the query potential of the sensor data has

improved. More focused queries on the data output from the CIP can now

be made directly by the scientist based on the deployment activity, the

participants involved and comparisons across multiple information sources

(both sensor data and profile information). For example, XQuery can now

be used to find the highest power output from Powertap where the cyclists

BMI is greater than 21 and location is outdoors.

4.5 Transforming Sensor Data and Metadata (P3)

At this stage, the queries available to the end user are still limited, and

updates to the data cannot be defined without knowledge of XQuery or some

programming language. Further enrichment will be driven by a knowledge

worker based on profiles and the schema. More complex information specific

to a domain cannot yet be easily defined by a knowledge worker. In order to

facilitate interaction with the end user, the Data Transformation Processor

(DTP) had been defined.

The goal of the user-controlled transformation process is to allow the knowl-

89

edge worker to encode knowledge at an abstract level using underlying sensor

data or external context as evidence supporting the existence of this knowl-

edge. This will allow other users - both knowledge workers and end users

to query for specific information using simple methods (a standard query

language) to obtain this potentially complex information, such as the com-

putation of energy expenditure using multiple sensor fields from multiple

sources. Information obtained can then be reused to discover new knowl-

edge. This section presents a brief introduction to the data transformation

part of the AREA framework, which is covered in detail in Chapter 5.

The information added by the scientist can be specialised or domain specific

information, observable by their expertise in the field. There is a two stage

process to data transformation. First, an update or extension query is

defined by a knowledge worker and stored in AREA’s repository. The second

stage is the application of these queries on a data set. During this process,

sensor data or its metadata description (schema) are altered, based on the

query definition.

The application of these user-defined algorithms results in semantic enrich-

ment of the underlying XML documents. Querying the results provides the

ability to improve algorithms and the identification of information which

can be used subsequently by the scientist to alter strategies or behaviours

of those being monitored. The next section describes the system-defined en-

richment process called automated activity analysis which further enhance

the functionality of the AREA framework.

4.6 Automated Activity Analysis (P4)

The goal of the Automated Activity Analysis (AAA) processor is to allow

the system to use metadata from the AREA repository to discover new

information without the intervention of the scientist. The knowledge workers

often do not appreciate the full extent of what information can be provided

90

by a sensor deployment and a system driven approach allows AREA to

suggest new levels of context. This section briefly introduces and describes

the key functions of automated activity analysis.

The design of the framework allows for statistical analysis of sensor data and

metadata. There are three modules in AAA: baseline, cluster and metadata

analysis. In baseline analysis, AREA automatically generates a statistical

analysis of a single context elements entries - that is all records of a specific

entry. In doing so, a new instance of a new profile is generated, called a

dataset profile and is stored in AREA’s repository. Cluster analysis makes

use of dataset profiles to populate key properties of a clustering algorithm

to allow the detection of clusters of similar data. Thus, AREA can exploit

information within the data to potentially improve techniques to discover

more information. In other words, cluster analysis may result in improved

classification of similar data generated by previous update query profiles.

In the third module of AAA, metadata analysis, AREA again exploits the

metadata generated by baseline analysis. The values within the update

element of an update/extenstion query profile have been classified by

baseline analysis. AREA uses this classification information to experiment

with the parameters used to generate or discover information. For instance,

where a mutable variable forms part of an algorithm to detect energy expen-

diture, AREA can deploy several similar values in parallel in an attempt to

discover the most effective value to use, or input potential future values to

predict the effect this would have on other data. Chapter 6 fully describes

the AAA processor.

4.7 Summary

This chapter discussed the processes and components that form the AREA

framework. It began by explaining the context initialisation stage and how

this is applied to the data as part of sensor enablement and then described

91

the process of context integration. The chapter proceeded with a brief

overview of how the user-controlled query profile instances interact with

context and sensor data to acquire more knowledge from the data gath-

ered in a deployment. Then, an overview of the functionality of AREA’s

AAA processor was provided. The AREA framework provides the knowl-

edge worker with the ability to meet their information needs while main-

taining a generic method of interpretation and processing of heterogeneous

sensor deployments. In the next chapter the functionality and specification

of the user-controlled data transformation process is described.

92

Chapter 5

User-Controlled

Transformations

The previous chapter described the architecture of the AREA framework and

briefly introduced the Data Transformation Processor (DTP). Following the

Sensor Enablement and Context Integration processes structure and context

has been imposed on the sensor data. Each individual sensor output has

been assigned the relevant subject (wearing that sensor) and the deployment

(environment in which it was deployed). In order to properly query the

information available following an experiment, a number of transformations

are required. There is a requirement for a mechanism to allow a knowledge

worker to incorporate new context and interesting observations and apply

new knowledge in order to extend the dataset. This user-controlled data

transformation is now presented in this chapter.

In section 5.1, the constructs involved in defining knowledge are defined.

In section 5.2, the update and extension query profiles are introduced,

which represent the user-defined instruction to extend the dataset. Section

5.3 describes how update and extension queries are applied on a dataset and

schema respectively using transformations to XQuery. Finally, in section 5.4

a summary of the user-controlled transformation process is presented.

93

5.1 Generating Context in AREA

In this section, the key constructs created by extending the dataset: context

elements are described. Following sensor enablement, context integration

and the preliminary data transformation steps (i.e. synchronisation and

normalisation) of the AREA framework, sensor data has become enriched

and associated with a sensor, subject and deployment. The result is

an XML document for each experiment which has an associated schema

description specifying the format and content of the sensor dataset. The el-

ements within these documents are context elements which can be queried

using XQuery expressions. The context elements can be used as parame-

ters to conditions and updates or as part of an XQuery expression when

extending the dataset further.

System-Defined Context Elements

Basic context elements are created and populated as a result of Sensor

Enablement (i.e. the imposition of structure) and Contextual Enrichment

processors (as described in Chapter 4), based on information in the sensor,

subject and deployment profiles. These are system-defined elements and

allow for the querying and retrieval of enabled sensor data based on deploy-

ment or subject characteristics. The context elements for a gt3x sensor

following sensor enablement are the entry name elements (e.g. <x>, <y>).

Example 5.1 shows a segment from a gt3x accelerometer output which has

been enabled. Following Context Integration, additional elements such as

<id> and <startdatetime> are added to the dataset by the system during

integration (using the mappings discussed in section 4.4) and become new

context elements.

94

Example 5.1 Single Entry XML and Raw Data

<Entry> Raw data: 87, 225, 103, 2, 0, 1, ...

<x>87</x>

<y>225</y>

<z>103</z>

<steps>2</steps>

<lux>0</lux>

<incline>1</incline>

<timestamp>4000</timestamp>

</Entry>

User-Defined Context Elements

User-defined context elements are XML elements defined by a knowledge

worker using information from other elements. These elements extend the

structure of the sensor data and are created as the result of updates defined

in a new construct, the extension query profile. The next section will

show how context elements (both system and user-defined) are used as input

parameters to conditions and updates, and how new user defined elements

are defined and created or populated by an end user.

User-defined context elements allow the user to impose concise information

into the sensor data and therefore provide new constructs to query for new

knowledge. Consider the requirement of detecting a “serve” event in tennis,

using the location coordinates of two players (provided by Ubisense sensors).

This cannot be queried by the user without some pre-processing of what a

serve means with respect to two moving players. It is query profiles

which are defined and applied on sensor data to detect this intermediate

knowledge and allow for the detection of serves. In doing so, a new context

element is defined and encoded in the sensor data. Another example of

a user-defined context element is the <speed class> element, which is

populated with a classification metric such as “low”, “moderate” or “high”

based on the <speed> system element. The result of adding this context

element to the sensor data is shown in example 5.2. The new context element

95

(<speed class>) has been encoded as a child of the <Entry> element.

Example 5.2

<Entry>

<speed>24.6</speed>

<speed_class>moderate</speed_class>

...

</Entry>

...

To explain how the user defines and populates context elements, the next

section presents the process of defining read, update and extension query

profiles.

5.2 Using Profiles to Query and Extend the Dataset

In this section, the structure of a query profile is described. The goal of

the query profile is to allow the user to both query for information and

to update and extend the dataset, to facilitate future queries of complex

requirements using simple query techniques. An extension query allows a

knowledge worker extend the AREA schema and an update query allows

the definition and and application of new context to sensors by specifying

conditions that lead to an update.

There are three operations which the end users wish to perform:

1. Query for sensor data.

2. Update the value of a context element.

3. Update AREA’s schema to allow changes to the structure of the datasets.

An Event-Condition-Action based format allows the user to perform each

operation by defining query profiles. These will enable the end user to query,

update and extend sensor datasets in a structured approach. The elements

are defined by the (partial) XML schema template in definition 5.1. The

full schema can be found in Appendix B.

96

Definition 5.1 Query Profile (abridged)

1<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="updateQuery">

3 <xs:complexType>

4 <xs:sequence>

5 <xs:element ref="name"/>

6 <xs:element ref="doc"/>

7 <xs:element ref="target"/>

8 <xs:element ref="condition"/>

9 <xs:element ref="update"/>

10 </xs:sequence>

11 </xs:complexType>

12 </xs:element>

13 <xs:element name="update">

14 <xs:complexType>

15 <xs:sequence>

16 <xs:element ref="address"/>

17 <xs:element ref="content"/>

18 </xs:sequence>

19 </xs:complexType>

20 </xs:element>

21 </xs:schema>

There are 5 main sub-elements of the updateQuery element in this profile,

each playing a part in querying and updating of sensor data. Similarly, the

extensionQuery and readQuery elements share many of these elements, as

can be seen in Appendix B. They are described below.

1. name: A unique name for this specification (line 5).

2. doc: The location where this query is to be applied (line 6).

3. target: XPath expression pointing to the location of the result required (read queries) (line

7).

4. condition: An optional condition element before an update can be triggered (line 8).

5. update: The update element is also optional and has sub-elements address and content

(line 9, 13-20). These specify the update instructions.

• address: An XPath expression for the context element to be updated or populated.

• content: A value or math equation for the value to be placed in the context element.

To illustrate the query profiles, example 5.3 from the cycling domain is

presented. In cycling, the sport scientists defined a cyclists heart rate value

97

of over 180, to correspond to high intensity. As a result they have defined a

profile which defines a high intensity metric based on all occurrences where

the heart rate (HR) is above 180. The <update> element provides the

instruction to update the node <intensity> at the path specified and

populate it with the content “high”. An update profile is invoked to populate

<intensity> with the content “high” where the condition is satisfied. The

result of applying this query profile on the sensor data is the creation of an

<intensity> context element, populated with “high” at all instances where

HR > 180. For clarity, for this and all further query profile examples, the

parent node query is omitted.

Example 5.3 Update Profile: User Searching for High Intensity Heart Rate

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2ocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>heartIntensity</name>

4 <doc>s3.xml</doc>

5 <target>/sensorProfile[name="garmin405"]/Entry</target>

6 <condition>

7 /sensorProfile[name="garmin405"]/Entry/HR > 180

8 </condition>

9 <update>

10 <address>/sensorProfile[name="garmin405"]/Entry/intensity</address>

11 <content>"high"</content>

12 </update>

13</updateQuery>

This section has provided a brief overview of the structure and layout of the

query profile. The process of applying update and extension profiles and

thus, triggering queries or updates is discussed further in Section 5.3.

5.2.1 Specifying Conditions

Definition 5.1 briefly described the condition element of a query pro-

file. Definition 5.2 described the allowable content and syntax of this el-

ement. The condition is specified by the user (via a user interface) us-

ing the grammar shown in Definition 5.2. This allows the user to make

98

use of boolean operators (booleanOps) to bind a number of smaller con-

ditions (check). These in turn can consist of equivalence checks (using

relationalOps) and numbers (number) or context elements as parame-

ters. The conditionstatement token provides the user with the ability to

target updates or discover information based on specific criteria.

Definition 5.2 E-BNF for conditionstatement

conditionstatement = check [{booleanOps check}]

check = [NOT] number relationalOps number

relationalOps = >= | != | == | <= | > | <

booleanOps = AND | OR

number = [sign] {digit} [decimalPt {digit}] | ContextElement

decimalPt = .

digit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

ContextElement = text

Example 5.4 shows a sample conditionstatement for identifying the oc-

currence of a whipping instance in the domain of horse-racing (a jockey

whipping a horse during a race). In this example, the context elements

evaluated are a mix of system (<x>) and user-defined (<gait>) elements.

The condition checks if the gt3x accelerometer on the left-hand wrist

(LHWrist) has all three axes (x,y,z) value greater than MAXVALUE (the up-

per threshold for the axis value) and that a gait context element has

the text value “fast-canter”. This is a real world requirement necessary

for scientists to identify a fast cantering horse using accelerometers. The

conditionstatement is defined using the grammar provided by the E-BNF

specification.

Example 5.4 Conditionstatement to identify a ”whipping” instance for a

jockey

<condition>

//sensorProfile[location="LHwrist"]/Entry/x > ’MAXVALUE’ AND

//sensorProfile[location="LHwrist"]/Entry/y > ’MAXVALUE’ AND

//sensorProfile[location="LHwrist"]/Entry/z > ’MAXVALUE’ AND

//sensorProfile[location="saddle"]/Entry/gait = ’fast-canter’

</condition>

99

The <condition> element’s conditionstatement token allows the knowl-

edge worker to specify the relevant criteria for identifying an event or oc-

currence. It is the role of the <update> element to specify what happens

following identification. These elements are described now.

5.2.2 Generating the Metadata

The <update> element of the query profile specify modifications to and gen-

eration of sensor data and metadata. In Example 5.5, the <address> ele-

ment contains the xpathexpression: //gt3xaccelerometer[location=LHWri

st]/entry/gait. This XPath expression is the address of the node targeted

for update. Every <update> must have an <address> associated with it. In

the example shown, an <address> element contains an XPath expression to

a context element whip. The result is to be stored as a new element in the

dataset from a gt3x accelerometer located on the left wrist, all of which is

specified by the address.

Example 5.5 Update Element for a Whip Classification Query

<update>

<address>//gt3xaccelerometer[location=LHWrist]/entry/whip</address>

<content>"leftwhip"</content>

</update>

In this example, the address refers to a gt3x Accelerometer located on the

left hand wrist (LHWrist) and forms part of the query profile for the classifi-

cation of a whipping instance, shown later in Example 5.7. The target node

(<whip>) will be the one affected by the query profile. Depending on which

write operation is taking place (an update or an insert), the data within an

existing element is altered or data is altered and metadata is extended. If

its the later operation, the new context element (<whip> for example 5.5)

is added as an optional element to the XML schema. In other words, the

schema update adds an entry for whip with a MinOccurs = 0. After this,

100

an update is invoked to make changes to the sensor data. The alteration of

the data is specified in the <content> element discussed in the next section.

5.2.3 Content Transformation

It is the role of the <content> element to specify the update to take place on

the node specified by the <address> element. As was shown in Definition

5.1, the <content> element contains the token transformstatement. The

Extended BNF (E-BNF) grammar for this is shown in Definition 5.3.

Definition 5.3 E-BNF for transformstatement

transformstatement = part [{(sign) part}]

part = num [{(operator) num}]

num = number | (transform)

number = [sign] {digit} [decimalPt {digit}]

operator = / | *

sign = - | +

decimalPt = .

digit = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

This grammar for transforming sensor data allows for mathematical calcu-

lations and the input of text values. As with the conditionstatement the

transforms can be made of smaller calculations and combined. It allows the

scientist to utilise a number of system defined functions to aid with querying

for more advanced information. These AREA functions are shown in Table

5.1, with their purpose and expected input. SUM and COUNT are implemen-

tations of the fn:sum and fn:count functionality of XQuery. RANGE allows

querying of data between two timestamps. PEAKS allows the discovery of

signal peaks in a single-data value mapping. The output for each is XML.

Example 5.6 shows a definition called accelMetric. This is a complete update

query profile for the calculation of acceleration metric. In the cycling domain

it was found that by taking 20% of the mutiplication of x, y, z values for

an accelerometer gave an estimation for the amount of acceleration activity.

The definition of this query is shown here:

101

Name Description Input

SUM(dataset) Accumulation of adding values 1 element dataset

COUNT(dataset) Number of dataset entries 1 element dataset

RANGE(dataset), time1, time2 Range of dataset for int seconds 1 element dataset, dateTime

PEAKS(dataset, threshold) Identifies Peaks in data 1 element dataset, double

DURATION(dataset, time) Specifies window of time 1 element dataset, double

Table 5.1: AREA Transformation Functions

Example 5.6 Update Query: Calculate acceleration metric

1<updateQuery>

2 <name>accelMetric</name>

3 <doc>subj01_30Jan11</doc>

4 <target>/GT3XAccelerometer[location=LHWrist]/entry/accelMetric</target>

5 <update>

6 <address>/GT3XAccelerometer[location=LHWrist]/entry/accelMetric

7 </address>

8 <content>

9 ((/GT3XAccelerometer[location=LHWrist]/entry/x *

10 /GT3XAccelerometer[location=LHWrist]/entry/y *

11 /GT3XAccelerometer[location=LHWrist]/entry/z) / 5)

12 </content>

13 </update>

14</updateQuery>

The <doc> element specifies the location of the document, corresponding to

an experiment, to be queried. This is an XML representation of the sen-

sors, nested within a subject and a deployment environment. The <target>

element identifies the node on which the query will be based. In the case

of read queries, this is the node from where the results will be retrieved.

For write queries, it is the root node for subsequent node locations. When

applied, this update query will update the node (<accelMetric>) with the

transformation specified in the <content> element. This transform com-

putes ((x*y*z)/5) to generate a single value for accelmetric (per entry).

The query profile is converted to XQuery using the AREA transform process

defined in Section 5.3.

102

A query profile is shown in Example 5.7. This example shows an update

query profile for the definition of whipping horse by a jockey (using the left

arm). The criteria for defining this update query is the three axes of an

accelerometer on the left wrist reaching their maximum value while a <gait>

context element on the saddle accelerometer has the content fast-canter. It

is assumed that <gait> (line 7) has formed part of an earlier extension

query. This node will have its value set to “leftWhip” (line 11) after the

transformation process in cases where the condition is satisfied.

Example 5.7 Query Profile to detect a left-handed horse-racing whip

1<updateQuery>

2 <name>Left-Handed-Whip</name>

3 <doc>jockeyDM_22Jun11</doc>

4 <target>/GT3XAccelerometer[location=LHWrist]</target>

5 <condition>

6 //entry/x > ’MAXVALUE’ AND //Entry/y > ’MAXVALUE’ AND //Entry/z > ’MAXVALUE’

7 AND //GT3XAccelerometer[location=saddle]/Entry/gait = ’fast-canter’

8 </condition>

9 <update>

10 <address>/Entry/whip</address>

11 <content>leftWhip</content>

12 </update>

13</updateQuery>

To allow the application of the update query in example 5.7, an extension

query shown in example 5.8 must first be applied. This will update the

AREA schema to allow the <whip> node to be present in subsequent scenario

datasets.

103

Example 5.8 Extension Profile to extend the schema with a whip node

<extensionQuery>

<name>Whip</name>

<doc>AREA</doc>

<target>//GT3XAccelerometer/Entry</target>

<update>

<address>/GT3XAccelerometer/Entry/whip</address>

</update>

</extensionQuery>

Example 5.9 shows an query profile with instructions to convert a measure-

ment value from miles to kilometres. This update query simply populates

a node called kmcovered in the scenario dataset with the kilometre value

equivalent to the mile-based (miles)) original. The result is two entries

measuring distance, one in kilometres, the other in miles.

Example 5.9 Query Profile to Convert Miles to Kilometres

1<updateQuery>

2 <name>milesToKm</name>

3 <doc>cycle2_01Feb11</doc>

4 <target>//entry/kmcovered</target>

5 <update>

6 <address>//entry/kmcovered</address>

7 <content>//entry/miles * 1.609344</content>

8 </update>

9</updateQuery>

The extension query to facilitate the structural change of adding the kmcovered

node is shown in example 5.10.

Example 5.10 Extension Profile to extend the schema with a whip node

<extensionQuery>

<name>Whip</name>

<doc>AREA</doc>

<target>//Powertap/Entry</target>

<update>

<address>/GT3XAccelerometer/entry/kmcovered</address>

</update>

</extensionQuery>

104

To illustrate the affect, a small sample of sensor data altered by these two

query profiles is shown in example 5.11.

Example 5.11 Data Before and After Applying the milesToKm Extension

1... ...

2<entry> <entry>

3

4 <miles>10.1</miles> <miles>10.1</miles>

5</entry> <kmcovered>16.254</kmcovered>

6<entry> </entry>

7 ... <entry>

8 <miles>10.3</miles> <miles>10.3</miles>

9</entry> <kmcovered>16.57</kmcovered>

10<entry> </entry>

11 ... <entry>

12 <miles>10.5</miles> <miles>10.5</miles>

13</entry> <kmcovered>16.898</kmcovered>

14... ...

This section has shown how query profiles specify the update and extension

instructions. It has introduced update and extension profiles and explained

how the end user specifies conditions and updates using defined grammars.

Upon definition, the profiles are stored as metadata in the metabase similar

to triggers in relational database systems. When a knowledge worker applies

a query, sensor metadata is created (in the case of extension queries). This

section has also illustrated the effect this has on a dataset through a series

of examples. It is during this application stage that the context elements

are created and populated or simply returned (in the case of read queries).

As with the forming of definitions, it is the end user who specifies the query

required in specific deployments. The system uses XQuery and AREA func-

tions implemented in Java to update the individual sensor data sources and

the profiles for those datasets. This enabling these new concepts or context

elements to form part of later queries or for the formation of new query pro-

files. The definition and application of profiles are specified using the query

105

definition utility of AREA and future query profiles can be defined based

on the results obtained from this application. This query formulation is

examined in detail in chapter 7, for each of the deployments described in

chapter 3.

When a query profile is applied on a dataset, the individual <doc>, <target>,

<condition>, <update> element values of the definition are mapped as pa-

rameters to a single AREA update function. Where the condition is satis-

fied, the system checks the xpathexpression address specified for the target

node. If this does not exist, it is first defined within a <update> element

and created as a child of the preceding node in the AREA schema using

XQuery. The transformstatement is evaluated using Java, and an XQuery

extension (XQuery Update Facility) inserts the result into the target ele-

ment as a child element or replaces the value in an existing element within

the scenario dataset. The mapping from AREA’s XML representation to

XQuery is fully specified in the next section.

5.3 Transforming AREA Commands

5.3.1 Introduction

This section will show how the high-level AREA profiles and commands

have a direct mapping to XQuery expressions. It is easiest to show this by

classifying the different user operations into read, data update and metadata

update expressions (extensions). AREA deliberately keeps its interface with

the end user as simple as possible and abstracts the logic and syntax of

XQuery from non-IT users. There are three commands required by the end

user. These are outlined below.

1. A pure retrieval query.

2. Update the content of existing sensor data. (Data update)

3. Update the structure of sensor data. (Metadata update)

106

This section is structured as follows. Section 5.3.2, examines the process of

read queries, those which do not alter any data or metadata. Section 5.3.3

describes how data updates are performed, and section 5.3.4 details how the

schema can be extended.

5.3.2 Command 1: Read Queries

The first case to examine is the query for basic sensor data. This is the

basic requirement of the end user: to find information recorded by sensors

for offline analysis. There is no change in data or metadata where read

queries are applied and simple relevant results are returned to the user.

Some of these queries are conditional, i.e. they require the satisfaction of

some condition to discover the required information. For instance, a simple

query may be to return all instances of heart rate, while a conditional query

may require the heart rate to be above a certain threshold in order to be

returned.

Example 5.12 Find heart rate values greater than 190

1<readQuery>

2 <name>findHighHR</name>

3 <doc>cycling01_30Jan11</doc>

4 <target>/sensorProfile[name="garmin405"]/Entry</target>

5 <condition>

6 /sensorProfile[name="garmin405"]//Entry/HR > 190

7 </condition>

8</readQuery>

Example 5.12 presents a sample read query. Assume there is a requirement

from the cycling domain, which seeks heart rate data for all instances where

a cyclists heart rate exceeds 190bpm (beats per minute). The XQuery ex-

pression for read queries is shown in Definition 5.4. The generic expression

requires 3 tokens (P1, P2, P3) from the query profile specified in Definition

5.5.

107

The mapping pairs are straightforward: (doc, P1), (target, P2), (condition,

P3). Thus, the tokens P1, P2, P3 in the XQuery expression are replaced

with the values from <doc>, <target> and <condition>. Each query is

stored in the AREA repository upon definition. The XML format facilitates

future query application on the same scenario dataset following any changes.

Similarly, the queries can be performed on other documents.

Definition 5.4 AREA: Simple Retrieval Query (XQuery Template)

for $a in doc("P1")P2

where P3

return $a

Definition 5.5 AREA: Read Query Function

<readQuery>

<name>NAME</name>

<doc>P1</doc>

<target>red{P2}</target>

<condition>P3</condition>

</readQuery>

All the relevant information for querying the sensor deployment in Exam-

ple 5.12 (cycling01 30Jan11.xml) is provided within the query profile. In

order to detect the heart rate values as required in Example 5.12, the query

is expressed based on the mapping of the tokens. In other words, the XML

contents are converted to the relavent XQuery, as can be seen in example

5.13.

Example 5.13 Find heart rate values greater than 190 (XQuery)

for $a in doc("cycling01_30Jan11.xml")//HR

where //HR > 190

return $a

5.3.3 Command 2: Update Queries

Update queries facilitate changes to the dataset based on some criteria.

AREA facilitates the application of updates using one of two functions.

108

In the first, existing nodes or elements within a scenario dataset are up-

dated with new context. The update function is presented in definition 5.6,

taking the parameters from the update query (definition 5.7), as labelled

P1-P5. Again the mapping is straightforward: (doc, P1), (target, P2),

(condition, P3), (address, P4), (content, P5). Thus, the tokens P1,

P2, P3, P4, P5 in the XQuery expression are replaced with the values from

<doc>, <target>, <condition>, <address> and <content>. The update

query profile is stored in AREA’s repository to be applied when necessary.

As the mapping is fixed, it allows the user to periodically update entire

datasets of information using the same query profiles. A set of specialised

update queries can be applied on a scenario, reducing the requirement of

building new queries.

Definition 5.6 AREA: Update Function (XQuery Template)

for $a in doc("P1")P2

where P3

return replace value at node P5 with P4

Definition 5.7 AREA Update Query Function

<updateQuery>

<name>NAME</name>

<doc>P1</doc>

<target>P2</target>

<condition>P3</condition>

<update>

<address>P4</address>

<content>P5</content>

</update>

</updateQuery>

To illustrate the mapping, example 5.14 shows a “lateral” pedal pivot in

cycling. This update is required by sports scientists in order to discover

the position at which most power is exerted upon the pedal by the cyclist.

Based on (x,y) coordinates of an accelerometer located on the cyclists ankle,

it is similar to the elements in a read query, with an additional element

109

<update> and its sub-elements as described by Example 5.1. The goal is

to populate a <pedal pivot> element with the content ”lateral”.

Example 5.14 Update Query Profile to define a lateral pivot point

<updateQuery>

<name>identifyLateralPivot</name>

<doc>cyclist01 30Jun11</doc>

<target>//gt3xaccelerometer[location=ankle]</target>

<condition>

//gt3xaccelerometer[location=ankle]//x < 200

AND //gt3xaccelerometer[location=ankle]//x > 120

AND //gt3xaccelerometer[location=ankle]//y > 10

AND //gt3xaccelerometer[location=ankle]//y < 200

</condition>

<update>

<address>//gt3xaccelerometer[location=ankle]/entry/pedal pivot</address>

<content>"lateral"</content>

</update>

</updateQuery>

The XQuery equivalent for example 5.14 is shown in example 5.15.

Example 5.15 XQuery for defining a lateral pivot point

for $a in doc("cyclist01_30Jun11.xml")//gt3xaccelerometer[location=ankle]

where //gt3xaccelerometer[location=ankle]//x < 200

AND //gt3xaccelerometer[location=ankle]//x > 120

AND //gt3xaccelerometer[location=ankle]//y > 10

AND //gt3xaccelerometer[location=ankle]//y < 200

return replace value of node //gt3xaccelerometer[location=ankle]/entry/pedal_pivot

with "lateral"

In this example, the tokens P4 <address>: “//gt3xaccelerometer[locati

on= ankle]/entry/pedal pivot” and P5: <content>: “lateral” are mapped

to an XQuery Update function (replace value of node pedal pivot with lat-

eral). Should the scientist wish to apply this update on another scenario’s

dataset, the <doc> value can be changed to reflect this and the update query

applied as before.

110

The second AREA update function inserts new nodes populated with data

into a scenario’s dataset. The schema is assumed to have been extended to

reflect these new nodes (using the approach described in the next section).

This update uses a different XQuery expression to the update of existing

data. The XQuery expression for these updates is of the form: insert node

< / > after xpathexpression. The template for the insert update function

is shown in definition 5.8. The input parameters are the same as those in

definition 5.7.

Definition 5.8 AREA: Insert Update Function (XQuery Template)

for $a in doc("P1")P2

where P3

return insert node <P4>P5<P4> after P4.parent

As with the previous update, the mapping is straightforward: (doc, P1),

(target, P2), (condition, P3), (address, P4), (content, P5). Thus,

the tokens P1, P2, P3, P4, P5 in the XQuery expression are replaced with the

values from <doc>, <target>, <condition>, <address> and <content>.

The AREA insert function (definition 5.9) differs from the update function

in that a new node is inserted with its data at the address specified.

The mappings are now illustrated through a sample update query: example

5.16. This shows the structure of an update query to populate a node

intensity with text based on a heart rate value.

Example 5.16 Identifying a High Intensity

<updateQuery>

<name>highheartintensity</name>

<doc>jockey01_12May11</doc>

<target>/HRM/entry</target>

<condition>

//HR > 180

</condition>

<update>

<address>//entry/intensity</address>

111

<content>high</content>

</update>

</updateQuery>

The scenario dataset update for example 5.16 is mapped to the XQuery

function in example 5.17.

Example 5.17 High Intensity Scenario Update

for $a in doc("jockey01_12May11.xml")//entry

where //HR > 180

return insert node <intensity>high</intensity> after //entry

5.3.4 Command 3: Metadata Update Queries

There will be situations where the scientist will require new knowledge to

be added to the schema, requiring a schema extension or metadata update.

In effect, a new node is created in the XML metadata tree. In example

5.16, the schema has an <intensity> node created at the address specified.

AREA defines this node as an optional element, thereby not enforcing its

requirement for each parent node in the datasets. Example 5.18 shows the

XQuery representation of the edits required to the XML schema for the

high intensity extension query (example 5.16). The target document is the

AREA schema (.xsd format).

Definition 5.9 AREA: Metadata Update Function (XQuery Template)

insert node P3 as last into doc("P1.xsd")/P2

Definition 5.10 AREA Extension Query Function

<extensionQuery>

<name>NAME</name>

<doc>P1</doc>

<target>P2</target>

<update>

<address>P3</address>

</update>

</extensionQuery>

112

To illustrate the application of this function, the XQuery expression for the

extension of the AREA schema in example 5.16 is shown in example 5.18.

Example 5.18 Intensity AREA Schema Update

insert node <intensity> as last into doc("AREA.xsd")//HRM/entry

In example 5.18, the schema has a new node (intensity) inserted at the

location specified (//entry). This will facilitate structural changes to sce-

nario datasets, i.e. allow the user to apply different levels of intensity using

AREA update queries.

5.4 Summary

The user-controlled transformation process defined in this chapter allows the

user to interact and alter the sensor data gathered. Two types of users are

envisaged. A knowledge worker can now apply progressively more complex

context to the data, and scientists or technicians can now query this data

using simpler methods. The knowledge worker adds this information by

defining conditions and updates within new update and extension query

profiles, which are then applied on relevant datasets. Chapter 7 will show

how a simple user interface allows the expression of queries, and easy def-

inition of profiles. AREA provides a structured method of applying data

and metadata updates and thus, provides the ability to iteratively define

and improve user-defined algorithms to achieve the information needs of

the user. The schema representation of the data is continually updated in

AREA by the knowledge worker to reflect the extensions, and the result-

ing dataset is queryable using XQuery or simple user interface. All query

profiles are stored in AREA’s repository, allowing subsequent updating of

sensor data and metadata using simple means. However, to make use of

automated techniques would improve productivity and lead to the discovery

of new information not previously known by the deploying scientist. In the

113

next chapter, the approach to automated activity analysis is detailed. Its

inclusion allows the user to take advantage of automated algorithms and

metadata to potentially improve the results obtained.

114

Chapter 6

Automated Activity Analysis

In the previous chapter, the AREA framework, which facilitates the defini-

tion and application of knowledge on a sensor dataset was described. The

query profiles can be applied where necessary to further enrich data with

extracted information. This process allows later analysis of complex data

using simple structured queries. However, all of this assumes the user knows

precisely what to search for. In some cases, the user does not appreciate

the potential benefits from the vast amounts of sensor data gathered. In

this chapter, a toolkit for AREA is presented, which will aid the user in

identifying information not known in advance.

Section 6.1, provides a broad overview of the approach to automated anal-

ysis, and the potential benefits for the end user. Section 6.2 presents the

methodology for analysing and classifying data returned from queries or up-

dates. Section 6.3 describes the process of applying clustering algorithms to

detect patterns in the sensor data using metadata from the AREA reposi-

tory. Section 6.4, explains how the results from baseline analysis can influ-

ence the user and show how techniques can be altered to discover new or

more accurate information. Section 6.5 presents a summary of the function-

ality of the AREA framework’s automated analysis capabilities.

115

6.1 Broad Strategy to Automating Analysis

The process of closing the semantic gap between information needs and

heterogeneous sensor data began with defining three constructs: sensor,

subject and deployment profiles to describe sensors, participants and sensor

deployments respectively. For each sensor deployment, the relevant profiles

have been merged. The end user can subsequently interact with the sensor

data through a fourth construct, the query profile to update and extend

the data set. This facilitates the application of users’ own techniques and

algorithms to identify, detect and impose context. This suits a user who

knows precisely what the information needs are, and the process to acquire

this information. However, due to the complexity of sensors output and the

vast quantity of information gathered, there is often some characteristics or

properties of a deployment not noticed or understood by the user. In many

cases, the user does not fully understand the potential benefits of analysing

the sensor data to discover this information. This chapter presents a toolkit

which automatically analyses previously defined profiles and sensor data in

an effort to discover interesting information, patterns or trends.

Automated Activity Analysis (AAA) is made up of 3 modules: baseline,

cluster and metadata analysis. The goal is to use existing profiles as

leverage to discovering new information automatically. Each profile type is

re-used as input to one or more of these modules.

Baseline Analysis

Baseline analysis is the process of analysing the origin and content of a

deployment’s context elements. This is necessary to provide the system with

a better understanding of valid data ranges and to facilitate the subsequent

application of clustering and metadata analysis techniques. Baseline analysis

involves the execution of a number of generic AREA functions to gather

statistical information about the data within the context element. Analysis

116

includes a function which interprets the source for the context elements

content (if not sensed directly), such as the update process undertaken to

create this content. The results obtained by executing these functions are

stored in a new construct, a fifth profile, called a dataset profile. This

chapter will show how this construct’s content will then feed into the cluster

and metadata analysis modules.

Cluster Analysis

Chapter 5 described AREA’s approach to allowing users to define classifica-

tions using query profiles. In some cases, initial classifications may not be

entirely accurate, and may be more of an estimation. In addition, some pat-

terns in sensor data may be missed altogether by the end user. This chapter

shows how cluster analysis is exploited by AREA without the need for

user interaction. This chapter will demonstrate how metadata (from the

dataset profile) is used to populate key properties of a clustering algorithm

to allow the detection of clusters of similar data.

Metadata Analysis

To prompt the user with potentially better techniques (i.e. Better query

profile definitions) there is an additional module of metadata analysis pro-

vided in section 6.4. This makes use of information from baseline analysis

to apply variations of the respective query profile updates in an effort to

improve the results obtained. This is advantageous where an end user does

not have a set technique for discovering some information, and is instead tri-

alling different variables or algorithms. In other words, the update query

profile definitions are experimental. AREA automatically applies multiple

versions of an update using different values for those variables which muta-

ble. For example, the scientist may wish to replicate the value for energy

expenditure as output from a specialised sensor, by using different sensors

117

(accelerometers) and inputing some scaling factor as part of an update query

to discover this second energy expenditure value. As this is not well-defined,

and may differ from deployment to deployment or with different athletes, ap-

plying multiple similar versions for detecting this value can result in better

efficiency for the user.

6.2 Baseline Analysis of Activity Data

As a first step to automated analysis, a method for analysing individual

datasets to determine their basic properties is provided. In this context, an

individual dataset is a set of all entries for a single context element - either

system or user-defined. The analysis includes numerical operations, and

operations to measure or count text content throughout a dataset. In this

section AREA’s approach to analysing the source of the information (the

queries which led to their creation) is desribed, as is construct generated as

a result: the dataset profile. This information will provide the system with

additional knowledge about a dataset, such as unique counts and statistical

information (median, mean etc.), to continue analysing for complex features

(by using the subsequent cluster and metadata analysis modules).

6.2.1 Analysing Sets of Sensor and Transformation Data

Setting the target for analysis is simply a case of mapping to one of two

types of data set: one consisting of all values for a sensed field (e.g. all heart

rate values for some subject) or one from values created by some trans-

formation (equation). The content of the target node is specified by an

XPath expression. It is at this stage that a set of operations are performed

based on the type of data (numeric, text), provided by the sensor profile

of the device recording the data, or inferred from the input of parameters

to discover the properties of that dataset. The results achieved are auto-

118

matically generated by AREA in an instance of a new metadata construct:

the dataset profile. To describe this process, an example: the heart rate of

a cyclist recorded during a training exercise over a mountainous terrain is

introduced. Example 6.1 shows a sample set of heart rate values obtained by

an XPath expression for heart rate. To demonstrate the result of applying

this process, this sample represents a subset from a larger dataset.

Example 6.1 Subset of Heart Rate Sensor Data

<HR>99</HR>

<HR>100</HR>

<HR>104</HR>

<HR>109</HR>

<HR>114</HR>

<HR>120</HR>

<HR>122</HR>

<HR>126</HR>

<HR>128</HR>

<HR>131</HR>

<HR>134</HR>

<HR>134</HR>

<HR>136</HR>

<HR>140</HR>

<HR>141</HR>

<HR>142</HR>

<HR>146</HR>

<HR>151</HR>

<HR>153</HR>

<HR>153</HR>

<HR>152</HR>

<HR>151</HR>

<HR>150</HR>

6.2.2 Evaluating the Set of Data Obtained

Once the set of data to be analysed has been identified, the generic func-

tions are executed to summarise the properties for this data point in the

deployment. In example 6.1, the heart rate monitor (Garmin 405) records

data as numerical integers. Thus, AREA executes numerical operations on

119

the data to discover key properties such as median, mean and standard de-

viation. The operations performed and their definitions are shown in table

6.1, along with the results for each when applied to the data in example

6.1. The count and countunique operators will be executed in cases of

text-based baseline analysis. In cases where the data being analysed is non-

numerical, such as text descriptions, only valid operations are performed:

count, countunique, updateConstruct and conditionConstruct oper-

ations.

Operation Description Result

Maximum The largest number (numerical) 153

Minimum The smallest number (numerical) 99

Mean The average of a set of numbers (numerical) 132

Standard Deviation Variation from the mean (numerical) 17.65

Median The middle point of a set of numbers (numerical) 134

Count The amount of values in a set 22

Countunique The amount of unique values expected in a set N/A

UpdateConstruct Parameters involved in (multiple) update transformations N/A

ConditionConstruct Parameters involved in (multiple) conditions N/A

Table 6.1: Baseline Analysis Operations

A description of each of the operations performed is provided below:

• Maximum: This will calculate the largest value of a numerical set of data.

• Minimum: This will calculate the smallest value of a numerical set of data.

• Mean: This will calculate the average value of a numerical set of data.

• Standard Deviation: This calculates a value representing the variation of the data from

the average.

• Median: This calculates the numerical value separating the higher half of a set of data

from the lower half.

• Count: This counts the amount of entries in a set of data.

• Countunique: This counts the amount of potential content updates that were applied on

this set of data.

• UpdateConstruct: This operation analyses the updates used to generate the current set of

data and categorises the parameters involved.

• ConditionConstruct: This operation analyses the conditions used prior to the generation

120

of the current set of data and categorises the parameters involved

The results describe the content of the data for that dataset. This metadata

includes information such as countunique which will feed into automated

algorithms, as will be described later in the chapter. The process of analysing

the results is necessary to allow the user to understand the variability and

decide which parameters to use in future queries, or to be used or altered

in new or existing query profiles. This process feeds into both clustering

algorithms and into incrementally improving previous update and extension

queries as discussed in section 6.4.

To facilitate this, AREA collates the results of analysis in the dataset

profile. Definition 6.1 shows the structure for an dataset profile. Sim-

ple elements have been omitted here but the full version can be found in

Appendix B. These serve as evidence both for tailoring algorithms to suit

a particular deployment and as input to clustering algorithms. As with

profiles, the structure of a dataset profile is defined using XML schema.

Many of the individual elements are optional as they apply only to numeri-

cal data. For example, the median element will not be present for a dataset

profile of a text-based context element data. The updateConstruct and

conditionConstruct elements are only available when update or extension

query profile(s) have created the context element being analysed. They con-

tain the results of analysing the input parameters (condition and update)

to these profiles. Both the condition and update elements have their input

parameters categorised into one of three classifications: variables, fields and

complex. It is explained later in this chapter how this classification feeds

into incremental updates and clustering algorithms.

Definition 6.1 Dataset Profile Schema (abridged)

1<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

2 <xs:element name="updateConstruct"><xs:complexType><xs:sequence>

3 <xs:element ref="variables"/>

121

4 <xs:element ref="fields"/>

5 <xs:element ref="complex"/>

6 </xs:sequence></xs:complexType></xs:element>

7 <xs:element name="property"><xs:complexType><xs:sequence>

8 <xs:element ref="name"/>

9 <xs:element ref="value"/>

10 </xs:sequence></xs:complexType></xs:element>

11 <xs:element name="properties"><xs:complexType><xs:sequence>

12 <xs:element ref="property" maxOccurs="unbounded"/>

13 </xs:sequence></xs:complexType></xs:element>

14 <xs:element name="variables"><xs:complexType><xs:sequence>

15 <xs:element ref="name"/>

16 <xs:element ref="value"/>

17 <xs:element ref="fixed"/>

18 </xs:sequence></xs:complexType></xs:element>

19 <xs:element name="conditionConstruct"><xs:complexType><xs:sequence>

20 <xs:element ref="variables"/>

21 <xs:element ref="fields"/>

22 <xs:element ref="complex"/>

23 </xs:sequence></xs:complexType></xs:element>

24 <xs:element name="complex"><xs:complexType><xs:sequence>

25 <xs:element ref="name"/>

26 </xs:sequence></xs:complexType></xs:element>

27 <xs:element name="datasetprofile"><xs:complexType><xs:sequence>

28 <xs:element ref="id"/>

29 <xs:element ref="name"/>

30 <xs:element ref="deployment"/>

31 <xs:element ref="properties"/>

32 <xs:element ref="updateConstruct" minOccurs="0"/>

33 <xs:element ref="conditionConstruct" minOccurs="0"/>

34 </xs:sequence></xs:complexType></xs:element>

35</xs:schema>

The key elements of the dataset profile are described below:

• id: An identification value for an instance of a dataset profile. (line 28)

• name: A name for an instance of a dataset profile (line 29).

• deployment: The deployment in which this dataset was recorded (line 30).

• properties: One or more properties about the data collected during this dataset (line 31,

7-10). e.g.: Each of the operations in Table 6.1. Sub-elements:

– name: Specifies the name of the property. e.g.: Median

– value: Specifies a result for this property. For example: 10.5.

122

• updateConstruct: Each part of the update construct of the update(s) which created these

data points are listed and categorized (line 32, 2-6) Sub-elements:

– variables: Numerical values, either constant (fixed) or changeable. e.g.: 3.5

– fields: Raw data fields. For example: Heart Rate.

– complex: A data point previously defined by a query profile. For example: Intensity.

• conditionConstruct: Each part of the conditions of the updates(s) which created these

data points are listed and categorized (line 33, 19-23). Sub-elements: (same as update-

Construct)

The updateConstruct and conditionConstruct elements further categorise

the parameters of the updates and conditions respectively by naming each

field and complex element, and assigning a value to the variables. The

variables are also explicitly marked as mutable or immutable. A sample

dataset instance for the heart rate example (Table 6.1) is shown in Example

6.2. Each named property and value are on lines 7, 9, 11, and 13. This is

automatically generated by AREA.

Example 6.2 Dataset Profile for Heart Rate Deployment

1<datasetprofile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespace

2chemaLocation="datasetprofile.xsd">

3 <id>1</id>

4 <name>HeartRate</name>

5 <deployment>cyclingMar31</deployment>

6 <properties>

7 <property><name>mean</name><value>132</value>

8 </property>

9 <property><name>maximum</name><value>153</value>

10 </property>

11 <property><name>minimum</name><value>99</value>

12 </property>

13 <property><name>standarddev</name><value>17.65</value>

14 </property>

15 <property><name>median</name><value>134</value>

16 </property>

17 <property><name>count</name><value>22</value>

18 </property>

19 </properties>

20</datasetprofile>

123

Due to the dynamic nature of scenario datasets, this information allows

for the analysis of both the data itself and the metadata which created this

data (if applicable). The dataset profile generated is treated as yet more

metadata in a similar manner to dataguides [20] because the dataset can

be accessed and queried by other AREA processes. It will be demonstrated

later how this metadata is used by the other 2 modules (cluster and metadata

analysis) of the AAA processor. The analysis of data aids with classification

and may lead to improved enrichment of data using query profiles. For in-

stance, an intensity metric tailored for a certain deployment may be defined

based on relative intensity for that situation. This might be a method of

discovering when the most effort was applied during a deployment. Analysis

of the range of heart rate, respiration rate and other metrics will provide us

with the range of values recorded, and by using these a profile for intensity

can be derived. This might be an improvement on previously user-defined

query profiles for classifying intensity. This provides flexibility to AREA

while maintaining simplicity. The next section explains how data analysis

technques are further utilised to detect potentially interesting patterns in the

sensor data and how metadata guides the configuration of these techniques.

6.3 Cluster Analysis

AREA employs clustering as a means of detecting patterns in sensor data.

This can benefit the user in that it provides an automated means of discov-

ering groups of similar data within a data set. This may be used to improve

current approaches, or to experiment with different data sources to identify

interesting information such as a group of athletes with similar work energy

relative to age values. A clustering process groups together objects which

are similar to each other and dissimilar to objects in other clusters [31]. In

this section, the clustering process is described to demonstrate how it can

be used with dataset profile instances to discover information such as the

124

discovery of different intensity levels of a group of athletes.

K-means is an exclusive clustering algorithm [70], meaning each point is as-

sociated with only one cluster. K-means clustering was chosen as it allows

the configuration of k. Metadata can thus be used as input to populate

the algorithms prior to execution. In addition, k can be set by the end

user when required. ‘k’ represents the number of clusters and in AREA, its

initial value is derived from the dataset profile in cases where the algo-

rithm is to replace or improve a classification. The conditionConstruct

and countunique elements from the dataset profile contains the information

for setting up the clusting process. Clustering can have multiple dimen-

sions, with different distance algorithms used depending on the amount of

dimensions being analysed. If more than 2 dimensions are involved in the

algorithm, multi-dimensional points are plotted (but not graphically repre-

sented) and the distance formula is altered. To demonstrate the operation

and effectiveness of clustering, specifically k-means clustering, an example

from cycling i presented. For simplicity two dimensions are considered,

recorded by the same device - heart rate and respiration rate. This allows

the graphing of data on two axes.

Example 6.3 Dataset Profile Instance Resulting from Data Analysis of the

Intensity Context Element

1<datasetprofile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespace

2SchemaLocation="datasetprofile.xsd">

3 <id>7</id>

4 <name>intensity</name>

5 <deployment>wickMts</deployment>

6 <properties>

7 <property>

8 <name>count</name>

9 <value>730</value>

10 </property>

11 <property>

12 <name>countunique</name>

13 <value>3</value>

125

14 </property>

15 </properties>

16 <conditionConstruct>

17 <fields>

18 <name>heartrate</name>

19 <name>respirationrate</name>

20 </fields>

21 </conditionConstruct>

22</datasetprofile>

This dataset profile (example 6.3) is automatically generated as a result of

baseline analysis of the intensity element. The content of the intensity

elements has been created previously by 3 update query profiles (using the

process described in chapter 5), each classifying intensity as “low”, “mod-

erate” or “high”. The value of countunique, generated during baseline

analysis, is 3 (line 13) as there are 3 potential values across all instances of

intensity: (low, moderate, high). The content of the conditionConstruct

shows two fields named heartrate and respirationrate (line 18-19). As ex-

plained earlier, the conditionConstruct lists the elements involved in prior

update queries to identify where update transformations are to occur. Thus,

the heart and respiration values from a sensor were used in the condition

elements from each of the 3 user query profiles defining the intensity classi-

fication. In some cases, such as when a younger athlete is being monitored,

or a less strenuous activity is being performed, the distribution of intensity

may be different. To resolve this, the scientist can make use of AREA’s

automated cluster analysis to improve the intensity classification for that

dataset. Subsequently, for a new batch of perhaps under age children play-

ing sport, the system can suggest new centroids based on those obtained

from a similar set of data. Alternatively, AREA can prompt the user with

cluster analysis in cases where the countunique value does not match the

actual number of unique values within a set of data. This could occur if (for

instance) boundaries are set too low when trying to detect low intensity.

126

The aim is to group these values into a set of clusters. These values corre-

spond to the real-world physiological characteristics of the subjects at the

time of data collection. In this case, k can be set to 3 (representing the

countunique value) for the purpose of discovering three clusters within the

data set. The conditionConstruct specifies that the heart and respiration

rates are used to evaluate intensity. Thus, these data points are plotted

on a graph and the k-means algorithm will assign each point to a cluster.

Initially, 3 (k) points (heartrate, respirationrate) are randomly selected as

initial centre points (centroids). Table 6.2 shows a list of heart and res-

piration rates over a time period and their distance from the 3 centroids.

A centroid is a point (i.e. a heart and respiration rate pair) that is arbi-

trarily selected by AREA. Each combination is assigned an initial cluster,

corresponding to the closest centroid. The first two columns represent the

data analysis provided heartrate and respirationrate. The next three (k =

3) columns list the C1 (146,28), C2 (141,27), C3 (122,26) labels rep-

resenting the three initial centroids, and their (heart rate, respiration rate)

values. The final column lists which cluster the HeartRate, Respiration rate

is initially closest to.

The calculation of clusters on this data involves identifying some initial

centre point for the cluster and calculating the distance of every other point

from this and other centroids. The k-means algorithm re-calculates the

closest centroid multiple times until they are stable, i.e. the centroid does

not change. The clustering process results in detecting similar sets of data,

which in this example may provide a more accurate estimation of intensity.

AREA’s implementation of the k-means clustering algorithm is shown in

Algorithm 1.

127

HeartRate RespirationRate C1 (146,28) C2 (141,27) C3 (122,26) Cluster

109 24 37.2 32.1 13.2 C3

114 24 32.2 27.2 8.2 C3

120 24 26.3 21.2 2.8 C3

122 26 24.1 19 0 C3

126 25 20.2 15.1 4.1 C3

128 27 18 13 6.1 C3

131 27 15 10 9.1 C3

134 28 12 7.1 12.2 C2

134 27 12 7 12 C2

138 28 8 3.2 16.1 C2

140 28 6 1.4 18.1 C2

141 27 5.1 0 19 C2

142 26 4.5 1.4 20 C1

146 26 0 5.1 24.1 C1

Table 6.2: Two sets of data and their distance from 3 initial centroids

Algorithm 1 AREA Implementation of k-means Clustering

1. The Dataset profile for the concept (context element) to be analysed
is generated automatically. From the Dataset profile, the countunique
value is assigned to k and the conditionConstruct fields are plotted
for analysis.

2. k points are arbitrarily (randomly) selected as initial centroids for the
clusters.

3. Each other point is assigned to its nearest centroid’s cluster.

4. The centroid for each cluster is re-calculated.

5. Steps 4 and 5 are repeated until the centroids are stable.

High rates for both heart and respiration may imply a high level of intensity,

while low values for each may be low intensity. Figure 6.1 shows the points

from example 6.2, three of which are selected as initial centroids randomly

by AREA (C1 (146,28), C2 (141,27), C3 (122,26)). The distance be-

tween two points [71] (d =
√

(x2 − x1)2 + (y2 − y1)2) is calculated for each

value to each centroid, with the value assigned to the closest centroid. This

128

28 5

27.5

28

28.5

C1

26

26.5

27

Series1

Resp.
Rate

C2

C3

24 5

25

25.5

Series1

23.5

24

24.5

0 20 40 60 80 100 120 140 160

Heart Rate

Figure 6.1: Initial mapping of heart and respiration rates

means each point will be assigned to its most relevant (closest) cluster. Take

for instance the first point from table 6.2 (heartrate = 109, respirationrate

= 24). As can be seen in Table 6.2, this point is a distance of 37.2 from

C1, 32.1 from C2, and 13.2 from C3. Thus, it is assigned to C3, the closest

centroid. As the process continues, and the clusters evolve with multiple

iterations, the end result is a new machine generated classification of the

intensity metric. These results can then be compared with those achieved

using the original approach using update queries. Subsequently, the results

may be used to alter these queries, or simply used in future deployments

where the activity or subject involved are similar to those in this example.

This approach allows the identification of new clusters of potentially inter-

esting information within the data. It provides measures of data relative to

that specific instance of deployment to provide new possibilities. This could

be used to alter the low / moderate / high boundaries of the intensity algo-

rithm in cases where the data set being analysed is in a sport like golf rather

129

28 5

27.5

28

28.5

C1

26

26.5

27

Series1

Resp.
Rate

C2

C3

24 5

25

25.5

Series1

23.5

24

24.5

0 20 40 60 80 100 120 140 160

Heart Rate

Figure 6.2: Mapping the first three clusters

than the sport of cycling for which the original technique was defined (and

which has a higher level of general intensity). Likewise, different subjects

ages affects the result of heart and respiration rates. These differences are

not always uniform across all subjects with similar ages so cluster analysis

can help define the boundaries for individuals.

In the experiments (chapter 7) a real-world example of how cluster analysis

has been utilised is presented. IT shows an example where the knowledge

worker has defined an inaccurate method of classifying the intensity of ef-

fort of a cyclist during an event. The update profiles defined in an effort to

detect peak intensity has led to no instances in the data labelled as peak. It

is also demonstrated how AREA’s cluster analysis utilised the repository in-

formation to build a new classification, and how displaying this information

through a portal allowed the user to modify their original update queries.

130

6.4 Metadata Analysis

The query profile may include an update instruction and in some cases, this

update is an equation making use of sensor data, context data, mathematical

constants or arbitrary variables. These different values used to generate

data are documented and categorised by a dataset profile following baseline

analysis. The goal of metadata analysis is to provide another means of

detecting information for the user by focussing on some of the structural

(metadata) aspects of the AREA repository.

The metadata analysis module analyses the transformations described in the

<update> elements of the user defined query profiles. The goal is to exper-

iment with different values for variable parameters of a transform equation.

This makes use of the updateConstruct metadata of the dataset profile to

calculate multiple versions of the equation, each with altered values for the

variable parameter. Subtle changes may lead to better results and where

this is the case, the end user can maintain the altered value for the parame-

ter for future update operations. Take for instance the detection of a serve

in a smart space environment. The algorithms in this domain (as described

in section 3.2) had to use position and time constraints to build up more

complex query capabilities. As part of this process, a zones used to serve

must be defined. As the position from which a player serves is not fixed,

this position can vary between players. Thus, it is necessary to try different

coordinates of the court to refine the most appropriate location for a serving

zone. As this is a manually intensive process, a metadata analysis process

was implemented to suggest provisional boundaries.

6.4.1 Interpreting the Update Construct

The updateConstruct is generated (as part of the dataset Profile) when

baseline analysis is carried out on a context element. As explained in Section

6.2, baseline analysis categorises the updates used to generate a dataset into

131

one of three categories: fields, complex and variables. For variables, meta-

data analysis generates similar values to those within the update transform,

generates different output to present to the user. The remainder of this

section will explain how AREA’s approach uses the metadata from prior

system-based analysis, apply and re-evaluate algorithms to improve their

overall techniques.

6.4.2 Adapting Values of Variables

The metadata analysis of the fields category of update parameters is now

described. There are two types of variables within equations, those which

cannot be altered while keeping their meaning (such as π), and those which

form part of a user-defined algorithm (such as a scaling value of ‘0.000019’).

The AREA metadata analysis generates n (=2 in the example presented)

additional values for each “scaling” variable within the updateConstruct of

the dataset profile.

Example 6.4 Calculating work energy metric using GT3X accelerometer

x * y * z * 0.000019 * WEIGHT

Example 6.5 UpdateConstruct for Example 6.4

1 <updateProfile>

2 <fields>

3 <name>x</name>

4 <name>y</name>

5 <name>z</name>

6 <name>WEIGHT</name>

7 </fields>

8 <var>

9 <variable>

10 <name><name/>

11 <value>0.000019</value>

12 <fixed>false</fixed>

13 <variable>

14 </var>

15 </updateProfile>

132

In example 6.5, the updateConstruct for the equations in Example 6.4 is

shown. There are 4 fields: one subject profile field (weight) (line 6); three

sensor readings (x,y,z) (line 3-5); and one variable: ‘0.000019’(line 11). If two

additional variable values are to be applied, AREA generates these 1% above

and below the current value. In this case the new variables are 0.00001881

and 0.00001919. Each of the adjusted algorithms are run again with new

parameter values. Thus, 3 transformations are applied simultaneously. The

result is three data set results, such as those shown in table 6.3, where

simpler figures have been used to illustrate the process. The first (original)

uses the initial value (2), the other two use the newly generated values. If

the end user changes to one of the newer variables, a query profile for that

instance can be created. There is also an option to change the (generic)

initial update query which lead to the initial results in order to use the best

update identified on other scenarios. The data from the new, improved value

for the variable is propagated through the data set for which it is valid.

HeartRate RespirationRate 2 2.02 1.98

91 24 7.58 7.65 7.5

93 24 7.75 7.82 7.67

95 24 7.91 8 7.83

95 25 7.6 7.67 7.52

97 26 7.46 7.53 7.38

100 26 7.69 7.76 7.61

Table 6.3: The results of three slightly altered algorithms

The metadata generated in previous stages of enrichment has lead to the

identification of these elements that are important for metdata analysis (i.e.

mutable), and these suggestions allow incremental updating of query profiles

at a specialised level or at a generalised higher level. Chapter 7 details the

efforts undertaken to detect a serve zone using this approach. In brief, it was

possible to adapt the coordinates representing the serve zone after multiple

provisional zones were presented to the user via the portal. As a result, the

133

condition on which the initial update query was based was updated by the

user to reflect the best zone discovered using metadata analysis.

6.5 Summary

This chapter has described AREAs approach to automated activity analy-

sis. The chapter began by describing the generic baseline analysis of sensor

data and classification of the data generated by query profiles. Following

this, it detailed how the data gathered during this process can drive an

automated analysis of multiple data points to discover unknown patterns

or improve previous classifications using a clustering approach. It then de-

scribed how AREA can automatically guide new techniques for discovering

data by altering individual parts of update queries. The next chapter revisits

the evaluation sites from chapter 3 to demonstrate how the AREA frame-

work can be used to meet the information needs of the users, including an

evaluation of AAA.

134

Chapter 7

Experimental Analysis

Having developed an infrastructure for managing different sensors in differ-

ent deployments, the use cases from chapter 3 are now revisted. This means

satisfying the real world requirements of the specialists, and in particular

meeting the sport scientists requirements regarding event detection, event

definition and integration of data sources. To evaluate the system, queries

from each domain are implemented using AREA to determine if the nec-

essary functional requirements have been met. The following questions are

relevant to the case studies described in this chapter.

• Is the process for providing and enriching context successful in trans-

forming sensor data to enable queries?

• Can the Automated Activity Analysis processor aid the user in iden-

tifying information not known in advance?

7.1 Strategy for Query Enablement

As discussed in Chapter 4, there are three categories of profiles: enablement,

user, and system defined profiles. The enablement profiles are the sensor,

subject and deployment profiles and are defined for each deployment envi-

135

ronment by a knowledge worker familiar with this data. User-defined query

profiles are also defined by a knowledge worker who understands the mean-

ing behind different sensor and context information. They can be applied

to query, update or extend the scenario dataset and schema with additional

context. This section demonstrates the application of these queries across a

number of domains with an aim to illustrate the strategy for enabling sub-

sequent scientists to query for their information needs, without extensive

knowledge of the underlying data.

To evaluate the functionality and flexibility of the AREA framework some

of the queries presented in Chapter 3 are revisted. It is demonstrated how a

knowledge worker can apply query profiles where necessary to define context.

This context can later be queried using simple XQuery expressions or the

user interface provided by AREA, allowing scientists to access potentially

complex knowledge using basic commands. This chapter begins by stepping

through the process of defining and applying update and extension queries

in a number of different environments. It will be shown that the strategy

to achieve these query requirements is the same in each case, utilising the

definition of query profiles and applying them on a dataset. This process

is carried out by a knowledge worker, a scientist who understands the data

and applies operations on this data to achieve their information needs. The

query profiles can be defined by this user to iteratively update and improve

the dataset to be later queried by a second type of user, a scientist less

familiar with the raw data source.

7.1.1 Horse-Racing

Calculating the Total Energy Expenditure of a Jockey

To begin, Query 3 from Table 3.5 is examined: Calculate the total energy

expenditure for Jockey CG during training session S15CG (Simulator). This

query will be expressed as shown in Example 7.1 following the application

136

of relevant query profiles by the knowledge worker. This query cannot be

expressed without first defining the totalenergy context element and then,

populating it with the relevant information.

Example 7.1 Query 3 expressed in XQuery

for $a in doc("S15CG.xml")

//subject[name="CG"]/sensorProfile[location="LHWrist"]/totalenergy

return $a

The subject profile instance for jockey CG is shown in Example 7.2, the de-

ployment used for evaluation is described by the profile in Example 7.3 with

the sensors individually described by their profiles in Appendix C. Following

sensor enablement and context integration, the scenario dataset is ready for

basic queries. At this stage the required context element totalenergy does

not exist. The knowledge worker has a technique for discovering the total

energy expenditure value, using sensor data with additional context. This

technique uses a combination of information from previously validated al-

gorithms (in the sport science domain) and sensor data. The steps required

to discover this information is now desribed, illustrating how each of these

steps take place. Following this process, the new context element is created

and populated, ready to be queried using the expression in Example 7.1.

Each step uses the same strategy - A new update query profile is defined

and then applied on the dataset. An extension query profile may need to be

applied on the AREA schema prior to the update query.

137

Example 7.2 Subject Profile for Jockey CG

1<subject xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/subjectProfile.xsd">

3 <id>15</id>

4 <name>CG</name>

5 <activity>horse-racing</activity>

6 <properties>

7 <property>

8 <name>gender</name><scale></scale><value>male</value>

9 </property>

10 <property>

11 <name>age</name><scale>years</scale><value>16</value>

12 </property>

13 <property>

14 <name>height</name><scale>cm</scale><value>165</value>

15 </property>

16 <property>

17 <name>weight</name><scale>kg</scale><value>59</value>

18 </property>

19 </properties>

20</subject>

Example 7.3 Deployment Profile for Simulator Deployment

1<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/deploymentProfile.xsd">

3 <id>1</id>

4 <name>SIM</name>

5 <location>indoors</location>

6 <startdatetime>2011-03-31T19:32:00</startdatetime>

7 <enddatetime>2011-03-31T19:52:20</enddatetime>

8 <properties>

9 <property>

10 <name>session</name><scale/><value>training</value>

11 </property>

12 <property>

13 <name>simulatorID</name><scale/><value>1</value>

14 </property>

15 </properties>

16</deployment>

138

While these XML profiles may look relatively complex for the non-IT scien-

tist, a simple user interface can be used to create them, as will be shown in

section 8.1. To facilitate the query in Example 7.1, the following steps are

performed by the knowledge worker. These steps will provide the dataset

with all the parameters necessary to discover the required information - total

energy expenditure.

1. Define a query profile to insert the resting metabolic rate (RMR) for

this subject in this deployment.

2. Define a query profile to insert the thermic effect of food (TEF) for

this subject in this deployment.

3. Define a query profile to insert a scaling factor (scalingfactor) for

the subsequent steps.

4. Define a query profile to create and populate the work energy for each

Entry.

5. Define a query profile to sum all work energy values and add this value

to RMR and TEF to result in a single value for totalenergy.

Following the application of the 5 updates, the query in Example 7.1 can be

expressed to return the valid result.

Example 7.4 Update Query: Defining the resting metabolic rate (RMR)

value (Step 1)

<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

Location="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

<name>RMRvalue</name>

<doc>S15CG.xml</doc>

<target>//sensorProfile[location="LHwrist"]/RMR</target>

<condition></condition>

<update>

<address>//sensorProfile[location="LHwrist"]/RMR</address>

<content>34</content>

139

</update>

</updateQuery>

Example 7.5 Update Query: Defining the thermic effect of food value (Step

2)

<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

Location="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

<name>TEFvalue</name>

<doc>S15CG.xml</doc>

<target>//sensorProfile[location="LHwrist"]/TEF</target>

<condition></condition>

<update>

<address>//sensorProfile[location="LHwrist"]/TEF</address>

<content>34</content>

</update>

</updateQuery>

Example 7.6 Update Query: Defining a scaling factor (Step 3)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>scalingvalue</name>

4 <doc>S15CG.xml</doc>

5 <target>//sensorProfile[location="LHwrist"]/scalingfactor</target>

6 <condition></condition>

7 <update>

8 <address>//sensorProfile[location="LHwrist"]/scalingfactor</address>

9 <content>0.000019</content>

10 </update>

11</updateQuery>

Each of the updates in example 7.4, 7.5 and 7.6 can then be applied on

a dataset, providing relevant extension profiles have been applied on the

AREA schema (such as example 7.7 for the RMR element in example 7.4).

Example 7.7 Extension Profile to extend the schema with an RMR node

<extensionQuery>

<name>RMR-gt3x</name>

<doc>AREA</doc>

140

<target>//sensorProfile[name=gt3x]/Entry</target>

<update>

<address>//sensorProfile[name=gt3x]/Entry/RMR</address>

</update>

</extensionQuery>

The information in these examples 7.4, 7.5 and 7.6 has been gathered by

the knowledge worker and input using these query profiles as they are not

input during initialisation (as part of a sensor, subject or deployment pro-

file). In some cases it may be suitable to input values such as these as part

of a deployment profile - where a value applies to all subjects or sensors

involved in the deployment. Example 7.8 shows the technique for calculat-

ing the work energy value for each entry of a gt3x accelerometer, using the

axes of the accelerometer, the weight of the jockey and the scalingfactor

from example 7.6 (line 10-13). The result is stored in a new element called

workenergy (line 8), within each existing Entry elements of that sensor.

This is a more generic query profile using data previously enriched by other

profiles to identify the requirements.

Example 7.8 Update Query: Calculating Work Energy Using GT3X in

Horse-Racing (Step 4)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchema

2Location="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>workEnergyCalc</name>

4 <doc>S15CG.xml</doc>

5 <target>//sensorProfile[location="LHwrist"]/fields/Entry</target>

6 <condition></condition>

7 <update>

8 <address>//sensorProfile[location="LHwrist"]/fields/Entry/workenergy

9 </address>

10 <content>//sensorProfile[location="LHwrist"]/fields/Entry/x *

11 //sensorProfile[location="LHwrist"]/fields/Entry/y *

12 //sensorProfile[location="LHwrist"]/fields/Entry/z *

13 scalingfactor * subjectProfile//property[name=weight]/value</content>

14 </update>

15</updateQuery>

141

The final step to allowing the XQuery to be expressed is to calculate the

total energy expenditure of the subject during that deployment. Example

7.9 shows the technique for discovering this value, which adds the data

from step 1 and 2 (TEF and RMR) to the total sum of work energy values

discovered in step 4 (line 9-10). The context element totalenergy is created

as a child node of the sensorProfile element (line 8), and is populated upon

application of this update. Following the application of these five steps in

sequence, the query in Example 7.1 can be expressed to return the result

for this scenario. The results for this query are shown later in Table 8.4.

Example 7.9 Update Query: Calculating Total Energy Expenditure (Step

5)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespace

2SchemaLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>totalEnergyExp</name>

4 <doc>S15CG.xml</doc>

5 <target>//sensorProfile[location="LHwrist"]/fields/Entry/workenergy</target>

6 <condition></condition>

7 <update>

8 <address>//sensorProfile[location="LHwrist"]/totalenergy</address>

9 <content>SUM(//sensorProfile[location="LHwrist"]/fields/Entry/workenergy)

10 + RMR + TEF</content>

11 </update>

12</updateQuery>

Identifying instances where a Jockey uses a whip

Query 6: Identify all instances of a jockey whipping the horse or simulator.

To demonstrate how this query is enabled, data gathered from jockey CG is

again used. The XQuery to express this query is shown in example 7.10. As

with the query in example 7.1, the key element required to run this query

(whip) is missing from the initial dataset. The knowledge worker is looking

to discover when a whip occurs using the sensors available in the horse-

racing deployment. Scientists discovered that the accelerometer located on

142

the wrist of the jockey hits its maximum value (MAXVALUE) on all three axes

each time a whip took place. [11] As a result the knowledge worker defined

the update query shown in example 7.11 to discover a whip on the left-hand

side, and a corresponding righthandwhip (Appendix D).

Example 7.10 Query 6 expressed in XQuery

for $a in doc("S15CG.xml")//subject[name="CG"]/sensorProfile[location="wrist"]

where $a/whip="leftwhip" or $a/whip="rightwhip"

return $a/time

Example 7.11 Update Query to Identify a Left-Handed Whip

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3<updateQuery>

4 <name>lefthandedwhip</name>

5 <doc>S15CG.xml</doc>

6 <target>//sensorProfile[location="LHwrist"]/fields/Entry</target>

7 <condition>//sensorProfile[location="LHwrist"]/fields/Entry/x > MAXVALUE AND

8 //sensorProfile[location="LHwrist"]/fields/Entry/y > MAXVALUE AND

9 //sensorProfile[location="LHwrist"]/fields/Entry/z > MAXVALUE</condition>

10 <update>

11 <address>//sensorProfile[location="LHwrist"]/fields/Entry/whip</address>

12 <content>"leftwhip"</content>

13 </update>

14</updateQuery>

After the new context element <whip> ((example 7.11, righthandwhip) was

added to the AREA schema and the update query populated this element,

scientists analysed the data and discovered a number of false-positives were

being detected early in the session. As a jockey can only whip the horse when

close to top speed, the initial update was altered to include a condition that

both horse and simulator must be fast-cantering or galloping at the time of

the whip for it to be valid. To do so, a period of fast-cantering was identified

by the knowledge worker, and applied on the data using the update query

in example 7.12. This uses a time constraint to define when the simulator

143

was in a fast-canter gait (lines 6-7, 9-10). No galloping was performed in

this deployment as it is not permitted for trainee jockeys (which included

subject CG).

Example 7.12 Query Profile: Identifying where the horse is fast-cantering

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>fastcantergait</name>

4 <doc>S15CG.xml</doc>

5 <target>//sensorProfile[location="LHwrist"]/fields/Entry</target>

6 <condition>//sensorProfile[location="LHwrist"]/fields/Entry/time >= 720000 AND

7 //sensorProfile[location="LHwrist"]/fields/Entry/time < 960000</condition>

8 <update>

9 <address>//sensorProfile[location="LHwrist"]/fields/Entry/gait</address>

10 <content>"fast-canter"</content>

11 </update>

12</updateQuery>

Now with the dataset extended to include a fast-cantering gait, for which

the AREA schema has also been extended, the knowledge worker can re-

define the query profiles for discovering left and right hand whips. The

left-handed whip update is shown in Example 7.13. In this improved query

profile, the condition includes a constraint that the gait is a fast-canter at

the time the MAXVALUE threshold being reached. Thus, a combination of

detecting a fast-canter (and galloping in the case of professionals), and the

improved whip detection technique will enable the accurate identification

of whipping instances in the dataset, which can then be queried using the

XQuery expression in Example 7.10.

Example 7.13 Update Query: Left-Handed Whip Version 2 (Improved)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>lefthandedwhip2</name>

4 <doc>S15CG.xml</doc>

5 <target>//sensorProfile[location="LHwrist"]/fields/Entry</target>

6 <condition>//sensorProfile[location="LHwrist"]/fields/Entry/x > MAXVALUE AND

144

7 //sensorProfile[location="LHwrist"]/fields/Entry/y > MAXVALUE AND

8 //sensorProfile[location="LHwrist"]/fields/Entry/z > MAXVALUE AND

9 //sensorProfile[location="saddle"]/fields/Entry/gait = ’fast-canter’

10 </condition>

11 <update>

12 <address>/y/sensorProfile[location="LHwrist"]/fields/Entry/whip</address>

13 <content>"leftwhip"</content>

14 </update>

15</updateQuery>

This strategy uses the same approach as the previous query, but the steps

taken were decided by the knowledge worker as they got feedback from pre-

vious updates. In other words, they were able to adapt their understanding

of the data. Error checking the initial lefthandedwhip update showed the

weakness of the initial approach. This section has shown how AREA can

allow on-the-fly changes to the steps to enabling the queries and improving

the results obtained.

7.1.2 Search and Rescue

Classifying Quality of Sleep

The next query examined is Query 3 from Table 3.7: Does subject N have

a good quality of sleep on Day x?. This will be expressed in XQuery as

shown in Example 7.14 following the application of required query profiles

by the knowledge worker. This XQuery cannot be expressed without first

defining the sleepQualityClass context element and populating it with a

value representing the quality of sleep for that deployment.

Example 7.14 Query 3 expressed in XQuery

for $a in doc("007ES1.xml")/deployment/sleepqualityclass

return $a

This query is focussed on a single deployment of one SAR worker identified as

‘007ES’. This employee has been monitored using two gt3x+ accelerometers

145

and a Sensewear armband for two consecutive days. The days alternated

between working (on call) while at home and while resting on the base. The

rescue worker is described by his subject profile shown in Example 7.15 and

the deployment by the profile shown in Example 7.16. The sensor profiles

for the gt3x+ and Sensewear sensors deployed are shown in Appendix A.

Example 7.15 The Subject Profile for Subject 007ES

1 <subject xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2 maLocation="file:///C:/NewWorkspace/csv2xml/ch7/subjectProfile.xsd">

3 <id>7</id>

4 <name>ES</name>

5 <activity>SAR</activity>

6 <properties>

7 <property>

8 <name>BMI</name>

9 <scale>bmi</scale>

10 <value>22</value>

11 </property>

12 <property>

13 <name>age</name>

14 <scale>years</scale>

15 <value>35</value>

16 </property>

17 <property>

18 <name>gender</name>

19 <scale>text</scale>

20 <value>male</value>

21 </property>

22 <property>

23 <name>height</name>

24 <scale>cm</scale>

25 <value>175</value>

26 </property>

27 <property>

28 <name>weight</name>

29 <scale>kg</scale>

30 <value>85</value>

31 </property>

32 </properties>

33 </subject>

146

Example 7.16 The Deployment Profile for Deployment SAR7

1<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2 maLocation="file:///C:/NewWorkspace/csv2xml/ch7/deploymentProfile.xsd">

3 <id>1</id>

4 <name>SAR7</name>

5 <location>dynamic</location>

6 <startdatetime>2011-10-25T13:00:00</startdatetime>

7 <enddatetime>2011-10-26T13:00:00</enddatetime>

8 <properties>

9 <property>

10 <name>oncall</name><scale/><value>true</value>

11 </property>

12 <property>

13 <name>base</name><scale/><value>dublin</value>

14 </property>

15 </properties>

16</deployment>

The scientists approach to classifying sleep quality is the following four step

process:

1. Define a query profile to identify when the subject is sleeping.

2. Define a query profile to discover when the subject is prone - i.e. Not

moving.

3. Define a query profile to calculate the sleep quality metric, defined as

the proportion of sleeping time spent prone.

4. Define a query profile to classify the sleep quality metric, specifically

identifying good sleep quality.

Each of these four steps are defined by the query profiles shown in examples

7.17, 7.18, 7.19 and 7.20.

147

Example 7.17 Updating the Scenario with a Sleeping Element. (Step 1)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>sleepPeriod</name>

4 <doc>007ES1.xml</doc>

5 <target>//sensorProfile[location="waist"]/Entry</target>

6 <condition>//sensorProfile[location="waist"]/Entry/time > 1400000</condition>

7 <update>

8 <address>//sensorProfile[location="waist"]/Entry/sleeping</address>

9 <content>"true"</content>

10 </update>

11</updateQuery>

Before step 1 is applied, the AREA schema is extended with a new element

sleeping as a child of the Entry node. The update profile then creates

a new context element (sleeping in the scenario dataset for each entry

satisfied by the condition, and populates them with ‘true’ (line 8-9).

Example 7.18 Updating the Scenario with a Prone Element. (Step 2)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>proneSleep</name>

4 <doc>007ES1.xml</doc>

5 <target>//sensorProfile[location="waist"]/Entry</target>

6 <condition>//sensorProfile[location="waist"]/Entry/x == 0 AND

7 //sensorProfile[location="waist"]/Entry/y == 0 AND

8 //sensorProfile[location="waist"]/Entry/z == 0</condition>

9 <update>

10 <address>//sensorProfile[location="waist"]/Entry/prone</address>

11 <content>"true"</content>

12 </update>

13</updateQuery>

Step 2 extends the scenario with a new element prone as a child of the

sensorProfile node.The update then creates a new context element (prone

in the scenario dataset for each entry satisfied by the condition (x,y,z =

0) (line 6-8), and populates them with ‘true’ (line 11).

148

Example 7.19 Calculating the Sleep Quality Metric (Step 3)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>sleepQualityCalc</name>

4 <doc>007ES1.xml</doc>

5 <target>//sensorProfile[location="waist"]/Entry</target>

6 <condition></condition>

7 <update>

8 <address>/deployment/sleepquality</address>

9 <content>COUNT(//sensorProfile[location="waist"]/Entry/movement == "prone"))

10 / COUNT(//sensorProfile[location="waist"]/Entry/sleeping == "true"))

11 </content>

12 </update>

13</updateQuery>

In step 3, the sleep quality metric is calculated (line 9-10) and stored in

a single new context element (sleepqualitymetric) in the scenario data.

The schema is also updated with this new element prior to application. The

value inserted into this element is the proportion of time spent prone while

sleeping. The result is a percentage value representing sleep quality.

Example 7.20 Classifying a Good Quality of Sleep (Step 4)

1<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

2maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

3 <name>goodSleep</name>

4 <doc>007ES1.xml</doc>

5 <target>/deployment/sleepquality</target>

6 <condition>/deployment/sleepquality >= 90</condition>

7 <update>

8 <address>/deployment/sleepqualityclass</address>

9 <content>good</content>

10 </update>

11</updateQuery>

Finally in step 4, the knowledge worker classifies a sleep as “good” when the

movement is less than 10% of the sleeping period. The condition (line 6)

checks the scenario’s sleepquality value to determine if this is a good quality

149

of sleep. The AREA schema is updated with the optional sleepqualityclass

element using a previous extension query. When each of these four updates

are applied on the dataset, the query in Example 7.14 can be expressed to

find the required information.

7.1.3 Cycling

Detecting Effort Intensity and Cluster Analysis

To evaluate cluster analysis the concept of effort Intensity is reintro-

duced. This user-defined concept describes the intensity of a cyclist during

a race or training session. The scientists wish to analyse periods of peak ef-

fort intensity and subsequently analyse the time at which these occur. The

knowledge worker will define three update queries to identify poor, moderate

and peak effort. Once these changes are applied on the data, the XQuery

to discover this information is shown in example 7.21. This corresponds to

query 10 from table 3.3.

Example 7.21 Query 10 expressed in XQuery

for $a in doc("GM01.xml")/deployment/Entry/effortIntensity

return $a

A simple, one step process is required to return these results. The query

profile for peak effort is shown in example 7.22. This was defined for the

data gathered during the Wicklow mountains data set. It makes use of the

available data values, namely the speed and respiration rate of the cyclist. In

the peakEffort query, if the heart rate is greater than 180 and the repiration

rate greater than 35 (line 5-6), the context element <effortIntensity> is

updated with the text “peak” (line 8-9). Similar profiles exist for poor and

moderate effort intensity.

Example 7.22 Update Query to Identify Peak Effort Intensity

150

1<updateQuery>

2 <name>peakEffort</name>

3 <doc>wickMts1.xml</doc>

4 <target>//Entry</target>

5 <condition>//sensorProfile[name=heartrate]/Entry/HR > 180 AND

6 //sensorProfile[name=heartrate]/Entry/RR > 35

7 <update>

8 <address>//Entry/effortIntensity</address>

9 <content>peak</content>

10 </update>

11</updateQuery>

Upon applying this update to the scenario (following a metadata update of

the schema), no instances of peak effort as defined by the user were discov-

ered. However, after analysing the results, and comparing to a ground truth

(video), it was observed that some instances were being identified as moder-

ate efforts which were in fact periods of sustained effort. The reason behind

this was that the values chosen by the knowledge worker to define peak in-

tensity were not accurate; they were not designed for situations where the

cyclists natural heart and respiration values may be different depending on

environmental factors such as weather or types of terrain. To discover more

appropriate values for this situation, better values must be discovered and

applied as boundaries and a new classification required.

Example 7.23 Dataset Profile Instance for Effort Intensity

1<datasetprofile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespace

2SchemaLocation="datasetprofile.xsd">

3 <id>22</id>

4 <name>effortIntensity</name>

5 <deployment>wickMts</deployment>

6 <properties>

7 <property>

8 <name>count</name>

9 <value>3600</value>

10 </property>

11 <property>

151

12 <name>countunique</name>

13 <value>3</value>

14 </property>

15 </properties>

16 <conditionConstruct>

17 <fields>

18 <name>respirationRate</name>

19 <name>heartRate</name>

20 </fields>

21 </conditionConstruct>

22</datasetprofile>

Thus, cluster analysis was performed on the dataset, using the approach

detailed in chapter 6. This used the uniquecount from baseline analysis

(example 7.23) to populate k = 3 (line 13), and the respiration and heart rate

fields are identified from the conditionConstruct (line 18,19). The k-means

clustering algorithm was then applied using the scenario data, and three new

centroids were presented to the user through the portal. This provided an

updated classification of the effort intensity context. Further analysis

of the results from cluster analysis facilitated the user in discovering new

boundaries to use as criteria for detecting peak effort intensity.

This new classification is tailored for this data set, but may also be applicable

for other subjects with similar characteristics or with similar deployment

scenarios. Alternatively, the user can decide to use additional information

in future deployments, utilising subject profile information (if available) to

further personalise the update query.

7.1.4 Tennis

Detecting a Serve and Metadata Analysis

Evaluation included the metadata analysis module of Automated Activ-

ity Analysis (AAA). In this module, AREA automatically analyses the

updateConstruct derived from a context element during baseline analysis.

152

When defining different events in tennis, each event has to be derived from

Ubisense data only, which is location based. To facilitate this, it was nec-

essary to partition the court into different zones, on which further updates

could be built [52] [12]. One such event identified as a requirement by the

user was to identify when a player was serving. Following the identification

of serves, the XQuery shown in example 7.24 will return the relevant results

for query 1 from table 3.1.

Example 7.24 Query 1 Expressed in XQuery

for $a in doc("KV01.xml")/deployment/Entry/serve

return $a

Initial efforts detected serves based on the serving player being in a special

serving zone, while the opposing player was in a corresponding receiving

zone on the opposite side of the court. The approach to classifying serving

events is the following 3 step process.

1. Define a query profile to segment the court into zonal boundaries

2. Define a query profile to discover when a player is in a special serve

zone

3. Define a query profile for defining which combination of player posi-

tions correspond to a serve event taking place

The update query applied on the scenario to define the serving zone (on the

left of the court) is shown in example 7.25.

Example 7.25 Update Query to Identify Upper Left Serve Zone (Step 2)

1<updateQuery>

2 <name>UpperleftServeZone</name>

3 <doc>tennis10Jan.xml</doc>

4 <target>//Entry</target>

5 <condition>//Entry/x < 4.15 AND

153

6 //Entry/x > 3.15 AND

7 //Entry/y < 6.99 AND

8 //Entry/y < 5.49

9 <update>

10 <address>//Entry/serveZone</address>

11 <content>UpperleftServeZone</content>

12 </update>

13</updateQuery>

Serves

Detected 74.7%
Missed 2.2%

Two-detected as 1 18.3%
False-Positives 4.8%

Table 7.1: Detecting a Serve with Initial (v1) Boundaries [12]

When applied in combination with the other query profiles it is possible to

discover serves using this technique. Using this approach, 82% of the players

serves were initially discovered [52]. It also detected some false positives,

i.e. instances which were labelled as serves which were not serves. To

improve the technique, tweaking of the initial coordinate boundaries for the

zones was required. The aim was to improve the detection of serves without

introducing too many false positives. As this is a manually intensive process,

metadata analysis was performed instead, where the variable parameters had

their values altered slightly, for a specified number of iterations. Example

7.26 shows the updateConstruct

Example 7.26 UpdateConstruct for UpperleftServeZone 7.25

1 <updateConstruct>

2 ...

3 <var>

4 <variable>

5 <name>x1<name/>

6 <value>3.15</value>

7 <fixed>false</fixed>

154

8 <variable>

9 <variable>

10 <name>x2<name/>

11 <value>4.15</value>

12 <fixed>false</fixed>

13 <variable>

14 <variable>

15 <name>y1<name/>

16 <value>5.49</value>

17 <fixed>false</fixed>

18 <variable>

19 <variable>

20 <name>y2<name/>

21 <value>6.99</value>

22 <fixed>false</fixed>

23 <variable>

24 </var>

25 </updateConstruct>

The results for the scenario being analysed provided a new breakdown of

serves detected. The user used the portal to examine the results, and picked

the best boundaries based on cross-checking with a ground truth.

Example 7.27 Update Query to Identify Upper Left Serve Zone (version

2)

1<updateQuery>

2 <name>UpperleftServeZonev2</name>

3 <doc>tennis10Jan.xml</doc>

4 <target>//Entry</target>

5 <condition>//Entry/x < 4 AND

6 //Entry/x > 3.18 AND

7 //Entry/y < 6.5 AND

8 //Entry/y < 5.45

9 <update>

10 <address>//Entry/serveZone</address>

11 <content>UpperleftServeZone</content>

12 </update>

13</updateQuery>

155

Following metadata analysis, the best boundary for the left serve was al-

tered in the updateQuery 7.27, to be applied in subsequent queries prior to

applying updates to discover serves. Using this approach it was possible to

detect 97% of serves, and the amount of false positives was reduced to 9

instances as can be seen in table 7.2 [12]. Table 7.2 also lists the detection

of point and game boundaries as the algorithms to detect these follow on

from serve detections.

Serves Points Games

Total 72 44 6
Detected 70(97%) 43(98%) 6(100%)
Missed 2(3%) 1(2%) 0

False-Positives 9(12.5%) 0 0

Table 7.2: Detecting a Serve with Modified (v2) Boundaries [12]

More focus was on increasing the number of serve detections rather than

reducing the false positives as serves play an important part in detecting

subsequent boundaries such as points and games.

7.2 Summary

This chapter evaluated AREA in terms of its functionality and efficiency.

It was demonstrated how each of the queries introduced in chapter 3 can

be resolved by extending the dataset. This chapter also explained how the

user interface provides the necessary function of allowing the user to specify

items of interest and command the system to locate them. The benefit of au-

tomated analysis in the real world was then deonstrated. AREA’s approach

to defining query profiles allows their application in multiple deployments

and domains and the use of profiles allows a simple setup for a new sensor

deployment, ensuring genericity. It was also demonstrated that the time

taken to provide the necessary structure and semantics is within acceptable

timeframes for user interaction.

156

Chapter 8

Evaluation

In this chapter, the AREA framework is analysed and evaluated against

the functional requirements described in chapter 1. These requirements:

simple setup, querying, on-the-fly context, knowledge worker interaction and

incremental enrichment are discussed in section 8.1. Section 8.2 provides

an overview of the setup required for AREA to be deployed in additional

domains. Finally, section 8.3 details a number of complete datasets taken

from each of the evaluation sites, and measures time to enrich and query

information needs using AREA.

8.1 Meeting the Functional Requirements

8.1.1 Setup

The implementation of the context initialisation as described in section 4.2

allows the simple setup of diverse deployments. The initial set of sensor

enablement and context integration information, the sensor, subject and

deployment profile instances are defined by a knowledge worker prior to

any usage of the sensor and thus, before any data being generated. This

information is gathered using the user interface representation shown in

Figures 8.1, 8.2 and 8.3. In each case the number of properties field allows

157

the user to specify how many properties or fields are to be input as context

to describe the subject, deployment, or the sensor data output. This is

necessary as it is not know in advance the quantity or type of attributes used

to describe these concepts and is the first step of the knowledge worker.

Figure 8.1: Defining a GT3X Accelerometer Profile Instance

Figure 8.2: Defining a Subject Profile Instance for a Jockey

158

Figure 8.3: Defining a Cycling Deployment Instance

8.1.2 Querying

The functional requirements included the ability to query the sensed data

based on different criteria. Following setup, read queries such as those shown

in section 5.3.2 are now possible query profiles. The querying capabilities of

AREA are extended as the data is enriched with new information based on

previously sensed values. For instance, the identification of a “fast-canter”

event in horse-racing can be encoded within the data and returned based

on a query for that higher level information (rather than build a complex

algorithm to discover fast cantering at query runtime).

Once information is enabled and integrated by AREA’s Sensor Enablement

Processor (SEP) and Context Integration Processor (CIP), basic queries can

be expressed as the data is structured and can be interpreted. To enable

more complex queries, it is left to the user to continue adding context where

necessary using a query profile interface.

8.1.3 On-the-fly Context

Chapter 7 demonstrated how individual queries required by the end user are

made achievable by extending and transforming the dataset. This has been

159

achieved with the user-controlled Data Transformation Processor (DTP)

using a strategy of defining query profiles, which when applied add new

data or metadata (user context) to the scenario dataset and the AREA

schema. A step by step process is employed until the information needs

can be met using simple queries. The query profiles are defined using a

user interface provided by AREA. This simplifies the process of selecting

node values, defining when and where updates are applied, and allows for

the submission of simplified queries. Thus, the DTP extends the scenario

dataset as far as required by the user. As the AREA schema is extended,

different datasets can be updated. This results in a schema that can be

consulted by the user to verify the structure of data as it evolves through

iterations of extension and update query applications.

The Data Transformation Processor provides the knowledge worker the abil-

ity to discover new contextual information, and applies it on the dataset.

This is demonstrated by the examples in figures 8.4 and 8.5.

8.1.4 Knowledge Worker Interaction

The solution AREA provides to on-the-fly context provision remains a user-

driven process and is designed for the knowledge worker to drive the process.

Figure 8.4 shows the user interface for defining the update query to extend

the scenario with a sleeping element (corresponding to example 7.17). The

fields populate an instance of a query profile once submitted. The profiles

are then stored in the AREA repository. It is left to another option on the

user interface, invoked using the “Apply Update” tab, shown in figure 8.5,

to apply this query profile.

These two options allow the definition and application of each of the updates

described in section 7.1 and Appendix A, and any future updates as required.

As the scientist may not be familiar with the notation for path expressions,

each node can be selected from a drop-down list provided by AREA, based

160

Figure 8.4: User Interface: Defining an Update Query Profile

Figure 8.5: User Interface: Applying a Query Profile

on all available nodes for the current scenario. AREA expands this node

selection into a full path.

8.1.5 Incremental Enrichment

The DTP is designed to allow the definition of further context based on

context already discovered. This allows the knowledge worker to alter the

dataset incrementally as required to discover increasingly more complex in-

formation based on information identified by previous query profiles. The

ability to apply pre-defined query profiles from the AREA repository means

reusability is a simple process. For instance, in the tennis domain it is neces-

sary to categorise the court into different zones in order to later express the

161

queries in table 3.1. This is because all subsequent techniques of discovering

information are based on location. Therefore, when the user encounters a

new set of Ubisense data integrated with a scenario dataset, they can simply

run an update to apply each of the update and extension query profiles nec-

essary to provide the zone context. Afterwards, the user can apply further

query profiles as required, or build new query profiles based on this context.

8.2 Evaluating AREA Across Domains

Chapter 7 has shown how the knowledge worker can define and apply var-

ious extension and update queries on a dataset in order to meet complex

requirements. Each of the examples involved a human being monitored as

they performed in some sport or during work or rest. At a basic level, a

new sensor being deployed in any of these environments requires only the

definition of a new sensor profile to be created. Additional deployments can

also be introduced with a new deployment profile instance.

A subject profile has been designed as a human-based construct. However,

sensors deployed on objects can easily be managed by AREA. This can be

achieved with a slight alteration of the content of a subject profile instance.

When presented with a new domain or deployment environment, the follow-

ing steps ensure the ability to manage and interpret the sensor data, and

related context.

• Sensor profile - Defined for each sensor deployed to describe the sensor

data output. Can be reused if the same sensor type is deployed in mul-

tiple deployments. For example, a temperature sensor can be defined

with a sample rate of 1 second, monitoring temperature in degrees

Celsius while deployed on a vehicle. This is defined by a knowledge

worker using the sensor profile interface in figure 8.1.

• Subject profile - Defined for each subject involved in a deployment

162

to describe key features of the participant. This can be a person or

any object scientists wish to monitor. For instance, it could defined

to describe the key features of a car, with properties such as make /

model, engine size and top speed. Once defined for a subject it can be

reused in any deployment where the properties are still valid. AREA

allows flexibility in the terms used to describe the subject.

• Deployment profile - Defined for each deployment instance, it describes

the time and location and a number of properties to describe the de-

ployment. A new domain, such as a motor race might include proper-

ties such as race class, or weather conditions.

• Query profile - Defined as required by the knowledge worker to further

enrich the dataset with relevant information, using evidence from sen-

sor values, context elements and user input. In a motor racing domain,

this might include defining periods of the race when a safety car was

deployed.

This genericity is possible due to the XML representation of data. The

extensibility of XML allows the addition of new nodes where necessary, or

new datasets corresponding to different subjects, sensors or deployments.

As some of the algorithms are defined for human-based analysis, such as

the definition of energy expenditure using an accelerometer, these can be

applied in multiple domains. Providing the path to the nodes which form

the update or conditions of the queries are the same, the same query can

be applied without alteration. There may be slight alterations required if

(for instance) the accelerometer is located on a different part of the body.

In these cases, an existing query profile can simply by modified by the user

prior to its application on the new dataset.

163

8.3 Measuring Efficiency of Data Transformation

This section presents an evaluation of AREA framework’s efficiency in or-

der to determine whether the time taken to transform sensor data from its

initial format to a format extended with contextual information is reason-

able. As the goal of this work is not based on optimisation, and the data

is to be queried following deployment (rather than in real time), reasonable

times are sufficient. By reasonable, it is assumed that the user requires this

information within seconds.

Sensor Size of Initial Data (kB) Time to Enrich (s) Size of XML

gt3x+ (2) 477 0.586 3,041kB

sensewear (2) 336 0.215 1,720kB

SAR ES 813 0.801 5,761kB

GCDC 25,100 12.607 103MB

PowerTap 173 0.1 481kB

gt3x (2) 213 0.232 1,986kB

Cyclist GM 25,486 12.939 106MB

gt3x (5 indoor) 404 0.487 3,095kB

PowerTap 84 0.076 357kB

Cosmed 127 0.086 453kB

GPS 159 N/A 159kB

gt3x (5 outdoor) 428 0.6 3.8MB

Cosmed (outdoor) 82 0.061 295kB

Jockey CG 1,284 1.31 5.1MB

Ubisense (36) 14,000 8.241 49MB

Tennis VAR 14,000 8.241 49MB

Table 8.1: Conversion from Csv to XML

Table 8.1 presents a list of sensors from a deployment in each of the evalu-

ation sites: horse-racing, cycling, search and rescue and tennis. The table

details the name of the sensor, the initial data size, the time taken by AREA

to convert this to XML, and the total size of that sensors data in that de-

ployment. The total amount of values for each of the datasets examined is

also recorded. The data from the horse-racing domain has both indoor and

164

outdoor data listed in the table. As can be seen, the cycling deployment

took almost 13 seconds to enrich, primarily because of the large GCDC data

sources. The tennis dataset consists of all Ubisense information recorded in

many scenarios. The SAR, cycling and horse-racing data is from the deploy-

ment details for one specific participant.

Domain Dataset 1 Dataset 2 Dataset 3

SAR ES, 5.8MB S2, 5.9MB S3, 5.8MB

Cycling GM, 106MB P1, 26MB M1, 21MB

Horse Racing CG, 5.1MB J2, 5.3MB J3, 4.7MB

Tennis KV, 2MB B1, 2MB KV2, 2MB

Table 8.2: Dataset properties for each domain

The times displayed in table 8.1 do not include time taken for the user

to create profiles in order to enrich the dataset. This will depend on how

familiar the user is with the system, but one should bear in mind that once

the enrichment has been specified (profiles), it is not necessary to do so again.

However, three datasets in table 8.3 and the time taken (in ms) to apply

each of the query profiles (from section 7.1) to these datasets are presented.

The time to update the dataset (update queries) is measured, rather than

the schema update (extension queries). This is because a schema update

only ever involves changing one line of code on a small .xsd file. Queries

were expressed using the eXist 2.0 [18] database on an Intel core 2 Due

processor 3Ghz with 4GB RAM running Windows 7 32bit.

Table 8.2 shows the datasets used for each of the domains queried in the

remaining experiments. In each case a label representing the subject and

the size of the dataset being queried is displayed.

The queries resulting in the most updates - workenergy, sleeping and pronesleep

took the longest to execute, at between 11 and 15 seconds per dataset. This

was because these profiles involved transformations on almost every Entry

element within the data set. Simpler updates, such as RMR and TEF in-

165

Profile Dataset 1 (ms) Dataset 2 (ms) Dataset 3 (ms)

RMR 504 505 499

TEF 571 597 553

scalingfactor 611 512 503

workenergy 12,165 12,712 12,690

totalenergy 1,391 1,450 1,511

lefthandedwhip 1,971 1,318 723

fastcantergait 2,349 2,415 1,890

lefthandedwhipv2 2,010 1,516 890

sleeping 14,395 15,300 14,933

proneSleep 11,391 11,410 11,001

sleepQualityCalc 1,515 1,568 1,581

goodSleep 631 793 709

Table 8.3: Time to Apply Queries

volved the update of only one node following some calculation. Thus, their

execution times were shorter, taking less than a second to execute.

Finally, an evaluation of the time taken to query for complex information

needs, after the application of the query profiles is presented. Following

the relevant data transformations, each query has been reduced to a simple

XQuery expression and thus, query times are significantly lower than previ-

ous enablement and enrichment times. In each case, the query is expressed

on three datasets. For each, the time taken to execute is shown, along with

the result obtained. As can be seen, the times are all below 30ms.

Query Dataset 1 Dataset 2 Dataset 3

Total energy exp. (SAR, cycle, jockey) 7ms, 2,336kcal 8ms, 637kcal 7ms, 295kcal

Horse whip (Jockey) 12ms, 29 whips 13ms, 27 whips 13ms, 15 whips

Good sleep quality (SAR) 11ms, Yes (92%) 10ms, Yes (93%) 11ms, Yes (92%)

Detect serve (Tennis) 28ms, 87 serves 26ms, 72 serves 25ms, 91 serves

Table 8.4: Time and Result of Read Queries

166

Chapter 9

Conclusions

This concluding chapter summarises this work and reassesses the hypothesis

and research questions. It also describes future work which could be under-

taken to broaden the overall impact of this work and extend the AREA

framework with new functionality. A summary of the limitations of this

work is also presented.

This chapter is structured as follows: Section 9.1.2 presents a summary

of this dissertation and reasseses the research questions and contributions.

Section 9.2 describes the limitations of AREA and concludes the dissertation

with a discussion of areas of future research.

9.1 Summary and Reassessment

9.1.1 Thesis Summary

Chapter 1 introduced the recent emergence of low cost, portable and reliable

sensing devices. It discussed how scientists often deploy these sensors in

varied situations across multiple domains. Using multiple heterogeneous

sensors facilitates the gathering of large volumes of data with little human

interaction. However, when it comes to analysing these data sources, a

number of challenges arise. The key issue is the semantic gap, i.e. the gap

167

between the information needs of the scientist and the sensor data in its

initial format. This research aimed to put in place the structures to bridge

this gap using a limited amount of user-interaction.

Chapter 2 analysed the approach of 11 different systems. In each case, their

approach was evaluated based on their ability to enable a user to adapt their

analysis, customise their approach and fine tune algorithms or analysis. A

system which is built for each and every domain is not appropriate. In-

stead, what is wanted is a general system where the user arrives with their

information needs and deployment characteristics. It was concluded that no

existing solution provides these key objectives.

Chapter 3 introduced four real world sensor deployments provided by sport

and health physiologists. In each case, the sensors involved, user require-

ments and data gathered were examined. This provided a suitably broad

set of requirements and issues on which to base out design.

The Activity Retrieval for Enrichment and Analysis (AREA) framework was

then described. Using AREA, a knowledge worker can drive the enrichment

process, from initial low-level data to XML. This allows the user to define

new sensors, subjects and deployment details for some activity scenario.

AREA processes this information, integrates the context and provides an

interface for the user to interact with the data.

Chapter 5 presented the user controlled data transformation process within

AREA. This allows a knowledge worker to interact with existing data, and

use it as evidence to derive higher levels of abstraction. This is achieved

through a system of query profiles which can retrieve data, update data and

alter data structure. Each of the query profiles are stored in AREA’s repos-

itory upon definition for later application. These facilitate the knowledge

worker in applying all necessary context to a dataset to allow future queries

by a non-IT user, using simple means.

The Automated Activity Analysis (AAA) processor was then presented in

168

chapter 6, to provide an alternative method to analysing data. Instead

of user-interaction, three system-defined modules aid with improving the

results obtained from user-controlled query profiles. In the first module,

baseline analysis performs an initial statistical analysis of a specific set of

sensor or context data which is stored in AREA’s metadata repository as a

new dataset profile. Cluster analysis, implements a basic k-means clustering

algorithm using input from the dataset profile - specifically the number of

unique values within a set of data, and the classification details from the con-

ditionConstruct. This allows an automated re-classification of sensor data

into new bands. A third module metadata analysis, uses the updateCon-

struct from the dataset profile to determine alternative updates for query

profiles. It allows experimentation with new values in place of mutable vari-

ables, replace classification values with those identified by cluster analysis,

and anticipate the results of future data. Together these modules provide

added value to the knowledge worker by automatically experimenting with

data and metadata.

Chapter 7 revisited the case studies from chapter 3, and demonstrated the

performance of AREA meeting user requirements in each domain. Chapter 8

evaluated AREA based on the functional requirmeents identified in chapter

1, and efficiency - how the solution can be delivered efficiently in terms of

usage and performance. Although optimisation and performance were not

a key priority in this research, chapter 8 demonstrated that the time taken

to enable and enrich sensor data is within normal working boundaries.

Finally, this chapter addressed the research questions and contributions first

described in chapter 1, and summarised the limitations of this research.

9.1.2 Reassessing the Aims and Objectives

The hypothesis put forward in this research was that by using a framework to

structure and contextualise low level data acquisition tools such as sensors,

169

this information can be used for high level query expressions and knowledge

extraction using basic user-interactions rather than expensive human-based

operations.

In section 1.3 it was stated that closing the semantic gap between sensor

data and user requirements was the key to verifying this hypothesis. This

section revisits each of the research questions answered during this research.

RQ1: Is it possible to enable sensors such that their output can

be queried at a high level?

A layered set of processes can allow the enablement of sensor data. To

provide this, AREA standardises the definition of key information - subjects,

deployments and sensors with everything represented in XML. The Context

Initialisation and Sensor Enablement processors implement these processes.

The representation of data in XML format allows interoperability and the

ability to query using a standard query language. The inclusion of a user

interface allows the high level querying capabilities on sensor data as posed

by this research question.

RQ2: How is it possible to facilitate the data transformation nec-

essary to facilitate highly complex queries?

The XML representation and schema description of AREA also facilitates

the transformation of sensor information. The Data Transformation Pro-

cessor as described in chapter 5, provides the ability to transform the data

by changing the content and structure of data gathered from a sensor de-

ployment. This allows the context built on lower-level context, and the in-

cremental improvement of querying capabilities to subsequent users. Users

are now able to

170

RQ3: How can one enable the user to provide the missing seman-

tics necessary to support higher level queries?

The third research question was addressed by the Automated Activity Anal-

ysis (AAA) processor. As described in chapter 6, utilising information gath-

ered from the knowledge worker (in the form of query profiles) can lead to

the discovery of new knowledge. The clustering and baseline analysis of

sensor data can aid the user with reclassifying their own algorithms and

assist with improving the discovery of higher-level information. Results ob-

tained during this analysis are presented to the user in the form of a portal.

Should these improvements lead to better techniques for event definition or

detection, the changes are reflected in the data and are queryable following

analysis.

RQ4: Can all of this be provided in a framework that allows het-

erogeneous sensor devices (sensors of varying types and config-

urations) used in heterogeneous domains to meet the needs of

different user types?

AREA has demonstrated an implementation of the functional requirement

across a variety of sensors in four distinct case studies. While not an ex-

haustive solution, there is extensive support for new sensors, subjects and

deployments in other domains which require management. The flexibil-

ity of XML, the simplicity of setup and the support for knowledge worker

and automated identification of occurrences or events of interest provides

the framework necessary to allow heterogeneous sensors and environments.

The framework enables the knowledge worker to enrich the data with the

necessary context, and subsequent users are facilitated with read querying

capabilities without the need to fully understand the underlying data gath-

ered.

Each of the goals identified in section 1.3.2 have been achieved while an-

171

swering these research questions. Meeting these goals and answering these

questions while designing the AREA framework has shown support for the

hypothesis. The semantic gap - the gap between user information needs and

the data output from sensors - has been bridged by implementing the AREA

framework. As a result it is possible to apply high-level or free-form queries

on a set of semi-structured sensor data enriched by a knowledge worker using

these tools.

9.2 Future Research

9.2.1 Limitations

The AREA framework is not an exhaustive solution for providing the ability

of data transformations. Functionality could be extended further by provid-

ing more complex mathematical equations to update the data. This may be

advantageous when dealing with more scientific or mathematical user types

who wish to perform extensive data analysis using complex equations.

Another limitation of this work is the lack of a presentation layer on which

usability tests could be carried out. Collaboration with knowledge workers

allowed the gathering of query requirements and allowed them to formulate

their queries which were then implemented. A usability study on a fully

functional presentation layer would allow testing of AREA on a large sample

of users to discover where improvements could be made if necessary.

9.2.2 Further Research

Minimising user workload in user-controlled transformations

When creating filters for classifications, there can be a great deal of repe-

tition and one area of future research might seek to automatically generate

more update queries. Consider a requirement to subdivide a smart space

into a chess board. This would require 64 different transformations based

172

on coordinates. It would be advantageous for AREA to incorporate a smart

portal which identifies the similarities in the data being input. Upon doing

so, an algorithm could then start to suggest the next expected coordinates,

or auto-generate groups of update queries. Such functionality can apply

for many classifications where the data boundaries are consistent in their

differences.

Automatic Transformations

As part of metadata analysis, AREA suggests multiple different values for

parameters in an update. The results obtained by using these additional val-

ues are then presented to the user via a portal. At this time the user picks the

best parameter set for the dataset scenario. Another area of future research

could investigate if AREA could integrate a machine learning algorithm,

which learns from the value set selected by the user. If the same value set is

selected for a specific kind of dataset, then future, similar datasets can have

the selected value input automatically. This could be further improved if the

value set can refine its boundaries based on user selections. For example, if

the user chooses 4 modifications say to add 0.25, 0.5, 0.75 and 1 and always

choose 0.75, then the system will use more fine grained selections close to

0.75, e.g. 0.74 and 0.76.

A Presentation Layer

This thesis did not focus on visualisation, digital dashboard or any form

of customised portal. Instead it was decided to focus on functionality and

a generic framework for diverse sensor networks. The work presented in

this dissertation could have greater impact if future research explores how

these three areas could provide a presentation layer for AREA. This might

include the ability to visualise the schema trees of different scenarios or

graph the results of cluster analysis to aid the user with identifying valuable

173

information.

174

Appendix A

Publications arising from

this work

A number of publications resulted from the research undertaken for this

dissertation. Two (RCIS 2009 and DMSN 2009) were based on early pro-

totypes based on tennis, utilising the Ubisense localisation sensors to define

and identify events such as serves and game boundaries. This work was

then improved using a modular approach to context provision, removing

the requirement for location in detecting events (DEXA 2010). Further

research on user-assisted data transformation and automated analysis tech-

niques in two new domains then resulted in publications in cycling (BNCOD

2011) and horse-racing (DaWaK 2011) applications meeting requirements for

knowledge workers.

1. Knowledge acquisition from sensor data in an equine envi-

ronment.

Kenneth Conroy, Gregory May, Mark Roantree, Giles Warrington,

Sarah Cullen and Adrian McGoldrick

In: 13th International Conference on Data Warehousing and Knowl-

edge Discovery (DaWaK 2011), Toulouse, France, August 29-September

175

2,2011, pp.432-444., Springer Proceedings.

2. Expanding sensor networks to automate knowledge acquisi-

tion.

Kenneth Conroy, Gregory May, Mark Roantree and Giles Warrington

In: Advances in Databases - 28th British National Conference on

Databases, (BNCOD 2011), Manchester, UK, July 12-14, 2011, pp.

97-107., Springer Proceedings.

3. Enrichment of raw sensor data to enable high-level queries.

Kenneth Conroy and Mark Roantree

In: 21st international conference on Database and expert systems ap-

plications, (DEXA 2010), Bilbao, Spain, August 30 - September 3,

2010, pp. 462-469., Springer Proceedings.

4. Extracting tennis statistics from wireless sensing environ-

ments.

Adel Shaeib, Kenneth Conroy and Mark Roantree

In: 6th International Workshop on Data Management for Sensor Net-

works, (DMSN 2009), Lyon, France, August 24, 2009, ACM Proceed-

ings.

5. Querying XML data streams from wireless sensor networks:

An evaluation of query engines.

Martin F. O’Connor, Kenneth Conroy, Mark Roantreem, Alan F.

Smeaton and Niall Moyna

In: Third IEEE International Conference on Research Challenges in

Information Science, (RCIS 2009), Fes, Morocco, 22-24 April 2009,

pp. 23-30, IEEE Proceedings.

176

Appendix B

XML Schema

Definition B.1 Query Profile Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="updateQuery">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element ref="doc"/>

<xs:element ref="target"/>

<xs:element ref="condition"/>

<xs:element ref="update"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="update">

<xs:complexType>

<xs:sequence>

<xs:element ref="address"/>

<xs:element ref="content"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="target">

<xs:complexType/>

</xs:element>

<xs:element name="readQuery">

<xs:complexType>

<xs:sequence>

177

<xs:element ref="name"/>

<xs:element ref="doc"/>

<xs:element ref="target"/>

<xs:element ref="condition"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="queryProfile">

<xs:complexType>

<xs:sequence>

<xs:element ref="readQuery"/>

<xs:element ref="updateQuery"/>

<xs:element ref="extensionQuery"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="name">

<xs:complexType/>

</xs:element>

<xs:element name="extensionQuery">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element ref="doc"/>

<xs:element ref="target"/>

<xs:element ref="condition"/>

<xs:element ref="update"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="doc">

<xs:complexType/>

</xs:element>

<xs:element name="content">

<xs:complexType/>

</xs:element>

<xs:element name="condition">

<xs:complexType/>

</xs:element>

<xs:element name="address">

<xs:complexType/>

</xs:element>

178

</xs:schema>

Definition B.2 Dataset Profile Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="value"><xs:complexType/>

</xs:element>

<xs:element name="updateConstruct">

<xs:complexType><xs:sequence>

<xs:element ref="variables"/>

<xs:element ref="fields"/>

<xs:element ref="complex"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="property">

<xs:complexType><xs:sequence>

<xs:element ref="name"/>

<xs:element ref="value"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="properties">

<xs:complexType><xs:sequence>

<xs:element ref="property" maxOccurs="unbounded"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="name"><xs:complexType/></xs:element>

<xs:element name="id"><xs:complexType/></xs:element>

<xs:element name="fixed"><xs:complexType/></xs:element>

<xs:element name="deployment"><xs:complexType/></xs:element>

<xs:element name="fields">

<xs:complexType><xs:sequence>

<xs:element ref="name"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="variables">

<xs:complexType><xs:sequence>

<xs:element ref="name"/>

<xs:element ref="value"/>

<xs:element ref="fixed"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="conditionConstruct">

179

<xs:complexType><xs:sequence>

<xs:element ref="variables"/>

<xs:element ref="fields"/>

<xs:element ref="complex"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="complex">

<xs:complexType><xs:sequence>

<xs:element ref="name"/>

</xs:sequence></xs:complexType>

</xs:element>

<xs:element name="datasetprofile">

<xs:complexType><xs:sequence>

<xs:element ref="id"/>

<xs:element ref="name"/>

<xs:element ref="deployment"/>

<xs:element ref="properties"/>

<xs:element ref="updateConstruct" minOccurs="0"/>

<xs:element ref="conditionConstruct" minOccurs="0"/>

</xs:sequence></xs:complexType>

</xs:element>

</xs:schema>

Definition B.3 Scenario XML Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="value">

<xs:complexType/>

</xs:element>

<xs:element name="type">

<xs:complexType/>

</xs:element>

<xs:element name="timing">

<xs:complexType>

<xs:sequence>

<xs:element ref="format"/>

<xs:element ref="sampleRate"/>

<xs:element ref="startTime"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="subject">

180

<xs:complexType>

<xs:sequence>

<xs:element ref="id"/>

<xs:element ref="name"/>

<xs:element ref="activity"/>

<xs:element ref="properties"/>

<xs:element ref="sensor" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="startdatetime">

<xs:complexType/>

</xs:element>

<xs:element name="startTime">

<xs:complexType/>

</xs:element>

<xs:element name="sensor">

<xs:complexType>

<xs:sequence>

<xs:element ref="id"/>

<xs:element ref="name"/>

<xs:element ref="type"/>

<xs:element ref="timing"/>

<xs:element ref="fields"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="scenario">

<xs:complexType>

<xs:sequence>

<xs:element ref="id"/>

<xs:element ref="name"/>

<xs:element ref="location"/>

<xs:element ref="startdatetime"/>

<xs:element ref="enddatetime"/>

<xs:element ref="properties"/>

<xs:element ref="subject"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="scale">

<xs:complexType/>

181

</xs:element>

<xs:element name="sampleRate">

<xs:complexType/>

</xs:element>

<xs:element name="property">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element ref="scale"/>

<xs:element ref="value"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="properties">

<xs:complexType>

<xs:sequence>

<xs:element ref="property"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="name">

<xs:complexType/>

</xs:element>

<xs:element name="location">

<xs:complexType/>

</xs:element>

<xs:element name="id">

<xs:complexType/>

</xs:element>

<xs:element name="format">

<xs:complexType/>

</xs:element>

<xs:element name="fields">

<xs:complexType>

<xs:sequence>

<xs:element ref="field"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="field">

<xs:complexType>

<xs:sequence>

182

<xs:element ref="name"/>

<xs:element ref="scale"/>

<xs:element ref="value"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="enddatetime">

<xs:complexType/>

</xs:element>

<xs:element name="activity">

<xs:complexType/>

</xs:element>

</xs:schema>

183

Appendix C

Enablement Profiles

Definition C.1 Sensor Profile: GT3X Accelerometer

<?xml version="1.0" encoding="UTF-8"?>

<SensorProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

maLocation="file:///C:/NewWorkspace/csv2xml/ch7/sensorProfile.xsd">

<id>2</id>

<name>gt3x+</name>

<type>accelerometer</type>

<timing>

<format>ms</format>

<sampleRate>30</sampleRate>

<startTime/>

</timing>

<fields>

<field>

<name>x</name>

<scale>count</scale>

<value>int</value>

</field>

<field>

<name>y</name>

<scale>count</scale>

<value>int</value>

</field>

<field>

<name>z</name>

<scale>count</scale>

<value>int</value>

184

</field>

<field>

<name>lux</name>

<scale/>

<value>int</value>

</field>

<field>

<name>incline</name>

<scale/>

<value>int</value>

</field>

</fields>

</SensorProfile>

Definition C.2 Sensor Profile: GT3X+ Accelerometer

<?xml version="1.0" encoding="UTF-8"?>

<SensorProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

maLocation="file:///C:/NewWorkspace/csv2xml/ch7/sensorProfile.xsd">

<id>2</id>

<name>gt3x+</name>

<type>accelerometer</type>

<timing>

<format>ms</format>

<sampleRate>100</sampleRate>

<startTime/>

</timing>

<fields>

<field>

<name>x</name>

<scale>count</scale>

<value>int</value>

</field>

<field>

<name>y</name>

<scale>count</scale>

<value>int</value>

</field>

<field>

<name>z</name>

<scale>count</scale>

185

<value>int</value>

</field>

<field>

<name>lux</name>

<scale/>

<value>int</value>

</field>

<field>

<name>incline</name>

<scale/>

<value>int</value>

</field>

</fields>

</SensorProfile>

Definition C.3 Sensor Profile: Sensewear armband

<?xml version="1.0" encoding="UTF-8"?>

<SensorProfile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

maLocation="file:///C:/NewWorkspace/csv2xml/ch7/sensorProfile.xsd">

<id>3</id>

<name>sensewear</name>

<type>physiological</type>

<timing>

<format>realtime</format>

<sampleRate>0.0166</sampleRate>

<startTime/>

</timing>

<fields>

<field>

<name>time</name>

<scale>realtime</scale>

<value>string</value>

</field>

<field>

<name>transverseAccelP</name>

<scale/>

<value/>

</field>

<field>

<name>longAccelP</name>

<scale/>

186

<value/>

</field>

<field>

<name>heatFluxA</name>

<scale/>

<value/>

</field>

<field>

<name>skinTempA</name>

<scale/>

<value/>

</field>

<field>

<name>transverseAccelA</name>

<scale/>

<value/>

</field>

<field>

<name>longAccelA</name>

<scale/>

<value/>

</field>

<field>

<name>nearbodyTempA</name>

<scale/>

<value/>

</field>

<field>

<name>transverseAccelM</name>

<scale/>

<value/>

</field>

<field>

<name>longAccelM</name>

<scale/>

<value/>

</field>

<field>

<name>stepCounter</name>

<scale/>

<value/>

</field>

187

<field>

<name>GSRA</name>

<scale/>

<value/>

</field>

<field>

<name>lyingdown</name>

<scale/>

<value/>

</field>

<field>

<name>sleep</name>

<scale/>

<value/>

</field>

<field>

<name>physicalActivity</name>

<scale/>

<value/>

</field>

<field>

<name>energyExp</name>

<scale/>

<value/>

</field>

<field>

<name>sedentary</name>

<scale/>

<value/>

</field>

<field>

<name>moderate</name>

<scale/>

<value/>

</field>

<field>

<name>vigorous</name>

<scale/>

<value/>

</field>

<field>

<name>vVigorous</name>

188

<scale/>

<value/>

</field>

<field>

<name>METs</name>

<scale/>

<value/>

</field>

</fields>

</SensorProfile>

189

Appendix D

Query Profile Instances

Example D.1 Update Query: Right-Handed Whip V2

<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

<name>righthandwhip</name>

<doc>S15CG.xml</doc>

<target>//sensorProfile[location="RHwrist"]/fields/Entry</target>

<condition>//sensorProfile[location="RHwrist"]/fields/Entry/x > MAXVALUE AND

//sensorProfile[location="RHwrist"]/fields/Entry/y > MAXVALUE AND

//sensorProfile[location="RHwrist"]/fields/Entry/z > MAXVALUE AND

//sensorProfile[location="saddle"]/fields/Entry/gait = ’fast-canter’

</condition>

<update>

<address>/y/sensorProfile[location="RHwrist"]/fields/Entry/whip</address>

<content>"rightwhip"</content>

</update>

</updateQuery>

Example D.2 Update Query: High Work Energy

<updateQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSche

maLocation="file:///C:/NewWorkspace/csv2xml/ch7/QueryProfile.xsd">

<name>workEnergyHigh</name>

<doc>007ES1.xml</doc>

<target>///sensorProfile[location="waist"]/fields/Entry/workenergy</target>

<condition>///sensorProfile[location="waist"]/fields/Entry

/workenergy >= 7200</condition>

<update>

190

<address>///sensorProfile[location="waist"]/fields/Entry/workenergyIntensity

</address>

<content>high</content>

</update>

</updateQuery>

191

Bibliography

[1] Barnaghi, P.M., Meissner, S., Presser, M. and Moessner, K. 2009. Sense

and sens’ability: Semantic data modelling for sensor networks. Proceed-

ings of the ICT Mobile Summit.

[2] Beigl, M., Krohn A., Zimmer, T. and Decker C. 2004. Typical Sensors

needed in Ubiquitous and Pervasive Computing. International Confer-

ence on Networked Sensing Systems (INSS).

[3] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ran-

ganathan, A. and Riboni, D. 2010. A survey of context modelling and

reasoning techniques. Pervasive and Mobile Computing.

[4] Botts, M., Percivall, G., Reed, C., and Davidson, J. 2008. OGC sen-

sor web enablement: Overview and high level architecture. GeoSensor

networks.

[5] Buckner, J., Pahl M., Stahlhut O. and Liedtke, C. E. 2001. geoAIDA - A

Knowledge Based Automatic Image Data Analyser for Remote Sensing

Data. International ICSC Symposium on Advances in Intelligent Data

Analysis.

[6] Chen, H., Perich, F., Finin, T., Joshi, A. 2004. SOUPA: Standard Ontol-

ogy for Ubiquitous and Pervasive Applications. International Conference

on Mobile and Ubiquitous Systems: Networking and Services.

192

[7] Churcher, G., Bilchev, G., Foley, J., Gedge, R. and Mizutani, T. 2008.

Experiences applying sensor web enablement to a practical telecare ap-

plication. International Symposium on Wireless Pervasive Computing

(ISWPC).

[8] Churcher, G. E. and Foley, J. 2009. Applying and extending sensor

web enablement to a telecare sensor network architecture. International

ICST Conference on COMmunication System softWAre and middle-

waRE (COMSWARE).

[9] Common Alerting Protocol. 2010. Common Alerting Protocol (CAP).

Available from http://docs.oasis-open.org/emergency/cap

/v1.2/CAP-v1.2-os.html [Accessed 7th July 2013]

[10] Conroy, K., May, G., Roantree, M. and Warrington, G. 2011. Expand-

ing Sensor Networks to Automate Knowledge Acquisition. British Na-

tional Conference on Databases (BNCOD).

[11] Conroy, K., May, G., Roantree M., Warrington G., Cullen, S. and Mc-

Goldrick A. 2011. Knowledge acquisition from sensor data in an equine

environment. Data Warehousing and Knowledge Discovery.

[12] Conroy, K. and Roantree, M. 2010. Enrichment of raw sensor data to en-

able high-level queries. DEXA’10: Proceedings of the 21st international

conference on Database and expert systems applications.

[13] Cosmed. 2013. Cosmed K4b2. Available from http://www.cosmed.com

/en/products/cardio-pulmonary-exercise-testing/k4-b2-mobile-cpet

[Accessed 7th July 2013]

[14] Dey, A. K. 2001. Understanding and Using Context. Personal and Ubiq-

uitous Computing

193

[15] Di, L., Kresse, W. and Kobler, B. 2004. The Current Status and Future

Plan of the ISO 19130 Project. International Society for Photogrammetry

and Remote Sensing (ISPRS).

[16] Diamond, D. and Hanratty, V. C. A. 1997. Spreadsheet Applications in

Chemistry Using Microsoft Excel. Wiley.

[17] Emergency Data Exchange Language. 2006. Emergency Data Exchange

Language (EDXL), Available from http://docs.oasis-open.org

/emergency/edxl-de/v1.0/EDXL-DE Spec v1.0.pdf [Accessed 6th Jan-

uary 2013]

[18] eXist. 2013. eXist XML database, Available from

http://exist-db.org/exist/index.xml [Accessed 7th July 2013]

[19] Golden Cheetah. 2013. Golden Cheetah, Available from

http://goldencheetah.org/download.html [Accessed 7th July 2013]

[20] Goldman, R. and Widom, J. 1997. DataGuides: Enabling Query For-

mulation and Optimization in Semistructured Databases. Available from

http://ilpubs.stanford.edu:8090/264/

[21] GT3X Accelerometer. 2013. Available from

http://support.theactigraph.com/product/GT3X-device [Accessed 6th

January 2013]

[22] GT3X+ Accelerometer. 2013. Available from

http://support.theactigraph.com/product/GT3Xplus-device [Accessed

6th January 2013]

[23] Henricksen, K., Indulska, J. and McFadden, T. 2005. Modelling Context

Information with ORM. On the Move to Meaningful Internet Systems

(OTM).

194

[24] Henricksen, K. and Indulska, J. 2006. Developing context-aware perva-

sive computing applications: Models and approach. Pervasive and Mo-

bile Computing.

[25] Henricksen, K., Indulska, J. and Rakotonirainy, A. 2002. Modeling con-

text information in pervasive computing systems. Pervasive Computing

[26] Henricksen, K., Livingstone, S. and Indulska, J. 2004. Towards a hy-

brid approach to context modelling, reasoning and interoperation. 1st

International Workshop on Advanced Context Modelling, Reasoning and

Management.

[27] Huang, Y-P., Chiou, C-L. and Sandnes, F.E. 2009. An intelligent strat-

egy for the automatic detection of highlights in tennis video recordings.

Expert Systems with Applications (ESWA).

[28] IBM InfoSphere streams. 2013. Available from http://www-01.ibm.com

/software/data/infosphere/streams/ [Accessed 6th January 2013]

[29] IBM SPSS Statistics. 2013. Available from http://www-01.ibm.com

/software/analytics/spss/ [Accessed 6th January 2013]

[30] Java Message Service. 2011. Available from http://www.oracle.com

/technetwork/java/jms/index.html [Accessed 6th January 2013]

[31] Jiawei, H., and Kamber, M. 2006. Data mining: concepts and tech-

niques. Morgan Kaufmann.

[32] Jonathan L., Blake H. and Gaetano B. 2004. Are You with Me? using ac-

celerometers to determine if two devices are carried by the same person.

Proceedings of Second International Conference on Pervasive Computing

(Pervasive).

[33] Katsiri, E. and Mycroft, A. 2003. Knowledge representation and scal-

able abstract reasoning for sentient computing using first-order logic.

195

Proceedings of Challenges and Novel Applications for Automatic Rea-

soning (CADE-19).

[34] Katsiri, E., Bacon, J. and Mycroft, A. 2008. Scafos: Linking sensor

data to context-aware applications using abstract events. International

Journal of Pervasive Computing and Communications.

[35] Lee, K., IEEE 1451: A Standard in Support of Smart Transducer

Networking, Instrumentation and Measurement Technology Confer-

ence. 2000. Instrumentation and Measurement Technology Conference

(IMTC).

[36] Madden, S. Franklin, M., Hellerstein, J. and Hong, W. 2005. TinyDB:

An Acquisitional Query Processing System for Sensor Networks. ACM

Transactions on Database Systems.

[37] Mileo, A., Merico, D. and Bisiani, R. 2008. Wireless sensor networks

supporting context-aware reasoning in assisted living. International con-

ference on Pervasive Technologies Related to Assistive Environments.

[38] O’Connor, M. F., Conroy, K., Roantree, M., Smeaton, A. F. and Moyna,

N. M. 2009. Querying XML data streams from wireless sensor networks:

An evaluation of query engines. Research Challenges in Information Sci-

ence, RCIS.

[39] OWL: Web Ontology Language Semantics and Abstract Syntax. 2013.

Online resource http://www.w3.org/TR/owl-semantics/ [Accessed 6th

January 2013]

[40] Protege 2000. 2013. Available from http://protege.stanford.edu/ [Ac-

cessed 6th January 2013]

[41] Resource Description Framework (RDF). 2013. Available from

http://www.w3.org/RDF/ [Accessed 6th January 2013]

196

[42] Russomanno, D.J., Kothari, C. and Thomas, O. 2005. Sensor Ontolo-

gies: from shallow to deep models. Proceedings of the Thirty-Seventh

Southeastern Symposium on System Theory (SSST).

[43] Russomanno, D. J., Kothari, C. and Thomas, O. 2005. Building a Sen-

sor Ontology: A practical approach leveraging ISO and OGC models.

International Conference on Artificial Intelligence.

[44] Schoofs, A., Ruzzelli, A. G. and O’Hare, G. M. 2010. Appliance activity

monitoring using wireless sensors. International Conference on Informa-

tion Processing in Sensor Networks.

[45] Shaeib, A., Cappellari, P. and Roantree, M. 2010. A framework for

real-time context provision in ubiquitous sensing environments. IEEE

Symposium on Computers and Communications (ISCC).

[46] Semantic Web Rule Language. 2013. Available from

http://www.w3.org/Submission/SWRL/ [Accessed 6th January 2013]

[47] SenseWear System (BodyMedia). 2013. Available from

http://sensewear.bodymedia.com/ [Accessed 6th January 2013]

[48] SensorML. 2013. Available from http://www.opengeospatial.org

/standards/sensorml [Accessed 6th January 2013]

[49] Sensor Model Language (SensorML). 2011. Available from

http://www.opengeospatial.org/standards/sensorml [Accessed 6th Jan-

uary 2013]

[50] Sensor Observation Service. 2011. Available from http://www.open

geospatial.org

/standards/sos [Accessed 6th January 2013]

[51] Sensor Web Enablement. 2011. Available from http://www.open

geospatial.org/projects/groups/sensorweb [Accessed 6th January 2013]

197

[52] Shaeib, A., Conroy, K. and Roantree, M. Extracting tennis statistics

from wireless sensing environments. International Workshop on Data

Management for Sensor Networks (DMSN).

[53] Sheth, A. P., Henson, C. A. and Sahoo, S. S. 2008. Semantic Sensor

Web. IEEE Internet Computing Vol. 12.

[54] Smyth, B. 2009. The sensor web : bringing information to life. ERCIM

News, (76): 3-3, Special theme: the sensor web

[55] Strang, T., Popien, C. L., Frank, K. 2003. CoOL: A Context Ontology

Language to enable Contextual Interoperability. International Confer-

ence on Distributed Applications and Interoperable Systems (DAIS2003).

[56] Suggested Upper Merged Ontology (SUMO). 2013. Available from

http://suo.ieee.org/SUO/SUMO/index.html [Accessed 6th January

2013]

[57] The Open Geospatial Consortium (OGC). Available from

http://www.opengeospatial.org/ [Accessed 6th January 2013]

[58] The Race Around Ireland. 2010. Available from http://www.race

aroundireland.com/ [Accessed 6th January 2013]

[59] The Rules of Tennis. 2013. Available from http://www.itftennis.com

/shared/medialibrary/pdf/original/IO 38810 original.PDF [Accessed

6th January 2013]

[60] TinyDB. 2013. Available from http://telegraph.cs.berkeley.edu

/tinydb/ [Accessed 6th January 2013]

[61] The Turf Club. 2013. Available from http://www.turfclub.ie

/site/ [Accessed 6th January 2013]

198

[62] Tien, M., Lin, Y. and Wu, J. 2009. Sports wizard: sports video browsing

based on semantic concepts and game structure. International conference

on Multimedia (MM).

[63] TrainingPeaks WKO+. 2013. Available from http://home.

trainingpeaks.com/products-desktop/wko.aspx [Accessed 6th January

2013]

[64] Ubisense. 2013. Available from http://www.ubisense.net/en/ [Accessed

6th January 2013]

[65] Wang, X., Dong, J. S., Chin, C., Hettiarachchi, S. and Zhang, D. 2004.

Semantic Space: An Infrastructure for Smart Spaces. IEEE Pervasive

Computing, Vol 3 Num 3

[66] Wang, X.H., Zhang, D.Q., Gu, T. and Pung, H.K. 2004. Ontology based

context modeling and reasoning using OWL. Pervasive Computing and

Communications Workshops

[67] Wattbike. 2013. Available from http://wattbike.com/uk/ [Accessed 6th

January 2013]

[68] Wojciechowski, M. and Xiong, J. 2008. A user interface level context

model for ambient assisted living. Smart Homes and Health Telematics

[69] Wojciechowski, M. and Xiong, J. 2008. On Context Modeling in Am-

bient Assisted Living. International Workshop Modeling and Reasoning

in Context (MRC).

[70] Wolfram Mathworld: k-means clustering. 2013. Available from

http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html

[Accessed 6th January 2013]

[71] Wolfram Mathworld. 2013. Available from http://mathworld.

wolfram.com/Distance.html [Accessed 6th January 2013]

199

[72] Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L.,

He, Z., Lin, S. and Stankovic, J. 2006. ALARM-NET: Wireless sensor

networks for assisted-living and residential monitoring. Technical Report

CS-2006-11, Department of Computer Science, University of Virginia.

[73] XQuery Update Facility. 2011. Available from http://www.w3.org

/TR/xquery-update-10/ [Accessed 6th January 2013]

[74] XQuery. 2013. Available from http://www.w3.org/TR/xquery/ [Ac-

cessed 6th January 2013]

[75] Wood, A. D., Selavo, L. and Stankovic, J. A. 2008. SenQ: An extensible

query system for streaming data in heterogeneous interactive wireless

sensor networks. Distributed Computing in Sensor Systems (DCOSS).

[76] Yang, J., Zhang, C., Li, X. Huang, Y., Fu, S. and Acevedo, M. F. 2010.

Integration of wireless sensor networks in environmental monitoring cy-

ber infrastructure. Wireless Networks Vol. 16 Issue 4.

[77] Ye, J., McKeever, S., Coyle, L., Neely, S. and Dobson, S. 2008. Resolv-

ing uncertainty in context integration and abstraction: context integra-

tion and abstraction. in International conference on Pervasive services

(ICPS).

[78] Zimmermann, A., Specht, M. and Lorenz, A. 2005. Personalization and

Context Management. User Modeling and User-Adapted Interaction

200

	Abstract
	Introduction
	Sensors and Sensor Networks
	Research Problem
	Aims and Objectives
	Research Questions
	Goals
	Scope and Contributions

	Thesis Structure

	Related Research
	Overview
	Ontological Approaches
	CoOL: Context Ontology Language
	CONtext ONtology (CONON)
	SOUPA: Standard Ontology for Ubiquitous and Pervasive Applications
	OntoSensor

	Context-Aware Systems
	CXMS
	AlarmNet
	User Interface Context Model
	SCAFOS

	Object Role Modelling
	CML: Context Modelling Language

	Domain Specific Approaches
	GeoAIDA
	Other Domain Specific Context

	Standardization
	Sensor Web Enablement

	Summary

	Problem Description
	Overview
	Sensor Description and Usage

	Sensing Movement and Position in Tennis
	Background and Requirements
	Information Collected

	Sensor Deployments in the Cycling Domain
	Background and Requirements
	Information Collected

	Using Sensors in Horse-Racing
	Background and Requirements
	Information Collected

	Using Sensors in Search and Rescue
	Background and Requirements
	Information Collected

	Groundwork Approach
	Overall Issues and Approach
	Commonalities Across Multiple Deployments
	Differences Across Multiple Deployments

	Summary

	The AREA Framework
	Overview
	Design Criteria
	Chapter Roadmap

	Context Initialisation (P0)
	Sensor Profile
	Subject Profile
	Deployment Profile

	Sensor Enablement (P1)
	Imposing a Standard Format on Sensor Data

	Context Integration (P2)
	Normalisation and Synchronisation Steps
	Pairing Sensor Output with Subjects
	Merging Sensors and Subjects with a Deployment

	Transforming Sensor Data and Metadata (P3)
	Automated Activity Analysis (P4)
	Summary

	User-Controlled Transformations
	Generating Context in AREA
	Using Profiles to Query and Extend the Dataset
	Specifying Conditions
	Generating the Metadata
	Content Transformation

	Transforming AREA Commands
	Introduction
	Command 1: Read Queries
	Command 2: Update Queries
	Command 3: Metadata Update Queries

	Summary

	Automated Activity Analysis
	Broad Strategy to Automating Analysis
	Baseline Analysis of Activity Data
	Analysing Sets of Sensor and Transformation Data
	Evaluating the Set of Data Obtained

	Cluster Analysis
	Metadata Analysis
	Interpreting the Update Construct
	Adapting Values of Variables

	Summary

	Experimental Analysis
	Strategy for Query Enablement
	Horse-Racing
	Search and Rescue
	Cycling
	Tennis

	Summary

	Evaluation
	Meeting the Functional Requirements
	Setup
	Querying
	On-the-fly Context
	Knowledge Worker Interaction
	Incremental Enrichment

	Evaluating AREA Across Domains
	Measuring Efficiency of Data Transformation

	Conclusions
	Summary and Reassessment
	Thesis Summary
	Reassessing the Aims and Objectives

	Future Research
	Limitations
	Further Research

	Appendix Publications arising from this work
	Appendix XML Schema
	Appendix Enablement Profiles
	Appendix Query Profile Instances

