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Abstract 

A non-invasive, on-line method for detection of mechanical (rotor, bearings 

eccentricity) and stator winding faults in a 3-phase induction motors from 

observation of motor line current supply input. The main aim is to avoid the 

consequence of unexpected failure of critical equipment which results in 

extended process shutdown, costly machinery repair, and health and safety 

problems.  

This thesis looks into the possibility of utilizing machine learning techniques 

in the field of condition monitoring of electromechanical systems. Induction 

motors are chosen as an example for such application. Electrical motors play 

a vital role in our everyday life. Induction motors are kept in operation through 

monitoring its condition in a continuous manner in order to minimise their off 

times. The author proposes a model free sensor-less monitoring system, 

where the only monitored signal is the input to the induction motor. The 

thesis considers different methods available in literature for condition 

monitoring of induction motors and adopts a simple solution that is based on 

monitoring of the motor current. The method proposed use the feature 

extraction and Support Vector Machines (SVM) to set the limits for healthy 

and faulty data based on the statistical methods. After an extensive overview 

of the related literature and studies, the motor which is the virtual sensor in 

the drive system is analysed by considering its construction and principle of 

operation. The mathematical model of the motor is used for analysing the 

system. This is followed by laboratory testing of healthy motors and 

comparing their output signals with those of the same motors after being 

intentionally failed, concluding with the development of a full monitoring 

system. Finally, a monitoring system is proposed that can detect the 

presence of a fault in the monitored machine and diagnose the fault type and 

severity. 
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Chapter 1. Introduction 

Condition monitoring (CM) means the continuous evaluation of the health of 

plant and equipment throughout its serviceable life [1]. Taking measurements 

while the machine is operational is called on-line condition monitoring. As a 

simple fault may lead to very costly damage, the idea of detecting a fault, 

confronting it and relating it to ideally one cause before it deteriorates is the 

main concern of engineers and researchers. Hence, the idea of condition 

monitoring and fault detection has emerged. 

Early detection and diagnosis of process faults while the plant is still 

operating in a controllable region can help avoid abnormal event progression 

and reduce productivity losses which in turn can help avoid major system 

breakdowns and catastrophes. 

 Faults or abnormal conditions, as referred to in industry, can lead to huge 

loses of monies and time. For example, It is estimated that the petrochemical 

industry alone in the US incurs approximately 20 billion dollars in annual 

losses due to poor abnormal event management (AEM) [2]. And hence they 

have rated AEM as their number one problem that needs to be solved [3].  

This explains the considerable interest in this field now from industrial 

practitioners as well as academic researchers. In some industries, 

maintenance now is the second highest or even the highest element of 

operating costs. As a result in the last three decades it has moved from 

almost nowhere to the top of the league as a cost control priority [4]. 
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1.1 Maintenance Approach 

All maintenance schemes have contained two types of works [1, 5]; the first 

of which is an immediate reaction to plant failures (breakdown or reactive) 

maintenance. The other is the fixed time interval or preventive maintenance, 

which is performed during fixed times where engineers take the advantage of 

slow production cycles to carry out such tasks. A third type of maintenance 

has emerged recently which is based on monitoring (condition based 

maintenance) of the process condition [1, 5, 6]. It involves fault detection and 

diagnosis. The main advantage of such method is increasing machine 

availability and performance, reducing sequential damage, increasing 

machine life, and reducing spare parts inventories [5]. An efficient CM 

scheme is capable of providing warning and predicting faults at early stage 

[7]. Table 1.1 shows a comparison between the three types of maintenance. 

1.2 Fault Detection and Diagnosis Tasks 

Fault detection and diagnosis (FDD) involves the following tasks: 

 Fault Detection: to tell whether there is a fault or everything is 

functioning well. 

 Fault Isolation: to determine the location of the fault and which part 

has become faulty. 

 Fault Evaluation: where the size and type or nature of fault has been 

estimated. 
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Table ‎1.1 Maintenance Types [4] 

 Reactive Maintenance Preventive Maintenance Predictive Maintenance 

A
d

v
a
n

ta
g

e
s
 

No Upfront costs i.e. equipment, 

training. Seen as an easy option 

Maintenance is planned and 

helps prevent unplanned 

breakdowns 

Risk of unexpected 

breakdowns are reduced 

 Fewer catastrophic failures 

resulting in expensive secondary 

damage 

Equipment life is extended 

 Great control over inventory Reduce inventory and labour 

costs 

  Maintenance can be planned 

and carried out when 

convenient 

  Risk of Health& safety 

&Environmental incidents are 

reduced 

  Opportunity to understand 

why equipment has failed 

and improve efficiency 

D
is

a
d

v
a
n

ta
g

e
s
 

High risk of catastrophic failure or 

secondary damage. High repair and 

replacement costs 

High replacement costs: parts 

replaced too early 

High upfront costs including 

equipment and training 

Loss of key assets due to high down 

time. Lost production and missed 

contract deadlines 

Risk of early failure-infant 

mortality. Human error during 

replacement of repaired or new 

parts 

Additional skills or 

outsourcing required 

Inventory- high cost of spare parts or 

replacement equipment 

Parts may often have many years 

of serviceable life remaining 

 

High labour cost-overtime, subcontract 

and due to equipment hiring 

  

Increased health and safety risks   

Environmental concerns   

    

Though the relative importance of these three tasks are obviously subjective, 

however detection is an absolute must for any practical system and isolation 

is almost equally as important. 

Fault evaluation, on the other hand, may not be essential. Hence, fault 

diagnosis is very often considered as fault detection and isolation, 

abbreviated as FDI, in the literature [7, 8]. 
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1.3 Electromechanical Systems 

Electromechanical systems are those consist of electrical and mechanical 

parts. These include electric motors and mechanical devices powered by 

them, such as switches, solenoids, relays, crossbar switches and stepping 

switches.  

Every electric motor is an electromechanical energy converter, transforming 

electricity into a rotation due to the action of force between electric currents 

and magnetic fields [9] .The application of this report, which is an induction 

motor with a load attached to it, resembles a good example of an 

electromechanical drive system. 

1.4 Induction Motors  

Electrical motors, in general, can be defined as machines that transform 

electrical energy into mechanical energy. Electric motors account for 95% of 

all prime movers in industry and consume a large proportion of the generated 

power in the world [10]. Electric motors are also responsible for roughly 40% 

of electricity consumed worldwide [11] , and today they use two thirds of the 

total electricity consumed by industry [12]. Whether in mining, steel 

production, the pulp and paper industry, or in manufacturing. 20 million 

industrial motors worldwide consume 65 percent of the electricity for 

industrial usage [9]. Furthermore, induction ac motors resembled more that 

90% all the motors employed in industry worldwide [13]. Prime movers 

http://www.wordiq.com/definition/Motor
http://www.wordiq.com/definition/Switch
http://www.wordiq.com/definition/Solenoid
http://www.wordiq.com/definition/Relay
http://www.wordiq.com/definition/Crossbar_switch
http://www.wordiq.com/definition/Stepping_switch
http://www.wordiq.com/definition/Stepping_switch
http://en.wiktionary.org/wiki/prime_mover
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includes electrical movers, steam turbines, gas turbines, or reciprocating 

internal combustion engines.  

There are several types of these motors used in industrial, commercial and 

residential applications. The AC induction motor is the dominant motor 

technology in use today and represents the majority of the installed motor 

capacity. With an efficiency that exceeds eighty percent, and low 

maintenance requirements, induction motors are considered highly reliable 

[10]. In an industrial country, IMs consume between 40-50% of all the 

generated power [14]. 

An induction motor is an electric machine in which alternating voltage is 

supplied to the stator directly, and to the rotor by induction due to the 

changing of magnetic field in the stator, hence the name induction motor.  

An induction motor has, essentially, two main components, a stationary stator 

and a revolving rotor. These two components are separated from each other 

by a small air gap. Depending on the rotor construction, there are two 

different designs of induction motors which are: squirrel cage and wound 

rotor induction motors. Squirrel-cage rotor IM are the workhorses of industry, 

due to their simple and robust construction which is attributed to their rotor 

design. They are considered as the least expensive and the most versatile 

electrical machines. Hence they gained a wide spread into the daily life from 

domestic single-phase machines to the high voltage ones utilized in industry. 

http://en.wikipedia.org/wiki/Steam_turbine
http://en.wikipedia.org/wiki/Gas_turbine
http://en.wikipedia.org/wiki/Internal_combustion
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1.5 Machine Learning 

Machine learning is a scientific discipline that is concerned with the design 

and development of algorithms that allow computers to evolve behaviours 

based on empirical data, such as from sensor data or databases [15]. Data 

can be seen as examples that illustrate relations between observed 

variables. A major focus of machine learning research is to automatically 

learn to recognize complex patterns and make intelligent decisions based on 

data; the difficulty lies in the fact that the set of all possible behaviours given 

all possible inputs is too large to be covered by the set of observed examples 

(training data). Hence the learner must generalize from the given examples, 

so as to be able to produce a useful output in new cases. 

Due to the increased availability to computational resources and the vast 

algorithmic developments, the utilization of machine learning in the field of 

condition monitoring is becoming more dominant compared to conventional 

methods such as Fast Fourier Transforms [16]. 

There are several parallels between animal and machine learning. Certainly, 

many techniques in machine learning are derived from the efforts of 

psychologists to make more precise their theories of animal and human 

learning through computational models. It seems likely also that the concepts 

and techniques being explored by researchers in machine learning may 

imitate some features of biological learning in some creatures. 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Database
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The application of machine learning for fault diagnosis is becoming more 

dominant compared to conventional methods and that is attributed to the 

increased availability to computational resources and the vast algorithmic 

developments [16]. 

Machine learning usually refers to the changes in systems that perform tasks 

associated with artificial intelligence (AI). Such tasks involve recognition, 

diagnosis,‎ planning,‎ robot‎ control,‎ prediction,‎ etc.‎ The‎ “changes"‎ might‎ be‎

either enhancements to already performing systems or ab initio synthesis of 

new systems.  

Machine learning, a branch of artificial intelligence, is a scientific discipline 

concerned with the design and development of algorithms that allow 

computers to make intelligent decisions based on empirical data [15] . 

1.6 Support Vector Machines 

The support vector machine (SVM) is a relatively new and powerful 

technique for solving classification problems and is very useful due to its 

generalization ability [17].  

In SVM machine learning method is used for fault detection and diagnosis 

where the algorithm is trained on example database of healthy states of 

sensor recordings and then used for detecting the faulty ones and 

determining the severity of the fault [18].  

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
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Support vector machines (SVMs) are a set of supervised learning methods 

used for classification and regression. When a set of data (training samples) 

is used as training examples, and each sample is labelled as belonging to 

one of two classes, the SVM has the capability to predict whether a new set 

of data examples (testing samples) falls into one class or the other [19]. 

1.7 Research Aims and Objectives  

The objective laid for this work is to develop a condition monitoring system 

capable of detecting and diagnosing electrical faults commonly present in 

three-phase induction motors. The aim is then to investigate the utilization of 

machine learning techniques in the area of condition monitoring. As this 

application‎is‎an‎electromechanical‎system,‎the‎author’s‎aim is to develop a 

condition monitoring system that’s‎ capable‎ of‎ detecting‎ and‎ diagnosing‎

general faults commonly present in electrical and mechanical parts of the 

three-phase induction motors. To accomplish this aim the following 

objectives were set: 

1. To study the effect of broken rotor bars, bearings faults, stator 

inter-turns and eccentric rotor faults on the performance of a three 

phase squirrel cage induction motor. This is achieved by reviewing 

the causes of these faults and their effects on the performance of 

squirrel cage induction motors. 

2. To seed four known faults into four similar 7.5 KW motors using a 

test rig facility and to collect data for healthy and faulty motors 
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using signal conditioning and data acquisition (SCADA) methods.  

3. To investigate the effect of stator shorted-turns, bearings, 

eccentricity, and broken rotor bar faults on the performance of a 

three-phase squirrel cage induction motor using motor current 

signature analysis (MCSA). This will be achieved by comparing the 

current spectrums of both healthy and faulty conditions in both time 

and frequency domains. 

4. To conduct an experimental investigation into detection and 

diagnosis of squirrel cage motor electric faults under steady state 

condition at different load conditions, attempting the detection and 

diagnosis of the seeded faults through the designed system. 

5. To develop a condition monitoring toolbox for induction motor 

faults using MCSA, statistical features extraction, and support 

vector machines diagnosis. 

1.8 Report layout 

The layout of this report is arranged according to the following sequence: 

Chapters 2 through 4 present the background and literature review of 

predictive maintenance and condition monitoring of induction motors. 

Chapter 2 introduces condition monitoring through model-based and model-

free fault detection and diagnosis methods; as well as the signals that often 

monitored in the predictive maintenance processes. Four different types of 

induction motor electrical faults that are; bearings faults, stator shorted-turns, 
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eccentricity and broken rotor bar are illustrated in Chapter 3. Chapter 4 

presents a review of common aspects of faults detection and diagnosis using 

different up-to–date techniques. 

Chapter 5 looks into the construction, basic principles and the operating 

theory of the three-phase squirrel cage induction motor. It also presents, in 

detail, a mathematical model for a 7.5 KW, 415V, 4 poles, and 50Hz squirrel 

cage induction motor using the dq representation.  

Chapter 6 details the induction motor test rig on which the experimental 

investigations are carried out. A description of the faults that were seeded 

and how they were introduced into the test rig are also given in this chapter. 

The motor outputs both in time and frequency domains are illustrated in 

Chapter 7. This chapter contains different plots of the signals that recorded 

during testing at several loading situations in time and frequency domains. 

Chapter 8 illustrates the monitoring system methodology used for faults 

detection and diagnosis. The chapter presents how the features to be used 

for the FDD task are generated. It also discusses the fault detection 

principles of the machine learning technique used. 

While Chapter 9 discusses the detection and diagnosis results, Chapter 10 

outlines the conclusions, and the future plan of work. 
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Chapter 2. Condition Monitoring of IMs 

A brief introduction to some generally used concepts and classifications in 

condition monitoring are reviewed in this chapter. Along these three serial 

chapters, literature reviews are presented on general methods of fault 

detection and diagnosis with special attention given to those related to 

induction electric motors, the application of this study.  

Different signals that are fault features containers with significant faults 

ciphers are reviewed with an emphasis on the most practical used ones. The 

second part of this chapter is devoted to the signals usually used as a mean 

to read the condition of the machine while in operation. 

Fault detection and diagnosis has been becoming more and more important 

for process monitoring because of the increasing demand for higher 

performance as well as for increased safety and consistency of dynamic 

systems. Early diagnosis of process faults while the system is still operating 

in a controllable region can help avoid development of abnormalities and the 

decrease of productivity losses. 

 Hence, fault diagnosis is a major research topic attracting considerable 

interest from industrial practitioners as well as academic researchers. The 

advancement of fault detecting and diagnosis methods has made condition 

based maintenance the most adopted procedure in many processes.  
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2.1 Predictive Maintenance of Induction Motors 

Although the induction motor is reliable, it is possible to maintain its 

performance by using condition monitoring and diagnostics [20]. 

For instance, working in harsh environments, being switched on and off 

rapidly, driving fluctuating loads, besides human installation mistakes may all 

affect the performance of induction motors whose conditions may deteriorate 

due to such effects if not maintained at the right time. 

Induction motors generally experience a number of mechanical problems, 

predominantly related to their stators, bearings and rotors [5, 14]. The 

inception of these faults can be detected traditionally by sensors attached to 

the casings of induction motors or preferably through nonintrusive means in 

order to schedule maintenance of such devices without unscheduled 

downtime i.e. employing an effective predictive maintenance. 

2.2 Model-Free Condition Monitoring Approach 

FDD is a very broad area of research and applications, and can be divided 

into two main branches, that is: model-free and mode-based condition 

monitoring techniques.  

The hardware redundant method represents the traditional approach of 

model free fault detection and diagnosis.  It is implemented through parallel 

sensors and actuators to measure and monitor certain variables. It is simple 

and easy to implement, but has a number of disadvantages of which being 
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costly and require an extra space for implementation which is not always 

available in all processes. 

2.3 Model-Based Condition Monitoring Approaches 

In order to monitor a system, information about it is obtained from primary 

data which then is processed using modern signal processing and analysis 

techniques. Through these techniques, the condition of the machine is 

assessed. Though this makes it is possible to diagnose faults, if any, before 

they could cause a severe damage, constant human interpretation is still 

required [21].  

Traditional fault detection is associated with hardware redundancy which 

includes sensors and actuators. This could result in costly and cumbersome 

systems, where it might sometimes not be allowed. Meanwhile most of model 

based fault detection and diagnosis methods rely on the concept of analytical 

redundancy. 

 In contrast to physical redundancy, where measurements of parallel sensors 

are compared to each other, now sensory measurements are compared to 

analytically computed values of the respective variables. Such computations 

use present and/ or previous measurements of other variables and the 

mathematical plant model describing their nominal relationship to the 

measured variable. The idea can be extended to the comparison of two 

analytically generated quantities obtained from different sets of variables [8]. 
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The main advantage of model based techniques is the replacement of 

hardware redundancy by analytical redundancy. While consistency is sought 

between‎ identical‎ components’‎ outputs‎ in‎ hardware redundancy, it is 

checked against their computed counterparts obtained from the model, in the 

case of analytical redundancy. The presence of residuals, which are the 

differences between the measured and estimated values, is an indication of a 

system fault [7]. With the development of advanced modelling techniques, 

model based methods are becoming an attractive approach to FDD systems 

[22].  

However, in practice it is almost impossible to obtain a model that exactly 

matches the process behaviour [23]. The mismatch between the behaviour of 

the model and the plant may lead to large error signals [24], which usually 

lead to false alarms. As most physical systems are nonlinear in nature, their 

mathematical description usually relies on linear approximations [7]. 

Furthermore, it can be impossible to describe some nonlinear systems by 

analytical equations [25]. 

When the system becomes nonlinear, the model is no more in use. Hence, 

nonlinear models with high accuracy are preferably representing systems 

with large dynamic ranges only. One of the most significant problems with 

nonlinear modelling is robustness to modelling errors. It is unrealistic to 

expect perfect modelling for complex systems [26]. These disadvantages 

increase the necessity to find alternative approaches such as neural network, 

and knowledge based approaches. 



 

15 

 

After the proper signal to monitor is decided on , FDD run though three main 

tasks; they are: generation of residuals (features), detection of changes when 

they occurred, and finally diagnosing the fault(s) in matter of size, place, and 

time of occurrence, if any. 

Each of these three tasks is achieved through deferent techniques and 

methods of implementation. This chapter and the following two chapters look 

into some of these techniques. Figure 2.1 shows the main steps of a CM 

system. 

 

Figure ‎2.1 Simple CM System 

2.4 Induction Motors Condition Monitoring 

After deciding on the fault(s) to be monitored, CM process starts with sensing 

certain variables such as line current, voltage, vibration, motor speed, flux, 

and temperature. The feature generation or extraction, as referred to in some 

literature, is the following step of the CM process. The main aim of this step 

is to generate some features that are (preferably) unique, firmly tied to a 
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certain fault, and easily distinguishable from the others related to a healthy 

state or even other faults, if there is any. Then by examining these features, it 

would be possible to judge whether the system is healthy or not.  This is what 

is called, in CM literature, fault diagnosis. The different components of a CM 

system are shown in Table 2.1, of which few blocks will be looked into in the 

next sections .It is worth noting that the last two steps, namely feature 

generation and fault detection and diagnosis ( FDD), are inter related and it, 

sometimes, becomes difficult to say where each of them starts or ends. 

Table ‎2.1 Online IM condition Monitoring Phases 

 
IM Faults 

 

 
Monitored Signals 

 

 
Features Extraced 

 

 
FDD 

 

1. Stator 1. Current 1. FFT  1. Neural Networks 

2. Rotor 2. Voltage 2. WT 2. SVM  

3.Bearings 3. Vibration 3. Park Vector 3. Fuzzy Logic 

4. Eccentricity 4. Temparure 4. RMS 4. Fault Trees 

5. Imbalanced Voltage 5. Acoustic Monitoring 5. NSC  5.Genetic Algorithms 

6. Misalingment 6. Speed 6. Statistical Metods  

 7. Torque 7.Parameter Estimation  

 8. Flux 8. State Observers  

    

The following section lights on the different signals that can be looked at for 

locating any faults related symptoms. Though it is possible to use a wide 

range of signals, the recent research trends are directed primarily towards 

using MCSA approach and vibration as sensed signals. 

2.5  Human Sensing 

Human sense-based monitoring is a conventional monitoring approach 

based on the basic human senses, that are touch, smell, sight and hearing, 
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which may provide an immediate detection of machine faults without 

additional analysis [27, 28] 

Experienced engineers are often required to interpret measurement data that 

are normally inconclusive. Although the cost of human sense-based 

monitoring is low compared to modern condition monitoring techniques, it 

requires high inspection skills based on experiences and provides only 

qualitative results. The conclusions drawn by different inspectors are 

sometimes not the same, due to dissimilar individual experiences and 

personal skills [27]. 

2.6 Motor Current Signature Analysis (Current Monitoring) 

Motor Current Signature Analysis (MCSA) is a powerful monitoring tool for 

electrical machine and motor-driven equipments that provides a nonintrusive 

mean for detecting the presence of mechanical and electrical abnormalities in 

the motor and the driven equipment, including distorted conditions in the 

process downstream of the motor-driven equipment [29]. 

 MCSA is an electric machine monitoring technology developed in 1985 by 

Oak Ridge National Laboratory (ORNL) [30, 31] as a means for determining 

the effects of aging and service wear systems, but it is applicable to a broad 

range of machinery. It has been used as a condition monitoring method in 

electrical machines to detect and diagnose motor bearing wear, eccentricity 

problems, stator faults, as well as rotor broken bars for inaccessible motors 
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during plant operation [29, 32]. MCSA can be implemented using time or 

frequency domain analyses. 

MCSA is based on the recognition that an electric motor driving a mechanical 

load acts as an efficient and permanently available transducer by sensing 

any variations in the motor components due to any faults, large and small, 

long-term and rapid, and converting them into variations in the induced 

current generated in the motor windings.  

These current variations, though very small in relation to the average current 

drawn by the motor, can be extracted reliably and nonintrusively at a remote 

location from the equipment and processed to be used in studying the 

machine condition. Motor current signatures are obtained both in time and 

over time to alarm any early signs of deterioration of the motor condition. 

 MCSA has been successfully applied for condition monitoring to a wide 

range of technical areas which include not only electrical motors or motor-

operated equipments but also pumps of various designs, blowers, and air 

conditioning systems. MCSA has been in the CM arena for so long, giving 

enough proof of utility at industrial environments [14]. The popularity of 

MCSA comes from being that the current consists of motor harmonics which 

every one shows some properties related to different situations like faulty 

conditions [32]. And for being a versatile, nonintrusive and inventive method, 

MCSA is chosen in this report as the main tool for condition monitoring.  
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2.7 Vibration Monitoring 

Condition monitoring using vibration as the sensed signal is the most 

effective approach to detect and diagnose induction motor faults, particularly 

those that are mechanically related. So vibration monitoring finds  wide 

application in CM of centrifugal pumps [33], and in CM of different defects in 

electrical  motors as well [34, 35]. The technique uses vibration transducers, 

such as measuring accelerometers of piezo-resistive or seismic types with 

linear frequency spectrum [16, 36]. The transducers are often placed on the 

bearings in order to detect mechanical faults. However, by placing sensors 

on the stator, as well, it is also possible to detect problems such as irregular 

air gap, stator winding or rotor faults, asymmetrical power supply, and 

imbalances in the motor load [37]. 

The work in [38] proposes a method for sensorless on-line vibration 

monitoring of induction machines based on the relationship between the 

current harmonics and their associated vibration harmonics. Initially, two 

baseline measurements of current and vibration were recorded for healthy 

machine conditions. The baseline data is then evaluated to determine the 

critical frequencies to monitor on-line. Once these frequencies are 

determined, the baseline vibration measurement is simply used to scale the 

current harmonic signal to an estimated vibration level. Based on theoretical 

analysis, simulation results, and the experimental results a linear relationship 

between the current harmonics and vibration level can be initiated. The 
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results have shown the feasibility of this method for sensorless on-line 

vibration monitoring. 

However, interpreting the vibration signal is a complex process that requires 

a specialized training and experience [4, 16]. The spectra from rotating 

machines are containing several sets of harmonics and also side bands as a 

result of various modulations [4] . Furthermore, there are few reasons that 

make the vibration technique is not the first choice normally looked at by the 

CM engineers. Of which it requires transducers to be carefully fixed around 

the system frame, often interrupting the motor operation. 

 Moreover, mounting vibration transducers is not always practically 

executable. An example for such situation is in the offshore petroleum 

industry, where the machines are positioned hundreds of meters of waters 

away from the data processing centre. The last but not least of these 

disadvantages is the cost which is an important factor in CM, as vibration 

transducers are more expensive if compared to other sensors. 

2.8 Voltage Monitoring 

Voltage signature analysis of line-neutral voltage preserves the advantage of 

being nonintrusive and of comparable simplicity to MCSA. The induced 

harmonics in the neutral voltage give reliable information on the motor 

condition. 

A comparison study with the well known MCSA is underlined in [39, 40]. The 

authors of  [39] have proposed an approach based on spectral analysis of 
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line-neutral voltage (voltage taking place between the supply and the stator 

neutrals) for the detection of rotor faults. It was shown development of 

diagnosis signatures using line-neutral voltage is more sensitive to the rotor 

defect and can be observed significantly at least near the 3rd, 9th, 15th and 

21st harmonics. For that reason, the analysis of line-neutral voltage is more 

significant and so is suggested. The work also suggested the harmonic 

components detected were caused by rotor defects as constructional 

asymmetry or accidental faults like broken rotor bars. The fact is that a 

broken bars fault causes asymmetries in the mutual inductance of the 

machine, which give rise to harmonic components in the line-neutral voltage. 

In [41], the effect of unbalance supplying voltage on the motor temperature 

rising has been investigated and showed that the increase of motor 

temperature depends on the positive, negative and zero sequence voltages 

which paves the way for using voltage monitoring as an indication of the 

motor temperature.  

2.9 Induced Voltage Monitoring 

Induced voltage is another method of IM monitoring. It is about studying the 

voltage induced in the stator winding after the motor being disconnected from 

the supply. At this point the stator currents rapidly draw down to zero, and 

hence the only source to induce voltages in the motor windings is the rotor 

current which is sinusoidal waves if the rotor is healthy.  If any broken bar 

exists, it will then directly influence the voltages induced in the stator 

windings and the sinusoidal distribution of the voltage will be distorted. 
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For instance, the work in [42] involved the employment and evaluation of four 

different techniques for the detection of broken bars. The authors came to  

conclude that the two methods, involving the usage of both of internal and 

external search coil voltages appeared to provide the most useful, reliable, 

and cost effective diagnostic techniques. 

The induced voltage approach is used predominantly for rotor condition 

monitoring. Milimonfared et al [43] have applied this practice to rotor defects 

and faults and they pinpointed the attractiveness of it because source faults 

like unbalance harmonics will not sway the detection. Also, more importantly, 

it is clear from the nature of the test that it can be performed even with an 

unloaded machine. 

Additional researches have been concentrating to make improvements in the 

broken rotor bars detection procedure using induced voltage monitoring 

accompanied by advanced signal processing techniques [44, 45]. 

The main drawback of this monitoring method is that it has to be conducted 

during the motor rundown which is often not the preferred case for industry. 

2.10 Monitoring of Acoustic Emissions 

Acoustic-based condition monitoring has been widely used in industry 

because it is a renowned as a non-destructive technique [20]. i.e. does not 

permanently alter the article being inspected. Sensing the acoustic noise 

spectrum for IMs is one of the conventional condition monitoring methods. 
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Although this technique is very attractive in bearing faults detection, it has 

been applied for other faults detection as well [46].  

The acoustic emissions technique has a wide usage in industry. For 

example; the authors of [47] have studied the usage acoustic emission for 

detecting incipient cavitation in a centrifugal pump, and  for gearboxes [48]. 

On the IMs side, acoustic monitoring has been used for detecting different 

machine faults. Bearing faults and grease contaminants could be detected by 

many methods. However, acoustic emission monitoring proved to be the best 

method for the detection of both [49, 50]. The authors of [51] studied the 

effects of stator faults on the acoustic emission spectrum from an IM. They 

showed that the slot harmonics in the acoustic spectra of IM is a function of 

loose stator coils. The work in [52] focuses on the use of acoustic 

measurements for condition monitoring, and the feasibility of identifying static 

eccentricity by acoustic measurements is shown. 

Microphones and other advanced devices are used as transducers in 

acoustic monitoring to acquire acoustic signals in many condition monitoring 

applications. Acoustic monitoring has clear shortcomings that are the 

accuracy of fault detection using acoustic measurement is reduced as it is 

usually contaminated by acoustic waveforms background from other 

machines operating within the surrounding area. 
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2.11 Instantaneous Angular Speed Monitoring 

Instantaneous angular speed (IAS) refers to the variations of the angular 

speed that occur within a single shaft revolution [53]. IAS is another possible 

way for IM condition monitoring as it can provide information about the 

machine dynamics. Investigations show that IAS is useful for the condition 

monitoring of a wide variety of machines [54].  

There are several types of sensors used to measure the angular speed of a 

shaft, such as encoders, capacitive sensors and potentiometers which are 

usually used in the contact method, while Hall-effect sensors are most 

commonly used in non-contact method. Encoders, which are often attached 

directly to the end of the rotary shafts of machinery and have their own power 

supplies, are the most commonly sensors employed in the contact method of 

IAS [54].  

Compared with conventional structural vibration and acoustics monitoring, 

IAS has less noise contamination and is more directly related to machine 

dynamics. Therefore, it is easier to interpret IAS results and produce more 

accurate diagnoses [55]. 

The authors of [53, 55] have demonstrated the capability of IAS monitoring. It 

outperforms conventional vibration diagnosis of incipient faults of motor rotor 

bars and shaft misalignment. However, IAS monitoring technique is less 

known compared to the other existing conventional methods.   
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2.12  Electromagnetic Field Monitoring 

Flux monitoring is one of the less common condition monitoring techniques. 

The magnetic field in the air gap will, during normal conditions, vary 

sinusoidally. Some stator and rotor faults cause deviations from the 

sinusoidal variations [36]. Rotor or stator faults can, thus, be detected by 

using a search coil that is fixed to the stator core to measure air gap flux, or 

by measuring the axial flux through a coil that placed around the motor shaft 

or by other sensing devices, such as Hall probes [36]. 

By monitoring the axial leakage flux, it is often possible to identify various 

asymmetries and fault conditions, such as a broken rotor bar, a stator 

winding inter-turn short circuit, an eccentricity, and so on [56]. However, 

practically speaking, these approaches are difficult to implement. The 

insertion of a series of search coils in the stator slots is not realistic for 

motors in use. In addition, the design of a conventional motor means that it is 

often not possible to install an axial sensing coil in the correct position for a 

reliable measurement. Hence flux monitoring finds less acceptance in the CM 

arena. 

2.13 Thermal Monitoring 

Thermal based condition monitoring is not a common technique among 

researchers and industrialists. Studies have shown that about half of motor 

failures are attributed to stator faults which are caused mainly by stator 

insulation breakdown [57].  
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Overheating is considered as one of major causes of the stator winding 

insulation degradation in small induction machines [58]. Motor stall, jam, 

overload, unbalanced operation, and warm environments are some causes of 

overheating in induction motors. It is stated that for every 10oC increase over 

the motor rated ambient temperature, the winding insulation life is halved 

[58]. 

Temperature increase in the rotor and stator of induction motors play a key 

role in motor insulation degradation which may result in motor failures [59]. In 

most cases, it is necessary to monitor rotor bars and stator windings to make 

sure that their temperature remains within certain limits [60]. Hence, effective 

thermal monitoring not only protects the induction machines from 

overheating, but also enhances the performance of the overall drive system 

[61]. 

Thermal stress is monitored through two ways either with a direct means 

through embedded temperature sensors (as in Figure 2.2) or by utilizing 

nonintrusive techniques of which is modelling and temperature estimation. 

Each of these techniques has its own drawbacks. While sensors and their 

associated hardware are adding extra costs, simple thermal models are not 

greatly accurate in temperature estimation. 

The authors of [61] have used an nonintrusive method by injecting a dc 

current into the stator windings of an induction motors fed by closed-loop 

inverter drives. The value of the injected DC voltage is accurately estimated 

and the stator winding temperature can hence be monitored based on the 
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estimated DC stator resistance. Temperature of rotor and stator can be 

estimated by rotor resistance identification [60, 62] 

 

Figure ‎2.2 Rotor and Stator Thermal Sensors [59] 

A different method of nonintrusive monitoring is using infra red thermography. 

Infrared thermography has been used for the detection and location of 

thermal hot-spots in large electrical machines. Salisbury [63] has used this 

technique for fault detection in cement plant in areas accessible to infrared 

inspection. This is done through a range of infrared lenses providing flexibility 

to view targets that are varying in size from an electrical panel, to conveyor 

bearings up to the kiln or pre-heater tower.  It has proved to be a reliable and 

sensitive method to detect hot-spots in industrial situations [63]. This 

technique has been proved to be exceptionally useful especially where it is 

difficult to employ conventional surveillance equipment, or in hazardous 

atmospheres. Figure 2.3 shows an application for thermography in 

monitoring a motor bearing (Courtesy of FLIR Systems Ltd, UK). 
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Few processes that deal with the direct measurement of motor heating by 

means of temperature sensors seeded into stator windings and rotor parts 

are deployed in [41, 59, 64, 65]. In these methods, temperature monitoring of 

the stator is relatively easy, but the opposite for the rotary parts. Different 

techniques for data transmission from sensors including slip rings, optical 

facilities, wireless and infra red waves are employed [59, 64-66]. 

 

Figure ‎2.3 Thermo-Gram of Bearing with Insufficient Lubrication  

  

In [64], in order to read the signal from the rotor sensors three slip rings were 

installed on the rotor shaft and the corresponding brushes were connected to 

the thermal stress monitoring system. A major drawback of this method is 

that the number of sensors is limited by the number of slip rings as one 

sensor is assigned for each ring. 

The signal from the temperature sensors on the rotor can be digitized and 

transmitted via light through a coaxial optical fibre. The main advantage of 
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this kind of data transmission is immune to electromagnetic interference. 

However, construction of such a system is difficult and costly.  

2.14 Instantaneous Input Power Monitoring 

The instantaneous input power (IIP) can be measured as the so-called 

product power, i.e., a product of one line-to-line voltage and one line current, 

or as a total input power to the stator [67]. As the instantaneous power is the 

product of voltage and current, IIP monitoring relies on measuring and 

recording the instantaneous motor input voltage and current readings. Many 

researchers have used this approach in CM of induction motors. For 

instance, it has been used for rotor faults, for mixed faults of BRB and 

eccentricity, and mechanical defects of IMs [67-71]. 

Cruz and Cardoso [69] have demonstrated the effectiveness of the total 

instantaneous power spectral analysis in detecting the presence of rotor cage 

faults through both simulation and experimental work. Furthermore, the 

possibility of determining the severity factor, in order to evaluate the 

extension of the fault, is reported, and it is shown how the severity factor is 

almost independent of parameters such as the magnetizing current, motor 

rating and motor-load inertia.  

The work presented in [70] utilizes the  spectrum analysis of the IIP signal  

for the CM of rotor faults which are BRB and eccentricity. These two faults 

usually occur concurrently. Furthermore, their related pikes appear very close 

to that of the fundamental component in MCSA, especially those related to 
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the BRB which makes dealing with them is not always easy. The outstanding 

advantage of the proposed method is the ability to get rid of the interference 

from the fundamental component, and highlight fault characteristics.  

Besides being nonintrusive, IP monitoring has the advantage of being a 

powerful technique in terms of separation of mixed faults [70] and the 

quantification of the fault extend compared to other signals like current or 

voltage [72]. Instantaneous power was  observed to exhibit the highest 

values of the detection criterion in case of mechanical faults and for electrical 

faults at certain situations [67]. However, the cost of extra current and voltage 

cables and sensors is an additional burden. In addition to cost and the 

required signal processing, there will be cases where access for two cables 

may not be possible. 

2.15 Summary 

As mediums with significant ciphers of the fault, signals such as vibration, 

MCSA, and voltage, were each examined with different degrees of detail in 

order to realize the advantages and disadvantages of each scheme based on 

up to date researches in the field.  

The consulted references show the wide usage of current, voltage and 

vibration in the condition monitoring arena of IMs. Besides being relatively 

cheap means, the different motor faults’ signatures are easily detectable 

within these signals. Hence, it could be concluded that current, voltage, and 

vibration are the most viable signals for IMs condition monitoring. 
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Chapter 3. Faults of Induction Motors 

Despite their robust construction, induction motors experience different faults 

due to wear and tear, transient conditions, the rotating nature of such 

machines, harsh working environments, and ageing. 

This chapter symbolizes an introduction to induction motor faults. The 

common faults affecting the IMs performance are presented with a brief 

description of the main sources and causes of each fault. 

 Types and classifications of IM faults are discussed in detail especially those 

put up in the practical segment of this work.  

3.1 Types and Classification of Faults 

A fault is defined as an unpermitted deviation of at least one characteristic 

property of a variable from an acceptable behaviour. Therefore, the fault is a 

state that may lead to a malfunction or failure of the system [73]. i.e. a failure 

is the consequence of a fault, but a fault may not lead to a failure. In general, 

all failures are faults but not all faults are failures [74]. 

 Faults can either be classified according to the way they behave or 

according to the way they interrupt the process. With regard to their time 

dependencies, faults are either abrupt (step wise), intermitted, or incipient as 

shown in Figure 3.1. Abrupt faults are fast occurring faults, meanwhile those 

with different active intervals are called intermittent.  
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Figure ‎3.1 Left To Right; Incipient, Intermittent and Abrubt Faults [73] 

The faults which are in the centre of CM concern are those known as 

incipient faults. Such faults happen due to aging of components, or due wear 

and tear. Besides being  nonlinear in nature, they increase  gradually [21]. 

Hence, such faults can be detected at early stages and the right maintenance 

activity is suggested prior to any more decline in the condition of the 

machine. 

As in Figure 3.2, faults also may be classified according to which part of the 

system they influence or affect. This categorization which is linked to model 

based CM distinguishes between two classes of faults.   

1. Additive process faults: they represent disturbances affecting the 

process and cause a shift in the outputs. Such faults represent leaks, 

loads, offsets of sensors etc. 

2. Multiplicative process faults: they represent changes of the plant 

parameters whether they are incipient or abrupt faults. They might be 

caused by deterioration of equipments or loss of power [7]. 
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Figure ‎3.2 Faults Models, Additive on The Left and Multiplicative on The Right [73] 

3.2 Faults of Induction Machines and Their Sources 

Due to their structure, squirrel cage induction motors are considered as 

robust and fault tolerant machines in industry. However as rotating machines 

they still experience different faults due to a wide range of stresses, as it 

would be mentioned later in this chapter.  

General machine faults can be classified as either mechanical or electrical 

faults. Mechanical faults mainly include eccentricity and bearings related 

defects. They may lead to faults such as rotor rubbing, excessive vibrations, 

and stator and rotor fatigue and so on. Electrical faults are those originated at 

the electrical system of the machine such as turn-turn or turn-earth faults. 

Faults in rotor may lead to bars or end ring cracks or weak connection of 

rotor parts. 

In general, induction motors are subjected to primary types of faults and 

related secondary faults. The sources of motor faults may be internal, 

external or due to environmental causes, as presented in Figure 3.3. Internal 

faults can be classified with reference to their origin, i.e. electrical and 

mechanical [5]. 
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Figure ‎3.3 Sources of IM Faults [5] 

Some induction machines failure surveys [5, 36] have categorized the faults 

according to the main components of the machine at which the fault was 

originated. They are classified as stator related, rotor related, or bearing 

related faults.  

The authors of [5] have cited a study carried by and General Electric and 

General Applications - IEEE (IEEE-IGA), which both looked into the main 

sources of the IM faults. The study is carried out on the basis of opinion as 

reported by the motor manufacturer. The results of this study are presented 

in Table 3.1, where the failure is grouped according to major contributors. 
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An Industry Assessment Study (IAS) [75] , was conducted by General 

Electric Company- USA and Electric Power Research Institute- Canada, to 

evaluate the reliability of powerhouse motors. The statistics of this survey 

produced a very large body of data on motor failures on a sample of 4797 

motors. There were 872 failed motors (a motor that failed one or more times) 

and 1227 total failures. Thus 335 of the 1227 were repeat failures. 

The survey has found that the vast majority of failures, where a cause was 

indicated, was attributed to both bearings and stator windings (around 80%) 

while the rotor has contributed 10% towards such failures. The rest 

percentage was linked to different fault types. 

 IAS Thorsen IEEE 
Average 
Percent Fault 

No. of 
Failures 

Percent 
No. of 

Failures 
Percent Percent 

Bearings 409 41 129 51.6 41 44.5 

Stator 372 37 62 24.8 28 29.9 

Rotor 102 10 15 6 11 9 

Other 122 12 44 17.6 20 16.5 

Total 1005 100 250 100 100 100 

 

Another section of the study was directed towards another angle of dealing 

with failures, where a significant number of machine failures were attributed 

by the equipment owners to design and workmanship. A considerable 

proportion of the failures were ascribed, by the equipment owners, to be the 

result of misapplication and disoperation (34.1 percent of reported cases). 

Table ‎3.1 Distribution of Failures on Failed Components 
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The opportunity to improve reliability by reducing failures due to design, 

workmanship, misapplication, and disoperation appears to be significant. 

In a different study, Thorsen and Dalva in [36] have accomplished 

comparable results for 250 high-voltage induction motors utilized in industry. 

The average results of these studies are shown in Figure 3.4.  

According to the three studies, bearing faults are identified as the major type 

of faults in induction motors followed by the stator related ones. All of the 

studies came out with similar results. It was found that the vast majority of IM 

faults are attributed to both bearings and stator windings, as each of them is 

responsible for around 40 percent of the IM faults. While about 10 percent of 

the faults are rotor related, the rest of the faults are linked with other different 

 

Figure ‎3.4 Average Results of Different IM Faults Surveys 
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causes. Five faults will be studied in this section of which two are secondary 

(belong to faults called as other in Figure 3.4) faults. 

3.2.1 Rotor Faults 

As stated earlier rotor faults are, generally, not among various defects those 

frequently occur in induction machines as they only represent about 10% of 

the IM fault sources. But, the significant importance of rotor faults comes 

from the fact that they cause secondary failures which lead by succession to 

serious motor malfunctioning. Thus diagnosis of rotor failures has long been 

an important but an intricate task in the area of motor CM [46]. 

Statistical data of failures among utility-size motors indicate that at least 10% 

of the induction motor (>100 hp) failures are rotor related. Half of these 

defects were reported as "cage" faults. However, industry experience 

suggests that the rate of broken bars is much higher than reported [76].  

Sometimes, induction motors are required to operate in highly corrosive and 

dusty environments. However, cage rotor design and manufacturing have 

undergone little change. As a result, rotor failures may account for a 

considerable percentage of total induction motor failures in such 

environments  [76].  

3.2.1.1 Rotor Faults Causes  

Broken rotor bars can be caused by the following [77, 78]:  
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 Direct on-line starting duty cycles for which the rotor cage was not 

designed to withstand causes high thermal and mechanical stresses. 

 Pulsating mechanical loads such as reciprocating compressors or coal 

crushers can subject the rotor cage to high mechanical stresses. 

 Imperfections in the manufacturing process of the rotor cage. 

 Thermal overload and unbalance, hot spots or excessive losses, 

sparking (mainly in fabricated rotors), 

 Magnetic stresses caused by electromagnetic forces, unbalanced 

magnetic pull, electromagnetic noise and vibration. 

 Residual stresses due to manufacturing problems, 

  Dynamic stresses arising from shaft torques, centrifugal   forces and 

cyclic stresses 

 Environmental stresses caused by for example contamination and 

abrasion of rotor material due to chemicals or moisture, 

 Mechanical stresses due to loose laminations. 

Rotor stresses have been classified in [78] into different categories that is: 

thermal, mechanical, magnetic, dynamic  and environmental stresses. These 

stresses are summarized in Table 3.2.  
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3.2.1.2 Broken Rotor Bars 

Rotor related faults in three phase induction motors are predominantly 

attributed  to broken bars and end rings [77]. The rotor bars can be partially 

cracked or even completely broken during the operation of induction 

machines, due to stresses or poor rotor geometry design. The bar cracking/ 

breakage is the major fault in the rotor of IM. 

Table ‎3.2 Rotor Stresses [78] 

 

1. Thermal  Stresses 
2. Evironmental Stresses 3. Magnetic Stresses 

 Thermal Overlaod  Contamination  Rotor Pullover 

 Thermal Unbalance  Abrasion  Noise 

 Hot Spots  Foriegn Particals  Vibration 

 Sparking (fabricated 
rotors) 

 Restricted Vantelation  Circulating Currents 

 Excessive Rotor Lossess   Ambient Temprature  Laminations Saturation 

4. Dynamic  Stresses 5. Mechanical Stressses 6. Other 

 Vibration  Casting Variations  Misapplications 

 Rotor Rub  Loose Laminations  Poor Design Particles 

 Overspeeding  Incorrect Shaft/Core Fit  Manufacturing Variations 

 Cyclic Stresses  Fatigue Or Part Breakage  Loose Bar/Core 

 Ceterfugal Force  Material Deviations  Transient Torques 

  Poor Rotor /Stator 
Geometry 

 Wrong Rotation Direction 

   

Once a bar breaks, the condition of the adjacent bars also deteriorates 

gradually due to the increased stresses resulting from the high rotational 

speed of the rotor. This reveals why the problem of broken rotor bars (BRB) 

should be detected in its early stages of happening when the bars are 

beginning to crack [77]. Besides that, broken rotor bars causes unbalanced 

currents and torque pulsation, and therefore decreases the average motor 

torque. Faults ascribed to broken bars cause excessive vibration, noise and 

sparking during motor starting [77]. 
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BRB faults can be a serious problem, although they do not initially cause an 

induction motor to fail. Therefore, there can be serious secondary effects. 

The fault mechanism may result in broken parts of the bar hitting the end 

windings or stator core of high voltage motor at high speed. This can cause 

serious mechanical damage to the insulation and a consequential winding 

failure may follow, resulting in a costly repair and lost production. 

3.2.1.3 Broken End-Rings  

The conductive rotor bars are short-circuited on both sides by end-rings. 

Defective casting in the case of die-cast rotors, and/or poor end-ring joints in 

the case of fabricated rotor cages during manufacturing are the source of the 

end-ring faults. Once the initial defect occurs, local overheating may develop 

in the cage. Therefore, propagation of the fault is continued by multiple start-

ups as well as load fluctuations, which produce high centrifugal forces. 

Harmonics injected in the stator current due to defective end rings are higher 

than those resulted from broken bars  [79], consequently they are easier to 

detect.   

3.2.1.4 Rotor Axial Distortion 

Axial distortion of rotor is ascribed to an asymmetrical heating or cooling of 

the rotor, or to an axial symmetry thermal distribution of an asymmetrical 

rotor [80]. A rotor bow usually causes a pre load on the bearings, and can be 

classified into two types, local and extended [80]. Both rotor bow types 

produce an asymmetrical axial distortion on the cross-section of the shaft. 
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The local bow happens when asymmetrical heating is localised in a part with 

a small length. A typical example is rotor-to-stator rub. The extended bow, 

which is the actual shaft bow, is an asymmetrical heating that extends to a 

certain length of the rotor, ending in the rotor part limited by two bearings 

[81].  

3.2.2  Stator Faults 

The stator, as the name implies, is a stationary and an essential part in any 

electric motor that encloses the winding coils which is the producer of the 

magnetic field. 

It is known that approximately 30-40% of induction motor failures are 

ascribed to failure of the stator winding, and it is believed that these faults 

start as undetected turn-to-turn faults within a coil, then lead to catastrophic 

phase-to-phase or phase-to-ground short circuit faults which result in the 

burn out of the stator winding [5, 36, 82]. 

3.2.2.1 Types of Stator Faults and Their Sources 

Stator windings faults are categorized into five classes [78, 83, 84] and 

shown in Figure 3.5. These classes include: 

1. Turn to turn fault within a coil. 

2. Short between coils of the same phase. 

3. Phase to phase short circuit. 

4. Phase to earth short circuit. 
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5. Open circuit in one phase (single phasing). 

On-line monitoring to diagnose the faults stated in (1) and (2) above is the 

key to avoid the occurrence of the faults in (3) and (4) for induction motors 

i.e. diagnosing the turn to turn fault is a precaution of the successive faults. 

Turn-to-turn

Coil-to-coil

Open circuit

Phase-to-phase

Phase-earth

C

B

A

 

Figure ‎3.5 Y-Connected Stator Showing Possible Failure Modes [58] 

The stator faults are the product of some stresses. If a combination of a 

number of these stresses acting upon the motor component, they would 

predominantly lead to a motor failure. When these stresses are kept within 

the rated values of the system, premature failure should not occur. 

However, if any combination of them exceeds certain limits, then the motor 

life time may be significantly shortened and a failure could occur [58]. Bonnett 

and Soukup [58] have classified the stator stresses that effect its functioning 

into four groups that is: thermal, electrical, mechanical and environmental 

causes. Table 3.3 shows these groups and the causes behind each of them. 
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Table ‎3.3 Stator Stresses [78] 

1. Thermal  Stresses 2. Mechanical Stressses 

 Thermal Ageing  Coil Movement 

 Voltage Variations  Rotor Strikes 

 Cycling  Defective Rotor 

 Loading  Flying Objects 

 Ventilation  Lugging of Leads 

3. Electrical Stresses 4. Evironmental Stresses 

 Dielectric Ageing  Chemicals 

 Tracking  Abrasion 

 Corona  Damaged Parts 

 Transients  Moisture 

  Restricted Ventilation 

The following figures illustrate different coil faults. The two photos in Figure 

3.6 are for turn to turn within the same phase and coil to coil shot circuits, 

respectively. 

 
 

Figure ‎3.6 Faults Within The Same Phase (Courtesy of Baldor) 

Faults (3) and (4) can be seen Figure 3.7. These two faults exceed the phase 

boundaries to reach an advanced stage of fault which will definitely lead to a 

failure. This usually happens when the monitoring system fails to detect the 

prior stages of defect.  
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Figure ‎3.7 Out-Boundary Phase Faults (Courtesy of Baldor) 

3.2.3 Bearings Faults 

Bearings are used in the vast majority of electrical machines, and surveys 

showed that around 40% of all motor failures are bearing related [5, 36]. As 

shown in Figure 3.8, a bearing consists of two rings: inner and outer. A set of 

balls or rolling elements placed in raceways rotates inside these rings [2]. 

Bearing defects are categorized into two groups, the single point faults and 

the generalized roughness defects [85, 86]. The first where local damage is 

on one of the four bearing elements which include: inner raceway; outer 

raceway; balls; and the cage. In the second group of bearing defects the 

whole surface of a bearing element deteriorates considerably.  

Roughness usually happens due to corrosion or lack of lubricant. Even under 

normal operating conditions with balanced load and good alignment, fatigue 
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failures may take place. These faults may lead to increased vibration and 

noise levels [87]. 

 

Figure ‎3.8 Bearing Main Component  [85, 86] 

3.2.3.1 Causes of Bearing Failures 

The following list contains the most common causes of bearing failures [88]. 

 Thermal Overloads  Machinery Defects 

 Inadequate Lubrication  Shaft to Ground Currents 

 Contamination  Incorrect Mounting 

 Improper Shaft and Housing 
Fits 

 Load, Life and Fatigue 
Factors 

 Misalignment  Improper Application 

 Vibration  Machinery Defects 

 Excessive Loading 
(Axial/Radial Combined) 

 Damaged During 
Transportation or Storage 

  

Bearings stresses have been arranged into different groups of which are: 

thermal, electrical, mechanical and environmental causes. Table 3.4 shows 

these groups and the causes behind each of them. 



 

46 

 

Table ‎3.4 Bearing Stresses [78, 88] 

1. Thermal  Stresses 2. Evironmental Stresses 3. Vibration Stresses 

 Friction  Condensation  Rotor  

 Lubricant  Restricted Vantelation  System 

 Ambient  Foriegn Particals  Driven Equipment 

  Excessive Temprature  

   

4. Dynamic  Stresses 5. Mechanical Stressses 6. Electrical Currents 

 Radial  Loss of Clearances  Rotor Assymetry 

 Axial  Missalingment  Static Charges 

 Preload  Shaft/ Housing Fits  Electrostatic Coupling 

   

Early detection of defects allows replacement of the bearings, rather than 

replacement of the motor. If we knew that for a 100 hp three-phase ac motor, 

a bearing costs approximately one thirtieth of the motor cost [89], it can be 

imagined how a fault bearing detection could save money.  

Bearings faults can be detected using different techniques. The most widely 

studied methods in bearing condition monitoring are based on measurements 

of vibration, acoustic noise, or temperature. Vibration and stator current 

based methods seem are of the most popular.  

When monitoring bearing damage in induction motors, the characteristic 

frequencies of bearing damage are often used to monitor certain frequency 

components in either vibration or stator current signals [90]. Bearing defects 

are capable of injecting additional components into the stator current, so 

MCSA is used for such application as in [90-93]. The main disadvantage of 

using MCSA in this application is that the effects of a bearing fault are often 

subtle and difficult to predict [93]. A part of the work done in this project tries 
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to improve the detection and diagnosis of bearing defects using current 

monitoring.  

3.2.4 Eccentricity 

In electrical machines, when the air gap between the stator and rotor is non-

uniform, it is said that the rotor is eccentric. Eccentricity can exist in the form 

of static or dynamic eccentricity or both, in which case it is called a mixed 

eccentricity fault. 

Eccentricity occurs when the rotor is not centred within the stator. The 

eccentricity can be either static (the offset is in a fixed direction) or dynamic 

(the offset rotates with the rotor). Eccentricity distorts the uniformity of the 

machine air-gap between rotor and stator and this in turn leads to changes in 

the induction process that happens between the stator and rotor.  

Due to some design and manufacturing imperfections, eccentricity may have 

an inherent nature. References have indicated that  up to 10% eccentricity is 

allowable [94, 95], but when eccentricity becomes larger, the resulting 

unbalanced radial forces (also known as unbalanced magnetic pull or UMP) 

can cause stator to rotor rub, and this can result in damage of the stator and 

rotor [87, 95-97]. 

3.2.4.1 Causes of Eccentricity 

Static and dynamic eccentricities can be caused by: 

1. Manufacturing imperfection that lead to an oval stator core  
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2. Misalignment due to bearing misassembles 

3. Bearing wear and tear 

4. Misalignment of mechanical couplings 

5. Mechanical resonance at critical speeds can result in dynamic 

eccentricity. 

3.2.4.2 Static Eccentricity 

Referring to Figure 3.9, in an ideal healthy symmetrical motor, the rotor 

symmetry point, Cr, and  the stator symmetry point, Cs, coincide with the 

centre of rotation for the rotor (at the axis cross point). 

The incidence of eccentricity means the separation of one of the three points 

from the other two, or the separation of all of them. When point Cs separates 

from the other two, static eccentricity occurs. In other words, static 

eccentricity can occur when a rotor has emigrated from a bore centre, but it is 

still turning about its bore centre [98, 99].  

Eccentricity results in a non-uniform air gap over the stator inner 

circumference, which results in regions with the air gap length shorter or 

longer than that of the healthy motor. In this case, the position of minimum 

(and maximum) air gap versus stator is static.  
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1.Static  2. Dynamic  2. Mixed 

Figure ‎3.9 Eccentricity Types [100] 

The position of a minimum radial air gap is fixed in space. It causes a steady 

unbalanced magnetic pull (UMP) in one direction. This can lead to a bent 

rotor shaft or bearing wear and tear. It can also lead to some degree of 

dynamic eccentricity. 

3.2.4.3 Dynamic Eccentricity 

Dynamic eccentricity occurs when a rotor turns upon a stator bore centre but 

not its own centre. It causes a minimum air gap that is always moving over 

the stator inner circumference. When the rotor centre rotates upon the motor 

centre with the rotational speed, the motor is said to experience a dynamic 

eccentricity [98, 99]. 

It is obvious in Figure 3.9, when centre, C r, separates from the other points; 

the position of minimum (and maximum) air gap versus stator rotates with the 

rotor and is therefore called dynamic eccentricity. 
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3.2.4.4 Mixed Eccentricity 

Both static and dynamic eccentricities have a tendency to co-exist in 

induction motors. With this condition, a rotor turns around neither its bore 

centre nor a stator bore centre, but around a point between the stator and 

rotor centres. Figure 3.9 shows that the rotational centre or the motor centre 

can be anywhere between the stator and rotor centres [98]. i.e. the 

commencement of  mixed eccentricity is marked by the separation of all of 

the above mentioned three points from each other.  Finally, when all three 

centres are separate from each other, the eccentricity is called mixed 

eccentricity. In mixed eccentricity, not only the position of minimum (and 

maximum) air gap versus the stator, but also the length of it varies with the 

rotation of the rotor [96].  

During the last few decades, eccentricity faults in induction motors were one 

of the most popular topics among researchers [101]. The importance of 

studying eccentricity faults comes from the fact that they often are associated 

with large induction machines, where the repair or replacement costs arising 

out of such a scenario may easily run into tens of thousands of dollars [94].  

Eccentricity faults could be diagnosed by monitoring some signals like motor 

current and air gap flux in induction motors. In [56], Internal and external 

search coils are placed in the stator and the spectral constituents of their 

induced voltage were observed for diagnosing. Long, W. et al [102, 103] 

have employed the MCSA technique along with artificial intelligence to detect 

and diagnose motor eccentricity. 
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It is worth noting that eccentricity is, in general, looked at as a secondary 

effect‎of‎other‎faults‎like‎rotor‎or‎bearing,‎thus‎it‎normally‎doesn’t‎appear‎as‎

one of the main IM faults statistics. 

3.2.5 Shaft Misalignment 

Shaft misalignment is defined as the deviation of the shaft position relative to 

the centreline of a coupled shaft-rotor system. Misalignment is one of the 

common faults in mechanical arrangements which produces  another fault in 

the system [104]. 

The correct alignment of industrial motors to their driven units (pumps, 

gearboxes etc) is of vital importance in order to maintain plant reliability. If the 

motor is not correctly aligned, the stress placed on the motor shaft will cause 

premature wear and successive failure of the motor bearings leading to plant 

breakdowns and loss of production. This explains the importance of 

misalignment being monitored. 

Misaligned motors, in addition, are a major source of wasted energy. When a 

motor is misaligned, there is friction increment on the shaft, making it harder 

to turn. Therefore, a motor will draw more current in order to turn its 

misaligned shaft which means an increase in energy consumption. Statistics 

show that, more than 60% of rotor faults are initiated as a misalignment fault 

before it aggregated [105]. Table 3.5 shows the IM components affected by 

various faults sources. 
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Table ‎3.5 Stresses Vs Motor Components [78] 

Types of Stress Stator Rotor Bearings Shaft 

Thermal √ √ √ √ 

Electrical / 
Dielectric 

√ √ √ 
 

Mechanical √ √ √ √ 

Dynamic  √ √ √ 

Shear    √ 

Vibration / Shock √ √ √ √ 

Residual  √  √ 

Electro-Magnetic √ √ √ √ 

Environmental √ √ √ √ 

     

Misalignment generally manifests itself through vibration. Shaft misalignment 

is a major cause of vibration in machines [106]; hence vibration monitoring is 

one of the most commonly used approaches applied in misalignment CM. 

Vibration measurement is a good qualitative indicator for detecting the 

degree of misalignment in machinery while it is running [106]. MCSA also can 

be used for alignment detection as well. Obaid et al [107] have developed a 

method to detect shaft misalignment by only using the RMS value of the line 

current as a fault feature.  

3.2.5.1 Causes and Types of Misalignment 

There are few causes to which the occurrence of shaft misalignments is 

attributed; of which [106, 108, 109]: 

 Temperature changes due to friction in the bearings. 
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 Improper mounting of the motor and the equipment being driven. 

 Distortion forces due to motor starting up. 

 Soft foot of the motor or load. 

So far, only a few researchers have paid attention to shaft misalignment, due 

to the complexity in modelling the phenomenon [106]. 

There are two basic types of shaft misalignment: parallel misalignment and 

angular misalignment. Parallel misalignment occurs where the centrelines of 

the shafts are parallel but not co-linear.  When the extended centrelines are 

cross not parallel, this is called angular misalignment. 

 In practice, misalignments in industry usually involve a combination of the 

two types, where the shafts suffer both parallel and angular misalignment 

[106]. This phenomenon is called combination misalignment which is 

obviously more damaging to the coupling and equipment than either of the 

two individual misalignments types.  

Misalignment is also classified according to the source where the problem is 

initiated. From this definition, rotor misalignment can be classified into: 

coupling misalignment and bearing misalignment [110]. 

3.2.6 Oscillating Loads 

Oscillating loads have unfavourable effects on the detection process of other 

faults and generally they mask the characteristic features of other faults. 
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Efforts are normally spent, as in [102, 103]; to get rid of such effects and 

reach the exact diagnosis of the root fault of the motor. 

Influences from oscillating loads on stator currents have been presented in 

[71]. Such influences may lead to the wrong conclusions. Therefore, this 

point should be considered when one makes a diagnosis. With the 

assumptions that induction motors are lossless and are fed by the perfect 

sinusoidal supply voltages, it is possible to consider the effects of the 

oscillating loads in stator currents.  

3.2.7 Secondary Faults 

About 10-20% of the fault types statistics in Figure 3.4 and Table 3.1 are 

categorized as Other faults‎ which‎ don’t‎ fall‎ under‎ any‎ of‎ the‎ main‎ three‎

classes of faults. Eccentricity, oscillating loads, and shaft misalignment, 

which are discussed in previous sections, are members of this group.  

There are also few faults involving movement of conductors in the stator and 

failure of electrical connections in the motor. These are usually secondary 

effects due to one of the primary faults causing shock or excessive vibration 

[5]. Some faults cause others to progress as they happen. Misalignment 

belongs to this category. Table 3.6 shows how faults can affect the 

performance of IMs. 
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Table ‎3.6 IM Faults and Their Major Effects [111] 

Fault / Effects 
Unbalanced 

air-gap and 

line current 

Increased 

torque 

pulsations 

Decreased 

average 

torque 

losses and 

efficiency 

reduction 

Excessive 

heating 

Stator Faults  √ √ √ √ √ 

Abnormal 

Connection of The 

Stator Windings 

  √ √  

Broken Rotor Bar or 

Cracked Rotor End-

Rings 

  √ √  

Static and/or 

Dynamic Air-Gap 

Eccentricity 

√ √  √  

Bent Shaft  √ √  √ √ 

Shorted Rotor Field 

Winding 
  √   

Bearing And 

Gearbox Failures 
   √ √ 

      

3.3 Summary 

An introduction to induction motor faults was presented. The chapter 

arguments were consolidated by the relevant statistics when possible. The 

common and main sources and causes behind each fault were included and 

mentioned in brief, compared to the huge material available concerning that. 

Besides the main IM faults, examples of non-main or secondary faults were 

touched on, as well. 
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Chapter 4. Features Generation and Faults Diagnosis  

Signal processing and spectral analysis methods  are applied in industry for 

the monitoring of rotating machines such as motors and generators [73]. 

Besides other processing techniques, spectral analysis usually utilizes Fast 

Fourier Transform (FFT), Wavelet Transforms (WT), RMS calculations, and 

Park Vector Approach, to name few. A certain degree of expertise is needed 

in order to distinguish between a faulty system and a healthy one. This is 

because the monitored spectral components can result from a number of 

sources, including those related to healthy conditions [112].  

The chapter looks into some fault detection and diagnosis techniques that 

detect the occurrence of the fault and decide on the condition of the induction 

machine and the incipient fault and its severity, if any. 

4.1 Feature Generation  

Feature is synonymous of attribute or characteristics, and feature generation 

or extraction means finding a good data representation. In the present 

context, it cab defined as finding the most relevant data that indicates the 

presence of a motor fault. This section present few techniques used for 

extracting the useful features representing the induction motor faults. 

4.1.1 Park Vector Approach 

The‎ Park’s‎ transform‎ (discussed in 5.9) allows the representation of the 

variables of a three phases machine through a co-ordinates system with two 
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perpendicular axes; direct (d) and quadrature (q) [113]. Hence, it allows the 

differentiation between the healthy and faulty machines through its locus as 

in Figure 4.1. 

  

Figure ‎4.1 Geometric Locus For The Park’s Currents Vector For A Healthy And With 
Inter-Turn Stator Fault Motor [113] 

Park Vector Approach (PVA) has been successfully applied in the diagnosis 

of several faults in three-phase induction motors. In [29, 96, 114, 115], this 

diagnostic technique has been used to detect and locate phase and inter-

stator faults, stator voltage unbalance, static eccentricity, and bearings faults, 

respectively.  

This technique is based on identifying the appearance of an elliptical pattern, 

corresponding‎ to‎ the‎ motor‎ current‎ Park’s‎ Vector‎ representation,‎ whose‎

ellipticity increases with the severity of the fault and whose major axis 

orientation is associated with the faulty phase [116]. 

A‎ new‎ diagnostic‎ technique,‎ called‎ Extended‎ Park’s‎ Vector‎ Approach‎

(EPVA), was first introduced in order to improve the diagnosis of rotor cage 
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faults [117]. EPVA was also successfully applied in the diagnosis of stator 

windings faults as in [113, 114] , and bearings faults as in [118, 119]. The 

drawback of this approach is that it is not effective for static and dynamic 

eccentricities either [100]. 

4.1.2 Fast Fourier Transform 

The essence of Fast Fourier Transform of a waveform is to decompose it into 

a sum of sinusoids of different frequencies. i.e. if these sinusoids are added 

together, the sum is the original waveform. FFT has the ability to allow one to 

look to a function in both time and frequency domains.  

FFT has been utilized for generating the fault related features of different 

signals as current and vibration.  Benbouzid et al [120] and Cabal-Yepez et al 

[121] have indicated MCSA-FFT analysis, is a reliable tool for multiple 

induction motor faults detection. 

Durocher and  Feldmeier [122] have designed an algorithm that uses MCSA 

and FFT signature to diagnose faults, including pump cavitations and 

misalignment leading to bearing failure. Other faults such as rotor [123], 

bearings [124], and monitored signals like speed [125, 126] were addressed. 

FFT is a fundamental problem-solving tool in the educational and industrial 

sectors. And with the fast developments in computer technology, it has 

become one of the major tools utilized in the signal processing technology 

[127]. It is considered as one of the simplest methods that can be used for 

fault detection, and FFT analysis has been proved to be a very effective 
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method for stationary systems and has been widely used in the monitoring, 

fault detection and diagnosis in the industry [128]. FFT has been used as a 

feature generation tool in the field of IMCM. 

4.1.3 Wavelet Transform 

The FFT is suited to the analysis of stationary signals as it contains no 

information on how the frequency content varies over time. A popular 

approach to obtaining this time-frequency information is to use the Wavelet 

Transform [127]. 

Wavelets are mathematical tools that have recently emerged for applications 

such as waveform representations and segmentations, time-frequency 

analysis, detection of irregularities, and feature extractions [129].  

One application is the fault detection and diagnosis during start-up for lightly 

loaded machines. However, the FFT method is incapable for such transient 

signals. The wavelet-based method can be used in these cases [129, 130]. 

Many researchers [131-135] have used WT as features extracted for several 

IM faults. Eren  and  Devaney [131] have shown how bearing faults are 

detected by analysing the motor current with wavelet transforms. The work 

presented in [105] has proved the success of WT in the detection of IM rotor 

faults. 

In [133] Wavelet and Fourier transformations were applied to extract fault 

characteristics from the motor current for broken rotor bars, bowed rotor, 
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bearings, and eccentricity in an IM. The work has pointed out that FFT was 

insufficient to determine some faults. In the case of BRB and eccentricity, WT 

has the advantage of extracting more information to decide on the faulted 

situation. The two transformations were exploited as complementary to each 

other.  

Another common fault among IMs was studied in [135]. Stator inter-turn short 

circuit fault with less than 5% of turns short circuited in stator winding have 

been presented. Wavelet transform was employed to obtain the characteristic 

features of the fault. 

4.1.4 Negative Sequence Current 

Stator fault detection is largely based on the principal that the negative 

sequence current (NSC) of healthy (ideally symmetrical) motors powered by 

symmetrical multiphase voltage is null. When turn-to-turn fault pops up, it 

breaks that symmetry and gives rise to negative sequence current which in 

return provides an indication of fault presence and can be used as fault 

severity measure. The theoretical basis for this approach is presented in 

[136].  

Unbalanced supply voltages and inherent machine asymmetry also give rise 

to negative sequence current. However, neglecting inherent asymmetries can 

lead to misdetection, and catastrophic consequences [137]. For electrical 

machines, the negative-sequence current is the fundamental fault signature 
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for a winding fault [138]. NSC has been also used for the detection of 

eccentricity symptoms in the motor current as in [103]. 

It has been said that during unbalanced conditions, the produced negative 

sequence current component rotates in the opposite direction from the rotor. 

But, in reality, positive, negative and zero sequence currents are linear 

combinations of phase currents; thus, the vector of each sequence current 

rotates in the same direction as the phase current [139]. 

It is very well known that negative sequence current could cause rotor 

damage, and that damage is highly unfavourable to rotating machines such 

as motors and generators [139]. 

The work developed in [140] shows a reliable detection mechanism of turn 

fault using NSC and Neural networks. The detection of one shorted turn, out 

of 648 turns per phase, (0.15%) was demonstrated with the fault indicator 

becoming fully matured in just two cycles of line frequency after 

commencement of the fault. In addition, the effects of unbalanced supply 

voltages or load have been overcome. 

 The authors of [141] have utilized the performance of the angle and the 

amplitude of the negative sequence component of the stator current as a 

fault indicator. It has been shown, by modelling and experimentally, a direct 

correlation between the amplitude of the NSC component of the stator 

current and the severity of the fault. 
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Inter-turn winding fault detection based on various monitoring techniques are 

presented in the literature, however, the sequence component approach 

superimposes them in the sense it provides a better signal-to-noise ratio, is 

easier to measure, and it only requires current sensors, no other 

instrumentation [138]. 

4.1.5 Motor Current Root Mean Squared Value  

In MCSA monitoring, one of the direct methods to look for fault characteristic 

features is by utilizing the Root Mean Squared (RMS) value of the motor 

current signal as in [142]. The basic idea of the used approach is to diagnose 

the fault from the FFT analysis of the RMS value of the input current. Since 

the RMS value of the stator current is constant, varying only with motor load, 

its spectrum only has a dc component. The presence of a fault is flagged 

through the detection of abnormal frequencies in the FFT analysis of RMS 

oscillatory component. RMS magnitude reflects the fault severity. The 

assumptions of this study were consolidated by simulation and experimental 

results. 

 RMS value of current or voltage can be used as a feature for simple as well 

as advanced detection systems. Obaid et al [107] have developed a method 

to detect eccentricity and shaft misalignment by only using the RMS of the 
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line current technique over a certain frequency. After being recorded, the line 

current was filtered to eliminate the line frequency component. The 

harmonics associated with faults are sufficiently large in practical applications 

that undesirable operating conditions can be detected without the need of 

excessive analysis of the current frequency components. 

4.1.6 State or Output Observers 

Model based condition monitoring is built mainly on the idea of utilizing 

analytical redundancy and modelling. The following are some of the 

techniques used for features extracting for this type of monitoring. 

State observers are state estimators that reconstruct the state of the system 

using a linear model of the system, measured inputs, and outputs of the 

system. It is possible to design an observer-based FDD from the input-output 

relationship of the system. State observers are used in control systems to 

curb inconsistency between modelled and measured systems caused by 

noise or model errors. They can be used for FDD, if the process parameters 

are known and faults can be modelled as state variable changes of 

monitored system (e.g. actuator or sensor faults) [143]. 

When the constant parameters are unaffected by possible faults and only the 

state of the system, is affected by the faults; in this case the model acts as a 

state observer [21, 80]. The system state is represented by a set of generally 

immeasurable state variables (which is function of time). 
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For measured states, a residual is the difference between the measured and 

estimated states. But, for immeasurable states, a residual is the difference 

between the estimated and the measured system output.  

4.1.7 Parameter Estimation 

When the characteristic constant parameters of the process or of the 

components are affected by the fault, parameter estimation is used [21, 80]. 

Figure 4.2 illustrates a parameter estimation processes. 

 

Figure ‎4.2 Parameter Estimation Diagram [111] 

For most practical applications, the process parameters are not known. So 

they are determined by parameter estimation methods, as long as the inputs 

and outputs of the process are available. Models are used in parameter 

estimation algorithms. Since the parameter changes reflect the faults that 

occurred, they represent good features for condition monitoring.  
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4.2 Fault Diagnosis 

 After detecting the presence of fault characteristic features, the last stage of 

any CM process is attributing this feature, preferably to a certain fault, and 

then deciding on the severity of it. This often is called fault diagnosis. 

In some situations, the diagnostic engine is fairly simple as in [14, 107, 113, 

142], but for efficient online CM, more advanced techniques are exploited.  

The diagnosis process becomes more complex if multiple faults of different 

degrees exist at the same time. To overcome such problems, a good 

interpreter is needed. Humans can perform  this task, but an alternative 

solution is the usage of artificial intelligent (AI) techniques [5]. 

Artificial intelligence tries to emulate the mental capabilities of the human 

being and other creatures by using computational models. Beside others, AI 

techniques include Fuzzy Logic, Expert (Knowledge-Based) Systems, 

Genetic Algorithms (GA), Particle Swarm Techniques, and Artificial Neural 

Networks [135]. These techniques are the most used for FDD [144]. Such 

techniques are used for fault classifications.  

The goal of classification is to categorize faulty and normal modes and 

determine the severity of the fault. A great deal of work has been reported in 

the literature on AI-based fault detection and diagnostic systems. Recent 

developments towards online IM fault diagnosis include artificial intelligence 

based techniques such as expert systems [120, 145], fuzzy logic [146, 147], 
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artificial neural networks (ANN) [148], and Neural-Fuzzy systems [149] are 

presented.  

4.2.1 Fault Thresholds 

Fault Threshold is a simple way of fault detection. It uses the threshold of a 

certain parameter. For example, in the spectrum of the current signal of a 

motor with rotor broken bars; it is possible to report the degree of the defect 

through looking at the amplitude difference between the main supply and 

side bands. The lesser the difference is the more bars are broken [14, 113]. 

4.2.2 Support Vector Machines 

Support vector machines (SVMs) are a set of related supervised learning 

methods used for classification. If a set of data (training data) is used as 

training examples, each marked as belonging to one of two categories, SVM 

training algorithm has the capability to generate a model that can predict 

whether a new set of data example (testing data) falls into one category or 

the other. 

The support vector machine (SVM) is a relatively new and powerful 

technique for solving supervised classification problems and is very useful 

due to its generalization ability [150].  

SVMs are used as a classifier for the diagnosis engines. In [151-154] SVM 

was used for the monitoring process of gear box, and bearings. Rojas and 

Nandi [151] have attained at least 95% of successful classification, in the 
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study they carried out. They pinpointed that filtering of the signals is not 

always required, and there may be no need to introduce further complexity in 

the design of the classification systems. Therefore, the biggest advantage of 

the anticipated scheme is that it is extremely practical. Besides being very 

effective, the adequate software is available, allowing the implementation of 

the classifier very simple even for those users with little or no previous 

knowledge of SVMs [151]. 

In [155], different cases were examined using empirical data sets of vibration 

and stator current signals, and the results were compared in order find the 

best performance of classification process which was attained by using 

kernel functions (similarity measures). SVM has proved to be outstanding. 

SVM was used for BRB detection and an accuracy of 97% was achieved 

which reveals that it is a powerful method for fault detection in rotor fault 

mentoring [156]. Using SVM with six features, 100% classification success 

was achieved in all testing cases. In all the cases considered, the training 

time of SVMs was substantially less compared to ANNs [152].  

4.2.3 Artificial Neural Networks  

The neural networks (NN), shown in Figure 4.3, emulate the neutrals of the 

human brain. It is widely used for fault diagnosis  within induction motors like 

in [113] or in other applications as in [157]. ANNs consists, in general, from 

input, output and hidden layers of neurons. 
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 The training of the NN involves 

feeding input and output data of the 

system to be used as a reference 

(training data); hence the NN would 

have the capability to diagnose the 

data associated with other conditions 

(tested data). In [133] The neural 

network system is constructed for 

fault classification and detection with 

the assistance of FFT and WT . The authors have validated the convenience 

of the neural network in a way that if the motor is changed, all that is needed 

is revisiting the transformations for the target motor to have the relevant 

features for the new machine updated. A reliable output could be obtained if 

other measurements such as vibration, or sound is used. 

4.2.4 Fault Trees 

Fault trees (FT) are initiated and developed in the area of safety engineering. 

However, due to its ability of providing a thorough logical structure relating 

causes and effects, it has gained an acceptance into the field of fault 

diagnosis. In order to describe the relationship between the events of FT 

starting from the basic till the top event, FTs are made of logic gates, mainly 

AND and OR gates. The interactions between these gates are governed by 

Boolean algebra. Figure 4.4 illustrates FT example. 

 

Figure ‎4.3 Simple NN Construction 



 

69 

 

Preferably, the data to be used for FD is collected from practical runs of the 

system under consideration. 

However, it is possible to attain 

diagnosis by using models of the 

system of study where the faults 

can be modelled. Utilizing system 

models facilitate the running of 

an enormous number of 

experiments with a lot of saving 

of money and time. FT would be 

most useful when no analytical 

model exists, or after some ad 

hoc modifications to the system 

made it very different from that 

originally designed. 

Even though FTA is mainly used 

for safety and reliability studies, it has been used in the field of FD [158]. The 

authors of  [159] have pointed out the possibility of using FT approach for the 

fault detection of electromechanical systems and  the authors of [160]  have 

indicated the well performance of fault trees in monitoring and diagnosis of 

incipient faults of a real electromechanical machine. From the literature, it 

has been shown that FTs have the capability of diagnosing faults in 

electromechanical systems, but little use has been made of them in the 

condition monitoring arena. 

 

Figure ‎4.4  Fault Tree Example 
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4.2.5 Fuzzy Logic 

Fuzzy systems rely on a set of rules. These rules, while apparently are 

similar, allow the input to be fuzzy, i.e. more like the natural way that humans 

convey ideas. Therefore, the natural format greatly eases the interface 

between the user and the domain expert [161]. 

Fuzzy Logic has surfaced as an instrument for the controlling of different 

systems from simple applications to the most complex ones, from subway 

and industrial processes, to household, entertainment appliances, and fault 

detection and condition monitoring methods and application. Fuzzy logic 

approach facilitates the diagnosis of induction motor faults. It is reminiscent  

and evocative of human thinking processes enabling decisions to be made 

based on fuzzy information [162]. 

Fuzzy logic basically allows intermediate values to be defined between 

conventional evaluations like yes/no, true/false, etc. It makes notions, like 

“faulty”‎ or‎ “healthy”,‎ can‎ be‎ formulated‎ mathematically‎ and‎ processed‎ by‎

computers. In this way an attempt is made to apply a more human-like way of 

thinking in the programming of computers.  

In [163] current, speed , and torque  were used as mediums for the detection 

of few simulated IM faults. The fuzzy decision system achieved high 

diagnosis accuracy 

Pereira and Gazzana [164] have examined the operation of a rotor using 

MCSA monitoring and fuzzy logic as a failure diagnosis technique. The 



 

71 

 

results were in good agreement with practice and the effort put was able to 

detect the correct number of rotor broken bars. 

In condition monitoring of induction motors, Fuzzy logic was utilized mainly 

for the purpose of diagnosis. It was used for monitoring  of bearings [146], 

broken rotor bars [164], stator winding inter-turns [162, 165], in the estimation 

process of some machine parameters [166] , as examples. The presented 

results, in general, found good acceptance by the authors and achieved high 

diagnosis accuracy. 

Finally, it worth noting that in order to improve the performance of the 

detection and diagnosis process, some researchers have opted to combine 

two or more of the above mentioned techniques. For instance, the author of 

[152] has acquired a classification accuracy of 100% by combining NN, SVM 

and GA. 

A thorough review of related works revealed that, hitherto, Neuro–fuzzy and 

NN based fault detection schemes are performed well for large machines; 

however, they are expensive and complex in application [167]. Appendix I 

presents detection of broken rotor bars fault using fuzzy logic analysis. 

4.3 Summary 

Chapter 4 has presented an overview of the different techniques and 

methods are in use to detect and diagnose faults in electric motors with 

special attention given to induction machines.  
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Fault detection was exposed through describing few methods for extracting 

the characteristic features related to each fault in both model-based and 

model-free CM techniques. The chapter is sealed with examining some 

diagnosis methods through the applications of mainly artificial intelligence.  

This chapter and the preceding two chapters indicate the widespread nature 

of condition monitoring techniques which has been reflected in the huge 

literature concerning the condition monitoring of induction motors topic and 

this was presented by the number of references used; revealing the 

importance of such machines in the different aspects of life as mentioned. 

However, some approaches discussed here are more applicable to one 

project than the others.  

From the above chapters, the importance and need for comprehensive non-

intrusive monitoring systems is revealed, and that is the aim of this project. 

The system monitors different faults which are the main causes of more than 

90 percent of induction motor faults. 
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Chapter 5. System Theoretical Analysis 

This chapter will be confined to an electrical induction motor. It looks into the 

construction of the induction motors and their principles of operation. The 

chapter also introduces the development of a dq model that could be used for 

model based condition monitoring, which is beyond the scope of this project, 

in a later stage through modelling different faults of the IM. The model is 

verified against the real data collected during the testing stages from the test 

rig. 

The equations that represent the induction motor are derived in order to build 

the Matlab-Simulink model of the IM. The a-b-c phase winding quantities are 

converted into equivalent dq quantities to get rid of the effect of mutual 

inductances between the stator and the rotor windings. 

5.1 Induction Motors  

Induction machines are widely used in industry as well as in home 

appliances. In industry, induction motors are used to drive various machines, 

such as pumps, fans, compressors, to just name a few. IMs with squirrel 

cage rotors are the most preferred due to their simple rugged construction 

and low running cost [168, 169]. So, condition monitoring of the performance 

of electric drives has received a substantial attention in recent years [21, 

170], and as one of the tools for accomplishing that, modelling has attracted 

a wide attention. 



 

74 

 

As they are the most used type of movers in industry, squirrel cage rotor IMs 

has drawn the attention of engineers as well as industrialists. One of the 

fields that got a considerable attention is the fault detection and diagnosis 

(FDD) of such motors [5] as fault detection can prevent catastrophic failures 

and save huge losses that could be incurred. 

IM can be classified according to their power ratings. Single phase motors 

which are used in low power ratings (fractions of KW or few KW) in 

applications where‎ their‎ speed‎ doesn’t‎ have‎ to‎ be‎ continuously‎ controlled.‎

Wound rotor induction generators are used in large power ratings (300 KW 

and higher) as in wind-electric generation [171]. 

An induction motor is an electric machine in which alternating voltage is 

induced into its revolving rotor due to the changing magnetic field in the 

stator. While the stator is fed with current directly, the rotor has its current 

because of induction, and hence the name comes, i.e. the current in the rotor 

is induced by that of the stator [169, 172-174]. 

 In a simple way of description, an induction motor is, essentially, two main 

components, a stationary stator and a rotating rotor that are separated from 

each other by a small air gap that ranges from 0.4 mm to 4mm depending on 

the motor power [169]. According to the structure of its rotor, IMs are either 

Squirrel cage (SCIM) or Wound-Rotor induction motors. 
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5.2 Types of AC Electrical Motors 

Since power companies generate alternating current exclusively, ac motors 

are the most extensively used type of machines. In addition to that, ac motors 

are cheaper compared to their dc counterparts. There are two classes of ac 

motors: Synchronous motors, and asynchronous (Induction) motors. The 

induction motor is the most common type of ac motors.  

Single-phase induction motors are used for residential and commercial 

applications, but industry relies on the three-phase machines with a capacity 

of several kilowatts to thousands of kilowatts for their smoother operation and 

higher efficiency. Their characteristic features include [168, 169]: 

 Simple, low-priced and rugged construction due to their rotor structure. 

 Low cost and minimum operational costs with high reliability and 

efficiency. 

 Need no extra starting motor and need not be synchronized. 

 Run at constant speed from zero to full-load. 

5.3 Structure of Induction Machines  

An asynchronous motor is a type of motor where the speed of the rotor is 

less than that of the rotating magnetic field. Figure 5.1 shows a view of the 

different parts of SCIM. Both types of asynchronous motors operate on the 

same principle of induction and have the same stator arrangements but differ 

in rotor construction. 
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More than 90% of the induction motors utilize squirrel cage rotors because of 

their simple and robust construction [168]. The rotor is constructed of a 

laminated core with conductors placed in parallel to the shaft. The conductors 

are made of copper or aluminium bars. Each end of the rotor is short 

circuited by continuous end rings of similar material to that of the conductors. 

The rotor conductors and their end rings form a complete closed circuit and 

the rotor resembles a squirrel cage. 

5.3.1 Cage Rotors 

Cage rotors are of two types: cast and fabricated. They are mainly made of 

cooper or aluminium. Previously, cast rotors were only used in small 

machines. Advances in technology allowed casted rotors to be used even in 

 

Figure ‎5.1 View of 3-phase SCIM 
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high power rated motors of thousands of KWs. Cast rotors though are more 

rugged than the fabricated type, but have the disadvantage of being  almost 

unrepairable once  faults develop in them [77]. Fabricated rotors are 

generally found in larger or special application machines. Figure 5.2 shows a 

die-cast aluminium squirrel cage rotor. 

 

Figure ‎5.2 Squirrel Cage Aluminum Rotor 

Wound  rotors has  a 3-phase winding similar to that of a stator. The winding 

is uniformly distributed in the slots and usually connected in wye. Wound 

rotor machines are equipped with slip rings to which the rotor windings are 

connected. The rotor slips turn with the rotor. Such rings provide the 

connections of the motor to external resistors through stationary brushes. 

The limiting resistors are normally engaged during the staring up of the 

motor. For normal running of the motor the three brushes are short circuited.  
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Wound rotor motors are known to have higher operational costs due to its 

maintenance cost to upkeep the slip rings, carbon brushes and also rotor 

windings [173]. 

5.3.2 Stator 

Stator, for squirrel cage or wound rotor machines, is made up of a number of 

steel laminations stacked together forming a hollow cylinder. Coils of an 

insulated wire are inserted into slots of the stator core to form the stator core. 

Figure 5.3 shows a stator of a 3 phase induction motor.  

 

Figure ‎5.3 Stator of an IM 

The terminals of the three-phase windings can be connected in either a star 

or delta arrangement dependent on the motor application. When a high 

torque is required it is recommended to connect the stator winding in a delta 

arrangement. For these reasons it is common to find a direct-on-line motor 
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with an electric starter-unit which switches to star for start-up and then 

switches to delta for normal operation [175]. For three-phase motor the stator 

windings are geometrically placed at 120o degrees.  

The stator is wound for a definite number of poles as per speed 

requirements. The number of poles of the motor and consequently the motor 

speed depends on the way the coils are wound. To reduce eddy currents in 

the stator core, it is assembled of high grade, low electrical loss silicon steel 

laminations. 

5.4 Basic Principles of Induction Motor Operation 

The operating principles of induction motors are based on [171]: 

1. An electromagnetic force (emf) is induced in a conductor moving in a 

magnetic field. 

2. Force is produced on a current-carrying conductor when it is subjected 

to an external-established magnetic field. 

In general, it could be said that the operation of 3-phase induction motors is 

based‎ upon‎ the‎ application‎ of‎ Faraday’s‎ Law‎ and‎ the‎ Lorentz Force on a 

conductor principle. 

Consider a series of conductors of length (l) in the form of a ladder (Figure 

5.4) whose ends are shorted by bars A and B. A permanent magnet moves 

at a speed (V), so that its magnetic field sweeps across the conductors. 
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Figure ‎5.4 Magnet Moving Over Shorted Conductors [169] 

A relation would initiate between the direction of the magnetic field and the 

direction of current flow. The left-hand rule for conductors would be 

applicable. The rule states; If a current carrying conductor is grasped with the 

left hand with the thumb pointing in the direction of electron flow, the fingers 

will point in the direction of the magnetic lines of flux. 

Due‎to‎this‎observable‎fact,‎a‎force‎is‎generated‎according‎to‎Fleming’s‎left-

hand rule (for motors). That is when an electric current flows in a wire, and an 

external magnetic field is applied across that flow, the wire experiences a 

force perpendicular both to that field and to the direction of the current flow. 

As the conductors are short-circuited, Faraday's law is applicable to a closed 

circuit made of thin wire and states that: The induced electromotive force 

(emf) in any closed circuit is equal to the time rate of change of the magnetic 

flux through the circuit.  

Since there is a magnet producing an essentially   constant   and   uniform   

magnetic   field   is   placed   above   the   first   shorted conductor.    If  the  

http://en.wikipedia.org/wiki/Electromotive_force
http://en.wikipedia.org/wiki/Magnetic_flux
http://en.wikipedia.org/wiki/Magnetic_flux
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magnet  is  then  moved  to  the  right  at  a  constant  speed,  the magnetic  

field  of  intensity B (Tesla)  would  sweep  across  the  conducting  rods.   

As  each  conductor  is  cut  by  the  flux,  a  voltage  is  induced  in  it.   This 

induced voltage depends on the magnetic field intensity, conductor length 

and speed of the magnet. The voltage induced in a single bar  and 

electromagnetic force are given by [169, 171]: 

B=‎Ф/A 
‎5.1 

E = B*l*v ‎5.2 

Fem= B*l*i ‎5.3 

Where: 

E : the induced voltage (V), V: the velocity of the bars (m/s), 

L : the length of conductor (m), B: the  magnetic  flux   density   (T), 

Ф : the flux imposed on the conductor 

(Wb), 

I: the current through the conductor (A), 

A:s‎the‎conductor’s‎cross‎sectional‎area‎

(m2), 

Fem: electromagnetic force produced 

(N.m). 

The voltage is induced in each conductor while it is being cut by the flux 

(Faraday’s Law). The induced voltage produces currents which circulate in a 

loop around the conductors (through the bars).  Since the current-carrying 

conductors lie in a magnetic field, they experience a mechanical force 

(Lorentz force). The force always acts in a direction to drag the conductor 

along with the magnetic field. 
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Now if the ladder is closed upon itself to form a squirrel cage, and placed in a 

rotating magnetic field – you have an induction motor! The movement of the 

ladder (rotor) will be circular which resembles the movement of the rotor. 

5.5 Permanent Magnet Approach 

To see how a rotor works, a magnet mounted on a shaft can be substituted 

for the squirrel cage rotor as in Figure 5.5 (Figures 5.5 through 5.8 are 

courtesy of Siemens). When the stator windings are energized, a rotating 

magnetic field is established. The magnet has its own magnetic field that 

interacts with the rotating magnetic field of the stator. Both of the stator and 

rotor resemble two magnets.  

 

Figure ‎5.5 Permanent Magnet Concept 

The north pole of the rotating magnetic field attracts the south pole of the 

magnet, and the south pole of the rotating magnetic field attracts the north 

pole of the magnet. As the rotating magnetic field rotates, it pulls the magnet 



 

83 

 

along causing it to rotate. When used for motors, this design is referred to as 

a permanent magnet synchronous motor.  

The squirrel cage rotor acts essentially the same as the magnet. When 

power is applied to the stator, current flows through the winding, causing an 

expanding electromagnetic field which cuts across the rotor bars. 

5.6 Electromagnetic Force Mechanism 

When a conductor, such as a rotor bar, passes through a magnetic field a 

voltage (emf) is induced in the conductor. The induced voltage causes a 

current flow in the conductor. Current flows through the rotor bars and around 

the end ring. The current flow in the conductor bars produces magnetic fields 

around each rotor bar. Remembering that in an ac circuit, current 

continuously changes direction and amplitude. 

The resultant magnetic field of the stator and rotor continuously change. The 

squirrel cage rotor becomes an electromagnet with alternating north and 

south poles.  

For more illustration, Figure 5.6 shows a simple stator with 6 salient poles is 

considered. The windings are mechanically spaced at 120° from each other. 

The windings are connected to a 3-phase source. AC currents Ia, Ib and Ic will 

flow in the windings. Each winding produces its own mmf, which creates a 

flux across the hollow heart of the stator. The 3 fluxes combine to produce a 

magnetic field that rotates at the same supply frequency. 
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Figure ‎5.6 Six-Salient Pole Stator 

Out of the six coils, two are used for each of the three phases. The coils 

operate in pairs. The coils are wound around the core material of the stator. 

These coils represent the motor windings. Each motor winding becomes a 

separate electromagnet. The coils are wound in such a way that when 

current flows in them one coil is a north pole and its pair is a south pole. For 

example, if A1 were a north pole then A2 would be a south pole. When 

current reverses direction the polarity of the poles would also reverse. 

The number of poles is determined by how many times a phase winding 

appears. Here each phase winding appears two times. This is a two-pole 

stator. If each phase winding appeared four times it would be a four-pole 

stator. When AC voltage is applied to the stator, current flows through the 

windings.  

The magnetic field developed in a phase winding depends on the direction of 

current flow through that winding. The chart in Figure 5.7 is used here for 
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explanation. It will be used in the next few illustrations to demonstrate how a 

rotating magnetic field is developed. It assumes that a positive current flow in 

the A1, B1 and C1 windings result in a north pole.  

 

Timing Winding 

Current Flow Direction  

 

Positive Negative 

0
0
 A1 North South 

60
0
 A2 South North 

120
0
 B1 North South 

180
0
 B2 South North 

240
0
 C1 North South 

300
0
 C2 South North 

Figure ‎5.7 Stator Windings Current Flow and Distribution 

It worth noting that when both of the stator and rotor are completely circular, 

the inner gap between them is uniform and the magnetic reluctance as well 

and the machine is called a non-salient pole motor [171]. 

5.6.1 Start (0 degrees) 

The step by step operation of the motor can be explained with the help of 

Figure 5.8. As the motor is a 2-pole, 3-phase, the full rotation of the rotor 

would be looked at as intervals of 60 degrees each. It is easier to visualize a 

magnetic field in the following illustration, for example, a start time has been 

selected arbitrary during which phase A has no current flow. Phase B has 

current flow in a negative direction. Phase C has current flow in a positive 

direction. Based on the above chart, B1 and C2 are south poles and B2 and 
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C1 are north poles. Magnetic lines of flux leave the B2 north pole and enter 

the nearest south pole, C2. Magnetic lines of flux also leave the C1 north 

pole and enter the nearest south pole, B1. A magnetic field results, as 

indicated by the arrow. 

5.6.2  Time Slots 1 and 2 (60 and 180 degrees) 

If the field is evaluated at 60° intervals from the starting point, at Time 1, it 

can be seen that the field will rotate 60°. At Time 1 phase C has no current 

flow, phase A has current flow in a positive direction and phase B has current 

flow in a negative direction. Following the same logic as used for the starting 

point, windings A1 and B2 are north poles and windings A2 and B1 are south 

poles.  

At Time 2 the magnetic field has rotated 60° (120° from start). Phase B has 

no current flow. Although current is decreasing in phase A it is still flowing in 

a positive direction. Phase C is now flowing in a negative direction. At start it 

was flowing in a positive direction. Current flow has changed directions in the 

phase C windings and the magnetic poles have reversed polarity. B is at the 

edge of changing polarity. 

5.6.3 Time Slot 6 (full cycle) 

At the end of six such time intervals the magnetic field, as well as the rotor, 

will have rotated one full revolution or 360°. This process will repeat every 20 

msec on a 50 Hz stator supply. 
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Figure ‎5.8 Stator Electromagnetic Field 

5.7 Synchronous Speed and Slip 

The speed of the rotating magnetic field is referred to as synchronous speed 

(ωs). Synchronous speed depends on supply the frequency (f) and the 

number of poles (P).  Synchronous speed is directly proportional to the 

supply frequency and inversely proportional to the number of poles according 

to the following relation: 

ωs = 120 * f / P 
‎5.4 

There must be a relative difference in speed between the rotor (ωr) and the 

rotating magnetic field (ωs). If the rotor and the rotating magnetic field were 

turning at the same speed no relative motion would exist between the two, 

therefore no lines of flux would be cut, and no voltage would be induced in 
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the rotor. The difference in speed is called slip (S). Slip is necessary to 

produce torque. Slip is dependent on load. An increase in load will cause the 

rotor to slow down or increases slip. A decrease in load will cause the rotor to 

speed up or decreases slip. Slip is expressed as a percentage and can be 

determined with the following formula. Where: ωs, ωs are the synchronous 

and rotor speeds in (rpm) respectively. 

Slip (s)%‎=‎(ωs - ωr)‎*100/‎ωs ‎5.5 

The slip of fully loaded, large induction machines (of 1000 KW and more) 

seldom exceeds the limit of 0.5%, and for small motors (10 KW or less), it 

seldom exceeds 5%. Under normal loads, the gap is very narrow between 

the rotor and synchronous speed [169]. Where fr: is frequency of voltage and 

current in the rotor, the frequency induced in the rotor depends on the slip 

and is: 

fr = s*f ‎5.6 

5.8 Simulation of Induction Motor 

Simulation is the imitation of a real system or process through equations that 

represent its physical behaviour in the form of a computer algorithm. Such 

algorithm constitutes a model of the system. The main advantage of 

simulation is allowing investigation of the behaviour of simulated system 

under different circumstances and studying the consequences of changing 

system parameters, or exploring a new system operating strategy, in a 
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quicker and cheaper way than by conducting a series of experimental 

studies on an actual system, which means saving time and money. 

Simulation is also used when the real system cannot be utilized. The real 

system may not be engaged because it may not be accessible, it may be 

dangerous or unacceptable to engage, or it may simply does not exist [176]. 

Even though models and simulations can never replace observations and 

experiments, but they constitute an important and useful component [177]. 

5.9 dq Representation of The Motor 

It is known that the mutual inductances between the stator and the rotor 

windings are dependent on the rotor angle 
m

  and that affects the rotor and 

stator flux linkages  r  ands .The stator and rotor phase currents ia, ib, ic, 

iA, iB, and iC, respectively can be represented by the following equations: 

  
                     

            
      ‎5.7 

  
                     

            
      ‎5.8 

And hence the magneto motive force (mmf) produced is: 

  
           

  

 
   
            ‎5.9 

  
           

  

 
   
           ‎5.10 

 

Where: 
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a-axis 

stator 

A-axis 

 rotor 

d-axis 
q-axis 

   

    

    

    

    

    

    
    

       

Ns: number of stator windings 

P: number of poles. 

  
        ,            : The resultant stator( rotor) current space vector with respect to a 

(A) axis. 

In Park transformation (Figure 5.9), two virtual orthogonal axes are used and 

the equivalent stator and rotor windings are placed along these two axis. As 

the mmf produced by the dq windings currents is the same as that by the 

three phase winding currents.  

 

Figure ‎5.9 dq Representation of Stator and Rotor windings [168] 

The mmfs                          and the currents       and       can be produced 

by the components        ,      ,       , and        respectively flowing 

through their respective windings  as each of stator (rotor) windings has a 

resistance    (  ) and leakage inductance    (   ). 

While the mutual inductance between these two orothogonal windings is 

zero, the mutual inductance between the d-axis windings on the stator and 

the rotor equals    due to the magnetizing flux crossing the air gap. Also the 
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mutual inductance between the stator and the rotor q-axis windings equals 

  . The mutual inductance between any d-axis windings with any q-axis 

windings is zero because of their orthogonal orientation which results in zero 

mutual magnetic coupling of flux. Both rotor and stator 3-windings are 

assumed to be sinusoidally-distributed. The rotor windings are , of course, 

hypothetical. In order to produce the same mmf distribution in the air gap, the 

number of the two sinusoidally-distributed orthogonal windings are chosen to 

be Ns2/3 turns. Choosing this number of turns for each winding results in 

their magnetizing inductance to be    (same as the per-phase magnetizing 

inductance for the normal windings). The first winding is positioned at the 

Direct (d) axis, while the other at the Quadra (q) axis. The angle between d 

and the stator axis a is chosen arbitrary at     with respect to phase-a axis. 

With these two orthogonal windings, the torque and the flux within the 

machine can be controlled independently [168]. 

  
  

 
               

  

 
   
         

‎5.11 

Equation 5.11 simplifies to: 

             
     

      ‎5.12 

As d-axis is displaced by angles     and     from the a- and A-axes 

respectively, therefore: 

            
             ‎5.13 
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             ‎5.14 

Substituting   
       and         from 5.7 and 5.8 into 5.13 and 5.14 respectively leads 

to: 

                
            

       
  
 
        

       
  
 
 
 

‎5.15 

                 
            

       
  
 
        

       
  
 
 
 

‎5.16 

Where: 

       : Stator current in d and q windings respectively. 

  
     : The current space vector with respect to d axis. 

Since the imaginary and real parts of equations 3.5 and 3.8 can be equated, 

from which it could be derived that: 

 
   
   

   
 

 
 
                                  

                                     
 

                                       
          

 

   
  
  

  

‎5.17 

Where:            is the stator transformation matrix to transform the a-b-c 

phase winding currents to their corresponding dq winding currents, and 

 
   
   

   
 

 
 
                                  

                                     
 

                                       
          

 
  
  
  

  

‎5.18 
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Where:             is the rotor transformation matrix to transform the 

equivalent A-B-C phase winding currents to their corresponding dq winding 

currents. 

The same matrix relates the stator (rotor) flux linkages and the stator (rotor) 

voltages in phase (the equivalent A-B-C) windings to those in the 

corresponding stator (rotor) dq windings [168]. 

5.10 Flux linkages, voltages, and currents of dq windings  

As there is no mutual coupling between the windings of d axis with those of q 

axis, the flux of each winding is only due to the currents passes through it 

and the presence of the other winding located on the same axis. Therefore: 

 

Equations 5.19 through 5.22 can be written in a vector form which yields to: 

                
‎5.19 

                
‎5.20 

                
‎5.21 

                
‎5.22 

Where:             and            

 
 
 
 
   
   
   
    

 
 
 

  

      
      
      
      

 

           
  

 
 
 
 
   
   
   
    

 
 
 
 

‎5.23 
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The voltages of d and q windings for both the stator and rotor are 

represented by the following equations: 

Where   is the instantaneous speed of the dq winding in the air gap 

(electrical rad /sec) and 
    

  
    . The last two equations can be put in a 

vector form where the rotate matrix   =  
   
  

  corresponds to the (j) 

operator which has the role of rotating the space vectors       and        by 

an angle of 90 degrees. 

For the steady state operation, the left sides of the last two equations will be 

zeroes as all the dq winding variables are dc quantities and both of Vrd and 

Vrq as well. By substituting all of the flux linkages in the last two equation 

from equations 5.19 through 5.22 and by letting   =     (knowing that: 

        ) will result in the voltage- current  relation with regard to the 

stator and rotor inductances as in 5.26. 

 

   
   
 
 

  

 
 
 
 
 
                 
               

                   
                  

 
 
 
 

                       
 

 
 
 
 
   
   
   
    

 
 
 
 

‎5.26 

The mechanical torque, load, electrical and mechanical speeds are related 

according to the following equations: 

 

  
 
   
   

   
   
   

     
   
   

      
   
  

  
   
   

  
‎5.24 

 

  
 
   
   

   
   
   

     
   
   

      
   
  

  
   
   

  
‎5.25 
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Where: Tm is the elect mechanical torque produced by the motor, 

 TL is the load torque, Jeq is the combined inertia of the load, motor and  

ωmech and ωm are the mechanical and electrical speed of the rotor 

respectively. 

5.11 Simulink Model  

The Simulink block diagram of AC motor is shown in Figure 5.10. The input 

and output signals from each block are labelled for convenience. 

Three phase input voltage        is transformed to       through park 

transformation block. The stator and rotor fluxes state equations are 

continuously calculated using the dq parameters of currents and voltages 

through two blocks named stator and rotor. The voltage vector for the rotor is 

zero as the rotor bars are short circuited. 

Next the flux vector is used to obtain the stator and rotor currents using 

transformation of Equation 5.23. Both torque and mechanical rotor speed 

were calculated using the stator and rotor currents as in Equations 5.27-5.29. 

    
 

 
                

‎5.27 

 

  
        

      
   

 
‎5.28 

      
 

 
   

‎5.29 
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5.12 Model Validation 

The model will be validated using data collected using the test rig. The 

validation process is limited to the healthy motor only. The motor parameters 

used for the simulation model can be found in Appendix II. 

Figure 5.11 shows both the simulated and actual line currents, it is noted that 

the model takes longer to reach its steady state as some friction and other 

losses due to eddy currents were not taken in account. Furthermore the 

motor parameter values used for the model calculations could add some 

more errors as those concerns the used motor could probably differ from that 

supplied by the manufacturer.  

Another point to be mentioned here is that the measured transient current 

values are limited to a maximum of 124 A by the DAQ system starting from 

the sensor box which is designed to for steady state current signals. 

Whereas, for steady state, Figure 5.12 and Figure 5.13 demonstrate a good 

agreement with less than 10% difference between the model and actual 

system at full and no load which coincide with the results in Chapter 7. 

The motor shaft torque plot is illustrated in Figure 5.14. It has shown poor 

agreement between the measured and simulated graphs especially during 

the transient period which took longer time than that of the currents. 

The lack of full agreement could be attributed to few factors of which are 

supply unbalance, friction, and eddy currents losses. The supply unbalance 

is responsible for negative torques affecting the motor resultant torque. 
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Friction and eddy current losses also add to the previous effect. A third factor 

is that the dq model representation of the load is not optimum and hence the 

overall result is affected. The agreement is clear after the motor reaches 

steady state and both of the simulated and actual signals are fluctuating 

around the target full load. 

 

. 
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Figure ‎5.10 Simulink dq-Model of The IM 
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Figure ‎5.11 Measured and Simulated Motor Currents 

 

Figure ‎5.12 Simulated and Actual Motor Currents at Full Load 

 

Figure ‎5.13 Simulated and Actual Motor Currents at No Load 
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Figure ‎5.14 Measured and Simulated Motor Shaft Torque 

5.13 Summary 

In this chapter the types, construction, and basic principles of induction motors 

are presented. A simple method of analysing induction motors, two axes dq 

model, is considered and the results for the benchmark motor are illustrated and 

validated. For being fairly uncomplicated and able to simulate the overall and 

time-varying performance of the induction machines, this method is used in 

engineering practices where applications do not require highly accurate results. 
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Chapter 6. Test Facility and Faults Seeding 

This chapter provides a general description of the test rig that has been 

allocated within the HyperC laboratory in the School of Engineering, Design and 

Technology, University of Bradford. The components of the test rig are 

described in detail then a number of the tests done are mentioned. 

This test rig, shown in Figure 6.1, is designed to run different tests through 

collecting different sensed signals of the motor under test while it has been 

exposed to different levels of loading using a regenerative motor drive. The 

tested motor can be in a healthy or faulty condition. The sensed signals are 

current, voltage, vibration, speed and torque. 

MOTOR UNDER TEST

I & V 
SENSOR 
BOX

DYNAMOMETER

MM6

RDB

Figure ‎6.1 Genral View of The Test Rig 
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6.1 Main Rig Components 

Besides the motor under test, the components of the rig include: Motor Manager 

6 (MM6) Box, ABB Regenerative Variable Speed Drive Box, and AC Load 

Motor (Dynamometer).  

6.1.1 Motor Manager Unit 

The Motor Manager Unit (MM6) is produced by switchgear and Instruments 

(S&I) Ltd. It is an intelligent relay used to monitor a three-phase motor and 

provide control, protection and fast communications. The device provides motor 

data  (measured and calculated) in text message format on a colour Liquid 

Crystal Display [178]. A view of the unit is shown in Figure 6.2.  

  

A. Outside View B. MM6 From Inside 

Figure ‎6.2 Motor Manager 6  

The unit is operated through different modules, which are display and control 

(DCM), starter and control (SCM), and protection and metering modules (PMM). 

The modules are interconnected via Controller Area Network, which provides a 

high-speed link for exchanging information between the different modules. All 
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modules are designed to operate in an ambient air temperature of –5 Deg C to 

+75 Deg C, and relative humidity of 95% non-condensing. 

The SCM is the data concentrator providing sufficient digital I/O for starter 

control. The SCM provides also two-speed; star, delta connections. 

The DCM is based around a colour LCD graphical user interface that allows the 

user to monitor, control and configure the MM6. The PMM is a standalone 

measurement and control module that samples current/ voltage transformer 

inputs and uses thermal modelling techniques to provide accurate motor 

protection. The SCM and DCM have inbuilt sensors for monitoring the starter 

and switch room temperatures. In short, for control and protection purposes, the 

motor is supplied through the MM6 unit. 

6.1.2 Loading Motor  

The load motor (dynamometer) is a 22kW, 3 phase motor from Asea Brown 

Boveri (ABB) Ltd. It has the ability to work as a motor (driving) or as a generator 

(driven). It is connected through couplings to the (driving) motor under test. 

During the beginning of the testing, the motor torque is less than that of the load 

motor when the dynamometer is still in the motoring region. With the increase of 

the driving motor (under test) torque, the load motor transfers from the motoring 

to the generating region and starts to behave as a generator where its electrical 

output is retransferred to the general grid through the regenerative variable 

speed drive, which is discussed in the following paragraph. 
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6.1.3 ABB Regenerative Drive Unit 

The ACS800 Regenerative Drive Box (RDB) is a four-quadrant, where the 

machine can operate as a motor or generator (regenerative braking), wall 

mountable drive for controlling AC motors. The main circuit consists of two 

converters, a line-side converter and a motor-side converter, integrated into the 

same frame [179]. 

 The line-side converter is a converter that is connected to the supply network 

and is capable of transferring energy from the network to the DC link or from the 

DC link to the network. The motor-side converter is a converter that is 

connected to the motor and controls the motor operation. 

The ACS800 is a variable speed drive that is designed and produced by ABB. It 

facilitates the speed and direction control of the load motor at different loads 

that set by the operator. Besides providing the safety measures, it is capable of 

transforming the generated power during the regenerative braking operation to 

a 50 Hz signal to be fed back to the main grid. 

6.1.4 Motor under Test 

Four 3-phases, 7.5 KW, 4-poles AC motors are used for the purpose of creating 

faults on them and studying the signatures of such faults on the different 

signals. The motors are made by Brook-Crompton. The data sheet of these 

motors is attached in Table 6.1. 



 

105 

 

The four motors were numbered as M1 through M4 so that each is assigned for 

a specific fault creation. The different faults were seeded into these motors 

during the various stages of work. The faults created on the motors were: rotor, 

bearings, stator, and eccentricity faults into Motor 1, Motor 2, Motor 3, and 

Motor 4 respectively.  

Table ‎6.1 Specifications of The Testing Motors 

PARAMETER VALUE PARAMETER VALUE 

Number of Phases 3 Number of Poles 4 

Voltage - Delta (V) 380 – 415 (V) No. of Rotor Bars 28 

Current (A) 15.1 -15.9 Power Factor 0.82 

Rated Load (Nm) 49.6 Speed (Rpm) 1445 

Make Brook Crompton   

6.2 Auxiliary Components  

The test rig utilizes five different sensors and transducers, which are looked at 

in this section. 

6.2.1 Current and Voltage Sensors 

The current and voltage sensors are housed in a box (Figure 6.3). They are 

provided by Powell Electrical Group. The sensor board is in the form of a pass 

through box for direct connection to the existing 415V supply and gives a signal 

output equivalent to the voltage and current of each phase. The unit is built 
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around two main transformers that are current and voltage transformers. The 

main advantages of these sensors are being nonintrusive as they are 

connected ahead of the motor under test. The outputs of the MM6 flows though 

this box to the motor. 

  

A. Outside View B. The Box Inside 

Figure ‎6.3 Current and Voltage Sensors’ Box 

For the current sensor, the ratio of Iin(rms)  to Vout(rms) is 1 A: 80 mV 

approximately. This gives a maximum input Current based on a maximum peak 

signal value of 5V (3.5V(rms)) of 44A(rms). While for the voltage sensor The 

ratio of Vin(rms)  to Vout(rms)  is 1V: 6.9 mV approximately [180]. 

6.2.2 Vibration Transducer 

The vibration transducer that is used (Figure 6.4) is a piezo-electric 

accelerometer A/ 23-3 from DJB Instruments with a frequency range of 1- 10 

KHz. It can measure acceleration up to 5000 m/squared second. It is a 

lightweight (4.5g) vibration transducer with flat base adhesive attachment, and 

side mounted connector. Being adhesive mounted allows abrasive cleaning of 

the attachment face resulting in reduced base thickness over time, but sparing 
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use of adhesive will aid longevity. Its welded construction maximises 

temperature range, reliability, and sensitivity. 

  

A. Accelerometer B. Charge Amplifier Front view 

Figure ‎6.4 Vibration Transducer and Amplifier 

The output of the transducer is fed to a charge amplifier which converts the 

transducer output to an equivalent dc voltage. The output is in the range of 

±10V and is suitable for data acquisition systems, tape recorders, oscilloscopes 

and other indicating and storage instruments. A low pass filter is incorporated; 

this may be internally set for cut off frequency by means of a removable resistor 

network. 
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6.2.3 Speed Encoder 

The speed encoder (755 HS), shown in Figure 6.5, is attached to the non-drive 

end of the load motor. Its function is to provide the speed of the motor under 

test. It is produced by the British 

Encoder Products Company. The 

Model 755HS Size is ideal for 

applications requiring a small, high 

precision, high performance 

encoder. It fits where many 

encoders cannot. All metal 

construction and shielded ball 

bearings provides years of trouble-

free use. A variety of blind hollow 

bore sizes are available, for shafts up to 10mm. Attaching the encoder directly 

to a motor is quick and simple with an innovative flexible mount. This industry 

standard mount eliminates couplings, increases reliability, while reducing overall 

length and cost. Where critical alignment is required, a Slotted Flex is available. 

It resembles a perfect replacement encoder where high reliability is required. 

The output signals are 0 to 20 mA. While 0 mA corresponds to 0 rpm, the 20 

mA‎represents‎the‎motor’s‎nominal‎speed of 1500 rpm. 

6.2.4 Torque Transducer 

The motor and the load are connected through two adaptors and two 

mechanical couplings. In between these, the torque transducer (T22) is 

 

Figure ‎6.5 Speed Encoder 



 

109 

 

mounted as in Figure 6.6. It is rated for torques up to 200 Nm. It is from the 

HBM Company. The transducer already comes with an integrated electronics; 

this saves time and costs as no additional, external amplifiers are required for 

upgrading the measurement chain. 

 

Figure ‎6.6 Torque Transducer 

The bellows couplings are designed to be used specifically with the torque 

transducer and are rated for torque up to 200Nm and therefore suitable for 

motors up to 30kW (running at rated load). They are of a flexible corrugated 

metal design and are tightened onto the torque transducer shaft using screws 

(40 Nm in this application). The other end of the bellows couplings are attached 

to the adaptors which are then in turn attached to each of the motor shafts. The 

adaptors are manufactured with a keyway to fit the specific motor shafts and are 

held in place with tightening screws.  
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6.3 Data Acquisition System 

The hardware components used to create the Data Acquisition (DAQ) set-up is 

composed of few sensors as detailed in 6.2, National Instruments DAQ card, 

and a computer. A schematic diagram of the data acquisition systems is shown 

in Figure 6.7. 

During the experimental work all the collected data was acquired using the 

National Instruments PXI cards. The PXI 6251 is a multifunction data acquisition 

card; it accepts 68 pin cables with up to 24 digital inputs and 16 analogue inputs 

and is housed within the PXI 1031.  

During the data acquiring process the number of data points and the sampling 

frequency were 20 KHz. 100,000 sample s were recorded for each run. Which 

means for such setting the required time to collect this length of data is 5 Sec.  

During each run, nine parameters were recorded. That includes time, three line 

currents, three phase to phase voltages, speed, vibration, and torque. All of 

these signals are available for visual inspection of the operator on computer 

screen. 
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Figure ‎6.7 Data Acquisition System for Current and Voltage 

6.3.1 Labview programming Environment 

Labview (short for Laboratory Virtual Instrumentation Engineering Workbench) 

is a program development application, which uses a graphical programming 

language to create programmes in block diagram form. Labview is a proprietary 

product of National Instruments (NI) Company.  

The programming language used, also referred to as G, is a dataflow 

programming. Labview uses expressions, icons, and notes familiar to 

researchers and relies on graphical symbols rather than textual language to 

describe programming actions. 

Labview has extensive libraries of functions and subroutines for most 

programming tasks and also contains some libraries that specified for certain 

http://en.wikipedia.org/wiki/Dataflow_programming
http://en.wikipedia.org/wiki/Dataflow_programming
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applications such as data acquisition, analysis, presentation, and storage. 

Labview programmes are called virtual instruments because they imitate actual 

instruments in their appearance and functioning. Virtual instruments have both 

friendly user interface and a source code equivalent. Furthermore they accept 

parameters from higher level virtual instruments. The version used is Labview7. 

Labview was only used for data acquisition and recording. Other signal 

processing techniques were carried out using MATLAB. Figure 6.8 shows how 

the Labview screen looks during the data acquisition process. 

 

Figure ‎6.8 A Snap Shot of The Labview Screen 

6.4 Voltage Supplies 

The test rig is supplied through two points. The first is for the motor under test 

which passes through the MM6 unit. The second supplies the dynamometer 

though the regenerative drive unit and it accepts the regenerated power from 
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the dynamometer to be fed to the grid. Rated at 63A, both out points are fitted 

with circuit breakers of 32A. 

6.5 Seeded Faults and Tests 

For each of the tests, the motor under test is run for one hour under a load of 40 

Nm (80% of the motor load) to make the test as similar as possible to the 

practical environment. After that, the different readings of few signals such as 

current, voltage, vibration, load, and motor speed are recorded at different 

loading conditions. 

6.5.1 Broken Rotor Bar Fault 

 The first motor (M1), of the four 

used for creating the different 

faults to be studied for this 

project, is assigned for the broken 

rotor bar fault .The one broken 

bar fault (as in Figure 6.9) was 

created by drilling one of the bars 

by making a hole of 2.5, 3.5, 4.5 

and 6 mm diameter throughout one of the bars .The fault was created by drilling 

a hole of with a depth that allows the full height of the bar is taken and making 

sure that one of the rotor bars is partially or completely broken. The spectrum 

diagram of the motor current with one broken bar is illustrated in the next 

 

Figure ‎6.9 Rotor with One Broken Bar 
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chapter. The last stage of this test was by breaking two adjacent bars of the 

rotor through two holes of 6 mm diameter each. 

6.5.2 Bearings Faults 

The second motor (M2) has been assigned for studying the bearing faults. The 

first of them is a hole in the outer race. A hole of 1 mm diameter was drilled into 

the outer race way of the bearing. Due to the bearing was ungreased; the 

bearing balls have crumpled after running the motor for half an hour at a load of 

40 NM. Figure 6.10 shows both the outer race hole and the state of bearings 

after testing. 

  

Figure ‎6.10 Faulted Bearing Before and After Test 

The test was redone with a bearing point fault. In this test the hole is made with 

a rectangular shape of 0.5 mm width and 30 mm length for the first time before 

the same test is repeated with 1.5 mm width as in Figure 6.11. 



 

115 

 

 The faulted bearing, was re-greased, by the same amount was used by the 

manufacturer, after creating the fault on the outer race way. This led to a 

successful testing even after running the motor for 90 minutes with 80% of its 

nominal load of 50 Nm. 

 

  

Figure ‎6.11 Re-greased Faulted Bearing 

The abrasive test was done by clearing off the grease of the bearing test and 

replacing it with Carborundum powder to emulate the state of a bearing 

employed in a harsh environment.  

Carborundum wich is Silicon carbide (SiC), is a compound of silicon and carbon 

with chemical formula SiC. It occurs in nature as the extremely rare mineral 

moissanite. Silicon carbide powder has been mass-produced since 1893 for use 

as an abrasive.  

http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Moissanite
http://en.wikipedia.org/wiki/Abrasive
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6.5.3 Turn-To-Turn Stator Fault 

The stator of each of the motors under test is made of 3 phases. Each phase is 

consisted of 210 turns where each 105 turns form a pole pair. Each phase 

winding appears four times. That is a four-pole stator. The third motor (M3) was 

for studying the stator fault. 

In order to create shorts for certain number of turns, the impedance of each turn 

should be known. The total impedance of each phase is calculated through 

injecting current at different values into the phase, and measuring the voltages 

corresponding to those readings. The next step was to solder few wires at the 

points corresponding to 1, 2, 3... 14 shorted turns as shown in Figure 6.12. 

  

Figure ‎6.12 Stator Fault Seeding at Different Stages 

Due to the high current at starting of the motor and inadequate soldering, 

unfortunately this test ended into a fail resulting in the burn out of the stator 

windings. This constitutes that for such tests the turn shortening should be 

executed through proper winding which is normally done by professional 



 

117 

 

experts and that what was done in the repeated test. The new arrangement is 

shown in Figure 6.13.  

In order to practically introduce a shorted-turns fault in the test rig, M3 was sent 

to Bradford Armature Winding Co Ltd for re-winding and having proper and safe 

taping for 0 to 14 turns in the stator U-phase winding. 

To‎ ensure‎ that‎ the‎ stator‎ is‎ close‎ to‎ its‎ original‎ condition,‎ the‎ phase’s 

impedances were calculated by injecting a current in each phase separately. 

The results shown in Table 6.2 suggest that the three phases are balanced 

even after the rewinding has taken place. 

 

Figure ‎6.13 Stator Fault Test Arrangement 

For connection purpose the taps were connected to the motor terminal box and 

for safer usage and easier introduction of the required shorted-turns an ABB 

connection box is utilized. Every caution was taken during the testing as it was 
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a direct dealing with currents in amperes scale of which was earthening the 

connection box and putting on gloves.  

Table ‎6.2 Phases Impedance Measurements After Modification 

Test 1 2 3 Av. Z  

(Ohm) 
 V (V) I (A) V (V) I (A) V (V) I (A) 

Phase U 19.940 1.104 19.940 1.104 19.960 1.105 18.06 

Phase V 19.900 1.097 19.900 1.095 19.920 1.098 18.15 

Phase W 19.940 1.097 19.960 1.098 19.980 1.100 18.17 

        

The linear relation, in Figure 6.14, between the number of shorted turns and 

phase impedance is noticeable. This linearity is attributed to the exact shorting 

of turns and the perfect work done by Bradford Armature Winding Co Ltd. 

 

Figure ‎6.14 Stator Shorted Turns Against Phase Impedance 

6.5.4 Eccentricity Fault 

This fault is seeded into the forth motor (M4). The test was carried out in two 

stages namely: static and dynamic eccentricities. The static eccentricity is 

implemented by using two rings of unequal circumferential widths, one for each 
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rotor end. The rings used for eccentricity fault realization are shown in Figure 

6.15. These rings are used as extra outer covers of two healthy bearings. 

Through this method, the rotor was made eccentric by approximately 40% of 

the motor air gap (0.4x0.45=0.18 mm). 

 

Figure ‎6.15 Eccentricity Rings 

The dynamic eccentricity was realized by the same way. The main difference is 

that the added rings were used as extra layers to the inner race ways of the 

healthy bearings. The new dynamic eccentricity of the rotor resembles another 

0.18 mm of the air gap too. 

Two more rings were used in each test to get the right size of the modified 

bearings. There were two inner rings during the static eccentricity stage and two 

as outer rings for the dynamic eccentric rotor. 

In order to employ the mixed eccentricity, it is needed to use both of the above 

mentioned eccentric rings for each rotor end at the same time, but the 
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technology used was not advanced enough to get the accurate modifications. 

This led to a rub occurring between the rotor and stator, as in Figure 6.16. It is 

worth noting that it is more practical for such faults to be realised in bigger 

motors (of 30 KW for example).  

 

Figure ‎6.16 Stator Damage Due to Rubbing and Burnout 

6.6 Belt Coupling 

The way the load (dynamometer) is coupled to the motor was changed from 

direct to a belt coupling as it is in most practical situations. Figure 6.17 shows 

the new arrangement of the test rig. The same four fault tests were redone 

under the new test rig arrangement. 

6.7 Summary 

The test facility located at the University of Bradford was described. It has been 

used to carry out the experimental tests for this thesis with the cooperation of 

Switchgear and Instrumentation Ltd, Bradford. 
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The chapter has given an overview of the test rig and described the 

components as well as the work that carried out during the experimental and 

data collection phase of this project.  

In order to achieve the best results, every care was taken during the 

preparations and testing processes. For the safety of staff and visitors, all 

moving parts were covered with grid besides using eye glasses and gloves. 

 

 

Figure ‎6.17 Motor-Load Belt Coupled Arrangement 

For the security of data and to get accurate recordings as possible all cables 

were insulated and kept away from each other to eliminate any unwanted 

signals are picked up. To have readings that are near to practical environment, 

the motor under test was allowed running for more than one hour when that is 

allowable. 
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All the data files and folders were given unique labels that contain the date of 

the experiments, the fault type, the sampling rate, to name few. In addition all 

sensors were calibrated before usage.  

From the results obtained, it could be said that the test facility is well equipped 

and it could be run for accurate and sophisticated tests with confidence and 

assured good results. 
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Chapter 7. System Responses and Tests Results 

It is commonly difficult or even impossible to interpret the information contained 

in a raw signal to meaningful information by just looking at it. In addition, raw 

signals obtained from an instrument measuring a physical process always 

contain noise that hampers the useful information contained. 

This chapter is allocated to the data collected from the four motors with different 

faults. The motors were tested and different signals were saved. Then the 

motors were failed and retested again. The work was done through collecting 

different sensed signals of the motor under test while it has been exposed to 

different levels of loading through an induction motor run by a motor drive. The 

tested motors can be in a healthy or faulty condition. The sensed signals are 

current, voltage, accelerometer signal, and speed. 

Plots of the recorded motor output signals both in time and frequency domains 

are illustrated and discussed. The first section covers the measured signals 

from the healthy motors. It includes current, voltage speed, and vibration. The 

tests were carried out at 0, 25, 30, 35, 40, and 50 Nm which is the rated motor 

load. In the last section, few figures illustrating the location of the faults 

harmonics are presented using Fast Fourier Transformation. 

It is worth noting that apart from the current, other signals are not scaled as the 

interest is to observe the differences, if any, between the healthy and faulty 

signals. 
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7.1 Rotor Fault 

In‎this‎section,‎the‎effect‎of‎the‎broken‎rotor‎bars‎fault‎on‎the‎motor‎under‎test’s‎

signals is illustrated. Figures plotted are for healthy and different degrees of 

fault severity at the same level of loadings and for the same degree of fault at 

different load conditions. 

7.1.1 Current Signals 

From the figures to come, it has been noted the direct effect of loading on the 

line current of the motor drastically, the more load applied to the motor, the 

more current drawn as shown in Figure 7.1. The current is minimally affected by 

the severity of the rotor fault. 

  

Figure ‎7.1 Line Current at Different Loads and Fault Severities 

Some signal distortion could be noticed, but the proper way to see the effect of 

the fault upon the current and other signals in general is through signal 

processing methods.  
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Figure 7.2 shows that the severity of broken rotor bars has a direct effect on the 

motor currents. All the plots were at the same loading, but due to the rotor 

breakage, the line currents have been noticeably affected.  

 
 

Figure ‎7.2 Effect of Broken Rotor Bars on Motor Line Current 

The more severe the fault, the lower the line current is. This could be linked to 

the current deformation happens within the rotor circuit due to the broken bars. 

The increment of the rotor broken bars decreases the induced rotor voltage and 

current. 

7.1.2  Voltage Signals 

The broken rotor bar fault has no apparent effect that can be noticed by 

scanning the voltage figures. Figure 7.3 illustrates the motor phase voltages for 

a faulty rotor at different loadings where no change can be seen by the eye 

alone. Also‎ voltages‎ don’t‎ change‎ for‎ fixed‎ load‎ for‎ healthy‎ or‎ faulted‎ rotor‎

motor with different severities. 
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Figure ‎7.3 Effects of Broken Bars on Motor Voltages 

In general, for the normal viewer it could be said that while the motor voltage is 

noticeably unaffected by rotor faults and loading, such effects are reflected in 

the current signal. The same principle applies to healthy motors as in Figure 7.4 

  

Figure ‎7.4 Healthy Motor Currents and Voltages at Different Loadings 

In practice, rotor faults have an effect on the line voltage and it can be seen 

through signal treatments and processing. 
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7.1.3 Speed Signals 

The motor rotor speed is proportional to the load. As the load increases, the line 

current follows and that leads to the increase in speed. Figure 7.5 illustrates the 

motor speed signal for different loads and state conditions. 

  

Figure ‎7.5 Effect of Rotor Fault on Motor Speed 

As shown in the left hand part of Figure 7.5, it should be noted that for the same 

load, the speed of a healthy rotor is much higher than that of a defected one 

because the rotor induced voltage is linked to the density of the magnetic field 

which has been lowered by the leakage occurring due to the rotor bar breakage. 

7.1.4 Vibration Signals 

The accelerometer output signal increases in amplitude with an increase in both 

load (for the same type of fault) and fault severity when compared to the healthy 

state at the same loading as in Figure 7.6. 

A rotor with broken bars causes the vibration signal amplitude to increase 

compared to a healthy rotor at the same load.  
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The vibration increases with the increase of the load for the faulty motor. 

 
 

Figure ‎7.6 Vibration Signals at Various Health Conditions and Loads 

7.2 Bearing Fault 

The bearing test is done in three phases, a healthy and two faulty situations. 

The faults seeded and tested are abrasive or generalized roughness, and outer 

race defects. In the outer race, a test hole is made with a rectangular shape of 

1.5 mm width and 30 mm length.  

7.2.1 Current Signals 

For the healthy motor at no load the current is of around 13 A peak. But when 

the motor is loaded the current withdrawal has increased, as expected, and it 

reached around 20 A peak value for full load, as shown in Figures 7.7 and 7.8. 

The values of line currents are comparable regardless of the bearing state 

being healthy or not, for the same load magnitudes. Also, for the same load, line 

current is preserved for both outer race and cage faults as in Figure 7.7 where 

the proportioned relation of the load and line current is the norm. 
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Figure ‎7.7 Motor Currents For Different Bearing Conditions 

  

Figure ‎7.8 Motor Current with Bearing Defects at Different Loads 

7.2.2 Vibration Signals 

While studying bearing fault it worth looking at the vibration signal. The 

amplitude of the recorded signal increases significantly when the motor is 

loaded as in Figures 7.9 and 7.10.  

The vibration signal amplitude has obviously increased and the level of vibration 

is almost doubled when the motor is 80% loaded compared to no load situation.  
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As in Figure 7.10, the vibration signal of outer race defect has ahigher 

amplitude compared to the abrasive or generalized defect if compared at the 

same loading condition. Though it is expensive and not always easy to 

implement, vibration is the best medium to detect bearing faults.  

  

Figure ‎7.9 Vibration Signals of Healthy Motor at 0 and 40 Nm Loads 

  

Figure ‎7.10 Vibration Signals for Bearing Defects at Different Loads 

7.3 Inter-Turns Stator Fault 

In this section, figures of motor currents during shorted turns fault testing are 

presented. The line currents, as in Figure 7.11 show a real linear change with 

the increment of the number of shorted stator turns. 
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Figure ‎7.11 Number of Shorted Turns Versus Phase Current 

The plots of Figure 7.12 show that the change in current is not noticeable when 

the motor is loaded with equal loadings even the shorted turns varied from 0 to 

14 stator turns. In fact, there is a change in some current parameters that can 

be calculated like negative sequence currents and current imbalance values. 

For currents, as the testing was done at 45 Nm load, there was no change in 

the current that can be detected by eye, but in fact the RMS value of the 

currents changes with the change of number of shorted turns. 

7.4 Eccentricity Fault 

The signals of two types of eccentricity are illustrated and compared to those of 

the healthy cases in the following sections. 

7.4.1 Voltage Responses 

Figure 7.13 shows the voltage time responses of the healthy and faulty motor 

with dynamic eccentricity at different loading conditions.  
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Figure ‎7.12 Motor Line Current of 0,  and14 Shorted Turns 

Voltages have exhibited no changes for faulty motors compared to the healthy 

ones at different levels of loadings. 

  

Figure ‎7.13 Motor Phase Voltages at Different Eccentricities and Loadings 

7.4.2 Eccentricity Current Signals 

Figure 7.14 illustrates the current responses for the healthy motor and for both 

static and dynamic eccentricities with different loadings. 
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Figure ‎7.14 Motor Line Currents with Different Types of Eccentricity and Loads 

Eccentricity currents are not exceptional from their counterparts of other faults. 

They are only affected by the loading amount not the fault type when viewing 

them with the eye. 

7.4.3 Vibration Signals 

Figure 7.15 shows different cases of vibration signals for two eccentricity types 

at different loading conditions.  
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Figure ‎7.15 Accelerometer Outputs of Healthy and Eccentric Motor 

The amplitudes of the acceleration signal increases with the increment of the 

load applied to the motor and it got even higher when the rotor gets eccentric 

dynamically compared to the static eccentricity at the same load. The difference 

is noticeable between unloaded and fully loaded motors signals especially for 

the dynamic eccentricity fault.  
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7.4.4 Speed Signals 

The speed of the motor has a direct proportion with the load and line current. As 

the load of the motor increases, an increase in the current follows which result 

in an increase in speed slip which means a decrease of the rotor speed. In 

Figure 7.16, it is noticeable that the oscillation of the rotor speed for a full 

loaded motor (red coloured) is higher compared to that of the unloaded machine 

(green coloured). 

  

Figure ‎7.16 Speed Signals for Static and Dynamic Eccentricities at Different Loads 

7.5 Power spectral Density Plot 

As the effect of faults cannot be noticed by the eye, signals are taken through 

different signal processing in order to investigate the fault presence. 

The spectra include data signatures directly related to the faults under 

observation. There are also some statistical features can be extracted from 

frequency domain such as frequency centre, root mean square frequency and 

root variance frequency. 
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 Power spectral density (PSD) analysis is widely used technique for IMs fault 

detection. The PSD provides the power content of different frequencies and 

their amplitudes in a signal. It describes how the power of a signal or time series 

is distributed with frequency.  It is a positive real function of a frequency variable 

associated with a stationary stochastic process, or a deterministic function of 

time, which has dimensions of power per hertz (Hz), or energy per hertz [181].  

As the subject of the thesis is devoted to solely using motor currents signature 

techniques for condition monitoring, the spectrums plotted here are of current 

signals. 

7.5.1 Rotor Fault 

The spectrums of the motor line current for healthy and faulty rotors are 

presented in Figure 7.17. The fault harmonics on the spectrum are located 

according to the following equation: 

fSB = (1± 2KS)fs ‎7.1 

S=(NS-NR)/NS ‎7.2 

NS= 120* fs/P ‎7.3 

Where:  

fSB: harmonic fault frequency, K=1, 2, 3 ..., S: per unit slip, NS : motor 

synchronous speed, NR : rotor mechanical speed, fs : supply frequency (50 Hz), 

and P:  number of the stator poles.  

The tested motor is a 4 pole, and runs at speed of 1442 rpm and 49.6 Nm load. 

For K=7, the faults harmonics are located at 46 Hz and 54 Hz. 

http://en.wikipedia.org/wiki/Stationary_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Hertz
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Figure ‎7.17 Spectrum For Different Rotor Fault Degrees at Full Load 

It is apparent that the amplitude corresponding to both frequencies in a direct 

proportionality with the severity of the fault. For a 1 bar with a hole of 2.5 mm 

hole, the amplitude is peaking at -150 dB/ Hz to jump to (-120) dB/Hz, for 2 

defected bar fault. 

For better comparison, three plots were put on the same graph. Figure 7.18 

shows the difference in amplitude between the healthy and faulty cases and 

same load is applied.The response to the fault is noticable. 
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Figure ‎7.18 Spectrum For Healthy and Brorken Bars at 80% Load 

It could be concluded that, the fault charaterstic amplitude inceeases when the 

either fault severity or load increases or both. 

7.5.2 Bearings Fault 

For the generalized roughness defect (abrasive test) is nearly unresearched 

even it is common fault in industry [70]. The reason behind that is this fault has 

no current or voltage characteristic frequencies [181]. Figure 7.19 shows 

spectra for such defect. 

Figure 7.20 shows the spectrums of the motor line current for healthy and faulty 

bearing with outer race defect. The fault harmonics on the current spectrum in 

respect to the characteristic vibration frequency are calculated by Equations 7.4 

and 7.5.  
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Figure ‎7.19 Current PSD of Healthy and Generalized Roughness Fault 

fOD =(n* NR)/2(1- BD*cos‎α/PD)  ‎7.4 

fCOD = | fs ±m fOD |  ‎7.5 

Where:  

fOD :  Harmonic outer race fault vibration frequency, n: Number of balls, NR: 

Rotor speed in rpm, PD : Pitch diameter, BD : Ball Diameter, α:‎ Ball‎ contact‎

angle (typically 0 degrees) [70],   fCOD: fault  characteristic current frequency, and 

m : Positive integer multiplier. 

Bearing data needed for these equations is normally supplied by the 

manufacturer, but when such data is not available and for simplicity, the 

harmonic fault frequency in the current spectrum can be located according to 

equation 7.6 provided the number of the bearing balls is between 6 and 12 

0 0.5 1 1.5 2 2.5
-150

-100

-50

0

Frequency (kHz)

P
o
w

e
r/

fr
e

q
u

e
n
c
y
 (

d
B

/H
z
)

PSD for health and generalized roughness test @ 40 Nm

 

 

Faulty

Healthy



 

140 

 

balls. The used bearing is stainless steel deep groove SKF explorer 6208 which 

has 9 balls.  

fOD = 0.4 x n x NR ‎7.6 

 

Figure ‎7.20 Spectrum For Healthy and Outer Race Way Bearing Fault at Full Load 

7.6 Summary 

The plots of some signals that were recorded during the testing phase of this 

project were presented in the time domain. The spectrums of the current for the 

healthy as well as the faulty motors were presented in the frequency domain as 

power spectral density plots. Such plots help having clear view of the location of 

the fault harmonics. Current is the medium to be used for monitoring the motor 

health and hence the plots were limited to this method. 
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Chapter 8. Monitoring System  

In this study, stator current data from the units under test is collected from both 

healthy and faulty same model set of induction machines. The faults include 

broken rotor bars, bearing faults, inter-turn stator fault, and rotor eccentricity. 

The dc component was removed from the recorded current data. The detailed 

implementation of the detection system is discussed. The method combines 

statistical calculations for features generation and machine learning for fault 

detection and diagnosis.  

The application investigated here is the case when the motors run at steady 

state‎and‎don’t‎experience‎any‎harsh‎change‎of‎speed‎or‎loading. 

In this chapter, a technique to detect faults in induction machines by statistical 

analysis of stator currents is presented. By referring changes in relevant 

statistical features values to certain faults, defects in induction motors can be 

detected. 

8.1 Methodology  

The architecture of the proposed system is shown in Figure 8.1. The original 

stator current signals are obtained from the motor supplying lines through 

current sensors of the four induction machines.  

The features to be used for classifications are extracted from the database 

using statistical and frequency domain parameters, that is mean, RMS, 

quadratic mean, median, variance,  standard deviation, peak value, standard 
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error of the mean deviation, kurtosis, skewness, crest factor,  minimum value, 

maximum value, sum, range, imbalance current magnitude, and maximum  

deflection. The normalized PSD magnitude is used for rotor fault only. 

The role of SVM is to decide on which faults arise from measurable quantities 

and how severe that faults depending on the classification results. 

8.2 Feature Extraction 

Feature extraction of the monitored signal is a crucial step in any fault detection 

and diagnosis system. The final diagnosis results depend upon how precise and 

accurate the features are. Thus, the feature extraction should preserve the 

decisive information about the fault that helps in precise decision making [182]. 

On-line‎diagnosis‎systems’‎popularity‎comes‎from‎their‎ability‎to‎detect‎incipient‎

faults at the very first moments of their build up. However, every care must be 

taken in choosing an adequate sampling rate, since a small sampling rate is 

usually deficient for diagnosis, and a large sampling rate is a burden for 

transferring and calculation and time consuming [182]. As the feature extraction 

is the leading step of the detection process, it is a critical initial step in any 

monitoring and fault diagnosis system.  
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Figure ‎8.1 Architecture of The Designed Monitoring System 

 

In conventional condition monitoring, current is the most commonly used for 

induction machines condition monitoring analysis in frequency domain through 

Fast Fourier Transform (FFT) which is suited for stationary processes. In this 
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work, the statistical features of the signals are extracted from the motor current 

time domain. 

A time domain signal can be used for fault detection and diagnosis. In the 

condition monitoring field, statistical methods have been widely used and they 

can reflect the physical content of time domain data [16]. Statistical analysis of 

motor current signals provides good indicators that help in estimating the 

machine health. The following statistical features are extracted and used for the 

monitoring process: 

1. Mean (µ): is the arithmetic average of a series of samples X, where n is the 

size of samples. 

       
‎8.1 

2. Root Mean Squared Value (RMS): is the square root of the mean of the 

squared values of samples. 

                  ‎8.2 

3. Quadratic Mean (QM): is the mean of the squared root of the summation of 

the squared series values. 

               ‎8.3 

4. Median (MD): is the middle point of the data array after arranging the data 

in an order, from low to high or high to low. 
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5. Variance (Sigma squared): is the average of the squares of the distance 

each value is from the mean. The shortcut formulas for both variance and 

standard deviation are given by [183]: 

    
            

      
 ‎8.4 

6. Standard Deviation (Sd): a measure of the effective energy or power 

content of the signal and clearly indicates deterioration in the monitored 

condition. It is the square root of the variance.  

Sd σ = var1/2 = [ variance]1/2 

 

‎8.5 

7. The peak value is calculated as the mean of the two peaks (the max and 

min) of the whole cycles in the samples series. 

        
             

  
 

 

   

            

‎8.6 

N (number of cycles) = supply freq x length of sampling time. 

N= 50 (cycles/sec) X 5 (sec) = 250 cycles. 

8. Standard Error of the Mean (Sdm): The standard error of the mean is the 

standard deviation for the distribution of errors or random fluctuations that 

are likely to occur in estimating the mean from sample means in a 

particular situation. the following formula is used to estimate the standard 

error of the mean from a single sample [184]: 

Sdm=Sd/(n1/2) ‎8.7 
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9. Kurtosis: Kurtosis indicates the flatness or the spikiness of the signal. Its 

value is very low for normal condition of the motor and high for faulty 

condition due to the spiky nature of the signal. 

          
      

               
 
       

  
  

       

          
 

‎8.8 

10. Skewness (SK): It characterises the degree of asymmetry of a distribution 

around its mean. The following formula was used for computation of 

skewness: 

              
 

     
 
      

  
 

‎8.9 

11. Crest Factor (CF): It is the ratio of peak value to the RMS value [185] 

                  
     

   
 

‎8.10 

12. Minimum value: It refers to the minimum signal point value in a given 

signal.  

13. Maximum value: It refers to the maximum point value in a given signal. 

14. Sum: It is the sum of all signal point values in a given signal. 

15. Range: It refers to the difference between maximum and minimum signal 

point values for a given signal. 

16. Imbalance Current Magnitude (Iimb): Calculates the imbalance magnitude 

between the different phases of a 3 phase motor currents. 

17. Max Deflection (DelMax): indicates the maximum deflection magnitude of 

the current lines from the average RMS current value.  
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8.3 Features Selection 

Features selection means eliminating features that do not contribute to the 

accuracy of the classifier or have negligible effect on the SVM success 

classifying rate. It is claimed that features selection doesn’t improve the 

accuracy of the SVMs, but its importance is mainly lay in obtaining better 

understanding of the data [186]. 

A feature is considered as good or relevant when its discriminating ability is high 

among the classes. Ideally a good feature is characterised by its value does not 

vary much within a class, but It varies much among the different classes [16].  

Good features are having the largest information contents about the fault 

compared to their counterparts.  

The number of features to be chosen for fault classification is not limited as 

SVM classification efficiency does not depend on the number of features of the 

classified entities. This property enables SVM to be a promising approach for 

fault diagnostics [16]. A full flow chart of the proposed diagnostic engine is 

illustrated in Figure 8.2. 

During this work, it has been found that feature selection is equally important as 

feature extraction. By choosing the relevant features that truly represent certain 

fault(s), the classification accuracy can be increased in most cases by certain 

degrees as high as the double. 
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Figure ‎8.2 Flow Chart of The Proposed Diagnostic System 

8.4 Support Vector Machines  

Based on results from statistical learning theory and as a state-of-the-art 

classification method, SVM is introduced in 1992 by Boser, Guyon, and Vapnik.  

SVMs are gaining popularity in many fields and disciplines from bioinformatics 

to science and engineering due to many attractive features such as accuracy 

and efficiency in modelling and empirical performance [187-189]. SVMs are 

replacing neural networks in a variety of fields, including engineering, 

information retrieval, and bioinformatics [189], and they belong to the general 

category of kernel methods [189].  
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According to [190], SVMs are defined as learning systems that use a hypothesis 

space of linear functions in a high dimensional feature space. This learning 

strategy is a principled and very powerful method that in the few years since its 

introduction in‎the‎90’s has already outperformed most other systems in a wide 

variety of applications. 

Support Vector Machine has the ability to process data without losing previous 

knowledge. This property makes SVM suitable for online condition monitoring 

and fault diagnosis in real time applications. Moreover, due to improved 

computing power and the development of fast learning algorithms, it is now 

possible to train SVM in real-world applications [191]. 

SVMs have a drawback of having the attitude of black boxes in their 

performance that they do not provide the user much information on why a 

particular prediction was made [186]. 

 The work represented in this chapter is based on using LIBSVM toolbox [192] 

for SVM classification and regression. It solves many classifications. This 

software provides an automatic model selection tool for Cross-SVM 

classification. 

8.5 Principle of SVMs 

SVM is considered as a binary output classifier where classification depends on 

the separating the tested data into two main classes. The two sets of data that 

can be separated using different linear hyperplanes are shown in Figure 8.3. 

Out of the many separating hyperplanes, only one (the dotted line) can provide 
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the maximum margin for separation; finding this hyperplane is the basic working 

principle of SVMs. i.e. finding the hyperplane that provides the maximum 

separating distance between the two data sets under test. Margin represents 

the distance between the nearest training point and the separating hyperplane.  

Data set 2

Data set 1

Hyperplanes

 

Figure ‎8.3 Two Data Sets with Different Hyperplanes 

The classification task usually involves utilization of two sets of data that is 

training and testing data. Raw data is divided into two sets of training and 

testing data. SVM finds the optimal separating hyperplane that provides the 

best separation of the data and then maximizes the margin between these two 

classes. It takes the closest vectors of both classes and then maximizes the gap 

between them assuming that they are linearly separated, as in Figure 8.4. 

Training data consists of data samples which besides their attributes or feature 

values are assigned one target value called class label. The ultimate goal of the 
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SVM algorithm is to produce a model that predicts the class label of the testing 

data instances when only it is fed with the data features. 

 

Figure ‎8.4 A Linear Support Vector Machine  

Given a training data set with n training examples, (xi, yi),‎i=‎1,‎2,‎…,‎n, where 

each example has d inputs i.e. each xi is a list of d real numbers; (xi ϵ R
d) and 

y=±1 , and yi are the labels or targets of the samples, (R) is real numbers. The 

hyperplanes are characterized by a vector (w), which is orthogonal to the 

hyperplane, and a constant (b). The hyperplane that separates the data is 

expressed by: 

w. x + b = 0 ‎8.11 

The canonical hyperplane which separates the data from the hyperplane 

expressed by Equation 8.11 by a distance of at least 1 should satisfy the 

following conditions. 
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W . xi +  b‎≥‎+1‎‎when‎yi = +1 ‎8.12 

W . xi +  b‎≤‎-1    when yi = -1 ‎8.13 

The training vectors are mapped into high dimensional space.  A separation 

hyper plane is found which maximizes the margin between the two separated 

classes. The process requires the solution of the following optimization problem: 

        

 

 
          

 

   

 

‎8.14 

Subject to: yi (w
TФ(xi)-b≥1-        ≥0 

 The training vectors are mapped into a higher dimensional (feature) space by 

the function (Ф) in which the separation of these training samples is linear and 

easies than the separation in the original dimensional (input) space. C is called 

the penalty parameter of the error or the soft margin and    is the margin error 

or slack. The final decision function will be in the form: 

        

 

   

             

‎8.15 

Where‎α‎is‎a‎coefficient‎associated‎with‎each‎training‎sample‎and‎known as the 

dual representation of the decision boundary. The parameters‎α, b and w are 

obtained through the optimization process. (x) is the new sample to be 

classified. 
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8.6 SVM Kernels 

SVMs are built around the concept of SVMs-kernels. Kernel machines provide a 

modular framework that can be adapted to different tasks and domains by the 

choice of the kernel function and the base algorithm.  

SVM uses kernels for solving the learning issues. SVM utilises few types of 

kernels such as linear, polynomial and radial basis function (RBF). Nonlinear 

kernels functions are used to map the input data to a high dimensional feature 

space, where the data can become linearly separable [189]. Choosing the best 

kernel type is a crucial part of the classification process and that is done 

experimentally i.e. by trying different kernels and choosing the one offers the 

best results.  

SVMs are considered as an excellent classifier for binary classes, but can be 

used in solving multi-class problems with multi-class extensions where the 

multiclass problem is divided in a series of two class projects and that is known 

as multilevel or multiclass classification.SVM can be upgraded to be multiclass 

classifier. 

The kernel function in Equation 8.15 is extremely important to achieve good 

SVM classification. Choosing the right kernel and tuning its parameters, which 

is done experimentally, has a direct impact on the final result. There are many 

available kernel functions. Here are three of the most used kernels: 

 Linear: K(x,xi) = xT xi  



 

154 

 

 Polynomial: K(x,xi) = ( ˠ xT xi+1)d, ˠ>0 

 Radial Basis Function (RBF):  K(x,xi) = exp (-ˠ | |x- xi ||
2), ˠ>0 

Where: d is the degree of the polynomial and equals 1 for the linear 

kernel. The parameter ˠ controls the width of the Gaussian and ||x|| is 

the norm of x. 

8.7 SVM Testing 

For testing, the following two methods are used. Leave-One-Out (LOO) and N-

Fold Cross-Validation 

In N-fold cross-validation, the data sample set is divided into complementary N-

subsets. The first subset is used for testing the model that trained on the 

remaining subsets N-1 subsets. The analysis is performed upon one subset 

which called the training set. Validation analysis is performed on the other 

subset which is called the validation set or testing set.  

The process is repeated for next subset and so. To reduce variability, the above 

procedure is run for multiple iterations upon the different N partitions of the 

whole set, and the validation results are averaged over the rounds. This 

process is repeated for N rounds. 

 LOO is a special case of this method. When N equals the number of total 

samples, then the method becomes LOO technique. Despite its simplicity, it 

remains the method of choice [193].  

http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Complement_(set_theory)
http://en.wikipedia.org/wiki/Variance
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8.8 Confusion Matrix 

Confusion matrix is a table-format layout that allows the user to have a clear 

picture of the algorithm performance. The matrix columns represent the 

instance of the predicted class, while each row represents the instances in an 

actual class. It shows the accuracy of the classification especially when the 

classes are unbalanced (instances of the classes are unequal). 

For example, if the result of 3 classes classification A, B, and C is as follows: 

Classes A, B, and C have 10, 4 and 10 samples respectively. Out of 10 

samples of class A, only 5 were classified as A, 4 as B and 1 as C. For class B, 

3 are correctly classified, and 1 as A. For class C, only 60% (6 out of 10) of its 

samples were correctly classified, 30% as B and 10% as A. The confusion 

matrix will appear as in Figure 8.5 

A
c
tu

a
l 
C

la
s
s
 A 5 4 1 

B 1 3 0 

C 1 3 6 

 A B C 

 Predicted Class 

 Figure ‎8.5 Example Confusion Matrix 

8.9 Summary 

The chapter has given an overview of the designed detection and diagnosis 

system components. The statistical features and SVM and its principle of work 

were reviewed. The chapter ends with a brief description of confusion matrix as 

an indicator of the classification result accuracy. 
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Chapter 9. Experimental Results 

This chapter looks into the classification results of four types of faults which 

were seeded in belt coupled motors. First, rotor broken bars result is introduced. 

Next, bearing fault classification is discussed. Then, stator inter-turn short 

circuit, and air gap eccentricity faults SVM outputs are reviewed.  

Part of the contribution of this work is to propose a toolbox; that can detect the 

presence of a fault and determine its severity when possible. The classification 

results of the belt couples motor are compared with those of direct coupled 

motor for verification. 

9.1 Graphic User Interface 

Wikipedia has defined Graphic User Interface (GUI) as an interface that allows 

easy interaction between user and electronic devices in general and where  the 

information are available to the user through graphical icons and visual 

indicators opposed to text-based interfaces or typed command labels. 

For easier usage of CBM, a GUI was implemented using Matlab. The GUI 

allows the user to choose the fault to be checked for, the classifier and class to 

use, and the type of kernels to be applied. 

9.2 Current Based Monitoring Toolbox 

One of the aims of the project is to build an induction motor Current Based 

Monitoring (CBM) toolbox which receives three phase motor current and 

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Icon_(computing)
http://en.wikipedia.org/wiki/Text-based_user_interface
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outputs the condition of the motor of being healthy or having one of four faults. 

The process goes through the following four phases: 

Birth data; first time that the motor is installed and connected and set by the 

operator, the tool records the healthy signal. This is the condition monitoring 

starting point. 

Running time; in prescribed intervals and depending on the operating 

conditions, the current signal is monitored and a set of current signals are 

recorded for processing. 

Feature generation: Through using time domain features of the input current 

signals, the toolbox generates the relevant features of all the faults under 

observation. 

Fault detection and diagnosis: The toolbox determines the type of the fault that 

has been detected. The fault that can be detected would be assigned ultimately 

to one of four categories, broken rotor bars, bearing fault, air gap eccentricity, or 

inter-turn stator fault. When possible, the toolbox determines the fault severity.  

Figure 9.1 shows a snapshot of the toolbox screen where it allows the choice of 

the fault to be tested, the number of classes, classifier, kernel, and the testing 

mode to use. It provides also the success rate, table of features, and the 

classifier predicted result. Depending on the success rates through the 

confusion matrix, the operator can decide on the condition of the motor 

monitored. 
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9.3 Toolbox Features 

1. Using current makes the tool reliable and the system is non intrusive to 

the motor. Such application is realized in offshore oil stations or in certain 

situation where the motor is situated in harsh environments or in places 

with very limited space or where the motor is not easily accessible. 

2. Using one type of signals i.e. current makes the system cheaper as no 

expensive sensors, transducers, or extra components are required. 

3. Fast as the running time of the algorithm takes few minutes. This allows 

the user to decide the right time for the required maintenance as the fault 

is detected immediately. 

 

Figure ‎9.1 Snapshot of The Toolbox Screen 

9.4 Diagnosis Process 

Detecting the incipient fault alarms the need for the right maintenance action to 

be taken and that is the main purpose of the monitoring. Detecting the fault 

presence represents the core of the process and that is fulfils the target, but 
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determination of the fault severity enables the user to have a precise view of the 

machine health which helps in the repair scheduling. 

The detection and diagnosis is done through the following steps. 

1. Healthy readings are recorded to be used as a reference and labelled as 

class1 samples. 

2. For monitoring, samples are recorded and labelled as class 2. 

3. If the SVM output shows high success rate for class 2 that shows a high 

probability of fault presence. For example, for the rotor case the success 

rate for class 2 is 100% which indicates a definite rotor fault. And can be 

read directly from the rotor confusion matrix. 

4. In case of detecting a fault and monitor the progress of it, another set of 

data is recorded in a later time and labelled as class3. The classification 

success rate for this class. Two classes classification is fine enough to 

prove the presence of a fault and begin maintenance scheduling. 

5. During each cycle of monitoring, the process has to be run 6 times for 

the 6 monitored faults. 

9.5 Rotor Fault Results 

The DC component of the three current signals was stripped off, and the 

different features listed in section 8.3 were calculated. Each feature is 

calculated for every line current of the three.  For each fault the most relevant 

features were chosen.  
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For a better representation and to avoid variability, the mean value of the three 

currents features is calculated and considered as the main feature as in 

equation 9.1. 

RMS = (RMS(i1)+ RMS(i2)+ RMS(i3) ) / 3      ‎9.1 

Figure 9.2 and Figure 9.3 show the stacked plot of range and RMS as rotor fault 

features respectively. Five samples or examples are used for each of the 

classes. The fault is a one broken bar with 2.5 mm diameter hole. The linearity 

of the features behavior in the first figure of the features values is noticeable, 

where the features are changing within the same class due to the loading effect. 

Both of the features maintained a linear relation with the load value.  

An adequate margin occurs when features’ values for both classes are 

compared which leads to an easy differentiation between the healthy and faulty 

classes. Hence, both of these features are considered as good representatives 

of the BRB fault. The behavior of the PSD feature in Figure 9.4 is nonlinear so 

the feature was expelled from those chosen to represent the broken rotor bars 

fault. 

The total of 12 features was used for the classification methods which are: 

Maximum value, range, peak, QM, variation, standard deviation, standard error, 

RMS, crest factor, kurtosis, imbalance value, max deflection from the RMS. A 

sample of the rotor fault features values are shown in Table 9.1. 
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Figure ‎9.2 The “Range” Feature For Rotor Fault 

 

Figure ‎9.3 The RMS Feature For Rotor Fault 

 

Figure ‎9.4 The Normalized PSD Feature for Rotor Fault 
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Table ‎9.1 Sample of The Features for Rotor Fault 

Sample Names Max Min Sum Range Peak value Median QM Variation Std Deviation 

2103_BELT_M1_H_0Nm_20kHz_001 13.2793 -13.2388 -3.8E-11 26.5181 11.8622 0.0006 0.0283 80.5595 8.9621 

2103_BELT_M1_H_30Nm_20kHz_001 17.5033 -17.5007 1.11E-10 35.0039 15.6244 -0.0021 0.0384 147.6414 12.1396 

2103_BELT_M1_H_35Nm_20kHz_001 19.0248 -19.0599 1.08E-10 38.0848 16.9370 -0.0075 0.0414 171.5801 13.0903 

2103_BELT_M1_H_40Nm_20kHz_001 20.6317 -20.5744 2.63E-10 41.2061 18.3589 -0.0072 0.0447 199.7264 14.1222 

2103_BELT_M1_H_45Nm_20kHz_001 22.2160 -22.2615 4.97E-11 44.4775 19.8137 -0.0025 0.0482 232.4093 15.2368 

2103_BELT_M1_H_49.6Nm_20kHz_001 23.8578 -23.8411 8.32E-11 47.6989 21.2597 -0.0160 0.0516 266.1460 16.3054 

2403_M1_BELT_ROTOR_3.5mm_0Nm_20kHz_001 12.8893 -12.8667 -2.3E-10 25.7560 11.5452 0.0052 0.0276 76.0179 8.7188 

2403_M1_BELT_ROTOR_3.5mm_30Nm_20kHz_001 17.1840 -17.1997 -7.3E-13 34.3837 15.4029 -0.0099 0.0377 142.1421 11.9220 

2403_M1_BELT_ROTOR_3.5mm_35Nm_20kHz_001 18.7865 -18.7469 -6.8E-11 37.5335 16.7566 -0.0005 0.0408 166.5086 12.9037 

2403_M1_BELT_ROTOR_3.5mm_40Nm_20kHz_001 20.3786 -20.3681 5.73E-11 40.7467 18.1813 -0.0049 0.0440 193.8139 13.9213 

2403_M1_BELT_ROTOR_3.5mm_45Nm_20kHz_001 22.0185 -22.0387 -9.5E-11 44.0573 19.6855 -0.0027 0.0476 226.1952 15.0393 

2403_M1_BELT_ROTOR_3.5mm_49.6Nm_20kHz_001 23.7405 -23.7976 8.13E-12 47.5381 21.1261 -0.0130 0.0510 260.0795 16.1264 

2403_M1_BELT_ROTOR_4.5mm_0Nm_20kHz_001 13.2443 -13.2373 -1.4E-10 26.4816 11.8259 -0.0006 0.0284 80.8732 8.9925 

2403_M1_BELT_ROTOR_4.5mm_30Nm_20kHz_001 17.2434 -17.2862 -1E-10 34.5296 15.4389 0.0070 0.0378 142.8486 11.9512 

2403_M1_BELT_ROTOR_4.5mm_35Nm_20kHz_001 18.8430 -18.8472 8.47E-11 37.6902 16.8066 -0.0069 0.0411 168.8429 12.9932 

2403_M1_BELT_ROTOR_4.5mm_40Nm_20kHz_001 20.2656 -20.2865 -5.7E-12 40.5521 18.0954 0.0057 0.0440 193.2471 13.9000 

2403_M1_BELT_ROTOR_4.5mm_45Nm_20kHz_001 22.0362 -21.9441 1.52E-10 43.9803 19.5548 0.0109 0.0474 224.6086 14.9860 

2403_M1_BELT_ROTOR_4.5mm_49.6Nm_20kHz_001 23.6371 -23.6321 1.68E-10 47.2692 21.0401 -0.0064 0.0509 258.6481 16.0821 
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For choosing the right kernel, the experimental results of using different kernels 

are compared. Results illustrated in Table 9.2 are for 2 and 3 classes using 

rotor balanced samples, and LOO validation using 3 different kernels.  

It has been found that the RBF is the best among the three kernels and that 

applies to the rest of faults. It is important to note that the SVM and kernel 

parameters C‎and‎gamma‎(ˠ)‎are‎set‎to‎unity.‎ 

Table ‎9.2 Rotor Classification Results Using Different Kernels 

Kernel  Linear Polynomial RBF 

 Accuracy Rate  
2 Classes 100% 100% 100% 

3 Classes 33.33% 33.33% 66.67% 

The results for 2 classes with balanced and unbalanced samples are shown in 

Table 9.3. An accuracy rate of 100% was achieved for both cases using SVM 

and LOO validation approach. 

Results represent 18 samples; 6 samples per class; Healthy as class 1, one 

BRB with 2.5 mm hole as class 2, and one BRB with 6mm hole as class 3.  

Figure 9.5 shows the confusion matrix for the rotor fault result. It shows that all 

the healthy samples are correctly classified and the faulty samples also have 

been 100% predicted which indicates a definite presence of a rotor fault. 

Usually and in most cases RBF provides the best results among the three 

kernels. Even the accuracy has decreased for the 3 classes’‎case,‎but‎RBF‎is‎

still‎ produces‎ the‎best‎ results.‎ The‎ result‎ of‎ 3‎ classes’‎ classification‎ could‎ be‎
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considered as a confirmation index or an indication of the fault progression. But 

the fault presence is indicated by the 2 classes result.  

Table ‎9.3 Classification Result for Rotor Fault  

 

Balanced Samples Unbalanced Samples 

Sample Names Class Predicted 
Labels 

Class Predicted 
Labels 

2103_BELT_M1_H_0Nm_20kHz_001 1 1 1 1 

2103_BELT_M1_H_30Nm_20kHz_001 1 1 1 1 

2103_BELT_M1_H_35Nm_20kHz_001 1 1 1 1 

2103_BELT_M1_H_40Nm_20kHz_001 1 1 1 1 

2103_BELT_M1_H_45Nm_20kHz_001 1 1 1 1 

2103_BELT_M1_H_49.6Nm_20kHz_001 1 1 1 1 

2303_M1_BELT_ROTOR_2.5mm_0Nm_20kHz_001 2 2 2 2 

2303_M1_BELT_ROTOR_2.5mm_30Nm_20kHz_001 2 2 2 2 

2303_M1_BELT_ROTOR_2.5mm_35Nm_20kHz_001 2 2 2 2 

2303_M1_BELT_ROTOR_2.5mm_40Nm_20kHz_001 2 2 2 2 

2303_M1_BELT_ROTOR_2.5mm_45Nm_20kHz_001 2 2 2 2 

2303_M1_BELT_ROTOR_2.5mm_49.6Nm_20kHz_001 2 2 2 2 

2503_M1_BELT_ROTOR_6mm_0Nm_20kHz_001 

  
2 2 

2503_M1_BELT_ROTOR_6mm_30Nm_20kHz_001 

  
2 2 

2503_M1_BELT_ROTOR_6mm_35Nm_20kHz_001 

  
2 2 

2503_M1_BELT_ROTOR_6mm_40Nm_20kHz_001 

  
2 2 

2503_M1_BELT_ROTOR_6mm_45Nm_20kHz_001 

  
2 2 

2503_M1_BELT_ROTOR_6mm_49.6Nm_20kHz_001 

  
2 2 
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Figure ‎9.5 Confusion Matrix for Rotor Fault 

9.6 Bearings Fault Results 

Bearings faults are known for being difficult to detect using MCSA. Two types of 

faults are studied in this section, roughness and outer race defects. Ten 

relevant features were chosen for the classification process which are: 

Maximum value, minimum value, range, peak value, quadratic mean, variance, 

standard deviation, standard error, kurtosis, and RMS.  

Bearings roughness is almost still a virgin area of research which is not 

explored. With SVM and LOO technique, an overall accuracy rate of 60% was 

achieved, as in Table 9.4, which could be considered as a good result as it is 

not common to use MCSA in bearings fault detection and especially for 

roughness. While the classification accuracy rate for the healthy samples is 

20%, 80% of the faulty samples were correctly classified. The features for both 

types of defects studied are displayed in Table 9.5. It worth noting that, the 
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sample may include some irrelevant features which were calculated before the 

features selection has taken place and that applies to all the faults. 

While it has been admitted in [181] that there is no characteristic frequency for 

this fault, the authors of [194] concluded that there is no possibility to detect 

roughness  through current or vibration monitoring. 

The recognition of the presence of the outer race fault is poor and the overall 

accuracy rate is about 10%. This result matches other references in the context 

that the current based FDD for this fault using MCSA cannot reach a significant 

level of detection [194].  

Table ‎9.4 Results for Roughness Fault  

Sample Names Class Predicted 
Labels 

SI_IMCM_0703_M2_BELT_50minsAbrasive_0Nm_20kHz_001 2 2 

SI_IMCM_0703_M2_BELT_50minsAbrasive_30Nm_20kHz_001 2 2 

SI_IMCM_0703_M2_BELT_50minsAbrasive_40Nm_20kHz_001 2 2 

SI_IMCM_0703_M2_BELT_50minsAbrasive_45Nm_20kHz_001 2 2 

SI_IMCM_0703_M2_BELT_50minsAbrasive_49.6Nm_20kHz_001 2 1 

SI_IMCM_2103_BELT_M2_H_0Nm_20kHz_001 1 2 

SI_IMCM_2103_BELT_M2_H_30Nm_20kHz_001 1 1 

SI_IMCM_2103_BELT_M2_H_40Nm_20kHz_001 1 2 

SI_IMCM_2103_BELT_M2_H_45Nm_20kHz_001 1 1 

SI_IMCM_2103_M2_BELT_H_49.6Nm_20kHz_001 1 2 
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Table ‎9.5 Sample Feaures for The Bearing Fault 

Sample Names Max Range Peak QM Variance Std Devtn Std Error RMS Crest Factor Kurtosis 

SI_IMCM_0703_M2_BELT_50minsAbrasive_0Nm_20kHz_001 13.1534 26.3398 11.8155 0.0285 81.7134 9.0277 0.0285 9.0277 1.4597 1.11E+28 

SI_IMCM_0703_M2_BELT_50minsAbrasive_30Nm_20kHz_001 17.4743 34.9661 15.7501 0.0385 148.4048 12.1745 0.0385 12.1744 1.4374 2.72E+28 

SI_IMCM_0703_M2_BELT_50minsAbrasive_35Nm_20kHz_001 18.9876 38.0145 17.0642 0.0416 173.3201 13.1566 0.0416 13.1566 1.4462 3.43E+28 

SI_IMCM_0703_M2_BELT_50minsAbrasive_40Nm_20kHz_001 20.4876 40.9778 18.4307 0.0448 200.5584 14.1538 0.0448 14.1537 1.4484 4.27E+28 

SI_IMCM_0703_M2_BELT_50minsAbrasive_45Nm_20kHz_001 22.1071 44.1910 19.8606 0.0482 232.4052 15.2381 0.0482 15.2380 1.4508 5.32E+28 

SI_IMCM_0703_M2_BELT_50minsAbrasive_49.6Nm_20kHz_001 23.6415 47.2732 21.1844 0.0515 265.5578 16.2896 0.0515 16.2895 1.4520 6.5E+28 

SI_IMCM_1403_BELT_M2_1.5mm_0Nm_20kHz_001 13.1717 26.3965 11.7621 0.0282 79.4987 8.9153 0.0282 8.9152 1.4854 1.07E+28 

SI_IMCM_1403_BELT_M2_1.5mm_30Nm_20kHz_001 17.3753 34.9580 15.5395 0.0381 145.2253 12.0496 0.0381 12.0496 1.4595 2.64E+28 

SI_IMCM_1403_BELT_M2_1.5mm_35Nm_20kHz_001 18.8947 37.9834 16.8872 0.0412 169.6456 13.0231 0.0412 13.0231 1.4652 3.33E+28 

SI_IMCM_1403_BELT_M2_1.5mm_40Nm_20kHz_001 20.4256 40.8319 18.2229 0.0443 196.5312 14.0167 0.0443 14.0166 1.4574 4.15E+28 

SI_IMCM_1403_BELT_M2_1.5mm_45Nm_20kHz_001 22.0863 44.1762 19.7105 0.0478 228.9580 15.1295 0.0478 15.1294 1.4629 5.21E+28 

SI_IMCM_1403_BELT_M2_1.5mm_49.6Nm_20kHz_001 23.6358 47.3124 21.1546 0.0512 262.3462 16.1965 0.0512 16.1964 1.4617 6.39E+28 

SI_IMCM_2103_BELT_M2_H_0Nm_20kHz_001 12.6063 25.1993 11.2711 0.0270 72.7998 8.5304 0.0270 8.5303 1.4776 9.36E+27 

SI_IMCM_2103_BELT_M2_H_30Nm_20kHz_001 17.0123 34.0135 15.2439 0.0375 140.6150 11.8557 0.0375 11.8556 1.4353 2.51E+28 

SI_IMCM_2103_BELT_M2_H_40Nm_20kHz_001 20.1269 40.2697 18.0468 0.0439 192.9680 13.8884 0.0439 13.8883 1.4503 4.04E+28 

SI_IMCM_2103_BELT_M2_H_45Nm_20kHz_001 22.1152 44.1086 19.6225 0.0476 226.5384 15.0499 0.0476 15.0499 1.4789 5.13E+28 

SI_IMCM_2103_M2_BELT_H_49.6Nm_20kHz_001 23.5384 47.1016 21.0731 0.0511 260.9171 16.1521 0.0511 16.1520 1.4594 6.34E+28 
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9.7 Inter-Turn Stator Fault Results 

Stator turns faults are known to be fast progressing, so the faster the fault is 

detected, the better result is. Fourteen different cases of shorted turns were 

studied which were divided into two groups; class 1 and class 2. 

Eleven features were used for the classification process which are: Mean, RMS, 

quadratic mean, variance, standard deviation, standard error of the mean 

deviation, kurtosis, minimum value, maximum value, imbalance current 

magnitude, and maximum deflection. 

Four healthy samples and seven faulty samples (with 1 to 7 shorted turns) are 

used for the 2 classes SVM. The stator phase is consisted of 210 turns which 

means the fault has to be detected if 3% or less of the phase turns are faulty. 

The overall classification accuracy rate is 63.63%. A sample of the stator fault 

features is shown in Table 9.6. 

The confusion matrix of Figure 9.6 shows that all the healthy samples were 

misclassified; whereas all the faulty samples have been correctly classified 

which indicates the presence of a fault and that should alarm the need for 

immediate check of motor stator. 
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Figure ‎9.6 Confusion Matrix for 2-ClassesStator Fault 

 

For 3 classes, four healthy and 14 faulty samples (with 1 to 14 shorted turns) 

are used. The overall accuracy rate has decreased to 50%. The 3 classes 

output is shown in Table 9.7. 

In general, the 2 classes result is a good measure for the presence of a fault 

and that requires the need for immediate checking of the motor especially in the 

case of stator where the fault progresses very fast 
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Table ‎9.6 Sample of The Inter-Turn Stator Fault Features 

Sample Names Max Min Range QM Variation 
Standard 

Deviation 

Standard 

Error 
RMS imb Del Max 

00 SI_IMCM_0903_M3_BELT_STATOR_0T_45Nm_20kHz_001 22.032 -21.959 43.991 0.048 228.745 15.102 0.048 15.102 7.678 14.494 

00 SI_IMCM_0903_M3_BELT_STATOR_NOBOX_45Nm_20kHz_001 22.105 -22.053 44.159 0.048 228.583 15.100 0.048 15.100 6.989 13.192 

00 SI_IMCM_1003_M3_BELT_STATOR_0T_45Nm_20kHz_001 21.965 -21.919 43.884 0.048 227.379 15.076 0.048 15.076 2.635 4.965 

00 SI_IMCM_1003_M3_BELT_STATOR_NOBOX_45Nm_20kHz_001 21.971 -21.931 43.902 0.048 227.207 15.071 0.048 15.070 2.677 5.043 

01 SI_IMCM_0903_M3_BELT_STATOR_1T_45Nm_20kHz_001 22.062 -22.023 44.084 0.048 229.020 15.116 0.048 15.116 6.832 12.909 

02 SI_IMCM_0903_M3_BELT_STATOR_2T_45Nm_20kHz_001 22.083 -22.079 44.161 0.048 229.499 15.136 0.048 15.136 5.851 11.069 

03 SI_IMCM_0903_M3_BELT_STATOR_3T_45Nm_20kHz_001 22.095 -22.067 44.161 0.048 229.414 15.137 0.048 15.137 4.841 9.159 

04 SI_IMCM_0903_M3_BELT_STATOR_4T_45Nm_20kHz_001 22.168 -22.157 44.325 0.048 230.264 15.167 0.048 15.167 4.294 8.140 

05 SI_IMCM_0903_M3_BELT_STATOR_5T_45Nm_20kHz_001 22.259 -22.264 44.522 0.048 231.504 15.210 0.048 15.210 3.304 6.282 

06 SI_IMCM_0903_M3_BELT_STATOR_6T_45Nm_20kHz_001 22.312 -22.264 44.576 0.048 232.518 15.245 0.048 15.244 3.192 6.083 

07 SI_IMCM_0903_M3_BELT_STATOR_7T_45Nm_20kHz_001 22.326 -22.322 44.648 0.048 233.353 15.273 0.048 15.273 2.737 5.224 
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Table ‎9.7 SVM Output for 3 Classes Stator Fault 

Sample Names Class Predicted labels 

00_SI_IMCM_0903_M3_BELT_STATOR_0T_45Nm_20kHz_001 1 3 

00_SI_IMCM_0903_M3_BELT_STATOR_NOBOX_45Nm_20kHz_001 1 3 

00_SI_IMCM_1003_M3_BELT_STATOR_0T_45Nm_20kHz_001 1 2 

00_SI_IMCM_1003_M3_BELT_STATOR_NOBOX_45Nm_20kHz_001 1 2 

01_SI_IMCM_0903_M3_BELT_STATOR_1T_45Nm_20kHz_001 2 3 

01_SI_IMCM_0903_M3_BELT_STATOR_2T_45Nm_20kHz_001 2 3 

01_SI_IMCM_0903_M3_BELT_STATOR_3T_45Nm_20kHz_001 2 2 

01_SI_IMCM_0903_M3_BELT_STATOR_4T_45Nm_20kHz_001 2 2 

01_SI_IMCM_0903_M3_BELT_STATOR_5T_45Nm_20kHz_001 2 2 

01_SI_IMCM_0903_M3_BELT_STATOR_6T_45Nm_20kHz_001 2 2 

01_SI_IMCM_0903_M3_BELT_STATOR_7T_45Nm_20kHz_001 2 2 

02_SI_IMCM_0903_M3_BELT_STATOR_10T_45Nm_20kHz_001 3 2 

02_SI_IMCM_0903_M3_BELT_STATOR_11T_45Nm_20kHz_001 3 3 

02_SI_IMCM_0903_M3_BELT_STATOR_12T_45Nm_20kHz_001 3 3 

02_SI_IMCM_0903_M3_BELT_STATOR_13T_45Nm_20kHz_001 3 3 

02_SI_IMCM_0903_M3_BELT_STATOR_14T_45Nm_20kHz_001 3 3 

02_SI_IMCM_0903_M3_BELT_STATOR_8T_45Nm_20kHz_001 3 2 

02_SI_IMCM_0903_M3_BELT_STATOR_9T_45Nm_20kHz_001 3 2 

 

9.8 Eccentricity Fault Results 

The eccentricity fault was studied as two separated faults which are static and 

dynamic eccentricity. Nine features were chosen for classification which are: 

Maximum value, minimum value, range, peak value, quadratic mean, variation, 

standard deviation, standard error of the mean deviation, and RMS. Table 9.8 

shows the calculated values of these features. 

For static eccentricity, the classification result is poor (16.67%). Besides it is 

being difficult to detect the static eccentricity, the result could be attributed to 

the technology used to produce the static eccentricity fault with a fraction of a 
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millimeter. In addition, the assembling method of the eccentric bearing within 

the motor could have an effect on the process. Static eccentricity can be 

detected easily when it progresses to a dynamic eccentricity fault. 

In dynamic eccentricity, with the all 17 features, the accuracy rate was only 50% 

which has increased to 91.67% after using only the good features. Table 9.9 

contains the SVM output for the dynamic eccentricity.  

The confusion matrix of Figure 9.7 shows that 83% of the healthy samples were 

correctly classified. It also indicates the definite presence of a dynamic 

eccentricity fault with 100% accuracy rate for faulty samples classification. 

Table 9.10 shows a summary of the belt coupled motor results. 
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Table ‎9.8 Features of The Eccentricity Fault 

Sample Names Max Min Range Peak QM Variance Standard Deviation Standard Error RMS 

SI_IMCM_0803_M4_BELT_H_0Nm_20kHz_001 12.6439 -12.6257 25.2696 11.4178 0.0276 76.4320 8.7304 0.0276 8.7304 

SI_IMCM_0803_M4_BELT_H_30Nm_20kHz_001 17.2981 -17.2788 34.5770 15.5119 0.0378 142.9254 11.9452 0.0378 11.9452 

SI_IMCM_0803_M4_BELT_H_35Nm_20kHz_001 18.7467 -18.7084 37.4551 16.7893 0.0409 167.4865 12.9340 0.0409 12.9339 

SI_IMCM_0803_M4_BELT_H_40Nm_20kHz_001 20.1936 -20.1653 40.3589 18.1219 0.0441 194.8161 13.9478 0.0441 13.9477 

SI_IMCM_0803_M4_BELT_H_45Nm_20kHz_001 21.8331 -21.7877 43.6208 19.5735 0.0476 226.9854 15.0593 0.0476 15.0592 

SI_IMCM_0803_M4_BELT_H_49.6Nm_20kHz_001 23.4214 -23.4005 46.8219 21.0210 0.0510 260.2203 16.1254 0.0510 16.1253 

SI_IMCM_1103_M4_BELT_SE_0Nm_20kHz_001 13.6573 -13.6824 27.3397 12.2652 0.0296 88.0685 9.3701 0.0296 9.3701 

SI_IMCM_1103_M4_BELT_SE_30Nm_20kHz_001 17.5163 -17.5376 35.0539 15.7810 0.0387 149.8146 12.2271 0.0387 12.2271 

SI_IMCM_1103_M4_BELT_SE_35Nm_20kHz_001 19.0090 -18.9501 37.9591 17.0135 0.0416 173.5336 13.1632 0.0416 13.1632 

SI_IMCM_1103_M4_BELT_SE_40Nm_20kHz_001 20.4085 -20.4125 40.8210 18.2918 0.0447 199.8241 14.1263 0.0447 14.1262 

SI_IMCM_1103_M4_BELT_SE_45Nm_20kHz_001 22.0886 -22.1024 44.1910 19.7937 0.0481 231.6972 15.2121 0.0481 15.2120 

SI_IMCM_1103_M4_BELT_SE_49.6Nm_20kHz_001 23.7213 -23.7168 47.4381 21.1932 0.0514 265.0210 16.2691 0.0514 16.2691 

SI_IMCM_1503_BELT_M4_DE_0Nm_20kHz_001 13.1139 -13.1070 26.2209 11.8150 0.0285 81.1121 9.0057 0.0285 9.0056 

SI_IMCM_1503_BELT_M4_DE_30Nm_20kHz_001 17.5737 -17.5924 35.1661 15.7411 0.0384 147.2521 12.1324 0.0384 12.1324 

SI_IMCM_1503_BELT_M4_DE_35Nm_20kHz_001 19.0428 -19.0298 38.0726 16.9969 0.0414 171.6421 13.0993 0.0414 13.0992 

SI_IMCM_1503_BELT_M4_DE_40Nm_20kHz_001 20.4904 -20.4536 40.9440 18.3207 0.0446 199.1735 14.1122 0.0446 14.1121 

SI_IMCM_1503_BELT_M4_DE_45Nm_20kHz_001 22.2413 -22.1984 44.4397 19.8258 0.0481 231.6270 15.2177 0.0481 15.2177 

SI_IMCM_1503_BELT_M4_DE_49.6Nm_20kHz_001 23.8804 -23.8604 47.7408 21.2896 0.0515 265.6888 16.2981 0.0515 16.2980 
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Table ‎9.9 Results For Dynamic Eccentricity Fault With LOO SVM 

Sample Name Class Predicted label 

SI_IMCM_0803_M4_BELT_H_0Nm_20kHz_001 1 1 

SI_IMCM_0803_M4_BELT_H_30Nm_20kHz_001 1 1 

SI_IMCM_0803_M4_BELT_H_35Nm_20kHz_001 1 1 

SI_IMCM_0803_M4_BELT_H_40Nm_20kHz_001 1 1 

SI_IMCM_0803_M4_BELT_H_45Nm_20kHz_001 1 1 

SI_IMCM_0803_M4_BELT_H_49.6Nm_20kHz_001 1 2 

SI_IMCM_1503_BELT_M4_DE_0Nm_20kHz_001 2 2 

SI_IMCM_1503_BELT_M4_DE_30Nm_20kHz_001 2 2 

SI_IMCM_1503_BELT_M4_DE_35Nm_20kHz_001 2 2 

SI_IMCM_1503_BELT_M4_DE_40Nm_20kHz_001 2 2 

SI_IMCM_1503_BELT_M4_DE_45Nm_20kHz_001 2 2 

SI_IMCM_1503_BELT_M4_DE_49.6Nm_20kHz_001 2 2 

 

 

 

Figure ‎9.7 Confusion Matrix for Dynamic Eccentricity 
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Table ‎9.10 Summary of Results 

SN Fault No. of 
Classes 

No. of Relevant 
Features 

Classifier Kernel  
N    

No. of 
Samples 

Overall Accuracy 
Rate % 

1 Rotor 2 12 SVM - LOO RBF - 12 100 

3 SVM - LOO RBF  18 66.67 

 

 

2 

 

 

 

Bearings 

Roughness 2 10 SVM - LOO RBF - 10 60 

 

Outer 
Race 

 

2 

10 SVM - LOO RBF - 10 10 

SVM – N-Fold RBF 5 10 9.09 

 

3 

 

Stator 

2 11 SVM - LOO RBF - 11 63.63 

3 11 SVM - LOO RBF - 18 50 

 

4 

 

Eccentricity 

Static 2 9 SVM - LOO RBF - 12 16.67 

Dynamic 2 9 SVM – N-Fold RBF 3 12 16.67 

SVM - LOO RBF - 12 91.67 
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9.9 Results Verifications 

For verification, the data collected during the direct coupling of the motor-load 

phase of testing is used for classifications. The same features are calculated 

and used for the classification. The kernel and parameters are kept 

unchanged. LOO is chosen for SVM testing. The rotor, stator, and 

eccentricity faults are chosen for the verification process. The results are 

comparable to those of the belt coupled motor results. 

As in Table 9.11, ten samples are used for the classification process. The 

overall classification accuracy rate is 80%. Only one healthy sample is 

misclassified. All the faulty samples are correctly classified which indicates 

the explicit presence of a rotor broken bar fault. 

Table ‎9.11 Rotor Fault Calssification Results (Direct Coupled Motor) 

Sample Names Class Predicted Labels 

KTP-SI-2203-M1-H-0 Nm-20k-001 1 1 

KTP-SI-2203-M1-H-12.5 Nm-20k-001 1 1 

KTP-SI-2203-M1-H-25-20k-001 1 2 

KTP-SI-2203-M1-H-37.5 Nm-20k-001 1 1 

KTP-SI-2203-M1-H-50 Nm-20k-001 1 1 

KTP-SI-2303-M1-1BAR-0 Nm-20k-001 2 2 

KTP-SI-2303-M1-1BAR-12.5 Nm-20k-001 2 2 

KTP-SI-2303-M1-1BAR-25 Nm-20k-001 2 2 

KTP-SI-2303-M1-1BAR-37.5 Nm-20k-001 2 2 

KTP-SI-2303-M1-1BAR-50 Nm-20k-001 2 2 

 
The results of the stator tests and dynamic eccentricity are shown in Table 

9.12 and Table 9.13 respectively. Fourteen samples are used for the stator 

classification.  
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Table ‎9.12 SVM Output for  Stator Fault (Direct Coupled Motor) 

Sample Names Class Predicted labels 

KTP_SI_M3_H(1)_40Nm_20k_001 1 1 

KTP_SI_M3_H(2)_40Nm_20k_001 1 2 

KTP_SI_M3_H(3)_40Nm_20k_001 1 1 

KTP_SI_M3_H(4)_40Nm_20k_001 1 1 

KTP_SI_M3_H(5)_40Nm_20k_001 1 1 

KTP_SI_M3_H(6)_40Nm_20k_001 1 2 

KTP_SI_M3_H(7)_40Nm_20k_001 1 1 

KTP_SI_M3_1T_40Nm_20k_001 2 2 

KTP_SI_M3_2T_40Nm_20k_001 2 2 

KTP_SI_M3_3T_40Nm_20k_001 2 2 

KTP_SI_M3_4T_40Nm_20k_001 2 1 

KTP_SI_M3_5T_40Nm_20k_001 2 2 

KTP_SI_M3_6T_40Nm_20k_001 2 2 

KTP_SI_M3_7T_40Nm_20k_001 2 2 

 Table ‎9.13 SVM Results for Dynamic Eccentricity Fault (Direct Coupled Motor) 

Sample Name Class Predicted label 

KTP_SI_M4_H_25Nm_20k_001 1 1 

KTP_SI_M4_H_30Nm_20k_001 1 1 

KTP_SI_M4_H_35Nm_20k_001 1 2 

KTP_SI_M4_H_40Nm_20k_001 1 1 

KTP_SI_M4_H_45Nm_20k_001 1 1 

KTP_SI_M4_H_50Nm_20k_001 1 2 

KTP_SI_1806_M4_DE_00Nm_20kHz_001 2 1 

KTP_SI_1806_M4_DE_30Nm_20kHz_001 2 2 

KTP_SI_1806_M4_DE_35Nm_20kHz_001 2 2 

KTP_SI_1806_M4_DE_40Nm_20kHz_001 2 2 

KTP_SI_1806_M4_DE_45Nm_20kHz_001 2 2 

KTP_SI_1806_M4_DE_50Nm_20kHz_001 2 2 
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The success classification rate for the healthy samples is 71%, and the 

overall accuracy rate is approximately 79%. Only one faulty sample is 

misclassified, making the accuracy rate for this class as high as 86%. Such 

high accuracy indicates the high probability of fault existence and the need 

for immediate stator check. 

Twelve samples are used for testing the dynamic eccentricity fault. The 

overall accuracy and classes rates are 83% which is high enough to indicate 

the fault presence. 

9.10 Summary  

As the SVM has a good reputation in classification field, it has been adapted 

for this work. In fact, it has been difficult to compare the results of this work 

with the outcomes of other similar researches as much of the reported works 

are either using different samples of data or different ways of features 

generation and extraction and that all make direct comparison is not the best 

way to judge the outcome of this work.  

The results in illustrate acceptable to very good classification and detection 

results for, rotor, stator, dynamic eccentricity, and general bearing 

roughness.  

The static eccentricity and bearing defects have low rates which coincide with 

current research findings. When progresses, static eccentricity becomes 

dynamic and then can easily be detected.  
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For the outer race bearing fault, the fault signature is masked by other 

harmonics within the current signal as the changes of the motor air gap can 

be a result of a number of other sources like the machine vibration or 

misalignment.  

Results show that a multi fault monitoring system can be developed for 

induction motors faults using current as a sensed signal and statistical 

features along with SVMs for detection and diagnosis.  
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Chapter 10. Conclusions and Future Work 

Condition monitoring means the continuous evaluation of the health of plant 

and equipment throughout its serviceable life [1]. As a simple fault may lead 

to a very costly damage, the idea of detecting a fault, confronting it and 

relating it to ideally one cause before it deteriorates is the main concern of 

engineers and researchers.  

Early detection and diagnosis of process faults while the plant is still 

operating in a controllable region can help avoid abnormal event progression 

and reduce productivity losses which in turn can help avoid major system 

breakdowns and catastrophes. 

Bearing and stator faults are the major problem makers in induction 

machines and to them are 80% of the faults attributed. Though bearings are 

inexpensive to replace, their problems are difficult to detect and their failures 

can cause significant losses. Stator faults are fast progressive and should be 

detected early to avoid losses. Rotor faults though are rarely occurring and 

withstandable for a while, if not detected at the right time they may lead to a 

catastrophe. 

In this thesis, several faults creation and monitoring of a squirrel cage rotor 

induction motor system operations were performed through the machine 

current waveforms. The method has used statistical calculations for features 

generation. Machine learning is used as detection and diagnosis mechanism, 

choosing support vector machines as a tool for that. The application of the 
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proposed method has shown to provide a useful diagnosis for the faults 

studied. 

10.1 Summary 

Maintenance types, induction machines, and machine learning are 

introduced in chapter one. A thorough literature survey is done in Chapters 

two to four which cover the faults types, features, and detection techniques. 

The background information on squirrel cage induction motors construction, 

principle of work, and modelling was provided in Chapter five. While Chapter 

six includes a description of the rig used for testing the motors and seeding 

the faults onto them, Chapter seven has presented plots of the signals 

retrieved in both time and frequency domains. 

The basis and theory of proposed method for detection and diagnosis is 

described in Chapter eight. The work results have been discussed in Chapter 

nine which showed that the proposed method produces reasonable 

classification results. Since not all IMs are identical, their characteristic may 

vary from one model to another and the working environments and conditions 

may also vary, as a result, the proposed method must be carried-out on each 

individual drive in order to accurately detect the studied faults in different 

systems. 

The proposed system uses statistical techniques to extract the features from 

the stator current signal of the electric motor. Then the motor input current 

features are used for SVM training and testing. The proposed system was 
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tested using signals obtained from four induction motors under healthy and 

faulty states with different loading conditions. The motors were subjected to 

the following faults: broken rotor bar, faulty bearing, stator turn-to-turn fault, 

and eccentricity. Though improvement is always required, the test results are 

promising for the real time applications. 

10.2 Conclusions and Contributions 

The following conclusions and contributions can be drawn from the work 

done throughout the different phases of the project. 

1. The proposed system managed to detect and diagnose three faults out 

of four to certain acceptable degree. It has been shown that MCSA, 

statistical parameters and support vector machines provide a good 

method for some IM faults detection and diagnosis. 

2. Rotor and dynamic eccentricity faults are the easiest to detect. Static 

eccentricity can be detected when it progresses to dynamic 

eccentricity.  

3. One of the aims of this project is to study in influences in stator 

currents from various faults. Characteristic features of each fault type 

are presented and studied. The background from the study is used to 

decide on the monitoring system. 

4. Extracting faults features is the first and vital phase of detection and 

diagnosis process, but choosing the relevant ones is not less important 
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than generating them. Choosing the right features can even, in certain 

cases, double the classification accuracy rate. 

5. SVM has a good classification capability even when the number of 

samples of each class doesn’t‎exceed‎the‎number‎of‎a‎hand‎fingers. 

6. A toolbox has been produced for four different faults of the induction 

motor where it is only needed to provide the current signals of the 

motor to have the results of whether any of the faults exists or not. 

7. To have a reliable data, it is suggested that data recorded for zero to 

full load in small steps of loading for healthy and all faulty situations 

when possible. 

8. To implement IM fault detection using the proposed method in 

commercial monitors, the SVM classifier for each fault type needs to be 

pre-determined. Since the features mostly affected by the 

corresponding faults are known, it is easy to choose the most viable 

ones, and the SVM classifier can be designed. 

9. It can be concluded that MCSA approach is an effective method of 

monitoring the condition of electric induction motors because of its 

simplicity to implement and cost effectiveness. Furthermore it has a 

considerable degree of accuracy and there is no interruption to the 

motor whilst being monitored. 

10. The application of machine learning for fault diagnosis is becoming 

more dominant compared to conventional methods and that is 
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attributed to the increased availability of computational resources and 

the vast algorithmic developments [16]. 

11. The proposed system that combines MCSA, statistical generated 

features and SVM has high effectiveness. Features are easily 

extracted from raw current data and the best SVM kernel has been 

chosen experimentally. The system can be easily extended to any 

other faults and number of classes. 

10.3 Suggestions for Future Work 

 Future work could possibly be focused on: 

1. The study could be extended to include other faults like misalignment 

fault or other parts within the same fault such as, inner race way, balls, 

and cages.  

2. Future research may look into studying multiple faults of a motor that are 

happening at the same time. 

3.  To have more consolidated monitoring results, multiple signals can be 

used such as current and voltage as both methods are cost effective. 

4. Detecting bearing and static eccentricity faults using MCSA is not an 

easy task, so the detection capability could be improved by using 

different features extraction techniques and combined artificial 

intelligence methods. 
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5. The area of research for the general roughness defect in bearings is still 

almost blank, so it is a good opportunity for researches to concentrate 

upon such a corner. 

6. In this project, only one set of drives was used for the experimental 

work. The characteristics of different motor machines are different, and 

that results in different features and, thus, different SVM classifiers. SVM 

classifiers must be determined for each motors combination. This is not 

very effective for the method to be commercially deployed. It is more 

desirable to have SVM classifiers that can classify induction motors of 

different models for different power rates and sizes. For this, further 

study is required. 

7. A number of approaches that utilizes MCSA have been developed to 

detect and diagnose induction motors faults and these have produced 

several commercially viable techniques, which are currently used to 

monitor drive systems. However, still there is a need to develop new 

techniques to overcome problems, such as when the motor is running at 

no load or during transient stages.  

8. Line-neutral voltage signature has been used for Rotor Bars fault 

detection. It is not only preserves the advantage and simplicity of MCSA, 

but also it is more sensitive to motor failures [46]. However, the analysis 

of line-neutral voltage signatures still remains far from being fully 

researched. More efforts are needed to improve the overall fault 

diagnosis of induction motors using this technique. 
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Appendices 

Appendix-I: Fuzzy Logic 

I.1 Introduction 

Fuzzy logic is technique that is used to translate verbal ideas to some numbers and 

then uses these numbers to associate particular concepts. Fuzzy Logic is very helpful 

in the situation to make a decision where there is no clear difference between the true 

or false. So Fuzzy Logic can be used in condition where answer is present between 

this true and false. This usually happens in case of machines during the particular 

fault diagnosis. Practically it is not possible to classify a machine’s conditions with 

respect to particular fault, so Fuzzy Logic is used by classifying a particular fault 

with its degree of severity. The most important feature of using Fuzzy Algorithm is 

that the human knowledge/experience can be combined into the system. The general 

case of Fuzzy Logic is shown in Figure I.1. 

 

Figure I. 1: General case of fuzzy logic 
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In Fuzzy Logic precision is very much important. It is a suitable way which is used 

to map an input variable to an output variable. This is the starting point for Fuzzy 

Logic. Consider an example of tipping in a restaurant that is dependent on how much 

the service is good at a restaurant; Fuzzy Logic will decide what will be the tip. The 

graphical representation of this tipping example is shown in Figure I.2. 

 

Figure I. 2: Example of tipping 

 

I.2 Foundations of Fuzzy Logic  

Fuzzy Logic is dependent on four things. 

1. Fuzzy Sets 

2. Membership Functions 

3. Logical Operations 

4. If-then Rules 

5. Implication  
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I.2.1 Fuzzy Sets 

The input and output functions of the Fuzzy Logic is fuzzy sets. In the example of 

tipping in the restaurant the input fuzzy sets will be the quality of food and quality of 

service and the output fuzzy set will be the tipping membership functions. This is 

shown in Figure I.3. 

 

Figure I. 3: Input of fuzzy set 

I.2.2 Membership Functions 

Membership function is basically a curve that is used for mapping an input value to a 

membership value that is varying from 0 to 1. There are different types of curves that 

can be used as membership function; examples can be trapezoid, triangular, Sigmoid 

and double sigmoid as shown in Figure I.4. 
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Figure I. 4 Membership functions 

I.2.3 Logical Operations 

Normal Boolean logic is used in fuzzy reasoning. In Boolean logic there is number 

possibilities that can be used when implementing a fuzzy logic but commonly used 

one are the simplest one that is shown in Table I.1. Figure I.5 shows the logical 

operation used in tipping example. 

Table I.1: Boolean Logic 

AND OR NOT 

     A      B       Min(A,B)      A      B       Max(A,B)      A       1-A 

     0       0      0      0      0     0      0      1 

     0      1      0      0      1     1      1      0 

     1      0      0     1      0     1   

    1      1      1     1      1     1   
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Figure I. 5: Logic Operations 

I.2.4 If-Then Rules 

If-then rules are used to interpret the knowledge in some form. This is the most 

popular form to represent the knowledge as the rules. These rules are basically the 

knowledge. These are used for the précised decision making. It is basically used to 

map the membership value to an output value. In the example of tipping some of 

the rules are given below. 

  IF service is poor OR food is rancid 

  THEN tip is cheap 

  IF service is excellent OR food is delicious 

 THEN tip is generous 

I.2.5 Implications 

There are two types of implications i.e. minimum implication and the product 

implications. In case of minimum implications the membership value was got from 



 

208 

 

input membership function; output membership function is truncated to that value. In 

case of product implications the result is simply the multiplication of input 

membership value and the output membership value. The difference is shown in 

Figure I.6. 

 

Figure I. 6: Implications 

I.3 Fault Detection Process 

By using the Fast Fourier Transform (FFT) rotor bar faults can be analysed using the 

current spectrum of Induction Motors. This technique depends on the analysis of 

particular harmonics in spectrum which are caused by the rotor bar faults. Figure I.7 

shows the ideal spectrum. The sideband frequencies near the main frequency are due 

to broken bars. In idealized condition, rotating magnetic field produced in induction 

motor is given by: 

   
    f    

 
                                                                                                                                         

Where: f1 = Supply Frequency, p = Poles in the Induction Motor. 

sli      
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Where:  n = Synchronous speed of induction motor, n1 = Actual speed of induction 

motor. 

Side band frequencies will occur at ± 2s f1 on both side of fundamental frequency  

fb=(1±2s)f.          (I.3) 

I.4 Measured Data 

Induction motor (M1) was tested in healthy working condition and for broken rotor 

bars. All the tests are done at same load that is of 49.6Nm. The frequency range is 

from 0 to 100 Hz, as it contains the fundament frequency and almost all the visible 

side band. In Figure I.7 the magnitude at 45.32 Hz is-63.32 dB/Hz. The figure shows 

that the side band frequencies are close to fundamental frequency with almost 

negligible in amplitude. 

Figure I.7 shows the power spectrum of a motor with one bar broken. The figure 

clearly shows that the magnitude of side band frequency are increasing that is at 

45.93 Hz the magnitude is increased to (- 39.82) dB/Hz.  
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Figure I. 7: One bar Broken Spectrum 

 Now the side magnitude of side band frequency is increased due to increase in the 

number of bars broken. At 45.78 Hz the magnitude of power spectrum is -33.86 

dB/Hz. 

Input current (n)

Calculation of faulted 

frequency

PSD plotCalculation of Slip Speed

Amplitude at a particular 

faulted frequency  

Data extraction

Input speed

Find actual faulted 

frequency

If true ?
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Stop

Start

No

Yes

 

Figure I.8: Flow chart of fault detection algorithm 
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I.5 Amplitude at Particular Faulted Frequency 

First calculate the slip speed of motor by putting the value of actual and synchronous 

speed of motor in equation I.2. This slip speed is used to calculate the particular 

faulted frequency in the spectrum by using the equation 7.7. The value of current (i1) 

is used to plot the spectrum of PSD.  

I.6 Actual Faulted Frequency 

The calculated faulted frequency is not the actual faulted frequency. The actual 

faulted frequency is slightly different from the calculated one. The program will 

check for actual faulted frequency by finding the highest amplitude in the range of -2 

Hz from the calculated frequency this is done by finding all the bits of arrays that is 

greater than the calculated faulted frequency. Then applying for loop on this 

particular bit array which starts from 22 bits lesser to 3 bits higher and respectively 

check for highest amplitude corresponding to each bit. 

I.7 Diagnosis Using Fuzzy Logic 

Fuzzy Logic is used to determine how much fault is present in Induction Motor. 

Amplitude calculated is used along with Fuzzy Logic to determine how much fault or 

how many rotor bars are broken in a particular motor. The extracted amplitude from 

the PSD plot is the fuzzy sets. This fuzzy set of amplitude is divided into different 

ranges that are small, medium, large and very large. These ranges are basically for 

the input membership function. The input membership functions used are the 

triangular and trapezoid. The membership functions used for the output are also the 

triangular and trapezoid. This output membership function is also divided into small 

ranges that is healthy, cracked, one bar broken, two bars broken which are used to 
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determine the extent of fault present in induction motor. The Boolean Logic used for 

the reasoning of Fuzzy Logic is AND. The implication used for the defuzzification is 

product implication as it is more précised as compare to minimum implication. The 

decision made by fuzzy system is based on some rules. There are four different rules 

which are made for this fuzzy system as given below: 

 If (amplitude is small) then (output is healthy)  

 If (amplitude is medium) then (output is cracked)  

 If (amplitude is large) then (output is one bar broken)  

 If (amplitude is very large) then (output is two bar broken)  

I.8 Results and Discussion - Healthy Motor 

The PSD plot of a healthy motor is plotted using the current (i1) at 35 Nm and 49.6 

Nm loads as shown in Figures I.9 and I.10 respectively. From the figure it is seen 

that for the healthy motor side band frequencies are very close to fundamental 

frequency. At 35Nm load the amplitude of side band frequencies is small as the 

current in rotor is small as shown in Figure I.9. At 49.6 Nm load the magnitude of 

side and frequencies is increased as the load is increased from 35 Nm to 49.6 Nm as 

shown in Figure I.4. From Figure I.3 and Figure I.4 it is observed as the load of 

motor was increased the amplitude of side band frequency also increased and the 

rotor bar faults are easy to determine at full load or at maximum load. Then fuzzy 

logic is used to determine how much fault is present in induction motor. The input 

and output membership functions of fuzzy system are shown in Figure I.11 and 

Figure I.12.  
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Figure I.9: PSD of Healthy Motor at 35 Nm Load 

 

Figure I.10: PSD of Healthy Motor at 49.6 Nm Load 

 

Figure I.11: Input MF of fuzzy logic of healthy motor 
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Figure I.12: Output MF of Fuzzy Logic of Healthy Motor. 

 

All the observations and results of PSD plot and fuzzy system is shown in Table I.2. 

Table I.2: Results and Observations of Healthy Motor 

Load 35 Nm Load` 49.6 Nm Load 

Synchronous speed (rpm) 1500 1500 

Actual speed (rpm) 1459 1441 

Slip 0.0273 0.0393 

Faulted frequency (KHz) 0.0485 0.0480 

Amplitude (dB/Hz) -74.16 -66.52 

Actual faulted frequency (KHz) 0.0453 0.0453 

Amplitude (dB/Hz) -59.67 -63.39 

Input MF value -59.67 -63.39 

Output MF value 0.1889 0.1889 

 

From the Figure I.1 and Table I.2 it is seen that the condition of a particular motor 

can be determined easily by using the fuzzy system. From the Figure I.2 it clearly 

shows that a motor is healthy with no rotor faults. 
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I.9 One Bar Broken Motor 

A 6mm hole is made in one bar of the rotor which is equal to the one bar broken in 

the rotor.. The PSD is plotted for the induction motor whose one bar is broken at a 

load of 35 Nm and 49.6 Nm. The PSD spectrum at 35 Nm load is given in Figure 

I.13 and the spectrum of 49.6 Nm is given in Figure I.14. From these figures it is 

concluded that amplitude of side band frequencies are increasing as the fault in the 

IM is increasing. The calculated and actual frequency along with their amplitude is 

shown in these figures. The amplitude of side band frequency is fed to fuzzy logic 

system in order to determine intensity of fault present in motor. The input and output 

MF of fuzzy logic is shown in the Figure I.15 and Figure I.16 along with the results 

of motor. 

 

Figure I.13: PSD of One Rotor Bar Broken Motor at 35 Nm Load 
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Figure I.14: PSD of One Rotor Bar Broken motor at 49.6 Nm Load 

 

Figure I.15: Input MF of Fuzzy Logic of One Rotor Bar Broken 

 

Figure I.16: Output MF of Fuzzy Logic of One Rotor Bar Broken 
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The result of one rotor bar broken is given in Table I.3. 

Table I.3: Results and observations of one rotor bar broken motor 

Load 35 Nm Load` 49.6 Nm Load 

Synchronous speed (rpm) 1500 1500 

Actual speed (rpm) 1457 1439 

Slip 0.0287 0.0407 

Faulted frequency (KHz) 0.0486 0.0480 

Amplitude (dB/Hz) -58.3667 -67.4569 

Actual faulted frequency (KHz) 0.04715 0.04593 

Amplitude (dB/Hz) -42.5239 -39.8168 

Input MF value -42.5239 -39.8168 

Output MF value 0.5599 0.5599 

 

I.10 Conclusion 

From the observation it is seen that the rotor bar faults only affect the two sideband 

frequency. At no load it is very difficult to detect the rotor bar faults as the current in 

motor is very small so the particular faulted frequency is very close to the 

fundamental 50Hz frequency. So the motor was test at two different loads that is 35 

Nm and 49.6 Nm. 

 At 35 Nm load detection of rotor bar faults was slightly difficult because the motor 

works at low slip as compare to 49.6 Nm load. It is very much reliable to detect the 

rotor bars faults at 48.6 Nm load. 

 At 49.6 Nm load amplitude of faulted frequencies is very much high as compare to 

no load motor or with 35 Nm load. So the faulted frequency can easily be recognized 

at 49.6 Nm load. Results show that as the rotor bar faults is increasing, faulted 

frequency increases. 
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 The advantage of detecting rotor bar faults using the FFT Technique is that it is very 

much suitable for high load condition and can be implemented easily. The 

disadvantage of this technique is that it has lost time information and not very much 

effective for the lightly loaded condition. 
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Appendix-II: Motor Data Sheet 

 

The induction Motor data supplied by manufacturer: 
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Nameplate Data of The Motor. 

Parameter Symbol Value Unit 

Number of stator phases m 3 - 

Number of pole pairs   2 - 

Stator winding connection   - - 

Rated power Prated 7.5 kW 

Rated supply voltage (LL , rms) Vrated 415 V 

Line frequency f 50 Hz 

Rated current        15.2   

Rated speed Nrated 1445     

Rated electromagnetic torque Te, rated 49     

 

Data Used for dq Modeling (Rated Values in 20° C) 

Parameter Symbol Value Unit 

Stator  hases’ electrical resistance  s        

Stator  hases’ electrical reactance  ls        

Rotor electrical resistance  r        

Rotor electrical reactance  lr       

Magnetizing resistance  m        

Magnetizing reactance  m        

 

 

 

 


	cover_sheet_thesis
	University of Bradford eThesis

	Current Based Condition Monitoring of Electromechanical Systems

