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Abstract 

Immunohistological (IHC) stained images occupy a fundamental role in the 

pathologist’s diagnosis and monitoring of cancer development. The manual 

process of monitoring such images is a subjective, time consuming process 

that typically relies on the visual ability and experience level of the 

pathologist. 

A novel and comprehensive system for the automated quantification of 

antibody inside stained cell nuclei in immunohistochemistry images is 

proposed and demonstrated in this research. The system is based on a 

cellular level approach, where each nucleus is individually analyzed to 

observe the effects of protein antibodies inside the nuclei.  

The system provides three main quantitative descriptions of stained nuclei. 

The first quantitative measurement automatically generates the total number 

of cell nuclei in an image. The second measure classifies the positive and 

negative stained nuclei based on the nuclei colour, morphological and 

textural features. Such features are extracted directly from each nucleus to 

provide discriminative characteristics of different stained nuclei. The output 

generated from the first and second quantitative measures are used 

collectively to calculate the percentage of positive nuclei (PS). The third 

measure proposes a novel automated method for determining the staining 

intensity level of positive nuclei or what is known as the intensity score (IS). 

The minor intensity features are observed and used to classify low, 

intermediate and high stained positive nuclei. Statistical methods were 

applied throughout the research to validate the system results against the 

ground truth pathology data. Experimental results demonstrate the 

effectiveness of the proposed approach and provide high accuracy when 

compared to the ground truth pathology data. 
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Chapter 1 

 

 

Introduction 

 

1.1 Background  

Over the past two decades, an enormous range of cancer diagnostic 

techniques have been implemented. Imaging techniques have enabled 

practitioners to examine the entire human body, for example through 

magnetic resonance imaging, ultrasonography, computer tomography CT 

scans and microscopic images taken from biopsy samples. These methods 

of image examination have increased the chance of detecting abnormality at 

very early stages and helped physicians to understand cancer better and 

treat it accordingly (Tadashi et al., 2012; Sarvazyan et al., 1995). 

Immunohistological stained images occupy a vital role in the pathologist’s 

diagnosis and monitoring of cancer patients. Immunohistochemical staining 

is a procedure commonly used for tasks such as diagnosing abnormalities in 

cancer cells, drug development and biological research. This procedure is 

performed by applying different antibody stains to detect molecular markers 

on a tissue section. The molecular markers characterize certain cellular 
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events such as cell death (apoptosis) and proliferation (Khojasteh et al., 

2012; Kostopoulos et al., 2009). 

1.1.1 Visual scoring method of IHC slides 

Stained cell nuclei allow pathologists to diagnose and grade tumour (Ruifrok 

et al., 2004).  This procedure is conducted manually, which has proved to be 

very subjective and time consuming (Ficarra and Macii, 2006). The 

procedure is performed via a number of steps; once the stained sections are 

prepared, the pathologists view the samples using a microscope. This 

method enables quantitative and comparative studies of the samples. The 

score of cancer markers in stained nuclei is based on two main quantitative 

measures: the percentage of positively stained nuclei and the overall staining 

intensity of positively stained nuclei (Anderson et al., 1998). 

The traditional scoring method used by pathologists assigns a number to 

each staining intensity level, where (+) indicates weak staining, (++) indicates 

intermediate staining and (+++) indicates high staining. The percentage of 

positively stained nuclei is measured by manually counting the number of 

positive and negative stained nuclei objects. (Fang et al., 2003).  

In this study, we use the visual scoring method as a benchmark to validate 

the results of the proposed automated method, the benchmark scoring 

results were provided by an experienced pathologist using the visual scoring 

method described above. 
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1.2 Overview of the thesis 

A number of attempts to automate the manual procedure of scoring IHC 

images have been introduced, (Choudury et al., 2010; Kuo et al., 2010; 

Gavrielides, 2008; Hatanaka et al., 2003). However most of the previous 

automated methods have scored the images based on the average tissue 

analysis rather than providing an individual cell solution. Other cell based 

solutions meanwhile only provide a semi-quantitative or a semi-automated 

method rather than providing a fully quantitative automated method.  

Our proposed method provides a comprehensive cell–level automated 

method for the quantification of antibody staining based on the individual cell 

analysis. This approach tackles each cell individually, which allows the direct 

extraction of information from each cell. Previous cell-level methods provide 

images which are segmented based on rectangular and square shaped 

windows. This means the segmented nuclei object will include some noise 

corresponding to the background. Our proposed system resolves this issue 

by providing a precise means of segmentation which will only segment nuclei 

objects, discarding the background surrounding pixels. This will allow 

features to be extracted directly from the nuclei object without the 

interference of the background. 

                                                      
  

 

 

 

           A) Segmented nuclei using our method           B) segmented nuclei using other methods 

Figure 2-1: segmentation method comparison  
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In order to achieve this, an efficient means for nuclei segmentation and 

quantification is essential, which will then be used to assist the automated 

scoring of percent stained or the Proportion Score (PS) and the Intensity 

Score (IS). An automated approach for nuclei segmentation and 

quantification is implemented, which automatically counts both positive and 

negative nuclei, (generating the total number of nuclei in an image). The 

second stage is the classification of the positive and negative nuclei. 

The outcomes of these two stages yield the elements required to calculate 

the proportion score (PS). Finally, a novel approach for measuring the 

Intensity Score (IS) of heterogeneously stained positive nuclei based on a 

pixel level intensity classification is demonstrated. 

The proposed method aims to provide an accurate automated scoring 

method for stained nuclei inside IHC images. This would ultimately reduce 

the human error and the time spent on analyzing stained biopsy samples 

from a few hours to a few seconds per slide. However, fully automated 

method for grading IHC images can only be designed to grade a specific 

type of IHC samples when implemented using fixed parameters. To increase 

the generality of such automated methods, Flexible parameters can be 

introduced in the implementation stage. In this case parameters can be 

adjusted to serve a wider range of IHC samples. In this study a number of 

parameters are defined at the implementation stage. The parameters were 

selected to work for all Ki67 and p27 images without any further adjustments 

by the user. 
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1.2.1 IHC samples 

In order to develop this approach, the experimental model used is the 

multicell spheroid model of human colonic cancer. This is an in-vitro three 

dimensional model that mimics many of the features of solid tumour biology 

(Sutherland et al., 1986). This includes gradients of cell proliferation with 

dividing cells on the surface of the spheroid, where as those cells residing 

close to the Necrotic core are not proliferating. Dividing plus non-dividing 

cells can be visualised using antibodies Ki67 (Scholzen and Gerdes, 2000) 

and p27 Kip1 (Karen et al., 2004) respectively as shown in figure 1-1.  

Positive protein expressions (Brown nuclei) are identified by biotinylated-

labeled antibody and indicate the positive response to the antibody raised 

against human Ki67 and p27 Kip1 proteins. Whereas, negative protein 

expressions (blue nuclei) are counterstained with haematoxylin solution and 

they represent the negative response to the antibody raised against human 

Ki67 and p27 Kip1 protein. The main focus in this study is the quantification of 

positive and negative nuclei objects. Necrotic cells are eliminated and only 

cells in the viable rim are targeted. 

 

 

The IHC samples were provided by The Institute of Cancer Therapeutics, University of 

Bradford. Details regarding the IHC samples are provided in the appendix. The details 

provided in the appendix are part of a master dissertation by (H. Y. CHI, 2006). 
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Positive and 

negative stained 

nuclei 

Viable 

rim 

 

 

 

 

 

 

Figure 1-2: represents p27
Kip1

 and Ki67 expressions in intact HT29 spheroids. Positive 

protein expression is identified by the brown stain indicting where secondary antibodies have 

bound to the primary. The brown colour is diaminobenzidine produced following the reaction 

with horseradish peroxidase conjugated to the secondary antibody. Basophilic structure of 

cell (blue) was counterstained with haematoxylin solution.  

Such images were selected in this research as they represent the most 

common challenges faced in the automated quantification and analysis of 

IHC image tasks. Some of the main challenges faced in such analysis are 

presented below; 

Despite active research and several attempts to automate the quantification 

process of cell nuclei, nuclei segmentation remains a challenging problem 

due to the variety and complexity of microscopy images across cell types 

and application frameworks, with mainly weak contrast level, touching nuclei, 

diffused background and changeable size and shape of cell nuclei all posing 

challenges to existing methods. Generality of existing methods is also a 

challenge. An illustration of these challenges is presented in figure 1-3. 
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Figure 1-3 represents Ki67 expression in intact HT29 spheroids. Positive protein expression 

is identified by brown stain. Basophilic structure of cell (blue) was counterstained with 

haematoxylin solution.  

A number of challenges are raised when attempting to analyse this type of 

image; 

 Such kind of immunohistological images have low intensity variations 

between various substances within an image, and this makes 

differentiation among the objects (nuclei and background) a complex 

mission. This is particularly true of negatively stained nuclei objects 

(blue stained nuclei), which have a very low contrast variation against 

the background. This makes the process of extracting and segmenting 

this type of nuclei a challenging task. 

 The morphological characteristics of the nuclei objects differ 

frequently, which makes the localization and quantification of nuclei, 

objects a challenging task. 

 The quantity of brown stained nuclei compared to the quantity of blue 

stained nuclei provides a significant measuring tool for the 

determination of protein antibodies’ activation inside cells. The  

computation of the Percent Stained (PS) is calculated as; 
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This makes the distinction between positive brown stained nuclei and 

negative blue stained nuclei a crucial step in diagnosis and monitoring 

procedures. Following investigation, it was found that some pixel 

intensity levels of both positive and negative nuclei overlapped. This 

means that some positive nuclei intensity can possibly hold pixel 

values which represent negative nuclei intensity values. 

Consequently, this makes the process of distinguishing between 

positive and negative nuclei a complex task. 

 

Figure 1-4: Overlapping of pixel intensity  

 Intensity score (IS) is the means for measuring the staining intensity 

level of positively stained nuclei (brown nuclei). Heterogeneity of 

staining intensity amongst positively stained nuclei presents a 

challenge when attempting to set an automated measure. This is due 

to the absence of an existing threshold for the three intensity levels. 
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1.3 Aims and objectives  

The main aim of this research is to provide a comprehensive cell-level 

automated approach for the quantification of antibody staining inside each 

nucleus cell in IHC images.  

In this research, a cell-level analysis approach is targeted, rather than a 

tissue-level analysis. Using such an approach, nuclei objects are individually 

analyzed and the antibody staining is observed inside each cell. This will 

enable the extraction of features that are directly related to the nuclei object, 

unlike tissue-level analysis, where background and other cellular particles 

have an influence of the level of information retrieval and the final 

classification outcome.  

To achieve the automated quantification of stained nuclei cells in IHC images 

a number of objectives would have to be met. 

Nuclei segmentation and quantification: nuclei segmentation is the first task 

towards the cell-level analysis approach. This will mean segmenting the 

nuclei objects from the background and other cellular elements. Nuclei 

segmentation has remained a challenging task due to the variety and 

complexity of the nuclei characteristics in such images. In this regard, a 

number of image processing techniques are investigated to provide a 

structural approach for the nuclei segmentation task, tackling all the main 

challenges. Counting of positive and negative nuclei can be achieved upon 

successful nuclei segmentation.  
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Nuclei stain type classification: The second task is the classification of 

positive and negative nuclei in IHC images. This can be achieved based on a 

cell-level classification approach, where features are directly extracted to 

describe the characteristics of each nucleus. These features can then be 

used to classify both types of nuclei based on their discriminative 

characteristics. A huge number of feature extraction methods can be 

employed to extract features from nuclei objects. However, the investigation 

as to which of these features hold discriminative power is crucial as this 

determines the level of accuracy in the automated classification tasks. Upon 

successful classification, the PS can be calculated by combining the output 

of both nuclei classification and counting.     

Positive nuclei heterogeneity classification: the third task towards the 

automated quantification of stained nuclei in IHC images is the measurement 

of the intensity score IS. Until now, the determination of the intensity level of 

positive stained nuclei has depended on giving a single threshold that 

described the intensity level of positive nuclei in an IHC image. However, a 

more sophisticated approach can be introduced by addressing the staining 

heterogeneity amongst positive nuclei in a single IHC image. To achieve this, 

a classification approach which classifies each positive nucleus based on its 

staining intensity needs to be introduced. This can be achieved by extracting 

discriminative features of each positive staining class (high, intermediate and 

low). However, highly responsive features will have to be extracted as the 

staining levels of positive nuclei are very minor and could prove difficult to 

define. 
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1.4 Contributions 

The automated scoring method involves a number of novel algorithms which 

are exclusively designed to achieve the final goal of this research work. 

Contributions can be outlined as follow; 

 A segmentation and counting tool was developed for the automated 

quantification of stained nuclei objects in IHC images. A number of 

nuclei counting methods have emerged that provide an automated 

counting measure for stained nuclei objects. However, such tools 

have fixed parameters and only provide sufficient results for the set of 

images they are designed for. For this reason, developing our own 

general segmentation tool was necessary, as this allowed the 

extensive analysis of a diversity of IHC image datasets by adjusting 

the parameters as required. Designing our method has given us an 

insight into the challenges involved when developing such systems, 

whether due to the morphological complexity of nuclei or the efficiency 

of the technologies used for developing such tools. Understanding 

these challenges has enabled us to develop a suitable tool for this 

task, tackling the main challenges related to the characteristics of the 

IHC images and improving the performance of the existing 

technologies involved in the development of such systems. 

 

 An image reconstruction method was introduced to resolve the pixel 

intensity overlapping between nuclei objects and the background. This 
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was achieved by extracting the global and regional maxima and 

minima from the IHC images directly, which were then used as 

thresholds to improve the contrast of differently stained nuclei objects 

and background. 

 

 Watershed segmentations have been widely used for the task of 

segmenting overlapping and adjacent nuclei objects in microscopic 

image analysis (Cheng and Rajapakse, 2009; Cloppet and Boucher, 

2011). However, the watershed performance is restricted by the 

quality of the images it is used for. For instance, when watershed 

transform was used on image datasets used in this study, it provided 

limited segmentation, such that overlapped and adjacent nuclei were 

not always segmented correctly. To improve the performance of 

watershed in such cases, we integrated the use of L*A*B colour space 

and morphological features which were defined through studying the 

nuclei shape characteristics closely. This has resulted in an improved 

segmentation performance. 

 

 A nuclei extraction method was introduced, where each segmented 

nucleus was extracted and saved automatically in a separate image. 

This method was developed to create the segmented nuclei image 

datasets. This step is fundamental in achieving the cell-level image 

analysis of nuclei objects, by means of which features can be 

extracted directly from each nuclei object, and therefore classified 

accordingly. 
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 A cell-level classification approach was developed for classifying the 

positive and negative nuclei objects, based on colour, textural and 

morphological features. An extensive investigation was carried out to 

select only those features that provided discriminative power in 

differentiating between positive and negative nuclei. Another aim of 

this investigation was to study the influence of using integrated 

features extracted from segmented nuclei objects in providing efficient 

classification measures of the different types of nuclei cell objects. By 

using the output generated from the nuclei counting task and the 

positive and negative nuclei classification task, a new approach for 

measuring the PS was introduced.  

 A cell-level classification approach was developed for classifying 

heterogeneously stained positive nuclei objects. Extensive 

experimental work was conducted in this task to study the influence of 

using textural, colour and morphological features in providing 

discriminative characteristics that describe the minor differences of 

each stain level (high, intermediate and low). Textural features based 

on the intensity histogram were developed to provide improved 

discriminative power compared to the baseline textural extraction 

methods. Finally, the IS was measured by providing cell-level details 

that presented the percentage of each positive stain type in each IHC 

image.   
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1.5 Thesis Organization 

This thesis consists of six chapters which are organized as follows: 

Chapter 1: this chapter includes introductory key points to the thesis, pointing 

out the significance of image processing techniques in the medical field, the 

importance of immunohistological stained images, a description of the 

manual process of measuring the antibodies in cancer microscopic images 

and how this process can be automated for an efficient grading tool. This 

chapter also includes an overview of the thesis and description of the IHC 

samples used in this thesis, it also includes the aims and objectives of the 

thesis, and finally the main contributions of the author. 

Chapter 2: this chapter includes a comprehensive literature survey of the 

related research papers. The survey contains four main sections: nuclei 

segmentation in digital microscopic images, cancer cell feature extraction, 

classification approaches and finally IHC image scoring methods. 

Chapter 3: a novel segmentation and counting method is presented in this 

chapter. The method is used to extract and segment nuclei objects form IHC 

images. This process allows the automated generation of the nuclei count, to 

yield the total number of stained nuclei in each input image, which then is 

used in the next chapter to calculate the PS. later in this chapter, an 

extraction method is introduced as a basis for creating the segmented nuclei 

image datasets. Results of the segmentation and counting method are 

presented, validated against ground truth pathologist data and discussed.  
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Chapter 4:  this chapter demonstrates a novel approach for classifying 

positive and negative nuclei objects. Feature extraction and classification 

methods are applied on segmented nuclei images to achieve nuclei 

classification. The classification output of this process is used collectively 

with the output of Chapter 3 to generate the final PS of each input image. 

Two types of classifiers are compared to analyze their performance in nuclei 

classification tasks. Results are presented, validated against ground truth 

pathologist data and discussed.  

Chapter 5: this chapter demonstrates a novel approach for measuring the 

intensity stain IS of positive nuclei based on a cell-level approach. A novel 

feature extraction method is introduced to measure the staining 

heterogeneity of positive nuclei. A classification method is then applied to 

make a decision regarding which intensity group a particular nucleus belongs 

to. Finally, the results are quantified to yield the final IS based on the 

percentage of nuclei belonging to each intensity group. The results are 

presented, validated against ground truth pathologist data, and discussed.  

Chapter 6: this chapter includes the conclusion and future work. Suggestions 

as to how the current method could be improved further are also given. 
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Chapter 2 

 

 

Literature Review 

 

2.1 Nuclei segmentation in digital microscopic images 

The term segmentation, when used in the image processing field means; 

separating the image into background and object of interest. The object of 

interest in this case is the nuclei. Nuclei segmentation plays a vital role in 

biological studies (Elowitz et al., 2002; Megason et al., 2007). Efficient 

segmentation of nuclei from microscopy images is an essential step in single 

cell measurement studies (Rosenfield et al., 2005). Segmentation methods 

usually involve a study of the object’s shape, size and intensity level, and 

then use of these details to detect and identify the object of interest 

(Carpenter et al., 2006; Li et al., 2008; Wang et al., 2008; Wang et al. 2009). 

A number of approaches for nuclei segmentation have been implemented. 

The approaches differ based on the purpose of use and nature of images. 

Details about different segmentation approaches and how they have been 

utilised for this purpose are reviewed below; 
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2.1.1 Global and local thresholding methods 

Global adaptive thresholding is an uncomplicated method, which can be 

used for conditions where nuclei objects are well separated from the 

background, and the intensity variation between nuclei objects and 

background is relatively high. (Otsu, 1979; Wu et al., 1995; Wu et al., 2000).  

Mouroutis et al. (Mouroutis et al., 1998) used histogram thresholding to 

extract the region of interest (ROI). The threshold was set to the peaks of the 

histogram which correspond to the cytoplasm surrounding the nuclei objects. 

This type of segmentation sets a global threshold for the full image, 

subsequently dividing the image into background and ROI based on the 

intensity variation between the two. This means that the ROI will be 

successfully segmented from background only when the variation levels 

between the two regions are relatively high.  

Nandy et al. (Nandy et al., 2012) presented an automatic segmentation of 

nuclei cells in 2D images. Automated thresholding was used to identify 

boundary regions. This thresholding method works based on the gradient 

magnitude differences of both nuclei objects and the background. As a result 

the boundary regions of the nuclei are extracted, yet again, segmentation 

efficiency is dependent on the level of intensity variation between the 

background and ROI. 

Coelho et al. (Coelho et al., 2009) considered using three different 

thresholding methods for segmenting nuclear objects in microscope cell 

images.  The first thresholding method used was Ridler-Calvard (Ridler and 



 

 

18 

 

Calvard, 1978), the second method used was Otsu (Otsu, 1979), and finally 

the mean pixel value thresholding method was used. The three threshold 

adjacent regions are considered nuclei objects. “Otsu and Ridler-Calvard” 

thresholding presented less accurate results when compared to the mean 

thresholding results. This is due to the presence of especially bright nuclei 

objects, leading the threshold methods to set a threshold between the bright 

nuclei objects and the less bright nuclei objects, instead of setting the 

threshold between the nuclei objects and the background. The mean 

thresholding presented better thresholding results in this case, where grey-

scale images with high intensity variance between nuclei and background 

are used. 

Hu et al. (Hu et al., 2004) calculated dual thresholds by iteration. The two 

thresholds T1 and T2, are firstly initialized to divide the whole grey image into 

three sections; R1, R2 and R3. The average intensities of the three sections 

of each threshold are then calculated to form the final threshold. The results 

present the nucleus regions in black, cytoplasm regions in grey and 

background regions in white. This kind of threshold presents improved 

thresholding compared to the global thresholding method in cases where an 

image is required to be divided into three regions.  

Phansalkart et al. (Phansalkart et al., 2011) implemented an improved local 

adaptive thresholding method for segmentation and detection of nuclei 

objects in stained cytology images. The local mean and standard deviation 

become adaptive to the value of the local threshold according to the contrast 

in the local neighbourhood of the pixel. The value of the threshold goes 
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under the mean when the contrast in the local neighborhood is fairly low. 

This results in efficient elimination of fairly dark regions of the background, 

and therefore leads to better identification and segmentation of nuclei 

objects. This type of thresholding method provides improved segmentation 

results compared to the global thresholding method, and particularly in 

images with considerable background noise, low variation between ROI and 

background, and variation in contrast within the ROI.  

 

2.1.2 Watershed segmentation method 

Watershed segmentation methods are parameter free methods which are 

applied in complex image processing problems (Vincent and Soille, 1991; 

Meyer, 1994; Cloppet and Boucher, 2011). Watershed is implemented in 

open source software as well as commercial software. It is available in image 

processing packages such as Matlab® and ImageJ (Abramoff et al., 2004). 

The method has proved to be effective for separating overlapped and 

adjacent objects in images. However, over-segmentation is a common 

problem in this method, where a number of unnecessary segmentations are 

made between objects. Marker-controlled and hierarchical watershed 

methods are then often employed to resolve the over-segmentation problem 

(Beuchar, 1992; Beuchar, 1994; Najman and Schmitt, 1996). Other 

approaches use active contours, such as the snakes approach, in which 

objects are signified as smooth contours (Kass et al., 1988; Chan and Vese, 

2001). 
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Cheng and Rajapakse (Cheng and Rajapakse, 2009) present a method to 

divide clustered nuclei objects from fluorescence microscopy cellular images, 

using a marker-controlled watershed algorithm. This algorithm demonstrates 

how the Euclidean distance can be improved using an outer distance 

transform to improve the segmentation of adjacent nuclei. The method 

produced smoother watershed lines separating the clustered nuclei objects 

when compared to the traditional watershed transform method. Cloppet and 

Boucher (Cloppet and Boucher, 2011) present a method to segment the 

overlapping nuclei cells. This method is based on the watershed 

segmentation algorithm. However, the authors demonstrate how some prior 

information about the nuclei morphological characteristics could help in 

optimizing the correct set of markers, to represent the starting points from 

which the watershed flooding will be initiated.  

 

Figure 2-1: Segmentation results of the overlapping nuclei based on the watershed algorithm 

(Cloppet and Boucher, 2011). 

From the literature reviewed above, it is evident that the traditional watershed 

transform algorithm failed to provide efficient separation of nuclei in a 

number of cases. To improve the performance of watershed, integration of 

other algorithms such as the nuclei cell morphology and improved Euclidean 

distance could provide enhanced watershed segmentation. 
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2.1.3 Morphological operations 

Morphological operations are non-linear functions which are used to describe 

the shape and structure of objects in images (Meyer and Beucher, 1990). 

Morphological operations have always been a valuable tool in the processing 

of microscopic digital images: they are used to extract information 

concerning the image object by describing its geometrical structures in a 

prescribed way (Soille, 1999; Beucher and Meyer, 1993). 

 Nuclei cell segmentation is a challenging problem, due to the complex 

shape and structure of the objects. Morphological operations can be used in 

this case to regulate the shape of the cell objects. Some of the most 

commonly used morphological operations are; erosion, dilation, opening and 

closing operations, which are used to regulate the nuclei object (Comer and 

Delp, 1999; Goutsias et al., 1995; Louverdis et al., 2002). Dorini et al. (Dorini 

et al., 2007) used simple morphological operations along with scale-space 

properties to improve white blood cell segmentation. Cheng and Rajapakse 

(2009) used the active contour method to segment the clustered nuclei cell 

objects. Following this, a number of morphological operations were 

performed to refine the irregular nuclei shapes. Firstly, the holes inside the 

segmented nuclei are filled using the dilate operation to prevent the incorrect 

separation of clusters, when the subsequent distance transforms is 

calculated. Small objects which are unlikely to be fragments of the nuclei 

objects are eliminated using the morphological opening. Although simple 

morphological operations could refine irregular nuclei shapes, leading to 

improved segmentation, these do not provide the means for defining the 
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border around the nuclei objects. Such an operation is essential to defining 

nuclei objects, as it works as the first step towards the automated counting of 

nuclei objects.  

 

2.1.4 Edge detection methods  

Edge detection is a signal processing algorithm common in artificial 

intelligence and image recognition programmes. Tabor et al. (Tabor et al., 

2009) built a genetically encoded edge detection algorithm which 

programmed an isogenic community of E. coli to sense an image of light and 

communicate to differentiate and identify the dark and light edges: the results 

of the calculation were then presented visually. In order to implement this 

algorithm, the authors used multiple genetic circuits in which they 

differentiate between the light and dark areas by using an engineered light 

sensor. In the dark, a diffusible chemical signal that diffuses into light regions 

is produced through the cells. Their idea was that only cells that sense light 

and the diffusible signal should produce a positive output, and to achieve this 

they used “genetic logic gates” The performance of the whole program is 

predicted using a mathematical model built from the first values and 

parameterized measurements of the component circuits.They proposed an 

accurate model which could assist in the engineering of more complex 

biological behaviours. 

Aarnink et al. (Aarnink et al., 1994) proposed an automated method for 

identifying the contours of the prostate in ultrasonographic images. In this 
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proposal, a specific kind of edge detection based on nonlinear Laplace 

filtering is used. Edges are found at zero-crossings of the second derivative 

of the image. 

The gradient value reflects the strength of the edges at that position. The 

intensity of the edge from the initial ultrasonographic image is calculated 

based on a combination of information taken from the location and strength 

of the edge. Edge enhancement is also used to identify and enhance the 

edges.The edges which represent boundaries are linked using a technique 

called “interpolation” which is used to fill the gaps between identified 

boundary edges. 

Kothari et al. (Kothari et al., 2009) present a semi-automatic method for cell 

cluster segmentation and cell counting of digital tissue image samples. The 

method used consisted of three key steps. The first step was a pre-

processing stage on the RGB images, which was performed to detect the 

boundary of the nuclei objects using a binary mask. The second step was 

performed to detect the points where nuclei objects overlapped. Finally, the 

third step was performed to segment the connected nuclei objects using an 

ellipse-fitting technique. Once the connected nuclei objects are segmented 

successfully, the separated nuclei objects are counted to give the final nuclei 

count. Conventional methods such as edge detection segmentation (e.g. 

Canny, Sobel and Prewitt; Kanopoulos et al., 1998; Ali and Clausi, 2001) and 

active contours were previously used for edge detection and localization 

(Bamford and Lovell, 2001). Further improved methods have also emerged, 

that have proved to produce enhanced results when applied to 
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Immunohistological images. One of these methods demonstrated the 

selection of tumour areas and segmentation of nuclear membranes in tissue 

using a morphological approach rather than the traditional active contour 

method. This approach has been demonstrated to improve results when 

applied to immunohistochemistry IHC of lung cancer tissue cells. The 

approach seemed to accomplish a promising nuclear segmentation. 

Nevertheless, it did not provide a quantitative description which gave 

automatic counting of the differently stained nuclei present within the same 

image (Di Cataldo et al., 2010). On the other hand, another investigation 

concentrated on the development of an automatic algorithm for counting 

positive and negative cancer cells collectively in immunohistological stained 

slides from breast cancer tissue. The results demonstrated a method for 

counting positive and negative cells using neural networks and 

morphological operations. However, an automated separation and counting 

method for the different colour stained cells individually was not achieved 

through this method (Phukpattaranont and Boonyaphiphat, 2007). 

 

Figure 2-2: Results of the nuclei edge detection based on local adaptive thresholding 

(Phukpattaranont and Boonyaphiphat, 2007). 
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2.2 Feature extraction 

The performance of automated analysis of cell level microscopic images 

depends profoundly on the features extracted to represent the characteristics 

of the nuclei. The foremost features that signify the nuclei objects are; 

textural, colour and morphological features. These features have been 

explored through various studies in an attempt to investigate and determine 

the optimal nuclei features. Diverse methods have been employed to extract 

nuclei features (Liu, 2011) and use a set of features to classify cell nuclei in 

fluorescent microscopy images. A variety of features such as morphological 

features, Zernike moments, (Boland and Murphy, 2001), Haralick texture 

features (Doyle et al., 2007) and wavelet features (Doyle et al., 2008) were 

used to extract features of the cell. Plissiti et al. (Plissiti et al., 2011) used a 

combination of shape, texture and intensity features for cell nuclei extraction 

in Pap smear images. To define shape features, the authors used a number 

of cell properties such as circularity, perimeter, eccentricity, and the major 

and the minor axis length. Statistical properties of the intensity histogram 

were extracted to define the textural features. Finally, intensity features were 

extracted based on the average intensity value of the pixel. This approach 

had the advantage of integrating a variety of features concerning the 

morphological characteristics of the nuclei as well as the textural and 

intensity features. However, colour features were not considered in this 

study.  

Plissiti et al. (Plissiti et al., 2011) proposed an approach for extracting the 

colour and textural features in the spectral domain to recognize centroblasts 
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in histopathological images. The variation of the power spectrum along the 

frequency scale was used to extract textural features of the centroblasts. 

Principal component analysis (PCA) was used to extract colour texture 

features in the spectral domain. Finally, a quadratic discriminant analysis 

(QDA) classifier was used to classify the centroblasts and the non-

centroblasts. Although colour features were considered in this study, PCA 

was used to extract the colour features, which was shown to produce 

ineffectual results when compared to Discrete Wavelet Transform (DWT) for 

colour features extraction. The use of DWT of different types in image 

feature extraction is reviewed below; 

 Discrete Wavelet Transform (DWT) is a multi-resolution technique used for 

various image processing purposes such as image compression, texture and 

colour analysis (Daubechies, 1990; Kokare et al., 2007; Sun and Ozawa, 

2003). It has also been utilized in the medical imaging field. Gabor Wavelet 

was used to extract features from mammograms (Buciu and Gacsadi, 2009). 

The features were used to discriminate benign and malign tumour types in 

mammogram. PCA was used to reduce dimensionality. Finally, SVM was 

selected for classification. The author concluded that wavelet features seem 

to produce better discriminative power than features extracted by using PCA. 

Niwas et al. (Niwas et al., 2010) shed light on how the wavelet transform has 

become a valuable tool for numerous biomedical image and signal 

application tasks (Ma and Manjunath, 1995; Mabrouk et al., 2005; Selesnick 

et al., 2005). The author used the complex wavelet transform on nuclei 

objects of breast cancer images to extract textural features. Statistical 
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textural features were then used to differentiate malignant samples from 

benign in cytological breast cancer images. The study demonstrated how 

DWT could be used to extract textural features. However, DWT could be 

used to extract colour characteristics of the nuclei under appropriate colour 

spaces.   

Wavelet transform has the capability to decompose the signal to a number of 

coefficients, each represented by a vector. The vectors hold information that 

describes the coefficients at different levels. The high level coefficient holds 

global features, while the low level coefficient holds local features (Kokare et 

al., 2007, Serrano et al., 2004). Gupta et al. (Gupta et al., 2007) utilised the 

wavelets functionality to extract features from nuclear receptors. The 

features were extracted based on wavelet variance over the different levels 

of coefficient, which describes the seven important physicochemical 

properties of amino acids. In this study, wavelet transform has been used to 

analyse both grey scale and colour images.  Chen et al. (Chen et al., 2001) 

used wavelet transform to extract grey-scale and grey-scale gradient 

features from grey scale cancer cell images, to aid in the diagnosis of lung 

cancer. The features are then fed into a neural network classifier to classify 

the samples. Ma (Ma, 2009) represented an approach for colour image 

retrieval based on HSV colour space and wavelet to extract features. The 

method works by building a dimensional feature vector that represents the 

colour features. Textural features based on wavelet transform were also 

extracted. Experimentation disclosed that texture features based on wavelet 

provided more effective results. This, and previously mentioned studies, 
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demonstrates the discriminative power which wavelet features can provide. 

This has made DWT one of the most influential tools in providing 

discriminative features in nuclei cell classification tasks. However, the use of 

the appropriate decomposition levels play a vital role in the selection of the 

DWT coefficients, as these levels determine the quality of discriminative 

features provided by the DWT.  

Another factor that could determine the performance of the extracted 

features is the type of classifier used. The use of Support Vector Machines 

(SVM) and artificial neural networks (ANN) is presented in the following 

section. These two types of classifier are reviewed in more detail as they are 

the primary classifiers used in the conducting of experiments in this thesis. 

Other classifiers are briefly mentioned in the next section.    

  

2.3 Classification methods  

Support Vector Machines (SVM) are a well established algorithm which 

recently provided efficient output when used to structure machine learning 

models based on large feature vectors, (Cristianini and Shawe-Tayor, 2000; 

Hearst, 1998; Mjolsness and DeDoste, 2001).  

Machine learning algorithms have also become an important tool in medical 

image processing applications. Such algorithms have been used in various 

implementations to enhance and improve the classification, detection and 

tracking of cancer cells. 
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 SVMs have provided a high classification efficiency in numerous biomedical 

image processing tasks such as; blood cell and tissue cell analysis (Wang, 

2003), monitoring cell density and viability on the basis of dark field 

microscopy (Wei, 2007), cell cycle phase identification (Wang, 2008), and 

classification of sections of brain tumours (Glotsos, 2004). When compared 

to other similar approaches, SVM supplies improved results, particularly 

when used in real world applications (Cristianini and Shawe-Tayor, 2000; El-

Naqa et al., 2002; Nattkemper et al., 2003; Han et al., 2007; Wei et al., 

2011).   

Wei et al. (Wei et al., 2011) presented a method for blood cell counting using 

a multi-class support vector machine. Segmentation of blood cells was 

performed based on morphological and thresholding methods. Once the 

blood cells were successfully segmented, features were extracted from 

segmented regions to identify the blood cells: features such as circularity, 

area and cytoplasm ratio were selected as features. Finally, SVM 

classification was applied to classify positive and negative cells. In previous 

work, Wei et al. (Wei et al., 2008) also presented a classification method 

using two SVMs to classify dead cells from live cells and separate cells from 

background. In both studies, the authors used a regional base feature 

extraction rather than using object feature extraction approach. The use of 

regional based feature extraction methods describes features of the ROI 

along with background and other regions included in the region, which could 

affect the classification accuracy of the objects. The authors also relied 

mainly on extracting morphological characteristics of the nuclei, disregarding 
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the valuable details that could be extracted from the colour and textural 

characteristics of the ROI.  

 Kumar et al. (Kumar et al., 2011) presented a support vector machine based 

method for the detection and removal of artefacts in cervical cytology 

images. The pre-processing stage was performed to remove background 

noise and enhance the image in the RGB colour space. A Gaussian loG 

edge detector was used to detect the edges by defining the zero crossing 

points subsequent to filtering the image with a laplacian of Gaussian filter. 

For feature extraction, a combination of ranked features were used, such as; 

the densitometric feature of Integrated Optical Density IOD (Bengtsson, 

1999), the Fourier coefficient, and the morphological characteristics of nuclei 

regions. SVM was then applied to classify the epithelial cells and artefacts. 

The features selected in this study targeted features describing the density 

and morphological features of nuclei objects and cellular artefacts. Fourier 

coefficients were selected in the top feature ranking. However, Fourier 

coefficients have been shown to provide less discriminative power when 

compared to DWT coefficients in object recognition and classification tasks 

(Apatean et al., 2007). 

Glotsos et al. (Glotsos et al., 2004) applied support vector machine clustering 

(SVMC) for the classification of nucleus and non-nucleus objects based on a 

pixel level classification. The method was applied to hematoxylin and eosin 

stained microscopic images of urinary bladder cancer. Active contours were 

used for edge detection subsequent to the classification procedure. 

However, analyses of images were performed at the grey scale rather than 

http://en.wikipedia.org/wiki/Support_vector_machine
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taking benefit of the colour information of hematoxylin and eosin stains which 

could provide discriminative power for the classification of both stain types. 

Integrating such features can improve the level of classification accuracy, as 

will be demonstrated later in this thesis. 

Kong et al. (Kong et al., 2011) utilized a method focusing primarily on colour 

transformations for the segmentation of microscopic cells in histopathological 

images. In this method, the training data is created by defining learning 

patches to train the algorithm of which particles represent the nuclei and 

which particles represent the background and other cellular regions. The 

procedure is performed by manually pointing 150 positions of the 

microscopic image, which include both nuclei and other extra-cellular 

particles. Each of the pointed locations is then cropped using an 11×11 local 

neighbourhood window, and used as a training patch. However, the training 

data set is performed using the manual procedure of a cropped window 

image which represents the nuclei as well as the extra- cellular particles. 

This again allows the classification of objects based on the collection of 

regional features extracted from the images. 

Another mechanism that has been widely used for classification is artificial 

neural networks (ANN). Artificial neural networks work based on a parallel 

structure, which gives them the ability to learn from experience. The learning 

experience is acquired via a connected form of weights. The weights are the 

functions connecting the neurons, which then make a decision to classify the 

input (Al-Timemy et al., 2009). ANN could provide a good level of accuracy 

when used on classification tasks. However, classification performance is 
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heavily dependent on the training sets provided by the user (Al-Timemy et 

al., 2008). ANNs have been used in tasks such as disease risk estimation 

(Chester, 1993) and tumour growth models (Kazmi et al., 2012).  

A review off ANN applications in t h e  medical field was carried out by 

Papik et al. (1998). Certain radiologists have employed artificial neural 

networks to identify benign or malignant breast tumours. This kind of ANN 

has been developed by the American College of Radiology. The network 

was trained and tested via 206 cases, in which 77 were malignant and 133 

were benign (Baker et al., 1996). Most neural network approaches for nuclei 

detection focus on investigating the pixel intensities of image blocks. This 

approach works by determining which blocks of pixels contain cell nuclei and 

which blocks represent the background. An example of this approach was 

presented by Phukpattaranont and Boonyaphiphat (Phukpattaranont and 

Boonyaphiphat, 2007), where an algorithm for segmenting   nuclei from 

background in immunohistologically stained slides from breast cancer was 

conducted. The procedure for the approach consists of colour categorization 

using a neural network based on pixel colour contents and mathematical 

morphology. 

A different approach to using neural networks was used by Lee and Street 

(Lee and Street, 2003). The learning procedure of the neural network was 

conducted using cluster shapes of nuclei rather than using the pixel 

intensities of image blocks. The hidden layer of such neural networks is 

increased every time a new cluster is detected. Each hidden node 

represents a cluster, which is then used to classify the nuclei objects. This 
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approach provides better segmentation results than previously mentioned 

neural network segmentation approaches. However, testing the method on 

larger data sets with a high number of cells could make this approach 

computationally expensive, due to the increased number of nuclei clusters in 

the hidden layer of the neural network.  

Nattkemper et al. (Nattkemper et al, 2001) used an artificial neural net of 

local linear map (LLM) for the classification of fluorescent lymphocytes in 

tissue sections quantization. The algorithm works by manually selecting a set 

of cell patches. These patches are then used to train the neural network. The 

fluorescent cells are then evaluated based on their position, number and 

phenotype. The system provides a high level of cell detection. However, the 

system involves manual interaction with the user for the selection of cell 

patches. 

Other classification methods such as Fuzzy C-means (Wang and Kumar, 

2004), K-means (Raghavendra et al., 2010), Genetic Algorithms (GA) (Lukac 

et al., 2004; Huang and Hung, 2012) and Fuzzy Support Vector Machines 

(FSVM) (Zhang et al., 2012) have also been applied in the imaging 

classification field. 

Fuzzy measures work by identifying the relationship between the various 

features that illustrate the properties of the images. Plissiti et al. (Plissiti et 

al., 2011) provided an automated method for nuclei detection in Pap smear 

images. The classification stage was performed using an unsupervised fuzzy 

C-means and supervised SVM classifiers. When using fuzzy C-means for 
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classification, the method did not require the implementation of a training set. 

On the other hand, SVM classification requires a training set, which in this 

case was performed using 34 images randomly selected form the dataset. 

Comparative analysis showed that the classification performance of SVM 

provided improved results when compared to the fuzzy C-means 

classification results. 

Genetic algorithms can be used for a number of tasks such as feature 

classification and feature selection. Wu et al. (Wu et al., 2005) present a 

multispectral system for the early detection of cervical cancer in microscopic 

smear images. A genetic algorithm GA was selected for the feature 

extraction and SVM was selected for the classification stage. The GA 

provided refinement of unrelated noisy features. In conclusion, various 

studies have shown that conventional classifier systems such as SVM 

provided improved performance when compared to other fuzzy and genetic 

algorithms. Fuzzy and Genetic Algorithms showed improved performance 

when used alongside SVM and neural networks, (Seetha et al., 2008).  

 

2.4 IHC image scoring methods 

Inspection of Immunohistochemistry IHC images and standard scoring 

methods is purely based on visual inspection in clinical practice, which 

makes the procedure time consuming and inaccurate (Cregger et al., 2006; 

Wang et al., 2001; Ciampa et al., 2006). Pathologists use a scoring method 

http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.592576&Name=Qiongshui+Wu
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.592576&Name=Qiongshui+Wu
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based on visual assessment of IHC stained images, which mainly rely on two 

main characteristics; 

1) The Percent Stained or Proportion Score (PS), which is the 

percentage of positively stained tissue that is identified by the pattern 

of stained cells. 

2) The Intensity Score (IS), which is the overall staining intensity of the 

positively stained tissue in the IHC image.  

The traditional scoring method used by pathologists assigns a number to 

each staining intensity level, where 0 indicates no staining, 1 indicates weak 

staining,  2 indicates intermediate staining and 3 indicates high staining. 

(Fang et al., 2003).  

Allred et al. (Allred et al., 1998) developed an IHC scoring system. The 

system works by combining two characteristics; stain intensity score (IS) and 

staining proportion score (PS). Each of the characteristics is then assigned a 

single value. Staining intensity is assigned a number between 0 and 3, where 

0 indicates no staining and 3 indicates high intensity staining. The proportion 

score is given a geometric value where 0 = no stained cells, ≤1/100 cells 

stained =1, 1/10 cells stained = 2, ≤1/3 cells stained = 3, ≤2/3 cells stained = 

4, and all cells stained =5. The staining intensity score and proportion score 

are then added up using the following equation; PS + IS, and the score 

outcome is a value ranging from 0 to 8. The Allred scoring system has an 

advantage over traditional manual scoring methods, as it is able to get a 

single scoring value describing both intensity and proportion score. However, 
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the proposed scoring method remains manual and fully reliant on the visual 

assessment of the pathologist, this is time consuming process and it can also 

lead to inaccurate scoring when there is low positive staining, due to the 

compression part of the scoring system.  

Hatanaka et al. (Hatanaka et al., 2003) performed a semi-quantitative 

analysis for the examination of nuclear staining intensity and correlated the 

results with the HSCORE method. 1000 cells were randomly selected from 

five areas taken from an IHC breast cancer image. HSCORE was used to 

calculate the percentage of positively stained nuclei using the following 

equation; HSCORE =        , where    is the percentage of positively 

stained nuclei and   is their staining intensity.   is assigned a single value 

ranging between 1 and 3 to define the intensity of staining, and    is 

assigned a value ranging between 0 and 100% to define the percentage of 

positively stained cells. The score outcome is a value ranging from 0 to 300. 

Commercially available software called WinROOF image analysis 

(WinROOF, N.D.) was then used to count the stained positive and negative 

cells. Labelling index (LI) represents the percentage of positively brown 

stained nuclei in the image. This was performed by comparing the positively 

brown stained nuclei against the total number of nuclei in the image (brown 

positive and blue negative nuclei combined). The authors proposed two 

threshold methods to distinguish the positively stained brown nuclei. The first 

threshold extracts the nuclei presenting different staining intensities ranging 

from 1 to 3 (strong, intermediate and weak intensity), while the second 

threshold extracts only the nuclei showing strong staining (staining intensity 
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=3). The first threshold method seems to provide better results in determining 

hormone receptor status. The authors provided a semi-automated method 

based on cell level analysis. However the authors used existing commercially 

available software for counting the nuclei in the IHC images. This makes the 

final output of the semi-automated system fully dependent on the output 

provided from the commercial software (WinROOF). 

 

Figure 2-3: Results of counting the nuclei in the IHC image using the commercial software 

(WinROOF) (Hatanaka et al., 2003) 

Choudury et al. (Choudury et al., 2010) presented an automated threshold 

method (ATM), based on the mean value of brown pixel intensity in the 

neoplastic area. The ATM is a single quantifying measure that includes both 

the proportion and intensity scores. This method has been developed mainly 

to allow for large-scale processing: however, it is appropriate in situations in 

which the analysis is prepared based on tissue area rather than measuring 

based on individual cells. This means that areas in the image above a given 

level of intensity, called the threshold (t), are regarded as stained, and the 

rest of the image is regarded as unstained. The percentage of staining in the 

image is then calculated by measuring the total area stained in comparison 
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to the rest of the image (the unstained area). Although this method is 

computationally inexpensive, it does not provide a solution based on 

individual cell analysis, and this could lead to less accurate results in the final 

scoring. The authors implemented a method based on a tissue level 

measurement rather than a cell level quantification. The method is based on 

an average thresholding technique, which could provide inaccurate results in 

cases where the targeted nuclei have low intensity variation with that of the 

background. In such cases, this method would result in sections of the 

background being considered as nuclei containing tissue. 

 

 

 

 

 

Figure 2-4: Results of the automated threshold method (ATM), based on the mean value of 

brown pixel intensity in the neoplastic area (Choudury et al., 2010). 

This chapter has introduced an overview of the work related to cell 

segmentation, cell feature extraction, image classification and HIC scoring 

methods. The literature has provided a wide range of techniques and ideas 

which are associated with the work presented in this thesis. The majority of 

the reviewed literature focused on providing a solution to a minor section of 

the overall problem, rather than providing a complete solution for quantifying 

stained nuclei in IHC image quantification. 
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The proposed automated method in this thesis is the integration of discrete 

elements which are built up to form a comprehensive solution for quantifying 

stained nuclei in IHC images, tackling most if not all the challenges faced 

when building such systems. A limited number of studies have provided a 

complete automated method for measuring antibodies in IHC images 

(Choudury et al., 2010; Hatanaka et al., 2003). Such methods allow 

theoretical comparison with our proposed method. However, tissue-level 

measurement rather than cell-level quantification was proposed in previous 

methods. Our proposed method provides a cell-level based measurement, 

for the analysis and quantification of each individual cell within IHC images. 

This solution ultimately provides a high level of accuracy for the 

quantification of IHC images, as will be demonstrated in the following 

chapters. As part of the proposed method, a nuclei segmentation and 

counting method is proposed, designed and implemented. This method 

works as a flexible alternative to commercially used software which could 

restrict the research prospects due to its fixed parameters, and lack of 

literature resources and method descriptions. Our proposed system uses a 

novel extraction method: the segmented nuclei are used to form the 

datasets, which are then used in the classification step. This is a vital step as 

it determines the level of efficiency in the classification stage. Our proposed 

segmentation method also providing a precise means of segmentation by 

only segmenting nuclei objects, discarding the background surrounding 

pixels. This will allow features to be extracted directly from the nuclei object 

without the interference of the background. 
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Chapter 3 

 

 

Nuclei Segmentation and Counting  

 

3.1 Introduction 

In this chapter, an automated approach for the segmentation and 

quantification of nuclei objects in IHC images is presented. The main aim of 

this chapter is to create an efficient automated method for segmenting nuclei 

objects (ROI) from the background and other cellular partials. The nuclei 

segmentation will serve two main purposes. First, it will allow the automated 

counting of each nucleus object in the IHC images. Secondly, it will allow the 

cell-level analysis of each segmented stained nucleus. Upon successful 

nuclei segmentation and counting the nuclei extraction method is presented. 

This method will be used to extract all the segmented nuclei from the IHC 

images, and nuclei objects are then automatically saved in a database to 

generate the segmented nuclei image datasets. The experimental work of 

this chapter is carried out using ImageJ. ImageJ is open source Java-based 

image processing software used for the analysis of medical images. To build 

up the methods described in this chapter, two plug-ins were written by the 

author using the functions available in the ImageJ Fiji library. The first plug-in 

was designed to perform the nuclei segmentation and counting procedure. 

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Image_processing
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The second plug-in was designed to extract the segmented nuclei and form 

the segmented nuclei image datasets. The algorithms used to build up the 

plugins are described in details in the following sections.  

3.2 Nuclei segmentation and counting 

Nuclei segmentation is the process of separating the nuclei objects from the 

background and other cellular noise. This process will aid the automated 

counting of positive and negative nuclei collectively. The nuclei segmentation 

and counting method consists of a number of structural algorithms that work 

sequentially to achieve the final segmentation results. The structural 

segmentation model can be presented in the following flowchart: see Figure 

3-1. 

  

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Flowchart of the structural segmentation model 
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The major concern at this stage is the automated counting of nuclei objects 

in an image. To achieve this, nuclei are detected comprehensively using a 

segmentation method to separate the nuclei from the other particles. The 

three main characteristics of our images are; positive protein expression 

(brown nuclei), negative protein expression (blue nuclei) and finally the 

background particles, which must be considered as noise to minimise false 

negative response. The process consists of two major steps: firstly, to detect 

the nuclei and separate it from the other particles in the image; and secondly, 

to count positive brown stained nuclei and negative blue stained nuclei 

collectively. This will aid in the automatic generation of the total number of 

nuclei in an image. 

In this work we investigate images of colonic cancer spheroid slides stained 

with diaminobenzidine and haematoxylin, which were retrieved using a Leica 

light microscope fitted with QICAM digital camera and photographed at 20x 

magnification. The images are then saved as JPEG files into a computer for 

the image analysis. Three sets of colonic cancer spheroid images are used: 

Ki67 day 19, p27 day 19 and Ki67 day 22. 

 

3.2.1 Image reconstruction  

 First we start with reconstructing the image using a novel method. This 

method is performed to increase the contrast variation level between the 

nuclei and the other particles within the image. This stage is vital in analysing 

images with low intensity variation between the nuclei objects and the 
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background. Since the intensity variation between the negative protein 

expression (blue nuclei) and background is very low, a false segmentation 

response could occur when some average values of pixels belonging to the 

background matches some  average values of  pixels belonging to the 

negative protein expression (blue nuclei).  

 

 

This would result in some parts of the background being identified as 

negative blue nuclei-like regions which would subsequently increase the 

level of segmentation noise. To avoid this occurrence we employ an 

exclusive contrast enhancer method based on the minima and maxima 

values of the brown and blue nuclei intensity in the grey scale. This is 

achieved by selecting the global minimum, which represents the darkest 

shade of the brown pixels’ intensity and the average of global and regional 

maxima, which represents the average pixel intensity value belonging to the 

lightest shade of blue nuclei-like regions: see Figure 3-2. Improved intensity 

Figure: 3-2 Selections of Maxima and Minima 
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variation levels between the background and blue nuclei are visible after 

employing the image reconstruction method: see Figure 3-3, 3-4 (A) and (B). 

A                                          B 

 

Figure 3-3: (A) the original IHC image in RGB colour space. P represents the positive brown 

stained nuclei-like regions, N represents the negative blue stained nuclei-like regions and B 

represents the background. Figure 3-3: (B) the image after increasing the contrast variation 

level between the nuclei and the other particles within the image using the image 

reconstruction method. 

                             A                                                            B                                   B 

 

Figure 3-4: is a three dimensional representation of the IHC image surface presented in 

figure 3-3, prior to and after applying the image reconstruction method. Improved intensity 

variation levels between the background and nuclei objects are visible.  
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3.2.2 Local adaptive threshold 

Thresholding is a method that is used to separate the ROI from the 

background.  When using a thresholding method, pixels are divided into two 

categories; background, with a pixel value equivalent to “0”, and Regions of 

Interest, with a pixel value equivalent to “1”. A binary image is then formed 

with black and white pixel label (Zhao and Ong, 1998). Local adaptive 

threshold has revealed better segmentation performance than global 

thresholding (Mehmet and Sankur, 2004), since the pixels are labeled based 

on local statistics such as pixel variance and contrast values rather than the 

general thresholding of pixel values, which works based on the average 

intensity level of the whole image. Local thresholding works by calculating 

the average of the grey pixel values in some neighbourhoods based on a 

specific window size. If the pixel value is considerably darker than the 

average of the neighbouring pixels, the pixel is considered an object: 

otherwise, it is considered background. The preceding method is used to 

increase the contrast between nuclei and background particles. 

Nevertheless, complete elimination of background noise is not achieved, due 

to some pixel values of the background corresponding to some average 

values of blue stained nuclei pixels, occurring from inhomogeneous 

illumination and inconsistent staining. Consequently, local adaptive 

thresholding is used, which works based on the local distribution of 

intensities. The size of neighbourhood is particularly selected based on an 

8x8 window, taking into consideration features of the blue stained nuclei-like 
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regions, such as contrast and intensity of pixels. Results are demonstrated in 

Figure 3-9 (A). 

3.2.3 Morphological operations 

Following effective separation of nuclei regions form background, 

morphological operations such as filling holes and opening are applied to 

refine the irregular nuclei shapes and eliminate noise (Plaza and Plaza, 

2008). Morphological opening is an operation applied on the greyscale image 

after thresholding. The morphological opening operation consists of erosion 

followed by dilation (Droogenbroeck and Buckley, 2005). The morphological 

opening operation selected is based on a two-dimensional connectivity. Pixel 

connectivity is determined based on pixel neighbourhoods of 4-connected 

pixels: see Figure 3-5. This function is applied to remove small particles from 

the images. This is required to prevent noise objects being considered as 

nuclei regions. The opening operations depend on the size of the image and 

level of magnification. In our experimental work it is set to 40 connective 

pixels of a 4-connected neighbourhood. The parameter was selected based 

on the analysis of 5000 nuclei cells taken from various images at 20x 

magnification level. A hole-filling operation (Kwak et al., 2011) was finally 

performed to fill the gaps inside the nuclei objects: see Figure 3-9: (B). 

 

 

 

Figure 3-5: Pixel connectivity based on pixel neighbourhoods of 4-connected pixels. 
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3.2.4 Improved watershed transform 

At this stage, watershed is performed to segment the overlapped nuclei. The 

watershed transform works based on a flooding mechanism, which is 

interpreted as water flooding the surface of an image until it reaches a local 

minimum. Watershed identifies the objects by calculating the Euclidian 

distance of each object within the image (the distance between the edge of 

an object and the edge of another object). Then it looks for the local minima 

between the overlapping objects to segment the objects at that point. 

However, watershed transformation does not provide a complete 

separation to all the overlapping nuclei (Malpica et al., 1997). This is due to 

the weak contrast between adjacent nuclei objects, and in particular brown 

positive nuclei. This makes it difficult to locate the local minima between the 

overlapping objects.  Consequently, in such cases the watershed fails to 

separate these objects. To improve the performance of the watershed, RGB 

images are converted to the L*a*b* colour space. The Euclidean distance of 

the overlapped nuclei seems to increase when using the L*a*b* colour 

space, which then provides improved segmentation as the local minima 

between overlapping objects are easily located . Improved segmentation 

results are reported in Figure 3-6. 
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Figure  3-6:  (A)  represents  the  results  of  applying   the  watershed transformation, (B) 

represents the same image after applying the  L*a*b*  colour   space   prior  to  watershed.  

The results show improved segmentation and therefore improved nuclei counting. 

 

Figure 3-7: a 3D representation of the watershed transform operation on the RGB image.  

          

Figure 3-8: 3D representation of the watershed transform operation. (A): The watershed 

failed to segment due to the absence of local minima. (B) Successful watershed 

segmentation after applying the L*a*b* colour space. Increased Euclidian distance between 

the objects resulting in visible local minima. 
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                                                   A                                              B                                            C 

 

Figure 3-9: (A) Binary image of segmented nuclei after applying the local adaptive threshold. 

(B) Filling holes and opening morphological operations. (C) Watershed segmentation of 

overlapping nuclei. 

 

3.2.5 Nuclei border detection and counting 

 Circularity analysis is applied at this stage in sequence to detect nuclei 

edges. Circularity grade is evaluated from 0 to 1 as shown in Equation 1 

(Kuznetsov et al., 2011). 

 

Circularity [0-1]      
 

   
    (3-1) 

 

where P (Perimeter) is the distance round the boundary of each nuclei and A 

(Area) is the amount of space within a closed object representing the nuclei 

regions. A perfect circle has a circularity of “1”, which is unlikely in nuclei 

shaped regions, while a very irregular nucleus has a circularity value closer 

to “0”.  Perimeter and area measurements are extracted from each nuclei 

object to allow the calculation of circularity for each object. 
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Table 3:1: represents the nuclei objects and the elements required to calculate the circularity 

for each nucleus. 

 
 

No. nuclei Area Perim. Circ. 

1 266 62.527 0.855 

2 157 48.284 0.846 

3 116 45.355 0.709 

4 239 56.77 0.932 

5 130 43.799 0.852 

6 294 63.698 0.911 

7 57 28.627 0.874 

8 82 34.728 0.854 

9 183 51.113 0.88 

10 47 27.213 0.798 

11 213 58.77 0.775 

12 47 25.556 0.904 

13 156 46.284 0.915 

14 148 48.284 0.798 

15 152 47.579 0.843 

16 132 41.432 0.965 

17 129 42.027 0.917 

18 174 56.954 0.673 

19 174 60.77 0.591 

20 49 28.867 0.738 

21 112 41.23 0.827 

22 139 46.442 0.809 

 

When computing the circularity formula, a circularity parameter was not 

required at this stage. The parameter works as a filter to eliminate small 

circular non-nuclei objects. Since the elimination of small objects has been 

implemented using the opening morphological operation, the circularity was 

set to default (00.0-00.1, see Figure 4(A)). After applying the circularity 

measure, edges of nuclei objects are finally defined, and the closed objects 

within the perimeters are now counted individually and labelled to conclude 

the number of negative in addition to positive stained nuclei. (Fang et al., 

2003): see Figure 3-10 (A-C). 
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                                                 A                                             B                                               C 

 

Figure 3-10 (A) Border detection of nuclei. (B) Total number of stained nuclei. (C) 

Representation of border and total number of stained nuclei. 

The nuclei edges are now converted into a mask, the original image is then 

recalled and the mask is placed as a window on the original image. This step 

is performed to define the edges of the positive and negative nuclei on the 

original IHC image. The mask also includes the nuclei number labels. The 

following image represents the result of the automated segmentation and 

counting method.  

  

 

 

 

Figure 3-11: total number of positive brown stained nuclei and negative blue stained nuclei 

represented on the IHC image. 

Result presented in figure 3-11, provides clear evidence of successful nuclei 

detection in addition to segmentation of nuclei regions from the background, 

which includes other cell particles such as cytoplasm and membrane. 

Segmentation at this stage provides the morphological characteristic 

representation (nuclei shape and dimension) of both positive protein 
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Extraction of individual nuclei 

and saving each nucleus as an 

image. 

Saving all the images to form 

the dataset  

 

expression (brown nuclei) and negative protein expression (blue nuclei), 

devoid of any distinction in the monochromatic characteristic representation 

(nuclei colour). The product of this stage facilitates the automated 

quantification of both blue and brown stained nuclear collectively. This stage 

successfully provides the automated counting of nuclei cells in an IHC 

image. 

3.3 Nuclei extraction and datasets generation 

At this stage each nucleus needs to be extracted and saved individually as 

an image. This is an essential step in the analysis of the individual cell. This 

is performed using an exclusive extraction method. This method is computed 

as follows: Each labelled nuclei is saved as a ROI (R1,R2,.....Rn), and a 

command is then given to save each ROI as an individual image. Each 

nucleus object is then saved automatically to form the segmented nuclei 

image datasets. The same is performed on all the images used. A dataset 

including all the extracted segmented nuclei images is now generated. 

     

 

 
Figure 3-12: the nuclei extraction model  

 

 

 

Dataset 

Image 4 

Image 6 

Image 11 

Image 16 

Image 19 



 

 

53 

 

This process is the foundation for the individual analysis of nuclei cells. The 

image datasets generated will be used in various tasks such as nuclei 

feature extraction, and positive and negative nuclei classification, as well as 

the analysis of staining heterogeneity amongst the positive nuclei objects. 

This will be discussed in detail in the following chapters (Chapters 4 & 5). 

 

3.4 Results and discussion  

Image segmentation and counting was performed using the approach 

described earlier in this chapter. The method was applied to three different 

datasets of spheroid images; Image dataset 1: Ki67 Day 19, this set 

consists of 120 images (69 high staining images, 23 intermediate staining 

images and 26 low staining images). Image dataset 2: p27 Day 19, this set 

consists of 110 images (23 high staining images, 46 intermediate staining 

images and 39 low staining images). Image dataset 3: Ki67 Day 22 , this set 

consists of 136 images (87 high staining images, 39 intermediate staining 

images and 8 low staining images). Images with different staining intensity 

levels from every dataset were used for the evaluation of the automated 

counting method. This is essential to assess the performance and generality 

of the automated method. 5 images from each set are presented in this 

section to demonstrate results of the automated counting method. Finally, 

generic data that include the results of all images from all datasets are 

presented to calculate the overall performance of the automated method. 

Results of nuclei segmentation and counting of Ki67 Day 19, p27 Day 19 and 

Ki67 Day 22 image sets are provided below in Figure 3-13 (A-C); 
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              Image 1 (Ki67 Day 19 high staining)                  Image 2 (Ki67 Day 19 high staining)           

 

             Image 3 (Ki67 Day 19 high staining)                  Image 4 (Ki67 Day 19 intermediate staining)           

                             

                                                       Image 5 (Ki67 Day 19 low staining)           

       

                               

    

   

 

 

 

     

          

Figure 3-13: (A) represents the segmentation and counting results for the Ki67 Day 19 image dataset 
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                 Image 1 (p27 Day 19 high staining)              Image 2 (p27 Day 19 intermediate staining)           

    

        Image 3 (p27 Day 19 intermediate staining)                Image 4 (p27 Day 19 low staining) 

 

                  Image 5 (p27 Day 19 low staining) 

 

 Figure 3-14: (B) represents the segmentation and counting results for the p27 Day 19 image dataset 

 



 

 

56 

 

              Image 1 (Ki67 Day 22 high staining)                Image 2(Ki67 Day 22 intermediate staining) 

 

Image 3 (Ki67 Day 22 intermediate staining)       Image 4 (Ki67 Day 22 intermediate staining) 

     

Image 5 (Ki67 Day 22 intermediate staining) 

                                                 
Figure 3-13 (C): represent the segmentation and counting results for the Ki67 Day 22 image dataset 
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A 

To increase the accuracy of nuclei counting, further refinement to our 

approach is added: larger nuclei objects exceeding a total number of 240 

pixels are divided into two individual cells. The parameter was selected 

based on the analysis of 5000 nuclei cells taken from various images at 20x 

magnification level, where objects exceeding 240 pixels are observed to be 

two nuclei objects. The command is computed as follows; 

If Area ≥ 240 pixels 

Then 

Count as 2 cells 

Else 

      Count as 1 cell 

Using this approach, overlapping nuclei objects which failed to be divided by 

the watershed segmentation are separated, e.g. (nucleus number 16 from 

image “1) Ki67 Day 19”, nucleus number 58 from image “2) Ki67 Day 19”, 

nucleus number 35 from image “3) Ki67 Day 19”, nuclei number 72 and 46 

from image “2) Ki67 Day 22” . A number of divisions are made when 

applicable to refine the number of counted nuclei. When a nucleus is divided 

into two nuclei objects, the segmented nucleus is duplicated into the image 

dataset.  

Table 3-2: (A-C) represents the results of the automated segmentation approach for the 15 

randomly selected IHC images from the three image datasets. 

 

 

   

 

 

 

 

Images of  Ki67 Day 19 

Pathologist 

counting 

Automated 

counting 

 

Pathologist 

staining intensity 

score 
Total No. 

Of nuclei 

Total No. 

Of nuclei 
1) Ki67 Day 19 high staining 

65 68 
+++ 

2) Ki67 Day 19 high staining 
103 100 

+++ 

3) Ki67 Day 19 high staining 
78 77 

+++ 

4) Ki67 Day 19 intermediate staining 
100 93 ++ 

5) Ki67 Day 19 low staining 
67 73 

+ 
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3.5 Statistical evaluation of the automated counting method 

To evaluate the efficiency of our automated counting method, we compare 

our results to results which have been conducted manually by an 

experienced pathologist. Four measures were used in order to evaluate the 

performance of the automated counting method: precision (positive 

predictive value), recall (sensitivity), accuracy and error (Salton, 1968; 

Powers, 2007; Taylor, 1999; Golub et al., 1996). 

In the context of this chapter, precision is defined as the ratio of the nuclei 

which have been correctly detected by the automated method to the total 

number of nuclei detected by the automated method. This indicates the 

probability that the detection of a nucleus by the automated method is in fact 

associated with a nucleus counted by the pathologist. Precision is given as: 

             
   

       
                  (3-2) 

 

Images of p27 Day 19 

Pathologist 

counting 

Automated 

counting 

 

Pathologist 

staining intensity 

score 
Total No. 

Of nuclei 

Total No. 

Of nuclei 
1) p27 Day 19   high   staining 

93 95 
+++ 

2) p27 Day 19  intermediate  staining 
74 80 

++ 

3) p27 Day 19   intermediate  staining 
95 105 

++ 

4) p27 Day 19 low staining 
69 81 + 

5) p27 Day 19 low staining 
76 86 

+ 

 

Images of  Ki67 Day 22 

Pathologist 

counting 

Automated 

counting 

 

Pathologist 

staining intensity 

score 
Total No. 

Of nuclei 

Total No. 

Of nuclei 
1) Ki67 Day 22 high staining 

100 105 
+++ 

2) Ki67 Day 22 intermediate staining 
74 83 

++ 

3) Ki67 Day 22 intermediate staining 
94 97 

++ 

4) Ki67 Day 22 intermediate staining 
49 47 

++ 

5) Ki67 Day 22 intermediate staining 
73 80 

++ 

B 

C 
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Where TP1 (True Positive) are the number of nuclei which have been 

counted by the pathologist and also detected by the automated system. FP1 

(False Positive) are the number of nuclei which have not been counted by 

the pathologist but are detected by the automated system. 

 

In contrast, recall is defined as the ratio of the nuclei number which has been 

correctly detected by the automated method to the total number of nuclei 

detected by the pathologist. This indicates the probability that where a 

nucleus is counted by the pathologist, it will be detected by the automated 

method. Recall is given as: 

         
   

       
                    (3-3) 

Where FN1 (False Negative) are the number of nuclei which have been 

counted by the pathologist but are not detected by the automated system. 

Both precision and recall describe different qualities of the automated 

counting system results. In this case, high precision indicates that most of 

the nuclei detected by the automated counting method are counted by the 

pathologist, and high recall indicates that most of the nuclei counted by the 

pathologist are detected by the automated method. The recall is one if all the 

nuclei counted by the pathologist are detected by the automated system. 

Accuracy is calculated to evaluate the overall performance of the automated 

method in comparison to the pathologist results.  An accuracy of 1 means 

the automated method results correlated exactly with the pathologist results. 

Accuracy is given as; 

                                    
   

           
                 (3-4) 
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A 

TN is one of the variables used to calculate accuracy in cases where two 

types of classes are analysed. The performance analysis at this stage only 

refers to the number of nuclei, without any classification based on the type of 

stain (positive or negative). The variable TN is set to null, and discarded in 

the calculation of accuracy at this stage. TN will be used in the next chapter 

to indicate the correct detection of negatively stained nuclei by the 

automated classification method. 

Table 3-3: (A-C) represent the Precision, Recall and Accuracy average of the automated 

counting approach for the 15 randomly selected IHC images from the three image datasets. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Images of set Ki67 Day 19 Precision Recall 

 

Accuracy 
1) Ki67 Day 19 high staining 

0.95 
1.0 0.955 

2) Ki67 Day 19 high staining 
1.0 

0.97 0.970 

3) Ki67 Day 19 high staining 
1.0 

0.98 0.987 

4) Ki67 Day 19 intermediate staining 
1.0 0.93 0.93 

5) Ki67 Day 19 low staining 0.91 1.0 0.917 
Average 

0.972 0.976 
 

0.9518 

 

Images of set  p27 Day 19 Precision Recall 

 

Accuracy 
1) p27 Day 19   high   staining 

0.97 
1.0 

0.97 
2) p27 Day 19  intermediate  staining 

0.92 
1.0 

0.92 
3) p27 Day 19   intermediate  staining 

0.90 
1.0 

0.90 
4) p27 Day 19 low staining 

0.85 
1.0 

0.85 
5) p27 Day 19 low staining 0.88 1.0 0.88 
Average  

 0.904 1.0 0.904 

 

Images of set Ki67 Day 22 Precision Recall 

 

Accuracy 
1) Ki67 Day 22 high staining 

0.95 
1.0 

0.95 
2) Ki67 Day 22 intermediate staining 

0.89 
1.0 

0.89 
3) Ki67 Day 22 intermediate staining 

0.96 
1.0 

0.96 
4) Ki67 Day 22 intermediate staining 

1.0 0.95 0.95 

5) Ki67 Day 22 intermediate staining 0.92 1.0 0.92 
Average  

 0.944 0.99 0.934 

C 

B 
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Figure 3-14: (A-C) represent the represent the Precision, Recall and Accuracy of the 

automated counting approach for each of the 15 randomly selected IHC images from all 

image datasets. Each bar in these graphs represents an image of a certain staining level. 

B 

C 

A 
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Figure 3-15: represents the Precision, Recall and Accuracy average of the automated 

counting approach for the 15 randomly selected IHC images from all image datasets.  

 

Table 3-4: (A-C) represent the Precision, Recall and Accuracy average for all IHC images 

from the three image datasets. 

 

 

 

Images of set Ki67 Day 19 Pathologist 

counting 

Auto. 

counting 

Precision Recall Accuracy 

Images (1-69) Ki67 Day 19 high staining 
82 84 0.97 

1.0 
0.97 

Images (70-93) Ki67 Day 19 intermediate staining 
77 81 0.95 

1.0 
0.95 

Images (94-120) Ki67 Day 19 low staining 
91 98 0.92 

1.0 
0.92 

Average 
83.3 87.6 0.94 1.0 0.94 

Images of set p27 Day 19 Pathologist 

counting 

Auto. 

counting 

Precision Recall Accuracy 

Images (1-23)  p27 Day 19 high staining 
101 105 0.96 

1.0 
0.96 

Images (24-70)  p27 Day 19 intermediate staining 
81 89 0.91 

1.0 
0.91 

Images (71-110)  p27 Day 19 low staining 
56 63 0.96 

1.0 
0.88 

Average 
79.3 85.6 0.94 1.0 0.91 

Images of set Ki67 Day 22 Pathologist 

counting 

Auto. 

counting 

Precision Recall Accuracy 

Images (1-87) Ki67 Day 22 high staining 
86 88 0.96 

1.0 
0.97 

Images (88-127) Ki67 Day 22 intermediate staining 
67 71 0.94 

1.0 
0.94 

Images (128-136) Ki67 Day 22 low staining 
48 43 1.0 

0.89 
0.89 

Average 
67 67.3 0.96 0.96 0.93 

B 

C 

A 
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Figure 3-16: (A-C) represent the Precision, Recall and Accuracy average for all IHC images 

from the three image datasets. 

B 

C 

A 
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Figure 3-17: represents the overall Precision, Recall and Accuracy average of the 

automated method for all IHC image datasets combined.  

 

 Precision average represents the percentage of nuclei correctly 

detected by the automated system. 

 Recall average represents the percentage of nuclei counted by the 

pathologist, which has been detected by the automated system. 

 Accuracy average represents the overall performance of the 

automated method in comparison to the pathologist results. 

 

Since three different IHC image datasets have been selected (Ki67-Day19, 

Ki67-Day22 & p27-Day19), the error is calculated to compare the efficiency 

of the automated counting method when dealing with different stained 

images at different staining intensity levels. This analysis also investigates 

those cases where the automated method and the pathologist differed. The 

error is calculated as; 
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 Error =   
                             

           
             (3-5) 

 

where Experimental indicates the automated method results and 

Theoretical indicates the pathologist results. Results are demonstrated in 

Figure 3-18. 

 

 

Figure 3-18: Comparisons of Nuclei counting error between Ki67-Day19, Ki67-Day19 & 

p27-Day19 at different staining intensity levels. 

 

3.6 Discussion  

The automated counting method seems to produce a higher accuracy rate 

when counting the high and intermediate stained nuclei. The accuracy rate 

of counting high stained images of sets Ki67-day19 and day 22 are relatively 

high: this is due to the morphological characteristics and the position of such 

nuclei. High stained nuclei are usually situated on the viable rim, and such 

nuclei tend to have regular circular shapes, which makes their detection 

easier for the automated system.  
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A slight reduction in the accuracy rate is reported when counting 

intermediate stained images of sets Ki67-day19 and day 22. This is due to 

some of the intermediate stained nuclei being located near the necrotic core. 

The necrotic core contains mostly lifeless cells which tend to have irregular 

shrunken nuclei shapes (necrosis cells). This type of nuclei cells is not 

counted by pathologists since it does not provide any valuable details in 

measuring the PS and IS. In this study, necrosis cells are automatically 

eliminated using the morphological opening operation described in Section 

(2.1.3). However, in some cases where such cells have relatively large 

shapes (larger than 30 connected pixels), these could be confused by the 

automated segmentation and counting system with viable nuclei and 

therefore counted by the automated system, which subsequently increases 

the number of false positives. However, this kind of false response is limited, 

as the dead cells would have to be larger than the smallest viable nuclei in 

an image for them to be counted by the automated system.  

A clear reduction in the accuracy rate is reported when counting low stained 

images of sets (Ki67-day19 and day 22). This is again due to the position of 

the low stained nuclei, which tend to be mostly located near the necrotic 

core, which will consequently result in an increase in the number of false 

positives compared to the rate of false positives accruing from high and 

intermediate stained images.  

A slight difference between the error rate of Ki67-day19 and day 22 is 

reported when counting the low stained nuclei. Ki67-day22 images seem to 

have a higher error rate when compared to the Ki67-day19 images. This is 
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due to a failure to segment the adjacent nuclei of low stained positive nuclei 

and negative nuclei, which occurs due to the low intensity variation between 

such nuclei, causing them to be counted as one nucleus by the system 

instead of three separate nuclei. This would eventually increase the number 

of false negatives.  

                                                            

Figure 3-19: illustrates the watershed under segmentation 

Figure 3-19 illustrates the failure in segmenting adjacent cells using 

watershed. Applying the L*a*b colour space to images prior to watershed 

segmentation improves the performance of watershed to an extent, as 

demonstrated earlier in Section (3.2.4) of this chapter. However, it does not 

provide a complete solution to the problem. This does not apply only to the 

Ki67-Day22 set, as it could occur with any image where adjacent nuclei that 

have exceedingly low intensity variation. To minimise the error rate further, a 

division algorithm is added as explained in Section (3.4). If a nuclei object 

exceeds the maximum value, it is then divided into two nuclei. This method 

provides a sufficient solution in cases where two adjacent nuclei have been 

detected as one nucleus. However, in cases where three nuclei have been 

detected as one nucleus, the algorithm will only divide the detected object into 

two nuclei. 

Further adjustments to the algorithm to divide large objects into three nuclei 

was avoided, as the system is more likely to detect two adjacent nuclei as 

Red lines 

illustrate points 

where watershed 

failed to segment 
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one object than it is to detect three objects as one object. If the division 

algorithm was extended to divide objects above a certain size into three 

objects, this could result in some of the two adjacent nuclei being divided as 

three objects rather than two, consequently increasing the number of false 

positives generated by the proposed counting system. 

P27-Day19 images dataset seem to have the highest percentage of error 

and the lowest accuracy rate when compared to the other datasets used. 

This is due to the nature of the p27 images, which tend to have a 

substantially low intensity variation between the negative protein 

expression (blue nuclei) and background. This aspect makes the detection 

of the true positive nuclei a complex task and causes the automated system 

to consider some of the diffused background parts as nuclei objects. As a 

result, the number of false negatives is increased when counting the nuclei of 

such images. This would affect the accuracy rate of counting nuclei objects 

of all staining levels. The increase in error reported between the high, 

medium and low stained nuclei images of the p27 dataset is due to the same 

reasons mentioned for the Ki67 datasets. 

Another factor which caused an increase in false positives was the over-

segmentation problem, where a nucleus object is divided by the watershed 

into two individual nuclei. This incident was relatively rare, and therefore 

further refinements to the watershed performance were avoided in this 

regard. 
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Chapter 4 

 

 

Positive and Negative Nuclei Classification 

 

4.1 Introduction 

In this chapter, a cell-level classification approach is presented. The 

approach is based on an object feature extraction, where descriptive features 

are directly extracted for each segmented nuclei image. DWT, GLCM and 

morphological features are used to extract colour, texture and shape features 

respectively. Features from each category are optimized through a series of 

extensive experiments, to select only those features that hold the most 

discriminative power. These features are then fed into a machine learning to 

classify the positive and negative segmented nuclei images accordingly. Two 

types of machine learning algorithms are used in this chapter; ANN and 

SVM. The results of each classification method are presented based upon a 

number of experiments. Finally, the results from Chapter 3 are used 

collectively with the results output from this chapter, to measure the PS of 

the IHC images. The experimental work of this chapter is carried out using 

Matlab. The flow chart of the proposed classification approach is presented 

in Figure 4-1. 
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Feature extraction  

 

Feature extraction is the key to differentiating between positive and negative 

nuclei images. The features extracted from the positive and negative nuclei 

images hold discriminative characteristics which can be used to differentiate 

between these two types of stained nuclei. These features will then be used 

to classify segmented nuclei images into two classes; positive stained nuclei 

and negative stained nuclei. 

In image processing, feature extraction can be performed at two levels. At 

image level: this level of feature extraction describes the global features of 

an image. This means that the visual contents of an image are described 

Figure 4-1: the proposed approach for the automated classification of segmented positive 

and negative nuclei images. 
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collectively, certain regions of the image cannot be defined individually using 

this level. Colour histogram is one of the tools to describe such features. 

At region level: this type divides the image into rectangular blocks or regions 

using a fixed size grid. The grid window is placed on an image to perform the 

region segmentation. Colour and texture features are then extracted from the 

blocks, to define their characteristics. Each feature can then be stored in a 

vector and fed into a classifier for categorization purposes. 

Region level segmentation is efficient in tasks where a certain object or 

certain regions of an image require analysis. However, in images that contain 

a vast amount of minor details and objects closely adjacent to each other, 

object segmentation cannot be achieved using this method. Therefore, in this 

chapter an object feature extraction approach is introduced, this approach 

will target extracting features specifically from the ROIs, which in this case 

are the segmented nuclei objects. The extraction method described in 

Section (3.3) ensures that only the object of interest is segmented, therefore 

allowing the features which directly describe the object of interest to be 

extracted.  

In this chapter, three types of feature extraction methods are selected to 

describe the colour, textural, and morphological characteristics of segmented 

nuclei images. The features extracted will then be used to discriminate 

between the positive and negative nuclei. 
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4.2 Feature extraction  

4.2.1 Discrete wavelet transform for colour features 

Discrete wavelet transform DWT has become a valuable tool in signal and 

image processing applications, e.g. image compression, image classification 

and feature extraction (Wang et al., 2001; Kokare et al., 2007; Serrano et al., 

2004), where it has shown a high level of efficiency in colour and textural feature 

extraction tasks. In image processing, DWT works by decomposing the image 

into four sub-bands; (LL), (LH), (HL) and (HH). The low frequency sub-band 

(LL) represents the horizontal and vertical low frequency components of an 

image, and is known as the approximation coefficients. The low high frequency 

sub-band (LH) represents the horizontal low and vertical high frequency 

components of an image. The high low frequency sub-band (HL) represents the 

horizontal high and vertical low frequency components of an image. Finally, the 

high frequency sub-band (HH) represents the horizontal and vertical high 

frequency components of an image. 

In this work, a ‘two-level’ wavelet decomposition using two dimensional 

DWT functions available in Matlab is used to extract the colour features 

from the segmented nuclei images, where the (LL) approximation 

coefficients of the first level are decomposed further into further four sub- 

bands: see Figure 4-2. The Haar wavelet type is used in this work due to its 

validity in representing images colour and texture. 
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Figure 4-2:  nuclei feature extraction using a ‘two-level’ wavelet decomposition. 

In order to extract colour features from images, a colour space needs to be 

selected first. The colour space is what represents the colour information in an 

image. A number of colour spaces have been used to represent colour, one of 

which is HSV. HSV has been shown to provide more efficient colour 

representation than other colour spaces. This is due to its uniformity in 

representing colour and ability to represent colour in the same way that the 

human eye observes colour. This makes HSV a preferable colour space in 

image analysis and feature extraction tasks. For these reasons, HSV colour 

space is selected in this work to extract colour information from the images. 

To extract the colour features (energy measures) from the wavelet 

coefficients, nuclei images are first converted into HSV. The two-level DWT 

is then applied on each of the three colour components; the hue component 

of the nuclei image (H), the saturation component (S) and the intensity value 

(V) for the LH, HL and HH sub-bands of each wavelet decomposition level 

(level one and two). In result, a feature vector of length 18 (3 components x 

6 energy measures) is produced: see Figure 4-3. 
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                 Figure 4-3: Feature vector of ‘one-level’ wavelet decomposition 

The energy of a wavelet sub-band is computed as; 

              
 

  
        

 
   

 
      (4-1)



where    is the size of the wavelet sub-band and C is the wavelet 

coefficient. 

 

4.2.2 Grey level co-occurrence matrix for texture features  

A number of textural feature extraction approaches have been presented and 

implemented in recent research, such as statistical moments and the 

intensity histogram of an image or area. This kind of method measures 

textural features based on the distribution of intensities. However, 

information regarding the position of pixels in respect to each other cannot 

be extracted by using these methods. 

Statistical approaches such as the grey level co-occurrence matrix provide 

textural features which describe the distribution of grey level intensity pixels 

in relation to their position with the neighbouring pixels in an image. 
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A co-occurrence matrix is a two-dimensional array (Chaddad et al., 2011; 

Materka and Strzelecki, 1998) where an image is presented by a number of 

row and column values. GLCM is defined as; 

                                                         (4-2) 

                                                                 

A GLCM G is defined by specifying a displacement vector v=(vc,vd). Where 

v is the space between the two pixels holding the values c and d, r is the 

direction of pixels.     is the number of occurrences of the pixel holding the 

values c and d. 

A number of features were defined by (Haralick et al., 1973) to represent an 

image. In this chapter, we use and compute four of Haralick’s features to 

analyse the texture of positive and negative segmented nuclei images. The 

features used are; variance (σ), contrast (Cont), entropy (Ent) and correlation 

(Corr). These texture features are calculated as weighted averages of the co-

occurrence matrix contents. The features were selected based on the 

discriminative values they provide (vectors), GLCM features which provided 

a high difference in feature values between positive and negative nuclei were 

selected to differentiate between the features of negative and positive nuclei 

images. GLCM features which did not provide discrimination in the vector 

values of positive and negative nuclei were discarded. The experimental 

results are presented later in this chapter. The four selected GLCM texture 

features are described in the following section. 
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4.2.2.1 GLCM Variance  

The variance feature relies on the mean parameter (μ): the mean is 

measured by calculating the occurrence frequency of a reference pixel value 

in combination with a certain neighbouring pixel value.  The performance of 

the GLCM variance is similar to the common descriptive statistic known as 

variance. It is calculated based on the distribution of grey-level differences at 

a certain distance, v, from the mean value. The GLCM variance is given as; 

 

 

4.2.2.2 GLCM Contrast 

The contrast feature is calculated based on the image intensity contrast 

variation of a pixel value and its neighbouring pixel value in an image. This 

feature describes the fineness of a texture in an image. High variation 

describes rough textures, while low variation values between pixels describe 

smooth textures. The GLCM contrast is given as; 

                          
              

               (4-4) 

where N is the number of grey levels in the image. 

 

4.2.2.3 GLCM Entropy 

The entropy feature measures the randomness of the distribution of pixel 

intensities in an image. Randomness corresponds to an image where there 

is no preferred intensity level for a combination of two pixels with a distance 

   2

cv

22

cvc μd][c,Gcσd],[c,cGμ (4-3) 
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v, Low entropy values indicate an irregular GLCM. Entropy attains its peak 

value when all elements of the GLCM are equal. Irregular entropy values 

hold descriptive features of the nuclei objects. The GLCM entropy is given 

as; 

                                                
   

 
                  (4-5) 

 

4.2.2.4 GLCM Correlation 

The correlation feature measures the linear relationship between grey level 

pixel values in an image. A single object tends to have a higher correlation 

value between its pixels. The correlation values between nuclei object pixels 

will be used to differentiate between negative and positive nuclei images. 

The GLCM correlation is given as; 

                     
         

     

 
   

 
                      (4-6) 

 

4.2.3 Morphological feature extraction  

For the morphological description of nuclei objects, features which have 

been directly extracted from the segmented nuclei images are used. Three 

morphological features have been selected, which are; circularity, area, and 

perimeter. Area can be defined as the number of pixels contained inside the 

border of the segmented nuclei object (surface of the ROI): this feature 

describes the size of the nuclei object. Circularity describes the level of 

roundness of the nuclei shapes and is calculated using equation (3-1). 
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Finally, perimeter can be defined as the length of the nuclei outside the 

boundary: in this case it is calculated by the total number of connected 

pixels on the segmented nuclei boundary.  These features were extracted 

using the proposed segmentation method explained in Section (3.3). A 

vector of length 3 is generated for each nuclei image from this stage. The 

aim of extracting such features is to use the morphological characteristics of 

positive and negative nuclei in providing discriminative power, which can 

then be used in classifying both types of nuclei.  

 

4.3 Machine learning for classification task  

Image classification is the process of classifying or categorising images into 

a number of classes. Classification has two main approaches; discriminative 

and generative. The discriminative approach works by estimating boundaries 

or driven probabilities to discriminate between the different classes. The aim 

of this approach is to differentiate between the different classes by finding 

classification boundaries. Support vector machine and neural networks are 

examples of discriminative classifiers which have been widely used in image 

classification and pattern recognition analysis. Support vector machine is 

used in this thesis as the main classifier to classify positive and negative 

segmented nuclei images. Neural network was used as a secondary 

classifier to compare the classification result output with the SVM 

classification results. Although support vector machines and neural networks 

are different in concept, they are both types of machine learning algorithms 

capable of providing data classification. In this chapter, the performance 
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analysis of both classifiers is provided to evaluate the efficiency of both 

classifiers in stained nuclei categorisation tasks. The features described in 

the previous section are used as feature vectors to train the classifiers and 

then used to predict the classification results of the test images. A feature 

vector of length 25 (18 DWT feature + 4 GLCM feature + 3 morphological 

features) is generated for each individual nucleus to be used as an input 

feature in both classifiers. 

 

4.3.1 Support Vector Machines 

Support vector machine (SVM) is a supervised learning technique which has 

become a valid tool in image classification since it was introduced by (Vapnik 

et al., 1996). SVM is an excellent tool for binary and multiclass classification, 

and works based on statistical theory, seeking out the optimal separating 

hyperplane which presents the maximum space or margin that separates two 

or more data points. In other words, SVM takes the data points represented 

by p-dimensional vectors, then finds hyperplanes to separate the two points 

into two classes based on the maximum distance between the nearest two 

points that represent each class. This learning procedure is performed by the 

SVM during the training process, where SVM finds a number of hyperplanes 

that separate the p-dimensional vectors, and then only selects the 

hyperplane that represents the maximum margin classifier. The SVM 

presented by (Vapnik et al. 1996) was a linear classifier: this type of classifier 

does not provided efficient classifications in tasks where a non-linear 

decision is required. SVM kernel functions are therefore introduced to 
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provide a solution for classification tasks where this is the case. A number of 

kernels such as polynomial, sigmoid and radial basis function (RBF) can be 

used in such cases. SVM kernel functions are defined by (Giuliodori, 2011) 

as: 

                     
  
                 (4-7) 

where    is the number of points located closest to the hyperplane on each 

side, or what is known as the support vectors.    is the weight of the point    

learnt by the SVM during the training process.     is the class label of    which 

can be either -1 or +1 in cases of binary classification tasks. K (  ,  ) is the 

value of the kernel function for the training sample    and the testing sample 

 .   belongs to class -1 if the value   for test point   is negative and belongs 

to class +1 if the value   for test point x is positive. 

In this chapter SVM is used as the main classifier for categorising the 

segmented nuclei images into two classes; -1 for negative nuclei and +1 for 

positive nuclei. The SVM method is performed using the publicly available 

LIBSVM software. The discrimination between positive and negative nuclei 

cannot be performed using a linear classifier due to the complexity of the 

nuclei characteristics, and therefore the Gaussian radial basis function RBF 

is selected for its efficiency in binary none-linear classification tasks. The 

RBF kernel is defined as; 

                
        

 

                   (4-8) 

where    is the support vector and    is the testing data point.   is set to the 
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median of the Euclidean distances from each positive training set point to 

the nearest negative point (Zhu et al., 2011). 

Support vector machines are used in this chapter to evaluate the 

discriminative power of the different feature extraction sets, to select only 

those features that provide the highest level of classification accuracy.  

Experiments using the SVM classifier were performed using a 10-fold cross 

validation method. Cross validation is a model evaluation method used at the 

training process of the SVM. It measures how well the classifier is learning 

the new data. The image dataset included both negative and positive nuclei 

image sets. Each set was randomly divided into 2 subsets.  The first subset 

included 90% of the nuclei images which were selected arbitrarily for the 

learning procedure of the SVM.  The second subset included the remaining 

10% of nuclei images, which were left for the testing procedure. This 

procedure was repeated 10 times (10-fold) to allow the testing of all nuclei 

images by the SVM classifier. Parameters were selected based on 10-fold 

cross validation. The average of the results over the 10 splits was then 

calculated to yield the overall classification accuracy. The number of images 

holding the label 1 are counted to yield the total number of positive nuclei 

images classified by the SVM. The number of images holding the label -1 are 

counted to yield the total number of negative nuclei images classified by the 

SVM. 10-fold cross validation was selected to attain more accurate 

performance estimation of the SVM classification results. 
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4.3.2 Artificial neural networks 

A three-layer multilayer perceptrons (MLP) neural network was used for the 

purpose of classifying positive and negative stained nuclei. This neural 

network was selected in our study to investigate the possibilities of using 

such ANNs to classify stained nuclei images and compare the classification 

results to the output results from the SVM classification. In the input layer, 

the number of neurons is equal to the length of the 25 feature vectors. In 

the hidden layer 2N nodes were used, where ‘N’ is the input feature vector 

elements. Sigmoid was used in this layer as the activation function due to 

its efficiency in nonlinear classification tasks. The output layer has only one 

neuron: this neuron represents the decision of the classification process 

(either positive or negative nuclei). Purelin was used in this layer as the 

activation function. The training process uses a function based on 

Levenberg-Marquardt optimization. This function was selected due to its 

efficiency when used with non-linear functions such as neural networks 

training tasks. 90% of positive and negative nuclei images are arbitrarily 

selected for the training purposes and the remaining 10% is used for 

testing purposes. This procedure is performed 10 times to ensure the 

testing of all nuclei images. The average of the results over the 10 splits is 

then calculated to yield the overall classification accuracy. The number of 

images holding the label 1 are counted to yield the total number of positive 

nuclei images classified by the ANN. The number of images holding the 

label -1 are counted to yield the total number of negative nuclei images 

classified by the ANN. Parameters of the ANN are listed in Table 4-1.   
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Table 4-1: Parameters of the ANN 

Number of neurons in the input layer 25 feature vectors 

Number of neurons in the hidden layer 25x 2 
Transfer function in the hidden layer Sigmoid 
Number of neurons in the output layer “1” 
Transfer function in the output layer Purelin 
Training function Trainlm 
Gradient 0.0001. 
Number of Epochs 20000 

 

                   

 

        Figure 4-4: the structure of the ANN classifier 

 

4.4 Feature selection  

4.4.1 Texture features selection  

Feature selection and optimization play a vital role in determining the level of 

classification accuracy. In this section, textural features selection is targeted. 

The total number of GLCM features defined by (Haralick et al., 1973) are 14. 

The goal of this section is to select features that provide discriminative 

characteristics between positive and negative nuclei. Using all the GLCM 

features without optimization can result in a high dimensioned vector with 

insufficient discriminative features, which degrades the classification 

N = 25 
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accuracy. This is due to the pattern of positive and negative nuclei which 

exhibit similar textural characteristics. To select only those features which 

provide discriminative information, a feature selection method is applied. A 

key point for the selection of relevant features is to eliminate similar features 

between positive and negative nuclei. The Maximum Difference Features 

(MDFS) algorithm introduced by (Nithya and Santhi, 2011) is used to select 

only those features which exhibit discriminative characteristics of the positive 

and negative nuclei. The four features that provide the highest level of 

difference between the positive and negative nuclei are selected as the 

optimal textural features. The algorithm is calculated using a number of 

steps; first, the sum of features extracted from all positive nuclei images 

using the first feature of GLMC, e.g. contrast, is calculated using the 

following formula; 

       
 
    

where n is the number of nuclei images and P is the features extracted from 

positive nuclei images. The same is calculated for all negative nuclei images 

using the following formula; 

                                          
 
                                  (4-10) 

 N is the features extracted from negative nuclei images. The difference D of 

F1 and F2 are then calculated using the following algorithm;   

If F1>F2 

            D = (F1-F2) / (F1+F2). 

         Else 

               D = (F2-F1) / (F1+F2). 

(4-9) 
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The procedure is repeated for all 14 GLCM features. The four top features 

with the highest difference D are selected to be the optimal texture features. 

Following calculations, it was found that the four features with the highest 

difference values were variance (s), contrast (Cont), entropy (Ent), and 

correlation (Corr). To evaluate the results of this algorithm, the 14 GLCM 

features are divided into 3 sets based on the D value in descending order. 

The first set includes the 5 GLCM features which were found to have the 

lowest D value. The second set includes the 5 GLCM features with 

intermediate D values: and finally the third set includes the 4 GLCM features 

with the highest D values. The 3 GLCM sets are presented in Table 4-2 

below; 

Table 4-2: GLCM high, intermediate and low features difference value sets. 

 

GLCM features with high difference values 

 

 

Contrast, Entropy, Variance and Correlation. 

 

GLCM features with intermediate difference values 

Difference entropy, Homogeneity, Sum 

average, Sum variance, and Maximum 

correlation coefficient. 

 

GLCM features with low difference values 

Energy, Sum entropy, Difference variance, 

Information measure of correlation1, 

Information measure of correlation2. 

 

A vector of length 4 is generated for each nuclei image from this stage. 

Results of the classification accuracy using the different sets of GLCM 

texture features are demonstrated in Section (4.5). 
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4.4.2 Wavelet level selection  

The selection of the wavelet level of decomposition is an essential step 

since the coefficients produced at every level are the key components in 

defining the discriminative characteristics of positive and negative nuclei 

images. In this section, wavelet decomposition levels 1-5 are examined to 

select the optimal level of wavelet decomposition.  

 

4.5 Experiments  

4.5.1 First set of experiments 

In this chapter, four sets of experiments are presented. Experiments were 

conducted using the SVM classifier. A 10-fold cross validation method was 

used, where 90% of the nuclei images of each class were selected arbitrarily 

for the learning procedure of the SVM, while the remaining 10% were left for 

the testing procedure. The two classes are the positive and negative nuclei 

classes. The first set of experiments was performed to optimize the selection 

of features that best describe the discriminative characteristics between 

positive and negative segmented nuclei images.  

For this set of experimental work, three image datasets were used; 

Nuclei image dataset 1: 1000 segmented nuclei images from Ki67 Day 19 

image dataset were randomly selected. The 1000 were selected to include 

two classes; 500 images are positive nuclei and the remaining 500 are 

negative nuclei images. Nuclei image dataset 2: 1000 segmented nuclei 
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images from p27 Day 19 image dataset were randomly selected. The 1000 

were selected to include two classes; 500 images are positive nuclei and the 

remaining 500 are negative nuclei images. Nuclei image dataset 3: 1000 

segmented nuclei images from Ki67 Day 22 image dataset were randomly 

selected. The 1000 were selected to include two classes; 500 images were 

positive nuclei and the remaining 500 were negative nuclei images.  

All images of segmented positive and negative nuclei were extracted and 

saved using the extraction method described in Section (3.3). For this set of 

experiments only the TP segmented positive and negative nuclei images 

were used to create the image datasets. 

13 experiments of features and their combinations were performed as 

follows: 

Three types of feature extraction methods were used; DWT was used to 

extract colour features, GLCM features were used to extract the textural 

features, and morphological features were used to describe the shape of the 

segmented nuclei. To evaluate the performance of each feature set, features 

were used separately to report their discriminative power. In case of DWT 

the coefficients extracted from every level were used as feature vectors to 

classify the positive and negative nuclei using the SVM classifier. The first 

and second level of wavelet decomposition presented the optimal features in 

classifying the positive and negative nuclei images. Integration of wavelet 

decomposition coefficients of level one and two reported higher classification 

accuracy compared to the rest of the wavelet decomposition levels. A 
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feature vector of length 18 is produced from level one and two wavelet 

coefficients as described in Section (4.2.1) of this chapter. Classification 

performances of the DWT are reported in Figures 4-5 to 4-8. 

The three groups of GLCM features described in Section (4.2.2) of this 

chapter are evaluated using the SVM classifier. The feature vectors of the 

high difference GLCM are integrated together to form a feature vector of 

length 4. The high difference GLCM features reported the highest level of 

classification accuracy compared to the intermediate and low difference 

GLCM features.    

Classification performances of the GLCM are reported in Figures 4-5 to 4-8. 

The morphological features are then evaluated using the SVM classifier and 

the performance is reported in Figures 4-5 to 4-8. To optimize the feature 

selection further, integration of the uppermost discriminative features is 

performed. Integrating DWT (level one and two) and morphological features 

gained a good classification performance compared to the use of DWT and 

morphological features individually. Although morphological features did not 

obtain the best classification results, they can be used to improve the 

performance of the DWT. Similarly, with the high difference GLCM features, 

integration with the DWT improves classification accuracy further. However, 

they do not provide the highest classification performance. Integration of the 

two-dimensional DWT (level one and two), high difference GLCM features 

and morphological features provided the highest classification performance. 

Classification performances of the uppermost features are reported in 

Figures 4-5 to 4-8. 
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Finally, the three image datasets described earlier in this section were 

integrated collectively to form one dataset that includes the 3000 segmented 

nuclei images. This experiment was conducted to evaluate the performance 

of the classification approach when used on a larger dataset with different 

categories of stained nuclei images. Classification performances are 

reported in Figure 4-8. 

Table 4-3: represents the SVM classification accuracies resulted from using the 13 

experiments of the different feature sets and their combinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Features 

 

 
Classification 
accuracy% of 
Ki67 Day 19 

 
Classification 
accuracy% of 

P27 day 19 

 
Classification 
accuracy% of 
Ki67 Day 19 

Classification 
accuracy% of 
Ki67 Day 19 + 
Ki67 Day 22 + 

P27 day 22 

Wavelet-level-1 74 71 75 72 

Wavelet-level-2 69 68 71 66 

Wavelet-level-3 48 53 51 53 

Wavelet-level-4 43 41 44 44 

Wavelet-level-5 31 29 34 31 

Wavelet-level (1 and 2) 79 74 81 75 

High Difference GLCM 71 68 74 69 

Intermediate  Difference GLCM 57 55 54 59 

Low Difference GLCM 46 31 38 44 

Morphological 58 52 60 50 

Wavelet level (1 and 2) + High 
difference GLCM 

87 85 89 84 

Wavelet level (1 and 2) + 
Morphological 

82 79 84 83 

Wavelet level (1 and 2) + High 
difference GLCM + Morphological 

95 93 96 93 
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Figure 4-5: represents the SVM accuracies of classifying segmented negative and positive 

nuclei images from the Ki67 Day 19 image dataset as results of the 13 experiments of the 

different features and their combination. 

 

Bars in green show the performance of nuclei image classification when 

using the different levels and combinations in DWT. Bars in blue show the 

performance of nuclei image classification when using the GLCM features. 

The bar in purple shows the performance of nuclei images when using 

morphological features. Bars in red show the performance of nuclei image 

classification when using the combination of the uppermost discriminative 

features. 
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Figure 4-6: represents the SVM accuracies of classifying segmented negative and positive 

nuclei images from the p27 Day 19 image dataset as results of the 13 experiments of the 

different features and their combination 

 

        

Figure 4-7: represents the SVM accuracies of classifying segmented negative and positive 

nuclei images from the Ki67 Day 22 image dataset as results of the 13 experiments of the 

different features and their combination. 
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Figure 4-8: represents the SVM accuracies of classifying segmented negative and positive 

nuclei images from the Ki67 Day 19, p27 Day 19 and Ki67 Day 22 image dataset collectively 

as results of the 13 experiments of the different features and their combination. 

 

4.5.2 Second set of experiments 

In the second set of experiments, the classification performance of ANN is 

investigated. This experiment is conducted to evaluate the performance of 

both SVM and ANN classifiers using the same features and image dataset. 

The image dataset used in this experiment is the integration of the three 

image datasets described in Section (4.5.1): it includes the 3000 positive 

and negative nuclei images. The use of ANN is described in detail in 

Section (4.3.2). Although both classifiers work based on different concepts, it 

was interesting to evaluate the classification performance of the two 

classifiers when used on the same image datasets and same feature 

selection for the task of classifying positive and negative segmented nuclei 

images. Since a 10-fold cross validation method was used in the SVM 
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classifier, where 90% of images are used for training and the remaining 10% 

were used for testing, a similar concept was used for the ANN classification 

procedure. The ANN training and testing procedure is divided in the same 

manner (90% for training and 10% for testing). This procedure is repeated 

10 times to allow the testing of all nuclei images: a different set of images is 

used for testing at each time. 13 experiments of features and their 

combinations are performed in this experiment, set up in the same manner 

as was used in the previous section (4.5.1). It is obvious from the 

experiments that SVM outperforms ANN in all types of features and their 

combinations: see Figure 4-9. 

 

Figure 4-9: The classification performance for each of the features tested, resulting from the 

13 experiments using SVM and ANN classifiers. Blue bars show the performance of nuclei 

image classification using SVM classifier. Bars in red show the performance of nuclei image 

classification using ANN classifier. 
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4.5.3 Third set of experiments 

Experiment 3 of this chapter presents the statistical analysis that is used to 

calculate the performance accuracy of the proposed SVM classification 

approach in terms of classifying both positive and negative nuclei using the 

following formula; 

 

                            
                        

                  
   *100            (4-11) 

 

SVM classification accuracy was measured at 93.6% when tested on 3000 

segmented nuclei images as described in Section (4.5.1). Since half of the 

image dataset contains positive nuclei and the other half contains negative 

nuclei, it was interesting to measure the performance of the proposed 

classification approach in classifying positive and negative nuclei 

independently. To calculate this, two statistical measures were used; 

sensitivity and specificity (Minnen et al., 2006). 

In the context of this chapter, sensitivity is defined as the ratio of the number 

of positive nuclei which have been correctly classified by the proposed 

approach to the total number of positive nuclei in the ground truth image 

dataset. This will indicate the classification accuracy of the proposed 

approach in classifying segmented positive nuclei images. Sensitivity is given 

as: 

                               
   

       
                                     (4-12) 
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Where TP2 (True Positive) is the number of positive nuclei which have 

been classified correctly by the automated approach. FN2 (False Negative) 

are the number of positive nuclei which have been classified as negative 

nuclei by the proposed approach. 

In contrast, specificity is defined as the ratio of the number of negative nuclei  

which have been correctly classified by the proposed approach to the total 

number of negative nuclei in the ground truth image dataset. This will 

indicate the classification accuracy of the proposed approach in classifying 

segmented negative nuclei images. Specificity is given as: 

 

                                       
   

       
                             (4-13) 

 

Where TN2 (True Negative) is the number o f  negative nuclei which have 

been classified correctly by the automated approach. FP2 (False Positive) is 

the number of negative nuclei which have been classified as positive nuclei 

by the proposed approach. Each label of the positive nuclei class (1) is 

counted to yield the total number of correctly classified positive nuclei. (-1) are 

also counted to yield the total number of correctly classified negative nuclei. 

 

Table 4-4: represents the classification accuracy results summary. 

 

 

 

 

Positive and 
negative nuclei 

Positive nuclei Negative nuclei 

Ground truth nuclei image  dataset 
3000 1500 1500 

Total number of nuclei  images classified 
correctly by the proposed approach 

 
2808 

 
1441 

 
1367 

 
Accuracy % 

 
93.6 

 
96 

 
91.1 
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4.5.4 Fourth set of experiments 

In this section, a demonstration of how the automated nuclei counting output 

described in Chapter 3 and the proposed classification approach output 

described in this chapter can be used collectively to calculate the percentage 

of positive staining in IHC images.   The percentage of positive staining PS is 

defined as the ratio of the positively stained nuclei number to the total 

number of nuclei.  To demonstrate how the PS can be calculated, the 15  

images presented in Section (3.4) Figure 3-13: (A-C) are used. This will 

include the total number of nuclei generated from each of the 15 IHC images. 

The total number of nuclei objects generated from each image will be used 

as the first element to calculate the PS. Each nucleus is then extracted and 

saved as an image using the extraction method described in Section (3.3). 

The classification approach is then applied to the segmented nuclei images 

from each IHC image individually as follows; the uppermost feature (two-

level-wavelet + the high difference GLCM features + morphology features) 

are used to extract the discriminative features from both positive and 

negative nuclei. For each IHC image, 90% of the segmented nuclei images 

of each class were selected arbitrarily for the learning procedure of the SVM, 

while the remaining 10% segmented nuclei images of each class were left for 

the testing procedure. A 10-fold cross validation was used to ensure the 

testing of each segmented nucleus image. The positive nuclei that had been 

correctly classified from all 10-fold were then counted to yield the second 

element required to calculate the PS (total number of positive nuclei). In 

cases where the automated counting of nuclei exceeded the number of 
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nuclei counted by the pathologists the (FN) background objects that had 

been extracted as blue cells, were considered as blue nuclei in this study. 

Classification results for each image used are presented in Table 4-5 (A-C). 

The last two columns represent the positive and negative nuclei images 

which have been correctly classified by the proposed classification approach 

respectively. The positive and negative nuclei datasets are the ground truth 

data which were used to generate the training and testing set. 

Table 4-5: 

A 

 

B 

 

 

 

Images of 

set Ki67 Day 

19 

Patho. 

Coun. 

Path. 

Positive 

Nuclei 

Patho. 

negative 

nuclei 

Auto. 

coun. 

positive 

nuclei 

dataset 

Negative 

nuclei 

dataset 

Classifica. 

of positive 

nuclei 

Classifica. 

of negative 

nuclei 

1) Ki67 Day 19 
high staining 65 44 21 68 44 24 43 23 
2) Ki67 Day 19 

high staining 103 54 49 100 54 46 53 43 
3) Ki67 Day 19 

high staining 
78 37 41 77 38 39 36 37 

4) Ki67 Day 19 

intermediate 

staining 100 60 40 93 59 34 57 31 
5) Ki67 Day 19 

low staining 
67 

 
15 

 
51 73 

 
14 

 
59 

 
14 

 
55 

Images of 

set  p27 Day 

19 

Patho. 

Coun. 

Path. 

Positive 

Nuclei 

Patho. 

negative 

nuclei 

Auto. 

coun. 

positive 

nuclei 

dataset 

Negative 

nuclei 

dataset 

Classifica. 

of positive 

nuclei 

Classifica. 

of negative 

nuclei 

1) p27 Day 19   

high   staining 93 60 33 95 58 37 56 34 
2) p27 Day 19  
intermediate  

staining 74 46 28 80 43 37 42 36 
3) p27 Day 19   

intermediate  

staining 95 44 51 105 43 62 43 58 
4) p27 Day 19 
low staining 69 18 51 81 18 63 17 58 
5) p27 Day 19 

low staining 
76 

 
18 

 
58 86 

 
17 

 
69 

 
17 

 
63 
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B 

 

Table 4-6: (A-C) represent the PS score given by the pathologist, the PS score 

generated using the proposed method and the PS accuracy of the proposed 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images of 

set Ki67 Day 
22 

Patho. 
Coun. 

 

Path. 
Positive 

Nuclei 

Patho. 
negative 

nuclei 

Auto. 
coun. 

positive 
nuclei 

dataset 

Negative 
nuclei 

dataset 

Classifica. 
of positive 

nuclei 

Classifica. 
of negative 

nuclei 

1) Ki67 Day 22 
high staining 100 

 
51 

49 105 
 

51 
54 49 52 

2) Ki67 Day 22 

intermediate 

staining 
74 

 
51 

23 83 
 

51 
33 50 30 

3) Ki67 Day 22 

intermediate 

staining 
94 

 
66 

28 97 
 

69 
28 66 24 

4) Ki67 Day 22 

intermediate 
staining 

49 
 

28 
21 47 

 
25 

22 24 21 

5) Ki67 Day 22 

intermediate 

staining  
73 32 41 80 31 

 
51 
 

31 46 

Images of set Ki67 Day 19 PS pathology   PS Auto.   PS accuracy  % 

1) Ki67 Day 19 high staining 67 63.2 93.3 

2) Ki67 Day 19 high staining 52.4 53 98 

3) Ki67 Day 19 high staining 47.4 46.7 98.6 

4) Ki67 Day 19 intermediate staining 60 61.2 98 

5) Ki67 Day 19 low staining 22.3 19.1 85.6 

Images of set  p27 Day 19 PS pathology   PS Auto.   PS accuracy  % 

1) p27 Day 19   high   staining 64.5 58.9 94.7 

2) p27 Day 19  intermediate  staining 62.2 52.5 84.4 

3) p27 Day 19   intermediate  staining 46.3 40.9 88.4 

4) p27 Day 19 low staining 26.1 20.9 80.4 

5) p27 Day 19 low staining 23.7 19.7 83.1 

Images of set Ki67 Day 22 Ps pathology   Ps Auto.   Ps accuracy  % 

1) Ki67 Day 22 high staining 51 46.6 91.5 

2) Ki67 Day 22 intermediate staining 71.8 60.2 83.9 

3) Ki67 Day 22 intermediate staining 70.2 68 96.8 

4) Ki67 Day 22 intermediate staining 57.1 51 89.3 

5) Ki67 Day 22 intermediate staining 43.8 38.7 88.3 

C 

C 

A 
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It is worth mentioning that PS score accuracy was reduced in cases where 

the number of nuclei objects counted by the automated method exceeded 

the total number of nuclei objects found by the pathologist. The average PS 

accuracy achieved for each image dataset is; 94% for the Ki67-Day-19 

dataset, 86% for the p27-Day-19 dataset and 90% for the Ki67-Day-22 

dataset. Overall PS accuracy for all datasets was 90% for all the above 

tested IHC images based on 1270 segmented nuclei images. 

 

 

Figure 4-10: scatter plot representing the correlation between the pathologist results 

and the proposed method results in classifying the positively stained nuclei. 
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Figure 4-11: scatter plot representing the correlation between the pathologist results 

and the proposed method results in classifying the negatively stained nuclei. 

 

 

Figure 4-12: scatter plot representing the correlation between the pathologist results 

and the proposed method results in determining the PS score. 
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Chapter 5 

 

 

Positive Nuclei Stain Intensity Classification  

 

5.1 Introduction 

Antibody staining plays a vital role in the quantification of protein expression 

in IHC images. However, immunohistochemical staining is often 

heterogeneous, which results in variable staining levels within a tissue 

sample. Pathologist score the staining intensity of positively stained nuclei 

(IS) based on their experience: each IHC image is given a score of low (+), 

intermediate (++) or high (+++), regardless of the staining heterogeneity 

amongst the positively stained nuclei in one image or slide.  

In this chapter we propose a cell-level heterogeneity automated method that 

scores each positive nuclei based on the intensity level of the positive stain. 

Each nucleus will be given a value of (+1, +2, or +3), depending on the 

intensity level of the positive stain inside each nuclei. Finally, the percentage 

of each positive staining intensity level is calculated. This quantitative 

measurement of the cell-level heterogeneity in IHC images aims to evaluate 

tumours and identify underlying issues in histopathology which could remain 

unidentified if relying upon the visual abilities of pathologists.  
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Figure 5-1: represents the staining heterogeneity of positive nuclei. (+1) Denoting 

low staining, (+2) Denoting intermediate staining and (+3) Denoting high staining.  

 

 (A) Low staining (+1) 

 

 

 

(B) Intermediate staining (+2) 
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(C) High staining (+3) 

   

 

Figure 5-2: (A-C) demonstrates the staining heterogeneity of the three staining levels of 

positive nuclei. The line plots represent the staining intensity differences between the three 

staining levels. The one-dimensional line plots were made from the centre row of pixels of 

the nuclei objects. This was performed to extract their intensity values against their 

positions. 

 

In this chapter a novel method for quantifying and classifying the staining 

intensity of positive nuclei is presented. As discussed in the previous 

chapter, feature extraction is the key point for classifying different objects. In 

this chapter, since the main objective is to classify the staining intensity of 

positive nuclei, textural features are investigated to provide the discriminative 

features required to classify the positive nuclei based on their staining 

intensity level. One of the most commonly used textural features is the 

Intensity histogram or pixel intensity features. This chapter demonstrates 

how other histogram mechanisms such as histogram equalization and k-

means clustering could provide features with improved discriminative values 

compared to the intensity histogram features extracted from the baseline 
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intensity histogram. This therefore improves the classification and 

identification of the different staining intensity of positive nuclei, based on the 

minor textural differences of each intensity level. Image thresholding intensity 

features are also investigated and analysed in this chapter. 

 

5.2 Textural feature methods  

5.2.1 Intensity histogram 

The histogram of intensity levels is a summarizing and uncomplicated 

method, used to generate and observe the statistical information enclosed in 

an image. It is also known as the first-order statistical information, since it 

involves the gray level value of each pixel. The probability mass of 

occurrence is the function used to generate the intensity histogram of an 

image. This function is given as;  

      
    

  
                               (5.1) 

Where      is a certain intensity value,    is the image dimensions,   is the 

discrete intensity values in an image and   is the total number of intensity 

levels in an image. 

                                                                                           

Figure 5-3: represents the intensity histogram of a high stained positive nucleus 
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The shape of the histogram provides many indications as to the 

characteristics of the image. This means image features can be described 

and extracted from the histogram to quantitatively illustrate the first-order 

statistical features of an image. The main features that can be extracted from 

the intensity histogram are: the maximum histogram intensity value or (max), 

minimum histogram intensity value or (min), mean, standard deviation, 

skewness, and kurtosis. The min and max value represent the lowest 

intensity value (0) and the highest intensity value (255) in a histogram 

respectively. The mean describes the average level of intensity in the region 

of interest, which in this case is the segmented positive nuclei object, 

whereas standard deviation describes the variance from the mean gray value 

within the region of interest. The skewness is a measure of the asymmetry of 

the distribution of the gray values in a histogram around the mean within the 

region of interest. Kurtosis is a measure of the peakedness or the flatness of 

histogram gray values around the mean. When kurtosis scores a higher 

value, this indicates that the variance is due to infrequent excessive 

deviations (Hafizah et al., 2012). 

Table 5-1: represents the intensity textural features extracted from the image 

intensity histogram. 

Histogram intensity textural features 

Maximum histogram intensity (Max) 

Minimum histogram intensity (Min) 

Mean                 
                               (5.2) 

 

Standard Deviation 

                       
                   (5.3) 
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Skewness                          
              (5.4) 

 

Kurtosis                          
         (5.5) 

 

 

These textural features are selected in this chapter to extract discriminative 

characteristics, which will then be used to classify positively stained nuclei 

into three classes based on their intensity level (+1, +2 or +3).  

 

5.2.2 Histogram equalization  

Histogram equalization is a technique used to enhance the contrast of an 

image by increasing the intensity histogram uniformity of an image. This is 

usually performed using the normalized cumulative histogram function to 

remap the histogram intensities into more equalized distribution along the 

intensities gray scale. The normalized cumulative histogram function can be 

defined as; 

               
                                  (5.6) 

where   is an image histogram and   is a certain intensity level within the 

histogram (Krutsch and Tenorio, 2011; Rubner et al., 1998).  

In this chapter, the histogram equalization method was used to improve the 

contrast of the nuclei image with different staining intensities (+1, +2 and +3) 

by stretching out the intensities of a nuclei image into more equalised 

arrangements over the intensity scale. The aim of this step is to be able to 
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extract more identifying and discriminative features form the equalized image 

histogram, which will then be used to classify the three different staining 

intensities of positively stained nuclei. This will be performed using a number 

of steps; first, the intensities of the segmented nuclei image histogram are 

adjusted by limiting the range to a certain maxima and minima. The minima 

and maxima are adjusted to include what is thought to be a pixel intensity 

belonging to a positive nuclei object. This step is used to eliminate noise 

which could accrue from pixels on the border of the nuclei object that could 

belong to the background. This can be achieved by adjusting the minima to a 

certain intensity level which is thought to be the lowest intensity level of 

positive nuclei. In this study, the lowest intensity level is thought to be 180. 

The maxima is set to the highest intensity level of positive nuclei objects and 

is believed to be 80. The aim of performing this step is to limit the intensity 

range to only those pixels that identify a positive nuclei object. The maxima 

and minima in this case were selected based on the analysis of 1000 positive 

nuclei objects: see Figure 5-4: (A). The second step of the histogram 

equalization is to normalize the adjusted cumulative histogram from 0 to 255 

using the normalize histogram cumulative remapping function. This will 

stretch the range of the selected intensities over the total intensity scale: see 

Figure 5-4: (B). 
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A 

B A 

B 

 

 

 

Figure 5-4: (A) illustrates the selection of minima and maxima in the intensity histogram of a 

positive nuclei object. (B) illustrates the equalised histogram after the remapping function. 

 

                                                                                                                        

                                            

                           Intensity histogram                                Equalization histogram  

Figure 5-5: (A) & (B) illustrate the results of the equalised histogram of a positive nuclei 

object: improved contrast is visible as result of the equalised histogram.  

 

5.2.3 K-means clustering 

 The K-means is one of the uncomplicated unsupervised learning algorithms 

which is used to cluster pixels into regions of pixels that belong together. 

Pixel clustering using K-means divides data into a number of groups known 

as k clusters. The number of clusters is selected to suit the task and targeted 

output.  K-means uses k centroids by assigning one centroid for each cluster: 

the centroids are placed at different points, so that they are distant from each 

other. The maximum distance between each centroid point is selected. Once 

the centroid points are determined, each pixel or data point is assigned to the 
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nearest centroid. The next step is to take the mean of the pixel values inside 

each cluster to generate new centroid points, and this will cause the 

centroids to move location. The same procedure is repeated until the same 

pixels are assigned to each cluster in every round at the same location. The 

main aim of this procedure is to minimize square error (Witten and Frank, 

2005; Maurya et al., 2011).   

K-means clustering can be summarized in four main points indicating each 

step of the clustering procedure; 

1. A number of K points are selected based on the maximum distance 

between each K point: these points represent the initial centroids.  

2. Each pixel or data point is allocated to the nearest centroid. 

3. The mean of data points for each cluster is recalculating and used to 

generate new centroids. 

4. The procedure is repeated until the locations of all centroids are 

stationary.  

In this chapter, k-means clustering is used to cluster the intensities of 

pixels into three clusters: each cluster will represent a certain intensity of 

the brown stain within the positive nuclei (see Figure 5-6). The aim of 

using these clusters is to be able to extract more distinctive features from 

the clustered data, which will then be used to classify the high, 

intermediate and low stained positive nuclei. 
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A       B 

 

 

 

 

 

 

 

Figure 5-6: (A) represent the pixel intensities of a positive nucleus before Appling the K-

means clustering technique. (B) Represents the clustered nucleus object using 3 clusters, 

the graph represents the quantity of pixels belonging to a certain cluster in the positive 

nucleus. 

  

5.3 Textural feature analysis  

In this section, the use of three methods on the different staining intensities 

of positive nuclei is demonstrated. The purpose of using these methods in 

this chapter is to compare the feature vectors of these methods, and analyse 

their validity in providing powerful discriminative textural features of 

heterogeneously stained positive nuclei. 

The first method used is thresholding or binarization, in which the segmented 

nuclei image is binarized using a thresholding method (Choudury et al., 

2010). Since the thresholding method is directly applied to the segmented 

nuclei image, the pixel values inside each nucleus are divided into two 

categories, 0 and 1. In this case, pixels with a value of 0 represent pixels with 

 

http://liris.cnrs.fr/christian.wolf/software/binarize/index.html
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low intensity values and pixels which have been assigned a value of 1 

represent pixels with high intensity values. From Figure 5-7, it is concluded 

that this method provides weak variation between high and intermediate 

stained nuclei, while improved distinction of low stained nuclei is reported. 

 The second method is histogram equalization: this method is used on the 

segmented nuclei images. At this stage, histogram equalization is used in its 

default form, in which the maximum and minimum range is set to the 

standard form (0-255) intensity levels. The results are demonstrated in the 

actual nuclei image as well as the image histogram: see Figure 5-7. 

 It is visible from the nuclei images that the contrast of the segmented nuclei 

is significantly improved. However, background noise around the edges of 

the nuclei objects could not be eliminated, and this has resulted in an 

unnecessary stretch in the equalised histogram intensities, which could 

influence the values of the textural features. The third method examined in 

this section is the K-means clustering; the K-means clustering is applied to 

the equalized image. The purpose of using this method is to cluster those 

equalized intensities into three clusters, each representing a certain intensity 

category of the positive nuclei. The results of using this method are 

demonstrated in Figure 5-7.  
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High stained positive nuclei 

                         Thresholding                 Histogram equalization               K-means clustering  

                                                                   

                         

                                                Intermediate stained positive nuclei 

                            Thresholding               Histogram equalization                 K-means clustering 

                                                                              

                     

Low stained positive nuclei 

                         Thresholding                    Histogram equalization            K-means clustering 

                                                                       

                  

Figure 5-7: represents the effects on the nuclei object at different staining intensities after 

Applying; thresholding, histogram equalization and K-means clustering. 
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5.4. Discussion  

From the previous section, it is evident that histogram equalization achieved 

an improved nuclei image contrast. This could ultimately improve the quality 

of textural features extracted from the equalized image. However, a certain 

level of background noise accrued around the edges of the nuclei objects. To 

minimise this noise, the minima and maxima is adjusted in the manner 

discussed in Section (5.2.2). This approach eliminates the low pixel intensity 

values around the edges of the nuclei by remapping the intensities of those 

pixels into higher intensities within the selected range.  

After the nuclei image is successfully equalised, the K-means clustering 

based on three clusters is applied.  It is interesting to analyse the results of 

applying the k-means clustering on the image prior to and following the 

histogram equalisation. Such results are presented in Figures 5-8 to 5-10. 

The results demonstrate that clustered images which had been previously 

equalised provided more intensity details in the form of three intensity 

clusters. Clustered images which had not been formerly equalised showed a 

reduction in the number of clusters, e.g. two clusters as presented in Figures 

5-8 to 5-10 (D). This provides that the use of equalised images prior to K-

means clustered images provided more intensity details which are 

represented in the form of intensity clusters. Results are provided in Figures 

5-8 to 5-10 for low intermediate and low stained positive nuclei respectively. 
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This figure provides the result of applying the histogram equalisation in its 

adjusted form followed up by the use of K-means clustering. it is noticeable 

that the equalised histogram in Figure 5-8 (B) has a higher density of data at 

the higher intensity levels (closer to 0), while the density seem to gradually 

reduce as in moves down along the intensity scale, and the last third of the 

B A C 

  D 
 Figure 5-8: demonstrates a high stained nuclei image. (A) 

demonstrates the original segmented nuclei image and its 

intensity histogram. (B) demonstrates the results of the 

image and its histogram after applying the adjusted 

histogram equalisation method. (C) demonstrates the 

image and its histogram after applying K-means clustering 

based on the three clusters approach following the use of 

histogram equalization. (D) provides the results of K-

means clustering based on the three clusters approach 

without prior use of the histogram equalisation method.    
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intensity scale is empty, indicating that pixels belonging to this range of low 

intensities do not exist in the high stained positive nuclei objects. 

 

 

                                                                            

 

                

                                            

           

   

    

 

  

From Figure 5-9 (B), it is apparent that the intensity scale values from 0 to 33 

are empty, and this indicates that pixels belonging to this value range do not 

exist inside the intermediate stained positive nuclei. It also provides that 

B A C 

D 

 Figure 5-9: demonstrates intermediate stained nuclei 

image. (A) demonstrates the original segmented nuclei 

image and its intensity histogram. (B) demonstrates the 

results of the image and its histogram after the applying 

the adjusted histogram equalisation method. (C) 

demonstrates the image and its histogram after applying 

the K-means clustering based on the three clusters 

approach following the use of histogram equalization. (D) 

provides the results of the K-means clustering based on 

three clusters approach without prior use of the histogram 

equalisation method.    



 

 

116 

 

C 

underpopulated intensities seem to exist between the peak of the intensities 

and the middle point of the scale, until these disappear totally before the 

midpoint of the scale. 

These indications can be used to discriminate between this type of stained 

nuclei and other types as it provides different characteristics compared to the 

high and low positive stained nuclei.    

 

                                                                      

 

                 

 

 

     

           

 

B A 

D 

 Figure 5-10: demonstrates low stained nuclei image. 

(A) Demonstrates the original segmented nuclei image 

and its intensity histogram. (B) demonstrates the 

results of the image and its histogram after applying the 

adjusted histogram equalisation method. (C) 

demonstrates the image and its histogram after 

applying the K-means clustering based on three 

clusters approach following the use of histogram 

equalization. (D) provides the results of the K-means 

clustering based on the three clusters approach without 

prior use of histogram equalisation method.    



 

 

117 

 

Figure 5-10 (B), the equalised histogram, shows that the intensity levels are 

intermediately dense around the middle part of the scale. Pixels with 

relatively high and low intensities do not exist as noticeable from this 

particular histogram. However, the data in the middle part of the scale seem 

to be scattered, which could be an indication of the low stained nuclei objects 

which seem to have medium to low intensity pixels. From Figures 5-8 to 5-

10, it can be concluded that the equalised histogram provided evident 

discriminative characteristics between high, intermediate and low stained 

nuclei. On the other hand, discrimination between the different staining 

intensities of positive nuclei using original image intensity histograms 

appears to be insufficient due to the lack of discriminative characteristics.  

To evaluate the performance of the methods mentioned (intensity histogram, 

threshold, histogram equalization and k-means clustering), textural features 

are extracted from 1200 positive nuclei (400 high stain, 400 intermediate 

stain and 400 low stain). The average of each staining category is calculated 

and the validity of their use in providing discriminative characteristics of high 

intermediate and low stained positive nuclei is presented through line graphs. 

Finally the use of the proposed improved histogram equalisation followed up 

by the K-means clustering method is demonstrated. The results are 

demonstrated below; 

Histogram intensity features provided inefficient discriminative characteristics 

between the high intermediate and low stained positive nuclei. The mean, 

standard deviation, minima, and skewness features almost overlapped for 

the three staining categories. Maxima and kurtosis features provided 
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relatively improved discriminative values over the three staining categories. 

The results are demonstrated in Figure 5-11. 

 

Figure 5-11: represents the intensity histogram features for the three levels of nuclei positive 

staining. 

 

Thresholding also provided inefficient discriminative characteristics between 

high intermediate and low stained positive nuclei. The standard deviation, 

min, skewness, max and kurtosis features almost overlapped for all the three 

staining categories. The mean feature provided relatively improved 

discriminative value over the three staining categories. The results are 

demonstrated in Figure 5-12. 

Mean StdDev Min Max Skew Kurt 

High Staining 110.094 20.429 85 165 0.861 -0.062 

Intermediate Staining 107.479 13.352 92 153 0.713 6.262 

Low Staining 118.196 10.821 101 140 1.271 -17.127 
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Histogram intensity features 
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Figure 5-12: represents the threshold features for the three levels of nuclei positive staining. 

 

Histogram equalization features provided improved discriminative 

characteristics between the three categories compared to the two previously 

demonstrated methods. The mean, standard deviation, min and max 

features provided a reasonable level of discrimination between the three 

staining categories. However, overlapping between the high and low stained 

nuclei at the min feature and between intermediate and low at the max 

feature were apparent. Skewness and kurtosis features more or less 

overlapped over all staining categories. 

Mean StdDev Min Max Skew Kurt 

High Staining 181.688 116.14 0 255 -0.939 -1.118 

Intermediate Staining 102.336 125.405 0 255 0.403 1.838 

Low Staining 154.672 125.605 0 255 -0.436 -1.81 
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Threshold features 
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Figure 5-13: represents the equalized histogram features for the three levels of nuclei 

positive staining. 

The K-means feature, when used on its own, provided a reasonable level of 

discrimination between the three staining categories at the max and kurtosis 

features. Low discriminative characteristics were reported when using the 

mean, standard deviation, min and skewness.  

 

Figure 5-14: represents the K-means clustering features for the three levels of nuclei positive 

staining. 

Mean StdDev Min Max Skew Kurt 

High Staining 63.126 46.425 6 199 0.933 -0.002 

Intermediate Staining 122.473 71.227 19 253 0.345 -1.206 

Low Staining 106.984 83.701 0 255 0.355 -1.149 
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Histogram equalization features 

Mean StdDev Min Max Skew Kurt 

High Staining 110.668 19.763 96 177 1.351 -2.169 

Intermediate Staining 107.976 13.827 100 154 -0.806 20.229 

Low Staining 118.359 10.375 108 133 0.887 -10.12 

-50 

0 

50 

100 

150 

200 

K- means clustering features 
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Finally the proposed method of using the improved histogram equalization 

followed by K-means clustering outperformed all the previous mentioned 

methods. The mean, standard deviation, max features provided high 

discriminative characteristics between the three staining categories, with max 

features being the highest. The Min feature provided a reasonable level of 

discrimination. Skewness and kurtosis features more or less overlapped over 

all staining categories. 

From Figure 5-15, it is evident that textural features extracted using the 

proposed method provided an improved level of discrimination over the three 

categories of positive nuclei staining. Therefore the proposed method is used 

as the optimal feature extraction method in this study. To optimize the 

method further, the features providing high discriminative value are selected 

to be the optimal textural features. Skewness and kurtosis are excluded to 

reduce the classification error.   

 

Figure 5-15: represents the intensity histogram features for the three levels of nuclei positive 

staining. 

Mean StdDev Min Max Skew Kurt 

High Staining 86.806 57.055 27 162 0.221 -1.579 

Intermediate Staining 133.228 63.055 49 201 -0.194 -1.52 

Low Staining 115.098 76.217 21 238 0.171 -1.154 
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Histogram equalization+ K- means clustering features 
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5.5 Experimental work  

5.5.1 First Set of Experiments 

In this chapter, three sets of experiments are presented. Experiments were 

conducted using the SVM classifier. A 10-fold cross validation method was 

used, where 90% of the nuclei images of each image dataset were selected 

arbitrarily for the learning procedure of the SVM, while the remaining 10% of 

nuclei images of each image dataset were left for the testing procedure. The 

first set of experiments was performed to analyse the performance of the 

histogram intensity textural features (mentioned in the previous section) in 

terms of their efficiency in classifying the heterogeneously stained positive 

nuclei. The six histogram intensity textural features extracted from the 

original image, thresholded image, the equalized image, the K-means 

clustered image and finally the output image of the proposed method 

mentioned in Section (5.4) Figure (5-15) that used the improved equalized 

image followed by the clustering algorithm is used to extract the last set of 

histogram intensity textural features. The goal of this stage is to select only 

those textural features that best describes the discriminative characteristics 

of the high, intermediate and low stained positive nuclei. 

For this set of experimental work, three image datasets are used; 

Positive nuclei image dataset 1: 1200 segmented nuclei images from the 

Ki67 Day 19 image dataset are randomly selected. The nuclei selection 

include three classes; 400 images are high stained positive nuclei, 400 

images are intermediate stained positive nuclei and the remaining 400 
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images are low stained positive nuclei. 

Nuclei image dataset 2: 1000 segmented nuclei images from the p27 Day 

19 image dataset were randomly selected. The nuclei selection include 

three classes; 400 images are high stained positive nuclei, 400 images are 

intermediate stained positive nuclei and the remaining 400 images are low 

stained positive nuclei. 

Nuclei image dataset 3: 1000 segmented nuclei images from Ki67 Day 22 

image dataset were randomly selected. Nuclei selection includes three 

classes; 400 images are high stained positive nuclei, 400 images are 

intermediate stained positive nuclei and the remaining 400 images are low 

stained positive nuclei. 

All images of segmented positive and negative nuclei were extracted and 

saved using the extraction method described in Section (3.3). For this set of 

experiments only the TP segmented positive nuclei images are used to 

create this image datasets. Following the performance analysis of the 

histogram intensity textural features in classifying the heterogeneously 

stained positive nuclei, the features mentioned in the previous chapter 

section (5.4) are used. The aim of this step is to integrate the wavelet colour 

features, high difference GLCM features and morphological features with 

the textural features proposed in this chapter to improve the classification 

accuracy of the three different types of stained positive nuclei. 
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19 experiments of features and their combinations were performed as 

follows: 

Four types of feature extraction methods were used; histogram intensity 

GLCM features were used to extract the textural features, DWT was used to 

extract colour features and morphological features were used to describe the 

shape of the segmented positive nuclei. 

 To evaluate the performance of each feature set: features were used 

separately to report their discriminative power in classifying the three types of 

positive stained nuclei. The features that provided the highest level of 

classification accuracy were then integrated together. The histogram 

intensity textural features extracted from the original image, thresholded 

image, equalized image, K-means clustered image and the proposed 

intensity features extraction method were used to classify the three types of 

stained positive nuclei. 

 It was evident that the proposed method of feature extraction (equalized + 

K-means clustering) outperformed the rest of the intensity histogram features 

extracted from the standard extraction methods. To improve the classification 

performance further, the intensity textural features that provided the most 

discriminative power were selected (The mean, standard deviation, max and 

min features) as described in Section (5.4) Figure (5-15) of this chapter. 

The DWT features GLCM and Morphological features were used in the same 

manner described in Section (4.5.1). The coefficient extracted from DWT 

level one and two collectively provided the highest level of classification 
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accuracy compared to the rest of the DWT level features. The high 

discriminative GLCM features provided the highest level of classification 

accuracy compared to the rest of the GLCM features. To improve the 

classification accuracy further, features that provided the highest 

discriminative power from each feature extraction collection were integrated 

together to form a feature vector of length 29 (4 optimized textural features+ 

18 DWT feature + 4 GLCM feature + 3 morphological features) for each 

individual nucleus. It was evident that the proposed intensity textural features 

improved the classification accuracy and provided the highest discriminative 

power when integrated with the 2-level DWT, high difference GLCM and 

morphological features. The results of the classification performances are 

reported in Figures 5-16 to 5-19.  

 

Figure 5-16: accuracies of classifying segmented (high, intermediate and high) positive 

nuclei images from the Ki67 Day 19 image dataset. 
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Figure 5-16 represents the classification performance resulting from the 19 

experiments of the different features and their combination when used on the 

Ki67 Day 19 image dataset using the SVM classifier. Bars in cyan represent 

the performance of histogram intensity textural features, while Bars in green 

show the performance of positive nuclei classification when using the 

different levels and combination of DWT. Bars in blue show the performance 

of positive nuclei classification when using the GLCM features. The bar in 

purple shows the performance of positive nuclei dataset when using the 

morphological features. Bars in red show the performance of nuclei image 

classification when using the combination of the uppermost discriminative 

features. 

 

Figure 5-17: represents the SVM accuracies of classifying segmented (high, intermediate 

and high) positive nuclei images from the Ki67 Day 22 image dataset as results of the 19 

experiments of the different features and their combinations. 
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Figure 5-18:  represents the SVM accuracies of classifying segmented (high, intermediate 

and high) positive nuclei images from the p27 Day 19 image dataset as results of the 19 

experiments of the different features and their combinations. 

 

Figure 5-19: represents the SVM accuracies of classifying segmented (high, intermediate 

and high) positive nuclei images from Ki67 Day 19, Ki67 Day 22 and p27 Day 19 

collectively as results of the 19 experiments of the different features and their combinations. 
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Table 5-2: represents the classification accuracies resulting from the 19 experiments of the 

differently used features for the segmented positive nuclei images datasets using SVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Features 

 

 
Classification 
accuracy% of 
Ki67 Day 19 

 
Classification 
accuracy% of 
Ki67 Day 22 

 
Classification 
accuracy% of 

P27 day 19 

Classification 
accuracy% of 
Ki67 Day 19 + 
Ki67 Day 22 + 
P27 day 22 

Histogram features 48 41 38 37 

Thresholding features 26 27 23 25 

Equalized histogram features 56 51 48 51 

K-means clustring features 51 53 52 52 

Equalized+K-means features 68 67 62 65 

(Equalized+K-means) 
optimized features 

74 75 71 73 

Wavelet-level-1 62 59 57 54 

Wavelet-level-2 52 54 53 52 

Wavelet-level-3 31 33 37 34 

Wavelet-level-4 20 19 26 21 

Wavelet-level-5 19 19 21 16 

Wavelet-level (1 and 2) 66 65 66 67 

High Difference GLCM 64 66 61 62 

Intermediate  Difference 
GLCM 

49 51 46 49 

Low Difference GLCM 38 33 20 25 

Morphological 43 44 46 42 

Wavelet level (1 and 2) + 
High difference GLCM 

74 72 68 71 

Wavelet level (1 and 2) + 
High difference GLCM + 

Morphological 

81 82 78 79 

Wavelet level (1 and 2) + 
High difference GLCM + 

Morphological_(equalization 
+K-means clustering) 

92 94 89 90 
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5.5.2 Second set of experiments 

This experiment presented the statistical analysis that is used to calculate 

the performance accuracy of the proposed classification approach in terms of 

classifying the high intermediate and low stained nuclei. SVM classification 

accuracy was measured at 90% when tested on 3600 segmented positive 

nuclei images of different staining intensities as described in Section (5.5.1). 

Since the image dataset contains positive nuclei images of three different 

staining intensities, it was interesting to measure the performance of the 

proposed classification approach in classifying high, intermediate and low 

stained positive nuclei independently. The measure selected for this purpose 

in this section is accuracy. Labels presenting each class are counted to yield 

the total number of correctly classified high stained positive nuclei, 

intermediate stained positive nuclei and low stained positive nuclei 

respectively. In the context of this section, accuracy is used in three forms, 

each of which represents the classification accuracy for a certain staining 

intensity. Accuracy is defined as follows; 

                                                    

                                                                                         
                                         

                          
                (5.7)            

 

                                                            

                                                                                   
                                                

                                  
           (5.8) 

 

                                                  

                                                                                          
                                        

                         
             (5.9) 
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Table 5-3: summarises the classification accuracies for 3600 segmented positive nuclei 

images. 

 

 

 

 

From the results, it is concluded that the proposed feature extraction and 

classification approach provided a high level of accuracy in classifying the 

heterogeneously stained positive nuclei. It is evident that the approach 

provided the highest level of classification accuracy when used to classify 

high stained positive nuclei. The lowest classification accuracy reported was 

when the approach was used to classify intermediate stained nuclei. This 

could be due to the variable stain characteristics, which could lead the 

system to incorrectly classify intermediate stained nuclei as low or high 

stained nuclei. Meanwhile, in cases of the low stained nuclei, accuracy was 

slightly lower than that reported for high stained nuclei. However, the 

accuracy for this nuclei type was improved compared to that reported for the 

intermediate stained nuclei.  

 

5.5.3 Third set of experiments 

This section demonstrates how the approach described in this chapter can 

be used to measure the intensity score IS of individual IHC images. The 

segmented positive nuclei image datasets that resulted from Section (4.5.4) 

is used in this section, such that, only the correctly classified positive nuclei 

All positive 
nuclei 

High stained 
Positive nuclei 

Intermediate 
stained positive 

nuclei 

Low stained 
positive nuclei 

Ground truth positive nuclei image  dataset 

3600 1200 1200 1200 
Total number of segmented  positive nuclei  
images classified correctly by the proposed 

approach 

 
3252 

 
1113 

 
1062 

 
1077 

 
Accuracy % 

 
90.3 

 
92.7 

 
88.5 

 
89.7 
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are used. The feature extraction and the classification approach described in 

this chapter is applied to each segmented positive nuclei individually as 

follows; the optimal feature (optimized intensity features, two-level-wavelet + 

high difference GLCM features + morphology features) are used to extract 

the discriminative features from each class (high, intermediate and low 

stained positive nuclei).  

A 10-fold cross validation method was used to ensure the testing of each 

nucleus image. 90% of the nuclei images of each class were selected 

arbitrarily for the learning procedure of the SVM, the remaining 10% nuclei 

images of each class were left for the testing procedure. The positive nuclei 

that had been correctly classified were then counted for all three classes to 

yield the total number of nuclei belonging to each class. 

Classification results for each IHC image used are presented in Table 5-4: 

(A-C). The first column of each table represents the total number of positive 

nuclei which has been correctly classified using the automated classification 

method described in Section (4.5.4). The second column represents the total 

number of correctly classified high, low and intermediate positive nuclei 

collectively. The remaining three columns represent the total number of 

correctly classified positive nuclei for each positive stain class.     
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Table 5-4  

A 

 

 

 

Results of the automated intensity score for each IHC image used are 

presented in Table 5-5 (A-C). The first column represents the IS score 

provided by the pathologies where +++ denotes high positive staining, ++ 

denotes intermediate positive staining and + denotes low positive staining. 

The remaining three columns represents the detailed IS measurements, 

where +3 denotes the percentage of positive nuclei with high staining 

intensity for each IHC image, +2 denotes the percentage of positive nuclei 

 

Images of set Ki67 Day 19 

positive 

nuclei 
dataset 

Correctly 

classified 
heterogeneously 

stained nuclei 

No. of 

high 
stained 

nuclei  

No. of 

intermedia
te stained 

nuclei 

No. of low 

stained 
nuclei 

1) Ki67 Day 19 high staining 
43 41 18 14 9 

2) Ki67 Day 19 high staining 

53 50 25 14 11 
3) Ki67 Day 19 high staining 

36 34 18 9 7 
4) Ki67 Day 19 intermediate staining 

57 53 15 24 14 
4) Ki67 Day 19 low staining 

14 10 0 6 4 

 

Images of set Ki67 Day 22 

positive 

nuclei 

dataset 

Correctly 

classified 

heterogeneously 

stained nuclei 

No. of 

high 

stained 

nuclei  

No. of 

intermedia

te stained 

nuclei 

No. of low 

stained 

nuclei 

1) p27 Day 19   high   staining 
56 52 21 22 9 

2) p27 Day 19  intermediate  staining 

42 41 8 23 10 
3) p27 Day 19   intermediate  staining 

43 38 6 19 13 
4) p27 Day 19 low staining 

17 14 2 8 4 
5) p27 Day 19 low staining 

17 15 0 6 9 

 

Images of set Ki67 Day 22 

positive 

nuclei 

dataset 

Correctly 

classified 

heterogeneously 

stained nuclei 

No. of 

high 

stained 

nuclei  

No. ff 

intermedia

te stained 

nuclei 

No. of low 

stained 

nuclei 

1) Ki67 Day 22 high staining 49 46 22 13 11 
2) Ki67 Day 22 intermediate staining 

50 
45 6 25 14  

3) Ki67 Day 22 intermediate staining 66 61 12 29 20 
4) Ki67 Day 22 intermediate staining 24 22 5 11 6 
5) Ki67 Day 22 intermediate staining 31 29 6 16 7 

B 

C 
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with intermediate staining intensity for each IHC image, and +1 denotes the 

percentage of positive nuclei with low staining intensity for each IHC image .   

Table 5-5 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

pathology IS Automated 

Images of set Ki67 Day 19 IS % of (+3) % of (+2) % of (+1) 

1) Ki67 Day 19 high staining +++ 43.9 34.1 22 

2) Ki67 Day 19 high staining +++ 50 28 22 

3) Ki67 Day 19 high staining +++ 52.9 26.5 20.6 

4) Ki67 Day 19 intermediate staining ++ 28.3 45.3 26.4 

5) Ki67 Day 19 low staining + 0 60 40 

pathology Automated 

Images of set  p27 Day 19 IS % of (+1) % of (+2) % of (+3) 

1) p27 Day 19   high   staining +++ 40.4 42.3 17.3 

2) p27 Day 19  intermediate  staining ++ 19.5 56.1 24.4 

3) p27 Day 19   intermediate  staining ++ 15.8 50 34.2 

4) p27 Day 19 low staining + 14.3 57.1 28.6 

5) p27 Day 19 low staining + 0 40 60 

pathology Automated 

Images of set Ki67 Day 22 IS % of (+1) % of (+2) % of (+3) 

1) Ki67 Day 22 high staining +++ 47.8 28.2 24 

2) Ki67 Day 22 intermediate staining ++ 13.4 55.5 31.1 

3) Ki67 Day 22 intermediate staining ++ 19.7 47.5 32.8 

4) Ki67 Day 22 intermediate staining ++ 22.7 50 27.3 

5) Ki67 Day 22 intermediate staining ++ 20.7 55.2 24.1 

  A 

  B 

  C 
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From Table: 5-5 (A-C), it is concluded that the percentage of each stain 

intensity could be indicative of the IS for each IHC image. For example, in 

the case of high stained images, the percentage of high stained nuclei in 

each image was the highest compared to the percentage of both 

intermediate and low stained nuclei present in the same image. The same 

theory could apply to the intermediate stained IHC images. However, in the 

case of low stained images the percentage of low stained nuclei did not 

always score the highest percentage when compared to intermediate and 

high stained nuclei. In the tested low stained IHC images, the percentage of 

high stained nuclei scored the lowest value, while intermediate stained nuclei 

scored the highest percentage in both cases of Ki67 and p27 day 19 images. 

 When analysing further images of the same type (low stained), it was found 

that the PS of such images was below 30%, which could have an influence 

on the way the intermediate stained nuclei are judged by the eye, leading the 

observer to recognise the intermediate stained nuclei as low stained 

amongst the higher number of negative nuclei in that image. Therefore, the 

automated approach proposed in this chapter for measuring the IS of the 

heterogeneously stained positive nuclei, could provide pathologists with 

higher level of information, by providing the number and  percentage of each 

positive staining level for each IHC image. 
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B 

C 

A 

 

 

 

 

 

Figure 5-20: (A-C) represent the percentage of positive nuclei with high, intermediate and 

low stained images respectively.  
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Chapter 6 

 

 

Conclusion and Future Work  

 

6.1 Summary of contributions and Conclusions  

This thesis proposed a number of methods for the automated quantification 

of antibodies in immunohistochemistry stained image. These methods have 

been applied to three challenging problems in the automated quantification of 

such images; nuclei cell segmentation and counting, positive and negative 

nuclei classification and positive nuclei stain intensity classification.  

The performance of these tasks is usually influenced by the techniques and 

approaches utilised to retrieve information. Despite many efforts during the 

past few years investigating the robustness of automated quantification 

methods, this task is still an open and highly challenging task. This is due to 

the variability of the image types and the unpredictable characteristics of 

nuclei cells. 

This thesis investigated different approaches introduced by the author for 

quantifying stained nuclei cells based on a cell-level approach. The proposed 

approaches have addressed the individual analysis of each nuclei cell, to 

extract powerful discriminative features. These features are then used to 
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provide high accuracy performance in classifying the different stained nuclei 

cells. The contributions are evaluated on tumour multicell spheroid images 

for three different quantification measures, as follows; 

A novel approach for the automated segmentation and quantification of 

nuclei objects in IHC images was presented. The automated method 

consists of a number of image reconstruction, thresholding, segmentation 

and edge detection algorithms that work consecutively to achieve the 

segmentation and quantification of positive and negative nuclei collectively. 

Experimental results were demonstrated on Ki67 and p27 Kip1
 antibodies in 

intact HT29 colonic cancer spheroid images. Images with different staining 

intensity levels from every dataset were used to assess the 

performance and generality of the automated method. Upon extensive 

experiments, it was found that the position of the nuclei plays a 

fundamental role in the automated method performance accuracy. 

Nuclei which are located closer to the viable rim in the Ki67 image 

dataset, achieved a higher accuracy when compared to the 

intermediate and low stained nuclei. This is due to the location of such 

cells which tend to be located closer to the necrotic core. Necrotic core 

contains hypoxic and necrosis cells, this type of cells can be detected 

by the automated method and falsely identified as viable cell. This 

ultimately reduces the accuracy and increase the error rate of the 

automated method performance. 

The Watershed segmentation method imposed a number of limitations 

to the automated approach. Watershed segmentation is a parameter 
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free algorithm, and therefore adjustment to the segmentation level was 

a challenging task. To improve the performance of the watershed 

segmentation method, a number of morphological and colour map 

methods were suggested by the author, improved results were 

reported after the additional adjustments. However, a complete 

elimination of the under segmentation problem was not achieved. This 

has resulted in an increase in the error rate of the automated counting 

and segmentation method.  

Despite the limitations imposed over the performance of the automated 

counting and segmentation method, the overall accuracy rate was calculated 

at 92.6% for all examined images of all image datasets. This provides that 

the automated proposed method achieved a high level of accuracy when 

compared to the benchmark data provided by the pathologist.  

The second automated method provided by pathologists was the cell-level 

approach for classifying positive and negative segmented stained nuclei 

images. Colour, textural and morphological features are extracted from each 

individual positive and negative nuclei to observe the discriminative 

characteristics of each nuclei class. Features were then optimized to select 

only those features that provide high discriminative power between positive 

and negative nuclei images. Upon extensive experiments of feature 

extraction and selection, a feature vector of length 25 was generated for 

each nucleus image and demonstrated to provide the uppermost 

discriminative power in classifying the nuclei classes. The 25 proposed 

features consisted of 18 DWT features to describe the colour characteristics 
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of the stained nuclei objects, 4 GLCM features to describe the textural 

features, and 3 morphological features. 

Upon extensive experiments, it was found that DWT coefficients of level one 

and two provided the highest level of classification accuracy using both SVM 

and ANN classifiers when compared to the rest of the proposed features 

presented in this thesis. This provides that, DWT can be used as a powerful 

tool not only to extract textural information from images but also to extract 

powerful colour discriminative features, which can then be used to 

differentiate between the diverse types of cells based on their stain colour 

information. 

It was also found that the levels of wavelet compression have a direct impact 

on the quality of information retrieved from the wavelet coefficient. Wavelet 

works based on a compression mechanism which means that the colour 

information of the image are compressed further as the level of compression 

increases. This will result in the reduction of the colour information that 

provides the discriminative power. As a result; coefficient of further levels 

(beyond level one and two) provided reduced classification accuracy.  

Two types of machine learning algorithms were investigated in this chapter; 

SVM and ANN, for the purpose of classifying positive and negative nuclei. 13 

experiments of feature collections and their combinations were conducted on 

different image datasets (Ki67-day19, P27-day19 and Ki67-day22). From the 

experiment outcomes it was evident that the SVM classifier outperforms the 

ANN in all types of features and their combinations. 



 

 

140 

 

It was also evident that the proposed 25 discriminative features provided the 

highest level of classification accuracy, at 93% for all image datasets, using 

the SVM classifier. This again shows that the proposed classification 

automated method achieved a high level of accuracy when compared to the 

benchmark data provided by the pathologist. 

Finally the output from Chapter 3 which provided the total number of nuclei 

objects in an image, was combined with the classification output of Chapter 

4, which provided the number of positive nuclei. The output of both chapters 

was used to measure the PS of individual IHC images. Results demonstrated 

that the proposed automated PS achieved an overall accuracy of 90% for all 

tested IHC images when compared to the benchmark data of the 

experienced pathologist. 

In Chapter 5, a novel method for quantifying and classifying heterogeneously 

stained positive nuclei was proposed. The cell-level automated method 

scores each positive nucleus based on the intensity level of the positive 

stain. High, intermediate and low stained nuclei are classified using a 

number of discriminative features. Histogram intensity textural features are 

extracted from heterogeneously stained positive nuclei, to provide 

discriminative features for the three positive staining intensity levels. To 

enhance the discriminative power of the baseline histogram intensity textural 

features, image thresholding, histogram equalization and K-means clustering 

techniques are applied. From extensive experiments, it was found that the 

image thresholding technique provided weak discriminative power when 

used on segmented positive nuclei images. Histogram equalization and K-
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means clustering provided improved discriminative power. An improved form 

of histogram equalization was proposed and provided higher discriminative 

power when followed by the use of the K-means clustering method. This 

provides that clustering algorithms such as K-means and equalized 

histogram features improves the discriminative power of the baseline 

intensity textural features, and can be used prior to the extraction of textural 

features to enhance the discriminative power of such features.    

Uppermost DWT, GLCM and morphological features were integrated with the 

proposed intensity textural features to form 29 discriminative features. The 

proposed features achieve an overall classification accuracy of 90% using 

the SVM classifier. The accuracy was based on the testing of images from all 

datasets (Ki67-day19, P27-day19 and Ki67-day22).  

From the above, it is concluded that the cell-level automated approach 

provided high level of accuracy on all tested data, and achieved accuracies 

in the range of 90% to 93% when compared to the benchmark pathology 

manual data. This means; the automated method can potentially be used as 

a second reader by pathologists in the clinical practice or by researchers in 

the medical imaging field, who seek to use automated time efficient methods 

for quantifying large image datasets,  

Although the proposed method is implemented based on an automated 

approach which does not involve the manual input of a user, the addition of 

flexible parameters can broaden the use of the proposed method to include 

the analysis of a variety of image datasets and stain types. Such parameters 
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can be included to adjust the, threshold, colour balance and morphological 

characteristics to suite a variety of image datasets. The proposed method 

can also potentially work on various image magnification levels. However, 

the user would have to apply some adjustments to the parameters that 

concern the size of the nuclei objects. 

 

6.2 Future work  

In this section, a number of suggestions for the future work are given for the 

continuation of the work presented in this thesis. 

 In this thesis, a number of IHC image data sets were used to 

demonstrate the validity of an automated system in scoring cancer 

markers. It would be interesting to apply the proposed automated 

method to a wider range of IHC images addressing different cancer 

types and antibody stains. 

 

 The automated feature extraction approach presented in Chapters 4 

and 5 provided a number of unique features that described the colour, 

textural and morphological characteristics of stained nuclei objects. It 

would be interesting to interpret these features in describing further 

biological genetic characteristics and behaviour change dynamics. 

 

 It would be interesting to analyse other cellular particles from tumour 

microenvironment images such as membranes and other cell types. A 
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dataset can be generated to include different classes, each 

representing a cell type or a particular cellular object. Cellular object 

classes can be fed into a classifier to determine the class an object 

belongs to (membrane, positive nuclei etc.). Classification results 

could then be used to quantify different aspects of the microscopic 

tumour images.  

 

 The automated quantitative descriptions provided in this thesis can be 

used to track and monitor the progression of cancer throughout its 

various stages. This could include drug delivery optimization tasks 

and determining the output of a particular cancer drug. It could also be 

used for assessment in tasks such as quantifying image patterns, 

extracting phenotypic and molecular features and discovering new 

targeted cancer drugs. 

 

Figure 6-1: progression of cancer throughout its various stages. 

 

• A tumour’s response to treatment can be monitored via a number of 

approaches; including the cell level approach, as represented in this 

thesis, or a tissue level approach. A tissue level approach can be 

integrated with cell-level analysis to provide generic characteristics 

concerning the tumour tissue pattern.  



 

 

144 

 

 

• The automated quantitative approach could be extended to provide an 

optimization approach for treatment regimes to suit the genetic 

structure of the individual patient and type of tumour. This could be 

achieved by Integrating imaging modalities with genomics, which 

could ultimately aid in the understanding of cancer genome 

heterogeneity and predict individualised clinical outcomes of cancer 

patients. 

 

• It will also be interesting to integrate the automated functionalities of 

the proposed method to be used directly with the microscope. As 

known until today, most of the microscopes have limited functionalities 

in the way they acquire images and display them to the user using 

complex yet limited functionality software. The integration of more 

custom designed software such as the automated proposed method 

can improve the quality and the level of information acquired by the 

microscope. This would give the used the ability to control the level of 

information retrieved from the microscope and provide a clearer 

output image that best suit the task required. This could be achieved 

by adjusting some of the acquisition hardware of the microscope or 

simply by integrating the software to work alongside the microscope 

software.   
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 Appendix 

 

 

A. Cell line and monolayer cell culture  

 

HT29 cell line, which is a human adenocarcinoma of the colon cell line were 

maintained in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma) 

supplemented with 10% fetal bovine serum (FBS) (Costar), 1% of penicillin 

(10,000 IU), 1% of streptomycin (10,000 mg/ml), 1 mM glutamine (Sigma) and 

2mM of sodium pyruvate (Sigma). Cells were kept at 37 ℃ in a 5% COS2 

humidified atmosphere.  

For routine maintenance, cells were lifted using 5 ml 0.25% trypsin/ 

ethlyenediaminetetracetic acid (EDTA) solution for 5 mins at 37 ℃ incubation 

and resuspended in 10ml fresh medium. A 10µl sample of cell suspension 

was then placed into a haemcytometer chamber. Cell counts were taken from 

5 grids of the haemocytometer chamber and calculated as the mean of 5 

counts. Cell numbers were expressed as (mean cell count) x 104/ ml medium. 

8×104 cells in T-75 flasks were re-seeded into fresh medium in T75 flasks. 

 

B. Spheroids cell culture, diameter measurement  

 

Three T-75 flasks were base-coated with 1% agarose in dH2O to prevent 

adhesion of cells to the plastic. Following complete trypsinisation of a 

confluent HT29 monolayer, 5×105 cells were seeded into each flask. After 
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incubation at 37℃ for 3 days, aggregates were selected by sedimentation in a 

20ml tube. Immature spheroids were transferred into 500 ml spinner flasks 

containing 250 ml of culture medium. The flasks were placed at 37 ℃ under 

stirring at 50 rpm. Culture medium was changed every 2–3 days. The 

diameters of 20 spheroids were measured by light microscope using an 

eyepiece graticule (calibrated using stage micrometer at the same 

magnification) every 2 days. Spheroids growth curves were performed in 

triplicate and the results were expressed as mean spheroids diameter ± 

standard deviation. Meanwhile the images of spheroids were taken under 

light microscopy.  

 

C. Paraffin embedding of grown spheroids and sections 

 

Spheroids were processed manually after being allowed to form a pellet by 

sedimentation in a universal tube. After being fixed in 10% phosphate 

buffered formalin (pH7.5) for 2 hours they were dehydrated by soaking in 70% 

ethanol for 1 hour, 90% ethanol for 30mins, 100% ethanol for 3 × 30 mins and 

cleared by 100% xylene for 3 × 30 mins. They were then washed in paraffin 

wax for 3 × 30 mins before being embedded in paraffin wax. After processing 

into wax blocks, the spheroid blocks were sectioned to 5µm thickness using 

Leica RM2155 microtome. Sections were transferred onto 3-

aminopropyltriethoxysilane (APES) coated slides prior to 

immunohistochemical staining. 
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D. Haematoxylin and eosin staining of spheroid sections 

Spheroid sections were de-waxed and rehydrated by incubating in 100% 

xylene for 20 mins, 50% xylene/ ethanol for 5 mins, absolute ethanol for 10 

mins , 90% ethanol for 5mins, 70% ethanol for 5 mins and distilled water for 5 

mins successively. The spheroids were then stained in Harris’s haematoxylin 

solution (Sigma) for 10 mins. After being washed with tap water, they were 

soaked in alcohol/acid solution (0.5% HCl in 70% ethanol) for 5 seconds, 

washed in tap water again, “blued” in Scott’ tap water for 2 mins and 

counterstained with 1% aqueous eosin for 1 min. Finally, the sections were 

dehydrated by soaking in 100% ethanol ( 2 × 2 mins), cleared in 50% 

xylene/ethanol and 100% xylene  (2 × 5 mins) and coverslip mounted with 

DPX.   

  

E. Immunohistochemistical staining of spheroid sections 

 

Spheroid sections were de-waxed and rehydrated as describe above. Slides 

were washed in distilled water for 5 mins and treated with 1% H2O2 for 30 

mins to remove endogenous peroxidase. After a 10 min phosphate buffered 

saline (PBS) wash, the slides were covered with antigen retrieval solution 

(0.01mol/L citrate buffer, pH 6), microwaved on high power for 25 mins and 

then left to cool for 30mins. Following another PBS wash, the sections on the 

slides were circled with a glue pen and then incubating with 1:200 horse 

blocking serum in PBS for 20 mins, they were then incubated in primary 

antibody overnight at 4℃. Ki67 protein was stained using a 1:200 dilution of 

mouse IgG antibody raised against human Ki67 protein (Santa Cruz 
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Biotechnology, Inc) in PBS. p27 Kip1 protein was stained using a 1:100 dilution 

of mouse IgG antibody raised against human p27 Kip1 (Dako, Denmark) in 

PBS. After a PBS wash, the sections were incubated with 1:200 dilution of 

secondary antibody (a biotinylated anti-mouse IgG (H+L) made in horse 

supplied by Vector, U.K) for 45 mins, washed with PBS again and incubated 

in avidin and biotinylated horseradish complex solution (Vectastain® ABC kits 

supplied by Vector, UK) for another 45 mins. Sections were then treated with 

3,3’-diaminobenzidine (DAB substrate kit for proxidase Vector) for 5mins and 

counterstained with haematoxylin for 20 seconds before being dehydrated, 

cleared and mounted as described above. Each experiment was performed 

with a negative control (no primary antibody).  
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