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Abstract 

Declining populations, increasing extinction risk, and growing awareness of their important 

ecological role have brought sharks increasingly into the public’s interest. New legislation has 

been introduced in various areas to ensure shark conservation and sustainable use. One of 

these areas is the Northeast Atlantic. Here, rapid losses in large predatory fish biomass have 

been observed. Nevertheless, only a small number of shark species have been formally 

assessed in this region to date. In light of current legislation, however, improved information 

on stock condition, critical habitat and fishing mortality rate is urgently needed to develop 

appropriate management. In this thesis, critical habitat areas, exploitation levels and 

abundance trends for three species of Northeast Atlantic sharks are presented: the tope shark 

(Galeorhinus galeus), starry smoothhound (Mustelus asterias) and spurdog (Squalus 

acanthias). An overview on their life history and biology is given, which includes von 

Bertalanffy growth parameters of tope, estimated via a novel approach from tagging data. 

When analysing critical habitats, evidence was found that important nursery grounds exist in 

the north-west of Scotland, the Outer Thames Estuary and along the Frisian Islands. Areas 

with high conservation value for mature sharks include the north coast of Ireland, the Vidal 

Bank region, the Anglesey Reef (central Irish Sea), the east coast of England and the southern 

Celtic Sea. Mating is suggested in some of these areas. The current population trends of the 

three species varied substantially:  starry smoothhound and spurdog showed some evidence of 

recent increase, whereas tope sharks declined by more than 70% over the last two decades. 

The study revealed that all investigated species are currently exploited above levels that 

produces maximum sustainable yield (MSY), raising concern about the long-term future of 

these populations. Furthermore, it is demonstrated that for long living, late maturing and slow 

growing sharks, the size at first capture is essential for management and that sustainable 

exploitation may not be achieved if the size at first capture is too low. In conclusion, this 

study provides an overview on life history traits of tope, starry smoothhound and spurdog in 

the Northeast Atlantic, the current status is evaluated, and different conservation opportunities 

are presented. 
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1. General Introduction  

1.1 Introduction 

Fish with low intrinsic rates of population increase, large maximum size and late maturity are 

less capable to withstand fishing pressure (Jennings et al. 1998). As a result, the abundance of 

fishes occupying higher trophic levels has declined dramatically (Pauly et al. 1998, Baum et 

al. 2003, Myers and Worm 2003) making rebuilding of fish stocks one of the great challenges 

of this century (Worm et al. 2009). Christensen et al. (2003) showed that the North Atlantic 

has already lost about 90% of its high trophic level fish biomass since 1900. Furthermore, 

most fishery resources in the Northeast Atlantic are fully exploited, overexploited or depleted 

(Froese and Kesner-Reyes 2002, Froese et al. 2012). Sharks are particularly vulnerable to 

even mild exploitation rates (Myers and Worm 2005, Ward-Paige et al. 2012) and substantial 

amounts of shark mortality have stemmed from discards (Worm et al. 2013) making 

evaluation of exploitation difficult. At present, almost half of the exploited shark populations 

are exploited above their rebound potential, raising concerns about growing extinction risks 

(Worm et al. 2013). Sharks fulfil an important role in marine ecosystems and their depletion 

might have serious consequences for the structure, function and stability of marine food webs 

and ecosystems (Stevens et al. 2000, Myers et al. 2007, Baum and Worm 2009, Ferretti et al. 

2010). These findings have recently brought sharks more into public focus. Several legally 

binding and non-binding legislations have been established to protect, rebuild or ensure 

sustainable use of sharks. This includes legislation directed towards fish in general as well as 

those specifically designed for sharks. Within the Law of the Sea (UNCLOS 1982), the 

signatory countries agreed that exploitation has to be at levels that can produce maximum 

sustainable yield (MSY). In 2009, the European Community Action Plan for the Conservation 

and Management of Sharks was released. According to the plan, aims were that shark 

fisheries have to be sustainable with set catch limits, by-catch has to be regulated and finning 

was banned (EC 2009). This plan is based on the International Action plan for the 

Conservation and Management of Sharks adopted and endorsed by the FAO (Food and 

Agriculture Organization of the United Nations) in 1999. Furthermore, the Marine Strategy 

Framework Directive holds that European Union members have to achieve or maintain good 

environmental status in the marine environment by the year 2020 at the latest (EU 2008). This 

of course includes a good status of shark populations. To achieve these goals, however, the 

population status has to be known and reference points for management have to be set.  
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Unfortunately, such data is lacking for the majority of shark species in the Northeast Atlantic 

region. This is a more general problem, evidenced by the number of sharks listed as Data 

Deficient in the IUCN Red List of Threatened Species and the small number of sharks for 

which advice is given by ICES (International Council for the Exploration of the Sea). In total, 

the Northeast Atlantic region is home to approximately 65 species of sharks (Compagno 

2005) of which 60 are assessed by the Red List. About 37% of the assessed sharks are 

considered to be threatened, while about 22% are assessed to be Data Deficient (IUCN 2013). 

Two economically important species are declared as Critically Endangered, the spurdog 

(Squalus acanthias) and the porbeagle (Lamna nasus), both have experienced dramatic 

declines in the past (Fordham et al. 2006, Stevens et al. 2006, Gibson et al. 2008). Recently, 

there is zero allowable catch on spurdog (ICES 2012), but specific bycatch regulations still 

allow for some exploitation of this species (ICES 2009, ICES 2012, STECF 2012), which 

may counteract a recovery. In contrast, increasing landings have been reported for the starry 

smoothhound (Mustelus asterias) and may reflect its use as replacement species of the 

spurdog (ICES 2012). However, increasing landings do not provide information about the 

status of the stock, in terms of sustainable fishing mortality rates or abundance trends, which 

are important criteria for management purposes. Currently, no management is in place to 

guarantee appropriate fishing mortality rates of starry smoothhound, although management 

plans should be implemented before a fishery starts, due to the low productivity of sharks 

(Musick et al. 2000). Moreover, the increasing demand of shark products (Clarke 2004, 

Hareide et al. 2007) raises concern about the future development of the starry smoothhound 

fishery, even though this species is listed as Least Concern on the IUCN Red List (Serena et 

al. 2009). Another species, the tope (Galeorhinus galeus) was declared as Data Deficient for 

the Northeast Atlantic, although its status is Vulnerable worldwide (Gibson et al. 2008). There 

have been serious declines in the Californian tope fisheries (Ripley 1946) and in Australia 

(Olsen 1959, Punt and Walker 1998). Furthermore, reports from South Africa suggested that 

an increase in fishing could lead to a stock collapse (McCord 2005). Although tope is not a 

main target species in the Northeast Atlantic shark fishery, it is subject to bycatch (Walker et 

al. 2006). Mixed species fisheries targeting teleosts also take less productive shark species as 

bycatch, which is a significant factor in shark mortality and depletion (Musick et al. 2000). 

Given its status on the IUCN Red List, the limited information about its biology in the 

Northeast Atlantic and the fact, that this species is mainly targeted indirectly by unregulated 

and unreported bycatch, means that information for management is urgently needed to prevent 

situations similar to the spurdog or porbeagle.  
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The management of fisheries in the Northeast Atlantic is the responsibility of the European 

Community, which provides the annual quotas for allowed catches. The European 

Community utilises advice from ICES under the MSY approach. However, ICES provides 

advice for only nine species of sharks (ICES 2012). In addition to setting sustainable 

exploitation rates, protected areas can be an important conservation tool for sharks (Camhi et 

al 1998). It has been shown that effective management in fishes can be achieved by a 

combination of different strategies, such as catch restrictions and habitat protection (Worm et 

al. 2009). According to this, reliable reference points, critical areas, current and historical 

exploitation levels and information about the abundance trends are urgently needed to rebuild 

the shark stocks, ensure sustainable use, derive management strategies and fulfil legislations. 

Therefore, the aims of this study are: 1) to summarise the available information on the biology 

and life history traits of tope, starry smoothhound and spurdog 2) to identify habitat areas 

within the Northeast Atlantic that are critical in sharks life cycle 3) to evaluate the current 

status and temporal trend of tope, starry smoothhound and spurdog by examining historical 

and recent exploitation rates and abundance trends 4) and to analyse the importance of the 

length at first capture for sustainable management. 
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1.2 Thesis outline 

Section 2 describes the basis of data and specific methods applied in this study to investigate 

the main research objectives, as formulated in the introduction. Sections 3, 4 and 5 summarise 

the biology and life history of tope, starry smoothhound and spurdog, respectively. To avoid 

repetition, a general introduction to biology and life history traits is given for tope and 

referred to in the sections of the other two species. The results of the specific methods are also 

presented and discussed in the corresponding species section. A general discussion is 

provided in section 6. 
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2. The analysis of survey data with specific methods 

2.1 Survey data  

The investigation of critical habitats, exploitation levels and abundance trends were based on 

scientific surveys conducted in the Northeast Atlantic. Raw data were obtained from trawl 

surveys compiled by ICES and freely available from DATRAS, http://datras.ices.dk, 

consulted on 2012−08−26. Only surveys that used the Grande Ouverture Verticale (GOV) 

gear were considered to allow comparison between catches. This gear type caught the highest 

numbers for all of the three species. Likewise, all catches were standardised to one hour of 

hauling, denoted as number per hour. The area covered by the surveys is shown in Figure 1.  

 

Figure 1: Survey area covered by ICES of surveys undertaken with the Grande Ouverture Verticale (GOV) gear. 

This gear type was most efficient in catching tope, starry smoothhound and spurdog specimens. The roman 

numerals refer to the ICES Divisions. 

 

The surveys used in this study were conducted from 1967 − 2012 and ranged in depth from 10 

m to 750 m. Hauls at depths greater than the maximum reported depth for the corresponding 

species were discarded. In addition, the ROCKALL survey was only considered for spurdog, 

because the other two species were absent in that survey.  
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Species data were extracted from raw data by their WoRMS AphiaID and the TSN Code, 

except for starry smoothhound. This is because two species of the genus Mustelus occur in the 

Northeast Atlantic, the starry smoothhound (Mustelus asterias) and the common 

smoothhound (Mustelus mustelus). These two have often been confused with each other 

(Wheeler 1969). They are usually distinguishable by the presence of white spots exhibited by 

M. asterias. However, there is a high degree of intraspecific variability and these spots can be 

faint or absent (Farrell 2010) and thus do not represent a reliable taxonomic tool (Farrell et al. 

2009). Farrell et al. (2009) developed a genetic identification tool and applied it to 431 

specimens of the genus Mustelus sampled in all seasons and all large geographic areas within 

the Northeast Atlantic. Of these 431, 43 were morphologically identified as M. mustelus and 

the remaining individuals as M. asterias, but his result revealed that all specimens actually 

belonged to M. asterias. Farrell (2010) concluded that M. asterias is the only species 

inhabiting Northeast Atlantic waters and that single M. mustelus specimens would be 

vagrants. Given that there is no evidence of reliable identified M. mustelus within the 

investigated area, all species assigned as Mustelus spp. and M. mustelus during the ICES 

surveys have been classified as M. asterias. The number of individuals identified as M. 

mustelus made up approximately 15%, and the percentage of Mustelus spp. made up about 

4% of the dataset. After species data extraction from raw data, all individuals above the 

maximum reported size for males were assigned as females, if sex was not determined. The 

maximum size utilised of male M. asterias was 104 cm (Farrell et al. 2010a). The maximum 

size of male spurdogs was set to 110 cm, the largest male recorded in the DATRAS. In the 

case of the tope shark, the largest male specimens caught were smaller than the reported 

maximum length. Finally, all individuals with a length smaller than the reported length at 

birth were discarded, because of the likelihood of premature birth in the net.  

2.2 Identification of critical habitats 

Habitat protection is an important component of shark conservation (Camhi et al. 1998, 

Kinney and Simpfendorfer 2009, Knip et al. 2012) and an important conservation tool in 

fisheries as such (Worm et al. 2009). Pupping grounds, nursery areas and spawning grounds 

are critical for recruitment success. Therefore, area protection should focus on different life 

stages (Kinney and Simpfendorfer 2009). In addition, fishing intensity in the North Atlantic 

increased by more than twice since 1950 (Christensen et al. 2003), making refuges essential 

for conservation purposes. Here, pupping and nursery grounds were investigated, as well as 

aggregation sites of mature individuals.  
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The identification process was based on mean catch per unit effort (CPUE) per ICES 

statistical rectangle, obtained from survey data. The calculation followed the ICES index 

calculation procedure (ICES 2006). Note that here the simplifying assumption that all 

statistical rectangles have the same size was made, although costal rectangles can be smaller. 

Furthermore, DATRAS raw data gives the number caught per length per haul. These numbers 

were summarised before calculating the mean CPUE for the length classes corresponding to 

the different life stages. A hypothetical example of the calculation procedure is given in Table 

1. In total, the following steps were applied: 

1. Four datasets were generated to investigate the aggregation sites of different life stages or 

sexes: 

1) Dataset pups, containing all individuals with published length range at birth (see 

Reproductive biology sections), to identify pupping areas. 

2) Dataset early juveniles, containing all individuals from lengths larger than maximum 

published length at birth up to 50 cm, to identify nursery areas.  

3) Dataset mature specimens, containing all individuals with length equal or larger than length 

at maturity, to identify critical areas of adults. If sex was not given, the length at 50% maturity 

of females was used. 

4) Dataset mature females, containing all mature specimens except males, i.e. also those with 

unreported sex, to identify the most likely distribution for females. 

2. The numbers caught per length L and haul H were summarised for each dataset by 

statistical rectangle (StatRec), year y and quarter q, to generate the total number caught for the 

given life stage in the statistical rectangle, quarter and year: 

                  ∑                                   (1) 

3. The mean CPUE per year and quarter in the statistical rectangle was obtained by dividing 

the number caught in the statistical rectangle, year and quarter with the total numbers of hauls 

made in the statistical rectangle, year and quarter: 

                 
                 

∑             
       (2) 
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4. In addition to the ICES index calculation procedure, the mean CPUE per statistical 

rectangle was calculated over all years. Therefore, the mean CPUE per statistical rectangle, 

year and quarter was added for each statistical rectangle and divided with the total number of 

years fished in this statistical rectangle: 

             
∑                        

∑               
       (3) 

5. Distribution maps were generated on the basis of mean CPUE per statistical rectangle to 

investigate aggregation sites of the different life stages. 

6. For the purpose of this study, areas were developed and assigned on the basis of abundance 

patterns, obtained from the distribution maps. The mean CPUE per area (         ) was 

calculated by taking the mean of equation 2, i.e. the average CPUE per year and quarter of all 

statistical rectangles in that area. Under this definition the size of the area is not considered.  

7. The month with the highest number of catches in the assigned area (          ) was 

examined by taking the average for each month of the total number caught in a month per 

statistical rectangle divided by the total number of hauls in this month and rectangle.  

The final identification of critical areas was based on a combination of side fidelity, i.e. over 

how many years catches have been reported, and abundance. This is consistent with criteria 

given by Heupel et al. (2007) for shark nursery grounds, suggesting that these sites have a 

greater abundance of pups than other areas and that the same areas are repeatedly used across 

years. Likewise, it was assumed in this study that adult aggregation sites show a higher 

abundance of mature individuals across years than elsewhere. In addition, the monthly 

distribution was used trying to cover different season by the critical areas and to detect 

seasonal patterns. Note that this accounts rather for species presence in that area during the 

month, because surveys were not made in every month in all areas. 
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Table 1: Hypothetical example of the CPUE calculation procedure applied in this study. Here, the area used to 

determine the mean CPUE per area and the mean CPUE per month is assumed to consist of two rectangles 

(40F0, 39F1). 

StatRec 40F0 40F0 40F0 40F0 40F0 39F1 39F1 39F1 39F1 39F1 

year 2000 2000 2000 2001 2001 2002 2002 2002 2003 2004 

quarter 1 1 4 4 4 2 4 4 1 1 

haul no H1 H1 H2 H1 H2 H1 H1 H2 H1 H1 

length (cm) 30 70 40 0 90 70 100 0 0 0 

month 1 1 11 11 11 5 11 11 1 1 

                   3 5 2 0 6 7 3 0 0 0 

                  8  2 6  7 3  0 0 

∑  

           

 1  1 2  1 2  1 1 

                 8  2 3  7 1.5  0 0 

∑                 
       

 13     8.5     

∑        
       

 2     3     

             6.5     2.83     

          3.07          

           4  2.08   7     
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2.3 Biological reference points for fishing mortality  

Sustainable exploitation is the prescribed target for fisheries management. Here, two methods 

were applied to estimate proxies of the fishing mortality which produces maximum 

sustainable yield Fmsy.  

Method 1: 

The first method derives Fmsy from the potential of a population to grow, i.e. the intrinsic rate 

of population increase r (Simpfendorfer 2005). It is used to estimate Fmsy according to (Ricker 

1975) as: 

                    (4) 

The intrinsic rate of population increase under stable age conditions was obtained from the 

Euler-Lotka equation by following a life table approach (e.g. Calliet 1992, Simpfendorfer 

2005): 

∑           
    
    

          (5) 

where mx is the age x specific fecundity (i.e. number of female offspring per female),    is the 

proportion of individuals surviving to age class x, tm is the age at maturity and tmax is the 

maximum age. The number of female embryos produced by each female per year was 

obtained by multiplying the fecundity at length times the proportion of females mature at this 

length. To account for sex ratio, resting stages and the complete reproductive cycle, the 

product was multiplied with 0.25 for all species. Age was obtained from length by applying 

the von Bertalanffy growth function. The survival to age    was calculated from age zero to 

maximum age after the following relationship: 

         
             (6) 

where M is the natural mortality. The initial value l0 was set to 1, to investigate if that recruit 

will be replaced by the population (Simpfendorfer 2005) and natural mortality was assumed 

constant. Finally, r was estimated iteratively using Excel Solver. The intrinsic rate of 

population increase is obtained if the sum from age at maturity to maximum age of equation 5 

equals 1. A hypothetical example is presented in Table 2.  
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Method 2: 

The rate of natural mortality M has been widely used in fisheries management as a proxy for 

Fmsy (e.g. Gulland 1971, Shepherd 1981, Clark et al. 1985, Beverton 1990, Patterson 1992, 

MacCall 2009, Pikitch et al. 2012). However, Fmsy >> 0.5M should be carefully justified 

(Walters and Martell 2002) and recent estimates for chondrichthyans derived from empirical 

data suggested Fmsy = 0.41M (Zhou et al. 2012). Therefore, this study uses Fmsy = 0.5M as a 

second proxy for the fishing morality rate which achieves maximum sustainable yield.  

Table 2: Hypothetical example of a life table used to determine the intrinsic rate of population increase r. Age at 

maturity was assumed at age 3 and natural mortality at 0.2 yr
-1

. Hypothetical numbers were used for the age 

specific fecundity, i.e. the number of pups produced by a female per year mx. The initial value for the survival to 

age lx was set to 1. The survival to age x was calculated as described in equation 6, e.g. l1 = 1.00*e
-0.2

, l2 = 0.82*e
-

0.2
. The product of mx and lx is the annual reproductive rate per generation. Excel Solver was used to iteratively 

solve the equation lxmx*e
(-rx)

. The intrinsic rate of population increase is obtained if the sum of lxmx*e (-rx) from age 

at maturity to maximum age (ages shown in bold) equals 1. Thus, r would be at 0.055 yr
-1

 in this example. 

Age mx lx lxmx lxmx*e(-rx) 

0 
 

1.00 
  

1 
 

0.82 
  

2 
 

0.67 
  

3 0.5 0.55 0.27 0.233 

4 0.75 0.45 0.34 0.271 

5 1 0.37 0.37 0.280 

6 1 0.30 0.30 0.217 

 

2.4 Estimation of total and fishing mortality 

The low productivity of sharks makes them extremely vulnerable to already modest levels of 

fishing mortality (Camhi et al. 1998), although sustainable exploitation is thought to be 

possible at least in some species (Walker 1998). The evaluation of the stock exploitation can 

be made by comparing its fishing mortality rates with sustainable rates such as Fmsy. Here, the 

exploitation levels were examined for tope, starry smoothhound and spurdog. Two procedures 

were applied to obtain total instantaneous mortality Z, from which fishing mortality can be 

derived. Age was obtained from length trough the von Bertalanffy growth function.   

1) If data was limited, a catch curve was generated. Catch curves track a yearclass over time 

and assume that a decrease in numbers is solely based on morality Z (no emigration or 

immigration or a balance between these): 

        
             (7) 
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The numbers are log-transformed and plotted over age. In a fished population, the slope of a 

regression line of the right descending arm of the plot is the total instantaneous mortality rate 

Z. Here, a linear regression weighted by the numbers caught per hour was applied, because of 

a greater degree of belief in catches where more individuals were reported. In addition, the 

numbers were pooled across years as described by Beerkircher et al. (2003), due to small 

sample size. 

2) If the sample size was large, the trend of exploitation in subsequent years was investigated. 

Here, total mortality rates were calculated via catch ratios of pooled ages to obtain the total 

instantaneous mortality rates in a given year Zy: 

     [
∑   
      
  

∑     
    
    

]          (8) 

where    is the age of recruitment,      is the maximum age and    is the number caught at 

this age. A hypothetical example of the catch ratio calculation procedure is given in Table 3. 

These ratios assume no error in catch, therefore a three years moving average was applied to 

the numbers caught by age and year. Under this definition, the first and last values were based 

on only two data points, due to border effects. The calculation was based on pseudocohorts, 

representing a snapshot across cohorts in one year.  

The fishing mortality rates for both procedures can be obtained from total mortality rates by 

subtracting natural mortality: 

                 (9) 

Note that ages calculated from length larger than 95% of the asymptotic length were not 

included into the mortality model. 

Table 3: Hypothetical example of the calculation procedure applied in this study, to obtain instantaneous fishing 

mortality rates F per year from pooled catch at age ratios. Here, a natural mortality rate of M = 0.2 yr
-1

 was 

assumed for demonstration purposes. Z was estimated for ages 2 to 6 (bold), assuming that recruitment is at age 

2 and the sample is representative till age 6. The total mortality Z in year 2000 is obtained as: 

LN((950+700+450+250)/(700+450+250+50)) = 0.48. F is obtained by subtracting M from Z.  

year 
number per age class 

Z F 
age 0 age 1 age 2 age 3 age 4 age 5 age 6 age 7 age 8 age 9 

2000 1000 900 950 700 450 250 50 30 20 1 0.48 0.28 

2001 800 700 750 500 250 50 20 60 30 0 0.64 0.44 

2002 900 800 850 600 350 150 30 70 40 0 0.55 0.35 

2003 1100 1000 1050 800 550 350 150 100 30 2 0.40 0.20 

2004 950 850 900 650 400 200 70 30 0 0 0.49 0.29 

2005 1000 900 950 700 450 250 50 20 10 5 0.48 0.28 
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2.5 Estimation of relative exploitation levels 

In data-poor situations, where it was not possible to estimate fishing mortality rates across 

years, relative exploitation levels can be used instead, to investigate the temporal trend of 

exploitation. Here, an index based assessment was applied (e.g. NEFSC 2002, Cadrin et al. 

2004). Relative exploitation ratios Urel can be obtained from the relationship of total landings 

to the corresponding survey biomass index SBI: 

                                (10) 

SBI was calculated as the weight of all individuals per one hour of hauling, with weight 

estimated from length by applying a length-weight relationship. Total landings were obtained 

from the Eurostat/ICES database on catch statistics (ICES 2013), version 07-03-2013 

available at http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-

assessment.aspx. A 1:1 replacement ratio was used to investigate, if the exploitation ratios 

allow the stock to replace itself. Therefore, the rate of change was calculated by dividing the 

SBI of a given year with the average of the five previous years. The reference value that 

allows the stock to replace itself can be obtained by applying a power function of the rate of 

change versus the relative exploitation rate. Replacement is achieved at the relative 

exploitation ratio where the regression line equals a rate of change of one. In other words, if 

the exploitation rate is below this proxy, the population can presumably withstand the rate of 

exploitation. 

2.6 Investigation of abundance trends 

The abundance trends over the last decades of tope, starry smoothhound and spurdog in the 

Northeast Atlantic were investigated. A standardised Catch per unit effort (CPUE) series was 

used as a measure of abundance to detect trends over time. CPUE was calculated as described 

in ICES (2006). First, the sum of the numbers caught per statistical rectangle, year and quarter 

was divided with the total number of hauls per statistical rectangle year and quarter (section 

2.2, equation 2). Then, the result was summarised per year and divided with the total number 

of rectangles fished this year. Note that under this definition, the area consists of the total 

survey area corrected for depth strata (Figure 1), assuming that a given species can occur in 

every statistical rectangle. Furthermore, it derives that all statistical rectangles have the same 

size. The time period used for each species was defined from the first year where all age 

classes have been caught representatively till 2012. The trend was estimated via an 

exponential model. The mean CPUE over the whole time series served as reference point.  
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2.7 The importance of length at first capture 

If fishes are caught several years before they reach maturity, then a stock may not be able to 

recover, even if fishing mortality is Fmsy. It has been shown, that the exploited cohort biomass 

and the yield decrease, if the size at first capture is too small (Froese et al. 2008, Colloca et al. 

2013). Furthermore, neither yield nor biomass can be maximised under sustainable 

exploitation without optimising size selectivity (Colloca et al. 2013). In bony fishes, an 

optimum length Lopt can be used as a reference point for growth overfishing (Froese 2004) 

and Froese et al. (2008) showed, that stocks where fishes are caught after they have reached 

Lopt show healthy age composition and higher biomass. Here, the importance of the length and 

age at first capture in the management of sharks as well as the effect of fishing at the optimum 

size and age was investigated. Therefore, the cohort biomass was calculated for different 

fishing scenarios (no fishing F = 0, sustainable fishing mortality rate Fmsy and current fishing 

mortality rate Fcurrent) and ages at first capture. The tope shark served as reference species, 

because it attains the highest maximum age of all species in this study, making it presumably 

more vulnerable if fishing starts at young ages. First, the number at each age in the cohort 

   under different scenarios of fishing mortality      and age at first capture tc was derived 

from: 

         
    for   <          (11) 

         
 (      ) for   ≥          (12) 

where M is the natural mortality. The other parameters have been defined above. An arbitrary 

value of 100 was used as initial value for      (recruits). Then, cohort biomass was obtained 

by multiplying the number at age with weight at age Wt, obtained from the length weight 

relationship. The optimum length (Lopt) was calculated after Beverton (1992): 

       
 

  
 

 

           (13) 

where M is the natural mortality, L∞ the asymptotic length and k the von Bertalanffy growth 

coefficient. Ages were translated in length by applying the von Bertalanffy growth function. 

A hypothetical example is presented in Table 4. 
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Table 4: Hypothetical example of the length/age at first capture calculation procedure. Length was obtained 

from age by applying the von Bertalanffy growth function. Here an asymptotic length of 100 cm, length at birth 

of 10 cm and a von Bertalanffy growth parameter k of 0.5 were assumed, e.g. length at age 2 = 100-(100-10)*e
(-

0.5*2)
. The fishing mortality rate was assumed at 0.3 yr

-1
, the natural mortality rate at 0.2yr

-1
. The optimum length 

was obtained from equation 13: Lopt = 100*3/(3+0.2/0.5) and is 88 cm. Therefore, the optimum age at first 

capture is 4 (shown in bold). The number at each age in the cohort Nt was obtained from equation 11 and 

equation 12, the initial value was set to 100, e.g. N1 = 100*e
-0.2

, N5 = 27.25*e
-(0.2+0.3)

. The mean weight at age Wt 

was obtained from a length-weight relationship with a = 0.01 and b = 3, e.g. W5 = 0.01*92.61
3
. The cohort 

biomass is the product of mean weight at age and the number at age divided by 1000 to obtain tonnes. 

length (cm) age Nt Wt (gram) cohort biomass (mt) 

10.00 0 100.00 10.00 1 

45.41 1 81.87 936.52 76.68 

66.89 2 67.03 2992.95 200.62 

79.92 3 54.88 5104.33 280.13 

87.82 4 33.29 6772.95 225.45 

92.61 5 20.19 7943.41 160.36 
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3. Biology and life history of Galeorhinus galeus 

The tope (Galeorhinus galeus) (Figure 2) belongs to the family of Triakidae, one of the 

largest families within the order of the ground sharks (Carcharhiniformes) and it is the only 

species within the genus Galoerhinus. Its distribution is worldwide in temperate waters, but it 

is absent in the western North Atlantic. Other common names for tope are soupfin shark in the 

eastern Pacific and South Africa and school shark in Australia and New Zealand. Although 

this species has very low biological productivity, it is important in shark fisheries (Compagno 

1984b, Compagno et al. 2005). In the following, the biology and life history traits needed to 

examine the status, trends and conservation opportunities for this species will be presented. 

The findings are summarised in the Supplementary Information (Table 2). 

 

Figure 2: Illustration of Galeorhinus galeus, modified and taken from www.sharktrust.org. 

 

3.1 Length-weight relationship 

3.1.1 Introduction 

Body weight can be obtained from length by a length-weight relationship of the form: 

                  (14) 

Where W is the weight and L the length. The parameter   describes the body shape and   

indicates whether body shape is changed during growth. If   is ~ 3, growth is isometric 

(Froese 2006). Tope has a slender body (Figure 2), therefore the shape parameter   is 

expected to lie between 0.01 and 0.001 (Froese 2006). 
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3.1.2 Materials and methods 

The length-weight relationship of the tope shark for the Northeast Atlantic was calculated 

using DATRAS raw data from ICES surveys available at http://datras.ices.dk, consulted on 

2012−08−26. Records of weight and corresponding length were used only if one individual 

was reported, because of inconsistencies in hauls with several specimens. Additional length-

weight values were derived from an electronic chart provided by Scottish Sea Angling 

Conservation Network (SSACN), available at http://www.ssacn.org/gfac/length-to-

weight/tope, consulted on 2012−08−26. In this chart, data points were chosen every 10 cm 

from the regression line, and the weight in pounds was multiplied with 453.59 to obtain gram. 

Relationships were determined for males, females and both sexes combined. 

3.1.3 Results 

Length-weight relationships of tope are presented in Table 5. Total length is given in cm and 

weight is given in gram. The 123 length observations obtained from ICES surveys ranged 

from 33 cm to 163 cm in male sharks (n = 76) and from 34 cm to 148 cm for female sharks (n 

= 47). The 30 length values obtained from SSACN ranged from 50 cm to 200 cm for females 

and from 50 cm to 180 cm for males (Figure 3). 

 

Figure 3: Relationship between the natural logarithm (ln) of body weight (grams) and the natural logarithm of 

total length (cm) of male and female tope for the Northeast Atlantic. The grey dashed line indicates the 95% 

confidence limits for males and the black dashed line the 95% confidence limits for females. 
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Table 5: Length-weight relationship of tope for the Northeast Atlantic. The total sample size (n) contained 153 

individuals ranging from 33 cm to 200 cm in length. The 95% confidence limits (CL) are given for each sex and 

parameter. 

sex a b n length range (cm) 95% CL a 95% CL b r2 

male 0.0042 3.01 90 33 − 180 0.0028 - 0.0064 2.92 - 3.10 0.98 

female 0.0029 3.10 63 34 − 200 0.0019 - 0.0044 3.01 - 3.19 0.99 

combined 0.0037 3.04 153 33 − 200 0.0028 - 0.0049 2.98 - 3.10 0.99 

 

3.1.4 Discussion 

Larger specimens were not sampled effectively in the survey data (ICES 2009). Therefore, 

additional data was supplemented from SSACN to determine the length-weight relationship of 

tope for the Northeast Atlantic. Since b was close to 3, a can be interpreted as form factor. 

With 0.003 to 0.004 it falls between the 0.001 for eel-like fishes and 0.01 for fusiform fishes 

(Froese 2006), i.e. it is as expected for an elongated or slender fish (Figure 2). Although 

slightly lower, the results of the exponent b are similar to those from Australia (Olsen 1954). 

The mean of 3.04 indicates isometric growth, with a slight tendency to become more rotund 

with size (Froese 2006). These findings agree with those from the eastern Pacific, which have 

suggested, that females increase more in weight at the onset of maturity (Ripley 1946). 

However, the differences between males and females in length-weight relationship are not 

significant, as can be seen by the overlapping in confidence limits (Table 5).  

3.2 Reproductive biology 

3.2.1 Introduction 

Information about reproductive biology is important for demographic life history models. 

Such information is lacking for tope in the investigated areas. However, tope in the 

Mediterranean Sea reach similar maximum size and weight as in the Northeast Atlantic 

(Capapé and Mellinger 1988, EFSA 2013). Moreover, migrations from Britain to the 

Mediterranean Sea, Madeira and the Azores have been reported (Fitzmaurice 1979, Sutcliffe 

1994, Little 1995, Little 1998). Therefore, available information about the reproductive 

biology of tope from these three locations was analysed.  

3.2.2 Materials and methods 

Information was extracted from the literature. The size where 50% of individuals have 

reached maturity was obtained as mean values across all available studies.  
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If the size at 50% maturity was not given, but values of first and 100% maturity were, the 

average of these two values was used. A logistic regression model was applied to describe the 

proportion of females mature at a given length (e.g. Holden and Meadows 1964, Gauld 1979, 

Henderson et al. 2002, Farrell et al. 2010b, Couto 2013). Therefore, the minimum length of 

immature females, the mean length at 50% maturity and the maximum reported length at 

which all individuals are mature were fitted to the model. The coefficients a and b were 

estimated by using Excel Solver. For the purpose of this study, immature individuals were 

defined as the smallest mature individual minus one centimetre. Information about fecundity 

at length was obtained from literature and fitted with a power function (Froese and Luna 

2004). 

3.2.3 Results 

The sizes at different maturity stages of males and females are given in Table 6. Males start to 

mature at a mean length of 114 cm and reach 50% maturity at a size of 121 cm. All males are 

mature at a size of 127 cm. Females start to mature at a size of 140 cm. All females are 

mature at a size of 182 cm and the length at 50% maturity is 155 cm. The length at birth 

ranges from 24 cm to 32 cm, with a mean size of 28 cm (Capapé et al. 2005). Fecundity 

ranges from 8 to 41 pups and increases with the length of the mother (Capapé and Mellinger 

1988, Capapé et al. 2005). Observations on the number of embryos/eggs corresponding to the 

maternal length were obtained from Capapé et al. (2005). The relationship is described by: 

                          (r
2
=0.19)        (15) 

Given the data in Table 6, the proportion of females mature   can be described by: 

    (    (              ))         (16) 

where TL is the maternal total length in cm. The sex ratio at birth is in slight favour of males. 

From 120 embryos, 45.8% (Capapé et al. 2005) and from 115 embryos, 47.8% (Capapé and 

Mellinger 1988) were females. The average proportion of 46.8% female pups is close to the 

expected 1:1 ratio. The gestation time lasts approximately 12 months and reproduction occurs 

every other year, although a reproductive cycle of three years may be possible (Capapé et al. 

2005). Information about the time of parturition differs across the literature. The Agri-Food & 

Biosciences Institute (2009) stated, that the main pupping season in southern British waters is 

from August to December, whereas other sources state, that tope gives birth during the warm 

summer months (Wheeler 1969, Little 1995, Nevell 1998).  
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Similarly, pupping was reported to occur from June to September at the northern French coast 

(Walker 1999). Capapé and Mellinger (1988) suggested that ovulation, mating and pupping 

occur from April to June in the Mediterranean Sea. Later, Capapé et al. (2005) suggested two 

breeding periods, one from December to February and the other one from April to June, with 

mating in June and August.  

Table 6: Maturity stages of tope in the Northeast Atlantic. In bold are the mean values used in this study. The 

95% confidence limits of length at 50% maturity estimates are given in parentheses. 

sex 
length at maturity (cm) 

region source 
first 50% 100% 

male 114 --- --- Mediterranean  Capapé and Mellinger (1988) 

 122.5 
 

127 Mediterranean  Capapé et al. (2005) 

 --- 120.5 --- Mediterranean  mean (Capapé and Mellinger 1988, Capapé et al. 2005) 

 --- 126 --- Azores Couto (2013) 

 --- 115.9 --- Madeira Couto (2013) 

 114 121 (±2.3) 127 NE Atlantic this study 1 

female 150 --- 182 Mediterranean  Capapé and Mellinger (1988) 

 140 --- --- Mediterranean  Capapé et al. (2005) 

 --- 161 --- Mediterranean  mean (Capapé and Mellinger 1988, Capapé et al. 2005) 

 --- 153.1 --- Azores Couto (2013) 

 --- 151.1 --- Madeira Couto (2013) 

 140 155 (±2.3) 182 NE Atlantic this study 1 

1 mean length at 50% maturity and minimum or maximum length at first and 100% maturity, respectively. 

 

3.2.4 Discussion 

The sizes at maturity in Table 6 are in agreement with those reported from the eastern Pacific, 

a region where this species attains a similar maximum size (Ripley 1946). Moreover, the size 

at first maturity of females is consistent with results from the west of Ireland, where a 132 cm 

large female was recorded as immature (Henderson et al. 2003). Length at birth in the 

Northeast Atlantic is apparently slightly smaller than the 40 cm reported from other areas 

(Compagno 1984b). If one assumes an error of sex ratio of ±10%, then 46.8% would not be 

significantly different from 50%. Therefore a sex ratio of approximately 1:1 was confirmed, 

although sex ratios in favour of females have been reported from South Australia (Olsen 

1954), whereas in the western South Atlantic males were the predominant sex (Peres and 

Vooren 1991, Lucifora et al. 2004). The reproductive cycle is consistent with observations 

from Australia (Olsen 1954), but less than the three years cycle reported from western South 

Atlantic (Peres and Vooren 1991, Lucifora et al. 2004).  
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The number of pups obtained from the relationship with maternal size found in this study was 

lower than in all other areas (Ripley 1946, Olsen 1954, Peres and Vooren 1991, Lucifora et al. 

2004, Capapé et al. 2005), possibly due to the lower sample size of 13 individuals. Note that 

the relationship derived in this study uses the expected power function (Froese and Luna 

2004) whereas the other studies used a linear relationship. The time of mating varies across 

literature and may be difficult to determine unless directly observed, because mating occurs 

up to five months before ovulation has been reported (Peres and Vooren 1991). 

3.3 Age and growth 

3.3.1 Introduction 

Growth of chondrichthyans is commonly described by the von Bertalanffy growth function 

(Calliet et al. 2006). The original formula with length at birth L0 instead of age at zero length 

t0 as third parameter was applied in this study, as recommended for sharks (Calliet et al. 

2006). The von Bertalanffy growth function is as follows (von Bertalanffy 1938): 

 ( )     (     ) 
            (17) 

where L(t) is the length at age t, L∞ is the length a fish would reach if it would grow forever 

and k is a curve parameter describing how fast L∞ is approached. Age can be obtained by 

adjusting the formula: 

  
 

 
   ((     ) (    ( )))        (18) 

Information about growth of the tope shark in the Northeast Atlantic is deficient. Henderson 

et al. (2003) examined the vertebrae of four males and estimated their ages. Stevens (1990) 

reported a mean annual growth of 7 cm in medium sized species and 2 cm in large species for 

both sexes combined. Here, von Bertalanffy growth parameters of tope for the Northeast 

Atlantic were derived from tagging data, with a new method (unpublished, Froese 2013, 

personal communication). 

3.3.2 Materials and methods 

An iterative approach was developed to estimate von Bertalanffy growth parameters of tope. 

The data was based on recaptures from different tagging programmes conducted in the 

Northeast Atlantic, the first initiated in early 1959 (Holden and Horrod 1979).  
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Information on sex, time at liberty and growth in weight or size was obtained from the 

literature (Holden and Horrod 1979, Stevens 1990, Little 1995) and the Centre for 

Environment, Fisheries and Aquaculture Science (CEFAS) tagging database, the UK Shark 

Tagging Programme and the Scottish Sea Angling Conservation Networks (SSCAN) Shark 

Tagging Programme. Lengths obtained from weight by Stevens (1990) were back-calculated 

to weight by the formula he applied. Length was calculated from the inverted length-weight 

relationship obtained for the Northeast Atlantic (section 3.1), whenever weight was given 

instead of length or when length values were erroneous. Duplicate records in the different 

sources were deleted. Information on growth rates from tagging data can be subject to 

significant measurement errors (Holden and Horrod 1979, Stevens 1990), among others, 

because of the inherent variability of body weight. Thus, reported negative growth rates and 

two growth rates of mature males of 35 cm and 58 cm per year (Stevens 1990), considered 

questionable by the author, were excluded from the analysis. Moreover, outliers may lead to 

biased results, especially if the sample size is small. Due to large variability in annual growth 

among individuals, the absolute median deviation (MAD) was applied to detect and eliminate 

outliers, so that a representative growth sample of the majority of the individuals was 

obtained. MAD is defined as the median of the absolute differences of each data point to the 

median of the data (Hampel 2001). All annual growth rates that deviated more than three 

times the MAD were defined as outliers and excluded. Then, the von Bertalanffy growth 

parameters were estimated by the least residual sum of squares of predicted to observed 

growth, obtained via an iterative approach. This method requires an independent estimate of 

the asymptotic length   . This was determined by the average of the three largest/heaviest 

specimens caught within the Northeast Atlantic and the Mediterranean Sea, sourced from the 

literature. The growth parameters were estimated in five steps: 

1. Observed growth increment ∆L was obtained by: 

                    (19) 

where Lc is the length at capture and Lr  is the length at recapture.  

2. The age at the length of capture tLc was calculated by using an initial arbitrary value (e.g. 

0.1) for the von Bertalanffy growth parameter k: 

       (  
  

  
)            (20) 
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3. The predicted length at recapture  ̂  was estimated: 

 ̂    (   
  (      ))          (21) 

where dt is the time at liberty in years.  

4. The predicted growth increment   ̂ can be obtained as: 

  ̂   ̂                (22) 

5. In the last step, k can be solved iteratively by minimizing the residual sum of squares of 

observed and predicted growth increments across all available recapture data. The standard 

deviation (SD) derived from residuals was used as a measure of uncertainty. SD was estimated 

from the single observed ki,obs values minus the predicted k. The observed von Bertalanffy 

growth parameter can be obtained via: 

       
  

  
 (   (

(     )

 
))         (23) 

SD is described by: 

    √∑
(        )

 

(   )
          (24) 

where n is the sample size. The estimated growth parameters were compared with those from 

other areas via the auximetric grid of Pauly et al. (1996). Based on length at maturity 

information (section 3.2) the growth parameters were used to calculate the age at maturity. 

Longevity is empirically related to the age at maturity (Froese and Binohlan 2000). Therefore, 

maximum age tmax was derived from its ratio to age at maturity tm as described by Frisk et al. 

(2001) for elasmobranches: 

                       (25) 

3.3.3 Results 

In males, four individuals were excluded with an annual growth of 11 cm, 13 cm, 20 cm and 

28 cm. In female sharks, five individuals were considered as outliers, one with an annual 

growth of 14 cm, two with an annual growth of 18 cm and two with an annual growth of 26 

cm. The final dataset contained 16 male and 33 female sharks. The annual growth ranged 

from 1 cm to 12 cm in females (mean = 5.18 cm) and from 1 cm to 8 cm in males (mean = 3.3 

cm).  
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Length ranged from 45 cm to 175 cm in females and 112 cm to 168 cm in males. In males, the 

shortest time at liberty was 10 weeks, the highest 10.9 years (mean 3.1 years). The time at 

liberty of females ranged from 7.3 weeks to 6.7 years (mean = 2.4 years). The maximum 

reported length of females was 200 cm from the Mediterranean Sea (Capapé and Mellinger 

1988). The reported maximum weight for females in the southern North Sea was 37.4 kg 

(EFSA 2013) and 36.7 kg in Scottish waters (SSTP 2010). Stevens (1990) reported the 

heaviest male to be 22.3 kg in the Northeast Atlantic. These weights correspond to a length of 

197 cm and 196 cm for females and 171 cm for males, respectively, derived from the length-

weight relationship (section 3.1). Holden and Horrod (1979) found the largest male to be 168 

cm in Irish waters and the largest male from Spanish waters was 184 cm (UK Shark Tagging 

Programme). The asymptotic length was calculated as the average of these catches and was 

198 cm in females, 174 cm in males and 186 cm for both sexes combined. The obtained 

values for the von Bertalanffy growth function are given in Table 7 and are visualised in 

Figure 4 and 5.  

Table 7: Von Bertalanffy growth parameter estimates for tope in the Northeast Atlantic. As a measure of 

uncertainty, the standard deviation (SD) derived from residuals was calculated from the observed minus the 

predicted k.  

sex L∞ L0 k SD k n 

male 174 28 0.087 0.021 16 

female 198 28 0.066 0.008 33 

combined 186 28 0.074 0.009 49 

 

On the basis of the von Bertalanffy growth parameters, age at 50% maturity was 21 years for 

females and 12 years for males. Longevity of tope in the Northeast Atlantic was estimated to 

be 55 years.  
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Figure 4: The figure shows the von Bertalanffy growth of male tope sharks within the Northeast Atlantic, 

estimated via an iterative approach: L(t) = 174-(174-28)e
-0.087t

. The black open circles represent the considered 

tagging data, the red open circles the outliers defined as exceeding three times the median absolute deviation 

(MAD). The grey dashed line indicates the asymptotic length. 

 

 

Figure 5: The figure shows the von Bertalanffy growth of female tope sharks within the Northeast Atlantic, 

estimated via an iterative approach: L(t) = 198-(198-28)e
-0.066t

. The black open circles represent the considered 

tagging data, the red open circles the outliers defined as exceeding three times the median absolute deviation 

(MAD). The grey dashed line indicates the asymptotic length. 
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3.3.4 Discussion 

The maximum length observed in the Northeast Atlantic is similar to the Mediterranean Sea. 

When compared to other regions, the results indicated that female asymptotic length of 198 

cm is larger than the 162 cm reported from south-eastern Australia (Grant et al. 1979), the 179 

cm reported from New Zealand (Francis and Mulligan 1998) and the 163 cm from southern 

Brazil (Ferreira and Vooren 1991). Likewise, male asymptotic length of 174 cm was found to 

be larger than the 143 cm reported from New Zealand (Francis and Mulligan 1998), 154 cm 

from South Africa (McCord 2005), 152 cm from southern Brazil (Ferreira and Vooren 1991) 

and 158 cm from south-eastern Australia (Grant et al. 1979). However, if a 95% CL of ±10% 

is assumed, none of the maximum length estimates would be significantly different from the 

one found in this study, as indicated by overlapping confidence limits. The von Bertalanffy 

growth parameter k was found to be below that of all other regions (Grant et al. 1979, Ferreira 

and Vooren 1991, Moulton et al. 1992, Francis and Mulligan 1998, McCord 2005). If a 95% 

confidence limit of 20% is assumed, male growth would be significantly different from all 

areas, except southern Brazil. Female growth would be significantly different from South 

Africa and Australia, but not from New Zealand and southern Brazil. This is in accordance to 

the auximetric grid, where growth performance seems to be more closely related to New 

Zealand and southern Brazil stocks, than to Australian and South African stocks (Figure 6). 

The slope of all growth estimates combined is -2.3 and therefore close to the expected value 

of -2 (Pauly et al. 1996). Methods to derive growth parameters from tagging data have been 

developed previously (e.g. Gulland and Holt 1959, Fabens 1965, Francis 1988), but they can 

be sensitive to small sample sizes (Natanson et al. 2006). The Gulland and Holt method 

assumes no errors within the measurements and no growth variability (Campana 2001) and 

may fail if time at liberty is short (Simpfendorfer 2000). Simpfendorfer (2000) observed non 

reasonable results of Fabens method if sufficient data is lacking. The findings of this study 

suggest that the iterative approach can handle small sample sizes if outliers are excluded from 

the analysis. The calculated maximum age of 55 years is in agreement with the suggested 

maximum age of 53 years reported from Australia (Olsen 1984, Moulton et al. 1989) and 41 

years from southern Brazil (Ferreira and Vooren 1991). The age at maturity found in this 

study is higher than the estimated 10 years in Australia (Olsen 1954), 16 years from southern 

Brazil (Peres and Vooren 1991) and the 13 to 15 years reported from New Zealand (Francis 

and Mulligan 1998). However, length at maturity was also higher in this study, therefore 

explains the difference. 
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The age at maturity of males is in agreement with that reported from southern Brazil (Peres 

and Vooren 1991) and New Zealand (Francis and Mulligan 1998), but higher than in South 

Africa (McCord 2005) and Australia (Olsen 1954). All life history information of 

Galeorhinus galeus from other regions are detailed in the Supplementary Information (Table 

1). In summary, the growth performance of tope estimated in this study and shown in Table 7 

is found to be reasonable and suitable for the Northeast Atlantic. 

 

Figure 6: Auximetric grid showing the relationship of growth performance within tope species from different 

geographic areas. The different studies of tope are indicated by different colours. Growth parameters of females 

are displayed by circles, males by diamonds and combined sexes by triangles. 

 

3.4 Natural mortality 

3.4.1 Introduction 

Natural mortality M is a key parameter in fisheries management. It is often estimated as adult 

natural mortality based on other life history parameters such as maximum age or growth 

parameters. Here, natural mortality is derived from empirical equations drawing on longevity, 

growth and environmental parameters. In tope sharks low natural mortality rates have been 

reported from Australia (Grant et al. 1979) and therefore, M is expected to be low. 

3.4.2 Materials and methods 

The empirical relationships of Hoenig (1983), Pauly (1980) and Jensen (1996) were applied, 

whenever observations of the required parameters were given. 
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The method of Hoenig (1983) relates the maximum age tmax to natural mortality: 

  ( )              (    )         (26) 

Pauly (1980) proposed a relationship of the average water temperature T and the von 

Bertalanffy growth parameters k and L∞ to natural mortality: 

   ( )                   (  )            ( )            ( )  (27) 

Jensen (1996) suggested two relationships. One is based on the von Bertalanffy growth 

parameter k: 

                   (28) 

and the other is based on the age at maturity tm: 

                     (29) 

The average water temperature of the Northeast Atlantic was set to 7 °C, obtained from Pauly 

(1980). The age at maturity was estimated via the von Bertalanffy growth function, based on 

length observations covered in the Reproductive biology sections. Only information other than 

empirically calculated were used as maximum age input. The remaining parameters have been 

treated in the corresponding species sections. For the purpose of this study, natural mortality 

was taken as the median across all applicable methods. 

3.4.3 Results 

The results of the life history approaches to estimate natural mortality are given in Table 8. 

Table 8: Natural mortality rates of tope estimated from other life history traits. The median value is used for the 

purpose of this study. The 2.5 and 97.5 percentiles of natural mortality are 0.087 and 0.099, respectively. 

method Hoenig (1983) Pauly (1980) Jensen (1996) (age) Jensen (1996) (growth) median 

input --- k = 0.066, L∞ = 198, T = 7 tm = 21 k = 0.066 
 

natural mortality --- 0.094 0.079 0.099 0.094 

 

3.4.4 Discussion 

Although this study suggests a maximum age of 55 years for tope, it was based on an 

empirical theory that relies on an already empirically derived value and therefore the method 

of Hoenig (1983) was not applied.  
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The natural mortality of tope estimated for the Northeast Atlantic in this study is consistent 

with the natural mortality of 0.1 yr
-1

 reported from south-eastern Australia and obtained from 

tagging data (Grant et al. 1979), i.e. it is not significantly different if a 95% confidence limit 

of ±10% is assumed. 

3.5 Habitat and distribution  

3.5.1 Introduction 

Niche modelling can help to identify areas that are most suitable for a given species. Here, the 

map produced by the AuqaMaps model was examined (Kaschner et al. 2013). Moreover, 

these maps can provide first indications of species hot spots. In the following, the results of 

the map are compared with the distribution information from the literature. Tope is expected 

to cover a wide range of the investigated area, because it is highly migratory, inhabiting 

continental seas and offshore regions (Compagno et al. 2005). 

3.5.2 Materials and methods 

The potential distribution of tope was modelled with AquaMaps (Kaschner et al. 2013). The 

depth range was adjusted by the maximum reported depth of the species, obtained from the 

literature. Ranges for temperature, salinity and primary production as suggested by the model 

were accepted.  

3.5.3 Results 

Although tope has been reported to a depth of 550 m in the Northeast Atlantic (Couto 2013), 

it has been recorded to 800 m in New Zealand (Walker 1999). Therefore, the maximum depth 

was set to 800 m. The potential distribution is shown in Figure 7 and the corresponding 

environmental parameters are detailed in Table 9. 

Table 9: Environmental parameters used to model the suitable habitat of tope. 

environmental envelopes min preferred min preferred max max 

depth (m) 0 2 470 800 

bottom water temperature (°C) 2 5.5 15 26 

bottom salinity (psu) 22.5 35 38 39 

primary production (mgC*m-2*day-1) 0 390 1459 3830 

 

 



Galeorhinus galeus 

30 

 

Figure 7: Potential distribution of tope in the Northeast Atlantic, obtained from AquaMaps, adjusted by depth. 

 

3.5.4 Discussion 

In accordance with the suitable habitat obtained from AquaMaps, the stock is considered to be 

distributed over a wide range covering ICES areas II to X, north-western Africa and the 

Mediterranean Sea (ICES 2009). Tope is highly migratory and long term movements have 

been reported from Scotland to Iceland (Little 1998), Portugal, Canary Islands, Algeria 

(Sutcliffe 1994, Little 1995, Little 1998) and the Bay of Biscay (SSTP 2011). Tope tagged at 

the Irish coast, moved as far as the Azores, Canary Islands, Bay of Biscay and into the 

Mediterranean Sea off Algeria and Spain (Fitzmaurice 1979). Long distance migrations from 

the British coast have been reported to the west coast of France, north of Spain, Portugal, the 

Atlantic region of Morocco and the Canary Islands (Holden and Horrod, 1979) and from 

English waters to Cadiz (Spain), Iceland and off Portugal (Stevens 1990). Whereas female 

tope sharks tagged in British waters were recaptured at the Azores, Madeira, the Spanish and 

Portuguese coast, including the Mediterranean Sea, males seem to be more stationary and 

have been recaptured in the Bay of Biscay and the northern coast of Spain (SSTP 2010). 

Similar to reports from other regions (Ripley 1946, Olsen 1984), segregation by sex occurs in 

the Northeast Atlantic. Males are predominant off the west of Scotland (Sutcliffe 1994, Little 

1995, Little 1998) and along the west coast of Great Britain, whereas the abundance of 

females is higher in the North Sea, the English Channel (Holden and Horrod 1979) and off 

south-west England (Stevens 1990). Off southwest Scotland, large females can be found 

inshore from late July onwards (Little 1998). Little (1995) concluded that females might 

prefer shallow inshore areas whereas males prefer offshore habitats.  
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In agreement with this, Stevens (1990) suggested that there might be an inshore migration of 

mature females in spring. In Northern Ireland waters the highest numbers of tope sharks can 

be found from June to September, with large females predominant (Agri-Food & Biosciences 

Institute 2009). Furthermore, large females have been observed along the Netherlands coast in 

summer (Winter and van Oversee 2013). Information about mating locations is rare, but in 

Australia tope is believed to mate in deeper waters along the continental shelf (Olsen 1954). 

Several nursery areas have been proposed in the Northeast Atlantic. Ellis et al. (2012) 

suggested that these grounds are located inshore. Furthermore, juvenile tope sharks may stay 

in this nursery area for up to two years (Compagno et al. 2005). Greater abundances of 

juvenile tope have been observed in south-east England (Greater Thames Estuary), east 

Scotland (Firth of Forth), the Irish Sea, Bristol Channel, off north-western Scotland (Ellis et 

al. 2012) and the southern North Sea (Ellis et al. 2005a). In addition, the Solent straight, south 

of England, might serve as nursery ground (Ellis et al. 2012). In summary, tope covers a wide 

range of the investigated area with higher occurrence around the British Islands. According to 

the literature, critical habitats of mature individuals may be found along the coast of the 

Netherlands, the English Channel and south-west England, in the Irish Sea and off the west of 

Scotland. Nursery areas may occur around Scotland, the Bristol Channel and the Irish Sea, 

along the south-eastern coast of England and the southern North Sea. 

3.6 Critical habitats 

3.6.1 Introduction 

Tope is a wide ranging species, yet certain areas seem to be important for critical life stages 

(Ellis et al. 2005a, Ellis et al. 2012). This species is mainly caught as bycatch, especially in 

the English Channel, the Western Approaches and the northern Bay of Biscay (Walker et al. 

2006). Their life history renders the species extremely vulnerable to over-exploitation (see 

above). The fact, that bycatch is unregulated and unreported, raises the urgency to identify 

critical areas that can serve as refuges. Here, pupping and nursery grounds as well as 

aggregation sites for mature specimens in the Northeast Atlantic were investigated. 

3.6.2 Materials and methods 

The data was based on ICES surveys (section 2.1). Information about the different life history 

stages was taken from the Reproductive biology section. Early juveniles were defined by a 

length range of 33 cm to 50 cm, which corresponds approximately to an age up to 2 years. 

The dataset contained 1473 records of tope from 1984 to 2012.  
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Specimens were caught in all months, in depths ranging from 16 m to 460 m. Due to the 

limited amount of data, catches of the BT8 and GOV gear types were used to identify pupping 

grounds, assuming equal catchability of pups by these gear types. Moreover, investigation of 

critical areas was only possible on the basis of combined sexes. 

3.6.3 Results 

Pupping and nursery grounds were found in the Southern Bight and German Bight (Figure 8), 

especially at grounds off the Frisian Islands. In total, 38 pups were recorded in 6 different 

years, from 1991 to 2010. Pups were caught from July to October with a peak of abundance in 

the latter month. All catches were made in depths ranging from 23 m to 31 m. The results are 

summarised in Table 10. A higher number of early juveniles were caught regularly from 1988 

to 2011 (n = 126), almost exclusively in the Outer Thames Estuary and the Frisian Islands 

(Figure 9). Most juveniles were caught in August. 

 

Figure 8: Records of tope pups (24 cm − 32 cm) from ICES surveys in the Northeast Atlantic. In total, the 

sample contained 38 individuals, reported in 6 different years from 1991 − 2010.  
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Figure 9: Records of early juvenile tope (33 cm − 50 cm), from ICES surveys in the Northeast Atlantic. In total, 

the sample contained 126 individuals, reported from 1988 − 2011. 
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Mature tope were caught in 22 different years from 1985 to 2012. Of the 364 mature tope 

recorded in total, 4 were females, 340 males and for 20 the sex was not given. They occurred 

in depth from 20 m to 300 m. Mature individuals were most abundant in the southern Irish 

Sea, the north coast of Ireland, the Vidal Bank region and off the east coast of England 

(Figure 10). Furthermore, catches were made in several years off south-west Ireland and in 

the southern Celtic Sea (Table 10). Females were only caught along the north coast of Ireland 

and the Frisian Islands, whereas specimens of unknown sex were mostly distributed at the 

southern Hebrides, the Frisian Islands, the Outer Thames Estuary and the east coast of 

England.  

 

Figure 10: Records of mature tope (size of male ≥ 121 cm, size of female and unknown sex ≥ 155 cm) for 

combined sexes from ICES surveys in the Northeast Atlantic. In total, 364 mature individuals were recorded in 

22 different years, from 1985 − 2012.  
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3.6.4 Discussion  

The fact that pups and early juveniles were caught in the same areas indicates that the pupping 

grounds may serve also as nursery areas for tope. The nursery areas found here agree with 

those proposed in former studies (Ellis et al. 2005a, Ellis et al. 2012). Fewer locations were 

identified however, possibly due to the small sample size. Nevertheless, the Frisian Islands 

seem to be important, indicated as this area was used in different decades. The fact that pups 

were caught from July to October only, suggests that birth occurs in summer and autumn. 

This agrees with the temporal period proposed by others studies (Wheeler 1969, Little 1995, 

Nevell 1998, Walker 1999, Agri-Food & Biosciences Institute 2009), yet is later than reported 

from the Mediterranean Sea (Capapé and Mellinger 1988, Capapé et al. 2005). Interestingly, 

catches composed exclusively of males occurred in the southern Irish Sea, south-west of 

Ireland and the southern Celtic Sea. In the latter region it may be reasonable to assume 

females cross this area on their migrations from north to south (Fitzmaurice 1979, Holden and 

Horrod 1979, Stevens 1990, Sutcliffe 1994, Little 1995, Little 1998, SSTP 2011). This may 

be explained by seasonal sampling bias. On the other hand, females may encounter higher 

exploitation rates than males as reported from other areas (Olsen 1959). Due to the rarity of 

females, this study was unable to investigate sex segregation between the areas. Though, 

former studies found greater numbers of females in the North Sea (Holden and Horrod 1979, 

Stevens 1990) and large females have been reported along the coast of the Netherlands 

(Winter and van Oversee 2013) with length representing maturity. Likewise, the occurrence 

of large females were reported in the greater vicinity of the northern Irish coast (Little 1998, 

Agri-Food & Biosciences Institute 2009). The findings here, combined with information from 

the literature, indicate the Frisian Islands, the north coast of Ireland and possibly the east coast 

of England as critical habitats for female tope. Other areas where mature male tope aggregate 

were found in the Vidal Bank region, south-west Ireland, the southern Celtic Sea and the 

southern Irish Sea, including the marine protected area (MPA) in Cardigan Bay (OSPAR 

2013, JNCC 2013). Although most areas were at least partly protected, and therefore reflect 

the importance of habitat protection for sharks, the entire area was seldom covered. 

Furthermore, some of the critical habitats are located within the Western Approaches, one of 

the main areas where tope is suffering from bycatch (Walker et al. 2006). Therefore, it is 

suggested to enlarge existing MPAs in the above mentioned areas, but in particular along the 

northern Irish coast and the Frisian Islands, to aid a healthy population structure by protecting 

spawners and early juveniles.  
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Especially within larger parts of the pupping and nursery grounds a strict fishing prohibition 

should be implemented to enhance recruitment, since juveniles may utilise these areas during 

the first two years of their life (Compagno et al. 2005). The Wadden Sea has undergone 

dramatic anthropogenic changes caused by exploitation, habitat alteration and pollution since 

the Middle Ages. Intensified fishing resulted in declines of several fish species (Lotze 2005, 

Lotze et al. 2005). The current fisheries is based offshore, although inshore fisheries of, inter 

alia, shrimp and flatfish still exist (Lotze et al. 2005). These fisheries are relatively unselective 

and are likely to affect juvenile tope. Therefore, tope is suffering from fishing pressure in its 

nursery grounds, followed by reduced habitat quality and reduced food availability. Based on 

the available data, new protected areas with great potential in tope conservation are proposed 

in the Central and Southern Celtic Sea, the southern Irish Sea, the east coast of England, the 

northern coast of Ireland, the Frisian Islands and the Vidal Bank region. However, these 

suggestions are based on limited data, thus future studies are recommended to support the 

results. The fact that such a small number of females were caught in the surveys raises 

questions regarding the sampling efficiency or exploitation rates, which was subsequently 

investigated in the next section. 

3.6.5 Sampling bias or overfishing of mature females 

3.6.5.1 Introduction 

The sex distribution of tope showed an extremely skewed ratio (340 mature males, 4 mature 

females and 20 mature specimens with unknown sex) (section 3.6.3), raising the question 

whether females were heavily overfished or not sampled effectively.  Surveys by the ICES are 

not capable of sampling large sharks representatively (ICES 2012). However, male tope 

sharks in these surveys were caught frequently measuring up to160 cm total length. Therefore, 

females of the same size should be sampled too, if in the area and if their behaviour is not 

distinct in a way that strongly reduces vulnerability. Here, the numbers of pups produced by 

the observed females was compared to the expected number of pups (back-calculated from 

early juveniles), to examine, if the number of expected pups could have been produced by the 

number of observed females. Overfishing of females would be indicated by a ratio of pups to 

females smaller or equal to 1. Ineffective sampling would be demonstrated by a ratio far 

exceeding 1. Furthermore, the abundance of females and early juveniles were investigated on 

the basis of CPUE values, to determine trends for both life history stages. 
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3.6.5.2 Materials and methods 

Observed numbers of the single life stages were obtained from survey data. Only valid hauls 

were considered, as specified in DATRAS data. Juvenile age was obtained by applying the 

von Bertalanffy growth function (section 3.3). If sex was not determined, the parameters 

estimated for both sexes combined were used. For the purpose of this study, one year old 

juveniles ranged from age 0.5 to 1.49 and two year old juveniles from age 1.5 to 2.49. 

Furthermore, all mature specimens where sex was not determined were considered females as 

length at maturity for females was used, if sex was not given. It was assumed that all females 

caught in a specific year, would have produced all age one juveniles caught one year later. 

Due to limited data, age two juveniles (caught two years later than mature females) were used 

if age one juveniles were not present one year later. Assuming, a natural mortality of early 

juveniles twice the natural mortality of adults (Mjuv = 2*0.094), the expected number of pups 

in a year N0 can be obtained via: 

         
(     (      )         (31) 

where Njuv is the number of juveniles in age class one or two and tjuv is the corresponding age. 

The possible number of pups produced by the females a year Nf  was obtained by applying the 

length-fecundity relationship (section 3.2.3). The result was divided by 2, to account for a 

biennial reproductive cycle (section 3.3.3) and multiplied with the number of females caught 

that year. The total number of expected pups N0 was divided by the total number of possible 

pups Nf. If the ratio is smaller or equal to 1, the females caught were capable of producing the 

expected number of pups. If the ratio was larger than 1, more pups would have been present 

than could have been produced by the observed number of females thus indicating sampling 

bias. Finally, the abundance trend of females and early juveniles was investigated by 

examining CPUE values across years. CPUE was calculated as described in section 2.6. Here, 

a three year moving average was used, because of the limited amount of data. Note that under 

this definition, the first and last estimates consist of two values only, due to border effects. A 

decreasing abundance trend for both life history stages would further indicate overfishing of 

mature females. 

3.6.5.3 Results 

In total, 24 mature females and 50 juveniles were caught in the surveys. The amount of pups 

produced by females exceeded the amount of expected pups. This is indicated by a ratio less 

than 1. A higher number of male sharks were caught during the same years (Table 11).  
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The abundance showed decreasing trends for both, early juveniles and mature females since 

1992 (Figure 11). Furthermore, from the year 2000 until recently, the abundance was below 

the mean abundance of the considered time period. 

Table 11: Mature tope females caught in the surveys, denoted as number of females. The corresponding years is 

given in the left column. The number of males caught in the same years is shown. The fecundity of mature 

females was obtained by the length-fecundity relationship (section 3.2.3) and divided by 2 to account for a 

biennial reproductive cycle. The result was multiplied with the number of females caught, to determine the total 

number of pups produced that year (Nf). The observed number of juveniles produced by these females was 

obtained from survey data and used to back-calculate the expected number of pups N0. The ratio indicates if the 

observed number of females could have produced the expected number of pups. If the ratio is greater than 1, 

more pups than expected from the number of females would be present. 

year 
number 

females 

number 

males 

female 

length 

(cm) 

fecundity 

pups per 

female 

(Nf) 

year 

juveniles 

age 

group 

number 

juveniles 

expected 

pups (N0) 

ratio 

∑N0/Nf 

1992 4 2 155 7.38 29.53 1993 1 20 24.14 

0.33 

1993 2 18 163 8.31 16.63 1994 1 2 2.41 

1996 4 3 156 165 
7.49 

8.56 

14.99 

17.11 
1997 1 6 7.24 

1997 2 10 160 7.96 15.91 1998 1 8 9.65 

1998 2 8 160 7.96 15.91 1999 1 4 4.83 

2003 2 24 159 7.84 15.68 2004 1 4 4.83 

2004 2 22 160 7.96 15.91 2006 2 2 2.91 

2006 2 118 161 8.07 16.15 2008 2 2 2.91 

2010 4 4 155 7.38 29.53 2011 1 2 2.41 

∑ 24 209 
  

187 
  

50 61 
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Figure 11: The abundance trends (CPUE) of observed mature tope females (black line) and early juveniles (grey 

line) caught in the surveys. The trends are shown as three year moving averages. Note that early juveniles in the 

years 2006 and 2008 consisted of age two individuals, whereas all others are represented by age one individuals. 

The black broken line indicates the mean CPUE of mature females and the grey broken line the mean CPUE of 

early juveniles. 

 

3.6.5.4 Discussion 

The number of observed females in this study could have produced the number of expected 

pups. Furthermore, the abundance of both life stages showed a decreasing trend. These results 

indicate that females are sampled proportionally compared to juveniles, yet females may well 

be heavily overfished. Males reaching a maximum size of 160 cm were caught frequently and 

one would expect females of the same size to be caught in similar proportions, if in the area 

and if the behaviour is not distinct from males. On the other hand, the number of mature 

males could not have been produced by the expected number of pups. Sampling is not made 

in all months in all areas and therefore may be another factor responsible for complicating the 

findings, because females and juveniles may inhabit areas subjected to less frequent sampling 

than males. However, investigation of such factors was beyond the scope of this study and 

uncertainty regarding representative sampling of both juveniles and females remains. 

Therefore, future research should use the current findings to address questions regarding 

sampling bias of males, females and juveniles. Nevertheless, in the areas where females and 

juveniles were sampled (central and southern North Sea), both life stages experienced a 

decline, post 1991. 
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3.7 Biological reference points for fishing mortality  

3.7.1 Introduction 

Tope has low productivity (Smith et al. 1998) and therefore the species’ capacity to withstand 

fishing is low. Here, the theoretical fishing mortality producing the maximum sustainable 

yield was investigated. 

3.7.2 Materials and methods 

The methods applied to obtain proxies of maximum sustainable fishing mortality were 

covered in section 2.3. Maximum age was assumed at 55 years, age at maturity 21 years and 

natural mortality 0.094 yr
-1

. 

3.7.3 Results 

The results of the life table approach are given in Table 12. The intrinsic rate of population 

increase was estimated as 0.062 yr
-1

. The sustainable fishing mortality rate based on the 

intrinsic rate of population increase Fmsy0.5r was estimated at 0.031 yr
-1

. The sustainable 

fishing mortality rate based on natural mortality Fmsy0.5M was estimated at 0.047 yr
-1

. 

3.7.4 Discussion 

The intrinsic rate of population increase, as estimated in this study (section 2.3), is a function 

of natural mortality, fecundity at age, longevity and age of maturity. Here, late maturity and 

low fecundity at age, which was presumably underestimated if compared to observations from 

the Mediterranean Sea (Capapé and Mellinger 1988, Capapé et al. 2005), were the main 

factors causing a low value of r. However, the estimated intrinsic rate of population increase 

is higher than reported by Smith et al. (1998) for a population from the Pacific Ocean. 

Nevertheless, the results indicate low resilience of tope (Musick 1999) and confirm the low 

capacity to withstand fishing. To follow a precautionary approach, a value of 0.031 yr
-1

 

should be utilised as reference point for the fishing mortality rate which produces maximum 

sustainable yield Fmsy. 
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Table 12: Life table for tope from the Northeast Atlantic. The results are shown from age at maturity to 

maximum age. To account for sex ratio, resting stages and the complete reproductive cycle, the product of the 

proportion mature and litter size was multiplied with 0.25 to obtain the age specific fecundity (female pups per 

female) mx. The annual reproductive rate per generation is the product of survival to age lx and mx. The intrinsic 

rate of population increase r was estimated at 0.062 yr
-1

. 

length (cm) age % mature litter size mx lx lxmx 

155 21 0.52 14.87 1.95 0.14 0.270 

158 22 0.69 15.49 2.68 0.13 0.339 

161 23 0.81 16.09 3.27 0.12 0.377 

163 24 0.89 16.65 3.71 0.10 0.389 

165 25 0.94 17.20 4.03 0.10 0.384 

167 26 0.96 17.71 4.26 0.09 0.370 

169 27 0.98 18.20 4.45 0.08 0.351 

171 28 0.99 18.67 4.60 0.07 0.331 

173 29 0.99 19.11 4.73 0.07 0.310 

175 30 0.99 19.53 4.85 0.06 0.289 

176 31 1.00 19.93 4.96 0.05 0.269 

177 32 1.00 20.31 5.06 0.05 0.250 

179 33 1.00 20.67 5.16 0.04 0.232 

180 34 1.00 21.00 5.24 0.04 0.215 

181 35 1.00 21.32 5.32 0.04 0.198 

182 36 1.00 21.62 5.40 0.03 0.183 

183 37 1.00 21.91 5.47 0.03 0.169 

184 38 1.00 22.17 5.54 0.03 0.156 

185 39 1.00 22.43 5.60 0.03 0.143 

186 40 1.00 22.66 5.66 0.02 0.132 

187 41 1.00 22.89 5.72 0.02 0.121 

187 42 1.00 23.10 5.77 0.02 0.111 

188 43 1.00 23.30 5.82 0.02 0.102 

189 44 1.00 23.48 5.87 0.02 0.094 

189 45 1.00 23.66 5.91 0.01 0.086 

190 46 1.00 23.82 5.95 0.01 0.079 

190 47 1.00 23.98 5.99 0.01 0.072 

191 48 1.00 24.12 6.03 0.01 0.066 

191 49 1.00 24.26 6.06 0.01 0.061 

192 50 1.00 24.39 6.10 0.01 0.055 

192 51 1.00 24.51 6.13 0.01 0.051 

193 52 1.00 24.62 6.15 0.01 0.046 

193 53 1.00 24.73 6.18 0.01 0.042 

193 54 1.00 24.83 6.21 0.01 0.039 

193 55 1.00 24.92 6.23 0.01 0.035 
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3.8 Total and fishing mortality 

3.8.1 Introduction 

Although tope is consumed in some countries, it is not a main target species of commercial 

fisheries in the Northeast Atlantic but, rather a bycatch species in mixed demersal and pelagic 

fisheries and important in recreational fisheries (Walker et al. 2006). Landings from 

recreational fishing are prohibited in Britain by the Tope (Prohibition of Fishing) Order 

(2008). The order further limits bycatches to 45 kg a day and only allows rod and line 

fisheries. Here, the total and fishing mortality rate of tope was investigated based on survey 

data. 

3.8.2 Materials and methods 

The method of estimating mortality from catch curves was described in detail in section 2.4. 

Catches were extracted from the survey data. Only valid hauls were considered, as specified 

in DATRAS data. The time period from 1992 to 2012 was selected, because not all age 

classes were present in earlier surveys (Supplementary Information, Figure 2). The length 

frequency distribution of the entire survey area showed an unrealistic small amount of 

juvenile specimens (Figure 12). Therefore, only the central North Sea (ICES division IVb) 

was used as a more representative area (Figure 13), due to the fact that it covers a large range 

and all life stages are present (section 3.6). The length frequency distributions of all sub-areas 

are given in the Supplementary Information (Figure 1). Age classes were obtained from 

length by applying the von Bertalanffy growth function. If sex was not given, the von 

Bertalanffy growth function of both sexes combined was used (section 3.3). Two total 

mortality rates were estimated, one for juveniles and one for adults, because of differences in 

the slopes. Finally, the average of both served as a proxy for total mortality of all ages. 

Fishing mortality was obtained from total mortality by assuming a constant natural mortality 

rate of 0.094 yr
-1

 (section 3.4). 
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Figure 12: Length frequency distribution of tope in the Northeast Atlantic, with data pooled over the years 1992 

− 2012. The dark-grey bars represent the number of females, the black bars the number of males and sex was not 

determined for the light-grey bars. 

  
Figure 13: Length frequency distribution of tope in the central North Sea. The dark-grey bars represent the 

number of females, the black bars the number of males and sex was not determined for the light-grey bars. 
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3.8.3 Results 

The results of the catch curve are presented in Figure 14. The total mortality estimated for 

ages 1 to 16 is 0.25 yr
-1

 (r
2 

= 0.89, p < 0.001). The total mortality estimated for age 17 to age 

26 is 0.16 yr
-1

 (r
2 

= 0.47, p < 0.05). Therefore the total instantaneous mortality rate of tope in 

the Northeast Atlantic is at 0.21 yr
-1

 for all ages. Subtracting natural mortality of 0.094 yr
-1

 

resulted in a fishing mortality of 0.116 yr
-1

. Adult fishing mortality is 0.07 yr
-1

, obtained from 

adult total mortality of 0.16 yr
-1

 minus natural mortality. It follows that the natural mortality 

of juveniles is suggested twice that of adults (Mjuv = 0.18 yr
-1

), estimated from the total 

juvenile mortality rate of 0.25 yr
-1

 minus the adult fishing mortality rate of 0.07 yr
-1

. 

 

Figure 14: Catch curve used to estimate the total mortality of tope in the Central North Sea. The numbers were 

pooled from 1992 to 2012. The slope of the left regression accounts for the ages 1 to 16 and was estimated at 

0.25 (r
2 

= 0.89, p < 0.001, 95% confidence limits = 0.2 − 0.3). The slope of the right regression line accounts for 

the ages 17 to 26 and was estimated at 0.16 (r
2 

= 0.47, p < 0.05, 95% confidence limits = 0.04 − 0.28). The 

regression analysis was weighted by number caught per hour. 
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3.8.4 Discussion 

The bimodal length frequency distribution might be an artefact of sampling bias. However, 

the fact that all areas exhibit such bias (Supplementary Information, Figure 1) makes it more 

likely, that the higher amount of large specimens is explained by remnants from the past, 

where fishing mortality was lower. Although large sharks may not be sampled effectively in 

the ICES survey due to strong swimming capacity and offshore occurrence (ICES 2009), 

large males were frequently caught (Figure 12). According to this, the low amount of 

juveniles indicates recruitment failure in recent years. This pattern has been observed in other 

regions due to exploitation (Olsen 1959). The second hypothesis is further supported by the 

findings that the adult fishing mortality is lower than the juvenile fishing mortality. The 

fishing morality rate for all ages combined was between two to four times above Fmsy, 

although it is not a commercially important species in the Northeast Atlantic Ocean (Walker 

et al. 2006). Therefore, the majority of the mortality rate can be reduced to bycatch mortality. 

Furthermore, the uncertainty of the estimates indicated by the 95% confidence limits makes a 

total mortality at 0.29 yr
-1 

possible, which would result in a fishing mortality at 0.2 yr
-1

. This 

would suggest the current exploitation six times above sustainability and the stock might be in 

serious danger to collapse, especially if exploitation was unsustainable over several years. The 

current findings are an alarming signal. Due to its low potential to withstand fishing, which is 

even lower in the Northeast Atlantic than in areas where tope did not recover after depletion 

(Camhi et al. 1998, Walker 1998, Walker 1999), suggests the urgent need for management 

actions. However, precautionary management would have to assume the upper 95% 

confidence limits of Z and F and the lower estimate of Fmsy at 0.031 yr
-1

. In addition, the 

results support the assumption made in section (3.6.5), that the natural mortality of juveniles 

is twice the natural mortality of adults. The exploitation levels of females should be addressed 

in future studies, due to the findings in section (3.6.5), which indicated that females may have 

experienced severe depletion.  

3.9 Exploitation rate 

3.9.1 Introduction 

Although the fishing mortality of tope appears to be above sustainable levels (section 3.8), 

data was too limited to identify temporal trends of F. Therefore, an index based assessment 

model (NEFSC 2002) was used to evaluate the historical exploitation levels. 
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3.9.2 Materials and methods 

The method is presented in detail in section 2.5. All species specific landings of tope were 

extracted from ICES catch data for the Northeast Atlantic (ICES 2013). Data was available 

from 1992 to 2011. For the calculation of the survey biomass index, only the time period from 

1992 to 2011 was considered, because of the absence of some age classes before 1992 

(Supplementary Information, Figure 2). Furthermore, only valid hauls were used, as specified 

in DATRAS data. 

3.9.3 Results 

Tope landings have increased since 1992 with a peak in 2005. Thereafter, landings decreased. 

This trend is supported by the pattern visible in the survey biomass index (Figure 15). Since 

1997, both lines followed the same trend, making the analysis possible from this year to 2012. 

The exploitation ratio which would allow the stock to replace itself (NEFSC 2002) was 

estimated to be 5.4 (Figure 16). Figure 17 shows that this value was far exceeded many times 

since 1997. 

 

Figure 15: Official landings of tope in the Northeast Atlantic (open circles, black line) and the survey biomass 

index (filled circles, grey line). The lines are shown as three years moving average. Note that the first and last 

estimates consist only of two values. 
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Figure 16: Rate of change regressed over the relative exploitation rate of tope in the Northeast Atlantic. The 

grey dashed line indicates a replacement ratio of 1:1. Therefore, stock replacement would be achieved if the 

exploitation ratio equals 5.4. 

 

 

Figure 17: Relative exploitation ratio of tope in the Northeast Atlantic (black line) and the rate of change (grey 

line). The black dashed line indicates an exploitation rate at which the stock can replace itself. The dotted grey 

line indicates a rate of change that equals 1. If the exploitation ratio is below the replacement proxy, a positive 

rate of change (> 1) occurs, i.e. the population would grow. 
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3.9.4 Discussion 

Official landing data of sharks are usually incomplete (Bonfil 1994) and tope is often reported 

in generic groups (ICES 2012). Most likely true landings are higher than indicated by the data 

used here. This means, that true exploitation rates may also be higher and the results presented 

in this study may display an optimistic picture. Even though, since 1997 the exploitation rate 

was almost consistently at levels which did not allow the stock to replace itself. Combining 

the findings of this section with those of section 3.8, tope might have experienced large 

declines over the past 15 years. Similar patterns have been observed in other areas (Ripley 

1946, Olsen 1959), where the stocks eventually collapsed. A well-known example is the 

California tope fishery, where the population suffered a collapse during the late 1940’s 

(Ripley 1946, Stevens et al. 2000). Today, it is still unclear if the population recovered, 

although intensive fishing only sustained eight years (Camhi et al. 1998, Walker 1999). This 

raises further concern due to similar biology and life history traits among this region and the 

Northeast Atlantic stock. In addition, tope was among the third most important species in 

commercial shark catches of France in the late 1980’s, where catches were already declining 

(Bonfil 1994). Therefore, it is likely that historical exploitation already depleted the stock, as 

suggested in the present results, yet current unselective and unmanaged bycatch has further 

severely decreased the population. 

3.10 Abundance trends 

3.10.1 Introduction 

Tope has experienced serious declines in abundance in parts of the Mediterranean Sea 

(Ferretti et al. 2005). In the Northeast Atlantic, declines of mean density have been reported 

from the English Channel (Martin et al. 2010), whereas a slight increase was reported from 

the Celtic Sea (Ellis et al. 2005b). Due to the unsustainable exploitation of tope in the 

Northeast Atlantic (section 3.8 and 3.9), it is expected that the abundance in the available 

survey data decreased over the last years. Here, catch per unit effort (CPUE) data was used, to 

investigate the abundance of tope over the last two decades.  

3.10.2 Materials and methods 

The method applied to investigate the abundance trends was presented in detail in section 2.6. 

The catches were extracted from the survey data. Only valid hauls were considered, as 

specified in DATRAS data.  
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The time period from 1992 to 2012 was selected, because not all age classes were present in 

the early surveys (Supplementary Information, Figure 2). 

3.10.3 Results 

An exponential curve fitted to the abundance data from 1992 to 2012 accounted for 32% of 

the observed variability, with a negative slope of -0.0633 (r
2 

= 0.32, p = 0.007, 95% 

confidence limits = -0.105 − -0.022) (Figure 18). Accordingly, the CPUE was 0.193 in 1992 

and 0.054 in 2012. Trend analysis revealed that the population declined by 72% since 1992 in 

the Northeast Atlantic. Furthermore, it is consistently below the mean CPUE since 2006. An 

investigation of the different surveys revealed that tope catches decreased by 85% in the 

North Sea survey (r
2 

= 0.25, p = 0.026, slope = -0.0992, 95% confidence limits = -0.179 − -

0.019, intercept = 195.83, 95% confidence limits = 35.92 − 355.75), whereas no trend was 

shown by the other surveys, because of few data and high scatter (p > 0.05) (Figure 19).  

 

Figure 18: Abundance trends of tope in the Northeast Atlantic from 1992 to 2012. The decrease is explained by 

an exponential model (r
2 
= 0.32, p = 0.007, slope = -0.0633, 95% confidence limits = -0.105 − -0.022, intercept = 

124.49, 95% confidence limits = 41.68 − 207.3). The dashed line indicates the mean catch per unit effort 

(CPUE) of 0.134 from 1992 to 2012. 
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3.10.4 Discussion 

Due to the strong swimming ability and large size of adults, ICES surveys do not effectively 

sample tope sharks (ICES 2009) and the ICES (2012) states that the analysis of CPUE data 

has been undertaken carefully. However, the efficiency of catching this species should not 

change over time if the same gear is used. Moreover, the strong decrease, together with the 

possible lack of females and juveniles, suggest that tope has been seriously depleted in the 

Northeast Atlantic. Likewise, the abundance estimates were far below the mean CPUE, since 

recently. As it take long periods of time for this species to recover, even in areas where 

maturity is earlier and productivity higher (Punt et al. 2005), the results demonstrate the 

urgent need for appropriate management of tope in the Northeast Atlantic. 

3.11 Length and age at first capture 

3.11.1 Introduction 

Froese et al. (2008) showed the importance of including size in management plans. They 

found that if fishes are caught after a certain length, cohort biomass is much less affected by 

fishing pressure. Likewise, Colloca et al. (2013) investigated the effect of size under 

sustainable fishing of teleosts and crustaceans and supported that length must be considered to 

maximise yield and biomass. Here, the effect of length and age at first capture on female 

cohort biomass was investigated under different fishing scenarios, to evaluate the importance 

of including size at first capture in shark management plans. Tope served as reference species, 

because of its late maturity of 21 years and its longevity of 55 years (section 3.3). Thus, the 

length at first capture is expected to play a crucial role in sustainable exploitation of this 

species.  

3.11.2 Materials and methods 

The method was explained in detail in section 2.7. The change in cohort biomass was 

investigated for three different fishing scenarios (Fmsy0.5r, Fmsy0.5M and Fcurrent) obtained from 

the above sections. The results were compared to an unfished population (F = 0). Age at first 

capture was set to age 1 and age 15. In accordance to the von Bertalanffy growth function, 

this translates into sizes of approximately 40 cm and 135 cm, respectively. The latter refers to 

the optimum length calculated for tope. 
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3.11.3 Results 

If age at first capture was one year, the total cohort biomass was only 15% of that from an 

unfished population under the current fishing mortality (Figure 20). Moreover, under the 

current fishing mortality, the cohort biomass at maturity decreases by 90%. The total cohort 

biomass and the percentage reaching maturity are at half of the virgin biomass under Fmsy0.5r, 

but remain below 50% under Fmsy0.5M. Considering Fmsy and an optimum age at first capture, 

the total cohort biomass is approximately 25% below the total cohort biomass of an unfished 

population. This decreases to half of the unexploited cohort biomass under the current fishing 

mortality rate. If the cohort would not experience fishing before reaching the optimum age, 

more than 75% would reach maturity under Fmsy compared to the virgin cohort biomass, 

whereas under the current fishing mortality rate this would still be below 40%. 

 

Figure 20: The effect for different scenarios of fishing mortality rates (F = 0, Fmsy0.5r = 0.031 yr
-1

, Fmsy0.5M = 

0.047 yr
-1

,
 
Fcurrent = 0.116 yr

-1
 and ages at first capture tc (tc = 1, tc = 15) on the cohort biomass of tope. The 

orange vertical line represents the age at maturity of females (tm = 21). 

 

3.11.4 Discussion 

The results demonstrate the importance of size in the management of slow growing, late 

maturing and long lived sharks. There was a significant increase in cohort biomass if the age 

at first capture was at optimum age. This is in agreement with findings for teleosts, where 

harvesting at optimum size increases cohort biomass (Froese et al. 2008, Colloca et al. 2013). 
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However, under the current fishing mortality rate, the spawning stock was only at 15% of the 

virgin biomass. This means that even with an age at first capture of 15 years (or 135 cm), 

sustainable exploitation is unrealistic. Due to the destructive and unselective fishery in the 

nursery ground of tope (section 3.6), one year as age of first capture (or 40 cm) seems to be a 

reasonable assumption. Considering the long history of fishing in this area (Lotze 2005, Lotze 

et al. 2005) and the low percentage of females reaching maturity under these conditions, the 

findings strongly support those of section 3.6, 3.8, 3.9 and 3.10. According to Ricker (1975), 

maximum sustainable yield is achieved at half of the unexploited biomass. Therefore, even 

under apparent sustainable exploitation, i.e. assuming Fmsy to occur at half the natural 

mortality rate, maximum sustainable yield is not produced if the age at first capture is one 

year. Only if sustainable exploitation is assumed to occur at half the intrinsic rate of 

population increase, maximum sustainable yield can be achieved independently from size. 

This is presumably caused by the low value of Fmsy0.5r. The findings of this study support that 

low productive shark species are highly vulnerable to already light fishing pressure (Myers 

and Worm 2005, Ward-Paige et al. 2012). Furthermore, tope should not be caught before 

reaching maturity, to allow recovery of the population and sustainable exploitation. 
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4. Biology and life history of Mustelus asterias 

Starry smoothhound (Mustelus asterias) (Figure 21) belongs to the family of houndsharks 

(Triakidae). The genus Mustelus is the largest within this family, containing more than half of 

all species. The species is distributed in the Northeast Atlantic, the Mediterranean Sea and 

along the north-western coast of Africa, down to Mauritania. It is the only white spotted 

smoothhound species in Europe. Unlike the opportunistic tope or spurdog, this species feeds 

primarily on crustaceans (Compagno 1984b, Compagno et al. 2005). In the following, aspects 

of its biology and life history as needed to examine the status, trends and conservation 

opportunities are presented. The findings are summarised in the Supplementary Information 

(Table 3). 

 

Figure 21: Illustration of Mustelus asterias, modified and taken from www.sharktrust.org. 

 

4.1 Length-weight relationship 

4.1.1 Introduction 

The starry smoothhound has a rather slender body (Figure 21). Therefore it is expected that 

the shape parameter   is between 0.01 and 0.001, if growth is isometric (Froese 2006). 

4.1.2 Materials and methods 

Information on the length-weight relationship was taken from Farrell et al. (2010a) and 

Greenstreet et al. (2007). The parameters for both sexes combined were obtained by treating 

males and females as two different studies. Then, the relationship can be summarised by the 

geometric mean of    and the arithmetic mean of b (Froese 2006).  
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4.1.3 Results 

The length-weight relationships of males, females and both sexes combined for the Northeast 

Atlantic are presented in Table 13. Total length is given in cm and weight is given in grams. 

Table 13: Length-weight relationship of starry smoothhound for the Northeast Atlantic. The summarised 

parameters are shown in bold. The 95% confidence limits are given in parentheses. 

sex a b n length range (cm) r2 source 

male 0.0030 3.05 304 28 − 104 0.98 Farrell et al. (2010a) 

female 0.0010 3.27 424 30 − 124 0.98 Farrell et al. (2010a) 

combined 0.0020 3.12 --- --- --- Greenstreet et al. (2007) 

 

0.0018 

(0.014 − 0.024) 

3.15 

(3.09 − 3.21) 
--- --- --- this study, summarised from above  

 

4.1.4 Discussion 

Although the exponent of females is larger than 3, it is still in the expected range from 2.7 to 

3.4 as reported for most fish, but indicates a positive allometric growth (Froese 2006). Thus, 

females will become more rotund as they grow. The parameter a of males and females falls 

within the expected ranges for slender fishes, and indicates this species is being between an 

eel-like and elongated form (Froese 2006). Therefore, the results reflect the slender body 

shape of this species (Figure 21).  

4.2 Reproductive biology: 

4.2.1 Introduction 

The reproductive biology of starry smoothhound for the Northeast Atlantic has been described 

recently by Farrell et al. (2010b). Here, all information is summarised with respect to the 

latter examination of species status, exploitation trends and critical habitats. 

4.2.2 Materials and methods 

Information on reproductive biology was extracted from Farrell et al. (2010b) and Ebert and 

Stehmann (2013). 

4.2.3 Results 

The size at maturity of the starry smoothhound for the Northeast Atlantic is given in Table 14.  
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Table 14: Maturity stages of starry smoothhound in the Northeast Atlantic. 

sex 
length at matruity (cm) 

region source 
first 50% 100% 

male 72 78 86 NE Atlantic Farrell et al. (2010b) 

female 83 87 92 NE Atlantic Farrell et al. (2010b) 

 

The proportion of females mature   has been described by (Farrell et al. 2010b): 

    (    (                ))         (30) 

where TL is the maternal total length in cm. The average size at birth is 30 cm and ranges 

from 28 to 32 cm Farrell et al. (2010b).  

The litter size increases with maternal length and is described by (Farrell et al. 2010b): 

                           (r
2 

= 0.39)        (31) 

The sex ratio at birth is 1:1 (Farrell et al. 2010b). The gestation period lasts for 12 months and 

breeding takes place every other year, resulting in a biennial reproductive cycle (Farrell et al. 

2010b). Pupping occurs from April to July in shallow waters (Farrell et al. 2010b). Mating is 

thought to occur soon after parturition (Ebert and Stehmann 2013), possibly in October 

(Farrell et al. 2010b).  

4.2.4 Discussion 

The size at 50% maturity of females suggested by Farrell et al. (2010b) agrees with the 

findings of Henderson et al. (2003). They examined three females, the smallest 87 cm, and 

found all to be mature. However the size at maturity is smaller than determined for 

Mediterranean specimens (Capapé 1983). The variations in the size at maturity among the two 

regions have been discussed by Farrell et al. (2010b) as possible differences in methodology, 

higher growth rates, limited food availability in the Mediterranean, or a response of fishing 

pressure. Fecundity is mainly a function of body weight (Froese and Luna 2004) and 

therefore, the exponent of the fecundity-length relationship would be expected close to 3 

(Froese 2006). The slightly lower exponent suggests that larger females produce slightly 

larger pups. Furthermore, fecundity was found to be lower than in the Mediterranean Sea 

(Capapé 1983). The suggested time of mating should be viewed with caution, because egg 

fertilization might happen after a period of sperm storage and mating can may happen before 

the females reach sexual maturity (Farrell et al. 2010b). 
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4.3 Age and growth: 

4.3.1 Introduction 

Growth of starry smoothhound from the Northeast Atlantic has been investigated in detail by 

Farrell et al. (2010a). Thus most information has been summarised based on their study. 

4.3.2 Materials and methods 

Growth parameters of the starry smoothhound for the Northeast Atlantic have been described 

in the literature based on sectioned vertebrae (Farrell et al. 2010a) and modelled for combined 

sexes (Greenstreet et al. 2007). For the purpose of this study, the parameters for both sexes 

combined were estimated as the geometric mean of all available studies. 

4.3.3 Results 

The von Bertalanffy growth parameters are given in Table 15. 

Table 15: Von Bertalanffy growth parameters of starry smoothhound from the Northeast Atlantic. The 

summarised parameters are shown in bold. The 95% confidence limits are given in parentheses.  

sex L∞ k L0 region source 

male 103.7 0.195 38.1 NE Atlantic Farrell et al. (2010a) 

female 123.5 0.146 34.9 NE Atlantic Farrell et al. (2010a) 

combined 105.4 0.118 --- North Sea Greenstreet et al. (2007) 

 
111 (105 − 116) 0.150 (0.13 − 0.17) 36.5 (34.9 − 38) NE Atlantic this study, geometric mean of above 

 

The maximum size given by Farrell et al. (2010a) is 104 cm for males and 133 cm for 

females, yet these may reach 140 cm (Ebert and Stehmann 2013). The maximum age based on 

the time needed to reach 95% of the asymptotic length (Taylor 1958) is 18.3 years for females 

and 13 years in males (Farrell et al. 2010a). The age at 50% maturity based on the von 

Bertalanffy growth function is 5 years in males and 6 years in females (Farrell et al. 2010b). 

4.3.4 Discussion 

The female growth rate found by Farrell et al. (2010a) is about half of that reported for 

specimens from the Mediterranean Sea (Francis 1981). Large differences between the two 

areas have been suggested by Henderson et al. (2003), based on three specimens from western 

Ireland. Thus, the age at maturity of females is higher than the previously estimated 2.3 to 2.5 

years from the Mediterranean Sea (Francis 1981). 
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4.4 Natural mortality 

4.4.1 Introduction 

No information of the natural mortality for starry smoothhound are described in the literature, 

however, based on its life history it is expected to have a higher mortality rate than spurdog or 

tope. 

4.4.2 Materials and methods 

Natural mortality of starry smoothhound was estimated from empirical equations, see Natural 

mortality for tope (section 3.4) 

4.4.3 Results 

The results of the life history approaches to estimate natural mortality are given in Table 16. 

Table 16: Natural mortality rates of starry smoothhound estimated from life history. The median value is used 

for the purpose of this study. The 2.5 and 97.5 percentiles of natural mortality are 0.199 and 0.272, respectively. 

method Hoenig (1983) Pauly (1980) Jensen (1996) (age) Jensen (1996) (growth) median 

input --- k = 0.146, L∞ = 123.5, T = 7 tm = 6 k = 0.146 
 

natural mortality --- 0.180 0.275 0.219 0.219 

 

4.4.4 Discussion 

Although Farrell et al. (2010a) suggested a maximum age above 18 years for starry 

smoothhound, this was based on the assumption that the time needed to reach 95% of the 

asymptotic length equals longevity and therefore the method of Hoenig (1983) was not 

applied. The estimate of natural mortality derived with the remaining empirical methods for 

starry smoothhound is similar to the natural mortality of rig (Mustelus lenticulatus), a species 

with comparable life history traits (Francis and Maolagáin 2000, Compagno et al. 2005) and 

with M estimated to be in the range of 0.2 yr
-1

 to 0.3 yr
-1

 (Francis and Francis 1992). 

4.5 Habitat and distribution 

4.5.1 Introduction 

The potential distribution of starry smoothhound was examined via AquaMaps (Kaschner et 

al. 2013). The species is commonly found along continental and insular shelves (Compagno et 

al. 2005). Therefore starry smoothhound is expected to cover a broad range of the study area. 



Mustelus asterias 

60 

4.5.2 Materials and methods 

Potential distributions were investigated as described under Habitat and distribution of tope 

(section 3.5). 

4.5.3 Results 

The starry smoothhound occurs to depth of 350 m (Serena et al. 2009). The potential 

distribution is given in Figure 22 and the environmental parameters are detailed in Table 17. 

 

Figure 22: Potential distribution of the starry smoothhound in the Northeast Atlantic, obtained from AquaMaps, 

adjusted by depth. 

 

Table 17: Environmental parameters used to model the potential distribution of starry smoothhound in the 

Northeast Atlantic. 

environmental envelopes min preferred min preferred max max 

depth (m) 1 41 162 350 

bottom water temperature (°C) 4.7 9.8 20 22.5 

bottom salinity (psu) 5.6 34.2 37.5 39.3 

primary production (mgC*m-2*day-1) 306 457 1729 3781 

 

4.5.4 Discussion 

Although its habitat preferences are narrower than the tope shark’s, the starry smoothhound 

covers potentially most areas investigated in this study. The starry smoothhound seems to be 

highly migratory, indicated by recent tagging results. Of several sharks tagged in summer in 

the southern North Sea, one female was recaptured in the Bay of Biscay, one male at the coast 

of Norway and another male at the east coast of Scotland.  
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All recaptures were made during winter and specimens have been at liberty for less than 17 

months (Winter and van Oversee 2013). In addition, first tagging results from other areas 

support that Mustelus asterias is wide ranging, indicated by one female tagged in Wales and 

recaptured in the Bay of Biscay after 257 days at liberty (Farrell et al. 2010b). Therefore, 

starry smoothhound was considered to be a single stock unit covering the Northeast Atlantic. 

It was speculated that breeding grounds may exist in the Irish Sea and female feeding grounds 

in the Bay of Biscay (Farrell et al. 2010b). Areas with higher abundances of juveniles have 

been observed inshore off southern England, the Bristol Channel and the Outer Thames 

Estuary (Ellis et al. 2005a). Furthermore, Farrell (2010) reported juveniles from the south-east 

coast of Ireland. Mature females have been observed in the waters of northwest Wales in May 

(Farrell 2010). Both sexes with length larger than 50% at maturity have been observed in the 

southern North Sea in summer (Winter and van Oversee 2013). In conclusion, starry 

smoothhound covers a major part of the investigated area. Critical areas for adults may occur 

in the Irish Sea, the Bay of Biscay and the southern North Sea. Nursery grounds may be found 

all along the south-eastern to the south-western coast of England and the Irish Sea. 

4.6 Critical areas 

4.6.1 Introduction 

Landings of the starry smoothhound have been increasing recently, possibly as the fishery 

compensate for the depleted spurdog (ICES 2012). Therefore, it is crucial to identify areas 

where this species can recover from fishing pressure. Here, pupping and nursery grounds as 

well as grounds important for mature specimens in the Northeast Atlantic were investigated 

based on CPUE data. 

4.6.2 Materials and methods  

The data was based on ICES surveys (section 2.1). Information about the different life history 

stages was taken from the Reproductive biology section. Early juveniles were defined by a 

length range of 33 cm to 50 cm, which would approximately correspond to an age of up to 2 

years. Analysis of critical habitats for mature specimens were made for males and females 

separately. The individuals where sex was not determined were included in the female dataset. 

The dataset contained 8066 records of starry smoothhound, caught from 1971 to 2012. 

Specimens were present in all months and depth ranged from 10 m to 320 m. 
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4.6.3 Results 

Pupping and nursery grounds were found in the Southern Bight and the Bristol Channel 

(Figure 23). Catches in the latter region occurred only in one year. In total, 83 pups were 

recorded within 13 different years in a period from 1992 to 2012. The highest numbers of 

pups occurred in August. However, pups were also caught in November, January, February 

and May. All catches were made in depths ranging from 11 m to 85 m. The results are 

summarised in Table 18. A higher number of early juveniles covering a broad range were 

caught fairly regularly from 1990 to 2012 (n = 2271) (Figure 24). Their abundance was 

highest in November.  

 

Figure 23: Records of starry smoothhound pups (28 cm − 32 cm) from ICES surveys in the Northeast Atlantic. 

In total, the sample contained 83 individuals, reported in 13 different years from 1992 − 2012.  
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Figure 24: Records of early juvenile starry smoothhound (33 cm − 50 cm), from ICES surveys in the Northeast 

Atlantic. In total, the sample contained 2271 individuals, reported from 1990 − 2012. 
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Mature specimens were recorded in 23 different years, from 1989 to 2012. The total number 

caught was 1731 individuals of which 468 were females, 1093 males and for 170 the sex was 

not determined. The depth ranged from 15 m to 298 m. The highest abundance of males was 

found in the southern Irish Sea, followed by the Bristol Channel (Figure 25). In both areas the 

highest CPUE occurred in November (Table 18). Males were also frequently caught in the 

Outer Thames Estuary, especially in August. In February, the males CPUE was highest in the 

northern North Sea. Females were most numerous off the east coast of England and in the 

northern Bay of Biscay (Figure 26). In the latter region, catches of the species have been 

reported in every year of investigation, with highest abundance in December (Table 18). 

Furthermore, both sexes were caught regularly in the southern Celtic Sea. 

 

Figure 25: Records of mature starry smoothhound (size of male ≥ 78 cm, size of female and unknown sex ≥ 87 

cm) for combined sexes from ICES surveys in the Northeast Atlantic. In total, 1731 mature individuals were 

recorded in 23 different years, from 1989 − 2012.  
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Figure 26: Distribution of mature starry smoothhounds (size ≥ 87 cm) with males excluded, i.e. presumably 

females, from ICES surveys in the Northeast Atlantic. In total, 638 mature individuals were recorded. 
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4.6.4 Discussion 

The fact that pups were caught in all months might be an artefact of net abortion or of length 

variability at birth. However, the observed abundance peak of pups in August agrees with 

reported time of birth from April to July (Farrell et al. 2010b). The distribution of pups and 

early juveniles was overlapping and thus indicated that the pupping grounds serve also as 

nursery grounds. The Outer Thames Estuary seems to be the most important nursery area of 

those identified here, indicated by its use over several years. This is supported by a higher 

number of juveniles found in this area in former studies (Ellis et al. 2005a). Though not all 

proposed nursery areas could be identified here (Ellis et al. 2005a, Farrell 2010), because of 

the small sample size. In addition, the high number of juveniles along the east coast of Britain 

may reflect another nursery ground. Areas where both sexes occur have the potential to 

display mating grounds. Mating has been suggested to occur in October (Farrell et al. 2010b). 

This would indicate the east coast of England, the southern Celtic Sea and the northern Bay of 

Biscay as most likely mating grounds. Off the east coast of England, both sexes were present 

in August and September, in the southern Celtic Sea both sexes were present in November, 

and in the northern Bay of Biscay males and females were present from October to December. 

Note that there is a high degree of uncertainty in the occurrence of both sexes in other months 

or areas, due to the lack of sex determination and seasons without any sampling effort. 

However, in the two southern areas sex was identified for most individuals and annual catches 

were made regularly. Farrell et al. (2010b) suggested female feeding grounds to exist in the 

Bay of Biscay. Accordingly, the southern Celtic Sea would possibly represent an important 

site, where females on their migration from the northern pupping grounds to the Bay of 

Biscay meet with males to mate. Male feeding grounds may be located in the southern Irish 

Sea and the northern North Sea. This agrees with tagging results from the Netherlands, where 

males migrated from the southern North Sea in summer to the northern North Sea in winter 

(Winter and van Oversee 2013). Although a refuge for sharks, due to less fishing intensity, 

have been proposed by Shephard et al. (2012) in the north eastern Celtic Sea, the southern 

Celtic Sea seems to be another important location for the establishment of a protected area. 

Only a minimal area is covered by an MPA in the south-east (OSPAR 2013, JNCC 2013). 

Further areas of high protective value for starry smoothhound exist in the northern Bay of 

Biscay and the Outer Thames Estuary. In addition, the northern coast of Ireland and the Vidal 

Bank region have potential as conservation areas. 
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4.7 Biological reference points for fishing mortality  

4.7.1 Introduction 

There is no information about the intrinsic rate of population increase of starry smoothhound. 

However, members of the genus Mustelus have been suggested to belong to the species of 

sharks with higher rebound potentials (Smith et al. 1998). Therefore its capacity to withstand 

fishing may allow sustainable use. Here, the theoretical fishing mortality producing the 

maximum sustainable yield was investigated. 

4.7.2 Materials and methods 

The methods applied to obtain proxies of maximum sustainable fishing mortality were 

covered in section 2.3. Maximum age was assumed at 18 years (Farrell et al. 2010a), age at 

maturity at 6 years (Farrell et al. 2010b) and natural mortality at 0.219 yr
-1

 (section 4.4). 

4.7.3 Results 

The results of the life table approach are given in Table 19. The intrinsic rate of population 

increase was estimated as 0.079 yr
-1

. The sustainable fishing mortality rate based on the 

intrinsic rate of population increase was estimated at 0.04 yr
-1

. The sustainable fishing 

mortality rate based on natural mortality was estimated at 0.11 yr
-1

. 

Table 19: Life table for starry smoothhound from the Northeast Atlantic. The results are shown from age at 

maturity to maximum age. To account for sex ratio, resting stages and the complete reproductive cycle, the 

product of the proportion mature and litter size was multiplied with 0.25 to obtain the age specific fecundity 

(female pups per female) mx. The annual reproductive rate per generation is the product of survival to age lx and 

mx. The intrinsic rate of population increase r was estimated at 0.079 yr
-1

. 

length (cm) age % mature litter size mx lx lxmx 

87 6 0.50 5.21 0.65 0.269 0.174 

92 7 0.94 6.05 1.43 0.216 0.308 

96 8 0.99 6.83 1.70 0.173 0.295 

100 9 1.00 7.56 1.89 0.139 0.263 

103 10 1.00 8.22 2.06 0.112 0.230 

106 11 1.00 8.83 2.21 0.090 0.198 

108 12 1.00 9.37 2.34 0.072 0.169 

110 13 1.00 9.85 2.46 0.058 0.143 

112 14 1.00 10.29 2.57 0.047 0.120 

114 15 1.00 10.67 2.67 0.037 0.100 

115 16 1.00 11.01 2.75 0.030 0.083 

116 17 1.00 11.30 2.83 0.024 0.068 

117 18 1.00 11.56 2.89 0.019 0.056 
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4.7.4 Discussion 

The estimated intrinsic rate of population increase is lower than in other species of the genus, 

but in agreement with species having similar life history traits (Smith et al. 1998). 

Furthermore, the result indicates low resilience (Musick 1999). Mustelus antarcticus, a 

species with similar life history traits, is one of the few examples of sustainable exploitation 

in sharks, according to Walker (1998). Therefore, sustainable exploitation of starry 

smoothhound may be possible under appropriate management measures. To follow a 

precautionary approach, a value of 0.04 yr
-1

 should be utilised as reference point for the 

fishing mortality rate which produces maximum sustainable yield Fmsy. 

4.8 Annual fishing mortality 

4.8.1 Introduction 

At present, there is no assessment of the exploitation status of starry smoothhound in the 

Northeast Atlantic. Serious declines (Ferretti et al. 2005) and local extinctions have been 

suggested in the Mediterranean Sea (Serena 2005), whereas starry smoothhound is only of 

limited market value in the Northeast Atlantic (Serena et al. 2009). The species is taken in 

trawl, gillnet and longline fisheries as bycatch (ICES 2012), where it is often discarded 

(Serena et al. 2009, ICES 2012). Nevertheless, starry smoothhound is relatively important in 

recreational fisheries and commercial fisheries for this species may have expanded, possibly 

because it is targeted instead of the depleted spurdog (ICES 2012). However, an appropriate 

management plan is missing and information on mortality rates does not exist. Therefore, the 

current and historical development of annual fishing mortalities was examined here. Fishing 

mortality was obtained from total mortality based on pooled catch at age ratio. 

4.8.2 Materials and methods 

The method of estimating mortality via pooled catch at age ratios, i.e. the decrease in total 

numbers from age at recruitment to maximum age to the decrease in total numbers one age 

older, was described in detail in section 2.4. Catches were obtained from the survey data. 

Only valid hauls were considered, as specified in DATRAS data. The time period from 1992 

to 2012 was selected, as not all age classes were present in early surveys (Supplementary 

Information, Figure 3). The log-normal length frequency distribution of the whole survey area 

allowed the analysis of all available data (Figure 27). On this basis, age classes were obtained 

from length by applying the von Bertalanffy growth function.  
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If sex was not given, the von Bertalanffy growth function of both sexes combined was used 

(section 4.3). In most years a peak was visible at age 5 with decreasing numbers until age 13. 

Therefore, age recruitment was set to 5 and maximum age to 13. Fishing mortality was 

obtained from total mortality by assuming a constant natural mortality at 0.219 yr
-1

 (section 

4.4). 

4.8.3 Results 

Annual fishing mortality rates ranged from 0.011 yr
-1

 to 0.261 yr
-1

 (Figure 28). Fishing 

mortality decreased most rapidly at the end of the 1990’s and fluctuated thereafter. In total, 

three main periods of increasing fishing mortality are visible, followed by three decreasing 

periods. The majority of exploitation was at levels above Fmsy. 

 

Figure 27: Length frequency distribution of starry smoothhound in the Northeast Atlantic, with data pooled over 

the years 1992 − 2012. The dark-grey bars represent the number of females, the black bars the number of males 

and sex was not determined for the light-grey bars. 
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Figure 28: Annual fishing mortality rates of starry smoothhound in the Northeast Atlantic (open circles). The 

bold line represents the three years moving average. Note that the first and last year only consist of two values, 

because of border effects. The grey dashed line shows the fishing mortality that would produces maximum 

sustainable yield Fmsy estimated from the intrinsic rate of population increase (Fmsy0.5r = 0.04 yr
-1

), the grey dotted 

line shows Fmsy estimated from natural mortality (Fmsy0.5M = 0.11 yr
-1

).  

 

4.8.4 Discussion 

The fishing morality rates had several ups and downs, whereas official landings show an 

increasing pattern since 1992 (ICES 2013). Though this species is of little market value in the 

Northeast Atlantic (Serena et al. 2009), it is predominantly caught as bycatch (ICES 2012). 

Thus, the observed fluctuations might be explained accordingly: as the abundance increases, 

more individuals are caught accidently, which in turn, decreases the stock size. Thereafter, the 

stock may recover, as it is not of direct target. One may further argue that in former times, 

starry smoothhound bycatch was more often discarded at sea, but more recently it is landed 

due to a higher demand in shark products (Clarke 2004, Hareide et al. 2007). As a result, 

landings would increase. Under these circumstances, however, the population will decrease in 

the long term, due to exploitation levels above sustainability. Although this species might not 

be of direct target and the fishing mortality rates seem to have decreased since 1992, they 

exceeded sustainable levels the majority of time. Thus, the results confirm the urgent need of 

appropriate management measures.  
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4.9 Abundance 

4.9.1 Introduction 

Increasing abundance trends have been reported from various regions for starry smoothhound 

in the Northeast Atlantic (Ellis et al. 2005b, Martin et al. 2010, ICES 2012). Furthermore, 

total landings increased from 1992 to 2009 and decreased slightly thereafter (ICES 2013). 

Similar, landings decreased in Portuguese waters (Correia and Smith, 2003). However, the 

interpretation of landing data is unreliable as this species is commonly reported in aggregated 

categories (ICES 2012). Here, the abundance trend of starry smoothhound from 1992 to 2012 

in the Northeast Atlantic was examined on the basis of mean CPUE to investigate its status on 

the larger geographic scale. 

4.9.2 Materials and methods 

The method applied to investigate the abundance trends was described in detail in section 2.6. 

The catches were extracted from the survey data. Only valid hauls were considered, as 

specified in DATRAS data. The time period from 1992 to 2012 was selected, because not all 

age classes were present in the early surveys (Supplementary Information, Figure 3). 

4.9.3 Results 

The abundance of starry smoothhound increased rapidly from the beginning of this century 

and is far above the mean CPUE in 2012 (Figure 29). The greatest change was observed in 

the French surveys and all surveys except the Irish followed the overall trend, with CPUE 

values above the mean in recent years (Figure 30). The decrease in IE-IGFS survey was not 

significant (p > 0.05), whereas the increase in all other surveys was (p < 0.05). An exponential 

model was fitted from 1992 to 2012 (r
2 

= 0.47, p < 0.001, slope = 0.0965, 95% confidence 

limits = 0.05 − 0.14, intercept = -193.73, 95% confidence limits = -285.87 − -101.60), which 

suggests an increase of nearly seven times since 1992. 
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Figure 29: Abundance trends of starry smoothhound in the Northeast Atlantic from 1992 to 2012. The increase 

is explained by an exponential model (r
2 

= 0.47, p < 0.001, slope = 0.0965, 95% confidence limits = 0.05 − 0.14, 

intercept = -193.73, 95% confidence limits = -285.87 − -101.60). The dashed line indicates the mean catch per 

unit effort (CPUE) of 0.757 from 1992 to 2012. 
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4.9.4 Discussion 

The results of the present study are in agreement with findings from others (Ellis et al. 2005b, 

Martin et al. 2010, ICES 2012), yet such a strong increase in only 20 years seems 

questionable. The main increase in abundance was observed in the French survey. Shephard et 

al. (2012) found high biomass of starry smoothhound in a north-east Celtic Sea refuge, 

created by less fishing effort in this region. It has been shown, that the Celtic Sea is a critical 

habitat for mature specimens, possibly relevant for mating (section 4.6). These observations 

indicated that the recent increase in abundance may be due to a higher number of adults in the 

Northeast Atlantic. In accordance, the abundance started to increase after the year of lowest 

rate of exploitation (section 4.8). These circumstances may have allowed for stronger 

recruitment. However, the results presented here should be interpreted with caution, because 

the virgin biomass is unknown. Furthermore, the results suggest a strong increase in 

abundance, although the fishing mortality is above Fmsy (section 4.8). On the one hand, this 

would mean that the abundance increase will not result in a biomass which produces the 

maximum sustainable yield. On the other hand, the mortality estimates did not include all age 

classes (< age 5 and > age 13), whereas the abundance analysis did. Therefore, the increase 

may be caused by early juveniles, which are not represented in the fishing mortality rates. In 

addition, this study utilised proxies of Fmsy and thus, cannot completely replace a full 

analytical assessment. Future, studies should investigate the fishing mortality rates of early 

juveniles and address possible reasons for the abundance increase, e.g. if predators or 

competitors may have declined or food resources have increased.  
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5. Biology and life history of Squalus acanthias 

The spurdog (Squalus acanthias) (Figure 31), also often referred to as piked dogfish, belongs 

to the order of dogfish sharks (Squaliformes). The genus includes at least 18 different species. 

Spurdog is one of the most abundant shark species and its distribution ranges worldwide, 

although absent from the polar regions and tropical waters. They have been reported to 

aggregate in large schools at feeding grounds. Spurdog has the longest gestation period of any 

shark species. Although they are slow growing, late maturing and long living, it was one of 

the most important species in commercial shark fisheries (Compagno 1984a, Compagno et al. 

2005). In the following, the species biology and life history traits required to examine the 

status, trends and conservation opportunities are presented. The findings are summarised in 

the Supplementary Information (Table 4). 

 

Figure 31: Illustration of Squalus acanthias, modified and taken from www.sharktrust.org. 

 

5.1 Length-weight relationship 

5.1.1 Introduction 

Spurdog has a fairly slender body shape (Figure 31). Thus, the shape parameter   would be 

expected between 0.01 and 0.001, if growth is isometric (Froese 2006). 

5.1.2 Materials and methods 

Information on length-weight relationships of spurdog have previously been investigated in 

other studies and were obtained from the literature. Parameters were summarised by the 

geometric mean of   and the arithmetic mean of b (Froese 2006). The relationship of both 

sexes combined was determined in the same way. 
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5.1.3 Results 

The length-weight relationships of male, female and both sexes combined for the Northeast 

Atlantic are given in Table 20. Total length is given in cm and weight is given in gram.  

Table 20: Length-weight relationship of spurdog for the Northeast Atlantic. In bold are the mean values used in 

this study. The 95% confidence limits are given in parentheses. 

sex a b n region source 

male 0.0058 2.89 --- NE Atlantic Coull et al. (1989) 

 0.0032 3.04 508 North Sea Sosinski (1978) 

 
0.0043 

(0.003 − 0.006) 

2.96 

(2.77 − 3.53) 
--- NE Atlantic 

this study, mean of Sosinski (1978) and Coull et al. 

(1989) 

female 0.0011 3.30 --- NE Atlantic Coull et al. (1989) 

 0.0060 2.89 --- NE Atlantic Coull et al. (1989) 

 0.0013 3.27 743 North Sea Sosinski (1978) 

 
0.0020 

(0.001 − 0.003) 

3.15 

(2.66 − 3.64) 
--- NE Atlantic 

this study, mean of Sosinski (1978) and Coull et al. 

(1989) 

combined 
0.0028 

(0.002 − 0.004) 

3.07 

(2.73 − 3.57) --- NE Atlantic this study, summarised from above 

 

5.1.4 Discussion 

The results indicate that females increase more in weight than predicted by their length, 

possibly because of extended periods of pregnancy above length at maturity. The slender 

body shape of this species (Figure 31) is reflected by parameter a falling between 0.01 and 

0.001 (Froese 2006). 

5.2 Reproductive biology  

5.2.1 Introduction 

Several studies investigated the reproductive biology of spurdog from the Northeast Atlantic. 

These findings have been summarised to obtain a single value for the different parameters. 

5.2.2 Materials and methods 

Available information has been extracted from the literature. The proportion of mature female 

spurdogs was estimated as described for the tope shark (section 3.2). However, findings about 

the size at different maturity stages varied significantly among studies. Therefore, the median 

length was calculated instead of the mean. Moreover, the median length of 25% and 75% 

mature was calculated, to estimate the proportion of maturity in females. The data was partly 

extracted from charts and in the case of Henderson et al. (2002), calculated from their logistic 

model.  
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5.2.3 Results 

The median length at 50% maturity is 60 cm in males and 82 cm in female spurdogs. The 

minimum length at first maturity is 64 cm in females and 55 cm in males. The maximum 

length where all specimens are mature is 99 cm for females and 69 cm for males (Table 21). 

The length at birth ranges from 19 cm (Gauld 1979) to 31 cm (Ford 1921) with a mean length 

at birth of 26 cm, pooled from different sources (Ford 1921, Hickling 1930, Holden and 

Meadows 1962, Sosinski 1978, Gauld 1979).  

Table 21: Maturity stages of spurdog in the Northeast Atlantic. In bold are the median values used in this study. 

The 2.5 and 97.5 percentiles are given in parentheses.  

sex 
length at maturity (cm) 

region source 
first 50% 100% 

male 59 64 69 north and west Scottish coast Holden and Meadows (1962) 

 
55 57.5 62 west coast of Ireland Henderson et al. (2002) 

 
55 59.5 64 Ireland Hickling (1930) 

 
59 --- --- England Ford (1921) 

 
55 60 (58.5 − 63.8) 69 Northeast Atlantic this study 1 

female 75 85 95 north and west Scottish coast Holden and Meadows (1962) 

 
69 74 86 south west Ireland Fahy (1989)* 

 
72 82 96 Scotland Holden and Meadows (1964)* 

 
70 78.5 88 west coast of Ireland Henderson et al. (2002)* 

 
86 92.5 99 North Sea Sosinski (1978) 

 
64 81 --- Ireland Hickling (1930)* 

 
72.8 84.5 98 England Ford (1921) 

 
71 83 94 Northeast Scotland Gauld (1979)* 

 
76 81 88 Norway Oslofjord Jones and Ugland (2001) 

 
73 77 90 Skagerrak Stenberg (2005) 

  64 82 (79.1 − 90.8) 99 Northeast Atlantic this study 1 

1 mean length at 50% maturity and minimum or maximum length at first and 100% maturity, respectively. 

* Studies used to determine the length at 25% and 75% of females. 

 

The curve describing the proportion of mature females is given in Figure 32. The number of 

pups increases with maternal length (Ford 1921, Holden and Meadows 1964, Gauld 1979, 

Fahy 1989, Jones and Ugland 2001, Ellis and Keable 2008). Fahy (1989) described this 

relationship based on approximately 50 specimens investigated per month from April 1987 to 

March 1988 as follows: 

                            (r2 
= 0.58)       (32) 
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Figure 32: The proportion of mature female spurdog. The curve is described by p = 1/(1+e
-(-25.6+0.314*TL)

), where 

TL is total length in cm. The open circles represent the median length based on data obtained from different 

studies for 25%, 50% and 75% maturity (black circles). Note that some data points are masked by others. The 

median was used instead of the mean, because of large deviation in the corresponding maturity stages across 

studies. The diamonds represent the length of immature females, obtained from the minimum published length at 

maturity minus 1 cm, and the maximum published length of all female mature. 

 

The sex ratio at birth is 1:1 (Ford 1921, Gauld 1979, Henderson et al. 2002). Breeding takes 

place every other year (Holden and Meadows 1962, Sosinski 1978, Fahy 1989), although 

information of exact gestation period differs among studies and ranges from 18 to 25 months 

(Ford 1921, Gauld 1979, Jones and Ugland 2001). The embryonic development starts in 

November (Ford 1921). Pupping occurs from late August or September to December (Ford 

1921, Holden and Meadows 1962, Gauld 1979, Jones and Ugland 2001). Copulation is 

assumed offshore soon after the females give birth (Holden 1965). In accordance, Jones and 

Ugland (2001) observed fertilization from October to February.   

5.2.4 Discussion 

Spurdog in the Northeast Atlantic matures earlier than its counterpart in the Eastern Pacific 

(Ketchen 1972). However, the species are probably distinct from each other (Ebert et al. 

2010). The current findings are similar to those from the Western Atlantic, where females 

reach 50% maturity at a size of about 82 cm (Campana et al. 2009). The reproductive cycle in 

the Northeast Atlantic was similar to north-eastern Pacific and western Atlantic populations 

(Ketchen 1972, Campana et al. 2009). Furthermore, average size at birth and litter size are 

consistent with other areas (Jensen 1965, Ketchen 1972).  
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Although several studies described the relationship between fecundity and maternal length of 

spurdog for the Northeast Atlantic empirically (Holden and Meadows 1964, Gauld 1979, 

Fahy 1989, Jones and Ugland 2001, Ellis and Keable 2008), the findings from Fahy (1989) 

were used, as a considerable sample of individuals was investigated and the relationship was 

described by the expected power function (Froese and Luna 2004). The exponent of 2.7 

suggests that larger females also have slightly larger pups. The time of birth and mating 

largely agrees with observations for most spurdog populations worldwide as reviewed by 

Jensen (1965). 

5.3 Age and growth 

5.3.1 Introduction 

Information about growth of spurdog from the Northeast Atlantic was detailed by several 

studies and has been summarised to generate one single value for different parameters. 

5.3.2 Materials and methods 

All studies reviewed, applied the dorsal fin spine method for age determination. The 

parameters used in this study were obtained by summarising the results across studies via a 

geometric mean. The study of Holden and Meadows (1962) was recalculated by Fahy (1989), 

because they first used an eye-fitted regression line. Only the recalculated values of Fahy 

(1989) were selected. In addition, the von Bertalanffy growth parameters provided by 

Sosinski (1978) for spurdog in the North Sea were recalculated in this study, because of large 

differences in male and female growth and the large deviations of parameters compared to all 

other studies. The asymptotic length was obtained from DATRAS raw data, available at 

http://datras.ices.dk, consulted on 2012−08−26, and was calculated as the median of maximum 

length per year over all years, separated by sex. The growth parameters for both sexes 

combined were estimated via the geometric mean of all male and female studies.  

5.3.3 Results 

Estimates of the von Bertalanffy growth parameters for the Northeast Atlantic region are 

presented in Table 22. The maximum size of spurdog is 124 cm (Hammond and Ellis 2005) 

and the maximum age observed in the Northeast Atlantic is greater than 40 years (Fahy 1989). 

The age at 50% maturity derived from the von Bertalanffy growth function is 14 years for 

females and 6 years for males.  
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Table 22: Von Bertalanffy growth parameters of spurdog from the Northeast Atlantic. In bold are the values 

used in this study, obtained via geometric means of all studies. The corresponding 95% confidence limits of the 

asymptotic length L∞ and the von Bertalanffy growth coefficient k are given in parentheses. The length at birth L0 was 

obtained from section 5.2. 

sex L∞ (cm) k L0 region source 

male 86 (79.7) 0.14 (0.21)  north-west Scottish coast Holden and Meadows (1962) 1 

 79 0.16  south west Ireland Fahy (1989) 

 79.5 0.15  west coast of Ireland Henderson et al. (2002) 

 85.5 (81.66) 0.146 (0.189)  North Sea Sosinski (1978) 2 

 82 (79 − 86) 0.149 (0.142 − 0.156) 26 Northeast Atlantic this study, geometric mean  

female 104 (101.4) 0.11 (0.11)  north-west Scottish coast Holden and Meadows (1962) 1 

 98.8 0.09  south west Ireland Fahy (1989) 

 112 0.07  west coast of Ireland Henderson et al. (2002) 

 107 (137.12) 0.098 (0.054)  North Sea Sosinski (1978) 2 

 105 (101 − 110) 0.091 (0.077 − 0.107) 26 Northeast Atlantic this study, geometric mean  

combined 93 (85 − 102) 0.12 (0.096 − 0.141) 26 Northeast Atlantic this study, geometric mean  

1 recalculated by Fahy (1989), original data given in parentheses. 

2 recalculated in this study, original data given in parentheses. 

 

5.3.4 Discussion 

The maximum age reported from the Northeast Atlantic was much lower than estimated for 

the North-eastern Pacific (Ketchen 1975, McFarlane and Beamish 1987). Similarly, growth 

from this region was determined to be much lower (Ketchen 1975, Saunders and McFarlane 

1993). However, the species are probably distinct from each other (Ebert et al. 2010). All 

considered values (excluding original data that have been recalculated), were in agreement 

with each other. Therefore, the results are likely to reflect the growth of the Northeast Atlantic 

spurdog stock. The estimated age at 50% maturity in this study of 14 year for females is lower 

than the reported age of 17 years from Norway (Jones and Ugland 2001), yet higher than the 

estimated age of 9 to 10 years from Scotland, based on aging of mature individuals (Holden 

and Meadows 1964). However, the findings are in accordance with the 14 to 15 years reported 

from Ireland (Fahy 1989, Henderson et al. 2002), the 12 to 13 years from Swedish waters 

(Stenberg 2005) and the findings of Sosinski (1978) which would correspond to an age at 

50% maturity of 15 years in females. 

5.4 Natural mortality 

5.4.1 Introduction 

Spurdog is expected to have a low natural mortality rate, as reported from British Columbia 

waters (Wood et al. 1979).  
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However, life history traits are different between this area and the Northeast Atlantic and 

natural mortality is likely to be higher in the latter region. Here, the natural mortality rate of 

spurdog for the Northeast Atlantic was examined based on empirical equations. 

5.4.2 Materials and methods 

Natural mortality of spurdog was estimated as described under Natural mortality for tope 

(section 3.4). 

5.4.3 Results 

The results of the life history approaches to estimate natural mortality are given in Table 23. 

Table 23: Natural mortality rates of spurdog estimated from life history. The median value is used for the 

purpose of this study. The 2.5 and 97.5 percentile of natural mortality are 0.115 and 0.138, respectively. 

method Hoenig (1983) Pauly (1980) Jensen (1996) (age) Jensen (1996) (growth) median 

input tmax = 40 k = 0.091, L∞ = 105, T = 7 tm = 14 k = 0.091 
 

natural mortality 0.104 0.138 0.118 0.137 0.127 

 

5.4.4 Discussion 

As expected, the natural mortality of spurdog is higher than the value of 0.094 yr
-1

 reported 

for British Columbia waters (Wood et al. 1979). This finding is probably due to differences in 

life history among these regions (Ketchen 1972, Ketchen 1975, Saunders and McFarlane 

1993, McFarlane and Beamish 1987, Campana et al. 2009) and the species are probably 

distinct from each other (Ebert et al. 2010). The derived value of natural mortality in this 

study is therefore reasonable. 

5.5. Habitat and distribution 

5.5.1 Introduction 

The potential distribution of spurdog was investigated via AquaMaps (Kaschner et al. 2013). 

Spurdog is highly migratory, usually inhabiting continental and insular shelves, yet can also 

be found in oceanic waters (Compagno et al. 2005). Therefore spurdog is expected to cover a 

broad range of the study area. 
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5.5.2 Materials and methods 

Potential distributions were investigated as described under Habitat and distribution of tope 

(section 3.5). 

5.5.3 Results 

Spurdog can be found to depths of 1446 m (Compagno et al. 2005). The potential distribution 

obtained from AquaMaps is presented in Figure 33 and the underlying environmental 

parameters are detailed in Table 24. 

 

Figure 33: Potential distribution of spurdog in the Northeast Atlantic, obtained from AquaMaps, adjusted by 

depth. 

 

Table 24: Environmental parameters used to model the potential distribution of spurdog in the Northeast 

Atlantic. 

environmental envelopes min preferred min preferred max max 

depth (m) 0 19 200 1446 

bottom water temperature (°C) 1 7 15 24.3 

bottom salinity (psu) 7.6 31.3 35.2 39.2 

primary production (mgC*m-2*day-1) 300 600 1650 3988 

 

5.5.4 Discussion 

The map reflects the extensive distribution of spurdog in the Northeast Atlantic. Pawson and 

Ellis (2005) suggested that the population is composed of one single stock.  
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Spurdog is a highly migratory species and both, males and females, have undertaken trans-

atlantic migrations (Holden 1967, Templeman 1976). Within the Northeast Atlantic, long 

distance movements have been reported from the north of Scotland to Iceland, the Bay of 

Biscay (Holden 1965), the southern North Sea (Aasen 1963, Aasen 1964, Hjertenes 1980), the 

Skagerrak (Aasen 1964) and the Barents Sea (Aasen 1964). From the coast of Norway 

spurdog migrated to the Faroe Islands (Aasen 1963, Aasen 1964) and the Bay of Biscay 

(Aasen 1964). Furthermore, several seasonal migration patterns have been reported (Aasen 

1962, Aasen 1963, Holden 1965, Holden 1966, Hjertenes 1980, Gauld and MacDonald 1982, 

Vince 1991). However, these movement patterns are not consistent for all individuals (Holden 

1965) and have changed over time (Hjertenes 1980, Gauld and MacDonald 1982). The shoals 

formed by spurdog are separated by sex, size (Ford 1921, Hickling 1930, Holden 1965) and 

depth (Hickling 1930). Shoals of large fishes consist mainly of mature females (Ford 1921, 

Hickling 1930, Holden 1965), whereas shoals of medium or small size fishes consist of 

mature males, immature males and females (Holden 1965). Smaller individuals occur in 

shallower waters, whereas larger individuals inhabit deeper waters (Hickling 1930), except 

the time of birth, where females move into shallow inshore waters (Hickling 1930, Holden 

1965). Higher numbers of females have been reported from the west coast of Scotland and 

Ireland, whereas males are predominant in the southwest of the British Isles. Furthermore, 

there may be seasonal variation. Males are dominant in the Irish Sea and North Sea in summer 

and autumn. Females are most prevalent in the west of Scotland during winter, when males 

are absent (Vince 1991). Vince (1991) found evidence for the presence of larger females and 

males in the North Sea, and Holden (1965) found females larger than 80 cm northeast of 

Scotland in summer. Some information is given about nursery grounds. Large numbers of 

juvenile spurdog have been reported from the Celtic Sea, the northern Irish Sea and north of 

Scotland (Ellis et al. 2005a, Ellis et al. 2012). Likewise, Vince (1991) suggested that females 

might give birth in the eastern Celtic Sea and Holden (1965) reported parturition to occur 

along the Norwegian coast and north of Scotland. Hickling (1930) reported spawning grounds 

from the west of Ireland and the Celtic Sea and suggested that the young might leave shallow 

inshore habitats soon after birth (Hickling 1930). In summary, spurdog cover the broadest 

range of all investigated species in this study. Critical habitats may be found in the North Sea, 

around Scotland, the Celtic Sea and the Irish Sea.  
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5.6 Critical areas 

5.6.1 Introduction 

Spurdog has been seriously depleted in the Northeast Atlantic (Hammond and Ellis 2005, De 

Oliveira et al. 2013) and is listed as Critically Endangered by the IUCN Red List (Fordham et 

al. 2006).  

Therefore, the identification of critical areas that get protected from fishing pressure is crucial 

to allow recruitment and recovery. Here, pupping and nursery grounds as well as grounds 

important for mature specimens in the Northeast Atlantic were investigated based on CPUE 

data. 

5.6.2 Materials and methods 

The data was based on ICES surveys (section 2.1). Information on the different life history 

stages was taken from the Reproductive biology section. Early juveniles were defined by a 

length range of 32 cm to 40 cm, which would correspond to an age between 1 and 2 years. 

The dataset contained 97078 records of spurdog from 1967 to 2012. Specimens were caught 

in all months. The depth ranged from 17 m to 500 m. 

5.6.3 Results 

Pupping and nursery grounds seem to be widely distributed in the Northeast Atlantic, 

although most catches were made off the north-west of Scotland (Figure 34). In total, 4860 

pups were recorded within 40 different years, from 1970 to 2012. Pups were caught in all 

months with a peak of abundance in December. The depth where they occurred varied from 

23 m to 260 m. The results are summarised in Table 25. A higher number of early juveniles (n 

= 14774) was caught regularly over the same time period, mostly in March. The distribution 

of early juveniles and pups was highest in the west of Scotland (Figure 35). 
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Figure 34: Records of spurdog pups (19 cm − 31 cm) from ICES surveys in the Northeast Atlantic. In total, the 

sample contained 4860 individuals, reported in 40 different years from 1970 − 2012.  
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Figure 35: Records of early juvenile spurdog (32 cm − 40 cm), from ICES surveys in the Northeast Atlantic. In 

total, the sample contained 14774 individuals, reported from 1970 − 2012. 
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In total, 20190 mature spurdogs were recorded from 1967 to 2012, of which 1880 were 

females, 14318 males and for the remaining 3992 individuals sex was undetermined. Their 

depth distributions ranged from 17 m to 500 m. Males were predominantly caught at the Inner 

Hebrides in November, St. Kilda in January and the Vidal Bank region in February (Figure 

36, Table 25). The highest abundance of females and individuals of unknown sex were found 

off the east coast of England in October. In February, the highest number of females occurred 

in the central Irish Sea at the Anglesey Reef area. A balanced number of both sexes were 

caught in the southern Celtic Sea, mostly in October (Figure 37, Table 25). 

 

Figure 36: Records of mature spurdog (size of male ≥ 60 cm, size of female and unknown sex ≥ 82 cm) for 

combined sexes from ICES surveys in the Northeast Atlantic. In total, 20190 mature individuals were recorded 

from 1967 − 2012.  
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Figure 37: Distribution of mature spurdog (size ≥ 82 cm) with males excluded, i.e. presumably females, from 

ICES surveys in the Northeast Atlantic. In total, 5872 mature individuals were recorded. 
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5.6.4 Discussion 

The fact that pups were caught in all months may be an artefact of net abortion or of length 

variability at birth. However, the month with highest abundance corresponds to the time of 

birth (Ford 1921, Holden and Meadows 1962, Gauld 1979, Jones and Ugland 2001). The 

distribution of pups and early juveniles was overlapping and thus indicated that the pupping 

grounds serve also as nursery grounds. The most important pupping and nursery grounds exist 

north and north-west of Scotland, an area already proposed by others (Holden 1965, Ellis et 

al. 2012). Though protected areas exist in this region, most are small and none are established 

at the northern Outer Hebrides (OSPAR 2013, JNCC 2013). Spurdog is known to give birth in 

coastal waters (Hickling 1930, Holden 1965). Based on the findings here, the existing 

protected areas along the north-west coast of Scotland should be expanded, and a new 

protected area may be established at the northern Outer Hebrides. Moreover, fishing should be 

banned at the coastline in these regions to allow recovery of the depleted spurdog. 

Furthermore, the western Scottish sea seems to be important for mature males at the end of 

autumn and winter. Adult spurdog segregate by sex (Ford 1921, Hickling 1930, Holden 

1965). In accordance, areas where both sexes occur might provide evidence of mating 

grounds. Copulation is assumed to occur offshore after birth (Holden 1965) and fertilisation 

was observed from October to February (Jones and Ugland 2001). Both sexes were found in 

the Anglesey Reef area (central Irish Sea) in February and November, in the southern Celtic 

Sea in November and off the east coast of England in October. Note that especially in the 

latter there was a high degree of uncertainty in the occurrence of both sexes due to the lack of 

sex determination. Furthermore, not all months are sampled in all areas and therefore other 

areas may have been overlooked. However, possible mating sites include the Anglesey Reef 

in the central Irish Sea, the southern Celtic Sea and the east coast of England. Likewise, the 

Celtic Sea was suggested by Hickling (1930) as a spawning ground. In the southern part of the 

Celtic Sea, only a small protected area exists, which covers the tip of France (OSPAR 2013, 

JNCC 2013). The majority of spurdog fisheries occur in the North Sea (IV), West of Scotland 

(VIa) and the Celtic Seas (VII) (ICES 2012), all of which include critical habitats for spurdog. 

Thus, the development and establishment of new protected areas in these regions, including 

no fishing zones, will be crucial for the future development of spurdog populations. 
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5.7 Biological reference points for fishing mortality  

5.7.1 Introduction 

Spurdog is a species with very low productivity (Smith et al. 1998). Therefore its capacity to 

withstand fishing or recover from depletion is low. Here, the fishing mortality which produces 

maximum sustainable yield was investigated. 

5.7.2 Materials and methods 

The methods applied to obtain proxies of maximum sustainable fishing mortality were 

covered in section 2.3. Maximum age was assumed at 40 years, age at maturity at 14 years 

(section 5.3) and natural mortality at 0.127 yr
-1

 (section 5.4). 

5.7.3 Results 

The results of the life table approach are given in Table 26. The intrinsic rate of population 

increase was estimated as 0.038 yr
-1

. The sustainable fishing mortality rate based on the 

intrinsic rate of population increase was estimated at 0.019 yr
-1

. The sustainable fishing 

mortality rate based on natural mortality was estimated at 0.064 yr
-1

. 

5.7.4 Discussion 

The result is in agreement with the estimated intrinsic rate of population of 0.034 yr
-1

 reported 

from the Northwest Atlantic (Smith et al. 1998). This indicates low resilience (Musick 1999) 

and confirms the low capacity of spurdog to withstand fishing. Spurdog experienced a 

dramatic decline in the Northeast Atlantic and as such were categorised as Critically 

Endangered on the IUCN Red List (Fordham et al. 2006). It is the most important commercial 

shark species in European waters and has been fished over decades (Bonfil 1994, Fowler et al. 

2004). To follow a precautionary approach, a value of 0.019 yr
-1

 should be utilised as 

reference point for the fishing mortality rate which produces maximum sustainable yield Fmsy. 
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Table 26: Life table for spurdog from the Northeast Atlantic. The results are shown from age at maturity to 

maximum age. To account for sex ratio, resting stages and the complete reproductive cycle, the product of the 

proportion mature and litter size was multiplied with 0.25 to obtain the age specific fecundity (female pups per 

female) mx. The annual reproductive rate per generation is the product of survival to age lx and mx. The intrinsic 

rate of population increase r was estimated at 0.038 yr
-1

. 

length (cm) age % mature litter size mx lx lxmx 

83 14 0.61 5.62 0.86 0.17 0.145 

85 15 0.74 5.98 1.11 0.15 0.165 

87 16 0.83 6.33 1.32 0.13 0.173 

88 17 0.89 6.65 1.48 0.12 0.171 

90 18 0.93 6.96 1.61 0.10 0.164 

91 19 0.95 7.24 1.72 0.09 0.154 

92 20 0.97 7.51 1.81 0.08 0.143 

93 21 0.98 7.76 1.89 0.07 0.132 

94 22 0.98 7.99 1.96 0.06 0.120 

95 23 0.99 8.21 2.02 0.05 0.109 

96 24 0.99 8.41 2.08 0.05 0.099 

97 25 0.99 8.59 2.13 0.04 0.089 

98 26 0.99 8.76 2.18 0.04 0.080 

98 27 0.99 8.92 2.22 0.03 0.072 

99 28 1.00 9.07 2.26 0.03 0.064 

99 29 1.00 9.20 2.29 0.03 0.058 

100 30 1.00 9.33 2.32 0.02 0.051 

100 31 1.00 9.44 2.35 0.02 0.046 

101 32 1.00 9.55 2.38 0.02 0.041 

101 33 1.00 9.64 2.41 0.02 0.036 

101 34 1.00 9.73 2.43 0.01 0.032 

102 35 1.00 9.81 2.45 0.01 0.029 

102 36 1.00 9.89 2.47 0.01 0.026 

102 37 1.00 9.96 2.49 0.01 0.023 

103 38 1.00 10.02 2.50 0.01 0.020 

103 39 1.00 10.08 2.52 0.01 0.018 

103 40 1.00 10.13 2.53 0.01 0.016 
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5.8 Annual fishing mortality 

5.8.1 Introduction 

Aasen (1964) first described the exploitation of spurdog as very high and in the same year, 

Holden and Meadows (1964) raised concern that the stock is not replacing itself. Soon after, 

Holden (1968) postulated that fishing restrictions are necessary to prevent a drastic decline of 

the stock. Thereafter, Norwegian fisheries collapsed in the late 1970’s (Hjertenes 1980). In 

1988 the first total allowable catch (TAC) was established for the North Sea (Fowler et al. 

2004), but a zero TAC was not adapted for the Northeast Atlantic before 2010 (ICES 2012). 

Today, spurdog is listed as Critically Endangered by the IUCN Red List (Fordham et al. 

2006) and catches are mainly due to bycatch in other fisheries (ICES 2012). Here, the current 

and historical development of annual fishing mortality rates was examined to investigate the 

recent exploitation levels. Fishing mortality was obtained from total mortality based on 

pooled catch at age ratio. 

5.8.2 Materials and methods 

The method of estimating mortality via pooled catch at age ratios, i.e. the decrease in total 

numbers from age at recruitment to maximum age to the decrease in total numbers one age 

older, was described in detail in section 2.4. Catches were extracted from the survey data. 

Only valid hauls were considered, as specified in DATRAS data. The time period from 1985 

to 2012 was selected, because surveys were representative of all age classes (Supplementary 

Information, Figure 4). The log-normal length frequency distribution of the whole survey area 

allowed the analysis of all available data (Figure 38). On this basis, age classes were obtained 

from length by applying the von Bertalanffy growth function. If sex was not given, the von 

Bertalanffy growth function of both sexes combined was used (section 5.3). In most years a 

peak was visible at age 10 with decreasing numbers till age 21. Therefore, age recruitment 

was set to 10 and maximum age to 21. Fishing mortality was obtained from total mortality by 

assuming a constant natural mortality at 0.127 yr
-1

 (section 5.4). 

5.8.3 Results 

Annual fishing mortality rates decreased from 0.54 yr
-1

 in 1990 to 0.152 yr
-1

 in 2012 (Figure 

39). The decrease was most pronounced at the end of the 1990’s and is consistent since 2004. 

The exploitation since 1985 never achieved sustainable levels and is still above a fishing 

mortality that would produce maximum sustainable yield (section 5.7). 
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Figure 38: Length frequency distribution of spurdog in the Northeast Atlantic, with data pooled over the years 

1985 − 2012. The dark-grey bars represent the number of females, the black bars the number of males and sex 

was not determined for the light-grey bars.  

 

Figure 39: Annual fishing mortality rates of spurdog in the Northeast Atlantic (open circles). The bold line 

represents the three years moving average. Note that the first and last year only consist of two values, because of 

border effects. The grey dashed line shows the fishing mortality that would produces maximum sustainable yield 

Fmsy estimated from the intrinsic rate of population increase (Fmsy0.5r = 0.019 yr
-1

), the grey dotted line shows Fmsy 

estimated from natural mortality (Fmsy0.5M = 0.064 yr
-1

). 
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5.8.4 Discussion 

The results agree with Fahy (1989), who estimated the total mortality of fully recruited 

females in south west Ireland at 0.24 yr
-1

 and at 0.3 yr
-1

 for males in the late 1980’s, although 

the estimate here was slightly higher at 0.35 yr
-1

. In contrast to the findings provided by ICES, 

which state that exploitation levels are sustainable in recent years (ICES 2012), the current 

results show fishing mortality rates far above that producing the maximum sustainable yield. 

However, a consistent decrease has occurred since 2004. The ICES advice for a zero quota 

was adopted by the EU in 2010, but bycatch was allowed to 10% of the 2009 quotas in this 

year. Although bycatch regulations and minimum landing sizes have been introduced, they 

differ among countries and still allow for some fishing, resulting in increasing discard rates 

(ICES 2009, ICES 2012, STECF 2012). The unsustainable mortality rates can be explained, 

even though total allowable catch is zero, as bycatch driven. De Oliveira et al. (2013) 

suggested that the population would double within 30 years by an annual allowable catch 

(TAC) of 1422 mt (which was the TAC of 2009). However, the current findings raise concern 

regarding the future development of the population and therefore management decisions 

should be carefully considered to account for this. 

5.9 Abundance 

5.9.1 Introduction 

Spurdog was the most important commercial species caught in European shark fisheries for 

over 70 years. It is specifically targeted for its meat (Fowler et al. 2004) and has a high 

European market demand (Fowler et al. 2004, Fordham et al. 2006). As a result, spurdog is 

seriously depleted in the Northeast Atlantic (Hammond and Ellis 2005, De Oliveira et al. 

2013), although recent assessments suggest this trend stopped (De Oliveira et al. 2013). Here, 

the abundance trend of spurdog from 1985 to 2012 in the Northeast Atlantic was examined on 

the basis of mean CPUE  values. 

5.9.2 Materials and methods 

The method applied to investigate the abundance trends was described in detail in section 2.6. 

The catches were extracted from the survey data. Only valid hauls were considered, as 

specified in DATRAS data. The time period from 1985 to 2012 was selected, because surveys 

were representative of all age classes (Supplementary Information, Figure 4). 
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5.9.3 Results 

The abundance of spurdog increased slightly since 2004 with the last estimate in 2012 above 

the mean CPUE. However, there was a negative tendency across the entire period (Figure 40). 

A decrease in abundance was observed in the Irish and ROCKALL survey from the mid-

2000, whereas the France and Scottish surveys exhibited an increase in abundance at this 

time. The abundance in North Sea survey decreased since the early 1990’s (Figure 41). The 

most recent estimates were all above the mean CPUE, except for the Irish and North Sea 

surveys. Note, that none of the trends was explained significantly by an exponential model (p 

> 0.05), even if the change in abundance of all surveys combined (Figure 40) was examined 

independently for the periods 1985 to 2004 and 2005 to 2012.  

 

Figure 40: Abundance trends of spurdog in the Northeast Atlantic from 1985 to 2012. There was a tendency of a 

decreasing abundance trend (black line) across the entire time period, but this could not be explained by an 

exponential model (p > 0.05). The dashed line indicates the mean catch per unit effort (CPUE) of 6.67 from 

1985 to 2012. 
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5.9.4 Discussion 

The analysis of the entire survey area showed evidence that the population increased, post 

2004. The observations are in agreement to the results obtained in section 5.8, where a 

consistent decrease in fishing mortality was observed from the year 2004 with the lowest rate 

in 2012. Furthermore, the findings agree with those from De Oliveira et al. (2013), who 

suggested that the decline stopped in the mid of 2000. However, in previous assessments 

biomass in the year 2000 was estimated to be 5% from virgin biomass (Hammond and Ellis 

2005), whereas more recent assessments calculated biomass in 2010 to be 19% relative to 

1905 (De Oliveira et al. 2013). Both studies clearly demonstrated that, although there is a 

tentative sign of an increasing abundance trend, this is far from a recovery. In accordance, 

only the most recent estimate was marginally above the mean CPUE. Combined with the 

results of section 5.8, the future trend of spurdog remains questionable, with real potential to 

reverse suddenly. The results presented here are somewhat contradictory to the findings that 

the fishing mortality is far above Fmsy (section 5.8), although the increase in abundance 

overlaps with a decrease in fishing mortality. This suggests that the recovery would not result 

in a biomass which produces the maximum sustainable yield. However, the mortality 

estimates did not include all age classes (< age 10 and > age 21), whereas the abundance 

analysis did. Therefore, the increase may be caused by early juveniles, which are not 

represented in the fishing mortality rates. In addition, this study utilised proxies of Fmsy and 

thus, cannot completely replace a full analytical assessment. In conclusion, the conservation 

measures of spurdog should be expanded to prevent a reversal of the current trend. In 

addition, the trends have to be monitored carefully and consistently over time and the fishing 

mortality rate of juveniles should be examined in future studies. 
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6. General Discussion 

This study revealed that tope, starry smoothhound and spurdog have followed a different 

trend in the Northeast Atlantic, yet the status for each of the species is far from what could be 

termed in ‘good or stable condition’. The abundance of tope has declined by more than 70% 

since 1992, whereas spurdog and starry smoothhound showed some evidence of recent 

increasing trends. This may be explained by a reduction of fishing pressure in important 

habitats. However, spurdog is still extremely depleted compared to its virgin biomass 

(Hammond and Ellis 2005, De Oliveira et al. 2013) and thus remains highly vulnerable to 

exploitation. On the other hand, the virgin biomass of starry smoothhound is unknown and 

therefore the results should be interpreted with caution. In addition, none of the three species 

investigated experienced sustainable exploitation, raising concerns about the future 

development of such populations. A sudden collapse of populations is a well-documented 

phenomenon in sharks (Camhi et al. 1998) and recovery, if possible, can promptly be reversed 

by already light exploitation (Ward-Paige et al. 2012). Moreover, there are several examples 

of shark species which did not recover after historical depletion (e.g. Walker 1998, Baum et 

al. 2003, Hammond and Ellis 2005, Ward-Paige et al. 2012). Therefore, management plans 

for tope and starry smoothhound should be developed promptly and remain rigorously tight 

for spurdog. Due to the presumably high proportion of fishing mortality caused by bycatch, a 

strict commercial fishing ban on tope is proposed, to prevent scenarios that this species has 

experienced in other regions (Ripley 1946, Stevens et al. 2000). Likewise, the results raise 

questions regarding the possibility of sustainable exploitation in spurdog, where total 

allowable catch is now zero as of recent years. However, some bycatch remains legal (ICES 

2012) and could counteract a recovery, although live discard and survival may be possible. 

Even though this study found evidence that tope, starry smoothhound and spurdog experience 

unsustainable exploitation levels, this has to be considered carefully. The fishing mortality 

rates of starry smoothhound and spurdog did not cover all age classes and the exploitation 

levels of early juveniles remain unclear. On the other hand, the uncertainty of the estimated 

fishing mortality rate which would produce the maximum sustainable yield Fmsy was reduced 

by approximating this value via two different methods. In classical surplus production 

modelling, the intrinsic rate of population increase r is calculated at very low biomass, giving 

the maximum growth rate of a population. From this it follows that sustainable fishing is 

achieved at half the intrinsic rate of population increase (Ricker 1975). It is reasonable to 

assume that in overexploited populations, age structure or reproductive rate has changed.  
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In contrast to the classical model, the demographic method applied in this study to estimate r, 

does assume a stable age structure (Pianka 2000). Therefore, the estimates of r reflect the 

highest possible growth based on the best available assumptions of natural mortality, 

fecundity at age, longevity and age at maturity. This static behaviour of life tables may result 

in an underestimation of the intrinsic rate of population increase (Simpfendorfer 2005). The 

second method applied in this study was based on a relationship between Fmsy and natural 

mortality M (e.g. Gulland 1971, Shepherd 1981, Clark et al. 1985, Beverton 1990, Patterson 

1992, MacCall 2009, Pikitch et al. 2012). A relationship of Fmsy = M has long been suggested 

(Gulland 1971). However, Fmsy >> 0.5M should be carefully justified (Walters and Martell 

2002) and a relationship of Fmsy = 0.4M is more likely for chondrichthyans (Zhou et al. 2012). 

In contrast to teleosts, several shark species are characterised by a biennial reproductive cycle 

(Fowler et al. 2005). Moreover, the methods of estimating natural mortality utilised in this 

study derived their empirical relationship almost exclusively from data referring to teleosts 

(Pauly 1980, Hoenig 1983, Jensen 1996). From this it follows that the approximated values 

for Fmsy may be too high. Hence, the two estimates of Fmsy obtained in this study bracket the 

range of possible Fmsy values. However, to follow a precautionary approach, the lower proxy 

should be considered in management of tope, starry smoothhound and spurdog. In addition, 

future assessments of starry smoothhound and spurdog should address the fishing mortality of 

early juveniles, to examine if this life stage is exploited at levels that would explain the 

observed increase in abundance. Besides considering the exploitation status, this study 

revealed that the inclusion of length at first capture is essential for the success of shark 

conservation. Like for teleosts (Froese et al. 2008, Colloca et al. 2013), the optimum size 

increases the cohort biomass of slow growing, late maturing and long lived shark species. 

However, sustainability may not be achieved if these animals are caught at young ages, even 

under apparent sustainable exploitation levels. This supports that low productive shark species 

are vulnerable to even light exploitation (Myers and Worm 2005, Ward-Paige et al. 2012). 

Therefore, the development and enlargement of protected areas seems to be critically 

important as additional conservation tool for these species. Many shark species are migratory 

(Camhi et al. 1998) and the implementation of a marine protected area (MPA) network as 

planned by the EU (OSPAR 2013) is essential to their protection beyond national borders. 

However, current marine protected areas guided by the Convention for the Protection of the 

Marine Environment of the North-East Atlantic (OSPAR) do not coordinate purposes or 

measures related to fisheries management (OSPAR 1992, Annex V, Article 4).  



General Discussion 

102 

However, no take zones are required to allow appropriate conservation success and their 

establishment should be included in protected areas management. Although this study did not 

cover all parts of the Northeast Atlantic, and important areas such as the English Channel 

(Martin et al. 2010, Martin et al. 2012) are missing, recommendations regarding important 

areas for shark conservation can be given. Even though it has been addressed that the 

protection of adult habitats may be most beneficial for conservation purposes (Kinney and 

Simpfendorfer 2009), the recommendations here utilise the combined results from nursery 

grounds and critical habitats of mature specimens. Existing protected areas (Figure 42) should 

be extended with the inclusion of no fishing zones off the east coast of England, the Outer 

Thames Estuary and the Frisian Islands. Worryingly, the latter region has suffered severely 

from degradation and exploitation (Lotze et al. 2005) and serves not only as nursery for tope 

but also for other elasmobranches (Ellis et al. 2005a). Minor parts of the northern coast of 

Ireland, north-west of Scotland and the southern Celtic Sea are protected (OSPAR 2013, 

JNCC 2013). Here, the establishment of new protected areas or the enlargement of existing ones will 

contribute towards the conservation of the populations by protecting important life stages of the 

species. Areas northwest of Scotland, serve as important nursery grounds, particularly for 

spurdog. These are also a nursery ground for other elasmobranch species such as the common 

skate (Dipturus batis) (Ellis et al. 2012) and the blackmouth catshark (Galeus melastomus) 

(Henry et al. 2013). The north-eastern part of the Celtic Sea was found to be important for 

elasmobranchs by others (Shephard et al. 2012). Here it has been shown, that the southern 

Celtic Sea could be of similar importance, possibly serving as a migration pathway and 

mating ground. Therefore, this area may exhibit the highest conservation value especially as it 

became highly exploited in recent years which resulted in a decrease in the mean trophic level 

(Pinnegar et al. 2002) and fish size (Blanchard et al. 2005). The south-eastern Irish Sea has 

some established MPAs along the coastline, e.g. in Cardigan Bay (OSPAR 2013, JNCC 

2013), however in offshore areas and in the central Irish Sea such protection is lacking. Here, 

the addition of an MPA covering the Anglesey Reef (central Irish Sea) is recommended, and 

is currently under investigation (JNCC 2013). The designation of new MPAs may also focus 

on the Vidal Bank region in the western Scottish sea, which to date lacks protection, yet has 

considerable abundances of all three species. These recommendations are summarised in 

Figure 42. Note that important parameters such as habitat quality and food availability 

(Heithaus 2007) were not investigated.  
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In addition, the identified critical areas may serve as refuge for the species due to limited 

fishing effort, as has been shown for the north-eastern Celtic Sea (Shephard et al. 2012), but if 

the aggregation pattern of sharks in the above mentioned regions is due to depletion or 

displacement from other areas still remains unclear. It is likely that certain habitats in an area 

serve as aggregation points, but the resolution used in this study made this impossible to 

detect. Therefore, these questions should be addressed in future studies. 

 

Figure 42: The map shows the existing marine protected areas (MPA) in the Northeast Atlantic, taken from 

http://biodiversity.europa.eu and modified. The black circles indicate boundaries of areas where sharks would 

benefit from the designation of new protected areas or the extension of already existing ones, as found in this 

study. The areas are: a) north-west of Scotland, b) Frisian Islands, c) east coast of England, d) Outer Thames 

Estuary, e) Anglesey Reef (central Irish Sea), f) north coast of Ireland, g) Vidal Bank, h) southern Celtic Sea. 

 

To conclude, this study has shown that low productive sharks suffer significantly from 

exploitation, yet sustainability even lacks in more reproductive species. Therefore the 

European Union is far away from achieving their declared aims in shark conservation, with an 

additional species, tope, that may qualify to become another species of shark shifted from 

Data Deficient to a threatened category on the IUCN Red List.  
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The global exploitation of shark species has increased over recent decades (Bonfil 1994) and 

current estimates suggest no significant decline (Worm et al. 2013). Serious depletion in 

abundances has been reported for a variety of elasmobranch species in the Northeast Atlantic 

(Stevens et al. 2000). However, current catch regulations of some species (ICES 2012) may 

reverse such trends, but increasing protective effort is encouraged to prevent species from 

depletion and to rebuild the population of others for the fulfilment of legally binding 

legislation. All surveys showed a skewed pattern towards males, in particular for tope. Future 

studies should address this observation, as evidence was found that female topes are 

overexploited. Therefore, the investigation, if such a pattern is triggered by exploitation, 

behaviour or sampling, is crucial for evaluating the species status. The fact that the data 

lacked some sex determination, the general rarity of sharks in the ICES surveys or their 

tendency to aggregate (ICES 2012) and possible errors within the ICES database (Daan 

2001), warrants some caution while interpreting the results of this study, however, it is hoped 

that the findings help to develop appropriate management protocols for sharks in the 

Northeast Atlantic by the inclusion of this information in conservation strategies and 

management decisions.  
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10. Supplementary Information 

Table 1: Life history information of Galeorhinus galeus from other regions.  

parameter sex value region source 

maximum age female 53 Australia Olsen (1984) 

 
female 41 Southern Brazil Ferreira and Vooren (1991) 

 
male 45 Australia Moulton et al. (1989) 

 
unknown 33 South Africa McCord (2005) 

maximum TL female 174 Australia Olsen (1984) 

 
female 155 Southern Brazil Ferreira and Vooren (1991) 

 
female 195 Northeast Pacific Ripley (1946) 

 
male 163 Australia Olsen (1984) 

 
male 148 Southern Brazil Peres and Vooren (1991) 

 
male 185 Northeast Pacific Ripley (1946) 

age at maturity female 10 Australia Olsen (1954) 

 
female 15.7 Southern Brazil Peres and Vooren (1991) 

 
female 13 − 15 New Zealand Francis and Mulligan (1998) 

 
male 8 Australia Olsen (1954) 

 
male 11.4 Southern Brazil Peres and Vooren (1991) 

 
male 12 − 17 New Zealand Francis and Mulligan (1998) 

 
male 6 South Africa McCord (2005) 

TL 1st maturity female 135 Australia Olsen (1954) 

 
female 118 Southern Brazil Peres and Vooren (1991) 

 
female 150 Northeast Pacific Ripley (1946) 

 
male 120 Australia Olsen (1954) 

 
male 107 Southern Brazil Peres and Vooren (1991) 

 
male 135 Northeast Pacific Ripley (1946) 

TL 50% maturity female 123 Southern Brazil Peres and Vooren (1991) 

 
female 158 Northeast Pacific Ripley (1946) 

 
male 111 Southern Brazil Peres and Vooren (1991) 

 
male 101.1 South Africa McCord (2005) 

TL 100% maturity female 128 Southern Brazil Peres and Vooren (1991) 

 
female 190 Northeast Pacific Ripley (1946) 

 
male 117 Southern Brazil Peres and Vooren (1991) 

L∞ female 163 Southern Brazil Ferreira and Vooren (1991) 

 
female 179.2 New Zealand Francis and Mulligan (1998) 

 
male 152 Southern Brazil Ferreira and Vooren (1991) 

 
male 142.9 New Zealand Francis and Mulligan (1998) 

 
combined 215.8 Bass Strait (Australia) Moulton et al. (1992) 

 
combined 173.7 Southern Australia Moulton et al. (1992) 

 
combined 182.9 Australia Moulton et al. (1992) 

 
combined 162.6 Bass Strait (Australia) Moulton et al. (1992) 

 
male 158.33 south-eastern Australia Grant et al. (1979) 

 
female 161.83 south-eastern Australia Grant et al. (1979) 

 
combined 160.4 south-eastern Australia Grant et al. (1979) 

 
male 154.27 South Africa McCord (2005) 

 
combined 156.03 South Africa McCord (2005) 

k female 0.075 Southern Brazil Ferreira and Vooren (1991) 

 
female 0.086 New Zealand Francis and Mulligan (1998) 

 
male 0.092 Southern Brazil Ferreira and Vooren (1991) 

 
male 0.154 New Zealand Francis and Mulligan (1998) 

 
combined 0.084 Bass Strait (Australia) Moulton et al. (1992) 

 

combined 0.144 Southern Australia Moulton et al. (1992) 

 

combined 0.124 Australia Moulton et al. (1992) 

 

combined 0.168 Bass Strait (Australia) Moulton et al. (1992) 

 

male 0.168 south-eastern Australia Grant et al. (1979) 

 

female 0.160 south-eastern Australia Grant et al. (1979) 

 

combined 0.164 south-eastern Australia Grant et al. (1979) 

 

male 0.210 South Africa McCord (2005) 

 

combined 0.190 South Africa McCord (2005) 
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Figure 2: Tope time versus age graph used to identify a time period where all ages have been caught 

representatively (1992 − 2012). The dashed vertical line gives the female age at 50% maturity. Number per 

length class was standardised to one hour of hauling. 
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Figure 3: Starry smoothhound time versus age graph used to identify a time period where all ages have been 

caught representatively (1992 − 2012). The dashed vertical line gives the female age at 50% maturity. Number 

per length class was standardised to one hour of hauling. 
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Figure 4: Spurdog time versus age graph used to identify a time period where all ages have been caught 

representatively (1985 − 2012). The dashed vertical line gives the female age at 50% maturity. Number per 

length class was standardised to one hour of hauling. 
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Table 2: Summary table of life history traits of tope for the Northeast Atlantic. Total length TL is referred to in 

cm and age in years. The sources and methods are detailed in the corresponding section of this thesis. 

trait male female 

length-weight relationship 0.0042*TL3.01 0.0029*TL3.1 

asymptotic size (cm) 174 198 

von Bertalanffy k 0.087 0.066 

size at birth (cm) 28 28 

size at maturity (cm) 121 155 

age at maturity 12 21 

longevity 
 

55 

litter size 
 

0.0001*TL2.36 

proportion of females mature 
 

1/(1+e-(-40.8+0.263*TL)) 

reproductive cycle 
 

biennial 

natural mortality 
 

0.094 yr-1 

intrinsic rate of population increase   0.062 yr-1 

 

 

 

 

 

Table 3: Summary table of life history traits of starry smoothhound for the Northeast Atlantic. Total length TL is 

referred to in cm and age in years. The sources and methods are detailed in the corresponding section of this 

thesis. Note that a considerable amount of data was obtained from Farrell et al. (2010a) and Farrell et al. (2010b). 

trait male female 

length-weight relationship 0.003*TL3.05 0.001*TL3.27 

asymptotic size (cm) 103.7 123.5 

von Bertalanffy k 0.195 0.146 

size at birth (cm) 38.1 34.9 

size at maturity (cm) 78 87 

age at maturity 5 6 

longevity 13 18 

litter size 
 

0.0004*TL2.64 

proportion of females mature 
 

1/(1+e-(-48.596+0.561*TL)) 

reproductive cycle 
 

biennial 

natural mortality 
 

0.219 yr-1 

intrinsic rate of population increase   0.079 yr-1 
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Table 4: Summary table of life history traits of spurdog for the Northeast Atlantic. Total length TL is referred to 

in cm and age in years. The sources and methods are detailed in the corresponding section of this thesis. 

trait male female 

length-weight relationship 0.0043*TL2.96 0.002*TL3.15 

asymptotic size (cm) 82 105 

von Bertalanffy k 0.149 0.091 

size at birth (cm) 26 26 

size at maturity (cm) 60 82 

age at maturity 6 14 

longevity 
 

40 

litter size 
 

0.000034*TL2.72 

proportion of females mature 
 

1/(1+e-(-25.6+0.314*TL)) 

reproductive cycle 
 

biennial 

natural mortality 
 

0.127 yr-1 

intrinsic rate of population increase   0.038 yr-1 

 


