
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Teo, Sui-Guan, Wong, Kenneth Koon-Ho, Bartlett, Harry, Simpson,
Leonie, & Dawson, Ed (2014) Algebraic analysis of Trivium-like ciphers.
In Parampali, Udaya & Welch, Ian (Eds.) Proceedings of the Twelfth Aus-
tralasian Information Security Conference (AISC 2014) [Conferences in
Research and Practice in Information Technology, Volume 149], Australian
Computer Society, Auckland, New Zealand, pp. 77-81.

This file was downloaded from: http://eprints.qut.edu.au/64794/

c© Copyright 2014 Australian Computer Society, Inc.

This paper appeared at the Australasian Information Security
Conference(ACSW-AISC 2014), Auckland, New Zealand, January
2014. Conferences in Research and Practice in Information Technology
(CRPIT), Vol. 149, Udaya Parampalli and Ian Welch, Ed. Reproduction for
academic, not-for-profit purposes permitted provided this text is included.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Teo,_Sui-Guan.html
http://eprints.qut.edu.au/view/person/Wong,_Kenneth.html
http://eprints.qut.edu.au/view/person/Bartlett,_Harry.html
http://eprints.qut.edu.au/view/person/Simpson,_Leonie.html
http://eprints.qut.edu.au/view/person/Simpson,_Leonie.html
http://eprints.qut.edu.au/view/person/Dawson,_Edward.html
http://eprints.qut.edu.au/64794/


Algebraic analysis of Trivium-like ciphers

Sui-Guan Teo, Kenneth Koon-Ho Wong, Harry Bartlett, Leonie Simpson, and Ed Dawson

1Institute for Future Environments
2Science and Engineering Faculty

Queensland University of Technology
2 George Street, Brisbane QLD 4000, Australia

{teosuiguan, kwong87}@gmail.com, {h.bartlett, lr.simpson, e.dawson}@qut.edu.au

Abstract

Trivium is a bit-based stream cipher in the final port-
folio of the eSTREAM project. In this paper, we ap-
ply the algebraic attack approach of Berbain et al.
to Trivium-like ciphers and perform new analyses on
them. We demonstrate a new algebraic attack on
Bivium-A. This attack requires less time and memory
than previous techniques to recover Bivium-A’s ini-
tial state. Though our attacks on Bivium-B, Trivium
and Trivium-N are worse than exhaustive keysearch,
the systems of equations which are constructed are
smaller and less complex compared to previous al-
gebraic analyses. We also answer an open question
posed by Berbain et al. on the feasibility of their
technique on Trivium-like ciphers. Factors which can
affect the complexity of our attack on Trivium-like
ciphers are discussed in detail. Analysis of Bivium-
B and Trivium-N are omitted from this manuscript.
The full paper is available in the full version of the
paper on the IACR ePrint Archive.

1 Introduction

Trivium (Canniére and Preneel, 2005) is a bit-based
stream cipher selected in the final portfolio of the
eSTREAM project (Robshaw, 2008). Trivium uses
an 80-bit key and an 80-bit IV to initialise a 288-
bit nonlinear feedback shift register (NLFSR). Each
key-IV pair can be used to generate up to 264 bits
of keystream. Trivium’s structural simplicity makes
it a popular cipher to cryptanalyse, but to date, no
attacks in the public literature are faster than exhaus-
tive keysearch.

Algebraic attacks (Courtois and Meier, 2003) are
commonly applied to stream ciphers based on shift
registers. To attack Trivium, Raddum (Raddum,
2006) used an algebraic relabelling technique, where
the state-update bits are represented using new vari-
ables, instead of nonlinear combinations of initial
state bits. For keystream generators which use a
linear output function (as Trivium-like ciphers do),
Berbain et al. (Berbain et. al., 2009) expressed new
feedback bits of an NLFSR as linear combinations of
keystream bits and internal state bits. By expressing
the new feedback bits of an NLFSR as linear combina-
tions of keystream bits and the previous internal state
bits, the equations representing the feedback bits of
an NLFSR will always be linear. Berbain et al. claim

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Australasian Information Security
Conference(ACSW-AISC 2014), Auckland, New Zealand, Jan-
uary 2014. Conferences in Research and Practice in Informa-
tion Technology (CRPIT), Vol. 149, Udaya Parampalli and Ian
Welch, Ed. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

that their technique can be extended to ciphers in
which q > 1 bits of internal state are non-linearly
updated at each step and q or more linear combina-
tions of the state are output as keystream. However,
whether these techniques can be extended to ciphers
in which q > 1bits of internal state are non-linearly
updated, while only q′ < q linear combinations of the
state-bits are output has not been demonstrated and
is posed as an open question (Berbain et. al., 2009).

1.1 Contributions of paper

In this paper we provide an answer to Berbain et
al.’s open question. We use the Trivium-like ci-
phers, namely Bivium-A/B, Trivium and Trivium-
N, as case-studies, as q′ < q in all cases. We apply
Berbain et al.’s method of representing the feedback
bits as linear combinations of internal state bits and
keystream bits in our algebraic anaylsis.

To assist us in our analysis, we introduce a new
variable j, which describes the number of registers
the keystream generation function takes inputs from.
We show that the value of j has a significant impact
on the success of our algebraic attack on these ci-
phers. The values of q′, q and j for the Trivium-
like ciphers are given in Table 1. Some improvements
achieved with this new method compared to exist-
ing one are presented. Additionally, we investigate
the effect which varying the keystream function and
feedback bit positions have on the complexity of our
analysis on the Trivium family.

Bivium-A Bivium-B Trivium Trivium-N

q 2 2 3 3
q′ 1 1 1 1
j 1 2 3 3

Table 1: Parameters for Trivium-like stream ciphers

2 Trivium and its variants

Trivium is commonly represented in the literature as
being based on three non-autonomous binary NLF-
SRs: A, B, and C, of sizes 93, 84 and 111 bits re-
spectively (Bernstein, 2006). We omit the descrip-
tion of the initialisation process for the cipher, as it
has no impact on our analysis. The reader is referred
to the specifications of Trivium (Canniére and Pre-
neel, 2005) for a full treatment of its initialisation
processes. Let Ai denote the stages for register A
and Ai(t) represent the contents of Ai at time t, for
0 ≤ i ≤ 92. Similar notations are used for registers B
and C. The state-update functions of Trivium are as



follows:

Ai(t+ 1) =

A24(t)⊕ C45(t)
⊕C0(t)⊕ C1(t)C2(t) i = 92,

Ai+1(t) 0 ≤ i ≤ 91.

Bi(t+ 1) =

B6(t)⊕A27(t)
⊕A0(t)⊕A1(t)A2(t) i = 83,

Bi+1(t) 0 ≤ i ≤ 82.

Ci(t+ 1) =

C24(t)⊕B15(t)
⊕B0(t)⊕B1(t)B2(t) i = 110,

Ci+1(t) 0 ≤ i ≤ 109.

At time t, Trivium’s output function generates a
keystream bit as follows:

z(t) = A27(t)⊕A0(t)⊕B15(t)⊕B0(t)

⊕ C45(t)⊕ C0(t) , t ≥ 0

We extend this representation of Trivium and con-
sider the keystream as a sequence related to the
three underlying register sequences. The initial
state sequences of A,B,C are (A0, A1, . . . , A92),
(B0, B1, . . . , B83) and (C0, C1, . . . , C110) respectively.
New sequence bits Aα+92, Bα+83 and Cα+110 are pro-
duced after α iterations of Trivium’s state-update
function as follows:

Aα+92 = Aα+23 ⊕ Cα+44 ⊕ Cα−1 ⊕ CαCα+1 (1)

Bα+83 = Bα+5 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 (2)

Cα+110 = Cα+23 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 (3)

The keystream bit can be expressed as a linear com-
bination of sequence bits from A, B and C as follows:

zα−1 = Aα+26 ⊕Aα−1
⊕Bα+14 ⊕Bα−1 ⊕ Cα+44 ⊕ Cα−1 (4)

Note that the sequence-based approach is analogous
to the relabelling approach of Raddum (2006). In
this paper, we use these sequence equations in our
algebraic analysis.

Bivium-A/B are reduced versions of Trivium util-
ising only two registers A,B with slightly modified
feedback functions. The reader is referred to Rad-
dum (2006) for their specificiations. In Bivium-A,
the keystream bit is generated using

zα−1 = Bα+14 ⊕Bα−1

which is composed with stages from only one register.
The key and IV sizes remain the same as Trivium.

2.1 Existing algebraic cryptanalysis

Raddum (2006) contructed a system of equations for
Trivium consisting of 954 equations in 954 variables.
Applying techniques from graph theory, it was esti-
mated that the initial state of Trivium can be recov-
ered in about 2164 operations. Several attempts have
been made to solve Raddum’s system of equation, (Si-
monetti et. al., 2008; Borghoff et. al., 2011; Schilling
and Raddum, 2012a,b). Other attacks on Trivium in-
clude SAT-solvers (McDonald et. al., 2008) and cube
attacks (Dinur and Shamir, 2009; Aumasson et. al.,
2009; Forque and Vannet, 2013). However, none were
better than exhaustive keysearch for the original Triv-
ium proposal.

Raddum (2006) used a relabelling approach to re-
cover the initial state of Bivium-A in about a day. He

estimated that the complexity of recovering the initial
state of Bivium-B will take about 256 seconds. Eibach
et. al. (2010) achieved 239.12 for Bivium-B with some
optimisations. Other algebraic analysis on Bivium-
A/B use Boolean Satisfiability (SAT) solvers (Eibach
et. al., 2008; McDonald et. al., 2008) to recover the
initial state, which are also better than exhaustive
keysearch.

3 New analysis of Trivium-like ciphers

In this section, we apply Berbain et al.’s approach
to the analysis of Bivium-A and Trivium. Similar
analyses has been applied to Bivium-B and Trivium-
N , which are available in the full version of our paper.

3.1 New analysis of Bivium-A

Bivium-A’s keystream bit zα−1 depends on two se-
quence bits produced by register B. The sequence
bits of B after 83 iterations are unknown. Applying
Berbain at al.’s technique to the equation we can de-
termine the equation for calculating the sequence bit
Bα+83 for α ≥ 1:

Bα+83 = zα+68 ⊕Bα+68

We present a a divide-and-conquer approach to re-
cover the initial state of Bivium-A. This involves first
forming a systems of equations to recover the con-
tents register B. Another system of equations is then
formed using the now known contents of regist er B
to recover the contents of register A. The first system
of equations consists of the following equations:

zα−1 ⊕Bα−1 ⊕Bα+14 = 0 (5)

Bα+83 ⊕ zα+68 ⊕Bα+68 = 0 (6)

where Equation 5 is a keystream equation for Bivium-
A and Equation 6 the new equation representing
Bivium-A’s sequence bit Bα+83 derived from our new
analysis. For the first 69 iterations, we add two equa-
tions and one variable into the system of equations:
one equation representing the keystream, and one
equation and variable representing the sequence bit
for register B. For the last 39 iterations, we only add
the equations representing the sequence bits for B.
This gives us a final system of equations after 108 it-
erations consisting of 192 variables in 177 equations.
Solving this system of equations gives 215 possible so-
lutions.

For each of these 215 possible solutions, we form
the second system of equations to recover the initial
state of A, substituting the sequence bits of B re-
covered in the first system of equations into the sec-
ond system of equations. The second set of equations
equations consists of:

Aα+92 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 ⊕Aα+23 = 0

Bα+83 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 ⊕Bα+5 = 0

After 108 iterations, we have a system of equations
consisting of 201 variables in 216 equations. If the
system can be solved, then the sequences of A and B
are recovered. An attacker can then use this initial
state to generate some keystream to check the validty
of the recovered initial state.

3.1.1 Comparison of attacks

Details of the systems of equations formed for using
Raddum’s approach and our approach are shown in



Technique Lin
eqns

Quad
eqns

Total
eqns

K.S.
(bits)

Vars Exp
sols

Raddum 177 222 399 177 399 1

Our approach:

- Step 1 177 0 177 177 192 215

- Step 2 108 108 216 0 201 1

Column headings: Number of Linear and Quadratic Equations,
Total Number of Equations, followed by Keystream bits required,

Number of Variables, and Number of Expected Solutions

Table 2: Details for the system of equations in
Bivium-A for both approaches.

Table 2. As we are solving two systems of equations
separately, the complexity of our attack is likely to be
less than that using Raddum’s technique. We inves-
tigate this with experimental work. The results are
shown in Table 3. The F4 implementation in Magma

No Guessing: Time Memory
(MB)

Keystream
(bits)

(Raddum, 2006) DNF 87040 177
Our approach 13.9 hrs 135.56 177

Load 15 correct bits
into register B:

Time Memory
(MB)

Keystream
(bits)

(Raddum, 2006) 8.95 s 13.34 177
Our approach 3.29 s 13.31 177

Table 3: Time, memory, and data complexities for
recovering initial state of Bivium-A

(Bosma et. al., 1997) was used. Note that this is
equivalent to Gaussian elimination in Step 1 of our
approach. We attempt to solve the system of equa-
tions in two ways: (1) without guessing any bits and
(2) load 15 correct initial state bits of Register B.

Overall, our approach gave more favourable results
under both scenarios. The full attack wth no guess-
ing did not finish (DNF) using Raddum’s attack af-
ter exhausting the assigned 85 GB of memory. Al-
tough McDonald et. al. (2008) solved the Bivium-A
system in 16 seconds using SAT solvers, they reported
4660 hours to solve the same system using F4. It is
difficult to directly compare the effectiveness of our
approach against others (Raddum, 2006; McDonald
et. al., 2008) as different hardware platforms and soft-
ware implementations can have significant effects on
the time and memory required to recover the initial
state of Bivium-A.

3.2 New algebraic analysis on Trivium

Using Berbain et al.’s approach, we can determine the
equation describing the sequence bits for registers A,
B and C:

Aα+92 = zα+65 ⊕Aα+65

⊕Bα+80 ⊕Bα+65 ⊕ Cα+110 ⊕ Cα+65

Bα+83 = zα+68 ⊕Aα+95 ⊕Aα+68

⊕Bα+68 ⊕ Cα+112 ⊕ Cα+67

Cα+110 = zα+65 ⊕Aα+92 ⊕Aα+65

⊕Bα+80 ⊕Bα+65 ⊕ Cα+65

However, we can not use all three sets of equations
simultaneously since they are actually equivalent. For
example, calculating B84 requires knowledge of the
sequence bit A96. The equation representing A96 is:

A96 = z69 ⊕A69 ⊕B84 ⊕B69 ⊕ C114 ⊕ C69 (7)

If we substitute Equation 7 into the equation repre-
senting the sequence bit B84, we get the trivial equa-
tion B84 = B84. This does not allow us to express B84
in terms of the sequence bits and keystream. There-
fore, our technique only allows us to express the se-
quence bits for a single register in terms of internal
state and keystream bits. Therefore, the divide-and-
conquer approach used in our analysis of Bivium-A
cannot be applied here.

In the following analysis, we express the sequence
bits Aα+93, Bα+84, and Cα+111 for α ≥ 1 using the
sequence update function described in Section 2. This
new system of equations starts off with 288 variables
representing the inital state bits. For each of the first
66 iterations, we add three new variables and four
new equations to the system of equations, consisting
of:

Aα+92 ⊕ zα+65 ⊕Aα+65 ⊕Bα+80

⊕Bα+65 ⊕ Cα+110 ⊕ Cα+65 = 0

Bα+83 ⊕Bα+5 ⊕Aα+26 ⊕Aα−1 ⊕AαAα+1 = 0

Cα+110 ⊕ Cα+23 ⊕Bα+14 ⊕Bα−1 ⊕BαBα+1 = 0

zα−1 ⊕Aα+26 ⊕Aα−1 ⊕Bα+14

⊕Bα−1 ⊕ Cα+44 ⊕ Cα−1 = 0

After 66 iterations, similar to Bivium-A, the
keystream equations become redundant, and we can
stop adding variables and equations into the system.
This gives us a final system of equations consisting
of 486 variables in 264 equations. The comparison of
both systems of equations is shown in Table 4.

Technique Lin
eqn.

Quad
eqn.

Total
eqn.

K.S.
(bits)

Vars Exp
sols

Raddum 288 666 954 288 954 1

Our approach 132 132 264 132 486 2222

Column headings as per Table 2

Table 4: Details for the system of equations in Triv-
ium

Our system of equations has less quadratic equa-
tions compared to Raddum’s technique. Raddum’s
technique has 666 quadratic equations, compared to
132 quadratic equations in ours. The drawback of
our system of equations however, is that our system
of equations have a greater excess of variables over
equations to Raddum’s technique. In Raddum’s tech-
nique, solving a system consisting of 954 variables in
954 equations should yield a unique solution. In con-
trast, solving our system of equations consisting of
486 variables in 264 equations using the F4 algorithm
will yield 2222 possible solutions, which is worse than
exhaustive keysearch. This will be discussed further
in Section 4.2.

4 On Berbain et al.’s Open Question

In this section, we answer the open posed by Berbain
et. al. (2009) by showing how it may be possible to
recover the initial states of some Trivium-like ciphers
faster than exhaustive keysearch using our analysis.
Two factors are considered:

• The relationship between j (the number of reg-
isters the keystream generation function takes as
input to generate keystream) and q (the num-
ber of registers whose internal state is updated
at each iteration).



• The largest index among the stages in a register
used for the output function and the size of each
register in Trivium-like ciphers.

4.1 Relationship between j and q

In the case of Bivium-A, where j < q, we recov-
ered the initial state of the cipher with a complexity
less than Raddum’s relabelling technique, which is al-
ready less than exhaustive key search. The complex-
ity Tf of our new approach on Trivium-like ciphers
with j < q is

Tf = T1 + (NA × T2) (8)

where T1 and T2 are the time required to solve the
first and second system of equations respectively, and
NA is the number of solutions obtained in solving the
first system of equations.

For Bivium-B, Trivium and Trivium-N , we have
j = q. In this case, it is not possible to use a divide-
and-conquer approach to recover the initial state of
the keystream generators. A single system of equa-
tions is needed. However, using our approach to
build this system of equations is problematic. Since
a keystream equation is essentially being used to rep-
resent a sequence bit, additional keystream equations
become unavailable after after a certain number of
iterations. Adding further equations does not allow
us to reduce the number of solutions obtained when
the system of equations is solved and also adds to the
complexity of solving these equations.

The complexity of recovering the initial state of
Trivium-like ciphers where j = q is Tf = Ts + NA,
where Ts is the time taken to solve the system of
equations and NA is the number of solutions obtained
when the system of equations is solved.

4.2 Output functions, registers sizes, and NA

The number of solutions NA obtained when solv-
ing Trivium-like equations systems can be determined
from the cipher specifications. Let SR be the total size
of the registers whose sequence bit(s) is not written in
terms of keystream and internal state bits and whose
stages are used during the construction of a system
of equations for the cipher. When j < q, this system
of equations is the first system of equations. When
j = q, this system of equation is the sole system of
equations obtained. For the register whose sequence
bit is written in terms of keystream and internal state
bits, let Dl denote the largest index among the stages
used as input to the output function. The size of
the set of solutions, NA obtained when the system of
equations is solved has been found to be:

NA = 2SR × 2Dl (9)

A summary of the results of our analyses of certain
Trivium-like ciphers with regards to the number of
equations, variables, solutions obtained, and their re-
lationship with SR and Dl, is given in Table 5.

Cipher Step 1 Step 2

SR Dl Eqn Var NA Eqn Var Soln

Bivium-A 0 15 177 192 215 216 201 1
Bivium-B 84 27 198 309 2111 N.A N.A N.A
Trivium 195 27 264 486 2222 N.A N.A N.A

Table 5: Details on systems of equations in our ap-
proaches for certain Trivium-like ciphers

Our new attack on Bivium-A can be prevented
by making changes to the keystream output function.
For example, suppose the output function of Bivium-
A was, instead:

zα−1 = Bα−1 ⊕Bα+82

The sequence bit B84, rewritten in terms of linear
combinations of keystream and internal state bits is
now B84 = z1 ⊕ B1. In this example, Dl = 83 and
SR = 0, so NA = 2SR × 2Dl = 20 × 283 = 283, which
is larger than the number of possible keys.

Conversely, assume Dl is a small value. We use
Trivium to illustrate how this change reduces the
number of solutions obtained when the system of
equations was solved. Assume that the output func-
tion for Trivium is instead:

zα−1 = Aα ⊕Aα−1 ⊕Bα+14 ⊕Bα−1 ⊕Cα+44 ⊕Cα−1

In this case, Dl = 1 and SR = 111 + 84 = 195, which
gives NA = 2SR × 2Dl = 2195 × 21 = 2196, a decrease
by a factor of 226 in the number of possible solutions
compared to 2222 obtained from our analysis of Triv-
ium in Section 3.2.

The size of the registers used in the formation of
the first system of equations can have also an effect on
the number of solutions obtained for the first system
of equations. For example, suppose that Trivium’s
three registers, A, B, and C had lengths 198, 45 and
45 bits, where the output function used is the same
as the original Trivium proposal. For this particular
case, Dl = 27, SR = 45 + 45, and NA = 290 × 227 =
2117, a 2105 factor decrease in the number of possible
solutions compared to the original Trivium.

5 Conclusion

This paper analysed Trivium-like ciphers using the
approach of Berbain et al. Our analysis answers their
open question and shows that it is possible, in some
cases, to extend their technique to keystream genera-
tors which update q > 1 bits of internal state at each
iteration but only output q′ < q linear combinations
of the state bits.

In particular, we demonstrated a new algebraic at-
tack on Bivium-A. Our approach requires less time
and memory than previous techniques We demon-
strated that if j < q, it may be possible to mount
a divide-and-conquer algebraic attack which is more
efficient than exhaustive key search.

For Trivium-like ciphers, we showed that both the
sizes of the registers used in the construction of the
first system of equations and the selection of stages
used as input to the output function can affect the
complexity of our attack. For Bivium-A, changing
the value of Dl can increase the complexity of the
attack. However, in the case of Bivium-B, Trivium
and Trivium-N , even if the value of Dl is small, the
complexity of our algebraic attack is still worse than
exhaustive keysearch as the value of SR is larger than
the keysize.

Acknowledgements

The authors would like to thank anonymous reviewers
for their helpful comments. Computational resources
and services used in this work were provided by the
HPC and Research Support Unit at Queensland Uni-
versity of Technology, Brisbane, Australia.



References

Akers, S. B. (1978), Binary Decision Diagrams. IEEE
Transactions on Computers 27(6), 509–516.

Aumasson, J. P., Dinur, I., Meier, W. and Shamir, A.
(2009), Cube Testers and Key Recovery Attacks on
Reduced-Round MD6 and Trivium. in O. Dunkel-
man, ed, ‘Fast Software Encryption (FSE 2009)’.
Lecture Notes in Computer Science, Vol. 5665,
Springer, pp. 1–22.

Berbain, C., Gilbert, H. and Joux, A. (2009), Al-
gebraic and Correlation Attacks against Linearly
Filtered Non Linear Feedback Shift Registers, in
R.M. Avanzi, L. Keliher and F. Sica, eds, ‘Selected
Areas in Cryptography (SAC 2008)’. Lecture Notes
in Computer Science, Vol. 5381, Springer. pp. 184–
198.

Bernstein, D. , A reformulation of TRIVIUM. Sub-
mission to Phorum: ecrypt forum.

Borghoff, J., Knudsen, L.R. and Matusiewicz, K.
(2010), Hill Climbing Algorithms and Trivium. in
A. Biryukov, G. Gong and D. R. Stinson, eds, ‘Se-
lected Areas in Cryptography (SAC 2010)’. Lecture
Notes in Computer Science, Vol. 6544, Springer,
pp. 57–73.

Bosma, W., Cannon, J. J. and Playoust, C. (1997),
The Magma algebra system. I. The user language.
Journal of Symbolic Computation 24(3-4), 235–
265.

Canniére, C. D. and Preneel, B. , Trivium, in
M.J.B. Robshaw, O. Billet, eds, ‘New Stream Ci-
pher Designs: The eSTREAM Finalists’. Lecture
Notes in Computer Science, Vol. 4986, Springer,
pp. 244–266.

Courtois, N.T., Meier, W. (2003), Algebraic At-
tacks on Stream Ciphers with Linear Feedback, in
E. Biham, ed, ‘Advances in Cryptology — EURO-
CRYPT 2003’. Lecture Notes in Computer Science,
Vol. 2656, Springer, pp. 345–359.

Dinur, I., Shamir, A. (2009), Cube Attacks on
Tweakable Black Box Polynomials, in A. Joux, ed,
‘Advances in Cryptology — EUROCRYPT 2009’.
Lecture Notes in Computer Science, Vol. 5479,
Springer, pp. 278–299.

Eibach, T., Pilz, E. and Völkel, G. (2008), Attack-
ing Bivium Using SAT Solvers, in H.K. Büning,
X. Zhao, eds, ‘Theory and Applications of Satis-
fiability Testing — SAT 2008’. Lecture Notes in
Computer Science, Vol. 4996, Springer, pp. 63–76.

Eibach, T., Pilz, E. and Völkel, G. (2010), Optimising
Gröbner Bases on Bivium. Mathematics in Com-
puter Science 3(2), 159–172.

Robshaw, M. (2008), New Stream Cipher Designs.
Lecture Notes in Computer Science, Vol. 4986,
Springer.

Faugère, J. C. (1999), A new efficient algorithm for
computing Gröbner bases (F4). Journal of Pure and
Applied Algebra 139, 61–88.

Fouque, P. A., Vannet, T. (2013), Improving Key Re-
covery to 784 and 799 rounds of Trivium using Op-
timized Cube Attacks, in S. Moriai, ed, ‘Fast Soft-
ware Encryption (FSE 2013)’. To appear.

McDonald, C., Charnes, C., Pieprzyk, J. (2008), An
Algebraic Analysis of Trivium Ciphers based on the
Boolean Satisfiability Problem, in ‘Fourth Interna-
tional Workshop on Boolean Functions: Cryptog-
raphy and Applications’, pp. 173-184.

Raddum, H. (2006), Cryptanalytic Results on Triv-
ium. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/039.

Schilling, T. E. and Raddum, H. (2012), Analysis of
Trivium Using Compressed Right Hand Side Equa-
tions, in H. Kim, ed, ‘Information Security and
Cryptology (ICISC 2011)’. Lecture Notes in Com-
puter Science, Vol. 7259, Springer, pp. 18–32.

Schilling, T. E. and Raddum, H. (2012), Solving Com-
pressed Right Hand Side Equation Systems with
Linear Absorption. in T. Helleseth, J. Jedwab, eds,
‘Sequences and Their Applications (SETA 2012)’.
Lecture Notes in Computer Science, Vol. 7280,
Springer. pp. 291–302.

Simonetti, I., Perret, L., Faugr̀e, J. C. (2008), Al-
gebraic Attack Against Trivium, in ‘First Interna-
tional Conference on Symbolic Computation and
Cryptography, SCC 2008’. LMIB. pp. 95–102.


