
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Hamzehei, Asso, Chung, Edward, & Miska, Marc (2014) Traffic safety risks
trends and patterns analysis on motorways. In The Transportation Re-
search Board (TRB) 93rd Annual Meeting, 12-16 January 2014, Washing-
ton, D.C.

This file was downloaded from: http://eprints.qut.edu.au/64604/

c© Copyright 2013 Please consult the authors

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/18312934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Hamzehei,_Asso.html
http://eprints.qut.edu.au/view/person/Chung,_Edward.html
http://eprints.qut.edu.au/view/person/Miska,_Marc.html
http://eprints.qut.edu.au/64604/


1 
 

Traffic Safety Risks Trends and Patterns Analysis on Motorways 1 
 2 

 3 

Asso Hamzehei (Corresponding author) 4 
PhD student, Smart Transport Research Centre, 5 
School of Civil Engineering and Build Environment 6 
Queensland University of Technology, Gardens Point Campus 7 
Brisbane, QLD 4001 8 
Australia 9 
a.hamzehei@qut.edu.au 10 

 11 

Professor Edward Chung 12 
Director of Smart Transport Research Centre, 13 
School of Civil Engineering and Build Environment 14 
Queensland University of Technology, Gardens Point Campus 15 
Brisbane, QLD 4001 16 
Australia 17 
edward.chung@qut.edu.au 18 

 19 

Dr Marc Miska 20 
Smart Transport Research Centre, 21 
School of Civil Engineering and Build Environment 22 
Queensland University of Technology, Gardens Point Campus 23 
Brisbane, QLD 4001 24 
Australia 25 
marc.miska@qut.edu.au 26 
 27 
 28 

Word Count 29 
Text: 5750 30 
Figures and Tables (7 x 250): 1750 31 

Total: 7500 32 
  33 

mailto:a.hamzehei@qut.edu.au
mailto:edward.chung@qut.edu.au
mailto:marc.miska@qut.edu.au


2 
 

Abstract 1 

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent 2 

motorway congestions. Hence, reducing the frequency of crashes assist in addressing congestion 3 

issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are 4 

essential basics in crash likelihood estimations studies and still require more attention and 5 

investigation. In this paper we will show, through data mining techniques, that there is a relationship 6 

between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with 7 

normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing 8 

crash likelihood estimation models, and opens the path for new development approaches. The data for 9 

the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and 10 

Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 11 

rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data 12 

using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes 13 

can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means 14 

clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this 15 

research, traffic regimes identified by analysing crashes and normal traffic situations using half an 16 

hour speed in upstream locations of crashes. Then, the second phase investigated the different 17 

combination of speed risk indicators to distinguish crashes from normal traffic situations more 18 

precisely. Five major trends have been found in the first phase of this paper for both high risk and 19 

normal conditions. The study discovered traffic regimes had differences in the speed trends. 20 

Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator 21 

among different combinations of speed related risk indicators. Based on these findings, crash 22 

likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false 23 

alarms.  24 

Keywords- Traffic Flow Regimes; Traffic Flow Trends; Motorway Crashes; Risky and Normal Traffic; 25 

Clustering; 26 

  27 
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INTRODUCTION 1 

Crashes can occur on any part of a road network. However, among different types of roads, 2 

motorways (also referred as expressways, highways, and freeways) have received more attention from 3 

governments and researchers. Motorways play an important role in the traffic networks. Motorways 4 

transport a huge number of passengers and goods between and within cities. The economies of 5 

countries depend heavily on the flow of cars in motorways with less congestion and high speed. So, a 6 

crash on a motorway could have adverse effects on both the health of people and can be detrimental to 7 

the economies. In this regard, authorities have tried to better control the motorways’ traffic. Many 8 

motorways are equipped with different kinds of specialised sensors such as cameras, magnetic, 9 

infrared, microwave, laser, Bluetooth, and inductive loop detectors sensors (1; 2). In addition to these 10 

sensing technologies, there have been many traffic and transportation systems developed for 11 

monitoring vehicles, network traffic flows, transport infrastructure, and transport operators. The large 12 

volumes of data gathered from flow of vehicles have provided the opportunity for authorities and 13 

researchers to analyse this data and find new ways to reduce the motorway traffic risks factors as well 14 

as speed harmonisation and congestion reduction. 15 

There is a necessity for suitable techniques to extract knowledge from large and multi-dimensional 16 

road traffic flow data. In this regard, data mining has become an active research area. Data mining, 17 

generally referred to as knowledge discovery in database (KDD), is a combination of statistical and 18 

Artificial Intelligence (AI) techniques for extraction of patterns and knowledge stored in massive 19 

databases and data repositories. 20 

Crash related studies have been aiming to reveal influential factors that impact on motorway crashes. 21 

Traffic flow data (speed, volume, and occupancy and their variances) observed from inductive loop 22 

detectors has been the data source for such studies. Data limitation and/or methodological 23 

shortcomings resulted in contradictory findings from different studies and sometimes incompatible 24 

conclusions (3). In crash likelihood estimation studies, present conditions are compared to normal 25 

traffic conditions to examine crash likelihood and develop traffic safety indicators. A part of crashes 26 

caused mostly by traffic flow and traffic conditions prior to crash occurrence (risky traffic conditions). 27 

Detecting such a risky traffic conditions make it possible to avoid crashes occurrence or to reduce 28 

their severity (4-10). 29 

The objectives of this study are determining risky and normal dominant traffic trends and patterns; 30 

identifying traffic regimes, investigating similarity between risky and normal traffic trends, and 31 

finding a risk indicator that distinguish crashes from normal traffic condition more precisely. In this 32 

regard, speed is selected as the main factor to observe traffic condition. A half an hour time window 33 

immediately prior to crash occurrence is selected from upstream and downstream of crash locations. 34 

The traffic situations are clustered using a non-hierarchical clustering algorithm (K-Means). In the 35 

phase one of the paper, we identified traffic regimes using upstream speed observed for 30 minutes. In 36 

the second phase, pre-crash situations clustered on three different combination of speed risk indicators 37 

and searched for unique pre-crash traffic conditions (clusters) that are not common in the normal 38 

situations. 39 
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The rest of the paper is structured as follows: second section presents a brief state of the art. Study site 1 

and data sources are explained in the third section. Methodology is presented in the section four. The 2 

section five includes the results of the study. Conclusions are given in the last section. 3 

BACKGROUND 4 

Studies on motorway crashes can be divided into aggregate and disaggregate studies. Aggregate studies 5 

use traffic flow data aggregated hourly or longer while disaggregate studies use minutely traffic flow 6 

data. Disaggregate studies which were mainly conducted prior to 2002, discovered a relationship 7 

between crashes and traffic conditions. For example Martin (11) examined the effect of traffic flow on 8 

crashes. He discovered severe crash rates are higher in light traffic conditions and crashes occur more 9 

frequently on 3 lane than 2 lane motorways.  10 

However, in more recent disaggregate studies, Golob et al. (12) developed a tool to monitor traffic 11 

safety by assessing traffic flow changes in real-time. They demonstrated 21 traffic flow regimes at 12 

three different times of day and their corresponding weather conditions. As a part of their conclusion, 13 

they found that congestion strongly influences traffic safety (12; 13).  14 

Zheng (3) shows that Crash Occurrence Likelihood (COL) is not the same in different traffic 15 

conditions. The risk of crash occurrence was less for free flow conditions while transition and 16 

congestion traffic conditions received higher COL, respectively. Zheng applied the Logit model to 17 

study the relationship between the traffic condition and crash occurrence. 18 

The most influential factor on motorway crash occurrence is traffic states. Yeo et al (14) investigated 19 

the involvement of motorway crashes in four traffic states: Free Flow (FF), Back of Queue (BQ), 20 

Bottleneck Front (BN), and Congestion (CT). Traffic data is being measured for upstream and 21 

downstream detectors of crashes in order to specify the traffic states. By plotting the speed of 22 

downstream and upstream stations of a crash they segmented the crashes into the four defined traffic 23 

states. (15) divided freeway traffic flow into different states and investigated the safety performance 24 

regarding each state. They utilised occupancy to identify traffic states then impact of traffic flow 25 

parameters on crash occurrence evaluated in the identified traffic states. 26 

In addition, another aspect of crash studies is studying the normal situations and mapping the crashes 27 

into the recognised regimes based on normal traffic situations. However, safety studies introduced a 28 

different definition for the normal situation. Abdel-Aty (16) and Pande (17)chose random traffic flow 29 

data from non-crash times. However, many studies defined the non-crash situation as the equivalent 30 

time and day of other weeks of each crash. It means if a crash occurred on Wednesday at 1pm, a non-31 

crash situation for this case is other Wednesdays traffic situations at 1pm. Oh et al. (18) defined a non-32 

crash situation as a 5 minute time period, half an hour before an accident occurrence. Whereas, Pham 33 

(19) clustered all the non-crash traffic flow data in order to identify traffic regimes and considered the 34 

traffic regimes as the non-crash situations (4; 20; 21). 35 

Furthermore, Hamzehei et al (22) analysed 1 hour upstream speed series of pre-crash traffic situations 36 

for rearend and sideswipe crashes. They clustered one hour pre-crash speed series and found 11 37 

dominant speed trends for crashes and categorized them into five traffic regimes. These traffic regimes 38 

were free flow, congestion, transition from free flow to congestion, transition from congestion to free 39 

flow, and unstable traffic situations. The authors extended their studies in another work by adding 40 
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downstream location in the study. Also, they considered normal situations to compare dominant risky 1 

traffic patterns with normal traffic patterns (23).  2 

Although some research has been conducted on crashes in accordance with traffic states, this area of 3 

research still requires further investigation. These studies have tried to find relationships between 4 

traffic flow variables or traffic conditions and crashes just before crash occurrence (a 5 minute time 5 

window prior to the crash). In other words, the majority of literature has focused on the impacts of 6 

traffic characteristics on crash occurrence or just a particular traffic condition. There is lack of 7 

thorough research on traffic conditions that resulted in crashes. Moreover, a risk indicator is required 8 

that explains crashes more clearly and gives a unique risky pattern that is detectable from normal 9 

situations. In addition, non-crash situations have been sampled either randomly or from equivalent 10 

previous weekdays. The chosen samples are not a comprehensive representation of all the traffic 11 

situations. The defined methodologies for choosing a sample of non-crash traffic situation require 12 

further investigation to make sure they are a suitable representative of real normal conditions. As a 13 

result, in this study we aim to fill the current gap in the study of traffic condition of crashes. 14 

 STUDY SITE 15 

The study sites are two Tokyo inner city expressways of 24 kilometres length in total which included 16 

3180 crashes over two years (Dec. 2007- Nov. 2009). There are 201 loop detectors spread along the 17 

study site and data is available for this two year period. The data includes average speed, volume, and 18 

occupancy aggregated over the lanes into five minutes intervals. The crash dataset includes reported 19 

crash time, location of the crash, type of the crash, number of cars involved in the crash, and type of 20 

cars. In this study, we consider rear-end and sideswipe crashes. Therefore the number of vehicles 21 

involved in a crash is two or more vehicles. The severity of crashes is not considered because of crash 22 

data limitations. The accuracy of time of crashes is checked and adjusted by using incident detection 23 

algorithms. 24 

METHODOLOGY 25 

The objectives of this research are to understand traffic patterns and conditions that end-up with a 26 

crash by finding dominant risky traffic patterns, exploring possible relationships between pre-crash 27 

traffic conditions and crash occurrence on motorways, categorising crashes according to their pre-28 

crash traffic flow trends, investigating the similarity between risky and normal traffic conditions, and 29 

finding risk indicators that make crashes distinct from normal situations in order to increase the 30 

accuracy of crash likelihood estimations models. 31 

The proposed methodology (Figure 1) will be used to discover and analyse dominant risky traffic 32 

patterns in terms of different traffic risk indicators (speed and spatiotemporal difference of speed in 33 

upstream and downstream of crashes). The skeleton of the methodology is shown in Figure 1. First, 34 

loop detector data is collected from the study site. The data requires major pre-processing. Second, 35 

among the crashes, rear-end and sideswipe crashes are selected. The next step is to check the accuracy 36 

of the reported time of crash occurrence. The extracted pre-crash traffic flow data is pre-processed 37 

and the traffic speed for half an hour before crashes from closest upstream and downstream detectors 38 

are prepared for analysis. From this point, the research is divided into two phases. First, identifying 39 

risky and normal traffic trends and determining traffic regimes considering 30 minutes speed series 40 
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from upstream detector. Second, pre-crash situations clustered on 3 different combinations of risk 1 

indicators shown in Table one. Non-crash situations mapped into obtained clusters to analyse 2 

similarity of pre-crash clusters with non-crash situations. One of the objectives of this phase is to find 3 

special pre-crash clusters that do not have similar non-crash situations. The other objective is testing 4 

different risk indicators and investigating which combination of them cluster crashes in a better way 5 

that crashes be more distinguishable from non-crash situations.  Furthermore, the clusters profiles are 6 

examined to check for further differences between clusters in terms of the time of crash occurrence, 7 

crash bound, and the day of the week. The K-Means algorithm applied for clustering traffic 8 

situations(24; 25). 9 

 10 

 11 

FIGURE 1 Methodology of the study 12 

Crashes can occur due to unstable or risky traffic situations. Therefore, any variation in traffic flow 13 

variables can reveal the cause and mechanism of crash occurrence. In this regard, speed is selected to 14 

study the dynamics and changes of traffic conditions. As the objective is to discover dominant risky 15 

traffic speed patterns, the time window should be long enough to observe traffic speed fluctuations 16 

over time. The observation time period that traffic speed might have had an influence on the crash 17 

occurrence is set to half an hour. It means, for each crash, 30 minutes of traffic data prior to the crash 18 

occurrence from selected loop detectors will be extracted.  However, the challenge might be why 30 19 

minutes? Why not 45 or 60 minutes? In a previous study, the authors applied speed series with a 60 20 

minute time window (22). Shortening the time window causes a few of the clusters to merge. For 21 

example, crashes in long congestion (1 hour) will be merged with the ones under shorter congestion 22 

(30 minutes). Although, shortening the time frame sacrifices some information about pre-crash traffic 23 

speed dynamics, it increases homogeneity of clusters. Short timeframes become important when 24 

normal situations are taken into account. 25 
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Data Preparation and Pre-processing 1 

Loop detectors data randomly contain noises that may result in unreasonable values for speed, 2 

volume, and occupancy. Moreover, they might be out of order and not measure the traffic flow values.  3 

In the noisy cases, traffic flow values can be evaluated and discarded when the values for volume, 4 

occupancy, and speed are not reasonable. For example, there is a non-zero value for speed but the 5 

flow or occupancy is zero. Additionally, crashes should be checked as to whether the corresponding 6 

traffic data is available. 7 

Moreover, crashes are reported and recorded by humans and the reported crash time might not be 8 

accurate. Crash studies require precise time of crash occurrence. Incident detection algorithms can be 9 

applied to check the accuracy of crashes reported time and find the exact crash occurrence time based 10 

on the traffic flow data (26; 27). In this study, an incident detection algorithm introduced by Guiyan et 11 

al(27) are used with some adjustments for correcting crash occurrence time.  12 

Pre-crash and Non-Crash Traffic Situations  13 

The traffic situation is the state of the traffic that is being measured by loop detectors. This research 14 

divides traffic situations into pre-crash and non-crash situations. A pre-crash situation refers to the 15 

traffic flow in a period of time prior to a crash in the crash location. In this research, the period of time 16 

for a traffic situation is set to 30 minutes. The traffic condition in this period of time is considered as a 17 

risky state. In addition, a non-crash situation is defined as any traffic period that does not have overlap 18 

with crash periods. In other words, non-crash situations are all traffic periods except pre-crash and 19 

post-crash periods until traffic is coming back to normal state. 20 

Normal Situation Sampling 21 

In crash studies, in addition to crashes corresponding traffic flow data, non-crash data is being used. 22 

Crashes are rare events on motorways and there is an imbalance between the non-crash and pre-crash 23 

situations. For example, using all the non-crash situations in crash prediction models will cause bias in 24 

the predicted value. Using all the non-crash data, the models would estimate the real time data as a 25 

non-crash situation due to over fitting models to non-crash situations. On the other hand, the non-26 

crash situations have a large population and are not easy to handle, especially in terms of running time 27 

order. Previous studies selected the non-crash cases randomly or from equivalent time of previous 28 

weekdays of crashes. 29 

In this study, non-crash situations from each route are sampled based on the time distribution of 30 

crashes in that specific route: 31 

             

  

   

 

      Non-crash Traffic Situation in route A 32 

    Ratio of non-crash traffic situations selection 33 

    Ratio of crashes at hour H in route A 34 

      Total number of non-crash situations in route A at hour H 35 
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After specifying the non-crash samples, the 30 minutes speed time series for each non-crash situation 1 

will be extracted and will be ready for the next step which is clustering pre-crash and non-crash speed 2 

time series. 3 

Figure 2 shows the crashes distribution over daily hours in both inbound and outbound routes of 4 

Route 3 Shibuya line and Route 4 Shinjuku line. The number of extracted non-crash situations (4120) 5 

is 5 times of the number of pre-crash situations (824). These 4120 non-crash situations are distributed 6 

among daily hours for crashes as shown in Figure 2. For example, in Route 3 Shibuya line-inbound, 7 

297 crashes have occurred with the distribution shown. Therefore, 297*5=1485 non-crash situations 8 

are extracted in that route during two years of available data in this study.  9 

 10 

FIGURE 2 Crashes distribution at daily hours in inbound and outbound of both Shibuya and 11 
Shinjuku expressway 12 
 13 
Risk Indicators Used in the Current Study 14 
In this study, 30 minutes speeds (6 time frames) of upstream and downstream detectors of crashes are 15 

selected for clustering and analysis.  These indicators (variables) are upstream speed of timeframe 1 to 16 

6 (TST1-6), downstream speed of timeframe1 to 6 (DST1-6), upstream temporal speed difference of 17 

timeframes 1-2 and 2-3 (UTSDT12, UTSDT23), downstream temporal speed difference of 18 

timeframes 1-2 and 2-3 (DTSDT21, DTSDT23), upstream-downstream spatial speed difference of 19 

timeframe 1 and timeframe 2(UDSSDT1, UDSSDT2). The following table shows the usage of 20 

variable in different clustering rounds. 21 

TABLE 1 Speed related risk indicators used in the current study 22 
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 Traffic Situations Clustering and Traffic Regimes 1 

This research exploits the K-means clustering method to cluster traffic situations. K-means clustering 2 

is a method of clustering which aims to partition N observations into K clusters in which each 3 

observation belongs to the cluster with the nearest mean. Normal evaluation of a proper K is to 4 

minimize the inner-cluster variation and maximize the among-cluster variation. K-means clustering is 5 

sensitive to outliers; therefore outliers must be deleted before running the clustering algorithm on the 6 

data(28; 29). Several distance functions can be used with K-Means clustering to calculate the distance 7 

between objects. The suitable distance function in this study is the Euclidean distance function. 8 

Basically, it is the geometric distance in the multidimensional space. The following equation depicts 9 

the distance between two vectors of x and y: 10 

Distance(x,y) =              (28) 11 

The obtained clusters represent different groups of risky traffic patterns. Dominant trends are frequent 12 

traffic trends which have been observed between many of speed time series. In order to recognise 13 

such trends, clusters should have a considerable number of members to be regarded as dominant 14 

trends. Despite the advantages of K-Means clustering algorithm, it cannot detect the suitable 15 

number of clusters and it should be one of the starting parameters of the KM. In this study the 16 

Dunn Index and Silhouette value is applied to determine the suitable number of clusters.  17 

Clusters and Regimes analysis 18 

This section of the methodology includes two phases. The first phase analyses risky and normal 19 

clusters and identify traffic regimes using 30 minutes speed series of upstream detector measured 20 

speed. Clusters can be compared by their similarities using a distance function. However, the second 21 

phase is attempting to cluster pre-crash situations on different combinations of risk indicators in order 22 

to achieve more distinguishable risky clusters from normal situations. Table 1 shows the risk 23 

indicators used in each clustering round. The first clustering round takes just 30 minutes measured 24 

speed by upstream detector into account. Traffic data are aggregated into 5 minutes level, so 30 25 

minutes is 6 timeframe (6 speed value). The second clustering round is using 30 minutes measured 26 

speed of closest upstream and downstream. The Third clustering round is using spatiotemporal 27 

difference of measured speed at upstream and downstream locations. In each clustering round, normal 28 

situations are mapped into the clusters. Then, for each cluster we have a set of normal situations that 29 

have been the most similar ones to that cluster. For further analysis, the cluster centres for crashes and 30 

normal situations are calculated and compared.  31 

RESULTS 32 

Pre-crash and Non-crash Traffic Situation Clustering and Traffic Regimes 33 

Both pre-crash and non-crash traffic speed series are clustered for 2 to 20 numbers of clusters. Eleven 34 

clusters was the most appropriate number of clusters for the pre-crash speed series and eighteen 35 

clusters for non-crash speed series, respectively. Figure 3 shows pre-crash and non-crash speed series 36 

clusters. Each line in Figure 3 represents one cluster that is the cluster center. Figure 3-a shows the 37 

cluster centers for pre-crash cluster and Figure 3-b depicts non-crash cluster centers. 38 
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 1 

(a) 2 

 3 

(b) 4 

C= Crash clusters, N= Normal cluster 5 

FIGURE 3 Average of speed time series of pre-crash and non-crash clusters categorized by 6 
traffic regimes 7 

Among the clustering results from both pre-crash and non-crash clusters, five different traffic regimes 8 

are recognizable: situations where traffic was in the free flow state during the half hour prior to 9 

crashes; situations where traffic was in the free flow but changed to the congestion state; situations 10 

where traffic speed was around 50 Km/h (MidRange); situations where traffic was in the congestion 11 

condition during the 30 minutes observation window; and situations where traffic  was in the 12 

congestion state but changed to the free flow state. The following explains the observed traffic 13 

regimes in the clustering results: 14 

 FREE FLOW REGIME: this traffic regime contains 23% of crashes (cluster 1) and 70% of 15 

non-crash situations (clusters 1, 2, and 3).These four clusters have the same pattern but 16 

different in their range of speed. The speed has been constant during the 30 minutes observation 17 

for majority of the situations but varied for different situations from 60 to 90 km/h. Traffic 18 

speed for pre-crash situations (cluster 1) varies from 60 to 85 km/h. In the non-crash situations, 19 

the cluster 2 and 3 speeds are in the range of pre-crash situations but cluster 1 speed is above 20 

the speed of pre-crash situations. Free Flow regime contains 238 crashes out of 824 which 21 
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means that 29% of crashes have occurred in the free flow state. Among the weekdays, Saturday 1 

received more crashes. 2 

 TRANSITION FREE FLOW TO CONGESTION REGIME: this regime contains traffic 3 

situations that traffic has turned from a free flow state into a congestion state. The main factor 4 

of crash occurrence is congestion in the downstream of the crash location. While traffic is in 5 

Free Flow state in upstream and suddenly downstream turns to congestion condition, traffic in 6 

the upstream faces a fast deceleration. This fast deceleration is recognized as the influential 7 

factor in crash occurrence in this traffic regime. There are three clusters (2, 3, and 4) in pre-8 

crash situations which contain 28% of crashes. Also, there are five clusters (5, 6, 7, 8, and 9) in 9 

non-crash situations which contain 4% of total traffic situations. Moreover, the peak hour for 10 

these crashes was at 6am and 3pm and the weekday profile reveals that Sunday has received 11 

double the number of crashes than other weekdays while distribution of crashes on other 12 

weekdays is almost at the same level. 13 

 MIDRANGE TRAFFIC REGIME: this regime refers to a traffic state that is between Free Flow 14 

and congestion state and speed is around 50 Km/h. Cluster 5 in pre-crash situations and cluster 15 

4 in non-crash situations contains midrange traffic situations. Figure 3a and 3b show that speed 16 

in midrange clusters are different for pre-crash and non-crash situations. The non-crash 17 

midrange regime has a 50 Km/h speed average while the respective cluster in pre-crash 18 

midrange regime has a 40 Km/h speed average. 19 

 CONGESTION: this regime refers to a situation where the traffic state is in a congestion 20 

situation. This regime is the biggest among the pre-crash situations having 34% of all pre-crash 21 

situations and four clusters (6, 7, 8, and 9) that belong to the congestion regime. Also, four 22 

clusters 15, 16, 17 and 18 of non-crash situations belong to this traffic regime by having 17% 23 

percent of all non-crash situations. Cluster 6 and 7 of pre-crash situations are carrying crashes 24 

that traffic has been in free flow condition until 15 to 10 minutes before the crash time. The rest 25 

of the clusters in both pre-crash and non-crash situations have been in a congestion condition 26 

during the 30 minute observation window. Fatigue and tiredness of drivers during too much 27 

deceleration and acceleration may be one of the possible reasons for crashes in this regime. 28 

Among the weekdays, Friday received the most number of crashes in the Congestion regime. 29 

Moreover, peak times for crashes in this regime are 12pm and 6pm 30 

 TRANSITION CONGESTION TO FREE FLOW: this regime contains traffic situations that 31 

traffic has turned from the congestion state into the free flow state. The main factor of crash 32 

occurrence is fluctuation of traffic speed during traffic returning to the free flow state from a 33 

congestion state. There are two clusters (10 and 11) in pre-crash situation pertaining to 4% of 34 

all crashes. Also, there are five clusters (10, 11, 12, 13, and 14) in non-crash situations which 35 

contain 4% of total traffic situations. Moreover, the peak hour for these crashes was at 6am and 36 

3pm and weekday profile reveals that Sunday has received double the number of crashes than 37 

other weekdays whilst distribution of crashes on other weekdays are almost at the same level. 38 

 39 
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TABLE 2 Pre-crash clustering and non-crash situations mapped into the clusters- numbers and 1 
percentages of members in each cluster 2 

Cluster Number 1 2 3 4 5 6 7 8 9 10 11 

1
st
 Clustering Round – Upstream speed (6 timeframes= 30 minutes) 

PCS involvement 108 133 62 114 26 86 32 106 87 50 20 

NCS Mapped into Clusters 2296 20 42 805 21 247 45 154 244 150 96 

PCS involvement percent 13.1 16.1 7.5 13.8 3.2 10.4 3.9 12.9 10.6 6.1 2.4 

NCS members percent 55.7 0.5 1.0 19.5 0.5 6.0 1.1 3.7 5.9 3.6 2.3 

2
nd

 Clustering Round – Upstream and Downstream speed (6 timeframes= 30 minutes) 

PCS involvement 116 103 27 43 72 76 36 48 113 152 38 

NCS Mapped into Clusters 2383 29 37 70 149 247 37 22 281 677 188 

PCS involvement percent 14.1 12.5 3.3 5.2 8.7 9.2 4.4 5.8 13.7 18.4 4.6 

NCS members percent 57.8 0.7 0.9 1.7 3.6 6.0 0.9 0.5 6.8 16.4 4.6 

3
rd

 Clustering Round – Spatiotemporal difference of speed (2 timeframes= 10 minutes) 

PCS involvement 296 37 48 31 67 15 88 69 23 64 86 

NCS Mapped into Clusters 3065 7 107 2 8 42 450 23 20 4 392 

PCS involvement percent 35.9 4.5 5.8 3.8 8.1 1.8 10.7 8.4 2.8 7.8 10.4 

NCS members percent 74.4 0.2 2.6 0.0 0.2 1.0 10.9 0.6 0.5 0.1 9.5 

PCS= Pre-Crash Situation, NCS= Non-Crash Situation 3 

TABLE 3 Distance of pre-crash clusters centres from the mapped non-crash centers 4 
(normalized between 0 to 1) 5 

Crash\Normal N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 

C1 0.00 0.52 0.27 0.55 0.31 0.34 0.13 0.53 0.49 0.42 0.20 

C2 0.58 0.08 0.58 0.87 0.33 0.75 0.67 0.97 0.57 0.58 0.51 

C3 0.29 0.44 0.10 0.54 0.36 0.43 0.33 0.64 0.59 0.57 0.36 

C4 0.55 0.81 0.51 0.13 0.62 0.65 0.44 0.38 0.82 0.59 0.74 

C5 0.41 0.39 0.50 0.52 0.15 0.67 0.41 0.62 0.42 0.29 0.46 

C6 0.39 0.67 0.44 0.62 0.59 0.22 0.37 0.58 0.87 0.50 0.54 

C7 0.19 0.64 0.33 0.38 0.39 0.40 0.04 0.33 0.57 0.38 0.40 

C8 0.60 1.00 0.70 0.34 0.73 0.71 0.45 0.06 0.87 0.54 0.80 

C9 0.55 0.57 0.64 0.69 0.33 0.88 0.57 0.77 0.16 0.57 0.52 

C10 0.44 0.54 0.57 0.46 0.32 0.64 0.39 0.51 0.57 0.14 0.55 

C11 0.20 0.45 0.36 0.72 0.28 0.48 0.34 0.72 0.37 0.52 0.04 

C1= pre-Crash traffic situations in cluster1 6 

N1 = Normal traffic situations mapped into Cluster1 7 

 8 

Speed Related Risk Indicators and Traffic Situations Clustering 9 

 As mentioned in the methodology, the objective of this phase (second phase) is clustering on 10 

different combinations of risk indicators to achieve unique and specific risky clusters where there are 11 

no or few normal situations that can be paired with them. Table 1 shows the risk indicators that 12 

applied in the three different clustering rounds. All the rounds are clustered on 11 numbers of clusters. 13 

K-Means by default choose K (K is number of clusters) initial seeds randomly among the available 14 

points of clustering which results in having clusters in a random order in each round. The points 15 
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closest to the centre of clusters in phase one are selected as the initial seeds for the clustering rounds 1 

one to three. The reason for selecting initial seeds is that we want clusters in the same order as they 2 

are in the identified regimes in the phase one.  3 

In Each Round of clustering, pre-crash situations are clustered. Then, normal situations are compared 4 

one by one with the cluster centers and assigned to the cluster with the least amount of distance. The 5 

assigned cluster is supposed to be the most similar cluster to that specific normal situation. Table 2 6 

shows the pre-crash clusters members and number of normal situations assigned to each cluster. The 7 

results in Table 2 shows that spatiotemporal difference of speed is the most suitable risk indicators 8 

among the ones listed in Table 1. According to 3
rd

 clustering round (clustering on spatiotemporal 9 

difference of speed), 32% of total crashes in clusters C2, C4, C5, C8, and C10 have received just 1% 10 

of normal situations assigned into them. It means these clusters can be considered as very risky traffic 11 

situations as there have not been many normal situations paired to them. These five clusters occur in 12 

very unstable traffic situations where traffic flow and speed have been fluctuating between the 13 

upstream and downstream of the crash location. Moreover, clusters C3, C6, and C9 that include 14 

10.5% of all crashes have received 4% of normal situations. Table 3 shows the distance matrix of 15 

centroids of pre-crash clusters and centroids of assigned normal situations into the clusters. Distance 16 

of assigned normal situations into clusters C3, C6, and C9are more than 0.1 which means these 4% 17 

assigned normal situations cannot be counted as similar traffic situations to crashes. Therefore, 42.5% 18 

of clustered crashes have occurred in a special traffic situations. These crashes theoretically, are 19 

assumed to be detectable by crash likelihood estimation models as they are far from normal situations 20 

in terms of Euclidean distance. Cluster one represents crashes where traffic speed has been constant 21 

without fluctuation (Figure 4c). This cluster carries 35.9% of all crashes and 74.4% of normal 22 

situations. Pre-crash and non-crash situations inside this cluster are the most similar traffic situations 23 

among all other clusters and their paired normal situations. Also, cluster C7 has received 10.7% of 24 

crashes and 10.9% of normal situations respectively. Traffic in this cluster has been constant in both 25 

upstream and downstream but the speed level in upstream was 15 km/h higher from 5 to 10 minutes 26 

before crashes. 27 

Figure 4 depicts mean of variables in the eleven clusters for the three clustering rounds. Figures 4a, 28 

4b, and 4c represent the speed level of traffic situations in each cluster for clustering round one to 29 

three. The Figure 4c shows that the spatiotemporal difference of speed are high in the unique clusters 30 

like C2, C3, C4, C5, C6, C8, C9 , andC10. However, in the clusters C1, C7, and C11 that have 31 

received 95% of normal situations, the spatiotemporal difference of speed has been very low. 32 

The results show that the spatiotemporal difference of speed outperforms other speed related risk 33 

indicators in terms of distinguishing risky situations from normal situations. On the other hand, other 34 

risk indicators that taken into account in this study was good explainers of the traffic regimes and 35 

different traffic conditions prior to crashes occurrence. Among crashes, 42.5% have been recognized 36 

as crashes that have occurred in very unique and high risk conditions.  37 
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 1 

(a) First clustering round on upstream speed of 6 timeframe(30 minutes) 2 

 3 

(b) Second clustering round on 6 timeframes (30 minutes) of upstream and downstream speed 4 

 5 

(C) Third clustering round on spatiotemporal difference of speed in upstream and downstream 6 

FIGURE 4 Bar charts of variables values for the eleven clusters in the three clustering rounds 7 
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6. Conclusion 1 

This paper studied pre-crash and non-crash traffic situations in two phases. First, pre-crash and non-2 

crash traffic situations are clustered to find dominant risky and normal traffic trends and traffic 3 

regimes. In the second phase, pre-crash situations clustered on three different combinations of speed 4 

related risk indicators and normal situations assigned into pre-crash clusters to investigate similarity 5 

of extracted risky clusters with the normal situations. An ideal risky cluster is the one that has no 6 

overlap with normal situations. These risky patterns are important in Crash Occurrence Likelihood 7 

(COL) estimation studies and help to increase the accuracy of risk detection in real-time. In phase 8 

one, speed time series clustered using non-hierarchical clustering algorithm (K-Means) and Dunn 9 

index and Silhouette value are used to find the optimal number of clusters which was 11 clusters for 10 

risky situations and 18 clusters for normal situations. Among the both risky and normal traffic 11 

clusters, five major traffic regimes recognized: free flow, transition from free flow to congestion, 12 

midrange traffic, congestion, and transition from congestion to free flow. In phase two, results show 13 

that spatiotemporal difference of speed has been a better risk indicator for clustering pre-crash 14 

situations as 42.5% was almost unique in terms of comparing with normal situations. Building on the 15 

current study, future research can investigate other risk indicators other than speed on crash 16 

likelihood. In addition, the results of this paper can be used in crash estimation modeling and 17 

checking the accuracy of estimation models with and without having clustered risky and normal 18 

situations. 19 
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