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Abstract. First we prove that the class CI of centrally symmetric convex polyhedra with
regular polygonal faces consists of 4 of the 5 Platonic, 9 of the 13 Archimedean, 13 of the
92 Johnson solids and two infinite families of 2n-prisms and (2n + 1)-antiprisms. Then
we show how the presented maps of their halves (obtained by identification of all pairs
of antipodal points) in the projective plane can be used for obtaining their flag graphs
and symmetry-type graphs. Finally, we study some linear dependence relations between
polyhedra of the class CI .
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1. Introduction

Any centrally symmetric convex (hence: spherical) polyhedron C admits identifi-
cation of pairs of antipodal points x and x∗; thus the map (i.e. embedding of a
graph in a compact surface) of its half C/2 = C/x≡x∗ has the Euler characteristic
E = v − e + f = 1 (where v, e and f are the numbers of the vertices, edges and
faces of the map, respectively) and can be drawn in a projective plane (represented
as a disc with identified antipodal points [8]). Thus the flag graph of C/2 can be
easily constructed in the projective plane, too, while the flag graph of C is exactly a
2-sheet cover space [1, 2] over C/2.

It is well known that the class C of convex polyhedra with regular polygonal
faces consists of 5 Platonic solids, 13 Archimedean solids [9], the class of 92 non-
uniform (i.e. having at least two orbits of vertices) Johnson solids [3] and two
infinite families of prisms and antiprisms. Among these solids we will find a sub-
set CI ⊂ C of centrally symmetric solids and present the maps of their halves C/2
(obtained by identification of all pairs of antipodal points) in the projective plane
modelled as a disk with identified antipodal points. From these maps we can de-
duce the corresponding flag graphs and symmetry-type graphs which can be used
for the classification of maps, tilings and polyhedra, too [5, 4, 6, 7]. The maps of
the halves of four Platonic solids (hemi-cube, hemi-octahedron, hemi-dodecahedron,
hemi-icosahedron) and the maps of regular and semi-regular spherical polyhedra can
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also be found in Wikipedia (Regular polyhedron, Spherical polyhedron). For con-
vex uniform polyhedra we use the usual notation (p.q.r. . . . ), describing the cyclical
sequence of regular n-gonal faces (n = 3, 4, 5, . . . ) around any vertex.

Structure: First some general propositions about centrally symmetric polyhe-
dra are given (Section 2), and then the solids C ∈ CI are identified (Section 3). After
that the maps of their halves in the projective plane are presented and we show how
to construct the corresponding flag graph and symmetry-type graph (Section 4).
From these maps the number of faces 3,4,5,6,8,10 for each C/2 can be easily found,
too. The corresponding vectors n = (n10, n8, n6, n5, n4, n3) can be used to solve
the following problem (Section 5): Is it possible to take a copies of a polyhedron
A ∈ CI and b copies of polyhedron B ∈ CI and by dissecting their boundary into
faces construct a polyhedron C ∈ CI so that no faces are left unused?

2. Centrally symmetric solids

The sets of vertices, edges and faces of a polyhedron C are denoted by V (C), E(C),
F (C), respectively. The central point (or the centre) of a polyhedron C ∈ CI is
defined as the point O fixed by the central inversion c preserving C. The antipodal
elements (vertices, edges, faces) of a vertex v ∈ V (C), an edge e ∈ E(C) and a face
f ∈ F (C) are denoted by c(v) = v∗, c(e) = e∗, c(f) = f∗, respectively. Here are
some necessary (although not sufficient) conditions for C belonging to the class CI :

Proposition 1. Let C ∈ CI . Then:

(i) Any pair of antipodal edges e, e∗∈E(C) is parallel; likewise, any pair of antipo-
dal faces f, f∗ ∈ F (C) is parallel, too.

(ii) The numbers #v, #e, #f of vertices, edges and faces of C must be even.

(iii) The numbers of each class of faces with the same number (3, 4, 5, . . . ) of edges
must be even.

Proof. (i): Let O be the central point of C ∈ CI . For any vertex v let O⃗V = v⃗ be
the vector with the starting point O and the ending point in v. Let e(u, v) ∈ E(C).
Then e⃗∗ = u⃗∗ − v⃗∗ = −u⃗ − (−v⃗) = −

−−−−→
(u− v) = −e⃗ for any u, v ∈ V (C), hence

the vectors e⃗∗ and e⃗ are parallel. Consequently, all the edges of faces f and f∗ are
parallel, hence f and f∗ must be parallel, too.

(ii): Obviously v ̸= v∗, e ̸= e∗,f ̸= f∗ for each v ∈ V (C), e ∈ E(C), f ∈ F (C).
(iii): Faces f and f∗ have the same number of edges.

Corollary 1. Tetrahedron (3.3.3) and truncated tetrahedron (6.6.3) are not in the
class CI .

Proof. None of the four faces of (3.3.3) has a parallel face. The same holds for the
four hexagonal faces of (6.6.3). Hence, by Proposition 1(i), these two solids cannot
be in CI .

We shall say that a polyhedron has a rotation R if it is symmetric by rotation
R. Similarly, it is symmetric by a reflection, we shall say it has a reflection.
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Proposition 2.

(i) If C ∈ C has two orthogonal reflection planes Π and Ω, but it is not preserved
by the reflection over a plane orthogonal both to Π and Ω, then C /∈ CI .

(ii) If C ∈ C has a rotation R for the angle π, but it has not a reflection plane
orthogonal to the axis of R, then C /∈ CI .

(iii) If C ∈ C has a a reflection plane Π but it has not a rotation R for the angle π
with an axis orthogonal to Π, then C /∈ CI .

Proof. (i): Let the central point O of C be the origin of the Cartesian coordinate
system with axes (x) and (y) in the plane Π and (y) and (z) in Ω. Then the reflections
ZΠ and ZΩ transform a vertex v with coordinates v(x, y, z) into vΠ = v(−x, y, z) and
vΩ = v(x,−y, z), respectively. If there is also the central inversion c, then c(v) =
v(−x,−y,−z). Hence there should also be the reflection v(x, y, z) → v(x, y,−z).

(ii) and (iii) are proved similarly as (i), using the fact that the rotation R sends
the point (x, y, z) into the point (−x,−y, z).

Proposition 3.

(i) If a polyhedron C ∈ C is symmetrical by the following two operations:

a) reflection Z over a plane Π;

b) rotation Rπ for the angle π around an axis a, orthogonal to Π;

then C ∈ CI .

(ii) If a polyhedron C ∈ C is preserved by the reflections over three mutually or-
thogonal planes, then C ∈ CI .

Proof. (i): The composition of reflection Z and rotation Rπ sends any point (x, y, z)
into its antipodal point (−x,−y,−z): ZRπ = RπZ = c.

(ii): The composition Z1Z2 of two reflections Z1 and Z2 over two orthogonal
planes produces a rotation for the angle π around the axis a, which is orthogonal to
the third plane, and we can use (i).

Corollary 2. The cube (4.4.4), the octahedron (3.3.3.3), the dodecahedron (5.5.5)
and the icosahedron (3.3.3.3.3) are in the class CI .

Proof. For (4.4.4) and (3.3.3.3) this is true by Proposition 3(i), while for (5.5.5)
and (3.3.3.3.3) this is true by Proposition 3(ii).

All Platonic and Archimedean solids can be obtained from a tetrahedron using
the operations medial Me(C), truncation Tr(C), dual Du(C) and snub Sn(C) [9].

Proposition 4.

(i) If the solid C belongs to the class CI , the same holds for its truncation Tr(C),
Me(C) and dual Du(C).

(ii) However, there are solids such that C /∈ CI and Me(C) ∈ CI .
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(iii) Likewise, there are solids C ∈ CI such that Me(C) /∈ CI or Sn(C) /∈ CI .

Proof. (i): From the definitions of operations Tr, Me and Du it follows that they
do not have any impact on the central symmetry of the solid.

(ii): We already know that the tetrahedron (3.3.3) is not in CI , while its medial-
the octahedron (3.3.3.3)-is.

(iii): The cube (4.4.4) and the dodecahedron (5.5.5) are in CI , while the snub
cube (4.3.3.3.3) and the snub dodecahedron (5.3.3.3.3) are not, as we can conclude
by Proposition 2(ii).

Proposition 5. The 4-antiprism is not centrally symmetric.

Proof. Suppose the 4-antiprism is centrally symmetric. Then the central inversion
c sends the vertices 1,2,3,4 of one square face into vertices c(1) = 1∗, c(2) = 2∗,
c(3) = 3∗, c(4) = 4∗ of the other square face (Figure 1 left).

For any face f the face c(f) = f∗ has no common point with the face f , hence
v ̸= v∗ for any vertex v. Since v and v∗ do not belong to the same face, they cannot
be adjacent vertices. Therefore A = 3∗ or A = 4∗. Likewise B = 4∗ or B = 1∗.
Likewise C = 1∗ or C = 2∗ and D = 2∗ or D = 3∗. As soon as we choose one of the
possibilities for A, then B, C and D are determined by the above relations.

 
Figure 1: The 4-antiprism and why it is not centrally symmetric

In the first case (Figure 1 in the middle), the antipod of triangle ∆(124∗) cannot
be the triangle ∆(1∗2∗4), since the antipod of the edge 14∗ is not the edge 1∗4.
In the second case (Figure 1 right), the antipod of the triangle ∆(123∗) is not the
triangle ∆(1∗2∗3), since the antipod of the edge 23∗ is not the edge 2∗3.

Proposition 6. The n-antiprism belongs to the class CI if and only if n is odd.

Proof. If the antiprism (N.3.3), N ≥ 3 has the central symmetry c, then c sends the
vertices of the upper n-gon 1, 2, 3, 4, . . . , n into vertices 1∗, 2∗, 3∗, 4∗, . . . , N∗ of the
upper N -gon (Figure 2). The antipod of the triangle ∆(1, 2, X∗) must be the triangle
∆(1∗, 2∗, X). The vertex X belongs to the upper N -gon. Along the upper N -gon
we have X − 1 (grey) triangles ∆(1, 2, X∗), ∆(2, 3, (X + 1)∗),. . . , ∆(X − 1, X, 1∗).
The same number of (white) triangles is between vertices X∗ and 1 along the lower
N -gon: ∆(X∗, (X + 1)∗, 2), ∆((X + 1)∗, (X + 2)∗, 3),. . . , ∆(1∗, 2∗, X). Therefore
it is X − 1 ≡ 2 − X (mod N), hence 2X ≡ 3 (mod N). But this is possible only
if N is an odd number, since the remainder of 2X modulo 2n is always an even
number. Therefore such labeling of the triangles as shown in Figure 2 is possible
only if N = 2n+ 1, and it is not possible if N = 2n.
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 Figure 2: Triangles of a centrally symmetric antiprism

3. Determination of the class CI

Theorem 1. The class CI consists of the following solids:

(i) four of the five Platonic solids: Cube (4.4.4), Octahedron (3.3.3.3), Dodecahe-
dron (5.5.5) and Icosahedron (3.3.3.3.3);

(ii) nine of the 13 Archimedean solids: Truncated Cube (8.8.3), Truncated Do-
decahedron (10.10.3), Truncated Octahedron (4.6.6), Truncated Icosahedron
(5.6.6), Truncated Cuboctahedron (8.4.6), Cuboctahedron (4.3.4.3), Icosidodec-
ahedron (5.3.5.3), Rhombicuboctahedron (4.4.3.4), Rhombicosidodecahe-
dron (5.4.3.4);

(iii) the infinite families of 2n-prisms and (2n+ 1)-antiprisms;

(iv) 13 Johnson solids: J15, J28, J31, J36, J39, J43, J55, J59, J67, J69, J73,
J80, J91.

All these solids satisfy the condition of Proposition 3(i) (this will help us to draw the
maps of their halves in Section 4).

Proof. (i): These solids are in the class CI by Corolary 2.
(ii): All these solids are duals, medials or truncations of solids being in CI , hence

by Proposition 4(i) they are in CI , too.
(iii): The 2n-prisms are in CI by Proposition 3(i). The (2n+1)-prisms have odd

number of faces 4. The result on antiprisms is given in Proposition 6.

Figure 3: Two centrally symmetric Johnson solids:J15 and J91

(iv): Either using computer programs for polyhedra (like Great Stella) or with
the help of 3D-models of Johnson solids it is easy to see that all these 13 solids
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satisfy one or both of the conditions of Proposition 3 (see Table 1). The arguments
why the other 79 Johnson solids are not in the class CI are given in Table 2.

Johnson solid C Jxx C ∈ CI

elongated square dipyramid J15 by Proposition 3(ii)
square orthobicupola J28 by Proposition 3(ii)

pentagonal gyrobicupola J31 by Proposition 3(i)
elongated triangular gyrobicupola J36 by Proposition 3(i)
elongated pentagonal gyrobicupola J39 by Proposition 3(i)
elongated pentagonal gyrobirotunda J43 by Proposition 3(i)
parabiaugmented hexagonal prism J55 by Proposition 3(ii)
parabiaugmented dodecahedron J59 by Proposition 3(i)
biaugmented truncated cube J67 by Proposition 3(ii)

parabiaugmented truncated dodecahedron J69 by Proposition 3(i)
parabigyrate rhombicosidodecahedron J73 by Proposition 3(i)

paradiminished rhombicosidodecahedron J80 by Proposition 3(i)
bilunabirotunda J91 by Proposition 3(ii)

Table 1: The 13 Johnson solids belonging to the class CI

And here are the Johnson solids not in the class CI :

Johnsons solid C Jxx eliminated since

square pyramid J1 only one face 4
pentagonal pyramid J2 only one face 5
triangular cupola J3 only one face 6
square cupola J4 only one face 8

pentagonal cupola J5 only one face 10
pentagonal rotunda J6 only one face 10

elongated triangular pyramid J7 3 faces with 4 edges
elongated square pyramid J8 5 faces with 4 edges

elongated pentagonal pyramid J9 only one face 5
gyroelongated square pyramid J10 only one face 4

gyroelongated pentagonal pyramid J11 only one face 5
triangular dipyramid J12 v = 5 odd number
pentagonal dipyramid J13 v = 7 odd number

elongated triangular dipyramid J14 f = 9 odd number
elongated pentagonal dipyramid J16 5 faces 4
gyroelongated square dipyramid J17 it contains a 4-antiprism

elongated triangular cupola J18 only one face 6
elongated square cupola J19 only one face 8

elongated pentagonal cupola J20 only one face 10
elongated pentagonal rotunda J21 only one face 10
gyroelongated triangular cupola J22 only one face 6
gyroelongated square cupola J23 only one face 8
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gyroelongated pentagonal cupola J24 only one face 10
gyroelongated pentagonal rotunda J25 only one face 10

gyrobifastigium J26 by Proposition 2(ii)
triangular orthobicupola J27 by Proposition 2(ii)
square gyrobicupola J29 by Proposition 2(iii)

pentagonal orthobicupola J30 by Proposition 2(iii)
pentagonal gyrobicupola J32 7 faces with 5 edges

pentagonal gyrocupolarotunda J33 7 faces with 5 edges
pentagonal orthobirotunda J34 by Proposition 2(ii)

elongated triangular orthobicupola J35 by Proposition 2(ii)
elongated square gyrobicupola J37 by Proposition 2(ii)

elongated pentagonal orthobicupola J38 by Proposition 2(ii)
elongated pentagonal orthocupolarotunda J40 7 faces with 5 edges
elongated pentagonal gyrocupolarotunda J41 7 faces with 5 edges
elongated pentagonal orthobirotunda J42 by Proposition 2(ii)
gyroelongated triangular bicupola J44 by Proposition 2(ii)
gyroelongated square bicupola J45 by Proposition 2(ii)

gyroelongated pentagonal bicupola J46 by Proposition 2(ii)
gyroelongated pentagonal cupolarotunda J47 7 faces 5

gyroelongated pentagonal birotunda J48 by Proposition 2(ii)
augmented triangular prism J49 v = 7 odd number
biaugmented triangular prism J50 only one face 4
triaugmented triangular prism J51 v = 9 odd number
augmented pentagonal prism J52 v = 11 odd number
biaugmented pentagonal prism J53 3 faces 4
augmented hexagonal prism J54 f = 11 odd number

parabiaugmented hexagonal prism J56 by Proposition 2(ii)
triaugmented hexagonal prism J57 3 faces 4

augmented dodecahedron J58 v = 21 odd number
metabiaugmented dodecahedron J60 by Proposition 2(ii)
triaugmented dodecahedron J61 v = 23 odd number

metadiminished dodecahedron J62 by Proposition 2(ii)
tridiminished icosahedron J63 v = 9 odd number

augmented tridiminished icosahedron J64 3 faces 5
augmented truncated tetrahedron J65 3 faces 6

augmented truncated cube J66 5 faces 8
augmented truncated dodecahedron J68 v = 65 odd number

metabiaugmented truncated dodecahedron J70 by Proposition 2(i)
triaugmented truncated dodecahedron J71 v = 75 odd number

gyrate rhombicosidodecahedron J72 by Proposition 2(iii)
metabigyrate rhombicosidodecahedron J74 by Proposition 2(i)
trigyrate rhombicosidodecahedron J75 by Proposition 2(iii)
diminished rhombicosidodecahedron J76 by Proposition 2(iii)
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paragyrate diminished rhombicosidodecahedron J77 by Proposition 2(iii)
metagyrate diminished rhombicosidodecahedron J78 by Proposition 2(iii)
bigyrate diminished rhombicosidodecahedron J79 by Proposition 2(iii)
metadiminished rhombicosidodekahedron J81 by Proposition 2(i)

gyrate bidiminished rhombicosidodekahedron J82 by Proposition 2(iii)
tridiminished rhombicosidodekahedron J83 v = 45 odd number

snub disphenoid J84 by Proposition 2(i)
snub square antiprism J85 by Proposition 2(ii)

sphenocorona J86 by Proposition 2(i)
augmented sphenocorona J87 by Proposition 2(iii)
augmented sphenocorona J88 by Proposition 2(i)
hebesphenomegacorona J89 3 faces 4

disphenocingulum J90 by Proposition 2(i)
triangular hebesphenorotunda J92 only one face 6

Table 2: The 79 Johnson solids not being in the class CI

4. Maps of C/2, C ∈ CI in the projective plane

 

Figure 4: The halves of Platonic solids in the projective plane

 

Figure 5: The halves of Archimedean solids in the projective plane



Centrally symmetric convex polyhedra with regular polygonal faces 437

 

 

Figure 6: The halves of Johnson solids in the projective plane

The flag graphs of halves of solids C ∈ CI can now be deduced from Figures 4, 5
and 6. For J31 this is done in Figure 8. Now it is easy to obtain the symmetry-type
graphs of any C ∈ CI . For J15 this is done in Figure 9.

 

Figure 7: The halves of 6-prism and 5-antiprism in the projective plane

Figure 8: Flags and flag graph of (J15)/2
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Figure 9: Representative flags of orbits and symmetry-type graph of J15

5. Spectral analysis of faces of C/2 for C ∈ CI

Definition 1. For any polyhedron P with regular faces having at most n vertices
let the vector s(C) = (fn, . . . , f6, f5, f4, f3) denote its spectral vector, counting the
numbers fi of its faces with i vertices. In the corresponding spectral codes S(P) (see
the right column of Table 3) only the nonzero numbers fi are given.

C n10 n8 n6 n5 n4 n3 S(C/2)
(4.4.4) 3 43
(5.5.5) 6 56
(3.3.3.3) 4 34
(3.3.3.3.3) 10 310

(4.6.6) 4 3 6443
(5.6.6) 10 6 61056
(8.8.3) 3 4 8334
(10.10.3) 6 10 106310
(8.4.6) 3 4 6 836446
(3.4.4.4) 9 4 4934
(4.3.4.3) 3 4 4334
(5.3.5.3) 6 10 56310
(5.4.3.4) 6 15 10 56415310

J15 2 4 4234
J28 5 4 4534
J31 1 5 5 514535
J36 6 4 4634
J39 1 10 5 5141035
J43 6 5 10 5645310
J55 4 4 4434
J59 5 5 5535
J67 2 5 8 824538
J69 5 5 15 10545315
J73 6 15 10 56415310
J80 1 5 10 5 1015541035
J91 2 1 4 524134

Table 3: Spectral vectors of C/2 for C ∈ CI
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5.1. Linear dependence relations between polyhedra

The concept of the spectral vector paves the way to the study of linear dependence
relations between any polyhedra.

Definition 2. Polyhedra P1, . . . , Pm are linearly dependent, if their corresponding
spectral vectors s(Pi) are linearly dependent.

In other words: there are a1, . . . , am ∈ Z not all equal to zero such that

a1s(P1) + · · ·+ ams(Pm) = 0.

Using spectral vectors we can also define such concepts as “collinearity” and “copla-
narity” of polyhedra.

Definition 3. Let A,B,C be any polyhedra. If it is possible to take a copies of
A and b copies of B and by dissecting their boundary into faces construct c copies
of a polyhedron C so that no faces are left unused, we say that the solids A, B, C
are coplanar and we write this symbolically as aA + bB = cC. Similarly, we write
aA = bB and say that A and B are collinear, if the relation as(A) = bs(B) holds
for their corresponding spectral vectors.

Using the information gathered in Table 3 we can now easily solve questions
about linear dependence relations polyhedra from CI (since for the corresponding
spectral vectors we obviously have the relation s(C) = 2s(C/2).

Example 1. Are the polyhedra J55, J59 and J73 coplanar? To answer this we have
to solve the vector equation as(J55/2) + bs(J59/2) = cs(J73/2), or, equivalently,
a(44+34)+ b(55+35) = c(56+410+310). From this we obtain the following system
of three linear equations: 5b = 6c, 4a = 10c, 4a+5b = 10c. Thus b = 6c/5, a = 5c/2
and 4(5c/2) + 5(6c/5) = 10c, hence 10c + 6c = 10c and c = 0. Thus J55, J59 and
J73 are not coplanar.

Some examples of coplanar solids from CI are:

J31, J59 and J59, since 514535 + 5535 = 5645310, hence J31 + J59 = J43;

J31, (4.4.4) and J39, since 3 · 514535 + 5 · 43 = 3 · 5141035, hence 3·J31 +
5 · (4.4.4) = 3·J39;

J15, (3.4.4.4) and J39, since 4 · 4234 + 3 · 4934 = 7 · 4534, hence 4·J15 +
3 · (3.4.4.4) = 7·J28.

Other “linear polyhedral equations”, as aA + bB = cC + dD, may be treated in a
similar way, too.
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