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ABSTRACT 

Growing environmental concerns caused by increasing consumption of natural resources 

and pollution need to be addressed. Manufacturing dictates the efficiency with which resource 

inputs are transformed into economically valuable outputs in the form of products and 

services. Consequently it is also responsible for the resulting waste and pollution generated 

from this transformation process. 

This research explored the challenges faced by sustainable manufacturing as a concept 

and as a model for manufacturing systems. The work is strongly based on the concepts of 

sustainability and industrial ecology applied at factory level. The research objectives were to 

understand what companies are doing to improve their sustainability performance at 

operational level (resource productivity) and to help other companies repeating such 

improvements in their own factory. In other words, the aim is to generalise sustainable 

practices across the manufacturing industry. 

The work started with a review of existing theories and practices for sustainable 

manufacturing and other related fields of research such as industrial ecology, cleaner 

production and pollution prevention. The concepts, themes, strategies and principles found in 

the literature provided a strong foundation to approach resource productivity improvements. 

The industrial cases collected gave an insight into the application of these strategies and 

principles in a factory. From the analysis of existing theories and practices, generic tactics 

were developed by translating 1000+ practices into generic rules and by mapping them 

against strategies and principles for sustainable manufacturing to check the completeness and 

consistency of the tactics library. To test the tactics and assist the user in their use through 

factory modelling, an improvement methodology was developed based on the same strategies 

and principles to provide a structured guide for accessing tactics and systematically 

identifying improvement opportunities. The research findings were tested with a series of 

prototype applications. These tests were carried out as part of a wider project (THERM). This 

project uses a modelling and simulation approach to capture the resource flows (material, 

energy, water and waste), the interactions within the manufacturing system (manufacturing 

operations, surrounding buildings and supporting facilities) and the influence of external 

factors‘ variation (weather conditions, building orientation and neighbouring infrastructures). 

The outcomes of the prototype applications helped develop and refine the research findings. 

The contribution to knowledge of this research resides in bridging the gap between high-

level concepts for sustainability and industrial practices by developing a library of tactics to 

generalise sustainable manufacturing practices and an improvement methodology to guide the 

tactics implementation. From a practical viewpoint, the research provides a structured and 

systematic approach for manufacturers to undertake the journey towards more sustainable 

practice by improving resource flows in their factory. 
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Chapter 1 INTRODUCTION 

This introductory chapter presents the context and scope of this research and summarises 

current understanding of the environmental problems and proposed solution for society in 

general and for the manufacturing industry in particular. It then identifies and defines the 

specific subject area of interest: Sustainable Manufacturing. Finally the aim and research 

questions are discussed to highlight the importance of this research for industrial 

sustainability. 

 

1.1 Background: the Sustainability Challenge 

Society is facing a great challenge: shift to a sustainable mode of operation to meet 

human basic needs while preserving Earth's life support systems. Since the Industrial 

Revolution, technological development has brought tremendous improvements to our quality 

of life. But the way society operates is also leading to undesirable consequences for the 

planet, for people, and also for the economy.  

Climate change is probably the most widely accepted issue (Intergovernmental Panel on 

Climate Change, 2007) that requires a dramatic shift in our way of living. However, the first 

warnings that our society was on an unsustainable path came earlier with Malthus‘ essay on 

population growth (Malthus, 1798), Carson‘s book Silent Spring about the use of ―biocides‖ 

(Carson, 1962), and the Club of Rome‘s well-known report Limits of Growth on resource 

depletion (Club of Rome and Meadows, 1972).  

Atmospheric pollution, accumulation of waste and pollutants in soil and water, heavy 

usage of toxic substances, resource scarcity, threats to wildlife as well as human health, and 

many other visible signs are demonstrating that society is not operating sustainably and that 

the next generations will struggle to get the same level of life standard (Ausubel and 

Sladovich, 1989; Grübler, 2003; Ponting, 2007). The recent economic upheavals, increasing 

material and energy prices are other unsustainability symptoms which businesses must fight 

against to survive and remain profitable (Pezzoli, 1997). Finally, the growing societal 

problems of hunger and poverty, inequities at national and international scale, population 

growth and associated increase in demand for products while reaching the limits of Earth‘s 

carrying capacity are also showing the continuous failure of society to provide sustainable, 

healthy and enjoyable life standard for all.  

Sustainable development has been defined as ―meeting the needs of the present without 

compromising the ability of future generations to meet theirs‖ (World Commission on 

Environment and Development, 1987). This concept has been formulated as the solution for 

decoupling economic development and environmental impact while generating fairly-
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distributed wealth. This theoretical solution is now well-established and widely accepted by 

governments and companies. The motivations and pressures for industry to become more 

sustainable are coming from governmental measures at regional, national and international 

levels in the form of regulations, taxes and penalties for lack of compliance; from economic 

incentives due to increasing costs linked to resource scarcity and waste disposal; from 

stakeholders whose growing interest in ethical and environmental issues is affecting decision-

making; from consumer awareness which contributed to the current shift in market 

environment as competitive advantage and market share can be gained through more ethically 

and environmentally responsible practices. 

Industry and technology are traditionally associated with negative impacts on the natural 

environment. But they are increasingly considered as part of the decoupling equation for 

sustainability (Ehrlich and Holdren, 1971; Gray, 1989). Industrial activities represent a 

significant share of anthropogenic GHG emissions causing global warming, sea-level rise and 

ocean acidification. Moreover resource scarcity is also putting constraints industrial systems 

(Frosch and Gallopoulos, 1989). With the need for sustainability now widely recognised as a 

great challenge for society, industrial companies have become part of the solution to change 

the way society operates (Erkman, 1997; Jovane et al., 2008). Solutions such as low-carbon 

and renewable energy sources (Grubb, 1997; Dovì et al., 2009) as well as green innovation, 

sustainable product and clean technologies (Kemp and Soete, 1992; Montalvo, 2008) have 

gain greater attention. 

However, renewable energy source and technology alone will not be sufficient to mitigate 

the negative effects of climate change. The journey towards sustainability will take much 

wider changes involving the whole society and a large collection of topics and perspectives on 

the various sustainability issues society is facing. Figure 1.1 shows the main topics and 

perspectives that compose the big picture for industrial and societal sustainability. 

 
Figure 1.1. Perspectives for industrial sustainability 

Adapted from (Despeisse et al., 2013) 
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1.2 Topic: Sustainable Manufacturing 

The first challenge encountered when studying sustainable manufacturing is its 

definition. Sustainable development is now a well-established concept (Lélé, 1991; Stern et 

al., 1996; Robèrt et al., 2002; Robinson, 2004). But less obvious is the definition of 

sustainability. Many authors are proposing different definitions based on their own 

understanding and belief of what a sustainable level of activity is for a company, for a region, 

for industry in general, or for society as a whole. 

Sustainable development was introduced as an approach to sustainability. A widely-

accepted definition is the one proposed in the Brundtland report Our Common Future (World 

Commission on Environment and Development, 1987). Another definition which might be 

closer to quantify what a sustainable performance is has been proposed by Robèrt in the 

Natural Step with the four systems conditions to better manage the resource flow exchange 

between industrial and natural systems (Robèrt, 1996). A similar but simpler definition was 

proposed by Ricoh: ―We need to reduce the environmental impact of mankind's economic 

activities to a level that the Earth's self-recovery capabilities can deal with‖ (Ricoh, 2011). . 

This idea of better aligning man-made resource flows (technical materials) and natural 

resource flows (biological materials) has been captured by in the circular economy (Ellen 

MacArthur Foundation, 2013). These definitions highlight the need to adjust the level of 

performance to Earth‘s carrying capacity to generate resources and assimilate waste and 

pollutant emissions. 

Industry clearly has a role to play in sustainable development as it is responsible for the 

creation of products and services that improve life standard and create wealth. It is also 

responsible for the same problems it is now fighting to remedy: industrial activities have 

traditionally been associated with resource depletion and pollution. This is a dilemma faced 

by technological systems, or the so-called environment-technology paradox (Gray, 1989). The 

role of manufacturing is clearly fundamental to achieve a sustainable level of performance. 

Industry and technology are determining the resource productivity of the technosphere 

(Sarkis, 2001; Seliger et al., 2008) and manufacturing is a responsible for life cycle phase 

where resources are transformed into economically valuable goods.  

In other words, technology is responsible for the efficiency with which it transforms 

natural resources into economically valuable goods and improving social welfare. 

Responsible business practice can be defined as what produces wealth and welfare while 

preserving or even regenerating natural capital. 

1.3 About this Research 

1.3.1 Scope and conceptual framework 

The problem of sustainability in manufacturing can be taken at various scales, i.e. 

product, process and system (Graedel, 2001); and with various perspectives of the triple 

bottom line (Elkington, 1997), i.e. economic, social and environmental. However, the work 

excludes certain aspects of sustainability such as social and economic impact, since they are 

considered as requirements and positive side-effects rather than objectives of the 

environmental activities illustrated in Figure 1.2. While focusing on the environmental 

dimension of sustainability, the researcher wished to keep a strong connection to the social 

and economic dimensions and thus chose to keep the label sustainable manufacturing rather 

than green manufacturing or environmentally conscious manufacturing. The three main 

factors in the environmental equation for sustainable manufacturing are (1) resource 
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productivity and waste management, (2) energy as the currency in the conversion of material 

into products, and (3) efficiency which is limited by the laws of thermodynamics. 

 
Figure 1.2. Framework for sustainable manufacturing 

Adapted from (Elkington, 1997) 

The researcher has taken particular interest in the concept of industrial ecology, closely 

related to the work found under various other labels such as cleaner production (CP), 

pollution prevention (P2) or sustainable manufacturing. While numerous authors have focused 

on material life cycle, product supply chain and wider perspectives to allow global 

improvements to be made, this research focuses on resource productivity in manufacturing 

and the associated environmental impacts (resource depletion, waste and pollutant emissions), 

and how this problem can be addressed through practical measures within a factory. It adopts 

an ecosystem view of the factory (gate-to-gate perspective) where all components of the 

manufacturing system are connected by resource flows, e.g. manufacturing operations, 

buildings and facilities interacting through material, energy, water and waste (MEW) flows as 

shown in Figure 1.3.  

The term ―manufacturing‖ in this thesis includes direct production and local production 

management such as plant design, production scheduling, and equipment maintenance. It 

excludes other functions of the wider enterprise such as product design, supply chain 

management, workforce organisation, marketing, etc. (Hopp and Spearman, 2008). Thus each 

component of the factory ecosystem (illustrated in Figure 1.3) can be defined as follow: the 

manufacturing operations are the direct production processes, i.e. the technology components 

or manufacturing equipment through which the product goes; the buildings are the 

architectural components such as rooms, walls, doors, windows, roof, etc.; the facilities 

(sometimes called utilities) are the components servicing the manufacturing operations and 

buildings by supplying e.g. compressed air, cooling water, hot water, etc.  

1.3.2 Research aim and research questions 

This research focuses on resource productivity improvements for sustainable 

manufacturing using modelling and simulation of MEW process flows through a 

manufacturing plant. The aim is to generalise sustainable manufacturing practices (SMPs) and 

guide manufacturers through the process of identifying improvement opportunities within 

their factory. 
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Figure 1.3. Manufacturing ecosystem conceptual model 

Adapted from (Despeisse et al., 2012a) 

The research started with an early general inquiry about what sustainable manufacturing 

was in practice in order to compare with scientific knowledge and prescription collected 

during the literature review. The initial research question was concerned with the 

generalisation of practices. The second question steered the research towards the 

identification of inefficiencies and improvement opportunities. This evolution of the research 

question resulted from the lack of detailed information on how improvements were identified 

at the first place and therefore limited the understanding of how practices could be 

generalised: 

1) How to generalise sustainable manufacturing practices across industry?  

(what can/should be done, based on case analysis both in theory and in practice) 

2) How to identify improvements in a structured and systematic way?  

(rules/tactics to support generalisation of sustainable manufacturing practices) 

1.3.3 Research deliverables and objectives  

The research deliverables are a library of tactics and its associated improvement 

methodology. The library of tactics defines the rules for taking action on-site based on process 

data collection and analysis. The improvement methodology supports the generalisation of 

SMPs by providing a systematic and structured way for identifying improvement 

opportunities in the resource flows of a factory. The results are directly addressed to 

manufacturers and the system boundaries of are drawn following the factory fence. 

As shown in the thesis structure (Table 1.1), the research objectives are to: 

 Explore knowledge in the field of sustainable manufacturing to understand the global 

challenges and the proposed theoretical solutions (literature review in Chapter 3); 

 Explore current strategies and industrial practices to get an overview of what is 

commonly done in the manufacturing industry (case collection in Chapter 4); 
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Energy
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water
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Process
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6 

 Formulate generic tactics from the SMPs to provide simple and clear rules to 

generalise of these practices across industry (tactics design in Chapter 5); 

 Develop an improvement hierarchy to guide manufacturers in the journey towards 

sustainability in a structured and systematic way (tactics prioritisation in Chapter 6); 

 Test and refine the tactics and improvement methodology using prototype applications 

on a selection of industrial processes (tactics testing in Chapter 7). 

Finally, it is important to note that this research is part of a wider project called THERM 

(THrough-life Energy and Resource Modelling) and funded by the Technology Strategy 

Board (project no. TP14/HVM/6/I/BD479L). The project started in October 2009 and finished 

in September 2012. Part of the work presented in this thesis was conducted collaboratively 

with the THERM partners: two universities (Cranfield University and De Montfort 

University), two manufacturing companies (Airbus UK and Toyota Motor Manufacturing 

UK) and a software developer (IES Ltd). The aim of this project was to develop a modelling 

and simulation tool—the THERM software— to support sustainable manufacturing plant 

design and improvement through the integration of sustainable building design and 

manufacturing process analysis (THERM Project, 2011; Ball et al., 2011).  
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Chapter 2 RESEARCH DESIGN 

This chapter explains how the research was carried out and motivates the research 

methods used. The first section describes the research strategy to give an overview of the 

research process and its logic. In the second section, the underlying philosophical 

considerations and the choices made for this research are discussed. Then the research 

methods, the procedure for case collection and analysis, theory building, and the context for 

prototype applications with industrial partners are described. Finally, the limitations of the 

selected research design are discussed in light of the purpose of this research. 

 

2.1 Research Strategy 

Knowledge creation must follow a rigorous research process. The research strategy 

describes the logic of inquiry by providing a set of procedures for addressing research 

questions (Blaikie, 2000). This section presents the research strategy to give an overview of 

the process used in this research as illustrated by Figure 2.1. The relationship between the 

strategy and philosophy are discussed later in this chapter. 

The starting point is a preliminary study of the topic to understand the current state of 

knowledge and clearly define the research problem before formulating the aim, objectives and 

research questions (see Chapter 1 Introduction). The topic of this research is sustainable 

manufacturing and the boundaries of the system studied limited to factory gates. The 

preliminary study of the topic revealed that this field of research embraces numerous 

disciplines and there is no definite theory or model for what sustainability is for the 

manufacturing industry. Therefore, a conceptual manufacturing ecosystem model (Despeisse 

et al., 2012a) was adopted to give the direction of change needed for sustainable 

manufacturing at factory level (see Figure 1.3). Moreover, there are no tools for analysing and 

modelling resource flows in a manufacturing (eco)system, and for identifying and prioritising 

improvement opportunities.  

The aim of this research is to generalise sustainable manufacturing practices (SMPs) by 

developing rules (generic tactics) and an improvement methodology for modelling 

manufacturing systems and identifying improvement opportunities in a systematic and 

structured way. To do so, the work focuses on resource productivity improvements using 

modelling and simulation of MEW process flows through a manufacturing plant. The work is 

directly addressed to manufacturers to help improve the MEW flows in their factory and 

therefore has practical implications through the modelling tool developed as part of a wider 

project (THERM Project, 2011). 
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The two research questions can be distinguished as the first one being about the 

substance, i.e. what are the rules of sustainable manufacturing, and the second being about the 

process, i.e. how to identify improvement opportunities (Bickman, 1987):  

1) How to generalise sustainable manufacturing practices across industry?  

(what can/should be done, based on case analysis both in theory and in practice) 

2) How to identify improvements in a structured and systematic way?  

(rules/tactics to support generalisation of sustainable manufacturing practices) 

The methods used for theory building were cross-sectional case analysis from secondary 

data source and conceptual clustering for identifying patterns from which practice 

generalisation rules could be extracted. The data collection started with a general inquiry 

about what sustainable manufacturing was in practice in order to compare with scientific 

knowledge and theoretical solutions reviewed during the literature review.  

Figure 2.1 shows the cyclic process followed in this research: it goes through three main 

phases (exploration, explanation, testing) twice. Therefore, it combines multiple approaches 

and methods to explore existing knowledge and to both building and test theory. While the 

figure shows neatly separated phases which are used to structure this thesis into chapters, the 

chronology of the work actually overlapped the methods.  

 

Figure 2.1. Overview of the research process steps and phases 

To address the first research question, the data collection started during the exploratory 

phase to investigate the knowledge in the area of sustainable manufacturing. In addition to 

peer-reviewed literature, various sources were used for this exploratory analysis, including 

corporate websites and trade publications. Both theory and practice were analysed to 
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understand the current trends and the extent of the work already accomplished both in 

academic research and in industry. The approach was qualitative to capture a landscape of 

activities being done in industry. The data collection and analysis must cover a sufficiently 

wide range of practices to gain understanding of the type of activities done and identify 

mechanisms and patterns. Therefore, the researcher chose to use cross-sectional design as it 

allows capturing a landscape of activities being done in industry and it uses on a selection of 

criteria for analysing all cases in a consistent way. The rationale for selecting multiple-case 

design was based on the hypothesis that there are a certain (limited) number of different 

mechanisms for SMP and the researcher aimed at collecting sub-groups of cases covering 

each type of practice.  

The second research question was later formulated from the first observation of data 

collected: there is a lack of detailed information on how to identify inefficiencies and 

improvement options, and therefore limited the understanding of how practices could be 

generalised to answer the first research question. To address the second research question, the 

research further extended to an explanatory phase for theory building to explain the causes 

and mechanisms of changes towards sustainable manufacturing. Generic tactics are 

formulated to capture how SMPs work and how other companies can replicate these SMPs in 

their own factory by removing the context-specific aspects and extracting the mechanism of 

change. Once the tactics are created, they need to be implemented via an improvement 

methodology to guide the user through the different steps from collecting data about the 

manufacturing system being studied, model creation and simulation, through to identification 

and prioritisation of improvement options.  

Finally, the third phase of this research consists of testing to refine and validate the theory 

using prototype applications which are part of the THERM project. 

2.2 Research Philosophy 

This research uses a combination of inductive and deductive reasoning. This strategy has 

underlying ontological and epistemological assumptions. This section compares different 

philosophical perspectives and highlights the ones selected for this study. 

The choices in designing one‘s research must account for the nature of reality (ontology) 

and the ways knowledge about this reality is acquired (epistemology). Epistemology does not 

only define how reality can be observed and understood, but also how it can be affected, i.e. 

how our actions can change the world. The combination of ontology and epistemology 

constitutes a research paradigm (Bryman and Bell, 2007; 2003). 

Regarding the nature of reality, there are two main competing ontological considerations: 

idealism and realism. On the one hand, idealism assumes that reality consists of 

representations created by human mind. There can be multiple realities (or perspectives) of 

the external world as it is made up of interpretations shared by people. In social research, 

constructionism, which is close to idealism, is a dominant ontology in business research. It 

assumes that ―social phenomena and their meanings are continually being accomplished by 

social actors‖ (Bryman and Bell, 2007; 2003). In other words, reality is socially constructed 

and different people will give different meanings according to their own version of reality. 

On the other hand, realism assumes that there is an objective world independent of the 

observer. Realists believe that the purpose of philosophy and science is to locate externally 

true meanings and that new observations bring us closer to understanding reality. There are 

variations in the realist ontologies with differences in the way reality can be accessed (Blaikie, 

2000) which are mapped in Figure 2.2. They are intermediate ontologies between the two 
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major forms of realism: empirical realism and critical realism (Bryman and Bell, 2007; 2003) 

which correspond to the right-hand side of Figure 2.2, bottom and centre respectively. This 

research follows the subtle realist ontology which accepts the existence of an external and 

independent reality but also recognises the potential biases in the observer‘s interpretation of 

reality (Blaikie, 2000).  

Finally, dualism (or Cartesian dualism) makes a distinction between the physical world 

and the observer‘s mind. This ontology combines the realist view that reality is independent 

of the observer and the idealist view that truth in a representation of reality in the human mind 

(Van de Ven, Andrew H., 2007).  

 
Figure 2.2. Ontological considerations  

Adapted from (Blaikie, 2000; Bryman and Bell, 2007; 2003) 

Associated with the competing idealist and realist ontologies, the extreme epistemological 

assumptions are rationalism and empiricism. In the domain of social research, interpretivism 

is often presented as the contrasting epistemology to positivism (Bryman and Bell, 2007; 

2003). In rationalism and interpretivism, knowledge and meaning are represented by human 

thoughts as suggested by the idealist ontology. They are socially constructed through shared 

experiences and interactions rather than discovered from the world. There can be different 

realities (or perspectives) depending on the observer because different meanings and 

interpretations can be derived from a single phenomenon. 

Conversely for empiricists and positivists, the observer is neutral and in direct, 

undistorted contact with reality. Thus knowledge is an objective and accurate representation 

of the external world under the realist ontological assumption that there exists an external and 

independent reality (or absolute truth). Positivism assumes that knowledge is derived from 

data received through sensory experience and from logical and mathematical analysis of such 

data. Empiricism adopts a narrower view on the method to gain knowledge: it assumes that 

knowledge can only be gained through sensory experience.  

As for research ontology, there are other epistemological considerations with intermediate 

versions as shown in Figure 2.3. For instance, pragmatism reconciles rationalism and 

Dualism 
Reality is a combination of body (physical substance) and mind.

Subtle realism (this research)
Reality is independent and knowable, but cultural assumptions 

prevent direct access to this world. Knowledge is based on 

assumptions and purpose and thus is a human construction.

Depth realism
Reality is stratified and consists of three domains: observed 

(empirical), independent of the observer (actual), underlying 

structures and mechanisms not readily observed (real). 

Cautious realism
Reality is independent, but human sense are imperfect and thus 

it is indirectly accessed through an interpretive process.

Conceptual realism
Reality is external and independent, but not directly observable. 

Knowledge is a collective consciousness / idea structure.

Shallow realism
Reality is independent of the observer and accessed through 

senses. Objective knowledge comes from perception through 

the process of concept formation and inductive logic.

Idealism
Reality consists of representations created by human mind. 

Constructionism
Reality is continuously being made by interpretations shared 

and meaning given by people.
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empiricism ―by showing that knowing and doing are indivisible part of the same process‖ 

(Van de Ven, Andrew H., 2007). It accepts the existence of a mind-independent physical 

world but does not aim at finding the truth or understanding reality. Instead pragmatic ideas 

and theories are developed to provide useful models of reality and tools to support human 

problem solving.  

Figure 2.3 maps the epistemologies as function of the process of knowledge creation 

which can originate from human senses (observation and experience) or from human thought 

(mental construction). This distinction is closely linked to ontological considerations as 

sensory experiences suggest the existence of an external world. But it is important to note that 

this distinction does not necessarily correspond to the subjective-objective dichotomy in the 

nature of knowledge. For instance, rationalism assumes that knowledge and meaning are 

products of human mind through a purely mental process, but it also recognises that they can 

be objective and validated through deductive reasoning. Conversely post-positivism, which is 

the paradigm chosen for this research, relies on sensory experience to gain knowledge but also 

recognises potential bias in judgement and thus a certain degree of subjectivity. 

 
Figure 2.3. Epistemological considerations and research paradigms  

Adapted from (Blaikie, 2000; Bryman and Bell, 2007; 2003) 

2.3 Research Methods 

2.3.1 Case collection  

During the first phase of the research (exploratory), the research question addressed was: 

How to generalise SMPs across industry? To answer this question, the researcher chose an 

empirical cross-sectional analysis of industrial cases from secondary sources (Chapter 4) as 

the research method. With this empirical inquiry method, contemporary phenomena in real-

life context are investigated and theory is built from observations. The method selected was 

multiple-case analysis as it allows capturing a landscape of activities being done in industry. 

The rationale for selecting multiple-case design was based on the hypothesis that there are a 

Pragmatism
Science does not aim at finding the truth or reality, but at solving 

problems. Knowledge is based on practical consequences.

Critical rationalism
Pure observation is impossible but made within a frame of 

reference with expectations. Theories are tentative and 

observation of reality is used for deductive reasoning.

Postpositivism (this research)
Reality is objective and knowable through observation and 

experimentation, but knowledge is conjectural and fallible.

Logical positivism
Reality is objective and knowable through observation and 

experimentation. Knowledge is value-free.

Empiricism
Knowledge can only be gained through sensory experiences.

Relativism

There is no external reality independent of human 

consciousness. Truth is depends on values and viewpoints. 

Rationalism
Reality is in human mind. Knowledge is derived from direct 

examination of human thought. Truth is not sensory but 

intellectual and deductive.

Interpretivism / Constructivism

The only knowable reality consists of internal constructs in 

the human mind. Thus knowledge is constructed and does 

not necessarily reflect the external world. 
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certain (limited) number of different mechanisms for SMP and the researcher aimed at 

collecting sub-groups of cases covering each type of practice. Categorisation methods were 

then used to create the initial theory. 

Case collection from secondary sources (peer reviewed and non-peer-reviewed studies) 

was chosen over surveys, interviews or experimentations because the researcher was aiming 

at capturing a landscape of SMPs as wide as possible within the first year of the research. The 

case study conducted was indirect as it used secondary sources: the research was based on 

reported cases in scientific literature and trade website rather than on direct observation of 

SMPs in the industry. Cases were collected from various sources dedicated to the topic of 

manufacturing operation improvements for environmental sustainability. Given the 

exploratory nature of the work, sources included not only academic publications, such as 

books and journal articles, but also trade literature, such as organisational and corporate 

websites. This method enabled the researcher and the THERM project team
1
 to collect and 

analyse a total of 1000 SMPs from 200 sources within the first two years of the research. 

Experimentation was not selected for this research although it could be used to identify 

the best procedure for improvement implementation under various conditions or with various 

influencing factors. Experimentation however is recommended as part of further research to 

test improvements‘ implementation procedure (improvement methodology developed in 

Chapter 7). Survey and interview methods could have provided more in-depth case studies by 

questioning and interviewing energy managers, waste managers, water experts, maintenance 

teams, production teams, facility engineers, process engineers, etc. these alternative methods 

could be used to better understand the motivations, challenges and procedures for sustainable 

manufacturing improvement activities. But again, they were not selected for this research: the 

researcher selected case collection from secondary sources because this technique has the 

potential to quickly provide a larger number of cases (time-efficient). 

The objective of this research was to capture a wide landscape of SMPs in order to 

identify patterns. The analysis followed an inductive-deductive reasoning cycle to build 

theory from observed patterns using conceptual clustering and to refine theory by checking 

completeness of the findings using a simplified representation of manufacturing systems. The 

analysis was qualitative as the case collection was aiming at understanding the breadth of 

practices to allow theory building through a broad analytic generalisation rather than getting a 

representative sample of practices to allow a statistical generalisation (Yin, 2009, 1994).  

2.3.2 Tactics development 

The purpose of the second phase (explanatory) was to develop the library of tactics and 

improvement methodology for more sustainable manufacturing operations. This phase 

involved the formulation and generalisation of theories to answer both research questions: 

how to generalise good practices and how to identify improvements in a structured and 

systematic way. First the tactics were developed to bridge the gaps both in knowledge of what 

should be done (theory) and in practice how to do it in the factory (Chapter 4). The research 

process to obtain the library of tactics is illustrated in Figure 2.4. Then the improvement 

methodology was developed to provide guidelines and clear procedures for implementing 

                                                 

1
 More details about the data collection and external support to populate the SMP database will be 

discussed in Chapter 4 (4.2Sourcing, Selecting and Interpreting Case Study Reports). 
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tactics via modelling of manufacturing systems (Chapter 7). The methods for developing the 

improvement methodology are described in the next section (2.3.3 Tactics prioritisation). 

While the case study was an empirical method to build initial theory, non-empirical 

concept development was used to further revise the theory and to finalise the tactics library. 

The theory emerged from the data by observing and interpreting patterns, similarities and 

differences in the practices in the light of theoretical principles collected in scientific literature 

(from the literature review in Chapter 3) and of graphical data display using Despeisse et al. 

and Oates et al. factory modelling approach (Despeisse et al., 2012a; Oates et al., 2011b).  

 

Figure 2.4. Cross-sectional case analysis and tactics library development 

Two methods of logic reasoning were used as the work progressed through multiple 

induction-deduction cycles. The initial theory was developed following an inductive 

reasoning. Inductive reasoning moves ―from specific observations to broader generalizations 

and theories. […] In inductive reasoning, we begin with specific observations and measures, 

begin to detect patterns and regularities, formulate some tentative hypotheses that we can 

explore, and finally end up developing some general conclusions or theories.‖ (Trochim, 

2006) Tactics were formulated from practices using an inductive approach and the library of 

tactics was checked for completeness using a deductive approach. 

Each case collected from the literature was divided into individual practices defined as an 

action or set of actions improving the manufacturing system‘s environmental performance. 



Chapter 2   Research Design 

16 

The elements of interest for this analysis were the mechanisms of improvement rather than the 

technology used or the reported benefits. Therefore, the analysis adopted a simplified 

representation of manufacturing systems (graphical data display) to better understand how the 

improvements resulted in the system‘s reconfiguration. These reconfigurations were 

considered as the mechanisms of improvement to identify patterns in the types of 

improvement achieved. Practices were classified based on these patterns using conceptual 

clustering. (Fisher, 1987) defines conceptual clustering as ―a type of learning by observation 

(as opposed to learning from examples) and is an important way of summarizing data in an 

understandable manner.‖ 

The structure of the practice database considered the following: 

 How cases fit in the database: understand what was done based on reported data, break 

down cases into practices (unit of analysis) and categorise individual practices; 

 How the database is accessed: associate practices with ―labels‖ and keywords; 

 How the data can be used: find out about existing technological solutions, target 

specific benefits, identify specific inefficiencies, or adjust specific process parameters. 

Finally, each group of practices was synthesised into a generic tactic In other words, the 

tactics allowed the rules of operational improvements for sustainable manufacturing to be 

coded and captured the (context-free) mechanisms of SMPs to allow generalisation.  

After the previously described inductive process, a second round of case collection and 

analysis was conducted to further populate the practices database. This time, deductive 

reasoning was used to work from more generic (tactics and ―labels‖) down to observation of 

more specific data. Ultimately it enabled the researcher to test the theories with specific data 

and to refine and confirm the original theories.  

2.3.3 Tactics prioritisation and implementation 

The development of the improvement hierarchy and methodology was also part of the 

explanatory phase of the research and addresses the second research question: how to identify 

sustainable manufacturing improvements in a structured and systematic way. The purpose of 

the improvement methodology is to provide a clear procedure and guidelines to identify 

operational improvements for sustainable manufacturing. The improvement hierarchy allowed 

prioritising the tactics to ease their selection during this iterative process of identifying 

operational improvements. The research process to develop the improvement hierarchy and 

methodology is illustrated in Figure 2.5. 

First an improvement hierarchy was derived from a synthesis of literature review 

findings. It includes various sets of strategies, principles, options and hierarchies developed 

by different groups of researchers. These various sets are highly compatible although they 

were conceived with different perspectives and with different purposes. By bringing them 

together and synthesising them, a more complete and coherent set of strategies was gathered 

and prioritised. 

The researcher used a thematic analysis method (Bryman and Bell, 2007; 2003) to gather 

and summarise the main themes in the literature on sustainability in general and industrial 

sustainability in particular. This method was developed to conduct systematic reviews in 

medicine and health research (Dixon-Woods et al., 2005; Thomas and Harden, 2008) but has 

also been used in other fields of research such as supply chain management (Wu, 2008) and 

information technology (Cruzes and Dyb, 2011).  
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Figure 2.5. Literature synthesis and improvement methodology development 

To develop the improvement hierarchy, the various sets of strategies and principles were 

listed to allow the identification of important and recurrent themes. This process was an 

inductive one as the researcher interpreted and translated the strategies and principles to 

obtain a common language, perspective and understanding for all levels of the improvement 

hierarchy.  

The tactics library was then restructured according to the improvement hierarchy to ease 

their use and implementation. The tactics can help manufacturers to translate sustainability 

concepts into tangible actions while the improvement hierarchy can support decision-making 

as prioritisation is needed to select appropriate improvements. The restructured library of 

tactics is then combined with a modelling methodology (Despeisse et al., 2012b) to create an 

improvement methodology which is used to test, refine and validate the tactics library. In other 

words, the improvement methodology guides manufacturers step-by-step through the 

modelling and analysis of their factory (or processes) to identify improvements towards more 

sustainable manufacturing operations. 

2.3.4 Testing and validation 

Keeping in mind that this research is part of a larger project developing a modelling and 

simulation tool (THERM Project, 2011; Ball et al., 2011), the testing phase of this research 

was conducted through a collaborative work with the THERM partners. Although four 

prototype applications were conducted as part of the THERM project, only two of the 

prototype applications are reported in this thesis as they are the most relevant for testing the 

tactics and the improvement methodology. 

The prototype applications aimed at testing various aspects of the modelling and the 

access to tactics. The initial prototypes were used to test certain aspects of the factory 

modelling approach and check tactics could be accessed through the process data used to 

create the factory model. The final prototype application was used to test and refine the 
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improvement methodology which embeds the elements of the tactics library into a practical 

application framework; in the case of the THERM software, this takes the form of a 

Navigator (Quincey and McLean, 2011). It is a step-by-step approach based on factory 

modelling integrating the structured library of tactics to improve the resource flow by viewing 

the factory as an ecosystem. A factory modelling prototype tool integrating buildings, 

facilities and manufacturing operations is presented to test the improvement methodology 

(Chapter 7). 

The integration of tactics was achieved by coding them into the THERM tool and 

consequently by integrating the principles of sustainable manufacturing improvement into the 

modelling and simulation tool analysis. In turn this tool aims at helping manufacturers to 

identify improvement opportunities in their resource flow using factory modelling and the 

library of tactics following the improvement methodology. 

2.4 Limitations of the Selected Methods 

The tactics development was based on a cross-sectional case analysis of sustainable 

manufacturing practices. The researcher recognises the limitations of the research methods 

chosen. This section discusses these limitations and contingent measures taken by the 

researcher to increase the quality and validity of the research design based on the four critical 

conditions of design quality: construct validity, internal validity, external validity and 

reliability (Yin, 2009). 

The first limitation of the case analysis is the lack of control on the data source (unlike in 

experimentation) when observing a phenomenon and its variables in real-life context. There is 

a potential bias in reported cases, particularly when cases are coming from different sources. 

This bias in the data collection must be acknowledged and described when the conditions of 

observation and reporting are influential (e.g. source is a publication or a website focused on 

specific aspects such as waste management, water conservation, energy efficiency, etc.). This 

relates to the first critical condition of design quality: construct validity is challenging for case 

study research as ―subjective judgements are used to collect data‖ (Yin, 2009, 1994).  

Internal validity which is mainly a concern for explanatory analysis (Yin, 2009) must be 

addressed by carefully selecting the analytic techniques for identifying patterns in the data. 

For instance, pattern-matching technique compares empirical patterns with predicted ones 

(Trochim, 2006). If the patterns coincide, the results strengthen the internal validity of the 

study.  

Regarding external validity, there may be concerns about case studies as a basis for 

scientific generalisation as the case collection might not be a good representation of the whole 

population and therefore limits the relevance for a given sample. This issue can be addressed 

by using replication logic in the multiple-case study (Eisenhardt, 1989). Replication logic 

enables the analytical generalisation of the results to other cases outside the study by 

developing theories explaining the recurrent patterns or regularities observed (Blaikie, 2000).  

2.5 Chapter Summary  

The aim of this research is to generalise SMPs by creating a library of tactics and an 

improvement methodology to guide manufacturers in identifying improvement opportunities. 

The work is directly addressed to manufacturers to help improve their resource flows in the 

factory and therefore has practical implications through the modelling tool developed as part 

of a wider project (THERM Project, 2011). The research process is composed of three main 
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phases: exploration with literature review (Chapter 3) and case analysis (Chapter 4), 

explanation with the development of the tactics library (Chapter 5), the improvement 

hierarchy (Chapter 6) and the improvement methodology (Chapter 7), and finally testing 

(sections 7.4 and 7.5). The first research question focuses on the generalisation of SMPs and 

the second question focuses on the mechanisms for identifying improvements to further 

support the generalisation of SMPs. The methods used for theory building were cross-

sectional case analysis and conceptual clustering for identifying patterns and formulating 

tactics library. Finally, the research findings are tested and validated through prototype 

applications which are part of the THERM project. 
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Chapter 3 SUSTAINABLE MANUFACTURING THEORY 

Part of this chapter has been published in Despeisse, M., Ball, P. D., Evans, S. and Levers, A. (2012), 

"Industrial ecology at factory level – a conceptual model", J. of Cleaner Production 31(3-4), pp. 30-39 of 

which the thesis author was the main contributor. 

This chapter is a review of scientific literature on industrial sustainability and other 

relevant topics of interest for this research. The first section gives an historical review of the 

literature in industrial sustainability in general, and sustainable manufacturing in particular. 

The second and third sections focus on sustainability as a concept and on various approaches 

and supporting tools available to help the manufacturing industry in its journey towards 

sustainability. 

 

3.1 Manufacturing and Sustainability: a Historical Review 

3.1.1 Sustainability in industry 

The Environmental Movement is commonly accepted to have started in the 1970s with 

the Earth Day demonstrations. This event emerged from the spread of public awareness about 

environmental issues such as air and water pollution; waste disposal, resources scarcity, 

nuclear radiation, pesticide poisoning and accumulation in the environment. However, the 

story of societal sustainability in general, e.g. Malthus essay on population growth (Malthus, 

1798; Marsh, 1864), and industrial sustainability in particular begins far before this 

(Sidgwick, 1883). The Progressive Era was a movement of social activism and political 

reform in the United States which started in the late-1800s followed by the creation of 

association and other movements (Pezzoli, 1997). 

The need for achieving sustainability in industry is now a well-recognised due to arising 

environmental problems (Kemp, 1994; Batterham, 2003). Such problems are recognised to be 

largely caused by industrial activities: depletion of non-renewable resources and 

environmental pollution. The motivation for companies to take action is no longer purely 

economic; the incentives are coming from many directions: stricter environmental and social 

regulations, consumer awareness and societal demand for environmentally and socially 

responsible products (Ball, 2010). Especially for manufacturing companies which are the 

central players in industrial systems, sustainability is a question of survival (Igartua et al., 

2010) as their role is to sustainably generate and preserve high living standard worldwide 

through the production of goods and services so that the next generations will be able to enjoy 

the same standard of living as well (Jackson, 2005; Evans et al., 2009).  
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Why should industry care about sustainability? In the past two decades, there has been an 

increased interest in the sustainability performance of companies. Concepts of corporate 

citizenship, corporate social responsibility and environmental management (Matten and 

Crane, 2005; Hibbitt and Kamp-Roelands, 2002) have quickly gained popularity as 

stakeholders are asking for more environmentally responsible business practice (Hart, 1995). 

With the increased demand for greener products and services (Daily and Huang, 2001), 

becoming more sustainable attracts new customers. There is also a pull from market place, 

reputation of the business and gain market shares. Companies want to be the first-mover, 

maintain market leadership, do better than the competition (Kleindorfer et al., 2005). And 

finally, there is a push from governments with stricter regulation, higher penalties for non-

compliance and tax benefits from doing the ―right thing‖ (Hibbitt and Kamp-Roelands, 2002). 

More sustainable practice is simply good business practice (Reinhardt, 1999): it also reduces 

risk, and reduce exposure to resource scarcity (materials, energy and transport).  

In summary, improving the company‘s environmental performance can result in long-

term cost reduction, fulfilment of regulatory requirements, more attractive products and 

services, better ethical practice, natural resource preservation, improved public image and as a 

consequence enhanced competitive advantage. 

3.1.2 Sustainable manufacturing  

The environmental burden linked to human activities has become an important global 

issue and a great challenge for our society popularised by many authors (Carson, 1962; World 

Commission on Environment and Development, 1987; Holdren and Ehrlich, 1974; Meadows 

and Club of Rome, 1974). Manufacturing companies are increasingly engaged in 

environmental activities and can even benefit from making sustainable changes in the way 

they operate (Del Brío and Junquera, 2003; Rusinko, 2007; Menzel et al., 2010). The two 

main technical improvement approaches identified are technological change and process 

management (Gupta and Cawthon, 1996; Raymond et al., 1996). An illustration of both the 

economic and environmental benefits of sustainable manufacturing is apparent in the cost 

savings due to energy reduction and waste minimisation.  

In the sustainability context of this research, ‗manufacturing‘ is defined as the 

transformation process of resource inputs into useful outputs through the use of technology 

with limits on efficiency due to the laws of thermodynamics (Gutowski et al., 2009). This idea 

captured by the principle of energy intensity (Smil, 2003) which considers energy as the price 

to pay for resource conversion. Although the energy intensity has decreased with 

technological advances and efficiency improvements in manufacturing, the total amount of 

energy as well as the associated environmental impact have dramatically increased during the 

human advances of the twentieth century (Smil, 2003). In other words, manufacturing is 

responsible for the efficiency with which raw materials are converted into products and 

services through the use of energy, but it also is responsible for the resulting waste and 

pollution generated during this conversion. Therefore, manufacturing has traditionally been 

associated with undesirable environmental side effects such as increased pollution although 

efficiency is improving; this is the so-called rebound effect (Cleveland and Ruth, 1998).  

While there is no universal definition for sustainable manufacturing, it is generally 

accepted as a new paradigm for developing socially- and environmentally-sound techniques to 

transform resources (material, energy, water) into economically-valuable products and 

services. Since late 1980s, many concepts, such as pollution prevention (P2) (Davis and 

Costa, 1995) and industrial ecology (IE) (Ayres, 1989), have been developed in response to 

the increasing pressures from stakeholders and ever more stringent regulations to improve 

their environmental performance. Frosch and Gallopoulos were the first authors to clearly 
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introduce sustainability into manufacturing strategies and they established a ground for 

research in sustainable manufacturing with the concept of industrial ecosystem (Frosch and 

Gallopoulos, 1989). Early work in the field of sustainable manufacturing was mainly done 

under these topics and only recently became a field of research on its own under various 

labels such as environmentally conscious (or benign or responsible) manufacturing, green 

manufacturing, cleaner production, sustainable production, etc. A list of definitions for these 

terms can be found in Table 3.1. 

For the purpose of this research, sustainable manufacturing is defined as efficient and 

effective conversion of resources into value for society while respecting Earth‘s carrying 

capacity. The three main considerations for resource conversion efficiency are: (1) resource 

productivity and waste management, (2) energy as the currency in the conversion of material 

into products, and (3) efficiency which is limited by the laws of thermodynamics. 

Table 3.1. Definitions of Sustainable Manufacturing (or other labels) in the literature 

Reference Definition 

(Allwood, 2005) 

Sustainable manufacturing 

―Developing technologies to transform materials without emission 

of greenhouse gases, use of non-renewable or toxic materials or 

generation of waste.‖ 

(Frosch and Gallopoulos, 

1989) 

Industrial ecosystem 

―In such a system [industrial ecosystem] the consumption of energy 

and materials is optimized, waste generation is minimized and the 

effluents of one process whether they are spent catalysts from 

petroleum refining, fly and bottom ash from electric-power 

generation or discarded plastic containers from consumer products 

serve as the raw material for another process.‖ 

(Glavič and Lukman, 2007) 

Sustainable Production 

―Sustainable production is creating goods by using processes and 

systems that are non-polluting, that conserve energy and natural 

resources in economically viable, safe and healthy ways for 

employees, communities, and consumers and which are socially 

and creatively rewarding for all stakeholders for the short- and 

long-term future‖ 

(Hibbard, 2009) 

Sustainable manufacturing 

―Design products that conserve energy, reduce waste and eliminate 

pollution - in a sustainable way.‖ 

(Melnyk and Smith, 1996) 

Green manufacturing 

―A system that integrates product and process design issues with 

issues of manufacturing planning and control in such a manner as to 

identify, quantify, assess, and manage the flow of environmental 

waste with the goal of reducing and ultimately minimizing 

environmental impact while also trying to maximize resource 

efficiency.‖ 

(Mohanty and Deshmukh, 

1998) 

Green productivity 

―Green productivity signifies the search for value-adding 

technologies that can resolve the issue of generation of higher 

output with minimum consumption and maximum conservation of 

inputs, yet enabling the balance between the economy and the 

physical environment.‖ 

OECD definition of 

sustainable production in 

'Eco-Innovation in Industry' 

―The creation of goods and services using processes and systems 

that reduce the use of natural resources and toxic materials and 

emissions of waste and pollutants, protect workers, communities 

and consumers, and are economically viable.‖ 
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Table 3.1. Definitions of Sustainable Manufacturing (or other labels) in the literature (cont.) 

Reference Definition 

(Rahimifard and Clegg, 

2007) 

Sustainable design and 

manufacture 

―A responsible approach to design and manufacture of products 

should embrace efficient resource use by reducing the consumption of 

non-renewable resources throughout a product‘s life-cycle.‖ 

(Richards, 1994)  

Environmentally 

conscious manufacturing 

―Minimizing air emissions, minimizing solid and liquid wastes, 

conserving water and energy, reducing toxicity and not compromising 

the health and safety of customers, recyclers, and waste handlers‖ 

(Rusinko, 2007) 

Green or 

Environmentally 

sustainable 

manufacturing 

―Taken together, pollution prevention and product stewardship can be 

referred to as environmentally sustainable manufacturing practices, or 

environmental sustainability in manufacturing.‖ 

(Sarkis and Rasheed, 

1995) 

Environmentally 

conscious manufacturing 

―Environmentally conscious manufacturing, or ECM, involves 

planning, developing, and implementing manufacturing processes and 

technologies that minimize or eliminate hazardous waste and reduce 

scrap. A major objective of ECM is to design products that are 

recyclable or can be remanufactured or reused. Expected benefits of 

ECM include safer and cleaner facilities, lower future costs for 

disposal and worker protection, reduced environmental and health 

risks, and improved product quality at lower cost and higher 

productivity.‖ 

(Seliger et al., 2008) 

Sustainable 

manufacturing 

―Sustainability in engineering can be defined as the application of 

scientific and technical knowledge to satisfy human needs in different 

societal frames without compromising the ability of future 

generations to meet their own needs.‖ 

―Sustainable manufacturing for the next generation should focus on 

enhancing use-productivity in the total product life cycle.‖ 

 

Manufacturing industry has traditionally been considered as the cause of environmental 

problems. But it is also recognised as a major enabler for change through economic growth 

(World Commission on Environment and Development, 1987). The sustainable 

manufacturing literature focuses largely on design for disassembly, reverse logistics and 

remanufacturing (Sarkis, 2001; Westkämper et al., 2001; Seliger, 2001; Westkämper, 2002; 

Srivastava, 2007; Mouzon et al., 2007) since the aim is to keep products within the 

technosphere when they reach the end of the use phase. 

One of the first identified forms of sustainable manufacturing in research was 

Environmentally Conscious Manufacturing (ECM), closely related to chemistry, chemical 

engineering, materials science, and process engineering. Early work in ECM includes 

considerations for source reduction, dismantling, design for manufacturing and assembly, 

cradle-to-reincarnation concepts (Owen, 1993). The ECM objectives were defined as 

―minimizing air emissions, minimizing solid and liquid wastes, conserving water and energy, 

reducing toxicity and not compromising the health and safety of customers, recyclers, and 

waste handlers‖ (Richards, 1994). The challenges of ECM include balancing environmental 

considerations and other factors such as cost, aesthetics, functional performance, reliability, 

quality and meeting customer demand (Richards, 1994; Richards et al., 1994). Later, ECM 
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was defined as ―the improvement of environmental attributes of product manufacturing, 

ideally without sacrificing quality, cost, or performance‖ (Davis and Costa, 1995). The ECM 

approach as defined by Owen, Richards and Davis focuses on specific material processing 

and manufacturing operations, and considers individual manufacturing steps in order to 

decrease their environmental impact independently.  

Sarkis et al. proposed a more holistic approach to ECM with the ‗Rs‘ strategies for 

product supply-chain: reduction, remanufacturing, recycling and reuse (Sarkis and Rasheed, 

1995; Sarkis, 1995). These strategies aim to reduce the flow of resource consumed as well as 

create closed-loop circulation of waste as they are reused as resource inputs. The expression 

sustainable manufacturing system began to be used only years later and was strongly 

associated with the closed-loop circulation of material (Kumazawa and Kobayashi, 2003; 

Kondoh et al., 2005). This links back to the concept proposed by Frosch and Gallopoulos 

(1989) although it is rarely named industrial ecosystem. Instead, industrial symbiosis and 

industrial eco-park are terms more commonly used. 

The idea of closed-loop production systems is now more systematically associated with 

sustainable manufacturing although it can take various forms. Later work focuses largely on 

product end-of-life management with design for disassembly, reverse logistics and 

remanufacturing (Sarkis, 2001; Westkämper et al., 2001; Seliger, 2001; Westkämper, 2002; 

Srivastava, 2007; Mouzon et al., 2007) since the aim is to close the loop of material 

circulation and to keep products within the technosphere when they reach the end of the use 

phase. This closed-loop circulation of technical material occurs in parallel (i.e. analogous but 

separate) to the closed-loop circulation of biological materials in natural ecosystems (Ellen 

MacArthur Foundation, 2013). Therefore sustainable manufacturing systems can be achieved 

through carefully designed and managed processes to transform resources into products and 

services while eliminating and controlling undesirable effects using clean and efficient 

technologies (Seliger et al., 2008; Allwood, 2005). Resource flows and technologies are the 

two key elements on which this research focuses. 

Under the label of green manufacturing (Rusinko, 2007) and sustainable manufacturing 

which are considered as sub-concepts of P2, various solutions have been developed for the 

manufacturing industry to address global environmental concerns. Examples include green 

supply chain management (Beamon, 1999), product life cycle management (Westkämper et 

al., 2001), cradle-to-cradle design (McDonough and Braungart, 2002), corporate 

environmental management (Welford, 2003), design for environment (Bhamra, 2004), 

product-service systems (Baines et al., 2007), and many others (Sarkis, 1998; Van Berkel et 

al., 1997). Advances in information technology (IT) have allowed the combined used of these 

topics to analyse and improve increasingly complex systems (Alvi and Labib, 2001). Many 

researchers have worked on multidisciplinary approaches to develop more holistic solutions to 

reduce the environmental impact of business activities using modelling and simulation tools 

which can capture and manage systems complexity. For instance, discrete event simulation 

has demonstrated the potential to support the analysis of interactions in complex systems for 

sustainability in manufacturing (Heilala et al., 2008; Michaloski et al., 2011). There is also an 

increasing number of tools available to assess the life cycle impact of products and services as 

well as companies‘ environmental performance (Glavič and Lukman, 2007; Ahlroth et al., 

2011).  

3.2 Sustainable Frameworks and Models for Manufacturing 

The concept of sustainability is in part clearly defined and accepted while some aspects of 

the concept remain the subject of current debates. There are various opinions about the current 
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sustainability level of our society and about what a ―sustainable level‖ of consumption and 

production is. Some think Earth‘s carrying capacity is already exceeded; others think there 

still is a margin to make the transition to sustainability. In all cases, there is a general 

consensus that changes need to be done to reduce the consumption of resources and not just to 

improve efficiency of resource (Jackson, 2005; Hertwich, 2005). Technology wedges is a way 

to approach a ―sustainable level‖ of consumption rather than thinking about a silver bullet 

technology (Pacala and Socolow, 2004; Sangle, 2011). 

A close concept to sustainability is the one of sustainable development. The most 

commonly accepted definition comes from the Brundtland Commission: ―development that 

meets the needs of the present without compromising the ability of future generations to meet 

their own needs‖ (World Commission on Environment and Development, 1987). The main 

dimensions for sustainability have also been widely accepted as the so-called triple bottom 

line or the 3Ps of people, planet, profit (Elkington, 1997): meet societal needs of a growing 

population while preserving the natural capital for future generations at reasonable cost for the 

present one. Technology is sometimes considered as the fourth dimension as it is the principal 

means by which the three first interact and it is a key enabler for change (Jovane et al., 2009).  

The Technology-Environment paradox (Gray, 1989) is a central subject for SM since 

technology allowed healthier, more productive and more enjoyable lives whilst 

simultaneously threatening life on Earth due to unforeseen consequences of technology use 

(Graedel and Howard-Grenville, 2005). Technology determines the efficiency with which the 

resources are used in society and therefore is often considered as an additional dimension to 

the traditional three dimensions of sustainable development (Jovane et al., 2008; Lovins et al., 

1999). Seliger puts it another way and argues that manufacturing industry is responsible for 

the environmental efficiency of our society and technology (Seliger, 2007).  

Two other important concepts for sustainability are the precautionary principle (Robèrt, 

2000) and decoupling (Cleveland and Ruth, 1998). These concepts are linked and overlap. 

Decoupling of environmental and economic growth is key to reduce the burden of human 

activities on the environment while providing good life standard to all. A major difficulty in 

the dissemination of sustainable manufacturing practice in industry is the duplication of 

concepts, and thus efforts, as well as the lack of understanding on what is the global impact of 

local improvements, which is called the rebound effect. For example, efficiency gains can 

have counter-intuitive results if they are not accompanied by policies to control their 

consequences and to avoid the direct rebound effect where expected savings are partly offset 

by increased consumption (Jin, 2007). Another similar effect is the backfire effect, where the 

efficiency improvement measures are completely offset and the total energy use actually 

increases. For instance, energy efficiency improvements in automobiles have led to increased 

usage which in turn has increased the total amount of energy consumed by cars. 

Subsequently, end-of-pipe solutions (such as the catalytic converter) have been used reduce 

the impact of the waste gases. But the causes of the problem remain and new measures to 

reduce the pollution at the source (pollution prevention, precautionary principle, green design, 

etc.) have to be taken. 

Sustainable manufacturing is a broad concept and covers the areas of product design, 

supply chain management and customer-oriented approaches and adopt a lifecycle perspective 

which enables more integrated thinking on how to change the design of products and 

production systems in order to reduce their environmental impact in the most efficient way 

(Seuring and Müller, 2008; Vachon and Klassen, 2008; Baines et al., 2009; Tan et al., 2010). 

Minimising manufactured products‘ embodied energy is attracting more and more attention as 

energy cost is increasing as well as the associated environmental impact (Rahimifard et al., 

2010). Beyond energy efficiency in manufacturing, the assessment of embodied energy 
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encompasses more than energy directly related to the lifecycle of a product: it shows the 

importance of material choice and supply chain parameters (Kara et al., 2010).  

There are numerous levels to consider when investigating sustainability in manufacturing. 

Sustainability improvements must consider issues at all levels in the industrial system: 

process, product, and system. Activities at any of these levels must be considered in its wider 

context and not in isolation, i.e. consider impact on all other levels else improvements can be 

suboptimal. One must keep an eye on the wider system to ensure that local solutions are not 

creating larger problems or result in a rebound effect. 

Processes were the first target of attention with the concept of P2 (Graedel and Howard-

Grenville, 2005). At the process level, technology and production management (planning and 

control) are improved to reduce resource use (energy and material, including water) and 

undesired outputs (toxic wastes, pollutant emissions to air, water and soil).  

Then, attention was brought to the design of products which determine most of the 

environmental impact throughout the product life cycle (Müller et al., 1999; Haapala et al., 

2008). Then the next levels to consider are material selection, resource extraction and 

processing (Brunner and Rechberger, 2004), the value chain to provide goods and services 

(Maxwell and Van der Vorst, 2003). Although it is widely recognised that design decisions 

impact the whole product life cycle and supply chain (Heilala et al., 2008; Müller et al., 

1999), they are not well integrated with the design of production systems (Ball et al., 2009).  

At the system level: life cycle perspective considers the whole supply chain, product end-

of-life with the infrastructure, and wider involvement of all actors to achieve this. Given that 

system scale and complexity is ever increasing, it is crucial that all the above-mentioned 

levels are considered for sustainability in industry and to ensure that the solutions are 

optimised at all levels. Considering the material life cycle, a common concept is the 3Rs 

(reduce, reuse, recycle) later extended to the 6Rs (reduce, reuse, recover, redesign, 

remanufacture, recycle) concept which have been adopted for sustainable manufacturing 

(Kutz, 2007). The next paradigm shift will focus on transforming the traditional single life 

cycle and open-loop circulation of materials to multiple life cycle and closed-loop circulation. 

Industrial ecology biological analogy and Ricoh ―comet circle‖ for green supply chain (Ricoh, 

1994): There are many ways to close the loop of material, but the smallest loop being the 

most desirable as it will require less resource to retain the value of the product and get it back 

to the user. In this research, the focus is on the resource flow in the factory and therefore the 

same concept is applied at factory level instead of including wider elements.  

3.3 Tools for Sustainability 

The previous section has presented concepts and perspectives for sustainability. Many 

child-concepts have been developed to support sustainable development at various levels of 

activity, such as industrial ecology (Frosch and Gallopoulos, 1989) and cradle-to-cradle 

design (McDonough and Braungart, 2002). Other research fields for industrial sustainability 

are developing and rapidly growing, such as Product-Service Systems (Baines et al., 2007) 

and whole supply chain integration with the design of products and production systems 

(Srivastava, 2007; Haapala et al., 2008). These concepts can be difficult for industry to 

translate into practical measures. While it is important that all companies keep a holistic 

vision on objectives that are consistent with the definition of sustainability, the 

implementation of sustainability activities is proper to the systems specificities, conditions 

and current state of performance.  
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Existing tools for environmental performance evaluation and improvement can be sorted 

into four categories (Glavič and Lukman, 2007; Robèrt, 2000; Baumann and Cowell, 1999; 

Finnveden and Moberg, 2005).  

Table 3.2. Tools for environmental performance evaluation and improvement. 

1) Assessment, monitoring 

and inventory tools 

These tools are used to quantify the system‘s performance 

and to identify issues, i.e. areas of improvement. 

2) Engineering, design and 

improvement tools 

These tools are used to generate improvement options to 

address a specific issue.  

3) Environmental policies and 

enforcement tools 

These tools provide the structure and favourable conditions 

to incentivise the implementation of improvements. 

4) Prioritisation, management 

and decision-making tools 

These tools are used to specify the procedure for 

implementing improvements. 

Selection of the appropriate tools must take into consideration the object of study and the 

types of impacts of interest (Finnveden and Moberg, 2005). These four categories reflect the 

different topics considered and steps needed to move towards sustainable manufacturing. The 

first step is to quantify the system‘s performance (assessment tools). The next step is to set 

targets and determine what the options are to improve the system (improvement tools) and 

finally to choose the best option to achieve the defined targets (decision-making tools). An 

additional element to consider is policies and regulations (enforcement tools) which have a 

strong influence on decision-making.  

Sustainable strategies and policies (Kerr, 2006) as well as supporting metrics (Figge et al., 

2002; Labuschagne et al., 2005) to assess performance and quantify the contribution to the 

triple bottom line—people, planet and profit (Elkington, 1997)—are well-developed. Policy 

and enforcement tools are crucial to promote and encourage the implementation of 

environmental performance improvements. Policy instruments can either be used as minimum 

standards or as guiding principles to go beyond regulatory levels. They can be local policies 

used internally by individual companies (Midilli et al., 2006) or economy-wide to support the 

development and implementation of sustainable technologies (Sandén and Azar, 2005). 

Typical policy options (Kolk, 2000) are regulations such as emissions and technology 

standards or materials prohibition; financial incentives and disincentives in the form of 

subsidies for research, effluent taxes and waste disposal fees; marketable permits such as CO2 

emissions permits and tradable offsets; and voluntary agreements, target setting and planning. 

In order to set targets and move towards sustainability, one must first understand the 

impact of the business on the environment, i.e. it needs to be measured. Sustainability 

performance assessment looks beyond classic economic factors (payback time and return on 

investment). Societal improvement, carbon footprint reduction and efficiency improvement 

need to be taken into account. There is a multitude of assessment tools and indicators 

available to quantify performance and progress such as life cycle assessment (LCA) 

(Baumann and Tillman, 2004) and material flow analysis (MFA) (Brunner and Rechberger, 

2004). Other tools such as ecological footprinting (Wackernagel and Rees, 1996) and 

sustainability indicators (Hak et al., 2007) are multi-dimensional and can account for social, 

economic, environmental impacts, water, energy, materials, greenhouse gas emissions and 

whether the product is recyclable or reusable. 

In particular, LCA is a fundamental assessment tool to evaluate the environmental impact 

of a product across its entire life. It is clearly defined and its use standardised (ISO Life Cycle 

Assessment guidelines). However, the requirements in terms of money, time and data 

collection effort are significant. Similarly to other tools, the complexity of the LCA 
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methodology can be prohibitive (Ahlroth et al., 2011). This often prevents the application of a 

complete LCA and limits the application to a (subjectively) simplified version which can 

provoke controversy: some companies are using simplified LCA to prove the superiority of 

their product over competitors‘ ones by making ―convenient‖ assumptions. Some rigorous 

methodologies for simplified LCA have been introduced to avoid such misuse of the tool 

(Mori et al., 2000). 

Assessment tools can also be used with management tools to prioritise improvement 

options and make informed decisions about product design, distribution and use. They 

encourage accounting for all resources, including not only material for the manufacture of a 

product but also energy and consumables, in Life Cycle Costing (LCC)—an important driver 

for sustainable manufacturing. The integration of environmental considerations must occur 

during the earliest stages of product design as decisions taken early have a greater impact on 

the overall system‘s performance (Müller et al., 1999; Keoleian and Menerey, 1994). This is 

typically the case with process-oriented and product-oriented P2 which contrasts with the end-

of-pipe approach. P2 improvements include eco-efficiency (Kuosmanen and Kortelainen, 

2005), dematerialisation (Cleveland and Ruth, 1998) and substitution (Lifset and Graedel, 

2002). A typical improvement tool for the design stage is Design for Environment (DfE, also 

called eco-design) which is a popular approach for environmental performance improvement. 

DfE integrates environmental considerations over the life cycle of the product in the early 

stages of product design (Allenby and Richards, 1994). Similar concepts are Design for 

Assembly and Disassembly, Design for Recycling or Recovery, which are often referred to as 

Design for X strategies or DfX. 

As illustrated by LCA and DfE, existing tools for environmental performance evaluation 

and improvement are well developed; but they focus on products and encompass more than 

what a manufacturer has immediate control over. Manufacturing system design tools are 

notably absent here, especially when considering the boundaries of gate-to-gate where 

individual companies‘ opportunity to improve through immediate control is highest. 

Techniques and supporting tools tend to be discipline specific and tend not be used across 

boundaries. For instance, techniques for production system analysis are deployed separately to 

those of building systems and facilities management. These areas are all generally within the 

full control of companies and have potential to benefit from an ecosystems view that could 

provide opportunities to remove local optimisation and to have shortest path closed loops such 

as energy reuse. 

Advances in information technology, more powerful tools have been developed to 

support P2 in early design stage (both for products and processes). These tools enable the 

modelling, simulation and analysis of interconnected, complex systems such as production 

systems. Various modelling and energy analysis tools have shown possible to provide tangible 

benefits towards sustainable manufacturing (Gutowski et al., 2009; Heilala et al., 2008; 

Michaloski et al., 2011; Herrmann and Thiede, 2009; Fröhling et al., 2012). While these tools 

are helpful to support improvements, they do not provide a practical approach and overall 

structural framework for the users across functions to identify inefficiencies or improvement 

options for resource efficiency. Therefore, guidance is required on how to achieve sustainable 

improvement in manufacturing. 

3.4 Chapter Summary  

It is now widely recognised that the natural ecosystem capacity to produce resources and 

assimilate waste is exceeded. It is becoming urgent to make a major shift in the way we 

produce goods and consume resource. Manufacturing is responsible for the efficiency with 
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which resources are transformed from raw material to economically valuable goods and 

therefore has an important role to play in the move towards a sustainable society. 

Sustainability and Sustainable Development are well-established concepts. They are 

commonly viewed as multidisciplinary since they are composed of three, sometimes four, 

dimensions: society (people), environment (planet), economy (profit), and sometimes 

technology (Jovane et al., 2008; Elkington, 1997; Lovins et al., 1999). This research focuses 

on the environmental dimension and considers technology as a means to reach sustainability 

objectives. Social and economic aspects are positive side-effects of the environmental 

activities undertaken in the industrial system. 

Other well-established concepts and approaches addressing environmental issues at a 

systems level include industrial ecology (Graedel, 1994), green supply-chain management 

(Beamon, 2008), and the ‗Rs‘ strategies of Reduce-Reuse-Recycle (Sarkis and Rasheed, 

1995). Although the volume of literature in the area of industrial sustainability is growing 

quickly, there is a gap in guiding manufacturing companies to bring sustainability into 

practice. The next chapter reviews industrial practices in order to understand the link between 

high-level concepts and improvement practices conducted in the manufacturing industry. 

The literature also highlighted the need to systematise improvement activities in 

manufacturing using tools which can support manufacturing companies in analysing their 

current performance and improving it. A wide range of tools have been developed to assess 

the environmental impact of industrial activities and to change the way products are 

manufactured and the way services are provided to customers (Robèrt et al., 2002; Allwood, 

2005; Seliger, 2007; Graedel, 1994; Ayres and Ayres, 2002). These tools for environmental 

performance evaluation and improvement are well developed, but they are insufficient to use 

in their current form to support factory improvements, failing to offer a process rather than 

product perspective. This research supports the development of such a tool as introduced in 

Chapter 7. 
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Chapter 4 SUSTAINABLE MANUFACTURING PRACTICES 

Part of this chapter has been published in Despeisse, M., Mbaye, F., Ball, P. D. and Levers, A. (2012), 

"The emergence of sustainable manufacturing practices", Production Planning & Control 23(5), pp. 354-

376 of which the thesis author was the main contributor. 

The area of sustainable manufacturing is rapidly gaining the interest of manufacturers. 

But yet there are few quality reports on current levels of sustainable manufacturing activities 

in companies. In this chapter, industrial practices for more sustainable manufacturing are 

collected from various sources and analysed to give an insight into the application of the 

concepts and approaches found in the literature. The initial theory building is described to 

show how the findings were obtained from the analysis of these sustainable manufacturing 

practices. 

 

4.1 Introduction 

4.1.1 Focus of this chapter 

Sustainable manufacturing can be thought of as a manufacturing strategy that integrates 

environmental and social considerations in addition to the technological and economic ones. 

Environmental activities have long been associated with a negative impact on business 

performance but this assumption has been proved wrong by many researchers (Rusinko, 2007; 

Menzel et al., 2010). An illustration of both the economic and environmental benefits is 

apparent in the cost savings due to energy reduction and waste minimisation. Sustainable 

manufacturing field of research is rapidly developing and there are no established definitions 

or boundaries for studying manufacturing systems‘ sustainability performance.  

This chapter focuses on the environmental aspects of sustainable manufacturing practices 

with an emphasis on on-site solutions rather than ‗product life cycle‘ or ‗product supply 

chain‘. In particular the work focuses on how resource efficiency improvements within a 

manufacturing system were achieved and proposes an approach by which these improvements 

can be examined and classified. Thus the researcher chose a cross-sectional case study 

method. Cases were collected from various sources dedicated to the topic of manufacturing 

operation improvements for environmental sustainability. Cases were then divided into 

individual sustainable manufacturing practices (SMPs) defined as an action or set of actions 

improving the manufacturing system‘s environmental performance. The practice analysis 

resulted in the identification of improvement mechanisms which will be used in the next 

chapter to formulate the generic tactics and allow the generalisation of SMPs across industry. 
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4.1.2 Objectives and deliverables 

A total of 967 SMPs were collected and analysed (peer-reviewed: 38 cases from which 

165 practices were extracted; specialised websites: 207 cases, 802 practices). The complete 

database of practices is available in appendix. The collection and analysis of practices was 

done in three phases.  

The researcher conducted a first data collection during a previous study in 2009 to create 

the structure of the database which was further populated collaboratively with a MSc student
2
 

to reach a total of 210 practices from 60 source cases (Despeisse et al., 2012c). The A-, B- 

and C-labels emerged from this original case collection and analysis. The second phase of the 

data collection was conducted as part of the THERM project: further cases were collected by 

a third party
3
 to reach a total of 650 practices (from 150 source cases). This second phase 

helped to improve the terminology used to formulate tactics (Chapter 5) and improve the 

structure of the library of tactics (Chapter 6). Finally, a third collection phase was conducted 

by the same third party as part of the THERM to check for completeness of the SMPs 

coverage. With 300 additional SMPs collected from ~100 source cases, no further tactics were 

identified. Therefore the case collection was stopped and the resulting database of SMPs was 

used to validate the final tactics library. 

This chapter reports the findings of all phases of the cross-sectional case study: 

 Selection of sources for the case collection as they offer different types of information 

on SMPs;  

 Analysis of industrial case reports revealed that the terminology and interpretation 

change depending on the source of information and scope of activities;  

 SMPs categorisation and introduction of various sets of labels (categorisation criteria) 

used to structure the SMPs database and ease the subsequent analysis; 

4.2 Sourcing, Selecting and Interpreting Case Study Reports 

4.2.1 Sustainable manufacturing cases sources 

The data collection focuses on environmentally-sound practices in manufacturing. As 

these practices are increasingly common and more often reported since the late 1990s, the 

volume of information and the diversity of sources are ever increasing in academic 

publications and trade literature. This growing body of knowledge and information is difficult 

to fully capture. Therefore it is important to clarify the purpose of the data collection and to 

carefully target the relevant information for this purpose. This case collection aims to identify 

the mechanisms of improvement for sustainable manufacturing in two steps. First the different 

types of existing activities for sustainable manufacturing must be recognised. In other words, 

the case collection must focus on the breadth of the landscape of SMPs, but not necessarily a 

large number SMPs or a statistically representative sample. This would be useful to identify 

the most common practices or to analyse trends in various industrial sectors or in specific 

performance improvement. Instead the main mechanisms of change need to be identified. 

Thus the second step consists of identifying patterns and extracting the generic principles for 

sustainable manufacturing improvement so it can be generalised across industry by removing 

                                                 

2
 Fatou Mbaye, MSc student at Cranfield University (Mbaye, 2009). 

3
 Ioannis Mastoris, employed by Cranfield University for the THERM project (2010). 
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the context-specific elements of the practice. In turn this can help manufacturers to improve 

their sustainability performance by replicating other companies‘ SMPs. 

Sources are diverse and given the exploratory nature of the work, trade literature was used 

in addition to academic sources. Interestingly, academic and trade literature provide 

complementary aspects and perspectives on SMPs. The academic publications containing 

SMPs include journals, books and conference proceedings on various sub-topics of 

sustainability such as eco-efficiency, cleaner production, industrial ecology and waste 

management. Trade literature considered for data collection includes corporate websites, 

environmental and sustainability reports, good practice repositories on organisational and 

governments‘ websites dedicated to specific issues such as energy efficiency, boilers and 

motors for steam and compressed air systems, or water treatment.  

4.2.2 Case selection 

The selection of industrial cases for the analysis was based on the nature of the 

information reported. Cases were selected to only include the ones allowing a consistent and 

precise analysis of practices reported. One of the major difficulties encountered was on the 

terminology used in the reports. This issue will be discussed in the next sub-section. 

Publications presenting only conceptual approaches or anecdotal evidence were excluded. The 

cases must also contain sufficient amount of details to make objective observation and 

interpretation of the activities having a direct effect on sustainability performance. 

Additionally cases reporting off-site solutions or involving the intervention of external actors, 

such as off-site recycling or purchase of renewable electricity, were also excluded. Some 

cases containing purely organisational measures (training, workshop, raising awareness, 

creation of responsibility for sustainability issues) and health & safety measures were 

included in the database of practices but not analysed. They are an important part of the 

implementation process by actively engaging employees in the projects while ensuring 

minimum risk for workers. However, they were not taken into the next steps for analysing 

practices: they do not correspond to any direct effect on sustainability performance of 

resource flow and technological components of the model.  

Organisation and government‘s websites were used first as they were the most convenient 

sources to access and the cases reported the easiest to capture. They provided libraries of 

reports containing manufacturing companies‘ best practices. The format of these reports was 

consistent, which was a great advantage for collecting data across all cases. They also 

contained sufficient amount of details to understand what the company did and what the 

benefits of implementation were. The emphasis of these reports was on the return on 

investment and savings accomplished rather than on informing the reader how such good 

practices could be reproduced elsewhere. Despite this lack of information, cases from 

organisation and government‘s website were selected for the case collection. 

Corporate reports and websites, such as environmental pages of brand name 

manufacturers, were also considered as a potential source of cases. They provided few cases 

and hardly any technical details on the activities. Again, the focus was on the positive impact 

for conducting sustainability projects for the environment, the local community and 

employees, and of course for the business. The reports provided insufficient details to clearly 

understand what the company did and the benefits reported did not offer an insight to track 

back the means by which the performance was improved. Although these reports and websites 

were encouraging and showed that sustainability can pay, they were not selected for the case 

collection. 
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Finally, peer-reviewed sources presented approaches or examples of SMPs based on 

surveys or analysis of industrial practices with some occasional company cases. Books and 

journals on specific topics, such as waste management, also offered numerous insightful 

practices. As with the other sources, they rarely provided information about how the 

improvements were identified at the first place. Moreover they often contained fewer details 

on the technical content of the activities. In comparison, companies‘ best practices from 

specialised websites provided quantitative data on the equipment, inputs and outputs, and the 

benefits from the implementation. Journal papers occasionally contained such quantitative 

details when related to specific manufacturing processes in case studies. Most often academic 

sources offered a wider range of practices at once compared to other sources and 

consequently were selected for the case collection. 

4.2.3 Terminology and interpretation 

To find potential data sources and publications, the search keywords used were 

purposefully broad and generic at first (see Table 4.1). These keywords came from the 

literature review and correspond to the key concepts and themes related to sustainable 

manufacturing. Using various scientific database and classic web search engines, the number 

of hits was extremely high. However, sorting the search results by relevance allowed the 

identification of main sources of information. Only later as the case collection progressed and 

the researcher learnt from the first observations, more specific keywords were used to narrow 

down the search to more likely relevant cases (see Table 4.2). As the keywords were generic, 

the search spanned across industrial sectors and tried to capture a wide variety of activities. 

The number of hits for certain combinations of keywords was still very high. Therefore 

further filtering and selection of relevant cases was required. 

The second set of keywords in Table 4.2 allowed the researcher to target more specific 

areas to complete the case collection using academic publications. The first column limits the 

search to the disciplines related to environmental sustainability, the second identifies the 

manufacturing industry, the third filters cases, the fourth narrows down to specific 

improvement targets and the fifth describe the type of activity. Keywords from the three first 

columns were systematically included in searches and usually gave more than 1,000 results. 

The last two columns were used further narrowed down the results. When the number of hits 

remained above 100, results were filtered using the database search tool by selecting or 

excluding certain source titles or subject areas (such as medicine), or alternatively by 

searching only among papers‘ keywords. 

Table 4.1. First set of search keywords to identify potential sources 

Concepts and themes used as keywords 

sustainable manufactur*, environment* conscious manufactur*, environment* responsible 

manufactur*, green manufacturing, clean* production, industrial ecology, eco-efficiency, 

resource productivity, dematerialisation, material substitution, energy efficiency, waste 

management, water conservation 

Table 4.2. Second set of search keywords to narrow down the search 

Discipline Sector Filter cases Target Type of activity 

sustainab*, responsible, 

pollution prevention, 

environment*, green, 

clean, eco-friendly,  

low-*,zero 

industr*, 

production, 

manufactur*

, process 

case, 

practice, 

application, 

implement*, 

example 

energy, material, 

waste, water, air, 

carbon, emission 

avoid*, eliminat*, 

reduc*, minimis*, 

reus*, recycl*, 

recover*, conserv* 
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In the trade literature (organisations, government and corporate sources), the libraries of 

best practices were accessed via short articles or longer reports. An observation of the 

terminology used in some of these sources revealed a partial mismatch with the vocabulary 

used in academic literature on sustainable manufacturing. A typical example is the use of P2 

for effluent treatment practices in trade literature when this would be labelled pollution 

control in peer-reviewed literature. A second example is the use of waste recycling for any 

kind of waste treatment other than landfill in corporate cases, including energy recovery 

through incineration. In contrast peer-reviewed literature would more often exclude waste-to-

energy as a recycling activity due to the destructive nature of this type of material treatment. 

Peer-reviewed literature also differentiates the various options for closing the loop of 

material: reuse, remanufacture, recycle, upcycle and downcycle depending on the path taken 

by material for its next life cycle. The terms reuse, recover and recycle are often used as 

synonyms to cover all these options in trade literature. 

Another difference in terminology within academic literature was also observed during 

the literature review and helped develop the second set of keywords. Depending on the 

perspective of the publication, different vocabulary and definitions are used. There are 

considerable debates on the use of sustainable as an adjective as it is argued that it could 

mean anything the user wants. For instance, some authors consider that one cannot use 

sustainable if the primary focus is on only one or two of the three pillars of sustainability 

(environmental, social or economic). The title of this research illustrates the debate well: the 

term sustainable manufacturing (rather than environmentally conscious or green 

manufacturing) is used although the primary focus is on the environmental impact linked to 

resource extracted from and emissions released to ecosphere. However, the overall purpose of 

the research has wider implications for the economic and social performance of the company 

(see  Chapter 1). Consequently, the researcher chose to keep the word sustainable to explicitly 

show her considerations for social and economic issues while focusing on improving the 

environmental performance. 

Finally a terminology inconsistency can be found depending on the theme and scale of the 

activities reported. Taking the example of P2 once more: when considered as an approach by 

itself, it means local on-site solution only; but when considered as a subset of industrial 

ecology, it may include off-site solutions with the concept of food web and industrial eco-

parks. This distinction has been discussed by various authors (Van Berkel et al., 1997; 

Oldenburg and Geiser, 1997). Therefore there is a challenge in linking the cases to theme and 

concepts in sustainable manufacture and in turn could be a source of error (or at least bias) 

when selecting, categorising and analysing the cases. 

4.3 Categorising Practices 

After sources were identified and cases selected, each case was broken down into 

individual practices. The cases selected for this analysis presented examples of good practices 

carried out to improve the sustainability performance of manufacturing operations. The focus 

is on practices conducted on-site, involving physical changes (as opposed to behavioural) and 

sufficiently detailed to understand what was done. Each case was then broken down into 

individual practices (or SMPs) as one case usually contains many activities improving the 

manufacturing system‘s environmental performance. For example the first case collected 

(―Compressed Air System Improvements Increase Production at a Tin Mill‖) was focus on a 

single system but contained three practices which contributed to the performance 

improvement. This case reported a compressed air system improvement achieved by (1) leak 

reparation, (2) installation of new compressors to replace old compressors with new high 
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efficiency ones, and (3) installation of a new compressor sized for a specific process demand. 

Each practice gives an example of what a company can do to achieve compressed air system 

improvement. In other cases, practices were interrelated as for instance with (1) waste 

collection and treatment enabling (2) reuse; or (1) improving controls with (2) the installation 

of new equipment. 

Individual practices could be categorised as they have distinct features which help 

understanding the mechanism of change. Groups of similar practices were established based 

on these features. The practices were then mapped against sets of labels. These labels helped 

to understand how the resource efficiency was improved: 

 A-labels correspond to the system ALTERATIONS, e.g. describe the type of 

modification (technical or physical change, organisational or operational manage) and 

the elements targeted (focus on resource flows or technology); 

 B-labels correspond to the targeted BENEFITS and link to BEST PRACTICES, e.g. 

describe the nature of the flow affected by the practice (inputs: energy, water, 

material; outputs: air emissions, wastewater, solid waste); 

 C-labels correspond to who CONTROLS the improvement activities, e.g. describe the 

functional responsibility to implement the SMPs in the factory. 

Each set of label correspond to a different perspective on the improvements presented in 

the cases. The next sections present in more detail the perspective adopted by describing the 

criteria of categorisation and their purpose / how they can be used. 

4.3.1 A-labels: ALTERATIONS to processes and resource flows 

Adopting the ecosystem view of manufacturing activities, each practice (improvement of 

a given system) can be represented by a simple diagram using box objects for technological 

components (equipment, machine, process) and arrow objects for resource flows. The 

ecosystem view particularly focuses on the resource flows and considers technology as the 

transformation process of these flows from one form (input) into another (output). The useful 

output is called product, whether it actually is the manufactured part, assembled product or 

energy utility from a facility process. Waste corresponds to all other outputs, including losses 

in the form of noise, waste heat radiating from processes or emissions to air or water from 

chemical processes. It is important to note that waste flows are considered as potential 

resources unless they are not recoverable or when they leave the boundaries of the system. 

Some elements such as catalyst chemicals can be considered both as a resource flow or 

part of the technological component. In effect, the catalyst plays the role of modifying the 

resource flow in the same way technology does except that it flows with the product: it is an 

input to a process and comes in an unchanged form as an output. The same can be said of 

packaging: its role is to ensure transport of material from one point to another and eventually 

to protect to the product. It becomes a waste output which can be reused either directly or 

after treatment to restore the value of the material and allow reuse. 

In this categorisation, practices were not clustered according to classic criteria such as 

operational characteristics or functions, but on the model representation of the system and the 

way improvements modified the model. The method used four clusters (called A-labels, A1 to 

A4) corresponding to the type of modifications, e.g. system ALTERATIONS made to the 

model representation as illustrated in Figure 4.1. The four A-labels correspond to the type of 

modification and the components targeted. The A-labels were the most powerful to code 

SMPs and thus were used to structure the tactics library (Chapter 5). 



Chapter 4   Sustainable Manufacturing Practice 

37 

As identified in the literature review (Chapter 3), the two main technical improvement 

approaches identified are technological change and process management (Gupta and 

Cawthon, 1996; Raymond et al., 1996). Therefore the two types of modification possible are: 

change system‘s components (CHANGE: add, replace or remove) or change the parameters of 

an existing component (MANAGE: timing and magnitude, e.g. operating time and set points). 

Additionally, there are two types of components: physical infrastructure and utilities 

considered as technological components (TECHNOLOGY: processes, machine/equipment, 

group of machines or processes), and all inputs and outputs considered as resource flows 

(RESOURCE: material, energy, water, chemicals, waste, etc.). Consequently the four A-

labels are: A1 Manage Resource, A2 Change Resource, A3 Manage Technology and A4 

Change Technology. The A-labels were the most useful to understand the mechanism of 

change observed in the SMPs and therefore were used as a basis to structure the initial library 

of tactics. 

 

 

Figure 4.1. Four A-labels and model modifications 

4.3.2 B-labels: targeted BENEFITS and BEST PRACTICE categories 

The B-labels correspond to the targeted BENEFITS, e.g. the nature of the resource flow 

affected by the SMPs, and link to BEST PRACTICES. These are the most generic description 

of inputs and outputs flows corresponding to the main environmental impacts: resource 

depletion, water scarcity, and air, water and soil pollution (Salvato et al., 2003). Although 

there are sector-specific environmental considerations, all environmental impacts are treated 

in the same way in this analysis. It is up to the user to make a decision regarding the 

prioritisation among different environmental improvements based on their targets (energy 

reduction, CO2 abatement, zero waste, etc.). Emissions, wastes and resource usage must be 

monitored for regulatory purpose, but they can also help identify inefficiencies and areas 

requiring improvement.  

Reducing costs associated with energy and material inputs has long been low priority but 

the trends in raw materials and fuel prices have changed this perception. Improving resource 

efficiency has proved to be a cost-effective method in most cases. Thus energy and material 

were selected as classification criteria in the B-labels.  

Energy can be further categorised into groups of fuels (electricity, gas, renewable, etc.) or 

end-users (electrical appliances, heating and cooling, etc.). Energy can also be an output 

(waste energy), but the B-labels do not differentiate it from energy input as energy is readily 

available for reuse as input, whereas solid and liquid forms of waste usually require treatment. 

Instead, the negative output or undesired environmental impact associated energy 
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consumption is the direct and indirect emission of airborne pollutants. Direct emissions result 

from the combustion of fossil fuels generating CO2, SOX, NOX, particulate matter (PM) and 

other gases that cause atmospheric pollution and significantly contributes to global warming. 

Indirect emissions are associated with electricity consumption depending on the energy mix at 

the source (energy supplier). The benefits from energy efficiency improvements are directly 

linked to emission reductions and thus air emissions was chosen as a classification criterion. 

Material or matter can be classified in groups sharing similar properties: metals, polymers 

(or plastics), semiconductors, ceramics, composites, etc. For manufacturing, the two dominant 

material groups are metals and plastics which are part of the manufactured product. The 

consumable materials (before it becomes waste) which are not part of it are treated similarly 

whatever group they belong to and therefore are under a separate label (consumable). Matter 

does not have to be solid. It can also in any other form; therefore water and air are also 

materials. However, water is taken separately as it benefits from special treatment aside from 

the common one previously cited. Thus water and wastewater are separate classification 

criteria. 

 

Figure 4.2. Six B-labels and examples of categories for each, and sub-categories for B1 

B1 Energy

B11 Electrical energy
B111 Compressors

B112 Motors and fans

B113 Pumps

B114 Chillers

B115 Electric-based process heating systems

B116 Lighting

B117 Renewable electrical energy sources

B118 Other electrical energy usage and sources

B12 Thermal energy
B121 Process heating

B122 Fuel-based process heating
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B124 Hot water

B125 Cooling water/chillers

B126 Renewable thermal energy sources

B127 Other thermal energy sources

B13 Mechanical energy (→ links to B11)
B131 Compressors

B132 Motors and fans

B133 Pumps

B134 Other mechanical energy

B14 Other types of energy

B2 Air Emissions

B21 Thermal energy waste

B22 CO2 emissions

B23 VOCs emissions

B24 Other emissions

B3 Water

B31 Water as energy carrier

B32 Other water usage

B4 Wastewater

B41 Wastewater treatment

B42 Toxic wastewater treatment

B43 Reuse of wastewater
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B53 Consumable
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(Best Practices)
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The six B-labels are shown in Figure 4.2. The B-labels for input flows are: B1 Energy, B3 

Water and B5 Material; and for output flows: B2 Air Emissions, B4 Wastewater and B6 Solid 

Waste. It is possible to create more detailed categories under each B-label to further specify 

the flow type and subcategories for best practices as proposed with B1 Energy in Figure 4.2. 

The purpose of this B-label classification was to allow access to specific practices based on 

the targeted benefits (energy reduction, CO2 emissions abatement, water conservation, 

toxicity, ―zero waste‖, etc.) as well as allowing a keywords search when looking for practices 

related to specific technologies. Therefore the B-labels relate to specific technologies and 

resource types and were not used for the creation of the library of generic tactics. 

4.3.3 -labels: CONTROL over improvement activities 

Finally, the eight C-labels shown in Figure 4.3 correspond to the functional responsibility, 

e.g. who has CONTROL over the area of improvement. The purpose of the C-label 

classification is to narrow down the search for practices to specific functional areas of the 

company according to the responsibility of the people involved in the improvement activities. 

Some practices could be carried out by a single function (e.g. facility maintenance) while 

others can involve multiple functions (e.g. factory-wide change such as modification to 

compressed air supply pressure or cooling water temperature). This is an important aspect of 

practice implementation as functional responsibility can be a barrier if the practices are 

affecting elements outside the area on which they have control. Similarly to the B-labels, the 

C-labels were not used for the creation of the tactics library. 

 

  

Figure 4.3. Eight C-labels and responsibility hierarchy 
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4.3.4 Other potential criteria 

Classification based on complexity was first considered: magnitude of change would be 

assessed based on the number of system elements involved in the improvement, i.e. two or 

less elements involved in the improvement would correspond to a ―minor‖ change while three 

or more elements involved in the improvement would correspond to a ―major‖ change. 

However this classification would be highly dependent on the way the system is represented: 

one element can represent a process composed of five pieces of equipment and therefore the 

improvement, although involving only one element and thus classified as ―minor‖ change, 

could affect more than three machines and in effect would become a ―major‖ change. In 

addition, the complexity of an improvement can also be highly subjective: modifying process 

controls can be considered as a simple modification on equipment or process management but 

be considered as a complex change for the company as it may result in further changes on 

other processes. 

D-labels based on economic aspects were also considered. These labels are based on 

initial investment cost and/or payback time. This classification is highly subjective as the 

definition of ―low‖ or ―high‖ financial requirements differs from one company to another. A 

solution to this subjective classification was to create an intermediate D-label ―medium‖ 

which allows the user to evaluate the financial requirements based on personalised criteria. 

However this D-label classification was removed due to the difficulty in classifying practice 

in ―low‖ or ―high‖ which resulted in the majority of collected practices to be in the ―medium‖ 

class. The only way to make sense of this ―medium‖ class would be to include a threshold 

value so that the user could filter practices based on his personalised criteria. But this filtering 

requires a systematic quantification of the cost of improvement for all practices when only a 

minority of them contained such information. Therefore the D-label classification was 

considered of poor usability. 

4.4 Analysing Practices 

Industry is one of the single largest energy consumers with 20% of the final energy 

consumption in the UK and 25% in the European Union (Eurostat, 2012). Reducing costs 

associated with energy has long been low priority but the trend in energy price has changed 

this perception. Improving energy efficiency has proved to be a cost-effective method in most 

cases through good housekeeping. Other areas in manufacturing facilities and buildings are 

being targeted for energy savings such as lighting, insulation of steam and chilled water 

networks, and leak reparation. In many cases, the company culture and employee engagement 

played an important role in energy reduction activities. 

In the case collection conducted for this research, there is a good distribution of SMPs 

across the four A-labels (Table 4.3 and Table 4.4) showing that all types of modification are 

being used in industry: improvements can focus on the technology as well as on the resource 

flows; and both improved usage of resource or existing processes and substitution of resource 

or technology are widely used. It is important to note that the most common type of 

improvement is Manage Equipment which means that improved environmental performance 

could be achieved without significantly changing the manufacturing processes, e.g. without 

replacing equipment. 

In the practice database, most SMPs collected are energy efficiency improvements 

through improved equipment use as opposed to technology substitution (Table 4.3). Then 

material efficiency mainly through resource substitution and wastewater treatment and reuse 

are the most common practices, followed by emission reduction through substitution practices 
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and waste reduction through waste management practices. Finally, some cases focused on 

water use reduction which are often connected to wastewater treatment and reuse practices. 

Looking at the responsibility of implementation (C-labels), most SMPs are associated 

with manufacturing process engineering and facility management. These improvements are 

mainly energy reduction practices through improved process management or equipment 

substitution (Table 4.4 and Table 4.5). Then operations management and manufacturing 

system engineering were both focused primarily on technology improvements. 

 

Table 4.3. Practice database: A- and B-labels 

  Manage  

Resource 

Change  

Resource 

Manage  

Technology 

Change  

Technology 

TOTAL   A1 A2 A3 A4 

Energy B1 130 90 324 219 523 

Air emissions B2 32 51 20 52 109 

Water B3 41 24 31 31 76 

Wastewater B4 105 72 15 65 162 

Material B5 73 99 39 60 179 

Solid waste B6 81 64 16 30 112 

TOTAL 370 291 411 370 
 

 

Table 4.4. Practice database: A- and C-labels 

  
Manage  

Resource 

Change  

Resource 

Manage  

Technology 

Change  

Technology 

TOTAL 
  

A1 A2 A3 A4 

Product /  

Product Designer 
C1 3 10 

 
4 12 

Building design /  

Architect 
C2 1 

  
5 5 

Facility Equipment /  

Facility Manager 
C3 105 107 67 160 263 

Manuf. Equipm. Change /  

Manuf. Systems Engineer 
C4 30 29 42 139 151 

Manuf. Process /  

Plant Manuf. Engineer 
C5 123 83 188 137 337 

Manuf. Equipm. Mngt /  

Operations Manager 
C6 32 23 88 89 155 

Equipment Maintenance /  

Plant Maintenance 
C7 3 2 107 3 111 

Equipment Operations /  

Shop Floor Staff 
C8 32 27 5 7 36 

TOTAL 370 291 411 370 
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Table 4.5. Practice database: B- and C-labels 

  Energy 

Air 

emissions Water 

Waste- 

water Material 

Solid 

waste 

TOTAL 
  

B1 B2 B3 B4 B5 B6 

Product /  

Product Designer 
C1 1 1 

  
10 4 12 

Building design /  

Architect 
C2 3 

 
1 1 1 1 5 

Facility Equipment /  

Facility Manager 
C3 203 16 22 32 29 13 263 

Manuf. Equipm. Change /  

Manuf. Systems Engineer 
C4 128 9 14 12 11 8 151 

Manuf. Process /  

Plant Manuf. Engineer 
C5 246 14 24 22 41 38 337 

Manuf. Equipm. Mngt /  

Operations Manager 
C6 115 10 13 12 22 8 155 

Equipment Maintenance /  

Plant Maintenance 
C7 90 4 9 3 10 4 111 

Equipment Operations /  

Shop Floor Staff 
C8 6 1 

 
4 12 22 36 

TOTAL 523 109 76 162 179 112 
 

 

4.5 Chapter Summary  

Extensive literature can be found on conceptual models and means of change with a 

particular focus on product design, end-of-life management, technological change, life cycle 

and supply chain management (as discussed in the literature review, Chapter 3). Despite the 

growth in sustainable manufacturing research as well as in industrial practice, it is still 

difficult to find information on how to improve manufacturing operations and resource flows 

from a manufacturer‘s perspective. Moreover, cases available report only success stories with 

no cases of failure and little information about difficulties encountered or barriers to 

implementation (Despeisse et al., 2011). The absence of what the drivers and mechanisms are 

to implement SMPs can only hinder the wider adoption of the improvements achieved by 

manufacturers. 

The available practices show that it is possible to improve the sustainability performance 

of manufacturing activities through practical measures to enhance the resource productivity. 

Efficient and effective material and energy use can reduce natural resource inputs and waste 

or pollutant outputs by keeping activities of the technosphere separate from ecosphere to 

avoid environmental degradation. Current research in the areas of manufacturing technologies 

and systems analysis are increasingly linked to resource productivity (mostly energy 

efficiency) and environmental assessment in addition to classic economic considerations.  

In this chapter numerous cases of sustainable manufacturing were collected. The purpose 

of this case collection was to understand how companies are identifying improvement 

opportunities. SMPs were collected from two types of sources: 

 Research papers with strategies, principles and approaches for sustainable 

manufacturing, sometimes based on a survey of industrial practices, or on analysis of 

current practices. These sources provided a wide range of practices but few details on 

the application of the practice or on the technical content of the activities. 
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 Internet website on best practices, examples from companies. These sources provided 

quantitative information on the activities and the results from the implementation, but 

few details on the difficulties encountered and how improvements were identified. 

Most cases focused on the benefits of implementation rather than on the mechanism to 

identify improvements. However, the benefits reported can be used to trace back the means by 

which the improvements were achieved. Individual practices were then categorised according 

to three different labels. The first categorisation (A-labels) is based on the type of 

modification—organisational or operational Manage vs. technical or physical Change—and 

the elements targeted—Resource Flow vs. Technology. The second categorisation (B-labels) 

distinguishes the nature of the resource flow affected by the practices (inputs: energy, water, 

material; or outputs: air emissions, wastewater, solid waste) and allows to filter practices 

based the flow type and targeted benefits (energy reduction, CO2 emissions abatement, water 

conservation, toxicity, ―zero waste‖, etc.). Finally, the third categorisation (C-labels) 

identifies the functional responsibility to implement the improvements in the factory. 

Similarly to the second categorisation, it is used to narrow down the search of practices to 

specific functional areas of the company according to the responsibility of the people involved 

in the improvement activities. 

The SMPs analysis revealed that a third of all SMPs collected included technological and 

resource change (substitution strategies) while the majority of SMPs focused on improving 

the use of existing equipment. This observation shows the role of green technologies and 

renewable resources but, even more importantly, the role of improved process management in 

sustainable manufacturing. 
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Chapter 5 TACTICS LIBRARY 

Part of this chapter has been submitted in Despeisse, M., Oates, M.R. & Ball, P.D., "Sustainable 

manufacturing tactics and cross-functional factory modelling", J. of Cleaner Production [In Press, 

Accepted Manuscript, Available online 15 November 2012]. DOI: 10.1016/j.jclepro.2012.11.008 of which 

the thesis author was the main contributor. 

The previous two chapters presented the theoretical and practical aspects of sustainable 

manufacturing and showed that strategic models can be difficult to translate into operational 

activities. This chapter introduces the library of tactics which are generic formulations that 

extract the mechanism behind the practices to allow improvement opportunities to be 

identified. Access to tactics (through data pattern analysis and logic tests) is also introduced 

as the tactics library is integrated into the improvement methodology to enable the use of 

tactics through factory modelling. 

 

5.1 Introduction 

5.1.1 Focus of this chapter 

This research focuses on sustainability in manufacturing as it has a major role to play in 

moving society towards more resource-efficient industrial systems. Although there are 

concepts for sustainability applicable to manufacturing (Robèrt, 1996; Lovins et al., 1999) and 

numerous examples of SMPs (Clelland et al., 2000; Fowler and Hope, 2007; Hesselbach et 

al., 2008; Ameling et al., 2010; Compressed Air Challenge, 2011; Bunse et al., 2011), there is 

a lack of information on how to move from these high-level sustainability concepts to the 

selection of appropriate practices. These examples of successful SMPs in various industrial 

sectors demonstrate that there are benefits in implementing sustainability improvements 

(Rusinko, 2007; Menzel et al., 2010); but the adoption of sustainability practices is not 

systematic (Madsen and Ulhøi, 2003). The literature and the case studies fail to provide the 

means by which improvements can be identified for more sustainable manufacturing 

operations and resource flows from a manufacturer‘s perspective. Examples of good practice 

are largely context specific and relate to specific problem situations. Thus it is difficult to 

understand how such improvements can be reproduced by others. 

Throughout the literature, the flows of resources in the form of material, energy, water 

and wastes (MEW) reoccur (Ball et al., 2009). The MEW resource flows must be interpreted 

in the widest forms to include not just primary material conversion but others inputs and 

wastes such as water, consumables and packaging. Using the manufacturing ecosystem model 

(Despeisse et al., 2012a), all the MEW flows through a manufacturing system are captured 

with a graphical representation. The tactics are created by extracting the mechanism behind 
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the SMPs collected in literature and formulated so that they can be widely applied to multiple 

technologies and resources. It means that tactics must be generic to capture the principles of 

improvement, but sufficiently detailed to be adapted to the specificity of the system studied. 

In order to avoid ambiguous formulations and misinterpretation, the tactics adopt a 

manufacturing language giving actionable guidelines for improving resource efficiency. 

5.1.2 Objectives and deliverables 

The aim of this research is to generalise SMPs by capturing the mechanism of change 

observed in industrial cases. While the literature proposed various approaches for 

sustainability, there is little guidance for manufacturing companies to identify sustainable 

improvements. This paper proposes a tactics library developed from a manufacturer‘s 

perspective to support the generalisation of SMPs. The findings are considered to be novel in 

that the tactics are a set of tangible guidelines to operationalise sustainability in manufacturing 

systems through improved resource efficiency which is absent from the literature. The library 

of 20 tactics was formulated from hundreds of good practice examples. The tactics correspond 

to technical measures to improve resource efficiency in the factory.  

The objectives of this chapter are: (1) to analyse the sustainable manufacturing practices 

collected (Chapter 4) by using a manufacturing ecosystem model (graphical representation); 

(2) to identify the improvement mechanisms in the SMPs and to identify patterns in the 

improvement mechanisms observed; (3) to formulate generic tactics based on each 

improvement mechanism and (4) to build the library of tactics. 

5.2 Tactics Design 

As mentioned in Chapter 4, the SMPs analysis was conducted in three phases: (1) the 

original collection of 210 practices resulted in the A-, B- and C-labels for categorising 

practices and developing the initial theory based on patterns observed; (2) more cases were 

collected by a third party to reach a total of 650 practices in a second phase which allowed to 

check the completeness and improve the structure of the tactics library; (3) finally, a third 

collection phase was conducted to reach a total of 967 SMPs and, as no further tactics were 

identified, to form the final tactics library. 

Figure 5.1 shows the main steps in designing the tactics:  

 The collection of SMPs presented in Chapter 4 was used as the basis for creating the 

tactics library. The SMPs are too specific to be reproduced by others and thus are 

difficult to generalise. Therefore, a pattern analysis was conducted to identify the 

replication logic of the data (SMPs). The practices were analysed through the lens of a 

visual representation to understand how the improvements modified the manufacturing 

system: by comparing a simplified system representation (models) before and after 

improvement, the patterns emerged.  

 From the patterns observed in the data, improvement mechanisms were created to 

translate patterns into language. But the improvement mechanisms are the raw 

outcome of the pattern analysis and are not directly usable by manufacturers to 

identify improvements. Therefore, improvement mechanisms needed to be further 

refined into tactics to match manufacturing language and allow the user to make sense 

of them and implement them.  

 The improvement mechanisms were also categorised according to the A-labels to 

identify missing mechanisms and thus missing tactics (i.e. check completeness and 

consistency). Further case collection was conducted as some tactics were not covered 
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by the initial practice database. It helped refine the content and structure of the tactics 

library. The final version of the tactics library was obtained after this second case 

collection as a third case collection was later conducted but did not result in new 

findings. 

The following sub-sections describe in more details the identification of improvement 

mechanisms and the formulation of tactics. 

 

Figure 5.1. Tactics design: data patterns, improvement mechanisms and tactics library 

 

5.2.1 Improvement mechanisms 

The work focuses on practices that improve the sustainability performance of 

manufacturing activities. The work takes a gate-to-gate perspective (on-site activities only) to 

better understand resource (material, energy, water and waste – MEW) process flows from a 

systems viewpoint. The case study collection showed that there are numerous reported cases 

of SMPs across various industrial sectors. While these cases report what was achieved, few 

provide details on how these improvements were achieved. Analysis of the SMPs against 

main themes in sustainable manufacturing strategies resulted in the creations of a best practice 

database. The aim of the case collection was to identify the improvement mechanisms of the 

SMPs and generalise them, i.e. identify the generic rules for sustainable manufacturing.  

Using the practices description, a model representation of the system before and after 

improvement can be deduced. Each type of modification made to this representation (or 

simplified model) correspond an improvement mechanism. Similar SMPs were grouped based 

on these mechanisms which are closely linked to the A-labels. Table 5.1 is an extract of the 

SMP database to show examples of practices with the corresponding improvement 

mechanism (and tactic number from Table 5.3 in next section).  
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The improvement mechanisms listed in Table 5.2 were identified by comparing the initial 

system (where the inefficiency is) and the improved system (what solution was implemented). 

In many cases, the solution appears obvious once the inefficiency is identified, such as leaks 

to be repaired or unused equipment to switch off. Therefore the most important step is to 

identify the inefficiency. The question to answer is ―what are the symptoms of inefficiency?‖ 

The cases did not explain how particular inefficiencies were identified and how solutions 

were found. 

Table 5.2. Improvement mechanisms and A-labels 

  Resource Technology 

M
a
n

a
g
e 

A1 Manage Resource  
Optimise timing or magnitude of resource flow 

Maintain value of resource flow 

A3 Manage Technology 
Optimise timing or magnitude of demand or 

supply of technology component 

Maintain performance of technology component 

Control and monitor performance of technology 

component 

C
h

a
n

g
e A2 Change Resource 

Change (add, replace or remove) resource flow 

Change waste into resource flow 

Move resource flow 

A4 Change Technology  
Change (add, replace or remove) technology 

component 

Move technology component 

The main mechanisms under A1 Manage Resource link to the timing and magnitude of 

resource flows: by optimising inputs and outputs and recognising the value of waste flows, the 

resource flows could be better managed and overall efficiency improved. Under A3 Manage 

Technology the mechanisms of improvement mainly correspond to modifications in process 

controls or set points and to adjustment in demand and supply between processes. Finally, 

under A2 Change Resource and A4 Change Technology, the main mechanisms of 

improvement correspond to physical alterations to the infrastructure such replacing inefficient 

equipment, adding new process technology, introducing renewable or more efficient 

resources, and changing pipelines location to reduce losses in supply networks. 

5.2.2 Tactics formulation 

Similar SMPs were grouped based on the improvement mechanism identified (Table 5.2) 

and each mechanism was translated into a generic tactic. But before tactics could be 

formulated, a systematic approach to the improvement mechanisms was needed. This was 

achieved by analysing the SMPs through the lens of a visual representation of the system (as 

introduced with the A-labels in Figure 4.1) before and after improvement. Similar patterns of 

improvement could be identified in the SMPs and were listed as the main mechanisms of 

change for sustainable manufacturing. With the aim of generalising good practices for 

sustainable manufacturing, each mechanism of change was formulated into a generic tactic. 

Table 5.3 shows the complete library of tactics.  

To demonstrate how improvement mechanisms were identified and how tactics were 

formulated, two examples are presented in this section: diagramming technique as illustrated 

in Figure 5.2 (TECHNOLOGY represented as boxes and RESOURCE represented as arrows) 

and data plots as illustrated in Figure 5.3 (process data as ―profiles‖, i.e. flow magnitude vs. 

time).  
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Table 5.3. Tactics library structured according to A-labels 

  Resource Technology 

M
a
n

a
g
e 

A1 Manage Resource  

A11 Align resource input profile with production schedule 

A12 Optimise production schedule to improve efficiency 

A13 Optimise resource input profile to improve efficiency 

A14 Synchronise waste generation and resource demand to 

allow reuse 

A15 Waste collection, sorting, recovery and treatment 

A3 Manage Technology 

A31 Repair and maintain 

A32 Change set points/running load, reduce 

demand 

A33 Switch off/standby mode when not in use 

A34 Monitor performance 

A35 Control performance 

C
h

a
n

g
e 

A2 Change Resource 

A21 Remove unnecessary resource usage 

A22 Replace resource input for better one 

A23 Add high efficiency resource 

A24 Reuse waste output as resource input 

A25 Change resource flow layout 

A4 Change Technology  

A41 Remove unnecessary technology 

A42 Replace technology for better one 

A43 Add high efficiency technology 

A44 Change the way the function is 

accomplished 

A45 Change technology layout 

Example 1 is shown in Figure 5.2. It illustrates a cutting process, filtering of the cutting 

fluid and swarf, and separate cleaning processes for the product and the swarf. Tactic A41 

suggests eliminating the filtering of the cutting fluid to separate it from the swarf. Tactic A21 

suggests eliminating water usage to clean the swarf as the cutting fluid can be separated from 

the swarf by using gravity: the cutting fluid accumulates at the bottom of the skip over time 

and can be recovered through an evacuation system at the bottom. Tactic A21 also suggests 

eliminating the use of a detergent in the cleaning process as it does not affect the quality of 

the final product (water rinse being sufficient). Tactic A22 suggests that the cutting fluid 

could be replaced by a reusable one. Tactic A42 suggests that the cutting process technology 

could be replaced by a more efficient one. Finally tactic A24 suggests the cleaning water and 

recovered cutting fluid could be reused. 

Example 2 is illustrated in Figure 5.3. The product profile (green in Figure 5.3 

corresponds to the production volume variation over time for a given process. This product 

profile dictates the minimum demand which must be fulfilled by the supply. An example 

could be a cleaning process where the supply profile corresponds to the energy used to heat 

up and pump water. It initially consumes a fixed amount of energy as the process is constantly 

running full load (red line in Figure 5.3). Tactic A11 suggests that there should be no resource 

input (energy and hot water) when there is no product being processed. Tactic A33 suggests 

putting the process in stand-by mode between two batches if switching on and off would 

consume more energy (minimum energy required to keep the water at the temperature set 

point vs. energy required to heat the water back up to set point). Tactic A31 suggests reducing 

losses through repair and maintenance (check proper insulation of hot water tank). Tactic A32 

suggests challenging the set point (minimum temperature to achieve the required quality of 

product output). And finally tactic A35 suggests installing a controller on the pump so that the 

hot water supply level matches the minimum requirement for cleaning products resulting in 

the final supply profile (in blue in Figure 5.3). 

As tactics are generic, each can cover various technological solutions and resource flows. 

In other words, each tactic can generalise the practices used to formulate it to other types of 

resources and technology (equipment or processes). For instance the tactic A32 Change set 

points/running load, reduce demand can correspond to various practices such as Set 

thermostats to minimum for comfort for space heating (practice 327) or Regulate condenser 

pressure for a refrigeration process (practice 384). Thus the total number of tactics formulated 

was as low as the 20 tactics for covering a wide range of practices from various 

manufacturing sectors.  



Chapter 5   Tactics Library 

52 

 

Figure 5.2. Schematics showing improvement practices and corresponding tactics 

 

 
Figure 5.3. Process data profiles showing improvement practices and corresponding tactics 

Energy profile (supply pattern) before tactics implementation (in red)  

and after tactics implementation (in blue) 

 

Conversely, it is important to note that certain practices from Table 5.1 potentially fit 

under multiple tactics since they can belong to different types of modification at the same 

time. For instance, practice 203 in Table 5.1 can correspond to two tactics: “More efficient 

technology to reduce the total basic power consumption” can be both A42 Replace technology 

for better one and A32 Change set points/running load, reduce demand. Tactic A42 was 
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considered as the closest to the improvement activity while A32 was considered as the 

consequence of implementing it. Therefore, practice 203 was labelled as an A42 tactic.  

The categorisation of tactics under the A-labels can also present difficulties: for instance, 

A21 Remove unnecessary resource flow is categorised under A2 Change Resource although it 

might require changing the process using this resource (thus also corresponds to A4 Change 

Technology), or A13 Optimise resource input profile to improve efficiency (A1 Manage 

Resource) which is done to improve equipment efficiency (thus also corresponds to A3 

Manage Technology).  

The researcher chose to categorise such improvement mechanisms under the most 

appropriate A-label based on her interpretation of how the model modification would function 

in a modelling tool. For instance, although the tactic A24 Reuse waste as resource implies a 

good waste management (A1 Manage Resource), it has been categorised under A2 Change 

Resource since it would mean replacing part of the virgin resource flow by a recycled waste 

flow. Another example is A45 Change technology layout which implies improved usage of 

existing technology (A3 Manage Technology) but has been categorised under A4 Change 

Technology as the model would be changed by removing the technology component from one 

factory zone and adding it in another. 

Finally, there are also practices which did not match any tactic as they correspond to 

behavioural measures. For instance a practice such as “Set up individual responsibilities to 

operators for shut-off practices” is a behavioural measure which would result in the activity 

of switching off unused equipment. Therefore this practice can be included in the SMP 

collection and labelled A33 Switch off/standby mode when not in use. A second example is 

“Protect personnel/equipment” which does not correspond to any tactic and therefore cannot 

be labelled. Such practices were kept in the SMP database as they are still relevant and could 

be used as a ―tip‖ or ―advice‖ to manufacturers. 

5.3 Tactics Access 

Tactics can be accessed through tests performed on process data (metered data, equipment 

specification and resource characteristics). The following two subsections show how tactics 

are tested to identify improvement opportunities. 

5.3.1 Process data 

Process data are needed to characterise the elements of the system under study. The three 

main subsystems considered in the process data analysis are: 

 Manufacturing operations: manufacturing process systems (boundaries and 

connections), associated equipment (links to process systems), material flows (added 

value product, non-value added waste, and process system flow paths); 

 Supporting facilities: facility equipment, inputs to manufacturing operations (e.g. 

compressed air, steam, cooling water), outputs (e.g. exhaust fumes, waste heat); 

 Surrounding buildings: building geometry, construction data, weather data, HVAC 

systems and internal gains. 

The MEW flows within and between these three sub-systems are crossing functional 

boundaries and therefore promote an ecosystem view of the factory (Despeisse et al., 2012a). 

Therefore the elements modelled are the buildings, the technology components (equipment 

and processes) placed in and near the buildings, and the resource flows linking all elements of 

the model (inputs: energy and material including water and chemical; outputs: product and 
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wastes including physical waste accumulating in bins as well as energy waste mostly in the 

form of heat). All elements of the system are characterised by process data and can also be 

linked to best practices through the B-labels see (section 4.3.2).  

Table 5.4 shows the list of process data and the corresponding real-world information 

collected by the user (right-hand column). Each type of process data is associated with a 

reference number in squared brackets to help better understand the logic tests and pattern 

analysis used to access tactics.  

Some of the process data and profiles can be defined as constraints to determine the 

minimum requirements (inputs quantity and quality) for the manufacturing processes to 

achieve their function correctly (product output quantity and quality): mainly production 

schedule and set points. The other process data and profiles can be functions of these 

constraints or metered data. Other variables must be defined to characterise the technology 

elements (equipment and processes, or the transformation processes): capacity or equipment 

rating, running load (including the minimum/base load and maximum/peak load), the 

performance/efficiency curve (ratio output/input as function of running load), etc. Other 

optional information can be added to increase the quality of the analysis, such as equipment 

age (depreciation time), operating cost, etc.  

Data collection of actual inputs, outputs including emissions and waste streams can be 

challenging and costly. The amount of efforts place in collecting data must be balanced with 

the desired level of analysis (i.e. coarse vs. detailed) and the ensuing quality of the results. 

Thus it is important to carefully consider what the appropriate level of data granularity is so 

that only data sufficient for analysis is collected (as opposed to detailed data required by 

default before starting the analysis). This granularity issue can affect the level at which the 

data is metered as well as the time interval between two values and the magnitude of the flow 

to be taken into account. It is common that the level of granularity of data varies for different 

resource types. For instance, the consumption of different types of resources could be metered 

at different levels: the total resource use (water, gas, electricity, chemicals, etc.) of a 

manufacturing plant may be known based on the consumption bills, but only gas and 

electricity is metered inside the manufacturing system. Additionally electricity could be 

metered at a more detailed level than gas due to the facility network structure and more 

advanced metering equipment.  

5.3.2 Logic tests 

Each tactic can be accessed through logic tests (pattern analysis), simulation or qualitative 

advice to user (tips using the SMPs database). The main mechanisms of improvement 

identified during the SMP analysis were used to understand which process data needed to be 

tested to identify the improvement opportunity. 

Table 5.5 shows the list of tests corresponding to each tactic. Some of the process data 

listed in Table 5.4 are not used to test for tactics but are needed to create a meaningful model, 

e.g. construction data [2] to determine the thermal performance of the building and 

technology component geometry [4] to represent the component in the model.  

This list of process data differentiate inputs and outputs so that they can be used to create 

a chain of constraints. E.g. the set points [11] and product profile [10] establish the minimum 

requirements for a given process, which determines the appropriate control profile [12] and 

level of input [13] required for this process, and consequently the corresponding minimum 

utility supply [14] from the facility equipment, which in turn determine the minimum primary 

resource supply [11] for this facility equipment. 
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Table 5.4. List of process data for modelling and the corresponding data sources 

Process data (model) Data source (real-world) 

Building model: Drawing the infrastructure  

[1] Building geometry/thermal zones  Factory layout (technical drawings) 

[2] Construction data  Building construction materials 

[3] HVAC systems  Building Service System documentation  

Qualitative process model: Mapping manufacturing operations & facilities  

[4] Technology component geometry  Equipment/processes dimensions (optional) 

[5] Technology component layout  Equipment/processes location (technical 

drawings) 

[6] Technology component 

attributes/characteristics  

Equipment/process specifications 

[7] Resource flow layout  Energy and material path/network layout 

[8] Resource flow characteristics  Energy and material characteristics 

[9] List of processes (qualitative product flow)  Manufacturing routings  

Quantitative process model: Modelling manufacturing operations & facilities  

[10] Production profile (factory-wide), 

equipment/process operations profile, 

product profile (quantitative product flow)  

Production schedules  

[11] Technology component set point/demand 

profiles  

Process set points/running load 

[12] Technology component control profiles  Controls (controllers, valves, etc.)  

[13] Resource input/usage profiles  Resource consumption (metered data) 

[14] Resource output/supply profiles  Utility resource generation (metered data) 

[15] Waste profiles  Waste generation 

[16] Total inputs to the system  

(check completeness)  

Total resource use (energy/water bills and 

BOM – bill of materials) 

[17] Energy and mass balance  

(check missing data)  

Thermodynamics for resource 

transformation process 

[18] Link technology component to HVAC 

system  

Thermal transfer to space/building 

[19] Link technology component to bins  

(waste profile, energy and mass balance)  

Waste data (if available)  

Optimised process model: Improvements implementation  

[20] Controller functions  

(for simulation purpose)  

Control strategy  

[21] Bins/recycling repositories  Recover, sort, collect, reuse, recycle  

[22] Modification to technology component  Equipment/process management or change  

[23] Modification to resource flow  Resource management or change  
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Table 5.5. Logic tests and access to tactics through process data 

Tactics and logic tests 

A1 Manage resource 

A11 Align resource input profile with production schedule 
Look for mismatch between product profile [10] and usage [13]/supply [14] 

A12 Optimise production schedule to improve efficiency 
Simulate shift in product profile [10] to improve efficiency * 

A13 Optimise resource input profile to improve efficiency 
Simulate shift in demand [11]/usage [13]/supply [14] profile to improve efficiency * 

A14 Synchronise waste generation and resource demand to allow reuse 
Adjust demand [11]/usage [13] and waste [15][17][19][21]  

A15 Waste collection, sorting, recovery and treatment 
Look for significant waste output [15][17][19][21] and/or [8] (quantity/toxicity) 

A2 Change resource 

A21 Remove unnecessary resource usage 
Look for Best Practices based on RF types [8] ** 

A22 Replace resource input for better one 
Look for environmental alternative to black listed RF attributes [8][22] ** 
Look for Best Practices based on RF attributes [8][22] ** 

A23 Add high efficiency resource 
Look for Best Practices linked to RF types [8][22] **  

A24 Reuse waste output as resource input 
Look for matching RF attributes [8]/demand [11]/usage [13] and waste [15][17][19][21] 

A25 Change resource flow layout 
Look for mismatch between thermal zone [1]/HVAC system [3] and RF layout [7]/attributes [8] 

A3 Manage Technology 

A31 Repair and maintain 
Look for incomplete energy/mass balance between [17] data points, or total inputs [16] 

A32 Change set points/running load, reduce demand 
Simulate change in set point [11]/control [12][20] to improve efficiency * 

A33 Switch off/standby mode when not in use 
Look for mismatch between product profile [10] and demand [11]/control [12][20] 

A34 Monitor performance 
Create a new set point [11]/control [12][20]/usage [13]/supply [14] 

A35 Control performance 
Adjust set point [11]/control [12][20]/usage [13]/supply [14] based on simulation results * 

A4 Change Technology 

A41 Remove unnecessary technology 
Look for Best Practices linked to TC types [6] ** 

A42 Replace technology for better one 
Look for Best Practices based on TC characteristics [6][22] **  
Look for environmental alternative to black listed TC characteristics [6][22] ** 

A43 Add high efficiency technology 
Look for Best Practices linked to TC types [6][22] **  

A44 Change the way the function is accomplished 
Look for possibilities to use Best Practices based on TC functions [6][22] ** 

A45 Change technology layout 
Look for mismatch between thermal zone [1]/HVAC system [3][18] and TC layout [5]/attributes [6] 

RF = resource flow; TC = technology component (equipment or process);  
 * use simulation;  ** use practice database. 
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5.4 Chapter Summary  

In this chapter, the gap between sustainability concepts (Chapter 3) and industrial 

practices (Chapter 4) has been examined to extract the mechanisms behind the improvements 

achieved and formulate generic tactics for resource efficiency (which provide information on 

how improvements can be implemented). Tactics are verb–noun formulations to specify the 

type of change (remove, replace, add, optimise, etc.) and the focus of the change (resource 

flow or technology component). Tactics are thus both generic enough to be applicable in 

multiple environments, but are also specific enough to be actionable in those environments 

and disciplines leading to specific process-level improvements.  

This research focuses on measures taken in the factory and therefore adopts a gate-to-gate 

perspective for manufacturing system analysis. To achieve sustainable industrial systems and 

sustainability at societal level, a more holistic approach is needed. However, this study draws 

the boundaries of the systems studied around the elements on which manufacturers have full 

control. This in turn contributes to the overall industrial sustainability challenge by supporting 

the identification of improvements in resource efficiency at factory level, i.e. holistic solution 

when viewing the whole site, but local solution as focusing on a single site. Additionally the 

resource flows considered in this study are energy, material, water, chemicals, etc. and not 

capital, employees, etc. In other words, the study focuses on the physical resource flows.  

The case analysis shows that there are patterns in the SMPs collected when analysed with 

visual representation methods (plot of process data as profiles or process and flow maps). 

Multiple practices for various technology and resource types could be represented with the 

same diagraming or profiling patterns and therefore correspond to a single tactic. As the aim 

of the study was to address the first research question about generalisation of SMPs, this was 

an expected finding. However some practices could also be represented in different ways 

depending on the process data considered or based on the granularity of data used to represent 

the same improvement. Therefore these practices could correspond to multiple tactics. In such 

cases, the tactic considered to be the closest to the activity resulting in the improvement 

reported in the case source would be chosen.  

The tactics library design presented in this chapter demonstrates that it is possible to 

generalise SMPs through a limited number of tactics. The library of tactics covers 1000+ 

practices collected as well as a wide variety of concepts and strategies for sustainability 

applicable in manufacturing. The tactics consequently bridge the gap between sustainability 

concepts and practices by providing generic and tangible principles for applying sustainability 

in a factory through improved resource efficiency. Although limited to technical measures as 

tactics correspond to improvements which manufacturers can directly apply, the work shows 

that there are a few simple rules which can support the identification of SMPs. Tactics are 

thus both generic enough to be applicable in multiple environments, but also specific enough 

to be actionable in those environments and to lead to specific process-level improvements. 

In order to implement the tactics, a methodology (or ―user guide‖) is needed to structure 

the identification of inefficiencies and the selection of appropriate options by following the 

reasoning of the ‗Rs‘ strategies (reduce first, then reuse if possible, and finally recycle). This 

in turn would support decision-making for sustainable manufacturing. The next chapter 

introduces such a methodology to guide manufacturers in approaching improvements for 

more sustainable operations. 
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Chapter 6 IMPROVEMENT HIERARCHY 

Part of this chapter has been submitted in Despeisse, M., Oates, M.R. & Ball, P.D., "Sustainable 

manufacturing tactics and cross-functional factory modelling", J. of Cleaner Production [In Press, 

Accepted Manuscript, Available online 15 November 2012]. DOI: 10.1016/j.jclepro.2012.11.008 of which 

the thesis author was the main contributor. 

This chapter introduces an improvement hierarchy which is based on findings from the 

literature review and an industrial approach to energy reduction: the improvement hierarchy 

integrates the energy and waste hierarchies as well as various strategies and principles for 

sustainable manufacturing. This improvement hierarchy is then used to restructure the library 

of tactics by prioritising their implementation order.  

 

6.1 Introduction 

6.1.1 Focus of this chapter 

Critical elements for sustainable manufacturing are the production system as well as the 

buildings and facilities which are servicing manufacturing operations and provide heating, 

ventilation, air-conditioning (HVAC), lighting, power, water, and waste removal. Driven by 

increasingly tighter building energy regulations and voluntary green rating systems, 

methodologies have been developed to guide design and reduce resource use, including 

modelling and simulation tools. However, buildings and manufacturing facilities are typically 

managed separately and use different performance metrics. Historically, buildings in many 

industrial situations have lifetime values that are low compared to the production process; as a 

result little emphasis has been placed on buildings. There is significant potential for resource 

efficiency improvement by integrating these disciplines and viewing the factory as an 

ecosystem (Despeisse et al., 2012a; Oates et al., 2011b).  

Resource efficiency improvements in manufacturing can only take place through wide 

changes spanning from behavioural to technological changes, and through holistic perspective 

as well as local solutions. Additionally, sustainable manufacturing challenges involve rapid 

technological change, interconnected and complex problems. To tackle these problems, 

powerful IT tools have been developed to enable the analysis of ever more interconnected and 

complex systems. Various modelling and energy analysis tools have shown possible to 

provide tangible benefits towards sustainable manufacturing (Gutowski et al., 2009; Heilala et 

al., 2008; Michaloski et al., 2011; Herrmann and Thiede, 2009). However, while these tools 

are helpful to support improvements, they do not provide a practical approach and overall 

structural framework for the users across functions to identify inefficiencies or improvement 

options for resource efficiency. Manufacturers willing to embark on sustainable improvement 
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activities need a structured approach to know where to start. Therefore, guidance is required 

on how to achieve sustainable improvement in manufacturing. In this chapter, the issues of 

getting started and improvement options prioritisation are addressed. 

6.1.2 Objectives and deliverables 

The review of the sustainable manufacturing literature (Chapter 3) highlighted the 

necessity and emergence of this relatively new field, and the ensuing main dimensions and 

concepts. As sustainability issues are gaining importance in corporate strategy, there is a need 

to understand how improvements can be achieved in manufacturing operations. The literature 

proposes lists of themes, conditions, principles and strategies for sustainability. Some of these 

strategies are presented in the form of ordered lists where options are ordered according to 

complexity and scope of improvement (Mohanty and Deshmukh, 1998; Abdul Rashid et al., 

2008), or according to options‘ priority, e.g. some options should be prioritised over others as 

they have the most desirable outcomes (Sarkis and Rasheed, 1995; Sarkis, 1995). The later 

type of ordered list is called hierarchy in this research. 

This chapter presents a synthesis of the findings from literature on sustainable 

manufacturing practices (SMPs) in the form of an improvement hierarchy. This improvement 

hierarchy replicates an existing industrial approach which has proven to be successful to 

reduce energy usage across various manufacturing processes. This industrial approach was 

developed by Toyota as 6 attitudes to energy reduction (Hope, 2011). It is similar to the 

energy and waste hierarchies in that it proposes strategies for improvement with a 

prioritisation order, from the most desirable option to the least desirable. The improvement 

hierarchy is thus used to restructure the tactics library and prioritise tactics to support a 

methodical identification of improvement opportunities. This in turn addresses the second 

research question: the improvement hierarchy provides a structured and practical approach for 

manufacturers to undertake sustainable improvement activities in their factory. 

6.2 Sustainable Manufacturing Strategies and Principles 

Various authors have proposed sets of strategies or principles for industrial sustainability. 

Table 6.1 presents two types of sets of strategies and principles: certain authors are presenting 

conditions for sustainability which must all be fulfilled while others are presenting options 

with a most preferred one and a least preferred one. Despite this difference in approaches, 

Table 6.1 shows similar themes across the strategies or principles for tackling sustainability 

issues at different levels: 

 At the source with preventive measures such as product and process design and 

dematerialisation to reduce the intake of resource in the technosphere. 

 During manufacturing with technical and organisational measure to increase the 

efficiency with which resource are transformed into economically valuable goods. 

 At the end of product life cycle with closed-loop circulation of resource within the 

technosphere through reuse, remanufacturing and recycling. 

These three main themes were used as a foundation for creating the improvement 

hierarchy and more specific steps were defined by using the energy and waste hierarchies 

(Dovì et al., 2009; Sarkis and Rasheed, 1995; Lund, 2007; Blackstone, 2011). These 

hierarchies help to prioritise improvement options by identifying at which stage an 

improvement should be implemented. The material waste hierarchy is well-established and is 

typically represented by a pyramid with Reduce-Reuse-Recycle-Recover-Dispose, reduction 

being the first priority at the top, and dispose being the last option at the bottom. Analogous 
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energy and low-carbon hierarchies also exist to prioritise improvements in energy use 

avoidance at the top, going down through the levels of technology for energy efficiency and 

shift to renewable energy sources, and finally at the bottom of the hierarchy, offsetting 

techniques and carbon sequestration considered as the last resort (London Energy Partnership, 

2004; Hope, 2008). It is therefore appropriate to structure the library of tactics based on a 

similar improvement hierarchy for resource efficiency. It incorporates existing sets of 

strategies and principles for industrial sustainability (Allwood, 2005; Lovins et al., 1999; 

Abdul Rashid et al., 2008) in addition to the waste/energy hierarchies mentioned earlier. 

The issue of ―which improvement option comes first‖ can be debated as the hierarchies 

can be represented and interpreted differently: the waste and energy hierarchies are typically 

represented by a pyramid with the most desirable options (prevention) at the top and the least 

desirable at the bottom. In some cases, the hierarchy is represented by an inverted pyramid 

where the widest part at the top represents the starting point, i.e. the most desirable option.  

Additionally, such representation can also be misinterpreted. One could view the least 

desirable options as the current situation (e.g. landfill and use of fossil fuels) and therefore the 

next step in the sequence would still be among the least desirable: from the bottom of the 

pyramid, one must move to the next level above which still has a low performance, and 

progressively move up the pyramid towards the most desirable options at the top. This 

misinterpretation has been addressed by the improvement hierarchy developed by the 

researcher; this issue of ―what comes first‖ will be further discussed in section 6.4 as the 

improvement hierarchy is introduced. 

 Table 6.1. Strategies and principles for sustainable manufacturing in the literature 

Reference Strategies or principles 

(Abdul Rashid et al., 

2008) Sustainable 

manufacturing strategies 

1. Waste minimisation 

2. Material efficiency 

3. Resource efficiency 

4. Eco-efficiency 

(Allwood, 2005) 

Options for sustainable 

manufacturing 

o Use less material and energy 

o Substitute inputs: non-toxic for toxic, renewable for non-renewable 

o Reduce unwanted outputs: Cleaner production, Industrial symbiosis 

o Convert outputs to inputs: recycling and all its variants 

o Changed structures of ownership and production: product service 

systems, supply chain structure 

Dornfeld (2009) 

Strategies for Green 

Manufacturing 

(adapted from Allwood, 

2007) 

o Invest in business intelligence/analytics 

o Redesign all scales of manufacturing flow 

o Shift to a service-oriented business 

o Use less material and energy 

o Substitute input materials 

o Reduce unwanted outputs 

o Convert outputs to inputs 

(Gladwin et al., 1995) 

Sustainability principles 

and their operational 

principles 

o Assimilation: Waste emissions ≤ Natural assimilative capacity 

o Regeneration: Renewable harvest rate ≤ Natural regeneration rate 
o Diversification: Biodiversity loss ≤ Biodiversity preservation 

o Restoration: Ecosystem damage ≤ Ecosystem rehabilitation 

o Conservation: Reduce energy-matter throughput per unit of output 

o Dissipation: Reduce energy-matter throughput 

o Perpetuation: Non-renewable resource depletion ≤ Renewable resource 

substitution 

o Circulation: Reduce virgin ÷ recycled material use 
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Table 6.1. Strategies and principles for sustainable manufacturing in the literature (cont.) 

Reference Strategies or principles 

(Hibbard, 2009) 

Key steps in making 

manufacturing more 

sustainable 

o Optimize use of fossil fuels 

o Eliminate waste 

o Reduce, eliminate pollution 

o Recycle 

o Recover energy 

o Save time 

(Jawahir et al., 2005) 

Strategic technology 

areas of sustainability 

applications for products 

and processes 

o Waste-free processes  

o New materials processes 

o Enterprise modelling and simulation 

o Improved design methodologies 

o Education and training 

(Lovins et al., 1999) 

Major shifts for the 

journey to natural 

capitalism 

o Dramatically increase the productivity of natural resources 

o Shift to biologically inspired production models 

o Move to a solutions-based business model 

o Reinvest in natural capital 

(Mohanty and 

Deshmukh, 1998) 

Green productivity 

strategic choices 

1. Waste reduction 

2. Waste control 

3. Waste avoidance 

4. Waste prevention 

(Rahimifard and Clegg, 

2007) Main themes for 

design and manufacture 

o Design for Environment 

o Supply Chain Management 

o End-of-Life Management 

(Robèrt et al., 2002) 

Objectives to address the 

four system conditions 

of the natural step 

o Eliminate our contribution to systematic increases in concentrations of 

substances from the Earth‘s crust: substitute scarce minerals with others 

more abundant, use all mined materials efficiently, reduce fossil fuel 

dependency. 

o Eliminate our contribution to systematic increases in concentrations of 

substances produced by society: substitute persistent and unnatural 

compounds with ones normally abundant or break down more easily in 

nature, use all substances produced by society efficiently. 

o Eliminate our contribution to the systematic physical degradation of 

nature: draw resources from well-managed eco-systems, pursue the 

most productive and efficient use both of those resources and land, 

exercise caution in all kinds of modification of nature. 

o Contribute to the meeting of human needs, using all of our resources 

efficiently, fairly and responsibly so that the needs of all people and the 

future needs of people stand the best chance of being met. 

(Sarkis and Rasheed, 

1995) Rs strategies 

1. Reduce 

2. Remanufacture 

3. Recycle and Reuse 

(Seliger et al., 2008)  

Strategies to enhance 

use-productivity 

o Implementation of Innovative Technologies 

o Improving Use-Intensity 

o Extension of Product Life Span 

(Westkämper et al., 

2001) Processes in 

product life cycle 

towards sustainable 

manufacturing 

o Engineering: analysis of technical functions 

o Manufacturing: optimization of processes and logistics 

o Use: technical behaviour and utilization rates 
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To summarise, sustainability requires improved resource use-productivity (Seliger et al., 

2008; Seliger et al., 1997) in order to reduce natural resource inputs as well as consequent 

waste and pollutant outputs. SM activities follow sets of rules defined by various authors as 

they describe the major changes needed to move towards more sustainable industrial 

practices: 

1) Use less - by dramatically increasing the productivity of natural resources (material and 

energy): technological progress in manufacturing (Seliger and Zettl, 2008; Thiede et al., 

2011) and life cycle considerations in product design (Rahimifard and Clegg, 2007; 

Bhamra, 2004; Lakhani, 2007; Jawahir et al., 2007), managerial and technological 

practices to improve environmental performance across sectors (Goldstein et al., 2011); 

2) Shift to biologically inspired production models - such as reduction of unwanted outputs 

and conversion of outputs to inputs: industrial symbiosis (Graedel and Howard-Grenville, 

2005; Ehrenfeld and Gertler, 1997), product end-of-life management and all its variants 

including disassembly (Westkämper et al., 1999)and remanufacturing (Seliger et al., 

2008); 

3) Move to solution-based business models - including changed structures of ownership and 

production: supply chain structure (Srivastava, 2007; Beamon, 2008; Sarkis, 2003) and 

product-service systems (Mont, 2002) which ―values asset performance or utilization [of 

a product] rather than ownership‖ (Baines et al., 2007); 

4) Reinvest in natural capital - through substitution of input materials: toxic by non-toxic 

and non-renewable by renewable (Allwood, 2005; Lovins et al., 1999; Abdul Rashid et 

al., 2008). 

6.3 Industrial Approach to Sustainability 

A large number of companies are conducting sustainable manufacturing activities as 

demonstrated by the number of practices collected for this research. However the approach 

used by these companies is rarely documented. A few industrial approaches, such as the ones 

used by Ricoh and Toyota, have been widely publicized (Ricoh, 2011; Hope, 2011). The 

approach proposed by Ricoh encompasses a wider system (whole supply chain, user and 

waste handler) than the scope of this research (a manufacturing unit). The Toyota approach 

corresponds better to the scope of this research and thus was used as a model alongside the 

waste and energy hierarchies to develop the improvement hierarchy.  

The Toyota‘s approach to energy reduction has allowed the company to achieve 

significant reduction in energy consumption over the past two decades (Evans et al., 2009). It 

is similar to the waste hierarchy discussed in the previous section as it prioritises 

improvement options: reduce first, then reuse when possible and finally recycle. The Toyota’s 

6 attitudes for energy saving are: Stop, Eliminate, Repair, Reduce, Pick-up and Change. 

These attitudes have also been adopted by Airbus and renamed to create the StRe3TCh 

methodology: Stop, Remove*, Repair, Reduce, Trade* and Change (* renamed steps 

compared to Toyota attitudes) (Lunt and Levers, 2011). The Toyota’s 6 attitudes prioritise 

energy improvements based on the magnitude and complexity of change as well as on the 

difficulty of implementation in terms of effort and financial investment.  

Toyota applies these attitudes for energy reduction in 3 stages. The first stage reduces 

energy consumption during non-production periods with Stop and Eliminate attitudes. The 

Stop activities (―Just because it‘s operating doesn‘t mean it‘s working.‖) focus on avoiding 

energy usage when pieces of equipment and processes are not in use or are not adding value 

by simply switching them off. This type of activity requires only basic knowledge of the 

process under study as it only checks for a mismatch in energy usage and product output or 



Chapter 6   Improvement Hierarchy 

64 

production schedule. It is considered as the first priority as it requires low (or no) investment, 

is easy to implement and generates immediate savings. If this step is overlooked, further 

changes could be suboptimal as the basic energy demand is not optimised. Therefore the Stop 

activities provide a basis for further improvements. When all Stop opportunities are 

exhausted, the next attitude in the hierarchy can be investigated. 

The Eliminate/Remove activities (―Why is this equipment needed?‖) are less obvious and 

require a full/deeper understanding of the process, how it operates and whether it can be done 

differently. These activities focus on eliminating permanently superfluous processes and 

associated energy usage when a process can still be performed correctly without additional 

input. The example provided by Toyota for this attitude was the use of gravity and rollers 

instead of a conveyor and motor to transport parts from one place to another. The 

Eliminate/Remove opportunities, although relatively easy to implement, are not always easy to 

identify. Alternative approaches to perform a given function are not always obvious if they 

exist at all; and if they do, the difficulty remains in bringing it to the manufacturer‘s 

knowledge. 

After these two first attitudes are covered, Toyota moves to the second stage with Repair 

and Reduce attitudes to reduce process energy base load (fixed energy consumption). The 

Repair activities (―Are we losing energy as a result of the breakdown?‖) also require 

knowledge about the functioning conditions of equipment and processes. They focus on 

matching the actual energy usage with the technical specifications of the equipment or 

process. These activities result in an improved output-to-input ratio by eliminating 

unnecessary waste (undesirable output) while maintaining product output (useful output). 

They are relatively low cost as they do not require the installation of additional equipment. 

However they are more costly than the Stop and Eliminate/Remove activities as they increase 

the maintenance cost on the short-term, although the savings generated through reduced 

energy usage and operational cost might fully compensate on the longer-term. 

The Reduce activities (―Why do we need so much?‖) focus on reducing energy usage to 

meet the minimum requirements for a given process. This type of activity improves the ratio 

output-to-input as the Repair activities, but the focus here is on minimising the energy input 

rather than the waste output. This fourth step in the 6 attitudes methodology is also crucial to 

avoid suboptimal improvement and is the last step to minimise basic energy demand before 

looking for reuse (Pick-up/Trade) and substitution (Change) opportunities.  

When the two first stages are completed through the required amount of C-PDCA loops 

(Shewhart, 1939), Toyota moves to the third stage with Pick-up and Change attitudes which 

focus is on advanced efficient technology improvement and installation. The Pick-up/Trade 

activities (―Don‘t throw it away. Can‘t you use it somewhere?‖) look for reuse opportunities 

where the output of a process considered as a waste can be converted into an input for the 

same or another process. These activities attempt to create closed-loop or open-loop 

circulation of resources. They are very powerful improvements as they allow the energy usage 

of individual or groups of processes to be decoupled from the total energy consumption of the 

system: by reusing resources internally, the system reduces its dependence on external sources 

and thus improves its overall productivity. The main difficulty of this type of activities is to 

maintain the value of the resource flow when it becomes ―waste‖ so that it can be reused with 

limited treatment. The more a resource flow loses value (thermodynamic or quality), the more 

difficult it is to reuse it. 

Finally, the Change activities (―Is there any cheaper source of energy?‖) focus on 

technology substitution to replace inefficient, malfunctioning or obsolete equipment. These 

activities are typically the last resort as they are the most costly and require high investment in 
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new equipment. However, Change attitude can also be the first step in the hierarchy. This 

would be the case for new process design or refurbishment of an old process: there is no 

current investment and thus the best environmental option can be considered, e.g. installation 

of high efficiency equipment corresponding to Change attitude, before going around the loop 

with Stop, Eliminate, etc. to improve this newly installed equipment or process.  

6.4 Tactics Prioritisation with the Improvement Hierarchy 

The improvement hierarchy combines the energy and waste hierarchy from the literature 

energy and waste hierarchies (Dovì et al., 2009; Sarkis and Rasheed, 1995; Lund, 2007; 

Blackstone, 2011) with Toyota‘s approach to energy reduction. Figure 6.1 illustrates all those 

hierarchies. The industrial approach to energy reduction discussed in the previous section 

helps to understand how manufacturers are undertaking improvement activities, i.e. at which 

level of the hierarchy they start given a particular context and how they progress through the 

levels of the hierarchy in an iterative way. This understanding is key for the development of 

the improvement hierarchy and to reorganise the tactics library: it provides an efficient 

sequence to identify more fundamental improvements with minimal invested effort first (e.g. 

stop and repair equipment), before moving on to increasingly complex and difficult 

improvements (e.g. optimise production schedule, optimise process set points and reuse 

waste).  

  

Figure 6.1. Improvement hierarchy  

The prevention strategy focus on eliminating unnecessary processes or resource input. To 

access the prevention tactics, it is important to note that the two ―remove‖ tactics (A21 and 

A41) can be difficult to identify as they require expert knowledge to recognise the 

unnecessary process which can be removed. The two following prevention tactics are 

comparing patterns between resource usage or process controls and production schedule (or 

product profile) to identify when equipment can be stopped or put in stand-by mode. The data 

collected in this instance comes from multiple sources requiring close collaboration of 

multiple functions. For example, the production schedule data will come from Planning or 

from Manufacturing Operations, whereas the resource consumption data may come from 

Facilities Management. Data may also be automatically connected (or there may arise a 

requirement to automatically collect data) which would involve IT functions. 
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Then other forms of prevention are the reduction strategies. The waste reduction strategy 

focuses on reducing or eliminating unnecessary waste or losses. The waste reduction tactics 

are good housekeeping activities focusing on waste outputs to reduce waste and losses or to 

maintain the value of the output through adequate treatment and management. These 

improvements are considered as relatively easy since they allow quick savings in resource and 

cost compared to the efforts invested. But manufacturers‘ knowledge about their waste is 

often limited and thorough data collection must be conducted to identify waste patterns. Such 

improvement would preferably target the largest or specific (e.g. based on toxicity, scarcity or 

cost) resource consumers and waste generators.  

The input reduction strategy focuses on reducing demand, matching demand and supply, 

and on efficiency improvements which would reduce the resource consumption. The resource 

use reduction tactics focus on the inputs to increase the system‘s efficiency. Patterns in 

demand and supply profiles needs to be tested both in a static and dynamic way. The tests 

compare the magnitude of supply to the minimum requirements to better match the demand-

side. Typical examples include compressed air pressure and cooling water temperature. 

Simulation is also used to optimise the timing of the resource flow which can result in overall 

efficiency improvements (avoid peak consumption or reach the optimum demand level to 

match equipment high efficiency point of use). The simulations require a large amount of 

data, thus those improvements can be identified only based on advanced analysis of the 

system. Additionally, the waste reduction is not necessarily proportional to the input reduction 

as with the previous strategy (waste reduction), e.g. fixed losses in distribution network for 

steam or compressed air. Finally, the most difficult reduction improvements are demand 

optimisation by challenging the set points or altering production schedules as these can only 

be done with deep knowledge of the processes and production system. 

The reuse strategy focuses on reusing waste output as a resource input within the system. 

The reuse tactics focus primarily on the waste flows and look for opportunities to reuse waste 

output as a resource input. The use of a simulation tool is an important asset to allow 

systematic search for compatible waste and demand in the system taking into account the 

complexity of the system modelled, the timing of the flows and the spatial dimension. These 

improvements must be done after the prevention and reduction improvements are exhausted 

as wastes must be eliminated or minimised before looking for reuse opportunities. Reuse 

improvements are the hardest of all to implement; in industrial processes the sheer extent and 

grades of material, energy and water make this aspect a significant and iterative challenge.  

The substitution strategy focuses on adding or replacing resource input and technology to 

improve the overall system‘s performance. The substitution tactics can be identified at early 

stage of the modelling by recognising inefficient components (based on equipment 

information such as capacity, efficiency and age) or black-listed resource inputs (e.g. toxic, 

non-renewable, non-reusable). This type of improvement is the most commonly found in 

industrial practice: replacing a piece of equipment or a process by a more efficient one or a 

less environmentally damaging one is a quick way to increase the sustainability performance 

but likely at high cost. It involves large scale changes by improving the source of supply and 

using high efficiency technology. Similarly to reuse tactics, the prioritisation of these 

substitution improvements must be done after other types of improvement are exhausted to 

avoid replacing a technology when a process can be stopped or to avoid oversizing equipment 

when the demand can be reduced. 

Table 6.2 summarises the strategies of the improvement hierarchy. It is important to note 

that whether prevention or substitution is chosen first or not depends on the context of 

application as with the attitudes: for a new process or a refurbishment, the substitution 

strategy is first while improvement activities on an existing process will prioritise prevention. 
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Also, by conducting improvements at the top of the hierarchies (prevention), some of the 

improvements lower down cease to be necessary: if resource use of a particular process is 

fully prevented, then there is no need to reduce input or substitute the process. Therefore 

following the hierarchies to identify improvement is an iterative process: reuse strategy (e.g. 

waste-to-energy) and substitution strategy (e.g. renewable energy sources) join with 

prevention strategy (e.g. eliminate the significant item by deletion or substitution). The 

prioritisation of preferred options can be also based on practical considerations (i.e. the ―easy‖ 

things first) or based on philosophical ideas (i.e. the ―right‖ things first).  

Table 6.2. Improvement hierarchy for resource efficiency (Despeisse et al., 2012a) 

1 Prevention by avoiding resource use: eliminate unnecessary elements to avoid usage at 

the source, stop or stand-by equipment when not in use. 

2 Reduction of waste generation: good housekeeping practice, repair and maintain 

equipment. 

3 Reduction of resource use by improving efficiency: optimise production schedule and 

start-up procedures, match demand and supply level to reach best efficiency point of use 

of equipment or improve overall efficiency of the system. 

4 Reuse of waste as resource: look for compatible waste output and demand, understand 

where and when waste are generated and whether it can be used as resource input 

elsewhere considering the complexity of the system. 

5 Substitution by changing supply or process: renewable and non-toxic inputs, replace 

technology and resource for less polluting or more efficient ones, change the way the 

function is achieved to allow larger scale improvements. 

Table 6.3 shows the library of tactics with the sequence in which improvements should be 

implemented – however it is not usually the sequence in which improvements are identified. 

Additionally, it is often more difficult to identify an improvement than it is to implement it. In 

some cases more data is required to identify ―low-hanging fruits‖ (e.g. switch off and repair 

equipment) whereas replacing elements of the system at high cost can be identified quickly 

(e.g. replace fossil fuels by renewable energy sources or old inefficient equipment by best 

available technology). Keeping this challenge in mind, the library of tactics can be 

restructured following the prioritisation order of the improvement hierarchy rather than the 

first potential improvement identified. The tactics library designed in Chapter 5 was presented 

based on the type of system modification (A-labels, Table 5.3). The library of tactics as used 

in the improvement methodology presented in the next section is restructured according to the 

improvement hierarchy as shown in Table 6.3.  

6.5 Chapter Summary  

The tactics library introduced in the Chapter 5 was structured based on A-labels (type of 

modification) as this first categorisation helped to check the completeness of the library. In 

this chapter, sustainable manufacturing strategies and principles from the literature and an 

industrial approach to energy reduction were synthesised into an improvement hierarchy to 

guide the user in implementing tactics. The improvement hierarchy was developed using the 

manufacturing ecosystem model and sustainable manufacturing strategies to identify at which 

stage tactics should be implemented. The library was thus reorganised to prioritise tactics 

based on the improvement hierarchy. 
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Table 6.3. Tactics library structured according to the improvement hierarchy 

1 Prevention 
A11 Align resource input profile with production schedule 

A21 Remove unnecessary resource usage 

A33 Switch off/standby mode when not in use 

A41 Remove unnecessary technology 

2 Reduction (waste generation) 
A15 Waste collection, sorting, recovery and treatment 

A31 Repair and maintain  

3 Reduction (resource use) 
A12 Optimise production schedule to improve efficiency 

A13 Optimise resource input profile to improve efficiency 

A32 Change set points/running load, reduce demand 

A34 Monitor performance 

A35 Control performance 

A25 Change resource flow layout 

A45 Change technology layout 

4 Reuse  

A14 Synchronise waste generation and resource demand to allow reuse 

A24 Reuse waste output as resource input 

5 Substitution 

A22 Replace resource input for better one 

A23 Add high efficiency resource 

A42 Replace technology for better one 

A43 Add high efficiency technology  

A44 Change the way the function is accomplished 

The improvement hierarchy is used to restructure the tactics library and prioritise tactics 

to support systematic identification of improvement opportunities through cross-functional 

factory modelling (see the improvement methodology in next chapter). The modelling 

approach was developed in a previous study (Despeisse et al., 2012b) and integrates material, 

energy, water and waste (MEW) flows at factory level by combining buildings, facilities and 

manufacturing operations analysis.  

The improvement hierarchy addresses the second research question as it guides the 

improvement implementation process following a sequence that prioritises improvement 

options to enable a logical and methodological identification of opportunities:  

 Resource input (prevention): eliminate unnecessary elements to avoid usage at the 

source, stop or stand-by process when not in use. 

 Waste output (waste reduction): good housekeeping practice, repair and maintain 

equipment to reduce waste generation. 

 Component ratio output/input (efficiency): optimise production schedule and start-up 

procedures, match demand and supply level to reach best efficiency point of use of 

equipment or improve overall efficiency of the system, replace technology and 

resource for less polluting or more efficient ones. 

 Waste output conversion into resource input (synergy): look for compatible waste 

output and demand, understand where and when waste are generated and whether it 

can be reused as resource input elsewhere considering the complexity of the system 

such as using waste heat from one process as pre-heat for another process. 

 Replace input or technology components (substitution): renewable and non-toxic 

inputs, change the way the function is achieved to allow larger scale improvements. 
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Chapter 7 IMPROVEMENT METHODOLOGY 

Part of this chapter has been published in Despeisse, M., Ball, P. D., Evans, S. and Levers, A. (2012), 

"Industrial ecology at factory level – a prototype methodology", Proc. IMechE Part B: J. of Engineering 

Manufacture 226(10), pp. 1648-1664 and has been submitted in Despeisse, M., Oates, M.R. & Ball, P.D., 

"Sustainable manufacturing tactics and cross-functional factory modelling", J. of Cleaner Production [In 

Press, Accepted Manuscript, Available online 15 November 2012]. DOI: 10.1016/j.jclepro.2012.11.008 of 

which the thesis author was the main contributor. 

In this chapter, examples of application are used to check the applicability and validity of 

the tactics library. To so, the tactics are integrated into an improvement methodology for 

factory modelling and systematic identification of improvement opportunities. Prototype 

applications were used to test various aspects of the work: modelling approach and process 

data, access to and selection of appropriate tactics, and improvement methodology. 

 

7.1 Introduction 

7.1.1 Focus of this chapter 

Until recently most improvements in manufacturing have focused on product flow, flow 

time, wasteful activities, and the capability and reliability of processes which are covered by 

lean manufacture principles (Womack and Jones, 1996; Bicheno, 2004). The review of 

industrial cases presented in Chapter 4 demonstrates that sustainable manufacturing practices 

(SMPs) can increase business performance and competitiveness. Whilst reported practices are 

good examples of what has been achieved, they are often company specific and difficult for 

others to reproduce since they provide few, if any, details on how improvements were 

achieved. Sustainable manufacturing strategies offer insight to the overall approach taken by 

companies but they can lack practical support for implementation.  

Production systems cannot exist in isolation from the facilities that support them or the 

buildings that surround them as they too have significant impacts on sustainability, especially 

with regards to energy. Most approaches fail to consider material, energy, water and waste 

(MEW) flows throughout operations, facility and buildings systems. They also fail to 

recognise the value of wastes as they can be reused within the system rather than treated as 

losses to the system. The authors argue that to achieve sustainable manufacturing, waste must 

be interpreted in the widest form and includes water, heat and other energy forms. Production 

wastes have long been a concern for manufacturing improvement but the attention is now 

increasing on overall waste, energy efficiency, and occasionally energy waste. 
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This perspective on building services, manufacturing operations and facilities has been 

acknowledged by other authors (Ball et al., 2009; Herrmann and Thiede, 2009; Hesselbach et 

al., 2008). However, using tools such as modelling to support improvements across these 

areas is challenging as they are discipline specific. Additionally disciplines such as production 

engineering and facilities management operate in isolation and focus on local improvement 

rather than system level improvement. This is despite manufacturing operations using and 

discarding energy with the support of facilities. Therefore improvements in energy and other 

resource use to work towards sustainable manufacturing have been suboptimal.  

By capturing systemically the MEW flows throughout the manufacturing system, 

potential interactions between processes, facilities and buildings can be identified to recover 

material and energy losses, ―capture‖ them and use them elsewhere as resources. Using a 

systems view is a key element to move towards solutions which bring opportunities to 

improve the system as a whole and avoid local, suboptimal solutions. With knowledge of the 

potential flow interactions, design methodologies can be developed to enable more 

environmentally sustainable manufacturing system creation. Recently published papers have 

explored modelling tools as a support for sustainable manufacturing (Heilala et al., 2008; 

Herrmann and Thiede, 2009; Lee et al., 2012). The use of discrete event simulation, energy 

management system and manufacturing execution systems can help improving the interaction 

between production and building systems (Michaloski et al., 2011; Heilala et al., 2012). Such 

work has demonstrated the capability of modelling in principle but is as yet not supported by 

an overall integrating modelling concept.  

7.1.2 Objectives and deliverables 

This chapter reports three prototype applications to validate the tactics library and its 

associated improvement methodology for application through a factory modelling approach in 

which buildings, facilities and manufacturing operations are viewed as inter-related systems. 

The prototype applications demonstrate how improvement opportunities can be identified in a 

structured and systematic way via the use of tactics and manufacturing system modelling. 

This novel modelling approach integrates of MEW flows in a manufacturing unit and 

challenges current open-loop thinking by adopting of a manufacturing ecosystem view of a 

factory. The objectives of the project are to improve overall resource efficiency in 

manufacturing and to exploit opportunities to use energy and waste from one process as 

potential inputs to other processes. The novelty here is the combined simulation of production 

resource flows and building energy use and waste in order to reduce overall resource 

consumption. 

7.2 Requirements for the Tool Development 

Quantitative analysis is needed to assess the environmental impact of manufacturing 

activities as well as the benefits of potential improvements. The ever increasing number of 

principles and tools for sustainability in business shows a lack of integration between them 

(Baumann and Cowell, 1999) and in some cases can create confusion and lead to success 

being limited (Baas, 1998). This research intends to complement and consolidate other 

researchers‘ work in the field of sustainable manufacturing.  

Existing modelling tools provide energy analysis in building modelling (Al-Homoud, 

2001; Pérez-Lombard et al., 2009), product flows and timing of process flows in 

manufacturing (Pandya, 1995), but none covers all aspects to account for all resource flows, 

intermittency of processes and spatial dimensions. They also do not provide the means to find 

opportunities directly, many of which involve complex data manipulation and visualisation. 
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The inclusion of buildings and facilities in manufacturing process analysis has been 

considered by manufacturers such as Toyota (Hope, 2008). However, the analysis is largely 

manual and limited in complexity and completeness due to the lack of supporting tools. 

Therefore buildings and manufacturing facilities are still typically considered separately 

(Oates et al., 2011b). 

As with lean/green approaches and manufacturing modelling tools, new methodologies 

and techniques require incremental development to be refined and to include all elements 

needed to support the design and analysis of sustainable manufacturing systems (Jahangirian 

et al., 2010). Tools supporting sustainable manufacturing must capture the interactions not 

only within the manufacturing system, but also with its physical environment, i.e. the 

manufacturing processes, their supporting facility, the surrounding buildings as well as some 

influential external factors (weather conditions and neighbouring industries and 

infrastructures). The analysis has to account for location and time in a manner that is not 

supported by either manufacturing process simulation tools or building energy tools. There 

are currently no tools commercially available for manufacturers to assess environmental 

performance, identify improvement areas and help suggesting specific actions across the 

breadth of the application area just described.  

The next section presents the cross-functional factory modelling approach and the process 

data required to create a model of the manufacturing system being investigated. This model is 

then used to analyse the process data and access tactics to identify improvement opportunities. 

The prototypes show that the analysis can be applied at different resolution levels to derive 

opportunities incrementally as efforts in data collection and modelling are increased. 

7.3 Cross-Functional Factory Modelling and Improvement Methodology 

Prior to the collection of process data discussed in section 5.3.1, a factory model that 

brings together research disciplines is required. Modelling is used to guide the user through 

the steps of collecting data and understanding their manufacturing system before undertaking 

improvement activities. The manufacturing ecosystem model introduced earlier in Chapter 1 

(Figure 1.3) captures the resource flows through the factory using the manufacturing 

ecosystem model developed by the researcher (Despeisse et al., 2012a).  

7.3.1 Modelling approach 

The manufacturing ecosystem model is based on the Industrial Ecology model type II 

(Graedel, 1994) which aims at increasing the system‘s overall efficiency rather than the 

efficiency of individual components of the system. By reducing the overall input associated 

with resource depletion and undesirable waste and pollutants outputs of the complete system, 

dependency on external resources and sinks is reduced. There is potential to extend beyond 

the factory gate to suppliers, neighbouring industries and other economic sectors. The 

inherent difficulty with factory modelling is the complex nature of MEW flows. These 

difficulties are exemplified when MEW flows cross functional boundaries. The systematic 

approach presented here aids in identifying functional boundaries and collection of data.  

The analysis promotes factory-wide improvements (gate-to-gate perspective) to retain the 

value of resource and avoid environmental degradation. The authors recognise the need for a 

more holistic perspective on industrial systems and on society if sustainability is to be 

achieved. The boundaries have been set so that the manufacturer has full control on all 

elements in the studied system. The work excludes certain aspects of sustainability such as 

social and economic impact, since they are considered as positive side-effects of the work 
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conducted rather than objectives. Also, the resources here are only energy, material, water, 

chemicals, waste, etc. (MEW flows) and not capital, employees, etc. 

This manufacturing ecosystem model integrates the three main subsystems and process 

data described in Chapter 5 and combines modelling functionalities from both building and 

manufacturing disciplines: 

 Manufacturing operations: manufacturing process systems (boundaries and 

connections), associated equipment (links to process systems), material flows (added 

value product, non-value added waste, and process system flow paths); 

 Supporting facilities: facility equipment, inputs to manufacturing operations (e.g. 

compressed air, steam, cooling water), outputs (e.g. exhaust fumes, waste heat); 

 Surrounding buildings: building geometry, construction data, weather data, HVAC 

systems and internal gains. 

7.3.2 Improvement methodology 

The improvement identification must follow a sequence that links the improvement 

hierarchy and tactics to the process data. The improvement methodology shown in Figure 7.1 

has been developed to support a structured and systematic identification of sustainable 

manufacturing improvements using tactics. It combines the ecosystem view for factory 

modelling (Despeisse et al., 2012a) and the improvement hierarchy for prioritising strategies 

and tactics. It requires involvement of multiple actors to collect the data, and to validate and 

implement the output. Thus, although it is possible to perform the improvement methodology 

with a single user, the overall process is a highly collaborative one.  

 

Figure 7.1. Improvement methodology for factory modelling and resource efficiency 
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Additionally the five tactic groups from Table 6.3 are all applied to some extent at all 

stages of the improvement methodology. Thus it is possible to find quantitative improvements 

as the data resolution builds up: at each stage the resolution is increased to find more 

opportunities. This is a key outcome because it shows a stepwise approach with increasing 

investment of effort; it also shows that some easy wins are possible with minimal invested 

effort.  

The first step of the improvement methodology is to define the system boundaries and set 

the targets. Typical targets are CO2 reduction, energy savings, water preservation and waste 

reduction. A factory ―walkthrough‖ and detailed description of the processes by a specialist 

are conducted at this stage to gain deeper understanding of the processes selected for the 

analysis which is carried out in steps 2, 3 and 4. Typical system boundary definition is 

delimited by specific processes with multiple equipment or machines and physical areas of the 

factory such as buildings. Ideally the system would correspond to the complete factory and 

the flow map would stop at the factory gate. This is achieved through iteration where 

subsystems are put together until a complete model of the factory is obtained.  

The second step is qualitative mapping. A first mapping is done to create the building 

model in which elements will be placed. The elements of the model are the buildings, the 

technology components placed in and near the buildings, and the resource flows linking all 

elements of the model (inputs: energy, material, water, chemical; outputs: product and 

wastes). The elements within the system boundaries previously defined are mapped against 

the factory layout to integrate spatial aspects into the model. The list of processes and 

equipment as well as their sequence for various flows are also defined: the most common way 

of defining the process sequence is to follow the product flow, but other sequences must be 

defined to follow the utility flows such as compressed air, steam and cooling water. Inputs 

and outputs are documented so that each flow clearly links to the processes it goes to or 

comes from. It is important to consider the resource flows not considered as technological 

components‘ inputs (with no origin) and outputs (with no destination), but as entities 

themselves. Doing so will bring into focus the links and interactions between processes across 

functional boundaries and enables the user to adopt an ecosystem view of the manufacturing 

system studied. A first coarse analysis is carried out at this stage to check for data errors and 

consistency, and for unnecessary elements. Tips (based on best practice and best available 

technology) are provided during the mapping when black-listed elements are identified.  

In the third step, the quantitative model is created by adding process data and creating 

profiles, i.e. metered data and characteristics of resource flows and technological components. 

All elements of the system must be characterised by process data. The model process data and 

the corresponding sources are listed in Table 5.4 (Chapter 5). When parts of the model are 

complete, simulation can be used to analysis the process data locally. This stage of the 

analysis identifies local improvement opportunities to prevent and reduce the use of resources, 

increase efficiency, and to reduce and reuse waste. 

In the fourth step, the process data are used to simulate the system‘s performance. This 

stage is a factory-wide analysis which allows the system‘s behaviour to be understood and 

analysed using a simulation of the model components‘ properties and process data. This stage 

identifies factory-wide improvement opportunities with reduction in resource use by 

following a chain of constraints from process to process or potential reuse of waste output 

from one process elsewhere in the system. The use of a simulation tool enables such complex 

factory-wide improvement identification in an otherwise more limited analysis which can be 

difficult to achieve manually. 
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7.4 Initial Prototypes: Tactics Access through Process Data 

This section presents the prototype applications to test the research findings. The initial 

prototype applications consisted of manually testing the factory modelling approach and the 

process data required to accessing tactics. Data from Toyota Motor Manufacturing (UK) 

(TMUK) and Airbus Broughton were used to create models manufacturing processes and 

their factory environment.  

7.4.1 Drying tank  

To create the factory model and represent the three sub-systems and links introduced 

above, all elements of the system are represented graphically (Oates et al., 2011a) and 

characterised by process data a listed in Table 5.4 (Chapter 5). The thermal and electrical 

energy flows within a factory environment are coupled with traditional building energy flow 

paths. Waste energy created by processes, e.g. friction, impact and laser cutting, are 

represented as internal gains. Material flowing through a factory environment from process to 

process will also absorb or release thermal energy to its surrounding environment. For 

example, thermal energy will be transferred when a component leaves a furnace or a 

refrigerator within an enclosed manufacturing process system, factory or external 

environment. The amount of energy absorbed or released is dependent upon temperature, 

geometry and material properties. 

In the first prototype application, a model of manufacturing operations and facilities was 

created based on Airbus drying tank (Figure 7.2). It consists of material and energy flows, a 

drying tank and supplementary equipment such as fan, heat exchanger (HX) and air re-

circulation ductwork. Air is drawn into a 18.5 kW fan from the factory environment. The air 

temperature increases to 40°C due to the transfer of thermal energy from a 200 kW HX and 

the input of work from the fan prior to entering the 90m
3
 drying tank. A proportion of the air 

is re-circulated, and mixed with air drawn from the factory environment. The HX is a closed-

loop water circuit connected to a combined heat and power (CHP) source. The HX water 

input is at 90°C and water output is at 80°C. Material in a wet state enters the process, is dried 

and moved back into the factory environment. The process is repeated for each batch that 

passes through the drying tank. The connections and links between the technology 

components and the resource flows are illustrated in Figure 7.2. 

 
Figure 7.2. Simplified representation of the drying tank 
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Before the tactics analysis, the fan and HX were operating constantly although the drying 

process is intermittent. Using the tactics for prevention and reduction and the associated logic 

test on the process data available, the following improvement opportunities were identified: 

1. Prevention 

 A11 Align operating time with production schedule: identify mismatch between 

product profile and input profiles over time 

o Improvement 1 – Circulation fan electricity usage: no fan electricity usage 

when no material is in the tank 

o Improvement 2 – Heat exchanger electricity usage: no HX electricity usage 

when no material is in the tank 

o Improvement 3 – Heat exchanger water usage: no HX water usage when no 

material is in the tank 

 A33 Switch off/standby mode when not in use: identifies mismatch between production 

profile and equipment/process operating time (technology component attributes of 

characteristics). 

o Improvement 4 – Fan and heat exchanger operating time: HX and fan are off 

when no material is in the tank 

2. Reduction 

 A35 Control performance: identifies mismatch between production profile and 

equipment/process performance level and suggest to add controls to adjust the 

performance to the minimum requirements (This is different from tactic A33 in that it 

also compares the magnitude of profiles, not only the timing) 

o Improvement 5 – Tank (or drying process) performance: process set points 

corresponds to the minimum requirements for product dryness  

o Improvement 6 – Fan and heat exchanger performance (or supply level): HX 

and fan supplying only the minimum required to Tank 1  

 A32 Change set points/running load, reduce demand: identifies mismatch between 

minimum requirements and process set points (profile magnitude). 

o Improvement 7 – Reduce temperature set point: temperature set points to meet 

the minimum requirements for product quality (dryness) 

 A12 Optimise production schedule to improve efficiency: identifies mismatch between 

minimum requirements and product profile (timing). 

o Improvement 8 – Reduce processing time: shorten process cycle time to meet 

the minimum requirements for product quality (dryness) 

This first prototype validated the use of modelling to access tactics and showed that 

tactics can help identify improvement opportunities. This example will be used in section 7.5 

for the final prototype. 

7.4.2 Paint shop  

Figure 7.3 shows a graphical example of an air supply house (ASH) for TMUK paint 

process in a primer booth. The function of the ASH is to condition air to meet the operational 

requirements of the paint booth (process set points: air temperature and humidity). The 

diagram represents the MEW flows across the system as resources are being consumed to 
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draw air through the air conditioning processes by fans. The MEW flows are modelled from 

supply source to treatment (shaded boxes), to the equipment and process being investigated 

(clear boxes). The process sequence is as follow: (1) pre-heat section: gas burner, (2) 

humidification section: ―Munster Biscuit‖ type humidifiers, (3) cooling section: cooling coil, 

(4) re-humidification section: steam injection, (5) re-heat section: steam heating coil, (6) final 

section: supply fans to draw air into the paint booth. 

 

Figure 7.3. Simplified representation of an air supply system 

The process data collected were used to characterise each element of the system: input 

and output profiles, air and water properties before and after each process, equipment capacity 

and actual running loads, process demand profiles and set points. Each process can be further 

detailed by breaking down a box of the diagram into a new diagram to show more details. For 

instance, Figure 7.4a shows a more detailed view of the chilled water supply. Depending on 

the data available—and therefore the process data used to characterise the system‘s 

components—different tactics are used to compare profiles, identify mismatch and 

inefficiencies, and suggest improvement options.  

Following the sequence for improvement strategies and tactics as listed in Table 6.3, the 

prevention tactics were used to compare resource usage profile and production schedule, i.e. 

check whether resources were consumed during non-production hours. Then a comparison of 

total supply and sum of all usage allowed a check on completeness of the model and identify 

excessive losses occurring between supply and usage. In this particular example, the 

prevention and waste reduction activities were already applied.  

The next group of tactics in the sequence is the resource use reduction. Tactics 3b and 3e 

identified an improvement opportunity by comparing the cooling water pump performance 

(running load, and therefore cooling water supply) to the cooling demand profile of process 3. 

As illustrated in Figure 2a, the pump was running full load all the time when the demand was 

significantly varying. An energy and water reduction opportunity was suggested as illustrated 

in Figure 7.4b: improve the equipment control to better match the supply to the demand. In 

this particular case, using an inverter with the pump allowed the water input to match the 

demand for cooling water.  
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Figure 7.4. Chilled water system  

(a) before improvement, (b) after improvement 

This application example demonstrates that it is possible to identify improvements using 

modelling of MEW flows to connect the manufacturing facilities and operations and gain a 

better understanding of the interactions between them. The modelling tool developed can 

assist manufacturers in assessing the resource productivity with a systems perspective and 

help to manage resource flows more sustainably. 

7.4.3 Kaizen examples 

In the previous example, the system could be modelled in two different ways: instead of 

modelling the pump running load, one can modelled the cooling water flow or the pump 

performance curve to identify a mismatch between the pump operations and the process 

demand for cooling. This would result is the use of a tactic to identify improvements. In this 

section, examples of Kaizen
4
 activities at Toyota were used to show how an improvement can 

be identified using different process data and consequently, different tactics. 

In the Kaizen example below, the process is modelled using an energy profile and product 

profile (Figure 7.5a), and in a second model using a control profile and a product profile 

(Figure 7.5b). Based on the process data available to perform the pattern analysis, tactic A11 

or A35 are being used to identify the improvement opportunity. Both models highlight a 

mismatch between the product profile and the process operating profile which is represented 

by energy usage in model (a) and by the equipment controls in model (b). 
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Figure 7.5. Multiple paths with different tactics to access a single improvement 

(a) Tactic A11 – usage profile vs. product profile 

(b) Tactic A35 – control profile vs. product profile 

7.5 Final Prototype: THERM Software and Tactics Logic Tests  

This part of the work was conducted collaboratively with the THERM partners: two 

universities (Cranfield University and De Montfort University), two manufacturing 

companies (Airbus UK and Toyota Motor Manufacturing UK) and a software developer (IES 

Ltd). The aim was to develop a modelling and simulation tool—the THERM software—

which integrates sustainable building design and manufacturing process MEW flow analysis 

to supports sustainable manufacturing plant design and improvement (THERM Project, 2011; 

Ball et al., 2011).  

The THERM project has developed the prototype IES Ltd <VE> THERM software which 

has been applied to industrial case studies to demonstrate the ability of the prototype to 

support activities towards sustainable manufacturing. The prototype applications presented in 

this section show how the research findings were integrated into the new IES software 

functionalities developed during the THERM project (Despeisse et al., 2013).  

The following sub-sections describe the application of the improvement methodology 

based on process data provided by the industrial partners of the THERM project. The Airbus 

drying tank example was used for the development of this final prototype (the same process 

used in the initial prototype presented in section 7.4.1). This prototype application also 

highlights the collaborative nature of the work as it brings together manufacturing and facility 

engineers, shop-floor technicians, and energy managers: 

System definition 

The first step of the improvement methodology is System definition to define the scope of 

the analysis by setting system boundaries and targets. A factory ―walkthrough‖ and detailed 

description of the processes by a specialist are conducted at this stage to gain deeper 

understanding of the processes selected for the analysis. Typical system boundary definition is 

delimited by specific processes with multiple equipment or machines and physical areas of the 

factory such as buildings. 
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A formulated team of industrial operations and facility engineers working in collaboration 

with the industrial, academic and software developer defined the focus of the study. Table 7.1 

summarises the possible options for the analysis in the THERM software. Although the 

analysis can support the design of new factories, the case application focused on the analysis 

of an existing one. The assessment was carried out at the factory gate level first and then 

progressed into static process analysis noting that subsequent dynamic simulation capability 

was not used. The focus and measurement was energy reduction as water, materials, carbon 

and cost were considered to be the consequences of improvements in this particular case. 

Information in the form of tips are available at each phase of the improvement 

methodology to provide generic advice based on the sustainability principles, a glossary to 

overcome the integration of two disciplines, and the collection of information and data, i.e. 

building and process data. 

Table 7.1. Options for analysis settings 

Assessment type Extent of assessment Focus of assessment Targets 

New 

Existing 

Factory gate 

Design, map and measure  

Building and process 

simulation 

Energy 

Carbon 

Material and water 

Cost 

Energy 

Carbon 

Material and water 

Cost  

Functional unit 

Qualitative mapping 

The second step of the improvement methodology is qualitative mapping. An early stage 

analysis focuses on the collection and examination of utility metered data to focus the analysis 

on specific resource flows or specific processes such as large energy consumers (Figure 7.6). 

This data usually consist of half hourly and hourly meter readings, logged by utility suppliers 

for billing purposes, e.g. electricity and gas. During early stage analysis there is no need for 

building geometry, process mapping or high resolution data. Sustainable manufacturing 

tactics (A34 Monitor performance and A35 Control performance) and tips help to identify the 

drying tank as a large energy consumer in the focal area. 

Then the building and processes are modelled by creating building geometry, assigning 

construction data and placing technology components (processes) within the building. Ideally 

the system would correspond to the complete factory and the flow map would stop at the 

factory gate. This is achieved by taking a top-down approach with details being added by 

―zooming‖ on the processes of interest (in this case, the drying tank). This stage can be 

repeated to create subsystems which can be put together until a complete model of the factory 

is obtained.  

The qualitative process model is created by mapping processes, i.e. placing technology 

components in the building model as illustrated with the yellow components in Figure 7.7. 

The building is a representative boundary surrounding the drying tank and supplementary 

equipment represented by the wire frame components in Figure 7.7. The elements within the 

system boundaries previously defined are mapped against the factory layout to integrate 

spatial aspects into the model. The list of processes and equipment as well as their sequence 

for various flows are also defined: the most common way of defining the process sequence is 

to follow the product flow, but other sequences must be defined to follow the utility flows 

such as compressed air, steam and cooling water. Inputs and outputs are documented so that 

each flow clearly links to the processes it goes to or comes from. It is important to consider 

the resource flows as individual entities in themselves, not simply as being assigned to 

equipment and processes as an input value with no origin and an output value with no 
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destination. Doing so will bring into focus the links and interactions between processes across 

functional boundaries and enable the user to adopt an ecosystem view of the manufacturing 

system studied.  

 

Figure 7.6. Processes ranked by annual power consumption 

 

 

Figure 7.7. Building geometry (wire frame) and manufacturing processes (yellow elements) 

The manufacturing processes are mapped against the factory layout to integrate spatial 

aspects into the model. 
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Quantitative modelling 

The quantitative modelling phase is an iterative, non-simulation phase of the 

improvement methodology. The quantitative model is created by adding process data and 

creating profiles, i.e. metered data and characteristics of resource flows and technology 

components. All elements of the system must be characterised by process data. This stage can 

be repeated to add more data as they become available and increase the level of detail of the 

model. The list of model process data was introduced in subsection 5.3.1 (Table 5.4). To 

enable the quantitative analysis and identification of improvement opportunities, some 

process data are defined as constraints, mainly production schedule and set points. These 

constraints determine the minimum input requirements for the manufacturing processes to 

achieve the correct product quantity and quality. Additional variables characterise the 

technology components: capacity or equipment rating, running load (including the minimum 

and maximum demand, i.e. base- and peak-load), the performance or efficiency curve which 

define the ratio output/input as function of running load. Optional information can be added to 

increase the quality of the analysis, such as equipment depreciation and operating cost. 

At this stage operational profiles are derived from sub-metered data and assigned to the 

fan, HX and drying tank process components discussed in step 4. Material flow profiles are 

derived from production schedules and assigned to the material component. The assignment 

of quantitative process data enables the improvement methodology to iterate through the 

manufacturing sustainable tactics. At this non-simulated stage of the improvement 

methodology, all of the tactics are activated with exception to reuse. A first pass of the tactics 

identified potential improvements. The prevention tactic was flagged due to a mismatch 

between the operational and production profiles (A11 Align resource input profile with 

production schedule). For example, the energy consumption profile of the equipment can be 

compared to the material flow through the process as highlighted in Figure 7.8 (values on the 

Y-axis are company sensitive data). The prevention tactic advises switching off the fan when 

there is no product being processed. Reduction tactics were also identified based on material 

drying times, tank temperature set points, equipment flow rates and ratings (A32 Change set 

points/running load, reduce demand). The alteration of equipment set points and reduction in 

material drying times to conform to minimal design condition need to be investigated in the 

future. 

Simulation 

In the seventh step, the process data is used to simulate the system‘s performance. When 

parts of the model are complete, simulation can be used to analyse a selection of process data 

locally. This stage of the analysis identifies local improvement opportunities to prevent and 

reduce the use of resources, increase efficiency and reduce waste. With the example given in 

Figure 7.8, the operational profiles of the fan and HX were modified in conjunction with the 

prevention tactic. There are potential energy savings when there is no product being dried 

within the process, illustrated in the figure by the filled areas: fan (green) and HX (blue). 

Simulated results predict a 74% energy savings from one week of data. Further potential 

savings could be achieved by restricting the drying time of the material to the minimal design 

condition and reducing set points. Due to the varied production flow of material that occurs 

on-site as a consequence of a batch process, the industrial partner has reduced the operation 

usage of the drying tank in line with shift hours and turned the process off outside these hours 

(e.g. weekends). Future work is to be carried out in line with the reduction recommendations, 

following consultations with operations and facility engineers. Outcomes from this prototype 

are also to be cascaded across other similar processes, resulting in further energy saving 

opportunities.  
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Figure 7.8. Process energy and potential savings using prevention tactic A11 

The energy consumption profiles can be compared to the material/product flow  

to highlight potential energy savings (i.e. when equipment can be switched off) 

 

When the system model is completed, the analysis identifies system-wide improvement 

opportunities with reduction in resource use by following a chain of constraints from process 

to process or potential reuse of waste output from one process elsewhere in the system. This 

phase of the work requires a fully functional simulation model, being developed as part of the 

THERM project. The building mapping requires that the user assigns HVAC data to factory 

thermal zones, and construction properties, weather data, room temperature set points, internal 

gains from lighting and room occupancy to the building. The simulated aspect of the works 

activates all of the sustainable manufacturing tactics. Following the same principle outlined in 

the non-simulation approach, the methodology cycles through the tactics identifying potential 

improvements. Further work will include enhanced functionalities to identify reuse 

opportunities (A14 Synchronise waste generation and resource demand to allow reuse and 

A24 Reuse waste output as resource input) such as highlighting processes in operation (in red 

in Figure 7.9) and highlighting based on thermal gradient, energy type, etc. 
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Figure 7.9. Simulated analysis highlighting opportunities for reuse  

Colour coding: red: WIP – work in progress; blue: no WIP 

7.6 Chapter Summary  

The modelling approach used for the THERM tool demonstrates the possibility to adopt 

an integrated systems view of a manufacturing system (or, in this case, a part of it) using the 

MEW flows through the operations, facilities and buildings. Typically, modelling and 

simulation techniques overlook wastes as they usually focus on process planning and product 

flow. At first, the use a top-down approach is recommended to identify the key consumers and 

focus the analysis on resource intensive processes. Then a lateral approach can be adopted to 

follow the MEW flow in further detail. This would help to steer the focus of the study towards 

interesting areas where potential improvement can be made, rather than spending a lot of 

effort to include areas which are not bringing much benefit to the study. If information is 

lacking, an approximate (but complete) model based on measured data is preferred to a more 

detailed one based on assumptions. When going into further details, if data are missing 

between two points with known values, it is possible to calculate the value of the flow to 

complete the model. Otherwise, the flow is considered as a loss to the system (such as heat 

that ―evaporates‖ in atmosphere through the chillers or exhaust pipes/chimneys). After an 

understanding of the system is gained, further information can be obtained incrementally by 

working with the elements of the model that stand out as potential improvement areas. Details 

can be added by ―breaking down‖ elements of the model to a lower level of abstraction. 

It is also very important to clearly define what the boundaries of the system studies are. 

For instance, where do the material and energy flows begin? What are the activities included 

and excluded when it comes to ―borderline‖ activities? A clear definition of boundaries is 

required to evaluate the performance of the system. 

This chapter has shown testing of the tactics and improvement methodology with multiple 

prototype applications. They have shown that the use of tactics through factory modelling can 

support improvement identification. The final prototype tool also demonstrates the ability to 

represent the metrics necessary for evaluating options for more sustainable manufacturing 

system. 
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Chapter 8 DISCUSSIONS AND CONCLUSION 

This chapter discusses the research problem after taking the results into consideration 

and demonstrates that the research questions have been addressed. The limitations of the 

research findings are also highlighted to open a discussion on possible alternatives and 

improvements. Then the contribution to knowledge and practice is discussed. Finally it 

presents potential future research in the area of sustainable manufacturing. 

 

8.1 Research Findings Summary 

Existing concepts and models for sustainable manufacturing cover a wide variety of 

topics and approaches: the need for resource efficiency in manufacturing is driven by cost, 

regulations, stakeholders‘ pressures, corporate reputation and awareness of the urgency of the 

situation. The move towards sustainability can only take place through extensive changes 

spanning from behavioural to technological changes, and through holistic perspective as well 

as local solutions. Therefore, the knowledge on the topic is highly multidisciplinary. 

Collaborations between disciplines and with industrial and governmental institutions are 

increasingly common in academic research as new challenges involve rapid technological 

change, interconnected and complex problems.  

This research addresses the challenge of bringing industrial sustainability principles into 

manufacturing practice through a collaborative project involving two academic partners, two 

manufacturers and a software developer. This collaboration provided a multidisciplinary 

context for the research and also guided the work to deliver tangible results in the form of a 

modelling tool (software) which can be used directly by manufacturers to have a real impact 

on the companies‘ environmental sustainability performance. 

By conducting a literature review and a case collection during the exploration phase of 

the research, the initial objectives and the first research question were addressed: understand 

what operational improvements are needed to approach sustainability, what improvements are 

currently achievable based on theory and industrial practice, and how these improvements can 

be codified to support their generalisation across industry. On the one hand, the exploration of 

sustainable manufacturing as a concept provided a better understanding of the global issues 

targeted and the proposed theoretical solutions (Chapter 3). On the other hand, the exploration 

of sustainable manufacturing practices (SMPs) provided an overview of existing operational 

solutions in the manufacturing industry (Chapter 4). The SMP analysis uncovered the main 

mechanisms of change which were used to codify the improvements and allow tactics to be 

formulated. 
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During the explanatory and testing phases, the tactics library and the improvement 

methodology were developed and refined to address the second research question: they 

provided a practical approach to identify improvement opportunities in a structured and 

systematic way. The tactics translate improvement mechanisms into simple, generic and clear 

rules which in turn help generalising SMPs (Chapter 5). The library of tactics was then 

organised according to an improvement hierarchy to prioritise tactics and provide a structured 

approach to operational improvements (Chapter 6). Finally, the tactics and improvement 

methodology were tested using prototype applications to demonstrate the ability of the 

research findings to support manufacturers in their journey towards sustainability (Chapter 7). 

8.2 Discussions 

8.2.1 Concept definition and system boundaries 

While concepts of sustainability and sustainable development have become increasingly 

known in academia and industry, there are still different interpretations of what a sustainable 

level of performance is. In a similar way, concepts of pollution prevention, cleaner production 

and industrial ecology have gained importance over the last decade and have been used by 

many companies; but they still need to be strengthened to ensure wider success with more 

systematic application in industry. Looking back at the historic evolution of these concepts, 

clear and strong definitions are a key factor in the diffusion among practitioners of these 

concepts whether the superiority of their benefits are proven or not. For instance, although 

pollution prevention has been recognised as a better approach than pollution control and other 

end-of-pipe solutions for long-term results to reduce environmental impact of industrial 

activities, it has been less successful than pollution control approaches as they offer concepts 

with strong command-and-control policies and are consequently easier to implement. 

Cases from books, conferences and academia mostly refer to sustainable manufacturing 

theoretical concepts as presented before in the literature of the field. Cases presented by the 

business community itself describe practices only in a technical and financial point of view; 

they infrequently adopt the existing terminology of sustainable manufacture used by 

academics. Thus a major difficulty in the dissemination of sustainable manufacturing 

practices in industry is the duplication of concepts and efforts, as well as the lack of 

understanding on what is the global impact of local improvements, e.g. the rebound effect. 

Activities in the newly developed field of sustainable manufacturing can be found under the 

different names: ―sustainable production‖, ―green manufacturing‖, ―competitive sustainable 

manufacturing‖, ―environment conscious manufacturing‖, ―environmental benign 

manufacturing‖, ―environmentally responsible manufacturing‖, etc. Multiple labels for similar 

approaches and vagueness in the definitions have led to a semantic confusion. This can be 

explained by the fact that sustainable manufacturing is a new field spreading in academia and 

the practitioner community but not yet adopted as a framework. This lack of unified 

framework is one of the main barriers to achieve successful application of sustainability 

principles in industrial systems. 

Another debated area is the boundary definition of the system studied and improved as it 

has implications regarding the accounting method. For instance, carbon-neutral energy system 

usually means that there is no direct emission during the use phase of the energy system such 

as fuel cells or nuclear power plants. Renewable energy sources such as solar, wind and 

hydropower are other examples of carbon-neutral energy systems. Biomass also is considered 

to be carbon-neutral through the fact that growing the fuel captures as much CO2 as it releases 

during its combustion. But taking a life cycle perspective, CO2 emissions occur during 
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manufacturing, commissioning, maintenance, in some cases harvesting of the fuel itself, and 

decommissioning; these are often ignored when comparing various energy systems. All 

impacts must be taken into account to ensure full understanding of the different technologies‘ 

long-term contribution for a more sustainable society. 

Therefore, when quantitatively assessing manufacturing systems‘ performance, one must 

account not only for direct and local environmental impact, but for indirect and more global 

impact resulting from resource life cycle as well (i.e. from virgin material to products to 

reuse, remanufacture and recycle paths). By adopting different viewpoints, benefits and 

impacts can shift outside the system boundaries and become an externality, or conversely be 

internalised become part of the desired outcome. Typical examples are the different paths for 

closing the material flow: when considering only the factory, waste flows leaving the factory 

gate are completely lost for the system, but if these waste flows are resources for another 

industry, then a wider perspective can capture wider benefits for the industrial system. 

Another example is the product life cycle perspective: if product is being downcycled, from 

this product‘s life cycle perspective, no material is lost; but considering the material itself 

(resource flow and stock), virgin material will still be needed to produce this product while 

the material from the used products is degraded when downcycled, therefore the material 

loses its value. 

In this research, however, the scope of the analysis was narrowed down to focus on the 

manufacturing system. By using the manufacturing ecosystem model, resource flows could be 

integrated across the manufacturing operations, the supporting facilities and buildings. Thus 

the factory analysis set its boundaries around the factory gates. The research recognises the 

importance of the bigger picture to optimise resource use and the need for a life cycle view on 

manufacturing activities to achieve environmental sustainability. Thus, when evaluating 

various improvement options, the researcher encourages adopting a wider perspective on 

society and Earth‘s systems to better account for the impact of change on elements outside the 

factory gates as illustrated by Figure 1.1 in Chapter 1.  

8.2.2 Ecosystem model and prototype tool 

The literature review revealed that there are no tools or techniques that effectively 

combine space, product flow, energy flow and time to enable complete modelling and 

analysis of resource flows in a factory. This work feeds into the specification for such a tool. 

The main objective of the modelling tool developed in this research is to improve the 

environmental performance of manufacturing systems. This can be achieved through overall 

resource efficiency (as opposed to individual process efficiency) and through closed-loop 

resource flow, thereby reducing the net resource inputs and waste outputs of the system.  

Industrial ecology concepts, such as systems view, food webs and industrial ecosystems, 

are usually applied at macro-level involving various industries and local communities. In this 

research, they are applied at factory level in order to remedy the lack of integration in the 

design of manufacturing systems. Current approaches to factory analysis are overlooking 

potential interactions within the system: manufacturing processes are designed to have their 

own inputs and outputs, regardless of the possibility of reusing other processes‘ wastes as 

resources. Therefore a manufacturing ecosystem model was used in this research to adopt 

such perspective of the factory. Keeping in mind that all elements of an ecosystem are put 

together in order to constitute a synergetic system, the emphasis is on the whole system rather 

than on individual elements. Focusing on material, energy, water and waste (MEW) process 

flows gives the opportunity to adopt this ecosystems view of the factory and also enables 

finding compatible input and output flows between components of the system, i.e. reuse of 

waste as a resource within the system.  



Chapter 8   Discussions and Conclusion 

88 

Modelling of MEW process flows has been identified as an appropriate way to achieve 

resource flow improvement with existing manufacturing operations, facilities and buildings or 

for the creation of new ones by assessing different scenarios. The novelty of this modelling 

approach is the application of ecosystems view at factory level. In particular, it brings 

together existing techniques into a methodology to achieve this.  

As previously discussed, a critical assumption concerns the boundaries of the system. In 

this research, the modelling tool is for direct use by manufacturers, and it is therefore crucial 

to consider their perspective on industrial activities. The control that some companies have on 

what is happening outside the factory is limited; this may include product design and supply 

chain. Thus the modelling tool focused on MEW process flows occurring on-site, i.e. gate-to-

gate is used rather than product life cycle or supply chain perspective. 

Beside the issue of control over elements within and outside the factory, manufacturers‘ 

knowledge about their actual emissions and waste streams is often limited. Even when data 

are available, data collection, understanding, modelling and analysis can be challenging: the 

level of granularity of data can vary for different resource types. This granularity issue can 

affect the level at which the data is metered (e.g. electricity at equipment level vs. at 

distribution bus duct level) as well as the time interval between two values (e.g., continuous 

recording vs. 30-min. readings vs. 3-monthly readings) and the magnitude of the flow to be 

taken into account (small flows add complexity to the model, but they can also have a high 

impact on performance, e.g., toxic waste). 

To address this granularity issue, the modelling tool developed proposes an incremental 

model development. The model corresponds to a simplified representation of reality. 

Assumptions and approximations are made in order to obtain a complete model without 

resulting in too high a cost for the manufacturer, e.g. cost of developing a high fidelity model. 

Thus the main challenge in using the manufacturing ecosystem model is to determine how 

detailed the analysis can (or must) be, and what dimensions of performance must be included. 

Typically the difficulty is to represent the system at a suitable level of abstraction which is 

dictated by the available data and any improvements a company has already made in its 

manufacturing processes: as improvement activities are carried out, the data quality tends to 

progress and identifying opportunities for further improvements requires more detailed 

analysis. 

8.3 Research Limitations and Findings Validity  

The researcher recognises the importance of the bigger picture to optimise resource use 

and the need for a life cycle view on manufacturing activities to achieve environmental 

sustainability. The first limitation of this research concerns the scope and the boundaries set 

for resource flow analysis. When evaluating various improvement options, it is highly 

recommended to consider a wider perspective on society and Earth‘s systems to better 

account for the impact of improvements achieved within the system studied.  

A second limitation of the research regarded the validity of the findings resulting from the 

case collection. The four conditions of design quality according to Yin (2009) are construct 

validity, internal validity, external validity and reliability. The construct validity can be 

challenging in case study research as there is a potential bias and a lack of control on the data 

in reported cases. However, the construct validity and reliability of the case analysis were 

increased by using multiple sources of evidence, creating a database to organise and 

categorise SMPs, establishing a protocol and chain of evidence (see Figure 2.4 in Chapter 2 

Research Design), and consulting with third parties to review and use the SMPs database. 
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Similarly, the construct validity was ensured during the improvement hierarchy development 

by using multiple sources and by identifying compatibilities/commonalities in the 

sustainability strategies reviewed. Internal validity was addressed by using pattern-matching 

and cross-case synthesis as analytic techniques for identifying the improvement mechanisms 

of the SMPs. When the patterns observed are matching the predicted ones, the results 

strengthen the internal validity of the analysis (Trochim, 2006). This was the case in this 

analysis: the collection of SMPs revealed a number of patterns from which the researcher 

drew cross-case conclusions and created the tactics. Finally, the external validity and 

reliability issues were addressed by using replication logic in the multiple-case study 

(Eisenhardt, 1989). Replication logic enables the analytical generalisation of the results to 

other cases outside the study by developing theories explaining the recurrent patterns or 

regularities observed (Blaikie, 2000). In this research, the observed patterns in the SMPs were 

captured in the tactics to allow manufacturers to quickly replicate and adapt best practices to 

their own processes. 

8.4 Contribution to Theory 

The contribution to knowledge of this research resides in understanding the mechanisms 

of operational improvement for sustainable manufacturing. These mechanisms were identified 

from patterns in the sustainable manufacturing practices collected during the cross-sectional 

case study. The mechanisms of improvement were coded into generic rules (tactics) and 

associated logic tests. In turn, this codification allows the generalisation of industrial 

practices. Additionally, the practice database can help academics identify areas for future 

research by reviewing current state of industrial practices. 

The literature review has presented various concepts and approaches for industrial 

sustainability which were synthesised with the improvement hierarchy. While sustainable 

manufacturing strategies offer insight to the overall approach taken by companies, they lack 

practical support for implementation: there is a gap in the literature on how to move from 

high-level sustainability concepts to the selection of appropriate practices. The literature also 

highlighted the need to systematise improvement activities in manufacturing. Thus the 

improvement hierarchy was used to organise the library of tactics and help prioritise 

improvement options for a structured and systematic identification of improvement 

opportunities. Consequently, the tactics library provides the link between high-level 

sustainability concepts and tangible actions which manufacturers can envisage in their own 

environment. 

Finally, the library of tactics was integrated into a modelling and simulation tool via the 

improvement methodology which provides a structured approach to analysing manufacturing 

systems combining buildings and manufacturing operations analysis. The improvement 

methodology and tactics library have demonstrated the ability to generalise practice across 

industrial sector and various technological solutions. They also allowed understanding how to 

integrate environmental sustainability considerations in manufacturing system design and 

operations management. 

8.5 Contribution to Practice 

This research addresses the following questions from a manufacturer‘s perspective: what 

is sustainable manufacturing at factory level, how to approach sustainability in 

manufacturing operations and where to start with sustainable improvement activities.  
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The research is based on extensive collection and analysis of available case studies in 

published literature and interaction with industry. Practices demonstrated by companies in the 

case collection are a key ingredient to increasing business sustainability performance and 

competitiveness. This research has examined the gap between strategic direction and practices 

for sustainability in manufacturing to extract the mechanisms behind the practices. These 

mechanisms were coded into generic tactics and associated logic tests to provide information 

on how inefficiencies and thus improvements can be identified from a manufacturer‘s 

perspective. By providing simple (and seemingly obvious) tactics, sustainability concepts 

become more tangible and applicable in manufacturing activities. 

Additionally, this research has explored the design challenge of developing such a 

methodology to assist manufacturers in identifying which tactics might apply in their specific 

context. The improvement methodology was developed by combining the manufacturing 

ecosystem model (conceptual approach to industrial sustainability) and the tactics library. The 

combined use of resource flow modelling and tactics was tested via prototype applications 

and proved the ability to identify improvements through process data analysis. The 

improvement methodology supports manufacturers by providing a clear step-by-step guidance 

on how to undertake their journey towards sustainability at operational level.  

Finally, the research findings have been integrated in a modelling and simulation 

software, developed through the THERM project, which will be commercially available to 

provide a supporting tool to guide manufacturers through the complex process of modelling, 

analysing and improving their manufacturing operations, buildings and facilities.  

8.6 Recommendations for Further Research 

This research has investigated sustainable manufacturing as a concept for academic 

research and as a set of good practices for industry. Despite an in-depth literature review and 

extensive data collection of industrial best practices combining a broad range of keywords and 

sources, the literature does not contain significant numbers and complete illustrations of 

sustainable practices in industry. Information is particularly deficient regarding the process of 

identifying inefficiencies and corresponding solutions, selection of improvement options, 

implementation difficulties and knowledge management about sustainability in companies.  

Knowledge in the sustainable manufacturing field is fragmented but unified theories, 

generally accepted frameworks and models are developing. As there is a growing interest in 

environmental and ethical issues, sustainability is now part of the many corporate strategies. 

The large range of terms and concepts used in the literature can negatively impact the 

discussion and knowledge shared among researchers and practitioners. This was the case 

when collecting practices with a diverse range of terms being used in describing the activities. 

This issue emphasises the challenge of communication in sustainable manufacturing. As a 

result, there is an extensive (mis)use of terms like ‗eco-efficiency‘, ‗clean technology‘ or 

‗green energy‘ but there are currently no standards concerning the terminology. Thus there is 

a great need for standardised definitions and for a unified framework to clarify the 

relationship between concepts and approaches (complementary vs. overlapping vs. 

conflicting). 

The tactics were purposefully formulated without such ambiguous expressions with a 

modeller and manufacturer‘s perspective. Thus each tactic can be used to access a group of 

similar sustainable manufacturing practices independently of the terminology used to describe 

the activities and improvements achieved.  
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Three areas for further work are recommended to improve the practice database, its access 

and knowledge transfer. First, there is a need for manufacturers and researchers to document, 

analyse and publish more cases on the practice and benefits of sustainable manufacturing. 

Current developments in the area of open innovation (Chesbrough, 2003) are demonstrating 

the feasibility and benefits of knowledge and experience sharing. By integrating external 

knowledge, new opportunities are created more quickly and efficiently. Additionally, the use 

of common terminology between academics and practitioners will assist in the accessibility of 

these cases. The practice database could be further extended to better understand the trends in 

various industrial sectors and provide more personalised support to companies. Secondly, 

search methods need to be improved to access specific examples of good practices. Easier 

access to practices could further support manufacturers to quickly replicate improvements 

achieved by other companies as well as learn how to find more innovative solutions 

themselves as they gain experience in applying sustainability in their operations. Finally ways 

of sharing the knowledge acquired through this learning process need to be further explored. 

This could uncover the enabling factors or conversely uncover the barriers to successful 

learning. 

The improvement methodology developed in this research also enables manufacturers to 

learn how to adopt a new way of thinking and viewing their manufacturing system. Through 

the use of this step-by-step approach to operational improvement towards sustainable 

manufacturing, they can achieve a more systematic integration of environmental sustainability 

considerations in factory design and operation management. However, further work in 

sustainable performance assessment is needed to quantitatively assess benefits of various 

improvement options and allow more informed decision-making. This could be achieved by 

developing simulation and analysis capabilities to include life cycle data of the MEW process 

flows, to simulate the model to estimate (and predict) its environmental and economic 

performance, and to quantify potential benefits as well as implications for wider systems 

(local benefits vs. global impact). 

One definite conclusion from this research is the need for more systematic application of 

sustainability concepts, models, strategies and principles in society in general and in industry 

in particular, from early design to manufacturing processes to servicing and product use and 

finally to end-of-life management. Sustainability must become a pervasive attitude to all 

human activities. Tools to support the integration of sustainability in decision-making not 

only need to be developed, but more importantly they need to be accessible and useable by 

businesses to have a real impact on their sustainability performance. 
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APPENDIX – SUSTAINABLE MANUFACTURING PRACTICE DATABASE 

 

# Sustainable Manufacturing practice Tactic Sector Reference 

1 Replace old compressors with new high efficiency ones A42 Steel industry www.compressedairchallenge.o

rg/library/casestudies/weirtons.

pdf 
2 Addition of air treatment equipment A43 

3 Leak reparation A31 

4 Renovation of the pumping system A42 Automotive glass www.osti.gov/glass/Best%20Pr

actices%20Documents/Assessm

ent%20Case%20Studies/Millwa

ter%20pumping%20system.pdf 

5 Replace old run/modulation sequencer with a programmable logic control (PLC) system: 

centralize the control of all 5 compressors, maintain adequate pressure differential between 

the compressor pressure settings, and sequence them more efficiently; system linked to the 

pressure/flow controllers to obtain accurate demand signals.  

A42 Metal forging www.compressedairchallenge.o

rg/library/casestudies/moddr.pd

f 

6 Install 2 pressure/flow controllers (in forge shop and in die shop): pressure/flow controllers 

to provide stable header pressure of 100 psig in forge shop, to provide air at 85 psig in die 

shop. 

A35 

7 Add 2 receivers: 7,500 gallons of storage. A43 

8 Modify piping distribution system to connect the dryers before the storage, and opened the 

valves in the forge shop header. 

A42 

9 Install an additional dryer. A43 

10 Replace dirty filters. A31 

11 Implement leak detection/repair campaign: replace worn point-of-use components (air 

leak), plant personnel training about compressed air system dynamics and the importance 

of managing leaks. 

A31 

12 Replaced old, malfunctioning condensate drains on compressors and dryers with 8 

pneumatic drains. 

A42 

13 Purchase and install a dedicated 40-hp compressor for weekend packaging operations and 

some die shop functions, so that the 200-hp compressor would not be used for those tasks. 

A43 

14 In-house chip reclamation A24 Automotive 

aluminium 

American Council for an 

Energy-efficient Economy: 

www.aceee.org/P2/p2cases.htm 
15 Advanced furnace with better recovery and fewer pollutants than the off-site melting 

process 

A43 



Appendix – Sustainable Manufacturing Practice Database 

108 

# Sustainable Manufacturing practice Tactic Sector Reference 

16 Upgrade and computerize equipment A34 Forging industry 

17 New furnaces with higher efficiency A42 

18 Anaerobic treatment of organic nutrients in wastewater to produce biogas (mostly methane) A24 Brewery 

19 Energy capture in low pressure steam from 7 thermo-mechanical pulping refiner lines by 

using 2 mechanical vapor recompression heat pumps 

A24 Pulp and paper 

20 Partnership: use Chaparrel waste as inputs for highway construction and cement industry A24 Steel industry 

21 High efficiency lamps, ballasts and motors and insulated hot tanks A42 Metal industry 

22 Reduced solvent evaporation A31 

23 Replacing floor dry with absorbent pads and wringer reducing plant waste A44 

24 Newer material improve heat transfer and increase productivity A42 Fertilizer 

25 More efficient units reduce heat and steam demand (water and fuel consumption) A42 

26 Testing of a membrane-based technology (full-scale prototype) to recover and reuse 

discharged furnace gas, Avoid installation of expensive pollution control equipment 

A24 Automotive and 

heavy equipment  

27 Infrared Drying: Replacement on the first production line A43 Iron casting 

28 Water recirculation A24 Key retainer 

device 29 Cleaning using an oil skimmer, Elimination of chemical treatment A42 

30 Installation of variable-speed drives (VSDs) A42 Textile 

31 Development and commercialization of a new technology A42 Printing industry 

32 Paper and plastics recycling A24 

33 Reduced ink waste, closed-loop ink-jet supply and printer solvent recovery system A24 

34 Reparation of wooden pallets A24 

35 Change of from 3 8-hour to 2 12-hour shifts A12 

36 Use processing and alloying procedures that enable appropriate structures and strength to 

be developed in thin section ductile iron castings. Evaluate the environmental implications 

of substituting this new material for existing ferrous and non-ferrous materials used in 

automotive castings. 

A22 Casting Loughborough University: 

wolftest.lboro.ac.uk/research/m

anufacturing-

technology/SMART/sustainable

-projects-students.htm 
37 Introduction of innovative ultrasonic assisted cutting technology A42 Machining 

38 Installation of bare steam pipes A43 Food sector: 

preserved food 

industry 

El-Haggar, S. (2007), 

Sustainable Industrial Design 

and Waste Management: 
39 Replacement of leaking steam valves A31 

40 Replacement of defective steam traps A31 
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41 Installation of temperature controller on sterilizers A34 Cradle-to-cradle for Sustainable 

Development, 1st ed, Elsevier 

Academic Press, California, 

USA.  

42 Recovery of steam condensate A15 

43 Improving boiler efficiency by reducing the air to fuel ratio A32 

44 Installation of water meters A34 

45 Installation of hose nozzles A43 

46 Improving the water collection system on the juice line A24 

47 Installation of cooling tower for the bottled juice line A43 

48 Chip and trash recovery system => good housekeeping technique A15 Food sector: 

sugar beet 

manufacturing 
49 Diffusion and juice purification => better process control A35 

50 Heat exchange and evaporation => better process control A35 

51 Sugar and purity control: modification of the sugar purity management steps, lowering the 

purity of liquor and reviewing the crystallisation management 

A32 

52 Unknown losses: Improving maintenance to stop leakages and improving operations to 

provide steady state condition => good housekeeping technique 

A31 

53 Improved housekeeping A31 Food sector: milk 

production 54 Rationalisation of milk packaging A13 

55 Milk refrigeration efficiency increased A42 

56 Reuse of the whey A24 

57 Upgraded boiler A31 

58 Restored softening unit A31 

59 Collection of used oil A15 

60 Milk tank level controls, Food quality valves A35 

61 Substitution of the sodium sulfide with glucose A22 Textile sector 

62 Substitution of the dichromate with sodium perborate A22 

63 Trials with variable concentrations, rates at which chemicals were added, temperature, 

number and timing of washes. 

A32 Textile sector 

64 More expensive chemicals were phased out and replaced with ammonium persulfate and 

Egyptol. 

A22 

65 Trials to combine scour and bleach processes more efficiently and to phase out the use of 

sodium hypochlorite in bleaching. 

A32 
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66 Hydrogen peroxide used to substitute the sodium hypochlorite in the full bleaching process. A22 

67 Storage facilities improved A31 Textile sector 

68 Material substitution A22 

69 Optimisation of chemical usage A34 

70 Collection of steam condensate (equipment modification: condensate stored in a tank ) A15 

71 Reuse of steam condensate A24 

72 Equipment modification: condensate re-circulated to the process water feed lines by means 

of pumps and piping network 

A24 

73 Upgraded insulation of steam and hot water network (better process control) A31 

74 Counter current flow (process control) A35 

75 Installation of automatic shut-off valves in bleaching ranges A42 

76 Recycling of final washing water in the bleaching ranges (on-site recycling, process range) A24 

77 Source (oil) reduction thanks to good housekeeping A31 Oil and soap 

sector 78 Source (oil) reduction thanks to preventive maintenance through upgrading oil loading and 

unloading procedures (improved procedural instructions, supervision of transfer operations) 

A31 

79 Installation of 3 gravity oil separators manufactured by the factory A43 

80 Segregation of the cooling water, vacuum water and process water from one another in 

parallel with rehabilitation of the two existing cooling towers 

A31 

81 Use of liquid caustic soda in the refinery unit A22 Oil and soap 

sector 82 Upgraded system network in the steam unit A31 

83 Recovery of broken seeds in the receiving unit A31 

84 Reuse of fines in the preparation unit A24 

85 Preventive maintenance program in all the factory units A31 

86 Implement alternatives to conventional spray gun systems A43 Wood furniture 

sector 87 Flush equipment first with dirty solvent before final cleaning with virgin solvent A24 

88 Use cleanup solvents in the formulation of paint A22 

89 Minimisation of the use of water to where it is needed A13   

90 Improvement of the insulation of the furnace, so there will not be any heat dissipation A31 
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91 Installation of an oil fog system in the steamer controlled cooling line thus reducing oil 

consumption 

A43 

92 Improvement of the transportation of oil without any leaks or spills during the process A31 

93 Reforming of the hydrodynamic system from the ration pump to the various pumps A43 

94 Replacement of the hydrodynamic system pipes to reduce oil losses A42 

95 Installation of a waste oil connector in the coil collection oil station to reduce oil discharges A43 

96 On-site recycling in cement production process (most efficient in wet process); need more 

research to optimise percentage of bypass dust recycled without affecting cement properties 

A24 Cement industry 

97 Production of tiles/bricks/interlocks blended cements A15 

98 Enhancing the production of road pavement layers A31 

99 Production of safe organic compost by stabilising municipal waste water sludge A24 

100 Production of glass and ceramic glass A15 

101 Better scrap management in the storage area A25 Aluminium 

foundries 

industry 
102 Arrange molds near the smelters away from traffic A25 

103 Stack the products more loosely A25 

104 Cutting scrap should be collected and compacted A15 

105 Cut the big blocks into smaller pieces before smelting A22 

106 Reduce the size of the slabs during the pouring phase in order to reduce the scrap  A22 

107 Change the square slabs into round slabs to reduce scrap A22 

108 Upgrading the smelting furnace A31 

109 Upgrading the annealing oven A31 

110 Upgrading the rolling machine A31 

111 Upgrading the spinning machine A31 

112 Upgrading the polishing processes A31 

113 Mud-cutting separation A15 Drill cuttings, 

Petroleum sector  114 Treatment (On-site indirect thermal desorption, distillation, solvent extraction, combustion, 

stabilisation and biological treatment) 

A15 

115 Reuse/Recycle opportunities: cuttings could be reused in construction and landscaping for 

example in concrete products, coastal defenses, land reclamation, pipe beddings, landfill 

cells, roads and pavements, top soil admix and fill materials. 

A24 
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116 Solid fuel using briquetting technology A22 Sugarcane 

Industry 117 Solid fuel using briquetting technology A24 

118 Gasification of bagasse-cachaza, biogas A22 

119 Gasification of bagasse-cachaza, biogas A24 

120 Traditional fossil fuels: natural gas A22 

121 Processing Basic oxygen furnace (BOF) slag A15 Iron and steel 

industry 122 Dry slag granulation A24 

123 Ground granulated blast furnace (BF) slag can be used in concrete A15 

124 Composite pavement base material made of steel-making slag and blast furnace slag A15 

125 Use of BF and BOF slags in road paving as a base, sub-base, and surface layers A15 

126 Use of Electric Arc Furnace (EAF) slags as a road-paving base material and as coarse 

aggregate for producing concrete suitable for applications such as wave breakers, sidewalk 

blocks and profiles, and manhole covers 

A15 

127 Use of BF, BOF and EAF slags as coarse aggregate replacements in the production of 

building materials such as cement masonry units and paving stone interlock 

A15 

128 Modify the charging, blowing, and waste gas exhaustion system to minimize dust formation A35 

129 Analyse dust composition produced during different phases of furnace operations A34 

130 and, if appropriate, segregate the recovered dust A15 

131 Reuse of the EAF Dust using micro-pelletizing (method used to turn steel plant dust into a 

valuable raw material): dust mixed with lime as a binder and pelletize to produce a fine 

granular form 

A24 

132 Replacement of phenolic resin by furanic resin in the molding system and core shop, by 

cold-curing with an organic-base catalyser 

A22 Casting Seliger, G. (2007), 

Sustainability in 

Manufacturing: Recovery of 

Resources in Product and 

Material Cycles, 1st ed, 

Springer Berlin Heidelberg, 

Berlin, Germany 

133 Recovery of the used sand (containing furanic acid) by a mechanical process at room 

temperature 

A24 

134 The company also intends to develop a form of using the foundry sand as a construction 

material, thereby completely avoiding its disposal in landfill 

A15 

135 Re-evaluation of the cutting oils/emulsions used in each stages of the processes and 

classification into 8 families of oils 

A15 Automotive 

industry 

136 Implementation of a selective collection of the metal chips impregnated with oils/ 

emulsions based on the classification 

A15 



Appendix – Sustainable Manufacturing Practice Database 

113 

# Sustainable Manufacturing practice Tactic Sector Reference 

137 Oils/emulsions are separated and stored in containers: they are physicochemically analysed 

to check and possibly adjust the technical conditions. 

A15 

138 After this determination, they're reused in the cutting process from which they originated or 

passed on for use in equipment.  

A24 

139 The company plans to install a cutting oil regeneration facility in order to extend its reuse 

of regenerated oils 

A24 

140 Reduce water consumption and preserve natural resources while simultaneously reducing 

water-related costs: filtration and reuse of treated effluent in industrial process and toilets 

A43 Electrical goods 

industry 

141 Studies are also in progress to implement a water treatment system by reverse osmosis or 

water demineralisation to allow the reuse of 100% of the treated effluent in processes that 

require better quality reused water 

A24 

142 Experiments carried out in-house indicated that the CO2 used for cooling the parts could be 

replaced successfully by compressed air. This replacement was put into effect without 

requiring any equipment or process changes. 

A22 Motor vehicle 

part 

manufacturing 

industry 143 Upgrade paint booth A31 

144 Recycling of powder at a 95% rate A24 

145 Automatic spray guns increased efficiency A31 

146 Change pre-curing to electric infrared A42 

147 Virtual engine Development: Incorporating computer simulation, advanced analysis tools 

and leading measurement technology to plan, predict & analyse the outcome of engine 

development processes 

A34 

148 Determine high volume manufacturing processes based on materials and functions, Weight 

trade-offs between 1st time quality & capability for remanufacturing 

A34 Automotive 

industry 

International Conference on 

Sustainable Manufacturing 23-

24 Sept. 2008 (OECD, 

Rochester, NY, USA): 

www.oecd.org/document/48/0,3

343,en_2649_34173_40953456

_1_1_1_1,00.html 

149 Replacement of rotary by modular type (electronic component mounting machines) A42 Electrical goods 

industry 

International Conference on 

Sustainable Manufacturing 23-

24 Sept. 2008 (OECD, 
150 Replacement of hydraulic by motorised type (molding machines) A42 

151 Increase the number of Plasma Display Panels (PDP) produced from a single substrate A32 
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152 Finer semiconductor processing on large diametre wafers A32 Rochester, NY, USA): 

www.oecd.org/document/48/0,3

343,en_2649_34173_40953456

_1_1_1_1,00.html 

153 Elimination of mineral spirits to preclean parts A21 Casting industry Park, E., Enander, R. and 

Barnett, S. M. (2002), 

"Pollution prevention in a zinc 

die casting company: a 10-year 

case study", Journal of Cleaner 

Production, vol. 10, no. 1, pp. 

93-99.  

154 Elimination of hypochloric acid used to settle & remove sludge A21 

155 Elimination of a 100000 litres/month sewer discharge of metal-bearing wastewater A41 

156 Recovery of zinc-metal for off-site recycling A24 

157 Recycling of an aqueous based soap A24 

158 Environmentally Friendly, High performance substitute Materials for Manufacturing and 

Facilities 

A22 Aerospace sector Dhooge, P., Glass, S. and 

Nimitz, J. (1998), Successful 

Environmentally Friendly, high 

Performance Substitute 

Materials for Manufacturing 

and Facilities, SAE technical 

Paper 981872, Society of 

Automotive Engineers, USA. 

159 Development of low production new products: low weights, high grade non wooden  A44 Pulp and paper  International Conference on 

Cleaner Production (Sept 2001, 

Beijing, China): 

www.chinacp.org.cn/eng/cpcon

fer/iccp01/iccp13.html 

160 Feedstock substitution (fibre regeneration, energy reuse, high-grade non-wood feedstock 

base building) 

A24 

161 Technologies improvement (Dry & wet feedstock preparation, continuous/time delay 

cooking, continuous multi-stage bleaching) 

A13 

162 Set up individual responsibilities to operators for shut-off practices A33 Automotive 

industry 

Business in the community: 

www.bitc.org.uk/resources/case

_studies/afe1259_ford.html 
163 Optimisation of all high usage equipment & machines engineering to reduce: coolant flow, 

extracted air volumes, compressed air requirements, chilled air requirements 

A31 

164 Use of "high lubricity" vegetable oil metal working fluids A22 

165 Implementation of a briquetting process for oily ferrous sludges that are usually changed 

into pucks so that they can be recycled & used as feedstock in the cement industry 

A15 

166 Visual controls and displays throughout the plant A34 Automotive 

industry 

Business in the community: 

www.bitc.org.uk/resources/case

_studies/afe256envtoyota.htm 
167 Introduction of a centrifuge to reduce the water content of the sludge (previously major 

waste to landfill) 

A43 

168 And then pump the water back into the paint ponds for reuse A24 
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169 The remaining dried residue can be used in cement production A15 

170 Agreement of the supply chain with Toyota goals thanks to Toyota's "Duty of Care Audits" 

that ensure that once waste has left the plant, it is dealt in the correct way 

A15 

171 Piping of the 2800 megawatts of heat generated by the data centre to the local public 

swimming pool 

A15 Computer 

industry 

Turton, S. (2008), "IBM cools 

data centre with swimming 

pool", PC Pro: computing in the 

real world, accessed on: 15 june 

2009 available at: 

www.pcpro.co.uk/news/184539

/ibm-cools-data-centre-with-

swimming-pool.html  

172 New stainless control valves for precise control of water flow A42 Microelectronic 

devices industry 

American Council for an 

Energy-efficient Economy: 

www.aceee.org/P2/p2cases.htm 
173 New manifold added to the Reverse Osmosis pump converting it to a more efficient two-

stage pump 

A43 

174 High surface area Reverse Osmosis membranes added A43 

175 Existing PVC piping replaced with industrial, water production piping A42 

176 By automating the process, low-cost precision pumping systems allow a small volume of 

dyebath chemicals to be reused for numerous dyeing operations 

A31 Carpet industry American Council for an 

Energy-efficient Economy: 

www.aceee.org/P2/p2cases.htm 177 Innovative monitoring instruments can analyze the dyebath and communicate results to a 

computer which calculates the amount of chemicals that need to be added for the next 

dyeing operation 

A34 

178 Energy is saved by reducing the need to reheat dyebaths, eliminating the energy used to 

produce additional dyes, chemicals and water, and reducing energy needed to treat 

wastewater 

A35 

179 Less energy intensive approach: cristaliser, condenser and cooling unit evaporator put 

under pressure, 

A44 Chemical 

industry 

American Council for an 

Energy-efficient Economy: 

www.aceee.org/P2/p2cases.htm 180 No intermediate liquid heat-transfer medium, No buffer vessels, Fewer and smaller pumps, 

piping, and valves, 

A41 

181 Lower temperature differentials, Less space requirement A32 

182 The system uses recirculated water to pasteurize and cool food products, using the heat 

capacity and thermal integrity of water to control temperatures reliably 

A24 Food industry American Council for an 

Energy-efficient Economy: 

www.aceee.org/P2/p2cases.htm 183 Recirculating water reduced the need to heat and cool the water, cutting gas and electricity 

used by the boiler and fans. 

A24 
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184 Benchmarking A34 Dry cleaning ALTHAM, W., 2007. 

Benchmarking to trigger 

cleaner production in small 

businesses: drycleaning case 

study. Journal of Cleaner 

Production, 15(8-9), 798-813. 

185 Good housekeeping A31 

186 Regional synergy to energy recovery from flue gases A24 Industrial area BEERS, D.V. and BISWAS, 

W.K., 2008. A regional synergy 

approach to energy recovery: 

The case of the Kwinana 

industrial area, Western 

Australia. Energy Conversion 

and Management, 49(11), 3051-

3062. 

187 Improve air quality through material resource substitution  A22 Cement KABIR, G. and MADUGU, 

A.I., 2010. Assessment of 

environmental impact on air 

quality by cement industry and 

mitigating measures: A case 

study. Environmental 

monitoring and assessment, 

160(1-4), 91-99. 

188 Improve air quality through higher energy efficiency technologies A42 

189 Shift from coal-based oxygen steel production to electricity-based production A22 Steel industry Christian Lutz, Bernd Meyer, 

Carsten Nathani, Joachim 

Schleich, 2005, Endogenous 

technological change and 

emissions: the case of the 

German steel industry, Energy 

Policy 33(9), 1143-1154 

190 Improvements in end-of-pipe waste-water treatment technologies A31 Water resource 

protection 

CHOUR, V., 2001. Water 

resources protection today: 

End-of-pipe technology and 

cleaner production. Case study 

of the Czech Odra River 

watershed.  
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191 Long-term monitoring data A34 Sugar cane GUNKEL, G., KOSMOL, J., 

SOBRAL, M., ROHN, H., 

MONTENEGRO, S. and 

AURELIANO, J., 2007. Sugar 

cane industry as a source of 

water pollution - Case study on 

the situation in Ipojuca river, 

Pernambuco, Brazil. Water, air, 

and soil pollution, 180(1-4), 

261-269. 

192 Water conservation through implementation of ultra-filtration and reverse osmosis system 

with recourse to recycling of effluent 

A24 Textile NANDY, T., MANEKAR, P., 

DHODAPKAR, R., POPHALI, 

G. and DEVOTTA, S., 2007. 

Water conservation through 

implementation of ultrafiltration 

and reverse osmosis system 

with recourse to recycling of 

effluent in textile industry-A 

case study. Resources, 

Conservation and Recycling, 

51(1), 64-77. 

193 Improve quality of discharge water through analysis of wastewater effluent composition 

generated by a petrochemical industry and a treatment system 

A15 Refining and 

petrochemicals 

SOJI ADEYINKA, J. and RIM-

RUKEH, A., 1999. Effect of 

hydrogen peroxide on industrial 

waste water effluents: A case 

study of Warri refining and 

petrochemical industry. 

Environmental monitoring and 

assessment, 59(3), 249-256. 

194 Assessment of a wastewater treatment process A35 

195 Good housekeeping A31 Leather STOOP, M.L.M., 2003. Water 

management of production 

systems optimised by 
196 Waste treatment (hair-saving techniques, effluents, chromium sludge and bio-sludge) A15 

197 Rethink process layout (all wet processes located at one location) A45 
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198 Reuse wastewater A24 environmentally oriented 

integral chain management: 

Case study of leather 

manufacturing in developing 

countries. Technovation, 23(3), 

265-278. 

199 Good housekeeping and regular maintenance A31 Beet sugar  BONTAR  VER, L. and 

GLAVI , P., 2005. Water 

minimization in process 

industries: Case study in beet 

sugar plant. Resources, 

Conservation and Recycling, 

43(2), 133-145. 

200 Division of wastewater streams with different quality A15 

201 Simplified procedure for wastewater regeneration, reuse of steam condensate in boiler 

house and of some wastewater in systems that allow such level of water contamination 

A24 

202 Substitution of solvent paint by high solid paint A22 Forklift 

manufacturing 

KIM, J., PARK, K., HWANG, 

Y. and PARK, I., 2010. 

Sustainable manufacturing: A 

case study of the forklift 

painting process. International 

Journal of Production Research, 

48(10), 3061-3078. 

203 More efficient technology to reduce the total basic power consumption A42 Sustainable 

machining 

Herrmann, C., Zein, A., Thiede, 

S., Bergmann, L., and Bock, R. 

(2008). Bringing sustainable 

manufacturing into practice – 

the machine tool case. In: 

Sustainable Manufacturing VI: 

Global Conference on 

Sustainable Product 

Development and Life Cycle 

Engineering, Pusan, Korea. 

204 Reduce energy consumption during non-production time by organizational and technical 

measures (stand-by-mode) 

A11 

205 Dry machining (sufficiency) A44 

206 Minimum quantity lubrication (efficiency) A32 

207 Alternative solutions, fluids with minimum environmental impact (LCA to avoid shift of 

burden to another LC phase) 

A22 

208 Resource-preserving filter technology A43 

209 Extractive oil removal A15 

210 Substitution of processes by sustainable process alternatives A44 

211 Minimising oven door A42 Glass industry Energy management: A two-

day training course for 

managers in Central and 
212 Optimising oven temperature A34 

213 Optimizing cooling fan A34 
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214 Turning off ventilation fans once buses had left the depot. A34 Garage  Eastern Europe. Produced by 

Forbait for The Directorate-

General for Energy (DGXVII) 

of The Commission of the 

European Communities. 

Thermie. 

215 Reduce space heating at night. A34 

216 Use of radiant heat to warm mechanics and staff. A43 

217 Boiler maintenance (burner service & clean nozzle) A31    

218 Boiler maintenance (reduction of excess air, CO2 content adjusted to 2 and smoke number 

reduced to 2) 

A34 

219 Measure heating demand / requirements A34 Chemical 

industry 220 2 (out of 15) heaters were disconnected A41 

221 Flash steam recovery from the rest 13 heaters. A24 

222 Steam and condensate return pipeline insulation repaired and improved A31 Dairy plant 

223 Process tanks/vessels insulated A31 

224 One major steam main shut off during normal operation A11 

225 Regulating load so that oven was always full A13   

226 Installing heat exchanger between oven exhaust and fresh air inlet. A43 

227 New continuous rotating cooked installed A42 Processing of 

animal waste 

products  
228 Variable speed drives incorporated, to automatically control feed and discharge rates. A32 

229 The four processing stages were ‗decoupled‘ by adding buffer storage between each stage. A13 

230 Automatic controls to only permit one other process to operate at the same time as cooker. A32 

231 14 variable speed drives installed, to vary fan and pump speeds according to thermostat and 

humidistat signals. 

A43   

232 Timer/contactor control fitted A35   [4] EC (2007), Best practices, 

in: BESS - Benchmarking and 

Energy management Schemes 

in SMEs 

233 Hundreds of leaks in both systems identified and repaired. A31 Plumbing and 

pipe fittings 234 140 ball valves fitted to air lines. A35 

235 1(out of 3) compressors was disconnected A41 

236 Refrigeration diagnosis expert system installed. A43 Brewery 

237 Replace chillers with new. A42 Brewery 

238 Cool at two separate temperatures. A32 
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239 Instrument calibration. A31 Chemical 

industry 240 System modification A32 

241 Introduction of CHP – Combined Heat and Power process A43 Textile 

242 Installation of solar-thermal collectors A43 Meat process 

243 Installation of heat recovery unit A24 Textile 

244 Optimization of cooling compressors by using VSD - variable speed driver  A32 Dairy plant 

245 Re-calculate the required capacity of the steam boiler at different time periods based on 

production schedule. 

A32 Paper 

246 Replacement of the existing steam generation units with other types of boiler having lower 

operation and maintenance costs. 

A42 

247 Fuel switch project from natural gas to woodchips A22 

248 Installation of solar thermal system for the pre-heating of the steam boiler feed water A43 Diary plant 

249 Installation of automatic boiler blow-down heat recovery for the pre-heating of the steam 

boiler feed water 

A43 

250 Introduction of CHP – Combined Heat and Power process A43 Diary plant 

251 Introduce biogas to the energy mix A22 

252 Installation of new boiler house and steam distribution system A42 Diary plant 

253 Installation of heat recovery units on the baking oven A24 Bakery 

254 Hybrid Heat pump for elevated recovery temperature A24 Diary plant 

255 1. Reduce excess combustion air to minimum A35   [4] EC (2007), Horizontal 

Energy Efficiency 

Measurement List, in: BESS - 

Benchmarking and Energy 

management Schemes in SMEs 

256 1a. CO2/O2 measurement A34 

257 2. Maximise completeness of combustion A35 

258 2a. Soot/CO measurement A34 

259 3. Maintain boiler cleanliness (soot/scale) A31 

260 3a. Monitor for rise in flue gas temperature A34 

261 4. Repair (replace) boiler insulation A31 

262 4a. Periodic inspection of boiler insulation condition. A31 

263 5. Insulate feedwater tank / cover tank A31 

264 5a. Check possible feedwater temperature losses A34 
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265 6. Insulate condensate return lines A31 

266 6a. Check possible heat loss from condensate return lines. A34 

267 7. Optimise quality of make-up water and feedwater A32 

268 7a. Monitor quality of make-up water and feedwater: hardness, acidity, O2. A34 

269 8. Minimise blowdown A32 

270 8a. Monitor concentration of dissolved solids in boiler water. A34 

271 8b. Improve blowdown controls A35 

272 9. Maintain nozzles, grates, fuel supply pressure/temperature at manufacturers‘ 

specifications 

A31 

273 9a. Ensure specifications are available and in use. A35 

274 9b. Regular check and resetting/maintenance. A31 

275 10. Maximise combustion air temperature A32 

276 10a. Draw air from highest point in boiler house. A22 

277 11. Reduce steam pressure where it exceed system/process requirements. A32 

278 11a. Check system/process needs; adjust controls. A32 

279 12. Use duct for intake of warmer combustion air A22 

280 12a. Install duct from combustion air intake to higher parts of room. A22 

281 13. Install an automated gas leakage detector. A34 

282 14. Repair leaks in steam pipework. A31 

283 1. For rapidly varying demand, convert one or more boilers to live accumulator (buffer 

tank). 

A42 

284 1a. Monitor/evaluate demand change patterns. A34 

285 2. Alter controls to 'High-Low-Off' or 'modulating-Low-Off' A35 

286 2a. Monitor/evaluate demand change patterns. A35 

287 3. Install flash steam heat recovery A24 

288 3a. Consider in large capacity situations with high (continuous/frequent) blowdown. A35 

289 4. Improve combustion controls. A35 

290 4a. Provide adequate heat input to meet demand. A32 

291 4b. Minimise fuel/pollution. A32 
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292 4c. Protect personnel/equipment. - 

293 5. Waste heat recovery A24 

294 5a. Economizer A43 

295 5b. Air heater (recuperator)? A43 

296 6. Install boiler blowdown heat recovery. A24 

297 6a. Consider in large capacity situations with high (continuous/frequent) blowdown. A35 

298 7. Use process integration A24 

299 7a. Couple process units that have significantly different heat requirements (i.e. low-

pressure steam leaving a high-pressure steam consuming production process can be used 

for a process requiring low-pressure steam). 

A24 

300 1. Repair/replace faulty insulation A31 

301 1a. Pipework insulation / especially around valves. A31 

302 2. Repair inefficient steam traps/drains. valve spindles etc. A31 

303 2a. Regular checks for leaks throughout the system. A31 

304 3. Insert valves to isolate 'periodic-use' items in system. A35 

305 3a. Check system for periodic (e.g. seasonal, nightly) items (e.g. space heaters). A35 

306 4. Remove/isolate 'dead-legs' and redundant pipework A21 

307 4a. Check for dead-legs and redundant piping. A21 

308 1. Replace steam traps/drains with more efficient designs. A42 

309 1a. Monitor efficiency of, and heat losses from existing traps. A34 

310 2. Replace or increase insulation A31 

311 2a. Check existing insulation; estimate heat losses in system. A31 

312 3. Maximise condensate returns. A32 

313 3a. Measure 'discarded' heat from condensate. A34 

314 4. Redesign system to minimise pipe runs. A25 

315 5. Generation pressure reduction. A13 

316 1. Plant insulation A31 

317 2. Local burner efficiency A43 

318 3. Maximise heat transfer rate A24 
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319 4. Improve controls (e.g. thermostats) A35 

320 5. Consider alternative energy source A22 

321 6. Ensure plant at high load factor A13 

322 7. Eliminate uneconomic 'hot standby' periods A11 

323 8. Recycle waste heat to process A24 

324 9. Recover heat, for use elsewhere A24 

325 10. Train all staff to operate manual controls and to watch for energy saving opportunities. A35 

326 1. Use heat only when area is occupied A11 

327 2. Set thermostats to minimum for comfort A32 

328 3. Minimise loss of hot air A31 

329 4. Clean and effective heaters A31 

330 5. Maintain pipe insulation in unheated areas A31 

331 6. Check condensate traps A31 

332 7. Vent air from hot water systems A24 

333 8. Time switches A35 

334 9. Manual controls where appropriate A35 

335 1. Install more/more efficient thermostats A35 

336 2. Use motorized valves to divide building into different zones A35 

337 3. Air curtains A43 

338 4. Change energy source A22 

339 5. Change heating system / where: A42 

340 · If good insulation and high ventilation, then use radiant heat A42 

341 · If poor insulation and low ventilation, then use convective heat A42 

342 6. Improve building insulation A42 

343 1. Try to ensure that motor capacity is not more than 25% in excess of full load. A32 

344 2. Install motor controllers (voltage, power factor and fixed speed controllers). A35 

345 3. Build in 'soft-start' facilities. A32 

346 4. Install variable speed drives A42 

347 5. Install high efficiency motors A42 
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348 1. Switch off whenever possible. A11 

349 2a. Install low-cost solenoid valves on air supply lines to individual machines.  A43 

350 2b. Switch off compressed air supply as soon as machine is switched off. A33 

351 3. Clean air intake filters regularly A31 

352 4. Use lowest possible operating pressure. Reduce pressure locally if possible. A32 

353 5. Use lowest air intake temperature possible. A32 

354 6. Fit 2-speed motors. A43 

355 7. Fix leaks A31 

356 8. Check on correct pressure setting regularly. A34 

357 1. Fit a small (jockey) compressor to meet off-peak demand. A43 

358 2. Duct air intake to ensure coolest possible. A43 

359 3. Fit air flow and kWh meters to monitor power and air use. A34 

360 4. Install modern controls on multi-compressor installations. A35 

361 5. Fit a standard heat recovery unit. A24 

362 6. Air pre-cooling. A24 

363 7. If some users are using low pressure air (2.5 / 3 bar), install two separate systems. A32 

364 8. Use frequency control for compressor. A35 

365 9. Use an individual compressed air supply for special applications. A43 

366 10. Replace pneumatic tools be electrical tools A22 

367 1. Switch off whenever possible. A11 

368 2. Regular maintenance is necessary to maintain pump efficiency and prevent breakdown, 

especially when the vacuum-space contains condensing vapours; 

A31 

369 3. Fix leaks A31 

370 1. Fit a standard heat recovery unit. A24 

371 2. Use a central vacuum system with several delivery points A13 

372 1. Group refrigeration cells according to temperature. A45 

373 2. Use an integrated plant layout / optimise use of evaporators or condensers (i.e. remove 

obstacles) 

A45 

374 3. Limit energy losses through open doors A31 
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375 1. Switch off lights, fans, pumps. etc., when not required. A11 

376 2. Repair damaged insulation/seals. A31 

377 3. Check for refrigerant contamination. A31 

378 4. Check for scaling on condenser and evaporator surfaces. A34 

379 5. (Multi-compressor systems); set controls to activate minimum number of compressors. A35 

380 6. Monitor timing and duration of defrost cycles. Defrost on demand rather than at fixed 

intervals. 

A34 

381 7. Use load rescheduling (e.g. cool at night) where maximum-demand tariffs are in 

operation. 

A13 

382 8. Minimise cooling space by installing removable plastic screens or panels or by filling 

cooling space with polystyrene foam blocks 

A32 

383 9. Switch off evaporator fans when compressor is off A11 

384 10. Regulate condenser pressure (and therefore temperature) A32 

385 11. Delayed start-up of compressors. Initially, only start-up of ventilation. A13 

386 12. Increase the evaporation temperature. A32 

387 1. Install kWh meters and instrumentation to monitor equipment and cold room. A34 

388 2. Install an energy management system which analyses operation of the whole 

refrigeration system. 

A35 

389 3. Use effective insulation and sealing. A31 

390 4. Install efficient electronic expansion valves. Avoid 'head pressure control' where 

possible. 

A43 

391 6. Recovery of waste heat at the condenser A24 

392 7. Automatic bleeding of refrigerant to remove any penetrated air A31 

393 8. Install frequency control (i.e. VRF) on chiller compressor. A35 

394 9. Install high efficiency or 2-rev electromotor on evaporation fan A43 

395 10. Build a cooled front space for refrigeration units. A45 

396 11. Use hot refrigerant gas from the compressor for the initial stages of the defrosting cycle. A24 

397 12. Use excess heat from other production processes for the production of cooling using 

adsorption/absorption cooling. 

A24 
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398 1. Use the most efficient lamps consistent with required illumination levels and colour 

rendering. 

A42 

399 2. Use the light output from lamps efficiently. A32 

400 3. Maintain lamps and fixtures clear of light-blocking dust and dirt. A31 

401 4. Switch off lights where lighting is not needed. A11 

402 5. Consider automatic control of lighting (time clocks and/or photo cells). A35 

403 6. Make the best use of daylight. A41 

404 7. Avoid the absorption of light by the surroundings (light-coloured wall, ceilings, and 

floors). 

A45 

405 8. Replace lamps which have exceeded their rated life. A31 

406 9. Use 'switch-off' and 'save-it' stickers as a tool of good housekeeping. A33 

407 10. Consider new technologies in order to reduce installation cost, such as infrared 

switching. 

A35 

408 11. Divide the lighting system of a large space into several independent lighting groups. A13 

409 12. Use presence detection switches A35 

410 13. Use a lighting system that is continuously variable (e.g. high-frequency fluorescent 

lighting). 

A35 

411 1.Thermal insulation of floor A43 

412 2.Thermal insulation of walls A43 

413 3.Thermal insulation of roof A43 

414 4. Use of double-glazed or solar shading glass windows A42 

415 1. Use a weather dependent control to regulate the temperature of the boiler water in 

relation to the outside temperature. 

A35 

416 2. Install an advanced timer for the boiler operation schedule. A43 

417 3. Insulate pipework A43 

418 4. Insulate hot water storage tanks A43 

419 1. Divide large interior spaces into smaller areas. A32 

420 2. Use radiation heating in cases where large ventilation rates are required. A42 

421 3. Use displacement ventilation where the heated indoor areas are higher than 6 meters. A42 

422 1. Heat recovery of exhaust air using a rotary wheel. A24 
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423 2. Reduce the amount of ventilation air as much as possible by the installation of: A32 

424 · Timer switch; A11 

425 · Occupancy sensor A35 

426 · Air quality; A35 

427 · Frequency control on the fan motor A35 

428 3. Prevent infiltration through door openings with: A32 

429 · Thermal insulation A43 

430 · Draught curtains A43 

431 · Air cushion A43 

432 · Automatic door A43 

433 · Slip door A43 

434 · Rubber seal between door and doorpost instead of brushes or no sealing. A43 

435 1. Use local exhaust ventilation systems. The purpose of a local exhaust system is to 

remove the contaminants (dust, fume, vapour etc.) at the source. 

A42 

436 2. Some options for improving the efficiency of exhaust systems are: A32 

437 · Frequency control on the electromotor of the fan A35 

438 · Close exhaust points that are not in use. A33 

439 · Start up the exhaust system with all exhaust points closed. A12 

440 1. Use thermal energy storage systems (i.e. ice banks) A43 

441 2. Use shading devices for windows. A43 

442 Tune the large furnace burners to get proper air-fuel ratio – 2% or less O2 in flue gases. A32 Products related 

to traffic safety 

Energy Savings Assessment 

(ESA) Summary Report For 3M 

– Brownwood, TX Plant (Nov. 

7-9, 2005) apps1.eere.energy. 

gov/industry/saveenergynow/pa

rtners/pdfs/esa-001-1.pdf 

443 Install proper controls (temperature control or other type close loop control – feed rate 

control) for the large furnaces. 

A35 

444 Adjust boiler burners to maintain approximately 2% O2 in exhaust gases regularly at 

average operating conditions 

A31 

445 using manual adjustment or tuning the burners periodically (i.e. twice a year) and by 

operating the boilers at as close to full load as possible to maintain efficiency of the boilers 

A31 

446 Purchase basic instrumentation such as an oxygen/combustible analyzer to allow frequent 

measurement of flue gas analysis for the heating systems. 

A34 

447 Install O2/CO trim control for boiler A34 
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448 Install a stack recuperator to heat air (or water) and recover heat from furnace exhaust 

gases. Use air for dryer and water for make-up air heating. 

A24 

449 Install an economizer or hot water/air heater for boilers to recover heat from the boiler flue 

gases  

A24 

450 Water heating by using thermal oxidizer exhaust gas heat (available at approximately 350 

deg. F. and 125,000 scfm flow rate) and use water for make-up air heating and/or 

humidification of air in winter months. 

A24 

451 Use of exhaust gas heat (if clean) from the small furnaces to preheat air or water. A24 

452 Improve insulation for the large furnaces A31 

453 Consider use of hot water to supply heat to a thermally activated absorption cooling system. 

This would eliminate use of electricity for chillers. 

A24 

454 Use desiccant dryer to dehumidify make-up air and eliminate use of chilled water to reduce 

humidity in air prior to reheating. This will also reduce steam requirement for reheating the 

air.  

A24 

455 Preheat feed material for the furnaces by using hot air from the recuperator (use furnace 

exhaust gas heat to heat the air)  

A24 

456 Consider use of oxy-fuel burners for the large furnaces  A42 

457 Consider use of carbon bed system to concentrate vapors in press exhaust air  A42 

458 During the harsh winters, the chiller units on all of the company‘s presses run on a ―free‖ 

cooling chiller. In cold months, water is pumped to the a refrigeration unit—where it is 

cooled naturally. Roof—instead of a refrigeration unit—where it is cooled naturally. 

A44 Printing Energy Matters, winter 2011, 

vol.1, iss.2 page5. www1.eere. 

energy.gov/industry/bestpractic

es/energymatters/pdfs/energy_

matters_winter_2011.pdf 

459 Brew kettle heats thin sheets of wort—the liquid extracted from the mashing process during 

the brewing of beer—rather than the whole kettle at once. 

A44 Brewery Energy Matters, winter 2011, 

vol.1, iss.2 page6. www1.eere. 

energy.gov/industry/bestpractic

es/energymatters/pdfs/energy_

matters_winter_2011.pdf 

460 Use of methane produced by process water treatment to fuel a combined heat and power 

engine—or co-gen—which creates electricity and heat for the brewery. 

A24 

461 Developing a new technology to monitor the color of polymers—a key ingredient in plastic 

manufacturing—during the high-heat, high-pressure extrusion process. Currently, if 

polymers are the wrong color, they are often recycled back through the extrusion process. 

Although this does save the material, the redundancy of the process uses extra energy and 

increases carbon emissions. 

A24 Polymers Energy Matters, winter 2011, 

vol.1, iss.2 page7. www1.eere. 

energy.gov/industry/bestpractic

es/energymatters/pdfs/energy_

matters_winter_2011.pdf 
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462 Replace all of the high pressure sodium (HPS) fixtures installed in its facility with T8 

fluorescent bulbs. 

A42  Aluminium 

foundry  

Eck Industries, Inc. Realizes 

Savings Through Smarter 

Lighting Solutions 

www1.eere.energy.gov/industry

/saveenergynow/pdfs/eck_indus

tries_case_study.pdf 

463 Installation of variable frequency drives A43 Pulp and paper  Flambeau River Papers Makes a 

Comeback With a Revised 

Energy Strategy 

www1.eere.energy.gov/industry

/saveenergynow/pdfs/case_stud

y_flambeau.pdf 

464 New pumps, lighting upgrades A31 

465 The plant has also implemented heat recovery systems through the hood exhaust in the mill 

and biomass dryer and stack in the boiler house.  

A24 

466 Wastewater treatment system has been installed in the mill. A15 

467 No longer use coal as a base for its electricity replace with other fuels such as pulp, bark, 

tree tops, branches, logging residue, and damaged wood as feedstocks for biomass. The 

company will also utilize wood tar from liquid smoke, red liquor, and industrial pellets. 

A22 

468 These feedstocks will be used to make ethanol at the plant‘s bio-refinery, it will produce 

alternative fuel and paraffnic wax. 

A24 

469 The biofuel will also supply the mill with 150 psi steam for paper-making along with 

residual hot water. 

A22 

470 upgrade natural gas burners A31 Casting Harrison Steel www1.eere. 

energy.gov/industry/saveenergy

now/pdfs/harrison_steel_succes

s_story.pdf 

471 Fix around 100 air leaks A31 

472 Variable speed drives project for well pumps A43 

473 Install more efficient lighting A42 Heating, 

ventilation and 

air conditioning 

(HVAC) systems 

and services  

Ingersoll Rand Discovers 

Hidden Savings with a Three-

Tiered Energy Audit Model 

www1.eere.energy.gov/industry

/saveenergynow/pdfs/ingersoll_

rand_success_story.pdf 

474 Replace HVAC units, upgrade compressors A31 

475 Using occupancy sensors A35 

476 Using more efficient pumps A42 

477 Training - 

478 Installed variable-frequency drives A43 Automotive Nissan Showcases the Results 

of an Energy-Wise Corporate 

Culture www1.eere.energy.gov/ 

industry/saveenergynow/pdfs/ni

ssan_case_study.pdf 

Smyrna Paint Plant Energy 

479 Reduced number of air compressors A41 

480 Sub-metering & monitoring  A34 

481 Upgraded and replaced chillers A31 

482 Upgraded lighting and controls A31 
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483 Air recirculation A24 Reduction Strategy www1. 

eere.energy.gov/industry/saveen

ergynow/pdfs/smyrna_paint_pla

nt_energy_reducation_strategy.

pdf 

484 Air Leak repair  A31 

485 Space Temps set to seasonal Set-Points A32 

486 Hourly KW Alarm monitoring  A35 

487 Determine the efficiency of your steam generation system (based on steam output/fuel 

input). 

A34   Steam Generation through 

cogeneration applications, 

boiler controls, and water 

treatment - Opportunities for 

Improvements www1.eere. 

energy.gov/industry/bestpractic

es/steamgenerate.html 

488 Determine how much steam you use, and how much it costs to generate this steam. Steam 

generation needs to be measured with accurate, well maintained and calibrated flow 

measurement devices and reconciled by a rigorous steam balance. The steam balance 

should be done on a regular basis to confirm that the flow measurements are good. 

A35 

489 Optimize excess air in your boiler to increase steam generation efficiency. An often stated 

rule of thumb is that boiler efficiency can be increased by 1% for each 15% reduction in 

excess air or 40° F reduction in stack gas temperature. Good measurements of fuel flow and 

air flows are required to do this as well as good stack gas analysis. 

A31 

490 Maintain clean fire-side and water-side boiler heat transfer surfaces. A good deposit control 

program is necessary to do this. 

A31 

491 Optimize boiler blowdown to reduce Total Dissolved Solids (TDS) in the boiler system. 

Work closely with your boiler feed water additives vendor to do this. 

A31 

492 Optimize your boiler control system to optimize steam generation efficiency. Before you do 

this, make sure that the logic diagrams actually reflect what is wired into the system and 

that all the components of this system make sense and work. 

A31 

493 Ensure that an effective water treatment system is in place. Work closely with your boiler 

feed water additives vendor to do this. 

A15 

494 Properly select, size, and maintain your distribution system steam traps. A32   Steam Distribution through 

checking steam leaks, installing 

insulation and proper steam trap 

maintenance - Opportunities for 

Improvements www1.eere. 

energy.gov/industry/bestpractic

es/steamdistub.html 

495 Insulate all distribution system pipes, flanges, and valves. A31 

496 Ensure that steam mains are properly laid out, sized, adequately drained, and adequately air 

vented. 

A35 

497 Ensure that Distribution System piping is correctly sized to produce the appropriate system 

pressure drops. 

A35 

498 Ensure that distribution system piping is adequately supported, guided, and anchored, and 

that appropriate allowances are made for pipe expansion at operating temperatures. 

A35 
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499 Understand how much steam is used per unit of product produced. You can use this 

information to compare with other information—within your company and by your 

competition—to determine where there might be opportunities for improvement of your 

steam operations. 

A34   Steam End Use through heat 

exchanger maintenance - 

Opportunities for Improvements 

www1.eere.energy.gov/industry

/bestpractices/steamenduse.html 
500 Select, size, and maintain steam traps for specific end use applications. A31 

501 Blowdown of non-condensables from condensing equipment is critical. If non-

condensables are not removed from condensing applications, the condensing equipment 

will quickly cease to function. The rule of thumb is that for every 1% of non-condensables 

there is in steam, the heat transfer coefficient decreases by 10%. 

A31 

502 Identify how much condensate you presently recover and return to the boiler system. 

Determine if you can increase the amount of condensate that you return - cost savings can 

result from energy savings and from water treatment cost savings. 

A34   Steam Recovery through 

condensate return - 

Opportunities for Improvements 

www1.eere.energy.gov/industry

/bestpractices/steamrecoveryco

ndensate.html 

503 Ensure that the condensate piping is adequately sized. Condensate piping has to 

accommodate two-phase flow B liquid and vapor. The vapor portion of the condensate 

stream is more voluminous than the liquid portion. In general, condensate piping must be 

sized to handle the flash and blow-through steam rather than just the liquid portion. 

Condensate piping that is sized for the liquid portion only will be grossly undersized. 

A35 

504 Ensure that your condensate return piping, flanges, and valves are properly insulated. A35 

505 Identify if it is possible to return hot condensate to a flash recovery system, so that you can 

use the flash steam to supplement low-pressure steam needs. 

A24 

506 New burners and controls installed on two boilers A42 Potato processing J. R. Simplot: Burner Upgrade 

Project Improves Performance 

and Saves Energy at a Large 

Food Processing Plant 

www1.eere.energy.gov/industry

/bestpractices/pdfs/simplot.pdf 

507 1 out of 3 boilers removed A41 

508 New faceplates mounted on each boiler front before the new burners could be installed A42 

509 New combustion air fans, flue gas recirculation ducts, flue gas oxygen analyzers, and boiler 

control systems with oxygen trim systems were installed on each boiler. 

A42 

510 Install a steam flow-meter in the facility and calculate your steam generation cost. Compare 

this with the benchmark value. 

A34   Clean Boiler Waterside Heat 

Transfer Surfaces www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/steam7_surfaces.pdf 
511 Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse 

osmosis to remove scale-forming minerals) 

A22 

512 Injecting chemicals into the boiler feedwater A23 

513 Adopting proper boiler blowdown practices A24 
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514 Determine your boiler capacity, average steam production, combustion efficiency, stack gas 

temperature, annual hours of operation, and annual fuel consumption. 

A34   Consider Installing a 

Condensing Economizer 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam_26a.p

df 

515 Obtain an installed cost quotation for and determine the cost-effectiveness of a condensing 

economizer. Ensure that system changes are evaluated and modifications are included in the 

design (e.g., mist eliminator, additional water treatment, heat exchangers). Simple paybacks 

for condensing economizer projects are often less than two years. 

A34 

516 Determine how much steam enthalpy, pressure and temperature are required at the header 

downstream from your boiler. 

A32   Consider Installing High-

Pressure Boilers with 

Backpressure Turbine-

Generators www1.eere.energy. 

gov/industry/bestpractices/pdfs/

steam22_backpressure.pdf 

517 Develop steam flow/duration curves for your boiler. (Remember that electrical generation 

will follow your steam load or process heating requirements). 

A34 

518 Use the tools provided in this fact sheet to estimate your electricity generation potential and 

to determine savings from purchasing and installing a high-pressure boiler plus a 

backpressure turbine-generator 

A34 

519 Consider installing turbulators in natural gas or oil-fired boilers with two- or three-pass 

firetube boiler tubes if your stack gas temperature is 100°F or more above your steam or hot 

water temperature. 

A43   Consider Installing Turbulators 

on Two- and Three- Pass 

Firetube Boilers www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/steam25_firetube_boiler

s.pdf 

520 Replace electric motors with steam turbine drives if your facility. A42   Consider Steam Turbine Drives 

for Rotating Equipment www1. 

eere.energy.gov/industry/bestpr

actices/pdfs/steam21_rotating_e

quip.pdf 

521 Determine your boiler capacity, combustion efficiency, stack gas temperature, annual hours 

of operation, and annual fuel consumption. 

A34   Considerations When Selecting 

a Condensing Economizer 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam_26b.p

df 

522 Identify in-plant uses for low-temperature heated water (plant space heating, boiler makeup 

water heating, preheating, or process requirements). 

A34 

523 Installing a condensing economizer. Determine the cost-effectiveness of a condensing 

economizer, ensuring that system changes are evaluated and modifications are included in 

the design (e.g., mist eliminator, heat exchangers). Simple paybacks for condensing 

economizer projects are often less than 2 years. 

A43 
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524 Evaporation and heat losses can be reduced by lowering the liquid temperature, reducing 

the exposed liquid area, minimizing flow of air over the tank, or installing an insulated 

cover. 

A32 

525 Deaerator steam requirements should be reexamined following the retrofit of steam 

distribution system, condensate return, or heat recovery energy conservation measures. 

A32   Deaerators in Industrial Steam 

Systems www1.eere.energy. 

gov/industry/bestpractices/pdfs/

steam18_steam_systems.pdf 
526 Install continuous dissolved oxygen monitoring devices to aid in identifying operating 

practices that result in poor oxygen removal. 

A34 

527 Determine the potential for high-pressure condensate flashing by completing a plant survey 

that: 

• Identifies all sources of high-pressure condensate. 

• Determines condensate flow and duration, as well as the heat recovery potential due to 

flashed steam production. 

• Identifies compatible uses for low-pressure steam. 

• Estimates the cost effectiveness of installing appropriate heat-recovery devices and 

interconnecting piping. 

A34   Flash High-Pressure 

Condensate to Regenerate Low-

Pressure Steam www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/steam12_lowpressure_st

eam.pdf 

528 Steam traps are tested primarily to determine whether they are functioning properly and not 

allowing live steam to blow through. 

• Establish a program for regular systematic inspection, testing, and repair of steam traps. 

• Include a reporting mechanism to ensure thoroughness and to provide a means of 

documenting energy and dollar savings. 

A34   Inspect and Repair Steam Traps 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam1_trap

s.pdf 

529 Determine the energy savings and cost-effectiveness from using a heat exchanger to 

recover energy from the blowdown and preheat boiler makeup water. blowdown heat- 

recovery systems may be economical for boilers with blowdown rates as low as 500 lb/hr. 

A43   Install an Automatic Blowdown 

Control System www1.eere. 

energy.gov/manufacturing/tech

_deployment/pdfs/steam23_con

trol_system.pdf 

530 Conduct a survey of your steam distribution system to identify locations where removable 

and reusable insulation covers can be used. 

A34   Install Removable Insulation on 

Valves and Fittings www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/steam17_valves_fittings

.pdf 

531 Use removable insulation on components requiring periodic inspections or repair. A31 

532 Boilers often operate at excess air levels higher than the optimum. Periodically monitor flue 

gas composition and tune your boilers to maintain excess air at optimum levels. 

A13   Improve Your Boiler‘s 

Combustion Efficiency www1. 

eere.energy.gov/industry/bestpr

actices/pdfs/steam4_boiler_effi

ciency.pdf 

533 Consider an automatic blowdown control system A43 
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534 Determine the efficiency and operating cost of each of your boilers and adopt a control 

strategy for maximizing overall efficiency of multiple boiler operations. 

A34   Minimize Boiler Short Cycling 

Losses www1.eere.energy. 

gov/industry/bestpractices/pdfs/

steam16_cycling_losses.pdf 
535 Avoid short cycling by purchasing a burner with a high turndown ratio or by adding a small 

boiler to your boiler house to provide better flexibility and high efficiency at all loads. 

A42 

536 If there is a continuous blowdown system in place, consider installing a heat recovery 

system. 

A43   Recover Heat from Boiler 

Blowdown www1.eere.energy. 

gov/industry/bestpractices/pdfs/

steam10_boiler_blowdown.pdf 
537 If there is a non-continuous blowdown system, then consider the option of converting it to a 

continuous blowdown system coupled with heat recovery. 

A13 

538 Consider installing backpressure turbogenerators in parallel with PRVs when purchasing 

new boilers or if your boiler operates at a pressure of 150 psig or greater. 

• Develop a current steam balance and actual process pressure requirements for your plant. 

• Develop steam flow/duration curves for each PRV station. 

• Determine plant electricity, fuel cost, and operating voltage. 

• Consider either one centralized or multiple turbogenerators at PRV stations. 

A43   Replace Pressure-Reducing 

Valves with Backpressure 

Turbogenerators www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/steam20_turbogenerator

s.pdf 

539 Install a condensate return system A43   Return Condensate to the Boiler 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam8_boil

er.pdf 

540 Repair steam distribution and condensate return system leaks. A31 

541 Insulate condensate return system piping to conserve heat and protect personnel. A43 

542 Perform burner maintenance  and tune your boiler. A31   Upgrade Boilers with Energy-

Efficient Burners 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam24_bur

ners.pdf 

543 Conduct combustion-efficiency tests at full- and part-load conditions. A34 

544 If excess oxygen exceeds 3%, or combustion efficiency values are low, consider 

modernizing the fuel/air control system to include solid-state sensors and controls without 

linkage. Also consider installing improved process controls, an oxygen trim system, or a 

new energy- efficient burner. 

A35 

545 A new energy-efficient burner should also be considered if repair costs become excessive, 

reliability becomes an issue, energy savings are guaranteed, and/or utility energy 

conservation rebates are available. 

A42 

546 Install a smaller burner on a boiler that is oversized relative to its steam load. A42 
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547 Investigate thermocompressors where significant venting of low-pressure steam occurs, 

higher-pressure motive steam is available, and a modest pressure boost could convert waste 

steam to useful steam. Examine waste recovery potential by determining: 

– Flow rate and pressure of vented steam 

– Flow rate and pressure for sources of motive steam 

– Process or heating needs that can be met by boosting the pressure and temperature of 

vented steam 

– Equipment size and motive to suction steam ratio 

– Annual energy savings and installation costs of selected device 

A34   Use Steam Jet Ejectors or 

Thermocompressors to Reduce 

Venting of Low-Pressure Steam 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam29_use

_steam.pdf 

548 Consider vacuum jet ejectors in situations where: 

– Mild vacuum conditions —1 to 3 psig below ambient —would help the process operation 

– Waste steam at pressures greater than 15 psig are vented to the atmosphere  

A43 

549 A vapor recompression project analysis consists of matching recovered waste heat with the 

need for low-pressure steam for process or space heating. To perform this analysis: • 

Conduct a plant audit to identify sources of low-pressure waste steam.  • Estimate the heat 

recovery potential.  • Inventory all steam-utilizing equipment and list pressure 

requirements, energy consumption, and patterns of use.  • Estimate the cost-effectiveness of 

installing recompression equipment and connecting piping. 

A24   Use Vapor Recompression to 

Recover Low-Pressure Waste 

Steam 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam11_wa

ste_steam.pdf 

550 Inspect vent pipes of receiver tanks and deaerators for excessive flash steam plumes. A31   Use a Vent Condenser to 

Recover Flash Steam Energy 

www1.eere.energy.gov/industry

/bestpractices/pdfs/39315.pdf 

551 Eliminate flash steam energy loss with a vent condenser.  A31 

552 Minimize Boiler Combustion Loss by Optimizing Excess Air A31 Pulp and paper, 

chemical 

manufacturing, 

and petroleum 

refining 

industries  

Steam System Opportunity 

Assessment www1.eere.energy. 

gov/industry/bestpractices/pdfs/

steam_assess_mainreport.pdf  

 

Appendices 

www1.eere.energy.gov/industry

/bestpractices/pdfs/steam_asses

s_appendices.pdf  

553 Repair or Replace Burner Parts A31 

554 Install Feedwater Economizers A43 

555 Install Combustion Air Preheaters A43 

556 Clean Boiler Heat Transfer Surfaces A31 

557 Install Continuous Blowdown Heat Recovery A43 

558 Establish the Correct Vent Rate for the Deaerator A32 

559 Repair Steam Leaks A31 

560 Isolate Steam from Unused Lines A25 

561 Use High-Pressure Condensate to Generate Low-Pressure Steam A24 

562 Implement a Combined Heat and Power (Cogeneration) A43 
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563 Exchangers were redesigned to give more heat transfer overall. A42   Celanese Chemicals Clear Lake 

Plant Energy Projects 

Assessment and 

Implementation 

www1.eere.energy.gov/industry

/bestpractices/pdfs/sd01art8.pdf 

564 Introduce Heat Exchanger A43 

565 Use a Single Incinerator Instead of Two A41 

566 Run 1a Distillation Tower Only Part- Time A13 

567 Optimize Tower Operation A11 

568 Improve Process Control of Large Air Compressor A35 

569 Eliminate Hot Standby for Utilities Boilers A13 

570 Eliminating hot standby for spare turbines A13 

571 Shutting down outmoded process systems A41 

572 Optimizing pump impeller usage A13 

573 Changed tower operation to use lower-pressure steam when possible A13 

574 Reduce steam header pressure. A32   Best Practices Steam Resources 

and Tools: ―Old‖ News is 

―New‖ News! www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/sd01art1.pdf 

575 Reduce steam pressure in distillation columns. A32 

576 Install additional steam traps on drum oven. A43 

577 Improve steam trap maintenance program. A31 

578 Replace faulty compressor turbine, and reconfigure steam and cooling systems. A31 

579 Insulate steam lines, replace faulty steam traps. A31 

580 Replace existing steam boiler system, improve plant heat recovery. A42 

581 Rebuild and upgrade steam turbine. A42 

582 Install new boiler combustion controls, replace more than 90% of system steam traps. A42 

583 Steam Demand Reduction A12   Best Practices in Steam System 

Management www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/sd01art2.pdf 

584 Boiler Tune-Up A31 

585 Use of backpressure turbines for power production A42   Tools to Boost Steam System 

Efficiency www1.eere.energy. 

gov/industry/bestpractices/pdfs/

steam_tools.pdf 

586 Recovery of thermal energy from waste-water streams A24 

587 Replacement of missing insulation on piping systems A31 

588 Reduction of steam leaks resulting from failed steam traps and pipes A31 
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589 Adjust burner air to fuel ratios. To get the most efficient performance out of fuel-fired 

furnaces, ovens, and boilers: 

1. Determine the best level of excess air for operating your equipment. 

2. Set your combustion ratio controls for that amount of excess air. 

3. Check and adjust ratio settings regularly. 

A32   Check Burner Air to Fuel 

Ratios www.nrel.gov/ 

docs/fy08osti/42110.pdf 

590 Check heat transfer surfaces: 

• Examine your flue-side heat transfer surfaces for deposits. 

• Clean heat transfer surfaces periodically. 

• Use a soot blower to automatically clean heat transfer surfaces. 

• Use a soot burn-out practice for radiant tubes or muffles used in high temperature 

furnaces. 

• Use continuous agitation or other methods to prevent materials from accumulating on the 

heat transfer surfaces 

• Examine your water-side heat transfer surfaces for scale and remove the deposits. 

• If scale is present, consult with your local water treatment specialist and consider 

modifying your chemical additives. 

A34   Check Heat Transfer Surfaces 

www1.eere.energy.gov/industry

/bestpractices/pdfs/check_heat_

transfer_process_htgts4.pdf 

591 Maintaining slightly positive furnace pressure A31   Furnace Pressure Controllers 

www1.eere.energy.gov/industry

/bestpractices/pdfs/furnace_pres

s_control_process_htgts6.pdf 

592 Preheating Combustion Air A24   Install Waste Heat Recovery 

Systems for Fuel-Fired 

Furnaces www1.eere.energy. 

gov/industry/bestpractices/pdfs/

install_waste_heat_process_htgt

s8.pdf 

593 Steam Generation and Water Heating A24 

594 Load Preheating A24 

595 Load Preheating Using Flue Gases from a Fuel-Fired Heating System A24   Load Preheating Using Flue 

Gases from a Fuel-Fired 

Heating System www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/38852.pdf 

596 Oxygen-Enriched Combustion A32   Oxygen-Enriched Combustion 

www1.eere.energy.gov/industry

/bestpractices/pdfs/oxygen_enri

ched_combustion_process_htgt

s3.pdf 
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597 Reduce Air Infiltration in Furnaces A32   Reduce Air Infiltration in 

Furnaces www1.eere.energy. 

gov/industry/bestpractices/pdfs/

38849.pdf 

598 Reduce Radiation Losses from Heating Equipment A13   Reduce Radiation Losses from 

Heating Equipment 

www1.eere.energy.gov/industry

/bestpractices/pdfs/38851.pdf 

599 Using Waste Heat for External Processes A24   Using Waste Heat for External 

Processes www1.eere.energy. 

gov/industry/bestpractices/pdfs/

38853.pdf 

600 Use Microwave Processing A43   Improving Process Heating 

System Performance 

www1.eere.energy.gov/industry

/bestpractices/pdfs/process_heat

ing_sourcebook2.pdf 

601 Preheat combustion air A24   www1.eere.energy.gov/industry

/bestpractices/pdfs/process_heat

ing_sourcebook2.pdf 

602 Recover furnace waste heat A24 

603 Improve maintenance on furnaces to reduce heat losses A31 

604 Install variable speed drives when appropriate A43 

605 Optimize air-to-fuel ratios A32 

606 Optimize cycle length and furnace loading A32 

607 Preheat process materials and equipment A24 

608 Waste heat recovery A24   Indirect-Fired Kiln Conserves 

Scrap Aluminium and Cuts 

Costs www1.eere.energy.gov/ 

industry/bestpractices/pdfs/em_

proheat_firedkiln.pdf 

609 Eliminate Excessive In-Plant Distribution System Voltage Drops A32   Eliminate Excessive In-Plant 

Distribution System Voltage 

Drops www1.eere.energy.gov/ 

industry/bestpractices/pdfs/mot

or_tip_sheet8.pdf 

http://www1.eere.energy.gov/industry/bestpractices/pdfs/process_heating_sourcebook2.pdf
http://www1.eere.energy.gov/industry/bestpractices/pdfs/process_heating_sourcebook2.pdf
http://www1.eere.energy.gov/industry/bestpractices/pdfs/process_heating_sourcebook2.pdf
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610 Eliminate Voltage Unbalance, Suggested Actions:  

• Regularly monitor voltages at the motor terminals to verify that voltage unbalance is 

maintained below 1%. 

• Check your electrical system single-line diagrams to verify that single-phase loads are 

uniformly distributed. 

• Install ground fault indicators as required and perform annual thermographic inspections. 

Another indicator that voltage unbalance may be a problem is 120 Hz vibration. A finding 

of 120 Hz vibration should prompt an immediate check of voltage balance. 

A32   Eliminate Voltage Unbalance 

www1.eere.energy.gov/industry

/bestpractices/pdfs/eliminate_vo

ltage_unbalanced_motor_syste

mts7.pdf 

611 Replace V-Belts with Cogged or Synchronous Belt Drives A42   Replace V-Belts with Cogged 

or Synchronous Belt Drives 

www1.eere.energy.gov/industry

/bestpractices/pdfs/replace_vbel

ts_motor_systemts5.pdf 

612 The new pump handles the same volume as the original pumps during non-peak periods, 

but runs for longer periods of time. The lower outflow rate reduces friction and shock 

losses in the piping system, which lowers the required head and energy consumption.  

A42 Municipal 

sewage system 

Improving sewage pump 

system performance www1. 

eere.energy.gov/industry/bestpr

actices/case_study_sewage_pu

mp.html 
613 Ineffective existing pump speed control was eliminated and the motors were wired for 

direct on-line start. 

A41 

614 Installing a new pump that matched the existing system A42   Improving the efficiency of a 

brewery's cooling system 

www1.eere.energy.gov/industry

/bestpractices/case_study_brew

ery.html 

615 Installing a new pump with a variable speed drive A42 

616 Induced draft fan systems with a VFD A43 Refuse systems Improving the performance of a 

waste-to-energy facility 

www1.eere.energy.gov/industry

/bestpractices/case_study_waste

_to_energy.html 

617 Retrofitted 15 of the 18 fans with VFDs A42 Textile Improving ventilation system 

energy efficiency in a textile 

plant www1.eere.energy.gov/ 

industry/bestpractices/case_stud

y_ventilation_textile.html 
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618 Replace the 1magnetic starter and eddy current clutch with a Baldor vector 

controller(=VFD) and line reactor 

A42 Steel pipes and 

tubes 

Improving Efficiency of Tube 

Drawing Bench www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/mc-cs04.pdf 

619 Installing variable speed drives (VSDs) on the 2,250-hp primary feed pump and 700-hp 

product pump 

A43 Oil refinery Motor System Upgrades at 

Chevron Refinery www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/chevron.pdf 
620 Replacing the internal elements on the 2,250-hp secondary feed pump and a 400-hp power 

recovery turbine (PRT) 

A42 

621 The modified system uses a smaller pump with an 8" x 10" casing and a 32" diameter 

impeller with an output that more accurately matches system flow requirements. 

A32 Mining Optimized Pump Systems Save 

Coal Preparation Plant Money 

and Energy www1.eere.energy. 

gov/industry/bestpractices/pdfs/

peabody1.pdf 

622 The original motor was replaced with a new premium efficiency 200-hp, 1800-rpm motor 

rated at 96.5 percent efficiency. 

A42 

623 The motor slide base should be replaced as a result of extreme corrosion. A31 

624 Maintenance of the V-belt drive, to prevent corrosion and set the proper tension A31 

625 Replace 1 out of 3 pumps with a smaller one A42 Sewage system Saving Energy at a Sewage Lift 

Station Through Pump System 

Modifications www1.eere. 

energy.gov/industry/bestpractic

es/case_study_lift_station.html 

626 The rest 2 pumps will operate only when the operation load is high A12 

627 Shut down unnecessary pumps. Re-optimize pumping systems when a plant‘s water use 

requirements change. Use pressure switches to control the number of pumps in A2 service 

when flow rate requirements vary. 

A25   Conduct an In-Plant Pumping 

System Survey www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/conduct_in_plant_pump

ing_systemts1.pdf 
628 Restore internal clearances (for pumps). A31 

629 Replace standard efficiency pump drive motors with NEMA Premium™ motors. A42 

630 Replace or modify oversized pumps A42 

631 Meet variable flow rate requirements with an adjustable speed drive or multiple pump 

arrangement instead of throttling or bypassing excess flow. 

A43 

632 Reducing the pumping speed (flow rate) A32   Control Strategies for 

Centrifugal Pumps with 

Variable Flow Rate 

Requirements www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/38949.pdf 
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633 Match Pumps to System Requirements, Identify flow rates that vary 30% or more and 

systems imbalances greater than 20%. 

A34   Match Pumps to System 

Requirements www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/pumping_6.pdf 

634 Trim or Replace Impellers on Oversized Pumps, Consider impeller trimming when any of 

the following apply: 

• The head provided by an oversized, throttled pump exceeds process requirements. 

• System bypass valves are open, indicating excess flow rate. 

• The pump is operating far from its design point. 

• The operating head and (or) flow rate are greater than process requirements. 

A42   Trim or Replace Impellers on 

Oversized Pumps www1.eere. 

energy.gov/industry/bestpractic

es/trim_replace_impellers8.pdf 

635 Replace compressed air with fans/blower mixers/nozzles/air 

conditioning/brushes/blowers/vacuum pumps/electric motors/mechanical pumps for 

applications with low-pressure end use 

A42   Alternative Strategies for Low-

Pressure End Uses www1.eere. 

energy.gov/industry/bestpractic

es/pdfs/compressed_air11.pdf 

636 Apply air storage strategy A25   Compressed Air Storage 

Strategies www1.eere.energy. 

gov/industry/bestpractices/pdfs/

compressed_air9.pdf 

637 Matching Compressed Air Supply with Demand A13   Compressed Air System 

Control Strategies 

www1.eere.energy.gov/industry

/bestpractices/pdfs/compressed_

air7.pdf 

638 Inspect the entry to the compressor air intake pipe and ensure that it is free of contaminants. A31   Effect of Intake on Compressor 

Performance 

www1.eere.energy.gov/industry

/bestpractices/pdfs/compressed_

air14.pdf 

639 Inspect the compressed air intake filter element to ensure that it is of the appropriate type, 

that it is properly installed, and that it is clean. 

A31 

640 Check the intake filter regularly for excess pressure drop. A31 

641 Introduce combined heat and power (CHP) A43  Aerospace people2.airbus.corp/Transversal

_pages/Data/About_Airbus/one

_online/HTML/Pages/EN/2009

_05_28_5936a6e3-4b89-11de-

ba84-0fa16ff26bb7.html  

642 Use CHP plants waste emissions as inert gases. A24 

643 Renovate nitration plant A31 Synthetic organic 

dye  

Case Study: : Clariant 

Corporation - Mount Holly 644 Install a 26-stage extraction vessel A43 

http://people2.airbus.corp/Transversal_pages/Data/About_Airbus/one_online/HTML/Pages/EN/2009_05_28_5936a6e3-4b89-11de-ba84-0fa16ff26bb7.html
http://people2.airbus.corp/Transversal_pages/Data/About_Airbus/one_online/HTML/Pages/EN/2009_05_28_5936a6e3-4b89-11de-ba84-0fa16ff26bb7.html
http://people2.airbus.corp/Transversal_pages/Data/About_Airbus/one_online/HTML/Pages/EN/2009_05_28_5936a6e3-4b89-11de-ba84-0fa16ff26bb7.html
http://people2.airbus.corp/Transversal_pages/Data/About_Airbus/one_online/HTML/Pages/EN/2009_05_28_5936a6e3-4b89-11de-ba84-0fa16ff26bb7.html
http://people2.airbus.corp/Transversal_pages/Data/About_Airbus/one_online/HTML/Pages/EN/2009_05_28_5936a6e3-4b89-11de-ba84-0fa16ff26bb7.html
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645 The vessel extracts from sulfuric acid (by-product) the monochlorobenzene (input) A15 Plant www.p2pays.org/ 

ref/07/06124.pdf 646 The processed Sulfuric acid is eliminated by hazardous waste and is used as an input for 

another process (ore beneficiation) 

A24 

647 Adjust the PH of Sodium thiosulfate  A15 

648 Sodium thiosulfate (by product) became an input for another process (dechlorination) A24 

649 Take several aerators totaling 400 horsepower out of service (because the byproduct's 

process stop earlier) 

A41 

650 Install a three-stage air scrubber to remove ammonia emissions from several sulfur dye 

production areas 

A43 

651 Use of ammonium sulfate (byproduct) in a farm as a nutrient. A24 

652 Start/stop control of cleaning of the printing belt A13 Textile Danish experience. Best 

Available Techniques - BAT - 

in the clothing and textile 

industry www2.mst.dk/udgiv/ 

Publications/2002/87-7972-

009-0/pdf/87-7972-010-2.pdf 

653 Mechanical removal of printing paste A43 

654 Reuse of the cleanest part of the rinsing water from the cleaning of the squeegees, screens 

and buckets 

A24 

655 Reuse of the rinsing water from the cleaning of the printing belt A24 

656 Printing paste that is left over after printing can be collected and reused A24 

657 Change from overflow rinsing to stepwise rinsing A32 

658 Omit the use of detergents in the rinsing after reactive dyeing of cotton A21 

659 Omit the use of complexing agents in the rinsing after dyeing  A21 

660 Use only neutralisation after dyeing when using VS reactive dyestuffs A41 

661 Chemical-free high speed rinsing after reactive dyeing of cotton A21 

662 Reclamation and reuse of dye bath and first rinse by activated carbon A43 

663 Reclamation and reuse of rinsing water after dyeing by membrane filtration A43 

664 Use of enzymatic desizing A42 

665 Collection and reuse of after treatment chemicals in finishing A24 

666 Change in spray gun tips A32 Trucks and bus 

bodies 

Pollurion prevention works for 

Iowa www.p2pays.org/ 

ref/02/01766.pdf 

667 Use a new material can be cleaned from equipment using water A22 

668 Purchase a new automated hard chrome plating machine to replace the existing hard 

chrome operation. New line uses a high speed proprietary hard chrome plating process. 

A42   caterpillar, Pennsylvania 

Recovers Hard Chrome www. 

http://www.p2pays.org/ref/07/06124.pdf
http://www.p2pays.org/ref/07/06124.pdf
http://www.p2pays.org/ref/02/01766.pdf
http://www.p2pays.org/ref/02/01766.pdf
http://www.p2pays.org/ref/02/01766.pdf
http://www.p2pays.org/ref/02/01280.pdf
http://www.p2pays.org/ref/02/01280.pdf
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669 Build a chrome recovery system. The system would allow the conversion of the old line to 

the new chemistry and close the loop at the source. 

A43 p2pays.org/ref/02/01280.pdf 

670 The water recovered from the evaporator is to be reused. A24 

671 Petroleum, naphtha used in vehicle and aircraft parts washing was reduced over eighty 

percent 

A32 Airplanes The Arizona National Guard 

Takes Measures to Guard the 

Environment www.p2pays.org/ 

ref/01/00596.pdf 
672 Introduction of jet pressure parts washers (Better Engineering Parts Washers) A43 

673 Use water and biodegradable soap instead of chemicals A22 

674 Used jet fuel ‗generated by safety fuel checks before aircraft flights generated large amount 

of waste fuel. Since this fuel cannot be reutilized in aircrafts, the majority of this waste is 

being blended with diesel fuel and used in ground vehicle operations. 

A24 

675 Methyl Ethyl Ketone (MEK) used in painting operations is recycled on-site with distillation 

units (SolvoSalvager,WestPort Environmental systems) 

A15 

676 Methylene Chloride generation of 4,620 pounds per year from painting operations was 

eliminated and replaced with MEK which is recycled by distillation. 

A22 

677 Contaminated Water/fuel is generated during the fueling of aircraft. An activated carbon-

filtration system (AquaSorb TM.60 System, Hadley Industries) was installed to filter this 

mixture. The water is returned to the city sewer, and the activated carbon filters collect the 

fuel constituents. 

A15 

678 Purchased a machine to make decals. Markings on vehicles, aircraft and buildings were 

previously produced by painting with spray paint cans, but now a machine cuts vinyl with 

an adhesive backing into desired shapes for decals. The use and Waste of spray paint cans 

has been reduced significantly. 

A13 

679 Petroleum contaminated rags from vehicle and aircraft maintenance generated huge amount 

of waste. A service was established to‘ pick-up and launder the contaminated rags and 

replace with clean rags.  

A24 

680 Replace with low or No-HAPs Lacquers/Lacquer Thinners, contain low amounts of or no 

listed hazardous air pollutants (HAPs). 

A22 Wood products & 

furniture  

Product Substitution to Low or 

No-HAPs Coatings/Coating 

Solvents www.p2pays.org/ 

ref/01/00289.htm 

681 Switch to peroxide, a more environmentally friendly chemical, for bleaching and used 

chlorine only to clean machines between batches. 

A22 Textile Renfro Corporation www. 

p2pays.org/ref/07/06112.pdf 

682 Install new burners on their boilers A42 
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683  Changing sampling procedures and using only one spinning position, the sampling time 

was cut on the average of 1 hour and reduced all the yarn waste that was produced during 

the sampling time.  

A12 Textile E.I. duPont de Nemours & Co. - 

Cape Fear Plant www.p2pays. 

org/ref/07/06126.pdf  

684 Redesign the push-off devices to reduce the number of yarn packages that were bruised by 

the equipment 

A32 

685 After extensive re-engineering efforts, the facility is now able to produce polymer grade 

TPA, which is reacted directly with ethylene glycol to produce the PET resin. This 

modification completely eliminates the use of methanol and the production of DMT as an 

intermediate step in the reaction process, eliminating the methanol emissions and methanol 

by-product waste associated with that step.  

A44 

686  Install a PET recycling facility to reprocess this material. The PET material will be 

converted to DMT and glycol via methanolysis.  

A15 

687 The DMT will be sold to other facilities for fiber production while the glycol is reused in 

the production process.  

A24 

688 All major emissions of VOC generated during the recycling process of DMTwill be 

diverted to a Dowtherm process heater for waste heat production.  

A24 

689 Innovative process modifications in the continuous polymerization units have permitted 

significant reductions in process temperatures, which, in turn, reduce compound 

volatilization and atmospheric and waterborne emissions of volatile organic compounds 

(VOCs).  

A32 

690 The fibers facility also modified the exchanger vents and methanol tank vents to reduce 

methanol emissions.  

A32 

691 A cobalt catalyst used in the production of intermediates is now recovered.  A24 

692 Laboratories and parts washers switched to non-halogenated solvents.  A22 

693 Convert the coating system by substituting a two-component urethane (polane) coating for 

the enamel paint 

A15 Electronics Exide Electronics www.p2pays. 

org/ref/07/06146.pdf 

694 Replace the water wash system with a dry filter booth A15 

695 The quantity of overspray generated during coating operations was reduced by a switch to 

high-volume, low-pressure (HVLP) spray guns. The HVLP guns reduce overspray, paint 

consumption, and the amount of waste material disposed.  

A32 

696 Solvents used for equipment cleaning and line flushing are recycled on site with a solvent 

distillation unit.  

A15 
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697 Replace solvent-based varnishes with water reducible varnishes, thus eliminating another 

hazardous waste stream 

A22 

698 Convert its painting process to a powder coating system A44 Electronics ABB Power T&D Company, 

Inc. www.p2pays.org/ 

ref/07/06145.pdf 
699 Over spray goes back through the coating system and is reclaimed and reused A24 

700 Implemented a filter system in glass shop operation to reduce resin usage.  A43 Fiberglass-

reinforced 

plastics 

Miller Control and 

Manufacturing Co., Inc. www. 

p2pays.org/ref/07/06150.pdf 

701 Substitute solvent-based system with a suitable water-based chemical system (an acrylic 

latex emulsion)  

A42 Textile Guilford Mills, Inc. www. 

p2pays.org/ref/07/06110.pdf 

702 Change from solvent-based to water based coatings  A42 Tobacco R. J. Reynolds Company www. 

p2pays.org/ref/07/06107.pdf 703 Established a waste recycling program with a designated full time coordinator. The 

coordinator works with six manufacturing facilities and numerous brokers and mills to 

maximize volume and profit from over thirty different categories of paper, plastic, foil and 

laminates.  

A15 

704 Utilize carbon adsorption and distillation to capture solvent vapors from the printing 

presses and other packaging manufacturing areas. The collected vapors are then condensed 

and distilled into a reusable product. Approximately half of the recovered solvent blend is 

reused in-house for new ink formulations, and the remainder is sold to outside vendors. 

Most of the solvent is currently sold for use in furniture finishes. 

A24 

705 Install a totally enclosed, automated washer system utilizing a non-hazardous solvent for 

washing printing press parts. 

A42 

706 Distillation is used to recover solvent for reuse. Solvent is also recovered from still bottoms 

by heating the sludge in a large microwave oven.  

A43 

707 Ash reuse, co-generation facilities by diverting it for reuse in agricultural products and 

concrete 

A24 

708 Pelletize non-recyclable waste paper for use as fuel in the company's coal fired boilers A24 

709 Fuel oil was replaced with cleaner natural gas as boiler fuel A22 Textile Westpoint Stevens www. 

p2pays.org/ref/07/06116.pdf 710 Jet dyeing machinery was upgraded to low-liquor-ratio machines with shorter cycles. This 

modification resulted in reduced chemical, water, and energy usage.  

A32 

711 Extensive recycling operations are conducted at the plant for plastic cones, plastic, 

cardboard cones, wooden pallets, cotton wipes, and scrap cloth.  

A15 
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712 Cardboard spinning tubes were unrecyclable because of the heavy glues used in their 

manufacture. These tubes were replaced with recyclable PVC cones, which not only last 

five times longer but can be recycled when they wear out.  

A22 

713 By installing a spray vapor condenser, it was able to recapture Glycol, divert it back into 

the production process, and prevent its release to the atmosphere. 

A24 Textile E.I. DuPont de Nemours & 

Company DuPont Fibers, 

Kinston Plant www.p2pays. 

org/ref/07/06127.pdf 
714 During the polymerization process, dimethyl therathalate (DMT) was traditionally reacted 

with glycol to produce the polyester product and liquid methanol by-product. By 

substituting therathalic acid (TPA) for the DMT, the plant no longer produces liquid 

methanol by-product.  

A22 

715  The company developed a non-destructive x-ray test method that eliminated the use of 

solvent for this application, significantly reducing plant-wide solvent consumption.  

A44 

716 All parts washing equipment at the plant was converted to utilize non-hazardous (higher 

flashpoint) solvents. This solvent substitution reduced the quantity of hazardous waste 

generated. 

A22 

717 Titanium dioxide is utilized as a polyester whitening agent. The company installed an 

automated handling and mixing system that significantly reduces the amount of material 

lost during the processing of this material.  

A42 

718 Preventative maintenance programs significantly reduced the quantity of lube oil waste 

generated at the facility. These programs included installing longer-life oils in certain 

equipment.  

A13 

719 Freon eliminated as cleaning agent A22 Pharmaceuticals Baxter Healthcare Corporation 

www.p2pays.org/ref/07/06122.

pdf 
720 Substitution of lab chemicals A12 

721 The boiler used for steam generation at the facility was converted from oil-fired to wood-

fired 

A22 

722 Large quantities of waste oil were previously discarded but are now filtered and reused on 

site. 

A15 

723 Substitution of cleaning solvent  A22 

724 Reuse of waste plastic A24 

725 Convert the degreasing process to a five stage aqueous cleaning line in response to pending 

air quality regulations and concerns over future liabilities associated with the disposal of 

methylene chloride still bottoms 

A44 Plumbing 

components and 

plastic faucets 

Moen Incorporated www. 

p2pays.org/ref/07/06137.pdf 

726 A chemical called ―Oil Split‖ was added to the cleaner to separate the oil in the coalescer A22 
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727 An evaporation system was installed that successfully evaporated the water from the 

aqueous wash waste, leaving only a used oil for disposal.  

A43 

728 Use electrowinning (plating) to remove copper from the pre-dip tank to prolong the life and 

improve the control of the Brite Dip plating process 

A15 

729 Cyanide brass plating was eliminated and replaced with a metal plating process called 

physical vapor deposition (PVD). This process is cleaner and reduces the scrap rate on 

decorator parts by over 10%. 

A22 

730 Implement counter-flow rinse tanks and efficient water use practices on the plating lines A32 

731 Wooden pallets and cardboard are now recycled .  A24 

732 The previous cardboard baler was under-capacity for the volume of cardboard generated 

and was replaced with a high-density compactor for cardboard.  

A42 

733 Apply new heat recovery technology suitable for bakery A24 Bakery Cleaner production in bread 

making - Buttercup Bakeries 

www.p2pays.org/ref/04/03323.

htm 

734 Replace the ozone-depleting chemical with a water-based detergent soap degreaser A22 Textile Hoechst Celanese Corporation 

www.p2pays.org/ref/07/06128.

pdf 
735 Leak detection and repair program was adopted, and selective replacement of valves, 

pumps, and flanges with leakless equipment was undertaken.  

A31 

736 Materials recycled from the facility include office paper, cardboard, mixed wood, pallets, 

construction debris, scrap metal, used oil, and plastic. 

A24 

737 The gaseous emissions are diverted to a single collection point where they are then passed 

through a distillation unit. 

A15 

738 The targeted SARA chemicals are separated and diverted to a waste heat boiler, which 

generates low-pressure steam for reuse in the plant.  

A24 

739 A centrifuge for dewatering the paint booth sludge is being installed. Waste reduction will 

result from removing water from the sludge requiring disposal. 

A43 Construction 

machinery 

Koehring Cranes & Excavators 

www.p2pays.org/ref/01/00771.

pdf 740 The water will be reused in the paint booths A24 

741 Switch from chemical based paint to water-based A22 Automotive 

manufacturing, 

coatings 

Reducing Contaminated 

Wastewater from Water-Based 

Paint 

www.p2pays.org/ref/01/00622.

pdf 

 

742 Install a combined ultra-filtration/reverse-osmosis (UF/RO) process to clean up the waste 

water.  

A43 

743 The UF/RO process is recovering 95% of the wastewater A24 
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744 Primer coats are applied in powder form. Electrostatic attraction between the powder and 

the vehicle surface keeps the coating on the surface until the powder is polymerized in a 

bake oven at 325°F (163°C).  

A44 Automotive 

manufacturing, 

body repair 

Powder Paint System Improves 

Automobile Coatings, Boosts 

Environment www.p2pays.org/ 

ref/01/00622.pdf 
745 With the powder-paint system the overspray can be captured and recycled. 95% of the paint 

solids are deposited on the vehicle surface. In comparison, only 43% of the solids are 

deposited by the paint-spray system. 

A24 

746 Discontinue use of all adhesives. Use non-ferric screws to attach insulation to sheet metal 

parts. Implementation requires the selection of an acceptable fastening method and the 

purchase of appropriate tools. 

A22 Heating, 

ventilating, and 

air conditioning 

equipment 

Waste Minimization 

Assessment for a Manufacturer 

of Heating, Ventilating, and Air 

Conditioning Equipment www. 

p2pays.org/ref/01/00602.pdf 
747 Replace all solvent-based adhesives with water-based (nonhazardous) adhesives. A22 

748 Modify the use of adhesives to maximize the use of water-based (non hazardous) glue. Spot 

glue 10% of the surface area with the quick-drying solvent-based adhesive and cover the 

remaining 90% with the slow-drying water-based adhesive. 

A13 

749 Install a recirculating air-oil condensing system adjacent to the fin press to reclaim 

evaporating oil. 

A24 

750 Change to high solids paint formulation, utilizing new air assisted, airless electrostatic 

spray guns, and dedication of individual spray booths for certain colors. The change to high 

solids formulation included installation of paint heaters to maintain proper viscosity and 

separate supply and return piping. 

A44 Construction 

machinery 

Koehring Cranes & Excavators 

www.p2pays.org/ref/01/00773.

pdf 

751 Install an electrostatic spray paint system for priming and painting to reduce overspray 

losses. 

A42 Rebuilt railway 

cars and 

components 

Waste Minimization 

Assessment for a Manufacturer 

of Rebuilt Railway Cars and 

Components www.p2pays.org/ 

ref/01/00604.pdf 

752 Dipping of wood furniture in water based stains to eliminate VOC emissions A15 Office 

furnishings 

manufacturer 

Process Change and Raw 

Materials Substitution in the 

Office Furnishing 

Manufacturing Industry www. 

p2pays.org/ref/01/00157.pdf 

753 Conversion of all pigmented wood coatings to water base A22 

754 Install a closed loop metal treatment system A24 

755 Recycling of a cardboard, paper, steel and aluminium A24 

756 Optimize the conservation of wood by use of computerized cutting saws. A43 

757 Experimented with resin and other powder paint components from various national and 

international suppliers. The new technology uses about 98 percent of the raw coating 

material, which is baked onto the metal furniture 

A22 

758 Excess powder is collected, cleaned and put back into the spray gun.  A24 
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759 Install a new rinse system on nickel and chromium plating lines. A43 Plating services Hajjar Plating Services www. 

p2pays.org/ref/01/00842.pdf 760 Filter out insoluble inorganic contaminants from the nickel rinse tanks. This arrangement 

resulted in a 58 percent reduction in annual water usage. 

A15 

761 A water-based equivalent that produces better quality finish with increased wear 

characteristics has been substituted for white MEK-based paint. Substitute a similar product 

for a solvent-based yellow paint and clearcoat. 

A22   Cooper Hand Tools/Lufkin 

Manufacturing Facility www. 

p2pays.org/ref/07/06152.pdf 

762 Concentrate and return chromic acid rinse for reuse in the etch tank.  A24 

763 Install a recovery unit on the lines that recovers the nickel and allows reuse of water as 

rinse make-up on another plating line.  

A15 

764 The reclaimed nickel is sent to a recycler. The nickel recovery unit resulted in decreased 

consumption of rinsewater treatment chemicals and reduced rinsewater use and disposal 

costs. 

A15 

765 The chemical 1,1,1-trichloroethane was phased out and replaced with a citrus-based 

degreasing agent.  

A22 Pulp mill 

operations 

Weyerhaeuser Pulp Facility 

www.p2pays.org/ref/07/06121.

pdf 766 Regular tune-ups and maintenance have minimized the use of ether in start-up of heavy 

equipment diesel engines.  

A31 

767 The polychlorinated biphenyl (PCB) transformers have been removed and replaced with 

silicon or dry-cast coil transformers. 

A42 

768 Install a wet-packed fume scrubber with a recirculation system. This system collected 

chromium concentrate from two plating tanks.  

A43 Electroplating C & R Hard Chrome and 

Electroless Nickel Service, Inc. 

www.p2pays.org/ref/07/06135.

pdf 
769  Double-walled insulated tanks replaced all heated steel tanks A42 

770 Single-rinse tanks were switched to a system of counterflow multiple rinse tanks to reduce 

water consumption 

A32 

771 Restrictive flow nozzles on water inlets were added to better control and reduce water 

consumption 

A35 

772 The lifespans of solutions were extended with in-tank filtration systems installed on the 

alkaline cleaner, hydrochloric acid, and electroless nickel tanks.  

A15 

773 With nitric acid stripping solution replaced by hydrogen peroxide, the generation of nitric 

acid hazardous waste was eliminated 

A22 

774 Hydrogen peroxide is sent to a recycler where nickel sulfate is reclaimed for reuse A24 

775 New ―dry‖ mesh-pad ventilation system reduced air emissions from the process and 

allowed reuse of any captured fumes 

A24 
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776 Purchase a chrome solution purifier called a porous pot. The porous pot uses electrodialysis 

concepts in conjunction with ceramic membranes. The continual removal of contaminants 

significantly lengthened the bath life. 

A22 

777 Develop a new process in which a chlorine-free silicon fluid is used as a raw material. With 

replacement of silicon tetrachloride raw material by the silicon fluid, no hydrochloric acid 

by-product is generated. This modification eliminated all hydrochloric acid and chlorine 

gas emissions from the glass manufacturing process. 

A42 Telecommunica-

tions products 

Corning Incorporated www. 

p2pays.org/ref/07/06132.pdf 

778 The silicon dioxide particles not deposited on the fibers during the coating process are 

collected in a filtration process.  

A15 

779 The elimination of hydrochloric acid in the waste stream made it possible for the company 

to install a filtration media that does not require a protective coating. Thus, the now 

uncoated silicon dioxide particles can be collected and diverted from the landfill to other 

manufacturing processes. 

A15 

780 Achlorine reduction and germanium recovery system (GRS) was installed, replacing the 

original wastewater treatment system. In this system, germanium oxide is reacted with 

magnesium sulfate to form magnesium germanate, and is not released from the facility.  

A42 Fiber optic cable 

manufacturing 

Alcatel Telecommunications 

Cable www.p2pays.org/ 

ref/07/06133.pdf 

781 The germanium-containing wastewater sludge is filtered, dried, bagged, and sold to a 

manufacturer for re-use. 

A15 

782 A new process of integrating the color into the fiber coating without the use of solvent-

based inks was introduced. Several modifications to the process equipment and support 

facilities were conducted to accommodate the new on-line coating system 

A42 

783 Chemical Substitution A22 Textile Bloomsburg Mills, Inc. www. 

p2pays.org/ref/07/06108.pdf 784 Heat and Water Reuse A24 

785 CFCs had been completely phased out and substituted with the halogenated solvent 

methylene chloride. Methylene chloride worked well as a blowing agent, but is a suspected 

human carcinogen and a Hazardous Air Pollutant (HAP) under the federal Clean Air Act. 

Hickory Springs then switched to acetone as a replacement solvent. 

A22 Polyurethane 

foam 

manufacturing 

Hickory Springs Manufacturing 

Company www.p2pays.org/ 

ref/07/06131.pdf 

786 Yarn manufacturing waste, yarn mill card waste, knitting rags, and finishing rags are 

collected and baled and then sold to a textile waste recycler. Office paper and scrap metal 

are also collected for recycling.  

A15 Textile Cleveland Mills Company 

www.p2pays.org/ref/07/06109.

pdf 

787 Salt brine replaced sodium sulfate in the dyeing operation.  A22 

788 By upgrading the wastewater treatment system, the facility significantly reduced BOD, 

COD, and TSS loadings. 

A31 
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789 Formaldehyde air emissions from the manufacturing process were substantially reduced by 

utilization of low-shade resins that contain a lower percentage of the chemical; quality and 

performance levels were not compromised by the substitution.  

A22 

790 Air emissions from the facility were further improved by replacement of the coal-fired 

boilers with cleaner natural gas-fired boilers.  

A42 

791 Aerosol cans, such as those containing paint or lubricant, were replaced with reusable cans 

that can be re-pressured with air.  

A42 Postal U.S. Postal Service, Greensboro 

Bulk Mail Center www.p2pays. 

org/ref/07/06154.pdf 792 The HVAC system was replaced with a system that uses HCFC's (hydrochlorofluoro 

carbons), which are more environmentally friendly than traditionally used CFCs 

A42 

793 Replace over 90% of their solvent-based paints with water based paints A22 

794 A new stain eliminated the need for a washcoat and eliminated a sanding step in the 

production process. Thus the substitution reduced waste generation as well as raw material 

consumption by eliminating two steps in the production process. 

A22 Furniture  Thompson Crown Wood 

Products www.p2pays.org/ 

ref/07/06118.pdf 

795 Purchase a grinder and use this waste material (wood & sawdust) in the company's co-

generation facility where it could be burned for energy recovery. 

A24 

796 Implement a new glue application system to eliminate glue defects from top and end panels 

on television cabinets. This modification has enhanced product quality on all cabinets; 

nearly eliminated rejects due to glue dispensing and application problems; eliminated labor 

associated with glue cleanup; reduced glue use; and eliminated glue bottle, pan, tip, clean-

up rag, and plastic bag waste streams. 

A42 

797 Recycling of water-based printing waste A24 

798 Implement a process change in which end panels are glued at each builder's station instead 

of along a conveyor. This change has reduced the annual number of glue rejects to zero.  

A42 

799 Change paint spray gun A42 

800 Alter print room process for the application of roll-on finishes for all top and end panels of 

cabinets. The company successfully diverted 60 percent of the spraying operations from the 

finish room to a roll-on process in the print room and reduced materials use by 50 percent.  

A42 

801  Installation of the powder coater A42 LPG storage tank 

manufacturing 

Trinity Industries www.p2pays. 

org/ref/07/06140.pdf 

802 Atomization of the coating at low air pressures allows increased transfer efficiency (65-

80%), reduced over-spray, and therefore, reduced VOC emissions. 

A32 Wood products & 

furniture 

manufacturing 

Switch to HVLP Spray Gun 

Equipment for Stains and 

Sealers www.p2pays.org/ 

ref/01/00286.htm 
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803 Reusing cleaning solvent until it becomes spent A24 Steel fabrication 

and coating 

Steelfab www.p2pays.org/ 

ref/07/06138.pdf 804 Reusing spent cleaning solvent for thinning  A24 

805 Switch to water-based cleaner for paint equipment A22 Wood products & 

furniture 

manufacturing 

Water-Based Cleaner for Paint 

Equipment www.p2pays.org/ 

ref/01/00290.htm 

806 Use of waterborne topcoat lacquers A22 Wood products & 

furniture 

manufacturing 

Switch to Waterborne Topcoat 

Lacquers www.p2pays.org/ 

ref/01/00287.htm 

807 Water-based adhesives and solventless hot melt adhesives (100% solids) replaced solvent-

based adhesives in the manufacturing processes.  

A22 Wood products & 

furniture 

manufacturing 

Switch to Waterborne Topcoat 

Lacquers www.p2pays.org/ 

ref/01/00291.htm 

808 The existing mill water system was modified to reduce fresh water consumption and excess 

thermal loading on the river through water reuse. 

A24 Paper 

manufacture 

Champion International 

Corporation www.p2pays.org/ 

ref/07/06119.pdf 809 Computer monitoring of water consumption now ensures minimum usage whenever 

possible.  

A34 

810 Further water conservation is achieved through installation of a new 3-cell cooling tower 

and basin which, by receiving the water and reducing its temperature to 85o F, enables 

reuse of all excess hot water generated by the pulp mill.  

A15 

811 Water conservation is also achieved on two fine-printing and writing paper machines via 

mesh filtration of process and cooling tower water. The water is then reused on the 

machines.  

A15 

812 New pulp bleaching process utilizes an oxygen delignification step prior to the chlorine 

bleach step. Oxygen delignification significantly reduces the lignin content of the pulp prior 

to bleaching, thereby reducing chemical usage and effluent color.  

A15 

813 Molecular chlorine as a bleaching chemical has been eliminated and replaced with chlorine 

dioxide.  

A22 

814 The installation of a non-condensable gas collection and incineration system allows the mill 

to capture and burn odorous sulfide gases formerly emitted to the atmosphere. 

A15 

815 Installation of a new condensate stripper A42 

816 Two sets of evaporators were rebuilt A31 

817 A third set of evaporators was retired A41 

818 Cleans use-oil using a filtering system and send it back to the process for reuse A15 Alloy steel and The Timken Company www. 
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819 Water-soluble grinding coolant could be reused in the metal turning process, a process that 

can tolerate a lesser quality coolant. 

A15 highly 

engineered 

bearings 

p2pays.org/ref/07/06144.pdf 

820 Reclaimed oil is stored for use as a backup boiler fuel A15 

821 Redesigned the process to use natural gas A22 

822 Purchase self-contained water treatment unit. This unit is a hydrogen peroxide treatment 

system, which removes the VOCs (Volatile Organic Carbons) and hydrocarbons from the 

grease- and oil-contaminated washwater. 

A43 Farm equipment 

salvage and 

remanufacture 

Mid-East Tractor Parts www. 

p2pays.org/ref/07/06142.pdf 

823 Convert to new flux systems with non-VOC solvent systems and inactive residues. A44 Printed circuit 

board assembly 

Solectron Technology 

Incorporated www.p2pays.org/ 

ref/07/06148.pdf 

824 Leaky faucet being replaced A31 Office building The Office of the Lieutenant 

Governor www.p2pays.org/ 

ref/41/40952.pdf 
825 Old drinking fountain being disconnected A41 

826 The water bill history is now being kept and analyzed carefully to identify any possible 

problems with water consumption 

A34 

827 Computer turnoff practice A33 

828 Light turnoff practice in unused areas A33 

829 Use of desk lamps and natural light instead of ceiling lights A44 

830 Old office equipment has been replaced with more energy efficient equipment A42 

831 All but one vent be closed in the basement A41 

832 ―gas pack‖ systems have been repaired A31 Office building North Carolina League of 

Municipalities www.p2pays. 

org/ref/41/40951.pdf 
833 The heating system goes into energy-saving mode when the building is unoccupied A13 

834 Thermostat set to a less demanding temperature A32 

835 Recycled sewage water from the Resort's waste water treatment plant is used to maintain 

the Resort's landscaping and gardens. 

A24 Resort Cleaner Production - Energy 

Monitoring System: Ayers 

Rock Resort www.p2pays.org/ 

ref/04/03309.htm 
836 Installation of Preventative Maintenance Computer System  A35 

837 An on-going project at the Resort involves the replacement of 40-50 watt incandescent light 

bulbs with compact 11 watt fluorescent lamps.  

A42 

838 Animal and plant waste is composted on site and used on the zoo grounds. An expansion is 

planned for the current compost site to handle all animal and plant waste.  

A15 Zoo The North Carolina Zoo www. 

p2pays.org/ref/07/06167.pdf 

839 Employees use bicycles for short trips instead of vehicles, some park rangers use bicycles 

instead of golf carts, 

A42 
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840 monitor water use and to identify leaks A34 

841 Thermostats in buildings are on timers to reduce energy use at night A32 

842 40-watt bulbs are being replaced with 30-watt bulbs.  A42 

843 Return over 90 percent of all wooden cable reels to wire and cable manufacturers for reuse, 

repair, or recycling 

A24 Electric services Duke Power Corporation 

www.p2pays.org/ref/07/06157.

pdf 844 The facility has replaced disposable oil absorbents and towels with washable towels/wipes.  A22 

845 Replace wood scaffolding with aluminium scaffolding that can be reused indefinitely A22 

846 Check the quality of air conditioning fans before automatically replacing them A35 

847 Replace two hazardous cleaners and degreasers with a non-hazardous orange/lemon 

degreaser 

A42 

848 Change parts of washer systems from a hazardous solvent that was changed routinely to a 

non-hazardous solvent.  

A22 

849 Encourage painting crews to mix only the amount of paint necessary for each job A32 

850 Solvent recovery system was installed to separate waste paint solids from reusable solvent A15 

851 The paint removal process was changed from sandblasting to a reusable steel shot media. A15 

852 Wastewater heat exchangers were installed to recover lost BTUs from the waste stream A24 Textile Spectrum Dyed Yarns, Inc. 

www.p2pays.org/ref/07/06114.

pdf 
853 Economizers were added to the boiler exhaust stacks to recover the heat energy previously 

emitted to the atmosphere. The heat from the economizers was used to raise the temperature 

of process water in the plant 

A24 

854 Install monitoring and control systems to monitor and control all water system flows, 

storage tank levels, and water temperatures. The control system also monitors all water in 

the plant and determines, by temperature, which tank to use for heated water storage. 

A34 

855 With the assurance that hot water was always available, the cycle times for a yarn dyeing 

procedure were then optimized. This also decreased water consumption and allowed all 

existing equipment to dye more product.  

A12 

856 Change cooling tower chemical treatment program and was granted permission. This new 

process allowed the facility to run higher cycles or concentrations in the tower, thus 

decreasing county water usage  

A42 Electricity 

generation 

Craven County Wood Energy 

www.p2pays.org/ref/07/06156.

pdf 

857 Re-lamped its buildings and reduced wattage by 40 percent A42 Computer 

software 

SAS Institute www.p2pays.org/ 

ref/07/06161.pdf 858 A tracer system, which automatically reduces usage during low peak hours, was installed in 

many of the buildings to monitor heating and air conditioning 

A34 
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859 Paper cups and other disposables have been replaced with washable items in the break 

areas, and soda and juice fountains have eliminated cans and bottles 

A42 

860 Replace 1,1,1-trichloroethane vapor degreasers with aqueous-based cleaners A22 Can 

manufacturing  

Crown Cork and Seal Company 

www.p2pays.org/ref/07/06136.

pdf 
861 Change the side stripe spray used to a lower volatile spray A42 

862 Recycle scrap tin plate generated from the cutting process A15 

863 Source reduction techniques during the manufacturing process to reduce spoilage of the tin 

plate material 

A13 

864 Replace existing generators with reduced capacitors A42 

865 Install more efficient motors A42 

866 Switching from a hazardous xylene/toluene to a biodegradable pseudo-cumene solution  A22 Research / non-

commercial 

Research Triangle www. 

p2pays.org/ref/07/06168.pdf 867 Unused tritium is re-adsorbed onto a uranium bed A15 

868 The chemical reduction program resulted in the total elimination of all extremely hazardous 

chemicals 

A22 Textile Milliken and Co. - Golden 

Valley Plant www.p2pays.org/ 

ref/07/06111.pdf 869 The company is currently diverting 100% of production-generated solid waste materials 

from the landfill to recycling markets.  

A15 

870 Countercurrent rinses significantly reduce water consumption A32 Compressed air 

products 

manufacturing 

Hankison International www. 

p2pays.org/ref/07/06141.pdf 871 To further extend rinsewater life, an ultrafiltration system was installed on first rinse stage A43 

872 Recover and reuse chemicals from its electroless plating operation A15 Additive circuits Hazardous Waste Reduction 

www.p2pays.org/ref/01/00761.

pdf 
873 Sodium hydroxide and formaldehyde are added to the plating bath overflow to recover the 

copper, which is then dissolved for reuse by a sulfuric acid/hydrogen peroxide solution 

A15 

874 Collect scrap aluminium for recycling A24  Aluminium cans Waste Minimization 

Assessment for a Manufacturer 

of  Aluminium Cans www. 

p2pays.org/ref/01/00603.pdf 

875 Reduce water use in the can washing operation to the lowest possible rate A12 

876 Reduce the concentrations of chemicals used in the can washing operations to the lowest 

possible values 

A22 

877 Use a filter press to reduce the water content of hazardous sludge before shipment off-site 

for disposal 

A15 

878 Oil recycler collect waste oil from the extruder coolant system A15 

879 Substitute a nonhazardous reagent that contains nitric acid and hydrofluoric acid for the 

hazardous reagent currently used. 

A22 
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880 Replace the chromic acid with phosphoric acid A22 Communication 

equipment 

Norand Corporation www. 

p2pays.org/ref/01/00810.pdf 

881 A synthetic coolant in their honing process used as an alternatives to the sulphurized oil A22 Automobile 

components 

Coolant Substitution at Presmet 

Corporation www.p2pays.org/ 

ref/01/00440.pdf 

882 Since the installation of the aqueous jet washer, the facility has been able to eliminate 2 

parts washers and 1 carburetor cleaner 

A41 Automotive 

maintenance 

North Carolina National Guard 

Combined Support 

Maintenance Shop (CSMS) 

www.p2pays.org/ref/07/06174.

pdf 

883 Replace the majority of the mineral based solvent cleaners with biodegradable ones.  A22 

884 Replacing oil only when it is contaminated rather than at certain mileage intervals has 

significantly reduced the frequency of oil changes  

A32 

885 Used oil and antifreeze is collected and recycled A15 

886 The facility sends shop rags for laundering and reuse them  A15 

887 Purchase an industrial centrifuge, which effectively and efficiently separates the fuel 

product from the absorbent, leaving the pads dry enough for reuse or disposal as a solid 

waste. This reduced the total hazardous waste at the base by one third. 

A24 Federal military 

installation 

Seymour Johnson Air Force 

Base www.p2pays.org/ 

ref/07/06176.pdf 

888 All off-specification fuel reclaimed for use as fuel in the heat plant A15 

889 EMIS is a centralized computer-based system used to control and track the use of 

hazardous materials for the entire Air Force Base. 

A35 

890 Used oil is collected throughout the base on an as-needed basis. The used oil was donated 

to Auburn University for use in their heat plant. 

A15 

891 A windrow and turning process constructed for the natural treatment of petroleum-

contaminated soil combines locally acquired turkey manure with the contaminated soils, 

encouraging the stimulation of microbes that break down the hydrocarbon products. 

A15 

892 Install an innovative metals removal and water recycling system that has virtually 

eliminated hazardous waste from the largest waste generation process on the facility.  

A43 Aircraft servicing 

and repairing 

U.S. Coast Guard Support 

Center www.p2pays.org/ 

ref/07/06155.pdf 893 Parts washer modifications and solvent replacement reduced solvent-based hazardous waste 

by 7500 pounds (a 40% reduction). 

A22 

894 The still was converted to continuous operation from batch operation to allow the inclusion 

of more dilute waste streams and to increase the ethanol removal efficiency.  

A44 Blood derivatives 

/ plasmas - mfg. 

Bayer Corporation - Clayton 

Facility www.p2pays.org/ 

ref/07/06123.pdf 895 A more aggressive acetone distillation process was initiated and fine-tuned in order to 

maximize recovery of acetone from the waste stream.  

A15 
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896 The addition of an aerating basin before pH treatment and the combination of domestic 

plant wastewater to process wastewater have reduced the amount of magnesium oxide 

needed to neutralize the waste stream by approximately 90 percent. 

A43 

897 An alum mixing system was installed and a rotary sludge thickener and sludge de-watering 

device were added.  

A43 

898 Reduce the amount of isopropanol discarded as waste by increasing batch life, decreasing 

overfills, and training employees on solvent use reduction techniques. 

A12 

899 Reuses petroleum naphtha cleaning solvents by adding centrifuges to the parts washers to 

remove particulates and increase batch life of the solvent. 

A15 

900 Old antifreeze removed from vehicles is filtered and used for topping off radiators or for 

use as a counterweight in heavy equipment tires. 

A24 Transport  N.C. Department of 

Transportation www.p2pays. 

org/ref/07/06170.pdf 

901 Many traditional solvents have been replaced with non-hazardous, biodegradable solvents A22 Federal military 

installation 

Camp Lejeune Marine Corps 

Base www.p2pays.org 

/ref/07/06172.pdf 
902 Solvent distillation units used during painting operations to recycle spent solvents A24 

903 Many items previously disposed in municipal waste landfills, i.e., yard and food waste, 

mixed paper, and biomass ash, are now utilized in the Base pilot composting project.  

A15 

904 This compost is used as a soil amendment on Base.  A24 

905 Install a 35 gallon capacity batch-distillation unit to recover 90% of the solvent for reuse.  A15 Tobacco products Liggett & Myers Tobacco 

Company www.p2pays.org 

/ref/11/10153.pdf 

906 Replaced 1,1,1-trichloroethane vapor degreasing system with two aqueous-based cleaning 

systems 

A42 Household 

equipment 

Household Toaster and Toaster 

Oven Manufacture www. 

p2pays.org/ref/07/06147.pdf 907 The new aqueous cleaner is recycled through a ceramic crossflow ultrafiltration unit, which 

removes submicron contaminants and oils.  

A15 

908 A sludge dryer and a filter press were installed to reduce the quantity of sludge landfilled. A15 

909 Process modifications permit a percentage of recovered scrap material to be reground, 

blended with virgin resin, and reused in the injection molding process. 

A14 

910 Other reuse and recycling projects adopted at the facility include the purchase of a baler to 

handle cardboard waste.  Aluminium, steel, and bronze metal scrap from the pressing 

operations are collected and recycled, and metal and plastic drums used to ship materials to 

the facility are returned to the vendors for reuse or recycling. 

A15 
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911 A pretreatment facility was installed and enabled much of the wastewater to be treated and 

re-circulated back into the production process.  

A15 Recycled 

cardboard  

Jackson Paper Company www. 

p2pays.org/ref/07/06120.pdf 

912 By installing a holding tank, effluent water could be collected and reused in the showers in 

place of fresh water. 

A24 

913 Mill wastewater diverted for use as boiler scrubber makeup water in place of fresh water A24 

914 Waste material could be collected and used as fuel for wood fired boilers to generate steam A24 

915 A small hopper was modified and dust is collected and combined with the product run 

residuals. These materials are now stored and recycled back into the same product the next 

time it is manufactured. 

A15 Animal feed 

manufacturer and 

distributor 

Furst-McNess Company www 

.p2pays.org/ref/07/06103.pdf 

916 Reduce hazardous chemicals use A32 Pharmaceutical Wyeth-Ayerst Laboratories 

www.p2pays.org/ref/07/06129.

pdf 
917 Renovate the wastewater pre-treatment system A31 

918 Incorporate scrap shingles into the hot-mix asphalt pavement produced in both their plants. 

The scrap material is hauled from a local shingle manufacturer. 

A24 Asphalt plant / 

asphalt paving - 

contractors 

C.C. Mangum, Inc./us www 

.p2pays.org/ref/07/06100.pdf 

919 Process scrap from off-spec material was reduced by the installation of a process control 

computer, which allows operators to constantly monitor the product material and permits 

immediate shutdown of the process if the material is off-spec.  

A35 Roofing 

materials 

CertainTeed Corporation 

www.p2pays.org/ref/07/06130.

pdf 

920 Scrap sold to paving companies to be mixed in asphalt for parking lots and driveways.  A15 

921 Fiberglass mat excess material is baled and shipped to a company for reuse in insulation, 

and the cardboard cores are returned to the supplier for reuse. 

A15 

922 A wastewater monitoring program was implemented A34 Glass packaging Cleaner Production 

Demonstration Project at ACI 

Glass Packaging 

www.p2pays.org/ref/04/03334/ 

923 Improve oil separation, involving installation of a new hydrocyclone-style separator. A42 

924 Install a biosol collection and recycling system A15 

925 A system has been installed to collect the dust from key areas and return it to the conveyor, 

to be reused in the batch. 

A15 

926 Selling a brewing by-product as liming material to local farmers A24 Brewery Miller Brewing www.p2pays 

.org/ref/07/06105.pdf 

927 The plant replaced wooden pallets with returnable plastic pallets A22 Textile Springs Industries, Inc. www. 

p2pays.org/ref/07/06115.pdf 928 Hazardous cleaning solvent replaced with a non-regulated cleaner with double the life-span 

in all parts washers.  

A22 

929 Reuse the size mixture.  A24 
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930 Both aluminium and plastic are recycled in the production areas A24 Company sign  Sign Art www.p2pays.org 

/ref/07/06153.pdf 

931 Water used in processing snack foods is high in proteins, carbohydrates, and other nutrients 

is applied as a fertilizer to growing turf and sod 

A24 Snack foods and 

nursery products  

Eagle snacks www.p2pays.org 

/ref/07/06102.pdf 

932 A centrifuge recovery system collects starch from potato washing operations for subsequent 

sale to an animal feed formulator. 

A24 

933 Additional plates were added to the wastewater treatment sludge filter press and procedural 

changes were made to reduce treatment time and remove more water from the sludge. This 

reduces the amount of sludge requiring disposal. 

A15 Transportation 

bushings and 

bearings 

Glacier Vandervell, Inc. www. 

p2pays.org/ref/01/00645.pdf 

934 Water is micro-filtered to remove solids (lead and others) and be recycled. A15 

935 A backwash system was installed to maintain filtration viability. A43 

936 Nickel recovery from plating waters  A15 

937 New infra-red ovens provide fast, energy-efficient drying of glued sections. A42 Wood products Kinnear door www.p2pays.org/ 

ref/03/02101.pdf 938 Recycle and reuse of water A24 

939 Reduce ethanol emissions and wastewater BOD discharges. By distilling ethanol from 

dilute waste streams. 

A15 Brewery The Stroh Brewery Company 

www.p2pays.org/ref/07/06106.

pdf 940 Ethanol produced can be used as motor fuel additive or industrial raw material. A24 

941 Install a counter-current system on rinse tanks and an ion exchange system to remove 

contaminants from rinse water. Contaminated overflowing rinse water is pumped through 

pre-filter unit, caution column to remove metals, and anion column to further purify water. 

A15 Electroplating Amplate, Inc. www.p2pays.org/ 

ref/07/06134.pdf 

942 Recycle and reuse of water A24 

943 The company has been able to increase bath life of the alkaline cleaning solutions by proper 

selection of chemicals, in-tank filtration to remove insoluble contaminants, and treatment of 

other contaminants. 

A13 

944 A coagulant is used periodically in the acid pickle tanks to remove metal contamination 

without the usual pH adjustment. As a result, an acid pickle bath has not required dumping 

and replacement in over two years.  

A13 

945 Electroless nickel is suitable and sometimes superior replacement to hard chrome in some 

applications. The company is experimenting with a new nickel-tungsten-boron coating that 

shows promise as a replacement for hard chrome for many applications. 

A22 

946 Re-circulating rinse baths A24 Metal finishing Tin Originals Inc. www. 

p2pays.org/ref/07/06139.pdf 947 Re-circulating rinse increases the concentration of zinc in the rinse. A15 
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948 Flow controls were installed on two tap-water rinses in the mid-sized system and on three 

tap-water sprays in the large system. 

A35 Electrocoating Wastewater and chemical use at 

L&J of New England, www. 

p2pays.org/ref/01/00162.pdf 949 Two filters were installed on the initial cleaning tanks for the midsized and large systems. A43 

950 First tank of cleanup water for each process batch for reuse as cutwater in the next batch. A24 Specialty dyes 

and color 

additives  

Ciba Specialty Chemicals Corp. 

USA www.p2pays.org/ 

ref/41/40953.pdf 
951 Using more efficient hose nozzles providing better pressure and spread, while using less 

water for the same floor area.  

A42 

952 Use plastic sleeves instead of masking paint to prevent chrome plating of piston ring. A42 Combustion 

engine piston 

rings 

Pollution Prevention 

Assessment for a Manufacturer 

of Combustion Engine Piston 

Rings www.p2pays.org/ 

ref/03/02819.pdf 

953 Replace 1,1,1-trichloroethane vapor degreasing with a high pressure hot water spray system 

for removal of machining residues prior to plating.  

A22 

954 Purchase a solvent distillation unit to regenerate spent solvents  A15 

955 Utilize all of the three existing cold water rinse tanks to completely remove chromic acid 

from piston rings, thus elimination the need for manual spray rinsing. 

A22 

956 Filtration of dye bath wastewater A15 Textile Sara Lee Knit Products www. 

p2pays.org/ref/07/06113.pdf 957 Recycle and reuse of water A24 

958 Install a nanofilter to separate the water from the oily waste stream.  A15 Motor  Outboard Marine Corp. www. 

p2pays.org/ref/07/06143.pdf 

959 Reclamation tank to filter and recirculate cleaning solution to reduce chemical consumption A15 Screen printing T.S.Designs www.p2pays.org/ 

ref/07/06117.pdf 960 With the installation of a holding tank, all water used in the degreasing process is recycled 

for use in the reclamation cleaning process.  

A24 

961 Eliminate the use of solvents by substituting a water-based adhesive A22 

962 Install an ion-exchange silver recovery unit, the company now receives some of the profits 

from reclamation of the silver metal. 

A15 

963 The water from the washing process is reused in the production process. A24 Dairy products Coastal Dairy Products, Inc. 

www.p2pays.org/ref/07/06101.

pdf 
964 The use of concentrated cleaner and the washwater reuse are expected to significantly 

decrease both cleaning chemical use and water consumption. 

A24 

965 Used ammonia compressor and freezer oil from the refrigeration system are collected for 

cleaning and reuse by an oil recycling firm.  

A15 

966 Food waste are given to a local hog farmer A15 

967 The scrap metal generated from equipment replacement and maintenance, which includes 

stainless steel, iron and copper, is sold to a local scrap metal dealer for recycling. 

A15 

 


