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Abstract

Mutually unbiased bases is an important topic in the recent quantum sys-

tem researches. Although there is much work in this area, many problems

related to mutually unbiased bases are still open. For example, constructing

a complete set of mutually unbiased bases in the Hilbert spaces with com-

posite dimensions has not been achieved yet. This thesis defines a weaker

concept than mutually unbiased bases in the Hilbert spaces with composite

dimensions. We call this concept, weak mutually unbiased bases. There is

a duality between such bases and the geometry of the phase space Zd ×Zd,

where d is the phase space dimension. To show this duality we study the

properties of lines through the origin in Zd × Zd, then we explain the cor-

respondence between the properties of these lines and the properties of the

weak mutually unbiased bases. We give an explicit construction of a com-

plete set of weak mutually unbiased bases in the Hilbert space Hd, where

d is odd and d = p1p2; p1, p2 are prime numbers. We apply the concept of

weak mutually unbiased bases in the context of quantum tomography and

quantum cryptography.

Keywords : Finite quantum systems, quantum tomography, quantum cryp-

tography
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Chapter 1

Introduction

Finite quantum systems are the systems whose quantum states are labeled

by elements in Zd, where Zd is the set of integers modulo d. There are three

topics which are related to finite quantum systems.

The first topic, is quantum computation and information which is the

analogous term of classical computation and information, where computa-

tional tasks are implemented using quantum mechanical systems [1]. The

concept of mutually unbiased bases plays an important role in many appli-

cations of quantum computation and information such as quantum cryptog-

raphy and quantum tomography. Two bases are called mutually unbiased

if the quantum measurement corresponding to one basis gives no informa-

tion about the quantum measurement corresponding to the other bases. The

maximum number of mutually unbiased bases in d-dimensional system is

d + 1. In the case that d is power of prime, a complete set of such bases

can be constructed. However, the existence of a complete set of mutually

unbiased bases in d-dimensional systems where d is composite, has not been

1



proved yet.

The security of quantum cryptography protocols relies on the physical

properties of quantum systems as the quantum systems are prepared using

two (or more than two) mutually unbiased bases. In 1984, Bennett and

Brassard [2] designed the first quantum cryptography protocol. Later, much

work has been done in this area. Reviews of this work have been presented

in [3].

Quantum tomography is the process of state determination of quantum

systems using experimental measurements according to different bases. It

has been proved that a complete set of mutually unbiased bases is optimal

for quantum tomography [4].

The second topic which is related to finite quantum systems is the finite

geometry of the phase space Zd × Zd. In the case that d is prime, Zd × Zd

is near-linear geometry, and two lines have at most one point in common.

However, if d is composite, Zd×Zd is not near-linear geometry, and two lines

may have more than one point in common.

The third topic which is related to finite quantum systems is the factor-

ization of such systems into smaller subsystems. Consider a d-dimensional

quantum system with Hilbert space Hd, where d =
∏
pi and pi, pj are dif-

ferent prime numbers. Such a quantum system can be factorized in terms

of smaller subsystems with Hilbert spaces Hpi [5] based on the mapping

introduced by Good [6].
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1.1 Motivation

1.1 Motivation

Our study of mutually unbiased bases in the Hilbert space Hd and the finite

geometry of the Zd×Zd phase space, showed that there is a correspondence

between the mutually unbiased bases in Hd and the lines through the origin

in Zd × Zd when d is prime. However, such correspondence does not exist

when d is composite number. Motivated by this fact, we introduce the con-

cept of weak mutually unbiased bases that weakens the concept of mutually

unbiased bases in odd dimensional systems (also, this concept can be applied

for systems with even dimensions), and designed for the geometry Zd × Zd

in the sense that there is a duality between weak mutually unbiased bases in

Hd and the lines through the origin in Zd × Zd. For simplicity we consider

d = p1p2, where d is odd and p1, p2 are prime numbers, however these bases

are valid with any Hilbert spaceHd, where d is odd and d =
∏
pi. A complete

set of these bases can be constructed by combining (as it will be shown later)

the mutually unbiased in Hp1 and the mutually unbiased in Hp2 . To make

the duality between bases and lines clear, we discuss the factorization of a

line in Zd×Zd in terms of two lines in Zp1 ×Zp1 and Zp2 ×Zp2 , respectively.

We show with examples that a complete set of weak mutually unbiased

bases is tomographically complete in the sense that the probabilities from

tomography experiments corresponding to these bases, can be used to con-

struct an arbitrary density matrix. Another application of weak mutually

unbiased bases is using these bases to generalize the BB84 quantum cryptog-

raphy protocol to work with qudits of dimension d = p1p2 where p1, p2 are

prime numbers.
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1.2 Structure of the thesis

1.2 Structure of the thesis

This thesis consists of six chapters. This first chapter gives a brief intro-

duction and the outline of the thesis. While chapter 2 gives a background

review, chapters 3, 4, and 5 present our novel work.

In chapter 2, we present the fundamentals of finite quantum system. We

discuss some operators that play an important role in finite quantum systems.

We study symplectic transformations with an explicit numerical example. We

introduce Wigner functions and Weyl functions as well as their properties.

We consider the inverse Radon transform and its use in quantum tomography,

and finally we present a review of mutually unbiased bases.

Chapter 3 discusses the lines in Zd × Zd. We introduce the concept of

line factorization and we present some properties of lines in Zd ×Zd.

In chapter 4, we present the new concept of weak mutually unbiased bases.

We construct a complete set of weak mutually unbiased bases explicitly,

and we show (with examples) that such set is tomographically complete.

We discuss the duality between weak mutually unbiased bases and lines in

Zd×Zd. We end this chapter with presenting weak mutually unbiased bases

in the context of complex projective t-design.

Chapter 5 gives a brief overview of the one-way and two-way quantum

cryptography protocols. We propose a generalization of the BB84 protocol

to work with qudits of dimension d = p1p2 where p1, p2 are prime numbers,

using weak mutually unbiased bases. Also we generalize the two way protocol

to work with qudits rather than qubits. The proposed protocols are analyzed

against the intercept and resend attack.

4



1.2 Structure of the thesis

Finally, Chapter 6 concludes and discusses our results.
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Chapter 2

Finite quantum systems

Quantum mechanics are often formulated in the framework of harmonic os-

cillator using position and momentum states, where the values of position

and momentum are described by the set of real numbers R. Therefore, the

position and momentum phase space is R × R. This chapter reviews their

analogous formalism in quantum systems with finite Hilbert space Hd. The

coordinate axes of Hilbert space are mutually orthogonal. Finite systems

were initially studied by Weyl [7] and Schwinger [8, 9], later some authors

[4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] have studied either finite

systems or their applications. In a d-dimensional Hilbert space both position

and momentum states are labeled by elements in Zd, where Zd is the set of

integers modulo d, and hence the position and momentum phase space is the

toroidal lattice Zd ×Zd.
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2.1 Introduction

2.1 Introduction

We consider a quantum system with finite Hilbert space Hd where d is the

dimension of this quantum system. we denote the position and momentum

states as |X;n⟩, |P ;n⟩ respectively, where n ∈ Zd. |X;n⟩ and |P ;n⟩ are

orthonormal bases, therefore

⟨X,m|X,n⟩ = δ(m,n), (2.1)

where m,n ∈ Zd and δ(m,n) is the Kronecker delta. Also they obey the

completeness relation

∑
n

|X;n⟩⟨X;n| =
∑
n

|P ;n⟩⟨P ;n| = I, (2.2)

where I is the unity matrix.

An important application of the above relation is that any arbitrary vector

|u⟩ in Hd can be represented as a linear combination of the orthonormal

states |X;n⟩ or |P ;n⟩

|u⟩ =
∑
n

uX,n|X;n⟩

|u⟩ =
∑
n

uP,n|P ;n⟩, (2.3)

7



2.2 Linear operators

where

uX,n = ⟨X;n|u⟩

uP,n = ⟨P ;n|u⟩. (2.4)

2.2 Linear operators

Linear operator A : Hd1 → Hd2 from vector space Hd1 to vector space Hd2

can be represented as a matrix of dimension d1 × d2 [1, 22]. In the case that

A is linear operator from Hd to Hd, we call A a linear operator defined on

Hd. The operator A is called normal if it obeys the following equation

AA† = A†A, (2.5)

where A† is the conjugate transpose of A. The operator A is called unitary

operator if it satisfies the following condition

A−1 = A†. (2.6)

If A is unitary operator, then

AA† = A†A = I, (2.7)

therefore the unitary operators are also normal operators.

For any unitary operators A : Hd → Hd and B : Hd → Hd, and any vectors

|u⟩, |v⟩ ∈ Hd The following properties hold.

8



2.2 Linear operators

(1) A† is also unitary operator (because (A†)†A† = AA† = I)

(2) The inner product between |u⟩, |v⟩ is preserved if the two vectors are

transformed by A as

⟨u|A†A|v⟩ = ⟨u|v⟩.

(3) The unitary transformation can be reversed since A†(A|u⟩) = |u⟩

(4) The columns of A form an orthonormal basis.

(5) The rows of A form an orthonormal basis.

(6) The unitary transformation preserves the vector length as√
⟨u|A†A|u⟩ =

√
⟨u|u⟩.

(7) For any orthonormal basis |u;n⟩, |v;n⟩ = A|u;n⟩ is also orthonormal

basis.

(8) Unitary operators form a group because

⟨u|v⟩ = ⟨u|A†A|v⟩ = ⟨u|B†B|v⟩ = ⟨u|(AB)†(AB)|v⟩.

Another special class of normal operators is Hermitian operators (also

called self-adjoint operators). Operator A is called Hermitian if it satisfies

the following property

A = A† (2.8)

Eq. (2.8) shows that Hermitian operators are normal operators. One

important property of the Hermitian operator is that its eigenvalues are real.

Positive operators is a subclass of Hermitian operators where for any vector

9



2.2 Linear operators

|u⟩, ⟨u|A|u⟩ is non-negative real number; i.e. ⟨u|A|u⟩ ≥ 0. In the case that

⟨u|A|u⟩ > 0 for all |u⟩ ̸= 0, A is called positive definite.

2.2.1 Pauli operators

Pauli operators σx, σy, σz are operators in H2 that have important applica-

tions in quantum computation and quantum information where

σx =

 0 1

1 0


σy =

 0 −i

i 0


σz =

 1 0

0 −1

 (2.9)

Pauli operators satisfy Eqs.(2.7, 2.8), therefore they are unitary and Her-

mitian operators

2.2.2 Fourier operator

We consider a quantum system with dimension d. The position and momen-

tum states |X;n⟩, |P ;n⟩ are two orthonormal bases in Hd, where n ∈ Zd

and they are related to each other through Fourier transform. We define the

10



2.2 Linear operators

Fourier operator F as

F = d−1/2
∑
m,n

Ωmn|X;m⟩⟨X;n|, (2.10)

where

Ωn = Ω(n) = exp

(
i
2πn

d

)
,

1

d

∑
n

Ωn(m1−m2) = δ(m1,m2). (2.11)

Fourier transform is unitary operator so

FF † = F †F = I. (2.12)

Operating the Fourier operator twice gives the original data in reverse order,

so operating it four times gives the original data back, then

F 4 = I. (2.13)

Eq. (2.13) implies that Fourier operator has only four distinct eigenvalues

namely 1,−1, i,−i with certain multiplicity [23]. Table (2.1) shows the mul-

tiplicity of these eigenvalues at all possible system dimensions and the trace

of Fourier operator Tr(F ) according to these dimensions.

Since the momentum states are related to the position states through

Fourier transform

|P ;m⟩ = F |X;m⟩ = d−1/2
∑
n

Ωmn|X;n⟩, (2.14)
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2.2 Linear operators

Table 2.1: The multiplicity of the eigenvalues of Fourier operator at all pos-
sible system dimensions and the trace of Fourier operator according to these
dimensions

1 −1 i −i T r(F )
d = 4m m+ 1 m m m− 1 1 + i

d = 4m+ 1 m+ 1 m m m 1
d = 4m+ 2 m+ 1 m+ 1 m m 0
d = 4m+ 3 m+ 1 m+ 1 m+ 1 m i

therefore arbitrary state |ψ⟩ can be represented using position and momen-

tum states as

|ψ⟩ =
∑
n

αn|X;n⟩ =
∑
m

βm|P ;m⟩, αn = d−1/2
∑
m

βmΩ
mn. (2.15)

2.2.3 Position and momentum operators

The position operator x and the momentum operator p are defined as

x =
∑
n

n|X;n⟩⟨X;n|,

p =
∑
n

n|P ;n⟩⟨P ;n|. (2.16)

The position operator and momentum operator are related to each other

through Fourier transform

p = FxF †,

x = −FpF †. (2.17)

12



2.2 Linear operators

2.2.4 Density operator

Quantum states are described using state vectors. Another description of

quantum states is using density operators (matrices) that give the measure-

ment probabilities in more compact form. The density matrix D for a quan-

tum system in a pure state |ψ⟩ is

D = |ψ⟩⟨ψ| (2.18)

If |ψ⟩ is a superposition of N states

|ψ⟩ =
N−1∑
n=0

αn|ψn⟩, (2.19)

then

D =
N−1∑
m=0

N−1∑
n=0

αmα
∗
n|ψm⟩⟨ψn| (2.20)

Density matrix is useful to represent a quantum system in mixed state as

a mixed state cannot be described using a single state vector. The density

matrix for a quantum system in a mixed state of N pure states |ψn⟩ is

D =
N−1∑
n=0

pn|ψn⟩⟨ψn|, (2.21)

where pn is the corresponding probability of the pure state |ψn⟩. If the states

|ψn⟩ are transformed under the action of the unitary operator U , then the

density matrix after this transformation D′ is calculated as

D′ =
∑
n

pnU |ψn⟩⟨ψn|U † = UDU †. (2.22)
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2.2 Linear operators

The probability pn of the outcome |n⟩ using the density matrix is

pn = Tr(D|n⟩⟨n|). (2.23)

The density matrix D has the following properties

(1) D is Hermitian.

(2) D is positive-semidefinite (i.e. for any arbitrary vector |χ⟩, ⟨χ|D|χ⟩ ≥

0) [1].

(3) Tr(D) = 1 (when D is normalized).

(4) For systems in pure states D2 = D.

(5) For systems in pure states Tr(D2) = 1 and for systems in mixed states

Tr(D2) < 1 [22].

Since the density operator is Hermitian and its trace is equal to 1 then it

contains d2 − 1 real independent parameters.

2.2.5 Displacement operator

In finite quantum systems the position states and momentum states are la-

beled by elements in Zd where d is the system dimension. Therefore, the

position-momentum phase-space is the toroidal lattice Zd × Zd. We define

the displacement operators that perform displacements along the momentum

and position axes in the position-momentum phase-space as

Z = exp

(
i
2π

d
x

)
, X = exp

(
−i2π

d
p

)
. (2.24)
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2.2 Linear operators

Z and X are unitary operators that satisfy the relations

Z α =
∑
n∈Zd

Ωnα|X;n⟩⟨X;n|, (2.25)

X β =
∑
n∈Zd

Ω−nβ|P ;n⟩⟨P ;n|, (2.26)

and act on both position and momentum states as follows

Z α|X;m⟩ = Ωαm|X;m⟩, Z α|P ;m⟩ = |P ;m+ α⟩,

X β|X;m⟩ = |X;m+ β⟩, X β|P ;m⟩ = Ω−βm|P ;m⟩, (2.27)

where α, β ∈ Zd.

Eq. (2.24) shows that

X d = Z d = I. (2.28)

Based on Eqs. (2.27), Z ,X obey the following relation

X βZ α = Z αX βΩ−αβ. (2.29)

Acting with Fourier operator on Z ,X we find

FZ F † = X −1, FX F † = Z . (2.30)

When d = 2, the two matrices ⟨X;m|X |X;n⟩ and ⟨X;m|Z |X;n⟩ are indeed

the Pauli matrices σx, σz, respectively.
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2.2 Linear operators

In the case that d is odd, we define the general displacement operator as

D(α, β) = Z αX βΩ−2−1αβ, [D(α, β)]† = D(−α,−β). (2.31)

The existence of 2−1 is guaranteed by the fact that 2, d are coprime (if d =

2n + 1, n is integer, then 2−1 = n + 1). Eq. (2.31) shows that the general

displacement operator acts on both position and momentum states as follows

D(α, β)|X;m⟩ = Ω(2−1αβ+αm)|X;m+ β⟩, (2.32)

D(α, β)|P ;m⟩ = Ω(−2−1αβ−βm)|P ;m+ α⟩. (2.33)

The general displacement operators are unitary operators that form Heisenberg-

Weyl group [5, 24]. Starting with Eq. (2.31) and using Eq. (2.29) we get

D(α1, β1)D(α2, β2) = D(α1 + α2, β1 + β2)Ω
[2−1(α1β2−α2β1)]. (2.34)

Eq. (2.30) leads us to find the action of Fourier transform on the displacement

operator

FD(α, β)F † = D(β,−α). (2.35)

Displacement operators have the following marginal properties [5]

1

d

∑
β

D(α, β) = |P ; 2−1α⟩⟨P ;−2−1α|,

1

d

∑
α

D(α, β) = |X; 2−1β⟩⟨X;−2−1β|. (2.36)
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2.2 Linear operators

2.2.6 Parity operator

The parity operator around arbitrary point in the position-momentum phase

space is presented in [5]. Around the origin it is defined as

P(0, 0) = F 2, [P(0, 0)]2 = I. (2.37)

The parity operator has the following properties

P(0, 0)|X;m⟩ = |X;−m⟩, P(0, 0)|P ;m⟩ = |P ;−m⟩,

P(0, 0)x[P(0, 0)]† = −x, P(0, 0)p[P(0, 0)]† = −p,

P(0, 0)Z [P(0, 0)]† = Z †, P(0, 0)X [P(0, 0)]† = X †. (2.38)

The parity operator around the origin has two eigenvalues, 1, and -1 (as

[P(0, 0)]2 = I). The multiplicity of these eigenvalues is presented in [5].

Table (2.2) shows the multiplicity of the eigenvalues of the parity operator

around the origin and its trace Tr[P(0, 0)] for both even and odd dimensional

systems. The displaced parity operator around the point (α, β) is defined as

Table 2.2: The multiplicity of the eigenvalues of the parity operator around
the origin for both even and odd dimensional systems and its trace according
to these dimensions

1 −1 Tr[P(0, 0)]
d = 2m m+ 1 m− 1 2

d = 2m+ 1 m+ 1 m 1

P(α, β) = D(α, β)P(0, 0)[D(α, β)]†. (2.39)
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2.2 Linear operators

using Eqs.(2.31, 2.35, 2.37) we find

P(α, β) = D(2α, 2β)P(0, 0) = P(0, 0)[D(2α, 2β)]†. (2.40)

Like the parity operator around the origin P(0, 0), the displaced parity op-

erator P(α, β) has the property

[P(α, β)]2 = I. (2.41)

Also the trace and the eigenvalues of P(α, β) and their multiplicity are the

same as P(0, 0). It is worth noting that the displaced parity operator is the

Fourier transform of the displacement operator

P(α, β) =
1

d

∑
γ,δ

D(γ, δ)Ω(δα− γβ), (2.42)

D(γ, δ) =
1

d

∑
α,β

P(α, β)Ω(−δα+ γβ). (2.43)

The marginal properties of parity operators are

1

d

∑
β

P(α, β) = |P ;α⟩⟨P ;α|,

1

d

∑
α

P(α, β) = |X; β⟩⟨X; β|. (2.44)
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2.3 Symplectic transformations

2.3 Symplectic transformations

The symplectic transformation S(κ, λ|µ, ν) is a unitary transformation with

the parameters κ, λ, µ, ν ∈ Zd such that

κν − λµ = 1 (mod d). (2.45)

The four parameters of the symplectic transformation contain three indepen-

dent parameters and one dependent parameter. For this reason this trans-

formation has to do with the multiplicative inverses in Zd. For example, if

we choose λ to be the dependent parameter, the multiplicative inverse of µ

must be exist as λ = µ−1(κν − 1). The matrices

g(κ, λ|µ, ν) =

 κ λ

µ ν

 (2.46)

with the constraint of Eq.(2.45) form the group of symplectic matrices Sp(2,Zd).

The cardinality of this group is J2(d) [25], where J2(d) is the Jordan totient

function.

The symplectic transformations of the operators X , and Z obey the

relation

X
′
= S(κ, λ|µ, ν)X [S(κ, λ|µ, ν)]† = X κZ λΩ(2−1κλ) = D(λ, κ),

Z
′
= S(κ, λ|µ, ν)Z [S(κ, λ|µ, ν)]† = X µZ νΩ(2−1µν) = D(ν, µ). (2.47)

The constraint of Eq. (2.45) guarantees that the operators X
′
,Z

′
obey

19



2.3 Symplectic transformations

Eqs. (2.28 and 2.29), and therefore they are displacement operators.

Also the general displacement operator is affected by the symplectic trans-

formation

S(κ, λ|µ, ν)D(α, β)[S(κ, λ|µ, ν)]† = D(να + λβ, µα + κβ). (2.48)

Acting on X with the symplectic transformation S(κ1, λ1|µ1, ν1) we get

S(κ1, λ1|µ1, ν1)X [S(κ1, λ1|µ1, ν1)]
† = D(λ1, κ1). (2.49)

Acting on D(λ1, κ1) with the symplectic transformation S(κ2, λ2|µ2, ν2) we

get

S(κ2, λ2|µ2, ν2)D(λ1, κ1)[S(κ2, λ2|µ2, ν2)]
† = D(ν2λ1 + λ2κ1, µ2λ1 + κ2κ1).

(2.50)

Similarly, acting on Z with the symplectic transformation S(κ1, λ1|µ1, ν1),

we get D(ν1, µ1), then acting with the symplectic transformation S(κ2, λ2|µ2, ν2)

on D(ν1, µ1) we get

S(κ2, λ2|µ2, ν2)D(ν1, µ1)[S(κ2, λ2|µ2, ν2)]
† = D(ν2ν1 + λ2µ1, µ2ν1 + κ2µ1).

(2.51)

Eqs. (2.50, 2.51) show that

S(κ2, λ2|µ2, ν2)S(κ1, λ1|µ1, ν1) = S(κ, λ|µ, ν), (2.52)
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2.3 Symplectic transformations

where  κ1 λ1

µ1 ν1


 κ2 λ2

µ2 ν2

 =

 κ λ

µ ν

 . (2.53)

The identity element of the symplectic transformation is S(1, 0|0, 1) and the

inverses of the symplectic transformations exist, then symplectic transforma-

tions form a group Sp(2,Zd).

The symplectic transformation in finite dimensional systems can be calcu-

lated numerically [5] as follows

(1) Consider the matrix

⟨X;m|Z ′|X;n⟩ = Ω(2−1νµ+ nν)δ(m,n+ µ). (2.54)

(2) Consider the matrix

⟨X;m|X ′|X;n⟩ = Ω(2−1κλ+ nλ)δ(m,n+ κ). (2.55)

(3) Calculate the normalized eigenvectors of the matrix ⟨X;m|Z ′|X;n⟩

and their corresponding eigenvalues. We note that the eigenvectors of

this matrix are the states |X ′;m⟩ up to a phase factor.

(4) Starting with the eigenvector |X ′; 0⟩ corresponding to the eigenvalue 1

we get the other eigenvectors |X ′;m⟩,m ̸= 0 according to the relation

|X ′;m⟩ = (X ′)m|X ′; 0⟩. (2.56)
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2.3 Symplectic transformations

(5) Calculate the symplectic transformation S as

S(m,n) = ⟨X;m|X ′;n⟩, (2.57)

where S(m,n) is the matrix form of the operator S.

As an example we apply the previously mentioned steps to get the symplectic

transformation S(2, 3|1, 2) in a five-dimensional Hilbert space.

According to Eqs. (2.47)

X
′
= X 2Z 3Ω(3), (2.58)

Z
′
= X Z 2Ω(1). (2.59)

Starting with the computational basis and using Eqs. (2.54, 2.55)

⟨X;m|Z ′|X;n⟩ =



0 0 0 0 0.309− 0.951i

0.309 + 0.951i 0 0 0 0

0 −0.809− 0.588i 0 0 0

0 0 1 0 0

0 0 0 −0.809− 0.588i 0


(2.60)
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⟨X;m|X ′|X;n⟩ =



0 0 0 −0.809 + 0.588i 0

0 0 0 0 1

−0.809− 0.588i 0 0 0 0

0 0.309 + 0.951i 0 0 0

0 0 0.309− 0.951i 0 0


(2.61)

The eigenvector corresponding to eigenvalue 1 is

|X ′; 0⟩ =



0.138− 0.425i

0.447

−0.362− 0.263i

−0.362− 0.263i

0.447


(2.62)

Using Eqn. (2.56) we get |X ′;m⟩, m = 1, 2, 3, 4.

We use Eqn (2.57) to calculate the Operator S(2, 3|1, 2)

S(2, 3|1, 2) =

0.138− 0.425i 0.447 −0.362− 0.263i −0.362− 0.263i 0.447

0.447 0.447 −0.362 + 0.263i 0.138 + 0.425i −0.362 + 0.263i

−0.362− 0.263i −0.362 + 0.263i −0.362− 0.263i 0.138 + 0.425i 0.138 + 0.425i

−0.362− 0.263i 0.138 + 0.425i 0.138 + 0.425i −0.362− 0.263i −0.362 + 0.263i

0.447 −0.362 + 0.263i 0.138 + 0.425i −0.362 + 0.263i 0.447


Let |X(κ, λ|µ, ν);m⟩ = S(κ, λ|µ, ν)|X;m⟩ and |P (κ, λ|µ, ν);m⟩ = S(κ, λ|µ, ν)|P ;m⟩.
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2.4 Wigner functions and Weyl functions

Acting with the symplectic transformation S(κ, λ|µ, ν) on both sides of Eqs.

(2.36) and taking into account Eq.(2.48) we get

1

d

∑
β

D(αν + βλ, αµ+ βκ) =

|P (κ, λ|µ, ν); 2−1α⟩⟨P (κ, λ|µ, ν);−2−1α|,
1

d

∑
α

D(αν + βλ, αµ+ βκ) =

|X(κ, λ|µ, ν); 2−1β⟩⟨X(κ, λ|µ, ν);−2−1β|.

(2.63)

In similar way we act with the symplectic transformation S(κ, λ|µ, ν) on both

sides of Eqs. (2.44), then we get

1

d

∑
β

S(κ, λ|µ, ν)P(α, β)[S(κ, λ|µ, ν)]† =

|P (κ, λ|µ, ν);α⟩⟨P (κ, λ|µ, ν);α|,
1

d

∑
α

S(κ, λ|µ, ν)P(α, β)[S(κ, λ|µ, ν)]† =

|X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|.

(2.64)

2.4 Wigner functions and Weyl functions

In 1932 Eugene Wigner [26] defined Wigner function as

W(x, p) =
1

2π

∫ ∞

−∞
⟨x+ 1

2
ξ| D|x− 1

2
ξ⟩ exp(−ipξ) dξ, (2.65)
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2.4 Wigner functions and Weyl functions

Where ξ is the quantum jump between two position states, and ~ = 1 (here

and throughout the thesis). Also Wigner function can be defined using the

momentum representation as

W(x, p) =
1

2π

∫ ∞

−∞
⟨p+ 1

2
ε| D|p− 1

2
ε⟩ exp(ixε) dε, (2.66)

Where ε is the quantum jump between two momentum states.

Wigner function aims to link quantum states to a probability distribution,

however it might have negative values when it describes a quantum system

in a superposition state (superposition of two or more states). In this case

the negative values can be related to the interference between these states.

Due to the fact that Wigner function might have negative values, the Wigner

distribution is called a quasi-probability distribution.

The two dimensional Fourier transform of Wigner function is Weyl function,

and it is defined as

W̃(ξ, ε) =

∫ ∞

−∞
⟨x+ 1

2
ξ| D|x− 1

2
ξ⟩ exp(−ixε) dx, (2.67)

or

W̃(ξ, ε) =

∫ ∞

−∞
⟨p+ 1

2
ε| D|p− 1

2
ε⟩ exp(ipξ) dp, (2.68)

Wigner function and Weyl function have been discussed in [27, 28, 29, 30, 31].

They are commonly used in the phase space formulation of quantum mechan-

ics and have many applications in quantum tomography [33, 34, 35, 36, 37,

38, 39, 40, 41], quantum teleportation [42, 43], and quantum cryptography
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2.4 Wigner functions and Weyl functions

[44, 45].

The analogous definitions for Wigner function and Weyl function in finite

dimensional systems have been studied in [5, 46, 47], in the next two subsec-

tions we shed the light on these studies.

2.4.1 Wigner functions

In finite dimensional systems we consider the operator θ, and define the two

matrices θX , θP such that

θX = ⟨X;m|θ|X;n⟩,

θP = ⟨P ;m|θ|P ;n⟩. (2.69)

The Wigner function corresponding to the operator θ is defined in terms of

the parity operator as

Wθ(α, β) = Tr[θP(α, β)] (2.70)

It can also be defined as

Wθ(α, β) = Ω(2αβ)
∑
n

Ω(−2αn)θX(n, 2β − n),

= Ω(−2αβ)
∑
n

Ω(2βn)θP (n, 2α− n) (2.71)

26



2.4 Wigner functions and Weyl functions

For odd d− dimensional systems, [5] has shown the marginal properties of

Wigner function

1

d

∑
α

Wθ(α, β) = θX(β, β),

1

d

∑
β

Wθ(α, β) = θP (α, α),

1

d

∑
α,β

Wθ(α, β) = Tr(θ). (2.72)

Wigner functions corresponding to density operators D are real because den-

sity operators are Hermitian. Eqs. (2.72) show that Wigner function can be

read as the probability distribution of the particle in the position-momentum

phase space because the probability distribution of position states pX(α) =

⟨X;α|D|X;α⟩, is the summation of Wigner function along the P− axis and

the probability distribution of momentum states pP (β) = ⟨P ; β|D|P ; β⟩, is

the summation of Wigner function along the X− axis.

As an example we consider a five dimensional quantum system with a pure

state |ψ⟩ where

|ψ⟩ = 1√
37

[i|X; 0⟩+ (3− i)|X; 1⟩+ 4|X; 2⟩+ (i+ 2)|X; 3⟩

+ (2i− 1)|X; 4⟩] (2.73)

Fig.(2.1) shows the Wigner function corresponding to the density matrix of

this system, and Figs. (2.2, 2.3) illustrate the probability distribution of the

position states and momentum states, respectively.
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Figure 2.1: Wigner function for the pure state of Eq.(2.73).
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Figure 2.2: The probability distribution of the position states for the quan-
tum system in pure state of Eq.(2.73).
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Figure 2.3: The probability distribution of the momentum states for the
quantum system in the pure state of Eq.(2.73).

2.4.2 Weyl functions

Weyl function corresponding to the operator θ is related to the displacement

operator as

W̃θ(γ, δ) = Tr[θD(γ, δ)]. (2.74)

Also we define it as

W̃θ(γ, δ) = Ω(2−1γδ)
∑
n

Ω(γn)θX(n, δ + n),

= Ω(−2−1γδ)
∑
n

Ω(−δn)θP (n, γ + n). (2.75)
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For odd d− dimensional systems the marginal properties of Weyl function

are

1

d

∑
γ

W̃θ(γ, δ) = θX(−2−1δ, 2−1δ),

1

d

∑
δ

W̃θ(γ, δ) = θP (−2−1γ, 2−1γ),

1

d

∑
γ,δ

W̃θ(γ, δ) = Wθ(0, 0). (2.76)

Weyl function and Wigner function are related to each other through Fourier

transform [5]

W̃θ(γ, δ) =
1

d

∑
α,β

Wθ(α, β)Ω(γβ − δα). (2.77)

Fig.(2.4) shows the Weyl function of the pure state of Eq.(2.73)
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Figure 2.4: Weyl function for the pure state of Eq.(2.73).
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2.5 Radon transforms and quantum tomog-

raphy

Radon transforms for quantum systems with variables in Zd have been in-

troduced in [5]. We can write the first Eq. of Eqs.(2.63) as

1

d

∑
β,α′

D(α′ν + βλ, α′µ+ βκ)δ(α, α′) =

|P (κ, λ|µ, ν); 2−1α⟩⟨P (κ, λ|µ, ν);−2−1α|.

(2.78)

We define the two varibles ρ, σ in Zd such that

ρ = α′ν + βλ, σ = α′µ+ βκ. (2.79)

Using Eqs.(2.45, 2.79) we prove that

α′ = κρ− λσ, β = −µρ+ νσ. (2.80)

As long as α′ and β take all values in Zd, ρ and σ take all values in Zd.

Therefore, Eq.(2.78) is equivalent to

1

d

∑
ρ,σ

D(ρ, σ)δ(α, κρ− λσ) =

|P (κ, λ|µ, ν); 2−1α⟩⟨P (κ, λ|µ, ν);−2−1α|. (2.81)

31



2.5 Radon transforms and quantum tomography

Similarly we can prove that

1

d

∑
ρ,σ

D(ρ, σ)δ(β,−µρ+ νσ) =

|X(κ, λ|µ, ν); 2−1β⟩⟨X(κ, λ|µ, ν);−2−1β|.

(2.82)

Also, it has been proved that Radon transform can be formulated using parity

operators as [5]

1

d

∑
ρ,σ

P(ρ, σ)δ(α, κρ− λσ) = |P (κ, λ|µ, ν);α⟩⟨P (κ, λ|µ, ν);α|,

1

d

∑
ρ,σ

P(ρ, σ)δ(β,−µρ+ νσ) = |X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|. (2.83)

Eq.(2.83) shows that starting with the parity operator we can get the pro-

jectors |P (κ, λ|µ, ν);α⟩⟨P (κ, λ|µ, ν);α| and |X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|.

Also the reverse is applicable, starting with the projectors |P (κ, λ|µ, ν); β⟩⟨P (κ, λ|µ, ν); β|

or |X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|, we can find the displacement operator

using the following equation [5]

D(αλ, ακ) =
∑
β

|P (κ, λ|µ, ν); β⟩⟨P (κ, λ|µ, ν); β|Ω(−αβ),

D(αν, αµ) =
∑
β

|X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|Ω(αβ), (2.84)

then using Eq. (2.42) we can get the parity operator. This is called inverse

Radon transform. Similarly inverse Radon transform of Eqs. (2.81,2.82) can

be done.
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One important application of inverse Radon transform is quantum tomog-

raphy. Quantum tomography is the process of reconstructing the density

matrix of the quantum system using the probabilities corresponding to ex-

perimental measurements according to different projectors. In the following

we discuss how we can apply inverse Radon transform using these probabil-

ities to construct the density matrix.

Multiplying Eq. (2.83) by the density matrix then taking the trace we find

1

d

∑
ρ,σ

W(ρ, σ)δ(α, κρ− λσ) =

Tr(D|P (κ, λ|µ, ν);α⟩⟨P (κ, λ|µ, ν);α|),
1

d

∑
ρ,σ

W(ρ, σ)δ(β,−µρ+ νσ) =

Tr(D|X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|). (2.85)

Now we apply inverse Radon transform to Eqs. (2.85) similar to the inverse

Radon transform of Eq. (2.83), and we get

W̃(βλ, βκ) =
∑
α

pP (α|λ, κ)Ω(−αβ),

W̃(αν, αµ) =
∑
β

pX(β|ν, µ)Ω(αβ), (2.86)

where pP (α|λ, κ) = Tr(D|P (κ, λ|µ, ν);α⟩⟨P (κ, λ|µ, ν);α|) and pX(β|ν, µ) =

Tr(D|X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|). pP (β|λ, κ) and pX(β|ν, µ) denote the

probabilities from the experimental measurements according to the projector

|P (κ, λ|µ, ν); β⟩⟨P (κ, λ|µ, ν); β| and |X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|, respec-

tively. In [5] it has been shown that density matrix is related to Weyl function
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2.6 Factorization of quantum systems

and displacement operator as

D =
1

d

∑
α,β

W̃(−α,−β)D(α, β). (2.87)

Eqs. (2.86, 2.87) show that, starting with the probabilities and using inverse

Radon transform we can construct the density matrix.

We give an example of quantum system where d = 11 and the system in the

pure state |ψ⟩ where

|ψ⟩ = 1√
61

[(1 + i)|X; 0⟩+ (−2 + i)|X; 1⟩+ (3 + 2i)|X; 4⟩+ 2|X; 5⟩+ (3i)|X; 7⟩

+ (−1 + i)|X; 8⟩+ (3 + i)|X; 9⟩+ 4|X; 10⟩]. (2.88)

We start with the probabilities pX(β|ν, µ) corresponding to all possible lines

L (ν, µ) such that the symplectic transformation S(κ, λ|µ, ν) exists. Using

these probabilities we use the second Eq. of Eqs. (2.86) and find W̃(γ =

αν, δ = αµ) then using Eq. (2.87) we get the density matrix. Figs. (2.5, 2.6)

show the Weyl function and Wigner function of this system.

2.6 Factorization of quantum systems

The calculations discussed above are convenient when the dimensions of the

quantum systems are small. For quantum systems with large dimensions

these calculations become harder as the computational time increases rapidly.

An example of this problem is the calculation of Fourier transform where

the computational time required to implement this transformation increases
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Figure 2.5: Weyl function for the quantum system in the pure state of
Eq.(2.88).
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Figure 2.6: Wigner function for the quantum system in the pure state of
Eq.(2.88).
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2.6 Factorization of quantum systems

rapidly as the system dimension becomes larger. Fast Fourier transform [48]

overcame this problem by factorizing the large space into smaller subspaces,

performing Fourier transform in each subspace, and finally combining the

results to obtain Fourier transform in the large system. This concept of

factorization is extensively studied in the context of finite systems [20, 5]

using the mapping scheme introduced by Good [6]. In this section we discuss

the one-to-one mapping scheme introduced by Good. Then we give a brief

review for the factorization in the context of finite quantum systems.

2.6.1 One-to-one mappings

Consider the composite integer number d = d1 × ...× dN where d1, ..., dN are

pairwise coprime. We define the integers rn, tn, and sn such that

rn =
d

dn
,

tnrn = 1 (mod dn),

sn = tnrn (mod d) (2.89)

We note that the inverse of rn exists because rn is coprime with dn.

Then we can define two one-to-one mappings between Zd and Zd1 × ...×ZdN ,

the first one is

k ↔ (k1, ..., kN),

kn = k (mod dn),

k =
∑
n

knsn (mod d) (2.90)
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2.6 Factorization of quantum systems

The second map (dual map) is

k ↔ (k̃1, ..., k̃N),

k̃n = ktn = kntn (mod dn),

k =
∑
n

k̃nrn (mod d) (2.91)

For example let d = 21 then r1 = 7, r2 = 3, t1 = 1, t2 = 5, s1 = 7, s2 = 15.

The number k = 19 where k ∈ Z21 is factorized to k1 = 1, and k2 = 5 where

k1 ∈ Z3 and k2 ∈ Z7. Also it can be factorized according to the dual map

into k̃1 = 1 and k̃2 = 4, where k̃1 ∈ Z3 and k̃2 ∈ Z7.

2.6.2 Factorization of finite quantum systems

If d = d1 × ... × dN where dm is coprime with dn, n ̸= m, then there is an

isomorphism between the Hilbert space Hd and the product of the Hilbert

spaces Hd1⊗...⊗HdN . The position and momentum states in Hd are mapped

to their corresponding states in Hdn as follows

|X; k⟩ ↔ |X(1); k̃1⟩ ⊗ ...⊗ |X(N); k̃N⟩,

|P ; k⟩ ↔ |P (1); k1⟩ ⊗ ...⊗ |P (N); kN⟩ (2.92)

In [5], it has been shown that the Fourier transform F in Hd is equivalent

to the combination of Fourier transforms in Hd1 , ...,HdN .

F = F (1) ⊗ ...⊗ F (N). (2.93)
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2.7 Mutually unbiased bases

Also, based on Eqs. (2.92) the displacement operator in Hd can be calculated

in terms of the displacement operators in Hdn according to the following

relation

D(α, β) =
⊗
n

D (n)(αn, β̃n). (2.94)

Moreover if the operator θ in Hd can be factorized to the operators θn in Hdn

such that

θ =
⊗
n

θn, (2.95)

then Wigner function and Weyl function of the operator θ are factorized as

follows

Wθ(α, β) =
⊗
n

W(n)
θn

(αn, β̃n),

W̃θ(α, β) =
⊗
n

W̃(n)
θn

(αn, β̃n). (2.96)

2.7 Mutually unbiased bases

In 1960 Schwinger [8] used the notion of mutually unbiased bases in the

literature of quantum mechanics. Two orthonormal bases |Bm; j⟩ and |Bn; k⟩

in Hd are mutually unbiased if

|⟨Bm; j|Bn; k⟩|2 =
1

d
. (2.97)

One important example of these bases is the position and momentum bases

of a particle moving in one dimensional system. It has been proved that the

maximum number of mutually unbiased bases cannot exceed d + 1 where d
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2.7 Mutually unbiased bases

is the system dimension. For Hilbert spaces with d = pe, where p is prime,

the complete set of mutually unbiased bases exists. For Hilbert spaces with

d = pe11 ...p
en
n ; p1 < ... < pn one can construct M(d) mutually unbiased bases

such that pe11 + 1 ≤ M(d) ≤ d+ 1 [49].

The importance of Eq. (2.97) is that the probability on the left hand side

does not depend on the variables j, k. Therefore, if we have two mutually

unbiased bases, then using one of them to prepare the quantum states and

using the other to measure these states, makes the probabilities of all out-

comes equal (i.e. the result is totally random), and hence the use of mutually

unbiased bases in quantum cryptography [2]. Also the complete set of mu-

tually unbiased bases is optimal in the context of quantum tomography [50].

Since each basis is associated with d− 1 independent probabilities then the

total number of independent probabilities that we can get using such set is

d2 − 1, therefore using inverse Radon transform we can construct the den-

sity matrix. Apart from quantum cryptography and quantum tomography,

mutually unbiased bases have many other applications like quantum telepor-

tation [51], quantum dense coding [52], and Mean king’s problem [53].

The construction of mutually unbiased bases has been active area of research

in the recent years. These constructions are based on different methods like

generalized Pauli operators [54], Hadmard matrices [55], orthogonal Latin

squares [56] , and equiangular lines [57]. Below we show an explicit construc-

tion of the set of mutually unbiased bases that is based on the generalized

Pauli operators.

In [54] it has been proved that in the power of prime dimensional systems
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2.8 Summary

the eigenvectors of the generalized Pauli operators

Z ,X ,X Z , ...,X Z d−1 (2.98)

form a set of mutually unbiased bases. Although mutually unbiased bases

have been studied extensively, there exist some open problems that are re-

lated to them. An example of these problems is to find the complete set of

mutually unbiased bases in Hilbert spaces with composite dimensions (which

is not a power of prime dimensions) of which d = 6 is the smallest one [58].

There is a strong conjecture that one cannot find more than three mutually

unbiased bases in systems with d = 6, however this conjecture has not been

proved yet. Another question that has not been answered yet is the rela-

tion between mutually unbiased bases and the geometrical structure of affine

planes. Mutually unbiased bases have been surveyed in details in [59].

2.8 Summary

In this chapter we have introduced the basic concepts of quantum systems

with variables in Zd. We have presented the position and momentum states.

We discussed the linear operators that transform vectors from Hd to Hd.

We studied the symplectic transformation then we presented the steps to

calculate it numerically with example in a five-dimensional Hilbert space.

We have considered Wigner function and Weyl function, we have discussed

their properties and we have complemented this discussion with examples.

We have presented Radon transform then we have shown (with an example)
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2.8 Summary

the use of inverse Radon transform in quantum tomography. We considered

the factorization of finite quantum systems then this chapter has ended with

brief survey of mutually unbiased bases.
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Chapter 3

Beyond near-linear finite

geometry

We consider the lines L (ρ, σ) in the phase space Zd×Zd. In general Zd is a

ring. When d is prime, Zd is a field. Also in the case that d = pn where p is

prime, the Galois field G(pn) can be used. In this chapter we prove several

properties of the lines through the origin (particularly when Zd is a ring)

and we show that symplectic transformation can be used to get lines from

other lines. Also we introduce the concept of factorizing lines in Zd × Zd in

terms of ’component lines’ in Zdj × Zdj such that d =
∏
dj and (dj, dk) are

coprime. The propositions in this chapter and the following chapters are the

novel contribution of this research.
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3.1 Introduction

The element ρ ∈ Zd is called invertible (unit) if the multiplicative inverse of

ρ exists in Zd. If σ is the multiplicative inverse of ρ, then

ρσ = 1 (mod d) (3.1)

ρ is invertible in Zd if ρ is coprime with d, i.e.

G(ρ, d) = 1, (3.2)

where G(ρ, d) is the greatest common divisor of the two integers ρ, d.

In the case that d is prime, Zd is a field and all elements (apart from 0) in Zd

are invertible. This is why fields have much stronger properties than rings.

The invertible elements in Zd form a group for the multiplication operation

(as the product of two invertible elements is again an invertible element).

Such a group is called the group of reduced residue classes modulo d. The

number of invertible elements in Zd is φ(d) where φ(d) is the Euler totient

function. If d =
∏N

n=1 p
en
n ; en is positive integer, then φ(d) obeys the relation

φ(d) = d
N∏
n=1

(
1− 1

pn

)
, (3.3)

as a result if d = p, then φ(p) = p − 1, and if d = pk, then φ(pk) =

pk − pk−1. Another important function in number theory is Jordan totient

function Jm(d). Jordan totient function shows the number of m−tuples of

elements in Zd such that each tuple together with d forms a coprime (m+1)-
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3.1 Introduction

tuple. Jordan totient function is calculated as

Jm(d) = dm
N∏
n=1

(
1− 1

pmn

)
, (3.4)

consequently, when d = p then Jm(p) = pm − 1, and when d = pk then

Jm(p
k) = pm(k−1)(pm − 1). Euler totient function is a special case of Jordan

totient function (where m = 1). In the case that m = 2, Jordan totient func-

tion is the product of Euler totient function φ(d) and Dedekind ψ−function

J2(d) = d2
N∏
n=1

(
1− 1

p2n

)
= φ(d)ψ(d), (3.5)

where

ψ(d) = d

N∏
n=1

(
1 +

1

pn

)
. (3.6)

The functions φ(d), J2(d), ψ(d) are multiplicative in the sense that g(d1d2) =

g(d1)g(d2); d1, d2 are coprime.

The phase space Zd ×Zd is a finite geometry. Although there is much work

in finite geometry [60], most of this work is based on near-linear geometry

where two points must not belong to more than one line. In this chapter we

show that Zd × Zd violates this axiom. Zd × Zd is near-linear geometry if

and only if d is prime (or power of primes in the case of Galois field).
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3.2 Properties of lines in Zd ×Zd

3.2 Properties of lines in Zd ×Zd

We define the lines L (ρ, σ) through the origin in the phase space Zd × Zd

(also called cyclic submodule) as

L (ρ, σ) = {(uρ, uσ) | u ∈ Zd} , (3.7)

where the points (uρ, uσ) are calculated modulo d. As an example in Z6×Z6

L (1, 2) = {(0, 0), (1, 2), (2, 4), (3, 0), (4, 2), (5, 4)} . (3.8)

From now on we use the term ’line’ to denote the lines through the origin.

Unlike near-linear geometry, two lines in Zd×Zd (where d is not prime) might

intersect at more than one point. For example, the two lines L (1, 2),L (1, 4)

in Z6 × Z6 have the two points (0, 0), (3, 0) in common. We define the line

L (ρ1, σ1) as a ’subline’ of the line L (ρ2, σ2) if the set of points on the line

L (ρ1, σ1) is subset of the set of points on the line L (ρ2, σ2). We call the

line L (ρ, σ) ’maximal line’ in Zd × Zd if L (ρ, σ) has exactly d points. We

note that the authors in [61] use the term ’isotropic lines’ to denote the lines

with d points.

In chapter (2) we introduced the symplectic matrices

g(κ, λ|µ, ν) =

 κ λ

µ ν

 , (3.9)

where κ, λ, µ, ν ∈ Zd and κν − λµ = 1 (mod d). These matrices form the

group Sp(2,Zd). The symplectic transformation of the point (ρ, σ) is the
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3.2 Properties of lines in Zd ×Zd

point g(κ, λ|µ, ν)(ρ, σ) where

g(κ, λ|µ, ν)(ρ, σ) = (κρ+ λσ, µρ+ νσ). (3.10)

Therefore the symplectic transformation of the line L (ρ, σ) is the line

g(κ, λ|µ, ν)L (ρ, σ). In what follows we prove some propositions that shed

the light on the properties of lines in Zd ×Zd.

Proposition 3.2.1. In the phase space Zd ×Zd the following hold

(1) The line L (λρ, λσ) = L (ρ, σ) if λ is invertible. If λ is non-invertible,

then L (λρ, λσ) ⊂ L (ρ, σ)

(2) The line L (ρ, σ) has d/G(ρ, σ, d) points. If d is prime, all lines (apart

from the line L (0, 0)) are maximal.

(3) The number of maximal lines in Zd ×Zd is ψ(d).

(4) If di is a divisor of d, then the lines L (ρ, σ) with exactly di points, con-

sist of points (γ, δ) such that γ, δ ∈ (d/di)Zdi
((d/di)Zdi

is a subgroup

of Zd).

(5) If di is a divisor of d, then the number of lines with di points is ψ(di).

(6) The intersection of any two lines is a subline with dj points, where dj

is a divisor of d. When d is prime, any two lines intersect only in the

origin.

(7) The lines L (ρ, σ) and g(κ, λ|µ, ν)L (ρ, σ) have the same number of

points.
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3.2 Properties of lines in Zd ×Zd

(8) If d is prime, then the set of all maximal lines are described by

L (0, 1); g(0, 1| − 1,−λ)L (0, 1); λ ∈ Zd (3.11)

Proof. (1) Consider the point (uλρ, uλσ) that belongs to the line L (λρ, λσ).

Let u′ = uλ, then the point (uλρ, uλσ) = (u′ρ, u′σ) is also a point on the

line L (ρ, σ). Therefore, L (λρ, λσ) ⊂ L (ρ, σ). Conversely, if λ is an

invertible element, then there exists u′ such that u′ = λ−1u. Therefore,

the point (uρ, uσ) on the line L (ρ, σ) can be written as (u′λρ, u′λσ)

and hence it belongs to the line L (λρ, λσ). This proves that if λ is

invertible, then L (λρ, λσ) = L (ρ, σ).

(2) Theorems (5.13, 5.14) in [62] show that if ρ is fixed in Zd and u takes all

values in Zd, then the number of values uρ in Zd is d/G(ρ, d). Moreover,

if u = u′ leads to u′ρ, then we conclude that

u′, u′ +
d

G(ρ, d)
, ..., u′ + [G(ρ, d)− 1]

d

G(ρ, d)
(3.12)

lead to the same value u′ρ. If N = G(ρ, d), then Eq. (3.12) shows that

we can describe these values of u as a variable in ZN . The N values of

u lead to N values of uσ but only N/G(σ,N) are different (the proof

of the number of values of uσ is similar to the proof of the number of

values of uρ, the only difference is that we get the number of values of

uσ in ZN). Let M denote the total number of points (uρ, uσ) on the
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3.2 Properties of lines in Zd ×Zd

line L (ρ, σ), therefore

M =
d

N
× N

G(σ,N)
, (3.13)

but

G(σ,N) = G(σ,G(ρ, d)) = G(ρ, σ, d) , (3.14)

then the total number of points (uρ, uσ) on the line L (ρ, σ) is

M =
d

G(ρ, σ, d)
. (3.15)

When d is prime, G(ρ, σ, d) = 1 (where (ρ, σ) ̸= (0, 0)). Therefore, the

lines (apart from the line L (0, 0)) in Zd × Zd where d is prime, are

maximal.

(3) If the line L (ρ, σ) is maximal, then G(ρ, σ, d) = 1. The number of pairs

(ρ, σ) where G(ρ, σ, d) = 1, is J2(d). In the case that u is invertible,

L (ρ, σ) = L (uρ, uσ). Since the number of invertible elements is φ(d),

then the number of maximal lines is J2(d)/φ(d) = ψ(d).

(4) Since the lines L (ρ, σ) have exactly di points, then G(ρ, σ, d) = d/di.

Therefore, the line L (ρ, σ) can be written as L (ρ′ d
di
, σ′ d

di
) where ρ′, σ′ ∈

Zdi . If (γ, δ) are the points on the line L (ρ, σ), then the coordinates

γ, δ ∈ (d/di)Zdi
.

(5) In (4) we have proved that the lines L (ρ, σ) with di points in Zd have

the points (γ, δ) such that γ, δ ∈ (d/di)Zdi
, but the number of lines

with di points in Zdi is ψ(di). Therefore, the number of lines with di
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3.2 Properties of lines in Zd ×Zd

points in Zd ×Zd is ψ(di).

(6) Let (γ, δ) ∈ L (ρ1, σ1) and also (γ, δ) ∈ L (ρ2, σ2), therefore (γ, δ) =

(uρ1, uσ1) = (u′ρ2, u
′σ2), where u, u

′ ∈ Zd. Since L (γ, δ) = L (uρ1, uσ1),

then L (γ, δ) ⊆ L (ρ1, σ1). Similarly L (γ, δ) ⊆ L (ρ2, σ2). Therefore,

the intersection of the two lines L (ρ1, σ1) and L (ρ2, σ2) is the subline

L (γ, δ). Since the number of points on the line L (γ, δ) is d
G(γ,δ,d)

, then

the number of points on the subline is a divisor of d. When d is prime

the only possible divisor is 1, therefore two lines Zd × Zd where d is

prime intersect only at the origin. This completes the proof.

(7) We point out that if the two points (γ1, δ1), (γ2, δ2) ∈ L (ρ, σ), then the

two points (κγ1+λδ1, µγ1+νδ1), (κγ2+λδ2, µγ2+νδ2) ∈ g(κ, λ|µ, ν)L (ρ, σ)

because

g(κ, λ|µ, ν)(γ1, δ1) =

 κ λ

µ ν


 γ1

δ1

 =

 κγ1 + λδ1

µγ1 + νδ1

 , (3.16)

and

g(κ, λ|µ, ν)(γ2, δ2) =

 κ λ

µ ν


 γ2

δ2

 =

 κγ2 + λδ2

µγ2 + νδ2

 . (3.17)

We assume that (γ1, δ1) ̸= (γ2, δ2). If (κγ1 + λδ1, µγ1 + νδ1) = (κγ2 +

λδ2, µγ2 + νδ2), then by subtracting Eq. (3.17) from Eq. (3.16) we get
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the linear equation

 κ λ

µ ν


 γ1 − γ2

δ1 − δ2

 =

 0

0

 . (3.18)

Since det(g) ̸= 0 then Eq. (3.18) has only one solution (the trivial

solution). Therefore, γ1 = γ2, and δ1 = δ2 which contradict the as-

sumption that (γ1, δ1) ̸= (γ2, δ2). Consequently, if (γ1, δ1) ̸= (γ2, δ2),

then (κγ1 + λδ1, µγ1 + νδ1) ̸= (κγ2 + λδ2, µγ2 + νδ2) and hence the two

lines L (ρ, σ), g(κ, λ|µ, ν)L (ρ, σ) have the same number of points.

(8) We note that the line L (0, β) is the same as the line L (0, 1). Then we

prove that we can get any other line L (ρ, σ) (where ρ ̸= 0) using the

symplectic transformation g(0, 1| − 1,−λ) of the line L (0, 1). There-

fore, we need to prove that for any point (uρ, uσ) (apart from (0, 0)

as g(0, 1| − 1,−λ)(0, 0) = (0, 0)) on the line L (ρ, σ) , there exists a

symplectic transformation g(0, 1|−1,−λ) and a point (0, α) on the line

L (0, 1) such that (uρ, uσ) = g(0, 1| − 1,−λ)(0, α). This statement is

true because  0 1

−1 −λ


 0

α

 =

 uρ

uσ

 . (3.19)

As a result of Eq. (3.19) and taking into account that u ̸= 0 (as we

consider the points (uρ, uσ) where (uρ, uσ) ̸= (0, 0) ), α = uρ, and

−λα = −λuρ = uσ, therefore we conclude that λ = −ρ−1σ.

Example 3.2.2. In what follows we give examples for the proposition (3.2.1),
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we first consider the phase space Z15 ×Z15.

(1) L (2, 2) = L (1, 1), and L (5, 5) ⊂ L (1, 1).

(2) The number of points on the line L (5, 5) = 15
G(5,5,15)

= 3.

(3) The number of maximal lines is ψ(15) = 24.

(4) The line L (3, 3) = {(0, 0), (3, 3), (6, 6), (9, 9), (12, 12)}. It is clear that

the points (γ, δ) ∈ L (3, 3) are such that γ, δ ∈ (15/5)Z5. Similarly,

the line L (5, 5) consists of the points (γ, δ) such that γ, δ ∈ (15/3)Z3.

(5) The number of sublines with 3 points is ψ(3) = 4, and The number of

sublines with 5 points is ψ(5) = 6.

(6) The two lines L (6, 5) and L (3, 1) have the subline L (0, 5) in common,

where L (0, 5) = {(0, 0), (0, 5), (0, 10)}

(7) The two lines L (0, 1) and g(10, 12|12, 10)L (0, 1) = L (12, 10) have 15

points each.

Next, we consider the phase space Z3 × Z3. The lines L (0, 1),L (1, 0) =

g(0, 1| − 1, 0)L (0, 1),L (1, 2) = g(0, 1| − 1,−1)L (0, 1),L (1, 1) = g(0, 1| −

1,−2)L (0, 1) form the set of all maximal lines.

The number of maximal lines in Zd × Zd is ψ(d). When d is prime all

maximal lines intersect only at the origin and these lines have ψ(d)(d− 1) =

d2−1 points apart from the origin (exactly the same as the number of points

apart from the origin in Zd × Zd). In the case that d is not prime, the

maximal lines in Zd × Zd have a total number of ψ(d)(d − 1) (> d2 − 1)
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points apart from the origin as two lines may have more than one point in

common. To measure the deviation between the geometry Zd × Zd and the

near-linear geometry, we present the redundancy parameter R such that

R =
ψ(d)(d− 1)

d2 − 1
− 1 =

ψ(d)

d+ 1
− 1. (3.20)

It is clear that when d is prime, Zd ×Zd is a field and R = 0.

3.3 Factorization of lines in Zd ×Zd

In this section we present the bijective map between the phase space Zd×Zd

and the phase space [Zp1 ×Zp2 ]× [Zp1 ×Zp2 ], where d = p1p2 and p1, p2 are

prime numbers,

Zd ×Zd ↔ [Zp1 ×Zp2 ]× [Zp1 ×Zp2 ]. (3.21)

In chapter (2) we introduced two one-to-one mappings based on the Chinese

remainder theorem

k ↔ (k1, k2),

kn = k (mod pn),

k =
n=1∑
n=0

knsn (mod d) (3.22)
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and its dual

k ↔ (k̃1, k̃2),

k̃n = ktn = kntn (mod pn),

k =
n=1∑
n=0

k̃nrn (mod d) (3.23)

where

rn =
d

pn
; tnrn = 1 (mod pn); sn = tnrn (mod d) . (3.24)

We map the point (α, β) in Zd × Zd to the two points (α1, β̃1) and (α2, β̃2)

in Zp1 ×Zp1 and Zp2 ×Zp2 , respectively,

(α, β) ↔ ((α1, α2), (β̃1, β̃2)). (3.25)

We use the map of Eq. (3.22) for α↔ (α1, α2) and its dual of Eq. (3.23) for

β ↔ (β̃1, β̃2).

Consider the point (uρ, uσ) on the line L (ρ, σ). Using the map of Eq. (3.22)

we find

uρ↔ ((uρ)1, (uρ)2), (3.26)

but

(uρ)j = (uρ) (mod pj) = [u (mod pj)][ρ (mod pj)] = ujρj. (3.27)
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Using the map of Eq. (3.23) we get

uσ ↔ ( ˜(uσ)1,
˜(uσ)2), (3.28)

and since

˜(uσ)j = (uσ)tj (mod pj) = [u (mod pj)][σtj (mod pj)] = ujσ̃j, (3.29)

then using Eqs. (3.27,3.29) we prove that there is a mapping between the

line L (ρ, σ) in Zd ×Zd and the lines L (ρ1, σ̃1),L (ρ2, σ̃2) in Zp1 ×Zp1 and

Zp2 ×Zp2 , respectively.

L (ρ, σ) = L (1)(ρ1, σ̃1)× L (2)(ρ2, σ̃2), (3.30)

where L (j)(ρj, σ̃j) is the component line in Zpj ×Zpj .

When L (1)(ρ1, σ̃1) ̸= (0, 0) and L (2)(ρ2, σ̃2) ̸= (0, 0), the two lines L (1)(ρ1, σ̃1)

and L (2)(ρ2, σ̃2) have p1 and p2 points, respectively, therefore the line L (ρ, σ)

has p1p2 points. As an example, the line L (1, 5) in Z6 × Z6 can be written

as

L (1, 5) = L (1)(1, 1)× L (2)(1, 1), (3.31)

where the line L (1)(1, 1) in Z2 × Z2 has 2 points and the line L (2)(1, 1) in

Z3 × Z3 has 3 points, correspondingly the line L (1, 5) in Z6 × Z6 has 6

points. The following proposition shows a construction of all maximal lines

in Zd ×Zd and the role of symplectic transformation in this construction.

Proposition 3.3.1.
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(1) The set of all maximal lines in Zd ×Zd is given by

L1 = L (1)(0, 1)× L (2)(0, 1)

L2+λ2 = L (1)(0, 1)× [g(2)(0, 1| − 1,−λ2)L (2)(0, 1)]

L2+p2+λ1 = [g(1)(0, 1| − 1,−λ1)L (1)(0, 1)]× L (2)(0, 1)

L2+p1+p2+λ2+λ1p2 = [g(1)(0, 1| − 1,−λ1)L (1)(0, 1)]× [g(2)(0, 1| − 1,−λ2)L (2)(0, 1)],

(3.32)

where d = p1p2, p1, p2 are prime numbers, λ1 ∈ Zp1 , λ2 ∈ Zp2.

(2) These set of maximal lines, can also be derived using the symplectic

transformations in Zd×Zd acting on the line L (0, 1), as shown below

L2+λ2 = g(s1, t2s2| − p1, s1 − λ2s2)L1

L2+p2+λ1 = g(s2, t1s1| − p2, s2 − λ1s1)L1

L2+p1+p2+λ2+λ1p2 = g(0,Γ| − p1 − p2,−λ1s1 − λ2s2)L1, (3.33)

where Γ = t21p2 + t22p1.

(3) Acting on any maximal line L (ρ, σ) with the matrices g(κ, λ|µ, ν), we

obtain the remaining maximal lines.

Proof. (1) Eq. (3.11) in proposition (3.2.1) shows that L (1)(0, 1), g(1)(0, 1|−

1,−λ1)L (1)(0, 1) is the set of all maximal lines inZp1×Zp1 and L (2)(0, 1),

g(2)(0, 1|−1,−λ2)L (2)(0, 1) is the set of all maximal lines in Zp2 ×Zp2 .

Therefore, each line of Eqs. (3.32) has exactly d = p1p2 points. The

mapping in Eqs. (3.32) is one-to-one, therefore the lines of these Eqs.
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are different from each other. The cardinality of this set of lines is

ψ(p1)ψ(p2) = ψ(d). Since the number of maximal lines in Zd × Zd is

ψ(d) (proposition (3.2.1)) then Eqs. (3.32) give all maximal lines in

Zd ×Zd.

(2) We first prove that

g(κ, λ|µ, ν) ↔ g(1)(κ1, λ1r1|µ̃1, ν1) , g
(2)(κ2, λ2r2|µ̃2, ν2), (3.34)

where κjνj − λjrjµ̃j = 1 (mod pj).

Acting on the line L (ρ, σ) in Zd×Zd with the symplectic transforma-

tion g(κ, λ|µ, ν) we get

g(κ, λ|µ, ν)L (ρ, σ) = L (κρ+ λσ, µρ+ νσ). (3.35)

According to the map of Eq. (3.22) (κρ + λσ) is mapped to (κ1ρ1 +

λ1σ1), (κ2ρ2 + λ2σ2) in Zp1 ,Zp2 respectively, and according to the map

of Eq. (3.23) (µρ+ νσ) is mapped to (µ1ρ1+ ν1σ1)t1, (µ2ρ2+ ν2σ2)t2 in

Zp1 ,Zp2 respectively. Since tjrj = 1 (mod pj) and σ̃j = σjtj then the

line L (κρ+ λσ, µρ+ νσ) can be written as

L (κρ+λσ, µρ+νσ) = L (κ1ρ1+λ1r1σ̃1, µ̃1ρ1+ν1σ̃1)×L (κ2ρ2+λ2r2σ̃2, µ̃2ρ2+ν2σ̃2).

(3.36)

Acting on the line L (1)(ρ1, σ̃1) in Zp1 ×Zp1 with the symplectic trans-
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formation g(1)(κ1, λ1r1|µ̃1, ν1) we get

g(1)(κ1, λ1r1|µ̃1, ν1)L
(1)(ρ1, σ̃1) = L (1)(κ1ρ1 + λ1r1σ̃1, µ̃1ρ1 + ν1σ̃1),

(3.37)

similarly,

g(2)(κ2, λ2r2|µ̃2, ν2)L
(2)(ρ2, σ̃2) = L (2)(κ2ρ2 + λ2r2σ̃2, µ̃2ρ2 + ν2σ̃2).

(3.38)

Eqs. (3.36, 3.37, 3.38) prove Eq. (3.34).

Since κ, ν, λ, µ obey the constraint

κν − λµ = 1 (mod d), (3.39)

and

(κν − λµ) (mod pj) = (κν − λµ)j

= [κ (mod pj)][ν (mod pj)]− [λ (mod pj)][µ (mod pj)]

= κjνj − λjµj, (3.40)

therefore

κjνj − λjµj = 1 (mod pj). (3.41)

Using the fact that tjrj = 1 (mod pj), we get

κjνj − λjrjµ̃j = 1 (mod pj). (3.42)
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Eqs. (3.22, 3.23, 3.34) show that

g(s1, t2s2| − p1, s1 − λ2s2) ↔ g(1)(1, 0|0, 1), g(2)(0, 1| − 1,−λ2),

g(s2, t1s1| − p2, s2 − λ1s1) ↔ g(1)(0, 1| − 1,−λ1), g(2)(1, 0|0, 1),

g(0, t21p2 + t22p1| − p1 − p2, λ1s1 − λ2s2) ↔ g(1)(0, 1| − 1,−λ1), g(2)(0, 1| − 1,−λ2).

(3.43)

Eqs. (3.32,3.43) show that the lines of Eqs. (3.32) are the same as the

lines of Eqs. (3.33).

(3) The line L (ρ, σ̃) can be obtained from the line L1 = L (0, 1) using

one of the symplectic matrices of Eqs. (3.33), i.e.

L (ρ, σ̃) = g1L1. (3.44)

Similarly, any other arbitrary line L (γ, δ̃) can be obtained from the

line L1

L (γ, δ̃) = g2L1. (3.45)

Since g1 is invertible, then

L (γ, δ̃) = g2g
−1
1 L (ρ, σ̃) = g3L (ρ, σ̃), (3.46)

where g3 ∈ Sp(2,Zd). Eq. (3.46) shows that, acting on an arbitrary

line with the symplectic transformations, we get the remaining lines.

Table (3.1) shows the set of all maximal lines in Z15 × Z15 and their

58



3.3 Factorization of lines in Zd ×Zd

component lines in Z3 ×Z3 and Z5 ×Z5, correspondingly. Also, Table (3.2)

shows the set of all maximal lines in Z21 ×Z21 and their component lines in

Z3 ×Z3 and Z7 ×Z7, correspondingly.

Table 3.1: The maximal lines L (ρ, σ) in Z15×Z15 and their component lines
L (1)(ρ1, σ̃1) and L (2)(ρ2, σ̃2) in Z3×Z3 and Z5×Z5, respectively, according
to Eqs.(3.32,3.33). We stress that L (1)(ρ1, σ̃1) = L (1)(λ1ρ1, λ1σ̃1) where λ1
is invertible element in Z3, and similarly L (2)(ρ2, σ̃2) = L (2)(λ2ρ2, λ2σ̃2)
where λ2 is invertible element in Z5.

L (ρ, σ) g(κ, λ|µ, ν)L1 L (1)(ρ1, σ̃1) L (2)(ρ2, σ̃2)

L1 = L (0, 1) L1 L (1)(0, 1) L (2)(0, 1)

L2 = L (6, 5) g(10, 12|12, 10)L1 L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L3 = L (3, 1) g(10, 12|12, 4)L1 L (1)(0, 1) L (2)(1, 4) = g(0, 1| − 1,−1)L (2)(0, 1)

L4 = L (3, 7) g(10, 12|12, 13)L1 L (1)(0, 1) L (2)(1, 3) = g(0, 1| − 1,−2)L (2)(0, 1)

L5 = L (6, 11) g(10, 12|12, 7)L1 L (1)(0, 1) L (2)(1, 2) = g(0, 1| − 1,−3)L (2)(0, 1)

L6 = L (3, 4) g(10, 12|12, 1)L1 L (1)(0, 1) L (2)(1, 1) = g(0, 1| − 1,−4)L (2)(0, 1)

L7 = L (10, 3) g(6, 5|10, 6)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(0, 1)

L8 = L (10, 13) g(6, 5|10, 11)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1) L (2)(0, 1)

L9 = L (5, 4) g(6, 5|10, 1)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1) L (2)(0, 1)

L10 = L (1, 0) g(0, 2|7, 0)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L11 = L (1, 12) g(0, 2|7, 9)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 4) = g(0, 1| − 1,−1)L (2)(0, 1)

L12 = L (1, 9) g(0, 2|7, 3)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 3) = g(0, 1| − 1,−2)L (2)(0, 1)

L13 = L (1, 6) g(0, 2|7, 12)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 2) = g(0, 1| − 1,−3)L (2)(0, 1)

L14 = L (1, 3) g(0, 2|7, 6)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 1) = g(0, 1| − 1,−4)L (2)(0, 1)

L15 = L (1, 10) g(0, 2|7, 5)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L16 = L (1, 7) g(0, 2|7, 14)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 4) = g(0, 1| − 1,−1)L (2)(0, 1)

L17 = L (1, 4) g(0, 2|7, 8)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 3) = g(0, 1| − 1,−2)L (2)(0, 1)

L18 = L (1, 1) g(0, 2|7, 2)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 2) = g(0, 1| − 1,−3)L (2)(0, 1)

L19 = L (1, 13) g(0, 2|7, 11)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 1) = g(0, 1| − 1,−4)L (2)(0, 1)

L20 = L (1, 5) g(0, 2|7, 10)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L21 = L (1, 2) g(0, 2|7, 4)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 4) = g(0, 1| − 1,−1)L (2)(0, 1)

L22 = L (1, 14) g(0, 2|7, 13)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 3) = g(0, 1| − 1,−2)L (2)(0, 1)

L23 = L (1, 11) g(0, 2|7, 7)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 2) = g(0, 1| − 1,−3)L (2)(0, 1)

L24 = L (1, 8) g(0, 2|7, 1)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 1) = g(0, 1| − 1,−4)L (2)(0, 1)

We mentioned earlier that when the geometry is not near-linear two lines

might have more than one point in common. The following proposition

explains the relation between the number of common points between two

lines in Zd×Zd and their first and second component lines in Zp1 ×Zp1 and
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Table 3.2: The maximal lines L (ρ, σ) in Z21×Z21 and their component lines
L (1)(ρ1, σ̃1) and L (2)(ρ2, σ̃2) in Z3×Z3 and Z7×Z7, respectively, according
to Eqs.(3.32,3.33). We stress that L (1)(ρ1, σ̃1) = L (1)(λ1ρ1, λ1σ̃1) where λ1
is invertible element in Z3, and similarly L (2)(ρ2, σ̃2) = L (2)(λ2ρ2, λ2σ̃2)
where λ2 is invertible element in Z7.

L (ρ, σ) g(κ, λ|µ, ν)L1 L (1)(ρ1, σ̃1) L (2)(ρ2, σ̃2)

L1 = L (0, 1) L1 L (1)(0, 1) L (2)(0, 1)

L2 = L (15, 7) g(7, 12|18, 7)L1 L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L3 = L (15, 4) g(7, 12|18, 13)L1 L (1)(0, 1) L (2)(1, 6) = g(0, 1| − 1,−1)L (2)(0, 1)

L4 = L (15, 1) g(7, 12|18, 19)L1 L (1)(0, 1) L (2)(1, 5) = g(0, 1| − 1,−2)L (2)(0, 1)

L5 = L (15, 19) g(7, 12|18, 4)L1 L (1)(0, 1) L (2)(1, 4) = g(0, 1| − 1,−3)L (2)(0, 1)

L6 = L (15, 16) g(7, 12|18, 10)L1 L (1)(0, 1) L (2)(1, 3) = g(0, 1| − 1,−4)L (2)(0, 1)

L7 = L (15, 13) g(7, 12|18, 16)L1 L (1)(0, 1) L (2)(1, 2) = g(0, 1| − 1,−5)L (2)(0, 1)

L8 = L (15, 10) g(7, 12|18, 1)L1 L (1)(0, 1) L (2)(1, 1) = g(0, 1| − 1,−6)L (2)(0, 1)

L9 = L (7, 3) g(15, 7|14, 15)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(0, 1)

L10 = L (7, 17) g(15, 7|14, 8)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1) L (2)(0, 1)

L11 = L (7, 10) g(15, 7|14, 1)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1) L (2)(0, 1)

L12 = L (1, 0) g(0, 19|11, 0)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L13 = L (1, 18) g(0, 19|11, 6)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 6) = g(0, 1| − 1,−1)L (2)(0, 1)

L14 = L (1, 15) g(0, 19|11, 12)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 5) = g(0, 1| − 1,−2)L (2)(0, 1)

L15 = L (1, 12) g(0, 19|11, 18)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 4) = g(0, 1| − 1,−3)L (2)(0, 1)

L16 = L (1, 9) g(0, 19|11, 3)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 3) = g(0, 1| − 1,−4)L (2)(0, 1)

L17 = L (1, 6) g(0, 19|11, 9)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 2) = g(0, 1| − 1,−5)L (2)(0, 1)

L18 = L (1, 3) g(0, 19|11, 15)L1 L (1)(1, 0) = g(0, 1| − 1, 0)L (1)(0, 1) L (2)(1, 1) = g(0, 1| − 1,−6)L (2)(0, 1)

L19 = L (1, 14) g(0, 19|11, 14)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L20 = L (1, 11) g(0, 19|11, 20)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 6) = g(0, 1| − 1,−1)L (2)(0, 1)

L21 = L (1, 8) g(0, 19|11, 5)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 5) = g(0, 1| − 1,−2)L (2)(0, 1)

L22 = L (1, 5) g(0, 19|11, 11)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 4) = g(0, 1| − 1,−3)L (2)(0, 1)

L23 = L (1, 2) g(0, 19|11, 17)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 3) = g(0, 1| − 1,−4)L (2)(0, 1)

L24 = L (1, 20) g(0, 19|11, 2)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 2) = g(0, 1| − 1,−5)L (2)(0, 1)

L25 = L (1, 17) g(0, 19|11, 8)L1 L (1)(1, 2) = g(0, 1| − 1,−1)L (1)(0, 1)L (2)(1, 1) = g(0, 1| − 1,−6)L (2)(0, 1)

L26 = L (1, 7) g(0, 19|11, 7)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1) L (2)(1, 0) = g(0, 1| − 1, 0)L (2)(0, 1)

L27 = L (1, 4) g(0, 19|11, 13)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 6) = g(0, 1| − 1,−1)L (2)(0, 1)

L28 = L (1, 1) g(0, 19|11, 19)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 5) = g(0, 1| − 1,−2)L (2)(0, 1)

L29 = L (1, 19) g(0, 19|11, 4)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 4) = g(0, 1| − 1,−3)L (2)(0, 1)

L30 = L (1, 16) g(0, 19|11, 10)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 3) = g(0, 1| − 1,−4)L (2)(0, 1)

L31 = L (1, 13) g(0, 19|11, 16)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 2) = g(0, 1| − 1,−5)L (2)(0, 1)

L32 = L (1, 10) g(0, 19|11, 1)L1 L (1)(1, 1) = g(0, 1| − 1,−2)L (1)(0, 1)L (2)(1, 1) = g(0, 1| − 1,−6)L (2)(0, 1)
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3.3 Factorization of lines in Zd ×Zd

Zp2 ×Zp2 , correspondingly.

Proposition 3.3.2. If L (ρ, σ) = L (1)(ρ1, σ̃1)×L (2)(ρ2, σ̃2) and L (ρ′, σ′) =

L (1)(ρ′1, σ̃
′
1)× L (2)(ρ′2, σ̃

′
2) is a pair of two different maximal lines in Zd ×

Zd where d = p1p2, then the number of these such (not ordered) pairs is

ψ(d)[ψ(d)− 1]/2. Moreover the following statements hold:

(1) Two lines have p2 points in common if and only if they have the same

second component line (i.e. ρ2 = λρ′2 and σ̃2 = λσ̃′
2 where λ ∈ Zp2 and

λ ̸= 0). The number of such pairs of lines is p1ψ(d)/2.

(2) Two lines have p1 points in common if and only if they have the same

first component line (i.e. ρ1 = λρ′1 and σ̃1 = λσ̃′
1 where λ ∈ Zp1 and

λ ̸= 0). The number of such pairs of lines is p2ψ(d)/2.

(3) Two lines have only the origin in common if and only if both component

lines in one line differ from their counterparts in the other line. The

number of such pairs of lines is dψ(d)/2.

Proof. Since we have ψ(d) maximal lines in Zd×Zd, then we have ψ(d)[ψ(d)−

1] ordered pairs of maximal lines such that the two lines in each pair are

different from each other. Therefore, we have ψ(d)[ψ(d)− 1]/2 (not ordered)

pairs of maximal lines.

(1) Consider the pairs of maximal lines where the two lines in each pair have

the same second component line L (2)(ρ2, σ̃2). The two lines in each

pair have two different first component lines L (1)(ρ1, σ̃1),L (1)(ρ′1, σ̃
′
1).

The maximal lines L (1)(ρ1, σ̃1),L (1)(ρ′1, σ̃
′
1) in Zp1 × Zp1 have only

the origin in common. Therefore, by combining the origin in Zp1 ×
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3.3 Factorization of lines in Zd ×Zd

Zp1 with the p2 points of the line L (2)(ρ2, σ̃2) in Zp2 × Zp2 we get

p2 points in common between the two lines L (1)(ρ1, σ̃1)× L (2)(ρ2, σ̃2)

and L (1)(ρ′1, σ̃
′
1)× L (2)(ρ2, σ̃2). The number of such pairs is [p1(p1 +

1)][(p2 + 1)]/2 = p1ψ(d)/2.

(2) Regarding the pairs of maximal lines where the two lines in each pair

have the same first component line, the proof is analogous to case (1).

The number of such pairs is [p2(p2 + 1)][(p1 + 1)]/2 = p2ψ(d)/2.

(3) When both component lines are different, the two maximal lines L (1)(ρ1, σ̃1),

L (1)(ρ′1, σ̃
′
1) in Zp1 ×Zp1 have only the origin in common, also the two

maximal lines L (2)(ρ2, σ̃2),L (2)(ρ′2, σ̃
′
2) in Zp2 ×Zp2 have only the ori-

gin in common. Therefore the two lines in these pairs have only the

origin in common. We have p1p2ψ(d)/2 = dψ(d)/2 of such pairs.

The three statements mentioned above have described all cases of lines in

Zd ×Zd, therefore the inverse of these statements hold.

Example 3.3.3. In the phase space Z15 × Z15, the two lines L (0, 1) =

L (1)(0, 1)×L (2)(0, 1) and L (10, 13) = L (1)(1, 2)×L (2)(0, 1) have 5 points

in common, the two lines L (0, 1) = L (1)(0, 1) × L (2)(0, 1) and L (6, 5) =

L (1)(0, 1)×L (2)(1, 0) have 3 points in common, and the two lines L (6, 5) =

L (1)(0, 1)×L (2)(1, 0) and L (10, 13) = L (1)(1, 2)×L (2)(0, 1) have only the

origin in common.

For the purpose of showing the duality between the lines in Zd × Zd

(where d = p1p2; p1, p2 are prime numbers such that p1 < p2) and the weak

mutually unbiased bases in Hd, we introduce the following notation for the
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3.3 Factorization of lines in Zd ×Zd

set of maximal lines in Zpj ×Zpj ; j = 1, 2.

L (j)
−1 = L (0, 1)

L (j)
λ = g(0, 1| − 1,−λ)L (0, 1), (3.47)

where λ = 0, ..., pj − 1. The lines L (j)
k in this set are defined such that

k = −1, ..., pj − 1 (i.e. k ∈ Zpj+1). Let S be the set of maximal lines in

Zd ×Zd and Sn be the subsets of this set such that

Sn = {L (1)
m × L (2)

m+n|m ∈ Zp1+1}; n ∈ Zp2+1 (3.48)

We note that S = {S0 ∪ ... ∪ Sp2}, and the cardinality of Sn is p1 + 1. The

lines in the same subset Sn have only the origin in common, however lines

in two different subsets Sn, Sm might have more than one point in common.

Table (3.3) shows an example of the subsets Sj in Z15 ×Z15 and table (3.4)

shows an example of the subsets Sj in Z21 ×Z21.

Table 3.3: The subsets Sj of the maximal lines in Z15×Z15. The lines in the
same column (i.e., in the same subset Sj) have only the origin in common.

S0 S1 S2 S3 S4 S5

L1 L2 L3 L4 L5 L6

L10 L11 L12 L9 L8 L7

L16 L17 L18 L13 L14 L15

L22 L23 L24 L19 L20 L21
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Table 3.4: The subsets Sj of the maximal lines in Z21×Z21. The lines in the
same column (i.e., in the same subset Sj) have only the origin in common.

S0 S1 S2 S3 S4 S5 S6 S7

L1 L2 L3 L4 L5 L6 L7 L8

L12 L13 L14 L15 L16 L11 L10 L9

L20 L21 L22 L23 L24 L17 L18 L19

L28 L29 L30 L31 L32 L25 L26 L27

3.4 Summary

We have considered the lines in Zd×Zd. We discussed the properties of these

lines in details. We presented the concept of factorizing a line in Zd × Zd

where d = p1p2; p1, p2 are prime numbers, into two lines in Zp1 × Zp1 and

Zp2 × Zp2 . It is straightforward to generalize this concept for d = p1p2...pn.

For example if d = p1p2p3, a line in Zd×Zd can be factorized into three lines

in Zp1 × Zp1 , Zp2 × Zp2 , and Zp3 × Zp3 . In this case two lines in Zd × Zd

might have 1 or p1 or p2 or p3 or p1p2 or p1p3 or p2p3 points in common. In

chapter (4) we use the properties of lines discussed in this chapter to show

that there is a duality between the lines in Zd × Zd and the weak mutually

unbiased bases in Hd.
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Chapter 4

Weak mutually unbiased bases

In chapter (3), we have studied the finite geometry of the Zd × Zd phase

space. Motivated by the properties of this geometry, we introduce a weaker

concept than mutually unbiased bases in the d-dimensional quantum systems

associated with this geometry, and we call it weak mutually unbiased bases.

Weak mutually unbiased bases is a generalization of mutually unbiased bases

in the sense that when d is a prime number, weak mutually unbiased bases are

nothing but mutually unbiased bases. We present an explicit construction

for a complete set of weak mutually unbiased bases where d is odd and

d = p1p2; p1, p2 are prime numbers. The generalization of this construction

for quantum systems with d = p1p2...pn is possible but lengthy. A complete

set of (d+ 1) mutually unbiased bases is sufficient for quantum tomography,

however the existence of such sets have been proved only for power of prime

dimensional systems (d = pn). Like mutually unbiased bases, we prove that

the proposed construction of weak mutually unbiased bases for systems with

composite dimensions is tomographically complete. We show explicitly that
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there is a duality between weak mutually unbiased bases in Hd and the

maximal lines in the associated geometry Zd×Zd phase space. This chapter

ends with presenting weak mutually unbiased bases as a complex projective

1-design with the angle set {0, 1/p1, 1/p2, 1/d}.

4.1 Introduction

Mutually unbiased bases play an important role in the context of finite quan-

tum systems [63, 64, 65, 66, 67, 68]. In chapter (2) we have shown that the

absolute value of the overlap of any two vectors belonging to two different

mutually unbiased bases is 1√
d
, and the maximum number of mutually unbi-

ased bases is d + 1, where d is the system dimension. One can construct a

complete set of mutually unbiased bases (a set that contains the maximum

number of such bases) if d is power of prime number. Currently, there is a lot

of work on the construction of the complete set of mutually unbiased bases in

systems with composite dimensions (other than power of prime dimensions)

[58]. In this chapter, we introduce the concept of weak mutually unbiased

bases where the absolute value of the overlap of any two vectors that belong

to two different weak mutually unbiased bases is 1√
d
, or alternatively one of

the values 0, 1√
pi
where pi is a divisor of d (apart from 1, d). We present a con-

struction of complete set of ψ(d) weak mutually unbiased bases for systems

with dimensions d where d is odd and d = p1p2; p1, p2 are prime numbers.

This construction is based on factorizing the system with dimension d into

two component systems with dimensions p1 and p2, respectively [20], then we

combine the (p1 + 1) mutually unbiased bases in the first component system
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with the (p2 + 1) mutually unbiased bases in the second component system

to get (p1 + 1)(p2 + 1) = ψ(d) weak mutually unbiased bases. We show that

this construction is tomographically complete in the sense that the proba-

bilities (from quantum tomography experiments) related to Von Neumann

measurements using the bases of this construction can be used to calculate

an arbitrary density matrix through inverse Radon transform.

’Symmetric informationally complete positive operator valued measures

(SIC-POVM)’ [69, 70, 71, 72] is relevant to our context of tomographical

completeness, however SIC-POVM uses none-orthogonal bases. We note

that another methodologies which are based on designs [73, 74] are used for

quantum tomography [75, 76] as well as other quantum mechanical problems

[74, 77, 78].

The concept of weak mutually unbiased bases modifies appropriately the

concept of mutually unbiased bases and makes it suitable for the geometry of

the phase space Zd ×Zd. We emphasize the intimate relation between weak

mutually unbiased bases and lines in Zd × Zd by illustrating the duality

between them.

In the view of designs we show the contrast between mutually unbiased

bases and weak mutually unbiased bases as mutually unbiased bases are

complex projective 2-design while weak mutually unbiased bases are complex

projective 1-design.
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4.2 Factorization

4.2 Factorization

Here we consider the systems with dimensions d = p1...pN where pi, pj are

coprime. Again we use the two one-to-one mapping introduced by Good [6]

k ↔ (k1, ..., kN); kn = k (mod pn); k =
∑
n

knsn (mod d) (4.1)

and

k ↔ (k̃1, ..., k̃N); k̃n = ktn = kntn (mod pn); k =
∑
n

k̃nrn (mod d), (4.2)

where

rn =
d

pn
; tnrn = 1 (mod pn); sn = tnrn (mod d). (4.3)

In chapter (2) we have shown that there is a one-to-one map between the

position states and the momentum states in Hd, and the position states and

the momentum states in Hp1 , ...,HpN , as follows

|X; k⟩ ↔ |X(1); k̃1⟩ ⊗ ...⊗ |X(N); k̃N⟩,

|P ; k⟩ ↔ |P (1); k1⟩ ⊗ ...⊗ |P (N); kN⟩. (4.4)

We also have shown the relation between the displacement operator in Hd

and the displacement operators in Hp1 , ...,HpN ,

D(α, β) =
⊗
j

D (j)(αj, β̃j). (4.5)
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In proposition (4.2.1) we explain that the symplectic transformation S(κ, λ|µ, ν)

in Hd where κ, λ, µ, ν ∈ Zd is the tensor product of the symplectic trans-

formations S(κj, λjrj|µ̃j, νj) in Hpj where κj, λj, µ̃j, νj ∈ Zpj and rj = d
pj
.

The parameters κ, λ, ν ∈ Zd are related to their corresponding parameters

κj, λj, νj ∈ Zpj through the map of Eq. (4.1), and the parameter µ ∈ Zd

is related to its corresponding parameter µ̃j ∈ Zpj through the map of Eq.

(4.2).

Proposition 4.2.1.

S(κ, λ|µ, ν) =
⊗
j

S(j)(κj, λjrj|µ̃j, νj). (4.6)

Where rj =
d
pj
; κj, λj, νj ∈ Zpj are the components of κ, λ, ν ∈ Zd, respec-

tively as stated by the map of Eq. (4.1), and µ̃j ∈ Zpj is the component of

µ ∈ Zd as stated by the map of Eq. (4.2). Furthermore, κj, λjrj, µ̃j, νj satisfy

the relation

κjνj − λjrjµ̃j = 1 (mod pj). (4.7)

Proof. In chapter (2) we have shown that

S(κ, λ|µ, ν)D(α, β)[S(κ, λ|µ, ν)]† = D(αν + βλ, αµ+ βκ). (4.8)

Using the two equations (4.5,4.8) we get

S(κ, λ|µ, ν)D(α, β)[S(κ, λ|µ, ν)]† = D(αν + βλ, αµ+ βκ)

=
⊗
j

D (j)((αν + βλ)j, ˜(αµ+ βκ)j) (4.9)
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In chapter (3)- Proposition (3.3.1) we have proved that

(αν + βλ)j = αjνj + β̃jλjrj

˜(αµ+ βκ)j = αjµ̃j + β̃jκj. (4.10)

Using Eq. (4.9) in conjunction with (4.10) we find

S(κ, λ|µ, ν)D(α, β)[S(κ, λ|µ, ν)]† =
⊗
j

D (j)(αjνj + β̃jλjrj, αjµ̃j + β̃jκj).

(4.11)

But

[⊗
j

S(j)(κj, λjrj|µ̃j, νj)

][⊗
j

D (j)(αj, β̃j)

][⊗
j

S(j)(κj, λjrj|µ̃j, νj)

]†

=
⊗
j

D (j)(αjνj + β̃jλjrj, αjµ̃j + β̃jκj). (4.12)

By comparing Eqs. (4.11,4.12), we prove Eq. (4.6).

We next prove that κjνj − λjrjµ̃j = 1 (mod pj). Since

κν − λµ = 1 (mod d). (4.13)

Then

(κν − λµ)j = 1 (mod pj), (4.14)

where (κν − λµ)j = (κν − λµ) (mod pj) are the components of (κν − λµ) as

stated by the map of Eq. (4.1). Therefore,

κjνj − λjµj = 1 (mod pj). (4.15)
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Since tjrj = 1 (mod pj), then

κjνj − λjrjµ̃j = 1 (mod pj). (4.16)

4.3 Weak mutually unbiased bases

We consider the systems with dimensions d = p1p2, where p1, p2 are odd

prime numbers and p1 < p2.

Definition 4.3.1. Consider a set of ℓ orthonormal bases |Bj;n⟩ in Hd, where

n ∈ Zd and j = 0, ..., ℓ− 1. Let

vjk(n,m) = |⟨Bj;n|Bk;m⟩|; vjk(n,m) = vkj(m,n). (4.17)

Such bases are called weak mutually unbiased bases if for any pair of them

(|Bj;n⟩, |Bk;m⟩; j ̸= k), one of the following three cases occurs :

(1)

vjk(n,m) = p
−1/2
1 ; for the p1d pairs (n,m) ∈ Zd ×Zd such that n = m (mod p2)

vjk(n,m) = 0; for the remaining (n,m) pairs (4.18)
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(2)

vjk(n,m) = p
−1/2
2 ; for the p2d pairs (n,m) ∈ Zd ×Zd such that n = m (mod p1)

vjk(n,m) = 0; for the remaining (n,m) pairs (4.19)

(3)

vjk(n,m) = d−1/2; for all (n,m) ∈ Zd ×Zd (4.20)

In the following theorem, we explain that the complete set of weak mu-

tually unbiased bases is a combination of the mutually unbiased bases in

the first component system and the mutually unbiased bases in the second

component system.

Theorem 4.3.2. Consider the Hilbert space Hd. Let |B(1)
j ; ñ1⟩ be a set of

mutually unbiased bases in Hp1 and |B(2)
j ; ñ2⟩ be a set of mutually unbiased

bases in Hp2.

(1) Any set of weak mutually unbiased bases can be described as |B(1)
j ; ñ1⟩⊗

|B(2)
j ; ñ2⟩. Some of the bases |B(1)

j ; ñ1⟩ with different j may be the same,

in the same way some of the bases |B(2)
j ; ñ2⟩ with different j may be the

same.

(2) The maximum number of the weak mutually unbiased bases is ψ(d). For

a complete set of weak mutually unbiased bases, there are ψ(d)[ψ(d)−

1]/2 sets of values vjk(n,m) of which p1ψ(d)/2 belong to the category of

Eq. (4.18), p2ψ(d)/2 belong to the category of Eq. (4.19), and dψ(d)/2
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belong to the category of Eq. (4.20).

Proof. (1) Consider a set of weak mutually unbiased bases |Bj;n⟩ (in Hd)

according to definition (4.3.1), where j = 0, ..., ℓ− 1. Using the map of

Eq. (4.2), any two orthonormal basis |Bj;n⟩, |Bk;m⟩ can be described

as

|Bj;n⟩ = |B(1)
j ; ñ1⟩ ⊗ |B(2)

j ; ñ2⟩

|Bk;m⟩ = |B(1)
k ; m̃1⟩ ⊗ |B(2)

k ; m̃2⟩, (4.21)

where |B(1)
j ; ñ1⟩, |B(1)

k ; m̃1⟩ are two orthonormal bases inHp1 , and |B(2)
j ; ñ2⟩,

|B(2)
k ; m̃2⟩ are two orthonormal bases in Hp2 . We take into account the

three cases considered in definition (4.3.1). For each case we prove that

the two bases |B(1)
j ; ñ1⟩, |B(1)

k ; m̃1⟩ are either the same or mutually un-

biased in Hp1 . The same holds for the two bases |B(2)
j ; ñ2⟩, |B(2)

k ; m̃2⟩ in

Hp2 .

(a) Taking into consideration the case of Eq. (4.18).

|⟨Bj;n|Bk;m⟩| = p
−1/2
1 for all n,m ∈ Zd such that n = m (mod p2).

(4.22)

In the case that n = m (mod p2),

ñ2 = nt2 (mod p2) = mt2 (mod p2) = m̃2. (4.23)

Moreover, as n,m take all values in Zd such that n = m (mod p2),
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ñ1, m̃1 take all values in Zp1 . Using Eq. (4.22) we find

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩||⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = p
−1/2
1 , (4.24)

but

|⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| ≤ 1, (4.25)

then, multiplying Eq. (4.25) by |⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩| we find

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩||⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| ≤ |⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩|.

(4.26)

Therefore,

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩| ≥ p
−1/2
1 . (4.27)

Since |⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩| ≤ 1, then

p
−1/2
1 ≤ |⟨B(1)

j ; ñ1|B(1)
k ; m̃1⟩| ≤ 1. (4.28)

Since ∑
m̃1∈Zp1

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩|2 = 1. (4.29)

From Eq. (4.28,4.29) follows that

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩| = p
−1/2
1 for all (ñ1, m̃1) ∈ Zp1 ×Zp1 . (4.30)

Therefore, the bases |B(1)
j ; m̃1⟩ form a set of mutually unbiased

bases inHp1 . This case explains that the two bases |B
(2)
j , ñ2⟩, |B(2)

k , m̃2⟩
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are the same basis as |⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = 1; ñ2 = m̃2.

(b) Similar to (a), regarding the case of Eq. (4.19) we find

p
−1/2
2 ≤ |⟨B(2)

j ; ñ2|B(2)
k ; m̃2⟩| ≤ 1, (4.31)

and ∑
m̃2∈Zp2

|⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩|2 = 1. (4.32)

Therefore,

|⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = p
−1/2
2 for all (ñ2, m̃2) ∈ Zp2 ×Zp2 , (4.33)

i.e. the bases |B(2)
j ; ñ2⟩ are mutually unbiased bases in Hp2 . Since

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩| = 1; ñ1 = m̃1, therefore |B(1)
j , ñ1⟩, |B(1)

k , m̃1⟩

are the same basis.

(c) Taking into consideration the case of Eq. (4.20) we find

|⟨Bj;n|Bk;m⟩| = d−1/2 for all (n,m) ∈ Zd ×Zd. (4.34)

Using the map of Eq. (4.2), Eq. (4.34) can be written as

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩||⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = d−1/2, (4.35)

First we prove that |⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = p
−1/2
2 for all ñ2, m̃2 ∈

Zp2 . We choose the vectors |Bk;m′⟩ in the k-basis such that m =

m′ (mod p1). Then m̃′
2 takes all values in Zp2 , and m̃1 = m̃′

1.
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Therefore,

|⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩||⟨B(2)
j ; ñ2|B(2)

k ; m̃′
2⟩| = d−1/2. (4.36)

Comparing Eq. (4.35,4.36) we conclude that |⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| =

|⟨B(2)
j ; ñ2|B(2)

k ; m̃′
2⟩|, i.e. |⟨B

(2)
j ; ñ2|B(2)

k ; m̃2⟩| is constant for all m̃2 ∈

Zp2 . But ∑
m̃2∈Zp2

|⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩|2 = 1. (4.37)

Therefore, |⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = p
−1/2
2 for all m̃2 ∈ Zp2 . This is

also valid for any ñ2 ∈ Zp2 , and hence |⟨B(2)
j ; ñ2|B(2)

k ; m̃2⟩| = p
−1/2
2

for all ñ2, m̃2 ∈ Zp2 . Similarly |⟨B(1)
j ; ñ1|B(1)

k ; m̃1⟩| = p
−1/2
1 for all

ñ1, m̃1 ∈ Zp1 , therefore the bases |B(1)
j ; ñ1⟩ are mutually unbiased

in Hp1 , and the bases |B(2)
j ; ñ2⟩ are mutually unbiased in Hp2 .

(2) Since the maximum number of mutually unbiased bases in Hp1 and

Hp2 are p1+1 and p2+1, correspondingly, then the maximum number

of weak mutually unbiased bases in Hd is (p1 + 1)(p2 + 1) = ψ(d).

Therefore, the number of the sets of values vjk(n,m) defined in Eq.

(4.17) ; j ̸= k and 1 ≤ j, k ≤ ψ(d) is ψ(d)[ψ(d)− 1]/2. Any two bases

corresponding to the first category of the weak mutually unbiased bases

(Eq. (4.18)) can be written as

|Bj;n⟩ = |B(1)
j ; ñ1⟩ ⊗ |B(2)

j ; ñ2⟩

|Bk;m⟩ = |B(1)
k ; m̃1⟩ ⊗ |B(2)

k ; m̃2⟩, (4.38)
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where |B(2)
j ; ñ2⟩, |B(2)

k ; m̃2⟩ are the same basis inHp2 , and |B(1)
j ; ñ1⟩, |B(1)

k ; m̃1⟩

are two mutually unbiased bases in Hp1 . In the complete set of weak

mutually unbiased bases, there are (p1+1)2−(p1+1) pairs of |B(1)
j ; ñ1⟩, |B(1)

k ; m̃1⟩; j ̸=

k. Multiplying this number with (p2+1) (the maximum number of mu-

tually unbiased bases in Hp2), and taking into account that vjk(n,m) =

vkj(m,n) we get p1(p1+1)(p2+1)/2 = p1ψ(d)/2 of the values vjk(n,m)

that belong to the first category of Eq. (4.18). Similarly we prove that

there are p2ψ(d)/2 of the values vjk(n,m) that belong to the second

category of Eq. (4.19). Since the total number of the values vjk(n,m)

is ψ(d)[ψ(d) − 1]/2, therefore the number of the values vjk(n,m) that

belong to the third category of Eq. (4.20) is dψ(d)/2.

We note that the two bases corresponding to any pair that belongs to the

third category of Eq. (4.20) are mutually unbiased, however, in general, the

two bases corresponding to any pair are not necessarily mutually unbiased.

4.4 Constructing Weak mutually unbiased bases

In this section we present an explicit construction of weak mutually unbi-

ased bases in Hd; d = p1p2 and p1, p2 are prime numbers. We begin with

constructing the mutually unbiased bases in Hp1 and Hp2 . To establish these

constructions we adopt the one introduced in [54]. Then we combine the

mutually unbiased bases in Hp1 and the mutually unbiased bases in Hp2 to

construct weak mutually unbiased bases in Hd. We prove that such construc-

tion satisfy Eqs. (4.18,4.19,4.20).
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4.4.1 Constructing mutually unbiased bases in prime-

dimensional systems

The eigenvectors of the generalized Pauli operators (displacement operators)

Z ,X ,X Z , ...,X Z p−1 (4.39)

form a set of mutually unbiased bases inHp where p is prime number [54]. Be-

low we show that these bases are related to |X;n⟩ through symplectic trans-

formations. In chapter (2) we have presented symplectic transformations in

Hp as the group of the symplectic matrices Sp(2,Zp) with the parameters

κ, λ, µ, ν ∈ Zp such that

κν − λµ = 1 (mod p). (4.40)

Acting with the symplectic transformation S(κ, λ|µ, ν) on X , and Z we get

X
′
= S(κ, λ|µ, ν)X [S(κ, λ|µ, ν)]† = X κZ λΩ(2−1κλ) = D(λ, κ),

Z
′
= S(κ, λ|µ, ν)Z [S(κ, λ|µ, ν)]† = X µZ νΩ(2−1µν) = D(ν, µ). (4.41)

We have proved that

S(κ2, λ2|µ2, ν2)S(κ1, λ1|µ1, ν1) = S(κ, λ|µ, ν), (4.42)
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where  κ1 λ1

µ1 ν1


 κ2 λ2

µ2 ν2

 =

 κ λ

µ ν

 . (4.43)

Since

Z = FX F ′; X −1 = FZ F ′ (4.44)

Then comparing Eqs. (4.41,4.44) we conclude that

F = S(0, 1| − 1, 0). (4.45)

Eq. (4.41) also shows that the operators X Z λ are related to the operator

X through the relation

S(1, λ|0, 1)X [S(1, λ|0, 1)]† = X Z λΩ(2−1λ); λ = 1, ..., p− 1. (4.46)

Using Eq. (4.42) we get

S(1, λ|0, 1)S(1, λ′|0, 1) = S(1, λ+ λ′|0, 1); (4.47)

where λ, λ′ ∈ Zp. Eq. (4.47) shows that the symplectic transformations

S(1, λ|0, 1) form a subgroup of the Sp(2,Zp) group.

Let |X (1, λ|0, 1);n⟩ = S(1, λ|0, 1)|X;n⟩, and |P(1, λ|0, 1);n⟩ = S(1, λ|0, 1)|P ;n⟩.

Therefore, From Eq. (4.39,4.46) follows that the bases

|X;n⟩; |P ;n⟩; |P (1, 1|0, 1);n⟩; ... ; |P (1, p− 1|0, 1);n⟩. (4.48)
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form a set of mutually unbiased bases. Since

|P (1, λ|0, 1);n⟩ = S(1, λ|0, 1)|P ;n⟩ = S(1, λ|0, 1)F |X;n⟩, (4.49)

therefore using Eq. (4.42,4.45) we get

|P (1, λ|0, 1);n⟩ = S(0, 1| − 1,−λ)|X;n⟩ = |X(0, 1| − 1,−λ);n⟩. (4.50)

Therefore, starting with the position states we use the symplectic transfor-

mations S(0, 1| − 1,−λ); λ ∈ Zp to construct the set of mutually unbiased

bases in Hp.

|X;n⟩; |X(0, 1| − 1,−λ);n⟩ λ ∈ Zp. (4.51)

We note that, the above construction can also be used for power of prime

dimensional systems (d = pm), and in this case states have to be labeled with

variables in the Galois field G(pm).

4.4.2 An explicit construction of weak mutually unbi-

ased bases

We consider the systems with dimensions d = p1p2; p1, p2 are prime num-

bers. Using Eq. (4.51), starting from the position states we construct the set

of mutually unbiased bases inHp1 , |X(1); ñ1⟩; |X(1)(0, 1|−1,−λ1); ñ1⟩. Simi-

larly we construct the mutually unbiased bases inHp2 , |X(2); ñ2⟩; |X(2)(0, 1|−

1,−λ2); ñ2⟩. We combine the set of mutually unbiased bases in Hp1 with the

set of mutually unbiased bases in Hp2 to get the following set of bases T in
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Hd.

|B1;n⟩ = |X(1); ñ1⟩ ⊗ |X(2); ñ2⟩

|B2+λ2 ;n⟩ = |X(1); ñ1⟩ ⊗ |X(2)(0, 1| − 1,−λ2); ñ2⟩

|B2+p2+λ1 ;n⟩ = |X(1)(0, 1| − 1,−λ1); ñ1⟩ ⊗ |X(2); ñ2⟩

|B2+p1+p2+λ2+λ1p2 ;n⟩ = |X(1)(0, 1| − 1,−λ1); ñ1⟩ ⊗ |X(2)(0, 1| − 1,−λ2); ñ2⟩,

(4.52)

where n ∈ Zd; ñ1, λ1 ∈ Zp1 ; ñ2, λ2 ∈ Zp2 .

To unify the notation of the mutually unbiased bases in Hpj ; j = 1, 2, let

|B(j)
−1; ñj⟩ = |X(j); ñj⟩

|B(j)
λj
; ñj⟩ = |X(j)(0, 1| − 1,−λj); ñj⟩; nj, λj ∈ Zpj (4.53)

The following proposition proves that the above set is a set of weak mu-

tually unbiased bases.

Proposition 4.4.1. The absolute value of the overlap of any two vectors in

two different bases |Bj;n⟩, |Bk;m⟩ (defined in Eq. (4.52)) where 1 ≤ j, k ≤

ψ(d) is equal to one of the following

(1)

|⟨Bj;n|Bk;m⟩| = p
−1/2
1 ; for the p1d pairs (n,m) ∈ Zd ×Zd such that n = m (mod p2)

|⟨Bj;n|Bk;m⟩| = 0; for the rest (n,m) pairs (4.54)
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(2)

|⟨Bj;n|Bk;m⟩| = p
−1/2
2 ; for the p2d pairs (n,m) ∈ Zd ×Zd such that n = m (mod p1)

|⟨Bj;n|Bk;m⟩| = 0; for the rest (n,m) pairs (4.55)

(3)

|⟨Bj;n|Bk;m⟩| = d−1/2; for all (n,m) ∈ Zd ×Zd (4.56)

Proof.

|Bj;n⟩ = |B(1)
α1
; ñ1⟩ ⊗ |B(2)

α2
; ñ2⟩, (4.57)

where j is related to (α1, α2) through the two Eqs. (4.52,4.53), and n is

related to (ñ1, ñ2) according to the map of Eq. (4.2). Therefore,

|⟨Bj;n|Bk;m⟩| = |⟨B(1)
α1
; ñ1|B(1)

β1
; m̃1⟩||⟨B(2)

α2
; ñ2|B(2)

β2
; m̃2⟩| (4.58)

where −1 ≤ α1, β1 ≤ p1 − 1, and −1 ≤ α2, β2 ≤ p2 − 1. Since

|⟨B(1)
α1
; ñ1|B(1)

α1
; m̃1⟩| = δ(ñ1, m̃1)

|⟨B(1)
α1
; ñ1|B(1)

β1
; m̃1⟩| = p

−1/2
1 ; α1 ̸= β1, (4.59)

and |⟨B(2)
α2 ; ñ2|B(2)

β2
; m̃2⟩| obeys similar relations, therefore we have only three

cases for the absolute value of the overlap of any two vectors in two different

bases |Bj;n⟩, |Bk;m⟩. The first case where the two bases in the first compo-

nent system are different and the two bases in the second component system
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are the same. This case agrees with the results in Eq. (4.54). The second

case where the two bases in the first component system are the same and the

two bases in the second component system are different. This case agrees

with the results in Eq. (4.55). The third case where the two bases in both

component systems are different. This case agrees with the results in Eq.

(4.56).

It is worth noting that the weak mutually unbiased bases construction of

Eq. (4.52) can be Partitioned into p2 + 1 subsets Tu such that

Tu = {|B(1)
j1
; ñ1⟩ ⊗ |B(2)

j1+u
; ñ2⟩ | j1 ∈ Zp1+1}, (4.60)

where u ∈ Zp2+1, and hence the set of weak mutually unbiased bases can be

written as

T = T0 ∪ ... ∪ Tp2 ; (4.61)

such that Tj∩Tk = ∅. The p1+1 bases in each subset are mutually unbiased,

however the bases in different subsets are not necessarily mutually unbiased.

Proposition 4.4.2. The set of weak mutually unbiased bases T of Eq. (4.52)

can be written as

|B1;n⟩ = |X(1, 0|0, 1);n⟩

|B2+λ2 ;n⟩ = |X(s1, t2s2| − p1, s1 − λ2s2);n⟩

|B2+p2+λ1 ;n⟩ = |X(s2, t1s1| − p2,−λ1s1 + s2);n⟩

|B2+p1+p2+λ2+λ1p2 ;n⟩ = |X(0,Γ| − p1 − p2,−λ1s1 − λ2s2);n⟩ (4.62)
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where t1, s1, t2, s2 are defined in Eq. (4.3) and Γ = t21p2 + t22p1.

Proof. Using Eq. (4.6) we get

|B1;n⟩ = |X(1); ñ1⟩ ⊗ |X(2); ñ2⟩ = |X(1, 0|0, 1);n⟩. (4.63)

Also

|B2+λ2 ;n⟩ = |X(1); ñ1⟩ ⊗ |X(2)(0, 1| − 1,−λ2); ñ2⟩

= [I ⊗ S(2)(0, 1| − 1,−λ2)][|X(1); ñ1⟩ ⊗ |X(2); ñ2⟩]

= S(s1, t2s2| − p1, s1 − λ2s2)|X;n⟩ = |X(s1, t2s2| − p1, s1 − λ2s2);n⟩.

(4.64)

In the same way

|B2+p2+λ1 ;n⟩ = |X(1)(0, 1| − 1,−λ1); ñ1⟩ ⊗ |X(2); ñ2⟩

= [S(1)(0, 1| − 1,−λ1)⊗ I][|X(1); ñ1⟩ ⊗ |X(2); ñ2⟩]

= S(s2, t1s1| − p2,−λ1s1 + s2)|X;n⟩ = |X(s2, t1s1| − p2,−λ1s1 + s2);n⟩.

(4.65)

Similarly

|B2+p1+p2+λ2+λ1p2 ;n⟩ = |X(1)(0, 1| − 1,−λ1); ñ1⟩ ⊗ |X(2)(0, 1| − 1,−λ2); ñ2⟩

= [S(1)(0, 1| − 1,−λ1)⊗ S(2)(0, 1| − 1,−λ2)][|X(1); ñ1⟩ ⊗ |X(2); ñ2⟩]

= S(0,Γ| − p1 − p2,−λ1s1 − λ2s2)|X;n⟩

= |X(0,Γ| − p1 − p2,−λ1s1 − λ2s2);n⟩. (4.66)
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From Eqs. (4.63,4.64,4.65,4.66) follows that, only the parameter ν takes

many values. The parameters κ, λ, µ take 4 values each, where κ ∈ {0, 1, s1, s2};λ ∈

{0, t1s1, t2s2,Γ};µ ∈ {0,−p1,−p2,−p1 − p2}. Table (4.1) summarizes these

values.

Table 4.1: Summary of the values of the parameters κ,λ, µ, ν for the con-
struction of the weak mutually unbiased bases of Eq. (4.62), where λj ∈ Zpj
and tj, sj, pj,Γ are constants defined in the text.

κ λ µ ν

1 0 0 1
s1 t2s2 −p1 s1 − λ2s2
s2 t1s1 −p2 −λ1s1 + s2
0 Γ −p1 − p2 −λ1s1 − λ2s2

We give two examples of the construction of weak mutually unbiased

bases in H15 and H21. Table (4.2) shows the set of weak mutually unbiased

bases in H15 and their component bases |B(1)
j ; m̃1⟩ and |B(2)

j ; m̃2⟩ in H3 and

H5, respectively, also table (4.3) shows the set of weak mutually unbiased

bases in H21 and their component bases |B(1)
j ; m̃1⟩ and |B(2)

j ; m̃2⟩ in H3 and

H7, respectively.

4.5 Weak mutually unbiased bases as tomo-

graphically complete set

Using the weak mutually unbiased bases of Eq. (4.52) in tomography experi-

ments results in the probabilities p(β|ν, µ) along all the maximal lines L (ν, µ)
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Table 4.2: The weak mutually unbiased bases in H15 and their compo-
nent bases |B(1)

j ; m̃1⟩ and |B(2)
j ; m̃2⟩ in H3 and H5, respectively, according

to Eq.(4.52).

|Bj;m⟩ |X(κ, λ|µ, ν);m⟩ |B(1)
j ; m̃1⟩ |B(2)

j ; m̃2⟩
|B1;m⟩ |X;m⟩ |X(1); m̃1⟩ |X(2); m̃2⟩
|B2;m⟩ |X(10, 12|12, 10);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B3;m⟩ |X(10, 12|12, 4);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B4;m⟩ |X(10, 12|12, 13);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B5;m⟩ |X(10, 12|12, 7);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B6;m⟩ |X(10, 12|12, 1);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B7;m⟩ |X(6, 5|10, 6);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2); m̃2⟩
|B8;m⟩ |X(6, 5|10, 11);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2); m̃2⟩
|B9;m⟩ |X(6, 5|10, 1);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2); m̃2⟩
|B10;m⟩ |X(0, 2|7, 0);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B11;m⟩ |X(0, 2|7, 9);m⟩ |X(1)(0, 1| − 1, 0); m̃2⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B12;m⟩ |X(0, 2|7, 3);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B13;m⟩ |X(0, 2|7, 12);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B14;m⟩ |X(0, 2|7, 6);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B15;m⟩ |X(0, 2|7, 5);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B16;m⟩ |X(0, 2|7, 14);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B17;m⟩ |X(0, 2|7, 8);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B18;m⟩ |X(0, 2|7, 2);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B19;m⟩ |X(0, 2|7, 11);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B20;m⟩ |X(0, 2|7, 10);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B21;m⟩ |X(0, 2|7, 4);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B22;m⟩ |X(0, 2|7, 13);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B23;m⟩ |X(0, 2|7, 7);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B24;m⟩ |X(0, 2|7, 1);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
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Table 4.3: The weak mutually unbiased bases in H21 and their compo-
nent bases |B(1)

j ; m̃1⟩ and |B(2)
j ; m̃2⟩ in H3 and H7, respectively, according

to Eq.(4.52).

|Bj;m⟩ |X(κ, λ|µ, ν);m⟩ |B(1)
j ; m̃1⟩ |B(2)

j ; m̃2⟩
|B1;m⟩ |X;m⟩ |X(1); m̃1⟩ |X(2); m̃2⟩
|B2;m⟩ |X(7, 12|18, 7);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B3;m⟩ |X(7, 12|18, 13);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B4;m⟩ |X(7, 12|18, 19);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B5;m⟩ |X(7, 12|18, 4);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B6;m⟩ |X(7, 12|18, 10);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B7;m⟩ |X(7, 12|18, 16);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−5); m̃2⟩
|B8;m⟩ |X(7, 12|18, 1);m⟩ |X(1); m̃1⟩ |X(2)(0, 1| − 1,−6); m̃2⟩
|B9;m⟩ |X(15, 7|14, 15);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2); m̃2⟩
|B10;m⟩ |X(15, 7|14, 8);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2); m̃2⟩
|B11;m⟩ |X(15, 7|14, 1);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2); m̃2⟩
|B12;m⟩ |X(0, 19|11, 0);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B13;m⟩ |X(0, 19|11, 6);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B14;m⟩ |X(0, 19|11, 12);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B15;m⟩ |X(0, 19|11, 18);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B16;m⟩ |X(0, 19|11, 3);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B17;m⟩ |X(0, 19|11, 9);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−5); m̃2⟩
|B18;m⟩ |X(0, 19|11, 15);m⟩ |X(1)(0, 1| − 1, 0); m̃1⟩ |X(2)(0, 1| − 1,−6); m̃2⟩
|B19;m⟩ |X(0, 19|11, 14);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B20;m⟩ |X(0, 19|11, 20);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B21;m⟩ |X(0, 19|11, 5);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B22;m⟩ |X(0, 19|11, 11);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B23;m⟩ |X(0, 19|11, 17);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B24;m⟩ |X(0, 19|11, 2);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−5); m̃2⟩
|B25;m⟩ |X(0, 19|11, 8);m⟩ |X(1)(0, 1| − 1,−1); m̃1⟩ |X(2)(0, 1| − 1,−6); m̃2⟩
|B26;m⟩ |X(0, 19|11, 7);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1, 0); m̃2⟩
|B27;m⟩ |X(0, 19|11, 13);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−1); m̃2⟩
|B28;m⟩ |X(0, 19|11, 19);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−2); m̃2⟩
|B29;m⟩ |X(0, 19|11, 4);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−3); m̃2⟩
|B30;m⟩ |X(0, 19|11, 10);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−4); m̃2⟩
|B31;m⟩ |X(0, 19|11, 16);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−5); m̃2⟩
|B32;m⟩ |X(0, 19|11, 1);m⟩ |X(1)(0, 1| − 1,−2); m̃1⟩ |X(2)(0, 1| − 1,−6); m̃2⟩
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4.5 Weak mutually unbiased bases as tomographically complete set

(through the origin) inZd×Zd. Let Π[X(κ, λ|µ, ν);n] = |X(κ, λ|µ, ν);n⟩⟨X(κ, λ|µ, ν);n|

be the projectors corresponding to the weak mutually unbiased bases, there-

fore

p(β|ν, µ) = Tr(D|X(κ, λ|µ, ν); β⟩⟨X(κ, λ|µ, ν); β|), (4.67)

and ∑
β

p(β|ν, µ) = 1. (4.68)

In this section we prove that the probabilities p(β|ν, µ) corresponding to the

weak mutually unbiased bases of Eq. (4.52) in Hd; d = p1p2 can be used to

calculate the density matrix of an arbitrary quantum system with dimension

d, and hence the set of weak mutually unbiased bases is tomographically

complete.

The constraint of Eq. (4.40) leads to the existing condition of the sym-

plectic transformation S(κ, λ|µ, ν)

G(µ, ν, d) = G(κ, µ, d) = G(λ, ν, d) = G(κ, λ, d) = 1 (mod d). (4.69)

as if G(µ, ν, d) = n;n ̸= 1, then κν − λµ = κ(nν ′)− λ(nµ′) = n(κν ′ − λµ′) =

1 (mod d). This would mean that κν ′ − λµ′ is the multiplicative inverse of

n, but this is not possible as the inverse of n does not exist in Zd because n

is a divisor of d. Therefore, G(µ, ν, d) = 1 (mod d). Similarly we can prove

that G(κ, µ, d) = G(λ, ν, d) = G(κ, λ, d) = 1 (mod d).

Now we prove that the values of µ and ν in table (4.1) satisfy the condition

G(µ, ν, d) = 1 (mod d). It is clear that G(0, 1, d) = 1 (mod d). Also,

G(−p1−p2,−λ1s1−λ2s2, d) = 1 (mod d) becauseG(−p1−p2, d) = 1 (mod d).
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4.6 Tomographical completeness

Since s1 = t1r1 = t1p2 and s2 = t2r2 = t2p1, then s1 = 1 (mod p1) and

s2 = 0 (mod p1). Therefore, s1 − λ2s2 = 1 +Mp1 − λ2Np1 = 1 + p1(M −

λ2N); M,N are integers. As a result s1−λ2s2 and p1 are coprime, and hence

G(−p1, s1 − λ2s2, d) = 1 (mod d). Similarly, we can prove that G(−p2, s2 −

λ1s1, d) = 1 (mod d). Therefore, we conclude that all the lines L (ν, µ)

(where ν, µ are defined in table 4.1) in Zd ×Zd are maximal.

The number of probabilities that we get from the tomography experiments

along one maximal line is d−1 (because one of the probabilities is dependent

on the other d−1 probabilities as the total sum of these probabilities is equal

to 1), and hence the total number of probabilities that we get along all the

maximal lines associated with the weak mutually unbiased bases is ψ(d)(d−

1). So we have ψ(d)(d − 1) probabilities for the d2 − 1 degrees of freedom

of the density matrix, therefore we present the redundancy parameter R to

measure the overcompleteness of the weak mutually unbiased bases,

R =
ψ(d)(d− 1)

d2 − 1
− 1 =

ψ(d)

d+ 1
− 1. (4.70)

4.6 Tomographical completeness

In chapter (2) we have shown that applying inverse Radon transform to

the probabilities resulted from the quantum measurements along the lines

L (ν, µ) leads to Weyl function at the points (ρ = αν, σ = αµ), where ρ, σ ∈

Zd

W̃(αν, αµ) =
∑
β

p(β|ν, µ)Ω(αβ). (4.71)
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4.6 Tomographical completeness

Since d = p1p2, then Zd is not a field, and two sets of probabilities according

to two different lines L (ν, µ),L (ν ′, µ′) may lead to the Weyl function at

the same point (ρ = αν = α′ν ′, σ = αµ = α′µ′) (this is where the redun-

dancy comes from). This fact is considered to be an important consistency

constraints for such probabilities, as

W̃(ρ, σ) =
∑
β

p(β|ν, µ)Ω(αβ) =
∑
β

p(β|ν ′, µ′)Ω(α′β). (4.72)

In section (4.7) We will explain these constraints with concrete examples.

Wigner function and the density matrix can be calculated in terms of Weyl

function using Eqs. (4.73,4.74), correspondingly.

W(γ, δ) =
1

d

∑
ρ,σ

W̃(ρ, σ)Ω(γσ − δρ) (4.73)

D =
1

d

∑
α,β

W̃(−α,−β)D(α, β). (4.74)

Here we prove that the set T of Eq. (4.62) is tomographically complete.

Let (ρ, σ) ∈ Zd ×Zd be an arbitrary point then we need to prove that there

are parameters (α, κ, λ, µ, ν) associated with the bases of the set T such that

ρ = αν, σ = αµ, and hence W̃(ρ, σ) can be calculated. We note that the

probabilities do not depend on the parameters κ, λ however we give their

values as they are needed for the symplectic transformations. We consider

five cases. In the first case we consider the points (ρ, σ) with σ = 0. In

the second case we consider the points (ρ, σ) with ρ = 0. In the third case

we consider the points (ρ, σ) where σ ̸= 0 and σ is multiple of p1. In the
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4.6 Tomographical completeness

fourth case we consider the points (ρ, σ) where σ ̸= 0 and σ is multiple of p2.

Finally, in case five we consider the points (ρ, σ) where σ is not a multiple

of p1 or p2. In this sense there is no loss of generality if we consider ρ, σ

to be coprime in the last three cases. Let G(ρ, σ) be the greatest common

divisor of ρ and σ. Then ρ′ = ρ/G(ρ, σ), σ′ = σ/G(ρ, σ) are coprime. if

W̃(ρ′, σ′) can be calculated using the parameters α, κ, λ, µ, ν, then W̃(ρ, σ)

can be calculated using the parameters (G(ρ, σ)α, κ, λ, µ, ν). In what follows

we discuss each case.

(1) Let σ = 0. Then W̃(ρ, 0) can be calculated using Eq. (4.72) with

the projectors corresponding to the states in Eq. (4.63), i.e. using

probabilities along the line L (1, 0) with the parameters

α = ρ; κ = 1; λ = 0; µ = 0; ν = 1. (4.75)

(2) Let ρ = 0. Then W̃(0, σ) can be calculated using Eq. (4.72) with

the projectors corresponding to the states in Eq. (4.66), i.e. using

probabilities along the line L (0,−p1 − p2) with the parameters

α = σ[−p1 − p2]
−1; κ = 0; λ = Γ; µ = −p1 − p2; ν = 0. (4.76)

We note that the used states in this case is the Fourier transform of
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4.6 Tomographical completeness

the states used in case 1 as

F |X(1); ñ1⟩ ⊗ F |X(2); ñ1⟩ = [S(1)(0, 1| − 1, 0)⊗ S(2)(0, 1| − 1, 0)]

× [|X(1); ñ1⟩ ⊗ |X(2); ñ2⟩]

= S(0,Γ| − p1 − p2, 0)|X;n⟩ (4.77)

(3) Let σ = Np1 where N is integer and N is not multiple of p2 (as σ ̸= 0).

We choose α ∈ Zd such that

α = −N +Mp2; M = (ρ+N)p−1
2 (mod p1). (4.78)

Eq. (4.78) guarantees that α is invertible in Zd because it shows that

α = ρ (mod p1). Since ρ is not multiple of p1 (as ρ, σ are coprime), then

α is not multiple of p1. Also α is not multiple of p2 because N is not

multiple of p2, and hence α is invertible element in Zd. These values of

α satisfy the equation σ = αµ; µ = −p1. Therefore, W̃(ρ,Np1); ρ ̸= 0

can be calculated using Eq. (4.72) with the projectors correspond-

ing to the states in Eq. (4.64), i.e. using probabilities along the line

L (ρα−1,−p1) such that

α = −N +Mp2; κ = s1; λ = t2s2; µ = −p1; ν = ρα−1. (4.79)

We also prove that Eq. (4.79) is consistent with Eq. (4.64) because

there exists λ2 ∈ Zp2 that satisfy the equation ν = s1 − λ2s2 =

ρα−1; ν ∈ Zd. Since s1 = 1 (mod p1), s1 = 0 (mod p2), s2 =
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4.6 Tomographical completeness

0 (mod p1), and s1 = 1 (mod p2), then Eqs. (4.64,4.79) show that

ρα−1 = 1 (mod p1); ρα−1 = −λ2 (mod p2). (4.80)

The first equation emphasizes that α = ρ (mod p1) (we have shown

this earlier) and the second equation shows the values that λ2 can take

to satisfy Eq. (4.79).

(4) Let σ = Np2 where N is integer and N is not multiple of p1 (as σ ̸= 0).

Here the proof is similar to case (3). We choose α ∈ Zd such that

α = −N +Mp1; M = (ρ+N)p−1
1 (mod p2). (4.81)

α is invertible in Zd (the proof is similar to case (3)). These values of

α satisfy the equation σ = αµ; µ = −p2. Therefore, W̃(ρ,Np2); ρ ̸= 0

can be calculated using Eq. (4.72) with the projectors correspond-

ing to the states in Eq. (4.65), i.e. using probabilities along the line

L (ρα−1,−p2) such that

α = −N +Mp1; κ = s2; λ = t1s1; µ = −p2; ν = ρα−1. (4.82)

In the same way we prove that Eq. (4.82) is consistent with Eq. (4.65)

and λ1 = −ρα−1 (mod p1).

(5) Let σ is not multiple of p1 or p2. Therefore, σ is invertible element

in Zd. Also −p1 − p2 is invertible element in Zd, then there exists

α = σ(−p1 − p2)
−1 that satisfies the equation σ = α(−p1 − p2). Since
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4.7 Examples

−p1−p2 is invertible element in Zd, then α
−1 = σ−1(−p1−p2), therefore

ν = α−1ρ = ρσ−1(−p1 − p2), and hence W̃(ρ, σ); σ is not multiple

of p1 or p2 can be calculated using Eq. (4.72) with the projectors

corresponding to the states in Eq. (4.66), i.e. using probabilities along

the line L (ρσ−1(−p1 − p2),−p1 − p2) such that

α = σ(−p1−p2)−1; κ = 0; λ = Γ; µ = −p1−p2; ν = ρσ−1(−p1−p2).

(4.83)

Eq. (4.83) is consistent with Eq. (4.66) because there exists λ1 ∈

Zp1 and λ2 ∈ Zp2 that satisfy the equation ν = ρσ−1(−p1 − p2) =

−λ1s1 − λ2s2; ν ∈ Zd. In this case λ1 = [ρσ−1(p1 + p2)](mod p1) and

λ2 = [ρσ−1(p1 + p2)](mod p2).

4.7 Examples

Starting from the probabilities p(β|ν, µ) obtained through quantum tomog-

raphy experiments we reconstruct the density matrix of the quantum system

using Eqs. (4.71,4.74). If the probabilities from quantum tomography ex-

periment do not obey the two constraints of Eq. (4.68) and Eq. (4.72), then

the experiment should be repeated. In these examples we do the measure-

ments on the lines through the origin with the parameters ν, µ shown in table

(4.1), we note that a large number of measurements should be done for each

line. To make sure that the probabilities along these lines satisfy the two

constraints of Eq. (4.68) and Eq. (4.72), we consider a density matrix then

we calculate the probabilities corresponding to the lines L (ν, µ) where ν, µ
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4.7 Examples

are shown in table (4.1). Using inverse Radon transform we calculate Weyl

function then using Eq. (4.74) we construct the original density matrix.

Here we consider d = 15, therefore p1 = 3 and p2 = 5. In the first example

we consider a pure state system with state |ψ⟩ where

|ψ⟩ =
1√
42

[2|X; 0⟩+ (1 + i)|X; 1⟩+ i|X; 3⟩+ (2 + 3i)|X; 6⟩+ |X; 9⟩

+ (1− i)|X; 11⟩+ 3|X; 13⟩+ (3− i)|X; 14⟩]. (4.84)

In the second example we consider a mixed state system with density matrix

D where

D =
3

5
|ψ1⟩⟨ψ1|+

2

5
|ψ2⟩⟨ψ2|

|ψ1⟩ =
1√
80

[(2 + i)|X; 0⟩+ (1 + i)|X; 1⟩+ 2|X; 4⟩+ (5− i)|X; 6⟩+ (3 + 4i)|X; 9⟩

+ (1 + 2i)|X; 11⟩+ (2− 3i)|X; 14⟩]

|ψ2⟩ =
1√
63

[i|X; 0⟩+ (2− i)|X; 1⟩+ (1− 2i)|X; 3⟩+ 4|X; 5⟩+ (2 + 4i)|X; 6⟩

+ (3 + i)|X; 12⟩+ (2i)|X; 13⟩+ (1− i)|X; 14⟩] (4.85)

For each example we get the probabilities p(β|ν, µ) corresponding to the

lines L (ν, µ) using Eq. (4.67). Then we calculate Weyl function, Wigner

function, and the density matrix using Eqs. (4.71,4.73,4.74), respectively.

Since d = 15 then we calculate the probabilities along ψ(15) = 24 lines

so we have a total of 24 × 15 = 360 probabilities in each example. tables

(4.4, 4.5) show a sample of these probabilities for the pure state system and

the mixed state system, correspondingly. These probabilities obey the con-

straint of Eq. (4.68) as the summation of the probabilities along one line
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4.7 Examples

is equal to one. They also obey the constraint of Eq. (4.72) where the

probabilities corresponding to lines which have common points lead to the

same Weyl function at each of these common points. As an example, the lines

L (1, 12),L (1, 7),L (6, 7),L (11, 7) have the points (0, 0), (3, 6), (6, 12), (9, 3), (12, 9)

in common, table (4.6,4.7) show that the probabilities corresponding to these

lines lead to the same values of Weyl function at these common points.

The results of Weyl function and Wigner function for the pure state sys-

tem are shown in figures (4.1,4.2), and the results of Weyl function and

Wigner function for the mixed state system are shown in figures (4.3,4.4).

We calculate the redundancy parameter of Eq. (4.70) in the case that d = 15,

R = ψ(15)
16

− 1 = 0.5.

Table 4.4: A sample of the probabilities p(β|ν, µ) for the pure state of
Eq.(4.84)

ν µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 12 0.023 0.012 0.051 0.073 0.034 0.095 0.037 0.081 0.087 0.055 0.088 0.038 0.264 0.046 0.015
1 7 0.026 0 0.173 0.02 0.071 0.18 0.081 0.219 0.123 0.008 0 0.006 0.005 0.063 0.025
6 7 0.089 0.034 0.068 0.017 0.001 0.092 0.017 0.035 0.007 0.028 0.025 0.035 0.293 0.183 0.075
11 7 0.091 0.042 0.066 0.046 0.066 0.093 0.031 0.107 0.112 0.025 0.023 0.015 0.223 0.049 0.013

Table 4.5: A sample of the probabilities p(β|ν, µ) for the mixed state of
Eq.(4.85)

ν µ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 12 0.16 0.022 0.076 0.261 0.027 0.036 0.109 0.023 0.02 0.071 0.015 0.06 0.047 0.015 0.058
1 7 0.065 0.087 0.061 0.055 0.017 0.106 0.055 0.051 0.135 0.07 0.04 0.048 0.035 0.105 0.069
6 7 0.091 0.063 0.006 0.109 0.03 0.055 0.025 0.026 0.082 0.046 0.065 0.103 0.114 0.104 0.08
11 7 0.081 0.052 0.051 0.142 0.05 0.055 0.059 0.027 0.062 0.087 0.075 0.08 0.069 0.091 0.019
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Table 4.6: A sample of W̃ (ρ, σ) for the pure state of Eq.(4.84). Results for the
common points (0, 0), (3, 6), (6, 12), (9, 3), (12, 9) between the lines L (1, 12),
L (1, 7), L (6, 7), L (11, 7) are presented. It is clear that the constraint of
Eq.(4.72) is satisfied.

ν µ W̃ (0, 0) W̃ (3, 6) W̃ (6, 12) W̃ (9, 3) W̃ (12, 9)

1 12 1 −0.222 + 0.095i 0.238− 0.191i 0.238 + 0.191i −0.222− 0.095i
1 7 1 −0.222 + 0.095i 0.238− 0.191i 0.238 + 0.191i −0.222− 0.095i
6 7 1 −0.222 + 0.095i 0.238− 0.191i 0.238 + 0.191i −0.222− 0.095i
11 7 1 −0.222 + 0.095i 0.238− 0.191i 0.238 + 0.191i −0.222− 0.095i

Table 4.7: A sample of W̃ (ρ, σ) for the mixed state of Eq.(4.85). Results
for the common points (0, 0), (3, 6), (6, 12), (9, 3), (12, 9) between the lines
L (1, 12), L (1, 7), L (6, 7), L (11, 7) are presented. It is clear that the con-
straint of Eq.(4.72) is satisfied.

ν µ W̃ (0, 0) W̃ (3, 6) W̃ (6, 12) W̃ (9, 3) W̃ (12, 9)

1 12 1 −0.039− 0.054i 0.066 + 0.162i 0.066− 0.162i −0.039 + 0.054i
1 7 1 −0.039− 0.054i 0.066 + 0.162i 0.066− 0.162i −0.039 + 0.054i
6 7 1 −0.039− 0.054i 0.066 + 0.162i 0.066− 0.162i −0.039 + 0.054i
11 7 1 −0.039− 0.054i 0.066 + 0.162i 0.066− 0.162i −0.039 + 0.054i
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Figure 4.1: Weyl function for the pure state system.
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Figure 4.2: Wigner function for the pure state system.
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Figure 4.3: Weyl function for the mixed state system.
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Figure 4.4: Wigner function for the mixed state system.
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lines in Zd ×Zd

4.8 Duality between weak mutually unbiased

bases in Hd and the maximal lines in Zd×

Zd

In chapter (3) we have discussed the properties of lines. We have concluded

that we can construct the set of all maximal lines in Zd × Zd according to

Eqs. (4.86).

L1 = L (1)(0, 1)× L (2)(0, 1)

L2+λ2 = L (1)(0, 1)× [g(2)(0, 1| − 1,−λ2)L (2)(0, 1)]

L2+p2+λ1 = [g(1)(0, 1| − 1,−λ1)L (1)(0, 1)]× L (2)(0, 1)

L2+p1+p2+λ2+λ1p2 = [g(1)(0, 1| − 1,−λ1)L (1)(0, 1)]× [g(2)(0, 1| − 1,−λ2)L (2)(0, 1)],

(4.86)

where λ1 ∈ Zp1 , λ2 ∈ Zp2 . We have shown that this construction can be

derived in terms of symplectic transformations as

L2+λ2 = g(s1, t2s2| − p1, s1 − λ2s2)L1

L2+p2+λ1 = g(s2, t1s1| − p2, s2 − λ1s1)L1

L2+p1+p2+λ2+λ1p2 = g(0,Γ| − p1 − p2,−λ1s1 − λ2s2)L1; Γ = t21p2 + t22p1.

(4.87)

Here we introduce the duality (correspondence) between the maximal lines

in Zd×Zd and the weak mutually unbiased bases which are presented in this

chapter. In what follows we discuss the ’dictionary’ for this correspondence.
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4.8 Duality between weak mutually unbiased bases in Hd and the maximal
lines in Zd ×Zd

(1) The line Lj of Eq. (4.86) corresponds to the basis Bj of Eq. (4.52).

We stress that the symplectic parameters used in Eq. (4.87) for the

line Lj are the same as the symplectic parameters used in Eq. (4.62)

for the basis Bj.

(2) The number of maximal lines corresponds to the maximum number of

weak mutually unbiased bases (ψ(d) each).

(3) A pair of maximal lines that intersect only at the origin corresponds to

a pair of weak mutually unbiased bases whose overlap absolute value

equals to d−1/2 (Eq.(4.20)). The two bases in this case are mutually

unbiased. There are dψ(d)/2 such pairs of maximal lines and dψ(d)/2

corresponding pairs of weak mutually unbiased bases.

(4) A pair of maximal lines that have p1 points in common corresponds to

a pair of weak mutually unbiased bases whose overlap absolute value

equals to p2
−1/2 (Eq.(4.19)). There are p2ψ(d)/2 such pairs of maxi-

mal lines and p2ψ(d)/2 corresponding pairs of weak mutually unbiased

bases.

(5) A pair of maximal lines that have p2 points in common corresponds to

a pair of weak mutually unbiased bases whose overlap absolute value

equals to p1
−1/2 (Eq.(4.18)). There are p1ψ(d)/2 such pairs of maxi-

mal lines and p1ψ(d)/2 corresponding pairs of weak mutually unbiased

bases.

(6) In chapter (3), Eq. (3.20) has presented the redundancy parameter to

measure the deviation of the geometry Zd × Zd from the near-linear
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geometry. This parameter corresponds to the redundancy parameter

presented in this chapter (Eq. (4.70)) which measures the ’tomograph-

ical overcompleteness’ of the weak mutually unbiased bases. The fact

that these two parameters are equal shows that the concept of weak

mutually unbiased bases is customized with the geometry Zd ×Zd. In

the case that d is prime number, the redundancy parameters become

0, the geometry Zd × Zd is near-linear, and weak mutually unbiased

bases are mutually unbiased bases.

4.8.1 Duality example

In this subsection we clarify the duality between the maximal lines in Zd×Zd

and the weak mutually unbiased bases with actual examples. We construct

the maximal lines in Z15×Z15 and Z21×Z21 according to Eq. (4.86). Table

(3.1) shows all maximal lines L (ρ, σ) in Z15×Z15 and their component lines

L (1)(ρ1, σ̃1) and L (2)(ρ2, σ̃2) in Z3 × Z3 and Z5 × Z5, respectively, and ta-

ble (3.2) shows all maximal lines L (ρ, σ) in Z21 ×Z21 and their component

lines L (1)(ρ1, σ̃1) and L (2)(ρ2, σ̃2) in Z3 ×Z3 and Z7 ×Z7, respectively. We

also construct the weak mutually unbiased bases according to Eq. (4.52).

Table (4.2) shows the weak mutually unbiased bases |Bj; m̃⟩ in H15 and their

corresponding component bases |B(1)
j ; m̃1⟩ and |B(2)

j ; m̃2⟩ in H3 and H5, re-

spectively, and table (4.3) shows the weak mutually unbiased bases |Bj; m̃⟩

in H21 and their corresponding component bases |B(1)
j ; m̃1⟩ and |B(2)

j ; m̃2⟩

in H3 and H7, respectively. Comparing any line with its corresponding ba-

sis shows that the parameters used in the symplectic transformations for

102



4.8 Duality between weak mutually unbiased bases in Hd and the maximal
lines in Zd ×Zd

this line and its corresponding basis are the same. For example, by com-

paring the line L5 = L (6, 11) = g(10, 12|12, 7)L1 in Z15 × Z15 with the

basis |B5;m⟩ = |X(10, 12|12, 7);m⟩ in H15, we easily see that the parame-

ters used in the symplectic transformations for L5 and |B5;m⟩ are the same.

Also, the line L3 = L (15, 4) = g(7, 12|18, 13)L1 in Z21 × Z21 and the basis

|B3;m⟩ = |X(7, 12|18, 13);m⟩ in H21 have the same symplectic parameters.

We showed earlier that the weak mutually unbiased bases of Eq. (4.52)

can be partitioned into p2 + 1 subsets Tj of p1 + 1 mutually unbiased bases

according to Eq. (4.60). Tables (4.8,4.9) show the two partitions and the

subsets of mutually unbiased bases in each partition, in H15 and H21, re-

spectively. Similarly, tables (3.3,3.4) show the corresponding subsets Sj of

maximal lines, in Z15 × Z15 and Z21 × Z21, respectively. The lines in one

subset Sj have only the origin in common, but lines in different subsets may

have more than one point in common.

Table 4.8: The subsets of the set of the weak mutually unbiased bases ac-
cording to the partition of Eq. (4.60) in the case that d = 15. These subsets
correspond to the subsets Sj of the maximal lines in table (3.3). The bases
in the same column (i.e. in the same subset Tj) are mutually unbiased.

T0 T1 T2 T3 T4 T5
|B1;m⟩ |B2;m⟩ |B3;m⟩ |B4;m⟩ |B5;m⟩ |B6;m⟩
|B10;m⟩ |B11;m⟩ |B12;m⟩ |B9;m⟩ |B8;m⟩ |B7;m⟩
|B16;m⟩ |B17;m⟩ |B18;m⟩ |B13;m⟩ |B14;m⟩ |B15;m⟩
|B22;m⟩ |B23;m⟩ |B24;m⟩ |B19;m⟩ |B20;m⟩ |B21;m⟩
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Table 4.9: The subsets of the set of the weak mutually unbiased bases ac-
cording to the partition of Eq. (4.60) in the case that d = 21. These subsets
correspond to the subsets Sj of the maximal lines in table (3.4). The bases
in the same column (i.e., in the same subset Tj) are mutually unbiased.

T0 T1 T2 T3 T4 T5 T6 T7
|B1;m⟩ |B2;m⟩ |B3;m⟩ |B4;m⟩ |B5;m⟩ |B6;m⟩ |B7;m⟩ |B8;m⟩
|B12;m⟩ |B13;m⟩ |B14;m⟩ |B15;m⟩ |B16;m⟩ |B11;m⟩ |B10;m⟩ |B9;m⟩
|B20;m⟩ |B21;m⟩ |B22;m⟩ |B23;m⟩ |B24;m⟩ |B17;m⟩ |B18;m⟩ |B19;m⟩
|B28;m⟩ |B29;m⟩ |B30;m⟩ |B31;m⟩ |B32;m⟩ |B25;m⟩ |B26;m⟩ |B27;m⟩

4.9 Weak mutually unbiased bases as com-

plex projective 1-design

In [79], it has been shown that the complete set of mutually unbiased bases

are complex projective 2-design with the angle set {0, 1/d}. Below, we give a

brief introduction about this study, then we give analogous study for the com-

plete set of weak mutually unbiased bases (in the case that d = p1p2; p1, p2

are prime numbers), and we show that the bases of this set are complex

projective 1-design with the angle set {0, 1/p1, 1/p2, 1/d}.

Let Bj denote the orthonormal basis {|Bj;n⟩|n ∈ Zd}. Any set S =

B0 ∪ ... ∪ Bℓ−1 obeys Welch bound inequality of Eq. (4.88) [80]

1

|S|2
∑

Bj ,Bk⊂S

[vjk(n,m)]2Q ≥ 1 d+Q− 1

Q


, (4.88)

where Q ≥ 0, vjk(n,m) is defined in Eq. (4.17) and |S| is the cardinality of

the set S. If the set S achieves Welch bounds at Q = 1, we call it WBE-
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sequence set [81]. If S achieves Welch bound for all Q ≤ t, therefore the set

of bases in S are complex projective t-design [79].

The ’angle’ set A of S is defined as

A = {[vjk(n,m)]2|Bj,Bk ⊂ S; (j, n) ̸= (k,m)} (4.89)

For any vector |Bj;n⟩ ∈ S and any angle a ∈ A the subdegree ζ(a|j, n) is the

cardinality of the set {|Bk;m⟩| Bk ⊂ S; [vjk(n,m)]2 = a }. If ζ(a|j, n) does

not depend on |Bj;n⟩, S is called regular scheme.

In the view of the above discussion we consider a power of prime dimen-

sional system d = pn. Let S be the complete set of mutually unbiased bases

in Hd, therefore |S| = d(d+1). We calculate the left hand side (L.H.S) and

the right hand side (R.H.S) of Eq. (4.88) for Q = 0, 1, 2. In the case that

Q = 0,

L.H.S =
1

d2(d+ 1)2
([(d)(d+ 1)][(d)(d+ 1)]) = 1. (4.90)

R.H.S =
(d− 1)!0!

(d− 1)!
= 1 = L.H.S . (4.91)

In the case that Q = 1,

L.H.S =
1

d2(d+ 1)2
([(d)(d+ 1)(d)(d)(1/d)] + [(d)(d+ 1)]) =

1

d
. (4.92)

R.H.S =
(d− 1)!1!

(d)!
=

1

d
= L.H.S . (4.93)
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In the case that Q = 2,

L.H.S =
1

d2(d+ 1)2
([(d)(d+ 1)(d)(d)(1/d2)] + [(d)(d+ 1)]) =

2

d(d+ 1)
.

(4.94)

R.H.S =
(d− 1)!2!

(d+ 1)!
=

2

d(d+ 1)
= L.H.S . (4.95)

Eqs. (4.90,4.91,4.92,4.93,4.94,4.95) show that mutually unbiased bases

are complex projective 2-design and form WBE-sequence set.

Regardless the value of (j, n), the absolute value of the overlap vjk(n,m)

where (j, n) ̸= (k,m) takes only the values 0 with multiplicity d−1 and d−1/2

with multiplicity d2. Therefore, the set of mutually unbiased bases is a regular

scheme with angle set {0, 1
d
} where ζ(0|j, n) = d− 1, and ζ(1

d
|j, n) = d2.

Analogously, we consider a system with dimension d = p1p2; p1, p2 are

prime numbers. Let S be the complete set of weak mutually unbiased bases

in Hd. The cardinality of this set is dψ(d). We calculate the left hand side

(L.H.S) and the right hand side (R.H.S) of Eq. (4.88) for Q = 0, 1, 2. In

the case that Q = 0,

L.H.S =
1

d2ψ2(d)
([dψ(d)][dψ(d)]) = 1. (4.96)

R.H.S =
(d− 1)!0!

(d− 1)!
= 1 = L.H.S . (4.97)

In the case that Q = 1,

L.H.S =
1

d2ψ2(d)
([
1

p1
(p1d)(p1ψ(d))] + [

1

p2
(p2d)(p2ψ(d))] + [

1

d
(d2)(dψ(d))] + [(d)ψ(d)])

=
1

d
. (4.98)
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R.H.S =
(d− 1)!1!

(d)!
=

1

d
= L.H.S . (4.99)

In the case that Q = 2,

L.H.S =
1

d2ψ2(d)
([
1

p21
(p1d)(p1ψ(d))] + [

1

p22
(p2d)(p2ψ(d))] + [

1

d2
(d2)(dψ(d))] + [(d)ψ(d)])

=
4

dψ(d)
. (4.100)

R.H.S =
(d− 1)!2!

(d+ 1)!
=

2

d(d+ 1)
̸= L.H.S . (4.101)

Eqs. (4.96,4.97,4.98,4.99,4.100,4.101) show that the equality holds only

for Q = 0, 1, and hence weak mutually unbiased bases are complex projective

1-design and form WBE-sequence set.

Using the definition of weak mutually unbiased bases we find that the

absolute value of the overlap vjk(n,m) for all k ∈ Zd and (j, n) ̸= (k,m) takes

only the values 0, p
−1/2
1 , p

−1/2
2 , d−1/2. Regardless the value of (j, n), vjk(n,m)

take the value 0 with multiplicity d − 1 + p1(d − p1) + p2(d − p2), p
−1/2
1

with multiplicity p21, p
−1/2
2 with multiplicity p22, and d−1/2 with multiplicity

d2. Therefore, the set of weak mutually unbiased bases is a regular scheme

with angle set {0, 1
p1
, 1
p2
, 1
d
} where ζ(0|j, n) = d− 1 + p1(d− p1) + p2(d− p2),

ζ( 1
p1
|j, n) = p21, ζ(

1
p2
|j, n) = p22, and ζ(

1
d
|j, n) = d2.

4.10 Summary

In this chapter we have introduced the concept of weak mutually unbiased

bases. As an example, we have presented an explicit construction of weak

mutually unbiased bases. We have proved that this construction is tomo-
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graphically complete. We have illustrated this fact by doing quantum to-

mography for two systems one of them is pure state system and the other is

mixed state system. We have shown that weak mutually unbiased bases are

intimately related to the finite geometry Zd×Zd. Finally we have presented

weak mutually unbiased bases in the view of complex projective t-designs.
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Chapter 5

Quantum cryptography

In the previous chapter we have introduced the concept of weak mutually

unbiased bases. We have used the complete set of weak mutually unbiased

bases for quantum tomography. Here we use this set to derive a new quantum

cryptography protocol by modifying the (one-way) ’prepare and measure’

protocol BB84 [2]. The set of weak mutually unbiased bases is used to

prepare and measure qudits of d-dimensional systems where d = p1p2; p1, p2

are prime numbers. We also generalize the two-way quantum cryptography

protocol [82] to work with qudits of odd dimensional systems rather than

qubits. We analyze the security of both protocols against the intercept and

resend attack.

5.1 Introduction

The security of the current cryptography systems is based on the great dif-

ficulty of factorizing a large integer number into its prime factors. Peter
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Shor [83] presented a quantum computer based algorithm (known as Shor’s

algorithm) that factorizes a large integer exponentially faster than other al-

gorithms. As a result, classical cryptography systems became threatened

and as soon as quantum computers are feasible, classical cryptography sys-

tems could collapse. On the contrary, the security of quantum cryptography

protocols is based on the uncertainty principle of quantum mechanics, and

hence quantum cryptography contributes to the field of cryptography with

an important advantage as it offers a mechanism for eavesdropper detection.

Quantum cryptography is classified into two main categories, ’Prepare and

measure’ based quantum cryptography and entanglement based quantum

cryptography. Although there is a lot of work regarding the entanglement

based protocols [84, 85, 86, 87, 88], this chapter is dedicated to the ’Pre-

pare and measure’ based protocols, in particular [2, 82]. Based on the idea

of conjugate coding [89], the pioneering work of quantum cryptography and

the ’Prepare and measure’ based protocols was the BB84 protocol. It was

proposed by Bennett and Brassard where the two legitimate users (by con-

vention we call them Alice and Bob) use four non-orthogonal quantum states

to prepare and measure qubits (two dimensional systems). This protocol was

modified to use six non-orthogonal quantum states rather than four [90]. Also

BB84 protocol was extended in the sense that it uses larger alphabets [91]

or it deals with systems of dimensions higher than two [92, 93, 94]. In 1992,

Bennett noticed that the eavesdropper (by convention we call her Eve) can be

detected using only two non-orthogonal states, and hence BB84 protocol was

modified to work with two non-orthogonal states rather than four [95]. We

note that BB84 based protocols were surveyed in [3]. BB84 protocols can be
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called one-way nondeterministic protocols because the states are transmit-

ted in one direction from Alice to Bob, and some of the states are discarded

when Alice and Bob use different bases to prepare and measure the states,

respectively. Based on the ’Ping-Pong’ (PP) protocol [52], another ’Prepare

and measure’ based protocols were proposed where the states travel in the

two ways between Alice and Bob, and none of the states are discarded. such

protocols are called two-way deterministic protocols. The first two-way de-

terministic protocol without entanglement was presented by Lucamarini and

Mancini [82] where the qubits are prepared in one of four non-orthogonal

quantum states and encoded using the operators I,Z X . After that [96, 97]

modified it such that the qubits are prepared in one of six non-orthogonal

quantum states. Recently [98, 99] extended this protocol to work with qudits

rather than qubits. In section (5.2) we discuss in details the BB84 protocol,

then we modify this protocol to work with qudits using the weak mutually

unbiased bases presented in chapter (4). In section (5.3) we describe the

two-way deterministic protocol [82] that work with qubits then we generalize

it to work with qudits. Although there are different forms of attacks that

Eve can use [100, 101, 102], we analyze our proposed protocols only against

the intercept and resend attack which gives a guide to the security of these

protocols against other forms of attack.
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5.2 One-way nondeterministic cryptography

protocols

One-way nondeterministic cryptography protocols are dealing with states

that travel in one way from Alice to Bob. They are called nondeterministic

because Alice and Bob do not take into account the states where they use

different bases. Here we discuss the BB84 protocol, and then we present our

proposed protocol that works with d-level quantum systems.

5.2.1 BB84 protocol

BB84 protocol allows the two legitimate users Alice and Bob to share a

secret key, and detect any attempt of eavesdropping with high probability.

The protocol considers that there are two channels between Alice and Bob.

The first is quantum channel and the second is public (classical) channel.

Eavesdropper (Eve) has full access to the quantum channel, and can listen

(without interfering) to the public channel. To make the key information

totally random to Eve, Alice uses two mutually unbiased bases to prepare

qubits. Alice may use the position states |X;m⟩ and the momentum states

|P ;m⟩ to prepare qubits. Let |X; 0⟩, |P ; 0⟩ be encoded as (stand for) 0, and

|X; 1⟩, |P ; 1⟩ be encoded as 1. The following steps show how Alice and Bob

share a secret key.

(1) Alice creates randomly a string of bits.

(2) Alice randomly chooses the encoding bases, prepares the states accord-

ing to these bases, and then transmits the states through the quantum
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channel one at a time to Bob.

(3) Bob randomly chooses a basis to measure each state in.

(4) Alice and Bob announce publicly the bases they used to prepare and

measure the states in.

(5) In the case that Alice and Bob use different bases, Bob gets totally

random results; so they ignore the states corresponding to these bases

and take into account only the states corresponding to the matched

bases. The bits corresponding to these states form the shared (sifted)

key.

Table (5.1) summarizes the above steps.

Table 5.1: Summary of the BB84 quantum cryptography protocol. In
this table, X denotes the basis {|X; 0⟩, |X; 1⟩} and P denotes the basis
{|P ; 0⟩, |P ; 1⟩}

A string of randomly bits 1 0 0 0 1 1 0 1
Alice’s states (qubits) |P ; 1⟩ |X; 0⟩ |P ; 0⟩ |P ; 0⟩ |X; 1⟩ |X; 1⟩ |P ; 0⟩ |X; 1⟩
Bob’s random bases X X P X X P P P
Bob’s results 1 0 0 1 1 0 0 1
Shared key 0 0 1 0

Now let us assume that Eve intercepts the states transmitted by Alice,

measures them, and resends these states to Bob according to her measure-

ments. Eve uses the same basis as Alice with probability 1
2
, and in this case

Bob will get the right value of the qubit, i.e. Eve will not be detected at all.

In the case that Eve uses a basis different from the basis that Alice uses, Bob

still has the chance to get the right value of the qubit with probability 1
2
, and
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hence Eve has the chance to be undetected with probability 1
2
. Therefore,

the probability of detecting Eve Pd is calculated as

Pd =
1

2
(1− 1) +

1

2
(1− 1

2
) =

1

4
(5.1)

Table (5.2) shows the case that there is an Eavesdropping on the quantum

channel. It also shows that after the public discussion between Alice and

Table 5.2: Summary of the BB84 quantum cryptography protocol in the case
that there is an Eavesdropping on the quantum channel. In this table, X
denotes the basis {|X; 0⟩, |X; 1⟩} and P denotes the basis {|P ; 0⟩, |P ; 1⟩}

A string of randomly bits 1 0 0 0 1 1 0 1
Alice’s states (qubits) |P ; 1⟩ |X; 0⟩ |P ; 0⟩ |P ; 0⟩ |X; 1⟩ |X; 1⟩ |P ; 0⟩ |X; 1⟩
Eve’s random bases P P P X X P X X
Eve’s retransmitted states |P ; 1⟩ |P ; 1⟩ |P ; 0⟩ |X; 1⟩ |X; 1⟩ |P ; 1⟩ |X; 0⟩ |X; 1⟩
Bob’s random bases X X P X X P P P
Bob’s results 1 0 0 1 1 1 1 1
Shared key 0 0 1 1

Bob, they detect that the underlined bit should be 0; however its value is 1,

and hence they detect the Presence of Eve. We note that only a small part

of the sifted key is revealed during the public discussion.

The information that Eve can leak for one qubit is measured by Shannon

information (IE) [91]. The general form of Shannon information is

IE = 1 +H(P0, ..., Pd−1), (5.2)
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where d is the system dimension and H(P0, ..., Pd−1) denotes the entropy

which is defined as

H(P0, ..., Pd−1) =
d−1∑
j=0

PjlogdPj, (5.3)

Pj is the probability of the outcome j. Therefore, in the case of BB84 protocol

(where qubits are used), the information that Eve can leak is

IE = 1+H(P0, P1) =
1

2
[1+(1)log2(1)+(0)log2(0)]+

1

2
[1+2× 1

2
log2(

1

2
)] =

1

2
.

(5.4)

5.2.2 One-way nondeterministic protocol with qudits

BB84 protocol was generalized to work with qudits rather than qubits in [92,

93, 94]. The more mutually unbiased bases are used, the better security the

legitimate users can get. However, the existence of a complete set of mutually

unbiased bases for systems with composite dimensions has not been proved

yet. Up to now, only p1 + 1 mutually unbiased bases can be constructed for

systems with dimensions d = p1p2, where p1 < p2 [49]. This leads to the

following.

Pd =
1

p1 + 1
(1− 1) +

p1
p1 + 1

(1− 1

d
) =

d− 1

p2(p1 + 1)
(5.5)
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IE = 1 +H(P0, ..., Pd−1)

=
1

p1 + 1
[1 + (1)logd(1) + (d− 1)(0)logd(0)]

+
p1

p1 + 1
[1 + (d)(

1

d
)logd(

1

d
)] =

1

p1 + 1
. (5.6)

Here we generalize the BB84 protocol to work with qudits of composite

dimensions using a complete set of the weak mutually unbiased bases intro-

duced in chapter (4). As we mentioned earlier, for a d-dimensional system

where d = p1p2 and p1, p2 are prime numbers the weak mutually unbiased

bases can be written as

T = T0 ∪ ... ∪ Tp2 ; (5.7)

such that

Tu = {|B(1)
j ; ñ1⟩ ⊗ |B(2)

j+u; ñ2⟩ | j ∈ Zp1+1}; (5.8)

where |B(1)
j ; ñ1⟩ are mutually unbiased bases in Hp1 and |B(2)

j+u; ñ2⟩ are mu-

tually unbiased bases in Hp2 , and u ∈ Zp2+1. Let |Bu,j;n⟩ denote the bases

that belong to Tu, therefore Tu can be written as

Tu = {|Bu,j;n⟩ | j ∈ Zp1+1}. (5.9)

Chapter (4) shows that the absolute value of the overlap of any two vec-

tors |Bu,j;n⟩, |Bu′,k;m⟩ in two different weak mutually unbiased bases falls

in one of the three categories where ⟨Bu,j;n|Bu′,k;m⟩ = 0 or p
−1/2
1 in the

first category, ⟨Bu,j;n|Bu′,k;m⟩ = 0 or p
−1/2
2 in the second category, and

⟨Bu,j;n|Bu′,k;m⟩ = d−1/2 in the third category.
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Proposition 5.2.1. Let |Bu,j;n⟩ be a basis in a complete set of the weak

mutually unbiased bases. Therefore, the other bases |Bu′,k;m⟩ are partitioned

such that, there are p1 bases |Bu′,k;m⟩ where |⟨Bu,j;n|Bu′,k;m⟩| falls in the

first category, p2 bases |Bu′,k;m⟩ where |⟨Bu,j;n|Bu′,k;m⟩| falls in the second

category, and d bases |Bu′,k;m⟩ where |⟨Bu,j;n|Bu′,k;m⟩| falls in the third

category.

Proof. |⟨Bu,j;n|Bu′,k;m⟩| falls in the first category when j ̸= k and j + u =

k+u′ (mod (p2+1)). Let j+u = k+u′ (mod (p2+1)), then k = j+h; 0 <

h < p1+1. Since j+u = k+u′ (mod (p2+1)), then u′ = u−h (mod (p2+1)).

Therefore, given a basis |Bu,j;m⟩ there exists p1 bases |Bu′,k;m⟩ such that

|⟨Bu,j;n|Bu′,k;m⟩| falls in the first category. |⟨Bu,j;n|Bu′,k;m⟩| falls in the

second category when j = k and j + u ̸= k + u′ (mod (p2 + 1)), there

are p2 such cases. Since the number of the bases |Bu′,k;m⟩ other than the

basis |Bu,j;n⟩ is ψ(d)− 1, then the number of the bases |Bu′,k;m⟩ such that

|⟨Bu,j;n|Bu′,k;m⟩| falls in the third category is d.

Now we assume that Alice prepares the qudit in one (randomly chosen)

basis of the complete set of weak mutually unbiased bases, and Bob ran-

domly chooses one basis of this set to measure the qudit in. Consider the

case where Alice and Bob use the same basis |Bu,j;n⟩, and Eve uses another

different basis |Bu′,k;m⟩. According to the definition of weak mutually un-

biased bases, Bob will get the right value of the qudit with probability 1/p1

if |⟨Bu,j;n|Bu′,k;m⟩| belong to the first category, 1/p2 if |⟨Bu,j;n|Bu′,k;m⟩|

belong to the second category, and 1/d if |⟨Bu,j;n|Bu′,k;m⟩| belong to the

third category. Therefore, according to proposition (5.2.1), the probability
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5.2 One-way nondeterministic cryptography protocols

of detecting the presence of Eve Pd is

Pd =
1

(p1 + 1)(p2 + 1)
[(1− 1) + p1(1−

1

p1
) + p2(1−

1

p2
) + (d)(1− 1

d
)]

=
p1 + p2 + d− 3

(p1 + 1)(p2 + 1)
. (5.10)

The information that Eve can leak IE is

IE = 1 +H(P0, ..., Pd−1)

=
1

(p1 + 1)(p2 + 1)
[1 + (1)logd(1) + (d− 1)(0)logd(0)]

+
p1

(p1 + 1)(p2 + 1)
[1 + (p1)(

1

p1
)logd(

1

p1
) + (d− p1)(0)logd(0)]

+
p2

(p1 + 1)(p2 + 1)
[1 + (p2)(

1

p2
)logd(

1

p2
) + (d− p2)(0)logd(0)]

+
d

(p1 + 1)(p2 + 1)
[1 + (d)(

1

d
)logd(

1

d
)]

=
1

(p1 + 1)(p2 + 1)
[1 + p2 + (p2 − p1)logd(

1

p2
)]. (5.11)

The proposed protocol has a lower ’key construction’ rate than the protocol

adopted in [92, 93, 94] because it keeps one qudit out of (p1+1)(p2+1) qudits

while the other protocol keeps one qudit out of (p1 + 1) qudits. However

comparing Eq. (5.10) with Eq. (5.5) and Eq. (5.11) with Eq. (5.6) we find

that the proposed protocol is more secure against the intercept and resend

attack. The previous statement is true for all dimensions d where d = p1p2

and p1, p2 are prime numbers where p1 < p2 because

p2(p2 − 3) > −p2 − 1. (5.12)
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Adding d+ p2d to both sides

d+ p2d+ p22 − 3p2 > d+ p2d− p2 − 1. (5.13)

Dividing both sides by p2(p1 + 1)(p2 + 1)

p2(p1 + p2 + d− 3)

p2(p1 + 1)(p2 + 1)
>

(d− 1)(p2 + 1)

p2(p1 + 1)(p2 + 1)
. (5.14)

Therefore,

(p1 + p2 + d− 3)

(p1 + 1)(p2 + 1)
>

(d− 1)

p2(p1 + 1)
. (5.15)

Also

1

(p1 + 1)(p2 + 1)
[1+p2+(p2−p1)logd(

1

p2
)] =

1

p1 + 1
+
(p2 − p1)logd(

1
p2
)

(p1 + 1)(p2 + 1)
<

1

p1 + 1
.

(5.16)

Tables (5.3,5.4) consider quantum systems with different composite di-

mensions. Table (5.3) shows a comparison between the proposed protocol

and the general BB84 protocol from the point of view of the probability of

detecting Eve, and table (5.4) shows a comparison between the two proto-

cols from the point of view of the information that Eve can leak. Table (5.4)

also shows that the information that Eve can leak in the proposed protocol

depends on the difference between p2 and p1 as well as the system dimension

(this explains why the information that Eve can leak goes up from dimension

14 to dimension 15).
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Table 5.3: A comparison between the proposed protocol (with ψ(d) weak
mutually unbiased bases) and the general BB84 protocol (with p1+1 mutually
unbiased bases) from the point of view of the probability of detecting Eve. In
this table quantum systems with dimension d where d = 6, 10, 14, 15, 21, 35
are considered.

d Proposed protocol General BB84 protocol
6 0.667 0.556
10 0.778 0.6
14 0.833 0.619
15 0.833 0.7
21 0.875 0.714
35 0.917 0.81

Table 5.4: A comparison between the proposed protocol (with ψ(d) weak
mutually unbiased bases) and the general BB84 protocol (with p1+1 mutually
unbiased bases) from the point of view of the information that Eve can leak.
In this table quantum systems with dimension d where d = 6, 10, 14, 15, 21, 35
are considered.

d Proposed protocol General BB84 protocol
6 0.282 0.333
10 0.217 0.333
14 0.18 0.333
15 0.2 0.25
21 0.17 0.25
35 0.144 0.167
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5.3 Two-way deterministic cryptography protocols

5.3 Two-way deterministic cryptography pro-

tocols

Two way quantum cryptography protocols started with the ’Ping-Pong’ pro-

tocol [52]. Later this protocol has been presented to provide a secure com-

munication either with entanglement [103] or without entanglement [82, 104,

105]. Here we discuss the protocol adopted in [82] then we present our

perspective to generalize this protocol to work with qudits of odd prime

dimensions.

5.3.1 Two-way deterministic cryptography protocols

with qubits

Here we consider that Alice and Bob use the two bases |X;m⟩, |P ;m⟩ in H2.

First Bob prepares the qubit in one of the four states |X; 0⟩, |X; 1⟩, |P ; 0⟩, |P ; 1⟩.

After that the qubit is transmitted to Alice who decides randomly the mode

in which she will use the qubit. Alice has two modes to choose from. The

first mode is the control mode where Alice chooses randomly one of the bases

|X;m⟩, |P ;m⟩ to measure the qubit in then she sends the qubit back to Bob.

The second mode is the encoding mode where Alice acts on the qubit ei-

ther with the operator I which encodes the qubit as 0, or with the operator

iσy = σzσx which encodes the qubit as 1. We note that σy, σx, σz are the

Pauli operators discussed in chapter (2). The operator iσy inverts the qubit

irrespective of the state it is prepared in as shown in table (5.5)

Then the qubit is transmited back to Bob who measures it in the same
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Table 5.5: The action of the operator iσy on the states |X; 0⟩, |X; 1⟩, |P ; 0⟩,
|P ; 1⟩.

|X; 0⟩ |X; 1⟩ |P ; 0⟩ |P ; 1⟩
iσy −|X; 1⟩ |X; 0⟩ |P ; 1⟩ −|P ; 0⟩

basis he prepared the qubit in. After that Alice declares publicly the working

mode. In the case that Alice decides to work in the control mode, both Alice

and Bob reveal the basis they use to measure and prepare the qubit in.

In the encoding mode, Bob decodes each qubit as 0 if it remains un-

changed, and 1 if it is inverted.

In the control mode, the qubits are used to detect the presence of Eve.

Eve uses the two bases |X;m⟩, |P ;m⟩ to measure qubits. If she uses the

correct basis (i.e. she uses the same basis that Bob used to prepare the qubit

in), she will not be detected. If she uses a basis different from the basis used

by Bob, she can stay undetected with probability 1
2
in the forward path (on

Alice’s side), and with probability 1
2
in the backward path (on Bob’s side).

Therefore, the probability of detecting Eve Pd is

Pd =
1

2
× (0) +

1

2
× (1− 1

2
× 1

2
) =

3

8
(5.17)

5.3.2 Two-way deterministic cryptography protocols

with qudits of two bases

In this subsection we generalize the two-way deterministic protocol to work

with odd prime dimensional qudits rather than qubits. The position states

|X;m⟩ and the momentum states |P ;m⟩ are shifted by the same value under
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the action of the operators XαZα as

(X αZ α)|X;m⟩ = Ω(mα)|X;m+ α⟩

(X αZ α)|P ;m⟩ = Ω(−mα)|P ;m+ α⟩, (5.18)

wherem,α ∈ Zd. Eqs. (5.18) show that we can use the operators I, XZ, ..., Xd−1Zd−1

to encode the qudits as 0, 1, ..., d− 1. We modify the two-way deterministic

cryptography protocol with qubits as follows.

Bob prepares the qudit in one of the 2d states (position and momentum

states) then sends the qudit to Alice. Alice decides randomly the operation

mode (control mode or encoding mode) then sends the qudit back to Bob.

In the control mode, Alice measures the qudit in the position basis or the

momentum basis. In the encoding mode, Alice encodes the qudit using one

of the d operators X αZ α where α ∈ Zd. In some sense, this technique

of encoding is similar to the blind encoding adopted in [106]. Bob gets the

value α by applying a projective measurement to a qudit along the same

basis used in preparing this qudit. The qudits which are used in the control

mode are used to detect the presence of Eve. Eve measures the qudits along

the position basis or the momentum basis. Therefore, with probability 1
2

Eve estimates the correct basis (hence she will not be detected), and with

probability 1
2
she uses the wrong basis. In the case that Eve uses the wrong

basis, she has the chance to be undetected on Alice’s side with probability

1
d
and on Bob’s side with probability 1

d
, and hence the probability to be
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undetected on both sides is 1
d2
. The probability of detecting Eve is

Pd =
1

2
× (0) +

1

2
× (1− 1

d
× 1

d
) =

d2 − 1

2d2
. (5.19)

As d increases, the probability of detecting eve tends to 1
2
,

Pd→∞ = limd→∞
d2 − 1

2d2
=

1

2
. (5.20)

5.3.3 Two-way deterministic cryptography protocols

with qudits of d bases

In this subsection we prove that there are d bases of which the states are

shifted by the same value α under the action of the operators X αZ α. We

find these bases, and we prove that if d is prime, then these bases are mutually

unbiased.

Since

X αZ α|X;m⟩ = Ω(mα)|X;m+ α⟩ (5.21)

Then

UX αZ α|X;m⟩ = Ω(mα)U |X;m+ α⟩, (5.22)

where U is any unitary operator. Therefore,

UX αZ αU †U |X;m⟩ = Ω(mα)U |X;m+ α⟩ (5.23)
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Eq. (5.23) shows that, if there exists unitary transformation U such that

UX αZ αU † = X αZ α, (5.24)

then the states U |X;m⟩ are shifted by the value α under the action of the

operators X αZ α. The following proposition finds such d unitary transfor-

mations.

Proposition 5.3.1. In the case that d is prime, the states S(1−µ,−µ|µ, µ+

1)|X;m⟩ are shifted by the same value α under the action of the operators

X αZ α where µ, α ∈ Zd. Furthermore, the bases S(1−µ,−µ|µ, µ+1)|X;m⟩

are mutually unbiased.

Proof. Since

D(α, β) = Ω(−2−1αβ)Z αX β = Ω(2−1αβ)X βZ α. (5.25)

Then

D(α, α) = Ω(2−1α2)X αZ α. (5.26)

Therefore, using Eq. (5.25) we can write Eq.(5.24) as

S(κ, λ|µ, ν)D(α, α)[S(κ, λ|µ, ν)]† = D(α, α) (5.27)

But

S(κ, λ|µ, ν)D(α, α)[S(κ, λ|µ, ν)]† = D(αν + αλ, αµ+ ακ). (5.28)
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Then using Eqs. (5.27,5.28)

αν + αλ = α, αµ+ ακ = α. (5.29)

Therefore,

ν + λ = µ+ κ = 1. (5.30)

Since

κν − λµ = 1, (5.31)

then using Eq. (5.30,5.31) we get

κ = 1− µ, λ = −µ, ν = 1 + µ. (5.32)

Therefore, there are d symplectic transformations S(1−µ,−µ|µ, µ+1) such

that the states S(1− µ,−µ|µ, µ + 1)|X;m⟩ are shifted by the same value α

under the action of the operators X αZ α; µ, α ∈ Zd.

Now we prove that the bases S(1 − µ,−µ|µ, µ + 1)|X;m⟩; 0 ≤ µ < d

are mutually unbiased. Let |X(1− µ,−µ|µ, µ+ 1);m⟩ = S(1− µ,−µ|µ, µ+

1)|X;m⟩. In the case that µ = 0, |X(1−µ,−µ|µ, µ+1);m⟩ = |X(1, 0|0, 1);m⟩ =

|X;m⟩ (because S(1, 0|0, 1) = I).

Bandyopadhyay et al. [54] showed that for any orthonormal bases |X;m⟩,

if there exists an operator V such that

V |X;m⟩ = θ|X;m+ j⟩, (5.33)

where m, j ∈ Zd and |θ| = 1, therefore the eigenstates of the operator V and
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|X;m⟩ are mutually unbiased bases. Since |X;m⟩ are the eigenstates of the

operator Z then |X(1 − µ,−µ|µ, µ + 1);m⟩; 0 < µ < d are the eigenstates

of the operator S(1− µ,−µ|µ, µ+ 1)Z [S(1 − µ,−µ|µ, µ + 1)]†. But the

operator S(1− µ,−µ|µ, µ+ 1)Z [S(1 − µ,−µ|µ, µ + 1)]† is a displacement

operator that shifts the state |X;m⟩ by the value µ. Therefore, |X;m⟩

and each of the bases |X(1 − µ,−µ|µ, µ + 1);m⟩ where µ > 0 are mutually

unbiased. Now we need to prove that the bases |X(1 − µ,−µ|µ, µ + 1);m⟩

where µ > 0 are mutually unbiased. Let 0 < µ1, µ2 < d; µ1 ̸= µ2, then

|⟨X(1− µ1,−µ1|µ1, µ1 + 1);m1|X(1− µ2,−µ2|µ2, µ2 + 1);m2⟩|

= |⟨X;m1|[S(1− µ1,−µ1|µ1, µ1 + 1)]†S(1− µ2,−µ2|µ2, µ2 + 1)|X;m2⟩|

(5.34)

In chapter (2) we have shown that

S(κ2, λ2|µ2, ν2)S(κ1, λ1|µ1, ν1) = S(κ, λ|µ, ν), (5.35)

where  κ1 λ1

µ1 ν1


 κ2 λ2

µ2 ν2

 =

 κ λ

µ ν

 . (5.36)

Since [S(1 − µ1,−µ1|µ1, µ1 + 1)]†S(1 − µ1,−µ1|µ1, µ1 + 1) = I then using

Eqs. (5.35,5.36)

[S(1− µ1,−µ1|µ1, µ1 + 1)]† = S(µ1 + 1, µ1| − µ1, 1− µ1). (5.37)
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Therefore, using Eqs. (5.35,5.36,5.37) we prove that

|⟨X(1− µ1,−µ1|µ1, µ1 + 1);m1|X(1− µ2,−µ2|µ2, µ2 + 1);m2⟩|

= |⟨X;m1|X(1 + µ1 − µ2, µ1 − µ2|µ2 − µ1, µ2 − µ1 + 1);m2⟩| (5.38)

Let µ = µ2 − µ1, then Eq. (5.38) can be written as

|⟨X(1− µ1,−µ1|µ1, µ1 + 1);m1|X(1− µ2,−µ2|µ2, µ2 + 1);m2⟩|

= |⟨X;m1|X(1− µ,−µ|µ, µ+ 1);m2⟩|. (5.39)

Since the bases |X;m1⟩ and each of the bases |X(1−µ,−µ|µ, µ+1);m2⟩; 0 <

µ < d are mutually unbiased then

|⟨X(1−µ1,−µ1|µ1, µ1+1);m1|X(1−µ2,−µ2|µ2, µ2+1);m2⟩| = d−1/2. (5.40)

This completes the proof.

Using the d bases |X(1 − µ,−µ|µ, µ + 1);m⟩ (where 0 ≤ µ < d) in our

two-way deterministic protocol, the probability of detecting Eve is calculated

as follows

Pd =
1

d
× (0) +

d− 1

d
× (1− 1

d
× 1

d
) =

(d− 1)(d2 − 1)

d3
. (5.41)

Comparing Eq. (5.41) with Eq. (5.19), it is seen that for d > 2 the prob-

ability of detecting Eve using d mutually unbiased bases is better than the

probability of detecting Eve using two mutually unbiased bases. Eq. (5.41)
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shows that as d→ ∞, the probability of detecting Eve tends to 1.

Pd→∞ = limd→∞
(d− 1)(d2 − 1)

d3
= 1. (5.42)

5.4 Summary

In this chapter we presented two quantum cryptography protocols. The first

one is one-way nondeterministic protocol that generalizes the BB84 protocol

to work with qudits with dimension d = p1p2; p1, p2 are prime numbers. We

have used the weak mutually unbiased bases to prepare and measure the

qudits. The second protocol is two-way deterministic that generalizes the

two-way deterministic protocol with qubits to work with qudits. We have

analyzed the two protocols against the intercept and resend attack.

129



Chapter 6

Conclusion and future work

6.1 Conclusion

We have considered finite quantum systems where the variables are defined in

Zd. The Zd×Zd phase space is near-linear geometry if d is a prime number,

otherwise Zd×Zd is not near-linear geometry and this leads to two important

concepts which generalize the near-linear geometry. The first concept is, two

lines may have more than one point in common, i.e Zd × Zd where d is not

prime has geometrical redundancy (Eq. (3.20)). The second concept is, the

existence of sublines with dj points where dj is a divisor of d. We have proved

important properties of lines that emphasize the differences in Zd×Zd in the

cases that Zd is a field or a ring (proposition (3.2.1)).

We considered the case d = p1p2 where p1, p2 are prime numbers (how-

ever, the generalization to a product of many prime numbers is also possible).

Then we presented the concept of factorizing a line in Zd×Zd into two com-

ponent lines in Zp1 × Zp1 and Zp2 × Zp2 , correspondingly. The concept of
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factorizing lines led us to an explicit construction of all maximal lines in

Zd × Zd (Eqs. (3.32,3.33)). It also led us to clarify the relation between

the number of common points between two lines in Zd × Zd, and their first

and second component lines in Zp1 × Zp1 and Zp2 × Zp2 , Correspondingly

(proposition (3.3.2)).

Motivated by the properties of the finite geometry of Zd × Zd, we have

introduced the concept of weak mutually unbiased bases that weakens the

concept of mutually unbiased bases. Two bases in Hd where d = p1p2, are

called weak mutually unbiased, if the absolute value of the overlap of any

vector in the first basis and any vector in the second basis is equal to d−1/2

or alternatively to one of the p
−1/2
j , 0 (where pj is a divisor of d and pj is

not equal to 1 or d). Eqs. (4.52,4.62) have shown an explicit construction of

a complete set of weak mutually unbiased bases. This construction is based

on forming the tensor product of the p1 + 1 mutually unbiased bases in Hp1

and the p2+1 mutually unbiased bases in Hp2 to get the ψ(d) weak mutually

unbiased bases in Hd.

We have shown the duality between the maximal lines in Zd×Zd and the

weak mutually unbiased bases in Hd, in the sense that there is a correspon-

dence between the properties of the maximal lines and the properties of the

bases. Tables (3.1,4.2,3.2,4.3,3.3,4.8,3.4,4.9) present explicitly this duality.

We have studied the concept of weak mutually unbiased bases in the

context of complex projective t-designs. We proved that a complete set of

weak mutually unbiased bases is a complex projective 1-design with angle set

{0, 1/p1, 1/p2, 1/d} and form WBE-sequence set. We have also shown that a

set of weak mutually unbiased bases is a regular scheme.
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As an application of weak mutually unbiased bases, we have proved that,

using a complete set of such bases in tomography experiments can lead us

to reconstruct the density matrix of an arbitrary quantum system; i.e. we

have proved that, the set of weak mutually unbiased bases is tomographically

complete.

We gave two examples of using weak mutually unbiased bases in quantum

tomography. The first example is for a quantum system in pure state, and

the second example is for a quantum system in mixed state. In both exam-

ples, we started with the probabilities corresponding to the weak mutually

unbiased bases, and we ended with the reconstruction of the density matrix

of the quantum system. Tables (4.4, 4.5) show samples of these probabilities.

According to the redundancy associated with weak mutually unbiased bases

(Eq. (4.70)), the probabilities must obey the constraint of (Eq. (4.72)).

Tables (4.6,4.7) show that the probabilities considered in the two examples

obey this constraint.

Another application of weak mutually unbiased bases is its use in quan-

tum cryptography with quantum systems of dimension d where d = p1p2. We

have modified the BB84 protocol such that weak mutually unbiased bases are

used to prepare and measure qudits. The security analysis of the proposed

protocol against intercept and resend attack showed that it gives better per-

formance than the protocol adopted in [92, 93, 94], regarding the probability

of detecting Eve and the information that Eve can leak (compare Eq. (5.10)

with Eq. (5.5) and Eq. (5.11) with Eq. (5.6)).

For quantum systems with dimension d where d is odd prime, we have

proved that the states of d bases are shifted by the same value α under
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the action of the operators XαZα. We have used this result to generalize

the two-way deterministic cryptography protocol to work with qudits rather

than qubits. We have analyzed this protocol against the intercept and resend

attack, Eq. (5.41) shows the probability of detecting Eve according to this

attack.

6.2 Future work

In this work we have studied the duality between the maximal lines in Zd×Zd

and the weak mutually unbiased bases, We can extend this study to find the

dual concept of sublines as well.

Another aspect of our future work is to analyze the proposed quantum

cryptography protocols against various types of eavesdropper attacks. It

would be interesting to study the tradeoff between the construction rate

and the security in the one-way protocol as well as the tradeoff between the

system dimension and the security in the two-way protocol.
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