
 

University of Bradford eThesis 
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access 
repository. Visit the repository for full metadata or to contact the repository team 

  
© University of Bradford. This work is licenced for reuse under a Creative Commons 

Licence. 

 

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Optimal Scheduling, Design, Operation and Control of 

Reverse Osmosis based Desalination  

 

Prediction of RO membrane performance under different design and operating 

conditions, synthesis of RO networks using MINLP optimization framework 

involving fouling, boron removal, variable seawater temperature and variable 

fresh water demand 

 

 

Kamal M. Sassi 

BSc Chem. Eng., MSc Chem. Eng. 

 

Submitted for the Degree of  

Doctor of Philosophy  

 

 

School of Engineering Design and Technology 

University of Bradford 

United Kingdom 

 

 

2012 



i 
 

Abstract  

Key words: RO desalinations, modelling, simulation, optimization, variable fresh water demand, 

flexible scheduling, control, MINLP, gPROMS 

An accurate model for RO process has significant importance in the simulation and 

optimization proposes. A steady state model of RO process is developed based on solution 

diffusion theory to describe the permeation through membrane and thin film approach is used 

to describe the concentration polarization. The model is validated against the operation data 

reported in the literature.  

For the sake of clear understanding of the interaction of feed temperature and salinity on the 

design and operation of RO based desalination systems, simultaneous optimization of design 

and operation of RO network is investigated based on two-stage RO superstructure via 

MINLP approach. Different cases with several feed concentrations and seasonal variation of 

seawater temperature are presented. Also, the possibility of flexible scheduling in terms of 

the number of membrane modules required in operation in high and low temperature seasons 

is investigated 

A simultaneous modelling and optimization method for RO system including boron removal 

is then presented. A superstructure of the RO network is developed based on double pass RO 

network (two-stage seawater pass and one-stage brackish water pass). The MINLP problem 

based on the superstructure is used to find out an optimal RO network which will minimize 

the total annualized cost while fulfilling a given boron content limit. The effect of pH on 

boron rejection is investigated at deferent seawater temperatures. 

The optimal operation policy of RO system is then studied in this work considering variations 

in freshwater demand and with changing seawater temperature throughout the day. A storage 

tank is added to the RO layout to provide additional operational flexibility and to ensure the 

availability of freshwater at all times. Two optimization problems are solved incorporating 

two seawater temperature profiles, representing summer and winter seasons. The possibility 

of flexible scheduling of cleaning and maintenance of membrane modules is investigated.  

Then, the optimal design and operation of RO process is studied in the presence of membrane 

fouling and including several operational variations such as variable seawater temperature. 

The cleaning schedule of single stage RO process is formulated as MINLP problem using 

spiral wound modules. NNs based correlation has been developed based on the actual fouling 

data which can be used for estimating the permeability decline factors. The correlation based 

on actual data to predict the annual seawater temperature profile is also incorporated in the 

model. The proposed optimization procedure identified simultaneously the optimal 

maintenance schedule of RO network including its design parameters and operating policy. 

The steady state model of RO process is used to study the sensitivity of different operating 

and design parameters on the plant performance. A non-linear optimization problem is 

formulated to minimize specific energy consumption at fixed product flow rate and quality 

while optimizing the design and operating parameters. Then the MINLP formulation is used 

to find the optimal designs of RO layout for brackish water desalination. A variable fouling 

profile along the membrane stages is introduced to see how the network design and operation 

of the RO system are to be adjusted 

Finally, a preliminary control strategy for RO process is developed based on PID control 

algorithm and a first order transfer function (presented in the Appendix).  
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Chapter 1 

Introduction 

1.1 Background  

Water is the most abundant compound on earth's surface but in fact a very small portion 

of it is accessible or suitable for human consumption. About 97% of the global water 

resource is salt water and only 3% of total water capacity is represented by freshwater 

including water frozen in glaciers and polar ice caps (Bielik et al., 2010). 

F eshw te  is    enew  le  esou ce,  ut the glo e’s  esou ces   e ste dily depleted. The 

current demand for freshwater already exceeds the supply in many parts of the world. 

Water shortages problems are expected to grow worse in the near future for many 

regions in the world. Recently, some industrial nations such as Australia and Spain have 

experienced severe water shortages (Martin-Rosales et al., 2007). 

The scarcity of fresh water resources and the growth of population, industry and 

agriculture have increased the reliance on water production using desalination 

technology. Some countries such as gulf areas rely completely on desalinated water 

(Abuzinada et al., 2008). Therefore, much attention is being paid to seawater and 

brackish water desalination technologies including Reverse Osmosis (RO) in attempts 

to improve the reliability and the performance of freshwater production processes. 

Thermal and RO processes are, by far, the major desalination systems used now-a-days. 

RO process is less energy intensive which makes it most cost efficient (Fritzmann et al., 

2007). For instance, energy consumption for seawater RO desalination is about one-half 

of that of multiple effect evaporator process (Singh, 2008).  

Recently, seawater desalination by RO has been the main source of drinking water 

supply in many regions that have freshwater lake (Geraldes et al., 2005). RO 

membranes used in sea water desalination are capable of producing good water quality 

by removing most of the salts and some other contaminants from water sources. During 
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the last decade, tremendous advances were made in the research related to development 

of RO membranes, which has resulted in the production of new membranes able to 

work within wide pH ranges, higher temperatures and pressures, increased productivity, 

reduced salt concentration in the product, and low capital and operating costs (Grote et 

al., 2012). 

1.3 RO Prospective 

The RO process seems to be the most promising technology for water desalination. 

Recently, the RO market share is significantly increased compared with thermal 

desalination technologies with the highest number of new desalination plants around the 

world. The RO desalination capacity reached 53% of worldwide desalination capacity in 

2008 (IDA, 2008-2009), and in 2010, RO desalination accounted for 60 % of 

desalination plants capacity while MSF represents only about 26 % (IDA, 2010-2011). 

Significant advances have been made in the research related to water desalination using 

RO membranes in the last decades. The application of RO process in the water 

desalination has grown rapidly and has become the leading technology in desalination 

market. Figure 1.1 shows a dramatic increase in the new RO worldwide desalination 

capacity in the period 1980 to 2016 compared to thermal desalination. The RO 

desalination capacity is increased about 20 times in this period, while thermal processes 

capacity remained in their initial level.  

The cost of fresh water produced by membrane treatment has shown dramatic reduction 

trend. This remarkable progress has been made mainly through two aspects, huge 

improvements in membrane material and incorporation of the energy recovery devices 

in RO systems (Greenlee et al., 2009) which significantly reduce the energy 

requirements. Khawaji et al. (2008) reported that the unit energy consumption for 

seawater desalination have been reduced to as low as 2 kWh/m
3
 significantly lower than 

thermal process such as Multi-stage flash distillation (MSF) which typical 4 kWh/m
3
. 
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Figure 1.1 Global desalination capacity increase by technology, 1980-2016  

(Desalination Market, 2010) 

Another potential growth of RO process is that by utilizing the renewable energy 

resources. Ghobeity and Mitsos (2010) suggested that RO plants can operate at variable 

load without any technical problems. Therefore, RO plants can cope even with 

instantaneous energy fluctuations as in the case of RO installations powered by 

renewable energy. Nowadays, 51 % of the total renewable energy sources powered 

desalination systems were used to operate the RO processes (Eltawil et al., 2009). 

1.3 Membrane Separation Processes 

Membrane filtration is a process in which a membrane is used to separate compounds or 

concentrate a solution by applying a certain driving force across the membrane, which 

may be a pressure gradient, concentration gradient, electrical potential gradient or 

temperature gradient. Membrane processes are designed to carry out physical or 

physicochemical separations. These are more recent developments and have not yet 

achieved widespread implementation. The development of membrane-based bulk water 

and wastewater treatment processes is significant and offer many advantages over 

conventional techniques in terms of complexity and cost. 

1.4 Pressure Driven Membrane Processes 

In the pressure driven membrane processes, the driving force is a pressure difference 

across the membrane. It differs mainly in the pore size of their membranes, which 
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makes a particular membrane effective for the removal of a specific range of impurities. 

Four pressure driven membrane filtration processes can be distinguished based on 

differences in feed pressures and membrane rejection capacities: Reverse Osmosis 

(RO), Nanofiltration (NF), Ultrafiltration (UF), Microfiltration ranked by increasing 

pressure as shown in Figure 1.2 (Cheryan, 1998). Microfiltration and ultrafiltration 

processes need low pressure membranes to accomplish the filtration process while high 

pressure is required for nanofiltration and reverse osmosis processes. 

 

Figure 1.2 Pressure driven membrane processes 

1.5 Principle of Reverse Osmosis 

Osmosis is a natural flow of water through a semipermable membrane from a solution 

with low salt into a more concentrated solution (Figure 1.3) until osmotic equilibrium 

between the two solutions is reached (Ian et al., 2003). The driving force for this 

passage of water is known as the osmotic pressure and depends on the difference in 

solutes concentrations of the two solutions. 

RO is pressure driven membrane separation process in which a dense membrane allows 

diffusion of the solvent and solutes. Diffusion of solutes, like salts, is low compared to 

water results in a rejection for those substances. When pressure is applied to the 

concentrated solution, larger than the osmotic pressure, the flow of diffused solvent 

through the membrane is reversed as shown in (Figure 1.3) and solvent flows from the 
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concentrated solution side through the membrane to the diluted solution while dissolved 

ions and small molecules that contaminate aqueous solutions and impurities are rejected 

by the membrane. This process is called reverse osmosis (Sourirajan and Agrawal, 

1969).  

 

Figure 1.3 Representation of osmosis theory (Sourirajan and Agrawal, 1969) 

The commercial RO membranes are made up of mainly from cellulose acetate in the 

past. Recently, aromatic polyamide membranes were largely accepted in the real 

applications (Mallevialle et al., 1996). The polyamide membranes have several 

advantages over the cellulose acetate membranes such as high solute rejection, high 

resistivity to fouling and more stability. 

1.6 Membrane Element 

The large membrane area required for commercial separations is tightly packaged into 

membrane modules. Different membrane geometries have been developed for this 

purpose including spiral wound, hollow fibre tubular and plate and frame, which are 

offering high separation efficiency and are economically feasible (Baker et al., 2004). 

This thesis focuses on spiral-wound and hollow-fibre modules because of their greater 

commercial and technical importance.  

1.6.1 Spiral Wound 

Spiral wound membrane elements are produced from flat membrane sheets which are 

rolled into along a central perforated permeate collection tube (Figure 1.4) and 
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separated by highly porous spacer material facilitating the transport of product water to 

the central product collection tube. The spacer keeps the membrane layers apart and also 

promotes turbulence and mixing, which improve mass transport near the membrane 

surface and reduce concentration polarization. Spiral wound module is designed to offer 

as much surface area as possible into a given volume (Senthilmurugan et al., 2005). 

 

Figure 1.4 Schematic view of a spiral wound membrane element (Mareth, 2006)  

1.6.2 Hollow Fibre 

Hollow-fibre modules contain a large number of membranes tubes which are housed in 

a U tube bundle of several thousand fibres as illustrated in Figure 1.5. Feed is usually 

introduced outside the hollow fibre, distributed from a tube in the centre of the bundle 

and may flow through the fibre bundle radially or parallel to the hollow fibres. The 

permeate is collected at the tube sheet end of the vessel (Khan, 1986). Hollow fibre 

elements have very high packing density and require minimal space. The product 

recovery is high, typically 50– 60% of the feed flow.  

 

Figure 1.5 General view of hollow fibre element (Khan, 1986). 
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1.7 Scope of This Research 

This research is focused on simulation and optimization of RO based desalination 

process. The optimal design of RO system for seawater and brackish water are 

investigated in order to achieve the goal of reducing the production cost while at the 

same time increasing the freshwater productivity and quality incorporating the influence 

of the several operation and design parameters such as fouling, variable fresh water 

demand, variation in seawater temperature, salinity and pH value. 

Researchers have often looked into minimizing the energy consumption of RO, 

neglecting the variability in seawater temperature and fresh water demand during a day 

and year and assumed constant operation (Starov et al., 1995; Wilf et al., 2001; Guria et 

al., 2005; Geraldes et al. 2005; Abbas 2007; Gilau and Small 2008; Zhu et al. 2009. 

Hyun et al., 2009; Lee et al., 2009; Bartman et al., 2010; Peñat et al., 2011). In reality 

the fresh water demand and seawater temperature vary significantly throughout the year 

and even during a day. To the  utho ’s  est knowledge, no studies h ve  een  epo ted 

on the optimization of RO desalination process including variable seawater temperature 

and variable demand throughout the day or year.  

In order to design and optimize RO processes that are capable of removing boron from 

permeate, detail understanding of the boron chemistry and its permeation properties in 

RO membrane is crucial to balance the trade-off between boron concentration reduction 

and energy consumption. The flow and permeation properties should be modelled with 

the consideration of the effects of several operation and design parameters of RO 

process on boron rejection. Although there exist an abundant literature on optimal 

design and operation of RO systems, most studies carried out so far on the boron 

removal by RO membranes have been focused on experimental or lab scale analysis. In 

fact only few publications were found in the literature which studied this issue 

theoretically (Taniguchi et al. 2001; Sagiv and Semiat, 2004; Hyung and Kim, 2006; 
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Hung et al. 2009; Manea et al., 2009). Flexible network superstructure approach has not 

been studied extensively until to date. 

One of the more serious problems encountered in a RO process is the occurrence of 

membrane fouling, which limits both operation efficiency and membrane lifetime. Most 

of previous studies for RO process have not considered RO membrane fouling. Few of 

them considered fouling rate in all membrane stages equally distributed; in modelling 

and simulation (Boudinar et al., 1992; Van der Meer et al., 1998; Abbas, 2005; Zhu et 

al., 2009; Li, 2010 ); RO network layout optimization (Evangelista, 1985; El-Halwagi, 

1992; Voros et al., 1996; Zhu et al., 1997; Villafafila and Mujtaba, 2003; Lu et al., 

2007; Saif et al., 2008; Sarkar et al., 2008).  

The optimization of design and operation of RO network to include scheduling for 

membrane cleaning is an important issue that has received relatively little attention. 

Only limited studies on maintenance and cleaning scheduling of RO membranes are 

found in the literature (Zhu et al., 1997; See et al., 1999 and Lu et al., 2006). Although, 

spiral-wound module occupies the largest market share (Kaghazchi et al., 2010), all the 

RO scheduling optimization problems were investigated using hollow fibre modules. In 

addition, all of these studies (RO maintenance scheduling) did not include the effect of 

seasonal changes such as seawater temperature and seawater salinity variations on the 

optimal maintenance scheduling of RO process.  

The accuracy of optimal cleaning schedule of a membrane desalination plant depends 

largely on the accurate estimation of fouling model (See et al., 1999). However, most of 

the fouling models used were simple exponential function and implemented simple 

model to represent the system performance decay which might not be adequate to 

represent the real application. 

As seen from the literature, simulation and optimization of RO separation systems 

incorporating different fouling extents in membrane stages are not often found in the 



9 
 

literature. Therefore, this work is focused on investigating the role of varying fouling 

rate into membrane stages and its effect on the operation and design of RO process.  

Proportional–integral (PI) or proportional–integral–derivative (PID) control algorithms 

have been used to regulate process variables such as water flux and adjust the system 

control variables such as feed flow rate and pressure in order to achieve a fresh water 

production target (Alatiqi et al., 1989; Singh, 1999; Martins, 2005; Kim et al., 2008).  

Furthermore, there have been substantial efforts that were made to reduce energy 

consumption by RO desalination process including controlling the operating variables 

subject to process fluctuations (Perrot, 1996; Abbas, 2006; Greenlee et al., 2009; Ali, 

2010). However, little of these studies take into account the membrane fouling effects 

on RO performance (Van Boxtel and. Otten, 1993; Lee et al., 2009). 

With this background, the general focus of this research is developing the following: 

 Several steady state RO process models. 

 Accurate fouling model based on actual plant data which are used in the 

formulation of RO maintenance scheduling optimization problem. 

 A control strategy that takes into account desired system operating conditions, 

feed water quality, membrane fouling and different operational limitations. 

 Numerous steady state and dynamic optimization frameworks considering 

different RO operation variations and subject to process constraints including 

boron concentration, fixed/variable seawater temperature and fresh water 

demand. 

Modelling and optimization frameworks are then used for better understanding, 

operation, control and design of RO process. The detailed aims and objectives of the 

thesis are outlined below. 
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1.8 Aim and Objectives of This Work  

The main goal of this thesis is to achieve a stable and reliable operation for the RO 

process with minimum production cost by optimizing operation and design parameters 

via mathematical modelling and optimization. 

The main objectives of the thesis can be highlighted as follows: 

 To develop the general superstructure for two-stage RO process layout and 

formulate RO network design problem as MINLP problem. 

 To investigate the effect of seawater temperature and salinity on the synthesis of 

RO networks via the application of MINLP approach. 

 To develop a novel superstructure of the RO network based on double pass RO 

network. The RO design problem will be formulated as an MINLP problem 

constrained with maximum salt and boron concentration in the fresh water. 

 To combine a steady state model for RO process with dynamic model of a storage 

tank in the optimization formulation considering variable seawater temperature and 

water demand for a 24 h time horizon. 

 To formulate the design and cleaning scheduling of RO network as MINLP 

problem to find the optimal RO network design corresponding to each membrane 

cleaning schedule. 

 To use the MINLP optimization approach to solve the optimal design problem of 

RO desalination process incorporating different fouling percentages in membrane 

stages. 

 To investigate on how the operation of RO process is to be adjusted to maintain a 

fixed water flux by developing an optimization-based PID controller. 
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1.9 Outlines of the Thesis  

The layout of this thesis is presented below. 

Chapter 1: Introduction 

General background of desalination, brief literature review on desalination market, 

classification of membrane process, background about RO process, also comparison 

between commercial membrane elements are presented. Finally the scope, the aim and 

the objectives of the research are highlighted.  

Chapter 2: Literature Review 

The general description of RO process is presented. A brief description of membrane 

transport theory, the effect of concentration polarization and membrane fouling on RO 

performance are highlighted. Past work relating RO process simulation, control and 

optimization are addressed. Finally, the methods of solving different types of 

optimization problems are also presented in this chapter. 

Chapter 3: Modelling and optimization of reverse osmosis process 

This chapter presents mathematical RO process model which is used in this study for 

spiral wound and hollow fibre modules. Also it introduces the RO network 

superstructure and the procedure to obtain optimal solutions for the RO network. 

Application and the advantages of the gPROMS software are also included. 

Chapter 4: Effective design of RO process under variable seawater temperature  

An MINLP optimization framework is developed here. For fixed water demand, 

optimization of RO design and operation is conducted for several seawater temperatures 

and salinity which provides further insight on the RO performance. The possibility of 

flexible scheduling of cleaning and maintenance of RO membrane modules is also 

investigated. 

Chapter 5: Optimal design of RO desalination process with boron removal 



12 
 

This chapter gives an overview on boron in general and discusses issues related to 

boron toxicity and current regulations and guidelines governing boron. The focus is 

placed on boron removal by RO process and the effect of the RO configuration. Then, a 

mathematical model for boron rejection in RO desalination plants is presented. An 

MINLP optimization formulation is developed using a superstructure based on double 

pass RO desalination process. Finally the optimal design of RO network which sustain 

boron concentration below the maximum limit is determined for two operational cases. 

Chapter 6: Optimal operation of RO system with daily variation of fresh water demand 

and seawater temperature 

This chapter considers the dynamic optimization of RO process on the daily basis. 

Initially, empirical correlations are developed for estimating daily seawater temperature 

profiles (winter and summer) and fresh water consumption profile. A steady state RO 

model incorporating the correlations for predicting temperature and fresh water 

consumption coupled with dynamic model describes storage tank operation is presented. 

The optimal operation policy is generated using the optimization model for two sea 

water temperature profiles. 

Chapter 7: Optimal design and cleaning schedule of RO process  

This chapter presents a systematic technique for the optimal design and scheduling of 

RO networks. Neural network based correlations for predicting water and salt 

permeability decline factors have been developed. Also this chapter deals with the 

formulation of the maintenance and scheduling problem of the RO network as MINLP 

problem for predicting the optimal RO schedules.  

Chapter 8: Brackish water RO process: Simulation and Optimization 

Steady state simulation of RO process results are presented here with validation of 

results from the literature. The effect of changing process and design parameters on the 

RO process performance are presented and analysed in this chapter. Two types of 
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optimization problem are carried out here: (i) operation optimisation (NLP problem) 

and (ii) optimum design of RO network problem (MINLP). Fouling effect on membrane 

permeability is incorporated in the MINLP optimization problem. 

Chapter 9: Conclusions and future work 

This chapter presents the conclusions obtained from this study and the suggestions for 

future work recommendations. 

Appendix A: PID control of RO process 

The parameter estimation was carried out to predict the values of steady state RO model 

parameters. Then the RO model used to develop an optimization-based PID controller 

for hollow fiber RO process. 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter presents a critical review of the past work on the modeling and 

optimization of RO based desalination process. Overview of basic concepts of the 

transport phenomena in RO membranes are presented briefly. Concentration 

polarization and fouling problem coupled with their effects on RO performance are 

discussed in this chapter. 

Then, this chapter will present some literature relevant to RO process modeling, control, 

and optimization. Two optimization types are reviewed: first, optimization of RO 

operation and second is optimization of RO network design with and without membrane 

fouling. The removal of boron by RO membranes, in addition to, mathematical 

representation of this issue is also briefly addressed. Finally, a brief overview on the 

methods used for solving both NLP and MINLP optimization problems are presented. 

2.2 RO Process Description 

RO is a type of membrane process commonly used for seawater and brackish water 

desalination. In industrial applications, a typical RO water desalination system consists 

of four main sub-systems: intake, pretreatment, RO membrane units and post-treatment 

as shown in Figure 2.1 (Fritzmann et al., 2007). 

Pretreatment system is the key to successful operation of a RO plant. The type and 

complexity of the feed pretreatment system mainly depends on the feed water quality. 

The suspended solids and organic colloids are separated by coagulation process. 

Filtration is followed which can remove sand and other particles from the feed solution. 

The common way to minimize scale on the membrane surface is to lower the pH by 

adding acid, thus increasing the solubility of the precipitated substances or to maintain 

salts in their soluble pH range. 
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The pre-treated feed is pressurized with a pump to exceed the osmotic pressure. The 

quality of the permeate leaving the plant depends on the quality of plant source water 

and configuration. The produced water from a desalting process requires post-treatment 

to prepare it for potable use and some industrial uses such as chlorine injection to 

prevent bacterial growth.  

The energy lost in depressurizing the concentrate can be returned efficiently to the feed 

water by using mechanical turbine or employing efficient pressure exchanger devices. 

Nowadays energy recovery systems working on the pressure exchange principle are 

available, the devices can recover up to 50% of the pumping energy (Villafafila and 

Mujtaba, 2003). 

 

Figure 2.1 RO process system (Kim et al., 2009) 

2.3 RO Membrane Modelling 

The mathematical modelling of RO systems plays an important role in operation and 

design the RO process. It can relate the RO performance indicators such as permeate 

recovery and solute rejection to the operational variables such as feed pressure and 

design variables such as membrane module dimensions and allow optimizing the 

process variables without applying these changes on the real plant. 
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2.3.1 Membrane Transport Theories 

Huge efforts have been presented in the literature in an attempt to model the transport 

mechanisms through membranes (Soltahieh and Gill, 1981). Most models for 

membrane separation assume diffusion or pore flow mechanism through the membrane 

as shown in Figure 2.2 (Baker, 2004). In the diffusion model, the permeate dissolves in 

the membrane material and then diffuses through the membrane down a concentration 

gradient (Figure 2.2a). The pore-flow model, in which permeates are transported by 

pressure-driven convective flow through tiny pores where some of permeates are 

excluded from some of the pores in the membrane through which other permeates pass 

(Figure 2.2b). Solution-diffusion model was used to explain the transport phenomena 

through membrane films in reverse osmosis and nanofiltration processes while pore 

model was more applicable to rationalize ultrafiltration and microfiltration processes 

(Baker, 2004). 

In general, the membrane transport models are derived from three main approaches, 

homogeneous membrane model, pore-flow model and irreversible thermodynamics 

theory. Only homogeneous membrane model (Solution –diffusion) will be presented 

here. 

 

Figure 2.2 Transport through membranes (Baker, 2004) 

a) Diffusion mechanism  b) Pores mechanism 

Solvent 

Solute 

Solvent 

Solute 
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2.3.1.1 Solution–Diffusion Membrane Model 

This model assumes that the concentration gradient is the major effective factor in the 

transport from one side to another via the membrane. The model is applicable to a 

variety of processes as RO, pervaporation and gas permeation (Baker, 2004). The 

solution-diffusion model is originally developed by Lonsdale et al. (1965). It is based on 

the assumption that both the solute and permeate are dissolved in the surface layer of 

the membrane and diffuse through the membrane by the effect of concentration gradient 

and pressure while the solute and the solvent are diffused, each one separately.  

The separation between solute and the solvent occur due to the difference in the 

solubility of the materials in the membrane and the differences in the rates at which the 

materials diffuse through the membrane (Paul, 2004). Another assumption in solution-

diffusion model is that the pressure throughout the membrane is remained constant at 

the highest value, which leads to the pressure within a membrane uniform. According to 

diffusion mechanism, the total solvent and solute fluxes are expressed as: 

)Δ(ΔAJ ww  P          (2.1) 

)( CAJ ss 
   

(2.2) 

Where ΔP , ΔC  and   represent differences of pressure, concentration and osmotic 

pressure across the membrane, respectively. wA  and sA  are the water and salt 

permeability coefficients. 

2.3.1.2 Solution – Diffusion Model Assessment   

Solution-diffusion model was used to predict the experimentally observed performance 

of the membrane processes of many membrane applications. According to Baker 

(2004), this model is able to predict the RO performance with good accuracy compared 

to experimental data. Furthermore, this model has less complexity compared to the 

other models in terms of number of unknown parameters. 
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The solution-diffusion model is the most widely used transport model to describe the 

transport through the membrane layers. The model was applied to gas separation, 

pervaporation and dialysis as well as to reverse osmosis (Zhao et al., 2005). 

Marcovecchio et al. (2005) reported that this model is able to provide an accurate 

prediction of the flow of water and salt through the RO membrane. 

Wijmans and Baker (1995) provided more evidences for the validity of the solution-

diffusion model such as the good agreement between theory and experiment, and the 

large number of the permeability coefficient data, obtained for a large number of 

membrane processes being in good numerical agreement with one another. 

2.3.2 Concentration Polarization 

During the normal operation of RO, the membrane separates one or more component 

from binary or multicomponent mixture by allowing some components to pass through 

a semi permeable membrane and reject the others. This process leads to accumulation of 

the rejected solutes on the front of the membrane surface and concentration gradient is 

formed with highest concentrations directly at the membrane surface. This results in 

equilibrium between the convective transport (permeate flux due to the pressure) and 

diffusion (from the membrane wall to the bulk feed solution due to the concentration 

gradient). This phenomenon is called concentration polarization (Fritzmann et al., 

2007). 

Concentration polarization creates new layer on the membrane surface as shown in 

Figure 2.3. The concentration profile illustrates that the local surface concentration is 

greater than the feed concentration. Therefore, it is crucial to determine the 

concentration of solutes at the surface of membrane and use it in the estimation of the 

transport parameters for the rigours transport model instead of feed bulk concentration. 
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Figure 2.3 Schematic diagram of concentration polarization (Kumar, et al. 2006) 

Concentration polarization influences the separation performance in several ways: 

 Substantial reduction in the solute rejection due to higher salt flux because of 

increased salt concentrations at the membrane surface and consequently, high 

solute concentration in the permeate. 

 Saturation solubility limits can exceed especially for concentrated solutions, 

leading to formation of gel layer on the membrane surface, which enhance the 

fouling on the membrane surface.  

 Solvent flux is reduced due to a reduction in the driving force of the solvent 

species and higher osmotic pressure associated with higher salt concentration. 

The main operational variables that affect the formation of polarized solute layer on the 

membrane surface are (Kim and Hoek, 2005): a) pressure difference across the 

membrane, b) solute concentration in the feed, c) hydrodynamics (turbulence). 

Increase of feed pressure can enhance the membrane separation performance to a certain 

limit (Figure 2.4), after that, the permeate flux becomes independent of feed pressure. 

As feed pressure is increased, there is a corresponding increase in convective transport 

of solute molecules to the membrane surface and the concentration polarization layer 

becomes thicker. 



20 
 

 

Figure 2.4 Dependence of permeate flow on transmembrane pressure (Cheryan, 1998) 

Increase in feed flow can be helpful to reduce the boundary layer because an increase in 

velocity reduces concentration polarization due to a higher wall shear stress (Schwinge 

et al., 2002). The thickness of the boundary layer depends on the turbulence of the feed 

water flow (Kumar et al., 2006). Increase in the turbulence will reduce the thickness of 

the boundary layer. Membrane spacers are used to promote turbulence in the feed and 

permeate channels by disrupting fluid flow in the modules channels. Spacers lead to 

increase in energy consumption by the pump due to increase of the pressure drop across 

the membrane module. Therefore, optimal spacers were designed based on the 

optimization of concentration polarization and extra energy consumed by the pumps. 

Several models have been used to study concentration polarization and determine the 

solute concentration at the surface of membrane such as analytical Film Theory (FT) 

model (Michaels, 1968), Retained Solute (RS) model (Song and Yu, 1999) and 

Numerical Convection–Diffusion model (Bhattacharyya et al., 1990). 

Film theory has been widely used by several researchers to model the concentration 

polarization phenomena. Many authors reported that film theory can predict 

concentration polarization accurately at operating conditions of feed flow and flux 

similar to practical RO applications (Kim and Hoek, 2005; Subramani et al., 2006). 
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According to the film theory (Micheals, 1968), the transport of the solute in 

concentration polarization layer can be illustrated as: 
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(2.3) 

With Cm representing the concentration at the membrane surface, Cp and CB being the 

permeate and feed bulk concentrations. k denotes the mass transfer coefficient and  jw is 

the pure water flux. 

2.3.3 Membrane Fouling  

2.3.3.1 Understanding Membrane Fouling  

The most critical obstacle restricts further growth and wider application of membrane 

separation processes is fouling. It affects the operational reliability and increase the 

production cost, therefore many studies are focused on this subject, for example 

(Karime et al., 2008; Schneider et al., 2005). 

Fouling is referred generally as the accumulation of unwanted particles (Chen et al., 

2004), colloids and/or salts on the interface. In general, there are four major types of 

compounds which may led to membrane fouling (Flemming et al., 1997). 

a. Dissolved solids: (inorganic scale) such as calcium and barium. 

b. Suspended solids: (colloidal) such as metal oxides and silica. 

c. Biological organisms: such as bacteria, fungus and algae.  

d. Non-biological organic: such as oil. 

Scaling by inorganic compounds such as calcium carbonate and sulphates is formed in 

the feed spacers and on the membrane surface and block the flow. This type of fouling 

may be controlled by injecting an anti-scalant and/or acid. Fouling can be controlled by 

pretreatment methods, such as coagulation and flocculation followed by filtration 

elements. Ultrafiltration may be used to remove colloidal particles and provide a good 

water quality for the RO process. 
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Fouling generally results in decreased permeate flux, decreased product quality and 

increased feed pressure. The fouling phenomena can be described to characterize the 

reversibility of fouling (Figure 2.5). Reversible fouling refers to the fouling species 

forming the deposit layer on the outer surface of the membrane which is readily 

removable from the membrane surface and easy to clean by physical methods such as 

rinsing or flushing the membrane or applying backwashing (Choi et al., 2005). 

Irreversible fouling (as gel layer) on the other hand requires cleaning under severe 

conditions or with chemical agents. The internal membrane pores are blocked and the 

foulants could not be removed by simple cleaning method as backwashing.  

 

Figure 2.5 Schematic fouling layers (Cheryan 1998). 

Normally, in the RO desalination plants, the production capacity is remained relatively 

constant as well as the solute concentration is kept under certain limit. The permeate 

flux will vary with filtration time according to the fouling behaviour of the feed 

solution. 

Numerous studies have been carried out to estimate and control of fouling for the RO 

processes (Chen et al., 2004; Park, et al., 2008; Oh et al., 2009b). Amiri and Samiei 

(2007) suggested that increasing feed velocity could reduce the fouling area to a thinner 

layer and consequently less fouling on the membrane layer. Yang et al. (2010) 
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investigated the use of a pilot plant to explore the seasonal fouling characteristic of RO 

membrane. The experiments were conducted in summer and winter seasons to 

emphasize the presence of the inorganic fouling and biofouling on the RO membrane. 

They found that scaling and biofouling are more serious in summer season. 

2.3.3.2 Fouling and RO Staging 

A commercial RO unit usually consists of one or multi stage array of membrane 

modules depending on the product demand and purity. Two kinds of membrane staging 

are commonly used in RO desalination plants: 

 Permeate staging: the permeate from the first stage (pass) becomes the feed to 

the second stage (pass). The water produced from this type of staging may 

contain solute concentration less than the required limit.  

 Brine staging: the feed of the second stage is the brine from the first stage. 

Permeate is collected from all modules and sent to the final product stream. 

For looser permeate concentration requirement, brine staging configuration is favoured 

that increase the system recovery ratio while the permeate staging structure is identified 

for lower permeate quality requirement (Lu et al., 2007). 

Generally, the most common arrangements of the membrane modules are: a) Series 

arrays, b) Parallel arrays and c) Tapered arrays. Figure 2.6a shows a series arrangement 

of the membrane modules. The entire flow is passed over all the modules. As permeate 

is recovered, the brine flow is gradually reduced. This can decrease the flow and 

concentrate the brine at the end of the array and increase scaling especially at the tail 

elements in the array. In the parallel array (Figure 2.6b), the feed flow is split into large 

number of parallel streams generating poor cross-flow at the end elements. 

To overcome the limitations of the two previous arrangements the tapered array (Figure 

2.6c), which is a combination of parallel and series arrangement, is introduced. 
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Figure 2.6 Reverse osmosis configurations 

a. Series b. Parallel c. Tapered 

Although extensive research had been carried out on RO membrane fouling (Zhu et al., 

1997; Flemming et al., 1997; Tay and Song, 2005; Hoek et al., 2008; Oh et al., 2009a), 

the same cannot be said about the local fouling in RO stages. Most of these studies 

investigate the fouling effect on RO performance by assuming average fouling value for 

all stages regardless the fouling type and process configuration. 

Different fouling types and where they occur in the RO membrane process are shown in 

Table 2.1 (Huiting et al., 2001). It is clear that the first stage and precisely first element 

in the first stage (in case of spiral wound element) suffers from high organic fouling and 

suspended solids. Scaling and silica the only types of fouling deposit in the last stage 

where the solute concentration becomes high due to permeate recovered along the 

stages. 

The biofouling potential of feed water to RO plants is very high as shown in Figure 2.7 

(Khedr, 2000). It reaches up to 50 % of the total fouling occurring in RO plants. 

Followed by scaling about 20 % of the total fouling which deposited in the last stage. 
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The remaining fouling will hit the first stage. Biofouling is considered as the major type 

of fouling in RO processes (Vrouwenvelder et al., 2009a).  

Table 2.1 Location of fouling in NF/RO plants (Huiting et al., 2001) 

Fouling Where does it occur first 

Scaling/silica Last membranes in last stage 

Metal oxides First membranes of first stage 

Colloids First membranes of first stage 

Organic First membranes of first stage 

Biofouling (rapid) First membranes of first stage 

(slow) Throughout all the stages 

 

 

Figure 2.7 Occurrence of fouling in RO desalination plants (Khedr, 2000) 

Karime et al. (2008) carried out a study about loss of membrane performances in Zarzis 

brackish water desalination plant. The pressure drop in first stage caused by fouling is 

higher than that in second stage as shown in Figure 2.8. The analysed of fouling in 

membrane element in first stage indicate the presence of biofouling. 

A model of RO processes that accounts the effects of fouling on the performance of a 

RO system was developed by Hoek et al. (2008). Model parameters are determined 
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based on pilot plant data using brackish water as a feed. The high fouling level in lead 

elements causing a water flux decline; hence, permeate production compensated by 

subsequent elements levelling the flux profile from inlet to outlet. 

 

Figure 2.8 Pressure drop profile in Zarzis desalination plant (Karime et al., 2008) 

Recently, Vrouwenvelder et al. (2009a) presented a comprehensive study on the 

detection of biofouling in membrane filtration installations treating low salinity waters. 

The pressure drop increase in the first stage was higher than the increase in second stage 

(Figure 2.9). Also most biofouling fouling was present in the lead element in the first 

stage, consistent with membrane autopsy results obtained in the above studies. 

See et al. (1999) mentioned in their work that the fouling factor can be varied between 

membrane stages in the simulation and optimization purposes. Also, they pointed out 

those different fouling models could be included for each stage in the mathematical 

formulation of membrane filtration process. 
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Figure 2.9 Pressure drop profile for two stages (Vrouwenvelder et al., 2009a) 

2.4 Review of Past Work on Simulation and Optimization of RO Process 

There is an abundant theoretical and experimental literature related the transport theory 

and practice of RO processes. This section includes studies that are only relevant to the 

modelling, control and operation optimization of the RO systems. 

2.4.1 Modelling and Simulation of RO Desalination Process 

The primary objective of this work is to develop a model that can accurately predict the 

RO process performance under different operating conditions. In order to develop a 

reliable membrane separation model, it is important to fully understand the operation 

and all accompanied phenomena related to the interactions between the transport theory 

through the membrane layer and other operation and deign aspects. This section 

presents some literature for the RO process modeling. 

The permeation through membranes was modelled using several approaches include the 

solution-diffusion model, pore models and irreversible thermodynamic model all these 

models are special cases of the statistical-mechanical model (Majali et al., 2008) which 

was originally developed by Lonsdale (1965).  
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The early works of Kimura–Sourirajan model (Kimura and Sourirajan, 1967) first drew 

attention to the formulation of the concentration polarization phenomenon in RO 

modelling. This model combines solution-diffusion equations for the transport across 

membrane layer with the film theory which describes concentration polarization. Two 

parameters: water and salt permeability coefficients are involved in the model.  

Numerous models describe the performance of RO membranes have been developed 

over recent years. Simulation models typically fall into two main categories: 1) 

Analytical Models (e.g Evangelista,1985; Sirkar, 1982; Malek et al., 1994; 

Marcovecchio et al., 2010); are used for simple design calculations. 2) Numerical 

Models that incorporate spatial variations in fluid properties throughout the module and 

are appropriate for accurate simulation studies (ElHalwagi et al., 1996; Ben-Boudinar et 

al., 1992; Marriot, 2003; Sundaramoorthyet et al., 2011). Selected literature describing 

significant development of RO modeling concept are summarized in Table 2.2. 

Concentration polarization and fouling are the major problems challenge the 

manufactures of RO membrane modules. Both of them can be reduced by varying the 

hydrodynamics conditions in membrane channel. This can be achieved by the 

incorporation of the feed spacer in the membrane channel.  

Feed spacers improve mass transfer in spiral wound elements but this improvement 

comes at the cost of increased hydraulic losses. Hence, models for spiral wound 

modules which include the effect of spacers in the flux comprised a significant share of 

membrane research (Schock and Miquel, 1987; Geraldes et al., 2002; Dendukuri et al., 

2005; Geraldes and Afonso, 2007; Guillen and Hoek, 2009). 
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Table 2.2 Summary of the past work on RO modelling 

Authors  Year Main Features 

Lonsdale 1965 Homogeneous diffusion model for cellulose acetate membrane 

Taniguchi 1978 Compared the performance characteristics of two kinds of spiral wound 

modules based on experimental data 

Chiolle 1978 Model investigates fluid dynamics and mass transfer in a channel, made up 

by two membranes separated by a net spacer for a double-solute system 

based on two-parameter membrane transport model. 

Sirkar 1982 Simple analytical equations to estimate averaged permeate flux and 

concentration in the case of high rejecting membranes for spiral wound 

RO module. Pressure drop in feed and permeate channels are neglected, 

linear approximation for concentration polarization was assumed 

Gupta 1985 Analytical design equations by neglecting pressure drops and assuming the 

mass transfer coefficient to be a constant throughout the channel length.  

Evangelista  1985 Explicit analytical equations for water flux for dilute solutions based on 

assumptions of average and uniform fluid conditions in feed and permeate 

channels. 

Avlonitis 1991 Analytical procedure to determine the brine and permeate friction 

parameter and membrane water permeability coefficient based on 

experimental data for spiral wound modules. 

Ben Bouldinar 1992 

 

Mathematical model involves differential equations accounts the spatial 

variations of concentrations, pressures and flow rates in the feed and 

permeate channels for spiral wound and hollow fibre modules and solved 

numerically using finite differences method. 

Sekino 1993 Formulation for the transport phenomena of salt and water transport 

through the membrane incorporating Kimura–Sourirajan model and take 

into account the pressure drop in the fiber bore of a hollow fiber module.  

Hawlader 1994 By conducting pure water and salt (NaCl) water experiments, the 

sensitivity of the product flow rate and concentration as functions of the 

feed concentration, pressure, temperature and feed flow rate are studied. 

Malek 1994 A simple model based on a lumped transport parameter approach for 

modelling the performance of hollow fiber modules. The model performs a 

one-dimensional simplification of the permeator hydrodynamics, 

considering a linear relationship between the shell side concentration and 

the membrane surface area. 

Starov 1995 Analytical model for the performance of hollow fiber membranes 

according to a balance between fiber productivity and fiber selectivity. 

Three flow configurations modules for reverse osmosis hollow fiber 

membranes are considered. 

Al-Bastaki and 

Abbas 

1999 Mathematical model based on the solution-diffusion model to predict the 

performance of hollow fiber membranes. The model considerers pressure 

drop in the fiber bore, pressure drop on the shell side of the fiber bundle. 

The solution concentration variation on the shell side of the fiber bundle 

and concentration polarization.  

Al-Bastaki and 

Abbas 

2000 The model where the salt and water fluxes are considered as implicit 

functions of module length and radius was used to investigate the effects 

of ignoring the concentration polarization and the pressure drop for hollow 

fiber and spiral wound modules.  

Marriot 2003 General approach from rigorous mass, momentum and energy balances for 

modelling spiral wound and hollow fibre membrane modules.  

Jamal 2004 Model combines material balances on the feed tank, membrane module 

and product tank with membrane mass transfer models incorporating the 

effect of mass transfer inhibition while concentration polarization was not 

included. The model considers spatial dependence of solute feed 

concentration. Differential equations in the model are solved using the 

fourth order Runge-Kutta method. 

         cont'd next page 
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Table 2.2 Summary of the past work on RO modelling (cont'd) 

 

Authors  Year Main Features 

Chatterjee 2004 A mathematical model includes Spiegler–Kedem model for the transport 

phenomenon and the friction concentration- polarization model for the 

radial flow in hollow fiber permeators. The model is solved through finite 

difference method. 

Senthilmurugan 2005 Mathematical model for a spiral-wound using Spiegler-Kedem model 

accounts for pressure drops in feed and permeate channels, and solved 

using finite differences method. 

Kumano 2008 Group Model for hollow fiber to correct an anomaly of the friction 

concentration polarization model. The boundary layer thickness on the 

surface of the fiber group obtained by the application of the fiber Group 

Model.  

Marcovecchio, 2010 Model for predicting the permeation performance in RO seawater 

desalination with hollow fiber module considers, concentration 

polarization, pressure drop in both fiber and shell side. Finite difference 

mesh for a hollow fiber module is implemented, dividing the module in its 

axial and radial directions. 

Sundaramoorthy 2011 A mathematical model for spiral wound RO membrane module based on 

solution–diffusion model and incorporates spatial variations of pressure, 

flow and solute concentration in the feed channel and uniform conditions 

of pressure in the permeate channel. Graphical linear fit methods are 

developed for estimation of model permeability parameters. 

 

Decline in permeate flow rates due to membrane fouling was studied based on the 

solution-diffusion mass-transfer theory and concentration polarization for spiral wound 

module by Al-Bastak and Abbas (2004) and Tay and Song (2005), for hollow fibre 

module by A1-Qahtany and Al-bastaki, (1995). The water and salt permeability 

coefficients decline over a period of 454 days was predicted for industrial water 

desalination plant based on solution diffusion model (Pais et al., 2007). Due to the feed 

temperature effects, it was found that the normalized water permeability coefficient 

declined only by about 7% and the salt permeability only increased during the summer. 

2.4.2 Modelling of RO Process Using Neural Networks (NNs) 

Neural networks (NNs) are modelling tools able to solve linear and non-linear 

multivariate regression problems with some desired accuracy (Lee et al., 2009). 

Moreover, NNs methodology does not need any governing equations with assumptions 

to describe the process under study. A number of studies have been reported on the 

modelling, simulation and optimization of pressure-driven membrane systems using 

NNs tool (Niemi et al., 1995; Zhao et al., 2005; Lu et al., 2010).  
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Abbas and Al-Bastaki (2005) developed neural network (NN) model to predict the 

performance of a RO experimental setup. The model considers ranges of operating 

conditions as input to the NNs model that include the feed pressure, temperature and 

salt concentration to predict the water permeate rate. A neural network-based modelling 

approach with back-propagation was investigated by Libotean et al. (2009). Operation 

data of normalized permeate flux and salt passage were used as input variables to 

develop NNs model for estimating RO plant performance.  

Predictive models for simulation and optimization of RO desalination pilot plant based 

on both Response Surface Methodology (RSM) and Artificial Neural Network (ANN) 

models have been developed by Khayet et al. (2011). They found that RSM was unable 

to develop a global model to predict the RO performance while ANN approach provides 

a global model in a wide range of feed salt concentration.  

Neural networks (NNs) tool also used in optimization of RO processes. For example, 

Lee et al. (2009) have developed NNs models using one-year real operational data for 

the prediction of the performance of a Fujairah RO desalination plant. The input 

parameters of the NNs model consists of feed temperature, seawater salinity, operating 

pressure, feed flow rate, and operation time while the output parameters were permeate 

salinity and production. The NNs model then used to determine the temperature control 

to optimize the operation of RO plant. 

2.4.3 Optimization of RO Process  

Nowadays with the recent developments in sophisticated numerical methods, 

optimization methodologies can handle very large problems in the design and/or 

operation of various industrial applications (Edgar et al., 2001). Adoption of the 

operation variables set points at plant start-up time will not guarantee the expected 

profitability while facing the operational fluctuations. Thus, it is important to determine 
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the new optimal set points of the individual control variables on a regular basis instead 

of using the real plant to determine these values (Tanvir and Mujtaba, 2008). 

2.4.3.1 Overview of Operation Optimization of RO Process  

The general aim of the operation optimization problem is to predict a collection of 

values of the operation variables of a given process configuration (fixed design) subject 

to the different constraints expressed in the form of a system of equations or 

inequalities, which will produce the desired optimum response for the selected objective 

function. The optimization formulations of RO operation are reviewed and briefly 

highlighted in this section. 

Optimization of the operation of RO process has been studied in the last decades, but 

with less attention compared to studies on RO process modelling and simulation. The 

early research such as Hatfield et al. (1970) and Van der Meer et al. (1998) have 

focused on cost reduction with respect to water recovery, feed flow rate, and the applied 

pressure. Efforts to reduce the specific energy consumption were considered improving 

membrane permeability (Wilf, 1997; Zhu et al., 2009b). Recently, few works have 

focused on the development of RO optimization framework subject to feed conditions 

fluctuation (Abbas, 2007; Zhu et al., 2009a). 

A summary of works carried out in operation optimization of RO process is given in 

Table 2.3. Optimization of membrane module configuration is also shown in the Table. 

Geraldes et al. (2005) developed a mathematical model to simulate and optimize the 

operating conditions and the module configurations for single/two-stage spiral wound 

module. Different RO fixed configurations and operating variables for several seawater 

desalination processes are investigated by Wilf and Bartels (2005). They found that 

efficient energy recovery devices and higher permeability high rejection membranes 

lead to substantial decrease in the desalted water costs. 
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Table 2.3 Summary of the past work on RO operation optimization 

Author 

(year) 

Variables studied Objectives Constrains Problem type 

Hatfield 

(1970) 
 Arrangement of modules with respect to 

fabrication temperature 

Maximizing product 

flux 

Maximum number of modules Nonlinear 

programming 

problem 

Van der 

Meer (1997) 
 Feed pressure 

 Feed flow 

 Module configuration (spiral wound, 

capillary, feed and  permeate channels height) 

Specific Productivity  Permeate productivity per module 

 Pressure losses in concentrate and 

permeate channels 

Optimal 

Operation and PV 

configurations 

optimization 

Van der 

Meer (1998) 
 Hydraulic pressure losses 

 Osmotic pressure  

 Number of membrane modules in PV  

Maximize permeate 

production 

 

 Permeate productivity per module 

 Hydraulic pressure losses in 

concentrate and permeate 

channels 

Operation and PV 

configurations 

optimization 

Wilf (2001)  Recovery ratio 

 Seawater salinity 

Minimum energy 

consumption 

Permeate salinity Optimal operation  

Geraldes 

(2005) 
 Feed velocity  

 Feed pressure 

 Number of membrane modules in PV 

Minimize the water 

production costs 
 Maximum permeate salt 

concentration 

 Maximum concentration 

polarization 

Economic 

optimization 

Guria (2005) 

 
 Operating pressure 

 Type of module 

 Maximize permeate 

flow  

  Minimize the cost of 

desalination 

  Minimize the 

permeate 

concentration 

 Maximum throughput 

 Maximum permissible 

permeability coefficients 

Optimal operation 

and  membrane 

module type 

selection 

Djebedjian 

(2008) 

Pressure  Maximization of 

permeate volumetric 

flow rate 

Permeate concentration Operation 

optimization 

cont'd next page 
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Table 2.3 Summary of the past work on RO operation optimization (cont'd)  
 

Author 

(year) 

Variables studied Objectives Constrains Problem type 

Zhu (2009) 

 
 RO configuration (single-pass, two-pass) 

 Water recovery 

 Brine recycle 

 Existence of energy recovery device 

Minimization of 

energy consumption 
 Salt rejection 

  permeate product 

 Recovery 

 Thermodynamic restriction. 

Operation 

optimization 

Oh (2009)a 

 
 Feed pressure 

 Feed flow rate 

 Feed temperature 

 Fouling extent  

 Minimize energy 

consumption  

 Maximize boron 

rejection 

 Recovery ratio 

 Permeate TDS 

Performance 

optimization 

Li (2010)  Several fixed RO configurations  

 Driving force  

 Energy recovery efficiency 

Minimization of 

specific energy 

consumption 

 Thermodynamic limit 

 Minimum recovery constant 

Non-linear 

optimization 

problems (NLP) 

Khayet 

(2010) 

 

 Feed temperature 

 Feed concentration 

 Feed pressure  

 Feed flow-rate 

Minimization of 

specific energy 

consumption 

 Salt rejection 

 Permeate flux 

 Energy consumption 

Predictive models 

for simulation and 

Optimization 

This work 

(2012) 
 Feed pressure  

 Feed flow rate 

 Spacer thickness 

 Mesh length 

Minimization of 

specific energy 

consumption 

 Fresh water flow 

 Fresh water salinity  

 Module design constraints  

Non-linear 

optimization 

problems (NLP) 
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Gilau and Small (2008) studied the performance of a renewable energy powered 

alternatives for small-scale seawater RO in terms of water productivity and energy cost. 

The optimum recovery and flux are determined by Hyun et al. (2009) for a given 

condition of specific energy and boron concentration. The simulated model was also 

used to optimize the performance of RO process for minimum specific energy 

consumption and high boron removal. 

2.4.3.2 Overview of Control Systems for RO Desalination 

Several control strategies may be adopted in the operation of RO systems such as 

directly increasing or decreasing the feed flow rate and/or pressure to account the 

fluctuations in water production. In general, dynamic operation policies must be 

developed by manipulating the operation variables that can provide the best control 

performance and also, installing new equipment that may improve the system control 

performance. 

Several contributions can be found in the literature on the design and implementation of 

controllers for RO systems. For instance, in Alatiqi et al. (1999), the authors used open 

loop step response data from RO plant to construct a Multiple Input Multiple Output 

(MIMO) model. The RO plant was simulated in closed-loop with BLT (Biggest-log 

modulus) tuning criteria. Zilouchian and Jafar (2001) have presented the application of 

fuzzy logic and neural networks based intelligent system in process control of RO 

desalination plants.  

Abbas (2006) used constrained and unconstrained Dynamic Matrix Control (DMC) 

algorithms to control a simulated RO model developed by Alatiqi et al. (1999). He 

showed that the DMC algorithms produce faster response than conventional PI control 

when applied to Alatiqi model. In Kim et al. (2008), the authors demonstrated the use of 

new genetic algorithm auto-tuned PID controller for the optimal control of simulated 

RO plant.  
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McFall et al. (2008) developed model based nonlinear feed-forward/feedback control 

structures for high recovery which is able to reject disturbances caused by feed water 

variation.  

In Greenlee et al. (2009), a step testing based model was used to design a constrained 

model predictive control (CMPC) to produce permeate with specific flow rate and salt 

subject to the constraints that the inlet pH and the trans-membrane pressure are within 

specified bounds. 

Table 2.4 provides a summary of past work in control of RO systems. The existing 

literature differs from each other in terms of control algorithms, as well as the selection 

of the variables. 

2.5 Design of RO Network 

The mathematical modelling of the RO process is used in the design of RO network. 

RO design problem involves many complicated and interacting choices to meet the 

technical, environmental and economic requirements. Particular attention was paid to 

the optimization of RO network design including scheduling for membrane cleaning 

due to membrane fouling. 

Designing a cost effective RO network depends mainly on the determination of optimal 

operational and structural schemes. Superstructure based on state apace approach is the 

basis of RO design which represents all the possible designs that are to be considered as 

candidates for the optimal solution is used in design of RO process. 

2.5.1 State Space Approach  

The state space approach for process synthesis representation was first used in system 

design to model the mass-heat exchange networks in distillation systems (Bagajewicz 

and Manousiouthakis, 1992). 
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Table 2.4 A summary on control of membrane processes 

Author 

(year) 

Controlled variables Manipulated variables Control 

procedure 

Alatiqi (1989)  Permeate flux  

 Conductivity 

 Operating pressure 

 pH   

PID 

Van Boxtel 

(1993) 

Economic return In terms 

of Permeate flux 
 Operating pressure 

 Flow velocity 

Optimal control 

Perrot (1996) Permeate flux  Operating pressure 

 Cross-flow velocity 

Fuzzy logic 

Robertson 

(1996) 
 Permeate flux  

 Permeate conductivity 

 Operating pressure 

 pH   

Model predictive 

control 

Assef (1997)  Operating pressure 

 Permeate flux 

 Permeate conductivity 

  pH 

 Pressure control 

 Acid inlet 

Model predictive 

control 

Singh (1999) Permeate flux  Pressure 

 Brine flow  

PID 

Zilouchian 

(2001) 

Opening/closing the brine 

valve 
 Temperature 

 Feed TDS 

 Feed pH  

 Feed flow rate 

 Feed pressure 

 Feed concentrate 

 Recovery 

 Scale index 

Neural network 

and 

Fuzzy logic 

control system 

Cabassud 

(2002) 

Membrane permeability  Permeate flux 

 Filtration time 

Model predictive 

control (NNs) 

Abbas (2005) Permeate flow rate.  Feed pressure 

 Feed temperature 

 Feed concentration 

NNs 

Abbas (2006)  Permeate flux 

 Permeate salinity 

 Operating pressure 

 pH   

Model predictive 

control 

Curcio (2006) Permeate flux  Feed flow rate 

 Operating and sampling time 

Model predictive 

control (NNs) 

Busch (2007) Cost function   Operating pressure 

  pH  

 Flux 

Optimal control 

Lee (2009)  Permeate flow rate  

 Permeate quality 

 Feed temperature 

  Feed TDS 

  Operating pressure 

 Feed flow rate 

NNs 

Ali  (2010)  Permeate flow  

 Permeate  concentration 

 Feed pressure  

 Feed salinity  

 Feed flow rate 

Model predictive 

control 

Alahmad 

(2010) 
 Recovery ratio, 

 Permeate TDS 

 Power consumption 

 Feed flow rate 

 Feed salinity 

 Feed pressure 

 pH 

 Feed temperature. 

Linear 

Regression and 

multiple-input 

single-output 

This work 
(2012) 

 

 

 Permeate flux  

  Permeate salinity  

 Feed pressure  PID (presence of 

fouling) 

 Fresh water demand 

 Tank height 

 Tank salinity 

 Operation cost 

 Feed temperature 

 Operating pressure 

 Feed flow rate 

Operation 

optimization 
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El-Halwagi (1992) applies this approach to determine the optimal structural of RO 

networks. This representation provides a large number of alternative process layouts.  

To be able to formulate a process synthesis problem as a mathematical optimization 

problem, a representation that contains all the possible layouts that are to be considered 

as candidates for the optimal solution has to be developed. The most common way of 

developing the general representation, called the superstructure, is by using a graphical 

representation (El-Halwagi, 1992). 

The superstructure for RO network represents the arrangement of different types of 

devices including pumps, turbines and RO stages as shown in Figure 2.10 (El-Halwagi, 

1992). The RO networks were described using four boxes: a 

pressurization/depressurization stream distribution box (PDSDB), a 

pressurization/depressurization matching box PDMB, a RO stream-distribution box 

(ROSDB) and a RO matching box (ROMB). The function of the distribution boxes was 

to represent all possible grouping of stream splitting, mixing, bypass and recycle. The 

matching boxes determine all possible streams matching to units. With this formulation, 

all possible structure arrangements could be represented.  

 

Figure 2.10 Superstructure of reverse osmosis configuration (El-Halwagi, 1992) 
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2.5.2 Review of Previous Work on RO Network Design 

Optimal design and operation of RO process have received significant attention in 

recent decades since several algorithms have been developed addressing the problem of 

effectively solving MINLP problems (Goyal and Ierapetritou, 2004). Substantial efforts 

have been made to optimize the RO systems in search of the optimum system layout 

and operating conditions.  

There are many studies based on a state space approach that are originally developed by 

El-Halwagi (1992) to optimize the RO networks synthesis under various conditions, for 

hollow fibre module (Voros et al., 1997; Maskan et al., 2000; Saif et al., 2008) and for 

spiral wound modules (Lu et al., 2007). Zhu et al. (1997), See et al. (1999) and Lu et al. 

(2006) considered cleaning schedule as part of the optimization problem using hollow 

fibre module. 

Villafafila and Mujtaba (2003) studied the optimization of both; design (vessel internal 

diameter and total number of vessels) and operation (feed flow rate and operating 

pressure) for RO desalination process with tubular module for several objective 

functions including maximum water recovery, minimum energy consumption and a 

profit function. An optimization problem was formulated by Marcovecchio et al. (2005) 

for the design of a two stage RO process using Hollow fiber module. A sophisticated 

iterative algorithm to solve the optimization problem is developed in this work. 

A summary of works carried out in the optimization of RO design is given in Table 2.5. 

The cleaning scheduling of RO networks issue is also highlighted in the Table. 

. 
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Table 2.5 Summary of RO process design works 

Author Year Approach Objectives Module 

type 

Constraints Fouling Variable 

salinity 

Variable 

temp. 

Water 

feed type 

1-Optimization of RO design  

Evangellsia 

 

1985 Graphical analytical 

method 

Not included  Spiral 

wound  

 Hollow 

fibre  

 Maximum water recovery  

 Module  lower and upper bounds of 

specified flow rates 

 Concentration factor  

 Average product concentration 

No No No Brackish  

and Sea 

water 

El-halwagi 1992 MINLP 

(superstructure) 

Minimize total 

annualized cost 

Hollow 

fiber 
 Maximum permeate salinity 

 Minimum permeate production 

 Module  lower and upper bound flow 

rates 

No No No Sea water 

Voros 1997 NLP 

(superstructure, 

variable split ratio) 

Minimize the 

total cost of the 

RO plant 

Hollow 

fiber 
 Product flow and salinity  

 Module lower and upper limit flow 

rates 

No No No Brackish  

and Sea 

water 

Maskan 2000 Constrained 

multivariable 

nonlinear (RO 

network) 

Maximize 

annual profit 
 Tubular 

 Hollow 

fiber 

 Flow rate of stream range 

 Concentration of stream range 

 Minimum and maximum pressure  

bounds 

No No No  Brackish  

and Sea 

water 

Villafafila and 

Mujtaba 

 

2003 NLP (successive 

quadratic 

programming SQP)  

 Maximum 

recovery 

 Minimum 

energy 

consumption 

 minimum 

number of tubes 

Tubular 

 
 Lower and Upper  for feed  pressure 

in terms of (osmotic pressure) 

 Total number of tubes 

 Internal diameter 

  Maximum flux  

No No No Sea water 

Marcovecchio 

 

2005 MINLP (simple two 

stage flow sheet) 

Minimize the 

total annualized 

Hollow 

fiber 
 Freshwater production 

 Module maximum  feed flow rates 

No Yes No Seawater 

Lu 

 

 

2007 MINLP  

(superstructure) 

Minimize the 

total annualized 

cost 

Spiral 

wound 
 Permeate production 

 Module  Lower and upper bounds of 

specified flow rates 

No Yes No Brackish  

and Sea 

water 

cont'd next page 
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Table 2.5 Summary of RO process design works (cont'd) 

Author Year Approach Objectives Module 

type 

Constraints Fouling Variable 

salinity 

Variable 

temp. 

Water 

feed type 

Saif 

 

2008 MINLP, relaxation 

of non-convex 

(superstructure) 

Minimize the 

total annualized 

cost 

Hollow 

fiber 
 Fresh water production and salinity 

 Module lower and upper bounds of 

specified flow rates 

No No No Seawater 

This work 

 

 

 

 

 

2012 MINLP (two-stage 

superstructure) 

Minimize the 

total annualized 

cost 

Spiral 

wound 

 

 Permeate production and salinity 

 Module lower and upper bounds of 

flow rates 

Yes 

 

No 

 

No 

 

Brackish 

water 

MINLP (two-stage 

superstructure) 

Minimize the 

total annualized 

cost 

Hollow 

fiber 

 

 Permeate production and salinity 

 Module lower and upper bounds of 

specified flow rates 

No 

 

Yes 

 

Yes 

 

Seawater 

 

MINLP (double 

pass superstructure) 

Minimize the 

total annualized 

cost 

Spiral 

wound 

 

 Boron concentration in final 

permeate stream 

 Permeate production and salinity 

 Module  lower and upper bounds of 

flow rates 

No No Yes Seawater 

 

2- Optimization of RO design including maintenance scheduling 

Zhu 

 

1997 MINLP 

(superstructure) 

Minimize the total 

annualized cost 

 

Hollow 

fiber 
 Freshwater production and salinity 

 Module feed flow rate bound 

Yes  

(uniform 

decline model 

for water 

permeability) 

No No Seawater 

See 

 

1999 MINLP (fixed 

(configuration and 

superstructure) 

Minimize the total 

annualized cost 

 

Hollow 

fiber 
 Freshwater production and salinity 

  Module feed flow rate bound 

Yes 

(uniform 

decline model 

for water 

permeability) 

No No Seawater 

cont'd next page 
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Table 2.5 Summary of RO process design works (cont'd) 

Author Year Approach Objectives Module 

type 

Constraints Fouling Variable 

salinity 

Variable 

temp. 

Water 

feed type 

Lu 

 

2006 MINLP     (single 

stage RO) 

Minimize the total 

annualized cost 

 

Hollow 

fiber 
 Freshwater production and salinity 

 Module feed flow rate bounds 

Yes 

(uniform 

decline model 

for water and 

salt 

permeability) 

No No Seawater 

This work 

 

2012 MINLP 

(superstructure for 

one stage ) 

Minimize the total 

annualized cost 

Spiral 

wound 

 

 Freshwater production and salinity 

 Module feed flow rate bounds 

Yes 

(actual decline 

model based 

NNs for water  

and salt 

permeability 

No Yes Seawater 
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2.6 Literature on Boron Rejection by RO Membranes 

Boron is a vital element for growth of creations, but excessive exposure can cause 

detrimental effects to plants, animals, and possibly humans (Hyung and Kim, 2006). 

Several studies investigate boron removal by RO membranes. However, the main focus 

of many of these studies was on experimental analysis and only few published works 

have investigated boron removal process theoretically. Table 2.6 summarizes the most 

efforts to illustrate the modelling of boron rejection under different conditions. 

Table 2.6 Summery of boron rejection modelling  

Author et al. 

(year) 

Model 

used 

Parameters 

studied 
Comments 

Taniguchi 

(2001) 

 

Solution–

diffusion 

Not included The permeability factors of salt and boron for 

UTC-80 membrane are measured experimentally. 

The relationship linked between the salt and 

boron permeability is obtained in this study. 

Another relationship between the salt and boron 

concentrations enables one to estimate the boron 

concentration in the permeate if the salt 

concentration only known. 

Sagiv and 

Semiat, (2004) 

 

Kedem-

Katchalsky 
 pH 

 Temperature 

 Pressure 

 Permeate 

splitting 

A numerical model was developed  in order  to 

identify the parameters that affect boron reduction 

and analyse each individual effect as well as the 

combined effects of these parameters to reduce 

desalination cost and/or permeate boron 

concentrations 

Hyung and 

Kim (2006) 

 

Spiegler-

Kedem 
 pH 

 Temperature 

 

Bench-scale cross-flow filtration experiments 

were used to estimate the rejection of boron by six 

commercial RO membranes. A mathematical 

model which was developed based on the 

irreversible thermodynamic were used to analysis 

the experimental results. The model was modified 

to account for the effect of pH and temperature on 

the overall boron transport. 

Hung et al., 

(2009) 

 

Solution–

diffusion 
 pH 

 Temperature 

 Feed boron 

conc. 

 feed salinity 

The permeability of boron through seawater RO 

membranes was estimated using a lab-scale plate 

frame RO system. Then , using predicted 

permeability factors as inputs, computer program 

was developed to estimate the boron rejection at 

different operating conditions 

Mane et al., 

(2009) 

 

Spiegler-

Kedem 

 

 pH 

 Temperature 

 Pressure 

 Overall 

recovery 

A mechanistic model was developed to simulate 

boron rejection by pilot- and full-scale RO 

processes under varying operating. The model 

was further applied to simulate the performance 

of a pilot-scale RO process that employed a single 

spiral wound element, providing suggestions for 

process design and operation. 

 



44 
 

Pastor et al. (2001) carried out a study aiming to determine the optimum pH at which a 

sufficient rejection of boron is obtained to use the water as drinking water. The RO 

system consists of a third stage in the treatment of the permeate of RO where the pH is 

increased. This study shows that at around a pH of 9.5 the boron is totally rejected in the 

membrane.  

Redendo et al. (2003) have provided a review on the boron removal techniques using 

FilmTec seawater RO membranes. A typical examples for  boron removal design 

concepts have been presented in this study including one RO pass with natural seawater 

feed pH, two passes with increased pH in the second pass, two passes with boron-

selective ion exchange resins (IER)  and three passes with low and high pH. 

The boron removal efficiency in Ashkelon plant which produces 330,000 m
3
/d of 

drinking water is investigated for FILMTEC membranes by Gorenflo et al. (2007). 

They showed that the RO system has a stable performance at pH > 10 with boron 

concentration less than 0.3 mg/l in final permeate flow. 

Tu et al. (2011) have used NF and RO membranes to study the coupling effects of 

solution pH and ionic strength on boron rejection. They reported that as the salt 

rejection decreases, the dependency of boron rejection on the feed solution pH becomes 

more significant.  

2.7 Methods for Solving Optimization Problems  

The objective of this section is to provide a brief review on the methods that are used to 

solve different optimization problems. Two techniques, the nonlinear programming 

(NLP) and mixed integer nonlinear programming (MINLP) will be discussed here.  

2.7.1 NLP Solution Techniques 

There are a variety of methods for solving NLP problems which can be used to find an 

optimal solution of the NLP problem such as Generalized Reduced Gradient (GRG) 

(Onwubiko, 2000), Exterior penalty function methods (Fiacco, and McCormick, 1968) 
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and Successive Linear and Quadratic Programming methods (Wilson, 1963). The last 

two methods will be presented in the next few sections: 

2.7.1.1 Successive Linear Programming Method  

Successive Linear Programming (SLP) Method uses a first-o de  T ylo ’s se ies 

approximation around an initial point to convert the non-linear functions into 

approximate linear functions. 

The original variables are replaced by the deviations around the initial point (Edgar et 

al., 2001). The resulting LP problem is solved until there is an improvement in the value 

of the objective function. The values of the design variables thus obtained now become 

the initial point for further linearization and resolving of the resulting LP problem. This 

process is repeated until an optimum is reached. The optimum for the successive LPs 

will be the optimum of the original NLP if the original NLP is not highly non-linear. If 

it is highly non-linear, the linear approximations may lead to incorrect search directions. 

2.7.1.2 Successive Quadratic Programming Method. 

Successive quadratic programming (SQP) method has proved to be highly effective for 

solving constrained optimization problems (Gill et al., 2005). Quadratic programs have 

a quadratic objective function and linear constraints. At each iteration of SQP 

optimisation, a quadratic approximation to the objective function is generated. The SQP 

approach also linearizes the constraints of the approximate quadratic problem and then 

can be solved in many ways. The constraints of each QP sub-problem are linearizations 

of the constraints in the original problem, and the objective function of the sub-problem 

is a quadratic approximation to the Lagrangian function (Edgar et al., 2001). The 

inequality constraints may be converted to equality constraints by the use of slack 

variables (Onwubiko, 2000). 
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2.7.2 MINLP Solution Techniques 

The decision variables in many optimization problems involve discrete and continuous 

variables (Edgar, 2001). These problems can be modelled as mixed integer nonlinear 

programming (MINLP) problems. For example, a decision may be whether a unit 

should exist or not (1 for true and 0 for false) or a decision needed may be integer 

variables representing the number of workers.  

Different methods have been developed to solve MINLP problems. Some of the well-

known methods in the literature for solving MINLP problem can be summarized as 

follows: 

 Outer Approximation (OA) methods  (Duran and  Grossmann, 1986; Fletcher and 

Leyffer, 1994) 

 Branch-and-Bound (B&B) (Quesada and Grossmann, 1992).  

 Extended Cutting Plane methods (Westerlund and Petersson, 1995). 

 Gene  lized Bende ’s Decomposition (GBD) (Geoffrion, 1972). 

Branch-and-Bound Outer and Approximation (OA) methods will be discussed in this 

section.  

2.7.2.1 Branch and Bound Method 

This approach is developed by many authors (Borchers and Mitchell, 1997). 

Mathematically, it can be written as: 

Maximize   ycf(x)P T  

s.t   g(x) =0 

   h(x)+My ≤ 0   

   Xx

 

   

Yy  (Integer or binary) 

Where x is the continuous variables, y is the integer variables; M is the matrix of the 

binary. Branch and Bound Method can be applied to both linear and nonlinear 
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problems, therefore for nonlinear problems the integer variables y may be written as y
k
 

(Edgar et al, 2001). 

The integer variables are relaxed by allowing them to take continuous values. This is 

known as LP relaxation (Kallrath, 2000). The initial NLP problem is solved. If a 

continuous NLP relaxation of MINLP problem does not give a feasible solution, and 

solution is only found for some of the discrete variables as an integer valued then, two 

subsequent NLP problems are formulated. One NLP solution is treated as a lower 

bound, the binary tree search is performed by implicit enumeration, and another 

solution is considered as the upper bound. This process is repeated until the optimal 

solution for all discrete variables are obtained (Kallrath, 2000). 

2.7.2.2 Outer Approximation Method 

The "Outer Approximation" (OA) algorithm was first introduced by Duran and 

Grossman (1986).  Mathematically, it can be written as: 

Maximize   
kT ycf(x)P   

s.t   g(x) =0 

   0 h(x)+Myk
   

Xx   

It performs iterative calculations; at each iteration two sub-problems are solved. NLP 

problem is solved in which the discreet variables are held constant; the solution of NLP 

problem was considered the upper bound. The lower bounds of the original problem are 

obtained by solving convex problem MILP. At iteration k, it is formed by linearization 

of all the nonlinear function about the optimal solutions. 

MILP sub-problem 

Maximize   ycf(x)P T

 

  

s.t   )x(x)(xf)f(xz i
T 

 
 i=1, … k 
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   0 )x)(x(xh)h(x iiTi    i=1, … k 

   0 iiiT My)x)(x(xgg(x)  

   Xx ; Yy

 

The objective and constrains functions are added as constraints. The calculations are 

stopped when a specified tolerance between the two bounds is obtained. 

Outer approximation is significantly studied and improved by many researchers such as 

Fletcher and Leyffer (1994) and recently, Bergamini et al. (2005) tailoring the outer 

approximation method. They introduced a new formulation of the piecewise under 

estimators. The calculation of lower bounds of the global optimum is eliminated. The 

new version focuses on searching improved feasible solutions that lie below a given 

upper bound. 

2.8 Conclusion 

This chapter has reviewed the existing work on modelling, optimization and control of 

RO desalination process. A brief review of the membrane transport models is presented. 

Special attention is given to the fouling formation on the membrane surface and the 

subsequent effects on RO performance.  

Superstructure optimization is presented as a tool to generate membrane process 

networks utilizing state space approach. Previous RO network optimization studies were 

presented. Also, the roles of the fouling, maintenance scheduling and boron removal in 

the RO design problem are reviewed. Past works revealing several relevant points, 

(which have given impetus and direction to this work) are summarized below: 

 Most of the recent works relevant to determination of the optimal design and 

operation of RO process are presented in the literature review. However, their 

work was limited to determine the optimum RO designs for fixed seawater 

temperature and fixed fresh water demand. The influences of the seasonal and 

daily variations in seawater temperature and water demand on the operational 
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and design parameters and consequently on the production cost are overlooked. 

In this work, the MINLP optimization framework is linked to water storage tank 

model to determine the optimal operation policies of RO process throughout the 

day. The optimal operation strategies are established for different process design 

in terms of number of membrane modules in operation and including variable 

seawater temperature and freshwater demand throughout 24h.  

 The majority of literature investigates the boron removal by RO membranes in 

seawater desalination experimentally. In fact only few publications were found 

in the literature which studied this issue theoretically. This may be illustrated 

due to the complexation of boron rejection process by RO membranes. A review 

of boron behaviour and its separation processes is given in Chapter 5. In this 

work, therefore, MINLP optimization tool is considered to formulate the RO 

design problem based on double pass RO network and constrained by boron 

concentration in the final permeate for the first time. 

 There are only limited studies on maintenance and cleaning scheduling of RO 

membranes. In fact, little attention has been paid to the important area of 

membrane cleaning/regeneration and scheduling (See et al., 1999). In addition, 

all previous studies used hollow fibre modules in their scheduling problems. 

They used an exponential function which implements the uniform decline in 

membrane performance. The effect of seawater temperature variation was not 

implemented in the optimization model. In this work, an extensive study on RO 

membranes scheduling optimization was carried out using spiral wound 

modules. NNs based correlations are developed to estimate the actual RO 

membrane permeability decline and incorporated in the optimization 

formulation. Annual seawater temperature variation is considered in the model. 
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 The optimization design problems of membrane separation systems 

incorporating fouling effect have rarely been studied. Also, The effect of 

different fouling extents in membrane stages on the RO network design are not 

often found in the literature. In this research, these points are addressed. Hence, 

an optimal design strategy that incorporates local fouling effect is proposed. 

 The research work concerning control of RO desalination process was 

considered by many researchers to achieve reliable and cost effective operation. 

Very limited work investigates the optimal control of RO process in the 

presence of membrane fouling. 
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Chapter 3 

Reverse Osmosis Process Model and gPROMS 

3.1 Introduction  

A simulation model is a mathematical representation of a process by means of a number 

of variables which are defined to represent the inputs, outputs and a set of equations 

describing the interaction of these variables. A simulation is the execution of a model, 

represented by a computer program that gives information about the system being 

investigated.  In the first part, a mathematical model that combines solution diffusion 

model with the description of concentration polarization is presented for modelling and 

optimization of RO processes. A simulation approach has been proposed to correlate the 

permeation phenomena through the membranes for both spiral wound and hollow fibre 

modules. Next sections describe the synthesis of RO networks for water desalination via 

a superstructure. The formulation of RO design as MINLP problem is presented. The 

description of the total production cost function with the main capital and operating cost 

components are also introduced. This chapter ends with a brief overview on the main 

features of the gPROMS software. 

The ultimate objective is to use these modelling and optimization formulations within a 

RO process simulation and optimization frameworks in the next chapters. 

3.2 Modelling of Reverse Osmosis Process 

The RO process relies on the use of a semi-permeable membrane barrier as shown in 

Figure 3.1. It allows solvent molecules to pass through it, impeding the pass of solutes. 

The solvent as pure water crosses the membrane with very low salt concentration. The 

concentrated water or brine is left behind.  

The transport through RO membranes is well described by the widely accepted solution 

diffusion model (Kimura and Sourirajan, 1967). The model is used to illustrate solvent 

and solute transport through RO membrane and therefore predict the performance of RO 
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unit. According to Marcovecchio et al. (2005), this model is the most used for this 

purpose because it is able to provide an accurate prediction of the flow of water and salt 

through the membrane. A film theory approach which was developed originally by 

Michaels (1968) is used in this work to describe the concentration polarization. It is 

simple, analytical, and (reasonably) accurate for most RO separations (Kim and Hoek, 

2005).  

 

Figure 3.1 Reverse osmosis membrane element 

It is important to use models that adequately describe RO process with high accuracy. 

However, all the models are based on several assumptions and simplifications taking 

into account the complexity of the problem. RO models are usually difficult to develop 

because the performance of the membrane units can be influenced by temperature, 

pressure, feed concentration, and the geometry of the unit, etc. It is difficult to obtain 

accurate mathematical model accounting all this operation and design aspects of RO 

process. The following assumptions were used to create the mathematical models for 

both membrane module configurations (hollow fibre and spiral wound modules) 

(Murkes and Bohman, (1972); Hameed, (1989); Sekino, (1993); V; Al-Bastaki and 

Abbas, (1999); Abbas and Al-Bastaki, (2001); Marcovecchio et al., (2005); Abbas 

(2005); Geraldes et al., 2005; Pais et al., (2007); Lu et al., (2007); Abbas, (2007); Majali 

et al., (2008); Djebedjian et al., (2008); Oh et al., (2009a); Kaghazchi et al., (2010); 

Marcovecchio et al., (2010)):  

 Membrane structure is uniform throughout the module. 
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 The feed concentration varies linearly along feed side channel. 

 Solution diffusion model is applicable to calculate the transport of water and salt 

through the membrane. 

 Constant membrane permeability coefficients for water and salt.  

 Constant temperature; no free convection effects. 

 Constant mass transfer coefficient for a given fluid condition. 

Most of the models reported in the literature based on the aforementioned assumptions 

are on validation with salt water desalination data but these models were not tested with 

wastewater treatment data (Sundaramoorthy et al., 2011). 

3.2.1 Model of RO Module  

The steady state performance prediction of RO process has been carried out by utilizing 

a set of implicit mathematical equations which are generated by combining film theory 

approach with solution diffusion model, mass balance over the membrane element, etc. 

3.2.1.1 Spiral Wound Membrane Element  

In this section, mathematical modelling of spiral wound module by using Kimura-

Sourirajan model and film theory is considered. In addition to the aforesaid 

assumptions, the pressure drop along permeate channel for 8 inch spiral wound module 

that has 37 membrane leafs with a length of 1 m is neglected (Geraldes et al., 2005). 

Also, Van der Meer (1997) reported that the curvature of membrane module has 

insignificant effect on system's performance. Therefore, an unwound flat sheet 

membrane with same channel height and spacers would adequately represent 

characteristics of the corresponding spiral-wound RO module. 

Referring to Figure 1.4, the following equations can be written for the spiral wound 

element at steady state conditions. Water and salt fluxes via the membrane can be 

estimated by Kimura–Sourirajan model (Kimura and Sourirajan, 1967). 

))(( pm

T

w

T

w PAj     (3.1) 
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)C(CAj pm

T

s

T

s   (3.2) 

Where ΔP represent the pressure difference between the high concentration side and 

low concentration side of the membrane, the subscripts w, m, p, s refer to water, 

membrane surface, permeate and solute respectively. The subscript T refers to 

temperature dependence parameters. 

The total and salt mass balance equations around the spiral wound element are: 

prf QQQ   (3.3) 

pprrff CQCQCQ   (3.4) 

The water permeate concentration and flow can be expressed as: 

T

w

T

s
p

j

j
C   (3.5)

 

T

wp AjQ   (3.6) 

The permeate flux cannot be known unless the membrane wall concentration is known. 

At the same time, this concentration needs the value of water flux to be evaluated. 

Therefore, an iterative calculation is needed. Concentration polarization on membrane 

surface phenomenon may be described using the film theory (Michaels, 1968) as: 




















k

j

CC

CC
CP

T

w

pb

pm
exp

        

(3.7) 

The mass-transfer coefficient is given by the following correlations developed by (Da 

Costa et al., 1994) in terms of Sherwood number for spiral wound modules:
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(3.8) 

Reynolds number (Re) and Schmidt number (Sc) are given as:

 

T

h

μ

uρd
Re

          

(3.9) 
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T

T

ρD

μ
Sc 

          

(3.10) 

μ
T
 and D

T
 are temperature dependence water viscosity and diffusivity coefficients. The 

average axial velocity in the feed channel is calculated by the following relation:

 

εwh

Q
u

sp

B

          

(3.11) 

The pressure drop of the spiral wound element is calculated using the model developed 

by Da costa et al. (1994). The model takes into account pressure losses due to drag on 

feed spacer and kinetic losses due to change in direction of flow. The pressure losses 

due to connections and fitting are not included.  

h

td
f

d

LCρu
ΔP

2

2



         

(3.12) 

The total water recovery and salt rejection for the RO process, which is the measure of 

the process performance is defined as: 

100
f

p

Q

Q
WR 

          

(3.13)
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(3.14) 

Pressure Vessel 

In each pressure vessel (PV), normally (2-8) spiral wound elements are connected in 

series as shown in Figure 3.2. The permeate produced by each PV is the sum of all 

elements products. The following relations are used to model the whole pressure vessel 

system: 

r,zf,z QQ 1  For z= 1….ne  (3.15) 

r,zf,z CC 1  For z= 1….ne  (3.16) 

r,zf,z PP 1  For z= 1….ne  (3.17) 
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Where ne is the number of membrane elements in PVi within stage j. Similarly, streams 

leaving j stage are connected to the inlet of stage j+1. 

 

Figure 3.2 Pressure vessel construction 

3.2.1.2 Hollow Fibre Membrane Element  

A mathematical model of RO membrane based on Kimura-Sourirajan model and film 

theory has been developed to describe the transport through the membrane and 

concentration polarization for Hollow Fiber module. The equations from 3.1 to 3.7 are 

used to describe the permeation properties and mass balance around the hollow fibre 

module as well as the concentration polarization phenomena. 

The mass transfer coefficient on the feed side (k) is related to the sherwood number 

through the following equation (Marcovecchio et al., 2005): 

330330Re7252
2 ..ot Sc.
D

rk
sh 

       
(3.18) 

Reynolds number (Re) and Schmidt number (Sc) are given as: 

T
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(3.19)
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(3.20) 

The superficial velocity at the inner radius and outer radius of the fiber bundle are used 

to calculate the superficial velocity which is used to calculate Reynolds number. 

The inner superficial velocity of the fiber bundle: 
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The outer superficial velocity of the fiber bundle: 
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And the average superficial velocity: 
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(3.23) 

The total water recovery (WR) and salt rejection (SR) which are the measure of the 

process performance is defined as: 

100
f

p

Q

Q
WR 

          

(3.24) 
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3.2.1.1 Energy Recovery and Consumption  

Reverse osmosis system produces concentrate with considerable amount of energy 

applied through the high-pressure RO pumps. This energy can be recovered and reused 

to minimize the overall energy cost for seawater desalination. The energy lost in 

depressurizing the concentrate can be returned efficiently to the feed water by using 

mechanical turbine or employing efficient pressure exchanger devices. Turbines can be 

used to recover energy from the concentrate, the pressure of the concentrate turns into 

water velocity that rotates the blades of the turbines. 

The electrical power consumed by the pumps and recovered by the turbine from the 

brine can be expressed in (kw) as (Oh et al., 2009a): 
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Where Epu is the total electrical power consumption of all pumps in the candidate 

process structure and Et,recv is the total energy recovered from the turbines that may 

exist. 

Energy consumption by feed pumps being expressed per cubic meter of permeate which 

can be calculated as: 
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(3.28) 

In case of pressure exchange used as energy recovery device, the specific energy will be 

expressed as (Villafafila and Mujtaba, 2003): 
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3.2.1.4 Physical Properties 

For solving the RO model, the following correlations are used to estimate seawater 

properties:  

Water density (kg/m
3
) (Pais et al.; 2007): 

C)T(..M ο410757200691         (3.30) 

cM.MM.ρ 47522484004498 2 

 

      (3.31) 

Brine viscosity (Pa s) (Pais et al.; 2007):
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(3.32) 

Diffusivity coefficient (m
2
/s) (Pais et al.; 2007): 
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Osmotic pressure   (bar) (Technical Manual, Dow) 

For c (s alt concentration) <20 
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(3.35) 

3.3 Reverse Osmosis Optimization 

The main objective of the optimization is concerned with finding the optimum values 

(solutions) of any variable from among a lot that leads to best value of the process 

performance. Optimization problems can be classified on the basis of whether or not the 

objective functions or constraints are linear in the decision variables (Onwubiko, 2000). 

In general, optimization problem includes three basic categories: 

1. The objective function which is to be optimized (profit function, cost function, etc.). 

2. Equality constraints (model equations) as mass and energy balances. 

3. Inequality constraints (such as upper and lower bounds of the continuous variables). 

Reverse osmosis process performance is affected by several factors. These factors can 

be classified into two categories: 

 Operation variables: such as feed flow rate, operating pressures, feed temperature, 

recovery rate, energy recovered and degree of fouling. 

 Design variables: membrane element type, size and RO network arrangement such 

as the existence of booster pumps and energy recovery systems. 

Based on the above classification for the variables connected to the RO process 

performance, the optimization of the RO system is performed in two parts: 
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1. Optimization of operating variables: specific energy consumption or total 

operation cost is used as objective function while the operating parameters are 

optimized. The problem is formulated as non-linear programming (NLP). 

2. Optimal Design: optimal synthesis of RO systems using mixed integer non-

linear programming approach (MINLP). The total cost is used as objective 

function. 

3.3.1 Superstructure 

E1-Halwagi (1992) developed a structural representation based on state space approach 

which embeds RO systems for a given membrane module type and feed water quality. 

The superstructure is composed of several unit operations (e.g. Turbines, Pumps, RO 

membrane stages) which represent the fixed cost of the network. Mixers and splitters 

nodes provide mixing and splitting for the streams within the network. 

Saif et al. (2008) showed a compact representation (Figure 3.3) of the general 

superstructure (Figure 2.10) which was originally presented by El-Halwagi (1992). This 

representation contains less mixer nodes and requires fewer binary variables in the 

optimization formulation and consequently easier optimization procedure. 

Figure 3.3 shows RO superstructure representation which has two sets of boxes: a set of 

distribution boxes (DBs) and a set of matching boxes (MBs). The distribution boxes are 

responsible for stream mixing, bypass and recycle. On the other hand, the matching 

boxes are used to determine the optimal assignment of streams to units. Energy 

recovery devices are used to recover kinetic energy from the effluent high-pressure 

streams. The feed stream can be mixed with streams from the RO units before pumping 

stage to allow for possible bypass of some portion of the feed to the final product nodes. 

Also the outlet streams from the RO membrane units are matched to the inlet feed 

stream (after passing through turbine) before pumping stage to allow possible full or 

partial recycle. It can be seen that the unit operations are arranged in series in the 
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superstructure representation. Each RO stage is assumed to consist of multiple parallel 

RO membrane modules under the same operational conditions. Each stream in the 

network is supposed to be connected to all the nodes. 

3.3.2 Model Reduction 

In the present study, the superstructure in Figure 3.3 represents the most of possible 

networks design. Several alternatives can be eliminated from the superstructure based 

on examination the theoretical design of RO network. It is possible to eliminate non-

essential streams from the superstructure by screening the options at every mixing point 

in the DB to locate the possible simplification. The following stream sets can be 

excluded from the MINLP model: 

1. The feed stream should not link to any turbine as it is used to recover energy 

from the effluent high pressure streams. 

Turbine 

RO stage

Pump 

Brine 

Permeate 

Total permeate

Final brine

Feed 

DB

 

Figure 3.3 RO superstructure (Saif et al., 2008) 
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2. Any permeate streams should not connected to other streams or equipment. 

3. The only way allowable to the streams exit from the pumps is the membrane 

stages. 

4. Eliminating the existence of series between turbines and/or pump stages. 

Further reductions in the model optimization variables can be achieved by modifying 

the model to eliminate the binary variables for essential equipment as feed pump, first 

membrane stage and arrange the streams to the inlet and outlet of mixers and splitters in 

the way to prevents any flow to the permeate streams and mix streams with different 

pressure. 

3.3.3 Mathematical Model for the Superstructure 

The MINLP optimization approach is used to determine the optimal configuration of the 

process. Continuous variables are defined for the continuous optimization of parameters 

and discrete variables are used to express discrete decisions as the existence of process 

units. Both types of variables are handled in the MINLP problem.  

The general superstructure in Figure 3.3 could be further improved by considering only 

the feasible process structures by removing non-essential streams and mixing points 

from the superstructure (as described above). A reduced superstructure is developed for 

two-stage RO system (Figure 3.4) by implementing all the proposed reductions such as 

recycle brine stream to the same stage or mixing permeate stream with the brine. Note 

that the mixing of streams is only allowable for the streams with equal pressure. 

The RO superstructure comprised mainly of two stages. Each RO stage comprised of a 

number of parallel membrane modules operating under identical conditions. The 

permeate produced by each stage is the sum of permeates of all parallel membrane 

elements in the stage. The RO stages are connected in series where the brine output of 

stage j becomes the input for stage j+1. The following relations are used to calculate 

process variables: 
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Figure 3.4 Superstructure of two stages RO network 

r,jf,j QQ 1  Fo  j = 1… S  (3.36) 

r,jf,j CC 1  Fo  j = 1… S (3.37) 

r,jf,j PP 1  Fo  j = 1… S (3.38) 

S is the number of stages. Similarly, the membrane modules in stage j+1 are modelled 

by the same equations that are used for modules in stage j (Section 3.2.1) but using new 

input operating conditions. 

The inlet feed stream to the first stage consists of fresh feed water and recycle brine 

streams obtained from all stages. The continuous variable R determines the flow rates of 

recycled brine mixed with feed stream. For instance, R equals zero means that the brine 

recycle stream does not exist: 

 




s

j

jr,jf,inf,t RQQQ
1         

(3.39) 

The streams leaving the high pressure pump is split into N1 streams depending on the 

number of parallel membrane elements exist in the stage: 

j

f,j

f,i
N

Q
Q    jNi   Sj       (3.40) 
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JN

i

f,jf,i QQ
1

  jNi   Sj       (3.41) 

Nj is an integer variable represents the number of membrane modules exist in the stage 

j. For j=1, Qf,j = Qf,t. The optimum number of modules per stage must lead to fulfil the 

module flow rate constraints. 

The total permeate flow and concentration from all membrane modules can be used to 

determine whether the stage exist or not by introducing a binary variable Bj which has 

value of 1 when the stage exists and 0 if not. The binary variable for the first stage (B1) 

always has a value 1: 


 


S

j

N

i

jp,i,jp,t

j

BQQ
1 1          

(3.42) 


 


S

j

N

i

jp,i,jp,i,jp,tp,t

j

BCQCQ
1 1         

(3.43) 

The total and salt mass balance constraints are imposed on mixers. However, only 

volume balance constraint is required for splitters. Balance over each node in Figure 3.4 

representing either mixer or splitter can be expressed as: 

For mixer: 


Y

ymx,out QQ
1

    Yy       (3.44) 


Y

yymx,outmx,out CQCQ
1

  Yy       (3.45) 

Y is the total number of streams leaving the mixer. Qmx, out, Cmx,out, Qy, Cy are the outlet 

flow, outlet concentration, inlet flow and concentration of the inlet stream to the mixer, 

respectively. 

For splitter: 


X

xsp,in QQ
1

    Xx       (3.46) 
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X is the total number of streams leaving the splitter, Qsp,in, and Qx are the flow rate of 

the inlet and outlet streams of the splitter, respectively. Unlike the mixer, concentrations 

of streams entering and leaving the splitter will remain constant. 

The overall water and salt mass balance for the RO network constraints are employed to 

estimate the properties of the streams leaving or entering RO network as: 

p,tr,tf,t QQQ 
     

(3.47) 

p,avgp,tr,tr,tf,tf,t CQCQCQ 
     

(3.48) 

The following constraints are established on binary variables Bpu and Btu associated with 

the existence or non-existence of the booster pump prior to second stage and turbine 

prior and/or after second stage, respectively: 

pu,j

U

pupu,j BΔPΔP   Fo  j =1… S (3.49) 

tu,j

U

tutu,j BΔPΔP 
  

Fo  j =1… S (3.50) 

The binary variable Bpu,1 always has a value of 1. In case of inter-stage pump exist, 

equation (3.38) can be written as: 

pu,jr,jf,j ΔPPP  1   
 Fo  j =2… S (3.51) 

The exit streams from the pumps and turbines were carefully examined when 

constricting the superstructure to avoid losing energy and to ensure that there is no co-

existence of turbine and pump in series. 

Several other constraints such as membrane module design constraints and product 

characteristics variables constraints are required to have a well-defined MINLP 

problem: 

U

ff

L

f QQQ   (3.52) 

U

ff

L

f PPP    (3.53) 

min

p,tp,t QQ    (3.54) 
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max

p,avgp,avg CC 
 

(3.55) 

3.3.4 Cost Functions 

The cost components and the objective function employed in the optimization problems 

involving spiral wound and hollow fibre membrane modules are presented here. The 

total annualized cost is presented as (Malek et al., 1996): 

scchmepumeERDpuSWP OCOCOCOC..)CCC(CTAC  0804111
  

(3.56) 

In the above equation, the total annualized cost is a combination of the capital and 

operating costs for one year of operation. The constant 1.411 represent site development 

cost and indirect costs connected to the capital cost (Malek et al., 1996) while 0.08 is 

the capital charge rate. The most important cost components affecting the produced 

water price are included. The capital cost of energy recovery device is the same as the 

pump cost in the case of turbine is employed to recover energy from the effluent brine. 

The cost of proposed RO process structure consists of the following components (Malek 

et al., 1996): 

1. Pump or turbine capital cost  
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(3.57) 

Where QHP is the flow entering pump or turbine (m
3
/h), ΔPHP pressure difference across 

the pump or turbine in (bar). 

2. Membrane modules cost and pressure vessels cost ($) 

For spiral wound module  

j

s

j

N

i

PVj

s

j

mele

N

i

me BCBCC 
  


1 11 1       

(3.58) 

For hollow fibre module 
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me BCC 
 


1 1         

(3.59) 
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Bj is binary variable for membrane stage selection. 

3. Feed pretreatment cost ($) 

8024996 .

f,tSWP )(QC 
         

(3.60) 

Qf,t is the feed flow to RO unit in (m
3
/h). 

4. Net pumping cost ($/year) 

24365 fct,recvpupu l)EE(EOC        (3.61) 

5. Membrane replacement cost ($/year) 

meme C.OC 20
         

(3.62) 

6. Chemical treatment cost ($/year) 

018036524 .lQOC ff,tche    (3.63) 

7. Annual Spares cost ($/year) 

033036524 .lQOC fp,tsc    (3.64) 

Qp,t is the total production from all membrane elements in the existing stages (m
3
/h). 

3.4 gPROMS Simulator 

The general Process Modelling System package commonly known as gPROMS is one 

of the modelling platforms of Process System Enterprise (PSE) for steady-state and 

dynamic simulation, optimization, experiment design and parameter estimation of plant 

operation. It can be used for any process that can be described by a mathematical model 

and can be exported as a package to the most state of the art modelling software such as 

HSYSYS, FLUENT, Aspen Plus, Matlab, and Simulink. In addition, it has a built- in 

interface to MS EXCEL that allows the user to statistically examine the results. 

gPROMS has been widely applied for different process industries  such as petro-

chemicals, refining industry, food and pharmaceuticals. 

There are many advantages that make gPROMS software an attractive tool for engineers 

in modelling and optimization of different industrial applications and also competitive 
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to the simulators packages available on the market. The key benefits of using gPROMS 

are: 

 Reversible-symmetric, reversible-asymmetric, and irreversible discontinuities of the 

physical and chemical processes behaviour can be handled within gPROMS. This 

can enhance the solution speed, and also overcome the problems faced solution 

prediction in the conventional simulators by a high level mathematical research, and 

automatically detect discontinuities, lock on to them, and then re-initialize. 

 Multiple activities from the same model, once the simulation model is built in 

gPROMS, it can be used for many different activities that available within gPROMS. 

 It can handle a large number of algebraic, differential and partial deferential 

equations, over 100,000 equations can be simulated using this software (gPROMS, 

2004). 

 The model validation techniques available in gPROMS enable a user to fit the 

models predictions to closely match observed data using experimental data. 

3.4.1 Model Development using gPROMS 

For the advantages mentioned above, gPROMS was selected for the modelling and 

optimization of the RO process. gPROMS (version 3.0.3 model builder) which is 

available in the University of Bradford has been used to simulate the RO system by 

implementing a set of algebraic equations in the model entity. The variables used in the 

simulation are defined and the lower and upper bounds for them are specified in 

variable type entity, the input data and module specification in the process entity, and 

finally two types of optimization problems (non-linear optimization problems and 

MINLP optimization problems) are implemented in the optimization entity. 
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3.4.2 Solvers in gPROMS 

Several solvers are provided in gPROMS as standard that may be used for simulation 

and optimization. The solvers which are used in the simulation and optimization are 

specified in SOLUTION PARAMETERS section of the PROCESS entity.  

Simulation solvers 

 Solvers for sets of linear algebraic equations 

Both MA28 and MA48 employ direct LU-factorisation algorithms. 

 Solvers for sets of non-linear algebraic equations 

BNDLSOL: Block Decomposition Non-Linear solver with reversible symmetric 

discontinuities. 

NLSOL: is nonlinear solver, with and without block decomposition. 

SPARSE: is sophisticated implementation of a Newton-type method without block 

Decomposion. 

 Solvers for mixed sets of non-linear algebraic and differential equations 

DASOLV: solver based on a variable time step/Backward Differentiation Formulae 

(BDF).  

A SRQPD: employs a Sequential Quadratic Programming (SQP).  

Optimization solvers 

(DOSOL V): solver manager which specifies the solvers for the steady state and 

dynamic.  

CVP_SS and CVP_MS: based on a Control Vector Parameterisation (CVP) approach 

OAERAP: employs an outer approximation (OA) algorithm for MINLP problems. 

3.5 Conclusion  

Detailed modelling and optimization approaches of RO processes have been described 

in this chapter. The RO steady sate model consists of a set of algebraic equations that 

approximate the hydrodynamics in the membrane module channels as well as the 
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permeation phenomena through the membrane layer. The model also comprises all the 

required physical property correlations which are depended on temperature and salinity. 

An optimal design methodology has been presented in this chapter. A superstructure is 

developed based on two-stage RO system to accommodate all possible connections 

between streams and unit operations and used in the synthesis of RO process. The 

problem was formulated using MINLP approach and the mathematical model describes 

the RO network is presented. 

The methodologies developed in this chapter for RO process will be used in the next 

chapters for different simulation and optimization problems. 

A brief discussion of the gPROMS software package is summarized in this chapter. 

gPROMS has several competitive advantage mentioned  above, and others not listed 

here, that make it an attractive and suitable tool for the modelling and optimization of 

any plant process (steady state and dynamic). Therefore, gPROMS was selected to 

perform the computational task in this thesis. 
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Chapter 4 

Effective Design of RO Process under Variable Seawater 

Temperature  

4.1 Introduction  

Many experimental and theoretical researches have appeared to investigate the effect of 

the feed temperature on the operation of RO processes. According to their findings, the 

effect of temperature on membrane performance is the most important parameter as it 

influences the key performance parameters of the RO systems as water recovery, 

concentration polarization and salt rejection (Goosen et al. 2002; Jin et al., 2009). Water 

production increases with higher feed temperature. Meanwhile salt passage through the 

membrane layer also increases. Therefore, it is essential to increase the operating 

pressure to realize the same water quality which means more operational costs. 

Based on the above aforesaid, for a fixed RO design, the production of freshwater from 

an RO process can significantly vary with seasonal temperature variation of seawater. 

The operation of RO process has to be continuously adjusted with the variation of 

seawater temperature to maintain the required demand.  

As discussed in the previous chapter, gPROMS is a reliable tool for simulation and 

optimization, of highly complex processes. In this chapter, the design of RO networks is 

investigated based on the steady state model (no fouling) developed in chapter three for 

hollow fibre module and using gPROMS software tool. 

In order to find the optimal design and operation of RO systems, the design of RO 

network for water desalination process is formulated as an MINLP problem using 

hollow fibre module. The influence of the operational and design parameters on the total 

annualized cost is investigated for a fixed water demand and quality as the feed salinity 

vary from low salinity of 15,000 ppm up to very high salinity water sources (50,000 

ppm). A wide range of seawater temperatures and high temperatures water resources 
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such as warm feed from cooling systems (Al-Enezi and Fawzi, 2003), varying from 

15°C to 40°C representing seasonal variation in seawater temperature are also 

investigated.  

4.2 Modelling of RO Process 

4.2.1 Membrane Model 

The steady state RO model that takes into account concentration polarization (CP) has 

been developed for hollow fiber module. A suitable mathematical description of the 

transport through RO membranes is given by the widely accepted Kimura–Sourirajan 

model (Kimura and Souriraja, 1967). Details of the mathematical model for the RO 

module used in this work are given in chapter three (Section 3.2.1.2). 

The pressure drop in a hollow fiber membrane module is considered in the model. 

However, the entire module is taken as a single element and the pressure drop across 

each hollow fiber element is assumed to be constant (Lu et al., 2006). 

4.2.2 Network Model 

The objective of the developed optimization model is to find optimal design for RO 

network involves different seawater salt concentrations and temperatures. A 

superstructure of the RO network for water desalination process is developed based on 

two stages RO network shown in Figure 3.4. The formulation of the flexible 

superstructure allows the optimizer to identify the optimal design of RO process 

whether two stages or only one RO stage. 

4.2.3 Temperature Effect on Membrane Permeability 

There are some works carried out for optimization of the design of various RO systems 

under different feed concentration using MINLP technique (Marcovecchio et al., 2005; 

Lu et al., 2007). However, their work was limited to the determination of the optimal 

design and operation of RO networks for only one temperature and the interactions 

between varying feed concentration and feed temperature is still not well understood. 
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Membrane characteristics change with varying feed temperature. This effect is included 

empirically in the relationship between feed water temperature and membrane 

permeability as (Sarkar et al., 2008): 
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Dependence of diffusivity coefficient on temperature is approximated as: 
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(4.3) 

To is the reference temperature. Note, all physical properties and osmotic pressure are 

function of temperature.  

The steady state model of RO process is coupled with the above equations to represent 

the temperature effect on the membrane performance. 

4.3 RO Network Optimization Validation 

The problem of designing a flexible RO system using a combination of RO membranes, 

pumps, and energy recovery turbines for RO based desalination process is examined 

here using hollow fibre membrane module. 

The proposed MINLP optimization formulation simultaneously integrates the aspects of 

flexibility with cost effectiveness. The process is represented as brine staging 

arrangement with two RO stages as the superstructure shown in Figure 3.4. 

For the sake of comparison with the MINLP formulation given by El-Halwagi (1992), 

this network design problem described in this section for hollow fibre module applies 

the same methodology that has been presented before. This problem is also formulated 

as a MINLP problem for minimizing the total annualized cost (TAC) subject to process 

constraints and flexibility constraints. Outer approximation algorithm within gPROMS 

environment is used to solve the MINLP problem. 



74 
 

The mathematical model that describes the solvent and solute transport via the 

membrane layer was presented by Evangellsta (1985) for the hollow fibre module is 

used in this case for comparison purpose only. 

All the cost parameters and unit operation parameters were taken from El-Halwagi 

(1992). Table 4.1 presents the geometrical properties of DuPont hollow-fibre RO 

modules. Table 4.2 lists the parameters that are used in MINLP optimization. The 

economic data estimated for this case are as follows (El-Halwagi, 1992): 

Annual fixed cost of pumps ($/year) =0.0157[flow rate through the pump 

(kg/s)×pressure difference across the pump(N/m)]
0.79

 

Annual fixed cost of turbines ($/year) =0.4182157[flow rate through the turbine (kg/s) × 

pressure difference across the turbine (N/m)]
0.47

 

Electrical power =0.06 $/kWh 

Mechanical efficiency of pump /turbine = 65% 

Annualized cost of RO modules (DuPont B-10) = 1,450 $/module 

 

Table 4.1 Hollow fibre RO modules specifications (El-Halwagi, 1992) 

 

 

 

 

 

 

 

 

 

 

 

Property Value 

Fibre length ( m) 0.75 

Outer radius of fibre (m) 50×10
-6

  

Inner radius of fibre (m) 21×10
-6

 

inner radius of the fibre bundle (m) 1.27×10
-2

 

outer radius of the fibre bundle (m) 5.334×10
-2

 

Membrane area (m
2
) 152 
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Table 4.2 Input Data for the hollow fibre optimization case study 

Parameter  Value 

Feed flow rate (kg/s) 19.29 

Feed salt concentration (kg/ m
3
) 34.8  

Permeate minimum flow rate (kg/s) 5.787  

Permeate maximum salt concentration (kg/m
3
) 0.57 

Minimum flow rate per module (kg/s) 0.21 

Maximum flow rate per module (kg/s) 0.27 

Pressure drop per module (bar) 0.22 

Water permeability (kg/s N) 1.2×10
-10

 

Solute permeability (kg/m
2
s) 4×10

-6
 

4.3.1 Results  

The globally optimum RO network for hollow fibre element was found to require a 

treatment cost of $258,729/year while the total annualized cost reported by El-Hlawgi 

(1992) for the same case study was $270,000/year. There are several reasons for this 

difference among them; the MINLP optimization problem was solved by El-Hawagi 

(1992) using generalized reduced gradient method while outer approximation algorithm 

within gPROMS software is used here. Also, El-H w gi’s fo mul tion involves the 

continuous processing of the entire feed flow (19.29 kg/s) but in this work bypass part 

of the inlet feed flow is allowed. In addition, the superstructure considered in this work 

has significantly reduced by eliminating non-essential streams. Figures 4.1 and 4.2 

present the optimal layout of the global solutions. The optimum layout (Figure 4.1) 

includes two RO stages in series, feed pump and turbine, following the second RO 

stage, to extract energy from the second stage reject stream. 

The trade-offs between extra expenditure and more permeate quantity recovered yielded 

neglecting the bypass and recycle streams. Also the existing of booster pump prior to 

second stage is found to be unnecessary compared with the flux that resulted due to 

increase (0.22 bar) in the feed pressure of the second stage. The optimum layout results 
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in a cascade configuration with 57 modules in parallel in the first RO stage and 55 

modules in the second stage. The RO-permeate streams are collected and sent to the 

final permeate product for the network.  

The main differences between the RO layout results from this work and El-Hlawgi 

optimum RO structure (Figure 4.2) are that, the inlet feed flow to the high pressure 

pump in the configuration of this work is less by 21 %, thus, the outlet brine from 

second stage is totally fed to the second stage unlike that in El-H w gi’s netwo k. 

 

Figure 4.1 Optimal design and operating conditions for the RO network (this work)  

 

Figure 4.2 Tapered design with brine bypass (El-Halwagi, 1992) 

4.4 MINLP Formulation 

In this framework, the MINLP optimization formulation presented and validated earlier 

based on two-stage RO superstructure given in Figure 3.4 is used to find the optimum 
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design of RO network. The mathematical equations which describe the RO network in 

chapter three (Section 3.3.3) is used here. Continuous variables are defined for the 

optimization of operating parameters and discrete variables are used to express discrete 

decisions such as the existence of process units.  

The proposed MINLP optimization approach generates various structures and design 

alternatives that are all candidates for a feasible and optimal solution. The objective 

function is the total annualized cost (TAC) which is minimized for every candidate 

configuration satisfying the operation and design constraints. The cost function is a sum 

of capital and operating costs as shown in Section 3.3.4. The total annualized cost 

(TAC) is expressed as: 

scchmepumeERDpuWPT OCOCOCOC..)CCC(CTAC  0804111
 

(4.8) 

The major cost parts that influence the design of the RO process are included as feed 

pre-treatment, equipment costs (pumps, turbine and membrane modules) which are 

considered as fixed costs. Also, most operation costs are taken into account as energy 

consumption cost, membrane replacement cost, chemical cost, and spare costs which are 

estimated using the equations in Section 3.3.4. 

The MINLP optimization problem is stated as follow: 

Given: Seawater feed source with different salt contents and 

temperatures, design specifications of each membrane element, 

fixed amount of fresh water demand, maximum salt concentration 

in fresh water. 

Optimize:  The number of stages, the number of parallel membrane module 

in each stage, the inter-connections between different streams and 

equipment, operating conditions (feed flow rate, feed pressure, 

pressure inlet to second stage, etc.). 

So as to minimize: Total annualized cost of fresh water 
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Subject to: Process constraints: Equality constraints such as process model 

and inequality constraints such as optimization variables bounds. 

Mathematically the optimization problem can be described as: 

Minimize    TAC 

Pf, Qf, S, Nj, Npu, Ntu, BY, R 

Subject to: Equality constraints  Model equations 

    Product demand and product quality 

  Inequality constraints  (50 bar) U

ff

L

f PPP   (92 bar) 

   (1 m
3
/h) U

ff

L

f QQQ   (2 m
3
/h) 

   SN pu 1 ; SNtu 1 ; 10  BY ; 10  R  

Pf, Qf, BY and R are continuous variables and represent feed pressure, feed flow, brine 

bypass fraction and brine recycle fraction, respectively. S, Nj, Npu and Ntu are integer 

parameters representing number of stages, number of hollow fiber modules in each 

stage, number of pumps and number of turbines. The subscripts U and L denote the 

upper and lower bounds of the parameter, respectively. 

It is to be noted again that most of the previous researchers optimized the RO process 

design for fixed feed temperature and did not consider the effects of the seasonal 

variation in seawater temperature on the RO design and operation. This will be the main 

focus of this Chapter. 

4.5 Case Study  

4.5.1 Specifications 

The suggested MINLP optimization problem formulation was applied for the 

desalination process where the optimal structural and operational parameters of RO 

process were found at given water demand (520 m
3
/day) and maximum salt 

concentration in the desalinated water (500 ppm). The membrane modules considered in 

this case study are DuPont B-10 hollow fiber RO modules. It is assumed that the 

(Control Variables) 
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membrane module life is 5 years (Lu et al., 2006). The characteristics of hollow fiber 

module and the parameters used in optimization calculation are listed in Table 4.3 and 

Table 4.4, respectively. 

4.5.2 Results 

The optimal operation and configuration of the RO system are displayed in Table 4.5. 

The range of salt concentration in the feed stream is adopted from Marcovecchio et al. 

(2005) and Voros et al. (1997) where salt concentration in the feed stream is escalating 

from a low salinity to an extreme salt content as high as 50,000 ppm. Five different feed 

concentrations (15,000 to 50,000 ppm) and a set of feed temperatures (ranging from 

15°C to 40°C) representing the seasonal variation of seawater temperature are 

considered in this study.  

 

Table 4.3 DuPont hollow fibre RO modules specifications (Lu et al., 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Property Value 

Fibre length (m) 0.75 

Outer radius of fibre (m) 50×10
-6

 

Inner radius of fibre (m) 21×10
-6

 

inner radius of the fibre bundle (m) 1.27×10
-2

 

outer radius of the fibre bundle (m) 5.334×10
-2

 

Water permeability at To (m/s) 4×10
-9

 

Salt permeability at To (m/bar.s) 3×10
-8

 

Module Feed flow range(m
3
/h) 1-2 

Membrane module area  (m
2
) 152 

Pressure drop per module (bar) 0.2 

Module operating pressure range (bar) 50-92 



80 
 

Table 4.4 Input data for MINLP optimization 

 Value Reference 

Feed pump efficiency (%)  75 Lu et al. (2007) 

Turbine efficiency (%) 80 Marcovecchio et al. (2005) 

Reference temperature To (°C)  25 Lu et al. (2006) 

Load factor 0.9 Marcovecchio et al. (2005) 

Membrane unit cost ($) 800 Lu et al. (2006) 

Module vessel cost ($) 200 Lu et al. (2006) 

Electricity unit cost ($/kWh) 0.08 Lu et al. (2006) 

 

Table 4.5 reveals that the brine recycling has not been favoured for any cases. This is 

due to the fact that the mixing of streams is only allowed for the streams with equal 

pressure. For any feed salinity (e.g. 35,000 ppm), there is no significant influence of the 

feed temperature on the unit cost of the optimum RO network. However, for any 

seawater temperature, the unit cost increases significantly with feed salinity. For 

example, at 20°C the unit cost at 50,000 ppm salinity is more than double the unit cost 

at 15,000 ppm salinity. The optimal RO operation is strongly dependent on the feed 

temperature and feed salinity. 

At higher feed salinity and at higher seawater temperature, the optimum RO network 

structure changes from two stages to one stage with or without bypass and inter-stage 

pump. Increases in feed temperature results in the increase of permeate flux (Nisan et 

al., 2005). This effect is dominated in most cases. With increasing feed temperature the 

required feed pressure decreases significantly with some decrease in the number of the 

elements. As a result, the production unit cost has decreased despite that the overall 

system recovery ratio decreased. At higher temperatures, there is both increased water 

flux and increased salt passage through the membrane. 

The impact of these effects on the RO design must be carefully considered in analysing 

the optimization results at different temperatures. For low and medium seawater 
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concentrations (15,000–35,000 ppm), the required feed pressure and the unit product 

cost are inversely proportional of the feed temperature. The water quality constraint is 

easily realized in this range of feed concentrations. Due to the relatively low salt 

concentrations in the feed stream, the simple two-stage RO systems without brine 

bypass or recycle is favoured (Figure 4.3a) for most temperatures. The optimal RO 

structure for feed concentration 35,000 ppm and 40 °C is two-stage RO network with 

inter-stage pump and including brine bypass as shown in Figure 4.3b. It is obvious that 

with increasing feed temperature, pumping and bypass part of brine coming from first 

stage is necessary to maintain the desired water quality. 

For feed salinity of 45,000 ppm, the optimal configuration identified for the RO 

network design is strongly dependent on the feed temperature. The optimal structure for 

each individual temperature is quite different. For temperatures ranging from 15°C to 

25°C, the simple two-staged networks are favoured (Figure 4.3a).  

For higher temperature (30°C), this optimal two-stage design for lower temperature is 

significantly modified. The brine coming from stage 1 is pressurized and bypasses part 

of this brine to reduce the amount of salts entering second stage as shown in Figure 

4.3b. The unit production cost is increased to maintain water quality requirements. Also, 

for the same reason, the second stage feed pressure hits the upper bound (92 bar). Only 

one RO-stage scheme (Figure 4.3d) has been identified as the two-stage structures could 

not achieve the product quality specifications for higher seawater temperatures (35°C, 

40°C). 
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  Table 4.5 MINLP optimization results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T 

(°C) 

Optimum 

layout 

Water 

recovery 

(%) 

Feed 

pressure 

(bar) 

Booster 

pump 

pressure 

(bar) 

permeate 

conc. from 

1st stage 

(ppm) 

permeate 

conc. from 

2nd stage 

(ppm) 

Average 

permeate 

conc. 

(ppm) 

No. of 

modules in 

1st stage 

No. of 

modules in 

2nd stage 

Total No. 

of modules 

 

Brine entering 

2nd  stage 

(%) 

Product unit 

cost 

($/m3) 

Case 1: Feed conc. 15,000 ppm     

15 Fig. 4.3a 64.14 59.43 - 62 136 92 34 18 52 100 0.530 

20 Fig. 4.3a 65.42 58.68 - 92 213 138 33 17 50 100 0.517 

25 Fig. 4.3a 66.45 57.72 - 130 315 199 33 16 49 100 0.505 

30 Fig. 4.3a 66.14 55.40  173 432 266 33 16 49 100 0.497 

35 Fig. 4.3a 66.20 54.28  225 570 346 33 15 48 100 0.490 

40 Fig. 4.3a 66.68 53.11 - 285 784 449 33 15 48 100 0.481 

Case 2: Feed conc. 25,000 ppm 

15 Fig. 4.3a 62.65 78.40 - 104 255 158 35 18 53 100 0.634 

20 Fig. 4.3a 63.00 78.21 - 153 378 232 34 16 50 100 0.627 

25 Fig. 4.3a 62.74 76.99 - 187 522 297 30 18 48 100 0.620 

30 Fig. 4.3a 63.13 77.50 - 225 680 369 27 18 45 100 0.616 

35 Fig. 4.3a 61.48 73.53 - 285 875 466 27 19 46 100 0.610 

40 Fig. 4.3a 62.50 76.72 - 287 1000 495 21 19 40 100 0.610 

Case 3: Feed conc. 35,000 ppm 

15 Fig. 4.3a 58.81 91.635 - 145 378 223 37 20 57 100 0.740 

20 Fig. 4.3a 59.24 91.32 - 218 593 340 37 19 56 100 0.731 

25 Fig. 4.3a 59.27 90.30 - 304 875 478 37 19 56 100 0.727 

30 Fig. 4.3a 58.10 90.35 - 305 973 500 28 21 49 100 0.729 

35 Fig. 4.3a 56.32 89.86 - 297 997 500 21 21 42 100 0.737 

40 Fig. 4.3b 45.29 77.4 92.00 390 629 500 25 11 36 70 0.774 

Case 4: Feed conc. 45,000 ppm 

15 Fig. 4.3a 48.88 92.00 - 192 451 281 43 25 68 100 0.873 

20 Fig. 4.3a 49.71 91.8 - 294 772 445 44 26 70 100 0.861 

25 Fig. 4.3a 48.70 92 - 315 934 500 33 29 62 100 0.866 

30 Fig. 4.3b 37.72 64.05 92 528 479 500 31 29 60 95 0.887 

35 Fig. 4.3d 35.64 91.2  500 - 500 42 - 42 - 1.082 

40 Fig. 4.3d 32.31 92.00 - 500 - 500 34 - 34 - 1.170 

Case 5: Feed conc. 50,000 ppm 

15 Fig. 4.3c 44.89 92.00 - 231 562 340 49 31 80 98 0.947 

20 Fig. 4.3c 44.69 91.87 - 329 861 495 47 31 78 96 0.945 

25 Fig. 4.3c 39.84 92.00 - 375 705 500 41 17 58 91 1.006 

30 Fig. 4.3d 32.49 92.00 - 500 - 500 51 - 51 - 1.190 

35 Fig. 4.3d 28.09 92.00 - 500 - 500 40 - 40 - 1.340 
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Figure 4.3 Optimum RO networks 

For case 5 (feed concentrations is 50,000 ppm), two-stage tapered staging configuration 

with brine bypass is selected (Figure 4.3c) for feed temperatures 15°C and 25°C. With 

increasing feed temperature from 15°C to 25°C, it is crucial to increase the operating 

pressure up to the upper bound to maintain the required salt concentration in the fresh 

water while the total number of membrane modules and brine flow rate entering second 

stage were reduced. Despite that, the unit cost is almost unaffected (Table 4.5). This 

clearly showed that how the optimization becomes a trade-off between the design and 

the operating variables of the RO network and keeping the production cost as minimum 
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as possible to ensure an economic design. For higher temperatures (30°C, 35°C), the 

simple one stage structure is favoured (Figure 4.3d), since two-stage system could not 

fulfil the required quality of water. In this high range of feed concentration and 

temperature, the operating pressure hits the upper bound, and feed flow is also increased 

in order to realize the required water quality. Increased feed temperature to 40°C led to 

infeasible solution (do not satisfy the constraints). 

The product cost results from the optimization of the superstructure and corresponding 

to various optimal structural configurations are graphically presented in Figure 4.4. 

Different feed salt concentrations and temperatures are considered to illustrate the effect 

of these parameters on the optimum design and operation of the RO process. The unit 

production cost is proportional to the feed concentration. This outcome is consistent 

with that reported by (Voros et al., 1997; Marcovecchio et al., 2005; Lu et al., 2007). 

Furthermore, due to the positive effect of the increasing feed temperature on water flux, 

the total annualized cost decreases with increasing feed temperature until certain point 

as shown in Figure 4.4 where the product salt concentration reached the maximum 

allowable limit. After that, the product cost starts to increase as a result of different 

operating conditions and/or RO structures adopted in order to achieve the required 

product salinity. 
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Figure 4.4 Unit costs for the optimal RO networks as a function of temperature at 

different feed salinity  

4.5.3 Maintenance Scheduling 

It has been suggested that the RO network could be designed by identifying the number 

of required membrane maintenance schedules (Zhu et al., 1997). This means the 

membrane modules can be divided into a number of groups to facilitate the membrane 

cleaning without complete shutdown of the plant. Based on this approach, the results for 

the cases 1-3 in Table 4.5 show that, for first stage the RO operation requires more 

membrane modules in winter than in summer. However, for second stage needs less 

number of membrane modules for the operation in winter season compared with that in 

summer season irrespective of the operation condition and system layout adopted for 

each case. This will allow flexible scheduling for cleaning and maintenance of the 

membrane modules without interrupting the production of water or fully shutting down 

the plant. For instance for feed salinity 35,000 ppm, the number of membrane modules 

utilized in winter (20°C) and summer (35°C) seasons in first stage are 37 and 21 

modules, respectively and in second stage 19 and 21 modules, respectively. Based on 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

10 15 20 25 30 35 40 45

u
n
it

 c
o

st
 (

$
/m

3
) 

Temperature (°C) 

15,000 ppm

25,000 ppm

35,000 ppm

45,000 ppm

50,000 ppm



86 
 

these findings, one can conclude that considering the seawater seasonal variation in RO 

network design can offer flexible scheduling for cleaning and maintenance of the 

membrane modules without interrupting the production of water or fully shutting down 

the plant. 

For higher salt content range (45,000 ppm and 50,000 ppm), the difficulty of realizing 

salt content constraint in the final permeate stream forced the optimizer to adopt various 

layout for each feed temperature (Table 4.5). Therefore, the flexible scheduling of 

cleaning and maintenance which presented previously for low and medium salt 

concentrations is not applicable here. 

4.6 Conclusion 

In this work, the synthesis of RO networks for water desalination, based on an MINLP 

optimization framework developed in earlier chapter, is investigated. A superstructure, 

based on two-stage RO systems and incorporates all feasible design alternatives was 

developed. The RO optimization design problem has been formulated as MINLP 

problem which was optimizing design and operating parameters while minimizing the 

total annualized cost of the RO network. The MINLP model showed the ability of 

handling the trade-offs between optimizing parameters (design and operating variables) 

and costs for different feasible process alternatives. The feasibility of the optimal design 

strategy is investigated by considering hollow fibre element as a case study. The total 

annualized cost for the optimum desalination RO network was less by 4 % compared 

with that published in the literature. Then, several RO designs and operation conditions 

were obtained using the MINLP framework for different feed water concentrations and 

including seasonal variation of seawater temperature. The optimal RO structures vary 

from one stage to two-stages with and without brine bypass and inter-stage pump. For 

most cases, the unit production cost of the optimum RO design is fairly decreased as 

feed temperature increased.  For higher feed concentration and also high temperatures, 
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the unit cost is increased as feed temperature increase due to difficulty of maintaining 

water quality constraint. The study shows that the salt concentration constraint has a 

tremendous impact in the RO plant design, especially for high salt concentrations and 

high temperatures water resources. Also the results demonstrate that the variation in the 

number of modules required for the operation of RO process in high and low 

temperature seasons offers the possibility of flexible scheduling of cleaning and 

maintenance of membrane modules. The latter issue will be also investigated in next 

chapters (six and seven) for numerous design options and operation conditions with and 

without membrane fouling. 
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Chapter 5 

Optimal Design of RO Desalination Process with Boron Removal 

5.1 Introduction 

Boron is essential micronutrient for the living creatures. Boron deficiency leads to 

negative impact on the growth of both human and plants. It may become toxic 

depending on the concentration and duration of exposure. Consequently it is important 

to produce low boron containing water from desalination plants to avoid the negative 

effects of boron.  

In chapter four, the optimization of RO network including seasonal variation of sea 

temperature and for fixed freshwater demand have been studied using MINLP 

optimization approach based on two-stage RO superstructure presented in chapter three. 

In this chapter based also on optimization formulation in chapter three, two passes RO 

superstructure is considered in the MINLP formulation in order to cope with the WHO 

boron standards in drinking water, which need to be boron content lower than 0.5 ppm. 

The seasonal variation of sea temperature is also incorporated. The effect of membrane 

fouling on the rejection of boron by RO membranes is not included here. 

A mathematical analysis tool for the estimation of boron rejection in RO desalination 

plants is developed based on solution diffusion model and thin film theory. The model 

was further modified to account for boron rejection by pH and temperature dependence 

of the model parameters. 

A superstructure of the RO network for water desalination process is developed based 

on double pass RO network. The superstructure includes two passes: seawater (SW) 

pass contains normal two-stage RO system and housing seawater membrane modules. 

The second is brackish water pass (BW) accommodates brackish water membrane 

modules and includes one-stage brackish water desalination added to the RO 

configuration in order to enhance the boron removal process. An MINLP optimization 
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formulation is developed based on the superstructure for fixed fresh water demand to 

determine the optimal design of RO network which sustain boron concentration below 

the maximum limit. 

5.2 Discussion on Boron  

5.2.1 Occurrence and Toxicity 

Boron is commonly found in the nature in various forms of complex compounds. The 

average boron concentration in earth crust is from 1 to 500 mg/kg (Aubert and Pinta, 

1977) but there is a significant difference in the occurrence of boron mainly due to the 

nature of the earth.  

The majority of boron abundance in the earth normally occurs in the seawater and 

ocean. The presence of boron in water is usually as a result of natural weathering of 

rocks and soils where boron may be mobilized into aqueous environments (Magara et 

al., 1998).  

The concentration of boron in seawater varies widely, generally ranging from about 1 to 

10 mg/l with an average level of 5 mg/l depending on location, weather conditions, and 

the level of industrial activity. For example, boron concentration in the Mediterranean 

Sea and in Arabian Gulf is about 9.6 and 7 mg/l, respectively (Argust, 1998). Boric acid 

is the dominant form of boron in seawater at normal pH level (7.9 - 8.2) (Sagiv and 

Semiat, 2004). Groundwater is far more likely to contain low levels of boron than 

surface water. 

Boron plays a vital role as a micronutrient for the plants growth. The concentration of 

boron observed by the plants in irrigation water or in soils plays a critical role in some 

metabolic activities (Howe, 1998). There are a number of studies showing that a 

sufficient supply of boron is essential for the functioning of many biochemical 

processes for human and animals (Hunt, 2003). However, Boron may become toxic 
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depending on the concentration and duration of exposure. The margin between boron 

deficiency and excess is typically narrow.  

Many studies illustrate these adverse effects of boron on plants including reduced rate 

of root, shoot growth and ultimately plant expiration (Hilal et al., 2011). Boron effect on 

human and animals is still not well understood as was done for plants (Kabay et al., 

2010). Exposure to high concentrations of boron may cause toxicity for humans include 

nausea, vomiting, diarrhea, dermatitis, weight loss, and decreased sexual activity (Tu et 

al., 2011). 

5.2.2 Boron Standards in Drinking Water  

Recently boron has been classified as a pollutant of drinking water in national and 

international drinking water regulations (WHO Guidelines for Drinking-water Quality 

Fourth Edition: 0.5 mg/l, EU Directive 98/83/EC: 1 mg/l) (Bouguerra et al., 2008). 

Table 5.1 summarizes the boron standards and guidelines of drinking water. 

Currently WHO guideline value is under revision and boron tolerance is being relaxed 

to a higher limit of 2.4 mg/ L for the year 2011 (WHO, 2011). In this context Water 

Desalination Report (2010) reported ‘‘Although the new guideline v lue is   sed on   

human health perspective, some utilities may set seawater desalination plants product 

water limits as low as 0.5 mg/L to reflect agricultural related issues. These issues 

include boron's herbicidal effect on some plant species, which is a particular concern in 

  e s of low   inf ll’’ (Kabay et al., 2010). Based on this argument, boron removal from 

fresh water, to a safe level for plants, remained an essential step especially in the Middle 

East where desalinated water is frequently used for cultivation. Therefore, in this work 

boron content limit is kept below 0.5 ppm. 
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Table 5.1 Regulations for boron in drinking water (Tu et al., 2010) 

Region Maximum boron 

concentration (mg//L) 

Regulation 

issued year 

European Union (EU) 1.0 1998 

Canada 0.5 2003 

New Zealand 1.4 2000 

Australia 4.0 2004 

Israel 0.3 2004 

Singapore 1.0 2001 

Abu Dhabi 1.5 2001 

U. S. A. (California) 1.5 2001 

Japan 1.5 2000 

WHO recommendation 0.3 

0.5 

2.4 

1990 

1998 

2011 

 

5.2.3 Boron in Seawater Chemistry  

The elemental form of boron is unstable in nature, but it is often found in combination 

with oxygen forming a variety of boron compounds as boron salts and acids (Ross and 

Edwards, 1967). 

The chemistry of boron and its compound is unique. At pH ranging from 7 to 8 of most 

waters used in desalination, boron is predominantly in the form of boric acid as shown 

in Figure 5.1. At this pH range, the percentage of the non-dissociated species is between 

99.3 (pH 7) and 93.2% (pH 8) of total boron (Redondo et al., 2003). Boric acid 

(B(OH)3) acts as a weak acid and the dissociation of boric acid occurs only via a 

hydrolysis process: 

B(OH)3+2H2O ⇔B(OH)4
−
 +H3O

+
   pKa= 9.23    (5.1) 

The value of the dissociation constant of boric acid pKa has vital role in the distribution 

of two components, boric acid and borate ion. pKa value depends on several factors 

including salinity, pressure, and temperature in addition to pH number. For instance, it 
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was reported that the pKa of boric acid would decrease from 9.23 to 8.60, when the 

salinity increased from 0 to 40,000 ppm while the constant decreases by 0.3 unit when 

the temperature increased from 10°C to 50°C (Tu et al., 2010). 

 

Figure 5.1 Distribution of boric acid and borate in seawater at different pH (at 

temperature=25 °C, salinity=35,000 ppm, pressure=1 atm) (Hilal et al., 2011)  

5.3 Boron Removal by Reverse Osmosis 

There are several alternative processes for boron removal from waters has been 

developed to avoid the boron toxicity including softening, coagulation, electrodialysis, 

activated carbon and RO membranes (Kabay et al., 2010). 

During RO desalination process, some traces of boron present in the final permeate 

unlike thermal desalination process where boron is removed to nearly zero level (Hilal 

et al., 2011). Boron rejection by RO is highly depended on the boric acid/borate ion 

ratio which is mainly function of seawater pH. For example, the rejection of boric acid 

is between 40 and 60% at pH ranges of 5.5–9.5, and for the same pH range, the 

rejection of borates reached 90% (Prats et al., 2000).  

The configuration of RO process for boron removal depends on several factors, such as 

feed water characteristics and product water standards (Greenlee et al., 2009). In some 

cases a complicated RO system may be used to achieve the boron requirements where 

the boron concentration in permeate set to be lower than 0.4 mg/L such as in Ashkelon, 

Israel (Gorenflo, et al., 2007). 
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Different design patterns have been developed to reduce the concentration of boron in 

RO permeate and fulfil boron standards in drinking water. Several authors have 

discussed the design concepts for boron removal from RO permeate (Redondo et al., 

2003; Tu et al., 2010; Kabay et al., 2010; Hilal et al., 2011). The typical methods used 

in RO desalination plants for boron removal are summarised in Figure 5.2. 

Generally, due to high salinity of seawater, pH is only increased in second and third 

pass where the feed is the desalinated RO permeate to avoid scale formation 

(Gluechstren and Priel, 2003). Therefore, the brackish water RO membranes are used in 

the second pass to save energy and also to maximize the recovery (Tu et al., 2010).  

However, some research studies have indicated that the cascade design has several 

advantages over the two pass system (Hilal et al., 2011), although two pass systems still 

have comparatively lower cost and can achieve acceptable level of boron rejection 

(Table 5.2). Therefore, two pass RO system with/without pH changes is chosen in this 

study for boron removal from RO permeate. 

There are many experimental and theoretical studies on boron removal by RO systems 

(Prats et al., 2000; Taniguchi et al., 2001; Sagiv and Semiat, 2004; Dydo et al., 2005; 

Hyung and Kim, 2006; Gorenflo et al., 2007; Mane et al., 2009; Tu et al., 2010). 

However, there are no studies that investigate the detailed design of RO systems that 

can respond to different operation and design variables. 
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Figure 5.2 Schematic drawings of (a) one pass design (b) the two pass design (c) hybrid 

design and (d) Cascade design. Modified from (a) (Hilal et al., 2011), (b) and (c) (Jacob, 

2007), (d) (Tu et al., 2010) 
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Table 5.2 RO seawater desalination process for Boron removal (Hilal et al., 2011) 

(Feed concentration 4–6.3 mg/L and temperature 18–34 °C) 

 
pH 

adjustment 
Cost ( $/m

3
) 

Target boron 

(mg/l) 
Configuration 

One pass SWRO No 0.38–0.52 0.8–1.0 Fig. 5.2a 

Two pass SWRO Yes 0.45–0.55 0.4–0.5 Fig. 5.2b 

Two pass with BSR 

(hybrid design)  
Yes 0.5–0.55 0.4–0.5 Fig. 5.2c 

Cascade design Yes 0.47–0.52 Less than 0.4 Fig. 5.2d 

 

5.4 Mathematical Model for Boron Rejection by RO 

Both solute ions and molecules are transported through the membrane by different 

mechanisms. These solutes are described using the existing models in the literature. 

Boron is commonly found in the boric acid and borate salts forms which are essentially 

typical solutes. Therefore, most of the existing models can be used to illustrate boron 

rejection phenomena (Tu et al., 2010). 

Both irreversible thermodynamic models of Kedem and Katchalsky and the mechanistic 

models such as the solution-diffusion model are capable for simple and effective 

representation of the separation process (Tu et al., 2010). These two model types are the 

most used in boron rejection illustration as shown in Table 2.6. Solution diffusion 

model is one of the most widely accepted for predicting membrane separation 

performance (Wijmans and Baker, 1995). And also to have a consensual with the other 

chapters of this thesis; solution diffusion model will be used to describe boron rejection 

by RO membranes. 

According to the solution–diffusion model, transport of boron across an RO membrane 

can be expressed as (Taniguchi et al., 2001): 

)C(CAj p,bm,b

T

b

T

b 
   `      

(5.2) 
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Where 
T

bj  J and 
T

bA  are flux and permeability of the boron.  Cp,b and Cm,b are the boron 

concentrations in the permeate and in the feed side of the membrane surface.  

The concentration of boron near the membrane surface is different from that in the bulk 

phase due to concentration polarization. The concentration of boron at the membrane 

surface Cm,b can be derived from the film theory (Section 3.2.1) as follows (Taniguchi et 

al., 2001; Sagiv and Semiat, 2004): 



















b

T

w

p,bB,b

p,bm,b

k

j

CC

CC
exp

        

(5.3) 

Where the concentration CB,b is for the boron bulk in the feed side. jw in equation (5.3) is 

the pure water flux through the membrane and kb is for the boron mass transfer 

coefficient. 

The following relationships for permeability and mass transfer coefficient of boron were 

given by (Taniguchi et al., 2001), and were used in boron rejection modelling for 

several cases in Sagiv and Semiat, (2004):  

Boron permeability 

 A.A T

s

T

b 394           (5.4) 

Mass transfer for boron  

k=0.97kb          (5.5) 

The boron concentration in permeate can be expressed as:  

T

w

T

b
p,b

J

J
C 

          

(5.6) 

Mass balance equation around the spiral wound element is given as: 

p,bpr,brf,bf CQCQCQ          (5.7) 

The total boron rejection for the RO process, which is the measure of the boron 

removal, is defined as: 
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(5.8) 

Temperature has significant effect on the permeation properties of the membrane. This 

effect is included empirically in the relationship between feed temperature and 

membrane boron permeability similar to that for salt permeability (Sarkar et al., 2008): 
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(5.9) 

5.4.1 Effect of pH on Boron Permeability  

Boron rejection by the RO membrane would improve as pH increased, therefore boron 

permeability are enhanced by increasing pH of BW pass feed by caustic injection and 

neutralize by acid injection after BW pass. It is to be noted that elevation of solution pH 

has only been used in the second pass, after adequate removal of salts in the first pass to 

eliminate the risk of membrane scaling at high pH. 

The observed pH dependence was quantitatively analysed by considering that the 

overall permeability was function of solution pH. Consequently, data was adopted from 

(Chillon Arias et al., 2011b) to predict the effect of solution pH on boron permeability 

constant (pHf ) for brackish water membrane (Filmtec BW30 4040). This data is fitted 

as: 

32 00906860189800991260 pH.pH.pH. pH f       (5.10) 

Figure 5.3 shows the actual data from Chillon Arias et al. (2011b) and the calculated 

values from the above equation. It can be seen from the Figure that there is a good fit of 

the predicted boron permeability constant to the Chillon Arias et al. (2011b) data.  

When the feed to BW pass is adjusted, the boron permeability in equation (5.2) 

becomes as: 

fbb,PH (T) pHA(T)A 

         

(5.11) 

)T(A PH,b  
will be used instead of A (T  in case of pH adjustment.  
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The Caustic and acid costs (CHcost) per cubic meter in terms of solution pH is adopted 

from (Chillon Arias et al., 2011a). Cost data are fitted as a function of solution pH: 









 Log(pH).

pH

.
.CH t 08108

31258
05374expcos

     (5.12) 

5.5 Synthesis of RO Process Including Boron Removal  

5.5.1 Network Model 

The mathematical model equations for RO membrane module used in SW and BW 

passes are given in Section 5.4.  

The objective of the developed optimization model is to find optimal design of RO 

network involves boron removal process. 

 

Figure 5.3 Predicted boron permeability pH factor vs Chillon Arias et al., (2011b)  
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Figure 5.4 General superstructure for double-pass RO process 
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A superstructure of the RO network for water desalination process is developed based 

on double pass RO as shown in Figure 5.4. The RO superstructure comprised mainly of 

two parts: SW represent first pass contains two-stage RO system and BW includes the 

second pass containing one stage brackish water desalination which is added to the RO 

configuration in order to enhance the boron removal process. The SW pass is mainly 

used to reduce salt content in permeate using high pressure seawater RO membranes. 

Therefore, low pressure RO membranes (brackish water membranes) can be used in the 

second pass (BW) to save energy and to allow for a high recovery (Tu et al., 2010). In 

order to increase the boron rejection by BW pass, the operation to increase pH is done. 

The two passes are connected in series where the permeate output from SW pass 

becomes feed to BW pass. 

The mathematical programming model which describes the RO network (both SW and 

BW passes) was developed based on this superstructure. The mathematical formulation 

in chapter three (Section 3.3.3) is used to describe SW pass. The same mathematical 

equations can be used for BW pass. The binary variables Bj, Bpu and Btu are associated 

with the existence or non-existence of the second stage, booster pump prior to second 

stage and turbine prior and/or after second stage of SW pass. To eliminate the second 

stage from the general superstructure, simply set all of these binary variables to zero. 

The resulting equations will represent one-stage RO network which can used to model 

BW pass network. The two sets of equations which used to describe SW pass and BW 

pass are combined and used to describe the general superstructure in Figure 5.4. The 

boron balance in both SW and BW passes are employed in the same way for salt 

balance. 

Mass balance relationship of boron around the membrane element 

p,bpr,brf,bf CQCQCQ 
     

(5.13) 

Overall mass balance around (SW or BW passes) 
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(5.14) 

The overall water, salt and boron balances constraints for the general RO network are 

added to the mathematical formulation to estimate the properties of the streams leaving 

or entering RO network as: 

The overall permeate volume balance  

p,t,BW

BW

p,t,SWp,G QBYQQ 
     

(5.15) 

The overall balance of salt in permeate  

p,t,BWp,t,BW

BW

p,t,SWp,t,SWp,Gp,G  CQ BY CQ CQ       (5.16) 

Where Qp,G, Cp,G are flow rate and salinity of the final permeate stream. The subscript 

SW and BW are denoted to the SW and BW passes respectively. BWBY  is the bypass 

fraction around BW pass. Note that the mixing of different streams is assumed isobaric-

mixing since only streams with equal pressures can be mixed. This criterion is watched 

when constructing the superstructure. A constraint is added to the set of constraints 

shown in chapter three (Section 3.3.3) to maintain the required boron concentration in 

the final permeate stream. 

max

p,b,avgp,b,avg CC            (5.17) 

5.5.2 MINLP Problem Formulation  

An MINLP optimization framework is developed to determine the optimal design of 

RO network based on the superstructure given in Figure 5.4. A set of binary variables 

with a value of [0, 1] are introduced to account for the existence or non-existence of 

different structural units. 

The proposed MINLP optimization approach generates various structures and design 

alternatives that are all candidates for optimal solution. The formulation of the 

optimization problem enables the optimizer to identify the design with two stages or 

only one RO stage for SW pass while BW contains only one stage.  
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For RO network with fixed fresh water production and constrained with maximum salt 

and boron concentrations in the final permeate, the superstructure allows every possible 

connection between the process units including splitting the feed /brine streams for two-

stage RO process in SW pass as well as  bypass part of the feed flow to BW pass. 

Continuous variables are defined for the optimization of operating parameters and 

discrete variables are used to express discrete decisions such as the existence of process 

units. The MINLP problem is solved within gPROMS software which implements the 

outer approximation algorithm. 

The MINLP problem is expressed as: 

Given: Seawater feed source with variable temperature; design 

specifications of each membrane element (SW and BW 

membranes); fixed fresh water demand; maximum salt and boron 

concentration in fresh water. 

Optimize:  The number of stages in SW pass; the number of parallel 

membrane module in each stage in both SW and BW passes; the 

inter-connections between different streams and equipment; 

operating conditions (feed flow rate, feed pressure, pressure inlet 

to second stage, etc.). 

So as to minimize: Total annualized cost of fresh water 

Subject to: Process constraints: Equality constraints such as process model 

and inequality constraints such as optimization variables bounds. 

Mathematically the optimization problem can be described as: 

Minimize    TAC 

Pf, Qf, S, Nj,SW, Nj,BW, Npu, Ntu, BY, R, BY
BW

 

Subject to: Equality constraints Model equations 

 Product demand and product quality 
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  Inequality constraints  U

SWfSWf

L

SWf PPP ,,,  ; U

SWfSWf

L

SWf QQQ ,,,  ;

U

BWfBWf

L

BWf PPP ,,,  ; U

BWfBWf

L

BWf QQQ ,,,  ; 

SN pu 1 ; SNtu 1 ; 10  BY ;

10  BWBY ; 107  pH  

Pf, Qf, BY and R are continuous variables and represent feed pressure, feed flow, brine 

bypass fraction and brine recycle fraction respectively.  The subscript SW denoted to 

SW pass and BW refer to BW pass. S, Nj,SW; Nj,BW; Npu and Ntu are integer parameters 

representing number of stages, number of modules in each stage in SW and BW passes, 

number of pumps and number of turbines in SW pass, respectively. The subscripts U 

and L denote the upper and lower bounds of the parameter, respectively. pH of the feed 

to BW pass is added to control variables when the chemical is injected to the feed 

stream to adjust feed pH. 

5.5.3 Cost Function  

The objective function of the model is a sum of capital and operating costs resulting 

from the process changes configuration and operation conditions.  The costs associated 

with the superstructure in Figure 5.4 include the sum of the annualized costs for SW and 

BW passes for every candidate configuration. The proposed objective function is 

presented as:  

reagscchmepumeERDpuWPT OCOCOCOCOC..)CCC(CTAC  0804111 (5.18) 

The total annualized cost is a combination of the capital and operating costs for one year 

of operation. The electrical power consumed by the feed pump of SW and BW passes 

and recovered by the turbine from the brine can be expressed in (kw) as: 

 
for BW

pu

HP,puHP,pu
for SW

pu

HP,puHP,pu

pu
 η

QΔP

 η

QΔP
E

3636
     

(5.19) 

It is to be noted that for BW pass only one pump is used. The electrical power recovered 

by the turbine from the brine outlet from SW pass can be expressed in (kw) as: 
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for SW

tuHP,tuHP,tu

t,recv
 

ηQΔP
E

36         
(5.20) 

Energy consumption by feed pumps can be calculated as: 

Etu=Epu− Et,recv

         
(5.21) 

The cost of increasing the pH in the BW pass by caustic soda and also acid cost used to 

neutralize the BW pass discharge are expressed as: 

28136524
100

cos . l Q
CH

OC ff,BW
t

reag 
 (5.22)

 

Where Qf,BW is the BW pass feed flow rate in (m
3
/h) and 1.28 is the exchange rate from 

Euro to USA $ (Chillon Arias et al., 2011a). The cost equations in Section 3.3.4 will be 

used to calculate the costs CWIP, OCch and OCsc for SW pass only while the cost 

equations for Cpu, CERD, Cme, OCpu and OCme in Section 3.3.4 will also be used to 

estimate the costs for both SW and BW passes. 

5.6 Case Study  

The optimization problem presented in Section 5.5 is used here to optimize the 

configuration and operating parameters of RO process based on a superstructure (Figure 

5.4) at a given fresh water demand while minimizing the total annualized cost. The 

characteristics of seawater module (SW30XLE-400) and brackish water module 

(BW30-400) used here are listed in Table 5.3. The input optimization parameters used 

here are presented in Table 5.4.  

Five spiral wound modules are connected in series in each pressure vessel in SW pass 

and three spiral wound modules in BW pass.  

The maximum allowable salt concentration in the final desalinated product stream is 

maintained at 500 ppm and the total water demand is about 80 m
3
/h. The boron 

concentration was kept below 0.5 ppm according to WHO boron drinking water 

standards (2008). 
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Table 5.3 The characteristics of spiral wound membranes (Lu et al., 2007) 

 

 

 

 

 

 

 

 

1

mil = 0.0254 mm 

Table 5.4 Input data for MINLP optimization 

 Value            Reference 

Feed salinity (ppm) 35,000  

Feed boron concentration (ppm) 5.0 Jacob, (2007) 

Turbine efficiency (%) 80 Marcovecchio et al., (2005) 

Feed pump efficiency (%) 80  

Load factor 0.9 Marcovecchio et al., (2005) 

Pressure vessel unit cost ($) 1000 Lu et al., (2007) 

Seawater module cost ($) 1200 Lu et al., (2007) 

Brackish water module cost ($) 900 Lu et al., (2007) 

Electricity unit cost ($/kWh) 0.08 Lu et al., (2006) 

Maximum operating pressure (bar) 

Sea water(SW)  

Brackish water (BW) 

 

83 

41 

Lu et al., (2007) 

Module Feed flow range (m
3
/h) 

Sea water(SW)  

Brackish water (BW) 

 

0.8-16 

0.8-19 

Lu et al., 2007 

5.7 Results  

Two optimization problems were considered. In the first optimization problem, the 

optimal synthesis of RO networks that takes into account boron content constraint in the 

RO permeate is formulated as MINLP problem. In the second problem, elevation of pH 

of BW pass feed is incorporated in the MINLP design problem. 

Property Element type 

BW30-400 SW30XLE-400 

Diameter of the element (m) 0.201 0.201 

Feed space (mil) 34 28 

Maximum operating pressure (bar) 41 83 

Module Feed flow range (m
3
/h) 0.8–19 0.8–16 

Membrane module area  (m
2
) 37 37.2 

Water permeability (m/ bar s) 9.39×10
-7 

3.5×10
−7

 

Salt permeability (m/s) 5.65×10
-8

 3.2×10
−8
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5.7.1 Case Study 1: Optimization of RO Design Without pH Adjustment  

The boron rejection across the two passes RO process without pH increase (no chemical 

injection) was studied here. Table 5.5 shows the optimization results obtained  for 

several cases, in which the feed temperature vary while the fresh water demand, 

permeate salinity and boron concentration constraints are maintained at a specified 

levels.  

Table 5.5 MINLP results for seawater desalination considering boron limit in fresh 

water and without pH adjustment  

 
Seawater temperature (°C) 

20 25 30 35 

Optimum SW scheme  Fig. 5.5a Fig. 5.5a Fig. 5.5a Fig. 5.5a 

Boron conc. in final permeate (ppm) 0.6 0.6 0.8 1.0 

Number of PV in 1
st
 stage 22 20 13 13 

Number of PV in 2
nd

 stage 0 0 0 0 

Feed pressure (bar) 79.3 82.8 83.0* 82.0 

Feed flow (m
3
/h) 188 211 200 201 

Inter-stage pump pressure (bar) 0 0 0 0 

BW feed pressure (bar) 41.0* 38.2 41.0* 37.9 

Number of PV in BW  stage 6 6 5 5 

BW Bypass (%) 6 3 4 3 

Salt conc. outlet from  SW (ppm) 216 244 226 290 

Boron conc. outlet from  SW (ppm) 1.80 1.95  1.88 2.17 

Salt conc. outlet from BW (ppm) 1.0 1.0 1.5 2.34 

Boron conc. outlet from BW (ppm) 0.50 0.54 0.75 0.96 

Permeate flow from SW (m
3
/h) 99.8 111.6 96.0 97.2 

Permeate flow from BW (m
3
/h) 78.8 76.7 76.2 77.1 

Water recovery in SW (%) 53.0 52.7 47.8 48.3 

Water recovery in BW (%) 74.5 71.3 82.6 81.9 

Overall water recovery (%) 42.5 37.9 40.0 39.8 

Unit cost ($/m
3
) 0.867 0.973 0.899 0.890 

*Upper bound 
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The minimum level of boron removal which may be achieved by RO process was 

identified by solving the MINLP problem firstly at boron content constraint 0.5 ppm. If 

the MINLP solver in gPROMS failed to converge, a 0.1 ppm step change is added to 

boron concentration in the final permeate stream to facilitate the convergence of the 

optimization algorithm. 

Figure 5.5a shows the layout of the global solution for RO network considering boron 

rejection without pH change. It can be seen that the optimization results in Table 5.5 are 

oriented to a section of the search region where the one stage process for SW pass in all 

feed temperatures is favoured. This can be easily related to the high boron concentration 

resulting from the second stage and the two-stage structures could not achieve the boron 

quality target. 

It can be seen form Table 5.5 that the boron concentration limit increases with the 

increase of feed temperature. This result is compatible with analysis presented by 

Hyung and Kim (2006).  

Increases in feed pressure results in the increase of boron rejection (Mane et al., 2009). 

This effect is clearly shown in Table 5.5. The feed pressures for SW and BW passes are 

in high level in an attempt to reduce boron content in permeate to the desired limit. For 

instance, the pressures for SW and BW passes at 30°C hit the upper bound (83 bar and 

41 bar, respectively).  

For the same boron limit (0.6 ppm), despite the positive effect of the increasing feed 

temperature on water flux (Nissan et al., 2008), the unit production cost for feed 

temperatures 20°C and 25°C are increased with the increase of feed temperature. Higher 

temperature enhances boron permeation through the membrane; therefore, higher cost is 

reported to achieve same boron content. 
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5.7.2 Case Study 2: Optimization of RO Design with pH Adjustment  

The MINLP optimization case study presented here includes boron rejection by the two 

passes RO process with increased pH in the 2
nd

 pass. Table 5.6 shows the optimal 

operation and configuration of RO systems for four different feed temperatures in the 

range from 20°C to 35°C. The maximum allowable boron concentration in the 

desalinated product is maintained at 0.5 ppm. In addition, pH of BW pass feed is 

allowed to vary between 7 and 10.  

The optimal RO operation and structure shown in Table 5.6 are strongly dependent on 

the feed temperature as the RO network structures identified vary from one stage to two 

stages with bypass (Figures 5.5b,c). Due to relatively low boron permeation at low and 

medium seawater temperatures (20 to 30°C), the simple two-stage RO systems without 

brine bypass is favoured for SW pass (Figures 5.5b,c). For higher feed temperature (35 

°C), the optimal structure changes to the single stage for SW pass (shown as Figure 

5.5c). 

The optimizer adopted different strategies to reduce the boron level in the final product 

stream. In Table 5.6, for temperatures 20ºC and 30ºC the feed pressure to BW pass hits 

the upper bound, and the bypass percentages are 7% and 4.3% for feed temperatures 

20ºC and 30ºC respectively. Reduction in boron level in the desalinated water is 

achieved by bypass part of feed stream of BW pass. For seawater temperature 25ºC, 

feed pressure of SW and BW passes remained in the high range (39.4 bar and 81.2 bar, 

respectively) and this is to maintain low product boron content in the both passes while 

the BW pass bypass percentage is reduced as low as 1.8%. On the other hand, the boron 

concentration meets the requirement (0.5 ppm) without bypass stream at feed 

temperature 35ºC and with only one stage in SW pass, showing less operation flexibility 

in this high range of feed temperatures. 
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The optimization results in Table 5.6 suggested that boron rejection at higher 

temperatures demands higher pH values. Boron rejection was highly dependent on pH, 

especially near pH 9, and this dependency was more pronounced to maintain the lower 

boron permeability when operating temperatures were higher which represent un-

favourable conditions for boron rejection. 

Table 5.6 MINLP results for seawater desalination considering boron limit in fresh 

water and with pH adjustment 

 
Seawater temperature (°C) 

20 25 30 35 

Optimum SW scheme  Fig. 5.5b Fig. 5.5b Fig. 5.5b Fig. 5.5c 

Boron conc. in final permeate (ppm) 0.5 0.5 0.5 0.5 

Number of PV in 1
st
 stage 11 12 12 19 

Number of PV in 2
nd

 stage 6 9 8 0 

Feed pressure (bar) 83* 81.2 76.1 79.0 

Feed flow (m
3
/h) 165 165 174 177 

Inter-stage pump pressure (bar) 0 0 0 0 

BW feed pressure (bar) 41* 39.4 41* 39.07 

Number of PV in BW  stage 6 6 5 7 

BW Bypass (%) 7 1.8 4.3 0 

Salt conc. outlet from  SW (ppm) 210 348 391 477 

Boron conc. outlet from  SW (ppm) 1.79 2.27 2.46 2.69 

Salt conc. outlet from BW (ppm) 1.21 2.23 2.35 4.01 

Boron conc. outlet from BW (ppm) 0.40 0.46 0.38 0.50 

Permeate flow from SW (m
3
/h) 91.1 94.7 99.2 96.0 

Permeate flow from BW (m
3
/h) 73.6 78.2 75.7 80.0 

Water recovery in SW (%) 55 57 52 54 

Water recovery in BW (%) 86 84 79 83 

Overall water recovery (%) 48 48 46 45 

pH feed to BW 8.82 8.98 9.17 9.35 

Unit cost ($/m
3
) 0.814 0.850 0.953 1.000 

*Upper bound 
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Figure 5.5 Optimum RO configurations for boron removal  

A trade-off between the positive effect of increasing feed temperature on water flux and 

also the contribution of lower boron permeability at high pH and the extra cost needed 

to achieve the freshwater quality requirements lead to a result that the unit product cost 

is proportional to the feed temperature. When feed temperature increases, both salt and 

boron passage are increased (Table 5.6), the operation cost items are significantly 

a 

b 

c 
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higher, particularly chemical cost (in terms BW pass feed pH) to achieve the required 

product quality, and as expected, leading to increased total annualized plant costs. 

5.8 Conclusion 

This chapter has presented a systematic methodology for the optimal design of RO 

desalination system which considering boron limit in the final permeate. A 

mathematical model was developed to simulate the boron rejection by RO spiral wound 

membrane element based on solution diffusion model and film theory. The effects of 

feed temperature and pH on boron rejection are incorporated in the simulation. 

The RO design problem has been formulated as an MINLP problem based on double 

pass superstructure which minimizes the total annualized cost. For fixed water demand, 

the design of RO network problem was solved using gPROMS and constrained with 

maximum salt and boron concentration in the fresh water. 

Two optimization problems were carried out to investigate the effect of pH on boron 

rejection at deferent seawater temperatures. The optimal RO structures vary from one 

stage to two-stages in SW pass with and without BW pass bypass. The MINLP 

optimization results suggest that the pH and seawater temperature are very important 

factors to consider for achieving a target level of boron rejection. 

At natural seawater pH, the minimum level of boron removal has not achieved by RO 

process with SW and BW passes for all feed temperatures. pH elevation is required to 

satisfy the boron concentration constraint especially at high temperatures (higher 

temperature increases boron concentration in the fresh water). 
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Chapter 6 

Optimal Operation of RO System with Daily Variation of 

Fresh Water Demand and Seawater Temperature 

6.1 Introduction 

Recently, substantial attention was given to RO processes operation optimization in 

order to enhance the RO process performance and reduce the energy consumption. The 

optimization of RO systems includes network design and the operating conditions. The 

RO operating conditions are subject to seawater temperature variation in different 

seasons and even throughout 24 h a day. This variation affects the RO process key 

performance parameters such as fresh water production and salinity. Therefore, short 

term optimization of RO process on the basis of 24 hours gives the operators of the RO 

plant high chance to respond effectively to the different operation variations.  

In the analysis of the previous chapters, it was found that the design optimization 

problems were solved for fixed water demand and including seasonal variation of 

seawater temperature. Therefore, it was necessary to study the role of changing fresh 

water demand on the design and operation of RO process and also, the interaction with 

varying seawater temperature. 

The optimal operation policy of flexible RO systems is studied in this work. The design 

and operation of RO process is optimized and controlled considering variations in water 

demands and with changing seawater temperature throughout the day. A storage tank is 

added to the system layout to provide additional operational flexibility and to ensure the 

availability of freshwater in all times. A steady state model for the RO process is 

developed and linked with a dynamic model for the storage tank while membrane 

dynamic effect of membrane fouling is not included as the operation horizon time is 

only 24 hours. The membrane modules are divided into a number of groups to add 
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flexibility in operation to RO network. The total operating cost of the RO process is 

minimized in order to find the optimal layout and operating variables at discreet time 

intervals for three design sceneries. 

It is important to note that the focus of this chapter was not to provide an in depth 

investigation of the RO network optimization but rather to find a suitable operation 

policies that would be appropriate for different design scenarios. 

6.2 Variable Operation in RO Systems 

During the past decade, scientists have made substantial advances in the RO membranes 

in terms of cost and separation efficiency. Membranes now cost less, have very high salt 

rejection rates, and respond effectively to short-term change in operation conditions 

(Miranda, and Infield, 2003). 

Most recently authors who contributed in RO optimization area focused on optimal 

operation of RO processes based on fixed freshwater demand and for one feed 

temperature only (Abbas, 2007; Zhu et al., 2009b; Ghobeity and Mitsos, 2010).  

There have been many publications in the literature dealing with the operation of RO 

membrane systems under variable-load. These studies suggested that the RO 

desalination plant can operate successfully under variable flow rate and pressure 

without any technical problems (Lising and Alward, 1972; Miranda, and Infield, 2003; 

Heijman et al., 2009; Emad et al., 2012). 

On the daily basis, the operation of one-stage RO desalination plant is optimized while 

minimizing the operation cost. The problem is formulated as MINLP problem subject to 

the hourly distribution of the electricity cost (Ghobeity and Mitsos, 2010). Also, the 

results in the literature (Van Gauwbergenv and Baeyens, 1997; Hasson et al., 2007; 

Bartman et al., 2009) suggests that the transition from one steady state to another steady 

state for RO process needs relatively short time and pseudo steady-state model can be 

assumed for time steps more than 0.25 h. 
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However, using of finer time steps (0.25 h) lead to cut-down the cost, the execution 

time for the simulation is prohibitively longer (Ghobeity and Mitsos, 2010). Therefore, 

one and two hours are selected in this work as a time step.  

6.3 Estimation of Dynamic Seawater Temperature and Freshwater Demand 

Profiles 

Figure 6.1 shows the variable fresh water demand profile (Zhou et al., 2002). Figure 

6.2a shows seawater temperature throughout the day for summer and for winter season. 

The actual data (Kawai et al., 2009) and predicted temperatures are plotted in Figure 

6.2b. The following relationships are obtained by fitting the data using regression 

analysis as: 

Fresh water demand 
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t is operation time in hours (h).  

It can be seen from the Figures 6.1 and 6.2; the experimental data of seawater 

temperature and water consumption are accurately predicted by the above equations. 

These relations are considered in the RO model. 
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Figure 6.1 Daily time schedule for fresh water consumption by the user 

 

 

Figure 6.2 Seawater temperature profiles (a) at summer season and (b) at winter season  

6.4 Model Development 

As mentioned in Section 6.2, the RO system is able to operate successfully under 

variable conditions of pressure and flow. Also, the transition from one steady state to 

another steady state requires short time and pseudo steady-state conditions can be 

assumed even for short time steps. Thus, a steady state model for the RO system can be 

safely used in the RO simulation. Therefore, a model based on Kimura–Sourirajan 

0

50

100

150

200

250

0 5 10 15 20 25
F

lo
w

 r
at

e.
 (

m
3
/h

) 

Time (hr) 

Predicted

exp data

27

29

31

33

0 4 8 12 16 20 24

T
em

p
. 

(°
C

) 

 

Time (hr) 

Predicted

exp data

a 

18

20

22

24

0.00 4.00 8.00 12.00 16.00 20.00 24.00

T
em

p
. 

(°
C

) 

 

Time (hr) 

Predicted

exp data

b 



115 
 

model for spiral wound module that takes into account concentration polarization (CP) 

is used here. Details of the mathematical model for spiral wound RO module are given 

in Section 3.2.1.1. Temperature effect on membrane characteristics is also included in 

model as shown in Section 4.2.3. 

Figure 6.3 shows a RO desalination system with an intermediate storage tank between 

the process and the client. However, the water consumption profile in Figure 6.1 shows 

a significant variation throughout the day. This entails dynamic model for the storage 

tank and consequently, changing some operation parameters in order to control the tank 

operation. 

  

Figure 6.3 RO system with storage tank 

6.4.1 Storage tank dynamic model  

 

Figure 6.4 Schematic diagram of a storage tank 

The dynamic behavior of a storage tank shown in Figure 6.4 can be described as: 

Volume balance on the tank 

outin flowflow
dt

d holdup


        
(6.4) 
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Where flowin is RO permeate production and flowout represents freshwater demand.  

Relation between liquid level and holdup 

Holdup=Tank. Area × height        (6.5) 

Salt balance on the tank 

)C(C
holdup

flow

dt

d C
p,outp,in

inp,out


       
(6.6) 

Cp,in is the salt concentration entering tank from RO process. 

The steady state model of RO process is coupled with the above dynamic model for the 

tank. 

6.5 RO process optimization involving storage tank 

6.5.1 Process constraints  

6.5.1.1 Tank level 

In order to make sure that the tank level, (h) does not exceed a given limit (above hmax 

or below hmin) at any time; a path constraint on (h) is imposed in the optimization 

problem. Without this level restriction, h goes above the high and low limits during 

normal operation of RO process as shown in Figure 6.5a. The level violations (LV1, 

LV2) can be expressed as: 

max

max

2

max

1
0 h  if h                    

h   if h)h(h(t)
(t)LV






       
(6.7) 

min

min

2

min

2
0 h  if h                    

h    if h)h(h(t)
(t)LV






       
(6.8) 

These level violations are represented graphically in Figure 6.5b. The total level 

violation LVT over the entire processing time (tp) can be written as:   

  dt(t)LV(t)LVLV

ptt

t

T 





0

21

        

(6.9) 

In other form 
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(t)LV(t)LV
dt

d LVT
21 

        
(6.10) 

The initial level is assumed in-between hmax and hmin. Therefore, the initial condition of 

equation 6.10 is zero. The total level violation LVT is kept in this   nge of 0 ≤ LVT ≤ α 

whe e α is  n infinitesim l positive num e  (10
-6

). LVT will be evaluated at each 

discreet time interval and will maintain the tank level between the tank level bounds. 

The above model was considered by Hawaidi and Mujtaba (2011) for MSF process.  

6.5.1.2 Tank Salinity  

To ensure that the salinity of fresh water outlet from the tank (Cp,out) always equal or 

less than the maximum allowable fresh water salinity, a similar analysis of  the tank 

level control can be done for Cp,out. 

 

Figure 6.5 (a) Typical tank level profile and (b) Tank level violations 

For simplicity, the water in the tank is assumed to be well mixed and the transition 

times between different operational conditions are neglected in this model (Farmani et 

al., 2006). Therefore, constraints (equations 6.7 and 6.8) may be rewritten as the 

following and appended in the optimization model. 

max

max

2

max

0 p,p,out

p,p,outp,p,out

CC       if                     

C   if C)C(C
CV(t)






      
(6.11) 
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Figure 6.6a shows the tank salinity at normal operation without any control and Figure 

6.6b represent salt concentration violation in the tank during the operation horizon time. 

The total accumulated violation CVT over the entire period (tp) can be written as: 

  dtCV(t)CV

ptt

t

T 





0

         
(6.12) 

Therefore 

CV(t)
dt

d CVT 
         

(6.13) 

The initial tank salinity is assumed below the upper salinity limit; accordingly the initial 

condition of differential equation 6.13 is set as zero. As in tank level control analysis, 

the total salinity violation CVT is kept in this   nge of 0 ≤ CVT ≤ α. 

Optimization of tank operation over a limited time horizon (24h) requires some 

periodicity in operation. This can be done by returning the final states of the tank to the 

initial ones. Therefore, two constraints are incorporated in the optimization formulation 

to keep the water level and salinity in the tank at the end of the operation same as that at 

the beginning of operation. Other constraints are imposed to the feed pressure and flow 

inlet to RO spiral wound module to improve the separation efficiency of membrane 

module. 

 

Figure 6.6 (a) Tank salinity profile and (b) Tank salinity violations 
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6.5.2 Optimization problem formulation 

The optimization framework is developed to determine the optimal operation policies of 

RO process throughout the day. The decision variables are discretized over a 24h time 

interval and are assumed to be piecewise constant. A set of continuous variables are 

introduced to account for the existence or non-existence of the membrane sides at each 

time interval in operation (Figure 6.3). Therefore, they all take the value of [0 or 1] after 

rounding off. Switching the RO unit to complete shutdown operation mode is not 

allowed in all time intervals. As long as tank level and salinity constraints are not 

violated, there is total flexibility in RO operation. Such a strategy enables the optimizer 

to balance the operation load among the discrete time intervals. 

The total operating cost TOC of the RO system was used as objective function. It is 

composed of many components including net pumping cost OCpu, membrane 

replacement cost OCme, chemical treatment cost OCch and annual spares cost OCsc. The 

total operating cost components were given in Section 3.3.4 on the annual basis. Thus, it 

was adjusted on the daily basis as follows: 

 Net pumping cost ($/day) 

24fct,recvpupu l)EE(EOC          (6.14) 

 Chemical treatment cost ($/day) 

240180  .lQOC ff,tche   (6.15) 

 Annual Spares cost ($/day) 

240330  .lQOC fp,tsc   (6.16) 

The objective function TOC ($/m
3
) can be written as: 

p,t

scchmepu

Q

OCOCOCOC
TOC




       
(6.17) 

Qp,t represent the daily production rate. 
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The optimization problem OP is described as: 

Given:  RO plant configurations, design specification of each RO membrane 

module, storage tank volume, seawater temperature and fresh water 

demand profiles throughout 24 h. 

Optimize:  The number of membrane sides in operation; feed pressure and flow. 

Minimize:  The total operating cost of freshwater per cubic meter of permeate  

Subject to: process constraints 

The problem OP can be written mathematically as 

Minimize   TOC 

 Pf, Qf, LVT, CVT 

Subject to:  Equality constrains Model equations 

       Cp,out,intial= Cp,out,end; hintial= hend 

   Inequality constrains Linear bound on Pf and  
f
; 

       0 ≤ LVT ≤ α; 0 ≤ CVT ≤ α 

Cp,out,intial, Cp,out,end, hintial and hend are tank salinity and height at initial and last interval, 

respectively. These constraints are imposed to the optimization formulation to ensure 

the periodicity in operation where the final level and salinity of the tank are equal to the 

initial ones. 

6.5.3 Optimization Methodology 

It has been suggested that the RO network could be designed by identifying the number 

of required membrane maintenance schedules (Zhu et al., 1997). This means that the 

membrane modules may be divided into a number of groups for flexible operation to 

facilitate the membrane cleaning. This approach is adopted in this work, a number of 

pressure vessels in one stage RO system are distributed into two main sides. Each side 

is divided into sub-groups containing a number of pressure vessels each as shown in 

Figure 6.7. 
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Figure 6.7 The RO process flow diagram with storage tank (a) Scenario 1 all sub-groups 

in operation, (b) Scenario 2 only one sub-group out of operation (c) Scenario 3 two sub-

groups out of operation   (     out of operation) 

The objective of optimization formulation was to find an optimal control variables 

profiles that minimize the total operating cost of the RO plant while satisfying all design 

and operating constraints and response to the variations in water demand and 

temperature over a day. Therefore, feed pressure and flow rate are optimized at discrete 

a 

b 

c 
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time intervals in order to meet the fresh water flow and quality requirements and 

fulfilling storage tank level and salinity constraints. Storage tank levels (minimum and 

maximum) and salinity (maximum) are monitored dynamically and path constraints are 

added to the optimization formulation to keep them within the limits. 

Two cases were carried out with two seawater temperature profiles representing 

summer and winter seasons in which the daily fresh water consumption profile is 

remained fixed in all cases. For each case, the corresponding optimal operation profile 

is generated using the optimization model. 

Several cases are investigated using the proposed optimization framework in which the 

RO process configuration and operation are varied as the following: 

1 All membrane sub-groups in operation at summer temperature profile. 

2 All membrane sub-groups in operation at winter temperature profile. 

3 Only one membrane sub-group out of operation at summer temperature profile. 

4 Only one membrane sub-group out of operation at winter temperature profile. 

5 Two membrane sub-groups out of operation at summer temperature profile. 

6 Two membrane sub-groups out of operation at winter temperature profile. 

Figure 6.7 shows the three operational flexibility scenarios considered here.  

6.6 Presentation of the Illustrative Example 

The previous methodology is applied to a RO system from the literature. The forty 

pressure vessels in one stage RO process which is described in Lu et al. (2007) with 

feed salinity 48,000 ppm are distributed into two main sides. Each side is divided into 

four sub-groups containing five spiral wound modules each as shown in Figure 6.7. The 

characteristics of the membrane module used here are taken from Lu et al. (2007) 

(Table 5.3). The minimum and maximum levels of the storage tank are 1 m and 5 m 

respectively. The storage tank has a diameter (D =10 m) and aspect ratio L/D = 0.5. The 

parameters used in optimization calculation are listed in Table 6.1. 
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6.7 Results and Discussion  

Two operational flexibility cases of the RO process are considered. For each case, the 

corresponding optimal operation profile is generated using the optimization model. Feed 

flow rate, pressure and the number of membrane sides in operation are optimized at 

each discrete time period in order to meet the variable freshwater demand. The 

significance of these cases is in investigating operation flexibility potentials of cleaning 

and maintenance scheduling of membrane modules without interrupting the RO 

operation or full plant shut-downs. 

Table 6.1 Input data for optimization 

 Value Reference  

Feed salinity (ppm) 48,000 Lu et al., (2007) 

Feed pump efficiency (%)  80 assumed 

Pressure exchanger efficiency (%) 90 Lu et al., (2007) 

Load factor 0.9 Marcovecchio et al., (2005) 

Module Feed flow range (m
3
/h) 0.8-16 Lu et al., 2007 

Maximum operating pressure (bar) 83 Lu et al., (2007) 

Initial tank level (m) 2 assumed  

Initial tank salinity (ppm) 450 assumed 

Electricity unit cost ($/kWh) 0.08 Lu et al., (2007) 

 

6.7.1 Case Study 1: Optimization of RO Operation in Summer 

Using the daily variation of seawater temperature in summer season, the three RO 

design scenarios described above are investigated. 

Figure 6.8 shows the optimal operation schedule for the three scenarios. This solution 

indicates that all membrane modules in B side in all scenarios are to be in operation in 

all time intervals while intermittent operation mode was identified for C side. The 

number of off-operation hours of C side for the three operation scenarios are 

proportional to the number of membrane modules in operation. The elimination of C 
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side from operation in certain hours is utilized to maintain the tank level and salinity 

constraints. 

Figure 6.9 illustrates the results of the optimum operating pressure at discreet time 

intervals. For scenario one, pressure follows the path similar to that for fresh water 

demand to maintain the required freshwater consumption (Figure 6.1). The same occurs 

for the scenarios two and three until 4 pm. After that the pressure remained at a high 

level. This is due to two reasons. First, lower number of membrane elements used in 

these two cases compared with scenario one and second, to maintain the required fresh 

water salinity at high temperature period (Figure 6.2a). 

 

Figure 6.8 Daily RO operation cycle at summer season 

 

Figure 6.9 Optimal operating pressure profile using summer temperature profile 
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The trend of tank level in Figure 6.10 is consistent with the water demand and 

production profile in Figure 6.11. The optimizer determines the best time of storage 

tank filling. The tank uses all operational volumes during the cycle, as shown in Figure 

6.10. It is clear that the tank filling occurs mainly during low demand periods; where the 

production rate of freshwater is higher than freshwater consumption resulting in 

increase in tank water level. The storage tank level falls down immediately after the 

demand peaks period at around 7 am and 7 pm to avoid high level constraint violation. 

Figure 6.12 shows the periodic behaviour of the salt concentration in the tank and in RO 

permeate for scenario one. One can see clearly that the fresh water salinity objective is 

satisfied over the optimization period, with the salt concentration of the tank remaining 

close to the maximum limit within the period between 3 pm and 9 pm. This can be 

attributed to the deterioration of the membrane salt rejection due to increasing seawater 

temperature (Figure 6.2a). Also, increases in feed temperature results in the increase of 

permeate flux (Jin et al., 2009), lowering the operating pressure (Figure 6.9) and 

consequently higher salt concentration in the permeate. 

 

 

Figure 6.10 Storage tank level profiles at summer operation  
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Figure 6.11 Fresh water consumption and RO production profiles (Scenario 1)  

 

Figure 6.12 Salt concentration of fresh water from RO and tank profiles (Scenario 1)   
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between seasons. Different water consumption functions could be incorporated into the 

formulation if desired. 

Figure 6.13 illustrates different operating modes for three operation scenarios .by 

plotting the optimal operation schedule of RO process. As shown in Figure 6.13, the 

optimal operation schedule involves taking off C side from operation for certain hours 

for the operation scenarios one and two. The number of off-operation hours decreases 

with increasing the number of membrane sub-groups in operation for the three operation 

scenarios. The number of off operation hours for scenario one is 7 hours and 4 hours for 

scenario two which occurs during relatively low demand period (10 am to 2 pm). Both 

membrane sides B and C are operated continuously during the optimization period for 

scenario three. This mode of operation is picked by the optimizer to compensate the 

shortage of production due to less membrane sub-groups in operation in this operation 

scenario and also the negative impact of low seawater temperature in winter season on 

the water production. 

 

Figure 6.13 Optimal operation schedule of RO at winter season 
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violations. The optimizer have chosen to start filling the tank when the production rate 

of freshwater is higher than freshwater consumption resulting in increase in tank water 

level. Had the fresh water demand been higher than RO production (Figure 6.15), the 

storage tank level falls down (Figure 6.14). The storage tank levels tend to peak just 

before the water demand peaks. The storage tank level reached its upper level bound 

between the periods 4am to 6am and 4pm to 6pm to supply the peak demand where the 

peak of fresh water demand occurs mainly in 7 am and 7 pm. 

The operating pressure trajectory for the three operation scenarios is shown in Figure 

6.16. Unlike pressure profile in Case study one, operating pressure remained at a high 

level most of the optimization period. This illustrates the level of reliability of the RO 

operation. The high pressure was used to compensate the negative impact of low 

seawater temperature in winter on water productivity. However, it has positive impact 

on the salt concentration in permeate. It can be seen from Figure 6.17 that the average 

salt concentration produced from RO process does not exceed the salinity upper bound 

(500 ppm). At first sight, permeate salt concentration was very low as it remained below 

400 ppm most of the day (2 am to 8 pm). This illustrates the consequences of high 

pressure on the permeate salinity. 

 

Figure 6.14 Tank operating levels over a cycle of 24 h at winter season 
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Figure 6.15 Fresh water production and consumption during the day. 

 

Figure 6.16 Optimal operating pressure profile at winter season 

 

Figure 6.17 RO permeate salinity and tank salinity profiles at winter (Scenario 3)  
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6.7.3 Comparison between Case Study One and Two  

The optimization results show that winter operation requests the RO process to utilize 

more membrane modules than in summer. According to Figure 6.18 winter seawater 

temperature profile makes the operation of RO process less flexible. C side in winter 

season has lower off-operation hours compared to the same membrane side in summer. 

For instance, the off-operation hours for scenario two in summer and winter are 5 hours 

and 4 hours respectively. Based on this, one can conclude that RO operation in summer 

has higher level of operation flexibility in terms of number membrane sub-group in 

operation. This will offer additional flexibility in maintenance of the RO process 

throughout the day. 

Figure 6.19 shows clearly the difference between the required pressure in summer and 

winter. Summer operation requires less pressure to meet the variable demand of 

freshwater. This consequently results higher salt concentration in RO permeate in 

summer (Figure 6.20). 

Table 6.2 presented the average daily specific energy consumption in terms of permeate 

produced. It can be noted from the Table that the required specific energy in the winter 

season are the highest due to lower seawater temperature. At the same temperature, the 

same freshwater demand during the day can be fulfilled by using less number of 

membrane sub-groups but the operating cost will be higher as shown in Table 6.2. For 

instance, the specific energy required in summer season for scenario one operation 

mode is increased by 15 % when the operation switched to the scenario three. Also the 

difference between seawater temperature in summer and winter seasons demands an 

increase in specific energy by about 9 % when scenario two is adopted in operation. 
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Figure 6.18 Comparison of different operation schedules 

 

 

Figure 6.19 Pressure pattern for summer and winter (Scenario 1) 

 

 

Figure 6.20 RO permeate salinity in summer and winter (Scenario 3) 
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Table 6.2 Specific power consumption (kwh/m
3
 of permeate) 

 

Scenario 1 Scenario 2 Scenario 3 

Summer 2.397 2.610 2.774 

Winter 2.647 2.844 3.044 

6.8 Conclusion 

The optimal operation strategies are established for different process designs in terms of 

number of membrane sub-groups in operation and including variable seawater 

temperature and water demand for a 24 h operational time horizon. The RO process 

operation was optimized at discrete time intervals while minimizing the total operation 

cost.  

A steady sate model for RO process and dynamics model for storage tank are 

incorporated in the optimization framework. In this work, hourly time step is used. 

However, longer time steps could reduce the computational time, but it is not in favors 

of cost reduction.  

Several RO configurations in terms of number of membrane sub-groups are considered 

incorporating two daily temperature profiles representing the daily temperature 

variations at summer and winter seasons. 

For each case, the corresponding optimal operation profile is generated using the 

optimization model. Feed flow rate, feed pressure and the number of membrane sides in 

operation are optimized at each discrete time period in order to meet the variable 

freshwater demand. 

The optimization results show that winter operation requests the RO process to utilize 

more membrane modules than in summer. On the other hand, summer operation 

requires less pressure compared to that in winter season to meet the variable demand of 

freshwater leading to lower power consumption.  
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The optimization results demonstrated that it is possible to meet the variable fresh water 

demand throughout the day even-though with less number of membrane modules but 

with higher operation cost. This will offer the possibility of flexible scheduling of 

cleaning and maintenance of membrane modules particularly when scaling and fouling 

become serious problems and more frequent cleaning is required.  

Based on the findings in the previous chapters, daily and seasonal seawater temperature 

variations may offer the possibility of flexible scheduling of cleaning of membrane 

modules. In next chapter, the role of membrane fouling on the design and cleaning 

schedule of RO systems with varying seawater temperature will be explored.  
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Chapter 7 

Optimal Design and Cleaning Schedule of RO Process  

7.1 Introduction  

Membrane fouling is inevitable for any desalination plant. It occurs due to deposition of 

common impurities of the feed solution and causes decline in permeate flux, decrease in 

salt rejection, increase in differential pressure, and irreversible membrane damage in 

severe cases. 

In earlier chapters, the design and operation optimization problems have been solved 

using RO steady state model. In this chapter, an actual fouling model which can 

appropriately describe the RO performance is embedded in the optimization 

formulation. Accurate estimation of membrane permeability decline due to fouling is 

important in developing a reliable process model. Therefore, NNs based correlation is 

developed in this work based on the actual water and salt permeability data to estimate 

the performance decline factors. Annual seawater temperature variation is considered in 

the NNs model. This correlation is embedded in the gPROMS simulation code with rest 

of the model equations in the process model and the optimal design and operation 

policies of the RO desalination systems are found. The optimal design of RO networks 

is formulated as MINLP problem utilizing spiral wound membrane module. Several 

cases are solved in which the membrane maintenance schedules are varied. 

7.2 Previous Formulations of RO Maintenance Scheduling  

The previous studies carried out on the design and scheduling of RO networks are 

limited to the determination of the optimal design and scheduling of RO networks for 

only one temperature and the impact of varying feed temperature on the optimal design 

and operation of RO systems is overlooked. Although, spiral-wound module occupies 

the largest market share (Kaghazchi et al., 2010) all the studies contributed in the 

optimal design and scheduling of RO networks (Zhu et al., 1997; See et.al., 1999; Lu et 
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al., 2006) were based on hollow fiber module and none was based on spiral-wound 

module. 

See et.al. (1999) and Lu et al. (2006) formulated the RO maintenance scheduling as 

discrete time problem. The scheduling problem was solved using M1NLP approach for 

long operation periods. Zhu et al. (1997) solved the optimal design problem of RO 

processes using MINLP approach for one year operation horizon. The numbers of 

membrane maintenance schedules are identified for the whole operation time.  

7.3 Estimation of Dynamic Seawater Temperature Profile 

The actual average seawater temperature data throughout the year in the island of Porto 

Santo, (Portugal) (Pais et al., 2007) is fitted using nonlinear regression analysis. The 

following relationships are obtained (also shown in Figure 7.1): 



































     t   if  t. t.
t

 

   if t                               .
t

 .

T

1800499700260
912

exp293240

180619
222

exp823

   (7.1)
 

t is continuous operation time (days). 

Figure 7.1 shows the actual average seawater temperature (Pais et al., 2007) and 

predicted temperatures using equation 7.1. There is a good fit of the predicted sea water 

temperature values to the experimental data. It can be seen that seawater temperature 

can drop as low as 19.5°C in January and the variation which occurred during the 

summer months reaches 6.3°C. The variable seawater temperature throughout the year 

is considered in the RO model. 
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Figure 7.1 Evolution of feed temperature in one year 

7.4 RO Network Model 

It has been suggested that the RO network could be designed by identifying the number 

of required membrane maintenance schedules (Zhu et al., 1997). This means that the 

membrane modules may be divided into a number of groups to facilitate the membrane 

cleaning. This approach is adopted in this work, a number of pressure vessels in single 

stage RO system (each pressure vessel contains a number of spiral wound modules 

connected in series) are distributed into a number of membrane groups (Ng) determined 

based on the number of inter-maintenance cycles. Each membrane group contains equal 

number of pressure vessels (np) as shown in Figure 7.2. 

After the pressurization process, the pump-exit stream is split into (Ng) streams and also 

again each stream split into (np) streams as a feed to the parallel membrane pressure 

vessels. The number of pressure vessels (np) in each group will be determined by the 

optimizer for each membrane schedule scenario. 
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Qf,j and Qf,i are feed flow rate to membrane group j and to individual pressure vessels i 

may exist in this group, respectively. 

 

Figure 7.2 One–stage RO process flow diagram. 

The total permeate flow and concentration from all spiral wound membrane modules 

can be determined by imposing volume and material balance constraints on the 

membrane network. 
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The reject streams from all membrane groups are mixed in one stream which can fed to 

the turbine for energy recovery.  

Several other constraints such as spiral wound module design constraints and product 

characteristics constraints are included in the MINLP problem to improve the 

membrane separation efficiency. 

U

ff

L

f QQQ           (7.4) 

U

ff

L

f PPP            (7.5)
 

min

p,tp,t QQ            (7.6) 



138 
 

max

p,avgp,avg CC    (7.7) 

The RO network is modelled by combining the above equations with that used in 

network description for mixers and splitters (Section 3.3.3). 

7.5 Maintenance Scheduling Formulation 

The formulation of the maintenance scheduling problem of RO network proposed by 

Zhu et al. (1997) is used in this work. The scheduling problem is formulated by 

partitioning the time horizon, t, into a number maintenance cycle/cycles (nc) of equal 

duration. The following is the description of the terms used in the scheduling problem 

formulation: 

Maintenance cycle (nc): Periodical time during which all membrane modules in all 

membrane groups are cleaned once. 

Inter-maintenance cycle (Ng): Time between two membrane cleaning events. In One 

maintenance cycle, there may be more than one inter-maintenance cycles. 

It is necessary that the number of inter-maintenance cycles equal to the number of 

membrane groups (Ng). Thus, the cleaning operation during one maintenance cycle will 

be exchanged between the membrane groups during each maintenance cycle. 

Figure 7.3 shows the time distribution of the RO membrane maintenance schedules. 

Figure 7.4 shows the flow diagrams for different maintenance schedules options. The 

membrane modules are distributed into a number of membrane groups (Ng) determined 

based on the number of inter-maintenance cycles as shown in Figure 7.4 to facilitate the 

membrane cleaning. For instance, in three inter-maintenance cycles cleaning schedule 

option (Figure 7.4c), the membrane modules divided into three groups, each membrane 

module group (side) will be cleaned at different time. 

For example, Figure 7.3f illustrates the formulation of scheduling problem for two 

maintenance cycles (nc=2) and two inter-maintenance cycles (Ng=2). All pressure 

vessels in a stage are divided into two main groups as shown in Figure 7.3b. The 
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optimal number of pressure vessels in each membrane main group is found through the 

optimization procedure. At the end of the first inter-maintenance cycle at 90 days 

membrane modules inside one which contains half of the membrane modules are 

cleaned and membranes in side two are cleaned at the end of the second inter-

maintenance cycle (after 180 days of continuous operation), thus the two sides are 

cleaned once in the first maintenance cycle but in different time. The same cleaning 

sequence will continue for the second maintenance cycle. It is assumed that no 

downtime is incurred for membrane cleaning as the time involved (a few hours) is 

negligible compared to the length of each interval (Lu et al., 2006). 

7.6 Development of Neural Network Model  

As mentioned before, there is some work carried out for determination the optimal 

design and scheduling of RO networks using MINLP technique (Zhu et al., 1997; See et 

al., 1999; Lu et al., 2006). However, in their work an exponential function was used to 

represent uniform decline in membrane permeability. Also, their work was limited for 

one temperature only. 

In this work therefore, NNs based correlations are developed to estimate the decay in 

water and salt permeability coefficients ( f

wA ; f

sA ) based on the actual RO desalination 

plant data as a function of annual seawater temperature profile and operation time.  

7.6.1 Neural Network Architecture 

The neural network topology in which the inputs and outputs of the neurons are 

organized is known as architecture of the neural network. A typical neural network 

consists of an input layer, one or more hidden layers; output layer and transfer 

functions. Multi-layer feed-forward neural network is the most common method of 

implementing NNs models as it is more able to deal effectively with the complex 

nonlinear problems (Khayet et al., 2011).  
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Figure 7.3 Scheduling of cleaning of RO membranes and corresponding flow diagram  

(maintenance /inter- maintenance):(a) 1/1; (b) 1/2; (c) 1/3; (d) 1/4; (e) 2/1; (f) 2/2; (g) 

2/3; (h) 2/4; (i) 3/1; (j) 3/2; (k) 3/3; (l) 3/4 
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Figure 7.4 RO process configurations for different maintenance schedules  

Commonly neural networks are adjusted, or trained so that a particular input leads to a 

specific target output. The connections are made between the neurons of adjacent layers 

allowing the neuron to receive a signal from a neuron in the preceding layer and allow it 

to transmit signals to neurons in the immediately succeeding layers.  

The processing neuron receives a number of inputs (ai). A weighted sum of these 

sign ls is c lcul ted, using the neu on’s  ssigned weights (wi), which is transferred by 

the transfer function to produce output signal, that is send to the neurons in the 

succeeding layer. Also a bias neuron (b) supplies an invariant output which is connected 

to each neuron in the hidden and output layers. The performance of NNs models are 

strongly influenced by the choice of the input-output function, transfer functions and the 

weights. Figure 7.5 shows the main categories of transfer functions.  
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Figure 7.5 Different Neuron transfer Functions: (a) linear (b) Sigmoid (c) hyperbolic (d) 

Gaussian (Niemi et al., 1995) 

7.6.2 Estimation of water and salt permeability coefficients using NNs 

Data from Pais et al. (2007) was used for this study that was collected from one stage 

RO desalination plant utilizing spiral wound modules. These data were selected from 

the published data presented in graphical form with time range (0-454 days) and were 

digitized to obtain coordinate values. Data for one year (365 days) only used in neural 

network model. 

The time-dependent variables such as permeate fluxes and membrane permeability are 

commonly normalized with their initial values (Song et al., 2004). Normalization on the 

experimental data is required to avoid the effects of different operating conditions. The 

experimental membrane permeability data obtained for Koch spiral wound membranes 

(Pais et al., 2007) are normalized using their initial permeability coefficients. The 

resulting normalized membrane permeability decline factors for water and salt ( f

wA ; 

f

sA ) (Table 7.1) is used to represent the membrane permeability decline for spiral  

NNs tool is used to develop two correlations for estimating water and salt permeability 

decline factors ( f

wA ; f

sA ) for a given seawater temperature profile and operation time. 
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The seasonal variation of seawater temperature is embedded in the predicted 

permeability decline factors. A four layered NNs architecture shown in Figure 7.6 is 

used in this propose. In the proposed NN based correlations, optimal network 

architecture (in terms of number of hidden layers and neurons in each layer) is chosen 

for each network by trial and error approach (multiple runs). 

Two NN models are developed to estimate water and salt permeability decline factors (

f

wA ; f

sA ), each model consists of two neurons in the input layer, two hidden layers 

containing four and two neurons respectively, and one neuron in the output layer. The 

outputs of hidden and output layers are determined as follow: 

 

Figure 7.6 Four layer neural network 
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Table 7.1 Water and salt permeability vs. seawater temperature throughout the year. 

Water permeability      Salt permeability 

Time 

(days) 

Temp 

(°C) 

(Aw) 10
7
 

(m/s bar) 
  
 

 

(Aw /Awo) 

6.06 19.28 2.31 1.000 

7.51 19.25 2.32 1.004 

10.3 19.18 2.34 1.013 

11.84 19.13 2.32 1.004 

13.76 19.13 2.31 1.000 

14.73 19.14 2.31 1.000 

15.98 19.16 2.3 0.996 

17.33 19.22 2.29 0.991 

18 19.22 2.29 0.991 

22.91 19.16 2.27 0.983 

24.16 19.16 2.29 0.991 

25.8 19.25 2.32 1.004 

27.14 19.31 2.3 0.996 

28.49 19.22 2.27 0.983 

32.63 19.5 2.32 1.004 

33.78 19.4 2.26 0.978 

35.52 19.34 2.29 0.991 

36.48 19.16 2.3 0.996 

39.94 19.22 2.26 0.978 

46.39 19.4 2.3 0.996 

48.51 19.37 2.27 0.983 

52.07 19.74 2.25 0.974 

53.52 19.77 2.24 0.970 

59.77 19.86 2.23 0.965 

60.16 19.89 2.28 0.987 

63.33 19.86 2.23 0.965 

65.84 19.8 2.26 0.978 

71.42 19.8 2.25 0.974 

76.62 19.95 2.25 0.974 

81.72 20.29 2.26 0.978 

86.82 20.41 2.28 0.987 

87.49 20.41 2.3 0.996 

91.63 20.63 2.32 1.004 

92.21 20.69 2.29 0.991 

93.84 20.78 2.31 1.000 

95.77 21.02 2.3 0.996 

cont'd next page      cont'd next page 

 

Time 

(days) 

Temp 

(°C) 

(As) 10
8
 

(m/s) 
  s
 
 

(As /Aso) 

3.37 19.41 2.62 1.000 

6.75 19.28 2.55 0.973 

9.28 19.16 2.48 0.947 

10.5 19.16 2.46 0.939 

16.12 19.13 2.42 0.924 

20.06 19.19 2.35 0.897 

24.46 19.16 2.29 0.874 

25.3 19.21 2.48 0.947 

26.99 19.25 2.67 1.019 

27.74 19.22 2.59 0.989 

29.61 19.22 2.75 1.050 

31.3 19.56 2.9 1.107 

32.05 19.53 2.82 1.076 

33.74 19.47 2.69 1.027 

38.42 19.16 2.74 1.046 

39.83 19.22 2.82 1.076 

40.39 19.22 2.9 1.107 

41.7 19.22 2.98 1.137 

44.33 19.4 3.05 1.164 

45.64 19.3 3.01 1.149 

46.58 19.4 2.93 1.118 

59.04 19.86 2.69 1.027 

62.42 19.86 2.62 1.000 

63.73 19.84 2.74 1.046 

64.1 19.8 2.72 1.038 

66.73 19.77 2.79 1.065 

69.16 19.77 2.7 1.031 

71.69 19.8 2.63 1.004 

72.82 19.86 2.62 1.000 

79.28 20.2 2.64 1.008 

80.97 20.29 2.63 1.004 

85.19 20.35 2.6 0.992 

87.72 20.41 2.52 0.962 

88.94 20.47 2.78 1.061 

90.62 20.63 2.7 1.031 

92.97 20.69 2.67 1.019 

 



145 
 

Table 7.1 Water and salt permeability vs. seawater temperature throughout the year (cont'd) 

Water permeability      Salt permeability 

Time 

(days) 

Temp 

(°C) 

(Aw) 10
7
 

(m/s bar) 
  
 

 

(Aw /Awo) 

96.15 21.18 2.32 1.004 

98.18 21.27 2.29 0.991 

102.31 21.42 2.33 1.009 

104.62 21.48 2.29 0.991 

106.74 21.6 2.29 0.991 

108.96 21.69 2.31 1.000 

111.17 21.85 2.28 0.987 

112.81 21.97 2.33 1.009 

115.6 22.18 2.34 1.013 

116.75 22.21 2.29 0.991 

118.68 22.46 2.32 1.004 

120.12 22.64 2.31 1.000 

121.28 22.76 2.31 1.000 

125.13 22.76 2.31 1.000 

128.21 22.85 2.31 1.000 

132.06 22.95 2.37 1.026 

134.85 23.01 2.34 1.013 

136.87 23.13 2.35 1.017 

138.12 23.16 2.38 1.030 

143.03 23.4 2.38 1.030 

148.8 23.37 2.38 1.030 

154.67 23.59 2.36 1.022 

160.74 23.95 2.36 1.022 

166.51 24.23 2.37 1.026 

171.9 24.23 2.38 1.030 

177.49 24.56 2.39 1.035 

183.45 24.53 2.4 1.039 

189.81 24.56 2.41 1.043 

196.16 24.81 2.4 1.039 

202.51 24.99 2.4 1.039 

208.67 24.78 2.39 1.035 

213.77 24.56 2.38 1.030 

217.04 24.29 2.36 1.022 

219.93 24.26 2.34 1.013 

224.74 24.14 2.33 1.009 

226.09 24.14 2.37 1.026 

cont'd next page      cont'd next page 
 

 

Time 

(days) 

Temp 

(°C) 

(As) 10
8
 

(m/s) 
 s
 
 

(As /Aso) 

93.9 20.75 2.82 1.076 

103.9 21.27 2.98 1.143 

105.9 21.54 3.06 1.168 

107.68 21.63 2.98 1.137 

111.34 21.85 2.92 1.115 

112.18 21.88 2.84 1.084 

122.3 22.76 3.23 1.233 

126.61 22.76 3.16 1.206 

130.83 22.95 3.24 1.237 

137.76 23.13 3.23 1.233 

138.33 23.16 3.24 1.237 

140.86 23.19 3.09 1.179 

142.64 23.31 3.01 1.149 

143.86 23.4 3.21 1.225 

147.98 23.37 3.15 1.202 

149.39 23.37 3.01 1.149 

151.82 23.47 3.18 1.214 

152.01 23.56 3.26 1.244 

153.51 23.71 3.5 1.336 

159.51 23.71 3.46 1.321 

166.16 24.23 3.45 1.317 

171.22 24.29 3.28 1.252 

174.5 24.5 3.43 1.309 

177.13 24.78 3.51 1.340 

183.4 24.53 3.48 1.328 

185.84 24.5 3.45 1.317 

188.09 24.47 3.37 1.286 

189.31 24.56 3.44 1.313 

191.28 24.9 3.21 1.225 

194.74 24.81 3.28 1.252 

195.21 24.81 3.44 1.313 

205.71 24.96 3.47 1.324 

226.14 24.14 3.29 1.256 

227.64 24.05 3.17 1.210 

228.11 23.86 3.22 1.229 

229.33 23.71 3.11 1.187 
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Table 7.1 Water and salt permeability vs. seawater temperature throughout the year (cont'd) 

Water permeability      Salt permeability 

Time 

(days) 

Temp 

(°C) 

(Aw) 10
7
 

(m/s bar) 

  
 

 

(Aw /Awo) 

228.98 23.86 2.34 1.013 

233.02 23.71 2.37 1.026 

235.62 23.47 2.33 1.009 

239.95 23.22 2.37 1.026 

242.45 23.1 2.33 1.009 

247.56 22.92 2.32 1.004 

252.08 22.7 2.31 0.996 

256.7 22.31 2.28 0.987 

261.9 22 2.27 0.983 

267.67 21.6 2.25 0.974 

273.35 21.08 2.24 0.970 

281.53 20.96 2.21 0.957 

283.55 20.84 2.21 0.957 

285 20.75 2.19 0.948 

287.88 20.69 2.19 0.948 

288.27 20.69 2.17 0.939 

290 20.5 2.21 0.957 

293.56 20.44 2.17 0.939 

296.55 20.32 2.2 0.952 

297.03 20.32 2.17 0.939 

298.47 20.2 2.19 0.948 

300.3 20.17 2.18 0.944 

307.13 19.83 2.17 0.939 

310.21 19.86 2.17 0.939 

313.78 19.74 2.17 0.939 

317.14 19.65 2.17 0.939 

321.57 19.59 2.19 0.948 

325.52 19.59 2.2 0.952 

331.49 19.71 2.21 0.957 

337.93 19.68 2.21 0.957 

344.86 19.65 2.21 0.957 

347.27 19.31 2.2 0.952 

351.6 19.25 2.21 0.957 

356.7 19.28 2.2 0.952 

362.96 19.53 2.19 0.948 

363.54 19.56 2.19 0.948 

 

Note: Training data in plain, Validation data in italic, Test data in bold 

Time 

(days) 

Temp 

(°C) 

(As) 10
8
 

(m/s) 
 s
 
 

(As /Aso) 

235.23 23.47 3.08 1.176 

237.01 23.47 3.09 1.179 

239.26 23.22 3.01 1.149 

240.85 23.19 2.99 1.141 

245.63 22.98 2.93 1.118 

245.63 22.98 2.93 1.118 

249.48 22.82 3.05 1.164 

278.43 20.96 2.62 1.000 

287.71 20.69 2.71 1.034 

243.2 23.04 2.95 1.126 

291.27 20.5 2.78 1.061 

294.08 20.35 2.72 1.038 

297.18 20.23 2.74 1.046 

299.24 20.2 2.7 1.031 

300.36 20.17 2.7 1.031 

301.3 20.02 2.68 1.023 

304.86 19.9 2.68 1.023 

305.33 19.83 2.64 1.008 

307.58 19.83 2.57 0.981 

310.95 19.86 2.54 0.969 

314.14 19.71 2.63 1.004 

315.55 19.68 2.71 1.034 

317.7 19.65 2.54 0.969 

325.39 19.59 2.45 0.935 

332.13 19.71 2.45 0.935 

335.7 19.71 2.45 0.935 

338.88 19.71 2.44 0.931 

342.44 19.65 2.45 0.935 

345.35 19.47 2.42 0.924 

355.47 19.25 2.46 0.939 

360.16 19.44 2.51 0.958 

365.31 19.56 2.5 0.954 
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Where 3

ka  is given as:  
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In general for the 3
rd

 layer, the value of j
th

 neuron can be given as: 
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Where 2

ka is determined as: 
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In general for the 2
nd

 layer, the value of j
th

 neuron can be given as: 
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The transfer functions describes the relationship between output layer and input layer of 

each neuron are hyperbolic tangent function ( 2

jf , 3

jf =tanh) between the input and the 

first hidden and between the two hidden layers. While the linear function ( 4

jf =1) is used 

between the last hidden layer and the output layer.  

The data collected from the field are rarely fed to the NNs. The raw data are normally 

scaled into an appropriate range (usually between zero and one or one and negative one) 

(Tanvir and Mujtaba, 2006). The data in Table 7.1 are scaled before used as input data. 

The relations used in data scale up are as follow: 

Time 

std

mean
scal

time

timetime
time




        

(7.13) 

Temperature  
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Salt permeability   
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(7.16) 

Where the subscripts mean, std and scal refer to average, standard deviation and scale up 

variables respectively.  

Two NNs models are solved in order to determine correlations which can be used to 

calculate water and salt permeability decline factors ( f

wA ; f

sA ). The output values from 

the NNs are rescaled to find the value in original units. The experimental data was 

divided into three sets a set of 50% of the data are selected for training , 25 %  of the 

data for validation and last set (25 %) is selected for testing. 

The back propagation algorithm (Tanvir and Mujtaba, 2006) is used for training a 

multilayer feed forward neural network. The Neural Network Toolbox available in 

MATLAB software is implemented in this study to design and train the data. 

The value of neurons (aj) at the first, second or third layer can be expressed by the 

following equations: 
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Water and salt permeability decline factors f

wscal
A and f

sscal
A  can be obtained from the 

output layer (
4

1a ) which produces the final results of processing by the NNs model as: 

)bawa(wa 4

1

3

2

4

12

3

1

4

11

4

1 tanh 
       

(7.23) 

The results of two NNs models of f

wscal
A and f

sscal
A  

are shown in Table 7.2 and Table 7.3. 

The weights and bias between the input layer, hidden and the output layer are included 

in the results. 

The permeability decay factors predicted by the NNs are plotted versus their 

corresponding experimental values in Figures 7.7 and 7.8. The results illustrate good 

agreement between the predicted and experimental data. Also, it can be seen from the 

Figures 7.9, 7.10 that the experimental data of water and salt permeability decay factors 

are accurately predicted by the NNs model.  

7.7 Fouling Model Formulation 

Both fresh water production and salt rejection are declined as consequences of 

formation of fouling layer on the membrane surface. Determination of the optimum 

maintenance schedule is essential for the optimal RO design and operation where the 

membrane can be chemically or mechanically cleaned and consequently, membrane 

performance restored. 

See et al. (1999) and Zhu et al. (1997) assumed an exponential decay in water 

permeability over time and the impact of fouling on salt permeability was ignored. In 

this work, the fouling model that described by Lu et al. (2006) and taking into account 

the impact of fouling on both water and salt permeability coefficients are combined with 

NNs based correlations for water and salt permeability decay factors. The permeability 

coefficients are given as follows: 

)(t)Atθ(AA f

wow w 1211

        

(7.24) 

)(t)Atθ(AA f

sos s 1221

        

(7.25) 
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Where
woA  and 

soA denoted to initial water and salt permeability coefficients, 

respectively. f

w
A  and f

s
A

 
are water and salt membrane permeability decline factors, 

respectively. t1 denotes to the length of period since the last cleaning was performed in 

which the operation time for the cleaned membrane modules will restart at the begging 

of each cleaning event. The t2 represents the continuous operation time. The variation in 

water and salt membrane permeability resulting from the difference between actual 

seawater temperature (Figure 6.2) and seawater temperature at t1 time domain is 

considered in the model. 

Table 7.2 NNs parameters for estimation water permeability factor 

Weights  bias   Transfer 

function  

2
nd

 layer      

2

11
w =1.15622 2

12
w =-1.72079

 
2

1
b =3.09386

 
  tanh 

2

21
w =-0.05138 2

22
w =0.20847 2

2
b =0.150153   tanh 

2

31
w =2.04809 2

32
w =-3.43108 2

3
b =-3.30951   tanh 

2

41
w =1.42777 2

42w =-0.96244 
2

4
b =-1.61448   tanh 

3
rd

 layer bias  
3

11
w =1.76307 3

12
w =-0.95896 3

13
w = 2.15917 3

14
w =2.20172 3

1b =-3.03812 tanh 

3

21w =0.28681 3

22w =1.96992 
3

23w =-0.37512 3

24w =0.67162 3

2b =0.29936 tanh 

4
th

 layer     bias   
4

11
w =0.58228 4

12
w =3.76995 4

1
b =-0.13469  1 

time mean time std T mean Tstd f

meanw
A  f

stdw
A  

167.74 109.41 21.19 1.82 0.99 0.03 
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Table 7.3 NNs parameters for estimation salt permeability factor 

Weights 

2
nd

 layer  

  bias   Transfer 

function  
2

11
w =1.777414 2

12
w =-2.29036 2

1
b =-4.52089   tanh 

2

21
w =0.35902 2

22
w =-2.04543 2

2
b =-1.60477   tanh 

2

31
w =1.059634 2

32
w =-2.37573 2

3
b =3.447281   tanh 

2

41
w =-4.97533 2

42w =-5.77942 
2

4
b =-14.6048   tanh 

3
rd

 layer  

 bias  

3

11
w =-1.39766 3

12
w =3.38951 3

13
w =3.07388 3

14
w =1.95439 3

1b =0.80823 tanh 

3

21w =-1.84938 3

22w =1.33817 
3

23w =-0.16574 3

24w =-4.00229 3

2b =-6.24591 tanh 

4
th

 layer 

   bias   
4

11
w =-1.34286 4

12
w =2.575753 4

1
b =2.617429       1 

time mean time std T mean Tstd f

s
mean

A  f

stds
A  

177.46 104.73 21.53 2.03 1.108 0.125 

 

 

 

Figure 7.7 Actual water permeability decline factor and the predicted by NNs  
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Figure 7.8 Actual salt permeability decline factor and the predicted by NNs  
 

 

Figure 7.9 Actual and predicted water permeability decay factor 

 

Figure 7.10 Actual and predicted salt permeability decay factor 
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than initial value and the initial permeability level could not be recovered completely. 

Therefore, two constants 1θ  and 2θ  are added to the fouling model to represent the 

membrane degradation extent for water and salt, respectively. 

Temperature variation has a significant impact on the RO membrane fouling. However, 

it is rarely included in the studies related to the design and operation of RO systems 

(Mo et al., 2008). Jin et al. (2009) pointed out that higher temperature enhances the 

performance of filtration process by increasing salt diffusivities and diffusion 

coefficients and, as a result, more salt in permeate and higher permeate flux. Also, when 

feed temperature increases salt and water membrane permeability also increased. 

However, higher temperature can also increase the rate of membrane fouling as a 

consequence of the increase of the tendency of aggregation or adsorption to the 

membrane surface. Therefore, the temperature dependence of water and salt 

permeability are empirically included in the NNs model. Note, all physical properties 

and osmotic pressure are function of temperature. 

7.8 MINLP optimization formulation 

An MINLP optimization framework is developed to determine the optimal design of 

RO network scheduling based on the superstructure shown in Figure 7.2. 

For a given maintenance and inter-maintenance cycles, the RO design and operation 

variables are to be optimized in order to maintain the required fresh water demand and 

including the sea water temperature variation throughout the year. 

A mathematical description of RO network and membrane fouling (equations 7.24 and 

7.25) are included in the MINLP formulation. The membrane pressure vessels in one-

stage RO network (Figure 7.2) are distributed into a number membrane groups (Ng) 

which are determined prior to optimization based on the number of inter-maintenance 

cycles. It is to be noted that all membrane groups (Ng) contains equal number of 

pressure vessels. 

http://en.wikipedia.org/wiki/Temperature


154 
 

For predetermined cleaning schedules, the design of RO networks problem is optimized 

and the number of pressure vessel (np) in each membrane group is found. For each 

selected schedule (nc,Ng), the corresponding decision variables are fixed. For each 

cleaning schedule, the optimal design and operation are obtained by solving the MINLP 

problem. 

The number of membrane groups shown in the superstructure illustration (Figure 7.2) is 

identified for each maintenance schedule scenario. Discrete variables are used to 

express discrete decisions such as the number of pressure vessels in each membrane 

group (np) and continuous variables are defined for the optimization of operation 

variables.  

The MINLP problem has the form: 

Given: Seawater feed source with variable temperature; design 

specifications of each membrane element; fixed fresh water 

demand; maximum salt concentration in fresh water; number of 

maintenance and inter-maintenance cycles; number of membrane 

groups 

Optimize:  The number of parallel pressure vessels in each membrane group; 

operating conditions (feed flow rate, feed pressure). 

So as to minimize: Total annualized cost of fresh water 

Subject to: Process constraints: Equality constraints such as process model 

and inequality constraints such as optimization variables bounds. 

Mathematically the optimization problem can be described as: 

Minimize    TAC 

Pf, Qf, np 

Subject to: Equality constraints  Model equations 

     Product demand and product quality 
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  Inequality constraints   U

ff

L

f PPP  ; U

ff

L

f QQQ   

Pf, Qf are continuous variables representing feed pressure, feed flow. (np) is an integer 

parameters representing number of pressure vessels in each membrane group (Ng). The 

subscripts U and L refer to the upper and lower bounds of the variables, respectively.  

7.8.1 The Objective Function 

The objective function employed in the MINLP optimization model is defined to 

minimizing the total annualized cost which is the summation of the annualized capital 

cost and the annual operating cost. The annualized investment cost is composed into 

many components including the costs of pre-treatment unit Cwip, membrane module 

Cme, booster pumps  Cpu and ERD CERD. The annual operating cost consists of net 

pumping cost OCpu, membrane replacement cost OCme, chemical treatment cost OCch 

and annual spares cost OCsc. The cost of membrane module cleaning OCc is 

incorporated in the objective function. The cost model equations in section 3.3.4 are 

used to represent the different cost components. 

cscchmepumeERDpuWPT OCOCOCOCOC..)CCC(CTAC  0804111
 
(7.26) 

The membrane cleaning cost is expresses as:  


 


nc

j

Ng

i

c npOC
1 1

200200

   

ncj ,
 

Ngi
   

(7.27) 

Where (nc) and (Ng) are the number of maintenance and inter-maintenance cycles 

respectively. The membrane cleaning cost consists of variable cost of $200 for cleaning 

of each pressure vessel, and $200 as a fixed cleaning cost of for downtime during 

cleaning operation (Lu et al., 2006).  

The fixed costs of the pump and the turbine are calculated from the maximum power 

requirements while the pre-treatment unit cost was calculated based on the maximum 

feed flow rate. 
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This objective function allows economic comparison of the candidate configuration of 

the optimum RO process meanwhile satisfying the operation and design restrictions by 

adjusting the design and operation variables. 

7.9 Case study 

The goal is to determine the optimal arrangement and operating conditions for the RO 

system minimizing the cost of the fresh water at different predetermined cleaning 

schedules. The annual temperature variation and its subsequent effect on the membrane 

permeability are considered in this study.  

The MINLP design strategy is used to derive optimal design and operation of RO 

network. A number of membrane modules are divided into groups as shown in Figure 

7.2. Each group features an undefined number of pressure vessels, which are arranged in 

parallel. The optimization was conducted for a single stage configuration with turbine as 

energy recovery device using spiral wound RO modules. The optimal structural and 

operational parameters of RO process for each membrane cleaning schedule are found 

at given water demand (100 m
3
/h) and maximum salt concentration in the desalinated 

water (500 ppm). 

The characteristics of RO spiral wound membrane (SW30XLE-400) are listed in Table 

5.3. Each pressure vessel is assumed to house five spiral wound elements. The 

parameters used in optimization calculation are listed in Table 7.4. 

7.10 Optimal Design and Scheduling Results 

Table 7.5 summarizes the process selection for the optimum RO arrangement along 

with the corresponding membrane maintenance schedules. Cost components displayed 

in the Table include fixed and variables costs. For more clarification of the cost trend 

the total cost of fresh water production are also shown in Figure 7.11. A full comparison 

with the detailed MINLP optimization results for different membrane cleaning 

schedules are given in Table 7.6.  
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Table 7.4 Input data for MINLP optimization 

 Value Ref. 

Feed pump efficiency (%) 80  

Feed salinity (ppm) 35,000  

Turbine efficiency (%) 80 Marcovecchio et al., (2005) 

Load factor 0.9 Marcovecchio et al., (2005) 

Pressure vessel unit cost ($) 1000 Lu et al., 2007 

Seawater module cost ($) 1200 Lu et al., 2007 

Electricity unit cost ($/kWh) 0.08 Lu et al., 2006 

Maximum operating pressure (bar) 83 Lu et al., 2007 

Module Feed flow range (m
3
/h) 0.8-16 Lu et al., 2007 

Coefficient in Equation (7.24) 1θ  1.67×10
-4

 Lu et al., 2006 

Coefficient in Equation (7.25) 2θ  , 1.67×10
-4

 Lu et al., 2006 

From Table 7.5 and Figure 7.11, the optimum maintenance schedule of the RO network 

which has the lowest cost is found to have one maintenance cycle and two inter-

maintenance cycles. The results specify that half of the membrane modules (14 

modules) are to be cleaned in the first six months and the remaining half at the end of 

the year. The optimum maintenance schedules cost (444.8 k$/year) is only less by 1.8 % 

compared to the next optimal schedule one maintenance cycle and three inter- 

maintenance cycles option (452.9 k$/y). This shows the high precision trade-off 

between the design and operation variables where the optimizer efficiently utilizes the 

advantages of cleaning process in the reduction of the fixed costs of the membrane 

modules for one maintenance cycle and three inter- maintenance cycles option but with 

notable increase in the pumping cost. 

Cost associated with pump energy consumption for the optimum membrane schedule 

(one maintenance cycle and two inter- maintenance cycles) shown in Table 7.5 is the 

heights share where it accounts for 38.6% of the total product cost. This percentage is 

very close to that found in the literature (Geraldes, et al., 2005). 
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Three maintenance cycle and one inter-maintenance cycle scheduling option is proven 

to be the most expensive option (476.8 k$/year) with the highest variable cost (TOC) 

about 250.7 k$/year (Table 7.5). The pumping cost is dominated by the duty required to 

pressurise the feed to 75 bar (Table 7.6). And consequently, a relatively low salt 

concentration in the final permeate stream is reported for all inter- maintenance cycles 

in this scheduling option.  

Table 7.5 Cost breakdown for optimal RO systems at different maintenance schedules 

in (k$/year) 

Maint. 

cycles 

Inter-

Maint. 

Cycles 

CWIP Cme Cpu CERD OCpu TOC TCC TAC 

1 

1 89.3 12.6 78.4 32.9 188.7 248.8 213.2 462.0 

2 88.0 22.1 72.9 31.4 169.0 228.2 216.6 444.8 

3 88.3 16.6 76.1 31.7 178.6 239.0 213.8 452.9 

4 
88.3 15.8 77.1 31.6 182.0 240.9 212.8 453.7 

2 

1 90.1 19.7 73.9 31.9 171.5 232.9 235.3 468.3 

2 89.4 17.4 75.5 31.7 176.2 241.5 214.0 455.8 

3 89.4 17.4 75.5 31.7 176.2 241.5 214.0 455.8 

4 88.6 15.8 76.9 31.7 180.7 244.5 213.0 457.5 

3 

1 88.4 15.0 76.3 31.5 183.2 250.7 226.0 476.8 

2 89.4 17.4 75.6 31.8 175.9 246.1 214.2 460.2 

3 95.0 19.0 74.8 34.1 164.5 236.6 222.9 459.5 

4 88.9 15.8 76.6 31.7 180.0 248.7 213.0 461.8 
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For all schedules options shown in Table 7.5, the pumping cost represents the major 

part of fresh water cost as it is comprise between 36% and 40 % of the total production 

cost. Also, there is little effect on the fixed cost components (pretreatment, turbine and 

pump costs) and most of the differences observed were in membrane modules cost 

which is clearly linked to the pumping cost. The pumping cost increases when the 

membrane modules cost reduces. This trade-off exists due to increase of the operating 

pressure to maintain the permeate rate steady when lower number of membrane 

modules is identified by the optimizer. 

It can be seen from Figure 7.11 that three maintenance cycles scheduling option has 

higher fresh water cost for all inter- maintenance cycles compared with that for one and 

two maintenance cycles. This may attributed to the high frequency of cleaning 

operations required. 

 
Figure 7.11 Total production cost of the optimal maintenance schedules 

Figure 7.12 shows the optimum feed pressure trajectory (one maintenance cycle and 

two inter-maintenance cycles.) where the feed pressure is varied between 53 and 68 bar 

depending on the membrane fouling conditions. At the start of the operation all 

membranes are assumed to be new, the feed pressure is maintained at lower value (52 

bar). Due to fouling effect, the feed pressure is gradually increased where it reached 68 

bar at the end of the first inter-maintenance period. It was assumed that the membrane 
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permeability cannot be restored completely after cleaning, therefore, after membrane 

cleaning at the end of first inter-maintenance cycle, the feed pressure is sharply 

decreased but to a level higher the initial (54 bar). 

In order to display the effect of the annual variation of seawater temperature on RO 

process operation, Figure 7.13 shows the optimal operation policy for the feed pressure 

and the resulting permeate salt concentration profile for three maintenance cycle and 

three inter-maintenance cycles scheduling option. Increases in feed temperature results 

in increase of water flux but also increase in permeate salinity (Nisan et al., 2005). The 

impact of these effects on the RO operation is obviously revealed in Figure 7.13. The 

permeate salinity follows path similar to that for seawater temperature profile (Figure 

7.1). Due to the frequent cleaning processes in this scheduling option, the water quality 

constraint is easily realized for all temperatures. Consequently, the feed pressure trend 

in Figure 7.13 is consistent with the seawater temperature profile in Figure 7.1. Taking 

the advantages of the high temperature (higher water flux), feed pressure tends to 

decline in the high temperature periods. The higher temperature operation compensates 

the reduction in fresh water production resulting from lower feed pressure as the fresh 

water salinity constraint not violated. 

 
Figure 7.12 Optimal feed pressure profile for one maintenance cycle and two inter-

maintenance cycles 
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Table 7.6 MINLP results for spiral wound membrane scheduling problem 

 

Maintenance  

Cycle -inter-

Maintenance  

cycle 

 

N

o. 

of 

P

V 

Inter-maintenance cycles  

                          1                     .                          2                           .                           3                     .                           4                     . 

Feed pressure 

(bar). 

Permeate conc. 

(ppm). 

Feed pressure 

(bar). 

Permeate conc. 

(ppm). 

Feed pressure 

(bar). 

Permeate conc. 

(ppm). 

Feed pressure 

(bar). 

Permeate conc. 

(ppm). 

start  end  start  end  start  end  start  end  start  end  start  end  start  end  start  end  

1-1 16 70 76 135 500             

1-2 28 52 68 176 500 54 69 448 344         

1-3 21 59 74 137 237 57 71 245 476 57 74 272 260     

1-4 20 63 74 152 229 63 74 214 418 62 74 339 406 64 76 235 246 

2-1 25 55 70 157 445 52 70 352 304         

2-2 22 57 72 141 248 56 72 195 428 55 71 314 477 58 74 209 261 

2-3 24 55 67 149 237 55 66 167 288 54 66 267 433 53 66 332 500 

2-4 20 64 74 151 218 64 74 165 234 63 74 212 338 62 73 289 423 

3-1 17 62 75 127 251 62 75 127 252 72 75 128 251     

3-2 22 57 72 140 246 57 72 157 312 56 71 247 454 55 71 314 500 

3-3 24 55 67 151 240 55 67 163 251 54 66 198 341 54 66 272 437 

3-4 20 64 74 153 209 64 74 165 223 64 74 172 244 63 73 217 312 

cont'd next page 
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Table 7.6 MINLP results for spiral wound membrane scheduling problem (cont'd) 

 

Cycle -

inter-cycle 

 

Inter-maintenance cycles  

                          5                     .                           6                     .                           7                     .                           8                     . 

Feed pressure     

(bar). 

Permeate conc. 

(ppm). 

Feed pressure     

(bar). 

Permeate conc. 

(ppm). 

Feed pressure 

(bar). 

Permeate conc. 

(ppm). 

Feed pressure     

(bar). 

Permeate conc. 

(ppm). 

start  end  start  end  start  end  start  end  start  end  start  end  start  end  start  end  

2-3  54 67 297 390 56 70 185 269         

2-4  62 73 337 463 62 74 321 397 63 75 238 273 66 76 175 243 

3-2  56 73 274 332 59 74 169 244         

3-3  53 66 315 500 53 66 338 486 
54 67 300 397 55 68 219 280 

3-4  63 73 276 384 62 73 311 429 62 73 342 456 62 73 339 443 

cont'd 

Table 7.6 MINLP results for spiral wound membrane scheduling problem (cont'd) 

 

Cycle -

inter-cycle 

 

Inter-maintenance cycles  

                          9                     .                           10                     .                           11                     .                           12                     . 

Feed pressure     

(bar). 

Permeate conc. 

(ppm). 

Feed pressure     

(bar). 

Permeate conc. 

(ppm). 

Feed pressure 

(bar). 

Permeate conc. 

(ppm). 

Feed pressure     

(bar). 

Permeate conc. 

(ppm). 

start  end  start  end  start  end  start  end  start  end  start  end  start  end  start  end  

3-3  56 70 173 271             

3-4  
62` 73 304 385 64 74 245 296 65 76 178 236 65 75 174 238 
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Figure 7.13 Optimal trajectory of feed pressure and permeate salinity for three 

maintenance cycle and three inter-maintenance cycles 

7.11 Conclusion 

The present work addresses the optimal design and scheduling of one-stage RO network 

using gPROMS optimization tool.  

NNs based correlation was developed for estimating the permeability decline factors 

over one year of operation. The NNs model predictions are in good agreement with the 

experimental data. Then, the predicted permeability decline factors are embedded within 

the optimization problem formulation.  

The design and scheduling of RO network has been formulated as an MINLP problem 

using spiral wound modules. The scheduling problem is formulated based on systematic 

technique involves selecting the number of membrane maintenance and inter-

maintenance cycles and consequently the corresponding decision variables are fixed for 

each selected schedule.  

The outcomes obtained by solving the MINLP problem showed that a one maintenance 

cycle with two inter-maintenance cycles scheduling option provides lower total 

production cost than other scheduling alternatives. The optimum maintenance schedules 
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cost is only less by 1.8 % compared to the next optimal scheduling option (one 

maintenance cycle and three inter- maintenance cycles). This infinitesimal difference in 

the fresh water cost is debatable whether the sensitivity study of cost parameters such as 

cleaning cost is needed. 

However, the results obtained here are for one-stage RO process, this work can be 

extended for multi-stage RO process provided that long-term performance data for multi 

stage process is available. 
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Chapter 8 

Brackish Water RO Process: Simulation and Optimization 

8.1 Introduction 

The RO process performance can be improved by enhancing the efficiency of the 

equipment used in the RO process (pre-treatment, pumps, energy recovery devices, high 

permeability membranes, etc.). The improvement of the RO process network design and 

adapting the optimal operating conditions to this network is the decisive task of RO 

process manufactures. 

This chapter focuses on steady state performance predictions of the brackish water RO 

desalination plant based on combining Kimura–Sourirajan model with film theory 

approach, the simulation results were compared with operational data. The sensitivity of 

different operating and design parameters on RO process performance were investigated 

via the simulation program. 

The RO process performance was enhanced by implementing an NLP optimization 

framework to minimize specific energy consumption. The optimal operating variable 

and design parameters are determined by solving the optimization problem. 

In chapter six, actual membrane permeability data representing the effect of membrane 

fouling in one-stage RO process is considered. While in this chapter, Due to the absence 

of detailed actual data of multi-stage RO process, an exponential decay in membrane 

permeability over time from literature is assumed to represent the fouling in entire RO 

system and the influence of fouling on the individual RO stages is rearranged. 

The synthesis of RO networks for water desalination is also investigated by state space 

approach via a superstructure problem (chapter 3). The fouling is assumed to have 

different values depending on the stage position in the processing array. The optimal 
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designs of brackish water RO network based desalination using MINLP technique are 

obtained utilizing spiral wound membrane element. 

8.2 Fouling Description 

Fouling and scaling have significant impact on the design of RO process, and lead to 

dynamic adjustment of operation parameters if certain fresh water demand is to be met. 

In spite of this, most previous models of RO systems do not take in account the effect of 

fouling (Oh et al., 2009). In this work, an exponential function was used to represent the 

decline in water permeability coefficient. The water permeability is approximated as 

follows (Al-Bastaki and Abbas, 2004). 

Aw=Awo F          (8.1) 

Where Awo is the initial water permeability, F is the fouling factor representing the 

decay in permeability coefficient caused by the effect of fouling and scaling. Fouling 

factor (F) for brackish water RO plant described in (Abbas, 2005) is given (Al-Bastaki 

and Abbas, 2004) as: 













1201

79
exp680

.t
.F

        
(8.2) 

Note, under fouling condition, water flux given by equation (3.1) will become: 

)(  PAj fo

ww          
(8.3) 

This equation clearly shows the effect of fouling on the water flux. Note, water flux 

may also affect the rate of fouling build up on the membrane surface which requires a 

detailed hydrodynamic model of the membrane channels which is beyond the scope of 

this work. Note the purpose of this study is to analyse the effect of fouling on a given 

membrane and how it affects the network design and operation of the RO system. This 

work does not include study on how the fouling would affect the design of the 

membrane itself. 
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In the past, for simulation and optimization purposes the effect of fouling on RO unit 

(which has more than one stage) is assumed to be equal, i.e. the decrease in water 

permeability with time has the same rate for all stages. And the prediction of water flux 

through membrane surface (which is function of fouling) has been carried out using 

fixed permeability decline rate for all stages. Many researchers showed that the fouling 

level in different stages of RO process varies and depends on the stage location in the 

process layout (Alqahtany and Albastaki., 1995; See et al., 1999; Huiting, et al., 2001; 

Karime et al., 2008; Vrouwenvelder et al., 2009b) as discussed in Section 2.3.3.2. 

The fouling effect for the two-stage RO is incorporated within the simulation model. 

The fouling factor F is assumed to have different values depending on the stage position 

in the processing array. For two stages RO process, the fouling factor for the first stage 

at any time F1 is approximate as: 

F
1
=F S Xf1          (8.4) 

And the fouling factor for second stage F2  as: 

F
2
=F S (1-Xf1)          (8.5) 

Where Xf1 is the fraction of fouling level in the first stage. For RO process with two 

stages, if fouling factor is assumed equal in all stages (average) then. Xf1=0.5. 

8.3 Model Validation  

In this work, RO based desalination process is considered using three stages unit 

described by (Abbas, 2005) as shown in Figure 8.1. The plant nominal operating and 

design parameters are given in Table 8.1. Commercial Film Tec spiral wound RO 

membrane elements have been used in the simulation. Three membrane elements in 

each pressure vessel are connected in series; each element is modelled by a set of non-

linear algebraic equations using solution-diffusion model, thin film theory, total and salt 

balances, etc. (Section 3.2.1.1). The membrane element model is solved sequentially. 
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The output of first element in the pressure vessel becomes the input for the second 

element and the same for the pressure vessels in different stages.  

 

Figure 8.1 Schematic diagram of RO process (Abbas, 2005) 

Table 8.1 Membrane parameters and operating conditions 

Parameter Value 

Feed conditions 

Qf (m
3
/h)      20.4 

Cf (kg/m
3
)     2.54  

Pf (bar)      12.2 

To(°C)      28.8 

Membrane and spacer characteristics 

Aw(m/bar s)     9.39×10
-7 

As(m/ s)     5.65×10
-8 

 

Lf (m)      2.77×10
-3

 

L (m)      1.0 

w (m)      37.2 

A (m
2
)      37.2 

hsp(m)      5.93×10
-4 

dh(m)      8.126×10
-4

 

 

The results using the developed model are validated by comparing the results of Abbas 

(2005) under identical conditions. As shown in Table 8.2, the model yielded an overall 

water recovery of 58.0 % and salt rejection of 98.6%. The relative deviations of the 

simulated results compared to the results of Abbas (2005) are 0.71% and 1.02% for 

water recovery and salt rejection, respectively. 

Further validation of the model is performed by comparing the water recovery and salt 

rejection at different operating conditions with those predicted by Abbas (2005) (Table 

8.3 and Table 8.4). The predictions of this model have good agreement with those 
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reported by Abbas (2005). The model gives data that have overall absolute average 

deviation for water recovery 1.45% and 0.41% for salt rejection. 

Table 8.2 Comparison operational data with Abbas data and this work results 

 Plant Data 
Abbas 

(2005) 
     % Dev. 

This 

work 
  % Dev. 

Water recovery % 58.82 58.6 0.37 58.0 0.71 

Salt rejection % 97.6 98.9 1.33 98.6 1.02 

 

Table 8.3 Comparison of data predicted by Abbas and this work 

(Feed concentration 2540 ppm, Feed flow 20.4 m
3
/h) 

Pressure 

(bar) 

 Water Recovery %  Salt Rejection % 

 
Abbas  

(2005) 

This 

work 
% Dev.  

Abbas  

(2005) 

This 

work 
% Dev.  

10  44.10 45.32 2.72  98.75 98.4 0.35 

11  50.7 51.64 1.77  98.83 98.48 0.35 

12  57.00 57.70 1.22  98.87 98.5 0.37 

13  63.22 63.51 0.47  98.867 98.515 0.35 

14  68.34 68.96 0.96  98.83 98.47 0.36 

15  74.20 73.9 0.40  98.82 98.39 0.43 

 

Table 8.4 Compression of data predicted by Abbas and this work 

(Feed concentration 2540 ppm, Feed pressure12.2 bar) 

Feed 

flow 

(m
3
/h) 

 Water Recovery %  Salt Rejection % 

 
Abbas  

(2005) 

This 

work 
% Dev.  

Abbas  

(2005) 

This 

work 
% Dev.  

15  74.2 73.3 1.21  98.45 97.76 0.70 

16  72 70.6 1.94  98.57 97.99 0.58 

18  66 65.12 1.33  98.75 98.3 0.45 

20  59 59.8 1.35  98.88 98.5 0.38 

22  54.5 55 0.91  98.93 98.62 0.31 

24  49.2 50.74 3.13  98.95 98.7 0.25 
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The model discussed in chapter three (Section 3.2.1.1) is used to predict the system 

profiles. The parameters used in the calculations are shown in Table 8.1. Stage one 

contains two identical parallel membrane pressure vessels and the feed was split into 

two equally streams prior to entering stage one. Thus, in Table 8.5 the same results are 

presented for the two parallel vessels. Table 8.5 shows that the water feed to the 

membrane elements are declined as more permeate is recovered in each subsequent 

element. The pressure drop decreases along the elements in the first stage followed by 

sudden increase in lead element in the second stage due to the combination of the exit 

brine from the two pressure vessels in the first stage prior to entering the second stage. 

Pressure drop in the feed channel should be taken into account in the design stage. 

Higher pressure drop means higher feed pressure is required at the feed pump. 

Another important parameter in membrane design is the individual membrane element 

recovery, which should not exceed the maximum value recommended by the membrane 

manufacturer. The individual membrane element recovery is gradually declined while 

the feed pressure and feed salt concentration decreased and increased respectively 

(Table 8.5). 

The osmotic pressure was only 2.18 bar in the first element of the first stage creating a 

massive driving force and high water flux for the membrane elements in the first stage 

(Figure 8.2). As expected, the salt flux gradually increased with the flow direction as the 

brine becomes more concentrated. At the tail element in the third stage, the osmotic 

pressure was 4.72 bar while the feed pressure for this element is 10.16, considerable 

driving force is still there. 

From Figure 8.3 it can be noticed that the concentration polarization is much higher in 

stage one due to the high flux. The decrease in mass transfer coefficient as the feed 

water moves downstream from element one to element three and the same from 

elements in stage two and three is as a result of decreasing the brine flow rate in the feed 
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side. The recombining the feed streams prior to entering stage two and increasing the 

axial velocity lead to a significant enhancement in the mass transfer from element three 

in stage one to the first element in the second stage, whereas the concentration 

polarization is suddenly plunged in the lead element of the stage two. The concentration 

polarization factor and mass transfer profiles in Figure 8.3 explained the huge 

enhancement of the mass transfer in the membrane stages and clearly demonstrated the 

advantages of the tapered configuration for RO systems.  

 

Figure 8.2 Water and salt flux for different RO elements 

 

Figure 8.3 Average concentration polarization factor and Mass transfer coefficient for 

the different RO elements. 
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Table 8.5 Predicted profiles for the three stages RO process 

 

  Stage 1  Stage 2  Stage 3 

Membrane elements in PV   1 2 3  1 2 3  1 2 3 

Feed flow rate (m
3
/h) 10.20 8.99 7.83 13.46 12.46 11.51 10.62 9.82 9.07 

Brine flow rate (m
3
/h) 8.99 7.83 6.73 12.46 11.51 10.62 9.82 9.07 8.39 

Permeate flow rate (m
3
/h) 1.21 1.16 1.10 1.01 0.95 0.89 0.80 0.74 0.68 

Feed salt concentration (kg/m
3
) 2.54 2.88 3.30 3.84 4.14 4.48 4.85 5.25 5.67 

Brine salt concentration (kg/m
3
) 2.88 3.30 3.84 4.14 4.48 4.85 5.25 5.67 6.13 

Permeate salt concentration (kg/m
3
) 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.06 0.07 

Feed pressure (bar) 11.83 11.70 11.59 11.22 11.00 10.81 10.44 10.29 10.16 

Pressure drop (bar) 0.13 0.11 0.08 0.22 0.19 0.17 0.15 0.13 0.11 

Water recovery % 11.90 12.89 14.01 7.49 7.61 7.72 7.57 7.58 7.54 

Salt rejection % 99.25 99.20 99.14 99.15 99.10 99.04 98.95 98.86 98.77 

Water flux 10
6
 (m/s) 9.06 8.65 8.19 7.53 7.08 6.63 6.00 5.56 5.11 

Salt flux 10
7
 (kg/m

2
.s) 1.74 1.99 2.32 2.44 2.64 2.85 3.07 3.31 3.57 

Concentration polarization factor 1.0751 1.0766 1.0780 1.0531 1.0519 1.0506 1.0476 1.0458 1.0437 

Osmotic across membrane (bar) 2.18 2.48 2.86 3.20 3.46 3.74 4.04 4.37 4.72 

Axial velocity (m/s) 0.13 0.12 0.10 0.18 0.16 0.15 0.14 0.13 0.12 

Mass transfer coefficient 10
4
 (m/s) 1.25 1.17 1.09 1.45 1.40 1.34 1.29 1.24 1.19 
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8.4 Case Study 1: Sensitivity Analysis 

The fixed configuration three-stage RO based desalination process of Abbas (2005) 

(Figure 8.1) is used to study the effect of different operating and design parameters on 

membrane performance by varying one parameter at a time and keeping the other 

parameters as listed in Table 8.1. 

8.4.1 Sensitivity of Operating Variables  

8.4.1.1 Pressure  

Figure 8.4a shows the effect of operating pressure on RO plant performance. Salt 

rejection increases linearly at low to moderate pressure. At higher pressure, salt 

rejection decreases dramatically due to the increase in osmotic pressure along the feed 

channel. Average permeates flux curve is divided into two regions. In the lower 

pressure region, water flux increases linearly which illustrates a linear relationship 

between the permeate flux and the driving pressure (Equation 3.1). In the higher 

pressure region water flux starts to level-off at 16 bar (corresponding to flux 1.2×10
-4 

m/s). This may be due to the accumulation of the salt along the membrane channel that 

exerts an increasing osmotic pressure. The limiting flux is (1.4×10
-4 m/s) where the flux 

cannot be increased even when the applied pressure increases. 

Variations of specific energy consumption (kWh/m
3
) and concentration polarization 

factor (CP) are shown in Figure 8.4b for operating pressure ranging from 6 to 25 bar. 

Higher pressure required less specific pumping energy. The minimum specific energy 

consumption is observed at 12 bar corresponding to water recovery rate 57 %, followed 

by increase in specific energy due to the stabilization in the permeate production despite 

increasing applied pressure. As expected CP increase with increase in operating 

pressure due to the increase in convective transport of salts towards membrane surface. 
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Figure 8.4 Dependence of RO process performance on operating pressure 

8.4.1.2 Number of Elements in Pressure Vessel  

As shown in Figure 8.5, water recovery ratio increased as number of element in pressure 

vessel increased due to the greater membrane area. There was a sharp increase at low 

number of elements and a slow increase at higher number of elements. This was due to 

the salt build up on the brine channel as flux increases. Therefore adding more elements 

after a certain limit was not worthy. 
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Figure 8.5 Effect of the number of membrane element on the recovery ratio 

8.4.1.3 Feed Salinity  

The effect of feed salinity on the total recovery ratio can be observed in Figure 8.6a. 

Two alternative feeds with 2500 ppm and 5000 ppm salt have been studied. Feed with 

low salt concentration produced 40 % higher recovery ratios more compared to that 

produced by high feed (5000 ppm). This is a consequence of the much higher driving 

force for the same exerted pressure to the feed. This is due to the fact that the osmotic 

pressure is proportional to the feed salt concentration. 

8.4.2 Sensitivity of Design Variables  

Feed spacer channel can affect RO performance significantly, compared to that with slit 

feed channel. The effect of neglecting the presence of the spacer in the feed channel is 

investigated by recalculated the mass transfer coefficients and pressure drop in the feed 

side for open channels while the other variables will remain as in Table 8.1. 
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surface is reduced by about 27 %, and the specific energy consumption is reduced by 

10%. 

8.4.2.1 Length of Filament Mesh in Feed Spacer  

Figure 8.6a,b show the recovery of fresh water and pressure drop when mesh length is 

varied for the two transverse filament thicknesses. It can be seen the recovery rate 

increases with the increase of mesh length until a turning point at mesh length 3 mm, 

after which the recovery rate remained relatively stable regardless of further increase of 

mesh length. Small mesh length has the advantage of more turbulent flow and 

consequently the polarization phenomenon is decreased. On the other hand smaller 

mesh length has the drawback of higher pressure drops along feed channel and therefore 

less water flux as in Figure 8.6a. 

 

 

Figure 8.6 Effect of mesh length on water recovery and axial pressure drop at different 

feed salinity 
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8.4.2.2 Filament Diameter to Spacing Ratio  

Figure 8.7 presents the water recovery, average concentration polarization factors and 

axial pressure drops for filaments of different diameter to feed spacer ratio. Pressure 

drop is significantly affected (increase by 342 %) while the concentration polarization is 

reduced by 8 % at filament ratio 0.6. In general, larger filaments to spacing ratio slightly 

enhance mass transfer by reducing concentration polarization, but significantly increase 

hydraulic pressure losses and consequently more expenditure. Therefore, spacers design 

should be optimized specifically for the particular operating conditions of the real 

application. 

 

 

Figure 8.7 RO performance for different spacer diameters and filament spacing 
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and 0.97 (Stover, 2007), respectively. Villafafila and Mujtaba (2003) studied different 

pressure exchanger efficiency in comparison with other energy recovery devices. Figure 

8.8 shows the energy recovered by the three alternatives against water recovery ratio. 

Obviously, using pressure exchanger is seen to be the most profitable option as the 

pumping cost reduces up to 50 % compared with 20 % when turbine used as energy 

recovery choice. 

 

Figure 8.8 RO energy recovery for different recovery devices 

8.5 Optimization Study 
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optimized. Note that electrical energy supply to the pumps is a measure of operating 

cost and therefore, will reflect the production cost of the fresh water. 

A non-linear optimization problem was solved using SQP method within gPROMS 

software. An optimization strategy which considers both operating variables and 

module design parameters are formulated as follows: 

Given: Feed water conditions; membrane properties and specifications; 

freshwater flow and salinity 

Optimize: Feed pressure; feed flow; module specifications (feed spacer 

filament length and thickness)  

So as to minimize: Specific energy consumption E (kWh/ m
3
). 

Subject to:  Equality and inequality constrains 

Mathematically optimization problem can be represented as: 

Minimize  E 

Pf; Qf; Lf; Hsp 

Subject to:  Equality constraints:  Process model; Product demand; 

   Product specification 

   Inequality constrains  
U

ff

L

f PPP  ; 
U

ff

L

f QQQ   

       
U

ff

L

f LLL  ; 
U

spsp

L

sp HHH   

All the variables are defined in the nomenclature. 

The optimized values for different parameters (at fixed product demand 11.8 m
3
/h and 

permeate salt concentration less than 100 ppm) are shown in Table 8.6. A substantial 

saving about 20 % and equivalent to 1.7 kWh can be acquired by only optimizing 

operating parameters (Investigation 1). Reduction in feed flow and slightly increase in 

operating pressure yields higher driving force in the brine channel. This result is 

concordant with sensitivity analysis presented before. Further reduction in specific 

energy can be achieved in Investigation 2 by enlarging feed spacer thickness and 
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shortening in the filament length. This gives less pressure drop and consequently, less 

pumping energy and more water flux. 

Table 8.6 Optimization Results of Problem 1 (OP1) results 

 *Calculated in this work 

8.5.2 Case study 3: RO Network Optimization 

The synthesis of RO desalination network is formulated as MINLP problem which 

seeks to minimize the total annualized cost and subject to process constraints. The 

representation of membrane network via a superstructure takes into account 

parallel/series arrangements, bypass and recycle streams among the membrane modules 

and equipment that may exist in the RO configuration (El-Halwagi, 1992). 

The MINLP optimization problem is described as: 

Given: Fixed water demand; permeate salt concentration; membrane module 

specifications; feed water specifications; membrane properties  

Optimize: Number of series stages; number of parallel pressure vessels in each 

stage; number of pumps; number of energy recovery devices 

(turbine); optimal feed pressure; feed flow; other RO network 

options (Recycle; Bypass) 

 Optimized parameter 
Base case 

(Abbas, 2005) 

Optimized conditions 

(This work) 

 

Investigation 

1 

Feed pressure (bar) 

Feed flow (m
3
/h) 

Specific energy consumption  

(kWh/m
3
) 

12.2 

20.4 

0.7304* 

13.6 

14.6 

0.5865 

 

Investigation 

2 

Feed pressure (bar) 

Feed flow (m
3
/h) 

Spacer thickness (mm) 

Mesh length (mm) 

Specific energy consumption  

(kWh/m
3
) 

12.2 

20.4 

0.593 

2.77 

0.7304* 

13.1 

14.9 

2.2 

2.37 

0.5781 
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So as to minimize: Total annualized cost of fresh water 

Subject to: Equality constraints such as process model and inequality constraints 

such as variables bounds  

Mathematically the optimization problem can be represented as: 

Minimize       

Pf, Qf, S, Nj, Npu, Ntu, BY, R 

Subject to: Equality constraints:  Model equations; Product demand; 

  Product specification 

  Inequality constrains  U

ff

L

f PPP  ; U

ff

L

f QQQ 
;
 

      SN pu 1 ; SNtu 1 ;  

       10  BY ; 10  R   

Two cases of membrane network design based desalination are studied. 

The characteristics of spiral wound membrane used are listed in Table 8.1. The 

parameters used in optimization calculation are given in Table 8.7. 

Table 8.7 Input parameters for optimization calculations 

Parameter Value     Reference 

Maximum operating pressure (bar) 41 Abbas, 2005 

Maximum flow rate per module (m
3
/h) 19.3 Abbas, 2005 

Minimum flow rate per module (m
3
/h) 3.6 Abbas, 2005 

Pump efficiency (%) 80 Assumed  

Turbine efficiency (%) 80 Marcovecchio et al., 2005 

Electricity cost ($/kWh) 0.08 Marcovecchio et al., 2005 

Membrane element unit cost ($) 1000 Marcovecchio et al., 2005 

PV unit cost ($) 1000 Marcovecchio et al., 2005 
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Before presenting the RO network optimization results, effect of membrane fouling on 

RO performance is presented. 

8.5.2.1 Effect of Membrane Fouling on RO Performance  

For a two-stage RO configuration (two PVs in each stage), the new fouling distribution 

(Equations 8.4 and 8.5) is implemented in the gPROMS simulation code to examine the 

effect of fouling change between stages on the water permeability, water recovery and 

water flux. The operating and design conditions remained as shown in Table 8.1. 

It can be seen in Figure 8.9 that there is a continuous reduction in the water permeability 

(Aw) magnitude for all fouling levels in the two stages. The permeability coefficient 

values have higher values for all fouling levels in the second stage compared with the 

permeability coefficient in first stage. These differences are observed mainly due to the 

higher fouling percentage assumed in the first stage. For Xf1=0.5, the average Aw  is 

reduced about 11% for a period of 90 days, and 16 % during the period between 90 days 

and 180 days operation. 

The effect of fouling level in each stage is shown in Figure 8.10. The recovery rate 

follows different paths depending on the fouling rate between stages. It is obvious that 

the higher fouling in the first stage the lower water recovery achieved despite the overall 

decline rate was the same for all cases investigated. 

 

Figure 8.9 Variation of water permeability with different fouling levels for RO stages 
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Figure 8.10 Water recovery decline for various fouling percentage at different stages 

Figure 8.11 illustrates the influence of fouling level in the first stage on the water flux 

decline for two stage RO process. For the same fouling extent in each stage (i.e. 

Xf1=0.5), the water flux in the first stage is higher than in the second stage and the 

overall water flux decline over a period of 180 days (shown in Figure 8.11c) are 41 % 

and 38 % for the first stage and second stage respectively. For Xf1=0.8 (Figure 8.11a), 

the water flux in the first stage is also found to be higher than that of the second stage 

but only up to the period of 60 days and the reduction in water flux for the same period 

are 66 % and 9% for the first stage and second stage respectively. Note, while the 

decline rate for the first stage with Xf1=0.8 is much higher than that observed with 

Xf1=0.5, it is opposite for the second stage. These observations have not been reported 

in the literature. 

Figure 8.11a shows that there is no considerable decline in water flux for the second 

stage at Xf1=0.8. There are two reasons which can explain this phenomenon. First, it can 

be due to much lower decline rate in the water permeability for Xf1=0.8 in the second 

stage compared to that in the first stage for other fouling distributions (as shown in 

Figure 8.12). Second, it can be due to the lower feed concentration in the second stage 

at Xf1=0.8 compared to that with other fouling distribution (Figure 8.12) leading to 

decrease in osmotic pressure and thus enhancing water flux.  
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Figure 8.11 Water flux profile for different fouling levels 

First stage   Second stage 

 

 

Figure 8.12 Second stage feed concentration at two levels of fouling 
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global minimum). Several starting points with different initial guesses for each case in 

MINLP problem were performed. Several cases were solved, in which the fouling level 

into stages vary while the total production is maintained about 40 m
3
/h and the 

maximum salt concentration is less than 100 ppm. 

Table 5.8 shows the results obtained for different fouling distribution sequences. It can 

be seen that the optimization results are oriented to a section of the search region where 

the installing new pump in all fouling distribution scenarios is not favoured because the 

added cost of installing new booster pump prevail over the gain from the extra quantity 

of permeate produced. The dilution of feed stream by bypass part of the brine also is not 

desirable because brine bypass increases the operating cost without considerable 

enhancement in product quantity. 

Table 8.8 Summary of MINLP optimization results 

 

 % Fouling in 1
st
 stage (Xf1) 

 Average (0.5) 0.6 0.7 0.8 

Optimum process layout Fig. 8.13b Fig. 8.13b Fig. 8.13a Fig. 8.13b 

Feed flow (m
3
/h) 46.3 46.8 45.3 45.45 

Feed pressure (bar) 18.44 17.8 19.6 21.16 

Overall water recover % 87.4 86.3 87.9 89.2 

Permeate concentration (ppm) 99.6 77.8 70.2 46.2 

Number of PV in stage 1 8 7 6 4 

Number of PV in stage 2 2 3 4 4 

Outlet brine Recycle (%) 0 0 0.119 0 

Annual operating cost ($/year) 43513 43514 45001 45802 

Total annualised cost ($/year) 84827 84535 85558 86032 

Product cost ($/m
3
) 0.239 0.238 0.241 0.242 
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Figure 8.13 The optimum RO process arrangements 

There are no mixing between streams with different pressure was set as a condition in 

constructing the superstructure. Consequently, the recycle of brine should be done after 

passing through energy recovery device (turbine).This makes the brine recycle option is 

not attractive. In an attempt to minimize pretreatment and chemical costs about 12% of 

the brine is recycled at Xf1=0.7 (Figure 8.13a). 

The process layout identified is changed as the fouling level in the first stage varies. As 

feed pressure is relatively low, two stages configuration was selected in all cases 

whereas one stages layout is appropriate for process with higher feed salinity (Abbas, 

2005).  

In Table 8.8, it has been observed that the number of pressure vessels (PV) decreased as 

the fouling level in first stage increase while the number of PV in second stage are 

increased in reasonable way to compensate the flux reduction in first stage due to rise in 

the fouling percentage. 

Figure 8.14 presents optimal process pressure trajectory for different fouling 

distributions between stages. It can be seen that for higher fouling percentage in the first 

stage more feed pressure needed to met the water demand. The maximum value of feed 

pressure is reached at Xf1=0.8. The variations in initial values of feed pressures are 

caused by the diversity of processes configurations that adapted for each fouling level. It 
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is illustrated very clearly that the feed pressure increases with the increase the fouling 

share in first stage regardless lowering the fouling in second stage. 

Figure 8.15 shows the change in annual operating cost of the optimum arrangement for 

different scenario of fouling percentages in RO stages at a fixed demand. It can be seen 

that the operating cost is proportional to the fouling levels in first stage and this may be 

caused by the effect of increasing feed pressure (Figure 8.14). 

 

Figure 8.14 Predicted feed pressure-+ at various fouling levels 

 

Figure 8.15Annual operating cost profiles at various fouling levels 

8.6 Conclusion 

This chapter discusses the process simulation and optimization of brackish water RO 

desalination process. The steady sate RO process model have been developed to 

investigate the effect of different operating and design parameters on the performance of 

the system. The model is verified against the operational data and a good agreement was 
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found. The model is then used to study the sensitivity of the important operating 

parameters (feed concentration and feed pressure) and design parameters (number of 

elements, spacer thickness, length of filament) on the plant performance. The simulation 

results provide reasonable insight of the process performance.  Based on the obtained 

results, the following remarks can be drawn: 

1) The RO system is found to be sensitive to the variation in the feed pressure and 

salinity. Increasing the feed pressure increases the plant productivity till certain level 

and decreases the permeate salinity. Also higher feed water salinity results lower 

water recovery and higher freshwater salinity. 

2) Based on RO desalination process utilizing spiral wound element, the effect of 

membrane element design parameters on the RO process performance were studied:  

- The most remarkable result is that adding more elements in the pressure vessel 

after certain limit was not worthy. Therefore the number of elements should be 

optimized to avoid unnecessary cost. In this work, for small brackish water RO 

desalination it found that the optimum number of elements per pressure vessel 

is four. 

- Larger filaments length in spiral wound module enhances mass transfer by 

reducing concentration polarization, but significantly increases hydraulic 

pressure losses. Therefore, spacers design should be optimized. 

Comparison of the two energy recovery alternatives including turbine and pressure 

exchanger showed that energy recovery by pressure exchanger yields the best results by 

50 % reduction in the pumping energy. 

For a given RO design, optimization problem formulation is presented to minimize a 

specific energy consumption while optimizing membrane module design and operating 

parameters of the process. It is found that considerable reduction in specific pumping 

energy around 20 % is achievable.  
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The optimum RO design with spiral wound membrane is studied here for different 

fouling levels in RO stages. For each fouling level, the optimal operating parameters are 

also determined. The optimal designs of RO layout are obtained using MINLP approach 

while optimizing the operating parameters. The study shows that the optimal design and 

operation of RO process are sensitive to the fouling distribution between stages 

although the overall fouling remains constant. 
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Chapter 9 

Conclusions and Future Work 

9.1 Conclusions 

Desalination is one of the most widely used techniques to produce pure water from 

seawater, groundwater, wastewater or brackish water as highlighted in Chapter one. 

Several desalination technologies exist nowadays and among them RO process. It is one 

of the most widely used desalination techniques, and it produces 60% of the total 

desalinated water (IDA 2010). This work has presented different approaches for 

effective design and operation of the RO process. Particular attention is given to two 

aspects in the synthesis of RO networks: 1- The flexible design, scheduling and 

operation of RO process incorporating variation in sea water temperature and/or fresh 

water demand (Chapters four, five and six). 2- The effect of membrane fouling on the 

separation process of the membrane as in Chapter seven and eight. 

To carry out meaningful simulation and optimization to generate alternative design and 

operation scenarios cheaply, development of a reliable process model is the first step. 

In this work, gPROMS modelling tool has been used to model an RO process 

incorporating two theories. The passage of solvent and solute through the membrane 

layer is simulated by solution-diffusion model while thin film theory is used to account 

concentration polarization phenomena.  

To design an optimal RO system, a superstructure is developed based on two-stage RO 

system to accommodate all possible connections between streams and equipments. The 

optimization of RO systems was formulated as a MINLP problem. The objective 

function was the total annualized cost for the RO process; this objective function 

allowed economic comparison of different potential arrangements of RO process and 

operating conditions. The following conclusions can be drawn from this work. 
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Chapter 4 

The capability of the developed MINLP approach was proven by considering hollow 

fibre module as a case study. The results show that, The MINLP model was able to 

handle the trade-offs between optimizing variables and costs for different feasible 

process alternatives. The total annualized cost for the optimal RO network is less by 4 

% compared to the optimum layout in literature.  

Using the MINLP optimization procedure, the optimum design of various RO systems 

using hollow fibre modules under different feed concentration and temperatures are 

obtained. The MINLP framework is based on two-stage RO superstructure and 

minimizing the total annualized cost. The formulation of the optimization problem 

enables the optimizer to identify the design with two stages or only one RO stage. 

For low and medium feed concentration, the results indicate that the unit production 

cost of the optimum RO design is decreased as feed temperature increased. For higher 

feed concentration, the production cost is increased as feed temperature increase due to 

difficulty of maintaining product quality in the required limit.  

The results also show that variation in sea water temperature and salinity will alter the 

optimum configurations identified from one stage to two-stages with different layout 

options. A substantial difference in the number of modules required for the operation in 

high and low temperature seasons suggests the possibility of flexible maintenance 

scheduling of RO membranes. 

Chapter 5 

This study aimed to determine the feasibility of using double pass RO desalination 

process for boron removal from RO permeate. RO membranes boron rejection 

efficiency was found to be governed by the temperature and solution pH. Mathematical 

model has been presented to describe boron rejection by RO spiral wound membrane 



192 
 

based on solution-diffusion model and film theory. The developed model was further 

improved to take into account effect of solution pH and temperature on boron rejection.  

The major contribution of this aspect of the research is through development of general 

superstructure for boron removal by double pass RO based desalination process. The 

RO design problem has been formulated as an MINLP which minimize the total 

annualized cost based on the superstructure. Two case studies are considered: in first 

case, double pass RO network with natural seawater feed pH while in second case 

solution pH is elevated before the second pass. Operating parameters like seawater 

temperature and pH were studied to see how they affect the performance of boron 

rejection. The solution pH appears to be the most important factor governing the 

rejection of boron by a RO process. 

the results suggest that a possibility of using RO membranes with natural pH (6–7) at 

the first pass and elevated pH up to 10 at the second pass to effectively remove boron to 

the level of the WHO guideline for drinking water (<0.5 mg/L). 

Chapter 6 

A steady state model for the RO process is developed and linked with a dynamic model 

for the storage tank. An optimization problem was formulated based on RO model 

considering variations in water demands and seawater temperature throughout the day 

to find optimal design decision variables and control operational variables at discreet 

time intervals that minimize the total operating cost of the RO plant. 

Using daily variation of seawater temperature in summer and winter seasons, three RO 

design scenarios were investigated in which the number of RO modules in operation is 

varied. The optimization results showed that the winter operation demands more 

pressure to meet the variable demand due to lower seawater temperature, and 

consequently, winter operation requires higher specific energy compared to summer 

operation. 
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During winter and summer operation, the results clearly show the freshwater demand 

throughout the day can be fulfilled by using less number of membrane modules despite 

the changing in seawater temperature but the operating cost will be higher. This allows 

for a higher degree of flexibility in scheduling where maintenance could be carried out 

without interrupting the production of water or fully shut down the plant 

Chapter 7 

Development of a reliable fouling model is required to carry out meaningful 

optimization of design and maintenance scheduling of RO networks. NNs based 

correlations are developed based on the actual data for accurate prediction of the RO 

performance decline. The NNs based correlations predicted water and salt permeability 

decline factors accurately compared to the actual plant data.  

Systematic modeling approach is presented for RO process scheduling problems based 

on preselected membrane cleaning schedules. The membrane modules were divided into 

a number of groups depends on a number of the maintenance cycles. This approach 

provides more flexibility to the RO process operation.  

The design and scheduling of RO networks has been formulated as an MINLP problem 

incorporating NNs based correlation for RO performance decline and including the 

annual seawater temperature variation. The MINLP problem is solved for each 

maintenance schedule generating the corresponding optimal design and operation 

policy. Operating pressure and seawater flow rate are optimized while minimizing the 

total annualized cost. 

The optimum maintenance schedule of the network is found to have one maintenance 

cycle and two inter-maintenance cycles per year. Also, it has been found that the 

optimal feed pressure trajectories are depended on the seawater temperature profile as 

the water quality constraint is easily realized for all temperatures due to the membrane 

cleaning. 
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Chapter 8 

The developed model successfully predicts the key RO performance parameters i.e. salt 

rejection and permeate recovery for the simulated feed water. The results generated 

from the gPROMS simulation code were in good agreement with the published results. 

The influences of the operating and design parameters on the RO desalination system 

performance were investigated.  

The simulation results in this chapter provided reasonable insight of the process 

performance. The next logical step was to formulate an appropriate optimization 

problem where design and operating parameters are simultaneously optimized. 

In this study, a methodology was developed for optimization of the RO process 

performance. The optimization of RO process operation was achieved by solving the 

NLP optimization problem. The optimization problem was to find the optimum feed 

pressure and flow rate while minimizing specific energy consumption, also to fulfil the 

permeate flow and salinity constraints. The results showed a 20% savings in specific 

energy consumption compared to the base case. Furthermore, commercial module 

designs might be further refined in order to reach more economic improvements for RO 

processes by optimization of spiral wound membrane element design parameters such 

as mesh length, channel spacing subject to technical limitations. Therefore existing RO 

commercial module designs should be modified to reduce concentration polarization in 

the membrane channel and pressure drop as well as to enhance mass transfer. 

An MINLP approach for the optimal design and operation of RO process which takes 

into account fouling effect has been proposed. Different fouling percentages in the RO 

process stages are assumed and spiral wound module is used in constructing RO 

network constrained to fixed fresh water production and salt concentration. It is found 

that the optimal process layout is varied as the fouling percentages in RO first stage 
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increased; also the annual operating cost of the optimum RO design is increased as the 

fouling level in the first stage increase. 

9.2 Future Work 

Some suggestions for future research are addressed here based on the extensive survey 

and case studies presented in this work:  

 A stand-alone RO desalination process system was only investigated in this 

research. The interaction of RO process with other unit operations or plants was 

not discussed. The superstructure approach developed in this work can be used 

as a basis for RO hybrid design. For instance based on the outcomes from this 

work, seawater temperature variation was found to have a significant impact on 

the optimal RO design and operation. By hybrid design, it is possible to recover 

some of the wasting energy, and utilize it either for heating or cooling the RO 

feed water to the desired temperature. 

 Rejection of boron using double pass or single pass RO process could be linked 

to boron-selective ion exchange resins within the general superstructure 

developed in this work, with several operational options. 

 The results in Chapter 5 show low salinity of freshwater produced from RO 

process involves boron removal. Therefore, the boron removal MINLP 

optimization problem can be updated by using NF membranes in the second 

pass to avoid over-demineralisation of the final product water. 

 In this research, the single day operation and design of RO process subject to 

varying seawater temperature and including storage tank is optimized. 

Nevertheless, the incorporation of annual temperature variations was not 

considered in this optimization problem. Thus, using annual temperature profile 

provides direction and focus for further research. 
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 The instantaneous energy fluctuations in the case of RO installations powered by 

renewable energy could incorporated in the optimization framework developed 

in Chapter 6. 

 The assumption of constant decay of the RO process performance over time may 

lead to inaccurate prediction of the optimal RO design and operation. Therefore, 

accurate model that describe the local fouling in multi stage RO process can be 

considered. NNs tool may be used to develop such model as in Chapter 7.  

 Preliminary results in Chapter 8 show that the RO operation is sensitive to the 

number of modules in pressure vessel. Thus, the synthesis of RO networks could 

be optimized for the optimum number of modules in pressure vessel. 

 A dynamic simulation model could be used in the optimization formulations 

developed in this work for control and design of RO processes. 
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Appendix A 

PID Control of RO Process 
A.1 Introduction  

Despite the significant advances in RO membranes such as new membranes with higher 

permeability and fouling resistance and incorporation of the energy recovery devices in 

RO systems (Martin-Rosales et al., 2007), maintaining the process conditions in order to 

realize the production targets while operating the RO systems economically is still a 

vital task. 

Variation in feed water quality and/or water temperatures including changes due to 

seasonal or even daily climate changes can significantly alter the operation conditions in 

RO plant and may led to sub-optimal system performance (Chen et al., 2005). Due to its 

sensitivity to quality of the feed and plant operating conditions, RO desalination process 

needs an efficient and accurate control system to maintain operation at optimum 

conditions that ensures the least energy utilization and prevent scaling and fouling. 

Having presented a steady state model incorporating changes in several operation 

variables such as seawater temperature and membrane fouling for repetitive simulation 

and several optimization problems of RO process in earlier chapters, it was attempted to 

present an optimal control algorithm and demonstrate its capability with only 

preliminary results in this chapter. 

In this work, a rigorous mathematical model of RO process is developed for Hollow 

Fibre B-10 Permasep module based on solution diffusion model to describe the RO 

performance and takes into account concentration polarization through film theory 

approach. A first order transfer function is built to represent the model and a PID 

controller is designed and used to control the rigorous model which is assumed to 

represent a real process. Optimal PID design based on the minimization of the integral 

of the squared error (ISE) performance index was used to tune the controller. 
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A.2 Process control variables 

RO process often involves many operating parameters and requires the knowledge of 

several parameters such as pressure, salinity, pH, temperature, etc. (Chaaben et al., 

2011). Several researchers have been developed control strategies for the RO 

desalination plants and addressing the selection of manipulated and controlled variables 

that can deliver the best control performance. 

Robertson et al. (1996), Ballannec et al. (1999), Alatiqui et al. (1999) and Thomson and 

Infield (2002) have modelled seawater RO based desalination using pH and feed 

pressure as control variables. Calangelo et al. (1999) developed a control strategy using 

average hourly solar insulation and ambient temperature. They assumed that 

temperature is the main control variables. 

Permeate flow rate and quality were chosen by Alatiql et al. (1989) and also adopted in 

this work as control variables while the manipulated variable is feed pressure. 

A.3 Modeling of RO Process 

Models that adequately describe the performance of RO membranes are very important 

since these are needed in the design of RO processes. In this work, a steady state model 

of RO process that takes into account concentration polarization (CP) has been 

developed for the hollow fibre module presented in Alatiql et al. (1989). The 

mathematical model equations for the RO module used in this work are given in chapter 

three (Section 3.2.1.2). 

The performance of RO processes are affected by membrane fouling. Fouling causes 

reduction in membrane permeability and consequently decline in permeate flux. The 

dynamic of RO process is initiated by incorporating the operation disturbances caused 

by membrane fouling. Using the steady state model incorporating the dynamic 

behaviour of membrane fouling, optimal control of RO desalination is investigated and 

also, the optimal PID design is found. 
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An exponential function proposed by (Zhu et al., 1997) that describes the effect of 

membrane fouling on water permeability is incorporated in the simulation. 
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The water permeability incorporating performance decline due to fouling (F) is 

approximated as follows: 

FAA w

fo

w 
          

(A.2) 

Where Aw is the water permeability without fouling, F is the fouling factor, t is the 

operation time. 

Note, under fouling condition, water flux given by equation (3.1) will become: 

π)P(Aj fo

ww 
         

(A.3) 

A.3.1 Estimation of Water and Salt Permeability Coefficients  

Using the routine for parameter estimation built in gPROMS, the parameter estimation 

was carried out to predict the values of water and salt permeability coefficients. 

Experiment and parameter estimation entities in gPROMS are used in estimation of the 

permeability coefficients. The measured experiment data from Alatiql et al. (1989) is 

introduced in the experiment entity. In estimation entity the user specifies which 

experiment to use for parameter estimation. When the simulation model is implemented 

within gPROMS environment and the experiment are performed by introducing the 

required experiment data within experiment entity, the next stage in the model 

development process is the estimation of unknown model parameters using parameter 

estimation entity to fit the experiment data. 

The water and salt permeability coefficients are estimated using gPROMS parameter 

estimation utility corresponding for each experimental data point (feed pressure, 

freshwater flux and salinity) shown in Table A.1. Then, the predicted water and salt 
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permeability coefficients in Table A.1 are fitted to yield general formula for the entire 

pressure range.  

Water permeability
 

8

2

6

102351
10494683 






 .
P

.
Aw        

(A.4) 

Salt permeability 
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These relations are implemented in the simulation model within gPROMS.  

Table A.2 shows a comparison between the experimental data (Alatiq et al., 1989) and 

the values calculated from equations A.4 and A.5. The results obtained illustrate good 

agreement with the experimental data where the average absolute deviations are 0.198 

% and 2.477 % for water flux and freshwater TDS, respectively.  

Table A.1 Permeability coefficients and experimental data 

 

Experimental data  

(Alatiq et al., 1989)  

 

 

Predicted parameters 

(This work)  

Pressure 

(bar) 

 

 

Flux 

(m
3
/h) 

Permeate 

salinity 

TDS (ppm) 

Water 

Permeability 

10
8 

(m/s bar). 

Salt 

permeability 

10
9
 (m/s). 

68.02 0.341 201  1.17 2.15 

61.20  0.286 218  1.21 2.31 

54.42  0.232 243  1.23 2.34 

47.60  0.177 279  1.25 2.5 
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Table A.2 Comparison of predicted with experimental data 

  (Alatiq et al., 1989)  This work  Absolute Deviation  

Pressure 

(bar) 

 

 

Flux 

(m
3
/h) 

Permeate 

salinity 

(ppm) 

 

 

Flux 

(m
3
/h) 

Permeate 

salinity 

(ppm) 

 

 

Flux 

(m
3
/h) 

(%) 

TDS 

(ppm) 

(%) 

68.02 0.3419 201  0.341 195  0.264 3.000 

61.20 0.2870 218  0.286 210  0.349 3.669 

54.42 0.2323 243  0.232 236  0.129 2.881 

47.60 0.1771 279  0.177 280  0.051 0.358 

                  Avg. Dev. (%)  0.198 2.477 

A.4 Case Study  

In this work, first, a rigorous mathematical model of Hollow Fibre module presented in 

Section 3.2.1.2 has been used. Then, a first order transfer function has been built to 

provide linear approximation of the rigorous mathematical model. A PID controller has 

been designed for the linear transfer function and used to control the rigorous model. 

Optimal PID design based on the minimization of the integral of the squared error (ISE) 

performance index was used to tune the controller. Only one membrane module is 

incorporated in the RO process. The characteristics of seawater Hollow Fibre module 

membrane used here are listed in Table A.3 (Marriott and Sorensen, 2003). 

A.5 System Identification 

Identific tion w s c   ied out using MATLAB’s system identific tion tool box where a 

sum of sinusoids input signal shown in Figure A.1 were generated and fed to the 

rigorous model. Feed pressure is manipulated (input) to control the permeate flow rate. 

Then, a linear transfer function was fitted to approximate the response of the rigorous 

model shown in Figure A.2 to the sinusoidal input. 
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Table A.3 B10 hollow fibre module (6440-T) specifications 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Identification input signal 

         Property Value 

Fibre length (mm) 780 

Outer radius of fibre (mm) 0.0425 

Inner radius of fibre (m) 0.021 

radius of feed distributor (mm) 15 

Fibre bundle radius (mm) 5.334×10
-2

 

Membrane area, m
2
 187 

Temperature range (°C) 0-40 

pH range  4-9 

Minimum flow rate per module (m
3
/day) 7.57 

Maximum flow rate per module (m
3
/day) 56.78 
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Figure A.2 Identification output signal 

The best transfer function to fit the process in the least square sense was found to be:

s.

s)(.
(s)G p

353411

2120771102075 6








       (A.6) 

Figure A.3 shows the response of the process transfer function to the sinusoidal input 

with fit percentage 85.92%. Recall that the fit percentage is the percentage of the output 

variation explained by the model and is defined as: 
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1100         (A.7) 

Where y is the measured output, y
^ 
is the simulated output, and y  is the mean of y. 

A.6 Controller Design and Response 

The PID controller is usually used to improve the dynamic response as well as to reduce 

or eliminate the steady state error. The derivative controller adds a finite zero to the 

open loop plant transfer function and improves the transient response. The integral 

controller adds a pole at the origin, thus increasing system type by one and reducing the 

steady state error due to a step function to zero. Minimizing integral of squared error 
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(ISE) is commonly referred to as a good performance index in designing PID 

controllers. A PID controller has been designed for the linear transfer function and used 

to control the rigorous model. Optimal PID design based on the minimization of the 

integral of the squared error (ISE) performance index was used to tune the controller. 

PID controller parameters obtained by implementing the ISE performance index are: Kp 

= 5324, Ti = 0.0021, Td = 18.8204.  

Closed loop response to the change of permeate flux was done by changing the set point 

from 0 to 0.3 and then from 0.3 to 0.1 as shown in Figure A.3. It is clear that the closed 

loop system can follow the set point change in reasonable time and maintain fixed flow 

rate at steady state regardless of the presence of fouling. 

 

Figure A.3 Closed-Loop Response 

A.7 Conclusion  

Developing an optimization-based PID controller for a rigorous model (representing the 

real plant) of a hollow fiber RO process has been addressed in this work. Model 

parameters are estimated using parameter estimation tool built in gPROMS. Such 

controller was built based on linear approximation of the dynamics of the rigorous 

nonlinear mathematical model. Linear regression was used to estimate the linear 

approximate model. The PID design was based on minimizing integral of square error 
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performance index. Simulation showed that the process was able to track step change of 

the set point (in permeate flux) in reasonable time and maintain fixed flow rate at steady 

state regardless of the presence of fouling. 
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