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ABSTRACT

Accurate projections of stratospheric ozone are required because ozone changes affect exposure to ul-

traviolet radiation and tropospheric climate. Unweighted multimodel ensemble-mean (uMMM) projections

from chemistry–climatemodels (CCMs) are commonly used to project ozone in the twenty-first century, when

ozone-depleting substances are expected to decline and greenhouse gases are expected to rise. Here, the

authors address the question of whether Antarctic total column ozone projections in October given by the

uMMM of CCM simulations can be improved by using a process-oriented multiple diagnostic ensemble

regression (MDER) method. This method is based on the correlation between simulated future ozone and

selected key processes relevant for stratospheric ozone under present-day conditions. The regressionmodel is

built using an algorithm that selects those process-oriented diagnostics that explain a significant fraction of the

spread in the projected ozone among the CCMs. The regression model with observed diagnostics is then used

to predict future ozone and associated uncertainty. The precision of the authors’ method is tested in

a pseudoreality; that is, the prediction is validated against an independent CCM projection used to replace

unavailable future observations. The tests show that MDER has higher precision than uMMM, suggesting an

improvement in the estimate of future Antarctic ozone. The authors’ method projects that Antarctic total

ozone will return to 1980 values at around 2055 with the 95% prediction interval ranging from 2035 to 2080.

This reduces the range of return dates across the ensemble of CCMs by about a decade and suggests that the

earliest simulated return dates are unlikely.

1. Introduction

There is a large spread among chemistry–climate

models (CCMs) in their projected evolution of strato-

spheric ozone during the twenty-first century (Eyring

et al. 2007, 2010b; WMO 2011). Providing reliable strato-

spheric ozone projections is important for a variety of

different reasons, including its importance for UV ra-

diation (Hegglin and Shepherd 2009) and impacts on

tropospheric climate. In the Southern Hemisphere, the

recovery of Antarctic stratospheric ozone is expected to

influence tropospheric circulation and, hence, climate

change (Perlwitz et al. 2008; Karpechko et al. 2010a;

Son et al. 2010). The importance of stratospheric ozone

changes as a climate factor has been widely recognized.

Climate models participating in the fifth phase of the

Coupled Model Intercomparison Project (CMIP5;

Taylor et al. 2012) have been recommended to prescribe

time-varying ozone forcing in case ozone is not calcu-

lated interactively (Eyring et al. 2013). The projected

part of the ozone-forcing dataset provided for the CMIP5

simulations without interactive chemistry is based on an

‘‘ensemble of opportunity’’ (Tebaldi and Knutti 2007) of

CCMsimulations from the second roundof theChemistry–

ClimateModel Validation (CCMVal-2) activity. It consists
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of a time series averaged across all available CCMVal-2

models, which is merged with observational data to pro-

vide a continuous time series from 1850 to 2100 (Cionni

et al. 2011).

The question remains whether a ‘‘one model–one

vote’’ multimodel mean in which all available models

are equally weighted represents the best estimate of

future ozone or any other quantity of interest (Knutti

2010; Knutti et al. 2010b; Weigel et al. 2010). Efforts

have been undertaken to grade CCMs based on their

ability to simulate observed stratospheric ozone clima-

tology and trends (Karpechko et al. 2010b), or key

processes relevant for stratospheric ozone (Waugh and

Eyring 2008, hereafter WE08), and to use these grades

to explore the value of weighting of ozone projections.

The important caveat of these and similar studies,

such as those focused on tropospheric projections (e.g.,

Murphy et al. 2004; Connolley and Bracegirdle 2007;

Reichler and Kim 2008), is that they rely on ad hoc se-

lected model-grading metrics that are difficult to justify.

Part of the problem is the selection and weighting of the

diagnostics. WE08 adopted the process-oriented ap-

proach advocated by Eyring et al. (2005, 2006) and

based model grading on diagnostics selected to repre-

sent specific chemical and transport processes important

for stratospheric ozone. However, it has not been in-

vestigated in a quantitativewaywhether these diagnostics

contain any information about projected ozone changes.

The importance of considering the relation between di-

agnostics and projected changes has recently been dem-

onstrated in several studies (Whetton et al. 2007; Boe

et al. 2009; Hall and Qu 2006; R€ais€anen et al. 2010; Abe

et al. 2011; Bracegirdle and Stephenson 2012, hereafter

BS12). In particular, BS12 proposed the ensemble re-

gression approach based on a linear regression between

surface temperature biases in present climate and pro-

jected surface temperature changes, and demonstrated

an improved precision in the estimates of projected

temperature change over regions adjacent to climato-

logical sea ice edges. The selection of diagnostics re-

mains, however, a challenge and is done differently in

these studies. So far, the majority of the studies seek to

link the change in the quantity of interest either to its

biases in the present-day climatology (Whetton et al.

2007; Abe et al. 2011; BS12) and trends (Boe et al. 2009)

or to a variety of ad hoc diagnostics (R€ais€anen et al.

2010). It has been argued that ultimately it is the realistic

representation of processes that is most linked to the

credibility of model projections (Eyring et al. 2005; Knutti

et al. 2010a), thus providing ameans to successfulweighting

of model projections based on model performance.

The issues raised above—namely, assessing the rele-

vance of diagnostics for projection weighting and providing

anobjectivemeasure for the selectionof these diagnostics—

are addressed in this paper. Specifically, we extend the

ensemble regression approach by BS12 to the case of

multiple diagnostics and apply it to estimate future

stratospheric ozone changes. Our method takes into

account the dependence of projected ozone changes on

the simulation of some selected key processes that are

known to be relevant for stratospheric ozone. In prin-

ciple, the method can be applied for any other quantity

of interest, provided that processes driving its long-term

changes are sufficiently well known and can be di-

agnosed from model outputs. A process-oriented ap-

proach has long been adopted for CCM evaluation as

part of the CCMVal activity (Eyring et al. 2005, 2006,

2010b). Its application led to a substantial improvement

of our knowledge of model biases and deficiencies as

well as better understanding of the spread in ozone

projections among CCMs (WMO 2007, 2011). In the

present study we apply process-oriented diagnostics

that have been shown to be important for stratospheric

ozone in CCMVal and that have been applied before by

WE08 and Eyring et al. (2010b). Our approach provides

an objective way of selecting those diagnostics that sig-

nificantly improve the statistical prediction of ozone

change from present-day climate across the model en-

semble for estimating future ozone change. The approach

essentially consists of building a multiple regression

model based on CCM simulations and using the re-

gression model for statistical prediction of future ozone.

In section 2 we provide the theoretical background. In

section 3 we describe the method that we refer to as

multiple diagnostic ensemble regression (MDER). In

section 4 we present the model simulations and di-

agnostics. In section 5 we use the MDER method to

predict future ozone change. We also carry out a cross

validation to demonstrate that the MDER approach

leads to an improved estimate of future ozone compared

to the weighting scheme suggested by WE08 and to the

unweighted multimodel mean approach (uMMM) (i.e.,

approach where all models are equally weighted). In

section 6 we conclude with a summary and discussion of

the results.

2. Theory

BS12 described a statistical model that relates climate

model projections to a single diagnostic of present-day

climate [see their Eq. (3)]. Here, we extend their ap-

proach to the case of multiple diagnostics. Let Y5
fy1, y2, . . . , yngT be the vector of projected model values

for the quantity of interest (here, projected ozone

change), where n is the number of models. Let us as-

sume that there is a relationship between simulated
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present-day diagnostics X and the projected model

values of the quantity of interest Y, which can be writ-

ten as

Y5 1b01Xb1 e , (1)

where 15 f1,1, . . . ,1gT is a column vector of size n,

X5

0
BBBBB@

x1,1 x1,2 . . . x1,m
x2,1 x2,2 . . . x2,m

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

xn,1 . . . . . . xn,m

1
CCCCCA, m is the number of

diagnostics, e is the vector of independent random var-

iables representing the uncertainty in the projections,

and b0 and b are the regression model parameters to

be estimated, with b being a column vector of size m.

The vector e can be understood to represent the in-

fluence on the projections of all factors not accounted

for by X, the nonlinear interactions between the di-

agnostics in X and the climate noise.

The first two terms of Eq. (1) can be combined by

combining the vector 1 with the matrix X into the design

matrix (von Storch and Zwiers 1999). However, we keep

the terms separated in order to explicitly demonstrate

that in the case b5 0 our approach reduces to the

uMMM. The model parameters b0 and b can be esti-

mated using the maximum likelihood approach, which

in the case of normally distributed residuals is the simple

least squares estimator:

b̂05 (1T1)21(1TY2 1TXb)[NTY2NTXb, (2a)

b̂5 (XTX2XT1NTX)21(XT 2XT1NT)Y, (2b)

where N[ (1T1)211 is a column vector of size n with all

elements equal to 1/n. We next assume that the re-

lationship defined by the regression model in Eq. (1),

with parameters estimated in the model world, holds for

the true climate. Under this assumption, Eq. (1) can be

used to predict the expected future change y0, given the

vector of observed diagnostics X0:

ŷ05 b̂01XT
0 b̂

5 [NT 1 (XT
0 2NTX)(XTX2XT1NTX)21

3 (XT2XT1NT)]Y, (3)

where ŷ0 is the estimate of y0. The error vector e is not

present in Eq. (3) because the equation is written for an

estimate rather than for the random variable y0. Note

that NTY[ y is the uMMM. Therefore, if there is no

link between simulated present-day diagnostics and

Y(b5 0), then the second term in the right-hand part of

Eq. (3) vanishes and the best estimate of true climate

change is equal to the uMMM:

ŷ0 5 b̂05NTY[ y .

For illustrative purposes we present here an example

with m 5 1 using data from CCMs participating in the

FIG. 1. Time series of (a) Antarctic October total ozone anomalies with respect to 1980 and (b) October total Cly at

50 hPa, 808S from the CCMVal-1 (REF-2) and CCMVal-2 (REF-B2) models. All model time series are smoothed

with a 1–2–1 filter repeated iteratively 30 times.
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coordinated model intercomparison organized by

CCMVal. There were two rounds of the intercom-

parison, referred to as CCMVal-1 and CCMVal-2.

These simulations are described in section 4. Figure 1

shows the time series of simulated Antarctic total col-

umn ozone anomalies for October calculated with re-

spect to 1980 and October polar-vortex inorganic chlorine

(Cly) at 50 hPa. Models simulate the minimum in total

ozone around the year 2000, approximately at the same

time as they simulate the maximum in Cly (WMO 2007;

Eyring et al. 2007); see section 5 for discussion of the

mechanism behind this relationship. Figure 2a shows

that there is a significant anticorrelation across the

models between simulated present-day (1990–99) Ant-

arctic total column ozone and Cly at 50 hPa just before

the time of the Clymaximum. The correlation r does not

depend much on whether we consider only the simula-

tions from the more recent ensemble CCMVal-2 (r 5
20.60, p 5 0.01) or combine the CCMVal-2 with the

simulations from the preceding CCMVal-1 ensemble

(r 5 20.57, p 5 0.003). Figure 2b shows that simulated

present-day Cly concentrations (1990–99) also correlate

well with projected total column ozone in 2040–49. This

result is similar regardless of whether we only consider

the simulations from the CCMVal-2 ensemble (r520.71,

p5 0.001) or combineCCMVal-2 andCCMVal-1 datasets

(r520.62, p5 0.001). Note that a relationship similar to

that shown in Fig. 2b was shown in Strahan et al. (2011).

The regression between simulated present-day Cly and

present-day total column ozone agrees well with obser-

vations (Fig. 2a). Assuming that the regression between

simulated Cly and projected mid-twenty-first-century

total ozone change will hold for future true climate, one

can use the regression model from Fig. 2b to predict fu-

ture total ozone. The regression model based on the

CCMVal-2 models with observed Cly predicts an ozone

change of 224 Dobson units (DU) for the period 2040–

49 with the 95% prediction intervals of (257, 9 DU). The

prediction is somewhat lower than, but consistent with,

the uMMM estimate of 210 DU within the 95% confi-

dence interval. Reassuringly, the prediction based on the

combined CCMVal-1 and -2 dataset gives an ozone

change of 222 DU with the 95% prediction intervals of

(257, 12 DU), which is very close to that based on

CCMVal-2 only. We emphasize, however, that at this

stage the relationship betweenCly and future ozone change

FIG. 2. Scatterplots of climatological-mean (a) present-dayAntarcticOctober total ozone anomalies (1990–99) and

(b) future Antarctic October total ozone change (2040–49) vs present-day Antarctic October Cly (1990–99), Cly-SP,

for the CCMVal models. The models are numbered according to Table 1. REF-1 and REF-B1 simulations are used

for the present-day total ozone and Cly-SP. REF-2 and REF-B2 simulations are used for the future total ozone. The

error bars show the simulated 1-s error of the mean values. The red symbols and error bars in (a) correspond to the

observed values based on the four total ozone datasets (1990–99) and Cly-SP inferred from the HALOE observa-

tions. For total ozone, the error bars show the observed 1-s error of the mean value. For Cly-SP, the error bars in

(a) and the orange shading in (b) show measurement uncertainty. The solid blue (turquoise) lines show the least

squares fit to the CCMVal-2 (CCMVal-1/-2) data. The gray shading around the least squares fit marks the 95%

prediction interval for the total ozone response based on CCMVal-2. The dotted lines show the ensemble-mean

ozone anomaly (uMMM). The blue (turquoise) diamond and dashed lines in (b) indicate the regression-predicted

ozone anomalies corresponding to the observed Cly-SP value based on the CCMVal-2 (CCMVal-1/-2).
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is only used to illustrate the concept, rather than tomake

any inferences about future ozone change.

The assumption that the regression between the

present-day diagnostic and a future-climatic variable—

derived from climate models—holds also for true cli-

mate might seem to be weak at first sight, especially

since it explicitly requires imperfect models away from

observed climate to span the desired relationship. How-

ever, a much weaker assumption is done in traditional

model-weighting approaches: a model that simulates

present-day climate better than another model neces-

sarily better simulates future climate.Whereas traditional

approaches do not show this relationship, ensemble re-

gression establishes exactly such a relationship across a

broad model ensemble.

BS12 pointed out that the vector multiplier of Y in

Eq. (3) can be associated with model weightsW; that is,

W5[NT 1 (XT
0 2XT)(XTX2XT1XT)21(XT2XT1NT)]T.

(4)

Here, we note that X[ (NTX)T is the vector of multi-

model mean diagnostics. As discussed by BS12, the

weights provided by Eq. (4) do not involve terms pro-

portional to differences between observed and simu-

lated diagnostics; that is, they are not proportional to

model biases. The weights can also be negative; thus, the

estimate ŷ0 can fall outside the range of model projec-

tions. These properties differentiate the weights defined

by Eq. (4) from the traditional model weights because the

latter depend on model biases and cannot be negative.

However, if the statistical model given by Eq. (1) is ade-

quate (b 6¼ 0), then projections by models having smaller

biases in diagnostics will tend to stay closer to the pre-

dicted change. In other words, these models would have

higher weights in the traditional sense.

In a similar manner one can rewrite the equation for

confidence intervals for the mean of the response vari-

able, or for the prediction interval,

cf5
ffiffiffiffiffiffiffiffiffiffiffiffi
WT

cfY

q
, (5)

where Wcf, the model weights for calculating p 3 100%

confidence intervals, are calculated as follows (von Storch

and Zwiers 1999):

Wcf 5 (n2m21)21t2(12p)/2

3 [b1XT
0(X

T
DXD)

21X0)Y
T(I2XD(X

T
DXD)

21XT
D] .

(6)

Here, XD 5

0
BBBBB@

1 x1,1 . . . x1,m
1 x2,1 . . . x2,m

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
.

1 xn,1 . . . xn,m

1
CCCCCA is the design matrix,

I is the n 3 n identity matrix, and t(12p)/2 is the critical

value from the t distribution with (n2m2 1) degrees of

freedom. The parameter b is either equal to 0, in which

case Eq. (6) gives the confidence intervals for the mean

of the response variable, or 1, in which case it gives the

prediction interval. In this paper we always provide the

95%prediction interval; that is, Eq. (6) is used with b5 1.

3. Multiple diagnostic ensemble regression

We use the above theory to develop the MDER

method. The method consists of the two principal steps:

(i) building the statistical model based on climate model

simulations and (ii) using the statistical model with ob-

served diagnostics to predict future change. The first

step consists of selecting the diagnostics for the matrix X

in Eq. (1) and estimating the parameters of the regres-

sion. Ideally, the process-oriented diagnostics should

account for all processes that are expected to affect the

future evolution of ozone, and the MDER should

identify those that are important for a particular appli-

cation. The initial selection of the present-day di-

agnostics is unavoidably based on expert judgment (i.e.,

on the knowledge of which processes drive future

changes in the variable of interest). However, a priori it

is not clear which of the selected diagnostics help to

confine the estimate of the future variable: the linear

predictive power might be low or different diagnostics

might correlate with each other. Choosing a suitable

subset of m useful diagnostics from the set of initially

selected l diagnostics (l $ m) is a classical statistical-

model-selection problem (e.g., Davison 2003). A standard

approach to model selection is the stepwise algo-

rithm, which starts with one diagnostic and continues

until a certain stopping criterion is met (Wilks 2006;

von Storch and Zwiers 1999, 166–167). The problem

of choosing the stopping criterion is discussed in

section 5.

The outcomes of the model selection algorithm are

the matrix X and the model parameters b0 and b. In the

second step, Eq. (3) with the vector of observed di-

agnosticsX0 is used to predict future change, and Eq. (5)

is used to estimate the uncertainty of the prediction.

The above algorithm provides a prediction for a cer-

tain time in the future. It is often desirable to predict

time evolution of the quantity of interest, in which case

Eq. (3) can be rewritten as
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TABLE 1. CCMs used in this study. Further details on CCMVal-1 models can be found in Eyring et al. (2006) and on CCMVal-2 models in

Morgenstern et al. (2010) and Eyring et al. (2010b) as well as in the references given below.

No. Model name Model expansion Group and location

Simulation

period Reference

CCMVal-1

1 AMTRAC Atmospheric Model with

Transport and Chemistry

Geophysical Fluid Dynamics

Laboratory (GFDL), United

States

1960–2099 Austin et al. (2007)

2 CCSRNIES Center for Climate System

Research/National Institute

for Environmental Studies

National Institute of

Environmental Studies (NIES),

Tsukuba, Japan

1980–2050 Akiyoshi et al. (2004)

3 CMAM Canadian Middle

Atmosphere Model

Canadian Centre for Climate

Modelling and Analysis

(CCCma), University of

Toronto, Canada

1960–2099 Fomichev et al. (2007)

4 GEOSCCM Goddard Earth Observing

System Chemistry–Climate

Model

National Aeronautics and Space

Administration (NASA)

Goddard Space Flight Center

(GSFC), United States

1960–2099 Pawson et al. (2008)

5 MRI Meteorological Research

Institute

Meteorological Research Institute

(MRI), Japan

1980–2099 Shibata and Deushi

(2005)

6 SOCOL Solar–Climate–Ozone Links Davos Physical Meteorological

Observatory and World

Radiation Centre

(PMOD/WRC) and Institute

for Atmospheric

and Climate Science, Swiss

Federal Institute of Technology

Zurich (IAC ETHZ),

Switzerland

1980–2050 Egorova et al. (2005)

7 ULAQ Universit�a degli Studi

dell’Aquila

University of L’Aquila, Italy 1960–2050 Pitari et al. (2002)

8 WACCM Whole Atmosphere

Chemistry–Climate Model

National Center for Atmospheric

Research (NCAR), United

States

1980–2050 Garcia et al. (2007)

CCMVal-2

9 AMTRAC3 Atmospheric Model with

Transport and Chemistry 3

GFDL, United States 1960–2099 Austin and Wilson (2010)

10 CAM3.5 Community

Atmosphere

Model, version 3.5

NCAR, United States 1960–2099 Lamarque et al. (2008)

11 CCSRNIES Center for Climate System

Research/National Institute

for Environmental Studies

NIES, Tsukuba, Japan 1960–2100 Akiyoshi et al. (2009)

12 CMAM Canadian Middle

Atmosphere Model

MSC, University of Toronto, York

University, Canada

1960–2099 Scinocca et al. (2008);

de Grandpr�e et al.

(2000)

13 CNRM-ACM Centre National de Recherches

M�et�eorologiques–

ARPEGE Climat Coupled

MOCAGE

Meteo-France, France 1960–2099 D�equ�e (2007); Teyss�edre

et al. (2007)

14 E39CA ECHAM4.L39(DLR)/CHEM/

ATTILA

German Aerospace Center

(DLR), Germany

1960–2049 Stenke et al. (2009);

Garny et al. (2009)

15 EMAC ECHAM/MESSy Atmospheric

Chemistry model

Free University of Berlin

(FU Berlin), Germany

1960–2100 J€ockel et al. (2006);
Nissen at al. (2007)

16 GEOSCCM Goddard Earth Observing

System Chemistry–Climate

Model

NASA GSFC, United States 1960–2099 Pawson et al. (2008)
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ŷ0(t)5WTY(t) , (7)

where ŷ0(t) and Y(t) refer to the time-dependent vari-

ables andW is defined by Eq. (4). Similarly, the equation

for the confidence intervals [Eq. (5)] can be rewritten in

a time-dependent form.

Time independence of W in Eq. (7) can only be as-

sumed if the matrix X is time independent (i.e., if the

same processes drive the changes through the whole

period of time). Also, estimation ofW based on a limited

set of Y is prone to sampling errors that may vary in

time. This can be inferred fromEq. (6), which shows that

the uncertainty of the prediction depends on Y and is

therefore time dependent in general. Therefore, for a

time-dependent prediction, the MDER algorithm needs

to be repeated for all time steps, unless the assumption

of time independence of X is valid. In section 5c we test

the validity of the assumption that X, and thusW, is time

independent.

4. Model simulations and observations

We apply the MDER method to the data from CCMs

participating in the CCMVal-1 and -2 intercomparisons

organized by CCMVal. Compared to CCMVal-1, more

models participated and more diagnostics have been

evaluated in CCMVal-2 (Eyring et al. 2010b). The

CCMVal-2 simulations have also covered longer periods,

but the simulations in both rounds were performed with

very similar external forcing.

The ensembles of these simulations were extensively

analyzed and discussed elsewhere (Eyring et al. 2006,

2007, 2010a,b; Austin et al. 2010; Oman et al. 2010).

Table 1 lists themodels used.Onlymodels that extended

their projections until at least 2050 were included in the

analysis—a criterion that left four CCMVal-1 mod-

els (E39C, LMDZrepro, MAECHAM4CHEM, and

UMSLIMCAT) out. Altogether, projections from 25

different models are used in the analysis: 8 CCMVal-1

and 17 CCMVal-2 models.

We base our results mainly on the analysis of the

CCMVal-2 simulations.Weuse the combinedCCMVal-1

and -2 data, referred to as CCMVal-1/-2, to test the sen-

sitivity of the results to CCM sampling. Combining the

two datasets increases the sample size, which may be

expected to provide a more robust estimate of the re-

lationship between process-oriented diagnostics and

future ozone change. On the other hand, combining the

datasets may be questioned since it increases the issue of

model independence (Knutti et al. 2010b; Masson and

Knutti 2011), because some of the models participated

in both CCMVal-1 and -2 and had only minor updates

implemented between the two rounds and thus can

hardly be considered as independent. However, one

might expect that model dependencies would only de-

crease the effective number of degrees of freedom (i.e.,

TABLE 1. (Continued)

No. Model name Model expansion Group and location

Simulation

period Reference

17 LMDZrepro Laboratoire de Météorologie

Dynamique Zoom–

REPROBUS

L’Institut Pierre-Simon Laplace

(IPSL), France

1960–2098 Jourdain et al. (2008)

18 MRI Meteorological Research

Institute

MRI, Japan 1960–2099 Shibata and Deushi

(2008a; 2008b)

19 NIWA-SOCOL National Institute of Water

and Atmospheric Research

Solar–Climate–Ozone Links

NIWA, New Zealand 1960–2098 Schraner et al. (2008)

20 SOCOL Solar–Climate–Ozone Links PMOD/WRC and IAC ETHZ,

Switzerland

1960–2100 Schraner et al. (2008)

21 ULAQ Universit�a degli Studi

dell’Aquila

University of L’Aquila, Italy 1960–2100 Pitari et al. (2002)

22 UMSLIMCAT Unified Model–SLIMCAT University of Leeds, United

Kingdom

1960–2099 Tian and Chipperfield

(2005); Tian et al.

(2006)

23 UMUKCA-METO Unified Model/U.K. Chemistry

Aerosol Community

Model–Met Office

Met Office, United Kingdom 1960–2083 Morgenstern et al. (2009)

24 UMUKCA-UCAM Unified Model/U.K. Chemistry

Aerosol Community Model–

University of Cambridge

University of Cambridge, United

Kingdom, and NIWA,

New Zealand

1960–2099 Morgenstern et al. (2009)

25 WACCM Whole Atmosphere Chemistry–

Climate Model

NCAR, United States 1960–2098 Garcia et al. (2007)
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increase the uncertainty) but not bias the regression

coefficients, nor the best-estimate prediction.

It is expected that different processes drive ozone

changes in different regions and altitudes (Eyring et al.

2005, 2007, 2010b; Oman et al. 2010; Strahan et al. 2011).

For example, the removal of halogens is expected to

play a key role in the recovery of Antarctic lower-

stratospheric ozone, while stratospheric cooling is ex-

pected to dominate the upper-stratospheric ozone changes

globally (Oman et al. 2010). This suggests that the re-

gression model would yield different results if applied to

different regions and altitudes. Here, we focus on the

twenty-first-century projections of Antarctic 608–908S
total ozone in October taken from REF-2 and REF-B2

simulations by the CCMVal-1 and -2 models, respec-

tively. The greenhouse gas (GHG) concentrations in

these simulations follow the Intergovernmental Panel

on Climate Change (IPCC) Special Report on Emission

Scenarios (SRES) A1B scenario. Sea surface tempera-

tures and sea ice concentrations are taken from coupled

atmosphere–ocean model projections using the same

GHG scenario. Surface halogen concentrations in REF-2

follow the WMO (2003) Ab scenario, while those in

REF-B2 follow the WMO (2007) adjusted A1 scenario.

The return of halogen concentrations to the background

level in the A1 scenario is delayed compared to the Ab

scenario, but this difference is modest (Newman et al.

2007) and neglected here. For the CCMVal-2 models

EMAC and E39CA, REF-B2 simulations are not avail-

able and thus are replaced by the SCN-B2d simulations,

which are identical to REF-B2 but additionally include

observed solar variability, volcanic activity, and the quasi-

biennial oscillation (QBO) until 2006, aswell as repeating

solar cycle and QBO in the future.

Many models have large offset biases in total ozone

(WMO 2007; Eyring et al. 2006, 2010b) that persist

throughout the simulation time and complicate direct in-

termodel comparison. Therefore, it is a commonpractice to

consider ozone anomalies adjusted to total ozone in

some reference year. Here, we choose to adjust the time

series to total ozone in the year 1980, which is the

starting year for many CCMVal-1 simulations. To re-

duce the uncertainty due to interannual variability, the

value of total ozone in 1980 was estimated by fitting

a third-order polynomial to the original time series for

each model between the starting year of the simulation

(1960 or 1980) and 1999. The ozone anomaly in the twenty-

first century is thereafter referred to as ozone change. The

main findings of this study do not depend on the details

of calculating the anomaly because similar results are

obtained when the anomaly is calculated following the

procedure described in Eyring et al. (2006).

The starting set of l process-oriented diagnostics is

taken fromWE08 and selected diagnostics from chapter

6 of Eyring et al. (2010b) (Table 2). More discussion

on the relevance of these diagnostics for stratospheric

ozone can be found in Eyring et al. (2005, 2006, 2010b).

The diagnostics from WE08 cover transport and dy-

namical processes relevant for stratospheric ozone,

but not polar chemistry. They are complemented with

TABLE 2. Description of the diagnostics and the number of CCMs for which the diagnostics are available. The last column shows the

observed values with uncertainty, but only for those diagnostics that have been selected by the MDER method.

Short Name Diagnostic Averaging period N models Observed value

Temp-SP Temperature, September–November (SON),

6082908S, 30–50 hPa
1980–99 25 —

Temp-NP Temperature, December–February (DJF),

6082908N, 30–50 hPa

1980–99 25 2208.9 6 4.9K

U-SP Date of transition to easterlies, 608S, 20 hPa 1980–99 25 —

HFlux-SH Eddy heat flux, July–August, 4082808S, 100 hPa 1980–99 25 27.3 6 2.0Kms21

HFlux-NH Eddy heat flux, January–February, 4082808N, 100hPa 1980–99 25 —

Temp-Trop Temperature, annual, 58S258N, 80 hPa 1980–99 25 —

H2O-Trop Water vapor, annual, 58S258N, 80 hPa 1990–99 25 3.3 6 0.5 ppm

CH4-Subt Methane gradient between 08–308N/S, March/October, 50 hPa 1990–99 25 —

CH4-SP Methane, October, 808S, 30–50 hPa 1990–99 25 0.6 6 0.1 ppm

CH4-EQ Methane, March, 108S–108N, 30–50 hPa 1990–99 25 1.6 6 0.1 ppm

Tape-R Tape recorder amplitude attenuation 1990–99 23 —

Tape-c Tape recorder phase speed 1990–99 23 —

Age-50 Age of air, annual, 108S–108N and 3582558N, 50 hPa 1990–99 18 —

Age-10 Age of air, annual, 108S–108N and 3582558N, 10 hPa 1990–99 18 —

Cly-SP Cly, October, 808S, 50 hPa 1990–99 25 3.1 6 0.3 ppm

Cly-Mid Cly, annual, 3082608N, 50 hPa 1990–99 25 —

HCl-SP HCl decrease from May to August, 708–908S, 30–50 hPa 1990–99 25 —

Clx-SP Clx, August–October, 708–908S, 50 hPa 1990–99 14 —

HNO3-SP HNO3 decrease from May to August, 708–908S, 30–50 hPa 1990–99 17 —
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diagnostics for two processes important for Antarctic

ozone: denitrification and chlorine activation (chapter 6

of Eyring et al. 2010b). As a diagnostic for denitrification,

we use the decrease of nitric acid (HNO3) from May to

August in the lower-stratospheric Antarctic polar vortex

(HNO3-SP). For chlorine activation, we use two di-

agnostics: the decrease of lower-stratospheric hydrogen

chloride (HCl) fromMay to August (HCl-SP) and active

chlorine Clx ([ClO 1 2 3 Cl2O2) averaged over the

August–October period within the polar vortex (Clx-SP).

The first diagnostic is constrained by observations, but it

is not an ideal proxy for chlorine activation, because it is

soluble in liquid aerosols and therefore can be removed

from the gas phase and thus not converted into active

chorine (D. Kinnison 2012, personal communication).

The second diagnostic directly quantifies the amount of

active chlorine, but it is not well constrained by obser-

vations and, in principle, is not suitable for the MDER

method.

Because the simulated diagnostics have to be com-

parable to the observed ones, they are calculated using

the historical climate simulations REF-1 and REF-B1

from CCMVal-1 and -2, respectively. These simulations

are forced with observed sea surface temperature, sea

ice concentrations, surface concentrations of well-mixed

GHGs and halogens, solar variability, and aerosol from

major volcanic eruptions (Eyring et al. 2006, 2010b).

Some of the CCMVal-1 simulations are only available

for the period 1980–99. Therefore, the diagnostics are

calculated either over the period 1980–99 or 1990–99,

depending on available observations (see Table 2). Only

13 diagnostics are available for all CCMal-2 (and also for

CCMVal-1) models and used for the MDER analysis.

The other diagnostics are used only for correlation cal-

culation (section 5).

Since not all the diagnostics are selected by the

MDERmethod, the observations [X0 in Eq. (3)] are only

needed for a subset of diagnostics. The observed values

for this subset are shown in the last columnofTable 2.We

use the same observational datasets as inWE08:HALOE

observations (Grooß andRussell 2005) are used for CH4-

SP, CH4-EQ, Cly-SP, and H2O-Trop, and the 40-yr

European Centre for Medium-RangeWeather Forecasts

(ECMWF)Re-Analysis (ERA-40) (Uppala et al. 2005) is

used for stratospheric temperatures (Temp-NP) and eddy

heat flux (HFlux-SH). We have also considered the Na-

tional Centers for Environmental Prediction (NCEP) and

MetOffice (UKMO) stratospheric analyses as alternative

sources of observations for Temp-NP and found that this

diagnostic is very similar among these three datasets. The

difference between the coldest (UKMO) and the warm-

est (NCEP) datasets is only 0.2K, which makes a negli-

gible difference to our results. More observations for the

chemical parameters are available for the period after

1999; however, we do not use them because theymay not

be directly comparable to the simulated values. The ex-

ception is Cly-SP for which the observations are only

available during years 1992 and 2005. To avoid a high bias

in simulations, which would otherwise be introduced if

the observed value from 1992 were directly compared

with the 1990–99 simulated values, we used both 1992 and

2005 observations and interpolated/extrapolated these

two values for each year over the period 1990–99 by as-

suming a linear increase. Finally, four observational da-

tasets are used for total ozone: merged satellite dataset

constructed from individual Total Ozone Mapping Spec-

trometer (TOMS) version 8 and Solar Backscatter Ultra-

violet SBUV/2 version 8 satellite datasets (Stolarski and

Frith 2006), ground-based measurements [updated from

Fioletov et al. (2002)], the National Institute of Water and

Atmospheric Research (NIWA) combined total column

ozone database (Bodeker et al. 2005), and SBUV/SBUV/2

retrievals [updated from Miller et al. (2002)].

5. Estimates of future ozone

a. The period 2040–49

We now apply the MDER method to predict future

ozone change. We first focus on the period 2040–49,

which is the latest decade for which the simulations by

all 25 models are available (Table 1). The decadal aver-

aging is done in order to remove the interannual variability

considered here as noise. Figure 3 shows the absolute

correlation coefficients between the present-day diag-

nostics (averaged over 1980–99 or 1990–99; see Table 2)

and future ozone change by 2040–49. In the CCMVal-2

ensemble the highest correlation (r520.76, p5 0.006) is

found between future ozone change and present-day ac-

tive chlorine at 50hPa averaged over 708–908S and be-

tween August and October (Clx-SP). Active chlorine is

directly responsible for ozone depletion; therefore, a

strong anticorrelation with total ozone is expected. How-

ever, Clx-SP is available for a limited number of models

and is not constrained by observations. Therefore, this

diagnostic is not used in our further analysis. The second

highest correlation (r 5 0.73, p 5 0.001) is found with

October methane concentration at 808S averaged be-

tween 30 and 50 hPa (CH4-SP). In the combined

CCMVal-1/-2 ensemble CH4-SP has the highest corre-

lation with future ozone change (r 5 0.67, p 5 0.001).

CH4-SP is targeted to diagnose the spread among the

models caused by differences in transport. CH4 is pho-

todissociated in the upper stratosphere; thus, lower

values of CH4-SP indicate a larger fraction of upper-

stratospheric air mass in the polar vortex, and normally
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suggest a more isolated polar vortex and/or slower strato-

spheric circulation. The strong positive correlation be-

tween CH4-SP and future ozone indicates that models

with a less isolated polar vortex and/or faster strato-

spheric circulation project earlier stratospheric ozone

return dates. In the CCMVal-2 ensemble the correlation

is also statistically significant (p 5 0.05) for polar Cly

diagnostic (Cly-SP), the age of air diagnostics (Age-10,

Age-50), and methane in the subtropics (CH4-Subt). Cly
is produced in the upper stratosphere and reflects the

time spent there by an air mass before it descends to the

lower stratosphere; therefore, Cly-SP is also a transport

diagnostic. In the polar vortex Cly is converted to ozone-

depleting active chlorine compounds (Clx) during austral

winter–spring and is therefore related to chemical ozone

destruction. Note that the transport diagnostics (CH4-SP,

Cly-SP, Cly-Mid, Age-10, Age-50) and Clx-SP correlate

with each other (not shown).

The results of the MDER calculations for 2040–49 are

presented in Table 3. The model selection relies on a

subjectively chosen stopping criterion. A standard ap-

proach is to add diagnostics until the regression sum of

squares is not significantly increased according to an

F test. Applying this test with the p 5 0.05 significance

level to the CCMVal-2 dataset and the 13 diagnostics

available for all models results in a regressionmodel that

includes four terms: CH4-SP, H2O-Trop, CH4-EQ, and

HF-SH. Although a physical relation between all these

diagnostics and future ozone change may be hypothe-

sized, we note that the contribution of the last three

terms is rather small and hardly improves the model.

Moreover, cross validation (see section 5b) indicates

that this model is overfitted and thus should not be used.

In general, another stopping criterion for model selec-

tion could be applied. We have tried the ones based on

the increase in the coefficient of determination R2 and

the decrease in the mean squared error (MSE). For

example, adding diagnostics to the model until none of

the remaining diagnostics increase R2 by more than 0.1

results in a regression model with three terms: CH4-SP,

H2O-Trop, and CH4-EQ. However cross-validation

tests indicate that a regression model that performs best

on independent data is the one that contains the first

TABLE 3. The regression models for the 2040–49-mean total ozone discussed in the text. The following symbols are used: y[O3; x1 [ CH4-SP;

x2 [ H2O-Trop; x3 [ CH4-EQ; x4 [ HF-SH; x5 [ Cly-SP. Also shown is the uMMM.

Model name Model ensemble Model equation

Predicted mean ozone

change and the 95%

prediction intervals R2

uMMM CCMVal-2
1

N
�

i51,...,N
yi 210 6 40 DU —

MDER: F test CCMVal-2 217.0 1 81.7 3 x1 2 11.9 3
x2 2 143.3 3 x312.8 3 x4

221 6 18 DU 0.90

MDER: R2 test CCMVal-2 208.4 1 81.1 3 x1 2 11.4 3 x2 2 152.5 3 x3 222 6 21 DU 0.84

MDER: CH4-SP only CCMVal-2 252.2 1 57.1 3 x1 217 6 32 DU 0.53

MDER: CH4-SP excluded CCMVal-2 47.4 2 34.0 3 x5 224 6 34 DU 0.51

uMMM CCMVal-1/-2
1

N
�

i5 1,...,N

yi 211 6 39 DU —

MDER: F test CCMVal-1/-2 1.3 1 44.4 3 x1 2 17.0 3 x5 223 6 29 DU 0.58

MDER: CH4-SP only CCMVal-1/-2 254.5 1 60.0 3 x1 218 6 32 DU 0.45

MDER: CH4-SP excluded CCMVal-1/-2 58.1 2 26.3 3 x5 222 6 35 DU 0.38

FIG. 3. Absolute correlation coefficient betweenAntarcticOctober

total ozone anomalies for 2040–49 and present-day diagnostics in

Table 2 among the (a)CCMVal-2 and (b)CCMVal-1/-2models. The

error bars show the 95% confidence intervals for the correlation

coefficients.
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term (i.e., CH4-SP) only. Table 3 shows that predictions

based on these three regression models are close to each

other. Thus, the final choice of themodel impacts mainly

the confidence intervals of the prediction. We choose

the model with the CH4-SP term only because this

model performs best in the cross-validation tests (sec-

tion 5b), suggesting that the other models may be

overfitted. This choice is also the most conservative

one because this model has the largest uncertainty

and its prediction interval covers the prediction in-

tervals based on the other models. This model explains

53% of the spread among CCMs in projected ozone

change. Using Eq. (3) with CH4-SP being the only term

in X and the observed CH4-SP value (X0) taken from

Table 2 we predict a future ozone change by 2040–49 of

217 6 32 DU (Fig. 4).

It is instructive to test the sensitivity of the MDER

method to the absence of CH4-SP diagnostic. When

CH4-SP is excluded, the algorithm based on an F test

selects the regression model including the Cly-SP term

only; that is, it is the samemodel as that shown in Fig. 2b.

Cly-SP strongly anticorrelates with the excluded CH4-SP

diagnostic (r 5 20.59), and the fact that the automated

selection algorithm stops after selecting Cly-SP provides

further evidence that the additional terms in the regres-

sion model are unnecessary. Reassuringly, regression

models based on either CH4-SP or Cly-SP predict

future ozone change values that are close to each other

and consistent with each other within the uncertainty

(Table 3).

We next test the sensitivity of the result to CCM

sampling by applying MDER to the CCMVal-1/-2

dataset. The algorithm based on an F test selects a re-

gression model with both CH4-SP and Cly-SP terms.

This model predicts future ozone change of 223 DU,

which is consistent with the predictions based on

CCMVal-2 (Table 3). Like in CCMVal-2, the contribu-

tion of the second selected term is small; thus, it may be

redundant. On the other hand, this model performs well

in cross validation (section 5b) and therefore the in-

clusion of both terms might be justified. The regression

model including CH4-SP only predicts future ozone

change of217DU, which is close to the previous model.

Thus, for predicting purposes, the choice of the model

is not crucial. Results for the model containing both

CH4-SP and Cly-SP are shown in Fig. 4b. When CH4-SP

is excluded, the resulting regression model contains only

the Cly-SP term; that is, it is the samemodel as that shown

in Fig. 2b. All three statistical models predict future ozone

change values that are close to each other and consistent

with each other within the uncertainty (Table 3).

The 95% prediction intervals for the future ozone

change by the MDER method are comparable to the

spread across individual model projections. However,

FIG. 4. Scatterplots of climatological-mean Antarctic October total ozone change (2040–49) vs (a) the quantity

(252 1 57 3 CH4-SP) for the CCMVal-2 models and (b) the quantity (1 1 44 3 CH4-SP-17 3 Cly-SP) for the

CCMVal-1/-2 models. CH4-SP and Cly-SP are climatological-mean Antarctic October CH4 and Cly, respectively, for

the present day (1990–99). The models are numbered according to Table 1. The error bars show the simulated 1s

error of the mean values. The solid blue and turquoise lines show the least squares fit to the model data. The gray

shading around the least squares fit marks the 95% confidence interval for the total ozone response. The dotted lines

show the ensemble-mean ozone anomaly (uMMM). The blue/turquoise diamond and dashed lines indicate the

regression-predicted ozone anomalies. The orange shading shows measurement uncertainty.

DECEMBER 2013 KARPECHKO ET AL . 3969



the spread does not provide any information about the

probability of a particular ozone change value. For ex-

ample, the probability that the future true ozone change

will fall outside the spread cannot be inferred from the

spread alone. On the contrary, the MDER method

provides the information about the probabilities of

future true ozone change values, given that the as-

sumptions discussed in section 2 are correct. The pre-

diction interval for the uMMM can be calculated by

assuming that the future ozone changes simulated by

individual models are random samples from the ‘‘true

change’’ estimated by uMMM. In this case the 95%

prediction interval can be estimated by multiplying the

standard deviation across the individual model pro-

jections by 1.96 (Table 3). However, given the de-

pendence of model projections on the ability to simulate

transport in present-day climate, this assumption is unlikely

to be valid.

The prediction intervals cited above only include the

uncertainty of the statistical model. Accounting for ob-

servational uncertainty would increase the intervals.

Observational uncertainty shown in Fig. 4 includes the

standard error of the mean CH4-SP estimated from the

available HALOE CH4 data south of 788S. For the case

of the CCMVal-1/-2 dataset it is combined by the law of

combination of errors with the observational uncer-

tainty of Cly-SP. It is seen that the uncertainty of the

statisticalmodel is considerably larger than the uncertainty

due to observations. However, more studies are needed to

assess the impact of the observational uncertainty on the

MDER predictions.

Based on the above results we conclude that the

MDER prediction of ozone change by 2040–49 does not

depend on the specific choice of diagnostic as long as the

applied set of diagnostics contains a diagnostic repre-

senting the key process responsible for the future change.

We also conclude that results are consisted for both

CCMVal-2 and the CCMVal-1/-2 datasets. The MDER

method captures the dependence of projected ozone on

simulation of the specific process, stratospheric meridio-

nal circulation, which controls the age of air and thus

the concentration of ozone-depleting substances within

the Antarctic polar vortex. On the other hand, the un-

certainty of the prediction, as diagnosed by the coefficient

of determination (Table 3), varies from one statistical

model to another. This points out that a successful choice

of diagnostic is required in order to reduce the uncer-

tainty of prediction. Moreover, when there are too many

potential predictors, an automated model selection algo-

rithm can fail, resulting in a model containing unnecessary

terms (i.e., in an overfitted model). The fact that the

overfitting issue is more apparent when MDER is ap-

plied to the CCMVal-2 ensemble suggests that it may be

related to the smaller sample size (N 5 17) in this en-

semble compared to CCMVal-1/-2.

b. Cross validation of the MDER method in
pseudoreality

Since, trivially, future observations of ozone are not

available, it is not clear whether the MDER method

really provides more precise estimates of future ozone

than the uMMMor than the approach described inWE08,

who selected different sets of diagnostics (e.g., average

transport or only Cly grades) to explore the value of

weighting. Therefore, we cross validate the methods in

a pseudoreality (e.g., Maraun 2012) to compare model-

averaging approaches at least in a model world. To this

end,we select onemodel of our ensemble as pseudoreality,

and consider the remaining models as the model en-

semble that is used to predict future ozone changes of the

pseudoreality model. As there is no decisive preference

to which model should be regarded as pseudoreality,

we choose each model as pseudoreality in turns. For each

pseudoreality, the predictions made by the testedmethods

are compared to the future pseudoobservations.

We compare the quality of future ozone estimates by

the MDER method against both the uMMM and the

weighting method that was used in Fig. 8 of WE08 (i.e.,

average transport grade) in a pseudoreality. Only the 13

diagnostics available for all models are used. In each

pseudoreality the quality of the prediction is quantified

by the squared difference between the future Antarctic

total ozone change averaged over 2040–49 in a pseu-

doreality and the ensemble-mean total ozone change

(2040–49) estimated from the model ensemble pro-

jections using the uMMM and the MDER. The results

are shown in Fig. 5. When the MDER with stopping

algorithm based on an F test is applied to the CCMVal-2

ensemble, the first selected term is either CH4-SP (14

cases) or Cly-SP (3 cases) depending on pseudoreality.

In all but three pseudorealities the statistical models

contain three to four terms and often the same set

(CH4-SP, H2O-Trop, CH4-EQ, HF-SH) as that in the

full dataset (see section 5a).

We quantify the predictive skill of theMDERmethod

by the Brier skill score (Wilks 2006):

BSS5 1003

0
B@12

�
i51,n

e2i

�
i51,n

o2i

1
CA ,

where ei and oi are the errors of prediction in ith pseu-

doreality by the MDER and uMMM, respectively, and

n is the number of pseudorealities. BSS is a relative

quantity and shows a percentage improvement of the
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MDER method compared to the uMMM. For the

2040–49 period, the percentage improvement with re-

spect to uMMMof theMDERmethodwith the stopping

algorithm based on an F test is less than 1%. The poor

performance of the model on independent data suggests

that it is overfitted. However, when the model has CH4-

SP as the only term in all pseudorealities, the percentage

improvement compared to the uMMM is 47%, in-

dicating that such amodel performs better than uMMM.

The predictions errors based on this model are shown in

Fig. 5a along with those based on uMMM. Since this

result is obtained in a pseudoreality it cannot be inter-

preted as an indication of improved accuracy because

the observations for prediction verification are not avail-

able. Rather, the results indicate an improved precision of

the prediction compared to the uMMM.

The cross validation of the MDERmethod applied to

the combined CCMVal-1/-2 dataset is shown in Fig. 5b.

The results are shown for the MDER method with the

stopping algorithm based on an F test. In all but two

pseudorealities the statistical models contain the CH4-SP

and Cly-SP terms—that is, the same as in the full dataset

(section 5a). The percentage improvement compared to

the uMMM is 32%. As in the case of CCMVal-2 dataset,

restricting the model to only the CH4-SP term leads to

even a larger skill improvement of 42%.

Figure 5 also reveals that, despite an overall improved

performance, in some cases MDER predictions lead to

large errors. These cases correspond to models that are

far away from the regression lines. Large deviations

from the regression lines may be related, among other

things, to unphysical characteristics of these models.

Such a possibility implies that a model screening based

on their performance may be required before admitting

models to MDER; however, this has not been done in

this study.

For comparison, we also validate the weighting method

by WE08 in pseudoreality. WE08 used the simple weight-

ing metric applied to individual process-oriented

diagnostics:

g5max

�
0; 12

jmmod2mobsj
3sobs

�
,

where mmod and mobs are a climatological-mean diag-

nostic in a model and in observations, respectively, and

sobs is a measure of observation uncertainty, normally

represented by the interannual standard deviation. To

explore the value of model weighting and to test the

robustness of the ensemble, model weights were as-

signed according to g averaged over all diagnostics, or

over different subsets of the diagnostics (more details

are given inWE08). Figure 5 shows the projection errors

for the weighting based on the average transport grades

(CH4-Subt, CH4-SP, CH4-EQ, Cly-SP, Cly-Mid) because

the transport diagnostics were used for projection

weighting shown in Fig. 8 of WE08. BSS for this method

is 21% when applied to CCMVal-2 data and 17% when

applied to CCMVal-1/-2 data (i.e., the WE08 weighting

method based on the transport diagnostics also im-

proves the precision of the prediction compared to the

uMMM).

c. The MDER prediction for the twenty-first century

We now apply the MDER method to predict the

ozone evolution for the twenty-first century. First, we

use the assumption of time independency of weights W

and apply Eq. (7) with the weights calculated for the

period 2040–49 based on the model containing only the

CH4-SP term to obtain ensemble-mean simulated total

ozone for the period 1960–2099. The weighted ozone

time series is shown in Fig. 6 along with the uMMM.

The individual model projections have been smoothed

with the 1–2–1 filter iteratively repeated 30 times (e.g.,

Eyring et al. 2007) before applying the weights. During

the twentieth century the ensemble-mean total ozone

FIG. 5. The squared differences (projection errors) between

the ensemble-mean Antarctic October total ozone change in

2040–49 and the total ozone change in pseudoreality for each

pseudoreality considered (gray circles) based on (a) CCMVal-2

and (b) CCMVal-1/-2. The ensemble mean is calculated from

equally weighted (i.e., unweighted) projections (uMMM), pro-

jections weighted following the WE08 method and employing

their transport diagnostics (wMMM), and the MDER method.

Crosses show the mean projection error for each method; the

boxes show 25th–75th percentiles across the error ensembles and

the bars inside the boxes show the medians.
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time series weighted with the MDER weights are in

a good agreement with observations and show ozone

values slightly smaller than the uMMM. During the

twenty-first century the weighted time series consis-

tently shows ozone values smaller than the uMMM by

about 5–10 DU. The constant-W model projects that

Antarctic ozone column returns to 1980 values by 2055,

3 years later than projected by the uMMM. The 95%

prediction intervals associated with the constant-W

model prediction give the return date ranging from 2037

to 2079. For comparison, the return dates inferred from

the smoothed individual CCMVal-2 model projections

range from 2026 to 2078 (Fig. 6). Thus, the MDER es-

timated range is about a decade smaller than that in-

ferred from the individual model projections. A similar

result is obtained based on the CCMVal-1/-2 dataset.

Here, the MDER projects the return date by 2059 with

the 95% prediction intervals ranging from 2041 to

2079—that is, close to that based on the CCMVal-2 re-

sult (Fig. 6).

We next remove the assumption of time inde-

pendency of W and repeat the MDER calculations for

each decade of the twenty-first century, as well as for the

1990s, performing the decadal averaging in order to re-

move the interannual variability. The MDER algorithm

with stopping criteria based on an F test selects models

with one to four terms depending on a decade. Follow-

ing the results of section 5a, only the first selected term is

retained in the final models. Since the contribution of

the second and higher terms is small, the introduced

difference to the decadal-mean ozone change value is

less than 5DU in all but one case (in the decade 2060–69

the difference is 10 DU) and therefore may be neglected.

The results are shown in Table 4 and in Fig. 6. Between

1990 and 2049 total ozone agrees well with that predicted

by the constant-Wmodel. During this period the MDER

algorithm selects CH4-SP or Cly-SP diagnostics as the

explanatory variable for total ozone, suggesting that the

same processes drive the total ozone change during this

period. Note that the regression model for 1990–99 con-

tains only the Cly-SP diagnostic (i.e., it is the same model

as that shown in Fig. 2a). After 2060, theMDERpredicted

total ozone exceeds the total ozone values predicted by the

constant-W model. During this period the regression

model selects theArctic stratospheric temperature, Temp-

NP, as the explanatory variable (Table 4). One possible

interpretation of this relation is that this diagnostic, which

is partly related to simulated planetary wave activity, may

correlatewith projected changes in planetarywave activity,

TABLE 4. The regression models for the decadal-mean total ozone during the period 1990–2089. The following symbols are used: y[O3;

x1 [ CH4-SP; x2 [ Cly-SP; x3 [ Temp-NP. Also shown is the uMMM.

Period
uMMM

 
1

N
�

i51,...,N

yi

!
MDER equation

MDER predicted mean ozone change

and the 95% confidence intervals R
2

1990–99 271 6 42 DU 22.7 2 34.6 3 x2 283 6 40 DU 0.35

2000–09 276 6 56 DU 2128.4 1 70.9 3 x1 285 6 49 DU 0.43

2010–19 264 6 48 DU 2108.9 1 61.2 3 x1 272 6 41 DU 0.44

2020–29 245 6 50 DU 2100.3 1 75.4 3 x1 254 6 37 DU 0.60

2030–39 225 6 44 DU 274.8 1 67.2 3 x1 234 6 31 DU 0.62

2040–49 210 6 40 DU 252.2 1 57.1 3 x1 217 6 32 DU 0.53

2050–59 7 6 39 DU 106.8 2 37.2 3 x2 27 6 33 DU 0.50

2060–69 17 6 34 DU 897.0 2 4.2 3 x3 19 6 30 DU 0.42

2070–79 24 6 33 DU 869.4 2 4.0 3 x3 26 6 30 DU 0.41

2080–89 34 6 30 DU 752.3 2 3.4 3 x3 35 6 29 DU 0.35

FIG. 6. Time series of Antarctic October total ozone anomalies

from the CCMVal simulations and the four observational datasets.

The model time series are smoothed with a 1–2–1 filter iteratively

repeated 30 times. The dashed black line shows the uMMM

CCMVal-2 time series. The blue line and the shading show the

CCMVal-2 ensemble-mean time series and the 95% confidence

interval for the MDER prediction with the model weights esti-

mated for the 2040–49 period. The turquoise line show the

CCMVal-1/-2 ensemble-mean time series for the MDER pre-

diction with the model weights estimated for the 2040–49 period.

The blue diamonds and the error bars show the ensemble-mean

time series and the 95% confidence interval for the MDER pre-

diction with model weights estimated for each decade separately.
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and thus be related to projected total ozone change.

However, this interpretation remains to be checked.

The uncertainty associated with the MDER pre-

diction varies from decade to decade. The changes in the

uncertainty estimates are most likely associated with the

decadal climate variability which cannot be accounted

for by the diagnostics and thus represents noise in our

statistical model. Moreover, the source of the decadal

variability may be ocean (i.e., SSTs that are prescribed

in all but one analyzed CCM and therefore cannot be

accounted for by present-day diagnostics in principle).

Understanding sources of uncertainty in the MDER

estimations is important but will not be pursued further

in this study.We emphasize however that, as can be seen

in Fig. 6, the differences between the uncertainty esti-

mates have only small effects on the prediction intervals

for the ozone return date in our study.

In summary, the MDER allows reducing the range of

predicted return dates by about a decade when com-

pared to the spread among the individual model pro-

jections and suggests that the earliest return dates across

individual model projections are unlikely.

6. Discussion and conclusions

In this study we have introduced a method for esti-

mating future ozone change based on multiple diagnostic

ensemble regression, referred to as the MDERmethod.

In contrast to previous studies, this method is based on

selected process-oriented diagnostics that are known to

be important for stratospheric ozone. The advantage of

this method is that it provides an observational con-

straint on future projections and allows making rigorous

probabilistic statements.

This method has been applied to an ensemble of CCM

projections of Antarctic October total ozone. Mathe-

matically, the method is an extension of the methods

introduced by Boe et al. (2009) and BS12 to the case of

multiple predictors. When there are a large number of

potentially important predictors, an automated model-

selection algorithm may lead to an overfitted statistical

model. The overfitting problem may be associated with

a too-small sample size and therefore may be important

in other climate applications since climate model en-

sembles typically consist of a relatively small number of

models (;20). Therefore, the choice of the final model

may need to rely on cross-validation tests. Additionally,

we emphasize the importance of a physically motivated

choice of predictors for the regression. One advantage

of the method is that it helps finding diagnostics that

are important for a specific application. Specifically,

our approach has recovered a tight relationship be-

tween projected Antarctic total ozone and polar vortex

methane, a transport diagnostic, simulated by CCMs in

present climate.

Cross validation of the method in a pseudoreality has

shown reduced errors in projected ozone in the MDER

method compared to the equally weighted multimodel

mean (uMMM) method, implying that estimates of fu-

ture total ozone changes obtained by our method would

have a higher precision than those of uMMM. The

return of Antarctic total ozone to 1980 values estimated

by the MDER method is projected to occur by around

2055 with the 95% confidence intervals for the return

date ranging from 2037 to 2079. These estimates do not

change significantly when another CCM ensemble is

used. TheMDER best estimate of the ozone return date

differs from the uMMM-estimated return date, which is

projected for 2052; however, the difference is within the

uncertainty of the method. This suggests that, although

the MDER method gives more precise results, the

uMMM method, used for example to produce ozone

time series for the CMIP5 experiments, remains a rea-

sonable approach to calculate ensemble-projected changes,

at least in the case of Antarctic October total ozone and

for the simulations included here. The 95% confidence

interval for the return date predicted by the MDER

method is about a decade smaller than the range across

values projected by all CCMs, suggesting that the ear-

liest return dates across individual model projections

are unlikely.

Our uncertainty estimates for the return dates are

somewhat larger than those provided by chapter 9 of

Eyring et al. (2010b). They applied the Time Series

Additive Model (TSAM) approach by Scinocca et al.

(2010) to the CCMVal-2 models and projected the

Antarctic total ozone return date to occur around 2045–

60. The TSAM method, however, does not constrain

model weights by observations and instead bases model

weighting on the assumption similar to that used in the

uMMM method—namely, that the trends by individual

models are random samples for the ‘‘true trend’’ [Scinocca

et al. 2010, their Eq. (14)]. Given the dependence ofmodel

projections on the ability to simulate transport in present-

day climate, this assumption is unlikely to be valid. Ac-

counting for this dependence might increase the TSAM

uncertainty beyond the limits suggested by chapter 9 of

Eyring et al. (2010b).

The important advantage of our approach is that it

provides an observational constraint on the future pro-

jections. This imposes additional requirements on the

observational data quality, because the observational

uncertainty may be an important source of the uncertainty

of the MDER predictions. While here we found that the

uncertainty of the predicted future ozone is dominated

by the uncertainty of the statistical model, incorporating
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observational uncertainty into the MDER predictions

should be considered in future studies.

The MDER method is computationally cheap and is

relatively easy to implement for estimations of ozone

change in other regions, as well as of any other variable

of interest, provided that strong correlations between

present-day diagnostics and future change exist. For

example, the method could be applied in climate change

studies to variables such as global surface temperature.

There, however, the search for informative process-

oriented diagnostics may prove more challenging and

requires a sophisticated process-oriented evaluation of

climate and Earth systemmodels, similar to the CCMVal

evaluation of CCMs (Eyring et al. 2010b).

While the use of diagnostics considered here has

proved successful to Antarctic total ozone, the applica-

tion of the method to other regions may require consid-

eration of additional diagnostics. For example, Strahan

et al. (2011) have demonstrated an importance of trop-

ical transport diagnostic based on the correlation be-

tween nitrous oxide (N2O) and mean age for predicting

tropical ozone. A diagnostics for nitrogen chemistry

may also be useful since nitrogen chemistry is expected

to become more important in the future when the con-

centration of halogens will decrease (Oman et al. 2010).

The evolution of ozone in the upper and lower strato-

sphere is expected to be driven by very different pro-

cesses (Oman et al. 2010) and therefore considering

these two regions separately may prove useful. In ad-

dition, for ozone changes in the lower tropical strato-

sphere, process-oriented diagnostics that measure the

tropical upwelling could be important. The challenges

associated with the selections of diagnostics for ozone

projections weighting in other regions and altitudes will

be addressed in follow-up studies. Also, applying the

MDER method to a larger set of CCM runs, after new

CCM simulations become available, would allow ob-

taining more robust relationships between present-day

diagnostics and future ozone changes.
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