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Abstract

The study of coherent states (CS) for a quantum mechanical system has

received a lot of attention. The definition, applications, generalizations of

such states have been the subject of work by researchers. A common starting

point of all these approaches is the observation of properties of the original

CS for the harmonic oscillator. It is well-known that they are described

equivalently as (a) eigenstates of the usual annihilation operator, (b) from

a displacement operator acting on a fundamental state and (c) as minimum

uncertainty states. What we observe in the different generalizations proposed

is that the preceding definitions are no longer equivalent and only some of

the properties of the harmonic oscillator CS are preserved.

In this thesis we propose to study a new class of coherent states and

its properties. We note that in one example our CS coincide with the ones

proposed by Glauber where a set of three requirements for such states has

been imposed. The set of our generalized coherent states remains invariant

under the corresponding time evolution and this property is called tempo-

ral stability. Secondly, there is no state which is orthogonal to all coherent
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states (the coherent states form a total set). The third property is that we

get all coherent states by acting on one of these states [‘fiducial vector’] with

operators. They are highly non-classical states, in the sense that in general,

their Bargmann functions have zeros which are related to negative regions of

their Wigner functions. Examples of these coherent states with Bargmann

function that involve the Gamma and also the Riemann ξ functions are rep-

resented. The zeros of these Bargmann functions and the paths of the zeros

during time evolution are also studied.
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and for the time interval t = [0 : .05 : 0.3]. At t = 0 the

Bargmann function is exp(0.5z)
Γ(z)

. Figure 5.22 shows the first eight

zeros of Bargmann function of the state |1, 0.5, 1⟩Γ and its

motion according to the H = 0.5[(â†)2 + â2] at t = [0 : .05 :
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Hamiltonian H = 0.1[(â†)â]2 and for the time interval t = [0 :

.05 : 0.3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.16 The time evolution of the zeros of the approximate polynomial

with degree n = 11 for Bargmann function of the state |1⟩ξ by

using Eq(6.16), for Hamiltonian H = (â†)â and for the time
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Chapter 1
Introduction

The thesis is devoted to the study of a new class of coherent states and its

properties. The coherent states of a harmonic oscillator were first constructed

by Schrodinger as “the most classical” states of the oscillator [1]. The prop-

erties of these states have been studied in a systemetic way by Glauber, who

showed their importance for the quantum mechanical treatment of optical

coherence and who introduced the name “coherent state”. They are the

states of harmonic oscillator system which have the minimum uncertainty

in position and momentum allowed by the Heisenberg uncertainty principle.

Coherent states have been studied extensively in the literature [2, 3].

When two such classical states are superposed the resultant states exhibit

many non-classical features. An important case is the superposition of two

coherent states of some amplitude with their phases differing by π. The

symmetric combination |z⟩ + | − z⟩ is |z⟩e, z ∈ C. The state |z⟩e is called

an even coherent state. The antisymmetric superposition |z⟩ − | − z⟩ is |z⟩o

involves only the odd number states. The even and odd coherent states for

1
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harmonic oscillator, introduced in the 1970s by Dodonov, Malkin and Man’ko

and later called “Schrodinger cat” [1]. The name “Schrodinger cat” is based

on the thought experiment which Schrodinger used to discuss philosophy

aspects of quantum mechanics (see subsection 2.2.4).

There are many types of generalized coherent states which are related to

some groups and have some properties. SU(1, 1) and SU(2) coherent states

are some of them. In this thesis we consider the set of states with Bargmann

function g(Az) where A ∈ C. They are generalized coherent states, in the

sense that they have three the following properties. The first property is

that the set of coherent state is a total set in the Hilbert space. Our states

may not have the stronger property of the resolution of the identity. The

second property is that we get all coherent states by acting on one of these

states [‘fiducial vector’] with operators which form a representation of the

multiplicative group of non-zero complex numbers C∗ = C− {0}. The third

property is sometimes called temporal stability [2, 3]. For some Hamiltonian

H, the set of coherent states remains invariant under the corresponding time

evolution (i.e, if |s⟩ is a coherent state then exp(itH)|s⟩ is also a coherent

state).

We consider various examples, for g(z) = exp(z) we get the Glauber

coherent states. When g(z) = sin(z) or g(z) = cos(z) we get the odd and even

coherent states. We also consider the case where g(z) = exp(Bz)
[Γ(Az)]k

where Γ is a

Gamma function and study the corresponding coherent states. We also study

the time evolution of these states for various Hamiltonians and in particular

the paths of the zeros of their Bargmann functions. We study in detail the

properties of these states photon number ⟨N⟩, second order correlation g(2),



CHAPTER 1. INTRODUCTION 3

wave function, Wigner function, etc. The zeros of a Bargmann function do

not define the function uniquely. For this reason we study the functions 1
Γ(Az)

and exp(Bz)
Γ(Az)

which have the same zeros but are different. We also study the

case where g(Az) = ξ(Az), the Riemann xi function.

The motivation for this work is to introduce a methodology which leads

to wide classes with properties similar to coherent states. In the general case,

we do not have a resolution of the identity in terms of these states. However,

we have the weaker property that these states are a total set in some space.

An important open question is to find a resolution of the identity in terms

of states which are a total set in some space.

This thesis consists of seven chapters. Chapter one is an introduction to

the thesis. Chapter 2 gives a review on phase space methods for quantum

particles on a real line. A number of fundamental aspects in quantum sys-

tems with a continuous Hilbert space are discussed. The Wigner and Weyl

functions are introduced in different quantum states (number states, coher-

ent states, squeezed states). Chapter 3 gives a brief introduction to two types

of generalized coherent states based on SU(1, 1) and SU(2) Lie groups. Our

generalized coherent states and their properties are introduced in chapter

4; with the “ Schrödinger cat states” as an example. The wave function,

Wigner function and also the motion of its Bargmann function at different

Hamiltonians are discussed. In chapter 5 a few examples based on Gamma

function are discussed. In addition to this two methods are used to compute

the overlaps of our states, one by using zeta function and the other by using

integration. Chapter 6 gives a brief introduction to Riemann zeta state ζ(z)

and Riemann ξ state ξ(z). The wave function, Wigner function and also the
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motion of ξ(Az) function for different Hamiltonian are discussed. “ In the

final chapter we conclude and discuss the contributions of this thesis, and

suggest further work.”



Chapter 2
Quantum Harmonic Oscillator

2.1 Introduction

The quantum harmonic oscillator holds a unique importance in quantum

mechanics, as it is both one of the few problems that can really be solved in

closed form. It introduces the methods of analytically solving the differential

equations frequently encountered in quantum mechanics. It also provides a

good introduction to the use of raising and lowering operators, and using

the abstract vectors that are frequently used in quantum mechanics to solve

problems by knowing the action of operators upon state vectors, rather than

using integration to evaluate expectation values [4, 5, 6].

The harmonic oscillator is characterized by the Hamilltonian;

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, (2.1)

where p̂ is the momentum operator and x̂ is the position operator . For

simplicity, let us first consider the Hamilltonian for the harmonic oscillator

5
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with unitary mass m = 1 and unitary frequency ω = 1

Ĥ =
p̂2

2
+

1

2
x̂2. (2.2)

2.1.1 Position and Momentum operators

The position operator x̂ is a Hermitian operator, and we can use its eigen-

states as an orthogonal basis. The state |x⟩ is defined to be the eigenstate

of x̂ with eigenvalue x ;

x̂|x⟩ = x|x⟩. (2.3)

The states of the position operator x̂ form an orthogonal basis

⟨x|x′⟩ = δ(x− x′). (2.4)

The eigenstates |x⟩ of the position operator x̂ form a complete basis

∫
dx|x⟩⟨x| = 1̂. (2.5)

We can expand arbitrary state |ψ⟩ in terms of the |x⟩ basis states,

|ψ⟩ = 1̂|ψ⟩ =
∫
dx|x⟩⟨x|ψ⟩ =

∫
dxψ(x)|x⟩. (2.6)

Another useful basis is formed by the eigenstates of the momentum op-

erator p̂; The momentum operator p̂ is a Hermitian operator, and we can
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use its eigenstates as an orthogonal basis. The state |p⟩ is defined to be the

eigenstate of p̂ with eigenvalue p :

p̂|p⟩ = p|p⟩. (2.7)

The states of momentum operator p̂ form an orthogonal basis

⟨p|p′⟩ = δ(p− p′). (2.8)

The eigen states |p⟩ of momentum operator p̂ form a complete basis

∫
dp|p⟩⟨p| = 1̂ . (2.9)

We can expand our state |ψ⟩ in terms of the |p⟩ basis states.

|ψ⟩ = 1̂|ψ⟩ =
∫
dp|p⟩⟨p|ψ⟩ =

∫
dpψ(p)|p⟩. (2.10)

The state |x⟩ and |p⟩ are related to each other by Fourier transform

|x⟩ = (2π)−1/2

∫ ∞

−∞
exp(−ixp)|p⟩dp, (2.11)

|p⟩ = (2π)−1/2

∫ ∞

−∞
exp(ixp)|x⟩dx. (2.12)

The inner product between |x⟩ and |p⟩

⟨x|p⟩ = (2π)−1/2 exp(ixp). (2.13)

For any pair of non commuting operators such as x̂ and p̂, there is an un-
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certainty relation that quantifies to what the two observables can be specified

simultaneously. In this case, the position-momentum uncertainty relation is

△x△p ≥ 1

2
, (2.14)

where △x and △p are the standard deviations of x̂ and p̂ measurements

respectively.

2.2 States of the quantum harmonic oscilla-

tor

We shall now describe several states of a quantum harmonic oscillator such

as number states, coherent states, squeezed states, and also we will discuss

their properties.

2.2.1 Number states |n⟩

Number states play an important role in quantum optics. They are an or-

thogonal basis in the Hilbert space and each state can be expanded in terms

of them.

It is convenient to introduce the non-Hermitian combinations of x̂ and p̂:

â = (2)−1/2 (x̂+ ip̂) ,

â† = (2)−1/2 (x̂− ip̂) , (2.15)
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where â is the annihilation operator and â† the creation operator.

These two operators obey the canonical commutation relation [7].

[â, â†] = I. (2.16)

The eigenstates |n⟩ of the number operator n̂ are known as the number

states satisfying:

Ĥ|n⟩ = En|n⟩, En = (n+
1

2
), n = 0, 1, 2, . . . , (2.17)

where the non-negative integers n characterize the energy spectrum of

the linear harmonic oscillator. One quantum of energy is called one photon

in quantum optics. The eigenstate |0⟩ with the lowest energy En = 1/2 is

generally called the vacuum state. The number states n̂ = â†â is defined as

n̂ =
∞∑
n=0

n|n⟩⟨n| and n̂ = n|n⟩. (2.18)

Apparently, the Hamitonian operator in Eq (2.17) is Ĥ = n̂ + 1
2
. Since

n̂ is a Hermitian, we next introduce the fractional Fourier operator Û(θ) as

follows:

Û(θ) = exp(iθn̂) θ ∈ ℜ, (2.19)

which is a unitary operator. We can show that



CHAPTER 2. QUANTUM HARMONIC OSCILLATOR 10

Û(θ)x̂Û(θ)† = x̂ cos(θ) + p̂ sin(θ). (2.20)

Û(θ)p̂Û(θ)† = −x̂ sin(θ) + p̂ cos(θ). (2.21)

By using this expression

exp(X)Y exp(−X) = Y + [X, Y ] +
1

2!
[X, [X, Y ]] + ..... (2.22)

It is seen that the fractional Fourier operator Û(θ) creates rotations in

the x-p plane quantum phase space.

For θ = π this operator is called parity operator

Û(π) = exp(iπâ†â) =
∞∑
n=0

(−1)n|n⟩⟨n|, [Û(π)]2 = 1̂. (2.23)

It is easy seen that

Û(π)|x⟩ = | − x⟩, Û(π)|p⟩ = | − p⟩ (2.24)

Û(π)x̂Û(π)† = −x̂, Û(π)p̂Û(π)† = −p̂. (2.25)

For θ = π
2
this operator is called Fourier transform operator
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Û(
π

2
) = exp(i

π

2
â†â) =

∞∑
n=0

(i)n|n⟩⟨n|, [Û(
π

2
)]4 = 1̂. (2.26)

It is easy seen that

Û(
π

2
)|x⟩ = |p⟩, Û(

π

2
)|p⟩ = |x⟩ (2.27)

Û(
π

2
)x̂Û(π)† = p̂, Û(

π

2
)p̂Û(π)† = −x̂. (2.28)

The ladder of excitation can be climbed up and down via the application

of creation and annihilation operators

â†|n⟩ =
√
n+ 1|n+ 1⟩. (2.29)

â|n⟩ =
√
n|n− 1⟩. (2.30)

The set of number states {|n⟩, n = 0, 1, 2, . . .} forms a complete and

orthogonal set of states i.e

∞∑
n=0

|n⟩⟨n| = I and ⟨n|m⟩ = δnm. (2.31)

The position x̂ and momentum p̂ operators can be written in terms of â
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and â† as follows:

x̂ =
1√
2
(â+ â†), p̂ = −i∂x =

1√
2i
(â− â†). (2.32)

The position representation of the number states |n⟩

⟨x|n⟩ = (
√
π2nn!)−1/2Hn(x) exp(−x2/2). (2.33)

The momentum representation of the number states |n⟩

⟨p|n⟩ = (
√
π2nn!)−1/2(−1)nHn(p) exp(−p2/2), (2.34)

where Hn(x) are the Hermite polynomials of order n [8, 9].

Figures (2.1) and (2.2) show the link between the Wave function of the

number state |3⟩ and its Fourier transformation.

−6 −4 −2 0 2 4 6

−0.2

−0.1

0

0.1

0.2

0.3

x

〈x|n〉

Figure 2.1: The x representation f(x) = ⟨x|3⟩ for the number state |3⟩

The states |x⟩ and |p⟩ are eigen states of the position and momentum

operators.
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−5 0 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

p

〈p|n〉

Figure 2.2: The p representation f(p) = ⟨p|3⟩ for the number state |3⟩
.

Number states provide a frequently used representation of a pure state

|f⟩ =
∞∑
n=0

fn|n⟩. (2.35)

The average of photon number of |n⟩

⟨n⟩ = ⟨n|n̂|n⟩ = ⟨n|â†â|n⟩ = n. (2.36)

The photon variance of |n⟩

(∆n)2 = ⟨n2⟩ − ⟨n⟩2 = 0. (2.37)

The expectation value of x̂ for |n⟩

⟨x⟩ = ⟨n|x̂|n⟩ = ⟨n| 1√
2
(â+ â†)|n⟩ = 0. (2.38)
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The expectation value of p̂ for |n⟩

⟨p⟩ = ⟨n|p̂|n⟩ = ⟨n| 1√
2i
(â− â†)|n⟩ = 0. (2.39)

The variances of x̂ and p̂ are equal

(∆x)2 = (∆p)2 = n+ 1/2. (2.40)

The second order coherence g(2) = 1 for the ground state |0⟩

The second order coherence g(2) of |n⟩ for n ≥ 1

g(2) =
⟨â†â†ââ⟩
⟨â†â⟩2

= 1− 1

n
. (2.41)

We present in tables 2.1 and 2.2 the quantum statistical quantities like

the average number of photons ⟨n⟩, the variances of x̂ and p̂, and the second-

order correlations g(2) for the number states |n⟩ at n = 0, 1, 2, 3.

Table 2.1: The values of ⟨n⟩, ⟨n2⟩, (∆n)2 and g(2) for number states |n⟩ at
n = 0, 1, 2, 3

|n⟩ ⟨n⟩ ⟨n2⟩ (∆n)2 g(2)

|0⟩ 0 0 0 1
|1⟩ 1 1 0 0
|2⟩ 2 4 0 1/2
|3⟩ 3 9 0 2/3
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Table 2.2: The values of ⟨x⟩, ⟨x2⟩,(∆x)2 ⟨p⟩, ⟨p2⟩ and (∆p)2 for number
states |n⟩ at n = 0, 1, 2, 3

|n⟩ ⟨x⟩ ⟨x2⟩ (∆x)2 ⟨p⟩ ⟨p2⟩ (∆p)2

|0⟩ 0 1/2 1/2 0 1/2 1/2
|1⟩ 0 3/2 3/2 0 3/2 3/2
|2⟩ 0 5/2 5/2 0 5/2 5/2
|3⟩ 0 7/2 7/2 0 7/2 7/2

2.2.2 Coherent states |z⟩

In this subsection we introduce another set of states, the coherent states.

They most closely resemble those of a classical field, like a laser pulse. The

coherent state can be define as; [3, 10]

|z⟩ = exp

(
−|z|2

2

) ∞∑
n=0

zn√
n!

|n⟩. (2.42)

We recall that the parameter z = s exp(iθ) describing the coherent state

is a complex number which has a real and imaginary part Re(z), Im(z) re-

spectively.

The coherent state can also defined by

|z⟩ = D(z)|0⟩, (2.43)

where D(z) is a displacement operator and can be written as:

D(z) = exp(zâ† − z∗â). (2.44)

The displacement operator D(z) satisfies the following properties:
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D†(z)D(z) = 1̂, (2.45)

D†(z) = D(−z), (2.46)

D†(z)âD(z) = â+ z, D†(z)â†D(z) = â† + z, (2.47)

D†(z)f(â, â†)D(z) = f(â+ z, â† + z∗), (2.48)

D(z1)D(z2) = exp((z1z
∗
2 − z∗1z2)/2)D(z1 + z2), (2.49)

D(z1)D(z2) = exp(z1z
∗
2 − z∗1z2)D(z2)D(z1), (2.50)

where D†(z) is the conjugate transpose of D(z), and z∗ is the conjugate

of z.

The Baker-Haussdorf formula states that:

exp(A+B) = exp(A) exp(B) exp(−[A,B]/2), (2.51)

when [A, [A,B]] = 0 and [B, [A,B]] = 0.

The proof of the Baker-Haussdorf formula employs the following identity

valid for arbitrary operators (without assuming vanishing of commutators):

exp(A)B exp(−A) = B + [A,B]/1! + [A, [A,B]]/2!.... (2.52)

with the identity we can derive Eqs (2.47) and (2.48)

The number z can be any complex number. We now discuss the basic

features of the coherent states and photon operators â and â†. For example,
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one can easily show that the states |z⟩ are normalized.

⟨z|z⟩ = exp(−|z|2)
∞∑
n=0

|z|2n

n!
⟨n|n⟩ = exp(−|z|2 exp(|z|2) = 1. (2.53)

Coherent states are also useful in calculations, since they are the eigen-

states of the annihilation operator â with eigen value z. To show this, we

calculate:

â|z⟩ = exp(−|z|2

2
)

∞∑
n=1

zn√
n!

√
n|n− 1⟩ = z|z⟩ (2.54)

.

The time evolution of any such coherent state remains within the family

of coherent states [2, 3, 11].

exp(−iHt)|z⟩ = exp(−iâ†ât)|z⟩ = | exp(−it)z⟩. (2.55)

This property is called temporal stability

The mean number of photons for a system prepared in take|z⟩ equals

⟨n⟩ = ⟨z|â†â|z⟩ = z∗⟨z|â|z⟩ = z∗z⟨z|z⟩ = |z|2 (2.56)

.

The expectation value of the position operator x̂ in the coherent state |z⟩

is

⟨x⟩ = ⟨z|x̂|z⟩ = ⟨z| 1√
2
(â+ â†)|z⟩ =

√
2Re(z). (2.57)

The expectation value of the momentum operator p̂ in the coherent state
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|z⟩ is

⟨p⟩ = ⟨z|p̂|z⟩ = ⟨z| 1√
2i
(â− â†)|z⟩ =

√
2Im(z). (2.58)

The variances of x̂ and p̂ in the coherent state |z⟩ are

(∆x)2 = (∆p)2 =
1

2
. (2.59)

The second order coherence g(2) of |z⟩

g(2) =
⟨â†â†ââ⟩
⟨â†â⟩2

= 1. (2.60)

We present in tables 2.3 and 2.4 the quantum statistical quantities like

the average number of photons ⟨n⟩, the variances of x̂ and p̂, and the second-

order correlations g(2) for the coherent states |z⟩ at z = 0, 1, i, 1 + i.

The probability for finding n photons in the photon state |z⟩ is given by

P (n) = |⟨n|z⟩|2 = exp(−|z|2) |z|
2n

n!
= exp(−⟨n⟩)⟨n⟩

n

n!
. (2.61)

Figure (2.3) illustrates the distribution of the photon number for a co-

herent state |z⟩ where z = 2. However, Figure (2.4) shows the probability of

two different coherent states: |z1⟩ and |z2⟩ where z1 = i and z2 = 2 + 3i.
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0 5 10 15 20 25
n

Figure 2.3: The Photon number probability distribution for coherent state
|2 + i⟩

2.2.3 The time evolution of coherent state |z⟩

The time evolution of a minimum uncertainty coherent state |z⟩ where z =

s exp(iθ) under the harmonic oscillator is given by

|z⟩t = exp(−iHt)|z⟩ = exp(−it(â†a))|z⟩. (2.62)

The expectation value of x̂ in |z⟩ at time t ≥ 0 is:

⟨x⟩t =
√
2s cos(θ − t). (2.63)

The expectation value of p̂ in |z⟩ at time t ≥ 0 is:

⟨p⟩t =
√
2s sin(θ − t). (2.64)
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0 5 10 15 20 25
0

0.2

0.4

n

Pn

Figure 2.4: The Photon number probability distribution for |z⟩ , z = i (solid
line) and |β⟩ , β = 2 + 3i (dot line).

The variance of x̂ and p̂ in |z⟩ at time t ≥ 0 is:

(∆x)2t = (∆p)2t =
1

2
. (2.65)

Moreover, one can calculate the overlap between two different coherent

states |z1⟩ and |z2⟩ [12]:

⟨z1|z2⟩ = exp(−|z1|2

2
− |z2|2

2
+ z∗1z2) (2.66)

whereas the modulus (called sometimes the state overlap) is:

|⟨z1|z2⟩|2 = exp(−|z1 − z2|2). (2.67)

The coherent states are not pairwise orthogonal. Since they can nevertheless
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be used to represent any state by writing it as a superposition of them, they

are called an over complete basis[13].

Furthermore, these states are evidently continuous in z ∈ C and admit a

resolution of unity given by

1 =
1

π

∫
C

∫
dz|z⟩⟨z| dz = dRe(z)dIm(z), (2.68)

where z = Re(z) + iIm(z) and the integration is over the whole complex

plane C.

As the coherent states are labeled by a continuous complex plane in the

Hilbert space that has a countable basis, they are over-complete. The above

relation also shows that the coherent states can be normalized.

To prove this relation one should calculate the integral over the whole

complex plane in the right hand side of equation Eq(2.68)

∫
C

∫
dz|z⟩⟨z| =

∫
C

∫
dz exp(−|z|2)

∑
m,n

(z∗)nzm√
n!m!

. (2.69)

Now, writing z in polar form:

z = s exp(iθ) ⇒ dz = sdsdθ.

We finally get:

1

π

∫
C

∫
dz|z⟩⟨z| =

∞∑
n=0

|n⟩⟨n| = 1. (2.70)

The photon number states |n⟩ can be written as a superposition of co-
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herent states |z⟩:

|n⟩ = 1|n⟩ = 1

π

∫
C

∫
dz|z⟩⟨z|n⟩ = 1

π

∫
C

∫
dz exp

(
−|z|2

2

) ∞∑
n=0

zn√
n!

|z⟩.

(2.71)

The position-representation of coherent state |z⟩ can be written as:

⟨x|z⟩ = π−1/4 exp(−x2/2 +
√
2zx− (Re(z))2). (2.72)

Figure (2.5) shows the wave function of two coherent states labeled as |z1⟩

and |z2⟩ where z1 = −1 and z2 = 1.

0 5
x

z1 = −1 z2 = 1

Figure 2.5: The wave function of two coherent states |z1⟩ and |z2⟩ where
z1 = −1 and z2 = 1

The coherent state wave function ⟨x|z⟩ looks exactly like ground state,

but shifted in momentum and position. It then moves as a classical particle,

while keeping its shape fixed.

The coherent state is also called a ‘Displaced Ground State’

In summary, we have seen that the coherent states are minimal uncer-

tainty wavepackets which remains minimal under time evolution. Further-

more, the time dependant expectation values of x and p satisfies the classical
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equations of motion.

Table 2.3: The values of ⟨n⟩, ⟨n2⟩ and (∆n)2 for coherent states |z⟩ at z =
0, 1, i, 1 + i

|z⟩ ⟨n⟩ ⟨n2⟩ (∆n)2

0 0 0 0
1 1 2 1
i 1 2 1

1 + i 2 6 2

Table 2.4: The values of ⟨x⟩, ⟨x2⟩, (∆x)2, ⟨p⟩, ⟨p2⟩ and (∆p)2 for coherent
states |z⟩ at z = 0, 1, i, 1 + i

|z⟩ ⟨x⟩ ⟨x2⟩ (∆x)2 ⟨p⟩ ⟨p2⟩ (∆p)2

0 0 1/2 1/2 0 1/2 1/2

1
√
2 5/2 1/2 0 1/2 1/2

i 0 1/2 1/2
√
2 5/2 1/2

1 + i
√
2 5/2 1/2

√
2 5/2 1/2

2.2.4 Even and odd coherent States |z⟩e and |z⟩o

Superposition is a principle of quantum theory that describes a challenging

concept about the nature and behavior of matter and forces at the sub-atomic

level. The principle of superposition claims that while we do not know what

the state of any object is, it is actually in all possible states simultaneously,

as long as we don’t look to check. It is the measurement itself that causes

the object to be limited to a single possibility.

In 1935, Erwin Schrodinger proposed an analogy to show how superpo-

sition would operate in the every day world: the somewhat cruel analogy of

Schrodinger’s cat. Here’s Schrdinger’s (theoretical) experiment: We place a

living cat into a steel chamber, along with a device containing hydrocyanic
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acid. There is, in the chamber, a very small amount of a radioactive sub-

stance. If even a single atom of the substance decays during the test period,

a relay mechanism will trip a hammer, which will, in turn, break the vial and

kill the cat.

The observer cannot know whether or not an atom of the substance has

decayed, and consequently, cannot know whether the vial has been broken,

the hydrocyanic acid released, and the cat killed. Since we cannot know, the

cat is both dead and alive according to quantum law, in a superposition of

states. It is only when we break open the box and learn the condition of

the cat that the superposition is lost, and the cat becomes one or the other

(dead or alive)

The even coherent state |z⟩e is a superposition of two macroscopically

distinguishable coherent state and can be written as:

|z⟩e = Ne[|z⟩+ | − z⟩], (2.73)

where Ne = [2(1 + exp(−2|z|2)]−1/2

The odd coherent state |z⟩o is a superposition of two coherent state and

can be written as:

|z⟩o = No[|z⟩ − | − z⟩], (2.74)

where No = [2(1− exp(−2|z|2)]−1/2 and for large number z Ne = No =

1√
2

They can also be created by a special displacement operator [14].

|z⟩e,o = De,o(z)|0⟩ = Ne,o[D(z)±D(−z)]|0⟩. (2.75)
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Figure (2.6) displays the wave function of an even coherent state |z⟩e

where z = iπ.

−4 −2 0 2 4
−1

0

1

x

Figure 2.6: The wavefunction of the state |iπ⟩e, the dot lines denotes to the
imaginary part of its wavefunction

One can easily write the corresponding expansions for the even and odd

coherent states [15].

|z⟩e = exp

(
−|z|2

2

) ∞∑
n=0

z2n√
2n!

|2n⟩. (2.76)

|z⟩o = exp

(
−|z|2

2

) ∞∑
n=0

z2n+1√
(2n+ 1)!

|2n+ 1⟩. (2.77)

The annihilation operator turns an even coherent state to an odd one

(and vice versa).

a|z⟩e = z|z⟩o a|z⟩o = z|z⟩e. (2.78)

The even and odd coherent states |z⟩e, |z⟩o are orthonormalized eigen-
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states of a2 [16].

a2|z⟩e,o = z2|z⟩e,o. (2.79)

The states |z⟩e and |z⟩o separately form complete sets in the Hilbert

spaces of even and odd functions [15].

The even and odd coherent states and their relation to SU(1, 1) and

SU(2) Lie groups is clarified in Chapter(3).

2.2.5 Displaced number states |z, n⟩

In this section we summarize various properties of the displaced number

states. The displaced number states are defined as: [17]

|z, n⟩ = D(z)|n⟩, (2.80)

where D(z) is the displacement operator.

For n = 0, the displaced number states, reduces to the well-known coher-

ent states.

The mean number of photons for a system prepared in |z, n⟩ as in [18, 19].

⟨n⟩ = ⟨z, n|â†â|z, n⟩ = n+ |z|2. (2.81)

Eq(2.81) agrees with the result of Eq(2.36) for z = 0 and agrees with the

result of Eq(2.56) for n = 0.

The photon variance of |z, n⟩

(∆n)2 = ⟨n2⟩ − ⟨n⟩2 = (2n+ 1)|z|2. (2.82)
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The expectation value of the position operator x̂ in the displaced number

states |z, n⟩ is

⟨x⟩ = ⟨z, n|x̂|z, n⟩ =
√
2Re(z). (2.83)

The expectation value of the momentum operator p̂ in the displaced num-

ber states |z, n⟩ is

⟨p⟩ = ⟨z, n|p̂|z, n⟩ =
√
2Im(z) (2.84)

The variance of x̂ and p̂ in the displaced number states |z, n⟩

(∆x)2 = (∆p)2 =
1

2
(2n+ 1). (2.85)

The second order coherence g(2) of |z, n⟩

g(2) =
⟨n2⟩ − ⟨n⟩

⟨n⟩2
=

|z|4 + 4n|z|2 + n2 − n

|z|4 + 2n|z|2 + n2
. (2.86)

Eq(2.86) agrees with the result of Eq(2.41) for z = 0 and agrees with the

result of Eq(2.60) for n = 0.

The probability for finding l photons in the displaced number states |z, n⟩

are given by

P|z,n⟩(l) = |⟨l|z, n⟩|2 = (
n!

l!
)|z|2(l−n) exp(−|z|2)[Ll−nn (|z|2)]2 l ≥ n. (2.87)

The photon distribution has formed two guassians in the displaced num-

ber states |7, 1⟩ as shown in Figure (2.7). However, when z remains as 7 and

n = 1 three guissian are formed as shown in Figure (2.8). Similarly, when

n = 3 which is shown in Figure (2.9) the number of guassian is 4 which
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Figure 2.7: Photon distribution for the displaced number state |7, 1⟩

20 40 60 80 100
l

Figure 2.8: Photon distribution for the displaced number state |7, 2⟩

indicates that the number of guassians depends on the value of n.

2.2.6 Squeezed states |ξ, z⟩

We first define Squeezed states and then give some important properties.

The squeezed state |ξ, z⟩ is defined by [20].

|ξ, z⟩ = S(ξ)D(z)|0⟩, (2.88)

where S(ξ) = exp(1
2
ξa†

2 − 1
2
ξ∗â2) is squeezing operator, and

D(z) = exp(zâ† − z∗â) is a displacement operator.
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l

Figure 2.9: Photon distribution for the displaced number state |7, 3⟩

We easily see that

S(ξ) = exp(
1

2
ξâ†

2 − 1

2
ξ∗â2) = S(−ξ) = S−1(ξ), (2.89)

which indicates that operator S(ξ) is a unitary operator one.

Let us assume that ξ = r exp(iϕ) and z = s exp(iθ)

the squeezing operator S(ξ) satisfies:

S†(ξ)âS(ξ) = â cosh r + â† exp(iϕ) sinh r, (2.90)

and

S†(ξ)â†S(ξ) = â† cosh r + â exp(−iϕ) sinh r. (2.91)

It is easy to prove Eq (2.90) by using the expression:

exp(hX)Y exp(−hX) = Y +
h

1!
[X, Y ] +

h2

2!
[X, [X, Y ]] + ..... (2.92)
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We use this expression in Eq (2.92) with:

h→ r X → (
1

2
â2 exp(−iϕ)− 1

2
â†

2

exp(iϕ)) Y → â, (2.93)

and we get:

[X, Y ] = [
1

2
â2 exp(−iϕ)− 1

2
â†

2

exp(iϕ), â] = exp(iϕ)â† (2.94)

[X, [X,Y ]] = [
1

2
â2 exp(−iϕ)− 1

2
â†

2

exp(iϕ), exp(iϕ)â†] = â. (2.95)

When operator X occurs odd number of times, the result of a correspond-

ing multiple operator will always be equal to the exp(iϕ)â†. Therefore, the

general similarity expansion S†(ξ)âS(ξ) splits into two series; odd and even

terms, and we get:

S†(ξ)âS(ξ) = â(1 +
r2

2!
+
r4

4!
+ ...) + exp(iϕ)â†(r +

r3

3!
+
r5

5!
+ ...)

= â cosh r + â† exp(iϕ) sinh r (2.96)

It is clear that the coherent state is a special case of the squeezed state

because:

|0, z⟩ = S(0)D(z)|0⟩ = D(z)|0⟩ = |z⟩.
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The squeezed state is normalized

⟨ξ, z|ξ, z⟩ = 1. (2.97)

The average photon number ⟨n̂⟩ in the squeezed state |ξ, z⟩ is given by

[21, 22].

⟨n⟩ = |z|2 + sinh2 r. (2.98)

The variance of photon number (∆n̂)2 in the squeezed state |ξ, z⟩ is

(∆n)2 = |z|2{exp(−2r) cos2(θ− 1

2
ϕ)+exp(2r) sin2(θ− 1

2
ϕ)+2 sinh2 r cosh2 r}.

(2.99)

The expectation value of the position operator x̂ in the squeezed state

|ξ, z⟩ is given by [22]:

⟨x⟩ =
√
2s{cos(θ) cosh r + cos(θ − ϕ) sinh r}. (2.100)

The expectation value of the momentum operator p̂ in the squeezed state

|ξ, z⟩ is given by [22]:

⟨p⟩ =
√
2s{sin(θ) cosh r − sin(θ − ϕ) sinh r}. (2.101)

The variance of the position operator x̂ in the squeezed state |ξ, z⟩ is

given by [22]:

(∆x)2 =
1

2
{cosh 2r + cos(ϕ) sinh 2r}. (2.102)

The variance of the momentum operator p̂ in the squeezed state |ξ, z⟩ is
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given by [22]:

(∆p)2 =
1

2
{cosh 2r − cos(ϕ) sinh 2r}. (2.103)

The position representation of |ξ, z⟩ is [22]:

⟨x|ξ, z⟩ = (π exp(2r))−1/4 exp{exp(−2r)

2
[x− ⟨x⟩]2 + i⟨p⟩x}. (2.104)

2.2.7 The time evolution of squeezed state |ξ, z⟩

The time evolution of a minimum uncertainty state under the harmonic os-

cillator is given by:

|ξ, z⟩t = exp(−iHt)|ξ, z⟩ = exp(−it(â†a+ 1/2))|ξ, z⟩. (2.105)

For simplicity we take ξ to be a real number.

The expectation value of x̂ in |ξ, z⟩ at time t ≥ 0 is:

⟨x⟩t =
√
2s{cos(θ − t) cosh ξ + cos(θ + t) sinh ξ}. (2.106)

The expectation value of p̂ in |ξ, z⟩ at time t ≥ 0 is:

⟨p⟩t =
√
2s{sin(θ − t) cosh ξ − sin(θ + t) sinh ξ}. (2.107)

The variance of x̂ in |r, z⟩ at time t ≥ 0 is:

(∆x)2t =
1

2
{cosh 2r + cos(2t) sinh 2ξ}. (2.108)
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Figure (2.10) shows the expectation value of ⟨x⟩t and ⟨p⟩t for th squeezed

state |1, exp( iπ
4
)⟩. However, Figure (2.11) shows the product of the variance

of x̂ and p̂ at time t.

0 2 4 6 8 10
−5

0

5

t

 

 

Figure 2.10: The expectation value of position and momentum ⟨x⟩t and
⟨p⟩t for the squeezed state |ξ, z⟩ as a function of time t where ξ = 1 and
z = exp(iπ/4). The continuous line denotes to ⟨x⟩t and the cut lines denote
to ⟨p⟩t

The variance of p̂ in |ξ, z⟩ at time t ≥ 0 is

(∆p)2t =
1

2
{cosh 2ξ − cos(2t) sinh 2ξ}. (2.109)

2.3 Q-function of the quantum state |ψ⟩

The expectation value of the density with respect to the coherent state |z⟩,

z = x+ iy is called the Q-function, or Husimi function [23, 24, 25, 26],

i.e Q(z) = Q(x, y) = 1
π
⟨z|ρ|z⟩

where ρ = |ψ⟩⟨ψ|
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Figure 2.11: The plot of (∆x)t(∆p)t for the squeezed state |ξ, z⟩ at time t ≥ 0
where ξ = 1 and z = exp(iπ/4)

2.3.1 The Q-function of the number state |n⟩ and its

zeros

The Q-function of the number states |n⟩ is defined as:

Q|n⟩(z) =
1

π
⟨z|ρ|z⟩ = |z|2n

π(n!)
exp(−|z|2), (2.110)

where ρ = |n⟩⟨n|.

The Q-function Q|n⟩(z) = 0 if and only if zn = 0.

It is very clear that Q-function of the ground state does not have zeros

since z0 = 1 ̸= 0

Both figures (2.12) and (2.13) show the Q-function of two different states,

the number state |3⟩ and the coherent state |2− i⟩ respectively.

The Q-function of the superposition of two number states
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Figure 2.12: The Q-function of the number state |3⟩

|s⟩ = 1√
2
[|n1⟩+ |n2⟩]

Q|s⟩(z) =
1

2π
(⟨z|n1⟩⟨n1|z⟩+ ⟨z|n2⟩⟨n2|z⟩+ ⟨z|n1⟩⟨n2|z⟩+ ⟨z|n2⟩⟨n1|z⟩),

(2.111)

where

⟨z|ni⟩⟨nj|z⟩ =
1

π

zniznj√
ni!nj!

exp (−|z|2) (2.112)

Q|s⟩(z) =
1

2π
exp(−|z|2)[ |z|

2n1

n1!
+

|z|2n2

n2!
+

(z∗)n1zn2

√
n1!n2!

+
(z∗)n2zn1

√
n1!n2!

] (2.113)

Notice that the Q-function Q|n⟩(z) = 0 iff
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Figure 2.13: The Q-function of coherent state |2− i⟩

2∑
i=1

2∑
j=1

(z∗)niznj√
ni!nj!

= 0, (2.114)

and

r2n1

n1!
+
r2n2

n2!
+ 2

rn1+n2√
ni!nj!

cos(ni − nj)θ = 0 (2.115)

The Q-function of the coherent state |β⟩ is:

Q|β⟩(z) =
1

π
⟨z|ρ|z⟩ = 1

π
exp(−|z − β|2), (2.116)

where ρ = |ψ⟩⟨ψ| and Q|ψ⟩(z) > 0 for any complex number z .

The Q-function of coherent state always has a gaussian shape. As shown

in figure 2.13 with coherent state |2− i⟩.

Q-function of superposition of two coherent states
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Let |β⟩ be a superposition of two coherent states |β1⟩ and |β2⟩ i.e

|β⟩ = N [|β1⟩+ |β2⟩],

where N=[2 + ⟨β1|β2⟩+ ⟨β2|β1⟩]−1/2 and

⟨βi|βj⟩ = exp(−1
2
[|βi|2 + |βj|2] + β∗

i βj)

The Q-function of |β⟩ can be written as follows:

Q|β⟩(z) =
N2

π

2∑
i=1

2∑
j=1

exp(−|z|2 − |βi|2

2
− |βj|2

2
+ z∗βi + β∗

j z). (2.117)

2.3.2 Examples of Q-function of the quantum states

and their zeros

Example(1)

The Q-function of the superposition two number states |s⟩ = 1√
2
[|0⟩+ |1⟩]

is:

Q|s⟩(z) =
1
2π

exp(−|z|2)[1 + 2Re(z) + |z|2]

and it has only one zero z = −1 with multiplicity 2

Figure 2.14 and 2.15 show the Q-functions for the superposition of two

number states namely |0⟩, |1⟩ and |1⟩, |2⟩ respectively. Their shapes are not

gaussian due to the presence of the roots; in chapter 5 we will study the link

between the roots of any Q-function and the negative region of its Wigner

function.

Example(2)

The Q-function of the superposition of two number states |s⟩ = 1√
2
[|1⟩+

|2⟩] is:
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Figure 2.14: The Q-function of superposition of the number state|0⟩ and the
number state |1⟩

Q|s⟩(z) =
1
2π

exp(−|z|2)( |z|
2

1!
+ |z|4

2
+ (z∗)1z2√

2
+ (z∗)2z1√

2
)

and it has only two zeros z = 0 and z = −
√
2 with multiplicity 2

Both figures (2.16) and (2.17) show the Q-function of two different even

coherent states |3i⟩e and |3 + 3i⟩e respectively.

2.4 Wigner and Weyl functions

The Wigner-Weyl function provides a deeper insight into the properties of

a quantum state that cannot be easily seen from the wavefunction (either
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Figure 2.15: The Q-function of superposition of the number state|1⟩ and the
number state |2⟩

in x or in p-representation). The Wigner function shows that the position

and momentum of the particle in a way are consistent with the uncertainty

principle, while the Weyl function shows quantum correlation.

The Wigner functionW (x, p) of a quantum state is described by a density

matrix ρ and is defined by [27, 28]

W (x, p) =
1

2π

∫ ∞

−∞
exp(ipX)⟨x−X/2|ρ|x+X/2⟩dX (2.118)

W (x, p) =
1

2π

∫ ∞

−∞
exp(−iPx)⟨p− P/2|ρ|p+ P/2⟩dP (2.119)

The probability P (x) for finding the particle at x in phase space is

P (x) =

∫ ∞

−∞
W (x, p)dp = ⟨x|ρ|x⟩ (2.120)
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Figure 2.16: The Q-function of the even coherent state |3i⟩e

The probability P (p) for finding the particle at p in phase space is

P (p) =

∫ ∞

−∞
W (x, p)dx = ⟨p|ρ|p⟩ (2.121)

The Wigner function W (x, p) is real, but it can be negative. Hence , it

can not be regarded as a probability distribution. Eqs (2.120), (2.121) are

the marginal properties of the Wigner function and they are important in

the interpretation of the Wigner function as a pseudo-probability function.

The negative regions of a Wigner function indicate the non-classical nature

of a quantum state. Later we link the negative region of the Wigner function

with the zeros of Bargmann function.

The Wigner function satisfies the following:

∫ ∞

−∞

∫ ∞

−∞
W (x, p)dxdp = 1 (2.122)
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Figure 2.17: The Q-function of the even coherent state |3 + 3i⟩e

The Wigner function of any state |ψ⟩ can be obtained by substitute the

wave function of the state |ψ⟩ into Eq (2.118)

The Wigner function of the number state |n⟩ has the form [29, 30].

W|n⟩(x, p) =
(−1)n

π
exp(−x2 − p2)Ln(2x

2 + 2p2)) (2.123)

where

Ln(x) =
exp(x)

n!

dn

dxn
(xn exp(−x)) (2.124)

is the Laguerre polynomial of the order n.

The Wigner function of a number states has negative parts.

The Wigner function of the state |s⟩ = 1√
2
[|m⟩+ |n⟩].

W|s⟩(x, p) =
1

2
[W|n⟩(x, p) +W|m⟩(x, p) +Wmn(x, p) +Wmn(x, p)] (2.125)
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Figure 2.18: The Wigner function of number state |4⟩

where |m⟩ and |n⟩ are number states and Wmn(x, p) is defined as [31]:

Wmn(x, p) =
(−1)n

π

√
n!

m!
(
√
2[x+ ip])m−n exp(−x2 − p2)Lm−n

n (2x2 + 2p2)

(2.126)

where Lan(x) is a generalized Laguerre polynomial and can be defined as:

[32]:

Lan(x) =
x−a exp(x)

n!

dn

dxn
(xn+a exp(−x)) (2.127)

The Wigner function of a coherent state |z⟩ has the form [30]:
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W|z⟩(x, p) =
1

π
exp{−[x−

√
2Re(z)]2 − [p−

√
2Im(z)]2} (2.128)

The Wigner function of an even coherent |z⟩e and an odd state |z⟩o have

the form:

W|z⟩e,o(x, p) = W|0⟩(ẋ, ṗ) +W|0⟩(ẍ, p̈)± 2W|0⟩(x, p) cos(4zIm(z)) (2.129)

Where

W|0⟩(x, p) is the Wigner function of ground state |0⟩

ẋ = x−Re(z), ṗ = p− Im(z), ẍ = x+Re(z), p̈ = p+ Im(z)

Both figures (2.18) and (2.19) show the Wigner function of two different

states, the number state |4⟩ and the even coherent state |3⟩e respectively.

−5 0 5
−5

0
5

−0.2

0

0.2

xp

W (x, p)

Figure 2.19: the plot of Wigner function for the even coherent state |3⟩e
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The Wigner function of a squeezed state |ξ, z⟩ has the form [27, 30]:

W|ξ,z⟩(x, p) =
1

π
exp{U + V } (2.130)

where

U = − exp(2r)[(x−
√
2s sin(θ)) cos(

ϕ

2
) + (p−

√
2s cos(θ)) sin(

ϕ

2
)]2 (2.131)

V = − exp(−2r)[(x−
√
2s sin(θ)) sin(

ϕ

2
)+(p−

√
2s cos(θ)) cos(

ϕ

2
)]2 (2.132)
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Figure 2.20: Wigner function of |ξ, z⟩; ξ = 1
2

and z = 1
2
exp(iπ

4
)

The Weyl function W̃ (X,P ) that corresponds to a quantum state de-

scribed by a density operator ρ is defined by:
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W̃ (X,P ) =
1

2π

∫ ∞

−∞
exp(iPx)⟨x−X/2|ρ|x+X/2⟩dX (2.133)

W̃ (X,P ) =
1

2π

∫ ∞

−∞
exp(−ipX)⟨p− P/2|ρ|p+ P/2⟩dP (2.134)

The Weyl function W̃ (X,P ) is the two dimensional Fourier transform

of the Wigner function W (x, p), where X and P denotes to increments in

position and momentum respectively [31] .

The Weyl function W̃ (X,P ) is a complex function, in general, whose

absolute value obeys 0 ≤ |W̃ (X,P )| ≤ 1.

A more detailed discussion and review of Wigner and Weyl functions, and

their relationships can be found in the literature [33, 34].

In figures (2.21) and (2.22) the Wingner function of superposition of the

number states |0⟩ and |1⟩ and its contour are shown. Similarly, the Wigner

finction of superposition of the number states of |1⟩ and |2⟩ and its contour

are shown in figures (2.23) and (2.24).

The Weyl function of the number states |n⟩ has the form:

W̃ (X,P ) = exp(
−X2 − P 2

4
)Ln

(X2 + P 2)

2
) (2.135)

The Weyl function of the coherent state |z⟩ has the form:

W̃ (X,P ) = exp(−(
X

2
+
√
2iIm(z))2 − (

P

2
+
√
2iRe(z))2 − 2|z|2) (2.136)
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Figure 2.21: The Wigner function of the state |s⟩ = 1√
2
(|0⟩+ |1⟩)

The Weyl function of the squeezed state |ξ, z⟩ has the form:

W̃|ξ,z⟩(X,P ) = exp[−i(A)− 1

4
(B)− 1

4
(C)] (2.137)

where

A =
√
2Xs cos(θ)−

√
2Ps sin(θ), (2.138)

B = (X cos(
ϕ

2
) + P sin(

ϕ

2
))2 exp(2r), (2.139)

C = (X sin(
ϕ

2
) + P cos(

ϕ

2
))2 exp(−2r), (2.140)

and z = s exp(iθ) ξ = r exp(iϕ)

2.5 Bargmann Analytic Representation

The theory of analytic functions has played an important role in quantum

mechanics. There are several representations which are using analytic func-
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o

x

p (−1,0)

−2 −1 0 1 2
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0

2

Figure 2.22: The contour of the Wigner function for |s⟩ = 1√
2
(|0⟩+ |1⟩).The

Q-Function of the state |s⟩ = 1√
2
(|0⟩+ |1⟩) has only one zero (−1, 0), and its

Wigner function at (0, 0) is zero as shown

tions. The Bargmann representation is the most well-known one, and uses

analytic functions in the complex plane (Euclideangeometry). The Bargmann

representation will be used in chapter 5 and chapter 6 to describe our new

generalized coherent states.

Let |f⟩ be any arbitrary state:

|f⟩ =
∞∑
n=0

fn|n⟩;
∞∑
n=0

|fn|2 = 1 (2.141)

The conjugate of |f⟩ is ⟨f | and can be written as:

⟨f | =
∞∑
n=0

f ∗
n⟨n| (2.142)



CHAPTER 2. QUANTUM HARMONIC OSCILLATOR 48

−2
0

2
−2

0
2

−0.2

0

0.2

x

p

x, p)

Figure 2.23: The Wigner function for |s⟩ = 1√
2
(|1⟩+ |2⟩)

The Bargmann representation for the state |f⟩ is:

f(z) = exp(
1

2
|z|2)⟨z∗|f⟩ (2.143)

= exp(
1

2
|z|2)⟨f∗|z⟩ (2.144)

=
∞∑
n=0

fnz
n

√
n!

(2.145)

The Bargmann function f(z) is analytic in the complex plane C

The Bargmann representation for the creation operator â† and annihila-

tion operator â are given by:

â† → z (2.146)

â→ d

dz
(2.147)
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Figure 2.24: The contour of the Wigner function for |s⟩ = 1√
2
(|1⟩+ |2⟩),The

Q-Function of the state |s⟩ = 1√
2
(|1⟩+ |2⟩) has two zeros (0, 0) and (−

√
2, 0),

and its Wigner function at these zeros is zero as shown

The Bargmann representation for the number states |n⟩ is:

f(z) =
zn√
n!

(2.148)

The Bargmann representation for the coherent state |α⟩ is:

f(z) = exp(αz − 1

2
|α|2) (2.149)

The Bargmann representation for the squeezed state |ξ, α⟩ is:

f(z) = (cosh r)−1/2 exp(−µ
2
z2 + (α∗µ+ α)z − 1

2
|α|2) (2.150)
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where µ = exp(iϕ) tanh r.

The inner product of two Bargmann analytic functions f(z) and g(z) are

defined as:

⟨f |g⟩ = 1

π

∫ ∫
C
f ∗(z)g(z) exp(−|z|2)dz (2.151)

2.5.1 The growth of Bargmann analytic functions

The growth of analytic function f(z) is defined by its order ρ ≥ 0 and its

type σ ≥ 0 which are defined as: [35, 36]

ρ = lim sup
R→∞

ln lnM(R)

lnR
, (2.152)

σ = lim sup
R→∞

lnM(R)

Rρ
, (2.153)

where M(R) is the maximum value of |f(z)| on the circle |z| = R

The function f(z) has minimal type means σ = 0.

The function f(z) has normal type means 0 < σ <∞.

The function f(z) has maximal type means σ = ∞.

A function with growth (ρ, σ) has smaller growth than (ρ1, σ1) if ρ < ρ1

or if both ρ = ρ1 and σ < σ1.

The growth is used below to study the convergence of the scalar product

of Eq (2.151)
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2.5.2 The relation between the wave function f(x) =

⟨x|f⟩ and its Bargmann fuction f(z)

The Bargmann function f(z) is related to its wave function f(x) as [37]

f(
x√
2
) =

1
√
2

4
√
π3

exp(−x
2

4
)

∫
dyf(z) exp(−y

2

2
) (2.154)

f(z) =
1
4
√
π

∫
dxf(x) exp(−x

2

2
+
√
2zx− z2

2
) (2.155)

The Bargmann function of the number states |n⟩ is:

|n⟩ → ⟨z|n⟩ → f(z) =
zn√
n!

(2.156)

and has order ρ = 0.

The Bargmann function of the coherent state |α⟩ is:

|α⟩ → ⟨z|α⟩ → f(z) = exp(αz − |α|2

2
) (2.157)

which is of order order ρ = 1 and type σ = |α|.

2.6 Convergence of scalar product of Bargmann

functions

We consider the Bargmann function g(z) whose growth can be given as (ρ, σ)

where ρ ≥ 0 and σ ≥ 0.

The Bargmann function g(z) is convergent in the following cases:
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Case 1 The order ρ < 2 and the type σ > 0

Case 2 The order ρ = 2 and the type σ < 1/2

Any entire Bargmann function can be expanded as:

g(z) =
∞∑
n=0

gnz
n (2.158)

The corresponding normalized Bargmann function of g(z) is:

H(z) = [M ]−1/2g(z) where

M =

∫
C

∫
|g(z)|2 exp(−|z|2)dµ(z), dµ(z) =

1

π
dz (2.159)

assuming that g(z) exists

The Bargmann function g(Az) exists (where A is a complex number)in

the following cases:

Case 1:

The Bargmann function g(Az) is convergent ∀A ∈ C, when the order

ρ < 2 .

Case 2:

The Bargmann function g(Az) is convergent for ∋ |A| ≤ 1; when the

order ρ ≤ 2 and the type σ = 1/2

The entire Bargmann function g(Az) can be expanded as

g(Az) =
∞∑
n=0

gn(Az)
n =

∞∑
n=0

gnA
nzn (2.160)

The corresponding normalized Bargmann function of g(Az) is
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H(Az) = [M(A)]−1/2g(Az) where

M(A) =

∫
C

∫
|g(Az)|2 exp(−|z|2)dµ(z) (2.161)

2.6.1 Examples for Convergence of Bargmann function

Example 1

The Bargmann function f(z) of the number states |n⟩ is convergent since

the order ρ = 0.

Example 2

The Bargmann function f(z) of the coherent state |A⟩ is convergent since

the order ρ = 1.

2.6.2 B and Bs Bargmann functions spaces

Let B be the set of all Bargmann functions with order ρ < 2 or ρ = 2 and

type σ < 1
2
, and Bs be a sub set of B with order ρ < 2 .

If a Bargmann fuction g(z) belongs to Bs then for any complex number

A, g(Az) is also in Bs

The Bargmann function of the coherent state |A⟩ is

f(z) = exp(Az − |A|2

2
) (2.162)

It has growth with ρ = 1,σ = |A| and therefore it belongs to Bs

The Bargmann function of the squeezed state |A, r, ϕ⟩ is
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f(z) = (1− |A|2)1/4 exp(1
2
Az2 + βz + γ) (2.163)

α = − tanh( r
2
) exp(−iϕ), β = A(1− |α|2)1/2, and γ = −1

2
α∗A2 − 1

2
|A|2

It has growth with ρ = 2 and therefore it does not belong to Bs

An example of a state whose Bargmann function has growth with a given

order ρ and given type σ (which may or may not be integers) is

|ρ, σ⟩ = Σ∞
n=0fn|n⟩; fn = N

exp(inθ)σn/ρ(n!)1/2

Γ(n
ρ
+ 1)

(2.164)

where N is the normalization constant

N =

√√√√ ∞∑
n=0

σ2n/ρ(n!)

Γ(n
ρ
+ 1)

(2.165)

N is finite when 0 ≤ ρ < 1/2; and also when ρ = 2 and σ < 1/2. The

Bargmann function of this state is NE1/ρ(exp(iθ)σ
1/ρz) where E(ζ) is the

Mittage-Leffler function [38].

2.6.3 Zeros of the Bargmann function and the negative

regions of the Wigner function

Let FA(x) = ⟨x|A⟩gcoh be the wavefunction of the generalized of the coherent

states |A⟩gcoh. The corresponding Wigner function is defined as:

WA(z, z
∗) =

∫
dqFA(2

1/2Re(z) + q)[FA(2
1/2Re(z)− q)]∗ exp(−i21/2Im(z)q)

(2.166)
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and it is normalized as:

2

∫
dµ(z)WA(z, z

∗) = 1 (2.167)

The Q-function (or Husmi function is given in terms of the Bargmann

function as:

QA(z, z
∗) = |g(Az)|2 exp(−|z|2) (2.168)

Therefore the zeros of the Q-function are the zeros of the Bargmann

function, with double multiplicity.

The Wigner function is related to Q-function as follows:

QA(z, z
∗) = 2

∫
C

∫
dµ(ξ) exp(−2|z − ξ|2)WA(ξ, ξ

∗) (2.169)

If z0 is a zero of the Bargmann function, then QA(z0, z
∗
0) = 0 and there-

fore:

∫
C
dµ(ξ) exp(−2|z0 − ξ|2)WA(ξ, ξ

∗) = 0 (2.170)

The fact that the integral is equal to zero, implies that theWA(ξ, ξ
∗) takes

both positive and negative values near the point z0. Therefore the Wigner

function takes negative values close to the zeros of the Bargmann function. If

the Bargmann has many zeros, the corresponding Wigner function has many

islands with negative values near these zeros. We note that negative values

of the Wigner function indicate nonclassical states.
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2.6.4 Zeros of Bargmann function of the state |s⟩ and

its motion

In this section we consider a system with a Hamiltonian H, which at t = 0

is in some initial state. We study the time evolution of this state, and the

motion of the zeros of its Bargmann function. We assume that at time t = 0

the system is on the state |s⟩. and its Bargmann function g(z) with zeros ωn}.

At time t the system is in the state |s, t⟩ = exp(iHt)|s, ⟩ and has Bargmann

function g(z, t) with zeros {ωn(t)}. The number of zeros corresponding to

|s, t⟩ may change as a function of time. This is obvious from the fact that

any two states can be related with a unitary transformation [39].

Example(1):

Let |s⟩ be a superposition of two number states |1⟩ and |2⟩. The Bargmann

function of this state has zeros at {ω0 = 0, ω1 = −
√
2} and its motion can be

shown in fig 2.25 and fig 2.26 according to H = â†â+ â† + â and H = (â†â)2

respectively. The zero ω0 = 0 corresponding to |s, t⟩ changes as a function

of time according to H = â†â + â† + â and does not change according to

H = (â†â)2 .

Example(2):

Let |s⟩ be a superposition of two number states |1⟩ and |3⟩. The Bargmann

function of this state has zeros at {ω0 = 0, ω1 = − 4
√
6i, ω2 = 4

√
6i} and

its motion can be shown in fig 2.27 and fig 2.28 according to H = (â†â)

H = (â†â)2 + â† + â respectively.
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Figure 2.25: The time evolution of the zeros of the Bargmann function of the
state |s⟩, at time t = [0 : .1 : 1].

2.7 Summary

In this chapter, we undertook a review of the phase space methods for the

quantum particles on a real line ℜ, and the basic formalisms of this phase

space were introduced. Some special states such as number states, coherent

states and squeezed states were studied, and the most popular functions

used in phase space. The Wigner and Weyl function were described. The

Bargmann analytic representation in the complex plane, which was defined

by the Glauber coherent states, was also considered. In the next chapter we

will study in more detail known classes of coherent states and in chapter four

we will introduce our own generalization of coherent states.
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Figure 2.26: The time evolution of the zeros of the Bargmann function of the
state |s⟩, at time t = [0 : .1 : 1].
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Figure 2.27: The time evolution of the zeros of the Bargmann function of the
state |s⟩, at time t = [0 : .1 : 2].
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Figure 2.28: The time evolution of the zeros of the Bargmann function of the
state |s⟩, at time t = [0 : .05 : .5].



Chapter 3
Generalized coherent states

3.1 Introduction

The subject of generalized coherent states has been addressed by many re-

searchers in different contexts. In this chapter we introduce the concept of

generalized coherent states by a new perception.

3.1.1 Group definition and SU(1, 1) Lie group

Group definition. A group (G, ∗) is a set G together with a binary opera-

tion ∗ on G such that:

1- g1 ∗ g2 ∈ G for any g1, g2 ∈ G.

2- (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for any g1, g2, g3 ∈ G.

3- There is an element e ∈ G such that e∗g = g = g∗e called an identity

for any g ∈ G.

4- For any g ∈ G there exists g−1 ∈ G called inverse of g such that

g ∗ g−1 = g−1 ∗ g = e.

60
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The group G is said to be abelian if g1 ∗ g2 = g2 ∗ g1 for all g1, g2 ∈ G

The definition of an abelian group is also useful in discussing vector spaces

and modules. The theory of abelian groups is generally simpler than that

of their non-abelian counterparts, and finite abelian groups are very well

understood. On the other hand, the theory of infinite abelian groups is an

area of current research.

Lie groups lie at the intersection of two fundamental fields of mathematics:

algebra and geometry. A Lie group is first of all a group. Secondly it is a

smooth manifold which is a specific kind of geometric object. The circle and

the sphere are examples of smooth manifolds. Finally the algebraic structure

and the geometric structure must be compatible in a precise way. Informally,

a Lie group is a group of symmetries where the symmetries are continuous.

A circle has a continuous group of symmetries for example you can rotate the

circle an arbitrarily small amount and it looks the same. This is in contrast

to the hexagon, for example. If you rotate the hexagon by a small amount

then it will look different. Only rotations that are multiples of one-sixth of

a full turn are symmetries of a hexagon.

A Lie algebra consists of a (finite dimensional) vector space, over a field F,

and a multiplication on the vector space (denoted by [ ], pronounced bracket,

the image of a pair (X,Y ) of vectors denoted by [X Y] or [X,Y], with the

properties:

(a) Anti-commutativity [X, Y ] = −[Y,X].

(b) Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
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3.2 Generalized coherent states based on SU(1, 1)

3.2.1 SU(1, 1) Lie group

The group SU(1, 1) is a non abelian group (i.e. its elements do not commute)

with its element g =

 a b

b∗ a∗

 , with determinant |g| = 1

The Lie algebra corresponding to the group SU(1, 1) is spanned by the

three group generators K0, K1, K2 [16, 40].

[K0, K1] = −iK2, [K1, K2] = iK0, [K2, K0] = iK1 (3.1)

The raising and lowering generators are defined as:

K+ = K1 + iK2, K− = K1 − iK2 (3.2)

The SU(1, 1) generators K0, K+, K− obey the following relations:

[K0, K±] = ±K±, [K−, K+] = 2K0 (3.3)

The Casimir operator K2 of SU(1, 1) is given by:

K2 = K2
0 −

1

2
(K+K− +K−K+) = k(k − 1)1 (3.4)

The generators of SU(1, 1) algebra in terms of creation and annihilation

operators are given by [41]:
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K1 =
1

4
(â†â† + ââ) K2 =

1

4i
(â†â† − aa) (3.5)

K+ =
1

2
â†â†, K− =

1

2
ââ, K0 =

1

4
(ââ† + â†â), (3.6)

In this case the Casimir operator reduced identically to:

K2 = − 3

16
. (3.7)

Therefore there are two irreducible representation: k = 1/4 and k = 3/4.

The state space H1/4 is the even Fock subspace with the orthogonal basis

consisting of even number eigenstates |n, 1/4⟩ = |2n⟩ (n = 0, 1, 2, .....); the

state spaceH3/4 is the odd Fock subspace with the orthogonal basis consisting

of odd number eigenstates |n, 3/4⟩ = |2n+ 1⟩ (n = 0, 1, 2, .....).

The SU(1, 1) number state |n, k⟩ can be defined as [42, 29, 43].

K2|n, k⟩ = k(k − 1)|n, k⟩ (3.8)

K0|n, k⟩ = (n+ k)|n, k⟩ (3.9)

K−|n, k⟩ =
√
n(n+ 2k − 1)|n− 1, k⟩ (3.10)

K+|n, k⟩ =
√

(n+ 1)(n+ 2k)|n+ 1, k⟩ (3.11)

SU(1, 1) coherent states in the unit disc D = {z ∈ C : |z| < 1} are

defined as follows:
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|z, k⟩ = (1− |z|2)k
∞∑
n=0

d(n, k)zn|n, k⟩ (3.12)

d(n, k) =

√
Γ(n+ 2k)

Γ(n+ 1)Γ(2k)
(3.13)

The SU(1, 1) coherent state for k = 1/4 is given by:

|z, 1/4⟩ = (1− |z|2)1/4
∞∑
n=0

(
√

2n)!

2nn!
zn|2n⟩ (3.14)

The SU(1, 1) coherent state for k = 3/4 is given by [42, 44]:

|z, 3/4⟩ = (1− |z|2)3/4
∞∑
n=0

(
√

2n+ 1)!

2nn!
zn|2n+ 1⟩ (3.15)

It is not difficult to see that the states |z, 1/4⟩ and |z, 3/4⟩ coincide with

the even and odd coherent states correspondingly [41].

|z, 1/4⟩ = |z⟩e =
1√

2(1 + exp(−2|z|2))
[|z⟩+ | − z⟩] (3.16)

|z, 3/4⟩ = |z⟩o =
1√

2(1− exp(−2|z|2))
[|z⟩ − | − z⟩] (3.17)

The inner product of two SU(1, 1) coherent states |z1, k⟩ and |z2, k⟩ are

defined as:

⟨z1, k|z2, k⟩ =
(1− |z1|2)k(1− |z2|2)k

(1− z∗1z2)
2k

(3.18)

The resolution of the identity of the states |z, k⟩ is given by:
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∫
dµk(z)|z, k⟩⟨z, k| = 1̂ (3.19)

where dµk(z) is given by:

dµk(z) = π−1(2k − 1)(1− |z|2)−2, k > 1/2 (3.20)

The integral diverges for k ≤ 1/2.

3.3 Generalized coherent states based on SU(2)

3.3.1 SU(2) Lie group

The group SU(2) is an abelian group which its element g =

 a b

−b∗ a∗

 ,

with determinant |g| = 1

The lie algebra corresponding to the group SU(2) is spanned by the three

group generators J1, J2, J3, which are related by the following identities:

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (3.21)

The raising and lowering generators are defined as:

J+ = J1 + iJ2, J− = J1 − iJ2. (3.22)

The SU(2) generators J3, J+, J− obey the following relations:

[J3, J±] = ±J±, [J−, J+] = −2J3. (3.23)
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The Casimir operator J2 of SU(2) is given by:

J2 = J2
1 + J2

2 + J2
3 = j(j + 1)1̂. (3.24)

The representation of the SU(2) is determined by a single number j that

can be a positive integer or half integer: j = 1
2
, 1, 3

2
, 2...

The representation Hilbert space is spanned by the orthogonal basis |j,m⟩

(m = −j,−j + 1...., j − 1, j).

The orthogonal basis |j,m⟩ can be defined as:

J+|j,m⟩ = [j(j + 1)−m(m+ 1)]1/2|j,m+ 1⟩ (3.25)

J−|j,m⟩ = [j(j + 1)−m(m− 1)]1/2|j,m− 1⟩ (3.26)

J2|j,m⟩ = j(j + 1)|j,m+ 1⟩. (3.27)

The SU(2) coherent states are defined as follows:

|j, ζ⟩ = (1 + |z|2)−j
j∑

m=−j

d(j,m)ζj+m|j,m⟩ (3.28)

d(j,m) =

√
(2j)!

(j +m)!(j −m)!
. (3.29)

The inner product of two SU(2) coherent states |j, ζ1⟩ and |j, ζ2⟩ are

defined as:
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⟨j, ζ1|j, ζ2⟩ = (1 + |ζ1|2)−j(1 + |ζ2|2)−j(1 + ζ∗1ζ2)
2j (3.30)

The resolution of the identity of the states |j, ζ⟩ is given by:

∫
dµj(ζ)|j, ζ⟩⟨j, ζ| = 1̂ (3.31)

where dµj(ζ) is given by:

dµj(ζ) = π−1(2j − 1)(1 + |ζ|2)−2d2ζ, (3.32)

The generators of SU(2) algebra in terms of creation and annihilation

operators are given by:

J+ = [(2j + 1)− â†â]1/2â†, J− = â[(2j + 1)− â†â]1/2 (3.33)

J3 = â†â− j, J2 = j(j + 1)1̂, (3.34)

3.4 Summary

In this chapter we have studied the SU(1, 1) and SU(2) coherent states.

In the next chapter we will introduce novel coherent states based on the

Bargmann formalism.



Chapter 4
A new class of Generalized coherent

states

4.1 Generalized coherent state |A⟩gcoh and its

Bargmann function

Let g(z) ∈ Bs then g(Az) ∈ Bs and can be written as infinite series

g(Az) =
∞∑
n=0

gn(Az)
n (4.1)

Let Zg be the set of all integers n such that gn ̸= 0. We consider functions

g(Az) for which Zg is an infinite subset of the non negative integers i.e, the

expansion of g(z) is not a polynomial but an infinite series. We denote it as

|A⟩gcoh, the corresponding normalized quantum state. Then the state |A⟩gcoh

68
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can be written as:

|A⟩gcoh = [M(A)]−1/2
∑
n∈Zg

(n!)1/2gnA
n|n⟩, (4.2)

where M(A) has been given in Eq(2.161) as a corresponding normalized

Bargmann function of g(Az).

We have two cases for the complex number A:

Case 1

If 0 ∈ Zg that means g0 ̸= 0 then A ∈ C.

Case 2

If 0 /∈ Zg that means g0 = 0 then A ∈ C∗ (because if A = 0 then g = 0).

4.1.1 The linear map τ from B into B

We consider the following linear map from B into B:

τ(A) : g(z) → g(Az), A ∈ C∗ = C− {0} (4.3)

The linear map τ from B into B can be written in a Dirac notation as:

τ(A) : |1⟩gcoh → |A⟩gcoh, A ∈ C∗ = C− {0} (4.4)

τ(A) is a map from B to B which is not bijective and has no inverse.

Indeed, if the growth of the Bargmann function of |1⟩gcoh is (2, σ), then the

growth of Bargmann function of |A⟩gcoh is (2, |A|2σ). For |A| > 1, there are

states for which |A|2σ > 1/2 and therefore they are not normalizable. For

|A| < 1 the map from B to B is not surjective.
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To avoid these problem we restrict below this map into Bs.

4.1.2 The linear map τ from Bs into Bs

We consider the following linear bijective map from Bs into Bs:

τ(A) : g(z) → g(Az), A ∈ C∗ = C− {0} (4.5)

The linear map τ from Bs into Bs can be written in a Dirac notation as:

τ(A) : |1⟩gcoh → |A⟩gcoh, A ∈ C∗ = C− {0} (4.6)

This map is not preserving the inner product and it is bijective only in

the subspace Bs ⊂ B. This map can be written in terms of the operator

τ(A) [45]:

τ(A) = exp[(ln |A|+ iθA)â
†â] (4.7)

where A = |A| exp(iθA) ∈ C∗ = C− {0}.

These operators are unitary when |A| = 1.

The set Gτ = {τ(A) : A = |A| exp(iθA) ∈ C∗} forms an abelian group:

1- Closure

For any τ(A), and τ(B) ∈ Gτ
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τ(A)τ(B) = exp[(ln |A|+ iθA)â
†â] exp[(ln |B|+ iθB)â

†â]

= exp[(ln |A|+ ln |B|+ iθA + iθB)â
†â]

= exp[(ln[AB|+ i(θA + θB))â
†â]

= exp[(ln[AB|+ i(θAB))â
†â]

= τ(AB) ∈ Gτ (4.8)

2- Identity element τ(1)

The Identity element τ(1) can be written as

τ(1) = exp[(ln(1) + 0i)â†â] = exp[0̂] = 1̂ (4.9)

3- Associativity

For any τ(A), τ(B) and τ(B) ∈ Gτ

(τ(A)τ(B))τ(C) = = (τ(AB))τ(C)

= τ(ABC)

= τ(A)(τ(BC))

= τ(A)(τ(B)τ(C)) (4.10)

4- The inverse element (τ(A))−1
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There is a unique element (τ(A))−1 = τ(A−1) ∈ Gτ holds

τ(A)τ(A−1) = 1̂ = τ(A−1)τ(A) ∀τ(A) ∈ Gτ (4.11)

The set Gτ is an Abelian group that means, for any τ(A) and τ(B) ∈ Gτ

τ(A)τ(B) = τ(AB) = τ(BA) = τ(B)τ(A) (4.12)

Therefore the set Gτ is an Abelian group. This group is isomorphic to

the multiplicative group of complex numbers in C∗.

We next prove that

τ(A)|1⟩gcoh = [M(A)]−1/2|A⟩gcoh (4.13)

where [M(A)] is a normalization factor of g(Az).

There are special cases for the operator τ(A):

Case 1: (Fractional Fourier operator)

For |A| = 1 the operator τ(A) by definition becomes:

τ(A) = exp[(iθA)â
†â]. (4.14)

and is called fractional Fourier operator.

Case 2: (Fourier operator).

For A = exp(iπ/2) the operator τ(A) by definition becomes:

τ(A) = exp[(iπ/2)â†â] = Û(π/2) (4.15)
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and is called the Fourier operator.

Case 3: (Parity operator)

For A = exp(iπ) the operator τ(A) by definition becomes

τ(A) = exp[(iπ)â†â] = Û(π) (4.16)

and called parity operator.

4.1.3 Example (The Schrödinger cat states)

The even and odd coherent states, introduced in 1970 by Dodono V, Malkin

and Man’ko, later called ‘Schrödinger cat’ states, are superposition of coher-

ent states; they are close to coherent and squeezed states. Since Schrödinger

cat states have a wide class of application in quantum optics, they have been

much studied in recent years. The wigner function has been studied under

several physical conditions. The Wigner function of Schrodinger cat states

typical Gaussian like probabilities located at two different regions of phase

space, with an additional interference term that takes negative regions.

As an example we consider the case where the Bargmann function is a

sinusoidal function. In this case

g(Az) = i[sinh(π2|A|2)]−1/2 sin(πAz) (4.17)

The corresponding generalized coherent states are the Schrödinger cat

states:

|A⟩sin = [2− 2 exp(−2π|A|2)]−1/2[|iπA⟩ − | − iπA⟩]] (4.18)
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The index ‘sin’ in the notation of this state, indicates that its Bargmann

function is sinusoidal. It is easily seen that these states belong in the space

Hodd spanned by the odd number states |2n + 1⟩. According to our general

theory the set {|A⟩sin} is total in Hodd. Their zeros are ζn = N/A where N

is an integer, and they can be factorized as:

sin(πAz) = πAz
∞∏
N=1

(1− z2

N2A−2
). (4.19)

A similar argument can be given for the states with Bargmann function

cos(πAz). The set of these states is total in Heven spanned by even number

states |2n⟩.

For example the state |1⟩sin

|1⟩sin = [2− 2 exp(−2π)]−1/2[|iπ⟩ − | − iπ⟩]] (4.20)

Figure 4.1 shows the first 11th zeros of Bargmann function of the state

|1⟩sin and its motion according to the H = â†â− iâ†+ iâ at t = [0 : .05 : 0.3].

According to this Hamiltonian the path of positive zeros is moving upwards

while the path for negative zeros is moving downwards.

4.2 Summary

Starting from a Bargmann function g(z) in Bs we have considered the states

with Bargmann function g(Az) (with a normalization factor). We have ex-

plained that the dilation from z to Az on Bargmann functions considered here

are different from the dilation on wavefunctions in the context of the az+b
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(z)

Figure 4.1: The time evolution of the zeros of the Bargmann function of the
state |1⟩sin, for Hamiltonian H = â†â − iâ† + iâ and for the time interval
t = [0 : .05 : 0.3].

group. These states are generalized coherent sates in the sense that they have

the following three properties: (i) they are a total set in some Hilbert space

but we have not found a resolution of the identity. (ii) they can be written

as [N(A)]
−1
2 τ(A)|1⟩gcoh where τ(A) form a representation of the multiplica-

tive group of non-zero complex number C∗ and (iii) they have the property

of temporal stability that remains invariant under the corresponding time

evolution. The Glauber coherent states are an example of these states. But

there are many other examples, which comprise highly non-classical states,

with many zeros and Wigner functions with many islands of negative val-

ues. We have studied the Schrödinger cat states as an example, and their

Bargmann functions. The Bargmann zeros of these states are on a straight

line. We have also considered a system which at t = 0 is in Schrödinger cat

state, and studied the paths of the Bargmann zeros as the system evolves
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in time with Hamiltonian H = â†â − iâ† + iâ as an example. In the next

two chapters two more examples based on the Gamma and the Riemann ξ

functions are considered.



Chapter 5
The Gamma states |A;B; k⟩Γ

5.1 The Gamma function Γ(z)

The Gamma function was first introduced by the Swiss mathematician Leon-

hard (1707-1783) in his goal to generalize the factorial to non integer values.

The Gamma function Γ(z) is a complex function defined as [46, 47]:

Γ(z) =

∫ ∞

0

tz−1 exp(−t)dt (5.1)

It is an analytic function of the complex variable z which in any finite

domain has no singularities other than simple poles, situated at the points

z = 0,−1,−2,−3,−4, .....[48].

The n-th derivative of the Gamma function is:

dn

dzn
=

∫ ∞

0

tz−1exp(−t)(ln t)ndt. (5.2)

This can be derived by differentiating the integral form of the Gamma

77
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function with respect to z, and using the technique of differentiation under

the integral sign.

This equation above will be used for the derivative of ξ in table 6.1 .

If the real part of the complex number z is positive, then the integral

above converges absolutely. By using integral by parts, we can show that

Γ(z + 1) = zΓ(z) (5.3)

If z is a real variable, then only when z is a natural number, we have

Γ(z + 1) = z! (5.4)

Figures 5.1 and 5.2 show the plots of Γ(x) and 1
Γ(x)

respectively.

−3 −2 −1 0 1 2 3
−10

0

10

x

Γ(x)

Figure 5.1: The plot of y = Γ(x) for all −3 ≤ x ≤ 3
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For non-natural values of z, the above equation does not apply, since the

factorial function is not defined. The Euler’s reflection formula for Gamma

function is [49]:

Γ(1− z)Γ(z) =
π

sin(πz)
(5.5)

Perhaps the most well-known value of the Gamma function at a non-integer

argument is:

Γ(
1

2
) =

√
π (5.6)

For any non null integer n, we have

Γ(z) =
Γ(z + n)

z(z + 1)...(z + n− 1)
z + n > 0 (5.7)

The inverse Gamma function 1
Γ(z)

is an entire function in all of the complex

plane. 1
Γ(z)

can be written as an infinite series as follows [50]:

1

Γ(z)
=

∞∑
k=1

cnz
n (5.8)

where cn satisfies:

(nc1 − 1)cn = c2cn−1 −
n∑
k=2

(−1)kζ(k)cn−k (5.9)

where c0 = 0, c1 = 1, c2 = γ ≈ .5771 , γ is the Euler constant and ζ(k) is

Riemann’s zeta function discussed in more detail later. The zeros of 1
Γ(z)

are

z = 0,−1,−2,−3, ...

For any real number z, except on negative integers z = 0,−1,−2,−3, ...,

we have infinite product.
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The Gamma function Γ(z) is a function from the complex plane C to

itself i.e, Γ : C → C, its graph can’t be represented as a 3D image. Instead,

the real part and the imaginary part are plotted and can be shown in figure

5.3 and figure 5.4. In addition the absolute value of Γ(z) and 1
Γ(z)

can be

shown in figures 5.5 and 5.6 respectively.

The Hadamard product representation of the ξ function 1
Γ(z)

is:

1

Γ(z)
= z exp(γz)

∞∏
p=1

(1 +
z

p
) exp(−z/p) (5.10)

From this product we see that Euler’s constant is deeply related to the

Gamma function and the poles are clearly the negative or null integers.

−4 −2 0 2
−20

0

20

x

1

(x)

Figure 5.2: The plot of y = 1
Γ(x)

for all −5 ≤ x ≤ 2

We consider the entire function Ω|A,B,k⟩Γ(z) as follows:

Ω|A,B,k⟩Γ(z) =
exp(Bz)

[Γ(Az)]k
k = 1, 2, 3...

= exp(Bz) k = 0 (5.11)
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Figure 5.3: The plot of real part of Γ(z) where z = x+ iy for all −5 ≤ x ≤ 5
and −5 ≤ y ≤ 5

The growth of both exp(Bz) and the 1
Γ(Az)

has order ρ = 1 and therefore the

Ω|A,B,k⟩Γ(z) has growth with order ρ = 1 and qualifies as a Bargmann func-

tion. The corresponding normalized Bargmann function isN(A)−1/2Ω|A,B,k⟩Γ(z)

where

N(A) =

∫
C

∫
exp(−|z|2 +Bz +B∗z∗)

[Γ(Az)]2k
dµ(z) (5.12)

We denote the corresponding normalized state as |A;B; k⟩Γ (where A ̸= 0).

The most common application is to a complex analytic function deter-

mined near a point z0 by a power series.

We next consider the power expansion series of our Bargmann function

Ω|A,B,k⟩Γ(z) at z0 = 0 as:

Ω|A,B,k⟩Γ(z) =
∞∑
N=k

cN(A,B, k)z
N (5.13)

where cN represents the coefficient of the n-th term, and will be used in
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Figure 5.4: The plot of imaginary part of Γ(z) where z = x + iy for all
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5

subsection 5.1.3 to compute the overlap fn of Gamma states.

The summation starts from N = k because z = 0 is a zero of this function

with multiplicity k. The states |A;B; k⟩Γ with fixed B, k and A ∈ C−{0} are

generalized coherent states in the sense described in section 4.1. The set of all

these states is total in the space Hs spanned by the number states |k⟩,|k+1⟩

and it does not include any |N⟩ for which cN = 0. The states |A;B; k⟩Γ

with fixed A,kand B ∈ C are also generalized coherent states in the sense

described in section (4.1) The zeros of Ω|A,B,k⟩Γ(z) are ζN = −NA−1 (where

N is a non-negative integer), with multiplicity k. The zeros of an analytic

function do not define the function uniquely, and in our case all state with

fixed values of A,k have the same zeros. The fact that ζN = −NA−1 are

zeros with multiplicity k of the Bargmann function Ω|A,B,k⟩Γ(z) of |A;B; k⟩Γ,

implies that The state |A;B; k⟩Γ is the eigenstate of Θm,A,k where Θm,A,k can
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Figure 5.5: The plot of absolute value of Γ(z) where z = x + iy for all
−5 ≤ x ≤ 5 and −5 ≤ y ≤ 5

be defined as

Θm,A,k = [Aâ†(Aâ† + 1)...(Aâ† +m− 1)]k exp(
m

A
â) (5.14)

The operator Θm,A,k can be written in a Bargmann representation as

Θm,A,k = [Az(Az + 1)...(Az +m− 1)]k exp(
m

A
∂z) (5.15)

To prove that

Θm,A,k|A;B; k⟩Γ = exp(
mB

A
)|A;B; k⟩Γ (5.16)

By using the definition of Θm,A,k in Eq(5.14)

Θm,A,k|A;B; k⟩Γ = [Az(Az+1)...(Az+m−1)]k exp(
m

A
∂z)Ω|A,B,k⟩Γ(z) (5.17)
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Figure 5.6: The plot of w = | 1
Γ(z)

| where z = x + iy for all −2 ≤ x ≤ 2
and −2 ≤ y ≤ 2

Θm,A,k|A;B; k⟩Γ = [Az(Az + 1)...(Az +m− 1)]k exp(
m

A
∂z)

exp(Bz)

[Γ(Az)]k
(5.18)

The shifting operator exp(m
A
∂z) acts on

exp(Bz)
[Γ(Az)]k

we get

exp(
m

A
∂z)

exp(Bz)

[Γ(Az)]k
=

exp(B(z + m
A
))

[Γ(A(z + m
A
))]k

=
exp(Bz + Bm

A
)

[Γ(Az +m)]k
(5.19)

= exp(
Bm

A
)

exp(Bz)

[Γ(Az +m)]k
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By using the relation z(z + 1)...(z +m− 1)Γ(z) = Γ(z +m)

exp(
m

A
∂z)

exp(Bz)

[Γ(Az)]k
= exp(

mB

A
)

exp(Bz)

[[Az(Az + 1)...(Az +m− 1)]kΓ(Az)]k

(5.20)

Then the Eq(5.20), shows that the state |A;B; k⟩Γ is the eigenstate of the

operator Θm,A,k(for all positive integer m):

Θm,A,k|A;B; k⟩Γ = exp(
mB

A
)|A;B; k⟩Γ (5.21)

The zeros of an analytic function do not define the function uniquely, and

in our case states with fixed values of A,k have the same zeros.

The Bargmann function of our state |A;B; k⟩Γ has zeros at −NA−1 with

multiplicity k

If the derivative of order l with respect to z for Ω|A,B,k⟩Γ(z) has zeros at

−NA−1 then the state |A;B; k⟩Γ is orthogonal to all coherent states al| −

NA−1⟩ with l = 0, 1, ...k − 1 and N = 0, 1, 2...

We next act with the fractional fourier operator on both sides of Θm,A,k

and we get

exp(iθâ†â)Θm,A,k exp(−iθâ†â) = Θm,A′ ,k; A
′
= A exp(iθ) (5.22)

It is easy to show Eq(5.22) by using the formula

exp(iθâ†â)f(â, â†) exp(−iθâ†â) = f(â exp(−iθ), â† exp(iθ)) (5.23)
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That means replace â by â exp(−iθ) and â† by â† exp(iθ)

exp(iθâ†â)Θm,A,k exp(−iθâ†a) = Θm,A exp(iθ),k (5.24)

exp(iθâ†â)|A;B; k⟩Γ = |A exp(iθ);B exp(iθ); k⟩Γ (5.25)

We can prove that by taking the overlap of both sides with a coherent state,

it is clear that these states have the property of temporal stability.

5.1.1 Factorization of the entire Ω|A,B,k⟩Γ(z)

The Ω|A,B,k⟩Γ(z) can be factorized as:

Ω|A,B,k⟩Γ(z) = Az[
∞∏
N=1

(1 +
Az

N
)k exp(−Az

N
)] exp(γAz) exp(Bz) (5.26)

The Ω|A,B,k⟩Γ(z) is related to sin(πAz) as follows:

sin(πAz) = πΩ|A,B,1⟩Γ(z)Ω|A,B,1⟩Γ(
1

A
− z) exp(−B

A
) (5.27)

Therefore the Bargmann function of the Schrodiger cat state is the prod-

uct of Bargmann function of our Gamma states. For A = 1 and B = 0, the

zeros of the Bargmann of |1⟩sin on the negative axis coincide with the zeros

of the Bargmann function of |1, 0, 1⟩Γ. The zeros of the Bargmann function

of |1⟩sin on the positive axis coincide with the zeros of Ω|1,0,1⟩Γ(1− z), which

is the Bargmann function for the state Nτπ exp(−a)|1, 0, 1⟩Γ (where a is the

annihilation operator and N is a normalization factor).
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Figure 5.7: The plot of F (x, 1, 0, 1)

5.1.2 The wavefunction of |A,B, k⟩Γ

We denote F (x;A;B; k) = ⟨x|A;B; k⟩Γ as the wavefunction of the state

|A,B, k⟩Γ and can be written as:

F (
x√
2
;A;B; k) =

1
√
2

4
√
π3

exp(−x
2

4
)

∫
dyΩ|A,B,k⟩Γ(z) exp(−

y2

2
) (5.28)

F (
x√
2
;A;B; k) =

1
√
2

4
√
π3

exp(−x
2

4
)

∫
dy

exp(Bz)

[Γ(Az)]k
exp(−y

2

2
) (5.29)

It is easy to show that F (x;A;B; k) is a real function by using the fact

that |Γ(z)|∗ = |Γ(z∗)|.

Using equation(5.29), we calculated the wavefunction F (x, 1, 0, 1) and the

result is shown in figure 5.7.
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5.1.3 The overlap of Gamma states with number states

The overlap fn = ⟨N |1, 0, 1⟩Γ can be calculated by different methods. In this

section we present two methods. The first method is a well known method

that uses the Bargmann function of Gamma state to compute fn Whereas,

the second one is a new method that has been proposed to compute the fn

using the wave function of Gamma state.

Method 1

We use the expansion of the bargmann function of the Gamma state

|A, 0, 1⟩Γ

Ω|A, 0, 1⟩Γ(z) =
1

Γ(Az)
=

∞∑
n=1

cn(Az)
n (5.30)

The Bargmann function 1
Γ(Az)

can also be expressed in n−representation as

follows:

1

Γ(Az)
=

∞∑
n=1

fn√
n!
(Az)n (5.31)

So the relation between the normalized coefficients of the overlaps fn and cn

can be written as:

fn = cn
√
n!M−1/2, M =

k∑
n=1

|cn|2(n!) (5.32)

Method 2

The overlap fn can be expressed buy using the wave function F (x,A,B, k)

as follows:

fn =

∫ ∞

−∞
F (x,A,B, k)Un(x)dx (5.33)
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where Un(x) is a wave function of the number state |n⟩ and F(x,A,B,k)

is a wave function of the state |A,B, k⟩Γ.

The coefficients fn for the state |1; 0; 1⟩Γ can be shown in table 5.1 by

using Method 1 and Method 2.

Table 5.1: The coefficients fn for the state |1; 0; 1⟩Γ by using Method1 and
Method2

n Method1 Method2
1 0.275497454109021 0.275497685283495
2 0.224890285856650 0.224890474006347
3 -0.442605010554867 -0.442605370760393
4 -0.056689124182813 -0.056689164984884
5 0.502600772796255 0.502601168615769
6 -0.311941369122938 -0.311941622720611
7 -0.188190166086860 -0.188190310615659
8 0.399347968135548 0.399348332230931
9 -0.193369290122090 -0.193369564564189
10 -0.112960203880015 -0.112960064616746
11 0.222882509742501 0.222882204347078
12 -0.121404440991182 -0.121403515627903
13 -0.027185616146742 -0.027187644503849
14 0.092164169511051 0.092167887609552
15 -0.064783138573200 -0.064789377799676
16 0.007707288506432 0.007717143563691
17 0.025989396728844 0.025974778226824
18 -0.026039878468228 -0.026019699432077
19 0.010025978847910 0.010000313713691
20 0.003344150549284 0.003373811717604
21 -0.007279744530954 -0.007310121755611
22 0.004710976014662 0.004737039198377
23 -0.000911638685507 -0.0009279287991457
24 -0.001161674783025 -0.001159368639999
25 0.001325927806304 0.001347030885182

The approximate mean number of photons for a system prepared in

|1, 0, 1⟩Γ equals:
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⟨n⟩ =
200∑
n=0

n|fn|2 = 5.5556. (5.34)

The approximate photon variance ⟨△n⟩2 in the Gamma state |1, 0, 1⟩Γ is:

⟨△n⟩2 = ⟨n2⟩ − ⟨n⟩2 = 39.5329− (5.5556)2 = 8.6682. (5.35)

The approximate expectation value of the position operator x̂ in the

Gamma state |1, 0, 1⟩Γ equals:

⟨x⟩ =
∫
x|F (x, 1, 0, 1)|2dx = −1.2802. (5.36)

The approximate expectation value of the momentum operator p̂ in the

Gamma state |1, 0, 1⟩Γ equals:

⟨p⟩ =
∫
p|F (p, 1, 0, 1)|2dp = 2.5760. (5.37)

The approximate variance of the position operator x̂ in the Gamma state

|1, 0, 1⟩Γ equals:

⟨△x⟩2 = ⟨x2⟩ − ⟨x⟩2 = .9986. (5.38)

The approximate variance of the momentum operator p̂ in the Gamma

state |1, 0, 1⟩Γ equals:

⟨△p⟩2 = ⟨p2⟩ − ⟨p⟩2 = 3.0781. (5.39)

The second order coherence g(2) of |1, 0, 1⟩Γ equals:
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g(2) =
⟨â†â†ââ⟩
⟨â†â⟩2

= 1.1008. (5.40)

Figures 5.8, 5.9 and 5.10 show ⟨n⟩, ⟨n2⟩ and g(2), as functions of A (for

real A), for the state |A, 0, 1⟩Γ

0 0.5 1
0

2

4

6

A

<N>

Figure 5.8: The plot of the expectation value of number state ⟨n⟩ as a func-
tion of A for the state |A, 0, 1⟩Γ

5.1.4 The Wigner function W|A,B,k⟩Γ(x, p) of the state

|A,B, k⟩Γ

The Wigner function of the state |A,B, k⟩Γ can be written as

W|A,B,k⟩Γ(x, p) =
1

2π

∫ ∞

−∞
exp(ipX)⟨x−X/2|ρ|x+X/2⟩dX (5.41)

W|A,B,k⟩Γ(x, p) =
1

2π

∫ ∞

−∞
exp(−iPx)⟨p− P/2|ρ|p+ P/2⟩dP (5.42)
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Figure 5.9: The plot of the expectation value ⟨n2⟩ as a function of A for the
state |A, 0, 1⟩Γ

where ρ is the density operator of the state |A,B, k⟩Γ is given by:

ρ = |A,B, k⟩ΓΓ⟨A,B, k| (5.43)

The Wigner function has been calculated using equation (5.41). Figures

5.12, 5.14, 5.16 and 5.18 show the Wigner functions for the states |1; 0; 1⟩Γ,

|0.1, 0, 1⟩Γ, |1, 0.1, 1⟩Γ and |1, 0.1πi, 1⟩Γ correspondingly.

The contour of Wigner functions for the states |1; 0; 1⟩Γ, |0.1, 0, 1⟩Γ, |1, 0.1, 1⟩Γ

and |1, 0.1πi, 1⟩Γ can be shown in figures 5.13, 5.15, 5.17 and 5.19 correspond-

ingly.

The relation between zeros of Bargmann function of the state |1, 0, 1⟩Γ and

negative region of its Wigner function can be shown in figure 5.13 and also the

state |0.1, 0, 1⟩Γ in figure 5.15. The signs + and − denote to the positive and

negative regions of Wigner function respectively. We note that in |1, 0, 1⟩Γ

the values of Wigner function at the first four zeros z = 0,−1,−2,−3 of its
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Figure 5.10: The plot of second order correlation g(2) as a function of A for
the state |A, 0, 1⟩Γ

Bargmann state are all negatives.

5.1.5 Time evolution: motion of the zeros

The state of a quantum system is not constant in time and the system evolves

according to the Schrodinger equation:

−i d
dt
|ψ(t)⟩ = Hψ(t)⟩ (5.44)

where H is the corresponding Hamiltonian.

The solution of Eq(5.44) can be written as:

|ψ(t)⟩ = exp(iHt)|ψ(t0)⟩ (5.45)

where |ψ(t0) is an initial state.
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Figure 5.11: The plot of the expectation value of number state ⟨n⟩ as a
function of A for the state |A, 0.2, 1⟩Γ

5.1.6 Bargmann function of Gamma states and its ze-

ros

In this section we consider a system with a Hamiltonian H, which at t = 0

is in some initial state. We study the time evolution of this state, and

the motion of the zeros of its Bargmann function. We assume that at

time t = 0 the system is on the state |A,B, k⟩Γ. and its Bargmann func-

tion Ω|A,B,k⟩Γ(z) with zeros {ςn}. At time t the system is in the state

|A,B, k, t⟩Γ = exp(iHt)|A,B, k⟩Γ and has Bargmann function Ω|A,B,k⟩Γ(z, t)

with zeros {ςn(t)}. The number of zeros corresponding to |A,B, k, t⟩Γ may

change as a function of time. This is obvious from the fact that any two

states can be related with a unitary transformation [39].

The zeros of a Bargmann function may all have paths or may not even

have a path. If we consider figure 5.20 we notice that the first six zeros

of the Bargmann function 1
Γ(z)

all have paths under the Hamiltonian H =
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0.5[(â†)2 + â2] on the other hand, in figure 5.21 under H = [â†â]; there is

no path for ς0 = 0. If we compare two different Bargmann functions with

the same roots under the same Hamiltonian we will have different paths.

Comparing figure 5.20 for the Bargmann function 1
Γ(z)

and figure 5.22 for the

Barmann function exp(0.5z)
Γ(z)

, which are both under the H = 0.5[(â†)2 + â2]. It

is clear that the correspondig zeros do not follow the same paths.

Figure 5.23 shows the first six zeros of Bargmann function of the state

|1, 0, 1⟩Γ and its motion according to theH = 0.1[(â†)2â2] at t = [0 : .05 : 0.3].

A zero can have two paths as shown in figure 5.24 underH = 0.5[(â†)2+â2]

and figure 5.25 under H = 0.01[â†â]2. Each zero has two different paths as a

result of multiplicity 2.

5.2 Summary

We have given an example of our generalized coherent states based on the

Gamma function. In the next chapter we give another example based on the

Riemann ξ function.
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Figure 5.12: The Wigner function of the state F (x, 1, 0, 1) for all −5 ≤ x ≤ 1
and −3 ≤ p ≤ 3
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Figure 5.13: The contour of Wigner function of the state F (x, 1, 0, 1)for all
−4 ≤ x ≤ 1 and −2.5 ≤ p ≤ 2.5



CHAPTER 5. THE GAMMA STATES |A;B;K⟩Γ 97

−5
0

5

−5
0

5

−0.05

0

0.05

px

Figure 5.14: The Wigner function of the state |0.1, 0, 1⟩Γ
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Figure 5.15: The contour of Wigner function for the state |0.1, 0, 1⟩Γ
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Figure 5.16: The Wigner function of the state |1, 0.1, 1⟩Γ
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Figure 5.17: The contour of Wigner function of the state |1, 0.1, 1⟩Γ
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Figure 5.18: The Wigner function of the state |1, 0.1πi, 1⟩Γ
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Figure 5.19: The contour of Wigner function for the state |1, 0.1πi, 1⟩Γ
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Figure 5.20: The time evolution of the zeros of the Bargmann function for the
state |1, 0, 1⟩Γ, for Hamiltonian H = 0.5[(â†)2 + â2] and for the time interval
t = [0 : .05 : 0.3]. At t = 0 the Bargmann function is 1

Γ(z).
Figure 5.20 shows

the first six zeros of Bargmann function of the state |1, 0, 1⟩Γ and its motion
according to the Hamiltonian H = 0.5[(â†)2+ â2] at t = [0 : .05 : 0.3]. For t =
0 the system is on the state |1, 0, 1⟩Γ. and its Bargmann function Ω|1,0,1⟩Γ(z)
with first six zeros ς0 = 0, ς1 = −1, ς2 = −2, ς3 = −3, ς4 = −4, ς5 = −5. At
any time t the system is in the state |1, 0, 1, t⟩Γ = exp(iHt)|1, 0, 1⟩Γ and has
Bargmann function Ω|1,0,1⟩Γ(z, t) with zeros {ςn(t)}.
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Figure 5.21: The time evolution of the zeros of the Bargmann function of
the state |1, 0, 1⟩Γ, for Hamiltonian H = [â†â] and for the time interval
t = [0 : .05 : 0.3]. At t = 0 the Bargmann function is 1

Γ(z).
Figure 5.21 shows

the first six zeros of Bargmann function of the state |1, 0, 1⟩Γ and its motion
according to the Hamiltonian H = â†â at t = [0 : .05 : 0.3]. For t = 0
the system is on the state |1, 0, 1⟩Γ. and its Bargmann function Ω|1,0,1⟩Γ(z)
with first six zeros ς0 = 0, ς1 = −1, ς2 = −2, ς3 = −3, ς4 = −4, ς5 = −5. At
any time t the system is in the state |1, 0, 1, t⟩Γ = exp(iHt)|1, 0, 1⟩Γ and has
Bargmann function Ω|1,0,1⟩Γ(z, t) with zeros {ςn(t)}.
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Figure 5.22: The time evolution of the zeros of the Bargmann function of
the state |1, 0.5, 1⟩Γ, for Hamiltonian H = 0.5[(â†)2 + a2] and for the time

interval t = [0 : .05 : 0.3]. At t = 0 the Bargmann function is exp(0.5z)
Γ(z)

.
Figure 5.22 shows the first eight zeros of Bargmann function of the state
|1, 0.5, 1⟩Γ and its motion according to the H = 0.5[(â†)2 + â2] at t = [0 :
.05 : 0.3]. For t = 0 the system is on the state |1, 0.5, 1⟩Γ. and its Bargmann
function Ω|1,0.5,1⟩Γ(z) with first eight zeros ς0 = 0, ς1 = −1, ς2 = −2, ς3 =
−3, ς4 = −4, ς5 = −5, ς6 = −6, ς7 = −7. At any time t the system is
in the state |1, 0.5, 1, t⟩Γ = exp(iHt)|1, 0.5, 1⟩Γ and has Bargmann function
Ω|1,0.5,1⟩Γ(z, t) with zeros {ςn(t)}.
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Figure 5.23: The time evolution of the zeros of the Bargmann function of the
state |1, 0, 1⟩Γ, for Hamiltonian H = 0.1[(â†)2â2] and for the time interval
t = [0 : .05 : 0.3]. At t = 0 the Bargmann function is 1

Γ(z).
Figure 5.23 shows

the first six zeros of Bargmann function of the state |1, 0, 1⟩Γ and its motion
according to the H = 0.1[(â†)2â2] at t = [0 : .05 : 0.3]. For t = 0 the system
is on the state |1, 0, 1⟩Γ. and its Bargmann function Ω|1,0,1⟩Γ(z) with first six
zeros ς0 = 0, ς1 = −1, ς2 = −2, ς3 = −3, ς4 = −4, ς5 = −5. At any time t
the system is in the state |1, 0, 1, t⟩Γ = exp(iHt)|1, 0, 1⟩Γ and has Bargmann
function Ω|1,0,1⟩Γ(z, t) with zeros {ςn(t)}.
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Figure 5.24: The time evolution of the zeros of the Bargmann function of
the state |0.5, 0, 2⟩, for Hamiltonian H = 0.5[(â†)2 + â2] and for the time
interval t = [0 : .05 : 0.3]. At t = 0 the Bargmann function is 1

(Γ(0.5z))2.

Figure 5.24 shows the first four zeros of Bargmann function of the state
|0.5, 0, 2⟩Γ and its motion according to the Hamiltonian H = 0.5[(â†)2 + â2]
at t = [0 : .05 : 0.3]. For t = 0 the system is on the state |0.5, 0, 2⟩Γ .
and its Bargmann function Ω|0.5,0.5,2⟩Γ(z) with first four zeros ς0 = 0, ς2 =
−2, ς4 = −4, ς6 = −6 with multiplicity 2. At time t the system is in the state
|0.5, 0, 2, t⟩Γ = exp(iHt)|0.5, 0, 2⟩Γ and has Bargmann function Ω|0.5,0,2⟩Γ(z, t)
with zeros {ςn(t)}. In this case we denote that each zero follows two different
paths one is moving up while the other is moving down. This because the
original zero has multiplicity two
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Figure 5.25: The time evolution of the zeros of the Bargmann function of the
state |0.5, 0, 2⟩, for Hamiltonian H = 0.01[â†â]2 and for the time intervalt =
[0 : .05 : 0.3]. At t = 0 the Bargmann function is 1

(Γ(0.5z))2
. Figure 5.25

shows the first five zeros of Bargmann function of the state |0.5, 0, 2⟩Γ and
its motion according to the Hamiltonian H = 0.01[â†a]2 at t = [0 : .05 : 0.3].
For t = 0 the system is on the state |0.5, 0, 2⟩Γ. and its Bargmann function
Ω|0.5,0,2⟩Γ(z) with first five zeros ς0 = 0, ς1 = −2, ς2 = −4, ς3 = −6, ς4 =
−8, ς5 = −5 with multiplicity two. At any time t the system is in the state
|0.5, 0, 2, t⟩Γ = exp(iHt)|0.5, 0, 2⟩Γ and has Bargmann function Ω|0.5,0,2⟩Γ(z, t)
with zeros {ςn(t)}. In this case we denote that each zero has two different
paths one is moving up while the other is moving down.
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Figure 5.26: The zeros of the approximate polynomial for the state |1, 0, 1⟩Γ
where [+] denotes to real zeros and [o] denotes to the spurious zeros.



Chapter 6
Riemann ξ state |A⟩ξ

6.1 The Riemann Zeta function ζ(z)

The Riemann zeta function is an extremely important function in mathemat-

ics and physics that arises in definite integration and is intimately related

to very deep results surrounding the prime number theorem. While many

of the properties of this function have been investigated, their remain im-

portant fundamental conjectures that remain unproved to this day. The

Riemann zeta function can be defined by the following integral:

ζ(x) ≡ 1

Γ(x)

∫ ∞

0

ux−1

exp(u)− 1
du, x > 1 (6.1)

where Γ(x) is the Gamma function.

If x is an integer k, then we have the simplified identity:

107
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uk−1

exp(u)− 1
=

uk−1 exp(−u)
1− exp(−u)

= uk−1 exp(−u)
∞∑
n=0

exp(−nu)

=
∞∑
n=1

uk−1 exp(−nu)

By integrating both sides:

∫ ∞

0

uk−1

exp(u)− 1
=

∞∑
n=1

∫ ∞

0

uk−1 exp(−nu)

To evaluate ζ(k), we let y ≡ nu so that dy ≡ ndu and plug in the above

identity to obtain:

ζ(k) =
1

Γ(k)

∞∑
n=1

∫ ∞

0

uk−1 exp(−nu)du

=
1

Γ(k)

∞∑
n=1

∫ ∞

0

(
y

n
)k−1 exp(−y)dy

n

=
1

Γ(k)

∞∑
n=1

1

nk

∫ ∞

0

yk−1 exp(−y)dy

Evaluating the integral above gives Γ(k), which cancels the factor 1
Γ(k)

and gives the most common form of the Riemann zeta function:

ζ(k) =
∞∑
n=1

1

nk
(6.2)
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The Riemann Zeta function ζ(z) is a complex function defined as [51, 52,

53, 54]:

ζ(z) =
∞∑
n=1

1

nz
∀Re(z) > 1 (6.3)

where the sum on the right-hand side is taken over all n, the natural

numbers.

The relation between Riemann Zeta function ζ(z) and prime numbers, p

is given by [55, 56]:

ζ(z) =
1

1z
+

1

2z
+

1

3z
+

1

4z
+

1

5z
+

1

6z
+

1

7z
+ ...

= (
1

1z
+

1

2z
+

1

4z
+

1

8z
+ ...)(

1

1z
+

1

3z
+

1

9z
...)(

1

1z
+

1

5z
+ ...)

=
∏
p

∞∑
k=0

p−kz

ζ(z) =
∏
p

(1− 1

pz
)−1, Re(z) = x > 1 (6.4)

The Euler product formula given above expresses the zeta function as

a product over the primes p, and consequently provides a link between the

analytic properties of the zeta function and the distribution of primes in the

integers.

It is clear that ζ(z) at z = 1 is the harmonic series [57, 58]:

ζ(1) =
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ........ = ∞ (6.5)

and is divergent by the P -test, hence P = 1 [57, 58].



CHAPTER 6. RIEMANN ξ STATE |A⟩ξ 110

In complex analysis, analytic continuation is a technique that extends

the domain of a given analytic function. Analytic continuation often succeeds

in defining further values of a function, for example in a new region where an

infinite series representation in terms of which it is initially defined becomes

divergent.

The functional equation, which provide the analytic continuation of ζ(z)

for Re(z) < 1 is

ζ(z) = 2zπz−1sin(
πz

2
)Γ(1− z)ζ(1− z) (6.6)

The zeta function ζ(z) is analytic in the whole complex plane except for

the simple pole at z = 1 with residue 1 [51, 59].

The limit of (z − 1)ζ(z) is equal to 1 at z → 1, i.e.

lim
z→1

(z − 1)ζ(z) = 1 (6.7)

The function (z − 1)ζ(z) is analytic in the whole complex plane and can

be expressed as a Taylor expansion at any z ∈ C [55, 56].

The ζ function ζ(z) is a function from the complex plane C − {0} to C

i.e, ζ : C− {0} → C, its graph can’t be represented as a 3D image. Instead,

the real valued ζ function ζ(x) and (x−1)ζ(x) are plotted and can be shown

in figure 6.1 and figure 6.2. In addition the absolute value of ζ(z) can be

shown in figure 6.3

Some other well known values of the Riemann Zeta are:
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Figure 6.1: The plot of real valued Riemann Zeta function ζ(x) for all
−10 ≤ x ≤ 10

ζ(0) =
−1

2
, ζ(2) =

π2

6
, ζ(4) =

π4

90
(6.8)

A nontrival zero of the Riemann Zeta function is defined to be a root

ζ(z) = 0 with the property that 0 ≤ Re(z) ≤ 1.

Any other zero of the zeta function is called a trival zero.

The Riemann zeta function has zeros at the negative even integers. Since

ζ(z) has no zeros for Re(z) > 1, and Γ has no zeros for at all, we see from

the functional Eq(6.6) that the only zeros of the functions z → sin(πz
2
) at

points -2,-4,-6,... These are called the trival zeros of ζ(z) and some of them

can be shown in figure 6.4.

The Riemann hypothesis is concerned with the non-trival zeros, and states

that:

The real part of any non-trival zero of the Zeta function is 1
2
[60], thus the

non-trival zeros should lie on the critical line 1
2
+ it where t is a real number
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Figure 6.2: The plot of real valued Riemann Zeta function (x− 1)ζ(x) for
all −6 ≤ x ≤ 4

as shown in figure 6.4.

The Riemann Zeta function ζ(z) satisfies:

ζ(z∗) = ζ(z)∗ (6.9)

Therefore if ζn is a zero of ζ(z) then ζ∗n is also a zero .

The Riemann Zeta function has non-trival zeros at 0.5 ± 14.134725i,

0.5± 21.022040i, −0.5± 25.010858i, 0.5± 30, 424876i,0.5± 32.935062i...

The Riemman Zeta function ζ(z) ̸= 0 for all Re(z) = x > 1.

We can prove from Euler’s product and Re(z) > 1 that 1− p−z ̸= 0, for

all prime p.
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Figure 6.3: The plot of |ζ(z)|,0 ≤ x ≤ 1, 5 and −2 ≤ y ≤ 50

6.1.1 Zeros of the Zeta Function, and the Riemann

Hypothesis

As we have said, ζ(z) has zeros at the negative even integers, and these are

the only such zeros for Re(z) < 0. Also, for Re(z) > 1, ζ(z) has no zeros.

This leaves the region 0 < Re(z) < 1, which is called the critical strip. It

turns out that ζ(z) has no zeros on the lines Re(z) = 0 or 1. And, we

already know that if ζn is a root, then ζ∗n is also a root. The famous Riemann

Hypothesis asserts that in the critical strip, all the roots of ζ(z) lie on the

line Re(z) = 1
2
. The truth (falsity) of this conjecture would have profound

consequences concerning the distribution of prime numbers.

The n-th derivative of Riemann zeta function at z = 0 can be defined as

[61]:

ζn(0) =
(−1)nn!

π
[
Im(zn+1

0 )

(n+ 1)!
+

n−1∑
k=0

ak
Im(zn−k0 )

(n− k)!
]. (6.10)
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−10 −5 0 5x

 

Figure 6.4: The trival and non trival zeros of zeta function for all−15 ≤ x ≤ 5
and −40 ≤ y ≤ 40

Here we have an and the Stieltjes constants γk, which are defined by:

an =
Γn+1(1)

(n+ 1)!
+

n∑
k=0

(−1)kγkΓ
n−k(1)

k!(n− k)!
n > 0 (6.11)

γk = lim
N→∞

(
N∑
k=1

lnk(i)

t
)− lnk+1(N)

k + 1
(6.12)

where γ0 is Euler constant and z0 = − ln(2π)− πi
2
.

The first four derivatives of ζ(z) at z = 0 are given by:

ζ
′
(0) = −0.9189, ζ

′′
(0) = 1.6449, ζ

′′′
(0) = 1.2021, ζ(4)(0) = 1.0823

6.2 The Riemann ξ function ξ(z)

The Riemann ξ function is defined as the product [62, 63, 56]:
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ξ(z) =
1

2
z(z − 1)π− 1

2
zΓ(

1

2
z)ζ(z) (6.13)

where Γ denotes to the Gamma function and ζ denotes to the Zeta func-

tion. The zero of z − 1 cancels the pole of ζ(z), and the real zeros of ζ(z)

are canceled by the (simple) poles of Γ(1
2
z), which never vanish. Thus, ξ(z)

is an entire function.

The plot of ξ(x), as a function of x where −4 ≤ x ≤ 4 also can be shown

in figure 6.5.

The ξ function ξ(z) is a function from the complex plane C to itself i.e.

ξ : C → C, its graph can not be represented as a 3D image. Instead, the real

part and the imaginary part are plotted and can be shown in figure 6.6 and

figure 6.7 In addition, the absolute value of ξ(z) can be shown in figure 6.8.

The Riemann xi function ξ(z) satisfies the functional equation [64]:

ξ(z) = ξ(1− z) (6.14)

Therefore if ωn is a zero of ξ(z) then 1− ωn is also a zero.

The first 15th zeros of Riemann xi function ξ(z) can be shown in table

6.2.

From this functional equation (6.14), we notice from the n-th derivative

that we can attain:

dnξ(z)

dz2
= (−1)n

dnξ(1− z)

dz2
(6.15)

We can clearly explain from this relationship above why the same odd
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derivative of ξ(z) and ξ(1 − z) have different signs which can be noticed in

table 6.1

The Riemann ξ(z) is an analytic function and can be expressed as a Taylor

expansion
∑∞

n=0 cn(z − z0)
n.

The first 14th coefficients cn of ξ(z) at z = 0 and z = 1 can be shown in

table 6.1.

This can be derived by differentiating Eq (6.13) of the ξ function with

respect to z, and using the technique of differentiation rules.

Table 6.1: The first 14th coefficients of Riemann xi function ξ(z) at z=0 and
z=1

n cn(z = 0) cn(z = 1)
0 0.50000 0.50000
1 -0.01154 0.01154
2 -1.81397 -1.81397
3 2.19609 -2.19609
4 -1.43344 -1.43344
5 0.870594 -0.870594
6 -0.47145 -0.47145
7 0.24789 -0.24789
8 -0.12691 -0.12691
9 0.06429 -0.06429
10 0.03235 0.03235
11 0.01623 -0.01623
12 -0.00813 -0.00813
13 0.00363 -0.00363

Every entire function can be represented as a product involving its zeroes.

Examples are the sine and cosine function.

The Hadamard product representation of the ξ function ξ(z) [63].

ξ(z) =
1

2
exp(Bz)

∏
ωn

(1− z

ωn
) exp(

z

ωn
) (6.16)
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Figure 6.5: The plot of ξ(x), as a function of x where −4 ≤ x ≤ 4

Here the product is over all nontrivial zeros ωn of ζ. and B is the negative

real number [65, 66]

B =
1

2
log 4π − 1− 1

2
γ ≃ −0.023095... (6.17)

The real • and spurious zeros ◦ of Bargmann function for the |1⟩ξ by

using Eq(6.16) can be shown in figure 6.11 .

The function ξ(z) also has a slow enough rate of growth that it can be

written as a product over its zeroes:

ξ(z) = ξ(0)
∏
ωn

(1− z

ωn
) (6.18)

The order of its growth is ρ = 1 and therefore ξ(Az) qualifies as a
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Figure 6.6: The real value of ξ(z) where z = x+ iy

Bargmann function [39]. The corresponding ket state is:

|A⟩ξ = Nξ(0)
∏
ωn

(1− â†

A−1ωn
)|0⟩ξ (6.19)

The zeros of ξ(z) are the nontrivial zeros of Zeta function ζ(z) and can

be shown in figure 6.10.

6.2.1 The wavefunction of |A⟩ξ

We denote F (x;A)ξ as the wavefunction of the state |A⟩ξ and can be written

as:

F (
x√
2
;A)ξ =

1
√
2

4
√
π3

exp(−x
2

4
)

∫
dyξ(Az) exp(−y

2

2
) (6.20)
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Figure 6.7: The image value of ξ(z) where z = x+ iy

6.2.2 The Wigner function W|A⟩ξ(x, p) of the state |A⟩ξ

The Wigner function of the state |A⟩ξ can be written as:

W|A⟩ξ(x, p) =
1

2π

∫ ∞

−∞
exp(ipX)⟨x−X/2|ρ|x+X/2⟩dX (6.21)

W|A⟩ξ(x, p) =
1

2π

∫ ∞

−∞
exp(−iPx)⟨p− P/2|ρ|p+ P/2⟩dP (6.22)

Where ρ is the density operator of the state |A⟩ξ.

ρ = |A⟩ξξ⟨A| (6.23)

Figure 6.12 and 6.13 show wave and Wigner funtions for the state |5⟩ξ

and the cut lines denotes to the imaginary part of wave function.
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Figure 6.8: The absolute value of ξ(z) where z = x+ iy

The second coherence g(2) for the states |A⟩ξ can be calculated by

g(2) =
⟨â†â†ââ⟩
⟨â†â⟩2

=
⟨n2⟩ − ⟨n⟩2

⟨n⟩2
(6.24)

The values of g(2) for the states |A⟩ξ at A = [3 : 0.2 : 6] are shown in

table 6.3

Figure 6.14 shows the the second coherence g(2) for the states |A⟩ξ as a

function of A.

6.2.3 Bargmann function of Riemann ξ states and its

zeros

In this section we consider a system with a Hamiltonian H, which at t = 0

is in some initial state. We study the time evolution of this state, and the

motion of the zeros of its Bargmann function. We assume that at time t = 0

the system is on the state |A⟩ξ, and its Bargmann function Ω|A⟩ξ(z) with
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Figure 6.9: The plot of ξ(1/2 + it), as a function of t

zeros {ςn}. At time t the system is in the state |A, t⟩ξ = exp(iHt)|A⟩ξ and

has Bargmann function Ω|A⟩ξ(z, t) with zeros {ςn(t)}. The number of zeros

corresponding to |A, t⟩ξ may change as a function of time. This is obvious

from the fact that any two states can be related with a unitary transformation

[39].

The first six zeros of the approximate polynomial with degree n = 6

by using Eq(6.18) for Bargmann function of the state |1⟩ξ according to the

Hamiltonian H = 0.1[(â†)â]2 is shown in figure (6.15). The paths of the first

two zeros are in the same direction however, they differ from the remaining

zeros. when we doubled the degree n and changed the H to [(â†)â], the

number of zeros became 12. Its motion has been illustrated in figure (6.16)

and all the paths are in the same direction.
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Table 6.2: The first 15th zeros of Riemann xi function ξ(z)
n ωn
1 0.5+14.13472i
2 0.5+21.02203i
3 0.5+25.01085i
4 0.5+30.42487i
5 0.5+ 32.93506i
6 0.5+ 37.58617i
7 0.5+ 40.91871i
8 0.5+43.32707
9 0.5+48.00515i
10 0.5+49.77383i
11 0.5+ 52.97032i
12 0.5+52.97032i
13 0.5+ 59.34704i
14 0.5+ 60.83177i
15 0.5+ 65.11254i

The sign • denotes to the zeros at t = 0 while ◦ denotes to the zeros at

t > 0
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Figure 6.10: The zeros of ξ function
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Figure 6.11: The real • and spurious zeros ◦ of Bargmann function for the
|1⟩ξ by using Eq(6.16).
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Figure 6.12: The wave function of the state |5⟩ξ

Table 6.3: This table shows the values of second coherence g(2) for the states
|A⟩ξ at A = [3 : 0.2 : 6] .

A g(2) A g(2)

3.0 7.0842 4.6 2.2093
3.2 5.8705 4.8 1.9278
3.4 4.9565 5.0 1.6776
3.6 4.2559 5.2 1.4419
3.8 3.7002 5.4 1.2926
4.0 3.2460 5.6 1.1928
4.2 2.8588 5.8 1.1243
4.4 2.5196 6.0 1.079
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Figure 6.13: The Wigner function of the state |5⟩ξ
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Figure 6.14: The second order coherence g(2) of |A⟩ξ for 3 ≤ A ≤ 6
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Figure 6.15: The time evolution of the zeros of the approximate polynomial
with degree n = 6 for Bargmann function of the state |1⟩ξ, for Hamiltonian
H = 0.1[(â†)â]2 and for the time interval t = [0 : .05 : 0.3].
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Figure 6.16: The time evolution of the zeros of the approximate polynomial
with degree n = 11 for Bargmann function of the state |1⟩ξ by using Eq(6.16),
for Hamiltonian H = (â†)â and for the time interval t = [0 : 0.05 : 1.5]. The
sign • denotes to the zeros at t = 0 while ◦ denotes to the zeros at t > 0.
The path according to H = (â†)â is a circular curve.



Chapter 7
Discussion

Various analytic representations have been used in quantum mechanics. The

Bargmann function in the complex plane has been used with the coherent

states formalism. The analytic representation of infinite quantum systems

has a great role in quantum optics. For each analytic function there is a

corresponding quantum state.

In the present work we considered quantum systems with positions and

momenta in real line. We introduced a new class of generalized coherent

states which have three following properties:

• The set of coherent state is a total set in the Hilbert space. Our states

may not have the stronger property of the resolution of the identity.

• We get all coherent states by acting on one of these states fiducial

vector with operators which form a representation of the multiplicative

group of non-zero complex numbers C∗ = C− {0}.

• Temporal stability [2, 3] i.e. for some Hamiltonian H, the set of co-

128
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herent states remains invariant under the corresponding time evolution

(i.e, if |s⟩ is a coherent state then exp(itH)|s⟩ is also a coherent state).

We have studied in detail two well known analytic functions on a complex

plane based on Γ and ξ function (see table 7.1). The set of Gamma states

{|A,B, k⟩Γ : A,B ∈ C and k = 1, 2, 3, ...} was based on the g(z) =

exp(Bz)
[Γ(Az)]k

. We have also studied quantum states corresponding to the analytic

function ξ(z).

In our work, we established a new methodology to generalize the concept

of coherent states in a way which was not presented before. However, when

this method was applied to certain coherent states, some essential properties

could not be shown, such as the resolution of the identity.

The two previous examples illustrate the relation between the set of Quan-

tum states and its analytic function.

The zeros of these function have been analyzed. The time evolution of

the corresponding quantum states have been studied.

Table 7.1: The quantum state in ket and Bargmann representation
A Quantum− state Ket− rep Bargmann− rep

1 Gamma state |A,B, k⟩Γ exp(Bz)
[Γ(Az)]k

2 Riemann state |A⟩ξ ξ(Az)

7.1 Further Work

The work is a contribution to the areas of coherent states, Bargmann func-

tions and their zeros. Given a set of states which are a total set in some space,
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it is an interesting problem to find the resolution of the identity. From a theo-

retical point of view, our methodology enlarges the concept of coherent states

and leads to many novel sets of such states. We can use our methodology

with many other examples in order to get other novel sets of coherent

states. The work may be expanded to study more Bargmann functions and

represent them as a set of new coherent states. A more general question is

whether the total set property is a sufficient condition for the resolution of

the identity property. I would like to work further on the goal of establish-

ing a generalized methodology which maintains all the properties of coherent

states.
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