

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

DYNAMIC WEB FORMS DEVELOPMENT USING

RULEML

A. M. Albhbah

PhD

UNIVERSITY OF BRADFORD

2013

i

DYNAMIC WEB FORMS DEVELOPMENT USING
RULEML

Building a framework using metadata driven rules to control
Web Forms generation and appearance

Atia Mahmod Albhbah

Submitted for the degree of

 Doctor of Philosophy

Department of Computing

School of Computing, Informatics and Media

University of Bradford

2013

Abstract

ii

Atia M. Albhbah “DYNAMIC WEB FORMS DEVELOPMENT USING RULEML”
Keywords: Web Forms, Database Metadata, XML, RuleML, Reaction RuleML.

Abstract

Web forms development for Web based applications is often expensive,

laborious, error-prone, time consuming and requires a lot of effort. Web forms

are used by many different people with different backgrounds and a lot of

demands. There is a very high cost associated with the need to update the Web

application systems to achieve these demands.

A wide range of techniques and ideas to automate the generation of Web forms

exist. These techniques and ideas however, are not capable of generating the

most dynamic behaviour of form elements, and make Insufficient use of

database metadata to control Web forms’ generation and appearance.

In this thesis different techniques are proposed that use RuleML and database

metadata to build rulebases to improve the automatic and dynamic generation

of Web forms.

First this thesis proposes the use of a RuleML format rulebase using

Reaction RuleML that can be used to support the development of automated

Web interfaces. Database metadata can be extracted from system catalogue

tables in typical relational database systems, and used in conjunction with the

rulebase to produce appropriate Web form elements. Results show that this

mechanism successfully insulates application logic from code and suggests that

Abstract

iii

the method can be extended from generic metadata rules to more domain

specific rules.

Second it proposes the use of common sense rules and domain specific

rules rulebases using Reaction RuleML format in conjunction with database

metadata rules to extend support for the development of automated Web forms.

Third it proposes the use of rules that involve code to implement more

semantics for Web forms. Separation between content, logic and presentation of

Web applications has become an important issue for faster development and

easy maintenance. Just as CSS applied on the client side to control the overall

presentation of Web applications, a set of rules can give a similar consistency to

the appearance and operation of any set of forms that interact with the same

database. We develop rules to order Web form elements and query forms using

Reaction RuleML format in conjunction with database metadata rules. The

results show the potential of RuleML formats for representing database

structural and active semantics.

Fourth it proposes the use of a RuleML based approach to provide more

support for greater semantics for example advanced domain support even when

this is not a DBMS feature. The approach is to specify most of the semantics

associated with data stored in RDBMS, to overcome some RDBMSs limitations.

RuleML could be used to represent database metadata as an external format.

Declaration

iv

Declaration

I hereby declare that this thesis has been genuinely carried out by myself

and no portion of the work referred to in this thesis has been used in any

previous application for a degree. The invaluable participation of others in this

thesis has been acknowledged where appropriate.

Atia Albhbah

Acknowledgements

v

Acknowledgements

In the Name of Allah, the Most Gracious, the Most Merciful all praise is due

to Allah who helped me throughout my life, and for his glorious ability and

granting me the health and ability to complete this thesis.

I would like to express my gratitude to all those who supported and encouraged

me to complete this thesis.

First of all, I would like to give my sincere thanks to my supervisor Mr Mick

Ridley for his guidance and support from the initial to the final of this research.

He has offered me all the assistance to complete this thesis.

 I would like to thank my mother, wife and children for their support and love.

Last but not least, I also thank Mrs Bev Yates for her assistance.

List of Abbreviations

vi

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

APL Array Programming Language

ASP Active Server Pages

CGI Common Gateway Interface

CSS Cascading Style Sheets

DB Database

DML Data Manipulation Language

EER Extended Entity Relationship

HTML Hypertext Markup Language

JDBC Java Database Connectivity

JESS Java Expert System Shell

JSP Java Server Pages

ODBC Open Database Connectivity

List of Abbreviations

vii

OWL Web Ontology Language

PHP PHP: Hypertext Pre-processor

RDBM Relational Database Management

RDBMS Relational Database Management System

RIF Rule Interchange Format

RuleML Rule Markup Language

SDL Schema Definition Language

SGML Standard Generalized Markup Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

W3C The World Wide Web Consortium

WebCUS Web Content Update System

WWW World Wide Web

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

List of Abbreviations

viii

XPath XML Path Language

XPointer XML Pointer Language

XQuery A Query Language for XML

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

List of Author’s Publications

ix

List of Author’s Publications

1. A. M. Albhbah and M. J. Ridley, "Using RuleML and database

metadata for automatic generation of Web forms," in Proceedings of

the 10th International Conference on Intelligent Systems Design and

Applications (ISDA), 2010, pp. 790-794, available on line at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05687166

2. A. M. Albhbah and M. J. Ridley, " A rule framework for automatic

generation of Web forms," in Proceeding of the 4th IEEE International

Conference on Computer Science and Information Technology (IEEE

ICCSIT 2011), China, June 2011, available on line at:

http://www.ijcte.org/abstract/537-A608.htm

3. A. M. Albhbah and M. J. Ridley, "An extended rule framework for Web

forms: adding to metadata with custom rules to control appearance,"

International Journal of Machine Learning and Computing, IACSIT,

Singapore, Dec 2011, 1 (5): 466-472, available on line at:

http://www.ijmlc.org/papers/70-A608.pdf.

Table of Contents

x

Table of Contents

ABSTRACT... II

DECLARATION .. IV

ACKNOWLEDGEMENTS ... V

LIST OF ABBREVIATIONS .. VI

LIST OF AUTHOR’S PUBLICATIONS .. IX

TABLE OF CONTENTS ... X

LIST OF TABLES .. XV

LIST OF FIGURES ... XVI

CHAPTER 1 ... 1

1 INTRODUCTION ... 1

 INTRODUCTION .. 1 1.1

 MOTIVATIONS... 2 1.2

 AIMS AND OBJECTIVES .. 5 1.3

 CONTRIBUTIONS .. 6 1.4

 THESIS STRUCTURE .. 8 1.5

CHAPTER 2 ... 12

2 BACKGROUND .. 12

 INTRODUCTION .. 12 2.1

 DATABASE TECHNOLOGIES ... 12 2.2

2.2.1 Database ... 13

2.2.1.1 Database data models .. 13

2.2.1.2 Relational database .. 14

Table of Contents

xi

2.2.2 SQL ... 15

2.2.3 Metadata ... 16

 WEB TECHNOLOGIES .. 18 2.3

2.3.1 HTML .. 18

2.3.2 RDF ... 21

2.3.3 Client –Side Scripts: .. 21

2.3.3.1 JavaScript .. 22

2.3.3.2 AJAX .. 22

2.3.3.3 JSON .. 24

2.3.4 Server-Side Technologies: .. 24

2.3.4.1 CGI .. 25

2.3.4.2 Perl .. 25

2.3.4.3 PHP ... 26

2.3.4.4 ASP .. 27

2.3.4.5 Java Servlets .. 27

2.3.4.6 Java Server Pages .. 28

 XML ... 29 2.4

2.4.1 XML Schema ... 29

2.4.2 XSLT ... 30

2.4.3 XPath .. 30

2.4.4 XPointer .. 32

2.4.5 XQuery .. 32

2.4.6 Rule Markup Languages ... 32

2.4.6.1 RuleML .. 33

Table of Contents

xii

2.4.6.2 Reaction RuleML ... 40

2.4.6.3 SWRL ... 44

2.4.6.4 R2ML W3C .. 44

2.4.6.5 W3C RIF... 44

2.4.6.6 Section Summary .. 45

 CHAPTER SUMMARY .. 45 2.5

CHAPTER 3 ... 47

3 LITERATURE REVIEW .. 47

 INTRODUCTION .. 47 3.1

 RELATED WORK ON USER INTERFACES TO DATABASES ... 48 3.2

 RELATED WORK ON METADATA TO WEB ENTRY FORMS ... 51 3.3

3.3.1 Section summary... 54

 RELATED WORK ON XML AND WEB-BASED DATA ENTRY APPLICATIONS, AND RULEML 55 3.4

3.4.1 RuleML as Rulebase ... 58

 CHAPTER SUMMARY .. 58 3.5

CHAPTER 4 ... 61

4 USING RULEML AND DATABASE METADATA FOR GENERATING AUTOMATIC AND

DYNAMIC WEB ENTRY FORMS. ... 61

 INTRODUCTION .. 61 4.1

 PROTOTYPE OVERVIEW .. 62 4.2

 GENERAL METADATA RULES .. 62 4.3

 THE PROTOTYPE IMPLEMENTATION .. 63 4.4

4.4.4 Building RuleML metadata rulebase .. 65

4.4.4 Retrieving metadata from database .. 70

4.4.3 Limitation of database metadata ... 76

Table of Contents

xiii

4.4.4 Generate the Web entry forms .. 77

 CHAPTER SUMMARY .. 82 4.5

CHAPTER 5 ... 83

5 A RULE FRAMEWORK DESIGN .. 83

 INTRODUCTION .. 83 5.1

 FRAMEWORK OVERVIEW ... 84 5.2

 FRAMEWORK IMPLEMENTATION AND EVALUATION ... 86 5.3

5.3.1 Framework mechanism ... 87

5.2.4 Building RuleML metadata rulebases .. 89

5.2.2 Retrieving metadata from database .. 94

5.3.4 Generate the Web entry forms .. 95

 CHAPTER SUMMARY .. 97 5.4

CHAPTER 6 ... 98

6 AN EXTENDED RULES FRAMEWORK FOR WEB FORMS: ADDING TO METADATA

WITH CUSTOM RULES TO CONTROL APPEARANCE. ... 98

 INTRODUCTION .. 98 6.1

 PROTOTYPE OVERVIEW .. 99 6.2

 FRAMEWORK MECHANISM ... 100 6.3

6.3.1 Building RuleML metadata rulebases .. 102

6.3.1.1 The first domain specific rule set .. 102

6.3.1.2 The second domain specific rule set ... 105

6.3.2 Retrieving metadata from the database 108

6.3.3 Generate the Web forms ... 109

 CHAPTER SUMMARY .. 120 6.4

Table of Contents

xiv

CHAPTER 7 ... 121

7 EXTENDING THE USE OF RULEML TO STORE METADATA AND DATABASE

SEMANTICS .. 121

 INTRODUCTION .. 121 7.1

 PROTOTYPE OVERVIEW .. 122 7.2

 FRAMEWORK MECHANISM ... 125 7.3

7.3.1 Table’s metadata in XML files for table creation 128

7.3.2 Database tables creation ... 131

7.3.3 Existing table’s metadata stored as XML format 132

7.3.3.1 Staff table metadata stored in XML format .. 132

7.3.3.2 Domain tables metadata in XML format ... 135

 GENERATE THE WEB FORMS... 137 7.4

 CHAPTER SUMMARY .. 139 7.5

CHAPTER 8 ... 140

8 CONCLUSION AND FUTURE WORK .. 140

8.1 CONCLUSION .. 140

8.2 FUTURE WORK ... 143

REFERENCES ... 146

List of Tables

xv

List of Tables

Table 2-1 Comparison of HTML 4 and XHTML [20]. ... 20

Table 2-2 XPath expressions make up an important part of XQuery. 31

Table 3-1 Metadata table that represents the SEER data model shown in Figure 3-2,

adapted from [77]. ... 52

Table 4-1 Methods to retrieve information about each field .. 73

List of Figures

xvi

List of Figures

Figure 2-1 Autocomplete AJAX function Example ... 23

Figure 2-2 A graphical view of RuleML rules [57]. ... 34

Figure 2-3 Example of rulebase in RuleML version 0.7 document [59] 37

Figure 2-4 Example of rule in RuleML 0.91 syntax [62]. ... 39

Figure 2-5 Example of rule in RuleML 1.0 syntax [63] .. 40

Figure 2-6 The general syntax for Reaction RuleML 0.1[66]. .. 41

Figure 2-7 The general syntax for Reaction RuleML 0.2 [67] .. 43

Figure 3-1 DB2 WWW System Overview adopted from [42] .. 49

Figure 3-2 A subset of the SEER data model, adapted from [77]. 52

Figure 3-3 The WebCUS Architecture ... 56

Figure 4-1 Prototype Implementation ... 65

Figure 4-2 Pseudo code for common sense rules ... 68

Figure 4-3 Metadata rulebase in RuleML format .. 69

Figure 4-4 Database table’s structure .. 70

Figure 4-5 Metadata as an array extracted from database table 72

Figure 4-6 Metadata from database table using direct PHP PostgreSQL functions 74

Figure 4-7 Query specific information form database metadata 75

Figure 4-8 Screenshot showing user interface form generated automatically using

metadata and RuleML. ... 78

Figure 4-9 Screenshot showing user interface form generated automatically, and

function used to generate a date field. ... 79

file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090189
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090198
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090199
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090200
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090202
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090205

List of Figures

xvii

Figure 4-10 Screenshot showing the changes of address control element automatically

generated. .. 80

Figure 4-11 Screenshot showing constraint type of some column automatically

generated. .. 81

Figure 5-1 Structure of the proposed framework ... 86

Figure 5-2 Framework mechanism ... 88

Figure 5-3 Metadata rulebase in Reaction RuleML format as common sense rules. 90

Figure 5-4 Pseudo code for domain specific rules ... 92

Figure 5-5 Metadata rulebase in Reaction RuleML format as domain specific rules 93

Figure 5-6 Database table’s structure .. 94

Figure 5-7 User interface form generated automatically using metadata and RuleML. . 96

Figure 6-1 Framework mechanism ... 101

Figure 6-2 Pseudo code for domain specific input form rules .. 103

Figure 6-3 Metadata rulebase in Reaction RuleML 0.2 format as domain specific input

form rules .. 104

Figure 6-4 Pseudo code for domain specific query form rules ... 106

Figure 6-5 Metadata rulebase in Reaction RuleML 0.2 format as domain specific query

form rules .. 107

Figure 6-6 Database table’s structure .. 108

Figure 6-7 User interface input form generated automatically using metadata and

Reaction RuleML 0.2 .. 110

file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090210
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090211
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090213
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090215
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090217
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090218
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090220
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090222

List of Figures

xviii

Figure 6-8 User interface input form generated automatically using metadata and

Reaction RuleML 0.2 grouped the attributes as a composite attribute 111

Figure 6-9 User interface query form generated automatically using metadata and

Reaction RuleML 0.2 .. 112

Figure 6-10 Shows suppliers html entry form generated using metadata [78]. 114

Figure 6-11 User interface form generated automatically using metadata and RuleML.

 ... 115

Figure 6-12 A snapshot of Web XForms generated on the fly [1] 117

Figure 6-13 A snapshot of an XHTML Web Entry Form generated on the fly [4] 118

Figure 7-1 Person table creation without composite type ... 123

Figure 7-2 Address table (and type) information .. 124

Figure 7-3 Person table creation using composite type .. 125

Figure 7-4 Framework mechanism ... 128

Figure 7-5 address table’s metadata represented in XML tags 129

Figure 7-6 staff table’s metadata represented in XML tags .. 130

Figure 7-7 SQL script created dynamically using table’s metadata stored in XML files

 ... 131

Figure 7-8 Staff table metadata stored in XML format .. 134

Figure 7-9 Domain tables metadata in XML format ... 136

Figure 7-10 User interface form generated automatically using metadata stored as XML

format and rulebase as RuleML format. .. 138

file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090230
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090231
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090232
file://thump2.scim.brad.ac.uk/aalbabah/SOIProfile/Desktop/Atia-new/Atia_Thesis%20BackUP/Full-thesis-17/full-thessis-18.docx%23_Toc355090233

Chapter 1: Introduction

1

Chapter 1

1 Introduction

 Introduction 1.1

Can we imagine how our life would be without the Internet? How much of

our daily routine would change without electronic communication like Email,

Facebook and Twitter? How much harder to access information without search

engines?

The Internet effectively spreads into all domains of our daily life, such as

eLearning, eCommerce and eGovernment. It has changed our life, changed

ways of buying goods, finding people, making travel reservations and more.

Web application systems are the most powerful Web systems. In Web

applications, users interact with the system by filling in Web forms to supply

several types of data. Many Web based applications, in commercial and

scientific areas use forms to enter data for storing or querying database

systems.

Automatic and dynamic generation of Web applications is moving into the

mainstream in the Web development field nowadays [1 , 2], because many

Chapter 1: Introduction

2

agencies are looking to change their database applications into on-line systems,

and the growth of technologies have pushed them to update their Web

applications using existing databases to take advantages of these technologies.

In this thesis we investigate the use of RuleML (Rule Markup Language) to

store database metadata rules and save it as a rulebase, which will help to

develop a prototype system that can generate automatic and dynamic HTML

forms for Web applications.

This chapter introduces the motivations behind this research and the

objectives that are going to be studied and investigated throughout this

research.

 Motivations 1.2

Building Web applications takes a lot of time and the longer it takes to

develop, amend and maintain the greater the budget required. Therefore

increasingly developers are looking for ways to automate the development

process and reuse information. We aim to contribute to that by developing

methods of storing and using rules in combination with database metadata.

Databases contain information about data stored as a set of system

catalogues which are known as metadata [3]. In addition, metadata consists of

all the information such as; list of database tables, column names, and all

integrity constraint rules, which will be used to control data that is saved and

Chapter 1: Introduction

3

manipulated in the database tables. If applications are built manually all this

information in a database should be embedded into the application. This can be

time consuming and may require ongoing maintenance. Thus, automatic and

dynamic generation is a preferable way of building or updating Web applications

using the database metadata to ensure consistency.

 Information retrieved from database metadata alone is not enough to be

used to generate the best Web form element for each column. To use the

information extracted from metadata, it needs a set of supporting rules which

will enable us to map each column to the most appropriate form element.

From the start of RuleML project in 2000, rules on the Web have become

an increasingly important issue in both industry and academia areas. It has

been concluded that when rules are embedded in application code it becomes

difficult to locate and change the logic [4], and each modification requires

recompiling the application code. A rulebase approach will also allow extensions

to rules beyond those from metadata. Separation between content, logic and

presentation of Web applications has become an important issue for faster

development and easy maintenance [1 , 5]. Hence, separating rules from

application code allows easily manipulation of the rules.

As use of CSS rules to control the appearance of the document on the

client side which gives consistency to the appearance of pages generally [6]; the

Chapter 1: Introduction

4

use of a set of rules can give a similar consistency to the appearance and

operation of any set of forms that interact with the same database.

RuleML (Rule Markup Language) is an XML-based markup language

which allows rules to be expressed as modular components using standard

XML tags [7]. RuleML format can be used to represent metadata retrieved from

a database [8], in this case it could be used to save rules retrieved from

database metadata as a rulebase which in turn separates the rules from the

application code to improve accessibility, provide more flexibility, and control.

The rules will help in designing the query forms, and in some cases for example

we can invoke a suitable RuleML, which will help to map the column to the

correct element control, and store all possible values for one column as a

domain.

Some database systems do not support advanced features such as

domains and composite attributes, for example MySQL does not support user

defined domains [9 , 10] which can be created as a data type and then that type

used in a table definition. To overcome this type of limitation RDBMS data can

be represented by storing database metadata in a standard external format that

can be used by design tools and for transforming database specifications

between RDBMSs. RuleML format allows us to overcome variations between

RDBMSs.

Chapter 1: Introduction

5

 Aims and Objectives 1.3

This thesis aims to investigate how a RuleML format can be used to store

database metadata rules and save it as a rulebase. This will help to develop a

prototype system that can generate automatic and dynamic Web entry forms for

Web applications. In order to achieve these aims, the objectives of the thesis

are set as follows:

 Carry out an extensive literature review about the most commonly

used database and Web technologies available for creating and

developing Web sites and Web applications.

 Carry out an extensive study to investigate and discover the most

strongly connected related work, and how extracted rules stored as

some form of database metadata can provide us with sufficient

information to achieve the main aim.

 Reformulate the rules and convert them into code and store them in

RuleML (Rule Markup Language) format as rulebase to replace the

hard coded rules within applications with a readable reusable format.

 Design a more general framework that includes as many rules as

possible in the system. The aim is to extend the automation of Web

forms so that more semantic information is used in a consistent

fashion.

Chapter 1: Introduction

6

 Develop domain specific rules to extend the generic rules for

manipulation of semantics of database metadata.

 Generate Web interface forms that access the database automatically

using the rulebase.

 Create an extended Rules Framework for Web Forms by adding to

the metadata with custom rules to control appearance of Web form

elements in a semantic way.

 Store database metadata in an external format to maximise support

for advanced features such as domains, not supported by all systems,

so that more sophisticated Web entry forms can be generated

dynamically and automatically.

 Contributions 1.4

The thesis proposes a number of contributions to the field of automatic and

dynamic generation of Web forms. These contributions can be summarized as:

 A rulebase approach: to make sufficient use of database

metadata to control web forms’ generation. The use of a RuleML

format to store a set of supporting rules as a rulebase to overcome

database metadata limitations and to separate rules out of the

applications code. This work has been published in (A. M. Albhbah

and M. J. Ridley, ISDA 2010).

Chapter 1: Introduction

7

 Domain specific rulebase: the contribution in this task was to design

a more general framework that includes as many rules as possible in

the system. The aim is to extend the automation of Web forms so that

more semantic information is used in a consistent fashion. Rules do

not support the manipulation of semantics of database metadata in

some cases; a domain specific rulebase was developed to support the

common sense rulebase for the manipulation of semantics of database

metadata. A more general framework was designed to extend the

automation of web forms. This work has been published in (A. M.

Albhbah and M. J. Ridley, IEEE ICCSIT, June 2011).

 Control appearance of Web form elements: just as CSS is applied

on the client side to aid the overall presentation of Web applications,

the contribution in this task was to create an extended Rules

Framework for Web Forms by adding to the metadata with custom

rules in order to control the appearance of Web form elements in a

semantic way. This work has been published in (A. M. Albhbah and M.

J. Ridley, IACSIT, Dec 2011).

 Extending the use of RuleML to store metadata and database

semantics: the contribution in this task was the use of RuleML to

represent database metadata in an external format to maximise the

support for advanced features and overcome RDBMSs limitations such

Chapter 1: Introduction

8

as varied support for domains and composites. Through this more

sophisticated Web entry forms can be generated dynamically and

automatically.

 Thesis Structure 1.5

The rest of this thesis as follows:

Chapter 2: Background

This chapter presents an overview of the most commonly used database

technologies, surveys Web technologies available for creating and developing

Web sites and Web applications, discusses the Extensible Markup Language

and its relevant sublanguages, including an overview of the family of Rule

Markup Languages including RuleML the most used technique in our prototype.

This chapter attempts to describe the techniques and basic concepts used

throughout this thesis.

Chapter 3: Literature Review

This chapter surveys a number of academic papers and articles most

strongly connected or related to the work presented in this thesis. It reviews the

literature on developments in database technology and Web applications over

the last few years. The overview was carried out to understand the current

state-of-the-art in this area. It introduces different approaches on user interfaces

Chapter 1: Introduction

9

to databases which focus on automatic mechanisms to be used for generating

user interfaces, extracting database metadata to construct Web user interfaces,

XML and Web applications, RuleML as a rulebase and using RuleML format to

save rules.

Chapter 4: Using RuleML and Database Metadata for Generating

Automatic and Dynamic Web Entry Forms

This chapter introduces a prototype development system which aims to

test the use of the RuleML format to support the development of automated

Web interfaces. This chapter begins with an overview of the proposed

prototype. Then a RuleML metadata rulebase is built based on metadata rules

extracted from the database catalogue. The implementation of the proposed

prototype is then discussed with an example that shows how the proposed

approach works.

Chapter 5: A rule framework design

This chapter introduces our suggested framework implementation. We

aim to design a more general framework that includes as many rules as

possible in the system. The aim is to extend the automation of Web forms so

that more semantic information is used in a consistent fashion. So we

investigate the use of Reaction RuleML0.2 which is a development from original

RuleML, on the server side to give a consistent use of variables and therefore a

Chapter 1: Introduction

10

consistent look and feel to forms across pages within applications accessing a

database. The aim is to extend the automation of Web forms so that more

semantic information is used in a consistent fashion.

Chapter 6: An extended rules framework for Web forms: adding to

metadata with custom rules to control appearance

This chapter proposes the use of rules that involve code to implement

more semantics for Web forms. It extends the work presented in Chapter 5 by

developing an additional set of rules to control the appearance of Web forms. In

particular, a set of rules are proposed to control the appearance of Web form

elements in a semantic way using Reaction RuleML 0.2 format in conjunction

with database metadata rules.

Chapter 7: Extending the use of RuleML to store metadata and database

semantics

This chapter proposes the use of a RuleML format to implement further

semantics for Web forms. RuleML can be used to represent RDBMS data

structures by storing database metadata in an external format for some design

tools. Just as XML Schema which uses the elements and attributes to express

the semantics of XML data, in principle RuleML could be a representation for

RDBMS data too. In this chapter, a similar approach to the role for XML Schema

Chapter 1: Introduction

11

is presented. The approach is tested by using it to represent domain features

supported by some but not all DBMSs.

Chapter 8: Conclusion and future work

This chapter presents conclusion of the thesis and discusses limitations

of the research. Finally, possible future research areas are pointed out.

Chapter 2: Background

12

Chapter 2

2 Background

 Introduction 2.1

This chapter is spilt into three main sections. The first section gives an

overview of the most commonly used database technologies. The second

section surveys Web technologies available for creating and developing Web

sites and Web applications over the last few years. The third section discusses

the Extensible Markup Language (XML) and its relevant sublanguages ending

this section with an overview of the Rule Markup Languages which including

RuleML the most used in our prototype. So this chapter attempts to describe the

techniques and basic concepts used throughout this thesis.

 Database Technologies 2.2

Interaction of database and the Internet has become a cornerstone in the

development of Web application systems. Databases and database technology

have a significant impact on the increasing use of computers. The survey was

taken to understand the current state-of-the-art in this area. It is fair to say that

databases play a crucial role in almost all areas where the use of computers is

Chapter 2: Background

13

central, including education, business, medicine, commerce and engineering to

name a few. This Section provides an overview of Relational Databases which

are the most commonly used for Web applications and which are used for

implementation of the prototype system to be developed during this research.

We also overview tools used to access a database, and extraction of relational

database metadata.

2.2.1 Database

A database is a shared collection of structured data and its description,

designed to meet the information needs of an organization [11]. It can be

manipulated according to its integrity rules to ensure that the database is at

least plausible and shared by application systems. The main task of any

database is to store data in a way that can be used easily.

2.2.1.1 Database data models

A data model is a set of structures used to build a database, and the process

that can be applied to deal with databases, and safety rules that guarantee the

existence of the database. Data model quality can be judged on its ability to

deal with the data and its requirements. So there are many database models

such as:

 Non-relational database

- Hierarchical data model.

Chapter 2: Background

14

- Network data model.

 Relational database.

- Relational data model.

The most commonly database used for Web applications is relational

databases because of the stability on a large scale, and the acceptance and

speed.

2.2.1.2 Relational database

The relational model was first published in 1970 by Edgar F. Codd [12], it

was the first widely accepted model for database analysis and design. A

relational database is a collection of tables with rows and columns used to store

data; each table has a name defined by the person who created it, these tables

are created, updated, read using SQL (Structured Query Language), and

controlled using a Database Management System (DBMS). In a relational

database tables, called relations, that consist of columns, called attributes,

each column contains a set of values from the same domain which represent

facts from the real world, and rows, called tuples, where each row contains all

the information about one object [12]. In other words the Relational Database

Management System (RDBMS) is a collection of relations (tables), containing

data, which are connected by the chosen unique attributes. Furthermore, there

is normalization theory which can be applied to each database design to answer

these questions:

Chapter 2: Background

15

 How many tables will be in the database?

 What information is being represented?

 Which column will be in which table?

 Is there a relationship between the tables?

 Normalization is the process of simplifying the database design, which will

result in a good design. By following the Normal Forms rules, every table must

have a primary key which uniquely identifies table rows, and foreign keys which

are columns used to reference a primary key in another table. In this case each

data item entered to a foreign key column should match the referential primary

key data. In addition the RDBMS holds both data and a description of this data,

known as metadata [11].

2.2.2 SQL

Structured Query Language (SQL) is the main language used for managing

data in RDBMS, it was first defined by D. D. Chamberlin and others at IBM San

Jose Research Laboratory California in the early 1970s [13] it was pronounced

as its previous name Structured English Query Language (Sequel) and was

later changed to SQL. It is used for creating, querying and updating relational

databases. SQL has tools for summarizing, calculating, etc. Data can be

combined from multiple tables using table’s relationship. SQL has two branches:

Chapter 2: Background

16

 Schema Definition Language (SDL) defines database structures and its

integrity constraints.

 Data Manipulation Language (DML) manipulates data in relational

database.

2.2.3 Metadata

The database system contains the data and the description of the database

structure and its constraints, which is stored in the DBMS catalogue and known

as metadata. Metadata is defined as data about data [14], which contains

information on how each table is structured, data type and storage format of

each item. In addition it lists tables in each database, column names in each

table and so forth. Moreover a relational database includes a set of system

catalogue tables for describing the logical and physical structure of the data [3].

This information is useful for generating dynamic Web entry forms, providing

such information as:

 Name of database tables.

 Number of columns in a database table.

 Column name.

 Column type, which could be a special type such as serial.

 Column size.

 Column is primary key or not.

Chapter 2: Background

17

 Column is foreign key or not.

 Column accepts null values or not.

There is more information which could be retrieved from database metadata

such as check constraints which allow restrictions such as:

 State a minimum, maximum or range requirement for the value in a

column for example price >= 0, Age >= 18 && Age <=60.

 Each element must respect its type and restrictions of its

corresponding domain.

 A foreign key value should be retrieved from a parent table’s primary

key or candidate key.

Although some information can be retrieved from database metadata there are

limitations. To make some information more useful we may need some

supporting rules for example:

 There is no database type to tell if a column is a password. But by using

some rules applied to the information retrieved from the database we

may be able to determine if it is a password based on a domain

definition or set of words used to name the column.

 Unless the database system supports composite types there is no way

to group columns together as one block for example name information

Chapter 2: Background

18

(title, first name, last name), or address information, bank account

information.

 Web Technologies 2.3

This section gives an overview of languages, Client-Side scripting

languages, Server-Side scripting languages, and Extensible Markup Language

(XML) available for creating and developing Web sites and Web applications.

2.3.1 HTML

 Hypertext Markup Language (HTML) has been used to create documents

on the World Wide Web (WWW) since its first implementation in the 1990s [15].

HTML allows the user to publish online documents with structure such as

heading, text, tables, lists, photos, and retrieve online information via hypertext

links. HTML forms allow data to be collected from clients for processing, they

enable users to create applications that include database functionality and

provide access to the data, but a significant limitation of HTML forms is their

dependency on scripting languages. HTML forms are reliant on scripts to

accomplish many common tasks such as performing validations, marking

controls, displaying error messages, and calculations [16]. HTML 1.0 was the

first release of HTML to the world; it was very simple and used to put simple text

onto the Web. Since the early days of the Web HTML has gone through several

versions which are listed below:

Chapter 2: Background

19

 HTML 2.0

This was the first definitive one of the HTML family. It added a few new

features such as password, input types, radio buttons, reset, submit, check box

to forms.

 HTML 3.2

It became a W3C recommendation in January 1997 [17].It improved HTML

2.0 by supporting the use of new features such as tables, applets, fonts,

superscripts, subscripts, text flow around images[18].

 HTML 4.0

It became a W3C recommendation in April 1998. The most notable

additional feature was the use of Cascading Style Sheets (CSS), and it supports

more multimedia options, better printing facilities, scripting languages. In

December 1999 W3C recommended HTML 4.01, it was a minor update of

corrections and bug-fixes from HTML 4.0 [17].

 XHTML

Extensible HyperText Markup Language (XHTML) reformulates HTML 4.01

in XML [19]. It is an application of XML, and it takes advantage of XML’s strict

syntax to ensure pages are well- formed. It combines the data structure and

extensibility strengths of XML and the formatting strengths of HTML 4.01.

Chapter 2: Background

20

Comparison of HTML 4 and XHTML [20] is shown below:

HTML XHTML

 Documents must be well formed

uppercase recommended to use for

the standard tags and attributes.

Lowercase must be used for element

and attribute names.

Some elements such as <p>

(paragraph) element could omit end

tags.

<p>First paragraph.

<p>Second paragraph.

End tags are required for non-empty

elements.

<p>First paragraph.</p>

<p>Second paragraph.</p>

Attribute values is not quoted. Attribute values must always be

quoted.

It allows some attribute value to be

minimized.

Attribute value pairs must be written in

full.

No end tag for Empty elements.

 <hr>

Empty elements must either have an

end tag or the start tag must end with

/>. <hr> </hr> , <hr/>

Table 2-1 Comparison of HTML 4 and XHTML [20].

Chapter 2: Background

21

 HTML 5.0

It is the successor to HTML 4 and XHTML [20] . HTML 5 defines an HTML

syntax that is compatible with HTML 4 and XHTML1 documents published on

the Web. It allows for MathML (Mathematical Markup Language) and SVG

(Scalable Vector Graphics) elements to be used inside a document [21]. It

added some new functions for embedding audio, video, graphics, client-side

data storages, and interactive documents [17]. It is still in review.

2.3.2 RDF

The Resource Description Framework (RDF) is known as a framework

for describing Web resources [22] that are designed to be read and understood

by computer and are not supposed to be displayed on the Web to users [23].

RDF is written in XML and used to describe resources such as properties for

shopping items, Web events scheduling time and Web pages information [23],

and uses web identifiers to identify resources. It is used for knowledge

representation generally moving on from specifically Web resources.

2.3.3 Client –Side Scripts:

A script is program code that does not need compiling or pre-processing

before being executed. So when the Web page is downloaded the browser

executes the script driven by events such as mouse clicks or data entry that can

make Web pages more dynamic [24].

Chapter 2: Background

22

2.3.3.1 JavaScript

JavaScript is the most commonly used scripting language, it works with

most browsers. JavaScript can be added to HTML Web pages using the HTML

<script> tag; it can be added to the head section or the body section or both.

JavaScript in the body section will be executed while the page loads, but in the

head section will be executed when called. It can do many things such as

validate form data before submission for processing by a server, react to events,

and put dynamic text into an HTML page [25] . The core JavaScript language

has been standardised in the ECMA-262 standard [26]. ECMA standard is

based on JavaScript (Netscape) and JScript (Microsoft), it is known as

ECMAScript. There is another widely used scripting language based on

ECMAScript which is ActionScript. It uses the Adobe Flash Player platform to

provide website functionality.

2.3.3.2 AJAX

Asynchronous JavaScript and XML (AJAX), is a Web development

technique for creating interactive Web applications that allows data on a Web

page to be dynamically updated without reloading an entire page. It is a

combination of JavaScript, markup language to return the requested data and

server side language to handle the request [27]. By using AJAX servers send

back the requested data to the browser without any additional information or

presentation [28]. AJAX can be used to create autocomplete Web forms; it is

Chapter 2: Background

23

used to update the contents of the form without reloading a whole page by using

an autocomplete function, dynamically loading and displaying data from the

server as a list of matching options. As example of using autocomplete in AJAX

the autocomplete function will autocomplete a list of suggested country names

when the user start typing in the text field as in Figure 2-1 below [29]:

U United Arab Emirates

United States

United Kingdom

Uruguay

Ukraine

Country

Figure 2-1 Autocomplete AJAX function Example

Chapter 2: Background

24

2.3.3.3 JSON

JavaScript Object Notation (JSON) is described as a lightweight data

exchange format that is based on a subset of the JavaScript language and easy

for users to read and write [30]. It is faster and easier to parse than XML [31].

JSON is sometimes seen as a lightweight alternative to XML however its

inventor said "JSON is not a document format. It is not a markup language." [32]

So in some ways should not been seen as a general alternative to XML which is

those things but it does fit well for certain applications, a key use is for data

delivery for Ajax where if the use will be in JavaScript JSON is a good and

natural fit [33]. JSON is exchanging text information, much like XML and it can

be translated to and from XML [34]. It is better than XML for some types of

representations, e.g. object oriented data generally, arrays, but not the type of

structure (rules) we are dealing with. It may be more easily readable than XML

but that is not relevant to us similarly it may be more efficient with less space

used for tags compared to data but that again is not relevant to us.

2.3.4 Server-Side Technologies:

This section reviews the most common used server-side technologies

which are used to develop how Web servers communicate with external

programs for handling a Web page request, process all necessary operations,

and send the result back to the client. The main focus will be on PHP that have

chosen to implement and test our framework.

Chapter 2: Background

25

2.3.4.1 CGI

The Common Gateway Interface (CGI) is a standard interface between

the Web server software and the external applications. In Addition CGI is a

generic interface for calling external programs to query databases. With CGI,

while passing user-specific data to a program, the Web server can call up the

program. The program then processes that data and the server passes the

response back to the browser. CGI can be written in any language supported on

the Web server host machine such as C, C++, Perl, Visual basic, and any Unix

shell [35].

2.3.4.2 Perl

Practical Extraction Report Language (Perl) is a programming language

originally developed by Larry Wall [36] for writing utilities that perform large

amounts of string handling, text file processing, and interaction with the

operating system. Perl gains its importance due to its support for a wide range

of interface applications (CGI applications) , where it provides a very powerful

tool that connects Perl scripts with different DBMSs in such dynamic way, such

as generate dynamic Web pages and design interface between an application

and one or more database driver modules. A Perl application can talk to several

types of DBMSs using the same method.

Chapter 2: Background

26

2.3.4.3 PHP

PHP (PHP: Hypertext Pre-processor) is a server-side scripting language

used to create dynamic Web pages for interacting with the user. Moreover, PHP

can be embedded into the HTML code for serving dynamic Web pages. PHP

supports many database systems such as PostgreSQL, MySQL, Oracle, so it

can be used to create dynamic Web pages that are generated from information

accessed from a database [37 , 38].

Amongst a wide range of libraries, PHP has facilities for parsing and

accessing XML documents, SimpleXML extension provides a simple toolset to

access and convert XML documents to an object that can be processed with

normal property selectors and array iterators [38], introduce that there are some

examples:

 Load XML file $xml = simplexml_load_file("example37.xml");

Where example37.xml is the XML file name and $xml is a variable.

 Count XML elements

$p_cnt = count($xml->Reaction); this function will count how many

Reaction elements in the XML file.

 Counts the children of an element

$p_cnt3 = count($xml2->table[$m]->column);

Chapter 2: Background

27

 Finds children of given node

 $Ruletype=$xml->Reaction[$s]->event->type;

 Read the integer data only from XML element

 $string="0,1,2,3,4,5,6,7,8,9";

 $Rulecolsize=strpbrk($Rulesize,$string);

 Gets the name of the XML element

 echo $child->getName();

2.3.4.4 ASP

Active Server Pages is Microsoft’s server-side scripting language that is

used to develop dynamic Web-based applications. Like PHP It has the ability to

embed dynamic content into HTML Web pages. In addition ASP enables server

side scripting for IIS (Internet Information Server) with native support for JScript

and VBScript which are executed on the server [39]. Furthermore ASP provides

access to many database systems like MySQL, PostgreSQL, and Oracle, and it

has similar functionality to PHP and Perl.

2.3.4.5 Java Servlets

Java Servlets are platform independent server-side Java programs used

to extend Web servers, easy to use, which take advantage of the Java platform

Chapter 2: Background

28

to solve the issue of CGI and proprietary APIs. The following are some of the

advantages offered by servlets [40] :

 The code is executed once when the Web server loads it. Then it

only calls a service method to handle a new request once the servlet

is loaded and the servlet stays in memory while serving incoming

requests until it is unloaded or the servlet engine is stopped.

 They are portable, so they can be moved to a new operating system

without changing the source code.

 They use a standard API that is supported by several Web servers.

 They provide access to the large set of APIs available to the Java

platform such as JDBC API to access a database.

 They can take advantage of the Java Security Manager.

2.3.4.6 Java Server Pages

JSP (Java Server Pages) is a Java platform technology which provides a

simple way to create dynamic Web applications that are platform independent

[41]. JSP combine (HTML or XML) elements with Java code to produce dynamic

Web pages. Thus, a JSP document is a text-based file that mixes template data

(HTML tags) with dynamic actions to generate a response to a request from a

client. In addition a JSP page may contain a method to access a database by

calling a JDBC (Java Database Connectivity) function which will process a

requested form [42].

Chapter 2: Background

29

 XML 2.4

Extensible Markup Language (XML) is a subset of Standard Generalized

Markup Language (SGML); XML became a W3C Recommendation in February

1998 [43]. It is a simple and very flexible text format and a meta language used

to define other languages. XML extends the power of HTML by separating data

from presentation, and it is not intended to replace HTML because XML and

HTML were designed with different goals. HTML was designed to display data

and how data looks, but XML was designed to describe data, store data, focus

on what data is, transport data [44], and exchange structured information. In the

following sections we introduce a number of significant XML languages and

applications.

2.4.1 XML Schema

XML Schema is an XML-based language, became a W3C

recommendation in 02 May 2001[45]. It specifies XML structure, in detail it

specifies the definition of each type of element in the schema and the type of

the data associated with it. The Schema uses XML elements and attributes to

express the semantics [11]. It replaced DTD for definitions because it is more

powerful.

Chapter 2: Background

30

2.4.2 XSLT

XSLT (Extensible Stylesheet Language Transformations) became a W3C

recommendation in November 1999 [46]. It is a part of Extensible Stylesheet

Language (XSL) which is used to transform an XML document from one form to

another, for example so that it is recognised by a browser such as (X)HTML.

XSLT uses XML Path Language (XPath) to navigating nodes in an XML

document for transforming to a different format like XHTML and HTML [47].

2.4.3 XPath

XML Path Language (XPath) uses path expressions to address nodes

through the hierarchical structure of an XML document similar to the

expressions which are used when working with a traditional computer file

system [48 , 49]. XPath has many built-in functions which are used to identify

XML nodes with specific characteristics which is used by XSLT to transform

XML document into another XML document or (X)HTML document. Table 2-2

lists some of the path expressions for selecting XML nodes.

Chapter 2: Background

31

 Functions of XPath expressions captured from [50]

Expression Description

Node() Matches any node of any kind

. Selects the current node

.. Selects the parent of the current node

/ Selects from the root node

// Selects nodes in the document from the

current node that match the selection no

matter where they are

@* Matches any attribute node

* Matches any element node

@ Selects attributes

nodename Selects all child nodes of the named node

Table 2-2 XPath expressions make up an important part of XQuery.

Chapter 2: Background

32

2.4.4 XPointer

XPointer is short for XML Pointer Language, which is built on top of the

XML Path Language to allow addressing points and ranges into the internal

structures of XML documents to access the content of elements or attributes

[11], and used to address expressions in URI references as fragment identifiers

[51].

2.4.5 XQuery

XQuery is a Query Language for XML proposed by the W3C query

working group [11]. XQuery 1.0 second edition became a W3C

Recommendation in December 2010 [52], and originally intended as a kind of

SQL for XML data. In addition it was designed to query the XML data. It makes

use of XPath expressions to navigate through XML elements in an XML

document.

2.4.6 Rule Markup Languages

Rules in the Web have become a mainstream topic these days, and will

play an important job in the success of the semantic Web. Rule Markup

Languages will be the vehicle for using rules on the Web. In fact a Web rule

Language is a concrete (XML-based) rule syntax for the Web [53]. We introduce

a number of notable rule languages in a historic sequence.

Chapter 2: Background

33

2.4.6.1 RuleML

RuleML (Rule Markup Language) defined by the Rule Markup Initiative

to express a family of Web rules to support both forward (bottom-up) and

backward (top-down) rules in XML for deduction, rewriting, transformational, and

reaction [7]. The Rule Markup Initiative come out of RuleML to explore rule

systems suitable for the Web, allow exchange of rules between different

systems on the Web and interoperation between major commercial and non-

commercial rules systems [54]. It is used to create a basis for a universal rule

Markup Language using standard XML tags, which helps to specify rules, and

allows exchanging, manipulating and analysing rules. RuleML is a family of

sublanguages which was launched in August 2000 and as of 2012 is at version

1.0 [7]. The initiative is very flexible in its use of XML and it is not limited only to

propose a language but also translators for some targeted rules engines (e.g.

RuleML to JESS). Before executing RuleML rules, the rules have to be

translated to an inference engine language, such as Java Expert System Shell

(JESS) or Prolog to be executed. But in our research we focus on how to use

RuleML format to save rules as readable rulebase. RuleML is used to share rule

bases in XML and publish these rules on the Web [55]. It designed to be the

interchange format of the most Web rules in an XML format [56]. In Figure 2-2,

RuleML shows different types of rules which are described as follows:

Chapter 2: Background

34

Figure 2-2 A graphical view of RuleML rules [57].

1. Reaction Rules (event-condition-action rules) can only be applied

in the forward direction in natural, observing/checking

events/conditions and performing an action if and when all

events/conditions have been recognized/fulfilled as in the

example “When a share price drops by more than 5% and the

investment is exempt from tax on profit, then sell it” [58]. The

reaction rule specifies the reactive behaviour of a system in

response to events.

2. Transformation Rules (functional-educational rules).

3. Derivation Rules (implication-inference rules) can be applied in

both forward and backward directions as in the example “A gold

customer is a customer with more than $1Million on deposit” [58].

Chapter 2: Background

35

4. Facts as in the examples “John sells XMLBible to Mary”,”A

Porsche is luxury”.

5. Queries “Give the discount amount for all customers buying any

products”, to query the rulebase for the discount amount.

6. Integrity Constraints (consistency-maintenance rules) as in the

example “A customer who rents a car must be at least 25 years

old” [58].

The Figure 2-3 below show some example of rules in version 0.7 of RuleML,

this example rulebase contains four rules. The third and fourth rules are

actually facts.

<rulebase>

<!--In English: The first rule says that a person owns an object if that person buys

the object from a merchant and the person keeps the object. -->

<if>

 <atom>

 <rel>own</rel>

 <var>person</var>

 <var>object</var>

 </atom>

 <!-- explicit 'and' -->

 <and>

 <atom>

 <rel>buy</rel>

Chapter 2: Background

36

 <var>person</var>

 <var>merchant</var>

 <var>object</var>

 </atom>

 <atom>

 <rel>keep</rel>

 <var>person</var>

 <var>object</var>

 </atom>

 </and>

</if>

<!-- In English: The next rule says that a person buys an object from a merchant if

the merchant sells the object to the person. -->

<if>

 <atom>

 <rel>buy</rel>

 <var>person</var>

 <var>merchant</var>

 <var>object</var>

 </atom>

 <atom>

 <rel>sell</rel>

 <var>merchant</var>

 <var>person</var>

 <var>object</var>

Chapter 2: Background

37

 </atom>

</if>

 <!-- The next rule is a fact that says, in English, that

John sells XMLBible to Mary. -->

 <if>

 <atom>

 <rel>sell</rel>

 <ind>John</ind>

 <ind>Mary</ind>

 <ind>XMLBible</ind>

 </atom>

 <!-- empty 'and' -->

 <and/>

</if>

<!-- The last rule is a fact that says, in English, that Mary keeps XMLBible.-->

 <if> <atom>

 <rel>keep</rel>

 <ind>Mary</ind>

 <ind>XMLBible</ind>

 </atom>

 <and/>

</if></rulebase>

Figure 2-3 Example of rulebase in RuleML version 0.7 document [59]

Chapter 2: Background

38

RuleML has its key components, and its building blocks, below are some of

them as [60]:

 Predicates (atoms) are n-array relations defined as <Atom> element, that

include variables <Var> which will instantiated by ground values when

rules are applied, and <Ind> as individual constants, and so forth.

 Derivation Rules <Implies> consist of two main parts which are body

<body> and head <head>. The body part can has one or more conditions

<atom> which connected by <And> or <Or>. The head part is derived

from existing other rules or facts applied.

Example of the general form of RuleML 0.91 syntax is given in Figure 2-4 :

In English ''The discount for a customer buying a product is 5 percent if the

customer is premium and the product is regular'' [61].

<Implies>

 <head>

 <Atom>

 <Rel>discount</Rel>

 <Var>customer</Var>

 <Var>product</Var>

 <Ind>5.0</Ind>

 </Atom>

 </head>

 <body>

 <And>

Chapter 2: Background

39

 <Atom>

 <Rel>premium</Rel>

 <Var>customer</Var>

 </Atom>

 <Atom>

 <Rel>regular</Rel>

 <Var>product</Var>

 </Atom>

 </And>

 </body>

</Implies>

Figure 2-4 Example of rule in RuleML 0.91 syntax [62].

The example in Figure 2-5 shows some of the Changes in RuleML 1.0

relative to the previous version RuleML 0.91, that <head> element is replaced

with <then> and <body> element is replaced with <if>.

<Implies>

 <if>

 <And>

 <Atom>

 <Rel>premium</Rel>

 <Var>cust</Var>

 </Atom>

Chapter 2: Background

40

 <Atom>

 <Rel>regular</Rel>

 <Var>prod</Var>

 </Atom>

 </And>

 </if>

 <then>

 <Atom>

 <Rel>discount</Rel>

 <Var>cust</Var>

 <Var>prod</Var>

 <Data>5.0 percent</Data>

 </Atom>

 </then>

</Implies>

Figure 2-5 Example of rule in RuleML 1.0 syntax [63]

2.4.6.2 Reaction RuleML

Reaction RuleML (event-condition-action rules) is a branch of the RuleML

family; it is described as a general language and rule interchange for the family

of reaction rules [64]. Reaction RuleML introduced different types of production,

action and reaction rules into the native RuleML syntax. The design of Reaction

Chapter 2: Background

41

RuleML makes it easy to learn and can be maintained faster with less risk in the

opinion of [65].

The general syntax for Reaction RuleML 0.1 [66] in Figure 2-6 below:

<Reaction exec="active" kind="ecapa" eval="strong">

 <event>

 <!-- event -->

 </event>

 <body>

 <!-- condition -->

 </body>

 <action>

 <!-- action -->

 </action>

 <postcond>

 <!-- postcondition -->

 </postcond>

 <alternative>

 <!-- alternative/else action -->

 </alternative>

</Reaction>

Figure 2-6 The general syntax for Reaction RuleML 0.1[66].

Chapter 2: Background

42

In the first tag of the general syntax of Reaction RuleML 0.1 there are three

attributes, they are [66]:

1. @exec (stand for execution type), this attribute contains one of the

general execution styles:

 Active: ’actively’ polls/detects occurred events by monitoring/validity

time function.

 Passive: which waits for incoming complex event message and

sends outbound messages as actions which match with the defined

event.

 Reasoning: Knowledge representation derivation and event/action

logic reasoning and transitions.

2. @kind attribute denotes the kind of reaction rule.

3. @eval attribute denotes the interpretation of the rule as strong or weak.

The general syntax for Reaction RuleML has been updated to be easy to use,

where more tags have been added to the new version (0.2) [67]. The general

form of the Reaction RuleML0.2 syntax is shown in Figure 2-7 below:

Chapter 2: Background

43

<Rule style="active" evaluation="strong">

<label> <!-- metadata --> </label>

<scope> <!-- scope --> </scope>

<qualification> <!-- qualifications --> </qualification>

<oid> <!-- object identifier --> </oid>

<on> <!-- event --> </on>

<if> <!-- condition --> </if>

<then> <!-- conclusion --> </then>

<do> <!-- action --> </do>

<after> <!-- postcondition --> </after>

<else> <!-- else conclusion --> </else>

<elseDo> <!-- else/alternative action --> </elseDo>

<elseAfter> <!-- else postcondition --> </elseAfter>

</Rule>

Figure 2-7 The general syntax for Reaction RuleML 0.2 [67]

Furthermore, some parts are replaced and added to version 2.0 of Reaction

RuleML [67], for example:

 “<Implies> has been replaced by one general <Rule>, which is used as

constructor for all types of rules.

 Reaction RuleML 0.2 supports XPointer and XPath expressions as

markup and query language to point into and select data from external

Chapter 2: Background

44

XML data sources and create constructive views over resource sets.”

[67].

2.4.6.3 SWRL

Semantic Web Rule Language (SWRL) combines OWL (Web Ontology

Language) with RuleML sublanguages of the RuleML (Rule Markup Language)

[68 , 69]. OWL became a W3C recommendation in 10 February 2004 [70], it is

designed for use by applications for processing the content of information

instead of only presenting the information to humans.

2.4.6.4 R2ML W3C

R2ML 0.1 is an XML based rule language released in 2006, this project is

about the design of integrity and derivation rules on the basis of the Rule

Markup language (RuleML) and the Semantic Web Rule Language (SWRL). It

defines a general markup framework for integrity rules, derivation rules,

production rules and reaction rules. The current release is R2ML 0.5 which was

released in August 2007 [71] .

2.4.6.5 W3C RIF

At the end of 2005, W3C chartered the Rule Interchange Format (RIF)

Working Group to develop a standard for exchanging rules. It is an effort to

define a standard Rule Interchange Format for facilitating the exchange of rule

sets among different systems [72].

Chapter 2: Background

45

2.4.6.6 Section Summary

From the previously introduced rule languages RuleML was chosen to be

used as a rulebase to store the system rules because RuleML is easy to read

and understand, and also designed to be the interchange format for most Web

rules in an XML format. Moreover, it works across various rule languages and

platforms and it is well supported and readable by for example PHP’s standard

XML functions.

 Chapter Summary 2.5

The aim of this chapter was to present a brief background to some key

Web database technologies. The chapter started by presenting the general

domain of the thesis and the database technologies. Therefore, an overview of

Web technologies related to this research is presented. Finally it presents a brief

description of XML and its surrounding techniques ending the last section with

an overview of Rule Markup languages.

In conclusion of the previously presented technologies, PHP is chosen as server

side programming language because it is:

 Open source.

 Cross platform.

 Free.

 Server scripting language.

Chapter 2: Background

46

 Allows embedding of program logic in HTML pages.

 Enables serving dynamic Web pages.

 Has a facility for parsing and accessing XML documents.

 Supports many database systems.

RuleML as rulebase to store the system rules because RuleML is:

 Easy to read and understand.

 Designed to be the interchange format of most Web rules in an XML

format.

 Works across various rule languages and platforms.

 XML – based that makes it readable using PHP’s standard XML

functions.

HTML and JavaScript as client side programming:

 Normal Web interface.

 Allows use of forms.

PostgreSQL as DBMS:

 Free.

 Open source.

 Support for SQL standard.

 Has advanced features such as domain and composite type support.

Chapter 3: Literature Review

47

Chapter 3

3 Literature Review

 Introduction 3.1

In the literature, much work [4 , 5 , 8 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 ,

81] has been done in different aspects of Web applications. This chapter

surveys a number of academic papers and articles most strongly connected or

related to the work presented in this thesis. These address many issues of Web-

based applications and their solutions as moving from static Web pages to

dynamic Web applications especially in terms of extracting data from databases,

data exchange, user interface design, and semantic Web rules (RuleML).

This chapter is organized as follows: Section 3.2 introduces previous

works related to different approaches on user interface to database which focus

on automatic mechanisms to be used for generating user interfaces. Section 3.3

describes state of the art research similar to this thesis for extracting database

metadata to construct Web user interfaces. Section 3.4 review some academic

papers related to XML and Web applications, and gives an overview of related

Chapter 3: Literature Review

48

work on using RuleML as a rulebase and using RuleML format to save rules.

Section 3.5 summarizes the chapter.

 Related Work on User Interfaces to Databases 3.2

This Section gives an overview of the works related to different

approaches on user interface to database which focus on automatic

mechanisms to be used for generating user interfaces.

Prior to the use of ODBC and JDBC, different approaches were

developed to link relational databases with Web applications [73 , 78]. For

example, Nguyen et al. [73] have developed an approach that can access a

database using SQL and HTML sections linked together using cross language

variable substitution. This approach allows Web developers to make use of all

features available in HTML and SQL for building query forms, reports, querying

and updating relational databases. The cross language variable substitution

bridges the gap between HTML input and SQL query as well as SQL result rows

and HTML output. It was used in designing and implementing a system called

DB2 WWW connection which enables the development of applications that

access relational DBMS data from the Web. The end user of this system only

sees the requested forms and results. The mechanism was designed and

implemented as demonstrated in Figure 3-1. The disadvantage of this system

was that the forms and reports were built in advance, and not in a dynamic way.

Chapter 3: Literature Review

49

In addition the system does not use a general method of accessing the

database; it is DBMS specific via DB2, however, these days many powerful

tools can be used to bridge Web applications with DBMS.

Figure 3-1 DB2 WWW System Overview adopted from [42]

An automated method for accessing relational databases from the WWW

was proposed in [74 , 75]. The authors have argued that it is time consuming to

reformat the information that is available in databases into HTML pages to be

deployed on the WWW [74]. Thus, their proposed approach automatically

generates a WWW interface to a database using the metadata available from

the catalogue. The interface supports direct querying and browsing of the

database based on dynamic Hyper Text links constructed from database

metadata integrity constraints. This work is close to what are proposing in this

thesis in terms of using database metadata. However, a remarkable difference

between the two approaches is noted. The proposed system does not use a

Chapter 3: Literature Review

50

general method of accessing the metadata; it is DBMS specific via DB2. our

approach is more generic since the metadata information is extracted

automatically and used with the developed rules to generate the Web forms on

the fly from any given database tables.

Halasz [76] presented an approach to create a template of an HTML

page, which is modified by a server program before being sent to the client

browser, by using APL (Array Programming Language) to minimize the amount

of code and the hardware on the client machine. The approach overcomes the

issue of recoding or recompiling the HTML page code by creating a template of

an HTML page. The author suggested using an HTML template which contains

only HTML tags, so it can be developed and maintained using APL on the

server and form controls are generated and modified dynamically as required.

This approach was a good idea but it has limitations of using an external

representation rather than directly using the database metadata, using the

metadata direct to generate Web forms is less error prone, and these days

many different languages which are more commonly in use on servers can be

used to bridge Web applications with DBMS rather than using APL.

Chapter 3: Literature Review

51

 Related Work on Metadata to Web Entry Forms 3.3

This section describes research in areas similar to the approach in this

thesis for extracting database metadata to construct Web user interfaces.

Weiner et al. [77] describe an approach of dynamically generating Web

based database interfaces. This was using a manually developed metadata

table, which contains information about the database such as tables names,

columns names, data types, and links between tables. In the described model

since the metadata is built by hand rather than accessing existing metadata

dynamically it is possible that the Web interface will not be an accurate

representation of the database and it needs more effort. Figure 3-2 shows their

model while the metadata table can be shown in Table 3-1. The metadata

information they use is available in the database schema. So it is not the same

as our approach. The proposed research generates the rules by hand since the

information in the rules is not available elsewhere but the metadata is extracted

automatically from the database.

Chapter 3: Literature Review

52

Figure 3-2 A subset of the SEER data model, adapted from [77].

Table 3-1 Metadata table that represents the SEER data model shown in Figure 3-2, adapted

from [77].

Chapter 3: Literature Review

53

Elbibas et al. in [78] proposed an approach to develop and maintain

HTML forms based on metadata extracted from a database table. The authors

have used Java Database Connectivity (JDBC) [82] for accessing database. It

included metadata features. Their proposed approach generates dynamic HTML

forms which have been generated and validated automatically. As the HTML is

generated automatically on the fly, i.e., dynamic HTML, changes that are made

to the database are reflected once the data is accessed again. Java and

metadata were used to show help messages to the user to validate the input

data. The set of rules of this scheme is embedded in the application code where

it is difficult to locate and change their logic. In addition the set of rules does not

support the manipulation of semantics of database metadata in some cases. So

it is possible to develop domain specific rules to support the generic rules, as an

example to deal with column names.

Elsheh et al. in [4] proposed a model which aims to generate dynamic

Web entry forms based on metadata extracted from system tables. They used

the Java servlet class to convert the extracted metadata via JDBC into an XML

document. A set of rules has been developed and applied to database metadata

which is used to map each column to specific user interface controls. In

addition, the XML document is transformed into an XHTML document using

XSLT stylesheet, which is returned back to the user as Web entry form.

Although XML is used it differs from our approach which is using RuleML. This

Chapter 3: Literature Review

54

approach has the same problems encountered by [78] where the set of rules of

this scheme is embedded in the application code where it is difficult to locate

and change their logic. In addition the set of rules does not support the

manipulation of semantics of database metadata in some cases. So it is

possible to develop domain specific rules to support the generic rules, as

example to deal with columns name. In our framework the separation between

the logic and presentation is achieved.

Mgheder et al. in [75] suggested an approach that uses metadata stored

in system tables in databases (columns name, type, size etc.) to develop

generic user interface elements. They used PHP as the server script and the

database abstraction library ADOdb to achieve their goal. The metadata is

extracted from the database by using the ADOdb metadata methods. This

metadata information combined with a developed set of rules is used to

automatically map each column in the database table to a specific user interface

control. The proposed model uses a set of rules which are extracted from the

database to build the Web form; these rules are built within the application code,

where it is not easy to maintain them.

3.3.1 Section summary

From the previous approaches we summarise some points which will be

taken to make our approach as generic and abstract as possible:

Chapter 3: Literature Review

55

 Dynamic metadata VS hand created.

 Range of languages used.

 Specific to one DBMS.

 Separation of rules out of code.

 Related Work on XML and Web-based Data Entry 3.4

Applications, and RuleML

This section gives an overview of some academic papers related to XML

and Web applications, and gives an overview of related work on using RuleML

as a rulebase and using RuleML format to save rules.

XML Schema uses elements and attributes to express semantics of XML

data, but XML Schema does not have active elements. Bernauer et al. in [79]

proposed an approach which implemented an Active XML Schema with XML

Schema that defines active behaviour to enrich XML documents. Active XML

Schema specifies active behaviour by using Event-Condition-Action rules, which

automatically performs an action as reaction if a given condition applied. They

do not use RuleML.

Kirda et al. in [80] implemented a system to build adaptable database

interface using XML/XSL and WebCUS (Web Content Update System) as in

Figure 3-3. The system stores the Database schema in an external XML file to

define the EER(Extended Entity Relationship) [83]. So the XML files described

Chapter 3: Literature Review

56

the database schema and the access control rules. The XML files use a special

syntax to describe the tables, rows, columns and the table’s relationship. The

information has to be manually converted into WebCUS XML database schema

description (XML-EER), and every time the database schema has to be

modified manually. The system uses XSLT stylesheets to separate the layout of

the updated system from the code, which is used by MyXML template engine to

transform the MyXML documents into Web forms.

Figure 3-3 The WebCUS Architecture

Chapter 3: Literature Review

57

Turau in [5] describes a framework that introduces a method for Web-

based data entry applications based on a textual specification of XML

application forms. It focuses on the presentation design by separating between

presentation and business logic. The author implemented a three-tier framework

called Wizard for Web based data entry application using Java Servlets and

Java Server Pages to solve the separation between business rules and user

interface presentation code. This used a single XML file to save the formal

specification, which is used as input for a code generator to generate a system

prototype. So it can be used for testing data entry process and a user interface

was established. The generated views have its default design appearance.

Bertossi et al. in [8] describe a methodology that uses metadata for a

virtual and relational data integration system. They used a standard format

based on XML and RuleML for representing metadata. Native XML was used to

represent data about the schemas, RuleML was used to represent the mapping

between the global schema and the local schemas, and XQuery was used to

query the metadata. This design allows data sources to be added to the system

or removed without affecting any other data sources. As a conclusion, this

approach is similar to ours in using RuleML to store metadata.

Chapter 3: Literature Review

58

3.4.1 RuleML as Rulebase

RuleML provides a format for what is claimed [81] to be a natural form for

human reasoning and behaviour, that is if-then-rules. However the individual

rules need to be developed into a Rulebase, in a different domain to ours

Schmidberger et al. in [81] have mentioned that there is no established standard

rule format for industrial plant information reasoning available. They described

an approach which implements rulebase engineering of automation systems.

The system was created especially for the automatic instantiation of Asset

Management Functionalities and the automatic creation of interlocking control

code. They have used a rule format based on a combination of RuleML and

MathML elements in the logic part. Thus, in the context of rulebase automation

of plant engineering tasks there will be a need for common description of such

rules in a format which is understood by humans and can be interpreted by a

computer.

 Chapter Summary 3.5

The chapter has introduced an overview of previous work related to the

work presented in this thesis. It has provided a wide range of techniques and

ideas related to Web development, which is the central topic in this thesis. The

chapter has been divided into three main sections to organise the overview. It

started with an overview of the work that has been done on the topic of user

Chapter 3: Literature Review

59

interfaces and databases, then moving to some ideas related to user interfaces

and metadata, in the third section an overview of some academic papers related

to XML, XML Schema and Web applications has been addressed, and different

ideas of using RuleML as rulebase introduced. By reviewing different techniques

that were proposed of using database metadata to improve the automatic and

dynamic generation of Web entry forms; we summarise some points which will

be taken into consideration to make our approach as generic and abstract as

possible:

 In the past external representation was used rather using database

metadata.

 The database metadata was manually created instead of being

extracted dynamically from database.

 Some approaches used were specific to one DBMS; our aim is to

create an application that can be adaptable to various DBMS.

 The rules were embedded in the application code whereas our

approach aims to separate rules out of application code.

 Rules do not support the manipulation of semantics of database

metadata in some cases, our approach can tackle this problem in

two ways, first develop rulebases to support the common sense

rules, for as example to deal with column name, second develop

Chapter 3: Literature Review

60

domain specific rulebases to support the common sense rules as

example to deal with column name and size.

 In the next four chapters, different techniques are proposed that use

RuleML and database metadata to improve the automatic and dynamic

generation of Web entry forms.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

61

Chapter 4

4 Using RuleML and Database Metadata for Generating

Automatic and Dynamic Web Entry Forms.

 Introduction 4.1

This chapter introduces a prototype development system which aims to

test the use of the RuleML format to support the development of automated

Web interfaces. The RuleML stores sets of rules to overcome database

metadata limitations see Section 4.4.3 and use them to generate automatic and

dynamic Web forms. The system is not bound to any platform and could be

implemented in a variety of languages. Here we have implemented this in PHP

as an example of a language used for Web development in a number of styles

and often in an ad-hoc and unstructured style. This chapter begins with an

overview of the proposed prototype. Then, building RuleML metadata rulebase,

based on metadata rules extracted from the database catalogue, is introduced.

The implementation of the proposed prototype is then discussed with an

example that shows how the proposed approach works.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

62

 Prototype Overview 4.2

The principle idea of the prototype implementation was the creation of a

Web form to evaluate to what extent we can use the relational database

metadata by building the rulebase using the RuleML format to store a developed

set of rules which will be discussed in section 4.4.1. The rulebase will be used

as an abstract representation that can be used to build adaptable dynamic

database interfaces and to produce different Web entry forms. The metadata

will be extracted from system catalogue tables as typically found in relational

database systems. In this case using a number of PHP’s PostgreSQL functions

at runtime in conjunction with the rulebase to produce appropriate Web form

elements. Details of how the proposed prototype works are presented in the

following sections.

 General Metadata Rules 4.3

Columns in the database table have properties such as data type and

column name. The properties are the metadata of the table. In practice only the

required pieces of information extracted from the database metadata will be

used for producing dynamic Web forms. From these metadata the required

rules are described as following:

 Rules based on type definition of columns. For example

 Column is serial or not.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

63

 Column type is Boolean, character or string, integer

 Column size.

 Rules based on uniqueness. For example

 Column is a primary key.

 Column is a foreign key.

 Rules based on null ability (not null) to ensure all rows in the table

contain a definite value for the columns specified as not null.

 Rules based on columns’ names. For example:

 Column name is password or variant e.g. password.

 The Prototype Implementation 4.4

The prototype implementation consists of several processes as shown in

Figure 4-1. The proposed prototype aims to achieve the following objectives:

 A connection to a database management system is created using a

number of PHP’s PostgreSQL functions.

 Extract metadata using specific functions to retrieve information about

each field in a database table. A relational database provides access

to its structure through the same tools that are used to access the

data, specific PostgreSQL functions can be used as a tool. In practice

not all extracted information will be used for producing dynamic Web

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

64

forms but only the required pieces of information will be used for this

purpose such as data type, null or not null fields, primary and foreign

keys.

 Apply rulebase. The concept of mapping each table’s column to a

specific Web entry form element is based on a set of rules. For

developing automatic and dynamic Web forms, a rulebase based on

RuleML format was developed as shown in Figure 4-3. This proposed

rulebase works by taking advantage of database metadata. This

rulebase will be applied in conjunction with the metadata of each

column to decide which form element will be created for each column.

 Generate Web form element. The generated Web form is returned

back to the client so the user can fill in the required information. In the

Web form many controls that have constraints are checked to make

sure that the correct information is entered. This is important to avoid

any missing fields.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

65

4.4.1 Building RuleML metadata rulebase

In this section we address some common sense rules based on the

information that exists in the database metadata. Any Web form consists of

many form elements such as (text box, text area, drop down list, check list, radio

DB

Extract metadata

from database

Apply rulebase

Create form

elements

Create labels

Create JavaScript

checks

Web form

Figure 4-1 Prototype Implementation

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

66

buttons). By taking advantage of database metadata available a set of common

sense rules can be addressed. These rules will be used in conjunction with the

database metadata to generate a Web form dynamically on the fly. It has the

advantage of avoiding the need to hard code the presentation of the Web form

following any changes to the database tables or data type of each column in the

database. The following common sense rules are used to build the rulebase in

RuleML format and describe how to generate elements of a form automatically,

as shown in Figure 4-3.

 Rule 1: if a column is integer type, then it should be mapped to textbox

Web form control.

 Rule 2: if a column is character type and it’s length is less than or equal

to 30 (for example), then it should be mapped to textbox Web form

control.

 Rule 3: if a column is character type and it’s length is more than 30, then

it should be mapped to textarea Web control form.

 Rule 4: if a column is Boolean type, then it can be implemented as a

group of radio buttons or drop down menu. So if the column is Boolean

and it is not null then in this case it is pair of radio buttons, but if the

column is Boolean and it is nullable then in this case it is a group of radio

buttons. In some cases a default value is generated automatically which

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

67

means one of the radio buttons is pre-selected by the system unless the

user has chosen another one. In all these cases prototype framework

implementation for radio buttons will be used. In addition in this rule we

can use the name of the column to make the Web form more clear.

 Rule5: if a column is date type, then it could be mapped to a textbox and

the format of the date provided as a label for this element.

The condition on the length of the field in Rule2 and Rule3 could be set at

different threshold values and it could be changed by allowing it to be set as a

parameter. Figure 4-2 shows the algorithm of the above developed rules.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

68

BEGIN

READ column_type, column_size, column_is_null_able

SET n // value of size condition for the textbox

CASE column_type is:

 Integer: Action= create textbox element

 Character: IF column_size <= n THEN

 Action= create textbox element

 ELSE

 Action = create textarea element

 ENDIF

 Boolean: IF column_is_null_able THEN

 Action = create group of radio buttons element

 ELSE

 Action = create pair of radio buttons element

 ENDIF

 Date: Action = create textbox element

 ENDCASE

END

Figure 4-2 Pseudo code for common sense rules

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

69

Figure 4-3 Metadata rulebase in RuleML format

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

70

4.4.2 Retrieving metadata from database

After building a rulebase in a RuleML format the next step is to use any

database table that contain different integrity constraint rules in conjunction with

the rulebase to build a Web form automatically. The implementation started by

creating a database table which contains employee information as shown in

Figure 4-4 below:

CREATE TABLE employee (

id_no integer NOT NULL,

name character (30) NOT NULL,

date_of_birth date NOT NULL,

full_time Boolean,

address character (35),

CONSTRAINT id_no PRIMARY KEY (id_no));

Figure 4-4 Database table’s structure

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

71

A number of PHP’s PostgreSQL functions are used to make a connection to

the database and retrieve the metadata; some of these functions are listed

below:

 To make a connection to the database we use the function ‘pg_connect’

as follows:

 $conn = pg_connect("host=localhost port=5432 dbname=postgres

user=postgres password=atiaalbabah");

Where ‘localhost’ is the server name, ‘postgres’ is database name, second

‘postgres’ is the name of the user and ‘atiaalbabah’ is the password used to

access the database.

 To get the column metadata information as an array as shown in

Figure 4-5 we use the function ‘pg_meta_data’ as follows: $meta =

pg_meta_data($conn,'employee');

Where ‘$conn’ is the connection handle and ‘employee’ is the table’s name.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

72

Figure 4-5 Metadata as an array extracted from database table

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

73

 There is another method to retrieve information about each table field

which is used in the prototype implementation to get the specific

information needed for the form implementation such as column’s name,

type and so on [84], by using specific functions as explained below in

Table 4-1. The output generated from these functions is shown in

Figure 4-6.

pg_field_name() to return the column’s name

pg_field_type() to return the column’s type

pg_field_prtlen() to return the column size

pg_field_size() to return the internal storage size in bytes

pg_field_is_null() to test if a field is SQL null or not

pg_num_fields() to return the number of columns in result

resource

Table 4-1 Methods to retrieve information about each field

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

74

 There are a number of different technologies available depending on the

DBMS and the implementation language; we illustrate two methods in the

language and DBMS to use for the prototype. Equivalent functionality is

available in other situations; with some variations e.g. some systems may

provide additional information.

Figure 4-6 Metadata from database table using direct PHP PostgreSQL functions

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

75

 Another method to retrieve information about some fields in a table to get the

specific information needed for the form implementation, it is to query the

database table metadata as show in the example in Figure 4-7.

$query = "SELECT column_name, ordinal_position, is_nullable, data_type,

 character_maximum_length, constraint_name, constraint_type,
cons_description FROM postgress_metadata where table_name =
'employee'";

$result = pg_query($query);

 if (!$result) {

 echo "Problem with query " . $query . "
";

 echo pg_last_error();

 exit(); } $m=0;

 while($myrow = pg_fetch_assoc($result)) {

 if ($myrow['ordinal_position']!=$m) {

 $name= $myrow['column_name'];

 $Metacoltype=$myrow['data_type'] ;

 $Metacolsize=$myrow['character_maximum_length'];

 $colnotnull= $myrow['is_nullable'];

 $constraint_type=$myrow['constraint_type'];

 $constraint=$myrow['cons_description'];

Figure 4-7 Query specific information form database metadata

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

76

4.4.3 Limitation of database metadata

The only piece of information that tells us that a particular column is a

password is its name; there is no distinctive database type of password, unlike

the situation with a Web form where a distinct password type exists.

Numerous other examples exist where the type systems of typical RDBMSs are

arguably not semantically rich enough.

 If a column is called email we might infer that its structure should be in

the form someone@something.something but it will simply be “text”.

 Some RDBMS may support a composite type connecting several

columns together but for many the only association of a number of

columns as parts of an address may be naming conventions like calling

the columns st_address, city_address, etc.

So to use this information to generate the correct Web form element for each

column the metadata alone cannot be used, it needs some supporting rules

which will help to map each column to the right form element. Therefore we can

invoke a suitable RuleML, and store all names as domains which will help to

map each column to the correct element control.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

77

4.4.4 Generate the Web entry forms

A general purpose PHP script was written which loops through all the

metadata for each column and uses the RuleML rulebase, the rulebase is

comprehensive and has a sensible and complete order. So every column will

map to something, from a rich set of features if it’s a primary key column down

to a plain form element for a nullable text field. The script tests to see which

rules apply and then uses those rules to build the form elements on the fly as

shown in Figure 4-8 where for example the column id_no is mapped to a textbox

of the appropriate size (found from the metadata) and marked as required since

it is specified as non null, its label is formatted as described below. Every

column in the database table is mapped to a specific Web form control element.

The label of each control element is the actual column’s name in the database,

retrieved from the database table metadata PHP functions can used to produce

a user friendly label. For instance, functions used to replace underscores which

separate words in a column’s name by spaces and change the first character of

all words to upper case. As a guide to the user and to make the form simpler we

have used (*) for the required fields (columns that are primary key or specified

as not null). This can be supplemented with JavaScript to ensure a value is

provided. In Figure 4-9 we use functions to help the user entering the date field.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

78

Figure 4-8 Screenshot showing user interface form generated automatically using metadata and

RuleML.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

79

Figure 4-9 Screenshot showing user interface form generated automatically, and function used

to generate a date field.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

80

The written script is general. Changes to the metadata lead to changes in

the generated form. As in Section 4.4.1, Rule2 and Rule3 control the generation

of columns which are mapped to textbox or textarea depending on the column

length metadata. So any changes applied to the table metadata are applied to

the form automatically, for example when the column metadata length is

changed to a length less than or equal to the conditional length in the rules, the

mapping of the address column is changed automatically from a textarea to a

textbox control element as shown in Figure 4-10.

Figure 4-10 Screenshot showing the changes of address control element automatically

generated.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

81

Figure 4-11 presents another method to retrieve column’s constraints

from database metadata and shows it to the user to add more semantic to the

Web forms, by using the following query in this case the table name is

employee:

 $query = "SELECT column_name, ordinal_position, is_nullable, data_type,

character_maximum_length, constraint_name, constraint_type, cons_description

FROM postgress_metadata where table_name = 'employee'";

Figure 4-11 Screenshot showing constraint type of some column automatically generated.

Chapter 4: Using RuleML and Database Metadata for Generating Automatic and Dynamic Web

Entry Forms

82

The additional text for some fields such id_no>0 is obtained from the

cons_description metadata element.

 Chapter Summary 4.5

Automatic and dynamic generation of Web forms is entering the

mainstream in Web development for supporting developing online systems.

Rules extracted from database metadata and used to generate the Web forms

when embedded in the application code are not efficient due to the difficulty of

locating and changing the logic. In this chapter we proposed an approach which

separates the rules as an independent entity from the application code, by using

a RuleML format as rulebase. The system evaluation was successfully carried

out using Reaction RuleML0.1 format to store the developed rules, PostgreSQL

as a DBMS, PHP for server side programming, HTML and JavaScript for client

side programming. As a result a Web form for user interface is generated

dynamically. This approach aims to use as generic rulebase as possible using

RuleML.

In the next chapter we propose to investigate the use of Reaction RuleML

0.2 as an improved version of RuleML 0.1. In Reaction RuleML 0.2 more

detailed tags are provided with more meaningful tags naming. Another

extension to our work is to develop two kinds of rules: a more complete set of

common sense rules and domain-specific rules.

Chapter 5: A Rule Framework Design

83

Chapter 5

5 A Rule Framework Design

 Introduction 5.1

This chapter introduces our suggested framework implementation. We aim

to design a more general framework that includes as many rules as possible in

the system. The aim is to extend the automation of Web forms so that more

semantic information is used in a consistent fashion. So we investigate the use

of Reaction RuleML 0.2 which is a development from original RuleML on the

server side to give a consistent use of variables and therefore a consistent look

and feel to forms across pages within applications accessing a database. We

know that Web site maintenance is a problem and just as use of CSS on the

client side can give consistency to the appearance of pages generally; use of a

set of rules can give a similar consistency to the appearance and operation of

any set of forms that interact with the same database. Use of common sense

rules and domain specific rules rulebases using Reaction RuleML 0.2 format in

conjunction with database metadata rules can be used to support the

Chapter 5: A Rule Framework Design

84

development of automated Web forms. The aim is to extend the automation of

Web forms so that more semantic information is used in a consistent fashion.

We illustrate our approach with the development of a banking based example

later.

 Framework Overview 5.2

In this chapter, we develop the initial use of Reaction RuleML 0.2 in

conjunction with database metadata originally proposed in [85] to a more

general framework that allows "common sense" and "domain specific" rules to

be included in the system.

The common sense rules add functionality not limited to a specific domain

but also not supported by database metadata which is often limited by factors

such as the type system of the database itself [4]. In this category rules are like

those mapping a column called password to a password type form input.

 As a general example of domain specific rules we offer mapping the column

of landline telephone number to two separate textboxes control elements; the

first one is for the area code and the second one is for the telephone number.

Here we use our semantic knowledge of the structure of landline phone

numbers to improve the user experience and avoid possible errors.

Common sense rules use domain specific rules for some advanced

information, as the common sense rules use column type (found from database

metadata) and domain specific rules support the common sense rules by

Chapter 5: A Rule Framework Design

85

providing the exact size (found from domain specific rulebase) for specific

columns using column name (found from database metadata). Domain specific

rules use the name and the size of database column to support mapping each

column to a Web form control element.

We illustrate the limitations of database metadata alone with the following car

registration example. For a single UK car registration example if a database

column reg_no was defined as char (8) and not null, we would use the database

metadata to produce a form of suitable size, which would be required for data

entry. However a HTML form textbox can have additional data put into it, with

the addition of domain specific knowledge we could supplement the behaviour

of the form to enforce a maximum of 7 characters and that only numbers,

spaces and uppercase letters (excluding I and O) were permitted. This

behaviour should be applied to any form using the reg_no field. Therefore we

propose a framework as structured in Figure 5-1 where we supplement

database metadata rules with common sense rules and introduce a second

rulebase of domain specific rules.

Reaction RuleML 0.2 format is used to store metadata rules as rulebase, In

addition, we propose a framework as in Figure 5-1 that divides the rules into two

types. The first one is to save the common sense rules and the second to save

domain specific rules which will help to develop a prototype system that can

generate automatic and dynamic Web entry forms for Web applications.

Chapter 5: A Rule Framework Design

86

 Framework Implementation and Evaluation 5.3

This section introduces a prototype development system which aims to

implement and test the framework, introduced in Section 5.2, of using the

Reaction RuleML 0.2 format. It stores and implements constraint rules to

Domain specific rules

Common sense rules

DB metadata rules

 D B

 Web Page

Request

Figure 5-1 Structure of the proposed framework

Chapter 5: A Rule Framework Design

87

overcome the limitations of only using the database metadata information. These

rules are used with the metadata to generate automatic and dynamic Web forms.

The general idea of the prototype implementation is to create a Web form to

evaluate to what extent we can use the relational database metadata and build

the rulebase using a RuleML format to save the rules as two types: the first one

is common sense Rulebase and the second one is domain specific Rulebase.

Both types are used to build adaptable dynamic database interfaces. The

metadata are extracted using a number of PHP’s PostgreSQL functions. The

following sub-sections present a flow diagram and implementation of the

proposed framework.

5.3.1 Framework mechanism

 The steps that are required to use rules and metadata for generating

automatic Web forms are shown in Figure 5-2, which extends the original

prototype implementation discussed in chapter 4 Figure 4-1. The following

objectives are intended to be achieved.

• Extract metadata.

• Apply domain specific Rulebase.

• Apply common sense Rulebase.

• Generate Web form element.

Chapter 5: A Rule Framework Design

88

Figure 5-2 Framework mechanism

DB

Extract metadata

from database

Create form

elements

Create JavaScript

checks

Create labels

Web form

Apply domain

specific rulebase

Apply common

sense rulebase

Chapter 5: A Rule Framework Design

89

5.3.2 Building RuleML metadata rulebases

In this section we develop and implement two types of rules introduced in

Section 5.3 that can be applied to the information which exists in database

metadata. The first rulebase is to save all common sense rules which were

originally introduced in Section 4.4.1, using Reaction RuleML 0.2 as an improved

version of RuleML 0.1. In Reaction RuleML 0.2 more detailed tags are provided

with more meaningful tag naming. Some of the above developed rules are

illustrated in Figure 5-3 as:

Chapter 5: A Rule Framework Design

90

Figure 5-3 Metadata rulebase in Reaction RuleML format as common sense rules.

Chapter 5: A Rule Framework Design

91

The second rulebase is to save all domain specific rules, using our

example which is customer bank information we develop set of rules as domain

specific rules as:

 Rule 1: if a column name is card number and its size is 16, then it

should be mapped to textbox Web form control with the exact size of

16 digits.

 Rule 2: if a column name is sort code and its size is 6, then it should be

mapped to textbox Web form control with the exact size of 6 digits.

 Rule 3: if a column name is account number and its size is 8, then it

should be mapped to textbox Web form control with the exact size of 8

digits.

 Rule 4: if a column name is security number and its size is 3, then it

should be mapped to textbox Web form control with the exact size of 3

digits.

 Rule 5: if a column name is start_date or end_date and its size is 7,

then it should be mapped to textbox and the required format of the date

is presented as label. These dates are not specified as of date type in

the database and we would want a month and a year representation

normally in the same format as actually used on a card e.g. 02/2013

not Feb/2013 etc. and not a JavaScript calendar tool specifying a single

day as can be seen on some sites.

Chapter 5: A Rule Framework Design

92

Normally database metadata gives the size of form element but a Web

form will take extra data even if the database system subsequently truncates

them and the metadata limit is a maximum but here we know shorter data is

invalid too. So using the above rules to allow for the exact size only. Figure 5-4

shows the algorithm of the above developed rules.

BEGIN

READ column_name, column_size

 IF column_name = card_number && column_size = 16 THEN

 Action= create textbox element

 Size = 16

 ELSEIF column_name = sort_code && column_size = 6 THEN

 Action = create textbox element

 Size = 6

 ELSEIF column_name = account_number && column_size = 8 THEN

 Action = create textbox element

 Size = 8

 ELSEIF column_name =security && column_size = 3 THEN

 Action = create textbox element

 Size = 3

 ENDIF

END

Figure 5-4 Pseudo code for domain specific rules

Chapter 5: A Rule Framework Design

93

Some of the above developed rules using RuleML format are illustrated in

Figure 5-5 as:

Figure 5-5 Metadata rulebase in Reaction RuleML format as domain specific rules

Chapter 5: A Rule Framework Design

94

5.3.3 Retrieving metadata from database

We start implementing our approach by creating a database table which

contains customer bank information, to illustrate a range of data types and other

conditions (null ability) as shown in Figure 5-6 below:

A number of PHP’s PostgreSQL functions are used to make a connection to

the database and retrieve the metadata, examples are shown below:

To get the column metadata information as an array, we use the function

‘pg_meta_data’as follows:

 $meta = pg_meta_data($conn,'bankinf');

CREATE TABLE bankinf (

account_number integer NOT NULL,

sort_code integer NOT NULL,

card_number integer NOT NULL,

security_number integer NOT NULL,

start_date integer NOT NULL,

end_date integer NOT NULL);

Figure 5-6 Database table’s structure

Chapter 5: A Rule Framework Design

95

Where ‘$conn’ is the connection handle and ‘bankinf’ is the table’s name [84 ,

85].

There is another method to retrieve information about each field such as

column’s name, type and so on, by using specific functions [84 , 85] as explained

in Table 4-1.

5.3.4 Generate the Web entry forms

A general purpose PHP script was written which loops

through all the metadata for each column and uses the

RuleML rulebases. It tests to see which rules apply and then uses those rules to

build the form elements on the fly as shown in Figure 5-7 where for example the

account_number is mapped to a textbox of the appropriate size (found from the

domain specific rules) and marked as required since it is specified as non null, its

label is formatted as described below. Every column in the database table is

mapped to a specific Web form control element. The label of each control

element is the actual column’s name in the database, retrieved from the

database table metadata. PHP functions can be used to produce a user friendly

label. For instance, functions are used to replace underscores which separate

words in a column’s name by spaces and change the first character of all words

to upper case. As a guide to the user and to make the form simpler we have

used (*) for the required fields (columns that are primary key or specified as not

Chapter 5: A Rule Framework Design

96

null). This can be supplemented with JavaScript to ensure a value is provided.

We note that the date fields shown use the domain specific rule overriding any

default date metadata format.

Figure 5-7 User interface form generated automatically using metadata and RuleML.

Chapter 5: A Rule Framework Design

97

 Chapter Summary 5.4

The framework proposed in this chapter demonstrated the potential

capabilities of Reaction RuleML 0.2 to provide automatic and dynamic

generation of Web forms. In this chapter we proposed an approach which

separates the rules as an independent entity from the application code, by using

Reaction RuleML 0.2 format as rulebase. These rules are used to give

consistency to the appearance of the forms. The framework used common sense

rules which supplemented the original database metadata rules and introduced a

second rulebase of domain specific rules using Reaction RuleML 0.2. The

implementation of the proposed framework is carried out using Reaction RuleML

0.2 format to store the developed rules, PostgreSQL as a DBMS, PHP for server

side programming, and HTML and JavaScript for client side programming. As a

result of the implementation a Web form for user interface was generated

dynamically.

Chapter 6: An extended rules framework for web forms

98

Chapter 6

6 An Extended Rules Framework for Web Forms:

Adding to Metadata with Custom Rules to Control

Appearance.

 Introduction 6.1

This chapter proposes the use of rules that involve code to implement more

semantics for Web forms. Separation between content, logic and presentation of

Web applications has become an important issue for faster development and

easy maintenance. This chapter extends the work presented in Chapter 5 by

developing an additional set of rules to control the appearance of Web forms. In

particular, a set of rules are proposed to control the appearance of Web form

elements in a semantic way using Reaction RuleML 0.2 format in conjunction

with database metadata rules.

Chapter 6: An Extended Rules Framework for Web Forms

99

 Prototype Overview 6.2

We know that Web site maintenance is a problem. One solution to this

problem is the use of CSS on the client side which can give consistency to the

appearance of pages generally. The use of a set of rules can give a similar

consistency to the appearance and operation to any set of forms that interact

with the same database, as presented in Chapter 5.

The work presented in Chapter 5, shown in Figure 5-1, employed the

database metadata rules and common sense rules with another rulebase of

domain specific rules which has an additional set of rules added to it.

Adding more rules to the domain specific Rulebase can be useful to control

the appearance of Web form elements in a semantic way by grouping similar

Web form elements in a more precise layout. Also, it helps in designing a query

form for retrieving data from database table and to use form for data entry.

Therefore, in this chapter, we investigate the use of Reaction RuleML 0.2 on

the server side to give a consistent use of variables and hence a consistent look

to the forms across pages within an application that uses a database. In addition,

we propose a framework mechanism, as shown in Figure 6-1, which divides the

rules into three types. The first type stores the common sense rules and the

second type stores domain specific rules which will help to develop a prototype

system that can generate automatic and dynamic Web entry forms for Web

Chapter 6: An Extended Rules Framework for Web Forms

100

applications. The third type stores query rules which involve code to implement

more semantics of the form elements.

 Framework mechanism 6.3

This section introduces a framework mechanism which aims to design a

framework, using the Reaction RuleML 0.2 format, to save and implement

rulebases in order to generate automatic and dynamic Web forms and to support

a composite attribute which consists of a group of values from more than one

domain [86]. Query forms can be designed and generated using a set of rules.

The proposed framework consists of several processes as shown in Figure 6-1,

which develops the system shown in chapter 5 Figure 5-2. The following

objectives are intended to be achieved.

 Extract metadata.

 Apply domain specific Rulebase.

 Apply common sense Rulebase.

 Apply query Rulebase.

 Generate Web form element.

Chapter 6: An Extended Rules Framework for Web Forms

101

DB

Extract metadata

from database

Create form

elements

Create JavaScript

checks

Create labels

Web form

Apply domain

specific rulebase

Apply common

sense rulebase

Apply query rulebase

Figure 6-1 Framework mechanism

Chapter 6: An Extended Rules Framework for Web Forms

102

6.3.1 Building RuleML metadata rulebases

In this section we introduce two types of rules that can be applied to the

information that exists in database metadata

 The first rulebase is to save all common sense rules introduced in

Section 4.4.1, some of the above developed rules using RuleML format

are illustrated in Figure 5-3.

 The second rulebase is to save all domain specific rules, which can be

divided to two sets of rules, using our example, which is student

information, we develop two sets of domain specific rules the first one

can be applied to generate input forms and the second one will be

applied to generate the query forms as:

6.3.1.1 The first domain specific rule set

• Rule 1: if a column name is title then it should be grouped to block1.

• Rule 2: if a column name is first_name then it should be grouped to

 block1.

• Rule 3: if a column name is last_name then it should be grouped to

 block1.

• Rule 4: if a column name is house_no then it should be grouped to block

 2.

• Rule 5: if column name is street then it should be grouped to block 2.

• Rule 6: if column name is town then it should be grouped to block 2.

Chapter 6: An Extended Rules Framework for Web Forms

103

• Rule 7: if column name is post_code then it should be grouped to block 2.

Figure 6-2 shows the algorithm of the above developed rules as:

BEGIN

READ column_name

 CASE column_name is:

 title: Action= group to block1

 first_name: Action= group to block1

 last_name: Action= group to block1

 house_no: Action= group to block2

 street: Action= group to block2

 town: Action= group to block2

 post_code: Action= group to block2

 ENDCASE

END

Figure 6-2 Pseudo code for domain specific input form rules

Chapter 6: An Extended Rules Framework for Web Forms

104

Some of the above developed rules using RuleML format are illustrated in

Figure 6-3 as:

Figure 6-3 Metadata rulebase in Reaction RuleML 0.2 format as domain specific input form rules

Chapter 6: An Extended Rules Framework for Web Forms

105

6.3.1.2 The second domain specific rule set

These rules will be applied to generate the query form as:

• Rule 1: if a column name is first_name then it should be grouped to

 block1.

• Rule 2: if a column name is last_name then it should be grouped to

 block1.

• Rule 3: if a column name is town then it should be grouped to block2.

• Rule 3: if a column name is post_code then it should be grouped to

 block2.

The rules in this section differ from the rules in section 6.3.1.1, these rules

will be used to generate query form which contains elements shown in the rules

only, but rules in section 6.3.1.1 will be used to generate Web entry form to

group the composite attributes which consist of a group of values from more than

one domain.

In this section we use our domain specific rules to overcome the lack of

semantic content available automatically from a database. We may know that

first_name and last_name are related items and should be grouped but this

information is not available automatically. In most RDBMSs the only connection

is in the similarity of the column names. In the example although the “name”

Chapter 6: An Extended Rules Framework for Web Forms

106

elements are named similarly the “address” elements are not. Yet we know that

the house_no, street, town etc are related in a similar way to first_name and

last_name. In some DBMSs the columns could be implemented as a composite

type but this is not commonly done.

Figure 6-4 shows the algorithm of the above developed rules as:

BEGIN

READ column_name

 CASE column_name is:

 first_name: Action= group to block1

 last_name: Action= group to block1

 town: Action= group to block2

 post_code: Action= group to block2

 ENDCASE

END

Figure 6-4 Pseudo code for domain specific query form rules

Chapter 6: An Extended Rules Framework for Web Forms

107

Some of the above developed rules using RuleML format are illustrated in

Figure 6-5 as:

Figure 6-5 Metadata rulebase in Reaction RuleML 0.2 format as domain specific query form

rules

Chapter 6: An Extended Rules Framework for Web Forms

108

6.3.2 Retrieving metadata from the database

We start implementing our approach by creating a database table which

contains student information, to illustrate a range of data types and other

conditions as shown in Figure 6-6 below:

A number of PHP’s PostgreSQL functions are used to make a connection

to the database and retrieve the metadata [85 , 87].

 CREATE TABLE student (

 student_id serial NOT NULL,

 title character(6) NOT NULL,

 first_name character(20) NOT NULL,

 last_name character(10) NOT NULL,

 house_no character(5) NOT NULL,

 street character(20) NOT NULL,

 town character(20) NOT NULL,

 post_code character(10) NOT NULL,

 CONSTRAINT student_id PRIMARY KEY (student_id))

Figure 6-6 Database table’s structure

Chapter 6: An Extended Rules Framework for Web Forms

109

6.3.3 Generate the Web forms

A general purpose PHP script was written which loops through all the

metadata for each column and uses the Reaction RuleML 0.2 rulebases. It tests

to see which rules apply and then uses those rules to build the form elements

on the fly as:

 In Figure 6-7 using the common sense rules where for example the

student_id is mapped to a textbox of the appropriate size (found from the

metadata) and marked as required since it is specified as non null, its label

is formatted as described below. Every column in the database table is

mapped to a specific Web form control element. The label of each control

element is the actual column’s name in the database, retrieved from the

database table metadata. PHP functions can be used to produce a user

friendly label. For instance, functions are used to replace underscores which

separate words in a column’s name by spaces and change the first

character of all words to upper case. As a guide to the user and to make the

form simpler we have used (*) for the required fields (columns that are

primary key or specified as not null). This can be supplemented with

JavaScript to ensure a value is provided.

Chapter 6: An Extended Rules Framework for Web Forms

110

Figure 6-7 User interface input form generated automatically using metadata and Reaction

RuleML 0.2

Chapter 6: An Extended Rules Framework for Web Forms

111

 In Figure 6-8 using the first domain specific rules, which are applied to

generate Web entry form to group the composite attributes which consist of

a group of values from more than one domain. For example the attributes (

title, first_name, last_name,) were mapped as a block to give more

semantics to the form, and the attributes (house_no, street, town,

post_code) were mapped as a block to group the elements together as a

composite attribute. The rules represent all the semantic information which

is not in the database metadata to order the Web form elements. In the

example we simply indent each block; other styling could be applied using

CSS.

Figure 6-8 User interface input form generated automatically using metadata and Reaction

RuleML 0.2 grouped the attributes as a composite attribute.

Chapter 6: An Extended Rules Framework for Web Forms

112

 In Figure 6-9 using the second domain specific rules, which are applied to

generate Web query form to order the required attributes. For example the

attributes (first_name, last_name, town, post_code) have been ordered to

generate the query form as in Figure 6-9. The rules could be used to order

and generate more forms which can contain different attributes to help the

user to get the needed information.

Figure 6-9 User interface query form generated automatically using metadata and Reaction

RuleML 0.2.

Chapter 6: An Extended Rules Framework for Web Forms

113

 Evaluation 6.4

We found out that a wide range of techniques and ideas to automate the

generation of Web forms does exist. These techniques and ideas however, are

not capable of generating the most dynamic behaviour of form elements, and

make insufficient use of database metadata to control Web forms’ generation

and appearance. In addition, it has been concluded that when rules are

embedded in application code, it becomes difficult to locate and change the

logic [4] , and each modification requires recompiling the application code.

 Elbibas et al. in [78] proposed an approach to develop and maintain

HTML forms based on metadata extracted from a database table. Their

proposed approach generates dynamic HTML forms which have been

generated and validated automatically. They use a set of supporting rules to

map each column to the most appropriate form element and which are

embedded in the application code where it is difficult to locate and change their

logic. Moreover, the set of rules does not support the manipulation of semantics

of database metadata in some cases, As shown in Figure 6-10 below, the

column of phone number was mapped to one textbox including the area code;

here we can use our semantic knowledge of the structure of landline phone

numbers to improve the user experience and avoid possible errors. By using

domain specific rules, we offer mapping the column for landline telephone

Chapter 6: An Extended Rules Framework for Web Forms

114

numbers to two separate textboxes control elements; the first one is for the area

code and the second one is for the telephone number as shown in Figure 6-11.

Figure 6-10 Shows suppliers html entry form generated using metadata [78].

Chapter 6: An Extended Rules Framework for Web Forms

115

Figure 6-11 User interface form generated automatically using metadata and RuleML.

Elsheh et al. in [1 , 4] proposed a model which aims to generate dynamic

Web entry forms based on metadata extracted from system tables. This

approach has the same problems encountered by [78] [78] when the set of rules

are embedded in the application code where it is difficult to locate and change

their logic. In addition, the set of rules does not support the manipulation of

semantics of database metadata in some cases as in Figure 6-12 and Figure 6-13

below. The address column is mapped to one textarea control element. As an

example of this: how do we know house no, street, town and postcode are

Chapter 6: An Extended Rules Framework for Web Forms

116

related? Our approach can tackle this problem in two ways: first by developing

rulebases to support the common sense rules, for example to deal with

columns’ names. Secondly by developing domain specific rules to support the

generic rules for example to deal with columns’ names and sizes. So domain

specific rules were developed to support the common sense rules to deal with

columns names as in Figure 6-14. Common sense rules use domain specific

rules for some advanced information. As the common sense rules use column

type (found from database metadata) and domain specific rules support the

common sense rules by providing the exact size (found from domain specific

rulebase) for specific columns using column name (found from database

metadata). Domain specific rules use the name and the size of each database

column to support mapping each column to a Web form control element.

Chapter 6: An Extended Rules Framework for Web Forms

117

Figure 6-12 A snapshot of Web XForms generated on the fly [1].

Chapter 6: An Extended Rules Framework for Web Forms

118

Figure 6-13 A snapshot of an XHTML Web Entry Form generated on the fly [4].

Chapter 6: An Extended Rules Framework for Web Forms

119

Domain specific rules can support a composite type to map related

attributes as one block to give more semantics to a form. These are applied to

generate Web entry form to group the composite attributes that consist of a

group of values from more than one domain. For example the attributes (title,

first_name, last_name,) were mapped as one block to give more semantics to

the form, and the attributes (house_no, street, town, post_code) were mapped as

separate block to group the related elements together as a composite attribute

as shown in Figure 6-14. The rules represent all the semantic information which is

not in the database metadata to order the Web form elements. In the example

below, we simply indent each block; other styling could be applied using CSS.

Figure 6-14 User interface input form generated automatically grouped the attributes as a

composite attribute.

Chapter 6: An Extended Rules Framework for Web Forms

120

 Chapter Summary 6.5

As a result of using the rules a Web form for user interface is generated

dynamically. This approach aims to use the produced common sense rules

introduced in Section 4.4.1, Figure 5-3 shows some of these rules in Reaction

RuleML0.2 format and introduce a second rulebase of domain specific rules

using Reaction RuleML0.2, and a further development of rules that involve code

to implement more semantics and to separate between content, logic and

presentation of Web application. The development of rules to order and or group

form elements was divided to two rulebases. The first one applied to generate

an input form and group the related attributes as blocks, and the second one

applied to generate a Web query form to order the required attributes and

control the form layout. So they helped in designing the query forms and include

only those useful elements, which will be used to query the database.

Chapter 7: Extending the use of RuleML to store metadata and database semantics

121

Chapter 7

7 Extending the use of RuleML to store metadata and

database semantics

 Introduction 7.1

Shifting legacy data held in stand-alone systems to be used in Web

application systems can be expensive and time consuming. RuleML can be used

to represent RDBMS data by storing database metadata in an external format for

some design tools. Just as XML Schema which uses elements and attributes to

express the semantics of XML data, but XML Schema does not have active

elements [79], in principle RuleML could be used as a representation for RDBMS

metadata too. This chapter proposes the use of RuleML format to implement

more semantics for Web forms.

In this chapter we demonstrate how this RuleML based approach can

provide support for greater semantics using the example of advanced domain

support even when this is not a DBMS feature. Many database systems do not

support domains and composite attributes, for example MySQL does not support

user defined domains which can be created as data type and then use the type

Chapter 7: Extending the use of RuleML to store metadata and database semantics

122

in a table definition. We present an approach which is used to specify composite

types and constraints.

 Prototype Overview 7.2

Domains are useful for abstracting common fields between tables into a

single location for maintenance. For example, an email address column may be

used in several tables, all with the same properties. This allows us to define a

domain and use that rather than setting up each table’s constraints individually.

The benefits of domains are many [88] for example:

 A constraint placed on a domain ensures that all columns and variables

intended to hold values in a range or format can hold only the intended

values. For example, a data type can ensure that all credit card numbers

typed into the database contain the correct number of digits.

 To make the applications and the database structure easy to understand.

Database logic is found in multiple places in RDBMSs for example type

information in create table statements and create domain statements; therefore

it will be helpful if we can get all rules/logic in one format. In addition if we can

provide a more independent format that can help transfers from one RDBMS to

another of both metadata and data itself.

Not all RDBMSs fully support advanced SQL features such as create

domain. Even if they do they may or may not support further features such as

Chapter 7: Extending the use of RuleML to store metadata and database semantics

123

constraints within create domain or composite type. We illustrate this with a

typical create table statement from a system that doesn’t support domains as in

Figure 7-1 below:

create table person (

 id serial,

 name char (25),

 building_no char (5),

 street char (20),

 town char (20),

 postcode char (25));

Figure 7-1 Person table creation without composite type

Chapter 7: Extending the use of RuleML to store metadata and database semantics

124

PostgreSQL now supports the creation of more structure in create table

statements as illustrated below:

 Create structured type as in Figure 7-2 below of creating address

table as type of composite attributes [89]. We create an address

structured type via the route of creating a table. In most advanced

RDBMSs table creation is equivalent to type creation [90]:

 Create a table that uses the address table as in the example

below. This shows how the address table can be used in another

table as a type for the address column [89]:

 create table address(

 building_no char (5),

 street char (20),

 town char (20),

 postcode char (25));

Figure 7-2 Address table (and type) information

Chapter 7: Extending the use of RuleML to store metadata and database semantics

125

Figure 7-1and Figure 7-3 representations may be seen as equivalent in

that they both store the same data but arguably the form using the address type

has greater semantics and would be preferable if this feature is supported.

Our aim is to provide rich representations in RuleML for the table

information that can be used to create the richest table structure in any RDBMS,

the richer structure also support the development of the semantically richer

forms developed earlier.

 Framework mechanism 7.3

This section introduces a mechanism which aims to design a framework,

using an XML format, to save database table’s metadata in an external format

using RuleML in order to support the creation of tables using domains as

attribute types and composite attributes which consist of groups of values from

more than one domain. This can be used with RuleML rulebases in order to

 create table person (

 id serial,

 name char (25),

 address address);

Figure 7-3 Person table creation using composite type

Chapter 7: Extending the use of RuleML to store metadata and database semantics

126

generate automatic and dynamic Web forms. The proposed framework consists

of several processes as shown in Figure 7-4. The following objectives are

intended to be achieved.

 Store table’s metadata in XML files. These files uses XML tags to

describe the tables and it’s columns information as:

 <Rulebase><table><name> </name>

 <column><name> </name>

 <type> </type>

 <size> </size>

 <isnull> </isnull>

 <unique> </unique>

 <key> </key>

 </column>

</table></Rulebase>

 Each column is represented in a single XML node, and the empty tags

 could be included.

 Create database tables using the stored metadata for new

database or reuse the existed database tables. To create the new

tables a PHP script is used which reads the structure of the table

Chapter 7: Extending the use of RuleML to store metadata and database semantics

127

stored in XML files. This script then creates the SQL script which

actually creates the table in RDBMS.

 Apply Rulebase in conjunction with the metadata of each column

stored in XML file to map each column to the correct Web entry

control element.

 Generate Web form element.

Chapter 7: Extending the use of RuleML to store metadata and database semantics

128

To illustrate this mechanism and investigate if there are any difficulties in

implementing it, the following sections introduce an example of the

implementation of this approach.

7.3.1 Table’s metadata in XML files for table creation

A database schema is represented in RuleML file. This RuleML

information uses XML tags to describe the tables, columns, rows as in

Store tables

metadata in XML

format

Create form

elements

Web form

Apply rulebase

Create database

tables

Figure 7-4 Framework mechanism

Chapter 7: Extending the use of RuleML to store metadata and database semantics

129

Figure 7-5, and Figure 7-6. It is used for modelling database information, so the

previous structure of composite attributes or domains could be represented in

XML tags as in the example below:

Figure 7-5 address table’s metadata represented in XML tags

Chapter 7: Extending the use of RuleML to store metadata and database semantics

130

Figure 7-6 staff table’s metadata represented in XML tags

Chapter 7: Extending the use of RuleML to store metadata and database semantics

131

7.3.2 Database tables creation

To create new tables a PHP script is used to read the structure of the

table stored in XML files as in Figure 7-5, Figure 7-6. This script then creates

the SQL script as shown in Figure 7-7, which actually creates the tables in the

RDBMS.

Figure 7-7 SQL script created dynamically using table’s metadata stored in XML files

As a result of the created SQL script the tables originally specified in the XML

file will be created as below:

 CREATE TABLE addressnew (

 address_id integer NOT NULL,

 building_no integer NOT NULL,

 street character(20) NOT NULL,

 city character(20) NOT NULL,

 post_code character(10) NOT NULL);

Chapter 7: Extending the use of RuleML to store metadata and database semantics

132

 CREATE TABLE staff (

 staff_id integer NOT NULL,

 title character(6) NOT NULL,

 first_name character(20) NOT NULL,

 last_name character(20) NOT NULL,

 date_of_birth date NOT NULL,

 address_id integer NOT NULL);

7.3.3 Existing table’s metadata stored as XML format

In this section we address how to store a table’s metadata in an XML

format, particularly for systems that do not support domains and composite

attributes. Database metadata can be represented in a XML file, this XML file

uses XML tags to describe the tables and columns metadata, it is for modeling

database information, so the metadata is stored into XML format.

7.3.3.1 Staff table metadata stored in XML format

The database metadata is stored in a XML format in separate files, as the

example used in the prototype implementation the staff table metadata stored in

XML file as shown in Figure 7-8. The XML file includes all the required

information to (re) create the table in an RDBMSs whether it support domains or

not. The tags organised to specify each column’s metadata in separate column

tags. From the figure below the table staff consists of 8 columns the last two

Chapter 7: Extending the use of RuleML to store metadata and database semantics

133

columns are created using domains, each column refers to a separate domain

as below:

 <column>

 <name>address</name>

 <type>domain</type>

 </column>

 <column>

 <name>Branch</name>

 <type>domain</type>

 </column>

Chapter 7: Extending the use of RuleML to store metadata and database semantics

134

Figure 7-8 Staff table metadata stored in XML format

Chapter 7: Extending the use of RuleML to store metadata and database semantics

135

7.3.3.2 Domain tables metadata in XML format

The database domain’s metadata and the structure of the composite

attributes are stored in XML format as shown in Figure 7-9. Each domain in the

previous XML file shown in Figure 7-8 is connected with the XML domains file

shown in Figure 7-9. A domain can be used inside another one as shown in the

address domain that contains a postcode column which is itself a domain. The

structure of the post code column is also included in the domains file.

Chapter 7: Extending the use of RuleML to store metadata and database semantics

136

Figure 7-9 Domain tables metadata in XML format

Chapter 7: Extending the use of RuleML to store metadata and database semantics

137

 Generate the Web forms 7.4

We now demonstrate the use of the XML metadata format to generate the

Web forms. By using the stored metadata files in conjunction with the RuleML

Rulebase used in the previous chapters, as shown in Figure 5-3, a PHP script is

written to loop through all the metadata for each column in every table. This and

uses the RuleML rulebase to map each column to a Web form element on the

fly. From the Web form generated which is shown in Figure 7-10 we can see

how the composite columns’ attributes are generated using the address domain

table and also how the domain table can be used many times. Figure 7-10

shows the result of using address domain table twice, the first one is to generate

the staffs address elements and the second one is to generate the branch

address elements using the same domain. Additionally within each address the

post code is itself another domain.

Chapter 7: Extending the use of RuleML to store metadata and database semantics

138

Figure 7-10 User interface form generated automatically using metadata stored as XML format

and rulebase as RuleML format.

Chapter 7: Extending the use of RuleML to store metadata and database semantics

139

 Chapter Summary 7.5

We would like to specify all the semantics associated with data stored in

RDBMS tables. XML Schema uses XML elements and attributes to express the

structure of XML data, which may be comparable to RDBMS data, but XML

Schema does not do everything. It can be used to express some limitations of

data such as possible ranges of values and characteristics such as uniqueness.

It does not have active elements which would allow us to express more

behavior; however these can be found in an XML format in RuleML's Event-

Condition-Action like elements.

To overcome some RDBMSs limitations RuleML is used to represent

RDBMS data by storing database metadata in an external format, so it is also a

way to overcome the differences between RDBMSs in areas such as whether

they support domains and composites. Thus we propose a way to give a single

syntax that can then map them to structures supported by a particular RDBMS

and we test this by producing the same result for the Web form.

 As a result a Web form for user interface is generated dynamically that

corresponds to the database being used and at the same time maximises the

use of semantics in metadata or elsewhere.

So XML Schema alone is not sufficient but by using a RuleML format we

can go one stage father to implement more semantics for both database

structures themselves and the Web forms built dynamically to access them.

Chapter 8: Conclusions and Future Work

140

Chapter 8

8 Conclusion and Future Work

8.1 Conclusion

Automatic and dynamic generation of Web forms is entering the

mainstream in Web development for supporting developing online systems. This

can be achieved by using database metadata, stored separately but preferably

retrieved directly from the database. A set of rules is required to convert the

facts in the metadata into information that can drive the form creation. Rules

extracted from database metadata and used to generate the Web forms when

embedded in the application code are not efficient due to the difficulty of locating

and changing the logic.

 This thesis has contributed towards the development of dynamic Web

applications. The approach proposed separates the rules as an independent

entity from the application code, by using a RuleML format as rulebase. A

framework was proposed in this thesis to demonstrate the potential capabilities

of Reaction RuleML to provide automatic and dynamic generation of Web forms.

Chapter 8: Conclusions and Future Work

141

Another extension to the work is to go beyond the basic information available

from the database metadata and to develop two further kinds of rules: a more

complete set of common sense rules and domain-specific rules. All these rules

are then used to give consistency to the appearance of forms. The framework

used common sense rules which supplemented the original database metadata

rules and introduced a second rulebase of domain specific rules, which are

invoking code to implement more semantics and to further separate between

content, logic and presentation of a Web application. The development of rules

to order and or group form elements was divided to two rulebases. The first one

was applied to generate input forms and group the related attributes as blocks,

and the second was applied to generate Web query forms that ordered the

required attributes and controlled the form layout. So they helped in designing

the query forms and include the most suitable form elements, which will be used

to access the database.

XML Schema uses elements and attributes to express semantics of XML

data, but XML Schema does not have active elements which RuleML has, like

Event-Condition-Action elements. By using RuleML format to overcome some

RDBMSs limitations, RuleML is used to represent RDBMS data by storing

database metadata in an external format, so it is a way to overcome the

differences between RDBMSs in areas such as whether they support domains

and composites or not. Thus we propose a way to give a single syntax that

Chapter 8: Conclusions and Future Work

142

maps them and produces the same result for the Web form. As a result a

sophisticated Web form for user interface is generated dynamically.

 The system evaluation started by using Reaction RuleML 0.1format, it

then used Reaction RuleML 0.2 format as an improved version of RuleML 0.1 to

store the developed rules. In Reaction RuleML 0.2 more detailed tags are

provided with more meaningful tags naming.

So it was successfully implemented using Reaction RuleML format to store

the developed rules, the technologies to support this were PostgreSQL as a

DBMS, PHP for server side programming, HTML and JavaScript for client side

programming. These are typical systems and equivalent features are available

which mean that the proposed framework could also be deployed in situation

that used alternative equivalent technologies such as ASP.net and Flash.

PostgreSQL was used to show both standard SQL features and the

additional features available with some advanced systems.

As a result a Web forms for user interface is generated dynamically. This

approach aims to use as generic rulebase as possible using RuleML.

Chapter 8: Conclusions and Future Work

143

8.2 Future Work

Although the research presented in this thesis is promising and positive, a

number of related issues were raised in the course of the work which could be

developed in future stages. Some of these are:

 Performance evaluation

In this work no performance issues have been noted but this is

recommended as further work when we have larger, more realistic sets of rules

working with real databases in place. Additionally the size of database’s

metadata is usually small compared to the actual data, and only increases with

the number of tables rather than the volume of data per table and we also

accumulate the metadata we need into a single object and obtain it once and

reuse it if needed, this has lead to small RuleML files which are not complex to

parse.

 User data validation

In principle we could use metadata integrity constraint rules and the RuleML

rulebases to validate user input data. This could be implemented in various

ways. This work does not focus on form validation; a wide range of methods

have been used during previous work by many people to validate user data

entered, for example using XForms or JavaScript and in the future developers

will be looking at features built into HTML5.

Chapter 8: Conclusions and Future Work

144

 Rule engines

Rule engines are software systems that execute or fire rules in a runtime

environment. It would be possible to develop a rule engine for metadata

common sense and domain specific rulebases to support the management of

the rules, execution and dynamic change. A rule engine could also be used to

check for conflicts, inconsistencies or gaps.

 Automatic rule creation and update

In conjunction with a rule engine it may be possible to develop a system to

allow less experienced users to create rules in an interactive fashion. In the

frame work as implemented users must build some rules by hand and require

an understanding of XML in general and the particular RuleML format used. A

system to create rules dynamically could take control of the rules and allow

users with less experience to use the system in a less error prone way.

 Forms presentation

In our work we can determine the order of the blocks but at present the order

within the block depends on the order the columns are defined in the

database. In a relational database the columns do not have an ordering and

unless one is imposed by for example an SQL query they appear by default in

the order they were defined in the database. Extension of the ordering work

done could allow user to specify form element ordering in more detail.

Chapter 8: Conclusions and Future Work

145

 Development with other types of database

In our current implementation we have used database metadata which in

this case is derived from relational database system catalogues, but could be

obtained from other sources such as XML Schema and used in conjunction

with XML data.

References

146

References

[1] M. M. Elsheh and M. J. Ridley, "GENERATION AND VALIDATION OF

WEB FORMS USING DATABASE METADATA AND XFORMS," in

Symposium on Progress in Information and Communication

Technology(SPICT 10), pp. 23-26.

[2] N. Skrupsky, M. Monshizadeh, P. Bisht, T. Hinrichs, V. Venkatakrishnan,

and L. Zuck, "WAVES: Automatic Synthesis of Client-side Validation

Code for Web Applications," ASE Science Journal, 2012.

[3] System Catalogs. Available:

http://www.postgresql.org/docs/8.1/static/catalogs.html. [Accessed: 12

Dec. 2012].

[4] M. M. Elsheh and M. J. Ridley, "Using Database Metadata and its

semantics to Generate Automatic and Dynamic Web Entry Forms," in

Proceedings of WCECS 2007 World Congress on Engineering and

Computer Science 2007, pp. 654-658.

[5] V. Turau, "A framework for automatic generation of web-based data entry

applications based on XML," in Proceedings of the 2002 ACM

symposium on Applied computing, 2002, pp. 1121-1126.

[6] Cascading Style Sheets home page. Available:

http://www.w3.org/Style/CSS/. [Accessed: 15 Dec. 2012].

[7] The Rule Markup Initiative. Available: http://ruleml.org/. [Accessed: 12

Dec. 2012].

http://www.postgresql.org/docs/8.1/static/catalogs.html
http://www.w3.org/Style/CSS/
http://ruleml.org/

References

147

[8] L. Bertossi and G. Jayaraman, A. Hameurlain and A. Tjoa "Designing,

Specifying and Querying Metadata for Virtual Data Integration Systems

Data Management in Grid and Peer-to-Peer Systems," Lecture Notes in

Computer Science, vol. 5697, A. Hameurlain and A. Tjoa, Eds. Berlin:

Springer 2009, pp. 72-84.

[9] S. K. Cabral and K. Murphy, MySQL administrator's bible: Wiley, 2011.

[10] SQL: Practical Guide for Developers MySQL. Available:

http://cs.ecs.baylor.edu/~donahoo/practical/sql/details-mysql.html.

[Accessed: 12 Dec. 2012].

[11] T. M. Connolly and C. E. Begg, Database systems: a practical approach

to design, implementation, and management, 5th ed. Boston: Pearson

Education international, 2010.

[12] B. Eaglestone and M. Ridley, Web Database Systems. London: McGraw

Hill, 2001.

[13] D. D. Chamberlin and R. F. Boyce, "SEQUEL: A structured English query

language," in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)

workshop on Data description, access and control, 1974, pp. 249-264.

[14] K. G. Jeffery, "Metadata the Future of Information Systems," in 12th

Conference on advanced information systems engineering, 2000.

[15] A history of HTML. Available:

http://www.w3.org/People/Raggett/book4/ch02.html. [Accessed: 20 Dec.

2012].

http://cs.ecs.baylor.edu/~donahoo/practical/sql/details-mysql.html
http://www.w3.org/People/Raggett/book4/ch02.html

References

148

[16] M. Dubinko, XForms essentials. Sebastopol, Calif ; Farnham: O'Reilly,

2003.

[17] HTML Versions. Available:

http://www.w3schools.com/w3c/w3c_html.asp. [Accessed: 12 Dec. 2012].

[18] Introducing HTML 3.2. Available: http://www.w3.org/MarkUp/Wilbur/.

[Accessed: 12 Dec. 2012].

[19] W3C XHTML Activities. Available:

http://www.w3schools.com/w3c/w3c_xhtml.asp. [Accessed: 12 Dec.

2012].

[20] T. Felke-Morris, Web Development and Design Foundations with

XHTML, 4th ed: Pearson, 2009.

[21] HTML5 differences from HTML4. Available:

http://dev.w3.org/html5/html4-differences/. [Accessed: 12 Dec. 2012].

[22] J. Hjelm, Creating the semantic Web with RDF: professional developer's

guide: John Wiley & Sons, Inc., 2001.

[23] Introduction to RDF. Available:

http://www.w3schools.com/rdf/rdf_intro.asp. [Accessed: 18 Apr. 2013].

[24] Scripting and Ajax. Available:

http://www.w3.org/standards/webdesign/script. [Accessed: 12 Dec.

2012].

[25] JavaScript Introduction. Available:

http://www.w3schools.com/js/js_intro.asp. [Accessed: 12 Dec. 2012].

http://www.w3schools.com/w3c/w3c_html.asp
http://www.w3.org/MarkUp/Wilbur/
http://www.w3schools.com/w3c/w3c_xhtml.asp
http://dev.w3.org/html5/html4-differences/
http://www.w3schools.com/rdf/rdf_intro.asp
http://www.w3.org/standards/webdesign/script
http://www.w3schools.com/js/js_intro.asp

References

149

[26] ECMAScript Language Specification. Available: http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-262.pdf. [Accessed:

12 Dec. 2012].

[27] AJAX Introduction. Available:

http://www.w3schools.com/ajax/ajax_intro.asp. [Accessed: 12 Dec.

2012].

[28] B. McLaughlin, Head Rush Ajax, 1st ed. Sebastopol: O'Reilly Media,

2006.

[29] AutoComplete Demonstration. Available:

http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/AutoCompl

ete/AutoComplete.aspx. [Accessed: 12 Dec. 2012].

[30] Introducing JSON. Available: http://www.json.org/. [Accessed: 17 Apr.

2013].

[31] JSON Tutorial. Available: http://www.w3schools.com/json/default.asp.

[Accessed: 17 Apr. 2013].

[32] JSON: The Fat-Free Alternative to XML. Available:

http://www.json.org/fatfree.html. [Accessed: 30 Apr. 2013].

[33] D. Guinard and V. Trifa, "Towards the web of things: Web mashups for

embedded devices," in Workshop on Mashups, Enterprise Mashups and

Lightweight Composition on the Web (MEM 2009), in proceedings of

WWW (International World Wide Web Conferences), Madrid, Spain,

2009.

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.w3schools.com/ajax/ajax_intro.asp
http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/AutoComplete/AutoComplete.aspx
http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/AutoComplete/AutoComplete.aspx
http://www.json.org/
http://www.w3schools.com/json/default.asp
http://www.json.org/fatfree.html

References

150

[34] W. Guanhua, "Improving Data Transmission in Web Applications via the

Translation between XML and JSON," in Communications and Mobile

Computing (CMC), 2011 Third International Conference on, 2011, pp.

182-185.

[35] S. Gundavaram, CGI Programming on the World Wide Web: O'Reilly,

1996.

[36] R. L. Schwartz, T. Phoenix, and B. D. Foy, Learning Perl, 4th ed: O'Reilly

Media, Inc, 2005.

[37] C. Bates, Web programming: building Internet applications, 3rd ed.

Chichester: Wiley, 2006.

[38] What can PHP do. Available: http://www.php.net/manual/en/intro-

whatcando.php. [Accessed: 12 Dec. 2012].

[39] Active Server Pages Technical Articles. Available:

http://msdn.microsoft.com/en-us/library/ms972347.aspx. [Accessed: 12

Dec. 2012].

[40] J. Goodwill, Developing JavaTM Servlets: Sams, 2001.

[41] JavaServer Pages Technology - Frequently Asked Questions. Available:

http://java.sun.com/products/jsp/faq.html. [Accessed: 12 Dec. 2012].

[42] JavaServer Pages: A Developer's Perspective. Available:

http://java.sun.com/developer/technicalArticles/Programming/jsp/.

[Accessed: 12 Dec. 2012].

http://www.php.net/manual/en/intro-whatcando.php
http://www.php.net/manual/en/intro-whatcando.php
http://msdn.microsoft.com/en-us/library/ms972347.aspx
http://java.sun.com/products/jsp/faq.html
http://java.sun.com/developer/technicalArticles/Programming/jsp/

References

151

[43] XML1.0 W3C Recommendation. Available:

http://www.xml.com/axml/testaxml.htm. [Accessed: 12 Dec. 2012].

[44] Introduction to XML. Available:

http://www.w3schools.com/xml/xml_whatis.asp. [Accessed: 12 Dec.

2012].

[45] Introduction to XML Schema. Available:

http://www.w3schools.com/schema/schema_intro.asp. [Accessed: 19

Dec. 2012].

[46] XSLT Introduction. Available:

http://www.w3schools.com/XSL/xsl_intro.asp. [Accessed: 12 Dec. 2012].

[47] D. Deitel, Nieto, Lin & Sadhu, XML HOW TO PROGRAM: Prentice Hall,

2001.

[48] XML Path Language (XPath). Available: http://www.w3.org/TR/xpath.

[Accessed: 12 Dec. 2012].

[49] XPath Introduction. Available:

http://www.w3schools.com/XPath/xpath_intro.asp. [Accessed: 12 Dec.

2012].

[50] XPath Syntax. Available:

http://www.w3schools.com/XPath/xpath_syntax.asp. [Accessed: 12 Dec.

2012].

[51] XML Pointer Language. Available: http://www.w3.org/TR/WD-xptr.

[Accessed: 16 Jan. 2013].

http://www.xml.com/axml/testaxml.htm
http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/schema/schema_intro.asp
http://www.w3schools.com/XSL/xsl_intro.asp
http://www.w3.org/TR/xpath
http://www.w3schools.com/XPath/xpath_intro.asp
http://www.w3schools.com/XPath/xpath_syntax.asp
http://www.w3.org/TR/WD-xptr

References

152

[52] XQuery 1.0: An XML Query Language (Second Edition). Available:

http://www.w3.org/TR/xquery/. [Accessed: 17 Jan. 2013].

[53] Rule Markup Languages and Semantic Web Rule Languages. Available:

http://nparc.cisti-icist.nrc-

cnrc.gc.ca/npsi/ctrl?action=shwart&index=an&req=18533385&lang=en.

[Accessed: 12 Dec. 2012].

[54] H. Boley, S. Tabet, and G. Wagner, "Design rationale of RuleML: A

markup language for semantic web rules," in International Semantic Web

Working Symposium (SWWS), 2001, pp. 381-402.

[55] RuleML Primer. Available:

http://ruleml.org/papers/Primer/RuleMLPrimer2012-08-09/RuleMLPrimer-

p0-2012-08-09.html. [Accessed: 12 Dec. 2012].

[56] H. Boley, A. Paschke, and O. Shafiq, M. Dean, J. Hall, A. Rotolo, and S.

Tabet "RuleML 1.0: The Overarching Specification of Web Rules," in

Semantic Web Rules, Lecture Notes in Computer Science, vol. 6403, M.

Dean, J. Hall, A. Rotolo, and S. Tabet, Eds.: Springer Berlin Heidelberg,

2010, pp. 162-178.

[57] RuleML Design. Available: http://ruleml.org/indesign.html. [Accessed: 12

Dec. 2012].

[58] W. Gerd, A. Grigoris, T. Said, and B. Harold, "The Abstract Syntax of

RuleML - Towards a General Web Rule Language Framework," in

http://www.w3.org/TR/xquery/
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=shwart&index=an&req=18533385&lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=shwart&index=an&req=18533385&lang=en
http://ruleml.org/papers/Primer/RuleMLPrimer2012-08-09/RuleMLPrimer-p0-2012-08-09.html
http://ruleml.org/papers/Primer/RuleMLPrimer2012-08-09/RuleMLPrimer-p0-2012-08-09.html
http://ruleml.org/indesign.html

References

153

Proceedings of the 2004 IEEE/WIC/ACM International Conference on

Web Intelligence, 2004, pp. 628-631.

[59] Version History, 2001-01-25: Version 0.7. Available:

http://ruleml.org/0.7/. [Accessed: 12 Dec. 2012].

[60] A. Paschke, H. Boley, A. Kozlenkov, and B. Craig, "Rule responder:

RuleML-based agents for distributed collaboration on the pragmatic web,"

in Proceedings of the 2nd international conference on Pragmatic web,

2007, pp. 17-28.

[61] H. Boley, "The RuleML family of web rule languages," in Proceedings of

the 4th International Conference on Principles and Practice of Semantic

Web Reasoning, 2006, pp. 1-17.

[62] Schema Specification of RuleML 0.91. Available: http://ruleml.org/0.91/.

[Accessed: 12 Dec. 2012].

[63] Schema Specification of Deliberation RuleML Version 1.0. Available:

http://ruleml.org/1.0/. [Accessed: 12 Dec. 2012].

[64] Reaction RuleML. Available: http://ruleml.org/reaction/. [Accessed: 12

Dec. 2012].

[65] A. Paschke, A. Kozlenkov, H. Boley, M. Kifer, S. Tabet, M. Dean, and K.

Barrett. Reaction RuleML. Available:

ruleml.org/reaction/docs/RuleML06_Poster.pdf. [Accessed: 21 Dec.

2012].

http://ruleml.org/0.7/
http://ruleml.org/0.91/
http://ruleml.org/1.0/
http://ruleml.org/reaction/

References

154

[66] Reaction RuleML Tutorial. Available:

http://ruleml.org/reaction/docs/Reaction-RuleM_tutorial06.pdf. [Accessed:

12 Dec. 2012].

[67] Reaction RuleML 0.2. Available: http://ruleml.org/reaction/0.2/index.htm.

[Accessed: 12 Dec. 2012].

[68] SWRL RuleML. Available: http://ruleml.org/swrl/. [Accessed: 12 Dec.

2012].

[69] SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

Available: http://www.w3.org/Submission/SWRL/. [Accessed: 12 Dec.

2012].

[70] OWL Web Ontology Language Overview. Available:

http://www.w3.org/TR/owl-features/. [Accessed: 19 Dec. 2012].

[71] R2ML -- The REWERSE I1 Rule Markup Language. Available:

http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML. [Accessed:

12 Dec. 2012].

[72] RIF Overview. Available: http://www.w3.org/TR/rif-overview/. [Accessed:

12 Dec. 2012].

[73] T. Nguyen and V. Srinivasan, "Accessing relational databases from the

World Wide Web," in Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, 1996, pp. 229-540.

[74] M. Papiani, A. N. Dunlop, and A. J. G. Hey, "Automatically Generating

World-Wide Web Interfaces to Relational Databases," in British Computer

http://ruleml.org/reaction/docs/Reaction-RuleM_tutorial06.pdf
http://ruleml.org/reaction/0.2/index.htm
http://ruleml.org/swrl/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/owl-features/
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML
http://www.w3.org/TR/rif-overview/

References

155

Society Seminar Series on New Directions in Systems Development,

April 1997.

[75] M. A. Mgheder and M. J. Ridley, "Automatic Generation of Web User

Interfaces in PHP Using Database Metadata," in Proceedings of Internet

and Web Applications and Services, 2008. ICIW '08. Third International

Conference on, 2008, pp. 426-430.

[76] S. J. Halasz, "An improved method for creating dynamic web forms using

APL," in Proceedings of the International Conference on APL-Berlin,

2000, pp. 104-111.

[77] M. S. Mark Weiner, Abigail Cohen, "Metadata tables to enable dynamic

data modeling and web interface design: the SEER example,"

International Journal of Medical Informatics, vol. 65, p. 51, 2002.

[78] A. Elbibas and M. J. Ridley, "Developing Web Entry Forms Based on

METADATA," Presented at International Workshop on Web Quality in

conjunction with ICWE 04- International Conference on Web

Engineering. Available: http://www.pst.informatik.uni-

muenchen.de/~baumeist/icwe/ws/ws1/icwe04.pdf. [Accessed: 21 Dec.

2012].

[79] M. Bernauer, G. Kappel, and G. Kramler, "Approaches to implementing

active semantics with XML schema," in Database and Expert Systems

Applications, 2003. Proceedings. 14th International Workshop on, 2003,

pp. 559-565.

http://www.pst.informatik.uni-muenchen.de/~baumeist/icwe/ws/ws1/icwe04.pdf
http://www.pst.informatik.uni-muenchen.de/~baumeist/icwe/ws/ws1/icwe04.pdf

References

156

[80] E. Kirda, C. Kerer, and G. Matzka, "Using XML/XSL to Build Adaptable

Database Interfaces for Web Site Content Management," in Proceedings

of the XML in Software Engineering Workshop (XSE 2001), 23rd

International Conference on Software Engineering (ICSE 2001), 2001.

[81] T. Schmidberger and A. Fay, "A rule format for industrial plant information

reasoning," in Emerging Technologies and Factory Automation, 2007.

ETFA. IEEE Conference on, 2007, pp. 360-367.

[82] Understanding JDBC Metadata. Available: http://eye-on-

objects.com/c_brown.htm. [Accessed: 12 Dec. 2012].

[83] T. J. Teorey, D. Yang, and J. P. Fry, "A logical design methodology for

relational databases using the extended entity-relationship model," ACM

Comput. Surv., vol. 18, pp. 197-222, 1986.

[84] PostgreSQL Functions. Available:

http://www.php.net/manual/en/ref.pgsql.php. [Accessed: 22 Mar. 2013].

[85] A. M. Albhbah and M. J. Ridley, "Using RuleML and database metadata

for automatic generation of web forms," in Proceedings of 10th

International Conference on Intelligent Systems Design and Applications

(ISDA) 2010, pp. 790-794.

[86] A. M. Albhbah and M. J. Ridley, "A Rule Framework for Automatic

Generation of Web Forms," in Proceedings of 4th IEEE International

Conference on Computer Science and Information Technology (IEEE

ICCSIT 2011), 2011, vol. 5-A608, pp. 76 - 81.

http://eye-on-objects.com/c_brown.htm
http://eye-on-objects.com/c_brown.htm
http://www.php.net/manual/en/ref.pgsql.php

References

157

[87] Data Management: SQL Call Level Interface (CLI) (CAE Specification S.)

X/OPEN Co., 1995.

[88] Using domains. Available:

http://dcx.sybase.com/1200/en/dbusage/domains-integrit.html.

[Accessed: 12 Dec. 2012].

[89] PostgreSQL extended or object relational features. Available:

http://www.comp.brad.ac.uk/~postgres/postgreSQL/worksheet5.html.

[Accessed: 12 Dec. 2012].

[90] PostgreSQL: The world's most advanced open source database.

Available: http://www.postgresql.org/. [Accessed: 12 Dec. 2012].

http://dcx.sybase.com/1200/en/dbusage/domains-integrit.html
http://www.comp.brad.ac.uk/~postgres/postgreSQL/worksheet5.html
http://www.postgresql.org/

	cover_sheet_thesis
	University of Bradford eThesis

	03015310-Phd-thesis

