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In the g iven article there are presented the r esults of studying the phase struc ture of burned f errous manganese 
ores of Zhomart and Zapadny Kamys deposits of by the method of Mossbauer spectroscopy. There is established a 
variety of iron location forms in the studied materials and their quantitative content that allows to deĀ ne the degree 
of completing regenerative processes at mag netizing roasting, and also the pr ocesses of f ormation of solid solu-
tions (Fe1-xMx)3O4 and stabilization of Fe1-xO from eutectoid disintegration at cooling.
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INTRODUCTION

At present at Zh. Abishev Chemical-Metallurgical In-
stitute there is actively being studied the possibility of  
obtaining from ferrous manganese ores of Central Kaza-
khstan conditional manganese concentrates by the meth-
od of burning-magnetic division for smelting standard  
manganese ferrous alloys by the Mn/Fe ratio [1].

The objects of studying are fi  rst and foremost be-
coming ferrous manganese ores which at present are 
mined simultaneously with manganese ores, but due to 
the absence of the effi cient technology of iron removal 
are not used in ferrous alloy processing and are stored in 
dumps.

The studies carried out before showed the possibility 
of iron removal by the burning magnetic method from 
ferrous manganese ores of Zhomart, Keregetas, Ush-
katyn III and Zapadny Kamys deposits [1, 2]. In the pre-
sented work there are shown the results of studying the 
phase structure of the products obtained after the burn-
ing-magnetic processing the ferrous-manganese con-
centrate of Zhomart deposit with size 0-6 mm and fer -
rous manganese ore of Zapadny Kamys deposit with 
size 0-5 mm.

STATEMENT OF THE AIM OF THE STUDY

Studying and determining the laws of regenerative 
roasting of versions of iron and manganese ores and de-
velopment on their basis of technology of burning-mag-
netic division of iron-and manganese containing miner-
als using the Shubarkols coal as a reducer.

METHODOLOGY OF SOLVING 
THE TASKS OF THE STUDY 

The results of the dry magnetic separation of the 
burned (in case of carbon redundancy in the charge) fer-
rous manganese materials in a magnetic separator for 
strong-magnetic materials 120-Т are given in Tables 1 
and 2. As it can be seen from the Tables, in both cases 
we managed to reduce iron content and to achieve in the 
non-magnetic fraction the Mn/Fe ratio no larger than 6, 
which satisfi es the requirements when smelting ferro-
manganese silicon.

When studying complicated systems in which there 
is present redundant solid carbon, barren rock and man-
ganese minerals, due to overlapping thermal ef fects of 
their interaction with each other , there is no possibility 
to defi ne the form of iron presence and content based 
only on the widely used method of dif ferential-thermal 
analysis.

One of the powerful methods of studying mineralo-
gy of not only iron-containing but of practically all in-
organic materials is nuclear gamma-resonance spectros-
copy (Mossbauer spectroscopy). NGR spectroscopy 
takes a special place in a lot of fi elds of studies thanks 
to the unique possibilities of resonance absorption or 
emission of γ quants emitted by separate radioactive 
isotopes (in our case Со 57) and interacting with corre-
sponding crystal lattices in which there are compensated 
energy losses for the nuclear recoil. An energy narrow 
beam of recoilless γ quants permits to study negligible 
changes in the superfi  ne structure of nuclear levels 
caused by the nucleus interaction with in-crystal (mag-
netic and electric) fi elds of both static and dynamic ori-
gin (relaxation processes) [3].

From the analysis of Mossbauer spectra we can ob-
tain the information of the charge density on the nucleus 
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method of “the least squares”. Isomeric shear values (δ)  
are presented relative to α-Fe. The temperature of taking 
spectra was 293 К. A spectrometer type was SМ 2201. 

∆IS = + 0,03 mm/s; ∆QS = + 0,03 mm/s; ∆Нeff = + 5 
kE; ∆S = + 3 – 5 %. 

All the samples present a multi-phase mixture in-
cluding both magnetic-ordering and paramagnetic state 
of iron. Due to a small iron content samples 2 and 4 
showed a very small ef fect (ε), which made it diffi cult 
to obtain quality spectra (see Figure 1).

Sample 1 contains replaced magnetite with strongly 
perturbed stoichiometry (Fe 1-xMx)3O4. The Mossbauer 
spectrum in Figure 1 shows the presence of three mag-
netic sublattices (at “correct” magnetite at the room 
temperature there is observed only two) which is obvi-
ously connected with the differences in the nearest iron 
surroundings. As the value of the observed magnetic 
fi eld in the third sublattice is lower that for the “correct” 
magnetite, we can suppose that metals (М), replacing 
iron are located to the left of it in the periodic table [4]. 
Besides, this sample contains paramagnetic phases 
which are presented and described in Table 3.

Sample 2 also contains magnetite with strongly per-
turbed stoichiometry which is indicated by the ratio of 
the iron relative content in magnetic sublattices. In stoi-
chiometric magnetite the ratio of iron relative content in 
the sublattice with a larger Нeff. to the iron content to the 
sublattice with a smaller Нeff. is to be ~ ½. Stoichiometry 
perturbation is indicated by the presence of a signifi cant 
quadrupole splitting QS (stoichiometric magnetite is 
practically free from it). Besides, the sample contains 
paramagnetic phases which are presented and described 
in Table 3.

Sample 3 contains a phase close by its parameters to 
γ-Fe2O3. However, a somewhat smaller magnetic fi  eld 
Нeff. (for γ-Fe2O3 Нeff. ~ 517 kE) can indicate a small re-
placing of iron in γ-Fe 2O3 lattice by the metal atoms 
which are located to the left of it in the periodic table.

Besides, this sample contains replaced magnetite 
with perturbed stoichiometry (Fe1-xMx)3O4, as the Moss-
bauer spectrum shows the presence in it of three mag-
netic sublattices. As to this spectrum component, there 
is true everything which is described relating to mag-
netite with perturbed stoichiometry for sample 1. In the 
sample there is present a paramagnetic phase described 
in Table 3.

Sample 4 contains a phase close in parameters to 
γ-Fe2O3, similar to the phase found in sample 3. A para-
magnetic phase present in the sample is described in 
Table 3.

Parameters of the replaced magnetic in samples 1 
and 3 are mostly similar to the natural Vredenburgite 
and Jacobsite mineral, кwhich have the same formula 
(Mn, Fe)3O4. However, in the latter lattice there can be 
present a certain content of magnesium (Mn, Mg, Fe)3O4 
. Most likely, in the samples there is present a mixture 
of these two minerals, then in the Table there will be М 
– Mn or Mg.

and of the nature of chemical bond (isomeric shear de-
noted as δ), of the space symmetry of electronic wave  
fractions (quadrupole splitting ΔEQ) and of the magnetic 
nature of the matter studied (effective magnetic fi eld).

In the presented work there were studied the follow-
ing samples by the method of Mossbauer spectroscopy:

Sample 1: magnetic fraction at 0,4-1,2kE from the 
burned ferrous manganese ore of Zapadny Kamys de-
posit (Table 1);

Sample 2: non-magnetic fraction at 1,2kE from the 
burned ferrous manganese ore of Zapadny Kamys de-
posit (Table 1);

Sample 3: magnetic fraction at 1,2kE from the 
burned ferrous manganese concentrate of Zhomart de-
posit (Table 2);

Sample 4: non-magnetic fraction at 1,2 kE from the  
burned ferrous manganese concentrate Zhomart (Table 2).

EXPERIMENTAL WORK

The source was cobalt 57 in the chrome matrix of ac-
tivity 100 mCi. The spectra were processed on PC by the 

Table 1  Products yield after magnetic separation of ferrous 
manganese ore of Zapadny Kamys deposit 

Fraction and
magnetic Ā eld

direction

Magn.
at 0,4kE

Magn.
at 0,8kE

Magn.
at 1,2kE

non-
magn.

at 1,2kE

Sum

Output, % 10,07 19,74 11,59 58,6 100
Content / %

Mn∑ 11,95 14,42 16,89 19,78 17,6

Fe∑ 15,5 6,5 5 1,82 4,49

C 3,94 3,07 2,36 14,54 9,8
SiO2 39,4 45,52 46,29 40,1 41,8
Mn 0,77 2,22 3,38 10,87 3,92

Extraction ratio / %
Mn 6,84 16,17 11,12 65,87 100
Fe 34,77 28,57 12,91 23,76 100
C 9,49 21,49 12,83 56,2 100

SiO2 4,05 6,19 2,79 86,97 100

Table 2  Products yield after magnetic separation of 
burned ferrous manganese concentrate of 
Zhomart deposit

Fraction and
magnetic Ā eld

direction

Magn. 
at 1,2kE

Non-magn. 
at 1,2kE

Sum

Output, % 18,58 81,42 100
Content / %

Mn∑ 8,5 39,1 33,41
Fe∑ 53,2 1,63 11,2

SiO2 10,08 11,64 11,35
C 1,56 7,35 6,27

СаО 0,87 9,61 7,99
Mn 0,16 23,99 2,98

Extraction ratio / %
Mn 4,73 95,3 100
Fe 88,2 11,8 100

SiO2 16,5 83,5 100
C 4,62 95,4 100

СаО 2,02 97,9 100
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CONCLUSION

Thus, the studies carried out permitted to establish a  
diversity of forms of iron presence in the materials stud-
ied: (Fe 1-xMx)3O4; (FeOOH); γ-Fe 2O3; Fe 1-xO and Fe 3O4 
and their dif ferent content. These data can serve a base  
for evaluating the degree of completing the reducing  
processes in magnetizing burning, as well as going on the 
processes of forming solid solutions (Fe1-xMx)3O4 and sta-
bilizing Fe1-xO from the eutectoid decay at cooling.
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Table 3  Results of processing Mossbauer spectra

Sample
No

Нeff ,
kE

IS,
mm  /s

QS,
mm /s

S,
%

Form *

1 487 0,26 -0,03 37
(Fe1-xMx)3O4460 0,67 0,01 42

413 0,61 0,00 7
Paramagnetic state

- 1,05 0,30 5 Phase close
in parameters to Fe1-xO

(x = 0,06-0,09)
0,33 0,65 6 Phase close in parameters

to pyrite (FeS2)

1,17 2,64 3 Phase close in parameters
to Szomolnokite 

(FeSO4*nH2O),
(Phengit KMg,Fe)0,5Al1,5

[(OH)2/Al0,5Si3,5O10]
and Talc

(Mg3[(OH)2/Si4O10]
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- 0,39 0,85 37 Phase close in parameters
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to Melilite
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to Akaganeit (FeOOH)

4 510 0,37 -0,19 70 Phase close in parameters
to γ-Fe2O3

Paramagnetic state
- 0,33 0,85 30 Phase close in parameters

to Akaganeit (FeOOH),
Denotations:

IS, (mm/s) – isomeric shear;
QS, (mm/s) – quadrupole splitting;

Нeff .  (kE) – Zeeman superĀ ne magnetic splitting
(eff ective magnetic Ā eld);
S / % – relative content;

* М – metal
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Note:  Translator - N. Drak, Karaganda, Republic of Kazakhstan

List of units of system of SI

mCi, curie - a unit of radioactivity equal to the amount 
of a radioactive isotope that decays at the rate of 
37,000,000,000 disintegrations per second.

1 mCi = 3,7 × 104 Bq = 2,22·109 disintegrations per 
minute

T / K - Kelvin  is a unit of measurement for thermody-
namic temperature in the International System of 
Units (SI).

IS / mm/s - isomer shift;
QS / mm/s - quadrupole splitting.
Heff / kE – Zeeman magnetic hyperfi  ne splitting (the 

effective magnetic fi eld);
S / % – proportion




