
Modeling the Potential Spread of the Recently Identified
Non-Native Panther Grouper (Chromileptes altivelis) in
the Atlantic Using a Cellular Automaton Approach
Matthew W. Johnston1*, Sam J. Purkis2

1 National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, United States of America, 2 National Coral Reef Institute, Nova Southeastern University,

Dania Beach, Florida, United States of America

Abstract

The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the
United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine
invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have
been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to
have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish
invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed
cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality,
and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the
distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination
points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous
Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model
indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero
Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of
these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in
which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt
this potential marine invasive species.
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Introduction

1.1. Invasive species in the Atlantic
Marine invasive species are much less common than their

freshwater counterparts; however, sightings of non-native species

in Atlantic waters have been well documented by the United

States Geological Survey Nonindigenous Species (USGS NAS)

database [1] and most are thought to be isolated aquarium releases

[2]. One species is the Indo-Pacific lionfish (Pterois volitans/miles), a

very successful invader now established throughout the Caribbean,

Gulf of Mexico, and Atlantic coasts as far north as Cape Hatteras,

NC, USA [3]. A thorough analysis of the lionfish invasion, based

on records from the USGS NAS database, was presented by [4]

and an algorithm developed (the Invasionsoft Model – ISM) which

is useful for predicting the spread of invasive species, like the

lionfish, which exhibit fidelity to ranges in sea temperature,

salinity, and water depth.

The panther grouper (Chromileptes altiveli), sometimes termed the

‘‘humpback grouper’’ or ‘‘barramundi cod’’, is an exotic and

potentially invasive species that has been documented seven times in

the Atlantic, with one report from the Gulf of Mexico, since 1994 [1]

(Figure 1). Six of the seven records from the Atlantic were recorded

in the last ten years, indicating sightings of this species are becoming

increasingly common and suggesting that this Indo-pacific tropical

species has the potential to follow in the footsteps of the lionfish and

become the next large-scale invader of Atlantic waters.

1.2. Panther Grouper Species Profile
The panther grouper is an Indo-pacific predatory fish species

found in lagoons, hard bottom habitats, and seaward well-

developed coral reefs, in depths up to 40 m [5]. The panther

grouper attains a size of approximately 70 cm, a weight of 7.0 kg,

and lives up to 19 years with a potential reproductive life of

17 years (females are reproductively viable at a weight of around

1 kg, 15.5 cm, and 18 months) [6]. The panther grouper is a

popular aquarium fish due to its white with black polka-dot

coloration as a juvenile and occupies a trophic level similar to

native Atlantic snapper and groupers (consuming small teleosts

and crustaceans) [5].

1.3. Panther Grouper in Comparison to Lionfish
The panther grouper shows many potential invasive character-

istics and shares ecomorphology and a breeding strategy similar to
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the efficacious Atlantic invasive species, the lionfish. The panther

grouper and lionfish are also both Indo-pacific apex reef predators

[7], [5], [8]. Two of the USGS NAS panther grouper records

indicate sightings of the same individuals in the same location over

a period of weeks or months, implying site fidelity – another trait

in common with lionfish [9], [10], [1]. Neither lionfish nor the

panther grouper have been studied in detail in their native range

as they are relatively benign species. In contrast to lionfish, the

panther grouper is a protogynous hermaphrodite [6]. In monosex

situations, such as may occur with an introduced population

containing few individuals, the female may transition to a male

[11]. The panther grouper breeds year round in captivity on a

monthly cycle before and after the new moon, with a peak in

natural spawning between October and January [12], [6]. Eggs

are buoyant and are broadcast, relying on currents for advection

similar to the lionfish. In a captive study, quantity of eggs

produced ranged between.2 to 1.26103 and fertilized eggs hatched

in about 18–20 hours at a temperature of 28–29uC [11]. Larval

duration of the panther grouper is estimated to be around 40 days,

which is consistent with the range of larval duration values for

marine fish estimated by [13] and the same as the similar native

Atlantic soapfish grouper Rypticus saponaceus [14]. Percentage

survival of larvae until the age of 50 days was highly variable,

from 2.63% to 53.90%, in highly controlled artificial conditions

[15]. Larval mortality rates for wild panther grouper populations

have not been documented. Table 1 compares the reproduction,

vagility, and life strategies of both species.

A significant dissimilarity between lionfish and the panther

grouper are the morphological differences that lionfish exhibit

from native Atlantic teleosts. Lionfish morphology is completely

unique with expansive, venomous striped pectoral and dorsal fin

rays – unlike any extant species in the Atlantic [7]. Contrariwise,

panther grouper share a body form and function similar to other

native Atlantic grouper species like the soapfish (Rypticus saponaceus)

and marbled grouper (Dermatolepis inermis). As such, the postulation

is made that this unique lionfish morphology lends a positive

advantage in both predation and predator avoidance, potentially

negating any morphological-based advantage in favor of the

panther grouper.

1.4. Purpose
This paper presents a suite of simulated scenarios that describe

the potential spread of the panther grouper in the Atlantic, should

a breeding population become established, based on the ISM

previously utilized studying lionfish [16]. Using the proven

modeling technique, this study is the first known prediction of

the potential spread of panther grouper in the Atlantic, presented

at a critical time before the establishment of a breeding

population. The cellular-automaton model examines life history

characteristics of the species, including fecundity, mortality, and

reproductive potential, combined with physical oceanic parame-

ters, to describe the spread of this potential new invasive species.

The findings in this study are presented as a first indication of the

possible settling areas of breeding populations, given ideal

conditions, with the intent that this may be used as a guideline

for monitoring and first-response efforts. As such, simulations were

analyzed for 1,000 random locations within 1u of USGS NAS

capture records of panther grouper to identify potential ‘‘hot

spots’’ of future establishment of the species. Should one or more

breeding populations become established in the study area, our

work can be used to guide a coordinated response to a panther

grouper invasion, as opposed to the ad hoc approach used for

lionfish control. Additionally, two case study locations were

examined in detail; the Florida Keys, Florida, USA (CSFK), and

in Broward County, Florida, USA (CSBC). Herein is presented a

potential proposed timeline of the future spread of the panther

grouper through the Atlantic, including predictions for the

sequence of invaded localities.

Methods

2.1. Processing Logic and Model Inputs
Cellular automata (CA) models, such as the ISM, consist of four

elements; conceptual cells, cell state, neighborhood cells and a set of rules.

In a CA model, the study area is divided into a lattice of spatially

explicit conceptual cells, each of which contains unique parameter

values. One founder cell is initially marked settled (the cell state) and

subsequent cells in the neighborhood are marked settled based on an

acceptable range of values including a stochastic variable (the

rules). In the ISM, a proportional weight factor (part of the CA rule)

is assigned to each parameter and is used to determine influence

on that cell (the CA conceptual cell, in the CA neighborhood) meeting

the conditions for settlement (the CA cell state). The CA algorithm

is repeated for each settled cell for a pre-determined number of

cycles, with the result being a list of latitude/longitude points and

the cycle in which settlement occurred. A complete in-depth

discussion on the step-by-step mechanics and technology used of

the base ISM are discussed in [4].

The initial version of the ISM excluded the temporal aspect of

an invasion, instead focusing on the chronology of spatial

occurrences. To include periodicity in the ISM, the model now

integrates the timing of species life-history components, which are

critical to predicting the progression of an invasion [17]. Ocean

current, depth, and sea surface temperature have been retained

and chlorophyll concentration added as baseline data inputs. In

addition, more granular physical parameter data have been

compiled, enabling the model to perform simulations to a scale of

approximately 4 km in the center of the study area. Also included

are the temporal parameters of larval duration, breeding age, and

Figure 1. Panther grouper records. Records from the USGS NAS
indicating locations of panther grouper captures or sightings.
doi:10.1371/journal.pone.0073023.g001
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mortality to present a time-scale of the likely spread mechanics of

an invasion. New to the ISM is the use of kernels, which are

representative units taking the place of finite quantities of

individual propagules. These kernels are acted upon independent-

ly in each cycle and undergo advection and diffusion, imparting

separate movement more illustrative than the previous ISM. This

is similar to methods used by [18], substituting lagrangian

movement with a cellular automaton approach. Following is an

examination of parameters used in the ISM and their initial data

sources (Table 2).

2.1.1. Static Parameters (Ocean Current, Sea Surface

Temperature, Chlorophyll Concentration, Ocean

Depth). As documented in [16], the ISM uses a weighted value

system to determine the influence of static parameters on the

temporal spread and eventual setting of propagules. These weight

factors are proportional to one other, and are standardized to a

value between zero and one in the ISM algorithm.

The initial version of the ISM (using the default parameter set)

examines a geographic area encompassing the western Atlantic

Ocean, Caribbean Sea, and Gulf of Mexico from 45u to 5u N

latitude and 2100u to 250u W longitude, which corresponds to

the approximate geographic extent of the lionfish invasion. In the

enhanced ISM, the eastern Pacific is included for an area

encompassing 50u N to 40u S latitude and 2140u to 220u W

longitude. For the purposes of this study, the panther grouper is

presumed contained for the simulation duration to the Atlantic

Ocean, Gulf of Mexico, and Caribbean.

N Ocean Current (OC): The OC data used in the ISM are based on

values from the HYCOM ocean model [19]. HYCOM is a

compilation and forecast of global ocean currents based on in-

situ measurements and remotely sensed data. The measure-

ments used in the model are granular to 1/12u which is

roughly 8 km at the center of the study. A representative year

(2005) was chosen as the basis for the model and monthly

mean velocity and current angle were compiled based on daily

projected values.

N Sea Surface Temperature (SST): Compiled SST estimates are

based on MODIS data. These remote sensing data were

compiled to a level 4 km in the center of the study area on a

monthly mean basis for the representative year 2005.

N Chlorophyll Concentration (CC): Compiled CC values are based on

MODIS data and are a proxy for primary productivity. Data

were compiled to a level 4 km in the center of the study area,

on a monthly mean basis for the representative year 2005.

N Ocean Depth (OD): OD data are sourced from the ETOPO1 1

Arc-Minute Global Relief Model which combines bathymetry

and topography data based on underway hydrographic

soundings and satellite altimetry estimates [20]. Data were

compiled to a level of 4 km in the center of the study area.

2.1.2. Fecundity Parameters. The quantity and quality of

eggs and larvae released are critical components when determin-

ing fecundity of a species [17]. The following factors are

considered when running the ISM, all of which contribute to

the fecundity of a species and serve to impart a time scale.

N Propagule Duration: The approximate duration of larvae, from

the initial spawning to the eventual settling point.

N Propagule Mortality (Zp): The larval mortality rate for the

propagule duration period.

N Breeding Age: The minimum age (in months) at which an

established adult in the ISM is eligible to contribute propagules

to the model.

N Mortality (Z): The adult mortality rate which is applied to

established populations after the propagule duration period.

N Propagule Quantity: The quantity of propagules per breeding

cycle per individual, defined in this study as viable larvae.

N Kernel Count: The number of kernels, representing multiple

tangible propagules.

N Breeding Cycle Begin/End: The beginning and end of the

breeding cycle, signifying which months breeding is likely to

occur.

N Monthly Breeding Cycle: The number of times per month the

study species breeds.

N Starting Month (SM): The start month of the simulation.

Table 1. Panther Grouper verses Lionfish.

Life-History Characteristic Panther Grouper Lionfish

Trophic level apex predator – teleosts, crustaceans apex predator – teleosts, crustaceans

Adult size 70 cm, 7.0 kg 10 cm, 300–400 g [25]

Longevity 19 years up to 30 years in captivity [26]

Defenses coloration coloration, venomous

Site fidelity likely moderate high

Thermal tolerance 16uC 10uC

Breeding strategy protogynous hermaprodite monogametic

Reproductive age 18 months 12 months

Egg type floating, broadcast floating, contained in a mucous sac

Larvae type pelagic pelagic

Quantity of eggs 0.2 to 1.2 million .2 million annually [27]

Breeding season year round with a peak October – January year round [27]

Breeding cycles per month up to 4 up to 7.5 [27]

Larval duration 40 days 20 to 35 days [28]

Comparison of life history and reproductive traits of panther grouper and lionfish.
doi:10.1371/journal.pone.0073023.t001
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Figure 2 presents an overview of the algorithmic flow in the

model. Simulations have a definitive start and end time, expressed

as a starting month and run cycles for a period of months. The ISM

tracks the applicable month when selecting OC, SST, and CC

values from the database. From the initial location, individual

kernels are acted upon to determine the next likely geographic step,

based on the grid lattice being used, and physical parameters values

present in the cell. Ocean current velocity values are largely

determinate of the temporal spread to downstream grid cells, with

temperature, depth, and chlorophyll having a lessor influence. In

grid cells with low current velocity, the effect on cell score by other

static parameters, like temperature and depth, is effectively

increased. This is due to the proportional decrease in total cell

score contribution by ocean current [16]. A running sum is

calculated to track transition time and once the larval duration

threshold is reached, the last cell is selected as a settling point for the

kernel. The ISM then applies Zp to determine kernel survival during

transport, and examines SST, OD, and CC to determine if the cell

value falls within the designated inhabitable value range. If a cell is

selected for settling, a breeding age cycle timer is started to designate

when the settled kernel (representing a juvenile at this point) is

eligible to contribute larvae to the model. From the pool of settled

kernels for each cycle, a random number between zero and one is

selected to determine Z of the kernel. If the random value falls below

Z, the kernel is flagged ineligible to contribute (death). If the kernel

has reached maturity, as defined by the breeding age, the kernel is

flagged as a breeding kernel and begins contributing larvae on the

next cycle. Breeding kernels are eligible to contribute larvae on each

cycle until selected for elimination by the Z test.

2.2. Test Cases
To identify potential settling locations (‘‘hot spots’’) regardless of

origination in southern Florida, a composite simulation was

Table 2. ISM parameter inputs.

Parameter Name Value Rationale Source

Cycles (months) 60

Grid Size 6 Arc Minutes 10 fold increase in granularity from previous lionfish study [4]

Sea Surface Temperature
Range

16u C – 32.820uC based on temperature extremes in their documented native range [29]

Sea Surface Temperature
Weight

.02 parameter does not largely influence initial distribution for a
current-dispersed species

[4]

Chlorophyll Range .10 – 99.981 mgL21 chlorophyll concentrations on two sections of the Great Barrier Reef, a native
habitat for PG, indicated a mean concentration of 0.2mgL21 and 0.54 mgL21 –
lower limit of 0.10 mgL21 based on comparative concentrations in its native
Australia and similar concentrations in the Atlantic

[30]

Chlorophyll Weight .02 parameter does not largely influence initial distribution for a
current-dispersed species

[4]

Depth Range 1–40 M known to inhabit lagoon type areas and shallow reefs to a depth of
40 meters; parameter does not largely influence initial distribution for a
current-dispersed species

[29]

Depth Weight .02 parameter does not largely influence initial distribution for a current-dispersed
species

Current Weight .90 the most influential parameter to the spread of similar invasive lionfish [4]

Propagule Duration 40 days durations documented by [13] and that of an ecomorpholigically similar native
Atlantic soapfish

[14]

Propagule Mortality
(Zp)

0.2 d 21 In marine teleosts, larval Zp varies widely from 0.01 d21 to 0.69 d21 as reported
by [13]. As a default baseline for the ISM, a Zp rate of 0.20 d21 is used based on
connectivity studies reported by [18], which are derived from [13]. Given the
variability of larval mortality rates reported in captive populations [11],
and unknown wild mortality rates, the rate chosen is a reasonable proxy. This
same rate was used by [18] to model connectivity patterns, based on a
tropical damsel species with pelagic larvae for the Caribbean region.

[18], [13],
[11]

Breeding Age 18 months documented in cultured conditions at approximately 18 months and
15.5 cm length

[6]

Mortality (Z) .26 y 21 based on two locations in Australia, the Great Barrier Reef and Torres Strait. [6]

Propagule Quantity 15,000 fertilization rates are estimated at 0–90% and hatching rates usually exceed
30% – estimated viable propagules per cycle (25%6200,000 (fertilization rate)
630% (hatching rate)) based on natural reproduction, as opposed to controlled
breeding situations in ideal circumstances

[31], [15]

Kernel Count 20 20 – resulting in a larvae/kernel ratio of 0.0013 (approximately 750 larvae
per kernel)

Breeding Cycle Begin/End January/December natural reproduction has been documented year round [6]

Monthly Breeding Cycle 30 days breeding occurs on a monthly cycle around the full moon; conservatively,
value has been set to one breeding session monthly

[12]

Starting Month January arbitrary starting month

Input values for all parameters considered in the ISM, including their source.
doi:10.1371/journal.pone.0073023.t002
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created by selecting 1,411 points representing all grid locations (at

a scale of 6 arc minutes or roughly 10 km) within 1u of USGS NAS

panther grouper records (excluding the Gulf of Mexico record)

and a water depth limit of 40 m. From these locations, a random

number generator was used to select 1,000 points. One simulation

was then created for each position, eliminating bias as to the exact

introduction point. Two detailed test case scenarios were also

chosen for closer examination to demonstrate differences between

a south Florida (CSBC) and Florida Keys (CSFK) breeding

population. A simulation duration of 78 months was deemed

sufficient to illustrate the initial spread pattern and provide settling

location guidance for all simulations. Table 1 shows the input

values used for each ISM parameter with the source of the data as

noted.

2.3. Model Validation
In [4], an aggregate Receiver Operating Characteristic (ROC)

analysis and resulting Area Under the Curve (AUC) value was

Figure 2. Process flow of the enhanced ISM.
doi:10.1371/journal.pone.0073023.g002
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calculated to account for false positive/false negative predicted

sequences based on a best fit model. In order to perform this

analysis, a historical invasion pattern must be present. The USGA

NAS records for panther grouper likely indicate that the species

has not yet established itself in the study area, though it has been

documented over a number of years. Likewise, the study does not

analyze a historical invasion sequence for this species (conse-

quently a ROC and AUC cannot be calculated for this study) and

relies on the USGS NAS records solely to delineate potential

sources of initial breeding population locations. To test precision

and demonstrate that the model is not purely random (the null

hypothesis, Ho), a probability distribution of spread was produced

by creating 20 simulations with the same input parameters for the

two detailed case studies, CSFK and CSBC. Ho, in this scenario, is

defined as a simulation with purely random spread of kernels

based singularly on a stochastic variable. Ho simulations for each

case study were created by selecting the same origination points

used in each study and running the model excluding the influence

of current, chlorophyll, depth, temperature, and all fecundity

parameters on the resulting spread. Ho simulations were run until

all locations in the study area contained established populations,

allowing the temporal sequence of each simulation to be analyzed.

By eliminating all influencing variables, this presents a truly

random spread pattern from the origination point. Following the

Caulerpa taxifolia example in [16], the sequence of spread for each

simulation was then recorded using grid quadrants at a 0.5u60.5u
scale. To analyze the overall pattern of invasion, the quadrants

were summed across all simulations and counted for the first 12

invasion steps (defined as establishment of a breeding population

in one grid quadrant) for CSFK (HFK) and 10 steps for CSBC (HBC).

The number of steps reflects the count of occupied grid quadrants

common to all simulations in each respective case study. The

quadrant with the highest count for each step was selected as the

representative cell for that step. Next, each individual simulation

was compared to the overall representative sequence and summed

based on adherence to each step. The simulation with the greatest

sum was then selected as the Representative Model (RM). To

evaluate any relationship between the detailed simulations and Ho,

a Spearman’s Rank Correlation Coefficient (r), a standard metric

to test correlation, was produced comparing the RM to Ho in the

same manner as [16] where a r value of one indicates a perfectly

monotonically related result and a value of zero shows no

relationship. For an n of 12 for HFK, with a two-tailed 0.05

significance level, a critical value of 0.59 was selected based on n –

2 degrees of freedom (df), and for an n of 10 (HBC), a critical value

of 0.65 was designated based on [21]. Finally, r values were

calculated for all 20 simulations in each model run between the

individual simulation and the appropriate RM to test correlation

and significance, and a mean r value computed.

2.4. Sensitivity Analysis
Larvae survivorship in fish population models is inherently

sensitive to small changes in the larval mortality rate, resulting in a

pronounced effect on larval recruitment [13]. Because larval

Figure 3. Settlement and focus area maps. Settlement rates of
adult breeding populations for panther grouper on a ‘hot’ (red) to ‘cold’
(blue) scale using Jenks’ natural breaks as class divisions (a method that
reduces inter-class variance and maximizes variance between distinct
classes) for CSFK (A), CSBC (B) and composite study (C) simulations for a
duration of 78 months. Focus areas for early detection are indicated for
the Jupiter Florida/Vero Beach (red), Cape Hatteras Tropical Limit/Myrtle
Beach (orange), and Florida Keys/Ten Thousand Islands (green)
locations.
doi:10.1371/journal.pone.0073023.g003
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survivorship for this species has not been documented in the wild

and mortality is likely one of the most variable and influential

parameters in the study, both case studies were modeled varying

Zp610% (values of 0.18 d 21 and 0.22 d 21), with all other

parameters equal, to test sensitivity to this parameter. Results from

these 20 alternate simulations were analyzed in the same manner

as the original studies. The RM chosen for each alternate scenario

was then compared to the case study’s original RM, using the

SRCC method to evaluate correlation of the invasion sequence

steps, resulting in a r value for each alternate scenario. This

method conveys correlation of invasion sequences for the alternate

RMs to the original RM when mortality rates are varied. Finally,

settlement locations for each alternate scenario were summed and

projected on a map, illustrating relative settlement concentrations

and patterns.

Results

3.1. Composite Simulation Case Study
Settling sites from the composite simulation study were summed

per location and projected on a map (Figure 3). The composite

simulation indicates three potential hot spots, presented in order of

relative potential for establishment; 1) the neritic zone north and

west of Jupiter Florida, centered near Vero Beach Florida

(,27.250u N to 29.500u N to a depth of 40 m), where the Gulf

Stream diverts from the coastline and the continental shelf extends

northward, 2) offshore South Carolina, centered near Myrtle

Beach with a northern limit just south of the Cape Hatteras

Tropical Limit (CHTL), as described in [4] (,32.500u N to

34.850u N, 280.000u W to 275.700u W in depths ,40 m), and 3)

the lower Florida Keys extending into the Ten Thousand Islands

area off the tip of south Florida (,24.500u N to 25.000u N,

282.250u W to 281.500u W in depths ,40 m). For the top

twenty locations with the highest settlement rate by count (all near

Vero Beach), the mean month of establishment was approximately

66 months which represented 17.5% of all kernel counts.

3.2. Case Study One – Florida Keys, South Florida
CSFK assumes a breeding population of panther grouper in the

Florida Keys. The USGS NAS records presently indicate a large

specimen recently captured in the Florida Keys and the

coordinates of 24.583u N and 281.217u W were chosen as an

initial breeding population location. CSFK agrees with the

composite simulation regarding settling points of larvae in the

initial stages of an invasion. In this scenario, most larvae are

transported east and north on the Gulf Stream current, eventually

settling in two primary locations; 1) just south of the CHTL, and 2)

north and west of Jupiter Florida near Vero Beach (Figure 3).

From the model, and based on HYCOM current data, weak

meandering currents tend to concentrate larvae that have

departed the Gulf Stream near this location. OD, SST, and CC

values in both locations are well within tolerances for this species.

Due to the Florida Keys origination, CSFK also indicates a

potential spread into the Ten Thousand Islands area off the tip of

south Florida, where all parameters are within range for settling to

occur. By year four, breeding populations exist at the CHTL,

Jupiter Florida/Vero Beach, and Florida Keys/Ten Thousand

Islands locations according to the model.

3.3. Case Study Two – Broward County, South Florida
CSBC assumes a breeding population of panther grouper off the

coast of south Florida in Broward County. The coordinates of

Figure 4. Temporal-spatial progression map. Map indicating the sequence and relative month [sequence(month)] for the first 10 steps for a
Broward County origin (A) and a 12 steps for a Florida Keys origin (B).
doi:10.1371/journal.pone.0073023.g004
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26.217u N and 280.083u W were chosen as the point of

establishment for the initial breeding population as the USGS

NAS indicates several records near this location. CSBC indicates

that two of the same locations (south of the CHTL and Jupiter

Florida/Vero Beach) have potential as settling points of larvae in

the initial stages of an invasion (Figure 3). In this second scenario,

most larvae are once again transported north on the Gulf Stream

current. Past the maturation period of 18 months, settled juveniles

occur near both the locations, and by year four, breeding

populations are established south of the CHTL and near Jupiter

Florida/Vero Beach. Spread into the Ten Thousand Islands area

was not forecast by the model for this scenario.

The ISM indicated initial settling of larvae (non-breeding

populations) 6–9 months after establishment of a breeding

population in both CSFK and CSBC. The model predicts breeding

populations of panther grouper would develop first in the

northernmost CHTL settling point (month 20–22), followed

secondly by Jupiter Florida/Vero Beach (month 28–31), and

lastly, for CSFK, the Florida Keys/Ten Thousand Islands location

(month 37) (Figure 4). In both cases, the northernmost limit for the

panther grouper is likely just south of CHTL, as overwintering

temperatures drop below the predicted 16uC thermal tolerance.

This is slightly south of the projected potential distribution of

lionfish, which have a documented tolerance to 10uC [22]. Also

notable is the lack of settling in the near-shore neritic zone roughly

north of Daytona Beach, Florida to the CHTL, where winter SSTs

drop below panther grouper tolerances. Due to strong near shore

currents from the Gulf Stream, limited settling occurred off the

south Florida coast between the upper Florida Keys and Jupiter

Florida (Figure 3).

It has been shown that coral reefs of the Florida Keys and south

Florida show weaker connectivity to Bahamian reefs than would

be expected based on distance alone, and are rather more closely

associated with the upstream Mesoamerican Barrier Reef [23],

[18]. Strong currents from the Gulf Stream act to transport larvae

away from this area and also act as a barrier to conveyance across

the stream to the Bahamas as shown in the ISM and transition

matrixes by [18]. In the model lionfish case and as documented by

USGS NAS records, initial lionfish records in south Florida were

recorded at least 10 years before those in the Bahamas [4].

Accordingly, a crossover event did not occur in the timeframe

examined for the initial input values.

3.4. Model Validation
To validate the ISM, 20 identical simulations were created for

CSFK and CSBC using the parameter input values for this study

(Figure 5). The r value calculated comparing Ho to each RM was

0.33 for HFK and 0.49 for HBC. Using a significance level of 0.05

and resulting critical value of 0.59 (HFK) and 0.65 (HBC),

correlation values for both models proved to be insignificant

when compared to Ho. When evaluating the mean of 20

simulation runs for each model compared to the representative

Figure 5. Spearman’s Rank Correlation Coefficient (SRCC) calculations. SRCC calculation with a r= 0.80 for CSBC when comparing 20
individual model runs (y-axis) to the RM (A), and r= 0.49 when comparing the RM (y-axis) to Ho (B). SRCC with a r= 0.67 for CSFK when comparing 20
individual model runs (y-axis) to the RM (C), and r= 0.49 when comparing the RM (y-axis) to Ho (D). X-axis indicates the sequential order of
establishment for the RM, and the y-axis indicates the order of establishment for each comparative simulation. Perfect correlation (SRCC of 1.0) is
indicated by a point lying precisely on the diagonal from bottom-left to top-right.
doi:10.1371/journal.pone.0073023.g005
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RM, a r of 0.67 (HFK) and 0.80 (HBC) were calculated,

respectively. From the results of the significance tests, the ISM

shows no monotonical relationship to Ho and the mean of each

model run is significantly correlated when comparing to the

selected RM. These findings indicated that the ISM is not purely

random and repeated simulations using the same inputs show

highly similar and significant results.

3.5. Sensitivity Analysis
When plotted on a map and summed by location, the results for

each variation of Zp (610%, 0.18 d 21 and 0.22 d 21) indicate the

same general pattern of spread with the same ‘hot spots’ as

observed in the original simulations (Figure 6). This implies that

pattern and overall spatial distribution are not highly sensitive to

Zp. The r values calculated using an alternate Zp of 0.18 d 21

resulted in values of 0.63 (CSFK) and 0.86 (CSBC). Using a

significance level of 0.05 and critical value of 0.59 (CSFK) and 0.65

(CSBC), r values for both alternate scenarios proved to be

significantly correlated to the original RMs. These findings

indicate that the actual pattern and sequence of spread is not

greatly sensitive to Zp when the rate is decreased. Contrastingly,

stark differences were noted in the count and concentrations of

settled kernels, with a mean settled kernel count per simulation of

48 (CSFK) and 17 (CSBC) at a Zp of 0.18 d 21 and 1071 (CSFK) and

506 (CSBC) at 0.22 d 21. This indicates that quantity of settled

kernels, a proxy for recruitment in the model, is highly sensitive to

Zp and is in agreement with findings by [13]. Also noted was a

decrease in mean settlement month per step for both case studies

with an alternate Zp of 0.18 d 21, which was especially prevalent in

the last few steps of each invasion sequence. This result indicates

that the projected invasions were gaining traction towards the end

of the simulations. The alternate CSFK, with a Zp of 0.18 d 21, also

displayed a potential crossover event to the Bahamas which was

not projected in the original simulations, indicating a lower Zp

Figure 6. Sensitivity Analysis to Larval Mortality. Settlement rates of adult breeding populations for panther grouper on a ‘hot’ (red) to ‘cold’
(blue) scale using Jenks’ natural breaks as class divisions. CSFK with a larval mortality rate of 0.22 d 21 (A), 0.18 d 21 (B). CSBC with a larval mortality rate
of 0.22 d 21 (C), 0.18 d 21 (D).
doi:10.1371/journal.pone.0073023.g006
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could result in spread to the Bahamas at a faster pace (Figure 6B).

Lastly, r values were not calculated for a Zp of 0.22 d 21 as a result

of greatly reduced numbers of settled kernels in both case studies.

As a result, these scenarios were unable to reliably reproduce the

step sequences displayed in the original case studies. This also

demonstrates the sensitivity in the model to Zp.

Discussion

4.1. Study Results
The ISM indicates several key locations which present a high

likelihood for retention of larvae and the eventual development of

breeding populations of panther grouper, given the constraints of

the model. Common to all case studies, just south of the CHTL (a

northernmost record of 34.817u N latitude was recorded in the

model) near Myrtle Beach and north and west of Jupiter Florida

centered close to Vero Beach, are high-risk areas. The Florida

Keys/Ten Thousand Islands location is seen as lower risk with

lower settlement rates. Based on the composite study, the highest

likelihood of establishment of a breeding population of panther

grouper, regardless of introduction point, is north of Jupiter

Florida, centered near Vero Beach. Our modeling outputs suggest

that Vero Beach is to be the highest priority for monitoring efforts,

followed by the Myrtle Beach/CHTL and the Ten Thousand

Islands area.

Based on the two individual case studies, a Florida Keys origin is

most precocious as this would provide a conduit to the west coast

of Florida and the Gulf of Mexico. If the invasion scenario follows

the pattern documented by lionfish, this Florida Keys origin would

short-circuit the progression stage sequence, allowing ingress of the

panther grouper into the Gulf of Mexico much sooner than

occurred with lionfish [4]. Based on life history and fecundity traits

alone, it is likely that the lionfish may be more suited as an invasive

species in the Atlantic than the panther grouper, however this does

not preclude the possibility that the species will become

established. The supposition that it may be a less robust invasion

process than occurred with the lionfish is based on several key

ecomorphological differences in panther grouper (including lack of

venomous defenses, similarity to native groupers, and familiarity of

predators and prey to the panther grouper body morphology)

which are advantageous to the lionfish.

As anticipated, and in accordance with studies by [13], the

model shows sensitivity to Zp regarding concentration and quantity

of settled larvae in both case studies. This is consistent with

literature indicating that recruitment in most fish population

models display high sensitivity to larval mortality. Though this

sensitivity affects settling rates and likely timing of an invasion in

the ISM, the predicted pattern and location of high risk areas

remain unchanged and are robust. Accordingly, the maps

produced are useful as baseline guides for early detection efforts.

Lastly, we anticipate that Zp above 0.22 d21 will greatly decrease

the chances of a successful invasion for the panther grouper, while

lower Zp will likely increase the chance of successful establishment

in the study area.

4.2. Potential Limitations of the ISM
Numerical models examining complex systems, such as the

marine environment, suffer from uncertainty arising from the

inevitable lack of a full understanding of the system. Approxima-

tion or underlying data errors or fundamental flaws in the model

itself can introduce bias and undermine the model results.

Acknowledging these limitations, this study aims to reduce

inherent uncertainty within the model by eliminating bias when

selecting origination locations and instead employs random

locations within the study area. Additionally, the two case studies

presented are validated against Ho and tested for precision using a

standard metric, the SRCC. Sensitivity analysis is also performed

to test model robustness to variances in larval mortality.

While the panther grouper has been found in the Florida Keys

and Broward County, this does not confirm breeding populations.

In both case studies, it is assumed that a breeding population

persists at the origins and the lag period that is sometimes present

with exotic invasions is ignored [24]. The model also overlooks

occasional continued introductions which may contribute to the

population and assumes neither infringement nor long-distance

movement (greater than the model scale of 6 arc minutes) among

sites of breeding populations. This species has shown site fidelity,

decreasing the likelihood for site relocation as an influencing factor

in the model results. The distribution of larvae is dependent upon

passive movement of kernels within the model, and no adjustment

is made for possible local retention of larvae at the origins. The

ISM does not consider cyclical breeding cycles, though both peaks

and year-round reproduction have been documented for panther

grouper. While the model has been validated in the case of lionfish

using a historical pattern, this invasion history is not present for the

panther grouper. It is promising that the ISM algorithm has shown

predictive capabilities in a previous study with a species of similar

feeding ecology and breeding modality. Additional studies

involving potential fecundity, mortality rates, and tolerances of

panther grouper in the Atlantic would be helpful to adjust input

values.

Conclusion

This paper presents a rapid-response modelling study of the

potential establishment and spread of the panther grouper in the

western Atlantic in an effort to direct early detection and

eradication efforts before the species has gained traction. This

study identifies three areas of concern for potential establishment

of the species in the western Atlantic, should a founder population

occur in any location in the area examined (extending from

approximately 29u N to 24u N on the Atlantic side of Florida in

waters ,40 m). These locations include; 1) just south of the Cape

Hatteras Tropical Limit/Myrtle Beach, 2) north of Jupiter

Florida/Vero Beach, and 3) the Florida Keys/Ten Thousand

Islands location. As breeding populations are not yet thought to

occur, it is suggested that these three locations should be high

priority for monitoring and early detection efforts to prevent the

proliferation of the panther grouper in the Atlantic. This study

gives an early indication of potential hot spots of establishment to

guide detection, containment, and perhaps eradication efforts.
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