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Abstract. In this paper, we prove the existence of at least three solutions to the following
Kirchhoff nonlocal fractional equation:

M
(∫

Rn×Rn |u(x)− u(y)|2K(x− y)dxdy −
∫
Ω
|u(x)|2dx

)
((−∆)su− λu)

∈ θ(∂j(x, u(x)) + µ∂k(x, u(x))), in Ω,

u = 0, in Rn \ Ω,

where (−∆)s is the fractional Laplace operator, s ∈ (0, 1) is a fix, λ, θ, µ are real parameters
and Ω is an open bounded subset of Rn, n > 2s, with Lipschitz boundary. The approach
is fully based on a recent three critical points theorem of Teng [K. Teng, Two nontrivial
solutions for hemivariational inequalities driven by nonlocal elliptic operators, Nonlinear
Anal. Real World Appl. 14(2013), 867–874].
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1. Introduction

The aim of this paper is to establish the existence of at least three solutions for the
following Kirchhoff nonlocal hemivariational inequalities with the Dirichlet boundary
condition:

−M
(∫

Rn×Rn |u(x)− u(y)|2K(x− y)dxdy−
∫
Ω
|u(x)|2dx

)
×(LKu+ λu) ∈ θ(∂j(x, u(x))+µ∂k(x, u(x))), in Ω,

u = 0, in Rn \ Ω,

(1)

where s ∈ (0, 1) is a fix, λ, θ, µ are real parameters, Ω is an open bounded subset of
Rn, n > 2s, with Lipschitz boundary, M : [0,+∞) → R is a continuous function,
j, k : Ω×R → R are measurable functions such that for all x ∈ Ω, j(x, ·), k(x, ·) are
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locally Lipschitz and ∂j(x, ·), ∂k(x, ·) denote the generalized subdifferential in the
sense of Clarke [5] and

LKu(x) :=

∫
Rn

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y)dy, x ∈ Rn, (2)

where K : Rn \ {0} → (0,+∞) is a kernel function satisfying properties that

(K1) mK ∈ L1(Rn), where m(x) = min{|x|2, 1};

(K2) there exists θ > 0 such that K(x) ≥ θ|x|−(n+2s) for any x ∈ Rn \ {0};

(K3) K(x) = K(−x) for any x ∈ Rn \ {0}.

The homogeneous Dirichlet datum in (1) is given in Rn \ Ω and not simply on
the boundary ∂Ω, consistent with the nonlocal character of the kernel operator LK .

A typical model for K is given by the singular kernel K(x) = |x|−(n+2s) which
gives rise to the fractional Laplace operator −(−∆)s where s ∈ (0, 1) (n > 2s) is
fixed, which, up to normalization factors, may be defined as

−(−∆)su(x) :=

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn. (3)

Problem (1) in the model case LK = −(−∆)s becomes
M
(∫

Rn×Rn |u(x)− u(y)|2K(x− y)dxdy − λ
∫
Ω
|u(x)|2dx

)
×((−∆)su−λu) ∈ θ(∂j(x, u(x))+µ∂k(x, u(x))), in Ω,

u = 0, in Rn \ Ω.
(4)

Before proving the main results, some preliminary material on function spaces
and norms is needed. In what follows we briefly recall the definition of the functional
space X0, firstly introduced in [14], and we give some notations. We denote Q =
R2n \ O, where O = Rn \ Ω× Rn \ Ω. We denote the set X by

X =
{
u : Rn → R : u|Ω ∈ L2(Ω), (u(x)− u(y))

√
K(x− y) ∈ L2(R2n \ O)

}
,

where u|Ω represents the restriction to Ω of function u(x). Also, we denote by X0

the following linear subspace of X

X0 = {g ∈ X : g = 0 a.e. in Rn \ Ω}.

In this paper, we will prove the existence of nontrivial weak solutions to prob-
lem (1). The technical tool is the three critical points theorem of Teng [18] for
non-differentiable functionals. By weak solutions of (1) we mean a solution of the
following problem


M (

∫
Rn×Rn |u(x)− u(y)|2K(x− y)dxdy − λ

∫
Ω
|u(x)|2dx )

×
[ ∫

Rn×Rn(u(x)− u(y))(η(x)− η(y))K(x− y)dxdy − λ
∫
Ω
u(x)η(x)dx

]
+θ
[
−
∫
Ω
(u∗, η)− µ(v∗, η)

]
= 0, ∀η ∈ X0,

u ∈ X0.

(5)
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where u∗ ∈ ∂j(x, u), v∗ ∈ ∂k(x, u).
We know that X and X0 are nonempty, since C2

0 (Ω) ⊆ X0 by Lemma 11 of [14].
Moreover, the linear space X is endowed with the norm defined as

||u||X := ||u||L2(Ω) +

(∫
Q

|u(x)− u(y)|2K(x− y)dxdy

) 1
2

. (6)

It is easy to see that || · ||X is a norm on X (see, for instance, [15] for a proof). By
Lemmas 6 and 7 of [15], in the sequel we can take the function

X0 ∋ v 7→ ||v||X0 =

(∫
Q

|v(x)− v(y)|2K(x− y)dxdy

) 1
2

(7)

as a norm on X0. Also (X0, || · ||X0) is a Hilbert space, with a scalar product

⟨u, v⟩X0 :=

∫
Q

(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy. (8)

Note that in (7) the integral can be extended to all Rn × Rn, since v ∈ X0 and so
v = 0 a.e. in Rn \ Ω.

In what follows, we denote by λ1 the first eigenvalue of the operator LK with
homogeneous Dirichlet boundary data, namely the first eigenvalue of the problem{

LKu = λu, in Ω,

u = 0, in Rn \ Ω.

For the existence and the basic properties of this eigenvalue we refer to Proposition
9 and Appendix A of [16], where a spectral theory for general integro-differential
nonlocal operators was developed.

When λ < λ1, as a norm on X0 we can take the function

X0 ∋ v 7→ ||v||X0,λ =

(∫
Q

|v(x)− v(y)|2K(x− y)dxdy − λ

∫
Ω

|v(x)|2dx
) 1

2

, (9)

since for any v ∈ X0 it holds true (for this, see Lemma 10 of [16])

mλ||v||X0
≤ ||v||X0,λ ≤ Mλ||v||X0

, (10)

where

mλ := min

{√
λ1 − λ

λ1
, 1

}
, Mλ := max

{√
λ1 − λ

λ1
, 1

}
.

Let Hs(Rn) be the usual fractional Sobolev space endowed with the norm (the
so-called Gagliardo norm)

||u||Hs(Rn) = ||u||L2(Rn) +

(∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

. (11)
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Also, we recall the embedding properties of X0 into the usual Lebesgue spaces (see
Lemma 8 of [15]). The embedding j : X0 ↪→ Lv(Rn) is continuous for any v ∈
[1, 2∗] (2∗ = 2n

n−2s ), while it is compact whenever v ∈ [1, 2∗). Hence, for any v ∈
[1, 2∗] there exists a positive constant cv such that

||v||Lv(Rn) ≤ cv||v||X0 ≤ cvm
−1
λ ||v||X0,λ, (12)

for any v ∈ X0.
Recently, several studies have been performed for non-local fractional Laplacian

equations substituted by superlinear and subcritical or critical nonlinearities; we
refer interested readers to [2, 3, 4, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 19] and
references therein.

Inspired by the above articles, in this paper, we would like to investigate the
existence of three solutions to problem (4). The technical tool is critical point
theory for non-differentiable functionals.

The paper is organized as follows. In Section 2, we give preliminary facts and
provide some basic properties which are needed later. Section 3 is devoted to our
results on the existence of three solutions.

2. Preliminaries

In this section, we present some preliminaries and lemmas that are useful for the
proof of the main results. For the convenience of the reader, we also present here
the necessary definitions.

Let (X, || · ||X) be a Banach space, (X∗, || · ||X∗) its topological dual, and φ :
X → R a functional. We recall that φ is locally Lipschitz if, for all u ∈ X, there
exist a neighborhood U of u and a real number LU > 0 such that

|φ(x)− φ(y)| ≤ LU ||x− y||X , ∀x, y ∈ U.

If f is locally Lipschitz and u ∈ X, the generalized directional derivative of φ at u
along the direction v ∈ X is

φ◦(u;h) = lim sup
w→u,t↓0+

φ(w + th)− φ(w)

t
.

The generalized gradient of φ at u is the set

∂φ(u) = {u∗ ∈ X∗ : ⟨u∗, v⟩ ≤ φ◦(u; v) for all v ∈ X}.

So ∂φ : X → 2X
∗
is a multifunction. The function (u, v) 7→ φ◦(u; v) is upper

semicontinuous and

φ◦(u; v) = max{⟨ξ, v⟩ : ξ ∈ ∂φ(u)} for all v ∈ X.

We say that φ has compact gradient if ∂φ maps bounded subsets of X into relatively
compact subsets of X∗.

We say that u ∈ X is a critical point of locally Lipschitz functional φ if 0 ∈ ∂φ(u).
In the proof of our main results, we shall use nonsmooth critical point theory.

For this, we first present an important definition.
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Definition 1. An operator A : X → X∗ is of type (S)+ if, for any sequence {un}
in X, un ⇀ u and lim supn→+∞⟨A(un), un − u⟩ ≤ 0 imply un → u.

Definition 2. A locally Lipschitz function φ : X → R satisfies the nonsmooth
Palais-Smale condition (nonsmooth PS-condition for short) if any sequence {un}n≥1

⊆ X such that {J(un)}n≥1 is bounded and

ρ(un) := min{||u∗||X∗ : u∗ ∈ ∂φ(un)} → 0 as n → +∞,

has a strongly convergent subsequence.

If this is true for every c ∈ R, we say that J satisfies the nonsmooth (PS)-
condition.

Lemma 1 ([9], Proposition 1.1). Let φ ∈ C1(X) be a functional. Then φ is locally
Lipschitz and

φ◦(u; v) = ⟨φ′(u), v⟩, ∀u, v ∈ X,

∂φ(u) = {φ′(u)}, ∀u ∈ X.

Lemma 2 ([5], Proposition 2.2.4). Let f : X → R be Lipschitz near u, and let f be
continuously differentiable at u. Then ∂f(u) = {∇f(u)}, where ∇f(u) denotes the
Gâteaux derivative of f at u.

Lemma 3 ([8], Lemma 6). Let φ : X → R be a locally Lipschitz functional with a
compact gradient. Then φ is sequentially weakly continuous.

In the proof of our main results, we shall use Theorem 1. For this, we first present
an important definition.

Definition 3. Let Φ : X → R be a locally Lipschitz functional and Ψ : X →
R ∪ {+∞} be a proper, convex, lower semi continuous functional whose restriction
to the set dom(Ψ) = {u ∈ X : Ψ(u) < ∞} is continuous. Then, Φ + Ψ is a
Motreanu-Panagiotopoulos functional.

Definition 4. Let Φ +Ψ be a Motreanu-Panagiotopoulos functional, u ∈ X. Then
u is a critical point of Φ+Ψ if for every v ∈ X, Φ0(u; v − u) + Ψ(v)−Ψ(u) ≥ 0.

The following lemma introduces some basic properties of the generalized gradi-
ents:

Lemma 4 (see [5]). Let φ1, φ2 : X → R be locally Lipschitz functionals. Then, for
every u, v ∈ X, the following conditions hold:

(i) ∂φ1(u) is convex and weakly∗ compact;

(ii) the set-value mapping ∂φ1 : X → 2X
∗
is weakly∗ upper semicontinuous;

(iii) φ◦
1(u; v) = maxu∗∈∂φ⟨u∗, v⟩ ≤ LU ||v||, with LU as in definition of locally Lip-

schitz functionals;

(iv) ∂(λφ1)(u) = λ∂φ1(u) for every λ ∈ R;
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(v) ∂(φ1 + φ2)(u) ⊆ ∂φ1(u) + ∂φ2(u) for every λ ∈ R;

The goal of this work is to establish some new criteria for system (1) to have at
least three weak solutions in X, by means of a very recent abstract critical points
result of Teng [18]. First, we recall the following result of ([18, Theorem 3.1]), with
easy manipulations, that we are going to use in the sequel.

Theorem 1. Let X be a reflexive real Banach space, Ψ a convex, proper, lower
semicontinuous functional and Φ : X → R a locally Lipschitz functional with compact
gradient ∂Φ and Φ is nonconstant. Suppose that

(A1) Θ : X → R is a locally Lipschitz functional with compact gradient ∂Θ;

(A2) There exists an interval Λ ⊂ R and a number η > 0, such that for every θ ∈ Λ
and every µ ∈ [−η, η] the functional Jθ,µ = Ψ+ θ(Φ + µΘ) is coercive in X;

(A3) The functional Jθ,µ satisfies the Palais-Smale condition for every θ ∈ Λ and
every µ ∈ [−η, η];

(A4) There exists r ∈ (infu∈X Φ(u), supu∈X Φ(u)) such that the following two num-
bers

φ1(r) = inf
u∈Φ−1(Ir)

infv∈Φ−1(r) Ψ(v)−Ψ(u)

Φ(u)− r
,

φ2(r) = sup
u∈Φ−1(Ir)

infv∈Φ−1(r) Ψ(v)−Ψ(u)

Φ(u)− r

satisfy φ1(r) < φ2(r), where Ir = (−∞, r) and Ir = (r,+∞).

If (φ1(r), φ2(r))∩Λ ̸= ∅, then for every compact interval [a, b] ⊂ (φ1(r), φ2(r))∩Λ,
there exists δ ∈ (0, η) such that if |µ| < δ, the functional Jθ,µ admits at least three
critical points for every θ ∈ [a, b].

We recall a convergence property for bounded sequences in X0 (see [15], for this
we need a Lipschitz boundary):

Lemma 5. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (K1)-(K3) and let
{un} be a bounded sequence in X0. Then, there exists u ∈ Lp(Rn) such that, up to
a subsequence, un → u in Lp(Rn), as n → ∞, for any p ∈ [1, 2∗).

The functional Jθ,µ : X0 → R corresponding to problem (1) is defined by

Jθ,µ(u) =
1

2
M

(∫
Rn×Rn

|u(x)− u(y)|2K(x− y)dxdy − λ

∫
Ω

|u(x)|2dx
)

−θ

[∫
Ω

j(x, u(x))dx+ µ

∫
Ω

k(x, u(x))dx

]
(13)

=
1

2
M(||u||2X0,λ)− θ

[∫
Ω

j(x, u(x))dx+ µ

∫
Ω

k(x, u(x))dx

]
,

where M(s) =
∫ s

0
M(t)dt.
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In order to study problem (1), we will use the functionals Φ,Ψ : X0 → R defined
by

Ψ(u) =
1

2
M

(∫
Rn×Rn

|u(x)− u(y)|2K(x− y)dxdy − λ

∫
Ω

|u(x)|2dx
)
,

Φ(u) = −
∫
Ω

j(x, u(x))dx, Θ(u) = −
∫
Ω

k(x, u(x))dx. (14)

Hence, by (9), for any λ < λ1 and u ∈ X0 one can get

Ψ(u) =
1

2
M(||u||2X0,λ). (15)

Now, we will establish the variational principle for problem (1). For this purpose
our hypotheses on the nonsmooth potential j(x, u) and M(t) are the following:

(H1) For all s ∈ R, the function x → j(x, s) is measurable;

(H2) For all x ∈ Ω, the function s → j(x, s) is locally Lipschitz and j(x, 0) = 0;

(H3) There exist a, b ∈ L∞
+ (Ω) and 1 ≤ r < 2 such that |s∗| ≤ a(x) + b(x)|s|r−1 for

all x ∈ Ω, x ∈ R and s∗ ∈ ∂j(x, s);

(M1) there exists m0 > 0 such that M(t) ≥ m0, ∀t ∈ [0,+∞);

(M2) M(t) is nondecreasing in t ∈ [0,+∞).

For example, in what follows, it holds that conditions (M1) and (M2) hold:

M(t) = ptp−1 + 1, p ≥ 1, ∀t ∈ [0,+∞).

Then
M(t) = tp + x, ∀t ∈ [0,+∞).

Now, by the Formulas of M(t) it is obvious that (M1) and (M2) hold true and that
M(t) is convex.

First of all, note that X0 is a Hilbert space and the functionals Ψ,Φ and Θ
are Frechét differentiable in X0. Also, note that the map u 7→ ||u||2X0,λ

is lower
semicontinuous in the weak topology of X0 and M is a continuous function, so that
the functional Ψ is lower semicontinuous in the weak topology of X0. Also, by (M2),
the functional Ψ is a convex functional.

Therefore, we have the following remark.

Remark 1. By Definition 3, the functional Jθ,µ is of a Motreanu-Panagiotopoulos
functional on X.

Proposition 1. Assume that j(x, u) and k(x, u) satisfy hypotheses (H1)-(H3), the
functional Jθ,µ : X0 → R is well defined and locally Lipschitz on X0. Moreover,
every critical point u ∈ X0 of Jθ,µ is a solution of problem (1).

According to Proposition 1, we know that in order to find solutions of problem
(1), it suffices to obtain the critical points of the functional Jθ,µ.
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3. Main results

In this section we present our main results. Now, we will apply Theorem 1 to obtain
some existence and multiplicity results to problem (1).

Before our main result, we need the following lemmas.

Lemma 6. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (K1)-(K3) and λ <
λ1. Assume that j(x, u) and k(x, u) satisfy hypotheses (H1)-(H3) and M satisfies
conditions (M1) and (M2), the functional Jθ,µ : X0 → R is coercive for every
θ, µ ∈ R.

Proof. By (H2), (H3) and the Lebourg’s mean value theorem, we have

|j(x, u)| = |j(x, u)− j(x, 0)| = |(u∗, u)| ≤ a(x)|u|+ b(x)|u|r,
|k(x, u)| = |k(x, u)− k(x, 0)| = |(u∗, u)| ≤ a(x)|u|+ b(x)|u|r, (16)

for all u ∈ R and x ∈ Ω. Thus, by (M1), (12) and (16), one can get

Jθ,µ(u) =
1

2
M(||u||2X0,λ)− θ

[∫
Ω

j(x, u(x))dx+ µ

∫
Ω

k(x, u(x))dx

]
≥ m0

2
||u||2X0,λ − |λ|(1 + |µ|)

[
||a||∞||u||L1(Ω) + ||b||∞||u||rLr(Ω)

]
≥ m0

2
||u||2X0,λ − |λ|(1 + |µ|)

[
||a||∞

c1
mλ

||u||X0,λ + ||b||∞
crr
mr

λ

||u||rX0,λ

]
.

Since 1 < r < 2, then Jθ,µ is coercive for every θ, µ ∈ R.

Lemma 7. Let K : Rn \{0} → (0,+∞) satisfy assumptions (K1)-(K3) and λ < λ1.
Assume that j(x, u) satisfies hypotheses (H1)-(H3). Then, the functional Φ : X0 →
R is a locally Lipschitz functional with a compact gradient.

Proof. Clearly, Φ is locally Lipschitz on X0. Now we shall show that the set-valued
function ∂Φ : X0 → 2X0 is compact. To this end, let us fix a bounded sequence
{un} ⊂ X0 and u∗

n ∈ ∂Φ(un) for all n ∈ N such that ⟨u∗
n, v⟩ =

∫
Ω
(u∗

n(x), v(x))dx for
every v ∈ X0. Let L > 0 be a Lipschitz constant for Φ, restricted to a bounded set
where the sequence {un} lies, then ||u∗

n||X∗
0
≤ L for all n ∈ N. Up to a subsequence,

{u∗
n} weakly converges to some u∗ in (X0)

∗. We shall show that the convergence
is strong. Assume to the contrary, that is, we assume there exists ϵ > 0 such
that ||u∗

n − u∗||(X0)∗ > ϵ for all n ∈ N. Hence for all n ∈ N, there exists vn ∈
BN (0, 1)(BN (0, 1) = {u ∈ X0 : ||u||X0,λ ≤ 1}) such that

⟨u∗
n − u∗, vn⟩ > ϵ. (17)

Since {vn} is bounded in X0, then up to a subsequence, there is a v ∈ X0 such that
vn ⇀ v in X0 and vn → v in Lq(Ω) (1 ≤ q ≤ 2) (see Lemma 5). From (H3), one can
get

⟨u∗
n − u∗, vn⟩ = ⟨u∗

n, vn − v⟩+ ⟨u∗
n − u∗, v⟩+ ⟨u∗, v − vn⟩

≤ C1(||vn − v||L1 + ||vn − v||Lq ) + ⟨u∗
n − u∗, v⟩+ ⟨u∗, v − vn⟩ → 0,

as n → +∞, which contradicts (17).
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Lemma 8. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (K1)-(K3) and λ <
λ1. Assume that j(x, u) and k(x, u) satisfy hypotheses (H1)-(H3) and M satisfies
conditions (M1) and (M2). Then, the functional Jθ,µ satisfies the (PS)-condition
for every θ, µ ∈ R.

Proof. By Definition 2, suppose {un} ⊂ X0 satisfies

|Jθ,µ(un)| ≤ C and ρ(un) = min{||u∗||X∗ : u∗ ∈ ∂Jθ,µ(un)} → 0. (18)

Since ∂Jθ,µ(un) ⊂ (X0)
∗ is a weak∗ compact set and the norm function in a Banach

space is weakly semi-continuous, by Weierstrass theorem, we can find u∗
n ∈ ∂Jθ,µ(un)

such that

ρ(un) = ||u∗
n||(X0)∗ and u∗

n = Aun − θ(vn + µwn), for every n ≥ 1 (19)

with vn ∈ Lr′(Ω), 1
r +

1
r′ = 1 and vn ∈ ∂j(x, un(x)), wn ∈ ∂k(x, un(x)) for all x ∈ Ω.

Here A : X0 → (X0)
∗ is an operator defined by

⟨Au, v⟩ = M

(∫
Rn×Rn

|u(x)− u(y)|2K(x− y)dxdy − λ

∫
Ω

|u(x)|2dx
)

×
[ ∫

Rn×Rn

(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy − λ

∫
Ω

u(x)v(x)dx
]
,

for all v ∈ X0.
Since, Jθ,µ is coercive, then the sequence {un} inX0 is bounded and so by passing

to a subsequence if necessary, by Lemma 5, we may assume that
un ⇀ u, weakly in X0,

un → u, strongly in Lp(Rn) (1 ≤ p < 2∗),

un → u, a.e. in Rn.

(20)

We note that the nonlinear operator A : X0 → (X0)
∗ is strongly monotone, that is

⟨Au−Av, u− v⟩ ≥ c||u− v||2X0,λ, for all u, v ∈ Eα.

In fact, by (M1), then for all u, v ∈ X0 we have

⟨Au − Av, u− v⟩

= M

(∫
Rn×Rn

|(u − v)(x)− (u− v)(y)|2K(x− y)dxdy −λ

∫
Ω

|(u− v)(x)|2dx
)

×
[ ∫

Rn×Rn

|(u− v)(x)− (u− v)(y)|2K(x− y)dxdy − λ

∫
Ω

|(u− v)(x)|2dx
]
,

≥ m0||u− v||2X0,λ.

Clearly, the strongly monotonicity property implies that A satisfies (S)+.
Consequently, it suffices to prove the following fact

lim sup
n→+∞

⟨Aun, un − u⟩ ≤ 0. (21)
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Indeed, from definition 2 and (19), we have

ϵn||un − u||2X0,λ ≥ ⟨u∗
n, un − u⟩

= ⟨Aun, un − u⟩ − θ

[∫
Ω

vn(x)(un(x)− u(x))dx

+µ

∫
Ω

wn(x)(un(x)− u(x))dx

]
with ϵn ↓ 0. By (20) and Hölder inequality, we can get∫

Ω

vn(x)(un(x)− u(x))dx+ µ

∫
Ω

wn(x)(un(x)− u(x))dx → 0

as n → +∞. So, lim supn→+∞⟨Aun, un − u⟩ ≤ 0. Thus (1) holds. Since A is
of type (S)+, so we obtain un → u in X0. Thus, the functional Jθ,µ satisfies the
(PS)-condition for every θ, µ ∈ R.

Our first result is as follows.

Theorem 2. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (K1)-(K3). Assume
that j(x, u) and k(x, u) satisfy conditions (H1)-(H3) and M satisfies conditions (M1)
and (M2), and suppose j(x, u) satisfies the following conditions:

(H4) There exists 2 < α0 < 2∗ such that lim sup|u|→0
max{|u∗|:u∗∈∂j(x,u)}

|u|α0−1 < ∞ uni-

formly for all x ∈ Ω;

(H5) There exist 0 < µ0 < r0 where r0 is a positive constant, c0 > 0 and M0 > 0
such that c0 < j(x, u) ≤ −µ0j

◦(x, u;−u) for all u ∈ RN with |u| ≥ M0 and
x ∈ Ω.

Then, for any non-degenerate closed interval [a, b] with [a, b] ⊂ (φ1(0),∞), there
exists δ > 0 such that problem (1) admits at least three solutions on X0 for all
λ < λ1, θ ∈ [a, b] and µ ∈ (−δ, δ).

Proof. Since Φ(0) = 0, we claim that Φ(tu) → −∞ as t → +∞. To this end, let
N be the Lebesgue-null set outside of which hypotheses (H3) and (H5) hold and let
x ∈ Ω\N , u ∈ R with |u| ≥ M0. We set J (x, λ2) = j(x, λ2u), λ2 ∈ R. Clearly,
J (x, ·) is locally Lipschitz. By Rademarcher’s theorem, we see that for every x ∈ Ω,
λ2 → J (x, λ2) is differentiable a.e. on R and at a point of differentiability λ2 ∈ R, we
have d

dλ2
J (x, λ2) ∈ ∂J (x, λ2). Moreover, by Chain rule (see [5, Theorem 2.3.10]),

we have ∂J (x, λ2) ⊂ ∂uj(x, λ2u)u, hence λ2∂J (x, λ2) ⊂ ∂uj(x, λ2u)λ2u. From
(H5), one can get

λ2
d

dλ2
J (x, λ2) ≥ −J ◦(x, λ2s;−λ2s) ≥

1

µ0
J (x, λ2) =⇒

d
dλ2

J (x, λ2)

J (x, λ2)
≥ 1

λ2µ0
.

Moreover, the two inequalities hold true for almost λ2 ≥ 1.
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By integrating from 1 to λ0 from the above inequality, we get ln J (x,λ0)
J (x,1) ≥ lnλ

1
µ0
0 .

So, we have proved that for x ∈ Ω\N , |u| ≥ M1 and λ2 ≥ 1, we have j(x, λ0s) ≥
λ

1
µ0
0 j(x, s).
Let z(x) = min{j(x, u) : |u| = M1}, clearly z ∈ L2(Ω,R+) and z(x) ≥ c0 for

every x ∈ Ω. Therefore, for every x ∈ Ω\N and |u| ≥ M1, we have

j(x, u) = j(x, |u|M−1
1 M1u|u|−1) ≥

( |u|
M1

) 1
µ0
j
(
x,

u

|u|
M1

)
≥ z(x)

( |u|
M1

) 1
µ0
. (22)

On the other hand, by means of the equivalence between two norms in finite-
dimensional space, for any finite-dimensional subspace U ⊂ X0 and any u ∈ U ,
there exists a constant C > 0 such that

||u||δ =

(∫
Ω

|u(x)|δdx
) 1

δ

≥ C||u||X0,λ, δ ≥ 1.

Then, by (14) and (22) one can get

Φ(u) = −
∫
Ω

j(x, u(x))dx ≤ −
∫
Ω

z(x)
( |u(x)|

M1

) 1
µ0
dx

≤ −c0

( 1

M1

) 1
µ0 ||u||

1
µ0
1
µ0

≤ −c0C
( 1

M1

) 1
µ0 ||u||

1
µ0

X0,λ
,

thus

Φ(tu) ≤ −c0C
( 1

M1

) 1
µ0
t

1
µ0 ||u||

1
µ0

X0,λ
,

Since 0 < µ0 < r0 and c0C
(

1
M1

) 1
µ0

> 0, then for any u ∈ U ⊂ X0\{0} we have

Φ(tu) → −∞ as t → +∞. Hence the claim is true. Then, for large t0 > 0, we take
u0 = t0u with u ∈ U ⊂ X0\{0} fixed, then Φ(u0) < 0, that is, u0 ∈ Φ−1(−∞, 0),
hence that R−

0 ⊂ (inf Φ, supΦ) follows from the locally Lipschitz continuity of Φ.
If we denote

λ∗ = φ1(0) = inf
u∈Φ−1(I0)

−Ψ(u)

Φ(u)
, I0 = (−∞, 0). (23)

By the above argument, we see that λ∗ is well defined.
Similarly to the proof of (4.5) in [1], one can get

lim sup
r→0−

φ1(r) ≤ φ1(0) = λ∗. (24)

Also, from (H3) and (H4), we can deduce that |j(x, u)| ≤ C1|u|α0 , for every
u ∈ R, where C1 > 0 is a constant. So, for every u ∈ X0, it is easy to deduce that
|Φ(u)| ≤ C1C

α0
α0

||u||α0 = C2||u||α0 , where C2 > 0 is a constant. Therefore, given
r < 0 and u ∈ Φ−1(r), by (M1), we have

−r = −Φ(u) ≤ C2||u||α0

X0,λ
= C3

(
m0

||u||2X0,λ

2

)α0
2

≤ C3(Ψ(u))
α0
2 , (25)
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where C3 =
(

2
m0

)α0
2

C2. Since 0 ∈ Φ−1((r,+∞)), by definition on φ2(r) and (25),

we have

φ2(r) ≥
1

|r|
inf

v∈Φ−1(r)
Ψ(v) ≥ C

− 2
α0

3 |r|
2

α0
−1.

In view of α0 > 2, so that the above inequalities imply that limr→0− φ2(r) = +∞.
Consequently, we have proved that

lim
r→0−

φ1(r) = φ1(0) = λ∗ < lim
r→0−

φ2(r) = +∞.

This yields that for all integers n ≥ n∗ = 2 + [λ∗] there exists a number rn < 0 so
close to zero such that φ1(rn) < λ∗+ 1

n < n < φ2(rn). Hence, since by Lemma 6 we
have Λ = R, by Theorem 1, for every compact interval

[a, b] ⊂ (λ∗,∞) =
∞∪

n=n∗

[
λ∗ +

1

n
, n

]
⊂

∞∪
n=n∗

(φ1(rn), φ2(rn))
∩

Λ,

there exists δ > 0 such that problem (1) admits at least three solutions for every
θ ∈ [a, b] and µ ∈ (−δ, δ). Therefore, we finish the proof.

In the following result we replace condition (H5) by conditions (H6).

Theorem 3. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (K1)-(K3) and
λ < λ1. Assume that hypotheses (H1)-(H4), (M1) and (M2) hold, suppose j(x, u)
satisfies the following condition:
(H6) supu∈R j(t, u) > 0 for all t ∈ Ω.

Then, for any non-degenerate closed interval [a, b] with [a, b] ⊂ (φ1(0),∞), there
exists δ > 0 such that problem (1) admits at least three solutions on X0 for all
λ < λ1, θ ∈ [a, b] and µ ∈ (−δ, δ).

Proof. From the proof of Theorem 2, we only need to prove that Φ−1(−∞, 0) ̸= ∅.
To this end, we prove that there exists u1 ∈ X such that Φ(u1) < 0. By (H6), for
every x ∈ Ω, there is tx ∈ R such that j(x, tx) > 0. For x ∈ RN , denoted by Nx

a neighborhood of x which is the product of N compact intervals. From (H6) and
j(x, t) ∈ C(Ω× R), for any x0 ∈ Ω, there are Nx0 ⊂ RN , tx0 ∈ R, and δ0 > 0, such
that j(x, tx0

) > δ0 > 0 for all x ∈ Nx0

∩
Ω.

Since Ω ⊆ RN is bounded, Ω is compact, then we can find Nx1 , Nx2 , . . . , Nxn

such that Ω ⊂
∪n

i=1 Nxi and Nxi

∩
Nxj = ∂Nxi

∩
∂Nxj (i ̸= j) and, also, we can

find positive constants tx1 , tx2 , . . . , txn ∈ R and n positive number δ1, δ2, . . . , δn such
that

j(x, txi) > δi > 0 uniformly for t ∈ Nxi

∩
Ω, i = 1, 2, . . . , n. (26)

Set δ0 = min{δ1, δ2, . . . , δn}, t0 = max{tx1 , tx2 , . . . , txn} and

L = sup
|t|<|t0|,x∈Ω

|j(x, t)|. (27)
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Thus, we can fix a closed set Axi ⊂ int(Nxi

∩
Ω) such that

meas(Axi) >
Lmeas(Nxi

∩
Ω)

δ0 + L
, (28)

where meas(B) denotes the Lebesgue measure of set B. We consider a function
u1 ∈ X0 such that |u1(x)| ∈ [0, t0] and u1 ≡ txi for all x ∈ Ati . For instance, we can
set u1 =

∑n
i=1 u

i
1, where ui

1 ∈ C∞
0 (Nxi

∩
Ω) and

ui
1 =

{
txi , t ∈ Axi ,

0 ≤ ui
1 < txi , t ∈ (Nxi

∩
Ω) \ Ati .

Therefore, from (26)-(28) we get

Φ(u1) = −
∫
Ω

j(x, u1)dx = −
∫
∪n

i=1(Nxi

∩
Ω)

j(x, u1)dx

= −
∫
∪n

i=1 Ati

j(x, u1)dx−
∫
(
∪n

i=1 Nxi

∩
Ω)\

∪n
i=1 Axi

F (x, u1)dx

≤ −
n∑

i=1

δimeas(Ati) +
n∑

i=1

L
[
meas(Nxi

∩
Ω)−meas(Ati)

]
< −

n∑
i=1

[
(δ0 + L)meas(Axi)− Lmeas(Nxi

∩
Ω)
]

< 0.

Therefore, we complete the proof.

Theorem 4. Let K : Rn \ {0} → (0,+∞) satisfy assumptions (K1)-(K3) and
λ < λ1. Assume that hypotheses (H1)-(H4), (M1) and (M2) hold, suppose j(x, u)
satisfies the following condition:

(H7) There exists 1 < β < 2 such that lim inf |u|→∞
max{|u∗|:u∗∈∂j(x,u)}

|u|β−1 > 0 uni-

formly for all x ∈ Ω.

Then, for any non-degenerate closed interval [a, b] with [a, b] ⊂ (φ1(0),∞), there
exists δ > 0 such that problem (1) admits at least three solutions on X0 for all
λ < λ1, θ ∈ [a, b] and µ ∈ (−δ, δ).

Proof. From the proof of Theorem 2, we only need to prove that Φ−1(−∞, 0) ̸= ∅.
For our purpose, from (H3) and (H7) we have j(x, u) ≥ C5|u|β − C6, where C5 and
C6 are positive constants. Thus, one can get

Φ(u) = −
∫
Ω

j(x, u(x))dx ≤ −C5

∫
Ω

|u(x)|βdx+ C6|Ω| = −C5||u||ββ + C6|Ω|.

So,
lim

u∈X0,||u||β→∞
Φ(u) = −∞,

so that R−
0 ⊂ (inf Φ, supΦ) follows from the locally Lipschitz continuity of Φ.
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[12] R. Servadei, E.Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian,
to appear in Trans. AMS.

[13] R. Servadei, E.Valdinoci, Fractional Laplacian equations with critical Sobolev
exponent, preprint, available at http://www.math.utexas.edu/mparc-bin/mpa?yn=

12--58.
[14] R. Servadei, E.Valdinoci, Lewy-Stampacchia type estimates for variational inequal-

ities driven by (non)local operators, Rev. Mat. Iberoam. 29(2013), 1091–1126.
[15] R. Servadei, E.Valdinoci, Mountain Pass solutions for non-local elliptic operators,

J. Math. Anal. Appl. 389(2012), 887–898.
[16] R. Servadei, E.Valdinoci, Variational methods for non-local operators of elliptic

type, Discrete Contin. Dyn. Syst. 33(2013), 2105–2137.
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