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 I 

Abstract 

 

Keywords: Geometric modelling, PDE Method, Parametric surfaces, Pharmaceu-

tical tablets, Shape optimisation. 

 

Pharmaceutical tablets have been the most dominant form for drug delivery and 

they need to be strong enough to withstand external stresses due to packaging 

and loading conditions before use. The strength of the produced tablets, which 

is characterised by their compressibility and compactibility, is usually deter-

mined through a physical prototype. This process is sometimes quite expensive 

and time consuming. Therefore, simulating this process before hand can over-

come this problem.  

A technique for shape modelling of pharmaceutical tablets based on the use of 

Partial Differential Equations is presented in this thesis. The volume and the sur-

face area of the generated parametric tablet in various shapes have been es-

timated numerically. This work also presents an extended formulation of the 

PDE method to a higher dimensional space by increasing the number of pa-

rameters responsible for describing the surface in order to generate a solid tab-

let. The shape and size of the generated solid tablets can be changed by ex-

ploiting the analytic expressions relating the coefficients associated with the 

PDE method. 

The solution of the axisymmetric boundary value problem for a finite cylinder 

subject to a uniform axial load has been utilised in order to model a displace-

ment component of a compressed PDE-based representation of a flat-faced 

round tablet. The simulation results, which are analysed using the Heckel model, 

show that the developed model is capable of predicting the compressibility of 

pharmaceutical powders since it fits the experimental data accurately. The opti-

mal design of pharmaceutical tablets with particular volume and maximum 

strength has been obtained using an automatic design optimisation which is 

performed by combining the PDE method and a standard method for numerical 

optimisation. 
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Chapter 1 

Introduction 

  

This chapter outlines the research motivation, aims and objectives of this work 

in order to give the reader a glimpse of what inspired this line of research. The 

original contributions, publications and the thesis structure are also covered in 

this chapter.   

1.1 Motivation  

Pharmaceutical tablets have been the most dominant form for drug delivery and 

most are used in the oral administration of drugs. These tablets need to be 

strong enough to tolerate external stresses. Quality tablets are those that have 

consistent hardness, uniform content and accurate mass and height. The quality 

of the produced tablets depends on the compaction properties of pharmaceuti-
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cal powders, which are characterised by their compressibility and compactibility, 

and consequently, these properties require investigation. Both mechanical be-

haviours can be determined through the powder compaction stage, which is 

one of the stages in the tabletting process. Additionally, the shape and size of a 

tablet are two important features in determining the tablet properties apart 

from enhancing its aesthetic appearance. 

 

Recently, the use of computer vision has been applied widely in medical appli-

cations, especially in medical image processing (Peiró et al. 2007), designing 

drugs (Song et al. 2009), pharmaceutical tablet formulations (Yu et al. 2009) and 

simulations of various tablet processing techniques (Cunningham et al. 2004; Fu 

et al. 2006; Siiriä and Yliruusi 2007). A number of methods have been proposed 

to simulate powder compression, such as finite element (FE) (Wu et al. 2008) 

and discrete element (DE) (Hassanpour et al. 2004) methods. However, it has 

been reported by Frenning (2008) that the implementation of the FE method is 

quite complicated and cannot distribute information on the particle range. 

Meanwhile, the DE method fails to give an accurate result if the particle defor-

mation is extensive and it is hard to obtain stresses within individual particles 

(Frenning 2008). Thus, a combined FE/DE method has been introduced to over-

come these problems (Frenning 2010). However, no report has been found in 

the literature regarding any work related to the geometric modelling of phar-
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maceutical tablets, either interactively or based on the use of parametric surface 

representations.  

 

At present, there exists a variety of methods that can be utilised to generate the 

geometry of pharmaceutical tablets, such as Bézier surfaces (Shang et al. 2008), 

B-spline (Pungotra et al. 2008), Non-uniform rational B-splines (NURBS) 

(Sánchez et al. 2004) and also a surface representation technique based on the 

use of Partial Differential Equations (PDEs), known as the PDE method (Ugail and 

Wilson 2005). Of all these methods, the PDE method is the most suitable for 

representing any given shape of tablet and its components since it can generate 

surfaces of complex geometries from a small number of parameters. The PDE 

method has been introduced in Computer-aided Design (CAD) as a solution of a 

particular type of elliptic PDE to generate smooth parametric surfaces (Ugail 

2006). The shape of the surfaces generated by this method is based on a 

boundary representation and can easily be modified since it is characterised by 

data distributed around the boundaries.  

 

The PDE method is compatible with other well established spline-based surface 

designs, such as B-spline (Du and Qin 2005). Thus, PDE surfaces can be effec-

tively integrated into existing commercial design systems. Furthermore, the use 

of the PDE method can significantly reduce the computational cost associated 
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with the process of designing pharmaceutical tablets since PDE-based surfaces 

can be generated in any CAD package such as Autodesk Maya Plug-in, Micro-

soft Visual Studio C
++

 and MATLAB. Moreover, this technique offers modelling 

tools to manipulate the shape of a PDE surface by altering the values of its de-

sign parameters (Ugail and Wilson 2005). Thus, a PDE-based model preserves its 

geometric nature when the values of its design parameters are changed. In the 

present context, this means that PDE surfaces can adapt to physical changes in 

the tablet when the tablet has been compressed axially or diametrically. 

 

Before the produced tablet comes onto the market, the compactness of the tab-

let will have to be determined. This is usually done via physical prototypes and 

that process is often quite expensive and time consuming. Therefore, an alterna-

tive computer based simulation tool needs to be developed in order to deter-

mine the compactness of tablets before they can be mass produced. Based on 

the aspects discussed here, the intention of this thesis is to develop a surface 

representation model to simulate the tablet compaction process, which is a fun-

damental problem in the pharmaceutical industry. 

1.2 Objectives 

The aim of this research is to adopt the PDE method for use in the pharmaceuti-

cal industry, focusing on the shape characterisation of tablets. The scope of the 
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research relates specially to the design and mechanical properties of tablets. The 

aim is to develop a parametric representation, and eventually a computer based 

simulation algorithm, for pharmaceutical use. This platform may prove useful for 

minimising the cost and time taken during the powder compaction process. The 

aim can be achieved by following these objectives. 

 

The objectives of this research are: 

I. To model various shapes of pharmaceutical tablets based on the use of Par-

tial Differential Equations. 

II. To generate solid objects by extending the mathematical formulation of the 

PDE method to a higher dimension and integrating it in a CAD environment 

for designing solid pharmaceutical tablets. 

III. To exploit the formulation of the PDE method in order to find simple ex-

pressions characterising the height and radius of the generated solid tablet. 

These simple expressions can be used to manipulate tablet configurations.    

IV. To develop an axial displacement model for a compressed pharmaceutical 

powder in a cylindrical die during the Single Ended Compression (SEC) 

process. 

V. To make use of the contact law of a granule, as found in the literature, to 

measure the displacement of a spherical tablet and hence relate the physics 

of the law to the parametric shape of the tablet in question. 
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VI. To construct computer based simulations to determine the compressibility 

of tablets in cylindrical and spherical shapes. 

VII. To construct automatic shape optimisation of pharmaceutical tablets based 

on the PDE method in order to find optimal shapes of tablets with maxi-

mum strength and specific volume.    

1.3 Research Contributions 

The contributions for this research are: 

I. The PDE-based geometric modelling has been introduced into the shape 

design of pharmaceutical tablets (Chapter 4). 

II. The PDE method has been extended to a higher dimensional space in order 

to generate a volumetric object (Chapter 4). 

III. Simple expressions characterising the height and radius of a PDE-based rep-

resentation of a tablet (Chapter 4). Particularly, expressions for a tablet gen-

erated using the extended PDE method together with circular-shaped 

boundary conditions and the spine of the tablet parallel to the 𝑧-axis have 

been obtained.   

IV. A mathematical model for measuring the axial displacement of an axially 

compressed pharmaceutical powder in a cylindrical die (Chapter 5). 
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V. Simulation based on the use of a parametric surface representation as a tool 

to predict compaction properties of cylindrical and spherical tablets (Chap-

ter 5 and Chapter 6).   

VI. Simulation results as a benchmark for modelling the powder compaction 

process in the future. 

VII. Several optimal shapes of tablet, which are obtained by carrying out an op-

timisation analysis (Chapter 6).  

1.4 Publications 

In order to support the contributions listed above, a number of publications 

have been submitted internationally recognised conferences and publishers. The 

comments given by the reviewers to such submissions have been taken into 

consideration and improvements have been made to ensure the quality of the 

research so that it can make a significant contribution. A list of the publications 

related to this research is outlined in this section. They are divided as follows: 

 

 List of journals and conference publications already published: 

I. Ahmat, N., González Castro, G. & Ugail, H. (2012) Automatic design optimi-

sation of pharmaceutical tablets using PDEs. Proceedings of the 2nd 

International Conference on Simulation and Modeling Methodologies, 
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Technologies and Applications, Rome, 28 – 31 July 2012, SciTePress, pp. 125-

130. 

II. Ahmat, N., Ugail, H. & González Castro, G. (2012) Modelling the mechanical 

behaviour of a pharmaceutical tablet using PDEs. In: Gϋnther, M., Bartel, A., 

Brunk, M., Schöps, S. & Striebel, M., eds.  Progress in Industrial Mathematics 

at ECMI 2010. Germany: Springer-Verlag Berlin Heidelberg, pp. 505-511. 

III. Ahmat, N., Ugail, H. & González Castro, G. (2012) Elastic-plastic contact law 

for simulation of tablet crushing using the Biharmonic equation. Interna-

tional Journal of Pharmaceutics, 427(2), pp. 170-176. 

IV. Ahmat, N., Ugail, H. & González Castro, G. (2011) Method of modelling the 

compaction behaviour of cylindrical pharmaceutical tablets. International 

Journal of Pharmaceutics, 405(1-2), pp. 113-121. 

V. Ahmat, N., Ugail, H. & González Castro, G. (2011) Shape parameterisation of 

tablet shapes using Partial Differential Equations. Paper presented at 2nd 

World Conference on Information Technology (WCIT) in Antalya, Turkey (23 - 

26 November 2011).  

 

 List of works accepted to be published: 

VI. Ahmat, N., González Castro, G. & Ugail, H.  Geometric modeling and para-

metric characterization for virtual design of pharmaceutical tablets. Submit-
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ted to the International Conference on CyberWorlds 2012 in Darmstadt, 

Germany (25 – 27 September 2012). 

 

 

 List of work in review: 

VII. Ahmat, N., González Castro, G. & Ugail, H. Automatic shape optimisation of 

pharmaceutical tablets using Partial Differential Equations. Submitted to the 

Journal of Computers and Structures. 

1.5 Structure of the Thesis 

The rest of the thesis is structured as follows: 

Chapter 2: On the Compaction of Pharmaceutical Tablets contains a litera-

ture review related to the compaction properties of pharmaceutical tablets in 

terms of compressibility and compactibility. It also explains the Heckel model 

which is used to analyse the compressibility of a powder bed, as well as some 

mathematical models used to measure the tensile strength of a tablet.    

 

Chapter 3: Techniques for Geometric Modelling discusses the history of the 

development of surfaces in Computer Aided Geometric Design (CAGD), includ-

ing a brief overview of spline-based surfaces. The mathematical theory associ-

ated with the PDE method, together with some graphical examples of PDE sur-

faces, is also discussed. This method is used as the surface generation technique 
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throughout this thesis. The last section in this chapter lists methods for numeri-

cal optimisation and explains how design optimisation can be carried out using 

the MATLAB Optimisation ToolBox.  

 

Chapter 4: The PDE Method for Tablet Shape Modelling shows various 

shapes of pharmaceutical tablets that have been created using the PDE method. 

Formulae for measuring the surface area and volume of a parametric surface are 

also presented in this chapter. A new parameter has been introduced to the 

formulation of the PDE method in order to generate a solid object. Furthermore, 

a subroutine has been coded in a MATLAB file to generate the cuboid mesh for 

solid PDE-based representation of pharmaceutical tablets. The final part of this 

chapter presents some simple mathematical expressions which can be used for 

shape manipulation of the PDE-based object.        

 

Chapter 5: Modelling the Mechanical Behaviour of Pharmaceutical Tablets. 

This chapter is divided into two main sections. The first section presents a 

mathematical model for measuring an axial displacement of a compressed 

powder bed in a cylindrical die. This model is developed by utilising the analytic 

solution of the Love‟s stress function together with a particular set of boundary 

conditions. The second section shows the PDE-based simulation of a com-

pressed spherical tablet and the result is compared with the theoretical one.  
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Chapter 6: Automatic Design Optimisation explains the methodology for 

shape optimisation. The initial parametric shape of the tablets, which has been 

created in Chapter 4, along with constraints are supplied to an optimisation rou-

tine. The Active Set method is used to perform such an optimisation process. 

Different shapes such as flat-faced circular and spherical tablets as well as a 

soft-shell spherical capsule have been used. 

 

Chapter 7: Conclusions summarises the research and discusses the contribu-

tions made. It also discusses ideas for future work.   

1.6 Summary 

The mechanisms involved in the compaction of pharmaceutical powders have 

become a crucial step in the development cycle for robust tablet design with 

required properties. Given that the shape and size of tablets also play an im-

portant role in determining their mechanical properties, this work proposes a 

method to model various solid shapes of pharmaceutical tablets, incorporating 

the use of parametric surface representations. The motivation to pursue re-

search in this area is to encourage the future development of pharmaceutical 

technologies through computer generated simulations. Based on the objectives 

and contributions to the field, this thesis can be used as a guide and for further 

exploration by other researchers who have the same interests. 



 
 

12 

 

 

 

Chapter 2 

On the Compaction of Pharmaceutical Tablets 

 

2.1 Introduction  

Tablets are the most widely used dosage forms for drug delivery in the pharma-

ceutical industry, occupying two-thirds of the global market (Wu and Seville 

2009). A tablet is usually taken orally, but can be administered sublingually, rec-

tally or intravaginally to deliver an accurate dosage to a specific site. This type of 

dosage form has many advantages over other dosage forms: they are conven-

ient to use by patients, have long term storage stability and have good toler-

ance to changes in temperature and humidity. Additionally, tablets can be de-

signed to protect unstable medications or disguise unpalatable ingredients (Dey 

et al. 2008).  
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Tablets have been made in many shapes, sizes and consistencies. This helps to 

distinguish between different medicines and is also useful for product branding. 

The most common shapes for tablets are round, oval and caplet. The dosage 

form varies in size from a few millimetres to about a centimetre, a range that is 

regarded as ideal for easy swallowing. The quality of such tablets can be de-

scribed by several parameters, such as hardness, accurate mass and height, as 

well as content uniformity (Belic et al. 2009).   

 

The shape and geometry of a tablet play an important role in determining the 

strength of the object where the selection of a specific shape may improve the 

mechanical properties of the tablet (Santos and Sousa 2008). It has also been 

reported that the shape, size and surface area of the tablet can affect drug re-

lease profiles (Reynolds et al. 2002). The latter work has demonstrated that 

round and oval tablets have the same drug release profile if the surface area, 𝑆, 

to the volume, 𝑉, ratio is set as constant. Furthermore, the effect of size of 

round tablets on drug release has been investigated in work by Siepmann et al. 

(2000). This work found that larger round tablets have a slower release profile 

compared to those of smaller dimensions. 

 

In this chapter the properties of pharmaceutical tablets are discussed in detail. 

This includes the mechanical properties of tablets, which can be influenced by 

their components and the manufacturing process. Section 2.2 describes the 
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compaction properties of pharmaceutical powders in terms of compressibility 

and compactibility. These two mechanical behaviours are important in this study 

because they can affect the strength of the produced tablets.     

2.2 Compaction Properties of Pharmaceutical Powders 

Most pharmaceutical tablets are initially presented in powder form or granules. 

A granule is composed of several powder particles, which bond together by the 

adhesion force at the contact area (Antonyuk et al. 2005). Many tablets are con-

stituted by granules since they have better flow behaviour and can compress 

well even at a low pressure (Antonyuk et al. 2010). A tablet formed from gran-

ules will have good characteristics, such as consistent hardness, uniform content 

and ease of controlling drug release (Tousey 2002). 

 

Tablets are produced through a tabletting process, which is divided into three 

stages (Wu et al. 2008). First, the powders or granules are filled into the die cav-

ity which is responsible for determining the diameter and shape of the tablet. 

Secondly, a compaction process takes place, which involves compression and 

decompression of the powder or granular bed. Finally, the compacted powder is 

ejected from the die in the form of a tablet after the required height is obtained. 

It has been found that the relative densities of pharmaceutical powders increase 

as they transform into solid dosage forms (Hancock et al. 2003). 



Chapter 2: On the Compaction of Pharmaceutical Tablets                                                         | 15 

 

 

However, some common defects can occur during the tabletting process, such 

as sticking, capping and laminating. Sticking refers to the tablet materials ad-

hering to the die walls instead of locking together to create a uniform tablet, re-

sulting in breakage of the tablet edges (Waimer et al. 1999). Capping is the term 

used to describe a phenomenon involving the horizontal separation of the up-

per part of the tablet, either partially or completely from the tablet body, while 

laminating refers to the separation of a tablet into two or more distinct layers 

(Cox Gad 2008). All mechanical failures mentioned above may affect the me-

chanical strength of the tablet and its quality (Belic et al. 2009).  

 

Recently, there has been increased interest in the study of the effect of granular 

properties on the mechanical properties of tablets. Work by Eichie and 

Kudehinbu (2009) has shown that a tablet formed from larger granules has a 

higher degree of consolidation than a tablet formed from smaller ones. The 

same result was obtained by Spaniol et al. (2009) who found that the bulk den-

sity of granules can affect the compression properties, in which low density 

granules give harder tablets. Moreover, fast-dissolving tablets have been 

formed by highly plastic granules, which allow fast absorption of water into the 

compressed tablet and hence provide a soft paste for easy swallowing (Fu et al. 

2005). This type of granule is produced by a wet granulation process and main-

tains its porosity even after it has been compressed as a tablet (Fu et al. 2005). 
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Details of the mechanical properties of granular materials will be presented in 

Chapter 5.     

 

It has been reported in Coube et al. (2005) that the mechanical strength or 

disintegration of the tablet also depends significantly upon the behaviour of the 

powder during all stages of the tabletting process. Through this process, the 

compressibility and compactibility of the pharmaceutical powder bed are de-

termined. The most important stage in the tabletting process is the powder 

compaction stage. The compression and compaction processes occur during 

this stage and are two inseparable and dependent sequences (Bacher et al. 

2007). Although compaction usually occurs when the powder bed is com-

pressed, this is not necessarily the case since it requires the formation of inter 

particulate bonding in order to generate a coherent compact (Bacher et al. 

2007).   

 

Some authors have investigated the radial and axial powder movements during 

the tabletting process, using flat and curved faced punches for single-ended ax-

ial strain applications (Eiliazadeh et al. 2003). They found that flat faced tablets 

are non homogeneous with high density regions near the moving punch surface 

and at the middle of the bottom half, while the low density regions are found at 

the bottom edges of the tablet. A year later, these researchers developed fur-

ther experimental methods to gain a better understanding of the movement of 
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the powder during the compaction process. The results showed that the radial 

powder movement in flat faced tablets takes place away from the die wall (Eili-

azadeh et al. 2004).   

 

It is therefore very important to understand the mechanical behaviour of the 

powder during each stage for successful formulation processing. Furthermore, 

the quality of the produced tablets depends on the compaction properties of 

pharmaceutical powders, which are characterised by their compressibility and 

compactibility. These properties must be investigated since the produced tab-

lets have to be strong enough to sustain any possible load after the tabletting 

process, such as film coating, packing and handling (Wu et al. 2005).  

 

2.2.1 Compressibility of Pharmaceutical Powders 

Many studies have investigated the compressibility of different types of excipi-

ents, such as Microcrystaline cellulose (Zhang et al. 2003; Hassanpour et al. 

2004) and Lactose (Zhang et al. 2003; Hassanpour et al. 2004; Ilić et al. 2009). 

Compressibility refers to the ability of the powder to change in volume when 

subjected to pressure (Ilić et al. 2009), which explains mechanical properties of 

the bed in terms of elasticity and plasticity. Elasticity is the ability of a solid to 

recover its original shape and volume once the applied load is removed 
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(Owolabi et al. 2010), while plasticity contrasts with elasticity. In other words, a 

high plasticity object is capable of being shaped or moulded.  

 

Finite element (FE) methods have been widely used to model the compressibility 

of elastic-plastic powder in both tabletting and roller compaction operations 

(Sinha et al. 2010). This method depends very much on the accuracy of the con-

stitutive model used to describe powder‟s deformation behaviour as well as the 

quality of the parameters set (Chtourou et al. 2002). It has been reported in the 

literature that the Drucker-Prager Cap (DPC) model is the most commonly used 

constitutive model for simulation of the compaction process (Han et al. 2008). 

This model is governed by elliptical caps, which determine the densification 

yield loci, and is able to capture the shearing phenomenon in powders during 

the decompression and ejection phases (Sinha et al. 2010). Furthermore, the 

DPC model requires some parameters related to the unloading and ejection 

phases of the tabletting process. 

 

However, this model is unsuitable in some cases, such as experiments in which 

researchers or scientists are not taking the physics of the tabletting process or 

the effect of tooling geometry into consideration. To that purpose, a mathe-

matical model of axial displacement of a compressed powder in a cylindrical die 

is proposed in this thesis. The model is developed by using the solution of 

Love‟s stress function together with a particular set of boundary conditions. 
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Only the initial dimensions of the powder bed, together with its material prop-

erties, are considered in this simple model. This model is explained in detail in 

Chapter 5, section 5.2.1. 

 

Most deformation models discussed in the literature are designed for a group 

of powders or a powder bed of cylindrical shape. Therefore, in order to measure 

the compressibility of a powder bed of spherical shape, it is assumed that the 

mechanical behaviour of the powder in this particular bed is similar to the be-

haviour of a spherical granule. Recently, a force-displacement model for an elas-

tic-plastic granule with radius, 𝑟𝑠 , has been developed by Antonyuk et al. (2010) 

 

𝐹𝑒𝑝 =
𝜋𝑠𝑦𝑟𝑠𝜔𝑧

2
 1 −

1

3
 
𝜔𝑧′

𝜔𝑧

3

 , 

 

 

(2.1) 

where 𝐹𝑒𝑝  is the axial force applied on the elastic-plastic granule, 𝑠𝑦  represents 

the micro-yield strength, 𝜔𝑧  denotes the full axial displacement and 𝜔𝑧
′  is the 

displacement at the yield point. The details of the mechanical behaviour of elas-

tic-plastic granules are presented by Antonyuk et al. (2005) and Antonyuk et al. 

(2010), and will be discussed in detail in Chapter 5. 

 

Several approaches can be used to analyse the compressibility of a powder bed, 

such as the Heckel (Zhang et al. 2003; Hassanpour et al. 2004; Ilić et al. 2009), 

Kawakita (Zhang et al. 2003) and modified Walker models (Ilić et al. 2009).  The 
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Heckel model has been the most popular model among pharmaceutical scien-

tists. This model is used to measure the values of apparent yield pressure and 

mean yield pressure of active substances and tabletting excipients (Sonnergaard 

1999). It has been developed on the assumption that powder compression fol-

lows a first-order chemical reaction, where the pores are the reactant (Zhang et 

al. 2003), and it is based on force-displacement data, which is converted to a 

relative density-pressure relationship (Heckel 1961). The Heckel equation is writ-

ten as 

 

ln  
1

1 − 𝜌rel
 = 𝑃𝐾 + 𝐴, 

 

(2.2) 

 

where 𝜌rel  represents a relative density, 𝑃 is a pressure, and 𝐾 and 𝐴 are con-

stants. The relative density is the bulk density proportional to the true density  

 

𝜌rel =
𝜌bulk

𝜌true
, 

 

(2.3) 

 

and the term (1 − 𝜌rel ) represents the porosity. The slope, 𝐾, and 𝑦-intercept, 𝐴, 

of the linear graph are obtained when plotting the value of ln  
1

1−𝜌rel
  against 

the applied axial pressure, 𝑃. The constant, 𝐾, gives the value of the plasticity of 

a compressed powder and 𝐴 is associated with the particle rearrangement be-

fore deformation (Zhang et al. 2003). The reciprocal of 𝐾 is a measure of the 

yield pressure, 𝑃𝑦 , of the particles, which gives the value of the hardness of pow-
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ders (Hassanpour et al. 2004). Low values of 𝑃𝑦  usually indicate harder tablets 

(Nokhodchi 2005).   

 

The Heckel model is suitable for materials that strengthen by plastic deforma-

tion (Yap et al. 2008). Plastic deformation refers to the reduction in bulk volume 

of the powder bed when the applied external load has been removed from the 

bed (Owolabi et al. 2010). However, it has been reported that the Heckel analy-

sis also has some drawbacks. Heckels‟ parameters are very sensitive to small er-

rors associated with experimental conditions (maximum pressure, punch dis-

placement measurements and weight of the compact) and variations in the true 

density measurement (Hassanpour et al. 2004; Ilić et al. 2009). Furthermore, the 

Heckel plot can be influenced by the particle size (Hassanpour et al. 2004), die 

size, the degree of lubrication and the overall time of compression (Sovány et al. 

2009). Therefore, the effects of these variables should be taken into considera-

tion when designing tablet formulations.  

 

In this work, the practical and theoretical results of a compressed powder in cy-

lindrical and spherical shapes are analysed using the Heckel model. However, 

not all of the factors mentioned above are considered when performing the 

compression process in order to obtain the experimental data.  
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2.2.2 Compactibility of Tablets 

Compactibility is the ability of powders to convert from small particles into a 

coherent solid dosage form (Yap et al. 2008). The compactibility of a powder 

compact is estimated by measuring its mechanical strength (Sonnergaard 2006), 

which can be assessed using a combination of simple failure and erosion tests 

together with more sophisticated engineering tests (Swaminathan and Kildsig 

2000). The mechanical strength of round tablets is characterised by the meas-

urement of tensile strength (Wu et al. 2005; Wu and Seville 2009).  

 

Tensile strength is a measure of the ability of a given material to resist forces 

that tend to pull it apart. In other words, the tablets must possess at least a 

minimum mechanical strength to uphold any potential load encountered during 

post-compaction processes (Wu et al. 2005). Generally, the tensile strength of 

pharmaceutical tablets in a round shape is determined by the diametrical (Wu 

and Seville 2009) or axial compression tests (Han et al. 2008). This is done by 

placing the tablet between two platens and compressing it until the tablet 

breaks or crushes, as illustrated in Figure 2.1. In Figure 2.1(a), the tablet is 

crushed along its central line, whereas Figure 2.1(b) shows the tablet being com-

pressed axially. These tests have been applied to both single component tablets 

and matrix tablets made from various components (Wu and Seville 2009). 
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Figure 2.1: Tablet strength measurement in (a) diametrical test and (b) axial compressive 

strength. This figure is reproduced from Han et al. (2008). 

 

 

Since an understanding of tablet tensile strength is vital, there has been in-

creased interest in developing mathematical models of tensile strength. The 

measured force, 𝐹, obtained from the test together with the diameter, 𝐷, and 

thickness, 𝑡, of a flat-faced round tablet are used to calculate the tensile 

strength. The diametrical tensile strength of such a tablet is calculated from   

 

𝜍T
𝑑 =

2𝐹max

𝜋𝐷𝑡
 , 

 

(2.4) 

where 𝐹max  is the maximum crushing force while the axial compression strength 

of that particular tablet shape is determined from the following equation (Han 

et al. 2008)  

 

(a)               (b) 
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𝜍T
𝑎 =

4𝐹𝑦

𝜋𝐷2
 , 

 

(2.5) 

where 𝐹𝑦  is the force at the yield point. The tensile strength of round tablets of 

single or mixture components can also be measured at various relative densities. 

It is found that the logarithm of tensile strength is proportional to the relative 

density as shown in the Ryshkewitch-Duckworth equation (Wu and Seville 2009) 

 

ln  
𝜍T

𝜍T
∗ = 𝑘 𝜌𝑟𝑒𝑙 − 1 , 

 

 

(2.6) 

where 𝜍T
∗ represents the tensile strength of the components with zero porosity 

(𝜌𝑟𝑒𝑙 = 1) and 𝑘 denotes a material constant of bonding capacity. 

 

More than two decades ago, some researchers developed a model for the ten-

sile strength of a convex-faced round tablet (Pitt et al. 1988). They generated a 

model that not only considers the force, 𝐹, and tablet‟s diameter, 𝐷, but also the 

total thickness, 𝑡, and central cylindrical thickness, 𝑊, of the tablet 

 

𝜍T
𝑑 =

50𝐹max

𝜋𝐷2  
71𝑡
5𝐷

−
63𝑡

100𝑊 +
63𝑊
4𝐷 +

1
20 

. 

 

 

(2.7) 

Then, in 2011, the same author and his colleague proposed a new model to cal-

culate the tensile strength of elongated tablets (extended standard flat-faced 

and convex-faced round tablets). From this model, which is derived from the ex-

isting models (Equations (2.4) and (2.7)), it was concluded that, as the tablet was 
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elongated from the standard round tablet, the peak principal tensile strength 

reached approximately 
2

3
 of that calculated for round tablets (Pitt and Heasley 

2011). Therefore, the calculation for the tensile strength of a flat-faced elon-

gated tablet is 

 

𝜍T
𝑑 =

4𝐹max

3𝜋𝐷𝑡
 , 

 

(2.8) 

and a convex-faced elongated tablet is       

 

𝜍T
𝑑 =

100𝐹max

3𝜋𝐷2  
71𝑡
5𝐷

−
63𝑡

100𝑊 +
63𝑊
4𝐷 +

1
20 

. 

 

 

(2.9) 

The dimensions of the tablet shapes discussed above can be seen in Figure 2.2. 

 

 

 

Figure 2.2: Front and side elevation of a (a) flat-faced round, (b) convex-faced round and (c) 

convex-faced elongated tablet.  Figure adapted from Pitt and Heasley (2011). 
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Again, for a compacted powder in a spherical shape, it is assumed that both 

tablets and elastic-plastic granules in this particular shape have similar compac-

tibility behaviour. According to Antonyuk et al. (2010), the tensile strength of a 

spherical granule follows the Hertz law, which is given by 

 

𝜍T
𝑠 =

𝐹𝑒𝑝 (1 − 2𝛾)

2𝜋𝑟𝑐2
 , 

 

(2.10) 

where 𝛾 represents the Poisson‟s ratio and 𝑟𝑐  is the contact radius  

 

𝑟𝑐 =
𝜋𝑠𝑦𝑟𝑠 1 − 𝛾

2 

2𝐸
, 

 

(2.11) 

where 𝐸 denotes the Young‟s modulus. 

 

Many studies have been conducted to explore the dependence of tensile 

strength on the tablets‟ properties, such as density and surface area. It has been 

shown by Elkhider et al. (2007) that the density variation may affect the compact 

properties. The former work reported that the tensile strength of a tablet de-

creases as the density decreases. Furthermore, Adolfsson et al. (1999) have 

shown that a tablet with a large surface area has a high tensile strength. This is 

achieved by adjusting the tablet‟s surface area and the average distance be-

tween particles in compacts of different materials. 
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In this thesis, the design of tablets possessing the maximum tensile strength 

subject to the required volume and mass is considered. This is because all pro-

duced tablets need to be mechanically strong enough to uphold any potential 

load encountered during post-compaction processes whilst also dissolving eas-

ily in the mouth for easy administration of active pharmaceutical ingredients. 

Therefore, some of the equations of tensile strength will be used in the work 

discussed in Chapter 6.  

2.3 Summary 

This chapter presented the literature reviews of the underlying fundamental 

knowledge required to undertake this research study involving pharmaceutical 

tablets. The literature review began with an introduction to pharmaceutical tab-

lets, considering their physical properties such as sizes, shapes and components. 

This was followed by a discussion of the compaction properties of pharmaceuti-

cal powders, which are characterised by their compressibility and compactibility. 

The Heckel model is the most popular model for analysis of the compressibility 

of the powder, while its compactibility is determined by the measurement of 

tensile strength.  
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Chapter 3 

Techniques for Geometric Modelling 

 

3.1 Introduction 

This chapter comprises several aspects of the research study. It starts by outlin-

ing the state of the art of CAD, along with its history and use for other applica-

tions. Then, a summarisation of spline-based techniques for surface generation 

will be presented in Section 3.3. Later, the mathematical details behind the PDE 

method and its applications are also discussed, together with some related 

works. It is worth mentioning that special emphasis is made on this technique 

because the PDE method will be used throughout the thesis for generating the 

parametric shape of pharmaceutical tablets. Also, an overview of several nu-

merical techniques used in MATLAB Optimisation ToolBox will also be discussed 
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and briefly explained. The summary of this chapter will be given in the last sec-

tion.  

3.2 History 

Computer-aided Design (CAD) refers to the use of computer software and sys-

tems to design and create two-dimensional (2D) and three-dimensional (3D) vir-

tual objects. CAD is widely used in many applications, including the automotive 

and aerospace industries, architecture design and computer animation, as well 

as medical applications. The history of CAD starts in the 1950s. In the year 1957, 

Dr. Patrick Hanratty developed the first numerical control program called Pronto 

(Coons 1963). However, Ivan Sutherland was considered to be the father of CAD 

since he invented Sketchpad in 1963 as part of his thesis (Harris and Meyers 

2007). The software used a light pen to create engineering drawings directly on 

a large CRT monitor.  

 

Then, in the 1960s, applications of CAD systems continued to be developed by 

manufacturers‟ internal groups in collaboration with university researchers. CAD 

software was first utilised by large automotive and space companies. Through-

out that decade, large companies such as General Motors produced Design 

Automated by Computer (DAC) (Krull 1994); Ford made a Product Design 

Graphic System (FDGS); McDonnell-Douglas created Computer Aided Design 
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and Drafting (CADD) (Harris and Meyers 2007), whilst Lockheed developed 

Computer Augmented Design and Manufacturing (CADAM) (Kasik et al. 2005). 

Such developments continued until the early 1970s, when Mercedes-Benz pro-

duced SYRCO, Nissan released CAD-I and Toyota created TINCA (Patra 2010). 

 

CAD software has evolved dramatically since the 1980s. Autodesk was the first 

vendor to offer a PC based CAD system called AUTOCAD (Bilalis 2000). Over the 

decade, Diehl Graphsoft released MINICAD for MAC users, which became the 

bestselling CAD software (Tornincasa and Monaco 2010). Then, in the late 

1980s, the Parametric Technology Corporation released Computer Aided Three 

Dimensional Interactive Application (CATIA) and Unigraphic for UNIX Work-

station (Tornincasa and Monaco 2010). In the 1990s, the market for CAD sys-

tems became more popular and grew widely. In 1995, SolidWorks, a 3D CAD 

software, was released for desktop PCs by Dassault Systèmes SolidWorks Cor-

poration. Then, SolidEdge which had software similar to SolidWorks, was pro-

duced by Intergraph in 1996 (Tornincasa and Monaco 2010).  

 

Early in the year 2000, Autodesk released an internet edition of AUTOCAD 2000i, 

that has the capability to publish data on the web. Ford also produced the Ford 

Mondeo, an integration of 3D CAD software and the Internet enabled Product 

Data Management (Tornincasa and Monaco 2010). NX and Solid Edge inte-
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grated a new tool called Synchronous Technology in 2008. In the same year, In-

stant 3D was introduced in SolidWorks (Tornincasa and Monaco 2010). In 2009, 

Autodesk launched its Inventor Fusion Technology that provides direct ma-

nipulation capabilities. 

 

The term CAGD refers to Computer Aided Geometric Design, a mathematical 

application of CAD that is concerned with the representation, construction and 

deformation of designing curves, surfaces and volumes. The evolution of CAGD 

began in the early 20th century, when the catalogues of functionality and appli-

cation of particular families of curves to classify airfoil shapes were generated by 

the National Advisory Committee for Aeronautics (NACA) (Kasik et al. 2005). The 

first parametric curve was created in 1962 by Pierre Bézier, an engineer at Ré-

nault, for designing mechanical parts of automobile body (Farin 2002). Later, 

surface patch systems were introduced by Ferguson in 1963 (Farin 2002). In 

patch systems, several curvilinear patches are smoothly joined together to cre-

ate the surface.    

 

With the ability of powerful computers and sophisticated graphics software, 

CAD packages offer several tools for designing complex geometries and sur-

faces in general. Surface modelling techniques are fundamental to many visual 

computing applications in CAD and interactive graphics (Du and Qin 2005). The 
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most common representation for curves and surfaces is the parametric repre-

sentation, as in Bézier, B-spline, NURBS and PDE (González Castro et al. 2008). 

Each of these representations is discussed in the next sections.  

3.3 Spline-Based Surface 

Most of the methods used in CAGD for surface generation are commonly based 

on polynomial surfaces. Polynomial-based techniques such as Bézier surfaces, B-

spline and Non-uniform Rational Basis Spline (NURBS) have become industrial 

standards for modelling and data exchange in CAD.  This is due to the ability of 

these techniques to generate complex geometries, where the shape of the sur-

face is controlled by a set of control points. These techniques also offer a unified 

mathematical formulation for free-form curves, surfaces and solids.  

 

I. Bézier Surfaces 

A Bézier surface is defined by a set of control points and is transformed in the 

same way as its control points under all linear transformations and translations 

(Shang et al. 2008). Two-dimensional Bézier surfaces of order (𝑚, 𝑛) are deter-

mined by 

 

𝐗 𝑢, 𝑣 =   𝐤𝑖𝑗𝐵𝑖
𝑚 𝑢 𝐵𝑗

𝑛 𝑣 ,

𝑛

𝑗=0

𝑚

𝑖=0

      𝑢, 𝑣 ∈  1, 0 , 

 

 

(3.1) 
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where 𝐤𝑖𝑗  denotes the (𝑚 + 1)(𝑛 + 1) array of control points and 𝐵𝑖
𝑚   and 𝐵𝑗

𝑛  

are known as Bernstein polynomial functions, which are defined by 

 

𝐵𝑖
𝑚 𝑢 =  

𝑚
𝑖
 𝑢𝑖 1 − 𝑢 𝑚−𝑖 , 

 

(3.2) 

and 

 
𝐵𝑗
𝑛 𝑣 =  

𝑛
𝑗 𝑣

𝑗  1 − 𝑣 𝑛−𝑗 , 

 

(3.3) 

respectively. 

 

Generally, the most common use of Bézier surfaces is as nets of bicubic patches, 

which are defined by 16 control points (𝑚 =  𝑛 =  3), as shown in Figure 3.1 

(Lavoué 2008). However, constructing a composite Bézier surface can be quite 

complex since particular smoothness constraints need to be satisfied (Loop 

1994). 

 

 

 

Figure 3.1: Bicubic Bézier surface. Figure extracted from Lavoué (2008). 
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II. B-spline Surfaces 

Over the past few decades, the B-spline representation has become the stan-

dard for CAD systems. This method is based on polynomial interpolation 

through the complete set of points. A B-spline surface is a generalisation of a 

Bézier curve, where the shape of the basic functions is determined by the posi-

tion of the knots. The surface is obtained by replacing the Bernstein polynomial 

functions in Equation (3.1) by the B-spline basis functions, 𝑁𝑖
𝑝
 and 𝑁𝑗

𝑞
, thus      

 

𝐗 𝑢, 𝑣 =   𝐤𝑖𝑗𝑁𝑖
𝑝 𝑢 𝑁𝑗

𝑞 𝑣 ,

𝑞

𝑗=0

𝑝

𝑖=0

 

 

 

(3.4) 

where 

 

𝑁𝑖
1 𝑢 =  

1          𝑢𝑖 ≤ 𝑢 < 𝑢𝑖+1  

0          otherwise         
  ,                                   

 

 

   (3.5a) 

 
𝑁𝑖
𝑝 𝑢 =

𝑢 − 𝑢𝑖
𝑢𝑖+𝑝−1 − 𝑢𝑖

𝑁𝑖
𝑝−1 +

𝑢𝑖+𝑝 − 𝑢

𝑢𝑖+𝑝 − 𝑢𝑖+1
𝑁𝑖+1
𝑝−1 , 

 

(3.5b) 

 

and similarly for 𝑁𝑗
𝑞

(𝑣). The degree of resulting polynomials in 𝑢 and 𝑣 are 

(𝑝 − 1) and (𝑞 − 1) respectively. The knot values, 𝑢𝑖  and 𝑣𝑗  , relate to the para-

metric variables, 𝑢 and 𝑣, to the control points, 𝐤𝑖𝑗 . Local modifications to B-

spline surfaces can be achieved by transforming the control points, and only the 

neighbouring area will be affected by the change of any modified point (Xie and 

Farin 2004). The functions 𝑁𝑖
𝑝

(𝑢) and 𝑁𝑗
𝑞

(𝑣)  depend upon whether the surface 
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is periodic or non-periodic, have uniform or non-uniform knot vector, the de-

gree of surface and the number of control points in 𝑢 and 𝑣 directions (Chuang 

and Pan 1998).  

 

B-spline surfaces have been widely used in an interactive modelling environ-

ment since the formulation is capable of preserving arbitrarily high degrees of 

continuity over the complex surface consisting of multiple patches (González 

Castro et al. 2008). However, B-spline surfaces face a major problem when rep-

resenting a deformable model because of the absence of an efficient algorithm 

to detect collision between two or more complex B-spline surfaces. Thus, 

Pungotra et al. (2008) proposed an efficient method for precise collision detec-

tion between two or more B-spline surfaces, whereby both model and tool are 

represented as B-spline surfaces and can have complex shape, elastic or plastic 

properties and multiple contacts. The authors also stated that the proposed 

method could potentially be used as a sculpting technique. 

 

III. NURBS 

The NURBS formulation has been formed by extending the formulation of the 

B-spline, which is mathematically described by the ratio of two B-spline func-

tions 



Chapter 3: Techniques for Geometric Modelling                                                                       | 36 

 

 

 

𝐗 𝑢, 𝑣 =
  𝐤𝑖𝑗𝑤𝑖𝑗𝑁𝑖

𝑝 𝑢 𝑁𝑗
𝑞(𝑣)𝑛

𝑗=0
𝑚
𝑖=0

  𝑤𝑖𝑗𝑁𝑖
𝑝 𝑢 𝑁𝑗

𝑞(𝑣)𝑛
𝑗=0

𝑚
𝑖=0

 , 

 

(3.6) 

where 𝑤𝑖𝑗  represents the weight of every control point associated with knot 

vectors in order to generate and represent curves and surfaces. For a surface 

with (𝑝 − 1) and (𝑞 − 1) degrees of basis functions along 𝑢 and 𝑣 axes respec-

tively, the parameter domain is in the range of 𝑢𝑝−1 ≤ 𝑢 ≤ 𝑢𝑛+1 and        

𝑣𝑞−1 ≤ 𝑣 ≤ 𝑣𝑚+1. These surfaces are evaluated using three different representa-

tions: B-spline, Bézier and power basis representation, where each representa-

tion has its own set of points and normal vectors evaluation algorithms 

(Sánchez et al. 2004).   

 

NURBS are the most popular of the spline-based modelling techniques, and 

have been incorporated into a number of modelling packages (Zhang and You 

2002). This method offers great flexibility and precision for handling both ana-

lytic and freeform shapes. It offers advantages which make it attractive for de-

sign applications (Dimas and Briassoulis 1999): 

 The evaluation is straightforward, fast and computationally stable. 

 It offers a common mathematical representation for free-form surfaces and 

the shape is easily changed through the manipulation of control points, 

weights and knots.  
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 The degree of elevation, splitting, and knot insertion, deletion and refine-

ment offers a wide range of tools to design and analyse shape information. 

 

Although spline-based methods are commonly used in CAD, they still have a 

few drawbacks. The manipulation of spline-based surfaces is not straightforward 

since the relationship between the changes in geometry and the manipulation 

of the control points is not intuitive (Monterde and Ugail 2006). This is because 

the associated control points and weights are often unevenly distributed across 

the surface (Monterde and Ugail 2006). Besides that, the traditional polynomial-

based modelling techniques can be difficult, time-consuming, less natural, and 

require strong mathematical expertise from the users (Du and Qin 2005). 

3.4 Parametric Surfaces Based on the Use of Partial Differen-

tial Equations 

As mentioned in Section 3.3, spline-based surface generation techniques are not 

capable of promising global smoothness. A few decades ago, Partial Differential 

Equations were introduced as a tool for surface generation to overcome that 

problem. In this section, a brief description of the mathematical details con-

cerning Partial Differential Equations of relevance to this work is presented. 
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A differential equation is an equation that relates to the derivatives of a function 

depending on one or more variables. Partial Differential Equations are equations 

which involve an unknown function of several independent variables and its par-

tial derivatives with respect to those variables. For instance 

 
𝐴
𝜕2𝑢

𝜕𝑥2
+ 𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

𝜕𝑦2
+ 𝐷

𝜕𝑢

𝜕𝑦
− 𝐸𝑢 = 𝑇 𝑥, 𝑦 , 

 

(3.7) 

where 𝑢(𝑥, 𝑦) is an unknown function depending on two variables, 𝑥 and 𝑦, 

while 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 may be functions of 𝑥, 𝑦 and even 𝑢. There are two com-

mon notations for partial derivatives; the first one is the familiar Leibniz nota-

tion, 𝜕, whereas the other one uses subscripts. For example, 𝑢𝑥𝑥𝑦  can be used to 

represent 
𝜕3𝑢

𝜕𝑥 2𝜕𝑦
. Thus, Equation (3.7) can be written as 

 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 +𝐷𝑢𝑦 − 𝐸𝑢 = 𝑇 𝑥, 𝑦 . (3.8) 

 

PDEs are classified according to certain criteria, such as order, linearity and ho-

mogeneity. Again, if Equations (3.7) and (3.8) are considered, PDEs are classified 

as follows:  

 If 𝐴 =  𝐵 =  𝐶 =  0, then the PDE is first-order. 

 If functions 𝐴,𝐵, 𝐶, 𝐷 and 𝐸 do not depend on dependent variable 𝑢, then 

the PDE is linear; otherwise it is non-linear. 
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 If 𝑇 𝑥, 𝑦 = 0, then the PDE is said to be homogeneous, and otherwise if 

this term has a different value. 

A linear PDE can also be classified in three categories: elliptic, parabolic and hy-

perbolic, according to the type of coefficients or specifically the discriminant, 

𝐵2 − 𝐴𝐶. For instance, Equation (3.8) can fall into any of these categories: 

 Elliptic if 𝐵2 − 𝐴𝐶 < 0. 

 Parabolic if 𝐵2 − 𝐴𝐶 = 0. 

 Hyperbolic if 𝐵2 − 𝐴𝐶 > 0.  

PDEs are notably difficult and therefore, continuous active research is being car-

ried out to find solutions to some of these PDEs. So far, several methods have 

been developed to find their solutions, varying from purely analytical to fully 

numerical ones (González Castro et al. 2008). This type of differential equation 

arises in almost every physical phenomenon: in physics, engineering, medicine 

and within biology itself. Third order PDEs arise when modelling waves in dis-

persive media, such as water or plasma waves (Benkhaldoun and Seaid 2008). 

Fourth order PDEs appear in elasticity, particularly involving plate and beam 

mechanics (Engel et al. 2002). Nowadays, their application has been extended to 

areas such as finance, computer graphics and animation (González Castro et al. 

2008). 

 

 



Chapter 3: Techniques for Geometric Modelling                                                                       | 40 

 

 

3.4.1 Introduction to the PDE Method 

In this section, the essential information concerning the theoretical modelling of 

a particular shape parameterisation technique is provided. This technique is re-

ferred to as the PDE method. The geometries of the tablets displayed through-

out this work are designed by employing the analytic solution to elliptic PDEs of 

the form  

 

 
𝜕2

𝜕𝑢2
+ 𝛼2

𝜕2

𝜕𝑣2
 

ℓ

𝛘 𝑢, 𝑣 = 0, 

 

(3.9) 

where 𝛘 𝑢, 𝑣  is the function representing a parametric surface in 3D space de-

fined within a parametric domain, Ω, described by 𝑢 and 𝑣 where 0 ≤ 𝑢 ≤ 1 and 

0 ≤ 𝑣 ≤ 2𝜋, and boundary data around the edge region of 𝜕Ω, as shown in Fig-

ure 3.2 The intrinsic parameter, 𝛼, controls the relative smoothness of the sur-

face in the 𝑢 direction, while ℓ defines the order of the PDE and these are re-

stricted to 𝛼 ≥ 1 and ℓ ≥ 2 (Ugail 2006). The full three-dimensional representa-

tion of 𝛘 𝑢, 𝑣  is written in the form of  

 

𝛘 𝑢, 𝑣 =  χ
𝑥
 𝑢, 𝑣 , χ

𝑦
 𝑢, 𝑣 , χ

𝑧
 𝑢, 𝑣  . 

 

(3.10) 

Note that Equation (3.9) transforms to the general form of a fourth-order elliptic 

PDE by taking ℓ = 2 and this equation is known as the Biharmonic equation if 𝛼 

is equal to one. 
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Figure 3.2: The boundary ∂Ω in the (𝑢, 𝑣) space is mapped to the three-dimensional space, 

(𝑥, 𝑦, 𝑧). 

 

 

Elliptic PDEs similar to the equation shown in Equation (3.9) can be solved by 

using different methods, such as Separation of Variables, Green‟s Function, Inte-

gral Transform and the Finite Element Method (Ugail and Sourin 2008). The 

Separation of Variables method together with a set of four periodic boundary 

conditions has been used to find the solution to the Biharmonic equation (Ugail 

and Wilson 2005). The boundary conditions on the solution are of the form 

 
𝛘 0, 𝑣 = 𝐏𝟏 𝑣 , 

 

(3.11a) 

 𝛘 𝑢1, 𝑣 = 𝐝𝟏 𝑣 , (3.11b) 

 𝛘  𝑢2, 𝑣 = 𝐝𝟐 𝑣 , (3.11c) 

 𝛘  1, 𝑣 = 𝐏𝟐 𝑣 , (3.11d) 
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where 𝐏𝟏 𝑣  and 𝐏𝟐 𝑣  determine the position at the edges of the surface patch 

at 𝑢 = 0 and 𝑢 = 1 respectively. 𝐝𝟏 𝑣  and 𝐝𝟐 𝑣  define the values of the sec-

ond and third functions where 𝑢1 and 𝑢2 are positions in the interior curves such 

that, 0 < 𝑢1 < 𝑢2 < 1. The interior conditions are important to determine the 

shape of the surface (Ugail 2006).  

 

The analytic solution to the Biharmonic equation can be written as 

 

𝛘 𝑢, 𝑣 = 𝐀𝟎 +   𝐀𝐧 𝑢 cos 𝑛𝑣  +𝐁𝐧(𝑢) sin(𝑛𝑣)  
∞

𝑛=1

, 

  

(3.12) 

where 

 
 𝐀𝟎 =  𝐚𝟎𝐦𝑢

𝑚−1,                                                    

4

𝑚=1

 

  

 (3.13) 

 𝐀𝐧 =  𝐚𝐧𝟏 + 𝐚𝐧𝟑𝑢 𝑒
𝑛𝑢 +  𝐚𝐧𝟐 + 𝐚𝐧𝟒𝑢 𝑒

−𝑛𝑢 ,    (3.14) 

 𝐁𝐧 =  𝐛𝐧𝟏 + 𝐛𝐧𝟑𝑢 𝑒
𝑛𝑢 +  𝐛𝐧𝟐 + 𝐛𝐧𝟒𝑢 𝑒

−𝑛𝑢 .   (3.15) 

The term 𝐀𝟎 in Equation (3.12) is a cubic polynomial on the parameter 𝑢, tracing 

the spine of a PDE surface that brings out the symmetries of the surface, while 

the remaining terms in the mentioned equation represent the radial position of 

a point in the surface relative to the spine. The vector-valued constants 𝐚𝟎𝟏, 𝐚𝟎𝟐, 

𝐚𝟎𝟑, 𝐚𝟎𝟒, 𝐚𝐧𝟏, 𝐚𝐧𝟐, 𝐚𝐧𝟑, 𝐚𝐧𝟒, 𝐛𝐧𝟏, 𝐛𝐧𝟐, 𝐛𝐧𝟑 and 𝐛𝐧𝟒 are determined by the imposed 

boundary conditions at 𝑢 =  0 and 𝑢 =  1 (Ugail 2006).  
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The spine of an object possesses many geometric properties, one of which is 

that it constitutes the medial axis (or skeleton) of the shape. Furthermore, the 

spine also represents more topologies than that of the object from which it is 

obtained (Ugail 2004). A notable work has been carried out by Ugail (2004) to 

investigate how the spine of the PDE surface can be utilised in parameterising 

complex shapes. The former work has shown that the spine of the PDE surface 

can be used as a powerful tool for shape manipulation. Furthermore, a tech-

nique for cyclic animation has been achieved by exploiting the mathematical 

expression associated with the spine of the PDE surface as a driving mechanism 

(González Castro et al. 2010). 

 

In order to define the different constants in the solution for a general set of 

boundary conditions, it is necessary to express the boundary conditions as Fou-

rier series so that the corresponding coefficients are identified. Since Equation 

(3.12) gives infinite solutions, the approximation to this series needs to be 

found. This is based on the sum of the first Fourier modes (typically 𝑁 = 6) and 

a remainder function, 𝐑 𝑢, 𝑣 , which represents an error term, since 𝑁 is a finite 

value  

 𝛘 𝑢, 𝑣 ≅  𝐅 𝑢, 𝑣 + 𝐑 𝑢, 𝑣 , (3.16) 

where 
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𝐅 𝑢, 𝑣 = 𝐀𝟎 +   𝐀𝐧 𝑢 cos 𝑛𝑣  +𝐁𝐧(𝑢) sin(𝑛𝑣)  

𝑁

𝑛=1

, 
 

(3.17) 

and 

 𝐑 =  𝐫𝟏(𝑣) + 𝐫𝟑(𝑣)𝑢 𝑒𝛽𝑢 +  𝐫𝟐(𝑣) + 𝐫𝟒(𝑣)𝑢 𝑒−𝛽𝑢 , (3.18) 

where 𝛽 = 𝑁 𝛼 + 1  while 𝐫𝟏, 𝐫𝟐, 𝐫𝟑 and 𝐫𝟒 are obtained by considering the dif-

ference between the original boundary conditions and the boundary conditions 

satisfied by Equation (3.17).  

 

As mentioned earlier in this section, a set of four boundary conditions needs to 

be defined to solve the Biharmonic equation. In this thesis, all parametric sur-

faces are generated by specifying the boundary conditions in terms of curves. 

Figure 3.3 presents the effect of the interior conditions on the shape of the sur-

face, where all the PDE surfaces have the same positional conditions whereas 

the interior conditions have been varied. Figure 3.3(a) shows a set of boundary 

conditions and the resulting shape of the fourth-order PDE surface is illustrated 

in Figure 3.3(b). The shape of a surface can be manipulated by changing the size 

and direction of the interior curves. It has been reported by Ugail (2006) that the 

interior conditions are crucial in determining the overall shape of the surface. 

Figures 3.3(d) and 3.3(f) illustrate the effect of changing the interior curves 

originally shown in Figure 3.3(a), where all of these PDE surfaces have the same 

𝑃1 and 𝑃2 curves. These interior curves have been resized (Figure 3.3(c)) and ver-
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tically translated from the corresponding positional boundary curves (Figure 

3.3(e)). It is worth emphasising that the shape of the surface can be controlled 

solely by the shape of its boundary curves. Therefore, the boundary conditions 

have to be defined appropriately in order to create the wanted surface using the 

PDE method. 

 

 

 

 

 

Figure 3.3: Shape of PDE surfaces generated by the Biharmonic equation. (a) The boundary 

curves and (b) the corresponding surface shape. The effect on the shape of the surface by (c) re-

sizing and (e) translating the interior curves. The resulting manipulated surface shape in (d) and 

(f). 
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In the real world, many objects are considered as complex geometries. To gen-

erate a complex geometry using this method, more than one PDE is needed. 

The graphic representation of such PDE is referred as patch and therefore, com-

plex geometries are represented by several surface patches. Each of the patches 

comprises four boundary curves, 𝑐𝑗𝑘  where 𝑐 indicates the type of curve, with 

the letter 𝑃 denoting the positional curves and 𝑑 denoting the interior curves. 

The index 𝑗 (𝑗 =  1, . . . , 𝑛) represents the order of the patch: 𝑗 =  1 for the first 

patch, 𝑗 =  2 for the second patch and 𝑗 =  𝑛 for the 𝑛th  patch. The subscript 

𝑘 (𝑘 =  1, 2) corresponds to the boundary edges of the surface.  

 

The adjacent surface patch is created by evaluating the boundary conditions us-

ing the next set of curves. Adjacent patches need to be blended together by 

sharing one boundary curve with either one or two different patches to ensure 

the positional continuity along the generated surface. For example, the PDE-

based representation of an ice cream cone, shown in Figure 3.4, is generated 

from a surface composed of two patches. As it can be seen in Figure 3.4(a), the 

second positional boundary curve of the first patch, which corresponds to 

𝑢 =  1 (marked as 𝑃12), is used as the first positional curve of the second patch 

(𝑃21). Hence, only seven curves are required to generate this particular shape. 
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Figure 3.4: Example of a two-patch PDE surface subject to a specific set of boundary conditions 

outlined in (a).  

 

 

PDE surfaces offer many advantages over other types of surface. Most of all, a 

PDE surface is generated from a small number of design parameters since it is 

characterised by data distributed around the boundaries, instead of data dis-

tributed over the surface area, e.g. control points. Additionally, they are a natu-

ral representation and offer a close representation of the real world because 

they are controlled by physical laws and can integrate geometric attributes with 

functional constraints for surface modelling, design and analysis. Furthermore, 

PDE surfaces can be easily associated with the physical world. For example, the 

parameters in the PDE can give a physical meaning, such as elasticity and stiff-

𝑃12 and 𝑃21 

(a)                       (b) 
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ness, if they are formulated properly (Zhang and You 2004). Moreover, smooth 

surfaces with high-order continuity requirements can be defined through PDEs 

since the formulation is well-conditioned and technically sound. This technique 

is also capable of blending surfaces (González Castro et al. 2008) and it offers 

modelling tools to manipulate the shape of a PDE surface by altering the values 

of its design parameters (Ugail 2006). Thus, a PDE-based model remains con-

tinuous when the values of its design parameters are changed. 

 

3.4.2 Applications of PDE Surfaces   

The PDE method was initially introduced into the area of blend shape genera-

tion in CAD by Bloor and Wilson (1989).  In recent years, the use of the PDE 

method has been broadened into many areas of computer graphics, including 

3D data modelling and processing, shape morphing and animation (González 

Castro et al. 2010). This is due to the fact that a PDE surface is generated by 

blending several surface patches and its shape can easily be manipulated or 

trimmed. 

 

The work by Ugail and Wilson (2005) has shown that the PDE method can be 

used in medical applications. The authors created a set of boundary curves, 

which has been acquired from 3D medical scanning data for reconstructing ul-

cer-affected human limbs. This method proves that a variety of geometries of 



Chapter 3: Techniques for Geometric Modelling                                                                       | 49 

 

 

limbs affected by ulcers can be generated by extracting 3D scan data; this ge-

ometry can be manipulated to provide a shape that is a good representation of 

the limb and associated ulcer for any given patient. However, this method is un-

able to preserve irregular and sharp features appearing on the scan, due to its 

smoothing nature. Therefore, Sheng et al. (2010) have proposed a patchwise 

PDE method to address this problem. They have proved that the patchwise PDE 

method has successfully reconstructed a 3D human femur bone, which obvi-

ously has an irregular geometry. In this approach, the shape of the object is rep-

resented by patches with a localised 𝑢𝑣 coordinate system, with the irregular or 

sharp details on the surface of the object preserved by matching the respective 

patches. These patches have various sizes and orientations to the surface.     

 

The PDE method has also appeared to be very useful in animation, including fa-

cial expressions (Sheng et al. 2008) and cyclic animation (González Castro et al. 

2010). This method offers a natural mechanism for generating cyclic motions 

and thus developing real-time dynamic animation. The simulation of the anima-

tion process is performed by making the shape parameters time-dependent and 

this enables the re-generating of the geometry. Using this technique, the      

keyframing in the animation process is controlled by the animator via the time 

dependent shape parameters. Furthermore, Athanasopoulos et al. (2010) have 

developed a computer-based interactive talking head system based on the ani-
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mation of facial expressions developed by Sheng et al. (2008). The user can in-

teract with this system by using an AIML chatterbot, which generates responses 

from input text. 

 

In addition to the uses mentioned above, this method has been proved to be 

useful in addressing optimisation problems (Ugail 2003; Ugail and Wilson 2003). 

Several works have successfully utilised the PDE method for automatic design 

functioning in a variety of design scenarios. These include: minimising the thick-

ness of a yogurt container subject to a given strength and volume (Ugail 2003), 

and predicting stable structures of biological vesicles by minimising the surface 

energy (Ugail and Wilson 2003). This is achieved by combining engineering de-

sign criteria as constraints into the geometric design of PDE surfaces. Further-

more, the PDE-based optimisation is completed within a reasonable computa-

tional time (Ugail 2003).  

 

PDEs have been used to deal with some problems related to the graphical mod-

elling of natural phenomena, such as smoke and fire, since modelling these 

phenomena in the real world is very complicated (González Castro et al. 2008). 

However, these phenomena are modelled using a different type of PDEs. There-

fore, further investigation on the mathematical properties of PDEs is desirable to 

exploit their full potential in CAGD. Moreover, a solid modelling method has 
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been developed by You et al. (2008) by using a solution of a non-homogeneous 

fourth order PDE, which had previously been used for free-form surface genera-

tion. This model involves three parametric parameters: 𝑢, 𝑣 and 𝑤, together with 

three vector-valued shape control parameters. Although this model seems quite 

promising in generating a solid object, the work in this thesis has proved that 

the solution proposed by Bloor and Wilson (1989) also can be implemented in 

solid modelling.  

 

Later in this thesis, the application of the Bloor-Wilson PDE method in pharma-

ceutical area will be discussed. The analytic solution of the particular Biharmonic 

equation has been extended to a higher dimension in order to generate various 

solid geometries of tablets. This work also involves manipulation of the PDE-

based representation of a solid tablet, which is done by taking advantage of a 

mathematical characteristic related to the extended PDE method. In addition, a 

methodology for automatic design optimisation of the parametric shape of tab-

lets is also carried out in this thesis by using a similar approach to that used by 

Ugail (2003) and Ugail and Wilson (2003).   
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3.5 Design Optimisation  

Optimisation problems arise in many areas, including the physical sciences, 

computer science, economics and engineering. For example, in engineering de-

sign problems, design optimisation is performed practically in order to improve 

or to achieve the most efficient design of an object with particular properties 

and requirements without violating the nature of the problem (Van der Velden 

and Koch 2010). Mostly, this type of problem is solved by integrating the opti-

misation method and CAD. This is achieved through various steps of the design 

process involving model creation using the CAD technique, physical analyses 

and shape optimisation (Ugail 2003). 

  

An optimisation problem involves a set of design variables, a group of con-

straints and an objective function that measures the desirable value. The most 

important aspect of optimisation is the definition of a suitable objective func-

tion, which has to be minimised or maximised. The selection of the function 

strongly depends on the specific situation and requires considerable expertise. 

The general mathematical formulation of an optimisation problem to minimise a 

given objective function under equality and inequality constraints is written as 
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minimise      𝑓 𝐱   

 subject to     𝑔𝑖 𝐱 ≤ 0,  𝑖 = 1,… ,𝑚  

                      𝑕𝑖 𝐱 = 0,  𝑖 = 1,… , 𝑝  

                      𝐱𝒍 ≤ 𝐱 ≤ 𝐱𝒖 ;    𝐱 ∈ ℝ𝑛  (3.19) 

where 𝑓(𝐱) is the objective function, 𝐱 is a vector of 𝑛 design variables with sets 

of lower, 𝐱𝒍  , and upper, 𝐱𝒖  , bounds, while 𝑔𝑖 𝐱  and 𝑕𝑖 𝐱  represent inequality 

and equality constraints respectively. These constraints define the scope of de-

sign variables as well as specifying relationships between those variables.  

 

A remarkable development in software tools for solving optimisation problems 

occurred several decades ago. One of these is MATLAB, which offers Optimisa-

tion Toolbox. This toolbox provides algorithms for solving standard and large-

scale optimisation involving constrained and unconstrained problems. These al-

gorithms can also solve continuous and discrete problems since the toolbox‟s 

software contains functions for linear, quadratic and nonlinear, as well as mul-

tiobjective optimisation problems. The toolbox functions and solver options can 

be accessed with Optimisation Tool or at the command line. The Optimisation 

Tool can be called by typing the syntax „optimtool‟ on the command window or 

by clicking on the Optimisation Tool‟s tab from the main MATLAB window.  
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There are various methods for numerical optimisation which can be divided into 

two categories. The first category includes methods that require only the 

evaluation of the objective function, while the other category includes methods 

that not only require the evaluation of the objective function but also its deriva-

tive, with respect to the design variables (Enciu et al. 2010). The Interior-point, 

Simplex and Active Set method are examples of methods that are included in 

the first category, whereas the Gradient-based optimisation method belongs to 

the second one. Table 3.1 lists some methods used in Optimisation Toolbox to 

solve linear and nonlinear programming problems. In Mathematics, the term 

„programming‟ refers to optimisation. Linear programming is a technique to 

solve an optimisation problem when the objective function and constraint equa-

tions are represented in linear relationships to the variables. However, if the ob-

jective function and some or all constraints are nonlinear, then the problem is 

known as nonlinear programming.    

The Interior-point and Active Set methods are common methods used to solve 

both linear and nonlinear programming problems. In the MATLAB Optimisation 

ToolBox, the Interior-point method handles large-scale problems, while the Ac-

tive Set method is classified as a medium-scale algorithm. According to Shahat 

et al. (2011), a large scale algorithm uses linear algebra, whereas this algebra 

neither needs to store nor operate on full matrices. Additionally, no sparse ma-

trices need to be specified when using this algorithm. On the other hand, the  
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Table 3.1: Algorithms offered by the MATLAB Optimisation Toolbox for solving linear and 

nonlinear programming problems. 

Linear 

Programming 

Nonlinear Programming 

Unconstrained Constrained 

Interior-Point 

 Based on primal-dual predictor-

corrector algorithm. 

 Useful for a problem that can be 

defined by sparse matrices. 

Quasi-Newton 

 Uses mixed quadratic 

and cubic line search pro-

cedure and Fletcher-

Goldfard-Shanno (BFGS) 

formula. 

Interior-Point 

 For general nonlinear opti-

misation. 

 Useful for large-scale prob-

lems. 

 Based on a barrier function. 

 All iterations remain feasible 

with respect to bounds during 

the optimisation process. 

Active Set 

 Works over the active set or lo-

cally active constraints to mini-

mise the objective function at 

each iteration. 

Nelder-Mead 

 Can handle non-smooth 

objective functions. 

Active Set 

 For general nonlinear opti-

misation. 

 

Simplex 

 Most widely used algorithm for 

linear programming. 

 Generates and tests candidate 

vertex solutions to a linear pro-

gram. 

Trust-Region 

 Useful for large-scale 

problems. 

SQP 

 For general nonlinear opti-

misation. 

 Compromises with user-

defined objective function and 

constraint equations evalua-

tion failures. 

  Trust-Region Reflective 

 Only for bound constrained 

problems or linear equalities. 

 Useful for large-scale prob-

lems. 

 

(a) 

 

 

 

 

(b) 
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medium-scale algorithm uses dense linear algebra and internally creates full 

matrices (Shahat et al. 2011). Although the Interior-point method can solve 

large-scale problems efficiently with many inequality constraints, the Active Set 

method is sometimes more stable than the Interior-point method since it is less 

sensitive to the choice of starting point and the scaling of the problem (Byrd 

and Waltz 2009). Therefore, the design optimisation problems included in this 

work, which will be discussed in Chapter 6, are performed using the Active Set 

method and MATLAB Optimisation ToolBox. 

3.6 Summary 

The literature review in this chapter starts with the history of CAD including 

CAGD, which was briefly discussed. Surfaces are commonly represented in terms 

of polynomial functions of two parameters in CAGD. There are different types of 

polynomial based methods for surface generation in CAGD, such as Bézier sur-

faces, B-spline, and Non-uniform rational B-splines (NURBS). The polynomial 

based methods generate a surface patch using a set of control points and 

change the surface shape by manipulating these points. However, it is very diffi-

cult to manipulate these kinds of surfaces since they involve too many control 

points and weights. Furthermore, the techniques can be time-consuming, less 

natural and counter-intuitive.  
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By contrast, the PDE method has been introduced by Bloor and Wilson as a so-

lution to a particular type of elliptic PDE to generate smooth parametric sur-

faces. Generally, PDE surfaces are easier to manipulate than polynomial surfaces 

since it is necessary to modify some of the parameters to change the surface 

shape. This technique generates surfaces of complex geometries from a small 

number of parameters since it is characterised by data distributed around the 

boundaries. The PDE method has been applied in many disciplines, including 

medical applications, animation and optimisation analysis. 

 

The choice of a particular algorithm for numerical optimisation, together with an 

appropriate objective function and the number of design variables to be used, 

may reduce the computing time to obtain the optimal result. MATLAB offers a 

toolbox to solve standard and large-scale optimisation problems numerically. 
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Chapter 4 

The PDE Method for Tablet Shape Modelling 

 

4.1 Introduction  

This chapter provides details on the methodology used in this research. It pre-

sents a technique for shape modelling of pharmaceutical tablets based on the 

use of Partial Differential Equations (PDEs), and explains how to measure their 

volume and surface area. It also describes in detail how solid pharmaceutical 

tablets are created by utilising the PDE method. The final section in this chapter 

shows how the shape and size of the PDE-based representation of pharmaceuti-

cal tablets can be manipulated intuitively by changing the boundary curves or 

design parameters. This is done by exploiting the mathematical properties of 

the analytic solution to the Biharmonic equation.  
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4.2 Modelling Parametric Representation of Tablet Shapes  

This section discusses how to use the PDE method to design various shapes of 

pharmaceutical tablets: flat-faced round, shallow convex round, shallow convex 

oval, oblong and sphere. The geometric models representing the tablet shapes 

used in this study have been obtained by using a specific number of generating 

curves, according to the specific needs of each shape. These curves are closed 

ones, as presented in Figure 4.1. The shape of pharmaceutical tablets is consid-

ered as complex geometry. Therefore, several patches are required to generate 

these tablets. The number of patches and boundary curves used to generate 

each tablet shape can be found in Table 4.1, together with the size of the corre-

sponding tablet. Table 4.1 also outlines which of the geometric representations 

in Figure 4.2 corresponds to each respective tablet configuration.  

 

The geometric model representing the flat-faced round tablet has been ob-

tained using ten generating curves to produce a surface composed of three 

patches, since each surface patch requires four curves. Each of these curves 

represents a circle of a given radius at a particular height. The 𝑣 parametric co-

ordinate represents the domain from 0 to 2𝜋, which after the polar transforma-

tion is applied guarantees the use of closed curves. In order to use the PDE 

method to design a flat-faced round tablet, the whole design procedure is split 
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into several steps. First, the base of the tablet (Patch 1) is generated, followed by 

the body of that tablet (Patch 2) and finally, the top surface (Patch 3) is de-

signed. As can be seen in Figure 4.1, the last curve of Patch 1, 𝑃12, is used as the 

first curve of Patch 2, 𝑃21 , in order to ensure 𝐶0 continuity between patches. 

 

 

 

 

Figure 4.1: Generating curves for a flat-faced round tablet. 

 

Table 4.1: Parameters and properties of each PDE-based representation of tablet configurations 

used in this project. 

Shape of the tablet Dimension (mm) 

Diameter × height 

Num. of 

patches 

Num. of boundary 

curves 

Figure 

4.2 

Flat-faced round 10 × 6 3 10 (a)-(c) 

Spherical shaped 5 × 5 2 7 (d)-(f) 

Shallow convex 

round 

10 × 3 3 10 (g)-(i) 

Shallow convex 

oval 

6 × 12 × 3 3 10 (j)-(l) 

Oblong 5 × 15 3 10 (m)-(o) 
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Figure 4.2: Different shapes of pharmaceutical tablets created using either two or three PDE sur-

face patches accordingly. The boundary curves for each shape are shown together with the cor-

responding spine in (a), (d), (g), (j) and (m). The interior part of each generated parametric tablet 

is illustrated in (c), (f), (i) (l) and (o).  

𝑑22  

𝑑21  
𝑃21  and 𝑃12 
𝑑12  
𝑑11  
 

𝑃22  

 

𝑃11  
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This work considers a spherical tablet that is regarded as a surface composed of 

two patches representing the surface of its upper and lower hemispheres. Given 

that this object has symmetry, only the upper hemisphere is considered. The ra-

dius, 𝑟𝑐𝑗𝑘  , and height, 𝑧𝑐𝑗𝑘  , for each boundary curve representing the upper 

hemisphere are determined by 

 

𝑟𝑐𝑗𝑘 = 𝑟𝑠 cos  𝜓𝑐𝑗𝑘  and 𝑧𝑐𝑗𝑘 = 𝑟𝑠 sin  𝜓𝑐𝑗𝑘 , 
 

(4.1) 

where 𝑟𝑠 is the radius of the sphere, 𝑐𝑗𝑘  represents the type of curve (refer to 

Section 3.4.1) and  𝜓𝑐𝑗𝑘 =  𝜓𝑃21
, 𝜓𝑑21

, 𝜓𝑑22
, 𝜓𝑃22

 =  0,
𝜋

6
,
𝜋

3
,
𝜋

2
 . Generally, the po-

sition of each point on the boundary curves can be written as 

 

 𝑥0 + 𝑟𝑐𝑗𝑘 cos 𝑣 , 𝑦0 + 𝑟𝑐𝑗𝑘 sin 𝑣 , 𝑧0 + 𝑧𝑐𝑗𝑘 , 
 

(4.2) 

where 0 ≤ 𝑣 ≤ 2𝜋 and  𝑥0, 𝑦0, 𝑧0  is the centre of the sphere. Consider a sphere 

with radius, 𝑟𝑠 = 2.5 mm, as shown in Figure 4.2(e), with the coordinates of these 

points such that the curves representing the upper hemisphere are given by 

 
𝑃21 :  𝑥0 + 2.5 cos 𝑣 , 𝑦0 + 2.5 sin 𝑣 , 𝑧0 ,                   (4.3a) 

 𝑑21:  𝑥0 + 2.17 cos 𝑣 , 𝑦0 + 2.17 sin 𝑣 ,   𝑧0 + 1.25 , (4.3b) 

 𝑑22:  𝑥0 + 1.25 cos 𝑣 , 𝑦0 + 1.25 sin 𝑣 ,   𝑧0 + 2.17 , (4.3c) 

 𝑃22 :  𝑥0, 𝑦0, 𝑧0 + 2.5 .                                                    (4.3d) 
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The curves in Equations (4.3a) - (4.3d) can be reflected to obtain the boundary 

curves corresponding to the lower hemisphere. As displayed in Figure 4.2(d), the 

curve 𝑃21 is chosen to be the common boundary where both surface patches 

meet. 

 

Once all the necessary curves have been created, these curves are saved in ex-

ternal .OBJ files. The PDE method is implemented in C
++

 to read the boundary 

curves that define the shape of the tablet and produce the solution for each set 

of curves. A MEX file has been created as an interface between MATLAB and 

Visual C
++

. When the MATLAB file is compiled, the MEX file is dynamically 

loaded and allows calling the pertaining C
++

 subroutine within MATLAB as if it 

were a built-in function. A subroutine has been developed in MATLAB to display 

the resulting shape of the tablets. 

 

The surface representations produced in this work have been obtained using 

three different set of boundary conditions to solve the Biharmonic equation, 

which has been solved using five Fourier modes for flat-faced round, convex 

round, convex oval and oblong tablets. The only exception to this consists of the 

surface for the spherical shaped tablet, which has been generated by solving 

two different PDEs. The output shape of the generated flat-faced round tablet 

with radius, 𝑐 =  5 mm and thickness, 𝑡 =  6 mm is shown in Figure 4.2(b). All 
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sets of curves in Figure 4.2(a) lay on in the resulting surface. The shape of other 

tablets with specific radii and heights are presented in Figures 4.2(b), 4.2(e), 

4.2(h), 4.2(k) and 4.2(n) respectively. Note that the shape of each surface patch 

can easily be controlled by the shape of the boundary curves. 

 

For many practical designs, a portion of the original surface sometimes needs to 

be removed. Thus, Ugail (2006) has proposed a method for trimming surfaces as 

solutions to PDEs and has proved that the proposed method can be used to 

trim other types of parametric surfaces. Here, the surface is trimmed by deter-

mining the new region of parameter space (𝑢, 𝑣), where all points which do not 

belong to this region will be discarded from the resulting surface. For the pur-

pose of showing the interior part of the generated tablets, the domain of the 

parameter 𝑣 is set from 
𝜋

2
 to 2𝜋. The trimmed PDE surfaces for the convex 

round and convex oval tablets are shown in Figures 4.2(i) and 4.2(l) respectively. 

 

4.2.1 The Surface Area and Volume of a Parametric Tablet 

As mentioned in Chapter 2, the surface area and volume of tablets play an im-

portant role in characterising pharmaceutical compaction properties. Thus, it is 

necessary to measure the area and volume of PDE surfaces. The remaining part 

of this section shows the formulae used to calculate both area and volume of 

parametric surfaces.  
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Equation (3.12) has a vectorial representation of the form 

 
𝛘 𝑢, 𝑣 = 𝜒𝑥 𝑢, 𝑣 𝐢 + 𝜒𝑦 𝑢, 𝑣 𝐣 + 𝜒𝑧 𝑢, 𝑣 𝐤, 

 

(4.4) 

where 𝐢, 𝐣 and 𝐤 are the Cartesian basis vectors, known as unit vectors along 𝑥-, 

𝑦- and 𝑧-axis respectively while 𝜒𝑥 , 𝜒𝑦   and 𝜒𝑧  represent the coordinates of a 

given point on the surface. Given that the boundary curves of the tablets gener-

ated in Section 4.2 represent circles, the approximated solution of the elliptic 

PDE fits the original boundary conditions perfectly. Hence, the vector 𝐑 is equal 

to zero at these particular positions and 𝜒𝑥 , 𝜒𝑦   and 𝜒𝑧  can be written as 

 

𝜒𝑥 = 𝐴0𝑥 +   𝐴𝑛𝑥 cos 𝑛𝑣 + 𝐵𝑛𝑥 sin(𝑛𝑣) 

𝑁

𝑛=1

, 

 

(4.5) 

 
𝜒𝑦 = 𝐴0𝑦 +   𝐴𝑛𝑦 cos 𝑛𝑣 + 𝐵𝑛𝑦 sin(𝑛𝑣) 

𝑁

𝑛=1

, 
 

(4.6) 

 
𝜒𝑧 = 𝐴0𝑧 +   𝐴𝑛𝑧 cos 𝑛𝑣 + 𝐵𝑛𝑧 sin(𝑛𝑣) 

𝑁

𝑛=1

. 
 

(4.7) 

The area of a parametric surface is determined by 

 

𝑆 =   𝛘𝑢 × 𝛘𝑣 𝑑Ω

Ω

, 

 

(4.8) 

and the volume can be found by using 

 

𝑉 =
1

3
 𝛘

Ω

∙  𝛘𝑢 × 𝛘𝑣  𝑑Ω, 
 

(4.9) 

where 
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𝛘𝑢 =

𝜕𝜒𝑥
𝜕𝑢

𝐢 +
𝜕𝜒𝑦

𝜕𝑢
𝐣 +

𝜕𝜒𝑧
𝜕𝑢

𝐤,   (4.10) 

 
𝛘𝑣 =

𝜕𝜒𝑥
𝜕𝑣

𝐢 +
𝜕𝜒𝑦

𝜕𝑣
𝐣 +

𝜕𝜒𝑧
𝜕𝑣

𝐤 . (4.11) 

These derivatives (Equations (4.10) and (4.11)) can be found by differentiating 

the analytic expression of the solution to the Biharmonic equation given in 

Equations (4.5) – (4.7), with respect to 𝑢 and 𝑣 respectively. 

   

The area and the volume of the generated parametric surface can be calculated 

numerically using MATLAB. This software has a command „dblquad‟ for integrat-

ing the functions of two variables. A vectorization technique is used in this proc-

ess to ensure that the algorithm is executed properly. This strategy improves the 

speed of the MATLAB code by replacing the loop calculations by equivalent ma-

trix and vector operations (Birkbeck et al. 2007). The significance of this is that 

MATLAB is an array-based language (Joisha and Banerjee 2003). Therefore, the 

area of the PDE surface patch is calculated by writing the last two command 

lines as 

 

 

The estimated area and volume of each patch of the PDE-based representation 

of flat-faced round and spherical tablets calculated by Equations (4.8) and (4.9) 

are given in Tables 4.2(a) and 4.2(b) respectively. The surface area of a paramet-

S = inline(vectorize(„|𝑿𝒖 cross 𝑿𝑣|‟), „𝑢‟, „𝑣‟); 

SurfaceArea = dblquad(S, lower limit 𝑢, upper limit 𝑢, lower limit 𝑣, upper limit 𝑣); 
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ric tablet is the sum of the area of each patch comprising the surface, and simi-

larly for the volume. These estimated values for round and spherical tablets are 

compared with the respective values obtained from the accurate models (para-

metric and standard formulae).  

 

Table 4.2(a): Comparison between estimated and theoretical values of surface area and volume 

of a flat-faced round tablet. 

Flat-faced Round Tablet: 𝒄 = 5 mm, 𝒕 = 6 mm 

PDE-based Representation of 

Tablet 

Parametric Cylinder  

𝑥 = 𝑐 cos 𝜃, 𝑦 = 𝑐 sin𝜃, 𝑧 = 𝑧      

Cylinder                   

(Standard formulae) 

Surface Area 

= Area Patch 1 + Area Patch 2 

+ Area Patch 3 

=  78.361 + 188.340  

 +78.361  mm2 

=  345.062 mm2 

Surface Area 

= Area Patch 1 + Area 

Patch 2 + Area Patch 3 

=  78.539 + 188.500  

 +78.539  mm2 

=  345.578 mm2 

Surface Area 

= 2𝜋𝑐 𝑐 + 𝑡  

= 345.575 mm2 

Volume 

= Vol Patch 1 + Vol Patch 2   

+ Vol Patch 3 

=  0 + 313.597 + 156.723  

mm3 

=  470.320 mm3 

Volume 

= Vol Patch 1 + Vol Patch 2   

+ Vol Patch 3 

=  0 + 314.160 + 157.081  

mm3 

=  471.241 mm3 

Volume 

= 2𝜋𝑐2𝑡 

= 471.239 mm3 
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Table 4.2(b): Comparison between estimated and theoretical values of surface area and volume 

of a spherical tablet. 

Spherical Tablet: 𝒓𝒔 = 2.5 mm 

PDE-based Representation of 

Tablet 

Parametric Sphere   

𝑥 =  𝑟𝑠 cos 𝜃 sin𝜙 

𝑦 = 𝑟𝑠 sin 𝜃 sin𝜙, 𝑧 = 𝑟𝑠 cos𝜙         

Sphere                  

(Standard formulae) 

Surface Area 

= Area Patch 1 + Area Patch 2  

=  38.957 + 38.957  mm2 

=  77.913 mm2 

Surface Area 

= Area Patch1 + Area Patch2  

=  39.270 + 39.270  mm2 

=  78.540 mm2 

Surface Area 

= 4𝜋𝑟𝑠
2 

= 78.540 mm2 

Volume 

= Volume Patch 1 + Volume 

Patch 2  

=  15.941 + 48.523  mm3 

=  64.464 mm3 

Volume 

= Volume Patch 1 + Volume 

Patch 2  

=  16.465 + 48.984  mm3 

=  65.449 mm3 

Volume 

 

=
4

3
𝜋𝑟𝑠

3 

= 65.450 mm3 

 

 

Notice that the volume of Patch 3 of the round tablet is different from that of 

Patch 1. This is because Equation (4.9) satisfies the Divergence Theorem of a 

closed surface, whereby the unit normal vector, 𝐧, of Patch 1 points along the 

negative direction of the 𝑧-axis and the 𝐧 of Patch 3 points along the positive 

direction of the 𝑧-axis. As can be seen in Tables 4.2(a) and 4.2(b), the surface 

area and volume of a parametric cylinder and sphere measured using Equations 

(4.8) and (4.9) are very similar to the values obtained from the standard formu-
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lae. However, these physical properties of the PDE-based representation of tab-

lets are slightly different from values obtained from the accurate models. This 

difference is attributed to the fact that both tablet shapes generated using the 

PDE method is not exact. This is due to the limitation of the PDE method, which 

can only approximate the shape of the surface of any given object. The meas-

ured surface area and volume of other PDE-based tablets can be seen in Table 

4.3. 

 

 

Table 4.3: Surface area and volume of shallow convex round, shallow convex oval and oblong 

tablets. 

 

 

Shallow convex 

round 

Shallow convex oval Oblong 

Patch S. Area 

(mm2) 

Volume 

(mm3) 

S. Area 

(mm2) 

Volume 

(mm3) 

S. Area 

(mm2) 

Volume 

(mm3) 

1 79.129 7.827 57.382 5.316 23.491 5.856 

2 62.780 104.344 58.082 75.127 203.050 204.915 

3 79.129 86.044 57.382 61.632 23.491 87.892 

Total 221.038 198.215 172.846 142.075 250.032 298.663 
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4.3 Three-Dimensional Mesh Generation Using the PDE 

Method 

This section shows a methodology for generating a cuboid solid mesh for 

pharmaceutical tablets using the PDE method. This cuboid mesh represents the 

inner part of the tablet, since the PDE method‟s formulation used in Section 

3.4.1 only generates the tablet‟s shell. The mesh generation algorithm is based 

on a simple mechanical analogy between a cuboid mesh and the PDE coeffi-

cients. Equation (3.16) has been extended to a higher-dimensional space by in-

troducing a new parameter, 𝑤, in order to generate a solid PDE-based represen-

tation of a tablet  

𝐗 𝑢, 𝑣, 𝑤 = 𝐀𝟎 + 𝑤    𝐀𝐧 𝑢 cos 𝑛𝑣  +𝐁𝐧(𝑢) sin(𝑛𝑣) + 𝐑 𝑢, 𝑣  
𝑁

𝑛=1

 , 

 

(4.12) 

where 0 ≤  𝑤 ≤  1. As mentioned before, 𝑢 and 𝑣 define the parametric region 

while 𝐀𝟎 and   𝐀𝐧 𝑢 cos 𝑛𝑣 + 𝐁𝐧 𝑢 sin 𝑛𝑣  ∞
𝑛=1   describe the spine and a 

radial distance from the spine to the surface patch respectively. This new pa-

rameter generates points for the interior of the object, from the spine towards 

its surface. The direction of each parameter in Equation (4.12) is illustrated in 

Figure 4.3. 
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Figure 4.3: Independent variables in the extended PDE Method. 

 

 

Figure 4.4 shows a schematic diagram describing the process by which the cu-

boid mesh is generated. The number of nodes and cuboids used to generate 

the solid object depend on parameters 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧. Let parameters 𝑠𝑥, 𝑠𝑦 and 

𝑠𝑧 represent the number of nodes on 𝑥-, 𝑦- and 𝑧-axis respectively. In particular, 

the cube shown in Figure 4.4 is produced by defining parameters 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 

equal to 4, 5 and 3 respectively, giving rise to 60 nodes (4 × 5 × 3) and 24 cu-

boids (3 × 4 × 2). All six faces of the cuboid are grouped into three sets of op-

posite faces: Face1 (parallel to 𝑦𝑧 plane), Face2 (parallel to 𝑥𝑦 plane) and Face3 

(parallel to 𝑧𝑥 plane). Each Face1, Face2 and Face3 of a cuboid is generated by 

connecting four vertices. For a smooth mesh generation, Face1, Face2 and Face3 

of all cuboids are generated layer by layer starting from Face1‟s layers, followed 

by those of Face2 and ending with those of Face3. The cuboid mesh generation 

is complete when all nodes have been connected to the neighbouring nodes 

and several cuboids are linked into one polyhedron with a defined shape.   
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Figure 4.4: Cuboid mesh generation process. (a) Generated nodes. (b) Generating Face1 faces 

parallel to 𝑦𝑧-plane from front layer to 𝑠𝑥-layer. (c) Generating Face2 faces parallel to 𝑥𝑦-plane 

from bottom layer to 𝑠𝑧-layer. (d) Generating Face3 faces parallel to 𝑧𝑥-plane from right layer to 

𝑠𝑦-layer. 

  

A subroutine has been coded in MATLAB to generate the cuboid mesh for a 

PDE-based representation of an object. The process for mesh generation is di-

vided into the following steps: 

 Firstly, the boundary curves are created and the subroutine which produced 

the coefficients of the solution to the Biharmonic PDE in C
++

 is called.  
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 Then, a uniform rectangular grid given by three vectors 𝒖, 𝒗 and 𝒘 is created 

using the „meshgrid‟ function. Next, nodes are produced by connecting the 

vectors 𝒖, 𝒗 and 𝒘 with the PDE coefficients. The distance between each 

node depends on both the coefficients and the grid. The coordinates of all 

nodes are stored in an array.  

 All faces (Face1, Face2, Face3) of each cuboid are produced through an algo-

rithm that iterates through the 3D array of nodes and join set of four nodes. 

Finally, the cuboid meshes are generated from the nodes, as shown in Figure 

4.4(d).   

The pseudocode for the cuboid mesh generation algorithm presented here is 

shown in Appendix A. 

 

As mentioned earlier in this section, the number of cuboids in the mesh genera-

tion process depends on the selection of 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧. These parameters influ-

ence the resolution of the mesh describing the object and consequently, the 

smoothness is intrinsically related to them. Figure 4.5 illustrates the sequence of 

shapes resulting in changes of the values of 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 which have been run 

on MATLAB R2008a with a 2.20 GHz Intel Core 2 Duo T7500 processor. The par-

ticular values of these variables are shown in Table 4.4 together with the time 

taken to complete the meshing process. As can be seen in Figure 4.5, the small 

flat faces almost disappear in a reasonable time as the values of 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 

increase. 
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Figure 4.5: Cuboid mesh of a spheroid; (a) 800, (b) 3800 and (c) 7600 cuboids. 

 

 

Table 4.4: Number of nodes and time required to create the geometries shown in Figure 4.5. 

𝒔𝒙 𝒔𝒚 𝒔𝒛 Time (s) Figure 4.5 

11 21 5 8 (a) 

21 39 6 88 (b) 

41 39 6 195 (c) 

 

 

The generated solid pharmaceutical tablets obtained by using the PDE method 

are shown in Figure 4.6. These tablets have been trimmed by defining both pa-

rameters 𝑢 and 𝑤 from 0 to 1 respectively and the domain of the parameter 𝑣 is 

 
𝜋

2
, 2𝜋 . The parameters 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 have been set as 11, 41 and 6 respectively. 

Therefore, the number of cuboids in a spherical tablet is 3000, while the other 

tablets are produced using 4500 cuboids.  
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Figure 4.6: Solid PDE-based representation of tablets; (a) Flat-faced round, (b) Spherical, (c) 

Convex round, (d) Convex oval and (e) Oblong tablets. 

 

 

4.4 Manipulation of PDE-Based Objects 

This section describes the application of the extended PDE method (Equation 

(4.12)) to modify the shape of pharmaceutical tablets, as discussed in the previ-

ous section. The modification involves changing the height and radius of the 

tablet. For the purpose of finding simple relationships between the PDE coeffi-

cients and physical properties of a tablet (height and radius), the analytic solu-

tion of the PDE and a circle are considered. 
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The analytic solution of the PDE can be written in the form 

 𝜒𝑥 , 𝜒𝑦 , 𝜒𝑧 =

 

 
 
 
 
 
 
𝐴0𝑥 + 𝑤    𝐴𝑛𝑥 cos 𝑛𝑣 + 𝐵𝑛𝑥 sin 𝑛𝑣  + 𝑅𝑥

𝑁

𝑛=1

 ,

𝐴0𝑦 + 𝑤    𝐴𝑛𝑦 cos 𝑛𝑣 + 𝐵𝑛𝑦 sin 𝑛𝑣  

𝑁

𝑛=1

+ 𝑅𝑦 ,

𝐴0𝑧 + 𝑤    𝐴𝑛𝑦 cos 𝑛𝑣 + 𝐵𝑛𝑦 sin(𝑛𝑣) + 𝑅𝑧

𝑁

𝑛=1

 
 

 
 
 
 
 
 

. 

 

 

 

 

(4.13) 

Again, the vector 𝐑 in Equation (4.13) is equal to zero since the boundary condi-

tions of these generated tablets represent circles of different radii. Therefore, 

only the terms 𝐀𝟎, 𝐀𝐧 and 𝐁𝐧 will be considered to generate the new shape of 

the tablet. Given that the term 𝐀𝟎 represents the spine of the solid PDE-based 

representation of an object, the height of the generated tablets depends on this 

term. 

 

Equation (4.13) is compared to a circle with a centre  𝑥0, 𝑦0, 𝑧  and radius, 𝑟, 

which can be written in a parametric form 

 
 𝑥, 𝑦, 𝑧 =  𝑥0 + 𝑟 cos 𝑣 , 𝑦0 + 𝑟 sin 𝑣 , 𝑧 . 

 

(4.14) 

 

Therefore, the centre of the boundary curve is found at  𝐴0𝑥 , 𝐴0𝑦 , 𝐴0𝑧 . As can 

be seen in Figures 4.2(a), 4.2(d), 4.2(g), 4.2(j) and 4.2(m), the 𝑧-axis has been 

chosen to represent the axis of symmetry (and consequently the height) of the 

tablets. Thus, only 𝐴0𝑧  is used to represent the height of the PDE-based 
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representation of pharmaceutical tablets. The mathematical expression found 

for such a purpose is  

 𝐴0𝑧 = 𝑎00𝑧 + 𝑎01𝑧𝑢. 
 

(4.15) 

The height of the generated PDE-based tablets can be measured from the 

length of the spine 

 
𝑕 =  𝐴0𝑧  𝑢=1 −  𝐴0𝑧  𝑢=0 = 𝑎01𝑧 . 

 

(4.16) 

 

Next, the analytic expression for the radius associated with the PDE surface is 

used to find the relation between 𝐀𝐧 and 𝐁𝐧, thus obtaining the simplified 

equation of the radius. By simple comparison between Equations (4.13) and 

(4.14) when 𝑤 = 1, it is noticed that  

𝑟 cos(𝑣) =   𝐴𝑛𝑥 cos 𝑛𝑣 + 𝐵𝑛𝑥 sin 𝑛𝑣  

𝑁

𝑛=1

 

 

             =  𝐴1𝑥 cos 𝑣 + 𝐵1𝑥 sin 𝑣 + 𝐴2𝑥 cos 2𝑣 + 𝐵2𝑥 sin 2𝑣   

 ⋯+ 𝐴𝑁𝑥 cos 𝑁𝑣 +𝐵𝑁𝑥 sin 𝑁𝑣 ,                                                (4.17) 

and  

𝑟 sin(𝑣) =   𝐴𝑛𝑦 cos 𝑛𝑣 + 𝐵𝑛𝑦 sin(𝑛𝑣) 

𝑁

𝑛=1

 

 

             =  𝐴1𝑦 cos 𝑣 + 𝐵1𝑦 sin 𝑣 + 𝐴2𝑦 cos 2𝑣 + 𝐵2𝑦 sin 2𝑣   

 ⋯+ 𝐴𝑁𝑦 cos 𝑁𝑣 +𝐵𝑁𝑦 sin 𝑁𝑣 .                                               (4.18) 
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From Equations (4.17) and (4.18), it is found that 𝐴𝑛𝑥 ,  𝐵𝑛𝑥 ,  𝐴𝑛𝑦  and 𝐵𝑛𝑦  for 𝑛 >1 

are zero. Thus, the above equations can be re-written as 

 𝑟 cos 𝑣 = 𝐴1𝑥 cos 𝑣 + 𝐵1𝑥 sin 𝑣            (4.19a) 

and 

 𝑟 sin(𝑣) = 𝐴1𝑦 cos 𝑣 + 𝐵1𝑦 sin 𝑣 .                      (4.19b) 

As a result, it is observed that 𝐴1𝑥 = 𝐵1𝑦 . Another relationship can be found 

from the basic equation of a circle 

 
𝑟2 = 𝑥2 + 𝑦2 =  𝑟 cos 𝑣 2 +  𝑟 sin 𝑣 2. (4.20) 

By substituting Equations (4.19a) and (4.19b) into Equation (4.20), it is found 

that 

 𝑟 cos 𝑣 2 +  𝑟 sin 𝑣 2 =   𝐴1𝑥 cos 𝑣 + 𝐵1𝑥 sin 𝑣  2 +  𝐴1𝑦 cos 𝑣 + 𝐵1𝑦 sin 𝑣  
2
, 

𝑟2 cos 𝑣 2 + 𝑟2 sin 𝑣 2 =  𝐴1𝑥
2 + 𝐴1𝑦

2  cos 𝑣 2 +  𝐵1𝑥
2 + 𝐵1𝑦

2  sin 𝑣 2       

 

 

  +2 𝐴1𝑥𝐵1𝑥 + 𝐴1𝑦𝐵1𝑦 sin 𝑣 cos 𝑣.      (4.21) 

By comparing the left hand side (LHS) and right hand side (RHS) of Equation 

(4.21), the radius of the PDE-based tablet is then given by 

 

𝑟 =  𝐴1𝑥
2 + 𝐴1𝑦

2 =  𝐵1𝑥
2 + 𝐵1𝑦

2, 

 

(4.22) 

and the relationship between 𝐴1𝑦  and 𝐵1𝑥  is 
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 𝐴1𝑦 = −𝐵1𝑥  . (4.23) 

Therefore, Equations (4.16) and (4.22) can be used for the simulation corre-

sponding to the heights and radii of the PDE-based representations of the 

pharmaceutical tablets respectively. 

 

4.4.1 Examples of Tablet Shape and Size Manipulation 

The new shapes of solid pharmaceutical tablets are generated by changing the 

values of the height and radius of the original tablet shapes shown in the previ-

ous section. Ring-shaped, deep convex round and oval, oblate and prolate 

spheroid, rod and caplet tablets have been created using the PDE Method and 

these tablets are illustrated in Figure 4.7. The detailed description of these 

shapes can be found in Table 4.5.  

 

As shown in Figure 4.7(a), a ring-shaped tablet with a 6 mm hole and a thickness 

of 4.5 mm is created by multiplying the spine of the body (Patch 2) of the flat-

faced round tablet by 0.75, while the parameter 𝑤 is set from 0.5 to 1.  In addi-

tion, an oblate spheroid shaped tablet of diameter 10 mm and a thickness of 2.5 

mm, as shown in Figure 4.7(c), is produced by doubling the original radius of the 

spherical tablet whilst compressing both the upper and lower hemispheres. The 

prolate spheroid shaped tablet (Figure 4.7(d)) is generated by doubling the 

height of the spherical tablet. Furthermore, a PDE-based representation of a 
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caplet, which is illustrated in Figure 4.7(f), has been created by increasing the 

height of the shallow convex oval tablet and also reducing its radius.  

 

 

 

Figure 4.7: Different tablet shapes obtained by changing the design parameters. 
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Table 4.5: Changes made to the design parameters of the original tablet shape. 

Original Shape New Shape Dimension (mm) 

 𝑫 × 𝒉  

Changes to 

Coefficients 

Figure 

4.7 

Flat-faced 

round 

Ring-shaped 12 × 4.5  0.75𝐴0𝑧2 

 1.2 𝑟 

  𝑤 = [0.5, 1] 

(a) 

Shallow convex 

round 

Deep convex 

round 

10 × 4  3𝐴0𝑧1  

 0.5𝐴0𝑧2  

 3𝐴0𝑧3  

(b) 

Spherical 

shaped 

Oblate  

spheroid 

10 × 2.5  0.5𝐴0𝑧1 

 0.5𝐴0𝑧2 

 2 𝑟 

(c) 

Spherical 

shaped 

Prolate  

spheroid 

5 × 10  2𝐴0𝑧1  

 2𝐴0𝑧2 

(d) 

Oblong Rod  3 × 7.5  0.2𝐴0𝑧1 

 0.6𝐴0𝑧2 

  0.2𝐴0𝑧3 

  0.6 𝑟 

(e) 

Shallow convex 

oval 

Caplet 3.5 × 7 × 15 

(Length × width × 

height) 

 5𝐴0𝑧1  

 5𝐴0𝑧2  

 5𝐴0𝑧3  

 0.585 𝑟 

(f) 

Shallow convex 

oval 

Deep convex 

oval 

6 × 12 × 3.1 

(Length × width × 

height) 

 2𝐴0𝑧1 

 0.55𝐴0𝑧2 

 2𝐴0𝑧3 

(g) 
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4.5 Summary 

The work presented in this chapter focuses on the application of the PDE 

method for designing parametric representations of pharmaceutical tablets. 

Generally, three smooth surface patches generated by a fourth order PDE have 

been blended together to construct hollow flat-faced round, shallow convex 

round, shallow convex oval and oblong tablets. However, a spherical shaped 

tablet is produced by solving two PDEs. The volume and surface area of the ge-

neric tablets have been determined by using the formulae of the volume and 

surface area of a parametric surface respectively, and the values can be obtained 

numerically using MATLAB.  

 

A solid PDE-based representation of a tablet is generated by extending the PDE 

method to a higher dimension with the introduction of an additional parameter, 

𝑤, into the analytical solution of the elliptic PDE. This variable generates points 

from the centreline or spine of the patch towards its surface. All generated 

points are used as vertices of rectangular faces so that uniform cuboids are cre-

ated to form the shape of the tablet. Additionally, the generated solid tablet can 

be trimmed by changing the region defined by independent variables 𝑢, 𝑣 or 𝑤. 

Finally, the analytic solution of the Biharmonic equation can be exploited to 

achieve simple mathematical expressions characterising the height and radius of 
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a tablet. Therefore, these mathematical expressions can be used as a tool for 

changing the shape and size of the generated PDE-based representation of tab-

lets. 
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Chapter 5 

Modelling the Mechanical Behaviour of Pharmaceutical 

Tablets 

 

5.1 Introduction  

Chapter 5 outlines the stress functions for compressed round and spherical-

shaped tablets. Section 5.2 discusses the solution to an axisymmetric boundary 

value problem for a finite cylinder with assigned stresses previously used for 

compressing cylindrical objects, together with details of the axial compression 

process used to characterise the displacement behaviour of pharmaceutical 

powders and the PDE-based representation of a tablet. The contact model for 

elastic-plastic granules by slow compression is described in Section 5.3. The 
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theoretical and PDE-based results for a compressed tablet of spherical shape 

are also presented and discussed.  

5.2 Solution of the Love’s Stress Function in Cylindrical Coor-

dinates 

Axisymmetric or axisymmetrical are adjectives which refer to an object with only 

one axis of rotation, known as cylindrical symmetry (Sekula 2010). There exist a 

large number of practical problems involving geometrical features with a natural 

axis of symmetry, such as a solid cylinder. For instance, the problem of equilib-

rium on an elastic cylinder of finite length subject to a surface load is one of the 

most discussed problems in the theory of elasticity (Liang et al. 2008; Sburlati 

2009). According to Sburlati (2009), the use of a Love‟s stress function may re-

duce the three-dimensional axisymmetric elastic problem into a two-

dimensional one. 

 

In order to find a solution for this problem, a circular, finite, homogeneous and 

isotropic elastic cylinder of thickness, 𝑡, and radius, 𝑐, with the origin at the cen-

tre of the top plane subject to an axisymmetric load, 𝐹, has been considered 

(Ding et al. 2005; Sburlati 2009). Figure 5.1 shows the stress components acting 

on each face of the loaded cylinder. The stress components acting on each face 

of the wedge from the loaded cylinder are visualised in Figure 5.1(b).  
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The normal stress components, 𝜍𝑧 , 𝜍𝜃  and 𝜍𝑟 , are known respectively as the ax-

ial, hoop and radial stresses and are the principal stresses at a given stressed 

point, 𝐵. Each component has double subscripts (except for the normal stress 

components), where the first subscript defines the face on which the stress 

component acts and the second subscript denotes the direction in which the 

stress component acts. For instance, 𝜍𝑧 , 𝜏𝑧𝑟  and 𝜏𝑧𝜃   are stress components on 

the 𝑧 surface and acting in the 𝑧, 𝑟 and 𝜃 directions respectively.  

 

The state of stress at point 𝐵 is written as an array of nine stress components 

comprising three normal stresses and six shear stresses 

 

𝛇 =  

𝜍𝑧 𝜏𝑧𝜃 𝜏𝑧𝑟
𝜏𝜃𝑧 𝜍𝜃 𝜏𝜃𝑟
𝜏𝑟𝑧 𝜏𝑟𝜃 𝜍𝑟

 , 

 

 

(5.1) 

 

 

 

 

Figure 5.1: Stresses in cylindrical coordinates where 𝜍𝑧 , 𝜍𝜃  and 𝜍𝑟  are the normal stress compo-

nents in the 𝑧, 𝜃 and 𝑟 directions respectively. 
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where each row represents the stress components acting on a particular set of 

surfaces (𝑧, 𝜃, 𝑟) and on the other hand, each column consists of the stress 

components acting in a particular coordinate direction. A stress component on a 

surface is considered positive if it acts parallel to the direction of the corre-

sponding axis. 

 

The displacement of a solid cylinder due to external loads is completely de-

scribed when the displacement of all its parts are defined respectively. In cylin-

drical coordinates, 𝜔𝑧 , 𝜀𝜃  and 𝜇𝑟  are axial, hoop and radial displacements, paral-

lel to the 𝑧, 𝜃 and 𝑟 directions respectively. Any point originally at (𝑧, 𝜃, 𝑟) is dis-

placed to (𝑧 + 𝜔𝑧 , 𝜃 + 𝜀𝜃 , 𝑟 + 𝜇𝑟 ) after the compression process is completed 

(Baxter Brown 1973). The components 𝜀𝜃 , 𝜏𝑧𝜃  and 𝜏𝑟𝜃  vanish if the compression 

of the cylinder is due to torsionless axisymmetry. 

 

In the case of the axisymmetric problem in the absence of body forces, the 

stress and displacement components can be expressed in terms of a Love‟s 

stress function, 𝜙(𝑟, 𝑧), as (Timoshenko and Goodier 1970) 

 
𝜍𝑧 =  2 − 𝛾 

𝜕

𝜕𝑧
∇2𝜙 −

𝜕3𝜙

𝜕𝑧3
 , 

 

   (5.2) 

 
𝜍𝑟 = 𝛾

𝜕

𝜕𝑧
∇2𝜙 −

𝜕3𝜙

𝜕𝑧𝜕𝑟2
 ,               

 

      (5.3) 
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 𝜍𝜃 = 𝛾

𝜕

𝜕𝑧
∇2𝜙 −

1

𝑟

𝜕2𝜙

𝜕𝑧𝜕𝑟
 ,                    

 

     (5.4) 

 
𝜏𝑟𝑧 =  1 − 𝛾 

𝜕

𝜕𝑟
∇2𝜙 −

𝜕3𝜙

𝜕𝑟𝜕𝑧2
 ,          

 

       (5.5) 

 

 
𝜇𝑟 = −

1

2𝐺

𝜕2𝜙

𝜕𝑧𝜕𝑟
 ,                              

 

(5.6) 

 

 
𝜔𝑧 =

1

2𝐺
 2(1 − 𝛾)∇2𝜙 −

𝜕2𝜙

𝜕𝑧2
  ,   

 

(5.7) 

 

where 𝑮 is the shear modulus and 𝜸 is the Poisson‟s ratio. The function 𝝓 𝒓, 𝒛  

in Equations (5.2) – (5.7) is Biharmonic and satisfies the following Partial Differ-

ential Equation (Love 1892) 

 

∇2∇2𝜙 =  
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+
𝜕2

𝜕𝑧2
 

2

𝜙 = 0, 

 

(5.8) 

where ∇2 is the three-dimensional Laplace‟s operator. 

 

The development of analytical approaches to the solution of boundary value 

problems is important in many areas such as in engineering (Grinchenko 2003) 

and physics (Liang and Jeffrey 2009), not only for theoretical motivations but 

also as benchmarks for solutions obtained by numerical methods. A number of 

models have been developed and modified to find solutions of a symmetrically 

loaded cylinder that rigorously satisfies all the boundary conditions on the side 

surface or on both ends of the cylinder.  
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The work presented by Liang et al. (2008) proposes an analytical solution of a 

thick-walled cylinder subjected to a uniform pressure at two ends, with different 

inner and outer surface pressures that are constant circumferentially but vary 

linearly along the axis by applying a Love‟s stress function. The solution is ob-

tained by assuming that the condition of constraint and the external loads are 

all symmetrical with respect to any plane passing through the 𝑧-axis, and that 

the stress and displacement components will have the same symmetry in the 

functions of two coordinates, 𝑟 and 𝑧. More recently, another method has been 

proposed to solve of an axisymmetric boundary value problem for a com-

pressed finite elastic cylinder by utilising the Love‟s stress function with a Bessel 

expansion (Sburlati 2009). The solution provides a full description of the local 

behaviour of the radial and shear stresses at the sides of the plate and long cyl-

inder, particularly those near the corner points. 

 

However, the solutions proposed by Liang et al. (2008) and Sburlati (2009) seem 

complicated and difficult to modify. Moreover, the solution obtained by Liang et 

al. (2008) for a compressed thick-walled cylinder is not practical to apply to a 

compressed round tablet. A simple solution has been found in work done by 

Ding et al. (2005). They found a three-dimensional analytical solution for a uni-

formly loaded isotropic circular plate by making use of the Love‟s stress function 

subject to two different types of clamped edges. The solution is obtained by 

utilising the Biharmonic polynomial potential functions with eight terms 
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𝜙 =  
1

3
𝑎6 16𝑧6 − 120𝑧4𝑟2 + 90𝑧2𝑟4 − 5𝑟6 + 𝑏6 8𝑧

6 − 16𝑧4𝑟2 − 21𝑧2𝑟4 + 3𝑟6            

 

+𝑎4 8𝑧
4 − 24𝑧2𝑟2   +3𝑟4 + 𝑏4 2𝑧

4 + 𝑧2𝑟2 − 𝑟4 + 𝑎3 2𝑧
3 − 3𝑧𝑟2) + 𝑏3 𝑧

3 + 𝑧𝑟2   
 

      +𝑎2 2𝑧
2 − 𝑟2 + 𝑏2 𝑧

2 + 𝑟2 ,      (5.9) 

where 𝑎𝑖 , 𝑏𝑖  (𝑖 = 2,3,4,6) are unknown constants to be determined from the 

boundary conditions. Ding et al. (2005) employed two different types of bound-

ary conditions and the results showed that different boundary conditions exert 

no influence on 𝜍𝑧  and 𝜏𝑟𝑧 . 

 

In order to model the mechanical behaviour of an axially compressed PDE-

based representation of a round tablet, Equation (5.9) together with a particular 

set of boundary conditions will be used. The results obtained from this model 

will be compared with the experimental results of the compressed pharmaceuti-

cal powder. 

 

 

5.2.1 Simulation of Axial Compression on the PDE-based Tablets 

Tablets of thickness 3mm were prepared at the Institute of Pharmaceutical Inno-

vation (IPI), University of Bradford and were composed of 300 mg of α-lactose 

monohydrate (Pharmatose 200 M, DMV International, The Netherlands). Tablets 

were made by uni-axial compression using circular flat faced punches in a die 

with a diameter of 10 mm where the lower punch remains stationary, as shown 
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in Figure 5.2. This process is known as Single Ended Compression (SEC) (Wu et 

al. 2008). The α-lactose monohydrate is a common excipient in a pharmaceutical 

tablet production. This is due to its stability, low hygroscopicity and hardness 

(Ilić et al. 2009), being capable of supporting external loads such a packaging, 

but at the same time being easy to dissolve for rapid assimilation. Particle size 

for the powder was measured by Laser Diffractometer, Mastersizer 2000 Ver. 

2.00 (Malvern Instruments, Malvern, UK), with values ranging from 63 – 90 µm. 

The values of the Young‟s modulus and Poisson‟s ratio of α-lactose monohy-

drate are 𝐸 = [2550, 4350] N/mm2 and 𝛾 = [0.12, 0.5] respectively (Perkins et al. 

2007). 

 

 

 

 

Figure 5.2: Schematic representation of the powder compaction process. 
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The α-lactose monohydrate, with true density, 𝜌true = 1.3 mg/mm3, was poured 

into a cylindrical die. The true density of the powder had been measured using 

an Accupyc 1330 helium pycnometer (Micromeritics Ltd.). The density-pressure 

profile was obtained by using the “in-die” method, whereby the compact‟s di-

mensions were measured from the punch displacements. The powder was com-

pressed and decompressed by the upper punch at 100 mm/s. The values of the 

load and displacement were taken only after the load has started to increase 

and until it became linear. When the punch reaches the height of approximately 

6 mm, it starts receiving resistance from the powder as it rearrange itself and the 

load starts increasing from 0.05 N/mm2. The load continues to increase linearly 

until a compact is formed and, once the compact with maximum strength is 

formed, the load and displacement relation is no longer linear. The powder 

compression process involves only an axial displacement: that is, the radius is 

fixed and only the height of the compressed powder is changed. 

  

From the experimental procedure explained above, the axial displacement of a 

compressed PDE-based tablet can be obtained by setting up appropriate 

boundary conditions as follows 

  𝜍𝑧 = 0,           𝜏𝑟𝑧 = 0    when 𝑧 = 0, 

 

(5.10a) 

  𝜍𝑧 = −𝑃,       𝜏𝑟𝑧 = 0    when 𝑧 = 𝑕0, (5.10b) 
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𝜔𝑧 = 0,        

𝜕𝜔𝑧
𝜕𝑟

= 0    when 𝑧 = 0, 

 

(5.10c) 

 𝜇𝑟 = 0,                              when 𝑟 = 𝑐, (5.10d) 

where 𝑃 is the axial pressure, 𝑐 is the radius of the die or tablet and 𝑕0 is the ini-

tial height of the powder bed. As can be seen in Equation (5.10c), there is no ax-

ial displacement at the bottom plane of the powder bed near the lower punch 

as well as the radial displacement at the die wall (Equation (5.10d)), since there 

is no movement occurring near these areas. Additionally, it is assumed that the 

shear stress is zero at the bottom and upper plane of the powder bed. The 

stress and displacement components,  𝜍𝑧 , 𝜏𝑟𝑧 , 𝜇𝑟  and 𝜔𝑧  , can be expressed in 

terms of unknown constants by substituting Equation (5.9) into Equations (5.2) – 

(5.7), therefore 

𝜍𝑧 = 𝑎6 960𝑟2𝑧 − 640𝑧3 + 𝑏6 (448 − 704𝛾)𝑧3 −  1728 − 1056𝛾 𝑧𝑟2  

−192𝑎4𝑧 + 4𝑏4 16 − 14𝛾 𝑧 − 12𝑎3 + 𝑏3 14 − 10𝛾 ,                           

 

(5.11) 

𝜏𝑟𝑧 = 𝑎6 960𝑧2𝑟 − 240𝑟3 + 𝑏6  432 − 264𝛾 𝑟3 +  −672 + 1056𝛾 𝑟𝑧2    

+96𝑎4𝑟 − 2𝑏4 16 − 14𝛾 𝑟,                                                                            

 

(5.12) 

𝜇𝑟 =
1

2𝐺
 𝑎6 320𝑧3𝑟 − 240𝑟3𝑧 + 𝑏6(128𝑧3𝑟 + 168𝑧𝑟3) + 96𝑎4𝑟𝑧        

        −4𝑏4𝑟𝑧 + 6𝑎3𝑟 − 2𝑏3𝑟 ,                                                                                   

 

(5.13) 
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𝜔𝑧 =
1

2𝐺
 𝑏6  174 − 132𝛾 𝑟4 −  864 − 1056𝛾 𝑟2𝑧2 +  112 − 352𝛾 𝑧4        

−𝑎6 160𝑧4 − 480𝑟2𝑧2 + 60𝑟4 + 𝑏4  32 − 56𝛾 𝑧2 −  30 − 28𝛾 𝑟2  

   −𝑎4 96𝑧2 − 48𝑟2 +  14 − 20𝛾 𝑏3𝑧 − 12𝑎3𝑧 + (10 − 12𝛾)𝑏2 − 4𝑎2 . 

 

 
 

(5.14) 

Since 𝑎2 and 𝑏2 appear only in Equation (5.14) and the simulation involved only 

seven boundary conditions, these unknowns are replaced by 𝑐2 where 

𝑐2 =  (10 − 12𝛾)𝑏2 − 4𝑎2.  

 

Equations (5.11) – (5.14) are substituted into the boundary conditions to deter-

mine the seven unknown constants 

 

𝑐2 =
−𝑃𝑟2 𝛾 − 2 

8𝑕0
, 

 

(5.15a) 

 

𝑎3 =
−𝑃𝑧 4𝑧2 − 4𝑧2𝛾 + 3𝑐2𝛾 − 3𝑟2𝛾  5𝛾 − 7 

180𝑕0𝑟2 𝛾 − 1 
,        

 

(5.15b) 

 

𝑏3 =
𝑃𝑧 4𝑧2 − 4𝑧2𝛾 + 3𝑐2𝛾 − 3𝑟2𝛾 

30𝑕0𝑟
2 𝛾 − 1 

,                            

 

(5.15c) 

 

𝑎4 =
−𝑃 −1 + 7𝛾 

1344𝑕0
,                          𝑏4 =

𝑃

56𝑕0
  ,        

 

(5.15d) 

 

𝑎6 =
−𝑃 −7 + 11𝛾 

5280𝑕0𝑟2
,                       𝑏6 =

𝑃

528𝑕0𝑟2
  .               

 

(5.15e) 
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This leads to the expression of the axial displacement 

 

𝜔𝑧 =
50𝑃𝑧2

𝐺𝑕0
 
𝑧2𝛾

𝑟2
−
 1 − 𝛾 

2
+

𝛾2

𝛾 − 1
 1 −

𝑐2

𝑟2
  , 𝑟 > 0 

 

(5.16) 

where 𝑧 and 𝑟 are any points in 𝑧 and 𝑟 directions respectively, while 𝐺 is given 

by 

 
𝐺 =

𝐸

2 1 + 𝛾 
 . 

 

(5.17) 

 

 

5.2.2 Results and Discussion 

The experimental data (a set of forces and displacements of compressed α-

lactose monohydrate, as shown in Appendix B), together with the fixed true 

density and compacted mass value, were analysed using the Heckel model from 

which powder deformation mechanisms are determined using the apparent 

yield pressure. However, experimental data are commonly not linear, as can be 

seen in Figure 5.3. Nonlinear curves exist at regions with both very low pressure 

(Zone A) and high pressure (Zone C), whilst linearity is shown only in the centre 

pressure range (Zone B). The curvature at Zone A is due to particle rearrange-

ment and fragmentation, while it is agreed that the linear part represents parti-

cle plastic deformation (Gabaude et al. 1999). For the Heckel analysis, only data 

varying from 10 N/mm2 up to 50 N/mm2 in pressure (Zone B) are used because 

this range showed the best linearity. 
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Figure 5.3: Heckel plot of compressed α-lactose monohydrate using experimental data. 

 

 

Due to the different initial porosity of the particles used in the experiment and 

simulation based on the PDE-based formulation proposed in this work, Equation 

(5.16) has been modified by adding an adjustment constant, 𝜔𝑧0. This leads to 

 

𝜔𝑧 =  𝜔𝑧0 +
100𝑃𝑧2 1 + 𝛾 

𝐸𝑕0
 
𝑧2𝛾

𝑟2
−
 1 − 𝛾 

2
+

𝛾2

𝛾 − 1
 1 −

𝑐2

𝑟2
  . 

 

(5.18) 

This constant is obtained from the difference between the initial axial displace-

ment (after the particle rearrangement - Zone A) of the experiment and the 

Heckel plot for α-lactose monohydrate 

ln  
1

1 − 𝜌rel
  

 

(N/mm
2
) 
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simulation (PDE-based model). For example, in the case of α-lactose monohy-

drate, the axial displacement of the powder bed at pressure 10 N/mm2 is            

-1.2935 mm. Meanwhile, the axial displacement of the PDE-based representa-

tion of a round tablet at the same pressure, which is measured using Equation 

(5.16) with the value of 𝐸 = 2640 N/mm2 and 𝛾 = 0.21, is -0.2155 mm. There-

fore, in order to ensure that both the powder and the parametric tablet have the 

same height at the beginning of plastic deformation in Heckel analysis (Zone B), 

the value of  𝜔𝑧0 is set as -1.078 mm. 

 

The change in height of the PDE-based tablet due to axial pressure ranging 

from 10 N/mm2 to 50 N/mm2 is measured using Equation (5.18) with the mate-

rial properties as previously described. The density-pressure relationship for the 

α-lactose powder is plotted as a best linear regression line, as shown in Figure 

5.4, and the trend is compared with the simulation prediction. It is observed that 

the slope of the simulation is steeper than the slope of the experimental one. 

Additionally, both lines have a slightly different 𝑦-intercept. Table 5.1 summa-

rises the estimated data obtained from the Heckel diagram for both simulation 

and experiment. From the graphs, it is found that the yield pressure of experi-

mentally compressed α-lactose is higher than that obtained from the developed 

model, where the values are 102.04 N/mm2 and 93.458 N/mm2 respectively. It 

can be concluded that the plasticity of α-lactose is very low since it has a low 

value of 𝐾 (or high yield pressure). 
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Figure 5.4: Comparison between the Heckel plot of the simulated compression and the ex-

perimental result on α-lactose powder. 

 

 

Table 5.1: Heckel‟s parameters for α-lactose from experiment and simulation. 

Heckel Parameter Experiment 

(IPI) 

PDE-based 

Model 

FEM  

Simulation 

PDE-based 

Model 

Slope, 𝐾 (mm2/N) 0.0098 0.0107 0.0031 0.0041 

𝑦-intercept, 𝐴 0.8738 0.8402 0.8663 0.6420 

Yield Pressure, 𝑃𝑦  

(N/mm2
) 

102.04 93.4579 322.5806 243.902 

Simulated and experimental Heckel plots 
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Another set of force-displacement data of compressed Lactose in a cylindrical 

die of radius 4 mm has been found in Wu et al. (2008). The data was generated 

from the Finite Element Method (FEM) simulation with the value of the true 

density, Young‟s modulus and Poisson‟s ratio of Lactose are 1.548 mg/mm3,   

3.57 N/mm2 and 0.12 respectively. This data has been converted to the relative 

density-pressure relationship with the linear part starting from 60 N/mm2 to 230 

N/mm2. The graph is presented in Figure 5.5 together with a Heckel plot of the 

PDE-based tablet. It shows that both lines are not in very good agreement be-

cause there is a large difference between their slopes and 𝑦-intercepts. The cal-

culated 𝑃𝑦  of Lactose in FEM and PDE-based simulations are 322.581 N/mm2 

and 243.902 N/mm2 respectively, as shown in Table 5.1.    

 

The results shown in Figure 5.4 prove that the solution of Love‟s stress function 

can be utilised to measure the axial displacement of the compressed solid PDE-

based representation of a tablet. The difference between the 𝑦-intercept of the 

experiment and the simulation is very small. This is expected because the simu-

lation‟s axial displacement values are calculated from the parametric representa-

tion of the pharmaceutical tablet. Furthermore, the PDE-based tablet does not 

take the particle size and the degree of porosity into account. For the results il-

lustrated in Figure 5.5, the difference occurs because the FEM simulation has 

been carried out using the DPC model, which considers the hardening or plas-

ticity of the powder as well as the interparticle friction (Wu et al. 2008). On the 
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other hand, the result obtained from the developed model shown in Equation 

(5.18) is fully based on the elasticity and does not consider the unloading be-

haviour of the powder. 

 

 

 

 

Figure 5.5: Density-pressure linear regression lines of FEM versus PDE simulations on Lactose 

powder. 

 

 

Heckel plots of FEM and PDE-based simulations  
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However, the validity of the developed model is only verified at the lower pres-

sure, where the deformation of the powder is indicated. Furthermore, this model 

can be applied only to a round tablet defined by a set of boundary conditions 

that depend on the chosen tabletting process. Consequently, a more general 

model for characterising the stress distribution should be developed. 

5.3 Elastic-Plastic Contact Deformation of a Spherical Granule 

In this section, the mechanical properties of spherical granules are discussed in 

detail. According to the pharmaceutical definition, granules are produced 

through a granulation process which involves either wet or dry granulation. Dur-

ing this process, several powder particles are collected and bonds between 

them are created to make a larger form. Compared to powders, granules have 

better flow behaviour and can compress well, even at a low pressure (Antonyuk 

et al. 2005). The work by Fu et al. (2005) has reported that fast-dissolving tablets 

are formed from highly plastic granules, which are produced by a wet granula-

tion process.  

 

Many studies have been carried out to investigate the mechanical behaviour of 

elastic-plastic granules in compression tests by varying the size and shape of the 

granules. For dry granular materials, the mechanical behaviour is measured by 

several methods, such as ring-shear tests, grain characterisation and simple ana-
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logue experiments (Panien et al. 2006). By contrast, the mechanical behaviour of 

wet granules needs to be conducted numerically since they have more compli-

cated behaviour compared to that of dry granules (Schulz and Schulz 2006). It 

has been reported by Herbold et al. (2008) that the crushing strength of the 

granule decreases as the granule size increases. Furthermore, researchers have 

shown that a spherical granule has lower flow stresses than the non-spherical 

counterpart (Iveson and Page 2005). According to them, both shapes exhibit 

transformation from brittle to plastic failure during the uniaxial compression 

test.    

 

The Hertzian contact law has been widely used for a few decades in discrete 

(Wellmann et al. 2008) and finite element (Kabir et al. 2008) simulations to study 

the flow and compression behaviours of elastic granules. Recently, a new force-

displacement model for an elastic-plastic granule has been developed (An-

tonyuk et al. 2010). This model is derived by extending the model of Tomas 

(2001), whereby the adhesion in the contact has been disregarded. Elastic and 

elastic-plastic laws are used in continuum mechanics studies since the proper-

ties of granules can be either elastic or elastic-plastic. An elastic object is capa-

ble of recovering its original shape and volume after being compressed or 

stretched (Owolabi et al. 2010), while plastic behaviour is in contrast to elastic 

behaviour.  An elastic-plastic granule is a granule that has both elastic and plas-
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tic properties. Therefore, it is necessary to understand the mechanical behaviour 

of granules across the elastic, elastic-plastic and plastic range. 

 

When a soft spherical granule is compressed by two flat surface punches, as 

shown in Figure 5.6(a), two contact areas are formed. The contact area deforms 

as a circle with radius, 𝑟𝑐  , which depends on the granule radius, 𝑟𝑠 . According to 

the existing literature, the radius of the contact area is smaller than that of the 

deformed area (Antonyuk et al. 2010). The shape of the compressed granule is 

illustrated in Figure 5.6(b), where the small spheres in the granule (before and 

after compression) represent the group of powder particles. For an elastic-

plastic granule, the plastic deformation starts when the pressure reaches the mi-

cro-yield strength, 𝑠𝑦 . However, some authors have reported that plastic defor-

mation begins when the maximum contact pressure reaches at 1.6 times of the 

uniaxial yield stress (Li et al. 2009). Before the yield point, 𝑝𝑝  , is reached, the 

force-displacement curve of the loaded spherical granule shows a nonlinear 

elastic deformation. It has been reported by Tomas (2001) that the force, 𝐹𝑒  , 

during the elastic deformation of a spherical granule follows Hertz law, as below  

 

𝐹𝑒 =
𝐸

3 1 − 𝛾2 
 2𝑟𝑠𝜔𝑧

3  , 

 

(5.19) 
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Figure 5.6: Compression of a spherical granule. (a) The slow compression of a spherical granule 

with two contact points. (b) The shape of a granule after the elastic-plastic deformation. 

 

 

 

where 𝜔𝑧  is the full axial displacement. The material behaviour changes from 

elastic to elastic-plastic at the yield point, as shown in Figure 5.7. When the 

pressure exceeds the yield pressure, 𝑃𝑦 , the total axial displacement of the com-

pressed elastic-plastic granule at force 𝐹𝑒𝑝 , is given by (Antonyuk et al. 2010) 

𝜔𝑧 =
1

81𝑟𝑠𝑠𝑦
 
𝐽

1
3 

𝜋
+
𝜔𝑧
′ 𝑠𝑦𝑟𝑠 𝜔𝑧

′ 𝜋𝑠𝑦𝑟𝑠 + 324𝐹𝑒𝑝  

𝐽
1

3 
+
𝜔𝑧
′ 𝜋𝑠𝑦𝑟𝑠 + 162𝐹𝑒𝑝

𝜋
 , 

 

 

(5.20) 

where 

𝐽 = 𝜔𝑧
′  𝜋𝑠𝑦𝑟𝑠  1458𝐹𝑒𝑝 𝐹𝑒𝑝 2𝜔𝑧

′𝜋𝑠𝑦𝑟𝑠 + 729𝐹𝑒𝑝 +39366𝐹𝑒𝑝
2 +  𝜔𝑧

′𝜋𝑠𝑦𝑟𝑠 
2   

 

         +486𝜔𝑧
′𝜋𝑠𝑦𝑟𝑠𝐹𝑒𝑝 , (5.21) 
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Figure 5.7: Force-displacement curve of a spherical granule during compression. This graph has 

been reproduced from Antonyuk et al. (2010). 

 

 

and 𝜔𝑧
′  is the displacement at the yield point and the micro-yield strength is de-

rived as 

 

𝑠𝑦 =
2𝐸

𝜋 1 − 𝛾2 
 
𝜔𝑧′

𝑟𝑠
 . 

 

 

(5.22) 

Furthermore, the radius of the contact area of the granule during the elastic-

plastic deformation is given by 

 
𝑟𝑐 =  𝑟𝑠𝜔𝑧 . 

(5.23) 
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In this study, the mechanical behaviour of a spherical tablet is assumed to be 

similar to the behaviour of a spherical granule. This is because some authors 

have reported that many tablets are formed from granules, and these tablets 

have consistent hardness and uniform content. Therefore, the contact law of a 

granule, as found in the literature, is used to measure the displacement of a 

compressed spherical tablet, hence relating the physics of the law to the para-

metric shape of the tablet in question. 

 

5.3.1 Deformation of a PDE-Based Spherical Tablet 

The original shape of the solid PDE-based representation of a spherical tablet 

has been shown in Figure 4.6(b). In order to study the mechanical behaviour of a 

compressed spherical tablet using the PDE method, the mathematical properties 

of the Biharmonic equation have been exploited to achieve simple mathematical 

expressions characterising the shape of the tablet. The height and radius of this 

parametric tablet have been presented in Equations (4.16) and (4.22)  

 
𝑕 = 𝑎01𝑧             and              𝑟𝑠 =  𝐴1𝑥

2 + 𝐴1𝑦
2 , 

 

(5.24) 

respectively. The shape of the compressed spherical tablet can be obtained by 

relating Equations (5.20) – (5.23) with Equation (5.24). The new height of the 

PDE-based tablet after it has been compressed is given by 
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𝑎01𝑧(after ) = 𝑎01𝑧(before ) − 𝜔𝑧 , 

 

(5.25) 

and its contact radius can be written as 

 

 𝐴1𝑥
2  𝑢=1 +  𝐴1𝑦

2  
𝑢=1

=  𝐴1𝑥
2 + 𝐴1𝑦

2𝜔𝑧  . 

 

(5.26) 

Thus, the height, radius and contact area of the tablet in this particular shape 

due to uniaxial compression, are represented by analytic expressions relating 

the coefficients associated with the solution to the Biharmonic equation. The 

theoretical results obtained from the model proposed by Antonyuk et al. (2010) 

will be compared with the simulation results generated from the PDE method. 

 

5.3.2 Results and Discussion 

Simulations of the compressed spherical tablet have been carried out on two 

different elastic-plastic industrial materials. Only the upper hemisphere is con-

sidered in the simulation due to the geometrical and loading symmetries. It is 

assumed that the contact between the pharmaceutical tablet and the punches is 

frictionless. The details of corresponding material properties have been ob-

tained from the literature and are listed in Table 5.2.  
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Table 5.2: Mechanical characteristics of the examined materials by compression. 

Material Radius  

(mm) 

𝑬  

(N/mm2) 

𝜸 𝒔𝒚  

(N/mm2) 

Lactose  

(Wu et al. 2003) 

0.1 2080 0.30 616.6 

Köstrolith  

(Antonyuk et al. 2005) 

0.7 820 0.28 71.007 

 

Figure 5.8 shows two graphs of PDE coefficients, 𝑎01𝑧 , 𝑎11𝑥 , 𝑎12𝑥 ,  𝑎13𝑥  and 𝑎14𝑥 , 

obtained from Equations (5.25) and (5.26). It is found from the simulation that 

the value of 𝐴1𝑦  is zero. These coefficients are responsible for creating the 

shape of distorted spherical tablets made of Lactose and Köstrolith. All plots are 

displayed as best linear regression lines and, as can be seen in both graphs, 

each coefficient shows the same pattern, except 𝑎11𝑥 . The slope and 𝑦-intercept 

of each line are given in Table 5.3. The data from this table can be used to esti-

mate the height and contact area of the compressed spherical tablet. For in-

stance, the values of 𝑎01𝑧 , 𝑎11𝑥 , 𝑎12𝑥 , 𝑎13𝑥  and 𝑎14𝑥  at a force equal to 3.5 N for 

Köstrolith are 0.672, -0.0656, 0.766, -0.1 and 0.826 respectively. Therefore, the 

estimated height of the deformed tablet in spherical shape is 1.3440 mm and its 

contact area is 0.1355 mm2. Meanwhile, the theoretical values of these variables 

at the same force are 1.3444 mm and 0.1395 mm2 respectively. It is interesting 

to note that the simulated values show little difference from those obtained 

theoretically.    



Chapter 5: Modelling the Mechanical Behaviour of Pharmaceutical Tablets                            | 109 

 

 

 

 

Figure 5.8: PDE coefficients representing the height and contact area of the compressed 

spherical (a) Lactose and (b) Köstrolith. 
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Table 5.3: The parameters of best-fit linear regression line for PDE coefficients. 

 Lactose Köstrolith 

PDE coefficients Slope 𝑦-intercept Slope 𝑦-intercept 

𝑎01𝑧  -0.0066 0.0993 -0.0073 0.6978 

𝑎11𝑥  0.1081 -0.0565 0.0490 -0.2402 

𝑎12𝑥  -0.1081 0.15651 -0.0490 0.9402 

𝑎13𝑥  -0.0660 0.0149 -0.0265 -0.0076 

𝑎14𝑥  -0.1704 0.1909 -0.0789 1.1021 

 

 

The comparison between the theoretical and simulated contact radius as a func-

tion of the axial force is shown in Figure 5.9. Given that this work focuses on the 

elastic-plastic deformation behaviour, both graphs start after the load reaches 

the yield point, with Lactose at force 0.58 N and Köstrolith at force 0.46 N. It is 

observed that the contact radius of spherical Lactose and Köstrolith, as meas-

ured by Equation (5.23), differ slightly from those generated by Equation (5.26) 

at lower forces. However, as the contact force is increased, the curve generated 

by the PDE method fits the theoretical ones. The shapes of the solid PDE-based 

representation of a spherical Köstrolith tablet at different forces are illustrated in 

Figure 5.10. The generated object consists of 5082 nodes and 4000 cuboids, 

which is produced by defining the parameter 𝑠𝑥 =  𝑠𝑧 = 11 and 𝑠𝑦 equal to 21.   
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Figure 5.9: Comparison between the radius of contact area of the theoretical and PDE-based 

spherical (a) Lactose and (b) Köstrolith. 
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Figure 5.10: Solid PDE-based representation of compressed spherical tablets at different force 

values. 

 

 

Figure 5.11 shows the theoretical and simulated displacements of a spherical 

tablet made of Köstrolith, subject to the axial force. The force-displacement data 

for this tablet have been plotted as Heckel graphs. The graph shows that the 

yield pressure of compressed Köstrolith is 93.2314 N/mm2. It is observed that 

the curve generated by the PDE method fits the theoretical one remarkably well. 

It shows that the simulation can be used as a tool to predict the compressibility 

of a spherical shaped pharmaceutical tablet. However, the Heckel graph for the 

Lactose cannot be plotted since there is no information regarding the mass of 

that material.   

 

It is clear that the results for the compressed PDE-based representation of a 

spherical tablet are in close agreement with the elastic-plastic deformation 

model proposed in the literature. From all the results, it seems that the solution 
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associated with the particular PDE representing the shape of the tablet under 

axial compression can be related to the existing contact law model and defined 

key parameters of the overall shape to the PDE coefficients. Another interesting 

observation from the results is that the height and contact radius of the de-

formed PDE-based representation of a spherical tablet can be generated by a 

small set of parameters. However, this simulation can be applied only to the 

case involving the axial compression of an object generated from circular-

shaped boundary curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Heckel plot of theoretical and PDE-based model for the compressed spherical tab-

let. 
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5.4 Summary 

In this chapter, the solution of the axisymmetric boundary value problem for a 

finite cylinder subject to a uniform axial load has been utilised in order to model 

the displacement components of a compressed PDE-based representation of a 

round tablet. The Heckel plot obtained from the developed model shows that 

the model is capable of predicting the compressibility of pharmaceutical materi-

als since it fits the experimental data accurately. Furthermore, various case stud-

ies presented in this chapter show that the solution to a particular elliptic PDE 

can be exploited as a tool for representing the deformation and contact law for 

elastic-plastic spherical tablets. This is due to the fact that the spine and radius 

of the PDE-based object are determined analytically. The results obtained from 

the PDE-based simulation are compared with the theoretical ones. It is found 

that the analytic solution of the elliptic PDE can be utilised to represent the 

physical changes of the deformed object.       
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Chapter 6 

Automatic Design Optimisation 

 

6.1 Introduction  

This chapter describes the methodology for automatic design optimisation of 

solid pharmaceutical dosage forms involving flat-faced round and spherical tab-

lets, and a spherical capsule. Solid tablets of a cylindrical and spherical shape 

have been created in Chapter 4, using the PDE method. The shape of a spherical 

capsule presented in Section 6.2.2 is also modelled using the same method. The 

optimisation of both dosage forms is performed by combining the PDE method 

and a standard method for numerical optimisation. The objective is to obtain an 

optimal shape for the tablets and also to predict the optimal thickness of a 

spherical capsule shell. 
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6.2 Optimal Design of Pharmaceutical Tablets for Strength 

This section shows how automatic design optimisation of solid pharmaceutical 

tablets and capsules can be carried out using the parametric model discussed in 

Chapter 3. The work in this chapter focuses on the design of tablets possessing 

the maximum tensile strength subject to required volume. This is because all 

produced solid dosage forms need to have at least minimum mechanical 

strength to uphold any potential load such as film coating, packaging and han-

dling before use.  

 

Normally, the shape of the initial object is designed closer to the optimal shape 

due to the designer‟s experience (Eisinger and Ruprecht 2002). This can save 

time because the designer does not have to consider alternative designs which 

would clearly not hold the required functionality. Hence, tablets in cylindrical 

and spherical shapes are created as the initial geometry shape of tablets as 

shown in Figures 4.6(a) and 4.6(b). The shape of a spherical capsule shell with its 

preliminary thickness and size will be discussed later in this chapter. It is as-

sumed that both dosage forms are finite, homogeneous and isotropic.  

 

The design optimisation of these dosage forms is performed by solving a con-

strained optimisation problem, formulated on the basis of the objective func-

tion, together with the boundary conditions (positional and interior curves) as-
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sociated with the geometry of the dosage form and the required constraints. As 

mentioned in Chapter 3, there is a wide variety of methods for numerical opti-

misation, such as Interior-point and Active Set methods (Hei et al. 2008). The se-

lection of a particular method is problem specific and needs more consideration 

in terms of cost and time taken to assess the value of the objective function 

(Ugail 2003). The best method is the one that can minimise the number of de-

sign variables and thus requires only a small number of function evaluations 

(Ugail and Wilson 2003). 

 

It has been reported in Leyffer (2005) that the Interior-point method has better 

speed in solving the problem than the Active Set method. However, the Active 

Set method is more robust and suitable for warm starts (Leyffer 2005). The term 

warm start refers to a strategy used to solve an integer optimisation problem by 

giving an advanced starting point and reducing the number of iterations 

needed to find the optimal solution (John and Yıldırım 2008). Therefore, the Ac-

tive Set method is capable of solving constrained nonlinear optimisation prob-

lems in a shorter time compared with other methods.  

 

In the Active Set method, the optimisation problem is split into two groups: an 

active set and an inactive set, where the active set refers to a subset of the con-

straints that are locally active (Eitrich and Lang 2006). Mathematically, the equal-

ity constraints are always included in the active set while the inequality con-
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straints need to be identified as active or inactive (Bergounioux and Kunisch 

2002). The inactive constraints are essentially ignored. The optimisation process 

begins with the active set until a point that minimises the objective function is 

found. If all constraints and optimal conditions are satisfied, then the optimal 

solution is obtained.  

 

The optimisation in this thesis is carried out using the Active Set method. The 

MATLAB Optimisation Toolbox has been used to run the constrained nonlinear 

minimisation problem, while a subroutine to produce the solution of the elliptic 

PDE has been developed in C
++

. Moreover, the same subroutine used for mesh 

generation as mentioned in Chapter 4 has been used. It has been written in an 

m-file in order to display the resulting shapes after the optimisation process has 

finished. Given that both programs are needed simultaneously, a MATLAB Ex-

ecutable (MEX) file is built to provide an interface between MATLAB R2008a and 

Visual Studio 2008. This file is dynamically loaded when the m-file is compiled 

and allows the referred C
++

 file to be called from within MATLAB as though it 

were a built-in function.     

 

Figure 6.1 outlines the optimisation process in searches for optimal shapes of 

pharmaceutical tablets. As it can be seen from the flow diagram, the process 

starts with an initial design, which is set as input data. These data are used to 
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evaluate constraint‟s functions and then calculate a value for the objective func-

tion. These values are passed through an optimisation engine in order to gener-

ate a new design. This process is continued until the optimum result is found. 

 

 

 

 

    

 

 

 

 

 

 

 
Figure 6.1: Optimisation flow diagram. 

 

 

6.2.1 The Flat-faced Round Tablet 

The automatic optimisation of the flat-faced round tablet shown in Figure 4.6(a) 

is discussed. The material properties and the initial dimension of this tablet can 

be found in Chapter 5, Section 5.2.1. Assuming that the tablet is located at the 
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bottom of a bottle filled with tablets, such a tablet experiences a stress. This is 

due to the weight of the rest of the tablets in the bottle and hence, this tablet 

becomes either slightly deformed or damaged. Therefore, the required strength 

of the tablet needs to be measured by calculating the maximum tensile strength 

within the tablet. This is done by means of axisymmetric boundary value analy-

sis, whereby the force is applied on the top plane of the tablet, as caused by the 

weight of the other tablets in the bottle. It is also assumed that the bottom 

plane of the tablet is fixed at 𝑧 = 0.  

 

As mentioned above, the objective of the optimisation is to determine the 

maximum tensile strength of a round tablet, subject to a given volume. There-

fore, it is important to analyse the calculation of the maximum tensile strength 

that occurs in the solution for every design, as required in the optimisation 

process. In this case, Equation (2.5) is employed to measure the strength of the 

round tablet occurring in the whole structure. In order to express Equation (2.5) 

in terms of pressure, the yield force, 𝐹𝑦 , is replaced by the yield pressure, 𝑃𝑦 , 

which can be obtained from the Heckel model. This model has been explained 

in Section 2.2.1, and its equation can be seen in Equation (2.1). Therefore, the 

axial tensile strength is transformed into 

 

𝜍T
𝑎 =

𝑃

ln  
𝜋𝑡𝑐2𝜌true

𝜋𝑡𝑐2𝜌true −𝑚
 − 𝐴

  , 

 

(6.1) 
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where 𝑡, 𝑐 and 𝑚 represent the thickness, radius and mass of the tablet respec-

tively, 𝐴 is a Heckel parameter and 𝜌true  denotes the true density. The thickness 

of the tablet is measured by considering the axial displacement, 𝜔𝑧  , of the tab-

let once the load is applied to its top plane. The axial displacement of the com-

pressed flat-faced round tablet is measured using the model proposed in Chap-

ter 5 (Equation (5.18)).  

 

In order to perform the automatic optimisation on the PDE-based representa-

tion of a round tablet, Equation (6.1) needs to be represented by analytic ex-

pressions relating the coefficients associated with the solution of the fourth-

order elliptic PDE. Therefore, the objective function is then re-written as 

 

𝜍T
𝑎 =

𝑃

ln  
𝜋 𝑕0 + 𝜔𝑧  𝐴1𝑥

2 + 𝐴1𝑦
2  𝜌true

𝜋 𝑕0 + 𝜔𝑧  𝐴1𝑥
2 + 𝐴1𝑦

2  𝜌true −𝑚
 − 𝐴

  , 

 

(6.2) 

where 𝑕0 is the initial height of the tablet. The value of the constant 𝐴 is chosen 

between 0.8402 and 0.8738 (obtained from the results in Section 5.2.2) and the 

tablet is loaded by applying a pressure, 𝑃, at the top plan of the tablet within 

the range from 20 to 60 N/mm2. 

 

The design space is further restricted by choosing a constraint to represent the 

volume of the tablet. In this case, the volume is fixed to 235 mm3, which can be 

calculated using the expression given by 
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1

3
  𝛘𝑖 ∙ 𝐧𝑖 𝒜𝑖

𝑀

𝑖=1

= 235, 

 

(6.3) 

where 𝐧𝑖  and 𝒜𝑖  are the unit normal vector and area of the 𝑖th defining surface 

respectively. It is worth mentioning that Equation (6.3) represents a means for 

the numerical computation of the volume enclosed within a closed surface. The 

value of 𝑀 depends on the number of rectangular faces that are representing 

the outer surface of the tablet in question since the PDE-based representation 

of a tablet is generated from a cuboid mesh. The unit normal vector for a point 

on the surface is defined by the ratio of the cross product of 𝝌𝑢  and 𝝌𝑣 to the 

magnitude of the cross product, as below 

 

𝐧 =
𝝌𝑢 × 𝝌𝑣
 𝝌𝑢 × 𝝌𝑣 

 , 

 

(6.4) 

where 𝝌𝑢  and 𝝌𝑣 are given in Equations (4.10) and (4.11) respectively. Note that 

only the faces comprising the outer surface are used in Equation (6.3).  

 

This work considers only the boundary conditions of the tablet‟s body (Patch 2) 

when performing the design optimisation, since it is assumed that the tablet is 

axially compressed by other flat surfaces. Therefore, only the body of the tablet 

is deformed. Emphasis is made on the fact that only the translation in the 𝑧 di-

rection and dilations in the 𝑥𝑦 plane of these boundary curves within the de-
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fined limits, are considered. With the above formulation, the radius and height 

of each curve are set as  

 
4.5 ≤  𝑟 𝑃21 ,𝑑21 ,𝑑22 ,𝑃22

≤ 5.15 , 
 

[mm] 

 

(6.5) 

 0 = 𝑧𝑃21
≤ 𝑧𝑑21

≤ 𝑧𝑑22
≤ 𝑧𝑃22

≤ 3.5 , 
 

[mm] 

 

(6.6) 

respectively. These allow the design parameters to be varied within the specific 

ranges in order to obtain a favourable range of shapes, together with the re-

quired volume of the tablet.  

 

The Active Set method finds the design with the lowest possible value of the 

chosen merit function from the design space. The optimisation took 27 minutes 

on a MATLAB R2008a with a 2.20 GHz Intel Core 2 Duo T7500 processor, to ob-

tain the maximum strength after four iterations, starting from a randomly cho-

sen solution point. Two optimal shapes: perfect round and curved-edge round 

tablets are found with maximum tensile strength, as shown in Figures 6.2(a) and 

6.2(b) respectively. The values of the design curves obtained for both optimal 

designs are given in Table 6.1. Note that the optimal design in Figure 6.2(a) 

shows a shape similar to the original one, with a relative reduction in height of 

50%.   
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Table 6.1: Values used for the design parameters associated with the round tablet. 

 

 

Boundary curve 

Optimal  

(Straight round tablet) 

Optimal  

(Curved-edge round tablet) 

Height (mm) Radius (mm) Height (mm) Radius (mm) 

𝑃21 0.0 5.0 0.0 4.83 

𝑑21 0.3 5.0 0.9 5.15 

𝑑22 0.34 5.0 2.0 5.15 

𝑃22  2.99 5.0 2.93 4.83 

Tensile strength, 𝜍T
𝑎  103.095 N/mm2 103.333 N/mm2 

 

 

 

 

Figure 6.2: Optimal shapes for tablets with maximum tensile strength: (a) straight and (b) 

curved-edge round tablets. 

 

 

6.2.2 The Spherical Tablet 

In this section, the optimal design of a spherical tablet is obtained in a similar 

fashion to the one used for the flat-faced round tablet. This particular shape of 

tablet is created by means of two individual surface patches. It is important to 
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note that the number of design parameters in this shape is almost doubled 

when compared with the preceding example. This is due to the fact that two 

patches are now required. The aim of this example is the same as the previous 

one, which is to predict the optimal shape of a tablet with maximum tensile 

strength. Again, the translation in the 𝑧 direction and dilations in the 𝑥𝑦 plane of 

all boundary curves are considered.  

 

In contrast to the round tablet, it is assumed that this tablet is diametrically 

compressed by two point loads. Hence, the spherical tablet composed of 

Köstrolith experiences a stress on its upper and lower hemispheres. The micro-

yield strength, 𝑠𝑦 , Young modulus and Poisson‟s ratio of Köstrolith can be found 

in Table 5.2. In this example, Equation (2.10) is used in the optimisation routine 

as the objective function, which can be written in terms of PDE coefficients as 

 

𝜍T
𝑠 =

2𝐸2𝐹𝑒𝑝 (1 − 2𝛾)

𝜋3 𝐴1𝑥
2 + 𝐴1𝑦

2   𝑠𝑦 1 − 𝛾2  
2 . 

 

 

(6.7) 

In this case, the constraints are written as 

7.7 ≤
𝜋𝑠𝑦𝜔𝑧𝑟𝑃21

2
 1 −

1

3
 
𝑟𝑃21

𝜔𝑧
 
𝑠𝑦𝜋 1 − 𝛾2 

2𝐸
 

2
3

 ≤ 9.9 , 

 

 

[N] 

 

 

(6.8) 

0.7 ≤ 𝑟𝑃21
≤ 0.8 , 

 

[mm] 
 

(6.9) 

𝑟𝑃22
≤ 𝑟𝑑22

≤ 𝑟𝑑21
≤ 𝑟𝑃21

, 
 

[mm] 
 

(6.10) 
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𝑟𝑃22
=
𝜋𝑠𝑦𝑟𝑃21

 1 − 𝛾2 

2𝐸
 , 

 

[mm] 

 

(6.11) 

1

3
  X𝑖 ∙ n𝑖 𝒜𝑖

𝑀

𝑖=1

= 1.44 . 

 

[mm3] 

 

(6.12) 

Equation (6.8) represents the axial force constraint, while Equation (6.9) shows 

the range of the radius of the tablet. The boundary curve 𝑃21 is chosen as the 

great circle, which divides the sphere into two congruent hemispheres. There-

fore, only the boundary curves which correspond to the upper hemisphere are 

considered (as can be seen in Equation (6.10)) because it is assumed that the 

case discussed here has loading symmetry. These curves can be reflected as the 

conditions of the lower hemisphere, such as 

 
𝑃22 = 𝑃11 , 𝑑22 = 𝑑11 , 𝑑21 = 𝑑12 . 

 

(6.13) 

The radius of 𝑃22 is used to represent the radius of the contact area. This con-

straint is shown in Equation (6.11). The volume constraint in Equation (6.12) is 

similar to the previous one but this time the volume is fixed to 1.44 mm3. 

 

With the above formulation, the automatic optimisation was performed and the 

shape possessing the required characteristics was found after five iterations. For 

this particular case, the optimisation took 43 minutes to obtain a satisfactory 

optimal design, as shown in Figure 6.3(a). The final size and axial position of 

each curve obtained for the optimal design can be seen in Table 6.2. The result-



Chapter 6: Automatic Design Optimisation                                                                               | 127 

 

 

 

ing optimal shape has a relative vertical reduction and horizontal enlargement 

in size of 7.31% and 0.67% respectively. The maximum tensile strength for the 

tablet in spheroidal shape with radius 0.7047 mm was found to be equal to 

77.1736 N/mm2.   

 

In order to vary the geometry of the tablet with the same properties, the optimi-

sation routine has been performed once again by changing the axial force and 

the radius constraints. In this example, the force is set between 8.5 N to 10.5 N, 

and the radius of 𝑃21 is varied from 0.75 to 0.85 mm. The other constraints re-

main the same as in Equations (6.10) – (6.12). A spheroidal tablet is obtained af-

ter the optimisation routine has been performed for 39 minutes.  

 

The result suggests that a spheroidal tablet with radius 0.7561 mm and height 

1.2669 mm, as presented in Figure 6.3(b), has a tensile strength equal to 69.1043 

N/mm2. Note that the tensile strength of the tablet shown in Figure 6.3(b) is 

slightly lower than the one in Figure 6.3(a). This is because the decrease in the 

value of tensile strength is related to the increase in the tablet‟s size (Fu et al. 

2004).  
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Figure 6.3: Spheroidal tablets with maximum tensile strength. (a) Resulting configuration with a 

tensile strength equal to 77.1736 N/mm
2
. The tensile strength of a spheroidal tablet in (b) is 

69.1043 N/mm
2
.  

 

Table 6.2: Values for the design parameters associated with the spherical tablet used in the op-

timisation. 

Boundary 

curve 

Optimal tablet in Figure 6.3(a)        Optimal tablet in Figure 6.3(b) 

Height (mm) Radius (mm) Height (mm) Radius (mm) 

𝑃11 0.0512 0.0883 0.0666 0.0948 

𝑑11 0.1381 0.4251 0.1501 0.5625 

𝑑12 0.3756 0.6255 0.3501 0.6975 

𝑃21  0.7000 0.7047 0.7000 0.7561 

𝑑21 1.0245 0.6255 1.0499 0.6975 

𝑑22 1.2620 0.4251 1.2500 0.5625 

𝑃22 1.3489 0.0883 1.3335 0.0948 
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6.2.3 The Spherical Capsule 

The aim of this section is to identify the optimal thickness of a soft capsule shell 

whilst possessing a predefined level of strength. Softgel capsules are another 

popular oral dosage form for medicine, which are used to mask the unpleasant 

taste and odour of substances. Most of them consist of a gelatine-based shell, 

which can encapsulate oil or liquid fill. In capsule production, all manufacturers 

aim to produce quality gelatine shells with the defined thickness and mechanical 

strength as well as the ability to survive all the manipulations of the encapsula-

tion machine (Reich 2004).  

 

In order to optimise the thickness of the shell, the parametric design of a solid 

capsule shell in spherical shape is discussed first. The procedure is similar to that 

for the spherical tablet. However, for the capsule, two spheres with different ra-

dii are needed. The first sphere with radius, 𝑟 =  𝑎, represents the outer surface, 

while the other one with radius, 𝑟 =  𝑏 (where 𝑎 >  𝑏) creates the inner surface. 

Figure 6.4(a) illustrates the upper hemisphere of these spheres. In order to cre-

ate a solid shell, both parametric surfaces are connected by the parameter 𝑤 as 

given by   

 
𝐒 𝝌 𝑢, 𝑣 , 𝑤 = 𝝌 𝑢, 𝑣 𝑟=𝑏 + 𝑤 𝝌 𝑢, 𝑣 𝑟= 𝑎 − 𝝌 𝑢, 𝑣 𝑟 = 𝑏  . 

 

(6.14) 

The solid PDE-based representation of a spherical soft capsule shell generated 

by 800 cuboids is shown in Figure 6.4(b). 
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Figure 6.4: (a) Surface shape of upper hemisphere of the shell. (b) Solid PDE-based representa-

tion of a spherical soft shell. 

 

 

To verify the quality, consistency and resilience of softgel capsules, the breaking 

force test needs to be conducted. As reported by Pharmatron (2010), the test is 

the same as that applied to tablets in which the capsule is compressed by two 

platens with a certain amount of force until it bursts. Therefore, either Equation 

(2.4) or Equation (2.5) can be used to measure the tensile strength of a soft-

shelled capsule. In this thesis, Equation (2.4) is chosen as the objective function 

of the optimisation instead of Equation (2.5) because no information is available 

regarding the yield force of a spherical gelatine capsule.  

 

During the compression test, an external pressure, 𝑃ext  ,  is applied to the outer 

surface of the spherical soft-shelled capsule. This capsule is also subject to an 

internal pressure, 𝑃int  , at its inner surface. It is assumed that the capsule shell is 
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thin and linearly elastic. The pressure at the outer surface of the capsule is ex-

erted by the platens, whereas the internal pressure corresponds to the liquid 

pressure. As it is important to keep the tensile strength of this dosage form to 

the maximum, the thickness and size of the soft capsule need to be determined 

properly. The thickness of the capsule shell is measured by considering the ra-

dial displacement of the pressurised sphere.  

 

This study employs the displacement model found in the work conducted by 

González Castro and Fitt (2002). The Biharmonic Love‟s stress function in spheri-

cal coordinates, which is given by 

 

𝑋 𝑟, 𝜃 =   𝐴𝑛𝑟
−𝑛−1 + 𝐵𝑛𝑟

−𝑛+1 + 𝐶𝑛𝑟
𝑛 + 𝐷𝑛𝑟

𝑛+2 𝑃𝑛 cos 𝜃 ,

∞

𝑛=0

 

 

 

(6.15) 

where  𝐴𝑛 , 𝐵𝑛 , 𝐶𝑛  and 𝐷𝑛  are arbitrary constants while 𝑃𝑛 cos 𝜃 represents the 𝑛th 

degree Legendre polynomial. Equation (6.15) has been used by the authors to 

find the expression for the radial displacement. The stress and displacement 

components in terms of 𝑋 𝑟, 𝜃  are given by 

𝜍𝑟 =   2 − 𝛾 cos 𝜃
𝜕

𝜕𝑟
−
𝛾 sin 𝜃

𝑟

𝜕

𝜕𝜃
 ∇2𝑋 −

𝜕2

𝜕𝑟2
 cos 𝜃

𝜕

𝜕𝑟
−

sin 𝜃

𝑟

𝜕

𝜕𝜃
 𝑋, 

 

(6.16) 

𝜏𝑟𝜃 =  − sin 𝜃  1 − 𝛾  
𝜕

𝜕𝑟
−

cot 𝜃

𝑟

𝜕

𝜕𝜃
  ∇2𝑋                                                        

+ sin 𝜃  
𝜕

𝜕𝑟
 
−1

𝑟 sin 𝜃

𝜕

𝜕𝜃
  cos 𝜃

𝜕

𝜕𝑟
−

sin 𝜃

𝑟

𝜕

𝜕𝜃
  𝑋,                                 

 

 

(6.17) 
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𝜇𝑟 = −
2 1 + 𝛾 

3𝐸
cos 𝜃∇2𝑋 −

1 + 𝛾

𝐸

𝜕

𝜕𝑟
 cos 𝜃

𝜕

𝜕𝑟
−

sin 𝜃

𝑟

𝜕

𝜕𝜃
 𝑋,                  

 

(6.18) 

where 

 
∇2𝑋 =

𝜕2𝑋

𝜕𝑟2
+

2

𝑟

𝜕𝑋

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
 sin 𝜃

𝜕𝑋

𝜕𝜃
 . 

 

(6.19) 

By substituting Equation (6.15) into Equation (6.18), the displacement model is 

written as (González Castro 2004) 

𝜇𝑟 = −
2 1 + 𝛾 

3𝐸
  1 − 2𝛾 𝐵1𝑟

−2 +  10𝛾 − 5 𝐷1𝑟 −
2 1 + 𝛾 

5𝐸
  8 − 12𝛾 𝐵2𝑟

−3   

  +5𝐶2 +  28𝛾 − 7 𝐷2𝑟
2 cos 𝜃 −

 1 + 𝛾 

𝐸
 

𝑃𝑛 cos 𝜃

 2𝑛 + 3  2𝑛 − 1 
                     

∞

𝑛=2

 

 
′

 𝑛 𝑛 + 1  2𝑛 + 3  2𝑛 − 1  𝐴𝑛−1𝑟
−𝑛−2

′

                                                              

+ 𝑛 2𝑛 + 3  3 − 2𝑛  4𝛾 − 𝑛 − 3  𝐵𝑛−1𝑟
−𝑛                                                   

+2 5𝑛2 − 1 − 8𝑛2𝛾 + 2𝛾 − 2𝑛 − 8𝑛3𝛾 + 6𝑛3 + 2𝑛𝛾 𝐵𝑛+1𝑟
−𝑛−2            

+ 𝑛 𝑛 + 1  2𝑛 + 3  2𝑛 − 1  𝐶𝑛+1𝑟
𝑛−1                                                           

  + 4 3𝑛𝛾 − 5𝛾 + 𝑛3 + 2.5 − 𝑛4 + 4𝑛3𝛾 + 12𝑛2𝛾 − 11𝑛 − 21𝑛2 𝐷𝑛+1𝑟
𝑛+1 

 

  

 
′

         + 2𝑛 2𝑛 + 3  2𝛾 2𝑛 + 1 −  3𝑛 + 2   𝐷𝑛−1𝑟
𝑛−1

′

 .  
 

(6.20) 

 

The constants 𝐴𝑛 , 𝐵𝑛 , 𝐶𝑛  and 𝐷𝑛  in Equation (6.20) can be found by applying the 

boundary conditions for the compression problem as follows 

 
 𝜍𝑟  𝑟=𝑎 = −𝑃ext  ,         for   

𝜋

2
− 𝜓 ≤ 𝜃 ≤

𝜋

2
+ 𝜓 

 

(6.21a) 
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  𝜍𝑟  𝑟=𝑏 = −𝑃int  ,                                                          (6.21b) 

  𝜏𝑟𝜃  𝑟=𝑎,𝑏 = 0,                                                              (6.21c) 

where 𝜓 represents the angle that describes the region of contact between the 

capsule and the platens. Note that the condition in Equation (6.21a) depends on 

𝜃 because it is assumed that the pressure from the platens acted over the re-

gion 
𝜋

2
 −𝜓 ≤ 𝜃 ≤ 

𝜋

2
 +𝜓, as can be seen in Figure 6.5. After substituting Equa-

tions (6.15) – (6.17) into Equations (6.21a) – (6.21c), the constants in Equation 

(6.20) are obtained. The long expressions of these constants are shown in Ap-

pendix C.  

 

 

                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Mathematical representation of the compression test for a spherical gel capsule. 

Platen  

Capsule  

Platen  

 𝑃ext  

𝑃ext  

2𝜓 

𝑃int  

𝑟 =  𝑎 
𝑟 =  𝑏 



Chapter 6: Automatic Design Optimisation                                                                               | 134 

 

 

 

Similar to the case of a spherical tablet, the work in this section considers only 

the upper part of the capsule, due to the geometry and loading symmetries. A 

pressure ranging from 31.36 to 36.56 N/mm2 is applied to the outer surface of 

the capsule throughout the compression test (Pharmatron 2010), while the pres-

sure on its inner surface is assumed to be 7.33 N/mm2. As far as the material 

properties are concerned, the Young‟s modulus and Poisson‟s ratio of the gela-

tine are 0.11 N/mm2 and 0.4 respectively (Markidou et al. 2005). For this particu-

lar example, the volume of the spherical capsule is fixed to 65.45 mm3 while the 

fill volume is equal to 34 mm3. These volumes are calculated using the same ex-

pression as the previous cases.  

 

With the above information and by expressing the objective function in terms of 

pressure and boundary curves, the complete optimisation problem is then writ-

ten in the form as below 

 

Max  𝜍T
𝑑 =

𝑃ext
 𝑟𝑑22

2  
𝑟 = 𝑎

 𝑟𝑃21
 
𝑟 = 𝑎

  𝑟𝑃21
 
𝑟 = 𝑎

−  𝑟𝑃21
 
𝑟 = 𝑏

 
 , 

 

(6.22) 

subject to 

1

3
  𝐗𝑖 𝑟 = 𝑎 ∙ 𝐧𝑖 𝒜𝑖

𝑀

𝑖=1

= 65.45, 

 

[mm3] 

 

  (6.23a)  
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1

3
  𝐗𝑖 𝑟 = 𝑏 ∙ 𝐧𝑖 𝒜𝑖

𝑀

𝑖=1

= 34, 

 

[mm3] 

 

(6.23b)  

2.5 ≤  𝑟𝑃21
 
𝑟 = 𝑎

+ 𝜇𝑟 ≤ 2.8, 
 

[mm] 

 

(6.23c)  

2.0 ≤  𝑟𝑃21
 
𝑟 = 𝑏

+ 𝜇𝑟 ≤ 2.3, 
 

[mm] 

 

(6.23d)  

 

1.25 ≤  𝑟𝑑22
 
𝑟 = 𝑎

+ 𝜇𝑟 ≤ 1.35, 
 

[mm] 

 

(6.23e) 

31.36 ≤ 𝑃ext ≤ 36.56, 
 

[N/mm2] 

 

(6.23f)  

 

where  𝑟𝑑22
 
𝑟 = 𝑎

 represents the radius of the contact area, while  𝑟𝑃21
 
𝑟 = 𝑎

= 𝑎 and 

 𝑟𝑃21
 
𝑟 = 𝑏

= 𝑏. The automatic optimisation was performed in 51 minutes after the 

initial feasible point is specified as 31.4 N/mm2, 1.28 mm, 2.7 mm and 2.1 mm 

for 𝑃ext ,  𝑟𝑑22
 
𝑟 = 𝑎

,  𝑟𝑃21
 
𝑟 = 𝑎

 and  𝑟𝑃21
 
𝑟 = 𝑏

 respectively. The optimal thickness of a 

capsule shell with maximum tensile strength is obtained after 9 iterations. As 

can be seen in Figure 6.6, it is evident that the thickness of the gelatine shell de-

creases gradually as the tensile strength increases. In other words, a capsule 

with thin shell has a high tensile strength. The result for the case discussed in 

this section shows that a spherical softgel capsule with diameter 5 mm and 

thickness 0.4252 mm has a maximum strength of 53.66 N/mm2. 
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Figure 6.6: Relationship between the thickness of a capsule shell and the tensile strength in 

each iteration during the optimisation process.  

 

 

6.3 Summary 

A methodology for the automatic design optimisation for pharmaceutical tablet 

shapes has been described in this chapter. A flat-faced round and a spherical 

shaped tablet, together with a spherical capsule, have been used as the initial 

shape in the optimisation problem. The boundary curves which define the initial 

shape have been used as the starting point for the numerical optimisation using 
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the Active Set method. The problem has been solved according to the corre-

sponding objective function, together with the boundary conditions associated 

with the geometry of the tablet and the required constraints. Based on the ob-

tained results, it can be seen that the PDE method can be used to address opti-

misation problems in tablet production. Several shapes of tablet with maximum 

strength and specific volume have been found using this approach.   
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Chapter 7 

Conclusions 

  

This chapter consists of a summary of the work and conclusions about the 

achievements that have been made. This chapter also provides suggestions for 

possible improvements and directions for future work that could be undertaken 

to further develop this line of research.  

7.1 Summary 

There are many parametric surface generation techniques available nowadays, 

such as the Bézier, Basis spline (B-spline) and Non-uniform rational B-splines 

(NURBS). There is also a technique based on the use of Partial Differential Equa-

tions (PDEs), known as the PDE method. Of these methods, the PDE method is 

the most convincing method for representing any object shape since it can gen-
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erate surfaces of complex geometries from a small number of parameters. The 

shape of the surfaces generated by this method is based on a boundary repre-

sentation and can easily be modified since it is characterised by data distributed 

along the boundaries. Thus, this work employs the PDE method for designing a 

parametric representation of tablets in various shapes and sizes. 

 

In tablet production, volume and surface area play an important role in deter-

mining the mechanical strength of the pharmaceutical tablet. Therefore, this 

work measured the volume and surface area of the generated PDE-based tab-

lets by using formulae related to parametric surfaces. The values of these pa-

rameters have been obtained numerically using MATLAB.  

 

The analytic solution of the elliptic PDE has been extended to a higher dimen-

sion in order to generate a solid representation of objects in general and tablets 

in particular. This is due to fact that the formulation of Bloor-Wilson PDE 

method generates only the surface of any given object, in this case, the tablet‟s 

surface. The generated solid tablet can be trimmed by changing the region de-

fined by independent variables. Additionally, the shape and size of these tablets 

have been modified by taking advantage of the characteristics of the extended 

PDE method.     
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In Chapter 5, the displacement component of a compressed PDE-based repre-

sentation of a flat-faced round tablet has been measured by using one of the 

solutions of the Love‟s stress function. The result is plotted in a Heckel diagram 

and compared with the experimental data. It is found that the theoretical 

Heckel‟s parameter is similar to the experimental one. However, the model 

seems to underestimate the initial volume of the particle bed. This may be at-

tributed to the lack of detailed information on powder behaviour at low pres-

sure. In the case of a spherical tablet, the deformation model of a granule, as 

found in the literature, has been used to measure the displacement of a com-

pressed tablet in that particular shape; hence the physics is related to the para-

metric shape of the tablet in question under specific circumstances. Again, the 

result obtained from the simulation of a compressed parametric spherical tablet 

is analysed using the Heckel model and has been compared with the theoretical 

one.   

 

A methodology for automatic design optimisation for pharmaceutical tablet 

shapes is also described in this work. The objective is to obtain an optimal shape 

and size for a particular tablet and also to predict the optimal thickness of a 

spherical capsule‟s shell, with maximum tensile strength. Given that the PDE 

method has proven useful in addressing optimisation problems in biological 

and industrial applications, the design optimisation of pharmaceutical tablets is 
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also carried out with the use of a similar approach. The problem has been 

solved according to the objective function, which is to maximise the tensile 

strength, together with the boundary conditions associated with the geometry 

of the tablet and the required constraints. 

7.2 Contributions 

This section discusses the contributions in detail and how the aims and objec-

tives are fulfilled. 

 

I. Pioneer Work Utilising the PDE Method in the Pharmaceutical Industry. 

The PDE method has been applied in many areas as a technique in CAGD. 

However, this method has never been introduced into the pharmaceutical in-

dustry. Thus, this work is the first attempt to utilise the PDE method as a 

technique to generate the geometry of pharmaceutical tablets. Several 

shapes of tablets such as flat-faced round, convex round, oval, spherical and 

oblong tablets have been generated using this method. Furthermore, com-

puter based simulation algorithm based on a surface representation model 

has been proposed in this thesis in order to simulate the powder compaction 

process, which is the most important stage in the tablet production. 
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II. Solid PDE-based Representation of an Object. 

Most objects in the physical world are best described by their volume. Even 

though the shape of such objects can be modelled by a surface representa-

tion, in many applications such as simulations of automotive productions or 

surgical operations, the information associated with the entire volume of 

such an object is more relevant than information about its surface. Therefore, 

solid modelling has become an important aspect in geometric modelling. 

 

Solid modelling has been performed by modifying the formulation of a geo-

metric surface. In this thesis, a new parameter, 𝑤, in domain 0 ≤ 𝑤 ≤ 1 has 

been introduced into the solution to a particular elliptic PDE. This parameter 

generates interior points of the PDE-based object from the spine towards its 

surface. In order to visualise the generated solid PDE-based representation of 

a tablet, a subroutine has been written in a MATLAB file. In the mesh genera-

tion process, all generated points are used as vertices of rectangular faces to 

create a uniform cuboid meshes, thereby forming the shape of the tablet.    

 

III. Mathematical Expressions for a Tablet’s Height and Radius.  

Simple expressions representing the height and the radius of a PDE-based 

representation of a tablet have been achieved by exploiting the formulation 

of the extended PDE method. These expressions are suitable for a tablet 
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which is formed by a set of circular-shaped boundary curves, with the sym-

metry axis coinciding with the 𝑧-axis. In this thesis, these expressions have 

been used to modify the initial shape of pharmaceutical tablets in order to 

achieve the required designs. Furthermore, they are used in the simulation as 

a tool for representing the deformation of elastic-plastic spherical tablets. 

This is due to the fact that the spine and radius of the PDE-based object are 

determined analytically.   

   

IV. Axial Displacement Model. 

This thesis has proposed a pressure-displacement model to study the com-

pressibility of pharmaceutical powders in a cylindrical die. The model has 

been developed by utilising the solution of the axisymmetric boundary value 

problem for a finite cylinder subject to a uniform axial load. The developed 

model has been applied to the PDE-based representation of a cylindrical tab-

let and the simulation result, which is presented in the Heckel graph, has 

been compared with the experimental results. It is found that the theoretical 

Heckel‟s parameter is quite similar to the experimental ones. However, the 

output of this model is sensitive to the change of the elastic properties, such 

as the Young‟s modulus and the Poisson‟s ratio.    
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V. Simulation Algorithm for Tablet Compaction. 

PDE-based simulations of compressed flat-faced round and spherical tablets 

have been carried out in Chapter 5. Different deformation models have been 

used in the simulation process to measure the displacement of a compressed 

PDE-based representation of flat-faced round and spherical tablets and 

hence relating the physics to the parametric shape of the tablet in question 

under some specific circumstances. The results obtained from the PDE-based 

simulation show that the analytic solution of the elliptic PDE can be utilised to 

represent the physical changes of the deformed object. 

 

VI. Simulation Results 

The Heckel plot of each simulation result shows a good agreement with the 

experimental and theoretical ones. The graphs show that the yield pressure of 

α-lactose monohydrate is within the range between 93.5 N/mm2 to 102.04 

N/mm2 while Köstrolith presents a yield pressure equal to 93.2314 N/mm2. 

These findings could be explored and offer a good point of reference for fu-

ture work in pharmaceutical research. Given that the study of powder com-

paction has become popular, the results shown in this thesis can be used as a 

benchmark by other researchers in the future for modelling powder compac-

tion.  
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VII. Shape Optimisation of PDE-based Representation of Tablets. 

This work has demonstrated the potential of the PDE method for improving 

old methodologies for designing pharmaceutical tablets. Optimal designs of 

tablets with particular volume and maximum strength have been obtained 

using an automatic design optimisation, which is performed by combining 

the PDE method with a standard method for numerical optimisation. The 

formulation of the optimisation problem discussed in this thesis involves as 

few design parameters as possible. Additionally, the concise parameterisation 

characteristics of the PDE method can be used to carry out automatic design 

optimisation in a practical setting, where the time taken for tablet testing can 

be significantly reduced and the future development of pharmaceutical tech-

nologies encouraged.   

7.3 Research Limitations 

The results and contributions presented in this thesis show that the research has 

some limitations, which are highlighted as follows: 

I. It is worth noting that the example of the tablet used throughout this thesis 

may give the reader the impression that the shape of the tablet is somehow 

restricted to round shapes, formed by circular-shaped boundary curves in 

particular. This is not the case, since different tablet shapes can easily be 
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formed using the PDE method by changing the shape of the boundary 

curves. However, the study of mechanical behaviour of other tablet shapes 

has not been carried out in this thesis. 

 

II. It is highlighted that the developed axial displacement model, which has 

been shown in Chapter 5, can be applied only to the Single Ended Com-

pression (SEC) process of powder in a cylindrical die. Moreover, the validity 

of this model is verified only at low pressure, where it indicates the defor-

mation of the powder. Furthermore, from the simulation results obtained, 

this model seems to underestimate the initial volume of the particle bed. 

Therefore, more experimental results are needed to verify the validity of this 

model.  

 

III. In this thesis, the deformation of a compressed spherical tablet is measured 

using a model developed for a spherical granule found in Antonyuk et al. 

(2010). This is mainly due to the fact that the author assumes that both tab-

lets and granules in that particular shape have similar mechanical behav-

iours.  

 

IV. There is a lack of data and information related to the properties of softgel 

capsules, such as the size, shell thickness and mechanical strength. This is 

because the study of soft gelatine capsules is still new in the pharmaceutical 

industry. Therefore, the optimisation of the spherical softgel capsule dis-
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cussed in Section 6.2.3 has been carried out by assuming the initial thick-

ness of the shell and its liquid pressure. 

7.4 Future Work 

For future work, broader plans have been made concerning the scope of this re-

search, which currently focuses on the compactness of flat-faced cylindrical and 

spherical tablets. The limitations previously discussed may be improved in the 

future with regard to continuation of this research domain. 

 

I. The axial displacement model developed in Chapter 5 is valid only for the 

specific compaction process, which in this case is SEC and the powder is 

compressed using flat-faced punches. The work in this thesis can be im-

proved by considering not only the SEC process but also the Double Ended 

Compression (DEC) process. In addition, other shapes of tablets, such as a 

convex round and oval tablets produced through the compaction process 

(SEC or DEC) using punches with curved surfaces, need to be considered. 

Therefore, a more general model for characterising the stress distribution 

can be developed. This can be achieved with the same approach as that 

used in Section 5.2, using a different set of boundary conditions.   

 

II. As mentioned in the previous section, the validity of the developed axial 

displacement model is verified on only one set of experimental data, which 
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considers α-lactose monohydrate. In the future, simulation of powder com-

pression using this model can be carried out to investigate whether the 

model is compatible with experimental data of other pharmaceutical pow-

ders, such as Microcrystaline Cellulose (MCC) and Hydroxypropylmethyl Cel-

lulose (HPMC). 

 

III. The design optimisation focused on one loading direction exclusively, where 

an axial load was applied to the tablets in a direction parallel to the 𝑧-axis. 

In the future, the optimisation with different loading conditions, such as 

diametrical or triaxial compression can be performed to obtain various 

shapes of tablet with maximum strength. 

 

IV. It is interesting to consider whether parameterisation and manipulation of 

the geometry of PDE-based representation of tablets, as well as tablet com-

pression, can be simulated interactively. This would involve the develop-

ment of an interactive platform, whereby the physical and mechanical prop-

erties of tablets could potentially be assessed under specific and controlled 

conditions. This platform may potentially be used by pharmaceutical scien-

tists with little programming knowledge and therefore may help reducing 

costs and time of experimental processes.         
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Appendix A 

Pseudocode for Cuboid Mesh Generation 

 

The pseudocode below shows how to generate a cuboid mesh for a PDE-based 

representation of an object. The process has been explained in detail on page 

(70 - 72). 

 

GenerateCuboidMesh(F) 

 

Input:   

Height (𝑕) and Radius (𝑟) of Boundary Curves  

Domain 𝑑𝑢, 𝑑𝑤, 𝑑𝑣  

 

Output: Cuboid Meshes 

 

1.     Initialise 𝑕 and 𝑟 

 Call PDEMethod (𝒉, 𝒓) to calculate PDE coefficients 

 Return (PDECoefficients)  
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2. Set Domain 𝑑𝑢 = 𝑑𝑤 = [0, 1]  and 𝑑𝑣 = [0, 2𝜋] 

         Call MeshGrid (𝒅𝒖, 𝒅𝒗, 𝒅𝒘) to generate vector 𝒖, 𝒗 and 𝒘 

 Return (𝒖, 𝒗,𝒘, 𝒔𝒙, 𝒔𝒚, 𝒔𝒛) where 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 are the number of points on 

𝑥-, 𝑦- and 𝑧-axis respectively. 

 

3. Calculate ExtendedPDE (𝒖, 𝒗,𝒘, PDECoefficient) to generate nodes 

 Return (Nodes) 

 

4. Generate Face1(Nodes) patch parallel to 𝑦𝑧-plane until 𝑠𝑥-layer  

 Generate Face2(Nodes) patch parallel to 𝑥𝑦-plane until 𝑠𝑧-layer  

Generate Face3(Nodes) patch parallel to 𝑧𝑥-plane until 𝑠𝑦-layer 
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Appendix B 

Experimental Data of Compressed Powder 

 

Tables below show a set of force-displacement data of compressed α-lactose 

monohydrate together with its properties, which were prepared at the Institute 

of Pharmaceutical Innovation (IPI), University of Bradford. The last two columns 

of the second table give the value of pressure and relative density. These values 

are used to plot the Heckel graph, as shown in Figure 5.3.  

 

Weight (g) 0.3 

True Density  1.3 

Compensation Test Equation: y = 0.00002x - 0.0267 
 

Force (N) Displacement (x) Thickness (mm) Relative Density (D) Pressure (MPa) Ln(1/1-D) 

3.891 -6.032 6.0588 0.484956734 0.049541751 0.663504 

3.891 -5.992 6.0188 0.488179692 0.049541751 0.669782 

3.891 -5.951 5.9778 0.491527988 0.049541751 0.676345 

7.782 -5.91 5.9369 0.494916043 0.099083501 0.683031 

7.782 -5.869 5.8959 0.498357708 0.099083501 0.689868 

11.672 -5.829 5.8559 0.501755208 0.14861252 0.696664 

15.563 -5.788 5.8150 0.505286228 0.19815427 0.703776 

19.454 -5.747 5.7741 0.508867297 0.247696021 0.711041 

23.345 -5.707 5.7342 0.512410112 0.297237772 0.718281 

31.126 -5.666 5.6933 0.516086186 0.396308541 0.725848 

35.017 -5.628 5.6554 0.519546792 0.445850291 0.733025 

42.799 -5.587 5.6146 0.523326353 0.544933793 0.740923 

50.581 -5.547 5.5747 0.527066744 0.644017294 0.748801 
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58.362 -5.506 5.5339 0.53095692 0.743088063 0.757061 

70.035 -5.465 5.4931 0.534897367 0.891713315 0.765497 

81.707 -5.425 5.4533 0.538797922 1.040325835 0.773919 

93.379 -5.384 5.4126 0.542856059 1.188938354 0.782757 

108.943 -5.346 5.3749 0.546662572 1.387105357 0.791119 

124.506 -5.305 5.3342 0.550832467 1.585259628 0.800359 

143.96 -5.265 5.2946 0.554953471 1.832955649 0.809576 

163.414 -5.224 5.2540 0.559243023 2.08065167 0.819262 

186.759 -5.183 5.2134 0.563590992 2.377889441 0.829175 

213.995 -5.146 5.1770 0.567559689 2.724668964 0.838311 

245.121 -5.105 5.1366 0.572021127 3.120977504 0.848681 

276.248 -5.064 5.0962 0.576553258 3.517298778 0.859328 

315.156 -5.027 5.0600 0.580680492 4.01269082 0.869122 

354.064 -4.986 5.0198 0.585333292 4.508082862 0.88028 

396.863 -4.945 4.9796 0.590052036 5.053016654 0.891725 

447.443 -4.904 4.9396 0.594828739 5.697021216 0.903445 

498.024 -4.864 4.9007 0.599561042 6.34103851 0.915194 

556.386 -4.823 4.8608 0.604474232 7.084126573 0.927539 

618.639 -4.785 4.8241 0.609079763 7.876756387 0.939252 

688.674 -4.744 4.7845 0.614120888 8.768469702 0.952231 

762.599 -4.704 4.7460 0.619105527 9.709712036 0.965233 

840.415 -4.663 4.7065 0.624294045 10.70049612 0.978948 

926.013 -4.622 4.6672 0.629549269 11.79036371 0.993035 

1019.392 -4.585 4.6321 0.634324133 12.97930206 1.006008 

1120.554 -4.544 4.5931 0.639706955 14.26733665 1.020838 

1233.387 -4.506 4.5574 0.644724163 15.70397102 1.034861 

1322.876 -4.475 4.5282 0.648883147 16.84338036 1.046636 

1416.255 -4.447 4.5020 0.652649649 18.03231871 1.057421 

1513.526 -4.419 4.4760 0.656448717 19.27081155 1.068419 

1618.577 -4.387 4.4461 0.660863209 20.60836243 1.081352 

1731.411 -4.359 4.4203 0.664711975 22.04500953 1.092765 

1848.135 -4.331 4.3947 0.668593998 23.53118566 1.104411 

1968.75 -4.299 4.3651 0.673125915 25.06690354 1.11818 

2093.256 -4.271 4.3396 0.677082846 26.65216316 1.130359 

2217.762 -4.243 4.3141 0.681086574 28.23742279 1.142836 

2338.377 -4.212 4.2855 0.685629999 29.77314067 1.157185 

2458.992 -4.184 4.2599 0.689748353 31.30885855 1.170372 

2575.717 -4.155 4.2332 0.694093156 32.7950474 1.184475 

2692.441 -4.127 4.2075 0.698327038 34.28122353 1.198412 

2813.056 -4.099 4.1820 0.702599814 35.81694141 1.212677 

2929.781 -4.071 4.1563 0.706938431 37.30313027 1.227373 

3046.505 -4.043 4.1306 0.711330967 38.78930639 1.242474 

3163.229 -4.014 4.1040 0.715952842 40.27548252 1.258615 

3276.063 -3.986 4.0782 0.720472215 41.71212963 1.274654 

3385.006 -3.961 4.0554 0.724526561 43.09923498 1.289264 

3493.948 -3.936 4.0326 0.7286268 44.48632761 1.30426 

3599 -3.908 4.0067 0.733336604 45.82389122 1.321768 

3700.161 -3.883 3.9837 0.737566265 47.11191307 1.337757 

3793.541 -3.858 3.9606 0.741874148 48.30086416 1.354308 

3886.92 -3.833 3.9374 0.746232653 49.48980251 1.371337 

3972.518 -3.807 3.9132 0.75086435 50.5796701 1.389758 

4058.116 -3.782 3.8899 0.755359666 51.66953768 1.407966 

4139.823 -3.76 3.8695 0.759335261 52.70986352 1.42435 

4217.639 -3.739 3.8501 0.763170084 53.7006476 1.440413 
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4295.456 -3.713 3.8256 0.768046345 54.69144442 1.461218 

4369.381 -3.692 3.8061 0.77198567 55.63268675 1.478347 

4439.416 -3.673 3.7885 0.775571905 56.52440007 1.4942 

4505.559 -3.651 3.7678 0.779828118 57.3665589 1.513347 

4563.921 -3.629 3.7470 0.784163871 58.10964696 1.533236 

4622.283 -3.61 3.7291 0.78791374 58.85273503 1.550762 

4672.864 -3.591 3.7112 0.791732843 59.49675232 1.568934 

4719.554 -3.572 3.6931 0.795605914 60.09122786 1.587705 

4758.462 -3.554 3.6759 0.799333412 60.58661991 1.606111 

4789.588 -3.535 3.6575 0.803349753 60.98292845 1.626329 

4812.933 -3.516 3.6390 0.807441188 61.28016622 1.647354 

4828.497 -3.5 3.6233 0.8109374 61.47833322 1.665677 

4836.278 -3.482 3.6054 0.814950983 61.57740399 1.687135 

4836.278 -3.466 3.5894 0.818583658 61.57740399 1.706961 

4832.387 -3.45 3.5733 0.82226677 61.52786224 1.727472 

4820.715 -3.435 3.5581 0.82578716 61.37924972 1.747478 

4805.151 -3.419 3.5418 0.829590208 61.18108272 1.769549 

4781.807 -3.406 3.5283 0.83275657 60.88385768 1.788305 

4754.571 -3.391 3.5128 0.836441665 60.53707815 1.810586 

4719.554 -3.378 3.4991 0.839716668 60.09122786 1.830812 

4680.646 -3.363 3.4833 0.843520284 59.59583582 1.854829 

4633.956 -3.35 3.4694 0.846908049 59.00136028 1.876717 

4587.266 -3.337 3.4554 0.850323137 58.40688473 1.899277 

4532.795 -3.325 3.4424 0.853556456 57.71333842 1.921115 

4474.433 -3.312 3.4282 0.857083841 56.97025036 1.945497 

4412.18 -3.303 3.4179 0.859652893 56.17762054 1.963637 

4349.927 -3.29 3.4037 0.863250687 55.38499073 1.989606 

4279.892 -3.281 3.3933 0.865896612 54.49327742 2.009144 

4209.857 -3.272 3.3829 0.868558807 53.6015641 2.029196 

4139.823 -3.262 3.3715 0.871495829 52.70986352 2.051794 

4065.897 -3.253 3.3610 0.874212859 51.76860845 2.073164 

3991.972 -3.243 3.3495 0.87720869 50.82736612 2.097269 

3921.938 -3.234 3.3391 0.879941001 49.93566554 2.119772 

3848.012 -3.225 3.3287 0.882711028 48.99441047 2.143115 

3774.087 -3.218 3.3202 0.884965141 48.05316814 2.16252 

3704.052 -3.209 3.3098 0.887746068 47.16145482 2.186992 

3630.127 -3.203 3.3023 0.889756486 46.22021249 2.205064 

3563.983 -3.196 3.2940 0.892004629 45.37804092 2.225667 

3497.839 -3.19 3.2867 0.893992072 44.53586936 2.244241 

3435.586 -3.184 3.2794 0.895967129 43.74323955 2.263048 

3373.333 -3.178 3.2722 0.897950932 42.95060973 2.282302 

3318.862 -3.171 3.2641 0.90017634 42.25706342 2.30435 

3264.39 -3.165 3.2570 0.902135741 41.56350437 2.324174 

3217.701 -3.159 3.2501 0.90406039 40.96904156 2.344036 

3171.011 -3.153 3.2431 0.905993273 40.37456602 2.364389 

3132.103 -3.149 3.2383 0.907330062 39.87917398 2.378711 

3093.195 -3.143 3.2316 0.909233174 39.38378194 2.399461 

3062.068 -3.137 3.2249 0.911100319 38.98746066 2.420247 

3030.942 -3.134 3.2213 0.912124893 38.59115212 2.431839 

3007.597 -3.127 3.2139 0.914244078 38.29391435 2.45625 

2984.252 -3.124 3.2104 0.915231372 37.99667658 2.46783 

2968.689 -3.118 3.2041 0.917034159 37.79852231 2.489326 

2953.125 -3.115 3.2008 0.917982857 37.60035531 2.500827 

2941.453 -3.109 3.1945 0.919774104 37.45174279 2.522909 
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2933.671 -3.106 3.1914 0.920683579 37.35265928 2.53431 

2929.781 -3.099 3.1843 0.922730002 37.30313027 2.56045 

2929.781 -3.093 3.1783 0.924471935 37.30313027 2.583251 

2933.671 -3.09 3.1754 0.925322699 37.35265928 2.594579 

2941.453 -3.084 3.1695 0.927028921 37.45174279 2.617692 

2953.125 -3.08 3.1658 0.928131881 37.60035531 2.632923 

2968.689 -3.074 3.1601 0.929802691 37.79852231 2.656445 

2988.143 -3.071 3.1575 0.930571549 38.04621833 2.667459 

3011.488 -3.065 3.1519 0.932205134 38.3434561 2.691269 

3034.833 -3.062 3.1494 0.932954918 38.64069387 2.70239 

3065.959 -3.055 3.1430 0.934847971 39.03700241 2.731032 

3100.976 -3.052 3.1407 0.935532474 39.4828527 2.741594 

3135.994 -3.046 3.1354 0.937113757 39.92871573 2.766428 

3178.792 -3.043 3.1333 0.937755006 40.47363679 2.776677 

3221.592 -3.037 3.1281 0.93929708 41.01858331 2.801763 

3268.281 -3.033 3.1251 0.94021869 41.61304613 2.817062 

3318.862 -3.027 3.1201 0.941721912 42.25706342 2.842529 

3369.442 -3.024 3.1181 0.942322446 42.90106798 2.852887 

3427.804 -3.018 3.1133 0.943785229 43.64415604 2.878576 

3486.167 -3.015 3.1114 0.944341153 44.38725684 2.888514 

3548.42 -3.012 3.1097 0.944874091 45.17988665 2.898135 

3610.673 -3.005 3.1039 0.946625974 45.97251647 2.930431 

3676.816 -3.002 3.1022 0.947137742 46.8146753 2.940066 

3746.851 -2.996 3.0976 0.94854403 47.70638861 2.967029 

3816.885 -2.993 3.0960 0.94903402 48.5980892 2.976597 

3886.92 -2.986 3.0904 0.950753493 49.48980251 3.010917 

3960.845 -2.983 3.0889 0.951221803 50.43104485 3.020472 

4034.771 -2.977 3.0844 0.952616219 51.37229991 3.049475 

4108.696 -2.974 3.0829 0.953086367 52.31354224 3.059447 

4182.622 -2.968 3.0784 0.954486259 53.25479731 3.089741 

4256.547 -2.965 3.0768 0.954958254 54.19603964 3.100166 

4326.582 -2.961 3.0742 0.955765683 55.08775296 3.118254 

4396.616 -2.955 3.0696 0.957197735 55.97945354 3.151164 

4466.651 -2.952 3.0680 0.957696701 56.87116686 3.16289 

4532.795 -2.949 3.0664 0.958220506 57.71333842 3.17535 

4598.938 -2.943 3.0617 0.959684321 58.55549725 3.211015 

4661.191 -2.939 3.0589 0.960548636 59.34812707 3.232687 

4719.554 -2.936 3.0571 0.961124489 60.09122786 3.247391 

4777.916 -2.93 3.0523 0.962646275 60.83431593 3.287323 

4828.497 -2.927 3.0503 0.963273796 61.47833322 3.304265 

4875.186 -2.924 3.0482 0.963926749 62.07279603 3.322204 

4917.985 -2.921 3.0461 0.964605225 62.61772982 3.341191 

4956.893 -2.918 3.0438 0.965309336 63.11312187 3.361285 

4988.02 -2.911 3.0375 0.967336102 63.50944314 3.421485 

5019.146 -2.908 3.0351 0.968093848 63.90575168 3.444956 

5046.382 -2.905 3.0326 0.968877637 64.2525312 3.469829 

5069.727 -2.902 3.0301 0.9696876 64.54976897 3.496198 

5085.29 -2.899 3.0274 0.970548812 64.74792324 3.525021 

5100.853 -2.896 3.0247 0.971411555 64.94607751 3.554753 

5112.525 -2.892 3.0210 0.972622724 65.09469003 3.598042 

5120.307 -2.889 3.0181 0.973539354 65.19377354 3.632097 

5128.089 -2.886 3.0153 0.974457715 65.29285704 3.66742 

5128.089 -2.886 3.0153 0.974457715 65.29285704 3.66742 

5128.089 -2.883 3.0123 0.975428206 65.29285704 3.706156 
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5124.198 -2.88 3.0092 0.976425882 65.24331529 3.747606 

5120.307 -2.877 3.0061 0.977425602 65.19377354 3.790939 

5112.525 -2.877 3.0060 0.97747621 65.09469003 3.793183 

5100.853 -2.874 3.0027 0.978528794 64.94607751 3.841042 

5089.181 -2.871 2.9995 0.979583647 64.797465 3.891419 

5073.618 -2.871 2.9992 0.97968531 64.59931072 3.896411 

5058.054 -2.867 2.9949 0.981095625 64.40114372 3.968362 

5042.491 -2.864 2.9915 0.982181571 64.20298945 4.027522 

5023.037 -2.864 2.9912 0.98230933 63.95529343 4.034718 

4999.692 -2.861 2.9877 0.983449195 63.65805566 4.101321 

4976.347 -2.861 2.9872 0.983602907 63.36081789 4.110651 

4953.002 -2.858 2.9838 0.984745778 63.06358012 4.182899 

4925.767 -2.858 2.9832 0.984925581 62.71681333 4.194756 

4898.531 -2.855 2.9797 0.986097283 62.3700338 4.275671 

4867.404 -2.855 2.9790 0.986303351 61.97371253 4.290604 

4836.278 -2.852 2.9754 0.987504155 61.57740399 4.382359 

4805.151 -2.852 2.9748 0.987710811 61.18108272 4.399035 

4770.134 -2.849 2.9711 0.988940949 60.73523242 4.504506 

4735.117 -2.849 2.9704 0.989174114 60.28938213 4.525815 

4696.209 -2.849 2.9696 0.989433317 59.79399009 4.550049 

4657.301 -2.845 2.9648 0.991027893 59.29859805 4.713635 

4618.393 -2.845 2.9641 0.991288068 58.80320601 4.743062 

4579.484 -2.845 2.9633 0.991548387 58.30780123 4.773398 

4540.577 -2.845 2.9625 0.99180883 57.81242192 4.804698 

4497.777 -2.845 2.9617 0.99209549 57.2674754 4.840322 

4458.87 -2.845 2.9609 0.99235622 56.77209609 4.873863 

4419.961 -2.842 2.9571 0.993624118 56.27669131 5.055233 

4381.053 -2.842 2.9563 0.993885658 55.78129927 5.097118 

4346.036 -2.842 2.9556 0.994121162 55.33544898 5.136396 

4311.019 -2.842 2.9549 0.994356776 54.88959869 5.1773 

4276.001 -2.842 2.9542 0.994592509 54.44373567 5.21997 

4244.875 -2.842 2.9536 0.994802136 54.04742712 5.259508 

4217.639 -2.842 2.9531 0.994985638 53.7006476 5.295449 

4190.403 -2.842 2.9525 0.995169206 53.35386808 5.332745 

4167.059 -2.842 2.9520 0.995326597 53.05664304 5.365868 

4151.495 -2.842 2.9517 0.995431561 52.85847604 5.388584 

4135.932 -2.842 2.9514 0.995536541 52.66032177 5.411831 

4124.26 -2.842 2.9512 0.995615288 52.51170925 5.429631 

4116.478 -2.842 2.9510 0.995667798 52.41262575 5.441679 

4108.696 -2.842 2.9509 0.995720313 52.31354224 5.453875 

4108.696 -2.839 2.9479 0.99673364 52.31354224 5.724079 

4108.696 -2.839 2.9479 0.99673364 52.31354224 5.724079 

4108.696 -2.839 2.9479 0.99673364 52.31354224 5.724079 

4116.478 -2.839 2.9480 0.996681018 52.41262575 5.708097 

4124.26 -2.839 2.9482 0.996628402 52.51170925 5.692368 

4135.932 -2.839 2.9484 0.996549494 52.66032177 5.669234 

4147.604 -2.839 2.9487 0.996470599 52.80893429 5.646627 

4163.168 -2.839 2.9490 0.996365415 53.00710129 5.61726 

4178.731 -2.839 2.9493 0.996260261 53.20525556 5.58874 

4198.185 -2.836 2.9467 0.997143007 53.45295158 5.857986 

4213.749 -2.836 2.9470 0.997037682 53.65111858 5.821783 

4237.093 -2.836 2.9474 0.99687975 53.94834362 5.769842 

4256.547 -2.836 2.9478 0.996748173 54.19603964 5.728538 

4279.892 -2.836 2.9483 0.996590325 54.49327742 5.681138 
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4307.128 -2.836 2.9488 0.996406232 54.84005694 5.628554 

4330.473 -2.833 2.9463 0.997262896 55.13729471 5.900855 

4357.708 -2.833 2.9469 0.99707856 55.4840615 5.835679 

4384.944 -2.833 2.9474 0.996894286 55.83084102 5.774512 

4416.07 -2.83 2.9450 0.997699067 56.22714956 6.074441 

4447.197 -2.83 2.9456 0.997488211 56.62347084 5.98676 

4478.323 -2.83 2.9463 0.99727745 57.01977938 5.906186 

4509.45 -2.83 2.9469 0.997066772 57.41610065 5.831652 

4540.577 -2.827 2.9445 0.997871825 57.81242192 6.15249 

4575.594 -2.827 2.9452 0.997634541 58.25827221 6.046783 

4614.502 -2.827 2.9460 0.997371024 58.75366426 5.941161 

4649.519 -2.827 2.9467 0.997133979 59.19951455 5.854831 

4688.427 -2.823 2.9435 0.998225414 59.69490659 6.334188 

4731.226 -2.823 2.9443 0.997935208 60.23984038 6.182726 
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Appendix C 

Coefficients of the Love’s Stress Function in Spherical 

Coordinates 

 

For the case of a compressed spherical softgel capsule, a Biharmonic Love‟s stress func-

tion in spherical coordinates, 𝑋 𝑟, 𝜃 , is used to find the expression for the radial dis-

placement, 𝜇𝑟  . The boundary conditions in Equations (6.21a)-(6.21c) have been solved 

using MAPLE to find the coefficients in Equation (6.20). These are   

𝐵1 = −
3

4

 −𝑓0 + 𝑃int − 𝑃ext   𝑎𝑏 
3

 𝑏3 − 𝑎3  2𝛾 − 1 
 , 

 

(C.1) 

𝐵2 =
5

24

𝑓1𝑎
4𝑏5

 𝑏5 − 𝑎5  3𝛾 − 2 
 ,               

 

(C.2) 

𝐷1 = −
3

10

 𝑃int − 𝑃ext  𝑏
3 − 𝑓0𝑎

3

 𝑏3 − 𝑎3  𝛾 + 1 
 ,   

 

(C.3) 

𝐷2 =
5

28

𝑓1𝑎
4

 𝑏5 − 𝑎5  𝛾 + 1 
 ,                  

 

(C.4) 
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𝐴𝑛−1 =  

.
𝑓𝑛 2𝑛 + 3  𝑎𝑛+4  𝑏5 2𝑛 + 1  𝑛4 + 2𝑛3 − 𝑛2 − 2𝑛 + 4 − 4𝛾2 

.
                                         

+𝑎𝑛+6𝑏3𝑛 𝑛 + 2  2𝑛 − 1  −𝑛2 − 2𝑛 − 2𝛾 + 1 + 𝑎5−𝑛𝑏2𝑛+4 2 𝑛2 + 𝑛 + 1      

   𝑛2 − 2 + 2𝑛 𝑛 + 2  2𝑛 − 1 𝛾 + 4 2𝑛 + 1 𝛾2  + 𝐵𝑛+1 𝑛 + 2   𝑎𝑏5 + 𝑏𝑎5   

 2𝑛 + 1 2 6𝑛 + 2 − 4𝛾 2𝑛 + 1   𝑛4 + 2𝑛3 − 𝑛2 − 2𝑛 + 4 − 4𝛾2 + 𝑛𝑎3𝑏3     

 

 𝑛2 − 1  𝑛 + 2  2𝑛 − 1  2𝑛 + 3  8𝛾 2𝑛 + 1 − 12𝑛 − 4 +  𝑎2−2𝑛𝑏2𝑛+4          

+ 𝑎2𝑛+4𝑏2−2𝑛  24𝑛 + 8 − 16𝛾 2𝑛 + 1   𝛾2 2𝑛 + 1 2 − 𝑛4 − 2𝑛3 − 3𝑛2 − 2𝑛  

 
.

  −1  
.
 ÷  

.
 2𝑛3 + 7𝑛2 + 6𝑛   2𝑛 + 1 2 4𝛾2 − 𝑛4 − 2𝑛3 + 𝑛2 + 2𝑛 − 4  𝑎𝑏5     

.
  

 +𝑏𝑎5 + 2𝑛 2𝑛 − 1  2𝑛 + 3  𝑛 − 1  𝑛 + 1  𝑛 + 2 𝑎3𝑏3 + 4 𝑎2−𝑛𝑏2𝑛+4            

 
.

  +𝑎2𝑛+4𝑏2−𝑛  𝑛4 + 2𝑛3 + 3𝑛2 + 2𝑛 + 1 − 𝛾2 2𝑛 + 1 2  
.

 ,                                      

 

 

 

 

(C.5) 

𝐵𝑛−1 =  

.
𝑓𝑛 2𝑛 − 1  𝑎𝑛+4  𝑏3 2𝑛 + 3  𝑛 + 1  𝑛 − 1 + 𝑎𝑛+6𝑏 2𝑛 + 1  −𝑛2 − 2𝑛 

.
                

 
.

  −2𝛾 + 1 + 2𝑎3−𝑛𝑏2𝑛+4 𝑛2 + 𝑛 + 2𝑛𝛾 + 1 + 𝛾  
.

 ÷  

.
 2𝑛 − 3   2𝑛 + 1 2            

.
  

 𝑛4 + 2𝑛3 − 𝑛2 − 2𝑛 + 4 − 4𝛾2  𝑎𝑏5 + 𝑏𝑎5 − 2𝑛 2𝑛 − 1  2𝑛 + 3  𝑛 − 1    

 𝑛 + 1  𝑛 + 2 𝑎3𝑏3 + 4 𝛾2 2𝑛 + 1 2 − 𝑛4 − 2𝑛3 − 3𝑛2 − 2𝑛 − 1                     

 
.

  𝑎2−2𝑛𝑏2𝑛+4 + 𝑎2𝑛+4𝑏2−2𝑛  
.

 ,                                                                                        

 

 

 

 

(C.6) 

𝐷𝑛+1 =  

.
𝑓𝑛 2𝑛 + 3  𝑎𝑛−5𝑏  2𝑛 + 1  −𝑛2 + 2 − 2𝛾 + 2𝑎𝑛+4𝑏2−2𝑛 −𝑛2 − 𝑛 + 2𝑛𝛾 

.
                

 
.

  −1 + 𝛾 + 𝑎3−𝑛𝑏3𝑛 2𝑛 − 1  𝑛 + 2  
.

 ÷  

.
 2𝑛 + 5   2𝑛 + 1 2 𝑛4 + 2𝑛3 − 𝑛2    

.
  

 −2𝑛 + 4 − 4𝛾2  𝑎𝑏5 + 𝑏𝑎5 + 2𝑛𝑎3𝑏3 4𝑛5 + 12𝑛4 + 𝑛3 − 18𝑛2 − 5𝑛 + 6      

 
.

 +4 𝑎2−2𝑛𝑏2𝑛+4 + 𝑎2𝑛+4𝑏2−2𝑛  𝑛4 + 2𝑛3 + 3𝑛2 + 2𝑛 + 1 − 𝛾2 2𝑛 + 1 2  
.

 ,    

 

 

 

 

(C.7) 
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𝐶𝑛+1 =  

.
−𝑓𝑛 𝑎

𝑛+6𝑏2−2𝑛   4  2𝑛 + 1  2𝑛 − 1 𝛾2 + 2 𝑛 + 1  𝑛 − 1  2𝑛 − 1  2𝑛 + 3 𝛾
.

           

 +2 2𝑛 − 1  −𝑛4 + 3𝑛3 − 2𝑛2 − 𝑛 + 1  + 𝑎5−𝑛𝑏3 𝑛 + 1  𝑛 − 1  2𝑛 − 1          

 2𝑛 + 3  −𝑛2 + 2 − 2𝛾 + 𝑎3−𝑛𝑏5 2𝑛 − 1  2𝑛 + 1  𝑛4 + 2𝑛3 − 𝑛2 − 2𝑛       

  +4 − 4𝛾2  + 𝐷𝑛−1 𝑛 − 1   𝑎𝑏5 + 𝑏𝑎5   2𝑛 + 1 2 −6𝑛 − 4 + 4𝛾 2𝑛 + 1   𝑛4    

 +2𝑛3 − 𝑛2 − 2𝑛 + 4 − 4𝛾2 + 8 𝑎2−2𝑛𝑏2𝑛+4 + 𝑎2𝑛+4𝑏2−2𝑛  3𝑛 + 2 − 𝛾 4𝑛        

  +2   𝑛4 + 2𝑛3 + 3𝑛2 + 2𝑛 + 1 − 𝛾2 2𝑛 + 1 2 + 4𝑎3𝑏3𝑛 𝑛 + 1  𝑛 + 2  2𝑛 − 1       

 
.

  2𝑛 + 3  𝑛 − 1  3𝑛 + 2 − 2𝛾 2𝑛 + 1   
.

 ÷  

.
 2𝑛3 − 𝑛2 − 2𝑛 + 1 

.
   2𝑛 + 1 2   −𝑛4   

 −2𝑛3 + 𝑛2 + 2𝑛 − 4 + 4𝛾2  𝑎𝑏5 + 𝑏𝑎5 + 2𝑛 2𝑛 − 1  2𝑛 + 3  𝑛2 − 1  𝑛 + 2 𝑎3𝑏3 

 
.

 + 𝑎2−2𝑛𝑏2𝑛+4 + 𝑎2𝑛+4𝑏2−2𝑛  4𝑛4 + 8𝑛3 + 12𝑛2 + 8𝑛 + 4 − 𝛾2 2𝑛 + 1 2  
.

 ,    

 

 

 

 

 

 

 

(C.8) 

where 𝑓0, 𝑓1 , … , 𝑓𝑛  are coefficients of the expansion of an infinite series of Legendre 

polynomials. The expression for the radial displacement, shown in Equation (6.20), to-

gether with coefficients in Equations (C.1) – (C.8) is used in an optimisation process, 

which is discussed in Section 6.2.3, in order to find the optimal thickness of a spherical 

capsule.  
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