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Abstract 

Dust storms are one of the natural hazards, which have increased in frequency 

in the recent years over Sahara desert, Australia, the Arabian Desert, 

Turkmenistan and northern China, which have worsened during the last 

decade. Dust storms increase air pollution, impact on urban areas and farms as 

well as affecting ground and air traffic. They cause damage to human health, 

reduce the temperature, cause damage to communication facilities, reduce 

visibility which delays both road and air traffic and impact on both urban and 

rural areas. Thus, it is important to know the causation, movement and radiation 

effects of dust storms. The monitoring and forecasting of dust storms is 

increasing in order to help governments reduce the negative impact of these 

storms.  Satellite remote sensing is the most common method but its use over 

sandy ground is still limited as the two share similar characteristics. However, 

satellite remote sensing using true-colour images or estimates of aerosol optical 

thickness (AOT) and algorithms such as the deep blue algorithm have 

limitations for identifying dust storms. Many researchers have studied the 

detection of dust storms during daytime in a number of different regions of the 

world including China, Australia, America, and North Africa using a variety of 

satellite data but fewer studies have focused on detecting dust storms at night. 

The key elements of this present study are to use data from the Moderate 

Resolution Imaging Spectroradiometers on the Terra and Aqua satellites to 

develop more effective automated method for detecting dust storms during both 

day and night and generate a MODIS dust storm database. 

Keywords: Brightness Temperature Difference, Neural Network, Pixel 

classification, Database, Decision Tree.  
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CHAPTER ONE 

1. INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Dust storms are a common natural phenomena that occur widely around 

the world in arid and semi-arid regions especially in subtropical latitudes, 

including North Africa, northern China, Australia, the Arabian Desert, and 

Turkmenistan, which have worsened during the last decade [1, 2]. Desert 

landscapes and human activities in semi-arid areas are the most important 

sources of dust storms [3]. Scientifically, soil particles of size about 0.6-1mm 

are described as sand, while soil particle of size less than about 0.6 mm are 

described by dust. In practice only those dust particles of size less than 0.1 mm 

are transported by the wind and dust storms are the product of the collective 

transport of soil particles by wind [3]. The World Meteorological Organisation 

(WMO) protocol has classified dust storms according to their visibility into the 

following categories. 

 Drifting Dust: The visibility within these kinds of the dust events is not 

less than 10 km. This kind of dust is widespread dust and is not raised 

more than two metres.  
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 Blowing Dust: This reduces the visibility to between 1 km and 10 km and 

is caused by a moderate wind which raises dust to a moderate height 

above the ground. 

 Dust Storm: This reduces the visibility to between 200 m and 1000 m 

and occurs when a strong wind lifts a large quantity of dust particles into 

the atmosphere  

 Severe Dust Storm: This reduce the visibility to less than 200 m and 

occurs when a very strong wind lifts a very large quantity of dust 

particles into the atmosphere [4]. 

Strong winds above dry land are the most important reason for the 

occurrence of dust storms and the largest source of dust storms in the world is 

the Sahara region, which is a source of dust deposited over much of Western 

Europe. Saharan dust storms are also blown westwards, depositing dust in the 

Atlantic Ocean and as far west as the United States and the West Indies. The 

arid and semi-arid region around the Arabian Sea is another principal source of 

global dust and contributes to dust sediment in the Arabian Sea. Many of the 

dust storms from China contribute to dust deposition in the Pacific Ocean. Fine 

dust can be transported at altitudes up to 6 km and move over distances up to 

6,000 km [3]. Saharan dust storms transport large quantities of material across 

the African continent and beyond and can be both a cause of extensive 

disruption and hazard to health and also an important source of nutrients to 

both land and ocean [5]. Since 1900, 17 dust storms have swept over Great 

Britain from the Sahara. Each event transported about 10 million tons of dust to 
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Great Britain, according to research by the Geology Faculty of Oxford University 

[3]. 

Dust storms have a number of impacts upon both humans and the 

environment including the loss of many young plants, resulting in a loss of 

productivity. However, most of the impacts of dust storms are within the 

atmosphere, affecting air temperatures by absorption and reflection of solar 

radiation and affecting cloud formation and convection activity. The spread of 

the African dust in the air layer over the Sahara desert can cause changes in 

the intensity of the hurricane peak in the North Atlantic. Large quantities of dust 

deposited on ice surfaces have the effect of lowering snow reflection and 

amplifying snowmelt. There are many studies which show that dust transported 

long distances can affect geochemical conditions at long distances from dust 

sources. Reducing visibility to a few metres is only one of the most noticeable 

effects.  This loss of visibility can be a major hazard effecting both civilian and 

military traffic and aircraft [6]. Figure 1-1 shows an Egyptian airplane which 

crashed near Tunis, Tunisia, killing 18 of the 60 people on board. The cause of 

this air crash was the Saharan dust storm on May 7th, 2002. Dust storms also 

reflect sunlight back into space, reducing the amount of energy reaching the 

surface resulting in cooling.  
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Dust particles impacting on human health, causing a wide range of 

respiratory disorders including chronic bronchitis and lower respiratory illness. 

Dust emissions from dried lake basins which introduce fine particles, including 

salts and chemical herbicides into the atmosphere generate a suite of health 

impacts and not just respiratory complaints, but also other serious illnesses. 

Dust storms can transport allergens, including bacteria and fungi, and it could 

be that an outbreak of meningococcal meningitis in the Sahel region of Africa 

and the spread of Coccidioidomycosis in the southwest United States are 

related to dust storm activity [6]. In China, dust storms are considered a risk 

factor in hospitals for respiratory and cardiovascular complains [6]. 

 Dust storms are considered one of the main causes of desertification [3]. 

The Middle East, Taklamakan, Southwest Asia, Central Australia, the Etosha 

and Mkgadikgadi pans of Southern Africa, the Salar de Uyuni of Bolivia, and the 

Great Basin in the USA are known as dust storm source regions, but the 

Sahara is the biggest single source of dust storms. The Sahara is the main 

source of dust sedimentation into the Mediterranean Sea and neighbouring 

countries [6]. 

 

Figure 1-1 Saharan dust storm caused air crash near Tunis  
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1.2 PROBLEM IDENTIFICATION 

While dust storms are only one of many natural hazards, monitoring and 

tracking them has become very important in recent years to help governments 

to alleviate the consequences of these storms. At the present time there are 

only two main methods available for monitoring dust storms. The first is ground-

based measurements, and the second is satellite based remote sensing 

technology, in which interest is increasing [7] because ground based 

measurements cannot meet the requirements of monitoring and tracking dust 

storms very well.  

Satellite remote sensing is likely to become the primary approach for the 

detection of dust storms [1] because of the potential advantages to using this 

technology, including flexible coverage of wide areas and continuous or 

frequent monitoring of the earth. On the other hand, satellite remote sensing is 

indirect, and methods based on analysis of true-colour images or calculations of 

aerosol optical thickness (AOT) by the deep blue algorithm, for example, are 

limited. However, in principle, the severity of dust storms, the areas they affect 

and changes in intensities can be monitored using remotely sensed images [7]. 

For these reasons, many researchers have proposed methods to distinguish 

dust storms from clouds, ground and water surfaces using images in many 

different spectral bands obtained from various instruments [1, 2, 7-9]. However, 

the detection of dust storms is difficult because they share some characteristics 

with clouds which can make it very hard to distinguish them in some spectral 

bands [2]. Furthermore, the characteristics of dust storms and ground sand are 

similar, which makes it difficult to discriminate between them. There is also 
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difficulty in detecting dust storms during the night. All the previous work on dust 

storm detection focused on detecting dust storms over one type of ground 

surface and most concentrated on detecting dust storms during the day. 

1.3 OBJECTIVES 

The objective here is to address long standing problems in the automatic 

detection of dust storms and develop techniques and procedures to efficiently 

recognize dust storms using the Moderate Resolution Imaging 

Spectroradiometers (MODIS) on board the NASA Terra and Aqua satellites. 

Furthermore, there is a need for generating a MODIS dust storm database as 

there is no such database for new further studies, particular for monitoring and 

tracking dust storms. 

To achieve this objective, the following sub-objectives are addressed: 

 Statistical analysis for dust storm detection is pursued. The 

resulting analysis will allow better understanding of suitable 

MODIS bands for detecting dust storm from sandy land. The 

analysis could also be utilized in classifications and post-

processing. 

 The generation of manually detected dust storm data, as there is 

no dust storm ground truth data available for validating dust storm 

detection methods. 

 The development of a new method for dust storm detection using 

thresholds. The target technique aims to be simple and produce 

binary images of dust storms. 
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 The development of a new method for dust storm detection during 

the night using a threshold method. 

 The development of an efficient detection technique using a neural 

network to lead potentially to more accurate detection of dust 

storms during the day. 

 The development of an efficient detection technique using a neural 

network to lead potentially to more accurate detection of dust 

storms during both day and night time. 

 The generation of an automated system to update a MODIS dust 

storms database. This would involve creating a MODIS dust storm 

database as there is no such database available. This could then 

be used for the monitoring and tracking of dust storms. 

1.4 OUTLINE OF THE THESIS 

The remainder of this thesis is structured as follows. Chapter 2 starts by 

providing an overview of the relevant properties of the data available from the 

MODIS instrument and how it can be accessed, which helps to inform the 

subsequent review. This is followed by a literature review of previous work on 

dust storm detection, which provides definitions, context, and an understanding 

of the previous research. The review gives some examples of how different 

types of techniques are being used in this field. It reviews the state of the art, 

recent advances and the limitations of dust storm detection.  

Chapter 3 presents two threshold based methods for detecting dust 

storms, starting with an analysis of the emissivities and the brightness 
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temperatures of objects seen in MODIS images in order to generate the best 

brightness temperature difference (BTD) to distinguish between dust storms 

and sandy land. One method is for daytime use only, while the other is for both 

day and night time use. 

Chapter 4 presents two methods for detecting dust storms using Neural 

Networks. The methods differ in the sets of pixel features which are input into 

the Neural Networks in order to classify pixels as dust storm or not. The first 

feature set includes the brightness temperature differences calculated from two 

pairs of MODIS spectral bands and the reflectances from three other bands. 

This method is limited to daylight use only and so the second method uses a 

feature set which includes four brightness temperature differences and one 

other brightness temperature to achieve both day and night time classification of 

pixels as to the presence or absence of a dust storm.  

Chapter 5 presents and compares two methods for classifying the pixels 

of MODIS Images into six classes: cloud, dust storm, water, vegetation, land 

and snow. The first method employs a decision tree method, and the second a 

neural network. Both methods use the same feature set, which includes two 

brightness temperatures and three other combinations of spectral bands, 

defined in previous work. 

Chapter 6 presents an automated dust storm database system based on 

MODIS data which works during both day and night time, using a neural 

network. The feature vector used for the pixel classification is the one presented 

in Chapter 4. 
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The contributions of this research work to the field of dust storm detection 

are presented in Chapter 7, together with some possible future research 

directions in related areas.    
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CHAPTER TWO 

2. LITERATURE REVIEW OF EXISTING WORK   

2.1. INTRODUCTION 

Much of this chapter reviews existing work using data from the Moderate 

Resolution Images Spectrometer (MODIS). To aid this review, the chapter first 

continues in Section 2.2 with an overview of the MODIS instrument, its 

wavelength bands (and their intended uses), the products provided and the 

MODIS tools provided. The chapter then presents previous work on dust storm 

detection divided into two parts. Section 2.3.1 includes studies used MODIS 

data for dust storm detection, and Section 2.3.2 includes studies using data 

from other instruments. Section 2.4 describes some previous work on 

classification of the content of satellite images. The chapter ends with some 

conclusions in Section 2.5.     

2.2. OVERVIEW OF MODIS INSTRUMENT  

The Moderate Resolution Imaging Spectrometer (MODIS) scientific 

instrument is part of the NASA Earth observing System (EOS) mission. MODIS 

was launched onboard the Terra and Aqua satellites in December 1999 and 

May 2002 respectively. Both satellites have been working well except for band 6 

(1.628 µm – 1.652 µm) of the Aqua satellite which is either non-functional or 

noisy. The MODIS instrument provides calibrated, high radiometric-sensitivity 
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(12 bit) data, in 36 spectral bands covering wavelengths from 0.4 µm to 14.4 µm 

in the visible (VIS), near infrared (NIR), short and mid-wave infrared (SMIR), 

and long-wave infrared (LWIR). Furthermore, the MODIS sensor has three 

different nadir ground spatial resolutions: 250m (bands 1 and 2), 500m (bands 3 

- 7), and 1000m (bands 8 - 36). Table 2-1 provides some information on the 

MODIS bands and their intended usage. In the long track direction, there are 40 

detectors per band for bands 1 and 2, 20 detectors per band for bands 3 - 7, 

and 10 detectors per band for bands 8 - 36 [10]. A double-sided scan mirror 

providing ±55-degree scanning pattern at the EOS orbit of 705 km, achieves a 

2,330-km swath and provides near-daily imaging capability, complementing the 

spectral, spatial, and temporal coverage of the other research instruments [11]. 

MODIS data is intended to help improve understanding of global dynamics and 

processes occurring on land, in the oceans, and in the lower atmosphere [12]. 

The Terra satellite orbits the Earth, crossing the equator from north to south in 

the morning, while the Aqua satellite orbits the earth crossing the equator from 

south to north in the afternoon. MODIS data are transferred to ground stations 

in White Sands, New Mexico, and then sent to the Data and Operation System 

(EOS) at the Goddard Space Flight Centre. The MODIS instrument has been 

designed to provide improved monitoring for land, ocean, and atmosphere 

research. Spectral channels for improved atmospheric and cloud 

characterization have been included to permit both the removal of atmospheric 

effects on surface observations and the provision of atmospheric 

measurements [11].  
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Table 2-1 Properties of the MODIS bands 

Band Wavelength 
(nm) 

Resolution 
(m) 

Key Use Primary nature 

1 620-670 250 Absolute Land Cover 
Transformation, Vegetation 

Chlorophyll 

 
 
 
 
 
 
 
 
 

Reflectance 
Solar Bands 

2 841-876 250 Cloud Amount, Vegetation Land 
Cover Transformation 

3 459-479 500 Soil/Vegetation Differences 

4 545-565 500 Green Vegetation 

5 1230-1250 500 Leaf/Canopy Differences 

6 1628-1652 500 Snow/Cloud Differences 

7 2105-2155 500 Cloud Properties, Land Properties 

8 405-420 1000 Chlorophyll 

9 438-448 1000 Chlorophyll 

10 483-493 1000 Chlorophyll 

11 526-536 1000 Chlorophyll 

12 546-556 1000 Sediments 

13h 662-672 1000 Atmosphere, Sediments 

13l 662-672 1000 Atmosphere, Sediments 

14h 673-683 1000 Chlorophyll Fluorescence 

14l 673-683 1000 Chlorophyll Fluorescence 

15 743-753 1000 Aerosol Properties 

16 862-877 1000 Aerosol Properties, Atmospheric 
Properties 

17 890-920 1000 Atmospheric Properties, Cloud 
Properties 

18 931-941 1000 Atmospheric Properties, Cloud 
Properties 

19 915-965 1000 Atmospheric Properties, Cloud 
Properties 

Band Wavelength 
(µm) 

Resolution 
(m) 

Key Use Primary nature 

20 3.660-3.840 1000 Sea Surface Temperature  
 
 

Thermal 
Emissive 

Bands 

21 3.929-3.989 1000 Forest Fires & Volcanoes 

22 3.929-3.989 1000 Cloud Temperature, Surface 
Temperature 

23 4.020-4.080 1000 Cloud Temperature, Surface 
Temperature 

24 4.433-4.498 1000 Cloud Fraction, Troposphere 
Temperature 

25 4.482-4.549 1000 Cloud Fraction, Troposphere 
Temperature 

26 1.360-1.390 1000 Cloud Fraction (Thin Cirrus), 
Troposphere Temp. 

Reflectance 
Solar Band 

27 6.535-6.895 1000 Mid Troposphere Humidity  
 
 
 
 

Thermal 
Emissive 

Bands 

28 7.175-7.475 1000 Upper Troposphere Humidity 

29 8.400-8.700 1000 Surface Temperature 

30 9.580-9.880 1000 Total Ozone 

31 10.780-11.280 1000 Cloud Temperature, Forest Fires & 
Volcanoes, Surface Temp. 

32 11.770-12.270 1000 Cloud Height, Forest Fires & 
Volcanoes, Surface Temperature 
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33 13.185-13.485 1000 Cloud Fraction, Cloud Height 

34 13.485-13.785 1000 Cloud Fraction, Cloud Height 

35 13.785-14.085 1000 Cloud Fraction, Cloud Height 

36 14.085-14.385 1000 Cloud Fraction, Cloud Height 

 

2.2.1. MODIS PRODUCTS AND APPLICATIONS 

From the raw data, MODIS provides over 40 standard data products, in 

the Hierarchical Data Format – Earth Observing System (HDF-EOS) [13], 

intended to help scientists studying Earth’s land, ocean and atmosphere [14]. 

MODIS data have several levels of maturity. Scientists have used MODIS 

products in a great variety of applications, including oceanography, biology, and 

atmospheric science. The next sub-section provides some details of individual 

products, where names starting with MO or MY indicate the Terra and Aqua 

satellites respectively [15].  

2.2.1.1.  MODIS CALIBRATION PRODUCTS 

MODIS Calibration products (Level 1A, Level 1B and geo-location) are a 

precursor to every geophysical science product [16].   

 Level-1A Radiance Counts (MOD01, MYD01) 

MODIS Level 1A data is produced by the MODIS Adaptive 

processing System (MODAPS) and sent to the Level 1 and Atmosphere 

Archive and Distribution System (LAADS) 

(http://modis.gsfc.nasa.gov/data/). Level 1A processing includes packaged 

and reformatted raw instrument data from Level 0 MODIS data received 

from the EOS data and operating system (EDOS) [17]. Raw Radiance 

Counts data set includes Level 1A Swath (MOD01 or MYD01) data, raw 

instrument engineering and spacecraft ephemeris data for all 36 MODIS 

http://modis.gsfc.nasa.gov/data/
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channels, which are used as inputs for geo-location, calibration, and 

processing. For indicating missing or bad pixels and instrument modes, 

quality indicators have been added. This product includes all MODIS 

digitized (counts) data for all bands, spatial resolutions, time covered, all 

detector views, and all engineering and ancillary data [15]. MODIS scan 

data during Level 1A processing includes eight fields which are used to 

store the earth location information for each MODIS spatial element. These 

fields are: geodetic latitude, geodetic longitude, height above the Earth 

ellipsoid, satellite zenith angle, satellite azimuth, range to the satellite, solar 

zenith angle and solar azimuth [17].  

 Level – 1B Calibrated Geo-located Radiances  

MODIS Level 1A sensor counts (MOD 01) are used to generate, 

calibrated and geo-located radiances (in W/(m2.µm.sr)) for 36 bands and 

presented as Level 1B data. MODIS Level 1B calibration code generates 

four product files: Calibrated Earth View data at 250m resolution 

MOD02QKM and MOD02QKM for Terra and Aqua respectively; Calibrated 

Earth View data at 500m resolution including the 250m resolution bands 

aggregated to 500m resolution MOD02HKM and MOD02HKM for Terra 

and Aqua respectively; Calibrated Earth View data at 1km resolution 

including the 250m and 500m resolution bands aggregated to 1km 

resolution MOD021KM and MOD021KM for Terra and Aqua respectively; 

and On Board Calibrator (OBC) and Engineering Data MOD02OBC and 

MYD02OBC for Terra and Aqua respectively which contains on board 

measurements in the Space View, Black Body, Spectro-Radiometric 
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Calibration Assembly and Solar Diffuser Sectors, and additional 

engineering data [18]. The reflectance and the radiance can be generated 

from the solar reflective bands (1-19 and 26) using the Level 1B scaled 

integer representation. Quality flags, error estimates, and calibration data 

are all provided in Level 1B data files. Also, Brightness Temperature (BT) 

data (that assumes the emitting surface is a black body) can be generated 

using thermal emissive bands (20-25 and 27-36) [12, 19]. 

 Geolocation Data 

The MODIS Geolocation product (MOD03) consists of information 

on geodetic coordinates (latitude, longitude, and height), and the sun and 

satellite sensors properties (sensor zenith angles, sensor azimuth angles, 

slant ranges, solar zenith angle, solar azimuth angles) and geolocation flag 

values for each MODIS 1-km sample. By comparison, MODIS level 1B 

250m and 500m data sample include just information about latitude and 

longitude. Spacecraft attitude and orbit, instrument telemetry, and a digital 

elevation model are used to determine the geolocation fields [20].  

2.2.1.2.  MODIS ATMOSPHERIC PRODUCTS 

MODIS atmospheric products include five data products in Level 2 and 

three data products in Level 3. The level 2 products contain geophysical 

parameters for aerosols (optical properties and mass concentration), water 

vapour, clouds (physical and optical properties), atmospheric profiles 

(temperature, moisture and total ozone and stability indices) and cloud mask. 

The Level 3 products contain daily, weekly and monthly statistics for the Level 2 
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science parameters [21]. The MODIS Atmospheric algorithm using twenty six 

MODIS bands to create atmospheric products [22]. Figure 2-1 summarises the 

MODIS atmosphere data processing architecture and products. Appendix A 

shows more details about MODIS atmospheric products 
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Figure 2-1 MODIS atmosphere data processing architecture and products [22]. 
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  Cloud Mask (MOD35 for Terra and MYD35 for Aqua) 

The goal of the cloud mask (MOD35) algorithm is to classify each 

pixel as confidently clear, probably clear, probably cloudy, or cloudy. 

The cloud mask is generated at 250m and 1000m resolutions [23] and 

consists of 48 bits of output that include information on individual cloud 

test results. However, there is no need to process all 48 bits when 

applying the mask; only the first 8 bits may be necessary. Figure 2-2(B) 

shows an example of cloud mask of MODIS image captured by Aqua 

satellite over North Africa on 2005 where the red flag pixel is confidently 

clear, yellow is probably clear, light blue is probably cloud and dark blue 

is cloud. However, the MODIS cloud mask has some limitations; firstly it 

is not accurate for detecting cloud when there is a dust storm as can be 

clearly seen in Figure 2-2(B), secondly the MODIS cloud mask takes 

two hours to become available, which leads to difficulty monitoring 

events such as dust storms. 

  
Figure 2-2 (A) is a true colour image captured by Aqua over North Africa and (B) 

is the relative cloud mask. 

A B 
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The cloud mask algorithm uses a series of threshold tests applied 

to the 19 MODIS bands 1, 2, 4, 5, 6, 7, 17, 18, 19, 20, 22, 26, 27, 28, 

29, 31, 32, 33, and 35 to identify the presence of clouds in the 

instrument field of view [23]. The cloud mask requires several ancillary 

data inputs: sun angle, azimuthal angle, viewing angle, land/water map 

at 1 km resolution and topographic elevation above mean sea level 

obtained from MOD03 (geolocation fields), and ecosystems global 1 km 

map of ecosystems based on the Olson classification system, and Daily 

NISE snow/ice map provided by NSIDC (National Snow and Ice Data 

Centre), and daily sea ice concentration product from NOAA [23]. 

The cloud mask is not the only cloud product from MODIS; several 

Principal Investigators have responsibility to deliver algorithms for 

various additional cloud parameters, such as water phase and altitude. 

The specific tests executed are functions of surface type, Including 

land, coastal, water, snow/ice and desert, and are different during the 

day and night [22]. The cloud mask output also includes results from 

particular cloud detection tests. Table 2-2 gives a description of MODIS 

cloud mask product bits. 

Table 2-2 File specification for the 48-bits MODIS cloud mask [23] 

BIT  DESCRIPTION KEY RESULT 

0 Cloud Mask Flag 0 = not determined 
1 = determined 

1-2 Unobstructed FOV Quality Flag  
 

00 = cloudy 
01 = uncertain clear 
10 = probably clear 
11 = confident clear 

PROCESSING PATH FLAGS 

3 Day/Night Flag 0=Night / 1= Day 
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4 Sun glint Flag 0 = Yes / 1 = No 

5 Snow / Ice Background Flag 0 = Yes/ 1 = No 

6-7 Land / Water Flag  00 = Water 
01 = Coastal 
10 = Desert 
11 = Land 

ADDITIONAL INFORMATION 

8 Non-cloud obstruction Flag (heavy aerosol) 0 = Yes / 1 = No 

9 Thin Cirrus Detected (near infrared)  0 = Yes / 1 = No 

10 Shadow Found  0 = Yes / 1 = No 

11 Thin Cirrus Detected (infrared) 0 = Yes / 1 = No 

12 Spare (Cloud adjacency) (post launch) (Post launch) 

1km CLOUD FLAGS 

13 Cloud Flag - simple IR Threshold Test 0 = Yes / 1 = No 

14 High Cloud Flag - CO2 Threshold Test 0 = Yes / 1 = No 

15 High Cloud Flag - 6.7 µm Test 0 = Yes / 1 = No 

16 High Cloud Flag - 1.38 µm Test 0 = Yes / 1 = No 

17 High Cloud Flag - 3.9-12 µm Test 0 = Yes / 1 = No 

18 Cloud Flag - IR Temperature Difference 0 = Yes / 1 = No 

19 Cloud Flag - 3.9-11 µm Test 0 = Yes / 1 = No 

20 Cloud Flag - Visible Reflectance Test 0 = Yes / 1 = No 

21 Cloud Flag - Visible Ratio Test 0 = Yes / 1 = No 

22 Clear-sky Restoral Test- NDVI in Coastal Areas 0 = Yes / 1 = No 

23 Cloud Flag -7.3-11 µm Test  0 = Yes / 1 = No 

ADDITIONAL TESTS 

24 Cloud Flag – Temporal Consistency  0 = Yes / 1 = No 

25 Cloud Flag - Spatial Consistency  0 = Yes / 1 = No 

26 Clear Sky Restoral test 0 = Yes / 1 = No 

27 Cloud Test – Night Ocean Variability Test 0 = Yes / 1 = No 

28 Suspended Dust Flag 0 = Yes / 1 = No 

29-31  Spares 0 = Yes / 1 = No 

250m CLOUD FLAG - VISIBLE TESTS 

32 Element(1,1)  0 = Yes / 1 = No 

33 Element(1,2)  0 = Yes / 1 = No 

34  Element(1,3)  0 = Yes / 1 = No 

35 Element(1,4) 0 = Yes / 1 = No 0 = Yes / 1 = No 

36 Element(2,1) 0 = Yes / 1 = No 0 = Yes / 1 = No 

37 Element(2,2) 0 = Yes / 1 = No 0 = Yes / 1 = No 

38 Element(2,3) 0 = Yes / 1 = No 0 = Yes / 1 = No 

39 Element(2,4) 0 = Yes / 1 = No 0 = Yes / 1 = No 

40 Element(3,1) 0 = Yes / 1 = No 0 = Yes / 1 = No 

41 Element(3,2) 0 = Yes / 1 = No 0 = Yes / 1 = No 

42 Element(3,3) 0 = Yes / 1 = No 0 = Yes / 1 = No 

43 Element(3,4) 0 = Yes / 1 = No 0 = Yes / 1 = No 

44 Element(4,1) 0 = Yes / 1 = No 0 = Yes / 1 = No 

45 Element(4,2) 0 = Yes / 1 = No 0 = Yes / 1 = No 

46 Element(4,3) 0 = Yes / 1 = No 0 = Yes / 1 = No 

47 Element(4,4) 0 = Yes / 1 = No 0 = Yes / 1 = No 
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2.2.1. WHY MODIS 

Many studies have concentrated on the detection, monitoring, mapping 

and assessment of various natural disasters (fire, snow, dust storm, flood etc) 

using various instruments and satellites. The MODIS instrument provides 

calibrated high radiometric sensitivity (12 bit) in 36 spectral bands covering 

wavelengths from 0.4 µm to 14.4 µm and has three different nadir ground 

spatial resolutions: 250m, 500m and 1000m. In the long track direction, there 

are 40 detectors per band for bands 1 - 2, 20 detectors per band for bands 3 - 

7, and 10 detectors per band for bands 8 – 36. The MODIS instrument has 

been designed to provide improved monitoring for land, ocean, and atmosphere 

two times a day [10]. Table 2-3 illustrates the differences between MODIS 

satellites and other available satellites.  

Table 2-3 Differences between MODIS (Terra/Aqua) and instruments on other 
satellites 

Satellite Orbital Type Spatial 
Resolution 

Frequency Field of 
View 

Number 
of Bands 

Cost to 
User 

MTSAT, 
FY-2C, 
METEOSAT 

Geostationary 1-5 km Every 30 
minutes 

Hemisphere 5 
4 
12 

free 

NIAA ,  
FY-2B 

Polar 1 km 2 times a 
day 

2500 km 6 
14 

free 

Landsat, 
SPOT, 
CBERS 

Polar 2-30 m Every 16 
days 

60-180 km  costly 

IKONS, 
Quickbird 

Polar 0.6-1 m Every 16 
days 

11 km 5 
4 

costly 

MODIS 
Terra/Aqua 

Polar 250-1Km 2 times a 
day 

2300 km 36 free 

2.2.2.  SOFTWARE SYSTEMS TO READ AND VIEW HDF FILES 

MODIS data is not just one image file but a set of image files and 

scientific data files that are saved in hierarchical data format (HDF file type). 

Therefore, software systems are provided for reading and displaying the HDF 
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files for the different purposes listed below. There is more information about 

these software systems in Appendix A. 

 MODIS REPROJECTION TOOL 

 MODIS REPROJECTION TOOL SWATH 

 HDF-EOS WEB-BASED SUB-SETTER 

 SPOT - SUBSETTABILITY CHECKER 

 MODIS LDOPE TOOLS 

 HDFLOOK 

 HDF-EOS TO GEOTIFF CONVERTER 

 HREPACK 

 HDF-EOS TO GEOTIFF CONVERTER 

 HREPACK 

 MATLAB     

MATLAB is widely used in research, because it includes an enormous 

number of tools, has a flexible easy to use user interface and has a useful help 

library. It also provides access to HDF files. In this study the MATLAB HDF, 

image processing and neural network tools have been used for detection of 

dust storms as described below. 

HDF Tools in MATLAB provide two options for reading HDF files. The first uses 

a GUI to browse for HDF files, as shown in Figure 2-3. 
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Figure 2-3 HDF GUI Tool 

After reading an HDF file, the HDF Tool provides information about the file 

as shown in Figure 2-4.  

 

Figure 2-4  HDF Tool reading an HDF file 
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After the HDF tool has read an HDF file, the individual bands can be 

imported to MATLAB workspace, for subsequent processing. Alternatively, the 

command line can be used to read bands from the HDF file using the hdfread 

function. 

2.3. OVERVIEW OF PREVIOUS DUST STORM DETECTION WORK 

Satellite remote sensing is the common method for monitoring dust 

storms but its use for identifying dust storms over sandy ground is still limited as 

the two share similar characteristics. Many researchers have proposed methods 

aiming to distinguish dust storms from clouds, ground and water surfaces using 

images from instruments  such as MODIS [8, 9], MERIS [8], TOMS [7], 

SeaWiFS [24], GOES [25] and images from satellites such as NOAA-AVHRR 

[26], Landsat and GMS [27]. 

2.3.1. DUST STORM DETECTION USING MODIS DATA 

Several methods have been presented for the detection of dust storms 

based on thresholding some quantity calculated using data from a few of the 36 

spectral bands provided by the Moderate Resolution Imaging 

Spectroradiometers (MODIS) on board the Terra and Aqua satellites at pixel 

resolutions varying from 250m to 1km. Calibrated spectral radiance data 

provided in the thermal emission bands can be used to calculate a 

corresponding Brightness Temperature (BT) by assuming the radiation is 

emitted from a surface behaving like a blackbody with emissivity of 1.0.  

Reference [25] describes what was then (2003) a new dust enhancement 

technique to create the Naval Research Laboratory’s 1-km Dust Enhancement 
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Product (DEP) over land and water during daytime. Compared against standard 

visible (0.65 m) images, the DEP over land algorithm provides an improved 

ability to distinguish areas of dust from water and ice clouds and bright desert 

backgrounds by using false colour images as an enhancement technique 

formed using high spatial and spectral resolution digital data from MODIS. To 

enhance dust storms over land, the DEP technique is based on the following 

physical attributes: (1) elevated dust produces a depressed BT against the 

hotter land background temperature; (2) dust can be differentiated from water 

clouds having the same radiometric temperature by the colouration properties of 

mineral dust; (3) dust storms often have positive values of Brightness 

Temperature Difference (BTD) (between 12 µm and 11 µm)  and (4) the 

additional infrared (1.38 µm) information from MODIS enables the dust signal to 

be separated from the other spectrally similar components of the scene. The 

DEP over land algorithm is generally applicable to any satellite having the 

requisite spectral bands. On the other hand, it has some limitations for detecting 

dust storms: (1) it is useful only during daytime, (2) some parts of cold terrain 

can appear falsely enhanced; (3) the sun glint area is prescribed, and the true 

area is a dynamic function of local sea surface state; (4) in terms of Brightness 

Temperature differences, not all dust pixels have large positive values, 

depending on opacity and background; (5) dust storms that are viewed at longer 

optical paths  generate stronger enhancements; and (6) DEP is unable to detect 

dust storms underneath clouds. 
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Reference [9] presents a method for the Automatic Detection of dust 

storms in the northwest of China using a decision tree classifier with features 

comprising the difference between bands 7 and 3, the Normalized Difference 

Snow Index (NDSI) and the quantity defined in equation 2-1  

            
Equation 2-1.  

where bn represents a band number. The decision tree discriminates areas of 

land, dust storms, cloud and snow. A weakness of this study is that the weak 

dust regions are not easily distinguished from the surface, because the lower 

dust content in these regions does not cover the surface sufficiently. 

Furthermore, cloud shadow and surface are mixed up with detected dust, so 

further improvement is still needed.  

Reference [28] describes a method for detecting and separating dust 

storms from cirrus cloud over the Gobi desert using a combination of reflective 

and emissive MODIS bands. This method used the D-parameter technique 

based on equation 2-2 

                          Equation 2-2.  

 where rr is the ratio of the reflectances at wavelengths of 0.54µm and 0.86µm, 

a is a scaling factor which is equal 0.8 and b is an offset derived from the 

wavelength difference 11µm – 12µm related to BTD which is numerically equal 

to 2. Using the D-parameter makes it possible to separate cirrus clouds from 

high altitude airborne dust using a threshold of 1. 
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Reference [29] investigated a method that can distinguish sand and dust 

from cloud and surface, also determining the scope and intensity of sand and 

dust storms from MODIS images. The normalized difference snow index (NDSI) 

and the dust sand index (DSI) were used in this method to detect dust storm 

from cloud and land surface. The NDSI and DSI are defined in equations 2-3 

and 2-4 respectively.    

                        Equation 2-3.  

                  Equation 2-4.  

 

where Bn is a band number. This method was applied on the China dust storm 

event which occurred on 27th of March 2004. The results show this method to 

be very effective for the detection and scope of dust storms over China, also it 

can determine the intensity of sand and dust storms using multiple thresholds 

where the intensity is divided into different levels from weak to heavy. However, 

this method was less effective when it was applied to dust storm events 

occurring over sandy land.    

Reference [1] proposes a method based on the Normalised Difference 

Dust Index (NDDI) for the detection of sand dust storms in the north of China by 

combining the Terra and Aqua MODIS solar reflectance band (SRB) 

measurements, which is defined in equation 2-5. 

                      
Equation 2-5.  
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To identify airborne and ground sand and dust, these authors use a threshold of 

275K on the BT using MODIS band 31 to detect airborne or ground sand and 

dust. The NDDI index is effectively a method for separating SDS from water/ice 

clouds and ground features except sandy ground. Although, this method can be 

useful for the detection of dust storms over non-sandy ground, it does not give 

good results over sandy ground such as the Sahara desert, even when 

enhanced using the BT calculated from band 31. So, if this technique is to be 

used successfully over surfaces such as the Sahara, it seems likely that extra 

bands will be needed.  

Reference [2] describes the use of Terra and Aqua MODIS level 1B 

thermal infrared data (TIR) at wavelengths of 8.5µm, 11µm, and 12µm for 

detecting and monitoring dust storms in the north of China. It is found that 

combining the BTD between 8.5µm and 11µm with the BTD between 11µm and 

12µm can be used to detect dust storms in northern China during both day and 

night. However, this method is less effective for detection of dust storms over 

sandy land. 

Reference [30] describes an investigation of the dust storm which 

occurred on 7 April 2001 in the north of China using the MODIS thermal infrared 

bands 29, 31 and 32. A dust storm mask algorithm was developed to identify 

dust storms using the BTD between bands 29 and 31 and the BTD between 

bands 31 and 32. BTD values between bands 31 and 32 of less than -0.5 and 

BTD values between bands 29 and 31 of greater than 0 represent a strong dust 

region, while BTD values between bands 31 and 32 of less than -0.5 and BTD 
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values between bands 29 and 31 of less than 0 represent a weak dust region. 

Other cases represent cloud, or other unknown surface. This algorithm can be 

used to identify dust storms, such as the one investigated, during both day and 

night over non sandy areas. 

Reference [31] describes the use of a BTD technique to detect and 

monitor desert dust using infrared MODIS and SEVERI data. The BTDs used in 

this study are from bands 20 and 31, bands 29 and 31 and bands 31 and 32. 

Several thresholds were created to classify a data pixel as dusty or not dusty. 

The BTD between 31 and 32 for dust storm is generally negative over land and 

smaller than -0.5K over sandy land. The BTD between 20 and 31 for dust storm 

during the day is positive, while the BTD between 29 and 31 is also negative. 

The results show that more work is needed to improve the quality of dust storm 

detection. However, this method can be used for monitoring dust storms.     

Reference [32] describes an integrated approach for separating dust 

from clouds during both day and night using MODIS thermal infrared bands. 

This method is based on the spectral variability of dust emissivity in bands 20, 

29, 31 and 32. A combination of three methods was used to identify dust and 

cirrus cloud. The first method used the D*-parameter (defined by equation 2-6) 

test for detecting dust storms at night 

                                        Equation 2-6.  

where C and E are the thermal offsets for BTDs between bands 31 and 32 

(BTD31-32) and bands 29 and 31 (BTD29-31), respectively. Dust storm and cloud 

correspond to D* values greater or less than one respectively. The second 



CHAPTER TWO 

 

30 

 

approach uses the slope of the best-fit line (ΔBTD29-31/ΔBTD31-32) to identify 

dust and cloud, where Δ denotes a differential change of the parameter. If the 

slope is negative, the domain pixels are identified as dust. The third approach 

uses BTD20-31 to detect dust storm from cloud over water. 

Reference [33] (Huang et al.) describes the use of the BTD between the 

MODIS channels at 11µm and 12µm and the microwave polarized index (MPI 

defined in equation 2-7) for the 89GHz and 23.8GHz channels of the Advanced 

Microwave Scanning Radiometer (AMSA-E) on board the Aqua satellite  

                    Equation 2-7.  

where ∆Tb89 and ∆Tb23.8, the microwave polarized brightness temperature 

differences of the  89GHz and 23.8GHz channels respectively, are defined as 

follows  

            Equation 2-8.  

Tbv and Tbh are the vertical and horizontal polarized radiation measurements 

respectively. Huang’s results showed that a BTD with threshold -2K can identify 

80% of the dust storm and 5% of clouds over the dust region. A threshold of -1K 

can identify 98% of dust and 15 % of clouds. At the same time MPI can detect 

85% of dust storms under cloud using a threshold of -7.0K. However, thresholds 

less than -7.0K would identify higher percentages of dust storms and about 5% 

of clouds. In conclusion BTD can be used to detect dust over both sea and land 

surface when there are no clouds and MPI can be used to detect dust storm 
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under cloud. For this reason, the combination of BTD and MPI could possibly 

overcome some of the weaknesses of the individual methods. 

Reference [34] investigates a dust storm detection approach using the 

BTD between bands 32 and 31 with the BTD between bands 20 and 30 and 

describes the Thermal Infrared Dust Index (TIDI) method for the detection of 

Saharan dust storms over the Atlantic Ocean during 2004-2006. The 

investigation found there was a close relationship between the aerosol optical 

thickness (AOT) at 550nm and the BTs of MODIS bands 20, 30, 31 and 32. The 

TIDI is calculated using equation 2-9. 

                                        Equation 2-9.  

The values of the coefficients C0, C1, C2, C3 and C4 are -7.9370, 01227, 

0.0260, -0.7068 and 0.5883 respectively. The results of this study show that 

dust storms can be distinguished from the Atlantic Ocean during day or night 

(as it uses thermal infrared bands). However, this method has some limitations 

in distinguishing dust storm from cloud and the applicability of this method for 

detecting dust storms over land needs more detailed study. 

Reference [7] describes the use of the BTD between bands 31 and 32 for 

monitoring a dust storm, extracting its extent and estimating its intensity level 

during both day and night in the north west of China in 2006. However the use 

of BTDs with zero thresholds was not enough to prevent some cloud being 

falsely detected as dust. For this reason its authors used an NDDI technique to 

remove clouds during the day. At the same time temperatures greater than 

263K and less than 280K were used to distinguish dust storms from clouds and 
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land respectively at night using the BT of band 31. The result of this study 

showed that the detection of dust storms was very effective in the northwest of 

China. However, when the author of this thesis applied this method to some 

dust storms events over the Sahara desert it was found to be less effective. 

Reference [35] describes a comparison of Neural Network based 

classification using individual pixels and prior segmented regions as the objects 

to be classified. The pixel classification was based on selected training pixel 

samples in several bands from seven land cover types (irrigated agriculture, 

rain fed agriculture, grassland, tropical dry forest, human settlement, and 

orchards). The segmented region classification involves: 1) segmenting an 

image into non-overlapping objects and constructing a feature vector for each of 

these objects; 2) Classification of the features into one of the seven prior 

classes. The results showed that the segmentation based method performed 

better than the pixel based method. 

Reference [36] describes the use of thermal MODIS data band 31 and 32 

data to build a method for extracting dust information. The researchers used 

two kinds of algorithms to separate the dust from other objects such as cloud, 

desert surface and other ground surfaces. The research used equations 2-10 

and 2-11 defined as follows 

                          Equation 2-10.  

                     Equation 2-11.  
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where T31 and T32 are the brightness temperatures of bands 31 and 32 

respectively. The threshold used to separate dust storm from other objects is 

1K. Although this method obtained an accurate result when it was applied in 

northern China, it did not give the same accuracy over the Sahara desert.  

Reference [37] describes the use of the BTD between bands 31 and 32 

to estimate the density of a dust storm occurring in Australia on 23 September 

2009. The work estimated that at least 3 million tons of topsoil was blown away 

as dust in this dust storm. 

Reference [38] uses a comparison between Maximum Likelihood 

classifier (ML) and Probabilistic Neural Network (PNN) to develop an automatic 

dust storm detection process applied over the United States. The data used 

were the MODIS multispectral bands from the Terra satellite. The feature 

vectors used pixels values from bands 20, 29, 31, and 32. A total of 31 dust 

storm events were used in this study. The results showed the PNN method was 

much better than the ML method for dust storm detection with detection 

accuracies of 84% and 67% respectively. 

Reference [39] describes the use of the Thermal Infrared Integrated Dust 

Index (TIIDI) and four MODIS bands to monitor dust storm over various land 

cover types, including vegetation, bright surfaces and water. BTD12-11 (the 

subscripts indicate band wavelengths in m) is used to distinguish cloud from 

other objects, BTD8.6-11 is used to identify dust storm and surface sand and 

BTD3.7-11 is used to separate dark surface and to represent the intensity of dust 

storm. The TIIDI algorithm is based on equation 2-12 
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Equation 2-12.  

The value of parameter a is set at 10 when BTD8.6-11 is positive, otherwise it is 

set at 5.The results show that the TIIDI can distinguish mineral dust from cloud 

and land surface over bright surfaces and ocean. 

2.3.2.  DUST STORM DETECTION NOT USING MODIS 

Several instruments other than MODIS have also been used for dust 

storm detections and this section, presents some of this related work.  

Reference [40] describes a method to extract dust storm information and 

divide them into three intensity categories (low, medium and high density) using 

a multi-threshold method. The data used in this study are ten data events, 

which occurred in spring 2000, observed from the Advanced Very High 

Resolution Radiometer on board one of the National Oceanic and Atmospheric 

Administration polar orbiting satellite (AVHRR / NOAA). The authors analyzed 

the relationship between the dust storms and the surface of Northern China by 

analyzing the types of land cover and the degree of vegetation coverage where 

dust storms passed. It found that the land cover conditions and the degree of 

vegetation coverage have the dominant affect on the formation and intensity of 

dust under the same meteorological conditions. The authors used two channels 

(CH1 and CH4) to separate dust storms from land surface and clouds 

respectively, as shown in equation 2-13:- 

                           

 

Equation 2-13.  
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The authors of this work found that the intensity of dust storm over bare land is 

higher than where the surface covered by vegetation, as might be expected. 

Reference [41] describes a study of the capabilities of several remote 

sensing instruments with respect to monitoring dust storms over the Nile Delta 

using different wavelength ranges. The Total Ozone Mapping Spectrometer 

(TOMS) was used to detect dust storms in the Ultraviolet region, but was found 

to be very unsuitable because of its poor resolution. Data from MISR on the 

Terra satellite was studied to evaluate the usefulness of monitoring in the visible 

region of the spectrum using different viewing angles. The results showed that 

dust storm events which are difficult to detect at nadir may be easily detected by 

off-nadir angle viewing. Furthermore, different levels of MISR products were 

used to extract physical parameters of dust storms such as optical thickness, 

dust particle size and distribution, concentration and land surface cover 

underneath the dust storms. This information can be used to study the 

development, movement and transport of dust storms. Also TRMM Microwave 

Image (TMI) data was used to study the effect of dust storms on water vapour in 

the microwave range. The result shows the location of dust storm and haze 

matches the position of water vapour or smog. There are some disadvantages 

to using MISR as its repeat coverage of the Earth is from 2 to 9 days, which is 

insufficient to continuously monitor dust storms. Also, MISR has just 4 bands for 

each camera. TRMM Microwave Image (TMI) data was particularly chosen for 

quantifying the water vapour, the cloud water, and the rainfall intensity in the 

atmosphere.  
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Reference [27] uses the BT technique to detect Asian dust aerosols 

during both day and night using the meteorological satellite data from AVHRR / 

NOAA and GMS-5 / VISSR. This technique uses two AVHRR 4 thermal infrared 

bands (10.3m - 11.3m) and 5 (11.5m - 12.5m), and two VISSR IR1 

(10.5m - 11.5m) and IR2 (11.5m - 12.5m) bands. The Aerosol Vapour 

Index (AVI) is calculated as follows for both instruments  

                                          Equation 2-14.  

                                             Equation 2-15.  

 where n(i) and IR(i) are the brightness temperatures of thermal infrared band i 

for NOAA / AVHRR and GMS-5 /  VISSR respectively. The constants 200 and 

100 are related to the raw data format; 10 bits for NOAA / AVHRR and 8 bits for 

GMS-5 / VISSR. Comparing the results from this technique with data from 

ground observations confirmed this method can detect aerosols of Asian dust.  

Reference [42] describes a technique to detect dust storms using 

Principal Component Analysis (PCA) as a tool for data fusion. The PCA 

technique was applied to Multi-angle Imaging Spectroradiometer (MISR) data 

observed over the Liaoning region of China as well as parts of northern and 

western Korea on April 8, 2002. Three different experiments were included in 

this study using various angular and frequency combinations. The first 

experiment applied PCA to all the 20 bands rendered by different angles in the 

form of a multi-dimensional product and then the first eigenvalue, which 

contains about 93.3% of the total data variation, was used with K-means 

clustering for classification of the image data. The second experiment applied 
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PCA to information from different angles for one particular frequency and then 

the first eigenvalue of each frequency, which contains about 94.2% of total data 

variance, and was used with K-means clustering for classification. The third 

experiment applied PCA to the information from different frequencies for each 

individual camera and then the first eigenvalue of each camera, which contains 

about 99% of the total data variance, was used with K-means clustering. Finally, 

the result of each experiment was compared with the original data. The results 

show that the first experiment was the best for classifying dust storm data. The 

PCA technique has some limitations with MISR data: first, this technique is just 

useful during the day; second, it is just useful over a dark surface.   

Reference [43] describes a study of the characteristic behaviours of 

Brightness Temperature and Aerosol Index associated with dust storms over 

the Western end of the Indo-Gangetic basin using the TOMS aerosol index and 

Advanced Microwave Sounding Unit (AMSU) data. The 23.8GHz channel from 

AMSU was used to study the Brightness Temperature near the surface. The 

results showed that dust storms decrease the Brightness Temperature. Also, 

the results show that multisensory data can be very useful in monitoring the 

transport and characterization of dust events. 

An algorithm is developed in [44] for the detection of dust storms over-

water using five channels of the AVHRR imager on board NOAA satellites. The 

areas of study were the north and south Atlantic, the Mediterranean Sea, the 

Red Sea, the Arabian Sea, the Persian Gulf, the Yellow Sea, and the sea off the 

north eastern coast of Australia. The authors used the BTD between the 11µm, 

and 12µm channels and the 0.63µm, 0.65µm and 0.86µm channels, in addition, 
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to improve the detection of dust storms over water. This technique was limited 

to detecting dust storms over water and in daytime. 

Reference [8] describes an automatic threshold approach using true 

colour images from MERIS to detect the centres of dust storms and their 

intensities over non sandy ground (Northwest of China) using the FE-Otsu 

algorithm. Although this method can be applied to MODIS data, it almost 

certainly does not work in daytime over bright surfaces such as the Sahara 

desert because sandy ground and dust storms have very similar appearances 

and it cannot work at night.  

Reference [45] describes an automated algorithm to generate a dust 

storm mask applied to MSG SEVIRI satellite imagery to extract African dust 

storms. This automated algorithm used the BTD between 10.8m and 12.1m 

channels with threshold functions specified in equation 2-16  

                                                   

       

Equation 2-16.  

The results obtained showed that the dust mask was accurate and that the 

tuning of a related tracking algorithm is efficient. 

Reference [26] describes an automated method for detecting dust 

storms, locating dust sources and finding dust storm direction using the BTD 

between bands 4 and 5 using AVHRR / NOAA imagery. This difference 

between bands 4 and 5 is used as an initial step to detect the presence of the 

dust storm area then K-means classification is performed to segment the dust 
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storm region from other image content. Then several different filters are used to 

remove cloud pixels from the dust storm and to produce a binary dust image.  

Reference [46] described a dust Index (DICLM), defined in equation 2-17, 

formed by combining LIDAR and multispectral IR data to detect dust aerosol 

over the Taklamakan Desert during daytime in the springs of 2007 and 2008.  

                                          

                   
Equation 2-17.  

BTD1 is the brightness temperature difference between the 10.60µm and 

12.05µm channels, and BTD2 is the brightness temperature difference between 

the IIR 8.65µm and 11.60 µm channels, β is the layer’s mean attenuated 

backscatter at 532nm, δ is the layer’s mean depolarization ratio (layer-

integrated perpendicular-to-parallel attenuated backscatter at 532nm), χ is the 

layer’s volume colour ratio integrated from 1064nm to 532nm, ε is the layer’s 

top altitude, ζ is the layer’s base altitude above mean sea level (MSL), and C0 to 

C7 are coefficients. A limitation of this method is it is useful for detection of dust 

aerosol during daytime only.  

Reference [47] introduced a new method for the detection of dust clouds 

in NOAA-AVHRR satellite images. The method used a region growing 

segmentation algorithm with a set of seed points applied on the difference 

between band 4 (10.3µm – 11.3µm) and band 5 (11.5µm – 12.5µm). The paper 

focuses on two dust events in south-western North America on April 15 2003 

and March 04 2003. A threshold of 0 is used on the difference between band 4 
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and band 5 before using the region growing algorithm. The results show this 

approach is promising as most of the dust events were detected.    

2.4. OVERVIEW OF SATELLITE IMAGE CLASSIFICATION 

Image classification is an important part of remote sensing, image 

analysis and pattern recognition. In some cases, the classification itself may be 

the object of the analysis. For example, classification of land use from remotely 

sensed data produces a map like image as the final product of the analysis [48]. 

Numerous classification algorithms have been developed, many of them highly 

specific and only applicable to a reduced class of problems and image data. 

Without an additional source of knowledge, automatic image classification 

based on low level image features seems unlikely to succeed in extracting 

semantic objects in generic images [49]. Multi-band classification is the method 

for using pixel values calculated from different bands or merging of bands and 

classifying them into their object classes.  

Reference [50] developed a method for automated classification of 

surface and cloud types using MODIS. Its surface and cloud-type classification 

is based on the maximum likelihood (ML) classification method. Twenty five 

bands with eight BTDs have been used in this method as features to classify 

MODIS image data into eight classes; clear water, clear land, mixed types, 

middle-to-low clouds, middle-to-high clouds, and high clouds. The ML 

performance for classifying MODIS images was validated using the MODIS 

cloud mask and this found that the 1-km-resolution ML classification mask 

improves over the 1-km-resolution MODIS cloud mask in some situations. Also, 

combined use of the MODIS cloud mask and ML cloud classification improves 
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identification of clear skies in the MODIS imagery as well as cloud types. A 

limitation of this method is that it did not include a dust storm class. 

Reference [51] describes the segmentation of remotely-sensed images 

by an incremental neural network (INeN), which is a two-layer network, The 

number of nodes in the first layer of the INeN is determined by the structure of 

the feature vectors. The number of nodes in the second layer, which is also 

called the index layer, is determined by the number of output classes. In this 

paper a comparison is made between pixels based classification and region 

based classification. The data set consists of seven images acquired by the 

Landsat-5 TM sensor. In the first method, features are formed by the intensities 

of corresponding pixels from each channel. The second method is similar to the 

first but with the intensities of pixel neighbourhoods being used in each channel. 

Nine features are obtained from each image. The feature vector is formed by 

the intensities of 63 (7x9) pixels. The results show that the pixel extraction 

method produces much greater accuracy than the feature extraction method. 

An automated satellite image classification design using object-oriented 

segmentation algorithms is developed in reference [49], A new region-merging 

segmentation technique which Includes the spectral and textural features of the 

objects linked with the Food and Agriculture Organization of United Nation 

(FAO) Land Cover Land Use classification system. This technique was tested 

on Landsat and Aster Images and achieved overall accuracy values of 92% for 

Aster images and 89% for Landsat images using standards measurements of 

conviction matrix. A limitation of this method for more general use is in using the 

FAO Land Cover Land Use classification system which is a particular technique 
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for classifying land cover using high resolution satellite images whereas MODIS 

has low resolution multi-band images. 

Reference [52] provides a comparison between a decision tree classifier 

(DTC) and a Maximum Likelihood Classifier (MLC) for mapping very high 

resolution satellite images into 11 classes (Stone, House, Grassland, Grass dry 

area, Plain land, Sand, River, Submerged area, Sea water, trees and pool), The 

training feature data for both methods was prepared using RGB pixel values 

from the satellite image. The classified image overall accuracy was found to be 

86.66% using the DTC and 81.33% using MLC. 

Reference [53] describes a comparison between two algorithms, namely 

a feed-forward back-propagation artificial neural network and a K-Means 

algorithm for segmentation and classification of remotely sensed images. Both 

algorithms used RGB images. It is found that the K-means algorithm gives very 

high accuracy, but it is useful for a single database at time as a K-means 

unsupervised classifier, whereas the neural network is useful for multiple 

databases, once it is trained for it. The neural network also provides good 

accuracy. The limitations of this method is that it concentrated only on RGB 

images, which is not effective for separating dust storms from sandy land as 

both have the same colour.  

2.5. CHAPTER CONCLUSION 

This chapter was divided to three main parts; the first included an 

overview of the MODIS instrument and satellites, the orbits of each satellite, the 

number of bands and the wavelength range of each band. In addition, this part 

of the chapter included some information about MODIS products and 
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applications and information on system tools used for reading, viewing and re-

projection of MODIS HDF files. 

The second part of this chapter provided information about previous 

studies on dust storm detection over different surface using different 

instruments.  

The third section provided information about previous studies on satellite 

images classifications using different methods and suggested the artificial 

neural network as a popular and effective tool for classifying satellite images.  

The literature survey showed that a significant amount of previous work 

investigated the detection of dust storms. However, the achieved detection 

performances are still limited, as both dust storms and sandy land share some 

characteristics, leading to difficulty in separating dust storms and sandy land. 

Dust storms also share some characteristics with low clouds and shadow which 

also leads to difficulty in separation. The detection of dust storms at night is still 

also limited due to low night-time temperatures, where all previous methods 

concentrated on using the BT for detection of dust storms during the night.  

Furthermore, there is no single method that is suitable for the detection 

of dust storms over different surfaces. For this reason more work is needed to 

improve the detection of dust storms, and to generate an automated system 

that can be used for detection dust storms over different surfaces and for both 

day and night.  

Also, there are no ground truth data that can be used for validation. The only 

way to provide ground truth data for dust storms is to use manual detection of 
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dust storms, as has been used in reference [38]. Chapter 3 describes the use of 

brightness temperature difference between bands 23 and 31 for distinguishing 

between dust storm and sandy land. It also describes using differentiation 

between these two bands with the NDDI method for the detection of dust storms 

over sandy land using threshold method. The second section of Chapter 3 

presents the use of both BTD between bands 23 and 31 with the BTD between 

bands 31 and 32 for detection dust storms in both day and night.
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CHAPTER THREE 

3. DUST STORM DETECTION USING THRESHOLDING  

3.1. INTRODUCTION 

As mentioned in Chapter 2, satellite remote sensing is expected to become 

the primary approach for detecting and monitoring dust storms [1] because 

there are many potential advantages to using this technology, including flexible 

coverage of wide areas, and continuous rapid monitoring of natural hazards. At 

the same time satellite remote sensing is limited to detection of dust storms 

using single band satellite images, as they share some characteristics with 

cloud and sandy ground. This chapter concentrates on the detection of dust 

storms from multispectral satellite (MODIS) images using threshold-based 

techniques, and is organized as follows. Section 3.2 presents a threshold 

technique for daytime dust storm detection, and Section 3.3 describes a 

threshold technique for the detection of dust storms during both day and night 

time. Section 3.4 includes some conclusions. 

3.2. DAY TIME DUST STORM DETECTION  

The MODIS thermal infrared emissive bands 20, 29, 31, and 32 are the ones 

most commonly used for detecting dust storms. Data from these bands are 

used to calculate brightness temperatures for sea, land and atmospheric 

surfaces with different emissivities, as shown in Chapter 2. The brightness 

temperature differences between these bands can often distinguish dust storms 
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from other objects in MODIS images. The BTD between bands 31 and 32 (11 

and 12 µm respectively) in particular have been employed in many dust storm 

detection schemes, because the emissivity of sand in band 31 is less than the 

emissivity of sand in band 32, whereas the emissivities of other surfaces and 

cloud in band 31 are higher than in band 32 [32]. The brightness temperature 

calculated for dust storms at 12µm is higher than the brightness temperature 

calculated at 11µm, and this leads to negative values of the brightness 

temperature difference for dust storms between 11µm and 12µm, while other 

surfaces and cloud will be around zero, or positive [39]. Most of the methods 

used for detecting dust storms over land surface have concentrated on BTD 

(31-32) and this is considered an effective method for distinguishing dust storms 

from other imaged surfaces. However, it is less effective for detecting dust 

storms over desert regions because the desert surface and the airborne dust 

have similar behaviour in bands 31 and 32 [20]. For this reason, this research 

concentrates on distinguishing between dust storms and sandy land. Data from 

the MODIS emissivity data library, shown in Table 3.1, is used in this study to 

analyse the emissivities of sand, sandy soil, soil and ice and water clouds in the 

bands 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35 and 36. Bands 

21 and 22 have the same wavelength but have different peak temperatures. 

Band 21 peaks at about 500 K, and band 22 peaks at about 335 K. 

Furthermore, band 22 is less noisy. 
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Table 3-1 Emissivities of Sand, Sandy Soil and Ice and Water clouds from the 
MODIS data library 

Band Wavelength 
µm 

Sand Sandy 
Soil 

Soil Ice Water 

36 14.192 0.98 0.98 0.95 0.93 0.96 

35 13.907 0.97 0.99 0.98 0.93 0.96 

34 13.675 0.97 0.98 0.99 0.93 0.97 

33 13.359 0.97 0.97 0.97 0.93 0.98 

32 12.032 0.98 0.98 0.97 0.95 0.99 

31 11.017 0.96 0.96 0.97 0.98 0.99 

30 9.737 0.88 0.88 0.92 0.99 0.99 

29 8.518 0.81 0.78 0.88 0.98 0.98 

28 7.334 0.99 0.98 0.98 0.98 0.98 

27 6.752 0.99 0.99 0.98 0.98 0.98 

25 4.545 0.95 0.88 0.75 0.97 0.98 

24 4.472 0.96 0.92 0.75 0.98 0.98 

23 4.056 0.87 0.76 0.63 0.98 0.98 

21, 22 3.96 0.86 0.76 0.65 0.98 0.98 

20 3.785 0.84 0.73 0.63 0.98 0.98 

 

The emissivity data for sand, sandy soil, soil and ice and water clouds in 

Table 3.1 are shown graphically in Figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3-1 Plots of MODIS emissivity data for different surfaces 

Table 3.1 and Figure 3.1 show that the emissivity of sand in band 31 (0.96) is 

slightly less than the emissivity of sand in band 32 (0.98), while the emissivity of 
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soil is the same in bands 31 and 32 (0.97) and the emissivity of water cloud is 

the same in bands 31 and 32 (0.99). At the same time the emissivity of ice 

cloud is slightly higher in band 31 (0.98) than in band 32 (0.95). Therefore, the 

BTD (31-32) could be useful for distinguishing dust storm from soil, and 

water/ice cloud. However, it is not good enough to distinguish dust storm from 

sandy soil as the emissivities of sandy soil and sand are the same in band 31 

(0.96) and in band 32 (0.98). On the other hand, in band 23 the emissivities of 

sand (0.87), sandy soil (0.76) and soil (0.63) are significantly lower than the 

corresponding values in bands 31 or 32. The emissivity differences between 

bands 23 and 31 result in big differences between sand, water and ice cloud on 

the one hand and soil and sandy soil on the other hand as shown in Table 3.2. 

Table 3-2 Emissivity differences between bands 23 and 31 

 Band 23 – Band  31 Result 

Sand 0.87 - 0.96 -0.09 

Sandy soil 0.76 - 0.96 -0.2 

Soil 0.63 - 0.97 -0.34 

Ice cloud 0.98 - 0.98 0.0 

Water cloud 0.98 - 0.99 -0.01 

        

Table 3.2 shows that the differences between bands 23 and 31 can 

distinguish between sand, water/ice cloud and soil/sandy soil using -0.09 as 

threshold. For this reason the brightness temperature difference between bands 

23 and 31 could be useful to distinguish dust storm from soil and sandy soil. 

The average values over 50×50 windows for the brightness temperatures of 

sand, land, vegetation, water and cloud over all the MODIS emissive bands 

used to calculate cloud and land surface temperatures (bands 20, 21, 22, 23, 
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31and 32) are calculated and  displayed in Figure 3.2 using the fifty dust 

storms, which occurred over North Africa, listed in Table 3.3.  

Table 3-3 The MODIS data used in this study 

No Date Time (GMT) Satellite 

1 2005/05/13 10:35 Aqua 

2 2005/07/18 13:40 Aqua 

3 2005/07/19 12:45 Aqua 

4 2003/02/02 11:20 Aqua 

5 2003/02/28 11:55 Aqua 

6 2005/03/01 12:20 Aqua 

7 2004/05/29 12:00 Aqua 

8 2006/02/24 11:30 Aqua 

9 2008/06/03 11:45 Aqua 

10 2008/06/05 13:15 Aqua 

11 2008/06/06 10:40 Aqua 

12 2008/06/08 12:05 Aqua 

13 2008/06/02 12:40 Aqua 

14 2008/06/07 11:20 Aqua 

15 2008/06/08 12:00 Aqua 

16 2008/06/10 13:30 Aqua 

17 2010/04/22 13:25 Aqua 

18 2010/05/26 11:35 Aqua 

19 2010/05/27 10:40 Aqua 

20 2010/05/27 13:55 Aqua 

21 2010/06/08 11:00 Aqua 

22 2010/06/09 13:25 Aqua 

23 2010/06/10 12:30 Aqua 

24 2001/11/09 10:45 Terra 

25 2002/05/07 10:30 Terra 

26 2002/05/08 09:35 Terra 

27 2006/02/23 09:15 Terra 

28 2006/07/25 08:30 Terra 

29 2006/02/25 09:00 Terra 

30 2002/07/11 08:00 Terra 

31 2008/01/04 11:45 Terra 

32 2008/06/04 10:55 Terra 

33 2008/06/05 08:20 Terra 

34 2006/04/11 05:10 Terra 

35 2010/06/08 07:50 Terra 

36 2010/06/09 08:35 Terra 

37 2010/06/10 10:55 Terra 

38 2010/06/10 11:00 Terra 

39 2010/07/04 10:05 Terra 
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40 2010/07/04 10:10 Terra 

41 2010/07/24 09:45 Terra 

42 2004/03/27 06:50 Aqua 

43 2008/06/01 12:00 Aqua 

44 2008/06/04 12:30 Aqua 

45 2008/01/01 09:35 Terra 

46 2008/01/01 11:10 Terra 

47 2008/01/02 08:40 Terra 

48 2008/01/04 08:25 Terra 

49 200801/04 10:05 Terra 

50 2008/08/03 09:35 Terra 

 

The Brightness Temperature is an estimate of the temperature of a black body 

calculated from the thermal emissive MODIS level 1B data, without taking the 

emissivity of the surface into account, using Plank’s radiation law defined in 

Equation 3-1[54].  

 

 

Equation 3-1  

where: 

L = radiance (W/m2/st/m). 

h = Plank’s constant (J.s). 

C = speed of light in vacuum (m/s). 

K = Boltzmann gas constant (J/K). 

λ = band or detector centre wavelength (m). 

T = Temperature (K). 
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However the level 1B data are scaled integers (SI) and are converted to 

calibrated radiance using the following equation 

                                         Equation 3-2  

The Radiance_Scales and the Radiance_Offsets parameter values have 

been calculated by the MODIS Team for all data bands and are saved inside 

the HDF file Level 1B data [55]. 

 

Figure 3-2 Average brightness temperatures of water, land, vegetation, dust storm 
and cloud in, from left to right, bands 32, 31, 23, 22, 21 and 20. 

In Figure 3.2 it can be seen that the brightness temperatures of dust storm 

(298.4K) and cloud (276K) in band 23 (4.06µm) are higher than brightness 

temperatures of dust storm (287K) and cloud (271K) in band 31 (11.02µm), 

while the brightness temperatures of water (285K), land (310K) and vegetation 

(295K) in band 23 are less than in band 31 (286K, 310K and  296K for water, 

land and vegetation respectively). For these reasons the brightness 

temperature difference between bands 23 and 31 is useful for distinguishing 
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dust storm from land, vegetation, cloud and water and figures 3.3, 3.4, 3.5 and 

3.6 show some examples of the brightness temperature difference between 

bands 23 and 31.  

  

Figure 3-3 (A)is the true colour image from data number 8 in Table 3.3, captured 
by MODIS (Aqua) on 24th of February 2006 at 11:30 GMT over North Africa, (B) is  

the associated BTD between bands 23 and 31. 

  

Figure 3-4 (A) is the true colour image from data number 6 in Table 3.3, captured 
by MODIS (Aqua) on 1st of March 2006 at 12:20 GMT over Libya, (B) is  the 

associated BTD between bands 23 and 31. 

A B 

A B 
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Figure 3-5 (A) is the true colour image from data number 7 in Table 3.3, captured 
by MODIS (Aqua) on 29th of May 2004 at 12:30 GMT over Libya, (B) is  the 

associated BTD between bands 23 and 31. 

  

Figure 3-6 (A) is the true colour image from data number 26 in Table 3.3, captured 
by MODIS (Terra) on 8th of May 2002 at 09:35 GMT over Libya, (B) is  the 

associated BTD between bands 23 and 31. 

One of the common ways used to distinguish particular objects in images from 

other objects is to apply the threshold method, with suitable choices of threshold 

values. In this study, the distribution of objects pixels in the BTD between bands 

23 and 31 was analyzed to separate dust storms from other objects. Figures 3.7 

A B 

A B 
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to 3.10 show examples of dust storm, cloud and sandy land with associated 

histograms. 

  

Figure 3-7 (A) is the BTD between bands 23 and 31 of data number 8 in Table 3.3, 
(B) is the histogram of Land, Cloud and Dust storm samples from the data shown 

in (A). 

  

Figure 3-8 (A) is the BTD between bands 23 and 31 of data number 6 in Table 3.3, 
(B) is the histogram of Land, Cloud and Dust storm samples from the data shown in 

(A). 

-2 0 2 4 6 8 10 12 14 16
0

2000

4000

6000

8000

10000

12000

BT23 - BT31

N
u
m

b
e
r 

o
f 

P
ix

e
l

Brightness Temperature Difference

 

 

Land

Cloud

Sand Dust Storm

 

 

 

Cloud 

Dust 

Storm 

Land 

A B 

 

 

 

Cloud 

Dust 

storm 

Lan

d 

A B 



CHAPTER THREE 

 

55 

 

  

Figure 3-9 (A) is the BTD between bands 23 and 31 of data number 7 in Table 3.3, 
(B) is the histogram of Land, Cloud and Dust storm samples from the data shown in 

(A). 

  

Figure 3-10 (A) is the BTD between bands 23 and 31 of data number 26 in Table 
3.3, (B) is the histogram of Land, Cloud and Dust storm samples from the data 

shown in (A). 

 In figures 3.7 to 3.10 the distributions of dust storm pixels are between 5K and 

15K and the distribution of sandy land pixels are between -1K and 5K. However, 

the cloud pixels are distributed between -5K and 30K. For this reason the dust 
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storm could be separated from the sandy land using 5K as threshold. However, 

this will include some cloud with dust storm. Mei et al. [7] used the Normalized 

Difference Dust Index (NDDI) method to separate dust storm from cloud as the 

reflectance of cloud in band 3 is higher than its reflectance in band 7 and the 

reflectance of sand and land in band 3 is less than in band 7, this will lead to 

positive sand and land while the cloud will be negative. Thus, the NDDI will be 

useful for separating cloud from dust storm. Figure 3.11 illustrates the method 

for detecting dust storms using MODIS data and thresholds. 

 

Figure 3-11 Flow chart of the proposed technique for Dust Storm detection 

Results using this technique show that dust storm can be easily 

distinguished from dusty land and high cloud. However, it has some limitations 

in removing low cloud as the reflectance of low cloud in band 7 is higher than in 

band 3. Also, light dust storms are difficult to detect over water as the values of 
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the brightness temperature difference in light dust storms over water are very 

close to zero. In addition, this technique will be useful over land only and that is 

because it uses NDDI which depends on bands 3 and 7. This method was also 

implemented for the detection of dust storms over non-sandy surfaces such as 

in China which shows it can work on non-sandy land as well. Figures 3.12 to 

3.16 show some results of applying this technique over different types of 

surface. 

   

Figure 3-12 (A)is the true colour image for data number 8 in Table 3.3 captured 
by MODIS (Aqua) on 24th of February 2004 at 11:30 GMT over north Africa, (B) is  

the corresponding BTD between bands 23 and 31 and (C) is the corresponding 
binary image showing dust storm detection . 

A B C 
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Figure 3-13 (A) is the true colour image for data number 6 in Table 3.3 captured 
by MODIS (Aqua) on 1st of March 2006 at 12:20 GMT over Libya, (B) is  the 

corresponding BTD between bands 23 and 31 and (C) is the corresponding binary 
image showing dust storm detection . 

   

Figure 3-14 (A) is the true colour image for data number 7 in Table 3.3 captured 
by MODIS (Aqua) on 29th of May 2004 at 12:30 GMT over Chad, (B) is  the 

corresponding BTD between bands 23 and 31 and (C) is the corresponding binary 
image showing dust storm detection . 

 

A B C 
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Figure 3-15 (A) is the true colour image for data number 26 in Table 3.3 captured 
by MODIS (Terra) on 8th of May 2002 at 09:35 GMT over Libya, (B) is  the 

corresponding BTD between bands 23 and 31 and (C) is the corresponding binary 
image showing dust storm detection . 

 
 

 

Figure 3-16 is the true colour image captured by MODIS (Terra) on 26th of March 
2004 at 03:40 GMT over China, (B) is the corresponding BTD between bands 23 
and 31 and (C) is the corresponding binary image showing dust storm detection. 

The accuracy of this method for the detection of dust storms over sandy 

surfaces was assessed using several standard measures (defined in equations 

A B C 

A B C 
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4-1 to 4-8 in Section 4.2.1), and with ground truth data provided by manual 

detection of dust storms using true colour images, as no other source of ground 

truth date was available. This method of generating ground truth data was also 

used by some of the authors [38, 56] mentioned in Chapter 2. This method 

shows a True Positive Rate (TPR) of about 82% for dust storms pixels was 

achieved and about 18% False Negative Rate (FNR) were missing. However, 

there was about 14% False Discovery Rate (FDR) of cloud and other surface 

pixels were falsely detected as dust storm. Table 3.4 shows average and 

standard deviation (STD) values of the standard measures used to assess the 

accuracy of dust storm detection for all the data used in Table 3.3. Figure 3.17 

shows a chart of the average and STD measurements in Table 3.3, used for 

validation of the dust storms detection method over all the Sahara data. The 

implementation of threshold method for dust storms over China is less effective 

for dust storms detection (TPR of 78%). However, the false detection of non 

dust storm pixels is better than over the Sahara. Here the average percentage 

of the true dust storms pixels over all pixels that are detected as dust storm 

Positive Predictive Rate (PPV) of 33% is less than over the Sahara, which 

means just 33% of pixels detected as dust storm are true dust. Table 3.5 and 

Figure 3.18 present results for the same measurements as for the Sahara 

implemented over China. 
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Table 3-4 Validation of the threshold method over the Sahara using several 
measures: true positive rate (TPR), false positive rate (FPR), true negative rate 

(TNR), false negative rate (FNR), accuracy (ACC), positive predictive value (PPV), 
negative predictive value (NPV) and false discovery rate (FDR) 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.816 0.146 0.859 0.183 0.860 0.383 0.979 0.616 

STD 0.178 0.099 0.099 0.178 0.082 0.186 0.029 0.186 

 

As can be seen from Table 3.4 the value of PPV is low and the value of FDR 

is high and that is because the sizes of most dust storms in the images are 

small. 

 

Figure 3-17 The average and the standard deviation results of the validation 
measurements over the Sahara 

Table 3-5 Validation of the threshold method over China using several measures: 
true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), false 

negative rate (FNR), accuracy (ACC), positive predictive value (PPV negative 
predictive value (NPV) and false discovery rate (FDR) 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.782 0.109 0.890 0.217 0.885 0.338 0.985 0.661 

STD 0.197 0.075 0.075 0.197 0.072 0.182 0.014 0.182 
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Figure 3-18 The average and the standard deviation results of the validation 
measurements over China 

The threshold method was also applied to dust storms over water surfaces, 

which shows this method is not effective for dust storms detection over water. 

This is because the brightness temperature difference of light dust storms is 

less than 5.5K and the values of water in the normalized difference dust storm 

index are zero or less. Table 3.6 and Figure 3.19 show the average and the 

standard deviation results for applying this method over sea surfaces.  

Table 3-6 Validation of the threshold method over sea surfaces using several 
measures: true positive rate (TPR), false positive rate (FPR), true negative rate 

(TNR), false negative rate (FNR), accuracy (ACC), positive predictive value (PPV), 
negative predictive value (NPV) and false discovery rate (FDR) 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.191 0.072 0.927 0.808 0.847 0.237 0.901 0.762 

STD 0.203 0.077 0.077 0.203 0.087 0.183 0.060 0.183 
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Figure 3-19 The average and the standard deviation results of the validation 
measurements over sea surfaces. 

3.3. NIGHT AND DAY TIME DUST STORM DETECTION  

The brightness temperature difference between bands 31 and 32  

BTD(31-32) has been used to distinguish between clouds and dust storms. 

However, using this BTD alone is not enough to detect dust storms over sandy 

land as they share some characteristics. At the same time, this method with a 

0K threshold is useful for detecting dust storm from cloud. In addition, the 

brightness temperature difference between bands 23 and 31 BTD(23-31) was 

effective for the detection of dust storm over sandy land as explained in the 

previous section. For this reason, in this section, both brightness temperature 

differences BTD(23-31) and BTD(31-32) are used for detecting dust storm over 

land and sandy land. Figure 3.19 illustrates the methodology of this technique.  
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Figure 3-20 Flow chart of the proposed technique for Dust Storm detection 

This method has been applied to all the Saharan data in Table 3.3 and it 

has been found by the author of this thesis that it can detect dust storms during 

the day better than the method in section 3.2. It is more effective in reducing the 

false detection of non-dust storms pixels as can be seen in Table 3.7, the 

values of FDR are smaller than the FDR Table 3.4, and the PPV value is higher, 

meaning more of the pixels detected are dust pixels. Also the standard 

deviations in all the fields are smaller, which means the results of applying the 

threshold method are similar for all the data in Table 3.3. Table 3.7 and Figure 

3.21 show the average and standard deviation results of applying this method to 

all the Saharan data in Table 3.3. Figures 3.22 to 3.25 show some examples of 

applying this method over the Sahara desert. 

 

 

MODIS L1B Data 

 

Data Preparation 

 

BTD (23-31) > 5.5 and BTD (31-32) <0 

Dust Storm Detection  
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Table 3-7 Validation of the threshold method over the Sahara using several 
measures: true positive rate (TPR), false positive rate (FPR), true negative rate 

(TNR), false negative rate (FNR), accuracy (ACC), positive predictive value (PPV), 
negative predictive value (NPV) and false discovery rate (FDR) 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.760 0.042 0.957 0.239 0.941 0.675 0.974 0.324 

STD 0.167 0.039 0.039 0.167 0.039 0.210 0.0291 0.210 

 

 

Figure 3-21 The average and the standard deviation results of the validation 
measurements over Sahara surfaces 
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Figure 3-22 (A) is the true colour image for data number 8 in Table 3.3 captured 
by MODIS (Aqua) on 24th of February 2006 at 11:30 GMT over north Africa (B)  is 

the corresponding binary image showing dust storm detection 

  
 

Figure 3-23 (A) is the true colour image for data number 6 in Table 3.3 captured 
by MODIS (Aqua) on 1st of March 2006 at 12:20 GMT over Libya,  (B)  is the 

corresponding binary image showing dust storm detection 

A B 

A B 
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Figure 3-24 (A) is the true colour image for data number 7 in Table 3.3 captured 
by MODIS (Aqua) on 29th of May 2004 at 12:30 GMT over Chad,  (B)  is the 

corresponding binary image showing dust storm detection 

  
 

Figure 3-25 (A) is the true colour image for data number 26 in Table 3.3 captured 
by MODIS (Terra) on 8th of May 2002 at 09:35 GMT over Libya,  (B)  is the 

corresponding binary image showing dust storm detection 

This method has also been applied to data for dust storms over China 

used in some publications and for other events occurring in 2011 over China. It 

A B 
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has been found that this method is much better than the method used in section 

3.2 for dust storms detection over non-sandy lands, and is better when used 

over sandy land. Table 3.8 and Figure 3.26 show the average results of 

applying this method to dust storms over China. The standard deviations results 

for all data are similar. Figure 3.27 (A) shows an example dust storm over China 

and (B) shows the results of applying this method.    

Table 3-8 Validation of the threshold method over China using several measures: 
true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), false 

negative rate (FNR), accuracy (ACC), positive predictive value (PPV), negative 
predictive value (NPV) and false discovery rate (FDR) 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.794 0.085 0.914 0.205 0.908 0.409 0.986 0.590 

Standard 
Deviation 

0.184 0.066 0.066 0.184 0.060 0.177 0.013 0.177 

 

 

Figure 3-26 the average and the standard deviation results of the validation 
measurements over China 
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Figure 3-27  (A) is the true colour image of a dust storm captured by MODIS 
(Terra) on 26th of March 2004 at 03:40 GMT China, (B) is the corresponding binary 

image showing dust storm detection 

From the previous tables and figures it can be clearly seen that dust 

storms can be detected using both BTDs. This technique can detect 79% of 

dust storms over land when BTD (31-32) is less than 0K with 8% of false 

detection, while 74% of dust storm can be detected with just 4% of false 

detection when BTD (31-32) of less than -1K is used. However, this technique 

has some limitations for detecting weak dust storms over land as shown in 

Figure 3.24, and thick dust storms over water as shown in figures 3.22, 3.23 

and 3.25, because of the use of BTD (23-31) with a 5.5K threshold, whereas the 

threshold less than 5.5K leads to the false detection of some of land and cloud 

as dust storm.  This method can also be used to detect dust storms during the 

night-time, as both BTDs use the emissive bands. However, for detecting dust 

storms during the night, the previous threshold is not appropriate as the 

temperature drops at night and this leads to the difference dropping as well. 

A B 
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Thus, for the detection of dust storms at night, the -1k threshold is used with the 

BTD (23-31). Table 3.9 and Figure 3.28 show the average and the standard 

deviation of the results of applying this method during the night.  

Table 3-9 Validation of the threshold method during night over sandy land using 
several measures: true positive rate (TPR), false positive rate (FPR), true negative 

rate (TNR), false negative rate (FNR), accuracy (ACC), positive predictive value 
(PPV), negative predictive value (NPV) and false discovery rate (FDR) 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.672 0.019 0.980 0.327 0.956 0.789 0.972 0.210 

Standard 
Deviation 

0.032 0.019 0.019 0.032 0.020 0.149 0.004 0.149 

 

 

Figure 3-28 the average and the standard deviation results of the validation 
measurements over sandy land during the the night 

 Figures 3.29 to 3.31 illustrate the application of this method to the dust 

storms detected in the north of Saudi Arabia on both the day and night of 12th of 

May 2005 at 23:35 GMT, which continued for 3 days. 
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Figure 3-29 (A) is the brightness temperature image for band 31 of the dust storm 
event which occurred on 12th of May 2005 at 23:35 over the north of Saudi Arabia, 

(B) is the corresponding binary image showing dust storm detection 

  

Figure 3-30 (A) is the colour image of the continuing dust storm event shown in 
Figure 23 which occurred on 13th of May 2005 at 10: 35, (B) is the corresponding 

binary image showing dust storm detection 
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Figure 3-31  (A) is the brightness temperature image for band 31 of the dust 
storm event which occurred on 13th of May 2005 at 22:40 over the north of Saudi 

Arabia, (B) is the corresponding binary image showing dust storm detection 

This method has some limitations in that weak dust storms over water 

will not be detected and different thresholds need to be used to detect dust 

storms during day and night times. 

3.4. CHAPTER CONCLUSIONS 

Dust storms over different surfaces can be detected using two threshold 

methods. The first uses the brightness temperature difference BTD (23 - 31) 

with normalized difference dust index (NDDI). The BTD (23 - 31) is used to 

distinguish dust storm and cloud from other surface content and the NDDI is 

used for separating dust storm from cloud. The results show this method for 

detecting dust storms was effective. However, it has limitations in that some low 

clouds and shadow are detected as dust with a dust storm. Also, this method 

has limitations when detecting weak dust storms over water, and for the 

detection of dust storms at night because of the use of the NDDI. 

Dust storm 
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The second method uses both BTD (23 – 31) and BTD (31 – 32) with 

thresholds of 5.5K and 0K respectively. The results show that this method is 

much better than the method in section 3.2 for dust storm detection over land 

and sandy land by reducing the false detection of non-dust storms pixels. 

However, this method is also limited for dust storms detection over water. The 

biggest advantage of this method is that it can be used for the detection of dust 

storms during the night. However, during the night, a threshold of -1K for both 

BTDs is used. Thus, there is a need to improve the detection of a dust storm 

over water, and for generating an automated method that can detect dust 

storms over different surfaces at both day and night.  Chapter 4 describes the 

use of an Artificial Feed-Forward Back-Propagation Neural Network for dust 

storms detection, attempting to address some of these problems.   
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CHAPTER FOUR 

4. DUST STORM DETECTION USING A NEURAL NETWORK  

4.1. INTRODUCTION 

To tackle the limitations of the methods introduced in Chapter 3, neural 

networks are used for the detection of dust storms in this chapter. Neural 

networks are computer systems that attempt to work similarly to the human 

brain by using electronic components analogous to biological neurons. One of 

the operations that neural networks can do is pattern classification [57]. Neural 

networks have a massively parallel distributed structure and the ability to learn 

and so can produce reasonable outputs for inputs not encountered during 

training. These two features make neural networks potentially useful solutions 

to complex problems [58]. There are a number of neural networks topologies. In 

this work, Feed-Forward Back-Propagation Neural Networks (FFNN) have been 

adopted to investigate the detection of dust storms using MODIS images. FFNN 

is defined as a neural network that uses more than one node and contains no 

feedback paths [59]. There are two different types of feed-forward neural 

networks: 

4.1.1. SINGLE LAYER FEED-FORWARD 

In this structure there is only one input layer and one output layer, and 

the number of nodes used in these layers depends on the application [59]. 

4.1.2. MULTI LAYER FEED-FORWARD 
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This structure is similar to the single layer feed-forward structure except it 

has multiple extra (hidden) layers connected between the input layer and the 

output layer [59]. 

Neural Networks are widely used in many applications, such as data 

mining and classifying data, such as vegetation and other land cover-obtained 

from satellites. The FFNN has been shown to provide effective performance in 

classifying satellite images. Gao et al. [35] made a comparison of feed-forward 

Neural Networks based classifiers using individual pixels and prior segmented 

regions as the objects to be classified. The performances of a Probabilistic 

Neural Network (PNN) and a Maximum Likelihood classifier (ML) were 

compared for dust storm detection over the United States using MODIS bands 

20, 29, 31, and 32. The result of this study shows the PNN is much better than 

the ML for detecting dust storms, with accuracies of detecting dust storms of 

84% and 67% respectively [60].  

This chapter is organised as follows. Section 4.2 describes the use of 

FFNN for dust storm detection during the day using reflectance bands and two 

brightness temperature differences. Section 4.3 introduces the FFNN for dust 

storm detection during both day and night using features generated from four 

brightness temperature differences. Section 4.4 describes the use of the FFNN 

to generate a dust storm mask. Section 4.5 presents the conclusions of this 

chapter. 

4.2. DAYTIME DUST STORM DETECTION  

Many previous studies have concentrated on detecting dust storms 

during the day over different region using different techniques. However, no one 
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has provided effective results for dust storm detection over sandy land. Also, 

the threshold methods use fixed value thresholds, but these are different for 

weak or intense dust storms. For these reasons a feed-forward back 

propagation network has been proposed to classify pixels to detect dust storms 

from weak to intense.    

4.2.1. FEATURE SELECTION 

The feature vector inputs used for the neural network are pixel samples 

of dust storm, land, cloud, water, and vegetation extracted from multi-spectral 

MODIS bands 1, 3 and 4, the BTD used in [61] and the BTD used in [7], as 

shown in Figure 4.1. MODIS bands 1, 4, and 3 correspond to the components 

which can be used to construct true colour images showing white for cloud and 

black for water. Sand and land are both shown similarly as shades of brown 

with areas of vegetation as green. The true colour images enable cloud, land, 

water, and vegetation areas to be distinguished, while the BTD between bands 

23 and 31 is used to distinguish between dust storm and land, and the BTD 

between bands 31 and 32 is used to distinguish between dust storm and cloud.   
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Figure 4-1 Sampling of the five classes from the three band images and two BTD 
images generated from row 8 of Table 3.3 in Chapter 3. 

 

4.2.2. EXPERIMENTAL VALIDATION 

The training and testing of the neural network proceeds by first selecting 

samples for the five different objects of interest from the three bands and the 

two BTDs, as illustrated in Figure 4.1. A total of 135,000 data components 

extracted from 27 images were used in this study for training and testing the 

neural network. Table 4.1 shows sample rows of data that were used for 

training and testing the Neural Network, where rows 1-3 correspond to the 

pixels from the “dust” class and rows 4 - 8 correspond to pixels from the “no-

dust” class chosen from pixels representing Land, Vegetation, Cloud, and 

Water. 

 

 

 

Dust 
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Figure 6. Some samples of the five classes from the three bands 

and two BTD images from row 11 in TABLE I. 
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Table 4-1 A small sample of the data used for training and testing the Neural 
Network. Numbers in columns 1 to 3 are reflectance values and numbers in 

columns 4 and 5 are BTD values. The class values 0.9 and 0.1 correspond to “dust 
storm” and “not dust storm”, respectively. 

Band1 Band3 Band4 BTD1 BTD2 Class 

0.3765 0.2245 0.293 10.891 -2.222 0.900 

0.3698 0.2215 0.288 11.403 -2.237 0.900 

0.3529 0.2144 0.276 10.914 -2.190 0.900 

0.3006 0.1322 0.1804 2.3116 -0.554 0.100 

0.2965 0.1303 0.1769 2.3721 -0.571 0.100 

0.2884 0.1279 0.1704 2.3253 -0.583 0.100 

0.0501 0.1455 0.0794 -3.447 1.0106 0.100 

0.0497 0.1451 0.0791 -3.400 0.9411 0.100 

 

The extracted data were randomly divided into two sets, with 60% of data 

used for training the neural network and 40% used for testing. The FFNN had 

five input nodes, twenty hidden nodes and two output nodes. This number of 

hidden nodes is the default number of FFNN recommended by MATLAB. Figure 

4.2 illustrates the structure of the FFNN.  

 

 

 

 

 

 

 

 

Figure 4-2 4 Feed- Forward Neural Network Structure 

The Cross validation method was used in this work to avoiding over fitting. 

The division of data is repeated ten times, each time generating different 
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training and testing subsets to train the neural network and determine the 

prediction performance measures. Then the average and standard deviation 

values are generated from the repeated prediction measures. When a training 

process is finished, the resulting neural network uses the 40% testing data set 

without classes to predict the classes; the predictions are compared with the 

actual classes to determine the prediction performance measures. Figure 4.3 

illustrates the strategy of using cross validation method in the FFNN algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3  A flowchart of the FFNN algorithm using cross validation 
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A threshold of 0.5 is used to classify the output of the FFNN, with an output 

greater than 0.5 classified as a dust storm and an output less than or equal 0.5 

classified as a non-dust storm. The performance of the FFNN is evaluated by 

comparing the output from the test data with the correct outputs and calculating 

the four measures: True positive (TP), False Positive (FP), True Negative (TN) 

and False Negative (FN). These measures are explained in more detail below: 

 TP indicates the number of pixels that are dust storm and correctly 

predicted to be dust storm. 

 FP indicates the number of pixels that are not dust storm but are falsely 

predicted to be dust storm. 

 TN indicates the number of pixels that are not dust storm and are 

correctly predicted as not dust storm. 

 FN indicates the number of pixels that are dust storm but falsely 

predicted as not dust storm. 

Then to quantify the prediction performance of the FFNN some standard 

forecasting measures is calculated from the four previous measures. These 

forecasting measures are: 

 True Positive Rate (TPR), also known as Sensitivity, is the percentage of 

dust storm pixels that are successfully predicted to be dust storm pixels. 

Higher TPR referring to a better prediction performance. TPR is 

calculated using equation 4-1. 

                     Equation 4-1  
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 False Positive Rate (FPR) is the percentage of non-dust storm pixels that 

are falsely predicted to be dust storm pixels. Lower FPR indicates better 

performance. FPR is calculated using Equation 4-2. 

                     Equation 4-2  

 

 True Negative Rate (TNR) is the percentage of non-dust storm pixels 

that are successfully predicted to be non-dust storm pixels. Higher TNR 

indicates better performance. TNR is calculated using Equation 4-3. 

                     Equation 4-3  

 

 False Negative Rate (FNR) is the percentage of dust storm pixels that 

are falsely predicted as non-dust storm pixels. Lower FNR indicates 

better performance. FNR is calculated using Equation 4-4. 

                     Equation 4-4  

 

 Accuracy (ACC) indicates how close the overall predicted outputs are to 

the true outputs. Higher FNR indicates better performance. ACC is 

calculated using Equation 4-5. 

                               Equation 4-5  

 

 Positive Predictive Value (PPV) is the percentage of dust storm pixels 

correctly predicted to be dust storm compared with the overall dust storm 

predicted values. Higher PPV indicates better performance. PPV is 

calculated using Equation 4-6. 

                     Equation 4-6  
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 Negative Predictive Value (NPV) presents the percentage of non-dust 

storm pixels correctly predicted as non-dust storm compared with the 

overall non-dust storm predicted values. Higher NPV indicates better 

performance. NPV is calculated using Equation 4-7. 

                     Equation 4-7  

 

 False Discovery Rate (FDR) presents the percentage of non-dust storm 

pixels falsely predicted to be dust storm compared with the overall dust 

storm predicted values. Lower FDR indicates better performance. FDR is 

calculated using Equation 4-8. 

                     Equation 4-8  

 

Here TP and TN are the numbers of true positive and true negative 

pixels respectively and FP and FN are the numbers of false positive and false 

negative pixels respectively. These forecasting measures are not all 

independent. From the definitions it follows that: FPR + TNR = 1, TPR + FNR = 

1 and PPV + FDR = 1.  

Table 4.2 and Figure 4.4 show the average and STD results for the 

forecasting measures after training and testing the FFNN machine learning 

algorithm ten times.  

Table 4-2 The average and the standard deviation results of the forecasting 
measures after training and testing the FFNN ten times 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.9995 0.0002 0.9997 0.0004 0.9996 0.9996 0.9996 0.0003 

STD 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 
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Figure 4-4 The average and the standard deviation results of the forecasting 
measures after training and testing the FFNN ten times 

Table 4.2 and Figure 4.4 shows that the average values of TPR, TNR, 

ACC, PPV and NPV are very high at 0.999 and the average values of FPR, 

FNR, and the FDR are very low, which means FFNN method is very useful for 

predicting dust storm pixels. The small STD values show that the repeated 

results are close to each. 

After the training and testing of the FFNN, the trained network was 

applied to new MODIS images acquired by the Terra and Aqua satellites over 

Africa and listed in Chapter 3 together with dust storms events which occurred 

in 2011 and which are classified by the Earth Observatory as dust storm images 

(http://earthobservatory.nasa.gov/NaturalHazards/). The accuracy of this 

approach was assessed using several standard measures for each image, with 

ground truth data provided by manual detection of dust storms using true colour 

images. The average results for all the dust storm images are displayed in 

Table 4.3 where they are also compared with the latest technique (TIIDI) used 

for detection dust storms over bright surface used in reference [39]. It is 
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apparent that the Neural Network based approach is much better for the 

detection of dust storms over the Sahara desert and this is also the case for the 

Gobi desert, as may be seen in Table 4.4.    

Table 4-3 Comparison of standard measure averages obtained applying the FFNN 
and TIIDI methods over the Sahara 

Method TPR FPR TNR FNR ACC PPV NPV FDR 

FFNN 0.80 
 

0.02 
 
 

0.97 
 

0.19 
 

0.94 
 

0.81 
 

0.96 
 

0.18 
 TIIDI 0.80 

 
0.28 

 
0.71 

 
0.19 

 
0.73 

 
0.29 

 
0.96 

 
0.70 

  

Table 4.3 shows that the TPR is the same in both methods which means the 

same number of dust storm pixels were detected as a dust storm. However, the 

values of TNR ACC and PPV from FFNN are higher than from TIIDI which 

means FFNN is better that TIIDI. Furthermore, FPR and FDR from FFNN are 

less than from TIIDI and that means the FFNN is also better at reducing the 

number of pixels that are unsuccessfully detected as dust storm pixels. Figure 

4.5 shows an example of applying the FFNN and the TIIDI to a dusty image 

captured over the Sahara. 

   

Figure 4-5 (A) shows the dust storm image for row 8 in Table 3, using the three 
true color bands, (B) is the result of dust storm detection using the trained Neural 
Network and (C) is the corresponding result from the technique used in reference 

[39]. 

A

A 

B

B 

C

C 



  CHAPTER FOUR 

 

85 

 

The neural network system trained on the Saharan data was further tested by 

the detection of dust storms over China. It was found that these too can be 

detected, but with somewhat poorer performance than for the detection of dust 

storms over the Sahara desert, as summarised in Table 4.4 for comparison with  

Table 4.3. However, comparing these results with the results of the previous 

methods used in Chapter 3, these are better. Figure 4.6 shows an example of 

applying the FFNN over China compared with results from reference [39].  

Table 4-4 Comparison of standard measure averages obtained applying the FFNN 
and TIIDI methods over the China. 

Method TPR FPR TNR FNR ACC PPV NPV FDR 

FFNN 0.86 
 

0.11 
 

0.88 
 

0.13 
 

0.88 
 

0.33 0.98 0.66 
 TIIDI 0.87 

 
0.32 0.67 

 
0.12 

 
0.68 0.15 0.98 0.84 

 

 

   
Figure 4-6 (A) is the true colour Aqua image of a dust storm over north China used 
in reference [1], (B) is the result of dust storm detection using the neural network, 

and (C) is the corresponding result from the technique used in reference [1]. 

 

This trained ANN has been further tested using all the events that occurred 

worldwide in 2011, which are classified by Earth Observatory as dust storm 

images (http://earthobservatory.nasa.gov/NaturalHazards/). Of the 96 dust 

   

A

A 

B

B 

C

C 

http://earthobservatory.nasa.gov/NaturalHazards/
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storm events, only 6 were not detected by the ANN, and all of these represent 

very weak dust storms. 

4.3. NIGHT AND DAY DUST STORM DETECTION  

The neural network method used in the previous section was useful for 

detecting dust storm over land, sandy land and water. Furthermore, it was able 

to extract dust storm from cloud with less misclassification. However, this 

method is limited to detecting dust storms at night. It is worth noting that the 

threshold method has its limitations for night detection, as the threshold is not 

constant from day to night. For this reason this section concentrates on 

detecting dust storm during both day and night using the neural network 

technique. 

4.3.1. FEATURE SELECTION 

The central of MODIS bands 20, 23, 29, 31, and 32 are the most 

commonly used thermal infrared channels for detecting dust storms. The 

brightness temperature differences between these bands can be used to 

identify dust storms from other objects in MODIS images. The brightness 

temperature difference between the 11 µm (b31) and the 12 µm (b32) bands 

has been employed in many dust storm detection schemes and its basic 

function is to isolate the cloud from dust storms [32]. Since the brightness 

temperature of dust storms in the 12 µm (band 32) is generally higher than the 

brightness temperature in the 11 µm (band 31), the values of dust storms in the 

brightness temperature difference between 11 µm and 12 µm will be negative, 

and most of the other objects will be around zero or positive [39]. Also the water 
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vapour absorption in the 8.6 µm (band 29) is higher than in the 11 µm (band 31) 

[2]. For this reason the brightness temperature difference between the 8.6 µm 

and the 11 µm will be positive. Liu et all [2] used the BTD(31-32) < 0 and 

BTD(29-31) > threshold for detecting dust storms at both day and night time. 

Yang and Ronggao [39] used the Thermal Infrared Integrated Dust Index (TIIDI) 

to detect dust storm over sandy, vegetation, and water surfaces. The brightness 

temperature difference of four MODIS bands is used to develop the TIIDI 

BTD(20-31), BTD(29-31), and BTD(32-31), where BTD(32-31) is used to 

distinguish cloud from other objects, BTD(29-31) is used to identify dust storm 

and surface sand, and BTD(20-31) is used to separate dark surface and 

represent the intensity of dust storm. The Brightness temperature difference 

BTD(23-31) used in Chapter 3 for separating dust storms and cloud from other 

surfaces. The Brightness temperature of band 31 is also used for distinguish 

between airborne dust and sandy ground. 

In this section the Neural Network feed-forward back propagation technique 

is used to identify dust storms over different surface at both day and night. The 

training and testing features vectors used in this study are: pixel samples of 

cloud, dust storm, land, water, snow, and vegetation areas extracted from 

BTD(20-31), BTD(23-31), BTD(29-31), BTD(31-32), and the brightness 

temperature of band 31. A total of 160,000 components of data extracted from 

27 images were used in this study, with 60% used for training and 40% for 

testing the neural network.   
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4.3.2. EXPERIMENTAL AND VALIDATION 

The same steps used in section 4.2.2 to train and validate the result of 

the FFNN are also used in this section. The performance of the neural network 

is evaluated using the same standard measures used in section 4.3.1. Table 4.5 

and Figure 4.7 show the average and STD values of the standard measured 

results. 

Table 4-5 The average and the standard deviation results of the forecasting 
measures after training and testing the FFNN ten times 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.989 0.003 0.996 0.010 0.994 0.983 0.997 0.016 

STD 0.002 0.000 0.000 0.002 0.001 0.004 0.000 0.004 

 

 

Figure 4-7 The average and the standard deviation results of the forecasting 
measures after training and testing the FFNN ten times 

From Table 4.5 and Figure 4.7 it can be seen that the FFNN-based approach 

using the four brightness temperature differences, together with the brightness 

temperature of band 31, can be used for detecting dust storms at both day and 

night. This method has been applied to MODIS data from both the Terra and 
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Aqua satellites over bright, dark and ocean surfaces, for both day and night time 

images. The accuracy of this method has also been assessed using several 

standard measures. A manual detection of dust storms using the true colour 

bands was chosen to provide ground truth data during the day while the BTD 

(23-31) and the BT of band 31 were chosen to provide ground truth data during 

the night because no other source of ground truth date was available. 

 Dust Storm Detection over Bright Surfaces 

The trained neural network was applied to all MODIS data corresponding 

to dust storms over the Sahara desert occurring in 2011, and classified by 

the Earth Observatory as dust storm images.  

(http://earthobservatory.nasa.gov/NaturalHazards/). The results are 

shown in Table 4.6. An average TPR value of 80% and an average FPR 

value of about 5% were found for dust storms. Also an average accuracy of 

about 93% was found. This shows that the method is useful for the detection 

of dust storms over deserts during the day. However, the average results of 

the positive predictive values and the false discovery rate are high, at about 

56% and 43% respectively. The standard deviations of these two measures 

are also high, meaning the results fluctuated over a few percent. The 

reason, the PPV and FDR are high is because the sizes of dust storms in 

the images are very small compared to the remaining objects.  

Table 4-6 The average and the standard deviation of the forecasting measures of 
applying FFNN over sandy land 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.796 0.057 0.943 0.204 0.931 0.569 0.977 0.431 

STD 0.122 0.039 0.039 0.122 0.039 0.190 0.021 0.190 

 

http://earthobservatory.nasa.gov/NaturalHazards/
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As an example of sandy land to which the FFNN was applied, Figure 4.8 

(A) shows a true colour image of the dust storm event which occurred on 

19th of July 2005 over the Sahara desert, captured by the Aqua satellite. 

Figure 4.9 (A) shows a similar true colour image of a huge dust storm over 

the north of Saudi Arabia and south of Jordan on 13th of May 2005, captured 

by the Aqua satellite. Figures 4.8 (B) and 4.9 (B) show the result of the dust 

storm detection algorithm for both events shown in figures 4.8 (A) and 4.9 

(A) respectively. These results show that dust storms can be effectively 

separated from cloud and bright surface. 

  

Figure 4-8 (A) is the true colour image of a Saharan dust storm captured by Aqua 
on 19th of July 2005 and (B) is its corresponding dust storm detection 

A B 



  CHAPTER FOUR 

 

91 

 

  

Figure 4-9 (A) is the true colour image of dust storm over north of Saudi Arabia on 
13th of May 2005 captured by Aqua and (B) is its corresponding dust storm 

detection. 

 Dust Storm Detection over Vegetation  

To evaluate the performance of this technique over vegetation covered 

surfaces it has been applied to dust storms which occurred in 2011 over the 

northeast of China. The results are gaven in Table 4.7 which shows the 

average and STD results of applying the FFNN over non-sandy land. These 

show that the FFNN is more effective than over desert for dust storm 

detection, because it is more effective at reducing the false detection of non-

dust storm pixels. The overall accuracy shows the FFNN is more effective 

over sandy lands than over non-sandy or vegetation covered land.  

Table 4-7 The average and the standard deviation of the forecasting measures of 
applying FFNN over non sandy land 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.853 0.103 0.897 0.147 0.899 0.349 0.990 0.651 

STD 0.083 0.060 0.056 0.083 0.060 0.169 0.008 0.169 

A B 
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Figures 4.10 and 4.11 show another pair of examples applying FFNN 

over non-sandy land. Figure 4.10 (A) shows a heavy dust storm over north 

east China captured by the Terra satellite on November 11th 2010. Figure 

4.11(A), shows a thick dust storm which blew over the north of Afghanistan 

on 5th of October 2011 captured by the Aqua satellite. Figures 4.10 (B)  and 

4.11 (B) show the corresponding results of the FFNN algorithm applied to 

the data shown in Figures 4.10(A) and 4.11(A) shows the corresponding 

result of the FFNN algorithm applied to the data shown in Figure 4.11(A). 

The results show that the technique can detect dust storms over non- sandy 

surfaces as well as sandy surfaces. 

  

Figure 4-10 (A) is the true colour image of dust storm event over an area of 
vegetation (north east of China) captured by Terra Satellite on 11th of  November 

2010 and (B) is its corresponding dust storm detection. 

A B 
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Figure 4-11 (A) is the true colour image of a dust storm event which occurred 
over  Afghanistan on 5th of October 2011 captured by the Aqua Satellite and (B) is 

its corresponding dust storm detection. 

 Dust Storm Detection over Sea Water 

This FFNN algorithm was also applied to dust storms over sea water. 

Results are shown in Table 4.8 and illustrated in Figures 4.12 and 4.13. It 

was found that the algorithm can detect thick dust storms over water. 

However, some weak dust storm pixels are not detected. The results show 

the applying of FFNN over the sea is less effective than over land for 

detecting dust storms pixels, where a TPR value of about 72% was 

obtained. At the same time an FPR value of about 6% corresponded to 

cloud falsely detected as dust. 

Table 4-8 The average and the standard deviation of the forecasting measures of 
applying FFNN over Sea water 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.717 0.063 0.937 0.283 0.913 0.599 0.963 0.401 

STD 0.130 0.058 0.058 0.130 0.051 0.226 0.032 0.226 

A B 
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Figures 4.12(A) and 4.13(A) show the true colour images of dust storm 

events over Atlantic Ocean on and the 12th of February 2005 captured by 

the Aqua satellite. Figures 4.12(B) and 4.13(B) show the results of this 

technique applied to the data of figures 4.12(A) and 4.13(A), and it can 

clearly be seen that some of dust is not detected.  

  

Figure 4-12 (A) is the true colour image of a Saharan dust storm captured by Aqua 
on 19th of July 2005 and (B) is its corresponding dust storm detection. 

A B 
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Figure 4-13(A) is the true colour image of a Saharan dust storm captured by Terra 
on 19th of July 2005 and (B) is its corresponding dust storm detection. 

 Dust Storm Detection at Night  

This FFNN algorithm was also applied to night time dust storms and the 

results are shown in Table 4.9. These show that applying FFNN at night is 

effective for dust storm detection with a TPR value of about 86%. However, 

it is less effective for reducing the false detection with an FPR value of about 

10%. An overall accuracy of about 89% was achieved. 

Table 4-9 The average and the standard deviation of the forecasting measures of 
applying FFNN over Sea water 

 TPR FPR TNR FNR ACC PPV NPV FDR 

Average 0.858 0.107 0.893 0.142 0.893 0.409 0.986 0.591 

STD 0.000 0.007 0.007 0.000 0.007 0.042 0.003 0.0429 

 

Figures 4.14 (A) and 4.15 (A) are night-time false-colour images 

produced by the combination of bands 20, 31, and 32. Dust storms in figures 

4.14 (A) and 4.15 (A) appear light purple in colour. Figure 4.14 (A) shows 

A B 
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the beginning of a dust storm over the south of Jordan in an image captured 

on 12th May 2005 at night by the Aqua satellite. Figure 4.15 (A) shows the 

continuing dust storm on 13th May 2005. The true colour image of this dust 

storm during the day is shown in Figure 4.9(A). Figures 4.14 (B) and 4.15 

(B) show the results of this algorithm for the dust storms shown in figures 

4.14 (A) and 4.15 (B) respectively. The detected dust storm is shown light 

blue in colour. This result shows that some of the weak dust storm over 

water has been missed.  

  

Figure 4-14 (A) is a false colour image of a dust storm captured by Aqua on 12th of 
May 2005 and (b) is its corresponding dust storm detection. 

 

 

A B 
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Figure 4-15 (A) is a false colour image of the dust storm over northern Saudi 
Arabia shown in Figure 36 (A) captured on 13th of May 2005 by Aqua Satellite and 

(b) is its corresponding dust storm detection 

4.4. CREATING A DUST STORM MASK USING NEURAL NETWORKS 

Zhang el al [30] developed a dust mask algorithm to identify dust storms 

from MODIS images over northern China on 7 April 2001. They used the 

brightness temperature differences BTD(31-32) and BTD(29-31) with a 

threshold technique to create five classes (strong dust region, weak dust region, 

ice cloud, low cloud or surface and uncertain region). This method was effective 

for the detection of dust storms divided into strong and weak regions. However, 

it is limited for the detection of dust storms over sandy regions.  Mei et al [7] 

used the BTD(31-32) to monitor dust storms which occurred in April 2006 over 

northern China and to extract the scope of the dust storms. Also, the dust 

storms were intensity graded using multiple thresholds. The intensity of dust 

storm was divided into three categories (strong, medium and weak). This 

A B 
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method was effective for detecting, monitoring and estimating the intensity of 

dust storms over northern China. However, it has some limitations for detecting 

dust storms over water or sandy land.  

The MODIS team used the cloud mask technique to define the pixels as: 

confident cloud, probably cloud, probably clear and confident clear [23].   

    In this section a feed-forward neural network method, together with a set of 

thresholds, is used to generate a dust storm mask. The dust storm mask is set 

to define image pixels as: certainly dust (Red), probably dust (Yellow), probably 

not dust (Aquamarine) or certainly not dust (Blue). The feature vector and the 

data used in this section are the same features and data used in Section 4.3. A 

set of thresholds (0.8, 0.65 and 0.5) are used to define the dust mask values 

where an FFNN output greater than 0.8 is certainly dust, an output greater than 

0.65 and less than 0.8 is probably dust, an output greater than 0.5 and less than 

0.65 is probably not dust, and an output less than 0.5 is certainly not dust. 

Figures 4.16 to 4.19 show results from applying the dust storm mask 

algorithm: a red colour indicates pixels that defined as certainly dust storm, 

yellow indicates probably dust storm, light green indicates probably not dust 

storm, and blue indicates certainly not dust storm. This method is used in 

Chapter 6 to identify the images of dust storms. 
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 SDS MDS WDS NDS 

Figure 4-16 (A) is the true colour image of the Saharan dust storm captured by 
Terra on 8th of May 2002 and (B) is its corresponding dust storm mask. 

  
 

SDS MDS WDS NDS 

Figure 4-17 (A) is the true colour image of the Saharan dust storm captured by 
Terra on 8th of May 2002 and (B) is its corresponding dust storm mask. 

A B 

A B 
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 SDS MDS WDS NDS 

Figure 4-18 (A) is the true colour image of the Saharan dust storm captured by 
Terra on 8th of May 2002 and (B) is its corresponding dust storm mask. 

  
 

SDS MDS WDS NDS 

Figure 4-19 (A) is the true colour image of the Saharan dust storm captured by 
Terra on 25st of June 2006 and (B) is its corresponding dust storm mask 

A B 

A B 
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4.5. CHAPTER CONCLUSION 

Dust storms were detected over different surfaces using a neural network 

classification method. The neural network method described in Section 4.2 was 

able to detect dust storms over different types of surfaces, using the two 

brightness temperature differences BTD(23-31) and BTD(31-32) and the three 

infrared bands b1, b3 and b4 as a feature vector. The results show that this 

neural network provides superior performance compared to the threshold 

methods, discussed in Chapter (3), for dust storm detection over different type 

of surfaces. However, the performance still needs improvement for detecting 

dust storms at night. For this reason, the neural network in Section 4.3 was 

developed to detect dust storms at night by using the brightness temperature 

differences BTD(20-31), BTD(23-31), BTD(29-31), and BTD(31-32) with the 

brightness temperature of band 31 as a feature vector. This method was 

effective for detecting dust storms over different type of surface and during the 

night time as well. The final work, described in Section 4.4, used the neural 

network with the features used in section 4.3 to generate a dust storm mask 

using a set of thresholds. This is to be used in Chapter 6 as part of an 

automated system to decide if an image contains dust storm or not, and to save 

information on dust storms images in a database. The next chapter, Chapter 5, 

presents a comparison between Artificial Feed Forward Back-Propagation 

Neural Network and Decision Tree for classifying MODIS image pixels into six 

class: cloud, dust storm, snow, water, land and vegetation. 
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CHAPTER FIVE 

5. CLASSIFICATION OF MODIS IMAGES USING 

SIX CLASSES 

5.1 INTRODUCTION 

Image classification is an important part of remote sensing, image 

analysis and pattern recognition. In some cases, the classification may be just 

the first stage of image interpretation, while in others it may be the object of the 

analysis. For example, classification of land use from remotely sensed data 

produces a map-like image as the final product of the analysis [48]. The main 

reason for satellite image classification is the recognition of objects in the 

atmosphere and on the Earth’s surface, and their display in the form of thematic 

maps [62]. Therefore, image classification is an important tool for examination 

of the satellite images [48]. Classification is more formally the process of 

assigning or mapping an input attribute set into its class label [63], as illustrated 

in Figure 5.1. 

 

Figure 5-1 Classification as the task of mapping an input attribute set X into its 
class label Y. 
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Satellite image classification has been used in many studies to partition 

the images into semantically meaningful regions. However, manual 

classification needs much expensive human effort. Thus, automatic and efficient 

satellite image classification is one of the most important problems in remote 

sensing applications [64]. Many researchers have attempted to use the MODIS 

images in the  classification of land cover using Normalised Difference 

Vegetation Index (NDVI) images [22], and many researchers have tried to 

detect one type of object from MODIS images using various techniques. The 

aim of this chapter is to classify MODIS images into the six classes: Cloud, 

Sand, Water, Land, Vegetation and Snow/Ice, and to compare decision tree and 

neural network approaches to find which is better for the task. The interest here 

in the decision tree stems partly from its use in the cloud mask, MODIS 

atmospheric product, which is generated using a decision tree classifier and 

data from 19 MODIS bands. However, the MODIS cloud mask takes a relatively 

long time to become available (about two hours) after the image is captured, 

and it also has difficulty separating cloud and thick dust storm, as well as 

separating weak dust storm and sandy land. Thus, with a new classifier, the 

classification of the six classes could be faster than before, as all the classes 

can be detected at one time as soon as the image data is made available. Also, 

a new classifier could be more effective at distinguishing between dust storm, 

snow and clouds, which are complicated objects. 

The rest of this chapter is organised as follows. Section 5.2 provides a 

discussion and description of a decision tree to classify MODIS data. Section 
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5.3 describes using a feed forward neural network for multi-classifying MODIS 

data. Section 5.4 presents the conclusions from this chapter. 

5.2 MODIS IMAGE CLASSIFICATION USING A DECISION TREE 

Decision Trees are one of the most common classification algorithms 

used in machine learning to create a knowledge structure that guides the 

decision making process. There are two ways for creating a decision tree: 1) 

from a set of examples (data records), which is the most common technique 

and 2) from rules, which is thus called the rule-based decision tree method [65]. 

There are major differences between these two approaches.  When creating a 

decision tree from rules, the method assigns attributes to the tree nodes using 

criteria based on the properties of the decision rules, rather than from the 

statistics of the data examples. A decision tree designed using data examples 

can only be an effective tool as long as no changes occur in the dataset used to 

generate the decision tree [65]. If there is a significant change in the data base 

of a decision tree then methods for restructuring the decision tree become 

desirable. However, it is known to be difficult to control or restructure decision 

trees [65]. A decision tree is a sort of multistage classifier, which can be 

implemented on one image or a set of images. It is made up of a collection of 

binary decisions that are used to decide the final category for each pixel. Each 

decision in the tree splits the data into one of two classes or sets of classes. As 

an example of a comparison with another classifier,  a Maximum Likelihood 

Classifier (MLC) [52], to map very high resolution satellite images into 11 

classes (Stone, House, Grassland, Grass dry area, Plain land, Sand, River, 

Submerged area, Sea water, trees and pool), the overall  image classification 
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accuracies were found to be 86.66% and 81.33% for the Decision Tree and the 

MLC respectively. In another example, closer to the current interest, an 

automated method [9] used a decision tree classifier to classify data in the 

visible MODIS bands captured over the northwest of China into four classes: 

land, dust storms, cloud and snow. A weakness of this study is that the weak 

dust regions are not easily distinguished from the surface, and that is because 

the lower dust content in these regions does not cover the surface completely. 

Furthermore, cloud shadow and surface are mixed up with detected dust, so 

further improvement is still needed. The decision tree classification work 

presented in this chapter was done using a MATLAB tool designed to provide 

powerful and flexible decision trees. 

5.2.1  FEATURE SELECTION 

The most commonly methods used for detecting dust storms are the 

brightness temperature differences between bands 20, 23, 29, 31, and 32 which 

can identify dust storms from other objects in MODIS images. The brightness 

temperature difference between bands 31 and 32 has been used in many dust 

storm detection methods and for separating clouds from other surface contents 

[32], while the brightness temperature difference between bands 23 and 31 is 

used to separate dust storm and sandy surface using a threshold higher than 

5,5K [61]. The Normalised Difference Vegetation Index (NDVI) is provided by 

the MODIS team to measure and monitor plant growth and vegetation cover 

using MODIS reflectance bands 1 and 2 [66] and can separate vegetation from 

other surfaces. It is defined in equation 5-1. 
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 Equation 5-1.  

The Normalized Difference Snow Index (NDSI) has been used to detect 

snow and Ice from MODIS images [67] and is defined in equation 5-2. 

      
             

             
 Equation 5-2.  

The Normalized Difference Dust Index (NDDI) has been used to distinguish 

cloud from other objects in MODIS images [7] and is defined in equation 5-3.  

      
             

             
 Equation 5-3.  

For these reasons the feature vector used in this section for training and 

testing a decision tree to classify MODIS images was chosen to be the BTDs 

between bands 23 and 31 and bands 31 and 32 and the NDDI, NDVI and NDSI.  

5.2.2 EXPERIMENTAL AND VALIDATION 

The process of training and testing the decision tree proceeded by first  

downloading 27 MODIS data sets from the Level 1 B and Atmosphere Archive 

and Distribution system website (LAADS Web),  

http://ladsweb.nascom.nasa.gov/. A total of 120,000 components of pixel data 

extracted from the MODIS data were used in this study, with 80% used for 

training and 20% for testing of the decision tree. An image showing the 

sampling of data for the six classes is shown in Figure 5.2. Figure 5.3 illustrates 

the methodology of extracting data from the images mentioned previously. 

Table 5.1 indicates the total number of data in each class in each feature used 
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in this study. Table 5.2 shows a sample of data used for training and testing the 

decision tree. 

 

Figure 5-2 Example of pixel data extracted from a MODIS image: cloud is red, 
water is blue, dust storm is yellow, vegetation is green and land is brown. 

 
 
 
 
 
  
    
 
 
 
 
 
 
 
 
 

Figure 5-3 Steps in data extracted from the two BTDs, NDVI, NDDI and NDSI to be 
used in the decision tree 
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Table 5-1 Total number of data in each class in each feature 

Class 
Description 

Total Number of Samples in class per feature 

BTD 
(23-31) 

BTD 
(31-32) 

NDVI NDDI NDSI 

Cloud 25000 25000 25000 25000 25000 

Dust Storm 25000 25000 25000 25000 25000 

Water 20000 20000 20000 20000 20000 

Vegetation 17500 17500 17500 17500 17500 

Land 17500 17500 17500 17500 17500 

Snow or Ice 15000 15000 15000 15000 15000 

 

Table 5-2 Sample of data used for training the decision tree 

Class ID value Class Description BTD 
(23-31) 

BTD 
(31-32) 

NDVI NDDI NDSI 

100000 Cloud 5.9564 0.5357 0.0326 -0.6062 0.5783 

010000 Dust Storm 1.9249 0.1153 -0.0199 -0.3117 0.2823 

001000 Water -0.5406 0.5727 -0.2151 -0.7860 0.6384 

000100 Vegetation 2.0663 1.3890 0.7281 -0.1753 0.0983 

000010 Land 3.2111 -1.4067 0.1484 0.6076 -0.4988 

000001 Snow or Ice 0.1452 -0.1760 0.0816 -0.8660 0.8366 

The performance of the decision tree was evaluated using the standard 

performance metrics: TPR, FPR, TNR, ACC, PPV, NPV and FDR. The decision 

tree was evaluated using two types of ground truth data. The first used 20% of 

the selected data as ground truth, and the second used the cloud mask as 

ground truth for cloud, water, vegetation, snow and land as well as manually 

detected dust storm.  Figure 5.4 shows a flow chart of the decision tree training 

and testing procedures. Table 5.3 shows the average of results of repeated 

training and testing ten times, where the TPR, TNR, ACC, PPV and NPV are 

about 100% for all the classes, and the FPR and FDR are about zero for all the 

classes. This means that the decision tree is very effective at classifying this 

MODIS image data. 
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Table 5-3 Standard measure results for the six classes using training data with the 
decision tree 

Class TPR FPR TNR ACC PPV NPV FDR 

Cloud 1 0 0.99 0.99 0.99 1 0 
Dust 

Storm 

1 0 0.99 0.99 0.99 1 0 

Land 1 0 1 1 1 1 0 

Snow 1 0 1 1 1 1 0 

Vegetation 1 0 1 1 1 1 0 

Water 0.99 0 1 0.99 1 0.99 0 

 

The decision tree was applied to MODIS data from the Terra and Aqua 

satellites acquired over several regions of the earth. The accuracy of this 

approach was assessed using the standard measures, with ground truth data 

provided by cloud mask, and manual detection of dust storms using true colour 

images.  

After training, the decision tree was applied to 200 MODIS images with 

results shown in Table 5.4. These show, in particular, that the decision tree was 

unable to classify snow; the snow pixels were classified as water and also some 

dust storm and some cloud were classified as water. At the same time some 

water area was classified as cloud. Figures 5.5, 5.6, 5.7, 5.8 show some 

examples of MODIS images classified using the decision tree. The results show 

that the method is good for classifying dust storm, vegetation, land, water and 

cloud. However, it’s not effective at classifying the snow. 

Table 5-4 Standard measure results for the six classes using the decision tree with 
200 new MODIS test data images 

Class TPR FPR TNR ACC PPV NPV FDR 

Cloud 0.60 0.03 
 

0.96 0.81 0.87 0.76 0.12 

 

 

 

 

Dust 

Storm 

0.76 0.10 
 

0.89 0.88 0.46 0.96 0.53 

Land 0.67 0.10 
 

0.89 0.85 0.65 0.90 0.34 

Snow 0 0 
 

1 0.95 NaN 1 NaN 
Vegetation 0.70 0.06 

 
0.93 0.91 0.38 0.97 0.61 

Water 0.62 0.04 
 

0.96 0.93 0.49 0.96 0.50 
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Figure 5-4 Flowchart of the Decision Tree application with separate training and 
testing data 
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Cloud Dust storm Water Vegetation Land Snow 

Figure 5-5 On the left is the true colour image of a dust storm captured over Libya 
by MODIS (Terra) on the 8th of May 2002 at 09:35 GMT, and on the right is the 

result of the decision tree classification displayed using the colour key at the 
bottom. 

  
Cloud Dust storm Water Vegetation Land Snow 

Figure 5-6 On the left is the true colour image of a dust storm captured over the 
Sahara by MODIS (Terra) on the 8th of May 2002, and on the right is the result of 

the decision tree classification displayed using the colour key at the bottom. 
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Cloud Dust storm Water Vegetation Land Snow 

Figure 5-7 On the left is the true colour image of a dust storm captured over the 
Sahara by MODIS (Terra) on the 25th of June 2006, and on the right is the result of 

the decision tree classification displayed using the colour key at the bottom. 

  
Cloud Dust storm Water Vegetation Land Snow 

Figure 5-8 On the left is the true colour image of a dust storm captured over the 
north of Saudi Arabia by MODIS (Aqua) on the 13th of May 2005, and on the right 
is the result of the decision tree classification displayed using the colour key at the 

bottom. 
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Cloud Dust storm Water Vegetation Land Snow 

Figure 5-9 On the left is the true colour image of heavy snow captured over the UK 
by MODIS (Terra) on the 7th of January 2010, and on the right is the result of the 

decision tree classification displayed using the colour key at the bottom. 

5.3 MODIS IMAGE CLASSIFICATION USING A NEURAL NETWORK 

Multi-class pattern recognition is the problem of mapping an input feature 

into more than two pattern classes. Multi-class pattern recognition has a wide 

range of applications such as handwriting recognition, object classification, 

speech tagging and recognition, bioinformatics, text categorization and 

information retrieval [68]. Object classification is one of the most active research 

and application areas for neural networks. In this section a neural network is 

used to classify the pixels of MODIS images into the same six classes as the 

decision tree: Cloud, Dust Storm, Land, Vegetation, Water and Snow, as in 

Section 5.2.   
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5.3.2  FEATURE SELECTION 

The feature vector used in this section for training and testing the neural 

network to classify MODIS image is the same as the feature vector used in the 

decision tree of Section 5.2: BTD(23-31), BTD(31-32), NDDI, NDVI and NDSI. 

Also, the same date used for training and testing the decision tree is used for 

training and testing the neural network. As before, these data were divided 

randomly into sets of 80% and 20% for training and testing respectively.  

5.3.2 EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of the neural network was evaluated using the standard 

performance metrics: TPR, FPR, TNR, ACC, PPV, NPV and FDR. The neural 

network was evaluated using two types of ground truth, the first used 20% of the 

selected data as ground truth and the second used the cloud mask as ground 

truth for cloud, water, vegetation, snow and land as well as manually detected 

dust storm. Table 5.5 shows the average standard measures obtained for the 

six classes during the training and testing of the neural network ten times. 

Where the TPR, TNR, ACC, PPV and NPV are about 100% for all the classes 

and the FPR and FDR are about zero for all the classes. This shows that the 

neural network is very effective at classifying MODIS images. 

Table 5-5 Standard measure results for the six classes using training data with the 
neural network 

Class TPR FPR TNR ACC PPV NPV FDR 

Cloud 1 0 1 1 1 1 0 
Dust 

Storm 

1 0 1 1 1 1 0 

Land 1 0 1 1 1 1 0 

Snow 1 0 1 1 1 1 0 

Vegetation 1 0 1 1 1 1 0 
Water 1 0 1 1 1 1 0 



CHAPTER FIVE 

 

115 

 

 

After the neural network was trained it was applied to the same 200 MODIS 

data sets acquired by the Terra and Aqua satellites over different region of the 

earth and used for testing the decision tree.  

A comparison of the decision tree and neural network results shows that the 

latter is much better than the former for classifying MODIS data, in particular for 

classifying snow pixels. Table 5.6 shows the average results from the neural 

network and figures 5.10, 5.11, 5.12, 5.13 and 5.14 show some examples of 

classifying MODIS images using the neural network. Comparing Table 5.6 with 

Table 5.4 shows that the NN method is better than the decision tree for 

classifying dust storm, vegetation, land, water, cloud and snow since the TPR, 

TNR, ACC, PPV and NPV values are higher than from the decision tree. Also, 

the FPR and the FDR values are less than from the decision tree. 

Table 5-6 Standard measure results for the six classes using the neural network 
with 200 new MODIS test data images 

Class TPR FPR TNR ACC PPV NPV FDR 

Cloud 0.77 0.06 0.85 0.93 0.90 0.79 0.09 
Dust 

Storm 

0.82 0.06 0.92 0.93 0.58 0.96 0.41 

Land 0.91 0.15 0.87 0.84 0.66 0.96 0.33 

Snow 0.79 0.03 0.96 0.96 0.47 0.99 0.52 

Vegetation 0.76 0.06 0.91 0.93 0.69 0.94 0.30 

Water 0.85 0.03 0.95 0.96 0.768 0.97 0.23 
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Cloud Dust storm Water Vegetation Land Snow 

Figure 5-10 On the left is the true colour image of a dust storm captured over 
Libya by MODIS (Terra) on the 8th of May 2002 at 09:35 GMT, and on the right is 

the result of the neural network classification displayed using the colour key at the 
bottom 

  
Cloud Dust storm Water Vegetation Land Snow 

Figure 5-11 On the left is the true colour image of a dust storm captured over the 
Sahara by MODIS (Terra) on the 8th of May 2002, and on the right is the result of 

the neural network classification displayed using the colour key at the bottom. 
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Cloud Dust storm Water Vegetation Land Snow 

Figure 5-12 On the left is the true colour image of a dust storm captured over the 
Sahara by MODIS (Terra) on the 25th of June 2006, and on the right is the result of 

the neural network classification displayed using the colour key at the bottom. 

  
Cloud Dust storm Water Vegetation Land Snow 

Figure 5-13 On the left is the true colour image of a dust storm captured over the 
north of Saudi Arabia by MODIS (Aqua) on the 13th of May 2005, and on the right 
is the result of the neural network classification displayed using the colour key at 

the bottom. 
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Cloud Dust storm Water Vegetation Land Snow 

Figure 5-14 On the left is the true colour image of heavy snow captured over the 
UK by MODIS (Terra) on the 7th of January 2010, and on the right is the result of 
the neural network classification displayed using the colour key at the bottom. 

5.4 CHAPTER CONCLUSION 

In this chapter, a comparison was made between the use of a decision 

tree and an FFNN to classify MODIS images into the six classes: cloud, dust 

storm, water, vegetation, land and snow. The features used in both methods 

are: BTDs from bands 23 and 31, and bands 31 and 32 and NDDI, NDVI and 

NDSI. During training, both methods gave essentially the same performance but 

when new data was used, the neural network was found to be more effective 

than the decision tree. Furthermore, both methods are much faster than waiting 

for the cloud mask results to become available. The neural network and 

decision tree are better than the cloud mask method for dust storm detection. A 

limitation of both decision tree and neural network methods is that they can only 

be used during the day.  
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CHAPTER SIX 

6. GENERATING AN AUTOMATED MODIS 

DUST STORM DATABASE SYSTEM 

6.1 INTRODUCTION 

As previously discussed, dust storms are a natural hazard whose 

increased frequency in recent years has significantly affected human life. 

Focussed research is required in order to more effectively monitor and track 

these dust storms. A critical element necessary for this to happen is a 

comprehensive database of dust storm types. This chapter therefore presents 

the author’s system for automatically generating a dust storm database from 

MODIS data. The technique for the detection of dust storms during both day 

and night, as presented in Chapter 4, is implemented here. The system is 

interfaced using MATLAB in order to create a complete platform package which 

includes two predominant interfaces: the administrator interface and the user 

interface. This chapter is organized as follows: Section 6.2 presents the 

objectives of the system, Section 6.3 presents the system development, Section 

6.4 presents the validation of the system and Section 6.5 presents the 

conclusions of the chapter. 

6.2 SYSTEM OBJECTIVE 

The primary aim of this system is the creation of a dust storm database. 

This database will consist of the metadata of dust storm events which will assist 
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researchers using MODIS data to detect dust storm events more easily. 

Furthermore, this system will also form the primary step in creating a MODIS 

hazards database system. 

6.3  SYSTEM DEVELOPMENT 

The MODIS dust storm database system consists of two packages: the 

administrator package and the user package. The administrator package 

enables the administrator to upload new MODIS files. These files are 

automatically checked for the presence of a dust storm, and if a storm is 

detected, information is extracted from the file and saved in the database. This 

information includes: date, time, density and file name. The administrator can 

then search the database for information regarding previous dust storm events. 

The density D indicates the size of the dust storm in terms of a percentage of 

the size of the image and is calculated using equation 6-1. 

             
Equation 6-1.  

 

where M is the number of detected dust storm pixels and V is the total number 

of pixels in the image.   

The user version of the package enables the user to search and display 

dust storm information that has been saved by the administrator. This system 

was developed using MATLAB, with the administrator package being developed 

first. The method used in this section for dust storm detection is the same 

method used in Chapter 4 where four BTDs were used for the detection of dust 
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storms. The administrator package includes two main classes of process as 

shown in Figure 6.1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Block diagram describing the operations of the administrator package 
for MODIS dust storms database 

In contrast, the user package includes only one main class of process as 

shown in Figure 6.2. 

 

 

Yes 

No 

Yes 

No 

Dust Storm Database System 

Administrator Package 

Classification Process Retrieval Process 

 Upload MODIS File 

 Generate the 4 BTD 

 Feed the ANN with the 4 
BTD 

 Dust storm detection 

 Calculate the density of 
Dust storm 

Dust storm Ignore 

Calculate the metadata and 
insert it into the database 

 Choose satellite 

 Enter starting and ending 
date and time 

 Enter the latitude and the 
longitude for the area 
required 

 Click on search 

Exists No data 

found 

Display the data in the table 

Sort Data  

 Date and time 

 Density 

 Satellite 

 

 



  CHAPTER SIX 

 

122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2 Block diagram describing the operations of the user package for MODIS 
dust storms database 

6.4  SYSTEM VALIDATION 

This section presents a step by step validation of the MODIS dust storm 

database system for both the administrator and user packages. 

6.4.1. ADMINISTRATOR PACKAGE 

When the administrator package is run, the administrator interface 

appears as shown in Figure 6.3. 
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Figure 6-3 The main interface of the administrator package 

The menu bar of the main interface of the administrator package includes a File 

menu and a Search menu. The File menu includes three Items: 

 Load File: from the load file menu item the administrator can load new 

MODIS file data to be automatically checked for the presence of dust 

storms. 

 Clear window: the clear window menu item allows the administrator to 

clear the interface of any items. 

 Exit: the exit menu item allows the administrator to exit and close the 

system. 

When the administrator clicks on the file menu the items menu appears as 

shown in Figure 6.4. 
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Figure 6-4 The file menu of the administrator package interface 

If the administrator clicks on the load file menu item, or uses the shortcut key 

combination Ctrl + L, a new window will appear allowing the administrator to 

load a MODIS Level 1B of type hdf as shown in Figure 6.5. If the loaded file is 

not MODIS Level 1B, an error message will appear as shown in Figure 6.6.   

 

Figure 6-5 Loading MODIS Level 1B data 
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Figure 6-6 Error message caused by loading the wrong file 

If the administrator has loaded the correct file, the system will 

automatically generate the BT data for bands 20, 23, 29, 31 and 32, and will 

then create the four BTDs. Upon completion, the system will feed these data 

into the trained neural network. If the neural network outputs a result larger than 

0.7, this will be classified as dust storm data, and the density of the dust storm 

will then be calculated; if the density is higher than 0.24, then the associated 

image will be classified as a dusty image and the metadata will be saved in the 

database. The image will also be displayed on the main interface of the system 

as shown in the Figure 6.7, while a message will appear to confirm the addition 

of the metadata to the database. However, if the image is not classified as a 

dusty image, it will appear on the main interface with a message as shown in 

Figure 6.8. Furthermore, if the image is classified as a dusty image and the 

metadata of this file already exists in the database, the image will appear with 

the message “this record already exists” as shown in Figure 6.9. 
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Figure 6-7 The result when new data are added. 

 

Figure 6-8 The result if there is insufficient dust storm evidence in the image. 
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Figure 6-9 The result if the metadata of the image aleady exists 

If the administrator clicks on the Clear Window menu item, or uses the 

keyboard shortcut Ctrl + C, the system will remove all the elements in the main 

interface window and the result will be as shown in Figure 6.3.  

The system is closed down by clicking on the Exit menu item, or by using the 

keyboard shortcut Ctrl + E. 

The second class of procedure available to the administrator is the 

metadata search function. Thus, if the administrator clicks on the Search menu, 

the menu items will apper as shown in Figure 6.10. 
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Figure 6-10 The Search menu of the administrator package interface 

The search menu includes many items, however only the dust storm 

option is available currently. If the administrator selects this option, a search 

window will appear allowing the administrator to search through the dust storm 

database as shown in Figure 6.11. 
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Figure 6-11 Database Searching window 

From the database search window, the administrator is able to choose 

which satellite to display data (from Terra, Aqua or both), and to input the period 

of time for analysis. If one of these fields is left empty, or if a character is 

accidentally entered, then the system will display an error message as shown in 

Figure 6.12. 
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Figure 6-12 Error message caused by leaving text empty or entering a character 

If the start date is after the end date, the administrator will receive an 

error message as shown in Figure 6.13. 

 

Figure 6-13 Error message when the start date is after the end date 

If the administrator does not enter the date or the time in the correct 

format (for example, entering three digits in the year field instead of four) then 

an error message will appear as shown in Figure 6.14. 
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Figure 6-14 Error message caused by entering incorrect format for date or time 

If the entered hours are fewer than 0 or greater than 24, the system will 

generate an error message as shown in Figure 6.15. 

 

Figure 6-15 Error message caused by an incorrect hours format 

If the entered minutes are fewer than 0 or greater than 60, the system 

will generate an error message as shown in Figure 6.16. 

 

Figure 6-16 Error message caused by an incorrect minutes format 

The latitude and the longitude of the search area are then input. If the 

search is global then the latitude is between -90 and 90 for south and north 

respectively and the longitude is between -180 and 180 for west and east 

respectively. If the inputs of the latitude and the longitude are outside of this 
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range, the administrator will receive one of the messages shown in figures 6.17 

and 6.18. 

 

Figure 6-17 Error message caused by an incorrect Latitude value 

 

Figure 6-18 Error message caused by an incorrect Longitude value 

If all required fields are entered correctly and the search push button is 

activated, the system will retrieve the required metadata from the database 

and the result will be as shown in Figure 6.19. The administrator can then 

choose to display the data by both date and time or by individual satellite or 

by the density of dust storm. 
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Figure 6-19 The system showing dust storm metadata retrieved from the 
database 

6.4.2. USER PACKAGE 

The user package behaves in the same manner as the administrator 

package, except that the user cannot load new data to the database. To ensure 

this, the Load File menu item is inactive. The user interface will be as shown in 

Figure 6.20. 
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Figure 6-20 The file menu of the user package interface where the Load File menu 
item is not active 

6.5  CHAPTER CONCLUSION  

This chapter presents the author’s automated system for dust storm 

detection from both day and night data, using a feed forward neural network. 

The feature vector used for pixel classification consists of the BT of band 31, 

together with the four BTDs (20-31), (23-31), (29-31) and (32-31). The system is 

able to detect the presence of dust storms from MODIS data and classify the 

MODIS images into categories containing dust data or not containing dust data. 

The automated system takes the form of two main packages. First is the 

administrator package, which has two primary functions: the extraction of the 

dust storms metadata from the MODIS data and the saving of this metadata in 

the database; the retrieval of the dust storm metadata from the database. The 

user package has only one primary function, the retrieval of dust storm 

metadata from the database. 
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CHAPTER SEVEN 

7. CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER WORK 

7.1  INTRODUCTION  

This thesis presents new algorithms for the efficient detection of dust 

storms and the classification of the contents of MODIS images. In addition an 

automatic system for updating a new dust storm database created by the author 

has been presented. Section 7.2 provides overall conclusions and Section 7.3 

provides detailed summary and conclusions. Section 7.4 presents the main 

contributions to the field of dust storms detection.  Suggestions for future work 

are given in Section 7.5. 

7.2 OVERALL CONCLUSIONS  

Since there was no efficient technique for dust storm detection over 

different ground surfaces, and there was limited availability of ground truth data 

that could be used for testing detection, monitoring and predicting dust storms, 

work addressing these concerns was conducted. The main achievements 

presented in this thesis are several new methods for automatic detection of dust 

storms, and a new system to generating a dust storm database using MODIS 

data. These made use of previous dust storm research and supporting previous 

highly developed technologies, including image processing and machine 

learning. The algorithms and techniques developed were implemented and 
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tested on many years of data from several geographical regions in order to 

assess the validity of the research results. Furthermore, since a decision tree 

classification technique is used by the MODIS team to generate the MODIS 

cloud mask product, a comparison has been made between using a decision 

tree and a neural network for classifying the contents of MODIS images into six 

classes.  

The application and findings presented in this thesis are significant 

because the new algorithms are more effective compared to the previous ones 

and in detecting dust storms over different ground surfaces[69]. In addition, one 

of the techniques provides very good performance detecting dust storm at night. 

Also a real-time system for monitoring dust storms can be developed based on 

this work. Finally, the automated system of generating MODIS dust storm 

database could be the catalyst of further studies. 

However, the work presented in this thesis still has some limitations. 

Weak dust storms over the water have not been detected properly and this work 

has not attempted to detect other important natural hazards such as fires, 

volcanoes, floods and other types of storms. Also this automated system is 

limited to tracking dust storms, and is limited to using MODIS data.  

7.3 DETAILED CONCLUSION AND SUMMARY   

In this thesis the major endeavour is related to the utilization, 

development and integration of different science aspects and technologies such 

as image processing, associated search algorithms, remote sensing and 

artificial intelligent concepts to design a new and optimized automated system 

that can detect dust storms from MODIS images globally, during both day and 
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night. The automatic dust storm detection using MODIS data was addressed by 

developing several algorithms and techniques after analysing the emissivities 

and the brightness temperatures of several MODIS image contents. Although all 

the methods developed provided good performances; the FFNN method using 

four BTDs and BT of band 31 provided the best performance for detecting dust 

storms during both day and night. Overall performance was shown to be 

superior to other published methods presented in this thesis. The novelty and 

biggest advantages of the new automated technique for dust storm detection, is 

that it can detect dust storms during the night in differing geographical regions 

and generate a MODIS dust storm database. However, the detection of dust 

storms during the night over water is still limited. For this reason more features 

could be added to improve the detection of dust storms over water and further, 

to include more natural hazards classes such as fire, smoke, floods, volcanoes, 

tornados, cyclones and hurricanes. 

Finally, the adaptive thresholding technique should be compared with the 

global thresholds methods used in Chapter 3 to see if this would improve their 

results.      

A detailed summary of this thesis chapter by chapter, including 

conclusions, is as follows. 

 The aim of Chapter 2 is to assess the previous methods used for dust 

storms detection which used various instruments and satellite images. The 

chapter is divided to three main sections. Because much of the previous 

work uses MODIS data, the first section provides an overview of the MODIS 

instrument and its satellites, the properties of the MODIS data, the MODIS 
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products and applications provided and information on how to access this 

data. Information about previous studies on dust storm detection over 

different surfaces using different instruments is presented in the second 

section of this chapter. The third section provides information on previous 

studies on the classification of satellite images using different methods and 

concludes that the artificial neural network is an effective tool commonly 

used for classifying satellite images.  The literature survey shows that a 

significant amount of previous work has investigated the detection of dust 

storms. However the achieved detection performances are still limited, as 

both dust storms and sandy lands share some characteristics, leading to 

difficulty in separating dust storms and sandy land. Dust storms also share 

some characteristics with low clouds and shadow which also leads to 

difficulty in separation. The detection of dust storms at night is still also 

limited due to low night-time temperatures, with all previous methods 

concentrating on using the BT for the detection of dust storms at the night. 

Moreover, there is no single method that is suitable for the detection of dust 

storms over different surfaces. For this reason more work is needed to 

improve the detection of dust storms, and to generate an automatic system 

that can be used for dust storm detection over different surfaces and during 

both day and night.  Also, there are no ground truth data available that can 

be used for validation. The only way to provide ground truth data for dust 

storms is to use manual detection of dust storms. 

 The aim of the work presented in Chapter 3 was to analyse the brightness 

temperature of MODIS image objects for generating the best brightness 

temperature difference to distinguish between dust storms and sandy land. 
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Two threshold methods have been used for dust storms detection. The first 

(in Section 3.2) uses the brightness temperature difference from bands 23 

and 31, with Normalized Difference Dust Index. The BTD from bands 23 

and 31 is used to distinguish dust storm with cloud from other surface 

content whereas the NDDI is used for distinguish between dust storm and 

cloud. The results show this method for dust storm detection is moderately 

effective but it can detect some low clouds and shadows as dust storm. 

Also this method is unable to detect weak dust storms over water or dust 

storms at night because of the use of the NDDI. The second method (in 

Section 3.3) uses BTDs from bands 23 and 31 and bands 31 and 32 with 

thresholds of 5.5K and 0K respectively. The results show that this method is 

much better than the first for detecting dust storms over land and sandy 

land by reducing the false detection of non-dust storm pixels. However, this 

method is also unable to detect dust storms reliably over water. The biggest 

advantage of this method is that it can detect dust storms at night. However, 

thresholds of -1K for both BTDs are needed to detect dust storm during the 

night, which are different to those used in the day. Thus, there is a need to 

improve the detection of dust storm over water and to develop an 

automated method that can detect dust storms over different surfaces and 

at both day and night.  

 The aim of work presented in Chapter 4 was to explore the use the Artificial 

Feed-Forward Back-Propagation Neural Network for improved dust storm 

detection without relying on explicit thresholds. In this chapter two set of 

features have been used with an FFNN to classify dust storm pixels. The 

two BTDs from bands 23 and 31 and bands 31 and 32 and the reflectance 
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of the three bands 1, 3 and 4 have been used in the first method to 

generate the feature vector. The results show that this neural network is 

able to detect dust storms over different type of surfaces and is much better 

than the previous threshold methods for dust storm detection over different 

types of surface, but it is unable to detect dust storms at night because of 

the use of the reflectance bands. The second method was developed to 

detect dust storms at night by using the four  BTDs from bands 20 and 31, 

bands 23 and 31, bands 29 and 31 and bands 31 and 32 and the BT from 

band 31 as the feature vector. This method was effective for detecting dust 

storms over different type of surface and during both day and night as well. 

The final work described in this chapter (in Section 4.4), used the second 

neural network and a set of thresholds on its output to generate a dust 

storm mask which indicates discrete probabilities of an image pixel being 

dust storm. 

 The aim of the work presented in Chapter 5 was to make a comparison 

between the use of a decision tree (as chosen by the MODIS team for their 

cloud mask product) and an FFNN to classify MODIS images into six 

classes: cloud, dust storm, water, vegetation, land and snow. The features 

used in both methods include BTDs from bands 23 and 31 and bands 31 

and 32 and NDDI, NDVI and NDSI. During training, both methods gave 

essentially the same performance, but when new data was used, the neural 

network was found to be more effective than the decision tree. Furthermore, 

both methods are much faster than waiting for the cloud mask results to 

become available. The neural network and decision tree are better than the 

cloud mask method for dust storm detection. A limitation of both methods 
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(decision tree and neural network) is that they can only be used during the 

day. 

 The aim of the work presented in Chapter 6 was to generate an automated 

MODIS dust storm database system. This chapter describes an automated 

system for dust storms detection, from both day and night data, using the 

feed forward neural network. The feature vector used for pixel classification 

is the same as the second one in Chapter 4. The system managed to detect 

the dust storms from MODIS data and classify the content of MODIS 

images into dust or not-dust categories. The automated system consists of 

two main packages. First is the administrator package which has two 

primary functions. One is the extraction of dust storm metadata from the 

MODIS data and saving this metadata in the database. The second 

administrator function is the retrieval of metadata from the database. The 

user package has only one primary function, which allows the user to 

retrieve the metadata from the database.  

7.4 CONTRIBUTIONS 

A summary of the contributions presented in this thesis is as follows. 

 Development of a new brightness temperature difference method using 

bands 23 and 31. This is effective in distinguishing between dust storms 

and sandy land. 

 Development of a new algorithm for dust storm detection using the 

threshold method. The threshold method was implemented using the BTD 

from bands 23 and 31 and the NDDI. This algorithm was used to detect dust 

storms during the day.   
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 Development of a new dust storms detection algorithm using thresholds 

which is able to work during both day and night. This threshold algorithm 

used BTDs from bands 23 and 31 and bands 31 and 32. 

 Development of a new dust storm detection method using a neural network 

classifier. This technique uses five features: BTDs from bands 23 and 31 

and bands 31 and 32, and reflectance of bands 1, 3 and 4.  This technique 

is very effective for the detection dust storms during the day but is unable 

detect dust storms during the night. 

 Development of another new dust storm detection method using a neural 

network classifier. This technique is used five features: BTDs from bands 20 

and 31, bands 23 and 31, bands 29 and 31 and bands 31 and 32 and the 

BT from band 31. This technique is very effective and better than the 

previous techniques for detection dust storms, and is able to detect dust 

storms during both day and night. 

 Making a comparison between decision tree and neural network methods 

for classifying MODIS images. The neural network was much better than 

the decision tree when they were both applied to new data. 

 Development of a new automated system for dust storms detection which 

generates a MODIS dust storm database. This automated system allows 

operation by either an administrator, who can build the database or a 

general user, who can only access the database. 
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7.5 SUGGESTIONS FOR FURTHER WORK 

The research presented in this thesis provides a strong foundation for 

future work in the field of dust storms detection. The main suggestions for the 

future work are as follows.  

 The neural network method used for dust storm, detection during day and 

night could be developed further by exploring the addition of more bands in 

the feature set to improve its ability to detect dust storms particularly over 

water. The use of a Cascade Correlation neural network could also be 

explored to improve the quality of dust storm detection.  

 The method described in Section 4.3 for detecting dust storms could be 

used, together with data for wind direction and wind speed, to develop a 

new system for monitoring and tracking dust storms.  

 The method described in Chapter 5 for classifying MODIS images could be 

developed further to include more classes such as fire, volcanic cloud, 

shadow and the cloud class itself could be divided into several sub-class 

levels. To do this, appropriate features to discriminate each of these new 

classes would have to be found.  

 The database system described in Chapter 6 could be further developed to 

include other natural hazards such as fire, smoke, floods, volcanoes, 

tornados, cyclones and hurricanes. This would first require the completion 

of the previous suggestion. 
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APPENDIX A 

1. OVERVIEW OF MODIS INSTRUMENT  

The CD-ROM attached to this thesis contains useful information about 

MODIS instrument. 

2. CODE OF AUTOMATED MODIS DUST 

STORM DATABASE SYSTEM 

The CD-ROM also contains the code of dust storm detection and the automated 

MODIS dust storm database system. 
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