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The paper deals with the application of the Extended Kalman Filter and the Extended Luenberger Observer
algorithms for the stator and rotor fault detection of the induction motor fed by PWM inverter. The induction motor
conditions are analyzed using estimated rotor and stator-winding resistance. Mathematical models of the extended
state estimators are presented, in which the stator and rotor resistances are added as additional electromagnetic state
variables. Experimental results for the inverter-fed induction motor, with shorted stator-turns and broken rotor bars,
are presented and analysed.
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Nadgledanje statorskih i rotorskih pogrešaka asinkronog motora napajanog inverterom koristeći estima-
tore stanja. Ovaj radi proučava primjenu algoritama proširenog Kalmanovog filtra i proširenog Luenbergerovog
observera za detekciju pogreške statora i rotora asinkronog motora napajanog PWM inverterom. Stanja asinkronog
motora analizirana su korištenjem estimiranog otpora statorskih i rotorskih namota. Prikazani su matematički mod-
eli proširenih estimatora stanja u kojima su otpori statora i rotora dodani kao dodatne varijable stanja. Prikazani su i
analizirani eksperimentalni rezultati za asinkroni motor napajan inverterom s kratko spojenim statorskim namotima
i prekinutim rotoskim polugama.

Ključne riječi: asinkroni stroj, dijagnostika, detekcija pogreške, Kalmanov filtar, Luenbergerov observer

1 INTRODUCTION

Induction motor (IM) drives are widely used nowa-
days in many industrial processes and thus problems of
their maintenance and fault detection become more impor-
tant. The failure of the motor can cause substantial finan-
cial losses and even damage of the whole drive system.
Needs of the analysis of an actual technical condition of
IMs caused in the last years the great development of diag-
nostic methods and techniques, which could be used in the
fault detection of IMs drives [1], [2].

Stator and rotor faults are responsible respectively for
37% and 13% of the IM failures and, after the bearing
faults, are the most frequent reasons of the IM damages.
In monitoring and diagnosis of IM drives mostly the stator
current and mechanical vibrations are used as diagnostic
signals.

Due to simplicity of measurements, the stator current
signals are more widely used for this purpose and thus dif-
ferent analysis methods have been developed, based on
detection of sidebands harmonics at certain frequencies.
Such methods like Fast Fourier Transform (FFT), Short

Time Fourier Transform (STFT), the Wavelet Transform
(WT) and the high order transformation (HOT) are more
and more often applied [1]-[3].

In the case of IMs supplied from frequency inverters
such analysis is much more complicated due to additional
harmonics generated by the inverter supply, which overlaps
with harmonics caused by the stator or rotor faults. There-
fore, the usual techniques, based on spectral analysis of
the stator current signal are not well adapted in adjustable
speed motor drives and some authors have proposed the
methods based on an on-line estimation of motor param-
eters changes due to motor failures [4]. In normal opera-
tion conditions, estimated parameters have nominal values,
which change in the limited range (due to a temperature
rise). If the motor fault occurs, these changes are growing
or decreasing much faster, so the analysis of the estimated
parameter changes enables the detection of the failure.

In this paper, the diagnostic technique of the stator and
rotor faults of the inverter-supplied IM by on-line parame-
ter identification is presented, using the Extended Kalman
Filter algorithm (EKF) and Extended Luenberger Observer
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(ELO). Analysis of the changes of the estimated rotor and
stator resistances is used for fault detection of the PWM
inverter-fed IM. The main goal of this paper is to show the
practical digital realization the EKF and ELO algorithms
in the fault detection task of the IM and to prove the earlier
theoretical results presented in [5].

2 MATHEMATICAL MODEL OF THE INDUC-
TION MOTOR
Using well-known simplifying assumptions, the IM

mathematical model can be described by the space vector
equations in the stationary (α − β) reference frame as in
[5, 6].

– the state equation:

ẋ(t) = A(ωm) · x(t) +B · u(t) (1)

– the output equation:

y(t) = C · x(t) (2)

where:
– the state vector (of electromagnetic state variables):

x(t) =
[
isα isβ ψrα ψrβ

]T
(3)

– the input and output vectors:

u(t) =
[
usα usβ

]T
(4)

y(t) =
[
isα isβ

]T
(5)

– the state matrix:

A(ωm) =




a 0 b c
0 a −c b
d 0 −e −ωmΩb
0 d ωmΩb −e


 (6)

– the input B and output C matrices:

B =

[
Ωb

σ·xs
0 0 0

0 Ωb

σ·xs
0 0

]T
(7)

C =

[
1 0 0 0
0 1 0 0

]
(8)

where:

a = − 1

xsσ
rsΩb −

1− σ
xrσ

rrΩb, b =
krrrΩb
xrxsσ

c =
ωmkrΩb
xsσ

, d =
xM
xr

rrΩb, e =
rrΩb
xr

, kr =
xM
xr

and: usα, usβ , isα, isβ , ψsα, ψsβ - coordinates of the sta-
tor voltage and current vector, and the rotor flux vector, re-
spectively, rs, rr, xs, xr, xM -stator and rotor resistances,
stator and rotor reactances, mutual reactance, respectively,
σ - total leakage coefficient, ωm - rotor speed, Ωb - refer-
ence angular pulsation.

3 EXTENDED KALMAN FILTER ALGORITHM

In According to the Kalman filter theory [7], IM model
(1)-(8), must be written in the discrete form:

xR(k + 1) = AR(k)xR(k) +BR(k)uR(k) + w(k)

yR(k) = CR(k)xR(k) + v(k) (9)

where w and v are matrices of the process and measure-
ment noises, and matrices AR, BR, CR and vector uR
are filled respectively with zeros in last rows or columns
comparing to (6)-(8) and (4).

Estimation of state vector is realized in the following
steps:

• step 1 - the state vector predictor x̂R(k+1) in the step
(k+1) is calculated using input u(k) and state vector
predictor in the previous step x̂R(k):

x̂R(k + 1/k) = AR(ωm(k)) · x̂R(k/k) +BR · u(k)
(10)

• step 2 - the covariance matrix of the prediction error
is estimated:

P (k + 1/k) = FR(k)P (k)FR(k)T +Q(k) (11)

where FR(k) = ∂f(xR(k/k),u(k),k)
∂xR(k/k) |xR=x̂R(k/k),

Q - the state noise covariance matrix,

• step 3 - the Kalman filter gain matrix is calculated
using following equations:

K(k + 1) = P (k + 1/k) · CR(k + 1)T ·
· [CR(k + 1) · P (k + 1/k) · CR(k + 1) +R]

−1

(12)

where R - the output (measurement) noise covariance
matrix,

• step 4 - the correction of the state vector estimate (ac-
cording to the general form of Kalman filter model) is
calculated:

x̂R(k + 1/k + 1) = x̂R(k + 1/k) +K(k + 1)·
· [y(k + 1)− CR(k + 1) · x̂R(k + 1/k)]

(13)
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• step 5 - the filter covariance matrix of the state esti-
mation error is updated:

P (k + 1/k + 1) = [I −K(k + 1) · CR(k + 1)] ·
· P (k + 1/k) (14)

• step 6 - return to the first step.

The convergence and dynamical behavior of the
Kalman filter algorithm depends strongly on the suitable
chosen covariance matrices Q and R [5].

Stator and rotor resistance are selected as additional
state variables, so two new extended state vectors for stator
and rotor fault diagnosis are defined as follows:

xsR(t) =
[
isα isβ ψrα ψrβ rs

]T
(15)

xrR(t) =
[
isα isβ ψsα ψsβ rr

]T
(16)

where: ψsα, ψsβ - components of the stator flux vector,
calculated based on the well-known algebraic equations,
using stator current and rotor flux vector components.

4 EXTENEDED LUENBERGER OBSERVER AL-
GORITHM

4.1 Rotor resistance estimation

For the estimation of the rotor winding resistance, the
state vector (3) of the mathematical model (1)-(8) has been
extended with this parameter as follows:

x̂rR =
[
îsα îsβ ψ̂rα ψ̂rβ r̂r

]T
. (17)

According to the Luenberger theory [7], [8] the ex-
tended full-order state observer can be developed in the
form:

dx̂rR
dt

= ÂrR (x̂rR) x̂rR +BRu+GrR(̂is − is) (18)

where the input vector as in (4), and:

• the extended state matrix as in (19):,

ÂrR(r̂r, ωm) =




−
(

1
xsσ

rsΩb + 1−σ
xrσ

r̂rΩb

)
0 kr r̂rΩb

xrxsσ
ωmkrΩb

xsσ
0

0 −
(

1
xsσ

rsΩb + 1−σ
xrσ

r̂rΩb

)
−ωmkrΩb

xsσ
kr r̂rΩb

xrxsσ
0

xm

xr
r̂rΩb 0 − r̂rΩb

xr
−ωmΩb 0

0 xm

xr
r̂rΩb ωmΩb − r̂rΩb

xr
0

0 0 0 0 0




(19)

• the extended input matrix:

BR =

[
Ωb

σ·xs
0 0 0 0

0 Ωb

σ·xs
0 0 0

]T
(20)

• the extended observer gain matrix:

GrR =


 g1 g2 g3 g4 kor

(
ψ̂rα − xmîsα

)

−g2 g1 −g4 g3 kor

(
ψ̂rβ − xmîsβ

)


T

(21)

where:

g1 = −(ko − 1)(
rs
σxs

+
1

σTr
),

g2 = (ko − 1)ωm, g4 = −c(ko − 1)ωm,

g3 = (k2
o − 1)(−c( rs

σxs
+

1− σ
σTr

) +
xm
Tr

)+

+ c(ko − 1)(
rs
σxs

+
1

σTr
)

r̂r - estimated rotor resistance in the previous numerical
step, ko, kor - positive constants.

4.2 Stator resistance estimation

For the estimation of the stator winding resistance, the
state vector of the mathematical model (1)-(8) has been
extended with this parameter as follows:
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x̂sR =
[
îsα îsβ ψ̂rα ψ̂rβ r̂s

]T
(22)

Thus the extended full-order state observer can be de-
veloped in the form:

dx̂sR
dt

= ÂsR (x̂sR) x̂sR +BRu+GsR(̂is − is) (23)

where the input vector as in (4), and the extended state
matrix BR as (19),

- the extended observer gain matrix:

GsR =

[
g1 g2 g3 g4 kosîsα
−g2 g1 −g4 g3 kosîsβ

]T
(24)

where: r̂s - estimated stator resistance calculated in the
previous numerical step,
kos - positive constant,

- the extended state matrix:

ÂsR(r̂s, ωm) =




−
(

1
xsσ

r̂sΩb + 1−σ
xrσ

rrΩb

)
0 krrrΩb

xrxsσ
ωmkrΩb

xsσ
0

0 −
(

1
xsσ

r̂sΩb + 1−σ
xrσ

rrΩb

)
−ωmkrΩb

xsσ
krrrΩb

xrxsσ
0

xm

xr
rrΩb 0 − rrΩb

xr
−ωmΩb 0

0 xm

xr
rrΩb ωmΩb − rrΩb

xr
0

0 0 0 0 0




(25)

5 EXPERIMENTAL RESULTS FOR ROTOR AND
STATOR FAULTS

5.1 General description of experimental benchmark

In order to check the theoretical backgrounds and the
possibilities of the EKF and ELO application for the on-
line detection of stator and rotor fault of IM, experimental
tests were performed in the Direct Field Oriented (DFOC)
structure, presented in Fig. 1a.

Laboratory tests were realized in the laboratory set-up,
for the 1.5kW IM with a few specially prepared rotors and
a stator winding. Tested motor has 412 turns per stator
phase-winding and 28 bars in rotor. In experimental tests
different winding failures were modeled physically (with
exchangeable rotors having different numbers of damaged
bars: health and from 1 to 8 broken rotor bars, as well as
for different number of shorted turns in the stator winding:
1, 2, 4, 8, 10, and 16).

The IM was supplied from the frequency converter,
with Space Vector Modulator. The vector control struc-
ture DFOC, together with the EKF or ELO and residuum
determination were realized using digital signal processor
DS1104 of dSPACE. The whole application has been writ-
ten in C language. The general scheme of the laboratory
set-up is given in Fig. 1b.

5.2 Rotor fault detection

The examples of the experimental drive system oper-
ation with on-line estimation of rotor winding resistance
using EKF and ELO are demonstrated in Fig. 2 and Fig. 3,
for speed reference and load torque changes, respectively.

In Fig. 2, on the left hand side the transients for healthy
motor are presented, and on the right hand side the simi-
lar transients for the motor with 7 broken rotor bars are
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Fig. 1. Schematic diagrams of the experimental bench-
mark: a) structure of the DFOC drive system with on-line
diagnosis of winding faults; b) laboratory set-up
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Fig. 3. Experimental transients of estimated rotor resistance under load torque changes: estimated rotor resistance (a,b),
motor speed (c,d) and stator current vector components x-y (e,f) for the ELO used as state estimator Stator fault detection

shown, when EKF was used. The reference speed has been
changed slowly from nominal to zero value and vice versa,
and next from nominal to 50%, as can be seen in Fig. 2b.
Change of the rotor speed in such a wide range causes very
small changes of the rotor resistance, which have no influ-
ence on the fault detection of the rotor. As can be seen,
estimated rotor resistance reaches much bigger values in a
case of faulted rotor (Fig. 2b) than for healthy rotor case

(Fig. 2a). Similar results can be obtained when ELO is
used for rotor resistance estimation.

In Fig. 3 the changes of estimated rotor resistance un-
der constant speed and changeable load torque are demon-
strated, when ELO was used. The driven motor is nom-
inally loaded, except of the time period t = (9÷15)s,
when load torque is switched-off. Similarly, as for EKF
based fault detector, ELO algorithm is not sensitive to step
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changes of the load torque and estimates the rotor resis-
tance properly as well for healthy (Fig. 3a,c,e) as for the
faulted motor (Fig. 3b,d,f). The estimated rotor resistance
for the faulted rotor case (Fig. 3b) is much bigger than for
the healthy rotor (Fig. 3a), similarly as for the EKF detec-
tor.

5.3 Stator fault detection
The experimental tests were done for the healthy motor

and for the motor with different number of shorted turns
in the one phase of the stator winding. In the following
figures examples of results obtained for the EKF and next
for the ELO are presented. These both fault detectors op-
erate independly on the vector control structure and are re-
sponsible only for the reconstruction of the stator or rotor
resistance changes.

In Fig. 4 and Fig. 5 the results of the stator resis-
tance estimation using EKF are demonstrated, in case of
16 shorted turns of the stator winding, for nominal load
torque and nominal reference speed values. The fault was
“activated” by realization of 16 short circuit turns in the
real motor at the time t=75s, and “removed” at the time
t=145s.

It can be seen that for the stator winding fault (16
shorted turns, which is around 4 % of total turns num-
ber), the stator winding resistance decreases over 30%.
The range of the stator resistance changes due to the turns’
short circuit is much smaller in the closed loop drive sys-
tem than in open-loop (e.g. U/f =const strategy) [5]. How-
ever it should be noticed, that the sensitivity of the EKF
based method is from 6 shorted turns. Moreover, the stator
resistance estimation using EKF requires long computation
time (6-7s), what is not suitable for the stator fault detec-
tion, as so long “decision time” can cause the permanent
damage of the stator winding due to an avalanche charac-
ter of this fault.

The similar tests were realized for the ELO used as the
stator resistance estimator under healthy and faulted condi-
tion of the IM operating in the close-loop vector structure.

In Fig. 6 and Fig. 7 exemplary results of such tests are
presented, for different number of shorted stator winding
turns, for nominal load torque and reference speed. The
conducted tests prove that in a case of ELO the on-line
detection of the stator fault is possible even for a single
shorted turn, which is big advantage of the proposed ap-
proach, in contrary to the EKF application.

The fault indicator is proposed for the evaluation of
fault detection effectiveness. In a case of the rotor and
stator damage this indicator takes the following forms, re-
spectively:

δ rr =
r̂r − rrN
rrN

100% (26)
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Fig. 5. Experimental transients of the motor speed (a)
and components of the stator current vector in a case of
16 shorted turns, for nominal torque and reference speed
ωmr = 1 [p. u.] (EKF)

δ rs =

∣∣∣∣
r̂s − rsN
rsN

∣∣∣∣ 100% (27)

where rsN , rrN - nominal values of stator and rotor resis-
tances.

Comparison of the results obtained for EKF and ELO,
in a case of rotor fault detection, is shown in Fig. 8.

The percentage rotor fault indicator increases with the
increasing fault level for both tested estimation algorithms.
It should be noticed that this indicator takes little bigger
values for ELO than for EKF, starting from 5 broken rotor
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bars. Thus it can be said that both estimators, EKF and
ELO indicate the rotor fault level with similar accuracy.

Comparison of the results obtained for EKF and ELO
in a case of stator fault detection is presented in Fig. 9.

For the stator winding failure the proposed percentage
fault indicator (27) increases with the increasing fault level
for both tested estimation algorithms. Lower sensitivity
to the fault occurrence can be observed for the EKF algo-
rithm. Significantly better results were obtained for ELO
algorithm, and very small fault level – 1 or 2 shorted turns,
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Fig. 8. The rotor fault indicator versus number of broken
rotor bars
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Fig. 9. The stator fault indicator versus number of shorten
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can be detected easily with this algorithm (see also Fig. 7).
Moreover, the calculation time for ELO is very short and
fault indicator results are obtained on-line, in a real time.

6 CONCLUSION

The experimental tests proved the correctness of used
theoretical models of the Extended Kalman Filter and the
Extended Luenberger Observer, and demonstrated that the
applied approach is suitable to the stator and rotor faults
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detection of the inverter-fed induction motor.
Presented results show that both estimators present

similar accuracy in case of the rotor faults, however the
ELO algorithm is much simpler in practical realization and
requires much less computational time.

In case of stator winding short circuits, the EKF
presents smaller sensitivity to changeable number of
shorten turns, especially in the incipient stator fault, com-
pared to ELO. Moreover, in on-line diagnostics, it requires
much more computational time, thus very fast digital pro-
cessor is required.

The application of the EKF and ELO in the diagnostics
based on mathematical modeling creates alternative to the
classical, direct detection methods of the IM faults, based
on the spectra analysis of the stator current and mechanical
vibrations.
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