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Abstract 

Various forecasting tools, based on historical data, exist for planners of national 

networks that are very effective in planning national interventions to ensure energy 

security, and meet carbon obligations over the long term. However, at a local community 

level, where energy demand patterns may significantly differ from the national picture, 

planners would be unable to justify local and more appropriate intervention due to the 

lack of appropriate planning tools.  

In this research, a new methodology is presented that initially creates a virtual 

community of households in a small community based on a survey of a similar 

community, and then predicts the energy behaviour of each household, and hence of the 

community. It is based on a combination of the statistical data, and a questionnaire 

survey. The methodology therefore enables realistic predictions and can help local 

planners decide on measures such as embedding renewable energy and demand 

management. 

Using the methodology developed, a study has been carried out in order to understand 

the patterns of electricity consumption within UK households. The methodology 

developed in this study has been used to investigate the incentives currently available to 

consumers to see if it would be possible to shift some of the load from peak hours. 

Furthermore, the possibility of using renewable energy (RE) at community level is also 

studied and the results presented. Real time pricing information was identified as a 

barrier to understanding the effectiveness of various incentives and interventions. A new 

pricing criteria has therefore been developed to help developers and planners of local 

communities to understand the cost of intervention. Conclusions have been drawn from 

the work.  Finally, suggestions for future work have been presented. 
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Chapter 1 

Introduction 

1.1 Background 

Estimating load profile data is vital for planning electricity distribution networks and 

optimal generation capacity. Energy planners require this data in order to design and 

operate an optimal energy system from an economic, environmental and technical 

perspective. Electricity demand models are often used to forecast the demand at the 

national level.  

Various forecasting tools, based on historical data, exist for planners of national 

networks that are very effective in planning national interventions to ensure energy 

security, and meet carbon obligations over the long term. However, at a local 

community level, where energy demand patterns may significantly differ from the 

national picture, planners would be unable to justify local and more appropriate 

intervention due to the lack of appropriate planning tools. 

The most typical application of electricity demand models is the short and long term 

forecasting of future use [1]. Intuitively, direct measurements look like being the best, 

observable way to collect quantitative information about residential energy 

consumption. Indeed, measurements of total residential electricity use in individual 

households can be obtained quite easily, but to determine the proportions of different 

end-uses, specific measurement devices have to be installed. Therefore, most 

quantitative studies of household electricity look at total electricity demand. 

However, following the growth of rules in order to increase energy efficiency there is 

better attention to detail regarding what people essentially use electricity for. This 
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approach is not cost effective due to the equipment and high processing costs [2]. 

Moreover, a significant amount of time would be required to build up such a system. 

Load modelling could be a viable alternative to this approach. 

Load balancing is also a major concern for several countries, particularly where the 

demand is close to the available generation capacity. This is represented in the 

deregulated market by higher pricing during peak periods. Continuous growth in peak 

load raises the possibility of power failure, and raises the marginal cost of supply. 

The lack of domestic consumers’ awareness of the dramatic rises occurring as a result 

of simultaneous high energy use is one of the key reasons contributing to increases in 

load peaks. 

In the UK the domestic sector accounts for about one third of the total electricity use 

[3]. It contributes the largest peak demand, particularly in the winter season, which 

has consequences for the power infrastructures. This ratio is expected to increase 

considerably in the coming years.  

Under competitive electricity market conditions, if reasonable financial incentives are 

provided to consumers, they could be encouraged to modify the style of their 

consumption in response of financial incentives [4]. Consequently we can achieve the 

objective of making the load more level and recover the stability and efficiency of the 

power system.  

As a result of fossil fuels becoming ever more expensive, renewable energy power 

use has been increasing rapidly in the UK over recent years [5]. Even though 

the availability of hydroelectric power is practically predictable and controllable, 

renewable power (solar and wind) are only available when the weather permits. It is 

therefore problematic to match supply to demand. A way to incorporate renewable 
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energy resources into the system is to combine them with storage elements to plug 

the supply gap when the renewables are not available, or to do peak load shaving [6]. 

The renewable energy generated in a local community rather than on a national scale 

can be considered as one of the key solutions to the current global challenges but it is 

also vital for renewable energy projects to be developed by or with the close 

involvement of local people, and to ensure that a local community experiences 

benefits within relatively short time periods. Instead of producing a large amount of 

energy in a few places and using very inefficient long distance transmission cables to 

deliver it, it is possible to produce smaller amounts of power in many places from the 

most appropriate renewable sources. Energy can then be fed back into the distribution 

network, or potentially consumed locally via localized distribution networks.  

Future smart grids with disperse renewable resources provide a wide range of new 

features including smart metering, demand side management and integration of 

storage elements. One of the drivers of smart grid deployment is the optimal 

integration of embedded generation, as well as of energy storage systems and demand 

side management (DSM) systems [7]. Smart grids will give customers the ability to 

control energy consumption, using demand response. Such factors as peak shifting 

and overall conservation will impact on a demand response system. 

With the developing electricity market, storage elements, smart grids and the drive 

for lower carbon generation technologies there is the opportunity to support consumer 

participation in the electricity market in future, especially if they have energy 

production of their own. So, the energy market is becoming more attractive and 

competitive. Therefore, local energy solutions should be introduced to ensure an 

efficient use of various energy resources and infrastructure. 
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1.2 Research objectives 

The objectives of this thesis are:  

 To develop a methodology that enables the prediction of realistic electricity 

load profiles at half hourly intervals for local residential communities in order 

to help local planners decide on measures such as embedding renewable 

energy and demand management.  

 To investigate incentives available to consumers that help in load shaving. 

This includes the use of electricity storage elements on a local residential 

community, rather than national scale. 

 To investigate the potential and optimization of residential tariffs schemes that 

could influence consumer behaviour and how these tariffs can be used to 

achieve cost effective peak demand reduction via load shifting. 

 To increase knowledge and understanding of the patterns of electricity 

consumption and load curves within UK households (which is of use to 

electricity producers and distributers) in order to study measures that could be 

used to reduce energy consumption.  

 To investigate the use of renewable energy generated  at local residential 

community level. 

 Investigate measures to help planners understand the cost of intervention in 

the domestic energy sector. 

1.3 Thesis organization 

The thesis is divided into eight chapters starting with the introduction. In chapter 2, a 

literature review is presented, discussing the energy trends in the UK domestic sector. 

A review of the various techniques that have been developed through the years for 
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modelling residential sector energy consumption is provided. Factors affecting 

electricity demand and consumers’ behaviour, and occupancy patterns are explained. 

Chapter 3 describes two cases to demonstrate the use of the traditional load profile 

tools. The first case focuses on the use of the regression analysis technique to develop 

a model for household electricity consumption on a monthly basis; the model 

considers the results of previous study and monthly consumption derived from 

electricity bills as input data. This is followed by the second case which describes and 

investigates the analysis of electric energy data obtained from a monitoring study of 

the electricity consumption of a single-family household with two adults and 

children. The results are presented and discussed. 

In chapter 4, a methodology for generating realistic load profiles at a residential 

community level and its key data sources are presented. The results are presented and 

discussed. 

Chapter 5 presents and discusses the investigation of economy7 tariffs as an incentive 

to generate demand response and shows its impact on consumer behaviour in UK 

domestic buildings using the results presented in chapter 4. This is followed by an 

investigation of an optimization of residential tariffs scheme which could influence 

consumers’ behaviour to achieve cost effective peak demand reduction via load 

shifting. 

Chapter 6 contains an evaluation and investigation of the impact of using renewable 

energy on local communities based on the methodology presented in chapter 4. This 

is followed by an investigation of optimisation of residential tariffs schemes that 

could influence consumers’ behaviour. The results are presented and discussed. 
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Chapter 7 demonstrates pricing criteria to help developers and planners of local 

communities to understand the cost of intervention in order to evaluate where the 

load is when the prices are high. The results are presented and discussed. 

Finally, in chapter 8 a summary and conclusion of the thesis are presented, as well as 

suggestions for future work. 
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Chapter 2 

Literature Review 

2.1 Background 

Adequate information on the electricity consumption pattern of consumers is 

necessary as a basis for assessing the influence of any initiative to reduce overall 

electricity use and determine the amount of overall reduction which occurs during 

different times of the day. With this information, utilities would be able to develop 

trading and marketing strategies and have the ability to design specific tariff choices 

for the various types of consumers. This information could also be used to better 

address the operation of the distribution infrastructure, its future enhancement, and 

for integrated system planning by considering the load management alternatives that 

can be used to effectively meet system peak demand. 

The demand characteristic is the most important factor for analyzing consumers’ 

information. Load research has been widely used in different utilities in many 

countries to work out the load characteristics of consumers. Information on the 

consumers’ consumption patterns can be gathered through the use of the daily load 

profile.  

In this chapter, energy trends in the UK domestic sector are presented, and the 

various modelling techniques that have been developed through the years for 

modelling residential sector energy consumption are reviewed.  
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2.2 Literature Review 

Over the years various studies have been conducted on the topic of residential 

electricity demand. Due to the wide range of topics, this literature review has been 

arranged so that key reference papers are presented. 

2.2.1 Energy Trends in the UK Domestic Sector 

In the UK, there are approximately 26 million houses, and the number of households 

in the UK increased by 17 percent between 1990 and 2010 [8-10]. In 2010, final UK 

electricity consumption was 328 TWh, where the domestic energy use accounted for 

about 36 percent% (119 TWh) of total UK final energy consumption [9]. Figure 2.1 

below breaks this down by key economic sector. 

 

Figure 2.1 Sector breakdown of electricity consumption in 2010 [9] 

The fuel mix for domestic energy consumption has significantly changed since 1970 

when 39 percent of consumption was coal, 24 percent natural gas and 18 percent 

Domestic, 119, 
36% 

Industry, 104, 
32% 

Services, 105, 
32% 

Sector breakdown of electricity consumption 2010 
(328TWh) 



 

9 

 

electricity; this changed to 8 percent coal, 63 percent gas and 18 percent electricity in 

1990; and to 1 percent coal, 69 percent natural gas and 21 percent electricity in 2010, 

as shown in figure 2.2. This means that residential use of electricity has grown by 

16.7 percent from 1990 to 2010 [9]. This indicates that residential electricity use is a 

significant portion of the total domestic energy use. It contributes to the largest peak 

demand, particularly in the winter season, which has consequences for the power 

infrastructure [14].  

 

 

Figure 2.2 Domestic energy consumption by fuel, UK, 1970 to 2010 [9] 

The UK Government’s Climate Change Bill in 2007 sets a legally binding target of a 

60% reduction in national CO2 emissions by 2050 compared to 1990 levels [11]. In 

the domestic sector emissions have increased by 2% since 1990 despite non 

electricity consumption in the domestic sector increasing by 9.5% over the same 

period. The reason for this is considered to be the increase in the number of 
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households, with reduced average energy consumption per household. This evidence 

suggests that changing household energy behaviour and reducing the use of resources 

by everyday practices will play a large part in reducing our national energy 

consumption and CO2 emissions if the UK is to meet emissions reduction targets. 

Energy consumption per household has increased by 1 percent and energy 

consumption per person has increased by 9 percent in 1990 as shown in Figure 2.3. 

 

Figure 2.3 Domestic energy consumption per person [9] 

Figure 2.4 below is an estimation of UK household electricity demand load by 

domestic appliance, for the main appliance categories: (i) lighting; (ii) cooking 

appliances; (iii) cold appliances (iv) wet appliances; (v) brown appliances; (vi) 

miscellaneous appliances [13].  
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Figure 2.4 Electricity consumption by domestic appliance 

According to the UK Department of Energy and Climate Change (DECC) the 

average domestic consumption per Meter Point Administration Number (MPAN) in 

2008 was 4,202 kWh.    

2.2.2 Overview of Techniques to Model Energy Consumption 

This section aims to give a brief description of the various modelling techniques used 

for modeling residential sector energy consumption. 

Domestic energy demand models might focus on a building, city, region, or nation. 

The electricity demand models are often applied to forecast the demand at the utility 

level. The data that electric utilities usually have on residential electricity use do not 

include much information on its nature. The data is usually the total consumption of 

several households without awareness of the actions in individual households. The 

variation of electricity use relating to an individual household remains unseen, as 
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does the partition of use between different categories of household appliances. 

Alternatively detailed information can be produced with simulation models. The level 

of detail of input parameters is a function of data availability, model purpose, and 

assumptions. Increased detail allows for more wide ranging analysis of particulars, 

even though precise assumptions might considerably simplify the modelling 

procedure and provide appropriate results. 

The various modelling techniques for residential energy use can be mainly classified 

into two approaches: top down (econometric) and bottom up (engineering). Each 

technique relies on different levels of input information, different calculation or 

simulation techniques, and provides results with different applicability. The 

terminology is with reference to the hierarchal position of data inputs within the 

domestic sector as a whole [14].  

2.2.2.1 Top down Approach 

The top down model attempts to attribute aggregate energy use data to different 

characteristics of the residential sector and economy, with the main aim of 

recognizing long term trends in energy consumption. It treats the whole sector as 

energy sink and is not concerned with  individual end uses [15]. It makes use of 

historic aggregate energy usage data supplied by energy suppliers, and treats it as a 

function of top level variables. Variables that are commonly used by top down 

models include macroeconomic indicators such as population, gross domestic product 

(GDP), climatic conditions or housing construction and demolition rates [15]. The top 

down approach is used to provide long-term forecasting, and due to its reliance on 

historical data, it usually focuses on national levels rather than local levels. 
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The strengths of the top down approach are: it needs only aggregate data which is 

commonly available, simplicity, and the ability to identify trends over time when 

historical data is used. The reliance on historical data is also a drawback since these 

models have no essential capability to directly model changes that are not reflected in 

economic or demographic variables, such as improvements in technology or 

behavioural changes [16]. Moreover, the lack of details about the energy use of 

individual end uses reduces the ability to identify key areas such as implementation 

of demand side management (DSM) and meeting a countries commitment to CO2 

emission targets. 

2.2.2.2 Bottom-up Approach 

Although top down models help to explain trends in whole housing stock energy use 

patterns, they cannot show the different components that contribute to energy use at 

the consumer level. For this type of analysis it is required to carry out investigation at 

the local level. The bottom up method takes a disaggregated approach and predicts 

energy load data using a combination of physical, behavioural and demographic 

characteristics for a household [17]. 

Bottom up method can be categorized into two types which are reliant on the data and 

structure of the study needed. These types are the statistical method and the 

engineering method. The engineering model approach is based on building physics. It 

estimates the energy use of different end-uses by taking into consideration energy 

ratings and usage of appliances. Statistical methods (SM) are based on historical data 

and types of regression analysis which are used to attribute household energy use to 

particular end uses [18-19]. Once the relations between end uses and energy use have 
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been recognized, the model enables to predict the energy demand of households 

representative of the housing stock. 

The detailed data input can be considered the strength of the bottom up approach and 

enables it to model technological choices. The bottom up model has the ability to 

predict the energy use of each end use and in doing so can identify areas for 

improvement. As energy use is calculated,  bottom-up approaches have the ability to 

determine the total energy use of the domestic sector without relying on historical 

data.  

In conclusion, the main dissimilarity between the two approaches is the perspective 

that is adopted. Top down method starts with aggregate information and then 

disaggregates down as much as they can. Conversely, bottom-up methods start with 

detailed disaggregated data and then aggregate this data so far as they possibly can.  

2.2.3 Factors Affecting Domestic Energy Consumption 

Understanding the main determinants affecting a households’ energy use is important 

for the planning and implementation of efficient strategies to reduce energy use in the 

domestic sector. There are many factors affecting the energy demand of households. 

These factors potentially include electricity price, number of electric appliances, 

income level, weather conditions, the energy systems within the building and the 

behaviour of the occupants living in the building. The factors affecting the levels of 

energy use in domestic buildings could be divided into two types of determinants 

[18,40]: 

1- Behavioural determinants: Occupants’ behaviour of using energy in a house can 

significantly influence the household’s energy use. The electric energy consumed 
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may slightly relate to weather but is strongly related to households’ human 

factors (occupants’ behaviour). The behaviour of occupants towards the 

appliances they use (switching them off or not at departure, using different 

appliances at once, their behaviour towards stand by appliances) will play an 

essential role in shaping the load profile.  

2- Physical determinants: The kind of energy consumed, for example, heating, 

cooling and lighting energy has a high correlation to climate and building design, 

however a low correlation to occupants’ behaviour. The physical factors of 

energy usage, such as house size, design, and heating system are the result of 

relatively fixed decisions. 

Several authors have previously looked into the characteristics and factors affecting 

domestic energy consumption [20-29].  In [20] the growth in electricity use was 

found to be the result of many factors including income levels, energy policy 

measures, and consumer behaviour. Governments sometimes have promoted using 

electricity as an alternative for oil in support of energy security reasons. The demand 

for electricity can also be influenced strongly by the structural changes in the 

economies of the OECD countries, through the effects of increased personal income, 

changes in lifestyle, and shifts in the composition of industrial output and 

developments in production technologies.  

In [21] an econometric model with log linear demand function was used to study the 

monthly electricity consumption for domestic consumers throughout the summer 

season, for the period from 1972 to 1975. The results showed that the factors 

influencing electricity consumption were weather, the real price of electricity, and 
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requests for energy conservation.  Even though this reference is old, it is still relevant 

to work with traditional modeling. 

The study in [22] split the total household electricity use into four main end uses; 

heating, ventilation and air-conditioning (HVAC), low power appliances, lighting and 

lifts. Throughout the hot summer months, it was found that HVAC was the major 

electricity end use, accounting for about 30-60%, lighting was second with 20-35% 

and low power appliances was the third with about 15-25%.The lift accounted for the 

smallest percentage of the total load.  

In [23] the relationship between energy use and GDP using annual data from 1971 to 

2002 for twenty countries was investigated. The study results explained that an 

increase in GDP is associated with an increase in energy use in the long term.  

In [24] the determinants behind increased household electricity demand in Norway 

were investigated by using annual consumer expenditure data. The findings showed 

that, an increase in the number of households, average electricity consumption per 

household, stock of appliances, income, and number of rooms, were the main factors 

responsible for the rise in household demand for electricity. 

The authors in [25] studied the determinants of aggregate electricity demand in South 

Africa by using an econometric model throughout the period 1960 to 2007. The 

results showed that use of electricity was deeply influenced by changes in household 

income. However, the study found that changes in electricity price had no effect on 

electricity use. The study found that any government policy for implementing 

changes in electricity price relies on the factors which affect electricity use. 

The authors in [1] presented results from the analysis of responses to an individual 

household questionnaire survey and associated annual gas and electricity meter 

http://www.sciencedirect.com/science/article/pii/S0301421509009938#ref_bib20
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consumption data of UK domestic energy-demand. Simple and multiple regressions 

were used to determine the strength of the relationships and identify the most 

statistically significant indicators of differences in gas and electricity consumption. 

No significant effects of built-form type on energy consumption have been observed 

in the sample of data available. However, the findings showed that the number of 

bedrooms and regular home-working, have a significant influence on household 

energy consumption in the UK. 

Household electricity use in Taiwan was studied for short and long term periods [26]. 

The key variables of the study were household income level, electricity price, 

population growth, and weather. The analysis concluded that in the long term 

electricity demand increased as household income increased, with price having a 

negative impact. However, the effects of price and income were smaller in the short 

term as compared to the long term. Moreover, weather and urbanization influenced 

electricity consumption in both the short and long term. A study in [27] confirmed 

this result by making a comparative analysis of the determinants of electricity 

demand in domestic and commercial sectors for London and Athens, and reached the 

same conclusion; that social, economic and demographic factors play a key role in 

demand for electricity. 

A study looked at the determinants which brought changes in aggregate electricity 

demand in Greece for both short and long run periods [28]. The study concluded that 

in the long run real income, price level and weather played an important role in 

domestic electricity demand. However, in the short run changes in demand for 

electricity were influenced only by weather conditions. The author concluded that 

domestic demand for electricity in future will stay stable in Greece. A study in [29] 
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analysing the factors of household (HH) energy demand in Turkey also concluded 

that income and price influence electricity demand. 

2.2.4 Load Profile Models 

Nowadays, load profiling has become one of the most appropriate methods to deal 

effectively with the consumers’ load shape. The aim is to divide consumers with 

similar load profiles into consistent groups. Load profiling is commonly used for 

billing, demand predicting, and tariff designs. The choice of the most appropriate 

load profiling method for any situation depends on factors including data availability, 

cost, equipment availability, accuracy requirements, regulatory requirements and the 

needs of the utility distribution company [4]. 

Several papers present work regarding the establishment of load profiles for a group 

of consumers [4, 30- 44], which are based on surveys and measurements. 

A survey of more than 1000 adults was conducted via a questionnaire in the south 

east of England by [4] in order to collect information about consumers’ ownership 

levels of appliances, their usage patterns, etc.  

A measurement of electrical energy use profiles for the social housing sector in the 

UK was taken over a period of 2 years [30]. The measurements were all obtained at 5 

minute intervals. Annual energy uses, daily and overall profiles were obtained for the 

dwellings from the data. A survey was undertaken amongst the occupants living in 

the monitored houses in order to make a link among the energy use profiles and 

socio-economic issues.  

The Swedish Energy Agency [31] recorded appliance consumption data of individual 

appliances for 400 households in order to understand where and how measures 
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should be taken to increase the number of energy efficient appliances in the homes. 

This provided accurate consumption data on individual appliances and the results are 

of sufficient detail to make energy efficiency recommendations. 

The patterns of electricity consumption and how occupancy and housing 

characteristics affect domestic electricity use for 27 homes in various locations 

throughout Northern Ireland (cities, towns and villages) were studied by [32]. The 

results of this study showed that there is a strong correlation between average annual 

electricity consumption and floor area.  

A demand side management study in 1999 recorded electricity load profiles for 30 

homes every one-minute over periods of 1– 4 weeks [33]. The recorded loads clearly 

show the effects of different appliances on consumption levels. Similar monitoring 

studies in the non-domestic building sector (secondary schools) have also been 

undertaken which identify consumption patterns based on whole building electricity 

measurements [34]. A study in [35] provided a detailed analysis of the effects of time 

averaging on eight domestic electricity load profiles at a resolution of one minute. 

Data were logged and analysed at 1 min intervals at seven houses over two years.  

A bottom-up approach was presented by [36]. This was based on relevant 

socioeconomic factors, demographic characteristics, lifestyles and also appliance 

ownership, where load curves are constructed from power demand profiles of single 

appliances. Load profiles for individual houses were generated. The aim was then to 

aggregate the profiles in order to predict the overall consumption of a group of 

households in a given area. This information could then be used to predict the 

response to rate policies and demand side management strategies. Likewise, another 

study [37] presented another bottom-up model for creating domestic electricity load 
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profiles at individual household level, where the household load profile comprises of 

individual appliance groups. The input data of the model was based mainly on public 

reports and statistics. The problem with models having both high temporal and spatial 

resolutions is the amount of input data needed and the often complicated model 

structure. 

In [38] a model of domestic lighting demand was developed. The model is based on 

half hourly data measured for a sample of 100 houses in the UK. A modelling 

approach for generating daily electricity and hot-water demand profiles for 

households was developed by [39]. A simple method of generating household load 

profiles (SMLP) for the design of renewable energy systems in the UK was presented 

by [40]. The input data of the model was based mainly on public reports and 

statistics, such as the composition of households and average energy consumption of 

appliances per capita. The UK average size household (3 persons) was selected for 

this model. Previous study in generating non HVAC (Heating, Ventilating, and Air 

Conditioning) load profiles at five minute time intervals for three target Canadian 

households (low, medium and high energy) using a bottom up approach was 

presented by [41]. A probabilistic approach to characterizing the aggregated load 

pattern (ALP) of low-voltage consumers  in distribution networks was proposed by 

[42]. This included a load survey which had been performed on a real distribution 

system. 

A high resolution model of domestic electricity load profiles was presented in [43]. 

This model was based on a combination of occupancy patterns (i.e. when occupants 

are at home and awake), and profiles of daily activities that describe how occupants 

spend their time performing certain activities. One minute time interval synthetic 
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electricity load data was generated throughout the simulation of domestic appliance 

use; the model covers all major appliances commonly used in the domestic sector.  In 

order to validate the model, electricity demand within 22 dwellings in the East 

Midlands, UK was recorded over the period of a year.  A comparison was made 

between the synthetic and measured data sets; it showed them to have similar 

statistical characteristics. A paper [44] on micro-grids provided high resolution data 

for one house and proposed a simple model to generate load patterns for a set of 

hypothetical households and dwellings. 

In general, these models and other high-resolution demand models tend to be 

complex and dependent on large amounts of input data and assumptions and are 

therefore not commonly used. The challenge with detailed demand modelling must 

therefore be to keep the model structure as simple as possible while ensuring 

sufficiently realistic output data. In particular, there is a need for more general and 

more realistic model structures in which the demand is based on activities in 

households rather than the resulting power demand. A major challenge for further 

demand modelling must be not only to make detailed models but to do it with the 

lowest possible complexity and need of input data. 

2.2.5 Demand Side Management 

Demand Side Management (DSM) is the process of planning and implementation of 

activities designed to influence consumers in such a way that the shape of the load 

curve of the utility can be modified to produce power in an optimal way. It monitors 

activities on the consumer's side of the meter to modify the amount or timing of 

energy use. DSM provides a variety of technical and behavioural solutions to modify 

electricity use and demand and therefore increases the efficiency and reliability of 
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power systems [45]. Demand side management of the load considers not only 

technical or economic factors, but also social measures, since these are all related to 

behavioural issues. Load management measures are both direct and indirect. Direct 

load management (control) is based on technological measures and controls the load 

demand by directly switching different appliances on or off. Indirect load control is 

based on economic measures. Different tariffs and pricing mechanisms are introduced 

in order to encourage customers to optimise load demand. 

Understanding appliance profiles and patterns of use can serve to develop strategies 

to reduce peaks in demand, easing the potential problems of insufficient generating 

capacity. DSM includes demand response and energy efficiency measures, such as 

load management, energy efficiency and electrification activities, and has developed 

in response to changes in industry structure and policy priorities since the oil crisis in 

the 1970s [46]. DSM programmes use rates, incentives and other strategies to help 

better manage electricity use during periods of high peak demand. Demand side 

management initiatives involving direct participation from the consumer side can 

bring a significant reduction in electricity prices, as demand-driven shifts of demand 

during peaks could reduce marginal costs [47]. Several rate design programs have 

been conceived by distribution utilities to lower electricity rates for consumers. Time 

of Use rates (TOU) which are based on an hourly or peak/off peak rates are one of the 

most effective programs. Time differentiated rates apply different demand and energy 

prices for different daily time periods of use. These rates are based on the theory that 

the customer should face prices that reflect the cost of service, which is higher when 

the demand on the system is greater. Different rates may apply on a seasonal basis, or 

may be expanded to include specific day types. 
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A generalized tool to assess the responsiveness level among domestic consumers was 

presented in [48]. The load profiles for different domestic consumers which are 

composed of power consumption of end-use appliances were studied. The impact of 

different electricity tariffs on the load profile of domestic consumers was also shown. 

A 1992 study conducted by the Electric Association in the U.K showed the majority 

of consumers preferred a time-of-use (TOU) rate tariff and that they adjusted their 

use of electricity accordingly. As expected, usage was reallocated to the less 

expensive off-peak periods, while overall monthly consumption remained relatively 

constant [49]. 

The Ontario Energy Board Smart Price Pilot was conducted to evaluate customer 

impacts and reactions to TOU rates [50].  The analysis considered 373 households in 

Ottawa, Ontario which were placed in three pricing groups: TOU rates, TOU rates 

with a critical peak period (CPP), and TOU rates with a critical peak rebate (CPR).  

Under the CPP rate structure, participants were charged 30 cents/kWh for electricity 

consumed during the critical peak period.  Under the CPR rate structure, participants 

were refunded 30 cents for every kWh reduction below their baseline usage during 

the critical peak hours.  Researchers evaluated the extent to which the various TOU 

rate structures caused a shift in the customers’ electricity usage to off-peak periods 

and a change in the monthly electricity demand, as well as the customers’ acceptance 

of the rate structure. The results showed that there was a 5.7% shift in load during the 

four critical peak days during the summer period for participants on TOU rates. For 

participants on CPP rates and CPR rates, the reduction was 25.4% and 17.5% 

respectively.  Also, the majority of participants (78%) from all rate categories 

suggested that they would recommend TOU rates to their friends. This study provides 

significant justification for the introduction of TOU rates in Ontario.   
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A statistically representative typical single detached Canadian house was modelled 

by the building energy simulation software ESP-r by [51], in order to estimate 15 min 

electricity load profile data. This model was used to evaluate the benefits of adopting 

the time of use price plan under various demand response scenarios. The scope of the 

study was to present the magnitude of the potential of cost savings by implementing 

time of use price plans. Also several other studies have recently been published on 

the benefits of electricity dynamic pricing [52–55]. 

2.2.6 Occupants Behaviours and Occupancy Patterns 

The biggest barrier in utilizing domestic demand response is lack of information 

regarding the consumers’ behaviour and consumption patterns. Occupants’ behaviour 

with regard to energy usage in a house can significantly influence the household’s 

energy consumption. Occupants’ behaviour with regard to using energy is a complex 

issue and presents a big challenge for researchers.  

The population is a various group of people each having different histories, attitudes, 

and socio cultural backgrounds (age, sex, education and income). People also show 

differences in their physical or mental condition, relationships with family or friends 

and amount of free time, all of which influences their energy consumption behaviour. 

Understanding people’s fundamental knowledge of energy consumption, rather than 

just measured consumption, might also be important, since this will possibly help to 

determine why some individuals abstain from particular energy use behaviours. 

Individuals often prefer to buy cheaper less efficient models, because there is usually 

a price increase associated with the highest efficiency equipment [56], while 

appliances’ producers need to achieve high production rates if sales prices are to be 

minimised. If individuals consumed less energy before energy efficiency 
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technologies were even used, the combined realized energy savings would be even 

greater.  Therefore, human behaviour should be considered as one factor in achieving 

greater energy efficiency. However, human behaviour might not be easy to change, 

particularly when it is in the result of cultural background. 

A study by [57] stated that energy consumption may be controlled if consumers have 

more information regarding their consumption.  Domestic consumers decrease their 

energy consumption when provided with information and feedback on how much 

they are consuming. On the other hand, a study by [56] argued that energy 

consumption can be reduced by providing the consumer with a more informed choice 

about their energy usage. In general, changing energy consumption behaviour has 

promising potential for energy conservation [58]. Previous work in [59,60] suggested 

that energy savings can be achieved by locating ‘cold’ appliances sensibly (e.g. not 

adjacent to an oven) but once located little can be benefited by changing user 

behaviour. With ‘wet’ appliances, consumers can choose different wash temperatures 

and maximise their washing load per cycle. With lighting, consumers can use more 

efficient bulbs, use timers and remembering to turn lights off. Therefore, the best 

ways the consumers can influence wet appliances and lighting system might include 

on/off decisions and somewhat more complex choices regarding lighting levels and 

setting wash temperatures. 

Energy consumption in twenty eight identical town houses was investigated by [61]. 

The result indicated that the highest variant in energy use was two to one, i.e. one 

town house used twice as much as another. Moreover, the energy use depends on the 

occupants. In another study, the energy consumption in 22 identical houses in 

Germany was measured over a 2 years period [62]. It was found that the main 
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variation in energy use between 12 of the houses which were ventilated identically 

was 284%. The house with the smallest use had the lowest mean temperature 

involving that residents conserved energy by having a lower heating set-point in the 

heating season. The determinants for space heating system use were studied using a 

questionnaire survey [63]. It was found that the age, number of occupants, income 

level, and ownership level influenced the use of oil used for heating. This 

demonstrates that socioeconomic status has an impact on the behaviour patterns of 

occupants.  

A detailed survey among householders resident in the south east of England was 

conducted by [4]. The survey focused on ownership levels for certain appliances and 

their usage patterns, recognizing environmental attitudes and beliefs, and the type of 

information occupants aim to receive on their energy consumption. The survey 

findings showed that members of the general public: (i) pay attention when receiving 

information about their energy consumption and the related environmental impact, 

and (ii) are willing to change their behaviour to lower household energy use and 

environmental harm. A similar result was found by [64], in which the energy use of 

120 houses in Bath, UK, was observed along nine months. The participants received 

feedback in diverse forms (i.e.  Their consumption compared to previous use or to 

similar others; energy saving data; or feedback relating to financial or environmental 

costs). The study indicated that participants who had positive environmental attitude, 

but who had not previously   engaged in energy conservation activities, were more 

expected to modify their use in response to the energy consumption information. 

The authors in [65] observed a significant change in levels of household electricity 

use in a UK study that monitored electricity use in 72 houses over a period of two 



 

27 

 

years. Categorizing households into low, medium and high energy consumption 

groups, the study showed that the average annual electricity usage of the high group 

was over about two and a half times more than the low group in a population 

consisting mainly of modestly sized social housing. Moreover, annual electricity 

usage was found to vary by a factor of 8.6 over the whole sample range in the first 

year of monitoring.  

Several studies widely support the concept of occupancy being a key driver of many 

domestic energy demand models, but the lack of availability of input data is a 

common issue.  A study in [40] considered varieties of physical and behavioural 

factors to formulate energy load profiles in UK domestic buildings. Five occupancy 

pattern scenarios were proposed. It was concluded that electricity load profiles 

depend mostly on the number of occupants and occupancy pattern. The authors in 

[66] concluded that “occupant characteristics and behaviour significantly affect 

energy use”. A study in [39] explained how time use data (TUS) can be used to 

represent the behaviour of occupants in dwellings in terms of the appliances in use 

throughout a relevant TUS activity. The influences of occupants’ behaviour and 

activity pattern on electricity use in Kuwaiti residences were studied by [67]. In this 

study, occupancy patterns and operation schedules of electrical appliances used in 

these residences were surveyed by selecting a sample of 30 residences. The study 

showed that annual energy consumption in the residential buildings is certainly 

influenced by the lifestyles of their occupants.  

2.3 Conclusion 

In this chapter, a review of various techniques that have been developed through the 

years for modelling residential sector energy consumption was provided. Then, 
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factors affecting electricity demand were explained. Finally, an overview of literature 

regarding consumer behaviour and occupancy patterns was presented. 

The literature review has shown that there are various forecasting tools which exist 

for planners at national level. However, at a local community level, where energy 

demand patterns may significantly differ from the national picture, planners would be 

unable to justify local and more appropriate intervention due to the lack of 

appropriate planning tools. Therefore, in this thesis we need to find a tool that can 

show the dynamic performance of the load during the day and can be integrated with 

other technologies.  
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Chapter 3 

Traditional Load Profile Tools 

3.1 Background 

There are various ways to obtain time series energy use data. Generally, energy 

consumption data is derived indirectly from utility bills on a quarterly or monthly 

basis by studying load profiling and forecasting. Alternatively, direct measurement of 

electricity use can be made to obtain the profiled demand data. The choice of the 

most suitable methods is usually determined by the availability of data and the 

intentions that exists with of the forecast at hand. 

The purpose of this chapter is to assess households’ electricity load profiles based on 

two different sources of electricity consumption data; first data derived from utility 

bills on a quarterly or monthly basis and second data obtained through direct 

monitoring. In this chapter, two cases are described to demonstrate the use of 

traditional load profile tools. The first case focuses on the use of the regression 

analysis technique to develop a model for households' electricity consumption on 

a monthly basis. The model considers the results of previous study as an input data 

element, in order to predict the monthly domestic electricity consumption by means 

of consumption data derived from electricity bills. This is followed by the second 

case which describes an analysis of data obtained from a monitoring study of the 

electricity consumption of a single family household with two adults and children. 
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3.2 Forecasting Household Electricity Demand using a Regression 

Analysis Technique 

3.2.1 Data Description 

The household data used in this study is formed from two different sets of data; one 

set for building the general model and another set for monthly forecasting of 

electricity consumption based on this model. The first data set provides information 

on the average monthly electricity consumption per unit area for UK households for a 

one year period. This data set was obtained from a previous study presented by [32] 

throughout the period from December 2004 to February 2005. The study measured 

electricity usage using a half hour load meter for 27 dwelling in Northern Ireland to 

obtain an understanding of how occupancy and dwelling characteristics affect 

domestic electricity use and also to study the pattern of UK households’ electricity 

consumption [32]. The other data set contains information for quarterly electricity 

consumption for a group of consumers for the whole year -January through 

December, arranged seasonally, and derived from consumers’ electricity bills. The 

four seasons are winter (Jan 2009-Mar 2009), spring (Apr 2009- Jun 2009), summer 

(Jul. 2009-Sep. 2009) and autumn (Oct. 2009-Dec. 2009).  

In order to validate the model, we compared the resulting fitted equations for 

different areas to that of the consumption via electricity bills for different houses. The 

monthly bill data was collected for seven households, taken from their personal 

records. Table 3.1 lists the quarterly electricity consumption for seven consumers for 

a one year period. The heating and hot water systems for the houses are provided by 

means of natural gas. The average monthly electricity consumption per square meter 
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obtained from [32] is listed in Table 3.2. The seasonal electricity consumption data of 

the seven households (H1to H7) is shown in Figure 3.1. 

Table 3.1  Quarterly electricity consumption for seven households based on 

electricity bills 

Household Seasonal quarterly consumption (kWh) 

Winter Spring Summer Autumn 

H1 572.1 429.7 446.1 591.8 

H2 751.0 578.0 346.0 671.0 

H3 919.2 745.3 771.1 863.8 

H4 421.0 343.5 360.6 436.2 

H5 500.8 425.6 425.4 556.4 

H6 695.1 569.3 584.1 737.1 

H7 914.8 782.7 846.9 1073.9 

 

 

Table 3.2  Average UK household monthly electricity use per square meter [32] 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Consumption 

(kWh/m
2
) 

4.6 3.9 3.8 3.6 3.5 3.3 3.25 3.3 3.5 4.2 4.35 4.75 

 

3.2.1.1 Regression Analysis 

Regression analysis is a statistical tool that examines the strength of a relation 

between a dependent variable and one or more independent variables, also called 

explanatory variables.  How much of the movement in the dependent variable is 

explained by the independent variables.  The mathematical model of the relation 

between the dependent variable and the explanatory variables is known as the 
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regression model. The regression model contains one or more unknown parameters 

that are estimated using the given data on the explanatory variables [69, 70]. The 

proposed models using simple regression are described in Equation (3.1). 
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  ( 3.1) 

Where Y(t) is the electric load at time t, n is the number of explanatory variables, Xi(t) 

is the explanatory variables at time t, βi is the regression model parameter and ε(t) is 

the residuals of the regression model. 

The fitting algorithm that determines the regression model parameters (β’s) in 

equation (3.1) uses the ordinary least square (OLS) criterion [71].  

In this study, the regression technique has been used to build the general regression 

model which is being used to forecast the monthly electricity demand. The regression 

equation which relates the explanatory variable is denoted by M with the outcome 

denoted by MEC.  

MEC= f (M) (3.2 ) 

 

Where; MEC is the monthly electricity consumption per unit area (kWh/m
2
) and M is 

the month index (1 for Jan., 2 for  Feb, ... and 12 for Dec.). 

For the time period from January to December, the statistical analysis was used to 

forecast the general fitted regression monthly electricity consumption per unit area. 

The response is the monthly electricity consumption data (Table 3.1) which was 

obtained from [32]. The predictor is the month index. 

The computer statistical package software MINITAB has been used to get the fitted 

regression equation. MINITAB is a widely used software developed by MINITAB 
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Inc. It can be used for various purposes of statistical analysis [141]. The software tool 

was chosen as it is widely available in the computer labs of the University and the 

author has prior experience of the software. The MINITAB output is shown in Table 

3.3. 

The resultant fitted regression model used to forecast the monthly electricity 

consumption per square meter as a function of month index is: 

204529.05631.0044.5 MMMEC   (3.3) 

 

The resultant fitted regression plot of the monthly electricity consumption per square 

meter is shown in Figure 3. 2.   

Various statistical tests are used to validate the models. They include the adjusted 

coefficient of determination R
2
 to determine how well the model explains the actual 

consumption data and F-test for overall significance of the model. Table 3.3 which 

shows the MINITAB output entails the model summary and presents crucial 

information about the model, namely, the value of S, R
2
 and the adjusted R

2
. The 

coefficient of determination (R
2
) measures the proportion of variance in the energy 

consumption (MEC) that is explained by M (month). The coefficient of determination 

R
2
 is 0.938 which indicates that 93.8% of the variation in household monthly 

electricity consumption (MEC) is around its mean, explained by M (month). The 

monthly electricity model developed is good with coefficient of determination R
2
 of 

0.938, but better models may exist as the adjusted R
2
 is less than 0.924. 

Through the adjusted R
2
 we can obtain an idea about the quality of generalization of 

our model. It would be ideal if its value would be the same or very close to the value 

of R
2
.  The value shows that the difference for the model is very small (in fact the 
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difference between the values is (0.938 - 0.924) = 0.014 (about 1.4%). This indicates 

that the cross-validity of this model is very good. 

Table 3.3  MINITAB output regression 

Polynomial Regression Analysis: MEC versus M  

 

The regression equation is 

MEC = 5.044 - 0.5631 M + 0.04529 M**2 

 

S = 0.144632   R-Sq = 93.8%   R-Sq(adj) = 92.4% 

 

 

Analysis of Variance 

 

Source      DF       SS       MS      F       P 

Regression   2   2.83236   1.41618   67.70   0.000 

Error        9   0.18827   0.02092 

Total       11   3.02062 

 

 

The significance of R
2
 was tested using an F-ratio. The F ratio is F = 67.7 and 

significant at p =0.000 which indicates that the model reflects a real association 

between the dependent variable (MEC) and the independent variable (M).  
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Figure 3.1 Fitted and actual lines plot of monthly electricity consumption per square 

meter 

Figure 3.2 shows the actual electricity consumption along with the predicted values 

using the models developed. As can be seen, an appropriate fit of the historical data is 

provided by these models. The residuals produced by these models are also well 

behaved.  
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Figure 3.2 Actual and forecasted values of monthly electricity demand  

The fitted regression equation for monthly electricity consumption for a house with 

an area of A (m
2
) can be obtained by multiplying the resulting fitted regression 

equation (Equation 3.3) by the total surface area:  

)04529.05631.0044.5( 2/ MMAMEC     (3.4) 

Where; /MEC  is the monthly electricity consumption per specified area (kWh/m
2
). 

For example, the fitted regression equation for a house of 100 m
2
 area will be in the 

form: 

2/ 529.431.564.504 MMMEC     (3.5) 
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3.2.2 Forecasting of Households’ Monthly Electricity Consumption 

In this section, we aim to predict the monthly electricity consumption for the selected 

houses by using the general fitted model shown in Equation (3.5). The prediction is 

based on electricity consumption derived from households' electricity bills. In order 

to forecast the households' consumption, it is assumed that the households' monthly 

electricity consumptions are more likely to have the same pattern (houses of differing 

areas have differing load consumption but are likely to have the same characteristics).  

Using Table 3.2; the quarterly electricity consumption for the winter season (from Jan 

to Mar) for a house with area of 100 m
2
 was calculated by multiplying the 

aggregation of demand during the winter season by 100 which is equal to 1230 kWh.  

The fitted regression equation (3.6) has been applied to forecast the monthly demand 

for different houses with different consumptions. The monthly electricity 

consumption model can be obtained using the following formula: 

)( // MEC
QC

QC
MEC

Av

Bill
j   

  (3.6)

 

Where; j is the household number, QCBill is the quarterly electricity consumption 

obtained from the electricity bill at a certain period ( from January to March) and 

QCAv is the average quarterly electricity consumption obtained from site measurement 

of previous study ( Table 3.2) for the same period. 

The monthly electricity demand model which is based on quarterly billing for seven 

consumers for the months from January to December (Table 3.1) can be formulated 

as: 

)529.431.564.504(
1230

2/ MM
QC

MEC Bill
j 

                          
(3.7) 
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)0037.0046.041.0( 2/ MMlQCMEC Billj   (3.8) 

Equation (3.9) shows as an example, the monthly electricity consumption for the first 

household ( 1
/MEC ). 

)0037.0046.041.0(1.572 2
1

/ MMMEC   (3.9) 

2
1

/ 1.218.266.234 MMMEC     (3.10) 

An Excel spreadsheet has been used to predict households’ monthly electricity 

consumption. The fitted (predicted) values of monthly electricity consumption for the 

seven households are shown in Table 3.4. 

Table 3.4 Predicted households’ monthly electricity consumption 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 

 

Consumption 

(kWh) 

H1 211 191 175 163 156 153 154 159 169 183 200 222 

H2 276 250 229 214 205 201 202 209 222 240 264 293 

H3 316 286 262 245 234 229 229 231 240 254 275 302 

H4 149 135 123 115 111 108 109 113 120 129 142 159 

H5 179 162 148 139 132 130 132 135 144 156 171 190 

H6 252 228 209 196 187 183 185 191 203 220 241 268 

H7 364 329 302 282 270 264 266 276 293 317 348 387 

3.2.2.1 Discussion 

The fitted values give an idea about the fluctuations of monthly consumption. Table 

3.5 shows the fitted values and the residuals for the monthly consumption data of 

household H1 as an example; the residuals indicate how well the developed model 
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fits the actual data. From the table, it can be seen that the proposed model follows the 

actual values very closely. The forecasted electricity consumption for the entire 

period is very close to the actual data. It was noted that the model gives a maximum 

error of 9.8% in the spring season and a minimum error of 0.85% in winter season. 

The results clearly indicate that the proposed model forecasts the monthly electricity 

consumption with a reasonable agreement with the actual dataset. 

Table 3.5 Comparison of actual and forecasted monthly electricity use for H1 

Season Actual Consumption 

(kWh) 

Forecasted 

Consumption  ( kWh) 

Residual % 

Error 

winter 572.1 577 4.9 0.85 

spring 429.7 472 42.3 9.8 

summer 446.1 482 35.9 8 

autumn 591.8 606 14.2 2.4 

Total 2039.7 2094.84 

 

The percentage of the forecasting error, which is the percentage of deviation of the 

actual value from the forecasted value, is shown in Table 3.6. The four seasons’ 

actual consumption data for the seven consumers (H1- H7) were compared to the 

forecasted values. From Table 3.6 and Figure 3.4, it can be observed that in winter, 

spring, summer and autumn the predicted and actual energy demand figures are 

within a reasonable range, except in summer where there was a forecast percentage 

error of 82% for the household H2 where the actual consumption (346 kWh) is much 

lower than the predicted value (633 kWh) because the occupants of house H2 were on 

holiday outside the UK for about 2 months.  
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Table 3.6 Percentage error of households’ forecast 

 Forecasting Error (%) 

Household Winter Spring Summer Autumn 

H1 0.85 9.8 8 2.4 

H2 0.53 7.1 82 14 

H3 0.6 0.5 13.7 3.8 

H4 3 2.5 5 1.1 

H5 2.4 5.8 3.6 7.2 

H6 0.74 0.6 0.9 1.1 

H7 8.8 4.3 1.4 2.1 

 

From Figure 3.3, which shows the actual seasonal electricity consumption for 

household H2, it can be seen that the electricity usage drops dramatically through 

spring and summer. This might be due to the fact that demand for artificial light in 

the houses is higher in the winter and autumn than in the spring and summer, 

reflecting mainly the monthly variation in the hours of the day between sunset and 

going to bed.  

 

Figure 3.3 Actual and forecasted seasonal electricity use for household H2 
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3.2.3 Load Profile from Measurements from a Single Household 

3.2.3.1 Data Collection and Measurements 

A typical English terraced three storey house was selected for the electricity 

consumption monitoring. The number of occupants in the house is six (two adults and 

four children who are of school age). One of the adults is a full time student, the other 

one is working part time in the morning period in order to take care of the children 

after school. Measurements of the whole household electricity consumption have 

been obtained over a period of 12 months for the period from January 2010 to 

December 2010 in the BD7 area of Bradford, in Northern England. The house space 

heating, DHW and cooker are all powered by gas.  

The measurements were obtained at a high resolution (1 min intervals), moreover the 

consumption patterns of some individual appliances were also monitored at a high 

resolution (1 min intervals). Monthly electricity consumption, daily and overall 

profiles were derived for this household type from the monitored data. The data has 

been collected using a small wireless handheld portable electricity monitor named 

owl that enables remote downloading of stored electricity consumption in kWh 

during 1 minute intervals. The owl wireless monitor uses current transformer sensing 

technology to sense a small magnetic field around the house power cable. It measures 

the value of current (A) being passed through the cable and, by reference to the 

system voltage (230 V), calculates the amount of power being used, the quantity of 

greenhouse gas emissions and the cost, then transmits this information as CSV files 

from the sender box to a wireless remote monitor on a wireless frequency of 

433MHz, from up to 30 m away (uninterrupted transmission). The data is transmitted 

periodically to an individual computer via a USB receiver and displayed using the 

http://en.wikipedia.org/wiki/Northern_England
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Owl Home Energy Monitor program. The collected data are exported as CSV files 

that can be opened up with spreadsheet type applications. The data presented are 

complete twelve month files including over 500,000 individual data values.  

3.2.3.2 Household Load Characteristics 

A typical domestic profile over one day at a 1-min resolution and with the 

corresponding half-hour averages is shown in Figure 3.4. The figure shows that half-

hourly average loads are much lower and smoother than 1 min loads. During the 

period from 00:00 to 07:00 there was a constant cyclical pattern of power 

consumption between around 100W and 200W which represents the base load. The 

minimum power consumption of about 160 W represents the power consumption of 

the continuous appliances and the appliances in standby mode. The continual increase 

to 200 W was caused by the cold appliances’ power consumption. This pattern would 

be noted regularly throughout the day. From 07:00 to 09:00 the energy consumption 

was going up as other appliances started to be in use. As there is nobody at home for 

the period from 09:00 to about 13:30 the base load pattern would be repeated again. 

However, the second adult is working part time (from 8.00 to 13.00), so, the energy 

consumption is slightly increased again from the period 13.30 to 15.00. The evening 

peak period occurs between about 15:30 (time of return home from school) and 

21:00, Consumption is more pronounced during this period compared to consumed 

power at other times when not all the occupants are at home. 

The one-minutely average total power consumption showed that, there were several 

high peaks (spikes) above 1kW that were caused by switching on some electrical 

appliances with high consumption such as an iron or kettle. The time interval is so 
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short that noise could affect the readings and may cause a few spikes to be added or 

subtracted from the reading.  

 

Figure 3.4 Load profile at 1 min and 30 min intervals 

 

To identify with the variety of electricity demand, the daily winter (from Jan. to Mar) 

and summer (from July to Sep) load profiles logged at 1 min intervals were averaged 

over 30 min intervals for weekdays and weekends as shown in Figure 3.5 (this has 

been done in Microsoft Excel spreadsheet). From the figure, it can be seen that, the 

base load of the demand occurs overnight and is mainly from cold appliances, 

continuous appliances and appliances in standby mode. The standby appliances are 

actively switched on by the occupant and their power consumption might not be zero 

when not in use (e.g. TV). Furthermore there is not a significant difference between 

summer and winter and weekday or weekend base loads.  
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The key difference between the weekday and weekend profiles is the period between 

09:00 and 18:00, where the load during the weekend profile is higher because of 

higher occupancy.  

 

Figure 3.5  Daily winter and summer profiles 

 

The daily electricity consumption of the selected house was measured over a one year 

period at a high resolution (1 min interval). The seasonal variation of the monthly 

electricity consumption was recorded. The results for the twelve months are shown in 

Figure 3.6 where each bar represents the consumption for an individual month. The 

lowest monthly electricity consumption was about 212 kWh in August while the 

highest monthly electricity consumption was about 269 kWh which occurred in 

December. The average monthly electricity consumption was 238 kWh which is 

lower than the UK Government estimate of average monthly electricity consumption 

of UK houses (320 kWh in 2008) which reflects the fact that the house space heating, 

Domestic Hot Water (DHW) and cooker were powered by means of gas. 
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Figure 3.6 Monthly electric energy consumption 

3.3 Conclusion 

The use of traditional load profile tools was demonstrated. There are various ways to 

obtain time series energy consumption data. Profiled demand data can be obtained 

indirectly through forecasting (Indirect Profiling) or directly through measurement 

(Direct Profiling).This chapter has discussed the use of the traditional load profile 

tools in two cases.  

The first case investigated the forecasting of households’ electricity demand by using 

regression analysis techniques. It demonstrated that, the simple regression method 

(trend extrapolation method) assumes that things will keep changing in the future the 

way they have been changing in the past. Therefore it is important to first determine 

the general trend. This method is observed to be suitable for short term forecasting, 

but for planning purposes does not address changes.  
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In the second case the analysis of electrical energy data measured at 1 min intervals 

over a period of one year for a sample household of two adults with children has been 

described and investigated. The effects of time averaging were considered. Detailed 

electricity load profiles for domestic buildings are an important requirement for the 

accurate analysis of demand side management.  

The choice of the most suitable method for analysis is usually determined by the 

available data sources and the intentions of the forecast. Measurement results in the 

most accurate profiled data, at the expense of installing measuring equipment and the 

time required in obtaining data. Moreover, the effort involved in installing, testing, 

downloading data and checking for data quality is high. 

Traditional methods do not study the behaviour of people. The issue is that different 

households have different behaviour. Therefore, traditional forecasting methods are 

not suitable for an intervention approach at local community level because there is no 

clarity on how the intervention could affect behaviour. So, there is a need for a tool 

that can link the behaviour of households for local planners. This then, is what the 

next chapters will be addressing. 
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Chapter 4 

Statistical Predictions of Electric Load Profiles in a 

Virtual Community  

In this chapter, a methodology of generating artificial but realistic load profiles at half 

hourly time interval for a community is presented. 

4.1 Electricity Consumption Models 

Suitable planning and management for energy at community level can give 

considerable environmental and economic benefits. Community groups have a 

considerable impact on increasing the use of sustainable energy practices, adopting 

demand side management (DSM), raising awareness of climate change, and helping 

people understand the role they can play in reducing carbon emissions. One of the 

main barriers is the absence of community load profile data, as usually no measured 

data are available. 

Decision makers increasingly realise that many of the solutions to improving energy 

consumption performance need to be much more local than national. Local solutions 

are often very successful, as they reveal the needs of specific communities and get 

people to participate in taking action in order to help communities become more 

energy self-sufficient and help facilitate the reduction of CO2 emissions. 

The literature review presented in Chapter Two shows that research into modelling of 

domestic energy consumption can be grouped into three sections. The first section 

focuses on using statistical techniques to understand the factors that influence 
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domestic energy consumption using top-down approaches [17-28]. The second 

section looks at the residential energy consumers’ behaviour and how changes in 

behaviour could help to control a household’s energy consumption [4, 39-40, 56-67]. 

The third section looks at load profile models of the domestic sector [29-44]. 

A bottom-up model was presented in [36], where load curves are constructed from 

power demand profiles of single appliances. This model is considered powerful 

because of taking into consideration factors such as psychological and behavioural 

characters, but a usual limitation of this model is the need for extensive data about the 

domestic appliances and how they are used by the homes’ occupants. Another 

bottom-up model presented in [37] uses statistical mean values and general statistical 

distributions, which lowers the model precision, but also decreases the amount of 

data needed. The data needed includes the mean electricity consumption rate and 

seasonal variation with a weekly resolution. The limitations of the model presented in 

[37] are; that it does not use occupancy as an input, the amount of input data needed 

is extensive, and the often complicated model structure. 

A remarkable load profiling study in the UK domestic sector was presented in [40]. 

The study considers composition of a household’s size, occupancy patterns, and the 

energy use of domestic appliances and hot water. The authors introduced a simple 

method to formulate a daily household electrical loads profile (SMLP) for the 

average number of persons per household in the UK. The generation of the residential 

electricity load profile is based on five approximate occupancy scenarios. The 

modelling results of a UK average household appliances load profiles are shown in 

Figure 4.1. 



 

49 

 

This method can be applied at both individual household and community level. The 

limitations of the method presented by the authors in [40] are the lack of 

consideration of behaviour change data, the lack of consideration of household 

occupancy patterns and the fact that it represents a limited number of scenarios, 

which may not necessarily correspond to scenarios in the real community. 

 

 

Figure 4.1 Electricity load profiles of UK average size domestic household [40] 

There is a need for more general and more realistic model structures in which the 

load profile is based on actions in households rather than the resulting profile. A 

major challenge for such further demand modelling must be not only to make detailed 

models but to do it with the lowest possible complexity and need for input data. 

To address this lack in research we have developed a household model that generates 

realistic electricity load profiles by applying a bottom up load model similar to that in 
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[40]. In both models the household appliances of each individual household are 

simulated separately. Then these load profiles are aggregated to generate artificial but 

realistic load profiles at half hourly time resolutions, first at individual household 

level, then at community level.   

In this thesis, the methodology used to predict daily load profiles at community level 

is based on the cumulative distribution function which describes the usage times of 

the appliances in order to generate the random nature of consumption. The 

cumulative distribution functions are based on real values of a sample population.  

4.2 Load Profile 

Load profiling is the procedure of describing the pattern of electricity use for a 

consumer or a group of consumers over a given period of time and can be considered 

an essential source of information on which energy decisions are made [72]. This 

information is available in a range of forms, relating to the way in which it is used. 

The time period could be daily, weekly, monthly or yearly, with a definite time 

resolution such as hourly or daily. In other words, load profiles demonstrate the 

relationship between consumer behaviour during the day and the resulting energy 

demand. Figure 4.2 below shows a graph of the typical domestic load for electricity 

in the UK [74]. This shows 48 half hour settlement periods during a 24 hour day. 
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Figure 4.2 A typical daily pattern of demand for the average domestic 

unrestricted consumer [74] 

 

The concept of load profiling has been used as an efficient tool for energy tariff 

scheme design, planning and load management. It has emerged as one of the most 

appropriate methods to deal with the shape of consumers’ load profiles. It involves 

two main actions [73]: 

- Determining an approximation of the average load profile of a group of 

consumers over a known period of time, and  

- Allocating that load profile to all consumers in that consumer type. 

4.3 Methodology and Data 

Modelling of domestic energy consumption relies on input data from which to 

calculate energy consumption. The level of detail of the available input data can vary 

dramatically, resulting in the use of different modelling techniques which seek to take 

advantage of the available information.  
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The creation of daily load profiles is based on various assumptions. The profiles were 

created for a virtual community with different household types which have different 

consumption behaviour. Different households have different lifestyles, which mean 

consumers of differing types and characteristics have differing daily load profiles. 

The process of creation of daily load profiles basically starts with the number of 

households in the community as initial input. Depending on the modelling 

methodology to be used, the input data required to develop the domestic energy 

model includes information on demographic information, annual electricity 

consumption patterns and daily occupancy information. 

The methodology presented in this chapter uses cumulative distribution functions 

(CDF) to describe the usage time of the appliances for different groups of consumers 

and give a complete description of the probability distribution of their random 

operations. This represents the probability of a household performing a specific 

activity during any hour of the day. The cumulative distribution functions are based 

on real values from a sample of households’ occupancy surveyed data describing 

when and how occupants are likely to be utilizing their electrical appliances at 

different times of the day. Daily load profiles from individual dwelling to community 

can be predicted using this method. 

4.3.1 Algorithm Description 

The total daily energy consumption resulting from utilising electric appliances is 

calculated as shown in Equation (4.1). 
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Where Ei(t)  is total energy consumed  by appliance type i at time t, Ni (t) is the 

number of connected appliances type i used at time t, Ei is the energy consumption 

per time of usage of appliance i and ED is the total daily energy consumption of 

households on a half hourly basis. 

Electricity use is primarily the result of the utilizing of various types of owned 

appliances such as electric kettles, computing equipment and lights, which are 

controlled via users’ behaviour by being turned on or off. 

Generally, all electric appliances are connected in parallel with each other and 

supplied by the main power source, as shown in Figure 4.5. Each appliance is 

connected via a switch and consumes power only when the switch is closed and will 

be out of use when the switch is open. Therefore the operation of each appliance is 

reliant on the probability of turning the switch on or off. 

 

 

Figure 4.3 Simple diagram of electric appliances in a house 
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The probability of the switch being on or off is shown in Equation (4.3) below. 


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8

1

48

1
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j t

jj HHPtHHSP   
  (4.3) 

Where P(S) is the probability of turning the switch(S) on, τ (HHj ) is equal to 1 when 

the household type j is at home at time t , and P(HHj,t) is the probability of utilization  

of appliance  n  by household type j, at period  t. So, P(S) is equal to zero when τ 

(HHj, t) equals zero, and will be equal to P (HHj, t) when τ (HHj, t) is equal to one. 

 (    )  {
                                                 (                             )     
                                                 (                                 ) 

 

The cold appliances such as fridges and freezers have to be switched on all the time 

which means, there is an exemption for them as the occupancy of consumers does not 

have a big influence on their operation, assuming the opening or closing of the cold 

appliance’s door has no impact. 

4.3.2 Creation of Virtual Community Data Inputs 

A community is a social group of any size whose members live in a particular area, 

share a government, and have common cultural and historical traditions; or a social, 

religious, working, or other grouping which has common characteristics or interests.  

Community energy initiatives can be categorised, for example, in relation to their 

focus on improving the energy system: energy efficiency, renewable energy 

technologies (RETs) and behaviour change. Community groups can play a vital role 

in reducing energy dependence, increasing awareness of climate change, and helping 

people understand how they can participate effectively in reducing CO2 emissions. 



 

55 

 

The model of the electricity load profile for the virtual community uses data from 

three main input sources: 

 Demographic information: The information on the type of households is required 

such as the number of adults, working people, and number of children. 

 Annual electricity consumption patterns: Includes ownership level of appliances, 

and total energy consumption of certain appliances.  

 Daily Occupancy information: This is the behaviour of occupants in households 

with respect to their usage of appliances and lighting on a daily basis.  

4.3.2.1 Demographic Information Required 

The Census data available at the UK Office for National Statistics (ONS) is used as 

the primary information [16]. The Office for National Statistics (ONS) is the 

executive office of the UK Statistics Authority, a non-ministerial department which 

reports directly to Parliament. ONS compiles information about the UK’s society and 

economy which provides evidence for policy and decision making, and the allocation 

of resources. Social Trends offers up to date statistical data on population changes. It 

is available electronically on the National Statistics website; 

www.statistics.gov.uk/socialtrends.  

The population of the UK was 62.3 million in mid-2010, with an average household 

size of 2.4 persons. The forecast for the UK population growth from 2010 to 2030 is 

shown in Figure 4.4. The ONS projection shows that the current UK population of 

61.4 million would rise to 67 million by mid-2020 and should the same trend be 

maintained beyond 2020 then the UK population could rise to above 72 million by 

mid-2030 (Figure 4.4). 
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Figure 4.4 Percentage UK population growth forecast 2010 to 2030 [16] 

For this generator, the household types have been chosen to be used as scenarios for 

prediction. A household is defined as a person living alone or a group of people 

living at the same address who share common housekeeping or a living room, 

whether related or not [7,75].  There were about 26.0 million households in the UK in 

2010. The number of households has increased by 6.1 per cent since 2001, slightly 

faster than the 4.5 per cent growth in the size of the UK population over the same 

period. This is due to the trend towards smaller household sizes: the proportion of 

households containing one person increased from 28.6 per cent to about 30.0 per cent 

over the period 2001 to 2010.  Table 4.1 shows the UK household composition in 

2008 by the type of household.  It can be seen from the table that, in the UK, couples 

with no children or with children who represent 22 per cent and 19 per cent 

respectively are the most common household occupants. The next most common 

household type is a single adult without children household working or retired adults 

which represent 16  per cent and 14 per cent respectively. 
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Table 4.1 Percentage share of household type 

Type of Household Percentage Share (%) 

Single adult without children 16 

Single adult with children 5 

Single retired adult 14 

Two adults without children 22 

Two adults with children 19 

Two retired adults 10 

Two adults or more without children 9 

Two adults or more with children 5 

Total (%) 100 

4.3.2.2 Electricity Consumption Patterns of Domestic Appliances 

Electricity use in the residential sector has increased dramatically as ownership of 

electric appliances such as fridges, electronic games and tumble dryers has increased. 

Efficient energy usage is affected by the choices people make about owning various 

appliances and the way the appliances are used. Electrical domestic appliances can be 

generally divided into six groups: brown goods, cold appliances, cooking appliances, 

wet appliances, miscellaneous appliances, and lighting. Table 4.2 lists the different 

categories of domestic electrical appliances. 
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Table 4.2 Domestic appliances categories 

Brown goods electronic consumer goods : TVs, VCRs, radios, 

clock radios, X-boxes (games), etc. 

Cold appliances refrigerators, freezers, and combined fridge-

freezers. 

Cooking appliances  electric ovens, electric hobs, and microwaves, 

etc. 

Wet appliances washing machines, tumble dryers, and 

dishwashers. 

Miscellaneous appliances vacuum cleaners, irons, electric showers, PCs, 

garden equipment, hair dryers, sewing machines, 

torches, drills, battery chargers etc. 

Lighting lights 

The ownership levels of electrical appliances are also presented by household.   

Figure 4.5 shows the ownership level of domestic electrical appliance by household 

in the UK. This information was obtained from [4], and was updated using data from 

the Department for Environment, Food and Rural Affairs (DEFRA) [76]. The tags 

marked ‘*’ are the updated ones. From the figure, it can be seen that the majority of 

households own a television, kettle, vacuum cleaner and iron, around 75% own a 

video recorder, 55% own a freezer, approximately 57% own a refrigerator, 64% own 

an electric oven, 85% own microwaves and 45% own an electric hob (consumers 
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generally prefer to use gas hobs because they are believed to give more flexible 

control of temperature). In order to produce a daily load profile for different 

households, the ownership level of domestic appliances was assumed to be the same 

for different types of households. 

   

Figure 4.5 Ownership level of domestic appliances 

The information on the average daily consumption for key appliances in UK 

households was obtained from research on energy use carried out in [4]. The 

information provides the type and the average annual daily consumption per 

household, the average annual energy use per capita per day and the ownership rate. 

Table 4.3 lists the average energy consumption of appliances in the UK. The 

consumption is given by households as well as by per capita. Cooking appliances’ 

and wet appliances’ activities are accountable for the majority of the peak load in 

houses [3]. 
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Table 4.3Average energy consumption of electrical appliances in the UK [40] 

Appliance Average   consumption per 

household (kWh/day) 

Average   

consumption per capita 

(kWh/day) 

Electric hob 1.33 0.39 

Electric oven 0.74 0.22 

Microwave oven 0.23 0.07 

Refrigerator 0.82 0.33 

Freezer 1.9 0.55 

Television 0.91 0.27 

Video recorder 0.3 0.09 

Dishwasher 1.72 0.48 

Washing machine 0.8 0.2 

Tumble driers 0.78 0.28 

Electric kettle 0.78 0.28 

Iron 0.3 0.09 

Vacuum cleaner 0.15 0.04 

Miscellaneous 1.1 0.33 

Computers 0.5 0.3 

4.3.2.3 Daily Occupancy Information 

Occupant behaviour has a significant impact on the energy use of households. The 

occupancy level of dwellings is an important parameter to know in order to determine 

the energy use. The usage of electrical appliances within buildings varies 

significantly with respect to time, mainly in accordance with the activity of the 

building occupants. In the domestic sector, the energy usage is related to the 

occupancy and depends on the number of occupants, how they behave in their homes 

and the unoccupied period during the day. Occupants influence the use of electricity 

by the number of electrical appliances they own and through their use of the 

appliances. For example, when there is nobody at home; most appliances will not be 
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in use. A daily appliance electricity profile shows that occupants consume practically 

low power during the night (only cold appliances). Occupants get up, prepare and 

have breakfast and leave the house during the morning and then may come home 

again around lunch time. In the evening, many activities are done: cooking the meal, 

taking a shower and watching television, etc. The household occupancy pattern can 

be influenced by many factors such as: 

 Number of people living in the house. 

 The getting up time in the morning and the sleeping time. 

 The period of time the house is vacant during the day. 

It is important to identify the type of households when analyzing the load profiles, 

because the load profile depends very much on the occupancy pattern. Due to the lack 

of information about household occupancy patterns, it was decided to make 

assumptions for the most common scenarios of household occupancy patterns in the 

UK. Eight scenarios which present the most common occupancy patterns in the UK 

have been assumed based on household type. Table 4.3 lists these possible scenarios. 

In the domestic sector, a better understanding of consumer behaviour or the usage 

behaviour of the different parameters of the domestic load is required. One of the 

main difficulties of domestic demand response is the lack of proper understanding of 

consumers’ behaviour. The daily occupancy information available in the literature is 

limited, so simpler assumptions have been made for each scenario. For the assumed 

profiling scenarios, three occupancy profiles have been used: continuous occupancy, 

vacant throughout working hours and a late. Although the load profile of the cold 

appliances usually fluctuates throughout the duty cycle of these appliances, the 

assumption of a constant load is assumed suitably precise [27]. The remaining 
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appliances will have discrete events where the appliance is switched on and utilized. 

A questionnaire survey was designed to investigate this. 

Table 4.4 Scenarios profiles & occupancy assumptions 

Scenario Household Type Unoccupied period & Assumptions 

1 1 working adult 08:30 to 18:00 

2 1 retired The house is occupied all the time 

3 1 adult with children 08:30 to 13:30, the occupier is a part time 

worker 

4 2 working adults 08:30 to 18:00 

5 2 working adults with 

children 

08.30 to 13.30, one adult has full time job. 

Other may have a part time job in the morning 

to take care of the children after school. 

6 2 retired The house is occupied all the time 

7 3 adults or more 13:00 to 18:00, two members have full time 

jobs; the other has a part time job in the 

afternoon. 

8 3 adults with children The house is occupied all the time, two adults 

have a full time job and the other one is 

retired. 

4.3.2.4 The Questionnaire Survey 

A household energy questionnaire survey was carried out in the BD7 area in Bradford 

on ninety eight households from the 1
st
 of August 2009 to early September 2009 to 

generate data regarding household energy consumption patterns. Eighty seven (87) 

out of ninety eight (98) participants completed and returned the survey. The 
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questionnaire survey used is presented in Appendix A. It is a three pages survey 

form.  

The first aim of the questionnaire survey was to collect specific data to find out when 

and how many occupants switch on electrical appliances during different times of the 

day. The results of the survey will help us to get probabilistic estimates of usage of 

electrical household appliances. It is intended to make a model that gives domestic 

appliances' electrical load profiles. 

The survey questions were divided into three main sections. The first section requests 

general information about the household to give an overview of household type and 

occupancy patterns. The second section requests general information about the use of 

electric appliances in order to collect specific data on when and how often occupants 

use their electrical appliances at different times of the day. The third section aims to 

gather information about lighting use. 

The questionnaire explained the reason for the research and also explained that the 

survey was being carried out as part of a PhD project. Participants were assured of 

the anonymity of their responses. 

Analysis 

The information from the section of general information about the household is 

illustrated in Table 4.4. The survey shows that the most common type of household 

was a couple of adults without children, which accounted for about 24 percent of 

households. The second most common type was two adults with children, which 

accounted for about 19 percent. The next most common household type is a single 
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working adult without children which represents 15 percent. A household with more 

than two adults with children represents the lowest share; 3 percent. 

The types of households of respondents were compared with the 2008 Census data, 

available at the UK Office for National Statistics (ONS). From the table we can note 

that there is a reasonable agreement between the percentage share of the surveyed 

data and the percentage share of the national statistics. 

Table 4.5 Occupation of the surveyed households 

Household Type   Questionnaire Survey National 

Statistics 

No. of 

households 

Percentage 

share (%) 

Percentage 

share (%) 

Single adult  13 15 16 

Single retired 13 15 14 

Two adults 21 24 22 

Two adults with children 17 19 19 

Two retired 8 9 10 

More than two adults  7 8 9 

More than two adults with children 3 4 5 

Single adult with children 5 6 5 

4.3.2.5 Daily Energy Consumption of Appliances 

The daily energy consumption of different types of household electrical appliances 

was calculated based on average annual consumption per day (per capita or per 

household depending on the household type as listed in Table 4.3). Each of the 

appliances listed in Table 4.2 (refrigerator, freezer, dishwasher, clothes washer, 

clothes dryer, etc) were simulated individually and then combined to generate a 
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random half hourly daily load profile for each household type.  In the surveyed 

households, the heating and hot water systems are provided by means of natural 

gas. Although the boiler uses an electric powered burner, the electric consumption 

of this burner is too small and has not been considered. Furthermore, In order to 

generate appliances load profiles we assumed that the ownership level of each 

appliance is similar to that of the UK national ownership level and each household 

has been assumed to have only one of each appliance listed above (Table 4.2). 

4.3.3 Electric Lighting Patterns 

Artificial lighting provides a wide variety of benefits in houses. It allows activities to 

be conducted without daylight and creates different interior lighting atmospheres to 

meet occupants’ needs.  Lighting use is dependent on the occupancy pattern and is 

highly affected by daylight conditions (seasons) and the presence of active occupants, 

e.g.in winter, people need to switch on the artificial lighting in the morning for their 

activities, but in summer due to the daylight no artificial lighting is required. The 

lighting loads were calculated based on the survey.  Houses were assumed to be using 

more efficient light bulbs. The following equation can be used to calculate the 

electric lighting energy consumption (El): 

 

rbbl ENE   

 

  (4.4) 

Where Nb is the number of light bulbs per household distributed between bedrooms, 

kitchen, living room, bathrooms and others, and     is the energy rating per bulb per 

hour. The number of hours during which the light sources in each room consumed 

energy was obtained from the questionnaire data. 



 

66 

 

4.4 Generating the Load Profile 

4.4.1 Household Type Allocation 

In this study, we are generating a load profile for a virtual residential community of 

400 different types of household. Given the diversity of people in the UK population, 

it is almost certain that different households have different levels of knowledge about 

electricity consumption, different attitudes and different energy-using or saving 

practices.  

To get a picture of the demographic characteristics of the area in order to allocate 

different numbers of households, the calculation was based on the percentage share of 

surveyed households (Table 4.5). After calculating of the number of households, the 

physical location of the households was then allocated randomly using Excel's rand 

function. Figure 4.6 shows the projected number of each type of household for the 

assumed community. 

 

Figure 4.6 Projected numbers of households 
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4.4.2 Time of Use Probability Profiles 

The time of use probability profiles   attempts to quantify the probability of the 

specified activity being undertaken as a function of time of day. The probability 

profiles represent the probability of a household carrying out a particular activity 

during a 24 hour period. Occupancy profiles inform the appliance time of use 

probability which illustrates when an appliance is in operation at a given hour of the 

day. In order to compute relative probabilities, the survey dataset is filtered to only 

include information about when and how the occupants use their electrical appliances 

during different times of the day.  

Generally, the relative probability of an event could be approximated by the relative 

frequency, or fraction of times that the events occur. Relative frequency is the 

number of times an experimental event occurs, divided by the total number of trials 

[77]. Relative probability is given by the following equation: 

t

x

R
N

N
P   

  (4.5) 

 

Where PR is the relative probability, Nx is the number of times an event x occurred, 

and Nt is the total number of trials. 

The appliances are physically allocated to households based on the national 

ownership levels and using the random function. The random nature of electricity 

load profiles is generated by using cumulative distribution functions (CDF) which 

describe the usage times of the appliances. The cumulative distribution functions are 

based on real values of a sample of the population. Figure 4.7 shows the approximate 

probability and cumulative distribution functions (CDF) of first usage times per day 

of an electric hob for the single adult household, which resulted from questionnaire 
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survey analysis. This data is obtained from the questionnaire survey of the BD7 area. 

In other words the behaviour is being predicted on the basis of a particular 

community. Hence, the assumption is that the 400 households in the community have 

similar behavior with respect to appliances as the BD7 community.  

 

Figure 4.7 Relative probability & cumulative distributive function of first usage 

times per day for a hob for the single adult household 

4.4.3 Generation of Electricity Load Profile  

The random creation of load profiles is implemented in Excel on a half hourly basis 

in order to generate daily electrical load profiles for the eight household types. 

Microsoft Excel is a powerful and widely used Spreadsheet software developed by 

Microsoft [142]. Excel is a spreadsheet application with special features for 

performing calculations and providing a wide variety of graphics, making it one of 

the most popular and widely used PC applications [143]. The inbuilt numerical or 
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The community composition 

of household.

Nos. of Households

Calculate number of each 

household type.  

CDF for each appliance 

per type of household

Appliance ownership levels     

(%)

Allocating time usage of 

appliance with CDF

Determine the appliances per 

household type

Generate Half Hourly load 

Profile for each appliance

Calculate energy profile

Distributing the households 

RANDomly

Distributing appliances to 

locations using RAND.

Energy consumption of 

appliances

statistical functions formed in Excel are sufficient for our purposes. Excel was chosen 

for its simplicity, the universal availability and the author has prior experience of the 

software. 

 Figure 4.8 shows the outline of the generator. From the figure, it can be seen that the 

number of households in the community is the initial input. The number of household 

types is then calculated using external data from surveyed households, giving the 

composition of households. 

 

 

Figure 4.8 Outline of how to produce household load profiles 

 

The household type is then distributed in the community in a random manner 

reflecting the reality of a community. The appliances for household types are then 

determined using external data on ownership levels. The appliances are then 
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distributed again in a random manner.  The time usage of each appliance is then 

predicted using the cumulative distributive function that was previously determined 

by the survey of a similar community; BD7 in Bradford. Finally the energy 

consumption of each appliance from external data is included so that the total energy 

consumption can then be computed. The eight loads were generated individually on a 

daily basis to generate a random half hourly daily load profile for each household 

type. The summation of the whole community can then be done to determine the 

community load profile. The total daily electricity demand profile for the community 

is generated by aggregating the load profiles of the eight scenarios (households). 

4.5 Results 

Eight daily electricity load profiles were generated separately for each household type 

on a half hourly basis. As an example of the functioning of the load profile generator, 

typical half hourly load profiles have been generated for the community that is used 

in this study. The random fluctuation in daily consumption levels was achieved by 

using a normally distributed random number.  

The electricity load profiles for the eight household scenarios have been generated 

and then the average values were calculated for each household type and plotted, as 

shown in Figure 4.9. Note that the random nature implies that results are only 

particular to the instant. The variation in electricity consumption on a daily level was 

observed on a half hourly basis. 

The peaks in the figure occur around meal times: breakfast time and dinner time are 

clearly visible. However, it is important to note that all, except scenarios 2 and 6, 

show the typical small peak in the morning and a significant peak in the evening. The 
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reasons for this are that the two scenarios (2 and 6) are about retired people. 

Typically they have high energy consumption during the daytime. In scenario 5, a 

third peak is visible in the afternoon as one of the occupants has a part time job so has 

to return from work to take care of children returning from school. Scenarios 3, 4, 7 

and 8 show similar magnitudes of energy consumption, despite different occupancies.  

The aggregate electricity demand for each scenario of the whole community, giving 

the maximum, average and minimum daily possible values, is shown in Figure 4.10. 

This was done by running the profile for 23 runs (i.e. random days). The two adults 

with children household and the two working adults household have the most energy 

consumption; 28% and 21% of total domestic energy consumption respectively. 
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Figure 4.9  Instantaneous half hourly daily consumption for eight scenarios 
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Figure 4.10 Daily maximum, average and minimum consumption in community  
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Figure 4.11 Energy consumption profile of the 400 household community 

The aggregate daily electricity demand in the particular community of 400 

households is shown in Figure 4.11. By observing the generated demand profiles, it is 

noticeable that the total demand has a peak in the morning, in the afternoon and the 

highest peak in the evening. The energy usage in the early morning period is very low 

as would be expected due to few electric appliances being on. The initial peak of 

about 120 kWh occurs at around 8:00 hrs due to operating such appliances as 

cookers, kettles and electric showers in order to get ready for starting the day. The 

energy consumed then remains almost level at 50 kWh with only a slight increase as 

children return from school. After 17:00hrs, there is a significant increase in 

consumption (usually the highest peak) as people return home. This remains high 

until around 21:00 hrs when it starts falling. The maximum and minimum are seen to 

be significant in the evening period varying by 15% at the highest peak. 

 The cumulative distribution functions (CDF) enable the generation of the random 

nature of consumption and can be considered as a good representation of behavior 
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change. Different communities have different behaviors. In order to take into 

consideration the variation in load consumption various communities may have, 

different values of cumulative distribution functions (CDF) to describe the usage time 

of some appliances for different groups of consumers at different communities have 

been assumed as shown in Figure 4.12. 

The effect of variations in CDF on the results of the simulations is shown in Figure 

4.13. From the figure it can be seen that the change in cumulative distribution 

functions (CDF) values has a noticeable effect on the nature of the energy 

consumption profiles of the community. Therefore, it is possible to improve the 

database of the tool by obtaining better national representative cumulative 

distribution functions (CDF) across the country for different groupings and regions, 

which could be used by local planners 

.  

Figure 4.12 Cumulative distribution functions at different values 
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Figure 4.13 Energy consumption profile under different cumulative distribution 

functions 

4.6 Comparison to Measured Data 

A measured load profile for a two adults and four children household, as presented in 

chapter 3 (section 3.3.4) is used for comparison. Figure 4.12 shows the measured data 

from the household compared with one predicted by the profile generator. The 

averaged half hourly load profile from the measured data has shown a reasonable 

agreement compared with the generated load profile for the same household type 

(i.e., scenario 5; two adults with children household). The average daily electricity 

consumption from the measured data is about 9 kWh, and about 11 kWh from the 

generated load profile for the same household type.  The profile from monitored data 

is slightly lower than the generated profile because the cooker was powered by means 
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of gas and the household did not have some appliances such as a dish washer and a 

tumble dryer.  

 

Figure 4.14 Comparison of modeled load profile to measured data 

From the figure, it can be seen that the base load of demand occurs overnight and is 

mainly from cold appliances, continuous appliances and appliances in standby mode. 

The initial peak occurs between 6:30 hrs and 8:30 hrs. The second peak occurs 

between 13:30 hrs and 15:30 hrs as one of the occupants returns to take care of the 

children. Finally, the peak in the evening occurs as the family returns.  

The significant difference that occurs after 21:00 hrs indicates that the occupants of 

the household do not reflect the typical behavior of British households. This is 

verified to be true as the nationality of the occupants is non-British.  
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4.7 Discussion 

A methodology for generating community load profiles was presented. The load 

profile can vary significantly between communities due to different housing data, 

different occupancy types, and different consumer behaviour.  

Modelling a small community based on a behavioural understanding of the local 

community can lead to a better understanding of possible intervention. The procedure 

used in this thesis was based on a number of key assumptions and data. It was 

primarily based on a combination of the national statistical data, and a questionnaire 

survey.  

Higher accuracy requires more detailed input data. In this study, the survey was done 

with only eighty seven participants. With this information, it was possible to profile a 

similar residential community of four hundred households. For a community that may 

be different from this (different behavior), we would require a survey to be 

conducted. Moreover, with updated information, the simulated profiles could be 

improved. 

The methodology presented in this work took into consideration the variation in load 

dissimilar communities may have, via the use of the cumulative distribution function 

(CDF). The cumulative distribution function was used to describe the usage time of 

the appliances for different groups of consumers. It was based on real values of a 

sample of households’ occupancy surveyed data describing when and how occupants 

are likely to be utilizing their electrical appliances at different times of the day. The 

simulation is sensitive to the CDF. The change in CDF values has a noticeable effect 

on the nature of the generated load profiles of the community. The CDF allows us to 
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generate the random values for consumption. The variations in electricity 

consumption on a daily level were observed on a half hourly basis. These variations 

indicate that there must be opportunities for behavior change with respect to time of 

use, so as to result in less peak demand. 

To enable the tool to be useable for different communities, the database of the tool 

could be improved by generating national representative cumulative distribution 

functions (CDF) across the country for different groupings and regions, which could 

be used by local planners. 

The results showed which category of household contributes most to the energy 

usage peaks. It is possible therefore to focus energy conservation on those households 

first rather than the whole community, which may be too costly. The variations in the 

daily usage between maximum and minimum indicate that there must be 

opportunities for behavior change with respect to time of use so as to result in less 

peak demand. The tool does not consider the variation in load from weekdays to 

weekend to avoid complexity and this should be considered in future work.  

4.8 Conclusion 

This chapter can be concluded as follows: 

 A new methodology to predict electricity energy scenarios for small residential 

local communities has been presented to help local planners decide on measures 

such as embedding renewable energy and demand management.  

 The inputs are based on a limited set of statistical data of household types, and of 

ownership levels, both of which are available in the public domain. 

 The scenarios are made relevant to the communities being investigated by 
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carrying out a straightforward survey of consumer behaviour in similar 

communities.  

 The differences between eight types of households show that occupancy has a 

significant impact on energy consumed. This is something local planners could 

modify, if their community’s households differ from national types, in order to 

help plan for their communities. 

 The result was compared with measurements of a single household, and shows 

reasonable agreement. 

 The results of the generated load profiles have been used to evaluate the 

incentives currently available to consumers for shifting load. 

 The results of the generated load profiles have been used to study measures that 

could be used to reduce energy consumption. The resulting generated load 

profiles are being used to assess the impacts of time of use (TOU) tariff plans 

(economy 7) on domestic consumer behaviour and energy savings.  
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Chapter 5 

Investigation of Tariff Initiatives for Peak Load 

Shaving at Domestic Level 

This chapter presents and discusses an investigation of the use of economy 7 tariffs as 

an incentive to generate demand response, and shows the impact of these tariffs on 

consumer behaviour in UK domestic buildings, using the results presented in  

Chapter 4. 

5.1 Background 

Rising electricity demand and worries over a future lack of resources make energy 

management tools such as peak load reduction or load shifting a valuable method for 

maintaining a stable and efficient network. Domestic load balancing is a major 

concern for several countries, particularly where the demand is close to the available 

generation capacity. This is represented in the deregulated market by higher pricing 

during peak periods. The results of the generated half hourly domestic electricity load 

profile presented in Chapter 4 are used to evaluate the incentives currently available 

to consumers for shifting load. With the generated electricity demand profile, 

consumers' bills at both standard tariffs and time of use tariff plans have been 

calculated. This chapter discusses some aspects of electricity markets from the 

perspective of the demand side. It also outlines the tools and techniques that should 

be developed to help consumers take advantage of the opportunities offered by 

competitive markets. An optimization model of electricity tariffs using load shifting 
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to maximize the consumers' gain by shifting to an economy 7 (TOU) tariff rather than 

a standard tariff, was proposed.  

5.2 Introduction 

Peak demand is a key issue in power supply systems when demand goes over the 

available capacity. Continuous growth in peak load raises the possibility of power 

failure, and raises the marginal cost of supply. In the UK the domestic sector 

accounts for about one third of total electricity use. It contributes the largest peak 

demand, particularly in the winter season, which has consequences for the power 

infrastructure. 

Under competitive electricity market conditions, if a reasonable electricity tariff for 

consumers is determined, consumers could be encouraged to modify the style of their 

consumption in response to financial incentives. Consequently we can achieve the 

objective of making the load more level and recover the stability and efficiency of the 

power system. Demand response (DR), is defined as the changes in electricity usage 

by end use consumers from their usual usage patterns in response to changes of the 

electricity price over time. Demand response relates to the fact that the behaviour of 

occupants in their own homes results in significant changes in electricity load that are 

often highly correlated and thus have a considerable impact on the electricity supply 

system both locally and system wide. 

Time of use tariff (TOU) is one of the significant tools of demand side management 

(DSM) which encourage consumers to adjust their consumption during the high 

demand periods [79]. Time varying tariffs offer smart off peak rates, but relatively 

high peak rates. TOU tariffs for domestic consumers were first begun in 1965 and led 
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to an exceptionally significant growth in electric storage water heaters and a resultant 

growth in off-peak use including the Economy 7 tariff scheme in the UK [80]. 

Economy 7 is a cheaper night time electricity tariff which normally operates from 

midnight where seven hours of low tariff electricity at night but slightly more 

expensive tariff throughout the day. In the UK, this is most effective for those 

customers that use electric heating. This is because of the high load for heating. 

However, the majority of houses in the UK now have gas central heating systems. 

The incentives for load shifting of the peak are therefore limited. 

5.3 Demand Side Management 

Demand Side Management (DSM) programmes began modestly in the 1970’s in 

response to the impacts of oil crises on the electricity utility industry. These oil crises 

led to a rapid increase in energy price, increased cost of power generation and 

subsequently higher electricity costs [81, 82]. 

Due to technological and economic developments energy demand has gradually 

increased. The old way to assure this increasing demand was to increase supply 

capacity by constructing more power generation plants, which was formally called 

supply side management (SSM) [83]. However, due to limited energy resources, a 

deteriorating environment, and unfavourable demand profiles another strategy to 

meet demand needed to be found. It soon became clear that the SSM approach was 

inappropriate for sustainable growth either from an economic or an environmental 

point of view. Nowadays, DSM has become part of the application of integrated 

resource planning (IRP) and refers to a series of approaches and options to help 

utilities maintain a balance of electric supply and demand under uncertain conditions 

[81]. Currently, facing the prevailing change in electricity market structure, DSM 
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implementation has come into a new era and is leading changes in the design of the 

restructured utility market. The DSM programmes have focused on how to manage 

the consumption pattern of electrical appliances by minimizing the negative impacts 

on consumers [84]. Demand Side Management (DSM) vs. supply side management 

(SSM) is described in Table 5.1. 

Table 5.1 Demand side management Vs. supply side management 

DSM SSM 

After the consumer meter Before the consumer meter 

- Reduce power 

- Shift time of use 

- No reduction in service quality 

- Increase generation capacity 

- Improve generation efficiency  

- Reduce transmission and 

distribution losses 

 

5.3.1 Definition and Objectives of Demand Side Management 

The concept of Demand-Side Management (DSM) was initiated by the utility 

industry primarily for changing the timing and level of electricity demand, i.e., the 

shape of electricity loads, among their customers.   

Demand Side Management (DSM) is a technique used by utilities to control the loads 

in order to achieve a better overall network performance and to obtain a better match 

between the available supply and the consumer demand, so that their connection to 

the grid is scheduled according to the availability or cost of power. In other words, 

DSM is the implementation of those measures that help the consumers to use 
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electricity more efficiently in order that power can be produced in an optimal way 

[84-86].  

5.3.2 Approaches to Demand Side Management 

One approach in residential load management is direct load control (DLC). Direct 

load control allows a utility to turn on or off particular appliances at the time of peak 

demand periods by direct control.  This kind of load control contains encroachment 

on the consumer’s right to use his electricity supply as he needs. However, users’ 

privacy may be a barrier when load control is utilised in residential situations. An 

alternative is dynamic pricing, which is designed to reduce system costs for utilities 

and bring down customer bills. Dynamic pricing programmes can be targeted at many 

kinds of customers, from the residential consumer through to the commercial 

consumer and the industrial consumer. The electric utility company is most often 

responsible for programme design, implementation, and evaluation and monitoring. 

The implementation of new metering and billing systems and sometimes the 

installation of end-use controlling equipment are involved [91].  With dynamic 

pricing, users could be encouraged to manage their load. In this regard, time-of-use 

pricing (TOU), critical peak pricing and real time pricing are among the most popular 

options [80]. 

 Time-of-Use Pricing (TOU): Electricity prices are designed higher in time of 

peak hours and lower in off-peak time, typically not changing more often than twice a 

year. Prices charged for energy used during these periods are well-known to 

consumers in advance, enabling them to change their consumption in response to 

prices and therefore cope their energy costs by shifting load to a lower cost time or 

reducing their use overall. 
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 Critical Peak Pricing (CPP): This rate design is based on a time of use scheme 

(TOU) combined with an additional penalty charged over the standard peak time of 

use price for consumption during these hours when electricity is costly or system 

conditions are critical. CPP is only used on a limited number of days each year [88, 

89]. Although CPP represents an improvement to time of use (TOU), it has the 

drawback that the penalty charges are set in advance and the numbers of occasions on 

which they can be applied are limited.  Critical peak pricing needs a better level of 

metering than time of use rates which needs only on-peak and off-peak usage 

measurements, whereas CPP must be capable of hourly measurements of load. 

Moreover it also needs further communications equipment in order to inform 

customers of the time of critical hours. 

 Real Time Pricing (RTP): This type of pricing is based on the scheme that the 

electricity price should always reflect the current market situation. Under a real-time 

pricing, the electricity prices vary hourly or sub-hourly all year long, for all or some 

of a customer’s load. 

5.3.3 Implementation of DSM 

The key components of DSM are load control, load management, remote metering 

and billing automation.  Load control and management is used to analyse situations 

such as users’ electricity consumption, electricity prices, weather and heating 

characteristics in buildings in order to determine the optimal operation and load 

control scheme and also guide the consumers to shift load and flat load curves with 

reasonable pricing structures. The main categories in this DSM activity are: [79] 

  Energy reduction programs (ERP): reducing demand through more efficient 

processes, building or equipment; 
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 Load management programs (LMP): changing the load pattern and encouraging 

less demand at peak times and peak rates. 

Remote metering and billing automation allow the generation of reports and curves of 

electricity prices automatically by obtaining meter data from remote consumers and 

transmitting it to the control centre. 

Load management programmes aim to manage the power on the demand side using 

various technical and economic measures to reshape the load curve into the objective 

curve to enable the supply system to meet the demand at all times in a cost-effective 

manner [88]. The load on the system is always changing with time and never remains 

constant, so that utility providers must keep an eye on the maximum load and average 

load of their systems. Load management programmes basically optimize the loads to 

improve the system load. The load factor is the ratio of the average load to the 

maximum load within a certain period.  

            
            

            
 

 

  (5.1) 

The ideal value for the load factor is 1, which indicates that the average load is equal 

to the maximum load. However, practically this is impossible and it is always less 

than one (< 1.0). The lower this load factor, the greater the fluctuations within the 

demand profile. This results in increased capacity and cost for the operation of the 

supply side. Therefore measures need to be implemented which improve the load 

factor. Load management is a suitable way of increasing the load factor, which is the 

process of scheduling the loads, to reduce the electrical energy consumption or the 

peak demand at a given time.  Figure 5.1 illustrates different load shape objectives of 
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demand side management programs. These include: peak clipping, valley filling, load 

shifting, strategic conservation, strategic load growth and flexible load shape: 

 Peak clipping: denotes to the reduction of utility loads during peak demand 

periods. This can reduce the need to operate at the most expensive unit and defer 

the need for future capacity additions to decrease the utility’s cost of service. 

The net effect is a reduction in both peak demand and total energy consumption. 

The method usually used for peak clipping is by direct utility control of 

consumer appliances or end-use equipment. 

 Valley filling: encourage consumers to use energy when the energy price is low. 

This is the process of making an energy production and delivery system more 

efficient by encouraging additional energy use during periods of lowest system 

demand.  

 Load shifting: involves shifting load from on-peak to off-peak periods. The net 

outcome is the reduction in peak demand, but no change in total energy 

consumption. Typical methods used for load shifting are the time-of-use (TOU) 

rates and/or the use of storage devices 

 Strategic conservation: encourage consumers to use efficient energy such as 

renewable energy and energy efficient appliances to reduce energy use in order 

to lessen average fuel cost and reschedule the need for future utility capacity 

additions. 

 Strategic load growth:  encourage consumers to use electro technologies instead 

of inefficient appliances such as fossil-fuel equipment. This can decrease the 

average cost of service by distributing fixed costs over a larger base of energy 

sales and benefits all customers. 
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 Flexible load shape: use programs such as demand subscription services and 

priority service pricing which alter energy consumption. Utilities can realize both 

operating and future fixed costs by allowing dispatchers the flexibility to reduce 

or postpone demand for selected customers [83]. 

 

Figure 5.1 Demand side management load shape curves [83] 

5.4 Electricity Tariffs Structure 

As residential energy markets open to competition, consumers can choose from a 

range of tariffs offered by different suppliers. Currently in the UK, most domestic 

consumers, who have no electric heating, have slight or no incentive to shift their 

usage away from peak periods as they are charged at standard electricity tariffs for 
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their consumption regardless of time of use. The standard tariff consists of a standing 

charge tariff, a Tier 1 charge for an agreed amount of usage, and a Tier 2 charge for 

the remainder. A standing charge is a fixed amount the consumers pay daily to their 

electricity supplier. It’s a little like a connection fee and the consumers also pay for 

the electricity they actually use. It is used to cover the energy suppliers’ costs such as 

meter reading, maintenance and the cost of keeping the consumer connected to the 

network. 

The economy 7 tariff is a cheaper night time electricity tariff which normally operates 

from around midnight for seven hours. To shift more energy consumption into the 

night, some main appliances such as, washing machines, tumble dryers or 

dishwashers might be configured to run during the night period tariff i.e. early 

morning. To examine the consumer’s behaviour in response to the tariff changes, 

consumers’ quarterly electricity bills under different standard tariff schemes offered 

by five suppliers in the UK, were calculated. Table 5.2 shows the actual electricity 

standard tariff plans offered by five suppliers in 2010 in the UK [90]. 

Table 5.2 Standard tariffs (including VAT) offered by different suppliers 

Supplier Standing 

Charge 

Tier 1 Tier 2 (for the rest) 

1 - 14.91p/ kWh for the first 720 KWh 13.90 p / kWh  

2 8.4210 p/day 11.885p/ kWh   - 

3 - 19.91p /kWh for the first 900 KWh 9.84  p/ KWh 

4 - 23.538p / kWh For the first 500 kWh 9.172 p/ kWh  

5 13.301 p/ day 10.2250 p / kWh  - 
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The Tier 1 day rate will apply to a block of 1000 kWh or 720 kWh each year ( e.g. 

for an electricity bill covering three months the first 247 kWh will be charged at the 

Tier 1 rate, all extra day kWh will be charged at the Tier 2  rate). Night consumption 

will be supplied for a total of 7 hours between 11pm and 8am (actual times set by the 

local network operator) and these will be charged at the night kWh rate. Table 5.3 

shows actual electricity economy 7 plans offered by two suppliers in 2010 in the UK 

[90]. 

Table 5.3 Economy 7 electricity tariffs rates (including VAT) 

Brand Supplier 

Supplier X Y 

Tier 1 rate 23. 80p/ kWh for the first 1000 

kWh 

22.134p/kWh for the first 720 

kWh 

Tier 2 rate 11.21p/kWh for the remainder 13.288p/kWh for the remainder 

Night rate 5.03p  per kWh 4.63p per kWh 

5.5 Analysis of Household Electricity Consumption 

To obtain a better understanding of the effect of different tariff schemes on consumer 

behaviour, half hourly load profiles for different types of households as presented in 

Chapter 4 is used. 
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An analysis of domestic electricity consumption was carried out to determine if UK 

households are responsive to the economy 7 tariff scheme. These household are 

assumed to all have gas central heating. 

5.5.1 Load Profile Data Characteristics 

A consumer’s consumption of electricity is influenced by the number, type and time 

of usage of electrical appliances. Households do not have to reduce their consumption 

to benefit from low tariff rates at off peak periods. By shifting their electricity 

consumption to lower rate periods, which means they use electricity in off peak 

periods, consumers can save on their electricity bill even if they do not reduce their 

consumption. 

Household actions needing electricity include food preparation, using electronic 

apparatus, running appliances etc. Of these activities, utilizing wet appliances (e.g. 

tumble dryers, washing machines and dishwashers) outside of peak periods is likely 

to result in the least disruption to households and personal lifestyles. The percentage 

share of electricity consumption by household domestic appliances is shown in 

Figure 5.2. The largest share was for the wet appliances which accounted for 19 

percent of the total amount of electricity consumed, followed by brown appliances 

(18 percent), cooling appliances (17 percent), miscellaneous (16 percent), and 

lighting (13 percent). As such, it is feasible to shift the wet appliances usage to 

different time periods. 
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Figure 5.2 Electricity consumption by households’ domestic appliances 

5.5.2 Bill Calculations 

The generated household electricity consumption data presented in Chapter 4 has 

been manipulated in two ways to help determine the likely change in the electricity 

bill and shift in electricity use in response to economy 7 tariff schemes.  The two 

ways are described below: 

 Will the households gain naturally from the adoption of economy 7 tariff rates? 

That is, are there any households that are expected to save on their electricity bills, 

given their electricity use patterns without the adoption of economy 7 tariff rates 

(i.e. under standard tariff schemes). A comparison between different consumers’ 

bills under standard tariffs offered by five suppliers has been made in order for 

consumers to understand more about standard tariffs before choosing their 

suppliers. The general equation to calculate the quarterly consumer’s bill under the 

standard tariff is: 

Cooking 
Appliances, 

14% Cold 
Appliances, 

17% 

Brown 
Appliances, 

18% 

Wet 
Appliances, 

19% 

Miscellaneous, 
16% 

Lighting, 16% 
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              ( 5.2) 

 

where: 

  is the electricity bill under standard tariff, QF is a fixed  consumers’  

energy  use in lower tier (i.e., the first 1000 kWh will be charged at the Tier 1 rate),  

Q2 is all extra consumed kWh, x1 is tier 1 rate (£/kWh), and x2 is tier 2 rate (£/kWh). 

The general equation to calculate the quarterly consumer’s bill under economy 7 

tariff is: 

                    ( 5.3) 

where: 

   is the electricity bill under economy 7 tariff. 

                                  (   )                        

    =                                    (   )                        

                                     (   )                        

                 (     ),                      . 

                 (     )                                               

              (     ),                      . 

Under the same energy usage:              

The daily percentage of electricity consumed during the Tier 1, Tier 2 and night 

periods was calculated for each household type and for the whole community prior to 

the adoption of the economy 7 tariff. 

The difference between the tiered costs and the expected economy 7 costs (   ) 

was calculated for each household. Positive differences indicate that the expected 
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economy 7 costs would be greater than the actual tiered costs, and thus indicates that 

the household is not expected to benefit naturally under the new economy 7 rate 

scheme.  Similarly, negative differences indicate that the expected economy 7 costs 

would be less than the actual tiered costs, and thus indicates that the household would 

be expected to benefit naturally under an economy 7 rate.  

 Do the households shift the time when they consume electricity upon the adoption 

of the economy 7 tariff rate? That is, do the households shift the usage of 

appliances such as washing machines, tumble dryers, kettles and irons to run a bit 

earlier in the morning. 

Table 5.4  Electricity consumption ratio during periods 

 Scenarios 

 1 2 3 4 5 6 7 8 

No. of households 60 60 24 96 76 36 32 16 

 Electricity consumption (%) 

Night Period 15 14 17 18 16 16 18 15 

Tier 1 (limit) 52 50 19 31 19 30 20 18 

Tier 2 Period 33 36 64 51 65 54 62 67 

Each of the households has similar average percentages of electricity consumed 

during night periods, as shown in Table 5.4. The average household proportion of 

electricity consumed during night periods ranged from 14% -18% between the 

households. Scenarios 4 and 7 have the highest proportion of electricity consumed 

during night periods.  

 



 

96 

 

5.5.2.1 Natural Benefits (without load shifting) 

The calculation performed was intended to determine if households would benefit 

naturally from the adoption of economy 7 tariffs. To answer this question, a 

comparison between quarterly bills from each household type under both the standard 

tiered rates offered by five suppliers and economy 7 rates was performed, as shown in 

Figure 5.3. From the figure, it can be seen that the households have an average 

quarterly electricity bill associated with tiered tariff (standard) in the range of £56 to 

£167. The average quarterly electricity bill of these households associated with the 

economy 7 tariff ranged from £76 to £165. 

 

 

Figure 5.3 Quarterly consumers’ bills using different standard tariffs & 

economy 7 tariff, for the eight scenarios 
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The single adult and single retired households have the lowest quarterly electricity 

bill associated with standard and economy 7 tariffs, while the two adults with 

children and three adults or more with children households have the highest quarterly 

electricity bills associated with standard and economy 7 tariffs.  

The results denote that none of the eight scenarios would benefit naturally from the 

economy 7 tariff. Also, from Figure 5.3, it is clear that some consumers (scenarios 3, 

5, 7 & 8) will benefit naturally from the adoption of economy 7 tariff rates if they are 

on standard tariffs offered by the first supplier. This is because the standard tariff is 

different at Tier 2, making it more costly for users. If Tier 2 rates of the standard rate 

were higher; it would force some customers to shift to economy 7. This is effectively 

what would be required as Tier 2 represents the additional usage of customers, and 

Tier 1 the fixed bill. 

5.5.2.2 Load Shifting 

If the load is now shifted from Tier 2 to night time, there could be possible savings. 

Using a standard tariff scheme as baseline, and two economy 7 tariffs, options 1 and 

2 described below explore this idea and the results are illustrated in Figures 5.4 and 

5.5. 

As shown from the figures, the percentages of possible savings under the standard 

tariff and the expected economy 7 tariff were calculated for each household type 

(scenario).   

Standard tariff: (supplier 3) 

Tier 1 rate: 19.91p (inc. VAT) per kWh for the first 900 kWh 

Tier 2 rate 9.84p (inc. VAT) per kWh for the remaining usage 
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Option 1: Economy 7 tariff: (supplier X) 

Tier 1 rate: 23. 80p (inc. VAT) per kWh for the first 1000 kWh 

 Tier 2 rate: 11.21p (inc. VAT) per kWh for the remaining usage 

Night Rate: 5.03p (inc. VAT) per kWh. 

Figures 5.4 and 5.5 show for each scenario, the savings compared with the standard 

tariff (negative indicates loss). The graphs indicate that in option 1, a minimum of 

25% load shift is required. However, for option 2, a load shift of 15% is sufficient for 

some households to benefit. 

 

 

Figure 5.4 Savings with option 1 pricing 

Option 2: Economy 7 tariff: (supplier Y) 

Tier 1 Rate: 22.134p (inc. VAT) per kWh for the first 720 kWh. 

Tier 2 Rate: 13.288p (inc. VAT) per kWh for remainder. 

Night Rate: 4.63p (inc. VAT) per kWh. 
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Figure 5.5 Savings with option 2 pricing 

5.5.2.3 Practical Adoption of Economy 7 Tariff (option 2) 

The previous calculations were all done by numerically shifting the load. However, in 

practice, it is the usage of appliances that has to be shifted by behavior. In this section 

we examine shifting the usage of appliances such as washing machines, tumble 

dryers, kettles and irons to run a bit earlier in the morning (before 8am). Table 5.5 

shows the shifts and gains made with various changes in appliance usage. The table 

shows that with a significant amount of change in behaviour from the consumer, the 

total amount of load shift was only around 23%.  At this level only a few consumers 

get a slight benefit. The reason for this is that most of the bill is actually made of Tier 

1 & Tier 2, and the ratios are different, as shown in Figure 5.5. The change must still 

be made at Tier 1 and 2 for there to be a shift. This can be done by conventional 

optimization techniques.  
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Table 5.5 Percentage savings in consumers’ bills using economy 7 tariff (option 2) 

compared to standard tariff   for load shifting of (i) Washing Machine (W/M) 

(ii)W/M + Dryer (iii)W/M + Dryer + Iron (iv)W/M + Dryer + Iron + 0.3 of Kettle’s 

load (v)W/M + Dryer + Iron + 0.3 Kettle + Vac. Cleaner 

Load shift i ii iii iv v 

% of Tier 2 load 

shifted to night 

9 17 20 21 23 

Scenarios % Savings 

1 -1.3 0.2 1.2 1.5 2.2 

2 -2.5 -1.2 0.6 0.9 1.8 

3 -7.5 -2.8 -1.3 -1 0.1 

4 -5 -2.3 -0.9 -0.8 0 

5 -9.3 -4.9 -2.9 -2.7 -1.4 

6 -5.9 -3.8 -2.6 -2.2 -2 

7 -6.5 -2.6 -1.1 -0.2 0.7 

8 -9.5 -5 -3.6 -2.8 -2.3 

5.6 Utility Load Facing 

Figures 5.6 and 5.7 show the typical electricity load profiles for the selected scenarios 

and the whole community respectively for load shifting using scheme (iv). It can be 

seen that a percentage of the daily load in the peak hours can be shifted to early 

morning hours. 
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Figure 5.6 Comparison of normal electricity consumption profile with load shift  
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Figure 5.7 Comparison of normal electricity consumption profile of the 400 

household community with load shift to night hours 

The benefit to the utility would be dependent on what rates they actually purchase the 

electricity at. If the cost is significant, then there would be an incentive to invest in 

trying to change the behaviour of the consumers. However, the focus of any attempt 

should be on the type of households where the benefit would be significant. Figure 

5.8 shows the amount of energy shifted by type of household. It can be seen that the 

two adults, and the two adults with children represent about half the energy shifted. 

As such, the utility could target marketing literature, and any incentives on those 

consumers.  

There is however, the issue that utilities may not be interested in changing national 

tariffs. If so, it may be possible for a local community company or organisation, 

newly entering the market, to make such changes. 
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  Figure 5.8 Proportion of load shifted in kWh for scenarios (scheme iv) 

 

5.7 Optimization of Electricity Tariff 

For domestic electricity tariffs to be effective, it is essential that the tariffs offered are 

designed in such a way as to adequately motivate consumers to change their 

electricity usage behaviour. Load balancing is a major concern, particularly where the 

demand is close to the available generation capacity. Demand is largely 

uncontrollable and varies with time of day and season (there have been insufficient 

incentives for demand to become responsive). This is represented in the deregulated 

market by higher pricing during peak periods. Moreover, households face a vast 

assortment of increasing electricity prices and increased awareness for environmental 

sustainability. The implementation of DSM has been slow due to a number of reasons 

such as lack of incentives. 
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The optimization of electricity tariffs offered to consumers by their utility providers 

is invariably the primary reason given for introducing competitive electricity markets. 

Dynamic energy pricing research could be grouped into two categories: profit 

maximization for utility companies or cost minimization for consumers [92].  

5.8 Formulating a Mathematical Model of the Consumer’s 

Electricity Bill 

Consider the problem of setting tariffs, where the setting of economy 7 electricity 

tariffs needs to be established to offer financial incentives to domestic consumers 

who agree to reduce their energy usage when energy demand is high. The form of the 

electricity tariff structure is one of the first considerations in any optimization 

problem which involves minimizing electricity costs. 

In our case, a mathematical model was developed to calculate the electricity bills for 

each household type under both the standard tariff (S) and economy 7 tariff (E). 

Then, the difference between the bills under tiered rates (standard tariff) and the 

economy 7 tariff with load shifting was calculated to assist decision making in 

resetting the economy 7 tariffs. 

The key decision is how to minimize the loss of  shifting to economy 7 by finding out 

how much the electricity rates should be paid by the consumers, while still ensuring 

the consumers save under economy 7 compared to standard tariff. 

5.8.1 Consumer’s Electricity Bill under Standard Tariff scheme 

Then the total monthly bill under standard tariff (S) is similar to Equation (5.2). 
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And the total electricity consumption (Q) will be 

        (5.4) 

 

5.8.2 Consumer’s Electricity Bill under Economy 7 Tariff scheme: 

(a)  Without load shifting 

Then the total monthly bill without load shifting under economy 7 is similar to 

Equation (5.3). 

                     

And the total electricity consumption will be 

           (5.5) 

(b) With load shifting 

If 

                                                (   )  

The new electricity bill under economy 7 with load shifting will be 

          (      )    (      )    (5.6) 

If  

          Then      (   )   

And if                   Then   

          (   )       (      )       (5.7) 

Where k is the percentage of exrea usage (Q2) used as tier 2 usage under Economy 7 

tariff, and ky is the percentage of exrea usage (Q2) shifted to night period.  
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The difference between the consumer’s bill under both economy 7 tariff with load 

shifting and standard tariff is obtained in Equation (5.8). 

         (     )       (   )       (      )       (5.8) 

   Simplifying, we obtain: 

         (   )    (              ) (5.9) 

Where             ,             ,           

Using the tariff schemes offered by different suppliers shown in Tables 5.2 and 5.3, 

the range of variables are: 

                            

             

                         

                                    

            

          

Where k is calculated for each scenario, and ky is in the range [0 - 0.25] based on 

Figure 5.5. 

The aim is to maximize the gain of the consumer through minimizing the difference 

between the consumer’s bill under both the economy 7 tariff with load shifting and 

the standard tariff (      ) by shifting to an economy 7 plan. 

Also since changes to economy 7 should result in no change in bill when ky is zero, 

so we have: 

   (   )    (        )     (5.10) 
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The values of Q, QF, Q2, QN, Q4 and K for the eight scenarios are summarized in 

Table 5.6.  

Table 5.6 Values of Q, QF, Q2, QN, Q4 and K (supplier Y) 

 Scenarios 

 1 2 3 4 5 6 7 8 

Q(kWh) 145 147 383 246 364 251 369 410 

QF(kWh) 75 75 75 75 75 75 75 75 

Q2(kWh) 70 72 308 171 289 176 294 335 

QN(KWh) 22 21 65 47 76 40 67 70 

Q4(KWh 48 51 243 124 213 136 227 265 

K 0.69 0.71 0.79 0.72 0.73 0.77 0.77 0.79 

 

The two adults and the two adults with children households represent about half of 

the energy shifted. As such, the utility companies could focus marketing literature, 

and any incentives on such consumers. To summarize, we have the following 

problem formulation for the fifth scenario equation (5.11). 

                             
(5.11) 

5.9 Problem Formulation and Optimization Model 

Modeling a problem using linear programming (LP) involves writing it in the 

language of linear programming. The keys to a linear program are the decision 

variables, objectives, and constraints. The LP must be converted into a problem 

where all the constraints are equations and all variables are non-negative. 
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Decision Variables: The decision variables represent (unknown) decisions to be 

made. For this problem, the decision variables are the difference between the Tiers’ 

rates. We will represent these unknown values by      ,     and     respectively.  

Objective: The objective is to minimize the loss of shifting to economy 7 by finding 

out how much the electricity rates should be so that consumers save more under the 

economy 7 tariff than under the standard tariff. 

The objective is to minimize the function represented in equation (5.13). 

Constraints: Every linear program also has constraints limiting feasible decisions. 

Here we have six types of constraints:      8.8,      9,     8.6. 

The basic problem is to find a rate design that prompts consumers to take action to 

make savings, without undermining the supplier’s ability to recover its legitimate 

costs of operation (to ensure the supplier will not lose),      that means,  

                        

                         ,  

Finally we add the linear constraints      ,       and        to enforce the 

non-negativity constraint. 

5.9.1 Final Model 

This gives us the complete model of this problem: 

                                         

Subject to: 

                8.8 

                9 

                8.6 
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    ,    ,       

The resulting minimization problem is formulated as a linear function of parameters; 

it can be solved by linear programming (LP) methods. 

5.10 Solving the Model using LINDO Optimization Software 

In this study, the computer package named LINDO (Linear Interactive and Discrete 

Optimizer) has also been used to get the solution for the decision problems. The name 

LINDO is an acronym for Linear Interactive Discrete Optimization.  This software 

has an emphasis on operations research. It is a specialized programme which covers 

the topics such as linear/non-linear programming and combinatorial optimizations 

[144]. 

The LP objective function value and the outputs from LINDO Optimization Software 

are reported in Table 5.7. From the table, it can be seen that the LINDO package 

found the optimum solution after 3 iterations (pivots) and an optimum solution has 

been arrived at with             ,     = 6.369,         and minimize (     ) 

=620.748. 
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Table 5.7 Optimal solution of the model 

LP OPTIMUM FOUND AT STEP      3 

 

        OBJECTIVE FUNCTION VALUE 

 

        1)     -620.7480 

 

  VARIABLE           VALUE                    REDUCED COST 

       X31                 0.361880                       0.000000 

       X25                 6.369831                       0.000000 

       X45                8.600000                        0.000000 

       ROW       SLACK OR SURPLUS       DUAL PRICES 

        2)                    8.438120                       0.000000   

        3)                    2.630169                       0.000000 

        4)                    0.000000                       72.180000 

        5)                    0.000000                       -1.000000 

        6)                    0.000000                        0.000000 

NO. ITERATIONS=       3 

5.11 Electricity Tariff Optimization 

For electricity tariffs to be effective, it is essential that the tariff offered is designed in 

a way as to adequately motivate consumers to change their electricity usage 

behaviour. In order to propose a new rate design, the dataset which was derived from 

the optimum solution achieved in the last section and standard tariff rates presented in 

Table 5.2 is used for the calculation. Based on the optimum solution shown in Table 

5.7 and the value of Standard tariff tier 1 rate (x1), the results of the proposed rates are 

shown below: 

For:  x1 (Standard tariff Tier 1 rate) = 19.91 p/kWh, the other tier rates have been 

calculated as follows:  

x3 (Economy 7 tariff Tier 1 rate) = 19.91+ 0.36188 = 20.27188 p/kWh 

x5 ( Night rate) = 9.84-6.369 =3.47 p/kWh 
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x2 (Stand. tariff Tier 2 rate) = 6.369 +3.47=9.84 p/kWh 

x4 (Econ. 7 tariff Tier 2 rate) = 8.6+ 3.47 =12.07 p/kWh 

5.12 Consumer’s Electricity Bill under a New Tariff Scheme 

The calculation performed was intended to determine if households would benefit 

naturally from the adoption of the new economy 7 tariffs scheme. To answer this 

question, a comparison between consumer’s bills from each household type under the 

standard tiered rates and new designed economy 7 rates was performed as shown in 

Figure 5.9. From the figure it can be seen that, with no load shifting, the single adult, 

single retired, and two retired households would not be expected to benefit naturally 

from the new rate of economy 7 tariff, while the electricity bills under both tariff 

schemes for two adults, two adults with children, and three adults with children 

households, are the same. It is clear that the single adult with children and three 

adults or more households would be expected to benefit naturally from the new rate 

of economy 7 tariff. 
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Figure 5.9 Percentage savings in consumer’s bill using a new economy 7 tariff 

compared to standard tariff 

If the load is now shifted from Tier 2 to the night time, there could be possible 

savings. Figures 5.10 shows, for each scenario, the savings compared with the 

standard tariff (negative indicates loss). The results indicate that, a minimum of 20% 

load shift is required for single adult and single retired households to benefit from the 

adoption of the economy 7 tariff. However, a load shift of about 5% is sufficient for 

scenario 6 (two retired household) to benefit. 

The previous calculations were all done by numerically shifting the load. However, in 

practice, it is the usage of appliances that has to be shifted by behaviour. In this 

section we examine shifting the usage of appliances such as washing machines, 

tumble dryers, kettles and irons to a bit earlier in the morning (before 8am). Table 5.8 

shows the shifts and gains made with various changes in appliance usage. The table 
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shows that with a significant amount of change in behaviour from the consumer, the 

total amount of load shift was only around 23%. At this level all consumers get a 

benefit range from around 2 to about 12 percent.  

Table 5.8 Percentage savings in consumer’s bills using the economy 7 tariff 

compared to the standard tariff for different schemes of load shifting 

Load shift i ii iii iv v 

% of Tier 2 load shifted to night 9 17 20 21 23 

Scenarios % 

Savings 

    1 1.8 3.2 4 4.4 4.7 

2 1.8 3.1 4 4.8 4.9 

3 0.9 4.1 6 7.8 7.9 

4 2.9 5 7 7.8 8 

5 4 6.2 8 9.5 9.8 

6 3 5.1 6 7.8 8 

7 2.9 5.2 7 8.8 8.9 

8 1 3.1 6 7.9 8 

The benefit to the utility company would be dependent on what rates they actually 

purchase the electricity at. If the cost is significant, then there may be an incentive to 

invest in trying to change the behaviour of the consumers. However, the focus of any 

attempt should more focus on the type of households where the benefit would be 

significant. The two adults household (scenario 4) and the two adults with children 

household (scenario 5) represent about half the energy shifted. As such, the utility 

company could more focus on marketing literature, and any incentives on such 

consumers.  
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Figure 5.10 Percentage savings in consumer’s bills under new proposed tariffs 

and old tariffs for scenarios 4 &5 

If the load is now shifted from Tier 2 to the night time for scenarios 4 and 5, there 

could be possible savings. Using a standard tariff scheme as baseline, the new 

proposed tariff and old tariff are compared. Figure 5.10 shows, for scenarios 4 and 5, 

the savings compared with the standard tariff (negative indicates loss). The graph 

indicates that the new designed rates for electricity tariffs seem to be effective; in old 

rates; a minimum of 25% load shift is required. However,   the use of the new rates 

was found quite significant.  

The percentage savings in electricity bills for all the scenarios, using scheme (v) of 

load shifting, is shown in Figure 5.11. It can be seen that, at the old tariff level and 

with 23% of Tier 2 load shifted to the night time period, only a few consumers get a 

-20

-15

-10

-5

0

5

10

15

20

25

0 10 15 20 25 30 35 40 45 50

%
 S

a
v
in

g
s 

% of shifted Tier 2 load to night period 

Scenario 4 (new tariff) Scenario 5 (new tariff)

Scenario 4 (old tariff) Scenario 5 (old tariff)



 

115 

 

slight benefit. However, the adoption of a new proposed rate using scheme (v) of load 

shifting would benefit all consumers. 

 

Figure 5.11 Percentage savings in consumer’s bills using new proposed tariffs 

and old tariffs for the eight scenarios 

5.13 Discussion 

The use of economy 7 tariffs as an incentive to implement demand response in local 

communities to achieve cost effective peak demand reduction via load shifting was 

investigated. The tool presented in Chapter 4 enabled the research to simulate 

changes in customer electricity consumption under economy 7 tariffs, compared to 

rescheduling the usage time of household appliances. It was found that tariff schemes 

definitely influence consumer behaviour. The simulation result has shown that 

economy 7 tariffs hardly have any effect on consumers that have a gas supply as well. 

The reasons for this are historical and ought to be reconsidered. 

Optimization of the current tariffs could possible help shift some of the load at peak 

hours. However, this was found to be more relevant to particular types of households. 
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The methodology helped identify such households. As such, the utility company 

could target marketing literature, and any incentives on such consumers.  

From the results it was found that, a simple change of existing standard tariffs to 

economy 7 tariffs did not provide enough financial incentives for households to 

invest in DSM technology. 

5.14 Conclusion 

The conclusions drawn are presented below. 

 The use of economy 7 tariffs as an incentive to implement demand response in a 

local community to achieve cost effective peak demand reduction via load 

shifting, has been investigated. 

 The simulation result has shown that economy 7 tariffs have hardly any effect on 

consumers that have a gas supply as well. 

 A model for optimization of residential electricity tariffs in the presence of load 

shifting including problem formulation and solution was proposed.  

 Current tariffs are not sufficient to change consumer behaviour at peak times as 

there is little benefit to them in financial terms.  

 The analysis helps to determine the suitability of adopting demand response in the 

domestic sector at community level.  

 Mechanisms for local communities may be required to encourage shift in load. 

This could be via newer energy companies acting as local distributors for a local 

area. 

 The results enable suppliers to focus on the particular types of households to 

market load shifting techniques to. 
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Chapter 6 

Investigation of Renewable Energy at Local 

Community Level 

6.1 Introduction 

The main resources used to generate electricity worldwide are non-renewable fossil 

fuels such as coal, gas, and oil, as well as non-renewable nuclear materials. Natural 

gas and coal are the most common fuel for electricity generation, used in 46 percent 

and 28 percent of the UK’s electricity generation. 

The need to move towards sustainable energy solutions is highlighted by the 

increasing greenhouse gas emissions resulting from the use of fossil fuels. Currently, 

renewable energy sources are considered a possible way to solve world energy and 

environmental problems. Investment in renewable energy sources would mean that 

the UK would be able to produce energy cleanly and locally, reducing the reliance on 

imported fuel supplies.  

Renewable energy generated on a local community, rather than national can be 

considered one of the key solutions to current global challenges. But it is also vital 

for renewable energy projects to be developed by or with the close involvement of 

local people, and to ensure a local community experiences benefits within relatively 

short time periods. Rather than producing a large amount of energy in limited places 

and using very inefficient long distance transmission cables to deliver it, it is possible 

to produce smaller amounts of power in many places from the most appropriate 
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renewable sources. Energy can then be fed back into the distribution network, or 

potentially consumed locally via localized distribution networks. 

Out of all the renewable resources, solar power and wind power are currently the 

most popular options around the world for producing electricity.  

One of the most promising renewable energy technologies is photovoltaic (PV) 

power. PV systems are a truly elegant means of producing on-site electricity from the 

sun without noise, pollution or any moving parts. It is estimated that one hour of solar 

energy received by the earth is equal to the total amount of energy consumed by 

humans in one year [93].  Over the past years there has been growing interest, across 

Europe, in the use of photovoltaic (PV) panels for the production of electricity in 

urban environments. Current UK Government policy appears to focus on large-scale 

renewable energy production schemes [94], which often attract much public concern 

and frequently fail to achieve planning permission. By encouraging small-scale 

schemes, the public may feel more inclined to make a contribution to reducing 

emissions and could eventually contribute a significant amount of electricity into the 

energy market. 

The chapter aims to use the methodology developed in Chapter 4 to investigate the 

possibility of using renewable energy (RE) at community level. The evaluation of the 

cost-effectiveness of the building integrated photovoltaic roofing system when 

connected to the utility grid has been taken as an example. Using the current utility 

rates and the energy consumption data, the payback period of the system is evaluated. 
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6.2 Energy Supply in the UK’s Domestic Sector 

The UK’s residential sector consists of about 26 million households, which account 

for approximately one-third of all electricity consumption. Energy use in the UK is 

based mainly on fossil fuels and accounts for over 97% of emissions of carbon 

dioxide, the main greenhouse gas [95, 96]. The continued use of these fossil fuels has 

led to an increase in the production of greenhouse gases, especially carbon dioxide 

(CO2). Currently the UK emissions of CO2 contribute about 2% to the global man-

made total [97]. Increased emissions of greenhouse gases will contribute to climate 

change [98]. The effects of global warming require the level of CO2 emissions be 

greatly lowered, which includes reducing the UK’s consumption of fossil fuels. 

Beside the negative environmental impact associated with this situation there are 

significant concerns about energy security, as the UK is an increasing net importer of 

fossil fuels [99].  Since the UK Government’s energy policy aims are to reduce its 

greenhouse-gas emissions (GHG) by at least 80% by 2050 relative to 1990 emissions, 

and to keep secure, various supplies of energy [100], significant changes are required 

in the way that energy is sourced and used.   

6.3 The Solar Resource in the UK 

Solar irradiance is absorbed and reflected as it passes through the Earth’s atmosphere, 

and partly converted by dispersion into diffuse irradiance.  The total irradiance on the 

horizontal is known as the global irradiance, which is the sum of the direct and 

diffuse components [101]. Figure 6.1 shows the global horizontal irradiation arriving 

at a horizontal surface for locations across the UK and Ireland.  Locations ranging 

from (Scotland) to (South-West England) receive approximately 3200 to 3900 MJ/m
2
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(880–1100 kWh/m
2
) of global irradiation annually on a horizontal surface, assuming 

no shading. Insolation varies with time of day and season. 

 

 

Figure 6.1 Yearly global horizontal irradiation (kWh/m
2
) in UK and Ireland 

 

The average daily global irradiation for different locations during different months of 

the year is shown in Figure 6.2; the data was extracted from the NASA website. From 

the figure it can be seen that summer days receive a much greater quantity of 

irradiation than winter days in the UK. During the winter the sun is lower in the sky 

and hence, ideally, a solar panel would increase its pitch at such times to capture the 

maximum possible global irradiation.  
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Figure 6.2 Monthly-average solar irradiation during different months of the year 

Figure 6.2 also explains the difference between different geographical locations. 

Southampton receives about 127% of the irradiation received in Glasgow, about 

116% that of London and, about 124% that of Bradford. 

6.4 Photovoltaic status in the UK 

Photovoltaic (PV) energy is the direct conversion of solar radiation into direct current 

electricity by the interaction of light with the electrons in a semiconductor device or 

cell. The word photovoltaic actually means "electricity from light". The size of the 

PV array required by a household depends primarily on the electricity demand, the 

type of PV cell used, the availability of roof space and budget.   

Grid-connected solar PV is the fastest growing energy supply technology in the 

world, with 50% annual increases in cumulative installed capacity in 2006 and 2007, 

giving a cumulative total of an estimated 7.7 GWp. 
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The PV installed capacity in the UK increased from 18.1 MW in 2007 (over 16 MW 

grid-connected) [97, 100] to 76.9 MW in 2010. The total energy generated from PV 

increased from 11 GWh in 2006 to 33 GWh in 2010 [99].There have been significant 

increases in capacity and generation of PV in recent years due to increased support 

from government policy incentives. Support in the past has principally been from the 

Major Photovoltaic Demonstration Programme (2002-2006) and the Low Carbon 

Buildings Programme (2006 - May 2010), both of which provided support for PV 

installations by means of capital grants.  Support for PV and other microgeneration 

technologies is now provided through a  system of Feed-In Tariffs (FITs ) introduced 

by the UK Government in April 2010, which provide householders and communities 

generating their own electricity with regular payments through their energy supplier.  

This may be the main reason for the steady increase of PV use in the UK. Figure 6.3 

shows the PV installation capacity in the UK. 

 

Figure 6.3 PV installation capacity in the UK [102] 
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6.5 Financial Benefits and Feed-in Tariffs for PV System 

Feed-in tariffs (FITs) (also known as the Clean Energy Cash Back) is a collective 

term which covers everything related to the electricity your PV system generates and 

how much you get paid for it. Feed-in tariffs (FITs) are not a new concept and have 

been successfully used in Germany since 1991. They have since been taken up by 

other countries such as Denmark, Spain and France. The feed-in tariff varies in 

Europe from between 40 to 50 eurocents, being adjusted depending on the size and 

location of the system. It was introduced in the UK on 1 April 2010, under powers in 

the Energy Act 2008. Through the use of FITs, DECC hopes to encourage 

deployment of additional small scale (less than 5MW) low carbon electricity 

generation, particularly by organisations, businesses, communities and individuals 

who have not traditionally engaged in the electricity market. This will allow many 

people to invest in small scale low carbon electricity, in return for a guaranteed 

payment for the electricity they generate and export. 

Payments consist of a tariff for each unit of electricity generated together with a 

second tariff for each unit of electricity that is then exported to the grid.  Tariffs are 

linked to the Retail Price Index and support for individual PV schemes has been 

guaranteed to last for 25 years. Specific tariff levels are dependent on size and type of 

installation (i.e. retro-fit, new build or standalone).   

Installing an embedded generation system that is connected to the grid provides three 

possible types of financial benefit. Firstly, energy bill savings (Avoided Costs):  

These are the savings you make on your electricity bill by not having to import 

electricity from the national grid, and by generating your own electricity ‘on-site’. 

The amount may depend on how much of the electricity is generated and used on site. 
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At present the average electricity price for domestic consumers is 13p/kWh [104]. 

Secondly, if the PV system generated capacity is higher than the base load of the 

community, it would produce an energy surplus that could be exported to the grid 

(Export Tariff).  The owners get paid an 'export tariff' which is a minimum of 

3.1p/kWh. Thirdly, PV system owners are entitled to a generation tariff for each kWh 

produced whether it is used or sold back to the grid. For small systems installed on 

existing roofs ('retrofit') this tariff is currently 21.0 p/ kWh. The amount of energy 

generated is measured by a 'generation meter' installed with the PV system. Feed-In 

Tariffs (FITs) vary with installation size as shown in Table 6.1. 

Table 6.1 FIT Levels for systems 

System type System size Tariff per kWh generated  

New build <4kWp 21.0p 

Retrofit <4kWp 21.0p 

New build /retrofit 4-10kWp 16.8p 

New build /retrofit 10-50kWp 15.2p 

New build / retrofit 50kWp-150kWp 12.9p 

New build / retrofit 150kWp-250kWp 12.9p 

New build / retrofit >250kWp 8.5p 

Standalone - 8.5p 

 

6.6 Methodology 

In order to design a photovoltaic system (PV) and assess its potential contribution to 

energy consumption, it is necessary to have knowledge of the amount of solar 
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radiation available at the chosen locations. As the energy output depends most 

significantly on the solar radiation, the input to be used for calculation will be the 

average hourly solar radiation on a horizontal surface available in Glasgow, Bradford, 

London and Southampton.  

The generated load profile of the virtual community presented in Chapter 4 has been 

used to study the cost-benefits of a photovoltaic roofing system compared to a non-

electricity producing conventional roof. The proposed usable roof area is about 

1280m
2
. The methodology followed within this study was as follows: 

1. Estimate the solar irradiance which is the amount of solar energy that falls on a 

unit area of a surface per unit of time. It is measured in watt/m
2
. As mentioned; 

solar radiation is identified as one of the most important parameters affecting 

power production.   

2. Estimate the electricity output of the PV system for typical UK installations.  

3. Calculate the solar fraction by incorporating estimates of typical household 

electricity usage, and also estimate the proportion of energy exported rather than 

used within the household. 

4. Estimate the quantity of upstream energy resource and carbon emissions 

displaced by solar-derived electricity. 

6.6.1 Sources of Data 

Two types of data were used for this evaluation study to obtain a better understanding 

of the cost-effectiveness of building an integrated photovoltaic roofing system. These 

were the average solar radiation data, and the generated load profile previously 

presented in Chapter 4.  
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Solar radiation data is essential in order to conduct performance analyses of 

photovoltaic systems. Hourly radiation data from across the UK from four locations 

spanning a wide latitude from the lowest at 50º95‟N to the highest at 55 º82‟N was 

used for the above purpose, as shown in Table 6.2. The average solar radiation for all 

of the locations selected was obtained from the NASA website [103]. NASA has 

produced a grid map of the world with information available for any given latitude 

and longitude.  

Table 6.2. Selected locations for the present study 

Location Latitude Longitude 

Southampton 50.95° (N) 1. 4°(W) 

London 51.51° (N) 0. 11°(W) 

Bradford 53.79° (N) 1. 75°(W) 

Glasgow 55.86° (N) 4. 25°(W) 

 

The monthly solar radiation data for the selected locations has been estimated on a 

half hourly basis, as shown in Figures 6.5 and 6.6.  
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Figure 6.4  Monthly averaged insolation incident on a horizontal surface in 

Bradford 

 

Figure 6.5  Monthly averaged insolation incident on a horizontal surface in Southampton 
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Table 6.3 shows that the amount of solar radiation is affected by the geographic 

location and the season. The summer season receives a much greater quantity than 

winter. The amount of available solar radiation in Glasgow, London and Bradford is 

lower than that in Southampton. Southampton receives the highest amount of the 

irradiation while Glasgow receives the lowest amount. 

Table 6.3  Average daily insolation levels at different locations 

 

Glasgow Bradford London Southampton 

Month Daily Insolation Levels (kWh/m
2
 )  

Jan 0.57 0.65 0.77 0.9 

Feb 1.28 1.32 1.39 1.64 

Mar 2.19 2.22 2.34 2.7 

Apr 3.32 3.39 3.59 4.21 

May 4.58 4.42 4.57 5.36 

Jun 4.56 4.5 4.84 5.64 

Jul 4.31 4.48 4.81 5.55 

Aug 3.68 3.85 4.23 4.79 

Sep 2.54 2.64 2.86 3.3 

Oct 1.45 1.57 1.73 1.95 

Nov 0.74 0.82 0.96 1.08 

Dec 0.44 0.51 0.6 0.68 

Yearly(kWh/m
2
 ) 2.47 2.53 2.72 3.15 

6.6.2 Electricity demand and PV generation pattern 

On a daily basis, the energy in the microgrid powered by several generators can be 

written as: 

  ∑  
 

 (6.1) 
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Where D is the daily electricity demand and En is the energy produced by the 

generator n.  

The total amount of electricity generated by the PV modules is calculated using the 

following formulation (Equation 6.2). 

)()()()( in ARE    (6.2) 

Where, En is the PV electricity output; R is the average solar resource (kWh/m
2
/day) 

which includes the direct and diffused solar radiation incident on a horizontal PV 

panel. A is the module area (m
2
), η is the module conversion efficiency (0.13) and ŋi 

is the inverter efficiency (0.9).   

As mentioned previously photovoltaic installation outputs are obviously majorly 

affected by solar variability and the load data. Determining the demand data gives the 

first idea of the necessary energy required. For PV systems the best option is roof 

mounted installations. The roofs should be high enough to not be obstructed.   

The area of a single PV panel is about 1.6m
2
. This can be used to calculate the 

necessary number of PV panels for the proposed area of roof.  

The general assumptions for the calculations are: 

• There are 400 households (HH)  

• Average PV area: 3.2m²/HH, with a conversion efficiency of 13%. 

• Average single PV panel area: 1.6 m². 

Area of roofs that are planned to be covered = 212802.3400 m  

If a 1280m
2
 area of roof is to be covered by PV, this would require 

     

   
 

           . 

Given the insolation data previously mentioned and the electricity production per unit 

area, the total electricity generated by a PV system in half hourly intervals for each 
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month within a given location can be calculated and compared to the electricity loads 

consumed by the community.  

PV systems installed on buildings can supply electricity directly to the electrical 

appliances within the building or export electricity to the mains electricity grid 

(Figure 6.6). Export of electricity only occurs when the power generated by the PV 

system is greater than the loads consumed by the buildings. This situation can often 

arise when the PV generation is high, such as in the middle of day, and the buildings 

electricity consumption is low with the occupants at work. PV generated electricity 

which is supplied directly to the building load decreases the need to import energy 

from the grid and therefore reduces the electricity bill of the occupants.  

 

Figure 6.6 Electricity flows in a grid connected building integrated PV system 

The PV power is not always generated at the exact time needed by the households. 

The electricity chart for different months at two different locations is shown in Figure 

6.7. The figure shows that all produced energy would be consumed on site because 

the base load is higher than the maximum power output from the PV panels. 
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However, the system could prove economically feasible if the roof area covered with 

the PV panels was increased. 

Bradford Southampton 

 

 

 

 

 

 

Figure 6.7 Electricity chart for different months 

Variations in power output throughout the year are related to solar radiation 

fluctuations. Seasonally generated power from photovoltaic panels varies 

significantly. Thus, in May and June PV energy may is about 10 times higher than in 

December. 
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Figure 6.8 Monthly distribution of solar PV generation 

The energy gain from photovoltaic panels during the five month period from April to 

August is the highest, as shown in Figure 6.8. The variance in energy output between 

months could be explained by different weather conditions, such as cloud cover and 

the number of sun-shine hours during the year. The total annual energy generated by 

the photovoltaic system reached about 226.9MWh, and the annual energy demand of 

the community was about 1,323MWh. As a result 800 PV panels would produce 

approximately 17% of the energy demand of the whole community for the year.   

6.7 Simple Payback Period (PBP) Analysis 

The purpose of this study is to assess the impact on the payback period of installing 

four identical PV systems for a similar community to that presented in Chapter 4, at 

four different locations. 

A simplified form of cost/benefit analysis is a simple payback period technique. In 

this method, the total   cost of the improvement is divided by the first year energy 

cost savings produced by the improvement. The simple payback period (PBP) can be 
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appropriately defined as the time needed for the cumulative revenue earned to equal 

the total initial investments, i.e. how long it takes to recover the initial investment 

made by selling energy. For new construction, it can be used to evaluate conventional 

construction to energy-efficient design alternatives.   

In simple payback analysis, the service life of the energy efficiency measure will be 

assumed to equal or exceed the simple payback time. Simple payback analysis 

presents a relatively easy way to examine the overall costs and savings potentials for 

a variety of project alternatives. While the payback period analysis does not take into 

consideration the time dependent value of money, nor the total accumulated cost or 

savings over the life of the system, for systems with equal expected life, the simple 

payback period can be applied to determine relative performance among alternatives.    

                      
                        

                       
 

 

(6.3) 

 Without government incentives 

To calculate the PBP with no government incentives, the amount of electricity 

produced, total annually electricity bill under a standard tariff scheme, and savings 

during the year, are calculated using the following data assumptions.   

Data:    

Area of full roof: 1280m
2
 

Area of panel: 1.6 m
2
 

Cost of panel: £685 [104] 

In this study an assumption of a twenty five year lifetime period for the modules was 

used. The simple payback period will be calculated under the standard tariff. 
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Tier 1 tariff (p/kWh) 19.91 

Tier 2 tariff (p/kwh) 9.84 

Tier 1 Limit (kWh) 225 

The typical cost of the PV system of 800 panels, including all components and 

installation is about £548,000. The results for total electricity generated, total 

electricity bill and savings are all shown in Table 6.4. 

Table 6.4 Total electricity generated, total electricity bill and annual savings without 

government incentives 

Location Total electricity 

generated per year 

(kWh) 

Total electricity bill 

(£) 

Annual 

savings 

 (£) without 

PV 

with PV 

Southampton 168618.8 166505 149913 16592 

London 145840.5 166505 152172 14333 

Bradford 132043.5 166505 153512 12993 

Glasgow 128912 166505 153824 12681 

 

Using Equation 6.3 the simple payback period was calculated for similar 

communities living at different locations, in order to observe at what point the system 

appears cost-effective compared to the conventional non-electricity producing 

roofing system. The results are summarized in Table 6.5. From the table, it can be 

seen that the energy payback time for the PV modules at the four selected locations 

ranges from 33 to 43.2 years from Southampton to Glasgow. 
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Table 6.5 Simple payback period at different locations without government incentives 

Location Southampton London Bradford Glasgow 

Simple payback time (years) 33 38.2 42 43.2 

Since these values have not been discounted, Equation 6.3 will give overly optimistic 

estimations. However, in the case that external service from PV system adoption 

offset the discount rate, this would be an accurate representation of the years for a net 

utility return of zero.  Additionally, discount rates may be offset by increasing 

electricity prices due to increasing shortages of fossil fuel.  If this is the case, the PV 

system would be a good investment for all selected locations with average payback 

periods less than 40 years. Generating a payback period that does incorporate 

discount rates gives us the ability to view the strict financial viability of photovoltaic 

energy as an investment with current prices, electricity costs and PV efficiencies.  

 With Government incentives 

Using the following data, the yearly amount of electricity produced, total electricity 

bills and savings are calculated (Table 6.6).  

Data:   

FIT Generation Tariff: 16.8p/kWh (based on Tariffs valid from 12 Dec 2011). 

Export income: 3.1p/kWh (based on Tariffs valid from 12 Dec 2011). 

Electricity savings: 13p/kWh (based on Tariffs valid from 12 Dec 2011). 
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Table 6.6 Total electricity generated, total electricity bill and annual savings with 

government incentives 

Location Total electricity 

generated per year 

(kWh) 

Total electricity bill 

(£) 

Annual 

savings 

 (£) without 

PV 

with PV 

Southampton 168618.8 172082 150162 50248.4 

London 145840.5 172082 153123 43407 

Bradford 132043.5 172082 154916 39349 

Glasgow 128912 172082 155324 38404 

Using Equation 6.3 the simple payback period under government incentives has been 

calculated using FIT generation tariff. The results are summarized in Table 6.7. 

Table 6.7 Simple payback period at different locations with government incentives 

Location Southampton London Bradford Glasgow 

Simple payback time (years) 10.91 12.61 13.92 14.26 

 

For the roof mounted PV system, the payback period at the four locations has been 

estimated to be from 10.91 years to 14.26 years from Southampton to Glasgow. This 

is obviously shorter than the lifespan of the PV systems, which is about 25 years. 

This means that the systems in Southampton and Glasgow will have paid for 

themselves in less than 11 and 14.26 years respectively. The remaining £703,477 (in 

Southampton) generated over the subsequent 14 years will be pure profit. The results 

also show that the PBP varies significantly with the PV installation location. The 

location of PV systems has an impact on the payback period of the capital costs used 
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to build the system. Capital costs can be recovered over different time scales; 

therefore the amount of profit that can be made after the break-even point depends on 

the location of the PV system. 

In general, choosing locations with good sun exposure and choosing optimal 

orientations are the keys to using PV technology economically and sustainably.  

The above results indicate that government incentives have a big influence on the 

payback period, creating conditions that make solar installation an attractive 

investment. Behaviour change is one of the desired outcomes of this incentives policy 

on the part of the government. 

6.8 Emission Savings of the PV System 

The most significant environmental benefit is reducing of greenhouse gas emissions, 

especially carbon dioxide. Total emissions in the network come from conventional 

plants. Only CO2 emissions are considered in this study. Solar power i.e. as a clean 

source of power has no output emissions. Daily demand level varies at different hours 

of the day and is being supplied by different generation technologies, resulting in 

different levels of emissions during the day. Therefore the amount of emission 

reduced by solar power depends on levels of solar power and demand. The long-term 

effect of solar power in the network is considered by giving priority dispatch to solar 

power. This means that for every MWh of solar generation produced at a certain hour 

during the day, it is assumed that there will be another MWh of power production 

that will not need to be produced at a conventional plant, at that particular hour or 

demand level. 
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For UK grid electricity use, the carbon dioxide emissions factor (2011) is 0.521 kg 

CO2/kWh [104].  The annual energy output (AC electricity) of the PV system 

installed at Southampton was estimated to be 168618.8 kWh. By generating 

renewable energy, the PV system will reduce carbon emissions by 2196.3 tonnes of 

CO
2 

over 25 years (                                 )  

In general, by increasing the photovoltaic system penetration it is expected that there 

will be a reduction in emission levels, as a result of the energy produced by 

conventional plants being displaced by solar power. This reduction level varies at 

different locations where the PV system is installed because of the network’s impact. 

6.9 Discussion 

In this chapter, the possibility of using renewable energy (RE) at community level 

has been investigated. An evaluation of the cost-effectiveness of building an 

integrated photovoltaic roofing system, connected to the utility grid, has been taken 

as an example.  

The results indicated that government incentives have a large influence on the 

payback period, creating conditions that make solar installation an attractive 

investment. The introduction of the feed-in tariff is perhaps the primary reason why 

the uptake of PV has increased significantly. 

Geographical location was seen as an influence on the timing and quantity of solar 

output. Solar PV benefits can vary widely between UK regions. A significant benefit 

to PV installation is a lower energy bill, but the magnitude of this benefit depends on 

the amount of solar energy that can be generated given the available conditions, and 

the way in which utilities charge for electricity. At peak hours of the day, the 

http://www.investopedia.com/articles/mortgages-real-estate/10/solar-power-home.asp
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electricity produced by a PV panel is very low and almost zero so the effect of the PV 

system on reducing the peak demand is not significant.  

A major benefit of a PV roofing system is that it is located close to the customer. This 

avoids transmission and distribution costs for utilities. This could reduce losses in the 

distribution grid and the possibility of mitigated voltage drops to customers. 

Although PV currently appears to be an expensive option for producing electricity 

compared to other energy sources, many countries support this technology because of 

its promising future potential and additional benefits. As well generating electricity it 

also reduces greenhouse gas emissions and air pollutants, and potentially presents the 

opportunity to develop a new industry and create jobs.   

The tool developed in this research does not use the dynamic load profile 

characteristics it only uses the total consumption over the year. As such, using the 

developed tool does not help in really understanding the effectiveness of introducing 

PV cells. It is possible to use PV cells as an appliance with a particular behaviour 

(negative load) and integrate load profile into the tool. This would enable 

understanding of the interaction between the energy generation and the load within 

the house.  

Another issue is that the PV system of tariffs is based on government incentives and 

could change. It has in fact recently changed to a lower tariff. The tool can be used 

only to evaluate renewable energy in conjunction with other interventions. This 

benefit would be helpful to local planners. The storage required for renewable 

energies is one example of the need to understand the dynamic interactions. 
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In the next chapter, a methodology is presented which demonstrates how renewable 

energy intervention could be analysed using the tool developed for local planners. 

The tool is really useful only if we can exploit dynamic characteristics. 

6.10 Conclusion 

The conclusions drawn are presented below: 

 Renewable energy integration currently can only be studied using bulk quantities 

over a long period. This is because of the tariff scheme currently being used. As 

such, a nationally based decision is more useful than using software tools. 

 The dynamic behaviour of the load may be critical to the utilities as the peak load 

may have serious implications in terms of investment in infrastructure. The tool 

developed could be used to investigate how renewable energy intervention could 

be used to help improve the load shape. The tool could include the dynamic 

model of the renewable energy source. This would help in observing the 

interaction of renewables with the dynamic behaviour of the households. 

 It still would be difficult to price the dynamic interventions of the renewable 

energy using standard tariffs. This is explored in the next chapter. 
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Chapter 7 

Development of Pricing Criteria at Community Level 

7.1 Introduction 

In the UK there is no real time retail market, and hence no real time retail electricity 

pricing. Therefore domestic electricity consumers in the UK pay electricity prices 

that do not vary from hour to hour, but are rather some kind of average price. The 

key question is whether we can evaluate energy management and renewable energy 

intervention in the behaviour of customers in real market terms. 

Currently only behaviour changes with respect to total consumption can be evaluated. 

Interventions cannot be defined for peak load behaviour. The effectiveness of the 

introduction of renewable energy is also hard to assess. Therefore, it is hard to justify 

introducing of renewable and demand side management at local community level, 

apart from when following government approved schemes, subsidies, and other 

initiatives. The government sets legislation such as carbon targets or subsidies, such 

as for PV cells. These help the UK Government meet EU 2020 climate and energy 

targets, and ensure that the cost of renewable energy falls over time. The UK 

Government’s Climate Change Bill in 2007 set a legally binding target of a 60% 

reduction in national CO2 emissions by 2050 compared to 1990 levels [11]. 

In this chapter, a criteria will be developed to help developers and planners of local 

communities to understand the cost of intervention, in order to evaluate where the 

load is when the prices are high. 
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7.2 UK Electricity Market 

Electricity is an asset which can be bought, sold or traded, but cannot be easily stored 

like other goods. It could be stored in batteries or in the form of energy by pumping 

water into storage. The difficulty in storing electricity forces the generation to match 

the demand at any time. Otherwise there will be power cuts as seen in many third 

world countries. 

The restructuring of power markets has been ongoing in various countries around the 

world, including the UK, over the last two decades.  Since the early 1990's the UK’s 

electricity industry has changed from a government controlled monopoly to a 

competitive market in order to deliver a lower cost to the consumers, giving 

consumers the choice to select their energy supplier. In the process a commodity 

market for wholesale electricity transactions was established. Here electricity is 

traded in large volumes, mostly between electricity producers (selling the output of 

their power stations) and electricity suppliers (buying what their customers need).   

There are four components to the electricity industry. These components are 

generation, transmission, distribution and retailers.  The generation sector is the 

production process of electricity in power stations. Transmission refers to the 

transportation of electricity through high voltage cables. Distribution is the 

transportation of electricity at lower voltages and facilities to the final customers. 

Retailers are the people who make the sales of electricity to the final customers. 

Electricity markets can also be divided into wholesale, retail and balancing markets. 

The wholesale market in the UK is the market for the sale and purchase of electricity 

between retailers and generators of electricity. The current trading arrangements in 

the wholesale market allow suppliers to buy the electricity they need to meet their 
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customer’s needs from the generating company of their choice, i.e. this is a 

competitive market. 

The retail market is the market for the sale and purchase of electricity between 

consumers of electricity (customers) and retailers of electricity (suppliers). The 

current trading arrangements allow individual consumers of electricity to choose their 

supplier, i.e. it’s a competitive market. 

Retailers and generators try to match their demand and generation, respectively, to 

their contract levels so that they do not have a surplus or deficit of electricity. This is 

one of the key objectives of the trading arrangements in encouraging all participants 

to have contracts covering all of their generation and/or demand. 

The generators may generate more or less energy than they have sold through 

bilateral contracts during the process of electricity production and trading. Retailers 

may purchase more or less power through bilateral contracts than their customers’ 

actual consumption, and traders may buy more or less energy than they have sold.  

Such circumstances are regarded as being in imbalance. This energy imbalance is 

also bought or sold.  

The balancing mechanism market is through the National Grid Company (NGC). The 

National Grid Company (NGC) will accept offers and bids for electricity close to real 

time to maintain energy balance, and also to deal with other operational constraints of 

the transmission system.  The balancing mechanism allows electricity companies and 

traders to submit offers to sell energy (by increasing generation or decreasing 

consumption) to the system. These participants can also submit bids to buy energy 

(by decreasing generation or increasing consumption) from the system, at a price of 

the company's choosing. The National Grid Company will take the lowest priced 
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offers and accept the highest priced bids. The imbalance prices, the system buy price 

(SBP) and system sell price (SSP), applied to imbalances, are derived largely as the 

weighted average prices of these accepted balancing mechanism offers and bids.  

System Buy Price (SBP) is an imbalance price at which retailers settle the deficit in 

electricity by buying electricity to meet the demands of their customers from 

the suppliers. If the retailer's actual demand is lower than it has contracted for, it pays 

the system sell price (SSP) for the excess.  

7.3 Fuel prices 

Household spending on energy is directly affected by the price of different fuels. 

Fuels used for electricity generation broadly fall into one of three main categories; 

fossil fuels such as coal, oil and natural gas, which are generally traded on the 

international market, biomass fuels and nuclear power. 

The proportion of net electricity supplied by fuel input in the UK for 2010 was; 46 

percent from natural gas, 28 percent from coal, 16 percent from nuclear power, 1 

percent from oil, 6 percent from renewable energy sources (including hydro), and 3 

percent from other non-thermal sources [1]. The majority of electricity generated is 

produced from natural gas, coal, and nuclear energy.  

The price volatilities of coal, natural gas, and oil can directly impact on the cost of 

generating electricity. Figure 7.1 shows the trends between fuel prices for coal, gas, 

electricity, and oil in the manufacturing industry. There is a positive correlation 

between electricity prices and fuel prices. Over the past five years from 2005 to 2010 

the average industrial electricity prices rose by about 54 percent. Over the same 
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period the average gas prices rose by about 25 percent. Average coal prices were 

remarkably stable throughout the whole period. 

 

Figure 7.1  Fuel prices for manufacturing industry, cash terms, 1990 to 2010 [105] 

The figure also shows that electricity prices went down for the period from 1999 to 

2003. This is because of the reform of the electricity market which contributed 

significantly to improvements in efficiency and productivity, and hence to price 

reduction. However, after 2003 electricity prices began to rise steeply, maybe due to 

increasing oil prices, environmental costs and inflation. 
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Figure 7.2   Average UK household fuel price [106] 

Figure 7.2 shows the average UK household fuel price from 1970 to 2009. The real 

price of electricity has increased by over a quarter since 1970, and the rise since 2003 

has been much steeper: a jump of about 63 percent in only six years. The cost of 

electricity is higher because of the costs associated with conversion, transmission, 

distribution and profit margins of private companies.  Gas prices went down 

constantly during the 1980s and 1990s, with the exception of 1995 when VAT was 

introduced. By late-2000 prices were one-third below 1987 levels. Prices peaked in 

January 2007 at a level 82% above the late 2000 [107]. Solid fuels include coal or 

biomass fuels such as wood, charcoal, agricultural residues, and animal dung. The 

prices of solid fuels have tended to remain stable. 
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7.4   System Buy Price 

System Buy Price (SBP) is the price at which retailers settle the deficit in electricity 

by buying electricity from suppliers to meet the demands of their customers. It is 

possible to use the System Buy Price (SBP) as an indicator of electricity real price. 

Figure 7.3 shows a sample of the half-hourly electricity System Buy Price for one 

week, for the time period 09
th 

Jan 2010 to 15
th

 Jan 2010 [108].  The figure shows the 

half hourly electricity SBP data in pounds per megawatt hour (£/MWh). As can be 

seen from the figure, there are two key peaks. Monday is an unusual event and has 

large spikes. This might be due to a sudden failure in the power grid which led to a 

high increase in prices in a very short period of time.  

 

Figure 7.3  System buy price vs. time 

The half-hourly national demand data over two days is shown in Figure 7.4. The data 

was taken from the National Grid website [109].  
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Figure 7.4   System demand vs. time 

From Figure 7.4 it can be seen that the demand is more predictable, with less 

variations between days. The amount of daily demand for the whole data sets ( from 

January, February and March ) is approximately the same (ranging from 2244 GW to 

about 2250 GW). Furthermore, there is only one key peak. We can use the demand as 

an indicator of price. 

Considering Figure 7.3 and Figure 7.4, despite national demand not changing much, 

we notice peaks at different times of the day. This indicates variations in retailers 

predicting their own market demand. It also gives us an indication of the price 

retailers would be prepared to pay in real time rather than in ahead (via contracts). 

If, through contractual agreement, the retailer purchases more electricity than 

required, then the retailer has to sell it back. The price of selling it back therefore 

indicates whether he is making a profit or a loss. The selling back price therefore 
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would logically be below the contractual price or else market would naturally 

underbuy on contract. Therefore, the fluctuation in prices indicates the ability of the 

retailer to accurately forecast his demand in the future and hence the value of his 

contractual purchases. In other words the retailers’ ability to accurately predict will 

help him to enter contracts in a strong position so that he does not have to buy or sell 

in the market. In practice, it is not possible to be perfectly accurate as that would 

require significant management and simulation tools. The market behaviour resolves 

this in an elegant way. The fact that all companies face the same issues makes the 

system work to the benefit of all. 

The SBP prices were plotted against national demand to give an indication of the way 

prices rise as demand comes close to the fundamental limits of supply capacity 

(figure 7.5).  
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Figure 7.5  System Buy Price vs. demand; 

From the figure we can see that big variations occur on Monday and slightly higher 

price on higher demand points. In order to model this further, a per unit system is 

developed in the next section.  

7.5 Per Unit System  

Using per unit values allows essential characteristics of the data sets to be compared 

on the same diagram. This allows data on different scales to be compared, by 

bringing them to a common scale. Moreover, different systems can be compared. The 

per unit system is based on the formula shown in Equation (7.1).  

Quantity  Base

Quantity  Actual
unitper    (7.1)  

 

Base price   

The base price is the average half-hourly price. It is calculated as shown in Equation 

(7.2).  

           
                              

                    
 

                                                    
48N

 

N

1d

48

1i

,





 

idP

                                                       (7.2) 

Where Pd,i = SBP rate in day d at time i, N= Number of days. 

If Equation (7.2) is used in abnormal situation ( in sampled case) would result in a big 

error unless filter out the extremes or use much wider widowed data to reduce the 

error caused by the abnormal situation.  

Base National Demand   
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The base national demand is the average half hourly demand. It is calculated as 

shown in Equation (7.3).  
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48
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,


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                                                     (7.3)       

Where  Dd,i = national demand in day d at time i,  

Base Community Demand   

The base community demand is the average half hourly community demand for a 

day. It is calculated as shown in Equation (7.4).  

                                    
48

 demandcommunity  Base

48

1


 i

iD

                                     (7.4) 

where, Di = Half hourly community demand at time i,  

The base values are calculated for the time period 11
th 

Jan 2010 to 14
th

 Jan 2010 as 

shown in Table 7.1 

Table 7.1 Summary of base values 

Base Price (£/MWh) 86 

Base National Demand (MW) 46787 

Base Community Demand (kWh) 75.3 

 

The results of the calculated per unit values for system buy price are shown in Figure 

7.6. 
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Figure 7.6 System buy price in per unit vs. time 

From the figure 7.6, it is clear that Monday (11/01/2010) is an unusual event and the 

peaks on other days reach near to 1.9 pu. Note that, 1 pu is the average. 

7.6 Community Electricity Cost under SBP  

The generated load profile for the local community of 400 households presented in 

giving customers the freedom to choose their energy supplier Chapter 4 has been 

used to investigate the effect of SBP as an indicator of real time price on the 

electricity cost for the whole community. We are in need of a measure of dynamic 

load cost over the day, in order to look at the peak load shaving and a potential for a 

market.  

The community load with SBP prices in per unit for Monday to Friday is shown in 

Figure 7.7 in a radar chart. As can be seen from the figure, the prices change basically 

during days and week. Monday is an unusual event and has large spikes.  
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The electricity cost is the sum of the products of the individual period rates and the 

energy consumed.  Equation (7.5) gives the electricity cost on a time interval. 

j

j

j DPC .
48

1






 

  (7.5) 

Where:    C = total electricity cost to time period T in pu.  

Pj = SBP rate at time j in pu.  

Dj = Electricity consumed at time j in pu.  

If high SBP rates occur during periods of high power demand, consumers can see 

electricity cost increases above those seen with a fixed rate. 

 

Figure 7.7 SBP rate vs. community demand  
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The electricity costs of the community have been calculated for each day. The results 

are shown in Figure 7.8. 

Figure 7.8 shows variations in electricity cost. If we use Monday’s prices we notice a 

very high cost around 18:00 and 19:00 of about 4.5 pu, but if we use Tuesday’s prices 

the cost is much lower than on Monday and reaches about 2.3 pu around 21:00 PM. 

Also, it can be seen that the electricity cost on Thursday is high at 19:00 and 21:00 

with a value of about 2.8 pu. Moreover, the peak cost on Friday of about 1.45 pu 

occurs at 17:00 and 21:00.  

The load has a similar cycle but the system buy price (SBP) has a different cycle with 

different values for each day. As a result, the cost of electricity is different each day 

(Monday to Friday) reflecting the fluctuation in price. From the results we can 

conclude that it is very difficult to manage as indication of price keeps changing. 

Therefore, it is not a reliable tool for the planners.  
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Figure 7.8 Community demand and electricity cost under SBP 

 

 

Figure 7.9 shows the local demand plotted against national demand. From the figure, 

it can be seen that the national demand is more stable across the day and has a peak 

around 16:30 to 18:30. The local residential demand would naturally have peaks at 

different times of the day.  As a result of that, investments to reduce bills under 

standard tariffs would therefore not have a significant impact on natural peak load 

(between 16:30 - 18:30). Therefore it is difficult to understand what intervention in 

behaviour is required using purely load behaviour.  
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Figure 7.9 Community demand vs. national demand  

 

In order to model further, three possibilities of electricity measure of system price are 

developed in the next section. 

7.7 Price Model 
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shown in Figure 7.10 [106]), the whole data sets are not visually discernible. It can be 

seen that the supply capacity is in the range of about 55 to 58 GW, and that there is a 

considerable knee in the curve at around the 52GW, £100/MWh region. Also, there is 

a spread in price points for demand between 40 and 58 GW. 
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Figure 7.10 System buy price vs. demand (data combined) 
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separate data. For each group the three quartiles of system buy price (SBP) are 

calculated. Each quartile is treated as a separate data. The first or bottom quartile 

represents the lowest price data , the second quartile or median represents the median 

price, and the third or upper quartile represents the highest price. Each quartile of 

SBP associated with demand data are treated as a dependent variable and an 

independent variable respectively, which means we have three dependent variables 

(bottom, median and upper). Each dependent variable has a 

single value for each demand data interval. The three fitted price equations for each 

scenario (quartile) were estimated using regression analysis. The computer statistical 

package software MINITAB has been used to get the fitted regression equation. The 

electricity price curves are of the form: 

 

cdbeaprice   
(7.6) 

Where price is the fitted quartile electricity price in p.u and d is the instantaneous 

national demand in p.u at that day. The resultant electricity price curves, shown as a 

function of demand, can be seen in Figure 7.11. 

The resultant fitted equations for high, medium and low electricity price curves are 

shown in Equations 7.7, 7.8 and 7.9 respectively. The determination coefficients for 

the three quartiles are 0.96, 0.96 and 0.93 respectively.  

               
d

high eP 502.5310565.13365.0     (7.7) 

                  
d

medium eP 175.74104523.13282.0   (7.8) 

                             
d

low eP 47.1108.0
 

(7.9) 
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These equations are only valid for the demand data ranging from about 0.6 pu to 1.3 

pu.  The constant (a) could probably represent the minimum cost of electricity 

produced, b is a scaling factor and c represents the rate of change of pricing. 

 

Figure 7.11 Simple model of system buy price vs. demand 

 

The gap between the curves at high demand shows the potential for the market. The 

curve also shows that at high demand the cost is a significant; up to 2 pu, whereas it 

can possibly be as good as 0.8 pu. The median curve also indicates that at peak level 

of demand the price is about 1.5 pu. Structurally, this indicates that for generators it 

would cost more to invest in additional generation, as this indicates infrastructure 

costs in future.  For planners, this indicates opportunities via understanding of peak 

load pricing which is based on real data. Moreover, the margin of cost benefit to a 

local planner can be quantified in financial terms. The base value may change but as 

the comparison in pu the analysis will still be the same. Updated curves can always 

be obtained for planners. 
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The fitted price curves are used in the following section to forecast the half-hourly 

SBP which were considered as a measure of system price in order to investigate its 

effect on daily electricity demand.  

7.8 Community Electricity Cost under the new Pricing Criteria  

In this section we are looking at the community electricity cost using the three price 

curves. The cost of one day (Tuesday) under the three price curves is shown in Figure 

7.12. It can be seen that the community demand is higher at 21:00 but the cost is 

higher at 18:00. The cost variation at peak is ranging from 1.5 pu to 3.5 pu.  

It can be seen that the cost was about 1.5 pu at 18:00 for the low model, 2.4 pu at 

18:00 for the medium model, and about 3.5 pu at 18:00 for the high model.  
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Figure 7.12 Electricity cost under three price model options 
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From Figure 7.12, it can be seen that the load pattern is not correlated with the price 

pattern, where maximum consumption periods do not coincide with periods of high 

price. The electricity cost at 18:00 is about 3.5 pu with demand of about 2.5 pu. This 

is higher than it is at 21:00 where the cost is about 2.5 pu with demand of 3.1pu.  

The issue is that the peak is costing more so we are looking at an idea of costing. The 

price models are based on national demand where the local community demand has a 

very different pattern. Attributable to that, the cost curves do not follow the demand 

pattern. Therefore,  the storage batteries could be used as an alternative for 

peak shaving and load levelling solutions; if we can shift the load a bit we will save a 

lot more. The planners can now think where they need to make a big effort to 

evaluate where the load is when the prices are high. An example, to show how we 

can actually use these curves in evaluating the possibility of using storage elements at 

community level, is provided in the next section.  

7.9 Electricity Storage Elements and Smart Grid 

In recent years, there has been greater worldwide attention towards energy storage in 

order to reduce the perceived risks related with higher penetration of renewable 

generation (e.g. not available on demand). Energy storage elements have become 

very important source of fast power transients. Energy storage technologies have 

great potential to improve the operation of electric power grids and also to support 

growing in renewable electricity generation Energy storage technology is transform 

the electrical energy into other forms of energy, and when needed to power in the 

form of release. Many energy storage options exist and can be classified by their type 

of storage: mechanical, electrical, electrochemical and thermal. The electric energy 

storage technology that should be chosen in a certain case depends on the type of 
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application.  Pumped Hydro, Flywheels, fuel cells, batteries, thermal energy storage 

and capacitors are some of the options [139, 140]. 

 Battery technology is the most frequently used method of energy storage. It has been 

paid significant attention recently because of the attractiveness of plug-in electric 

vehicles. However, battery technology also has significant potential for grid scale 

energy storage. Designs being considered for this application include lithium-ion, 

lead-acid, sodium sulphur, and flow batteries. A battery energy storage system can be 

used to reduce the peak load and thus reduce the electricity cost by discharging stored 

energy throughout peak times. Batteries are usually used as an energy storage 

element. Storage elements are used to balance the variations in primary generation 

and meet the significant growing electricity demand.  Energy could be generated 

throughout off peak times and this energy could then be stored as reserve power. 

Storage can play a multipurpose role in the electricity supply network, to run 

resources efficiently. 

Households will plug in their storage elements at night when electricity is cheap, then 

plug-in during the day when energy cost is expensive and sell that surplus power at a 

profit. Many storage elements could be used, like batteries, capacitors or electric 

vehicles (EV).  

The need for storage elements and their use in a power system has long been 

discussed. An overview of the different storage technologies and their use has been 

presented in [110-115]. Many previous reviews of storage technologies 

[110] and [111] focused entirely on lead acid battery technology. A study in [110] 

discussed economic models, control strategies and applications for lead-acid batteries 

found in US power systems and in [111] the possible future uses are proposed. 
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Another review carried out in [112] discussed the use of different storage 

technologies and suggested that in future batteries may not be the most commonly 

used storage elements for power system application. In [113] several of the 

commercial achievements in electric energy storage technology were discussed. 

Some of the emerging applications in power storage like wind farm power 

stabilization, etc, were also discussed in this paper.  

A study [114,115] on energy storage elements will improve the whole reliability, 

stability and efficiency of the system using the information on power flow in the 

micro-grid and deal with a unit of the system to flow the power harmoniously 

between utility grid and micro-grid. In [116] some design and operation aspects of 

distributed battery micro-storage systems in a deregulated electricity market system 

were presented. In [117] a financial analysis of different applications of battery 

energy storage systems (BESS) in power systems was presented. Control power for 

primary frequency regulation and load peak shaving at industrial end customers were 

analysed. The results of the value analysis showed that primary control power is the 

application that most likely will be asked for by utility companies in the next 3-5 

years of the study.   Other researches [118 –124] showed that a battery energy storage 

system can provide frequency regulation. In [125] a method to find the optimal 

battery energy storage capacity and power for a peak load shaving application was 

presented. The sizing methodology was used to maximize a customer’s benefit by 

reducing the power demand payment. The minimum payback time was 6 years.  

To contribute to the Green House Gas (GHG) emissions in the transportation sector, 

battery-powered electric vehicles (EVs) have been developed and are now 

commercially available for daily use [126]. In spite of their short driving range 
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(typically less than 200 km on full charge) [127], the capacity of the on-board 

batteries seem to be large enough to partly support household electric consumption 

management [128].The plug-in electric vehicle is an electric vehicle (EV) that 

includes batteries that can be charged/ recharged by plugging into a source of electric 

power. It can be integrated into home energy systems, as well as the electric grid. 

Electric vehicles would use electricity from the grid, preferably during off-peak and 

nights to charge, then discharge it back into the grid at other times [129-130]. In the 

process, the vehicles could also provide regulation service to the grid, as needed. This 

concept is also known as vehicle-to-grid (V2G) [131]. 

A ‘smart grid’ provides a significant opportunity for residential energy management. 

It refers to a way of operating the power system using communications, power 

electronics, and storage technologies to balance production and consumption at all 

levels [132-135]. 

A smart grid can be defined as a grid that intelligently brings the consumers and the 

producers together in order to efficiently deliver sustainable, economic and secure 

electricity supplies [132]. It allows the power to flow in both directions. A smart grid 

is needed to integrate increasing amounts of generated or stored power to the grid. 

The direction of the power flow in the distribution network will change according to 

the energy reserves and market price [136]. Moreover, smart grids are the way to 

encourage consumers to participate in managing actively their energy demands. They 

provide the consumers with the possibility to participate actively in the market, not 

only as more aware buyers, but also as small producers. Future smart grids with 

disperse renewable resources will provide a wide range of new features including 

smart metering, demand side management and integration of storage elements.  
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Through the exploitation of smart meters, a smart grid allows two-way 

communication between the utilities and their consumers, where energy management 

becomes possible for both sides. It will bring consumers the ability to control their 

energy use, using demand response. Such factors as peak shifting and overall 

conservation will create a demand response system. 

With the deployment of smart meters it is anticipated that load measurements will be 

available for all homes in Britain by 2019 [137]. Mass roll-out of smart meters is due 

to start in the second quarter of 2014 and energy firms are expected to shoulder most 

of this cost. The rollout of smart meters will lead to a major change in how electricity 

and gas markets operate. To deliver the rollout, energy suppliers will be required to 

procure and install smart meters for their customers [137]. 

In the UK, the adoption of smart metering has to incorporate the potential value of 

additional consumer services, environmental benefits, improving direct consumption 

feedback to customers, along with more accurate billing. The UK Government has 

taken the idea of using smart meters as a tool for carbon emissions reductions more 

seriously than most, and has proceeded with national rollouts of Advanced Metering 

Infrastructure (AMI). The functionality that is anticipated for electricity and gas 

smart meters for the UK includes the ability to provide real-time information to an in-

home display [138]. It also includes the capacity to communicate with 

microgeneration measurement devices. 

The smart grid will change the way energy is produced, bought, sold and consumed. 

It could help decrease power consumption during the busiest times on the power grid, 

improve efficiency and reliability, and reduce the need to build additional 

infrastructure. 
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7.10 Storage Battery Payback Period 

In this section, we are looking to evaluate the benefits of electricity storage at 

community level. Community savings using three possible electricity prices will be 

calculated with a battery storage system. Furthermore, we estimate the battery 

payback time under the three price curves (Figure 7.12). 

In Figure 7.12 the cost curves are shown. The highest cost occurs at 18:00. The 

community load at 18:00 is about 2.5 pu. The price at peak is 1.45 pu and about 0.45 

pu at night for the worst case scenario. For the most likely case, the price at peak is 

1.0 pu and about 0.3 pu at night.  For the best case, the price at peak is 0.64 pu and 

about 0.3 pu at night. These prices are summarized in Table 7.2.   

Table 7.2 Electricity peak and night prices 

Scenario Peak price (pu) Night price (pu) 

Worst case  1.45 0.45 

Most likely case  1.0 0.3 

Best case  0.64 0.3 

 

Assuming a standard car battery is being used to supply some of the load at peak 

periods. A standard car battery may be around 80 Ah at around 12 volts, which is 

around 1 kWh of electricity. 

The battery bank can be sized based on the real demand of the community at the time 

of high price. The real demand is calculated by multiplying the load in pu by the 

community base demand as shown in equation 7.10.  

           (     (   )                    )                                       (7.10) 

                         = kWhkWhpu 25.1883.755.2   
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So we need around two hundred car batteries to store 190 kWh. The physical 

dimensions are small compared to 400 houses. 

Presently, the cost of batteries is about £150 per kilowatt hour of storage. The cost of 

an inverter to convert battery to mains power is excluded for reasons of simplicity. 

However, the cost of inverters has fallen significantly over the last few decades.  For 

2.5 pu, the cost of batteries as a function of energy used will be:  

                    (                       )                     (7.11) 

                                            = 5.28237£/150£3.755.2  kWhkWhpu  

The curves in Figure 7.11 are in pu and represent prices. As they are in pu, if we used 

the real average electricity tariff price as 1 pu, then we can have a reasonable 

indication of financial cost/ benefit. Here we use the average electricity tariff for 

consumers of 13p/kWh [95]. Below is the calculation for cost savings for the three 

price curves. 

For the highest peak price (Worst case for the system), the maximum daily savings of 

the storage of the system is calculated by subtracting the night charging price from 

the peak price. 

                 (         )  (                            ) 

                               (         )  (                         ) 

                                          (         )         

                                       

Therefore, the annual cost savings from peak shaving is £8932 

The technique used to obtain the simple payback period was simply divide the total 

battery cost  by the annual savings produced. 
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                             (7.12) 

                
     

    
 

                          

Similar calculations provide the cost savings and simple payback period for the most 

likely price and the lowest peak price. The results are summarised in Table 7.3. 

Table 7.3 Annual electricity cost savings & PBP  

Scenario Annual savings Simple payback period (year) 

Worst case  8932 3.16 

Most likely case  6253 4.5 

Best case  3037 9.3 

 

The storage battery payback times for worst, most likely and best price scenarios, are 

3.16, 4.5 and 9.3 years respectively.  Therefore, if a true market existed, the planner 

would be able to predict that the investment would be paid off after three to nine 

years. 

This has been worked out based on the price of electricity at a standard tariff of 

13p/kWh. The price could increase over the years as would be expected with 

increasing fuel price. Therefore, if the battery’s life time was longer, then there is a 

real potential for initiatives in community level battery storage. Furthermore, the cost 

of batteries should decrease as the technology improves.  A standard car battery 

ought to be used to supply some of the load at peak periods.  
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7.11 Discussion 

In the UK there is no real-time retail market, and hence no real-time retail electricity 

pricing. Therefore, consumers do not pay based on the real-time price but rather some 

kind of average price, and hence have no sufficient incentives to reduce load at times 

of high prices or to shift their demand to other periods.  

A criteria has been developed to help developers and planners of local communities 

to understand the cost of intervention in order to evaluate where the load is when the 

prices are high. The SBP was suggested to be used as an indicator of electricity real 

time price. 

To better capture the price fluctuations that can occur in real markets, this work took 

into consideration the diversification in prices the market might have by developing 

three price curves in Figure 7.11 using the quartiles of SBP versus national demand. 

Each quartile presents a possible pricing case. The quartiles have been used rather 

than the maximum and minimum values because there is a need for an indicator that 

considers all the values, and not just the minimum and the maximum. The minimum 

value to the maximum is the range. The difficulty in assessing by range is that an 

extreme change in just one value drastically changes the range. So, it is not 

reasonable to use the maximum or minimum; they could be abnormal. The three 

curves are estimated based on the daily national demand data, because the national 

demand data is predictable and has low variations. These curves are used as an 

indicator of electricity real time price and demand, and are presented in pu. These 

curves can help planners to look at the cost of peak shaving, which is essential for 

developing a financial case for investment in this market. 
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Presenting the data in per unit value allows underlying characteristics of the data sets 

on different scales to be compared by bringing them to a common scale and makes 

the analysis easier.   

The radar chart is proposed as the standard chart to compare the per unit values of 

demand, price and cost for the local community over the full day, at the nationally 

accepted half-hourly interval. The chart shows the data around the clock, which is 

often a good way of comparing several sets of performance indicators. The 24 hours 

of the day are in a continuous cycle. The day does not end at any arbitrary time. 

Visualizing data in hourly trends gives people something they can relate to in the 

context of their daily schedules and enables them to see the consequence of this 

behaviour. Although the line chart makes graphs easier to read it does not give a good 

indication of time and behaviour. Therefore it is not easy to conclude where problems 

are. Moreover, the base value is not as important as the peak value. The radar chart 

by definition will emphasise the peak and not the common dominator. This is critical 

when looking at peak prices and infrastructure costs. The radar chart provides a 

useful set of information and picture of performance to help consumers reduce their 

electricity costs in order to manage their consumption by taking advantage of lower 

priced hours and conserving electricity during hours when prices are higher.  

The developed three curves have been used as a tool to evaluate the possibility of 

using storage batteries at community level as an example. PV cells or other 

embedded could also be studied in a similar way.  

The battery simple payback time has been estimated. We used the average electricity 

price as 1 pu. This can provide a reasonable indication of financial cost/benefit. 

While the payback period analysis does not take into consideration the time 
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dependent value of money, nor the total accumulated cost or savings over the life of 

the system, the simple payback period can be applied to determine relative 

performance among alternatives. Economic calculations can be performed using the 

life cycle cost (LCC) where consideration of costs over the entire lifetime of the PV 

system (inflation, tax, and depreciation) can be made. 

A single consumer using standard tariffs may not see any benefit in changing his 

behaviour, as he does not gain by shifting load. If real time pricing was introduced, 

again, how could one expect the individual consumer to participate actively? It would 

be like expecting everyone to buy and sell on the stock market every day. This gain is 

unrealistic. However, it is possible for local planners to exploit benefits and gain 

profit. Hence, the tool can enable this business to exist; trade between the distributor 

and the local planner.   

7.12 Conclusion 

The conclusions drawn are presented below. 

 Presenting the data in per unit value allows underlying characteristics of the data 

sets to be compared.  

 The radar (spider) chart has been proposed as a standard chart to compare the per 

unit values of demand, price and cost for the local community for load shaving 

aspect.    

 As no real time retail price exists in the UK, the System Buy Price (SBP) has 

been used as a measure of the real price based on per unit values. In order to 

better capture the price fluctuations that can occur in real markets, the three 
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curves of Figure 7.11 have been developed using the quartiles of SBP versus 

demand. 

 The tool developed in Chapter 4 can now be used alongside SBP to help 

planners to look at an idea of the cost of peak shaving which is essential for 

developing a financial case for investment in this market.  

 As an example of using the tool and system buy pricing, the possibility of using 

battery storage at community level has been evaluated and battery simple 

payback has been estimated. The methodology can be applied to other 

interventions for load shaving. 

 It has been shown that battery storage at community level is feasible, provided a 

real time market or “near real time” market is established. 
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Chapter 8 

Conclusions and recommendations for future work 

This chapter provides a summary and conclusions of the work, and some suggestions 

for future research based upon the findings of the research.  

8.1 Summary  

This thesis presented a methodology to predict local consumption patterns for 

residential consumers at community level. The load forecast tool was used to study 

the interventions of using the economy 7 tariff to shift load by shifting behaviour. 

However, the change in behaviour is quite significant. The introduction of PV cells at 

a community level was only studied using the tool to predict load, and standard PV 

cell output characteristics. However, the tool was not found to be useful because of 

the lack of real time pricing mechanisms or criteria. The issue of pricing was 

investigated. It has been proposed that the national system buy price against the 

demand is used as the criteria. An example of using storage batteries was used to 

demonstrate the usage of the tool and the criteria developed to understand benefit.   

A block diagram of the methodology being developed for the local planners is shown 

in Figure 8.1. 
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Figure 8.1 Block diagram of the developed methodology 

From the diagram, it is clear that the accuracy of the local demand profiles depends 

on the level of input information. It is possible to improve the database of the tool by 

obtaining better national representative cumulative distribution functions (CDF) 

across the country for different groupings and regions, which could be used by local 

planners. Cumulative distribution functions (CDF) are a good representation of 

behaviour change. 

The criteria for the pricing of cost intervention depend on data that is nationally 

driven. The actual equivalence of 1 pu is arguable as it differs from supplier to 
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supplier. It is reasonable as an average of standard tariffs would cover the whole 

country. 

Real time retail market issues however affect the analysis on load shaving. Without 

some forms of real time retail market implementation it is difficult to study storage 

usage, and the impact of electric vehicles. Smart metering is a technological 

innovation that may help, but without real time retail pricing, it is perhaps 

unnecessary. New solutions require not only technical innovation but also 

behavioural ingenuity by customers and researchers in guiding future electricity use 

and infrastructure development. 

8.2 Conclusions 

This thesis makes specific contributions to the field of load modelling and planning at 

community level where energy demand patterns at this level may significantly differ 

from the national picture. The contributions from this thesis are summarized below: 

In this thesis, the cumulative distribution function (CDF) has been used to present a 

new methodology which enables the prediction of realistic half-hourly electricity load 

profiles at residential community level (Chapter 4). It was primarily based on a 

combination of statistical data, and a questionnaire survey. The cumulative 

distribution function (CDF) enables the generation of the random nature of 

consumption. It also indicates a way of understanding behaviour change. 

Traditionally, load modelling is done nationally.  In this thesis it was proposed to use 

modelling to examine the energy use on a local level. Modelling at a small residential 

community level based on a behavioural understanding of the local community can 

lead to a better understanding of possible interventions. The results show which 
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category of household contributes most to the peak. It is possible therefore to focus 

energy conservation on those households first rather than the whole community, 

which may be too costly. This feature of the methodology might be useful to 

consultants. The methodology therefore can help local planners decide on measures 

such as embedding renewable energy and demand management. 

The methodology developed in this study has been used to investigate the incentives 

currently available to consumers to see if it would be possible to shift some of the 

load from peak hours. The adoption of the economy 7 tariff has been investigated, the 

result has shown that this tariff has hardly any effect on consumers that have a gas 

supply as well. However, this was found to be more relevant to particular types of 

households. The methodology helps to identify such households. As such, the utility 

could focus marketing literature, and any incentives on such consumers. 

In this thesis, the possibility of using renewable energy (RE) at community level is 

investigated. The results showed that without government incentives the use of 

photovoltaic would not be suitable at the current price.  

As it is difficult to obtain the true real time price at consumer level because of the 

wholesale price, it was proposed to use the system price (SBP) versus national 

demand as an indicator of the market value. 

In order to better capture the price fluctuations that can occur in real markets, the 

three curves of Figure 7.11 have been developed using the quartiles of SBP versus 

demand in order to be used as an indicator of range of prices. The proposed curves 

would contribute to improving knowledge by giving an indication of the real time 

market price. 
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In this thesis, the SBP values were normalized and expressed in per unit values, thus 

allowing essential characteristics of the data sets to be compared: this allows data on 

different scales to be compared by bringing them to a common scale, and makes the 

analysis easier.  

In this thesis, the radar chart has been proposed as standard chart to look at and 

compare the local community load and prices. It provides an overall view, with 

realistic and useful information, and provides a picture of performance which can 

help local planners to understand and evaluate the system cost at community level. 

The possibility of using storage elements at residential community level has been 

evaluated. The battery simple payback has been estimated. The methodology can be 

applied to other interventions for load shaving. It has been shown that battery storage 

at community level is feasible provided a real time market or “near real time” market 

is established. 

As has been shown in this thesis, there is no real time retail market in electricity at 

local level. It is suggested that a real time independent energy market is introduced to 

enable transactions at this level. 

8.3 Recommendations for Future Work 

In this thesis, there are still some improvements which need to be made, and 

recommendations for future research. 

 The method of predicting electricity load profiles at residential community level 

could be applied for different communities. The limiting factor of applying this 

method is the availability of the input data, such as occupancy usage patterns. 

This could be improved by generating national representative cumulative 
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distribution functions (CDF) across the country for different groupings and 

regions, which could be used by local planners. 

 The hot water and heating system load profiles have not been included in this 

study; it would be possible for these profiles to be included in future work.  

 The tool does not consider the variation in load from weekdays to weekend to 

avoid complexity and this should be considered in future work. 

 In this thesis, we have looked at the use of renewable energy at community level; 

the results showed that the effects of stochastic characteristics of renewable 

energy generation make the use of photovoltaic is not suitable at the current 

price without government incentives. This limitation could be addressed by 

supporting renewable energy generation with an energy storage element which 

enables people to store energy during off peak periods and use it at peak times.  

 A real time independent electricity market at local level has been proposed in 

this thesis. Developments in the electricity market, storage elements, and smart 

grids, and the drive for lower carbon generation technologies, where generating 

and distributing energy is owned and led by communities, will all impact on 

such a market. The introduction of such an independent retail market at local 

level to enable electricity transactions between communities with embedded 

generation capabilities requires further research. 

 In this thesis we have looked to model community demand using a bottom up 

approach. It is theoretically possible that by looking at a power signal of the 

real load and disaggregating it into its components, it is feasible to extract a 

reasonable understanding of community behavior. This can be done by using 

pattern recognition methods and thereby segregating the components. 
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Appendix C 

Explanation of algorithm 

C. 1 Outline of how to produce households load profiles 

Figure C.1 shows the outline of the load profile generator. From the figure, it can be 

seen that the main inputs are the local community data (number of households) and 

appliances data in the community is the initial input. 

 

Figure C. 1 Outlines of load profile generation 
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C. 2 Screen Dumps of the key screens 

 

Figure C. 2 Households Data 

1. Enter number of households in the community. 

2. Calculate percentage share of household type based on questionnaire survey 

3.  Calculate number of each household type.
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Figure C. 3 Appliances time of use probability 

4. Calculate the probability of a household carrying out a particular activity during a 24 

hour period based on questionnaire survey. 
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Figure C. 4 Random distribution of households 

5. Calculate the cumulative distribution functions (CDF) (e.g. 0.30 =AX16+AY31). 

6. Generate a random number (between 0 and 1) using RAND() function and then 

associate each value of RAND() function with possible value of cumulative 

distribution functions (CDF) for the whole households. 

7. Use VLOOKUP function to find the tag of specific probability resulted from RAND 

function. 
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Figure C. 5 Distribution of appliances 

8. Use COUNTIF function to count the No. of randomized distribution of Households 

appliances which meet the given criteria (based on ownership level) (e.g. 18 

=COUNTIF($AX$44:$AX$139,1)*'Main Appliance'!$G$14/100). 
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Figure C. 6 Calculations of half hourly load profile 

 

9. Generate the half hourly load profile consumption for each appliance. 

10. Aggregate the whole random profiles for all appliances to generate a daily 

consumption load profile for a known household. 
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Figure C. 7 plots of the generated load profile 

 

11. Plot the load profiles for each household type. 
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