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Abstract

There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using
urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In
contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our
experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and
antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-
based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To
address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the
circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to
those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter
mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially
devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed
substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These
data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse
expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the
thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how
COX-2 protects the cardiovascular system.
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Introduction

Prostacyclin, a powerful cardioprotective hormone released
by the vascular endothelium, inhibits platelet activation,
vascular remodeling and atherosclerosis. Consequently,
inhibition of prostacyclin release has been associated with an
increased risk of heart attacks and strokes [1]. Prostacyclin
production results from the consecutive actions first of

cyclooxygenase (COX), which converts arachidonic acid to
prostaglandin (PG) H2, the precursor of all prostanoids,
followed by the action of prostacyclin synthase, which
isomerizes PGH2 to mature prostacyclin.

Two COX isoforms exist; COX-1 and COX-2 [2–4]. COX-1 is
expressed constitutively in many tissues [5,6]. COX-2
expression, in contrast, is normally sparse in most tissues but
is rapidly upregulated by mitogens, cytokines and other stimuli;
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COX-2 dependent prostanoids contribute to cell proliferation,
pain and inflammatory responses [7,8]. Traditional non-
steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen
and diclofenac inhibit both COX-1 and COX-2 isoforms. Much
of the analgesic and anti-inflammatory benefit of these agents
is derived from inhibition of COX-2, whilst concurrent inhibition
of COX-1 produces unwanted and potentially life threatening
gastrointestinal side effects [9]. Consequently, new COX-2
selective agents such as celecoxib (CelebrexTM) and rofecoxib
(VioxxTM) have a reduced incidence of gastrointestinal side
effects, while retaining anti-inflammatory and analgesic efficacy
[10]. It is now clear that both traditional NSAIDs and COX-2
selective inhibitors are also associated with a small but definite
increase in the risk of atherothrombotic events in man [11],
particularly myocardial infarction. These clinical data are
consistent with data from animal models demonstrating that
either global Cox2 gene deletion or global pharmacologic
COX-2 enzyme inhibition produce a pro-atherogenic, pro-
thrombotic phenotype [12–15].

With regard to the cardiovascular system and particularly the
vascular endothelium, there has been strong debate regarding
which COX isoform is predominant and responsible for
prostacyclin production. Opinion is divided, with two opposing
views. It is currently widely held that COX-2 expression and
activity predominates over COX-1 within endothelial cells and
consequently is the major driver of vascular prostacyclin
production [1,14–16]. Inhibition of COX-2-dependent
production of cardioprotective prostacyclin in the
cardiovascular endothelium has been proposed to explain the
increase in cardiovascular events observed in patients taking
both traditional and COX-2-selective NSAIDs [13,16]. This
hypothesis is rooted in studies showing that urinary excretion of
prostacyclin markers are reduced in human volunteers
receiving COX-2 inhibitors [17], mice that have a global Cox2
gene deletion [5,12], and mice that have targeted endothelial
and/or vascular smooth muscle Cox2 gene deletions [14]. The
suggestion that inhibition of COX-2-dependent vascular
prostacyclin synthesis is responsible for the increased
cardiovascular events is further supported by the
atherothrombotic phenotype of Cox2 [12–14] and prostacyclin
receptor [18] knockout mice, consistent with this hypothesis.

Whilst not all investigators find urinary prostacyclin markers
to be reduced in global Cox2 gene knock out mice [19], recent
data from our group support this idea [5]. However, we found
that urinary markers do not to reflect prostanoid formation in
the vasculature [5], suggesting instead that they may reflect
more localized prostacyclin production, perhaps in the kidney
by blood vessels of the vasa recta, where COX-2 is
constitutively expressed [20]. Thus, in direct contrast to the
commonly accepted hypothesis, work from our group [5] and
others [21] demonstrates that COX-1 is the dominant isoform in
the vascular endothelium driving prostacyclin production.

Our work and that of others in this area has routinely relied
on the use of immunoassays to detect COX products [22–26]
and the use of antibodies to detect COX-1 and COX-2 protein
expression in tissues [5,14]. Whilst these techniques to
measure prostanoids and proteins are standard practice, the
use of antibodies for detection of any product is inherently

indirect and, as was recently highlighted [16], open to artifact.
Primarily based on these two objections, our conclusion that
COX-1 drives vascular prostacyclin has been challenged [16].

In addition to the above concerns, we note that our previous
studies focus on the role of COX-2 in vascular prostacyclin
production; they were not designed to consider other sites of
COX-2 expression, or the effect of loss of COX-2 activity on
prostanoids other than prostacyclin. In the current study we
perform new experiments to directly address these
methodological and biological limitations. Firstly, we validate
our conclusions regarding prostanoid production, drawn
previously from immunoassay studies, by employing liquid
chromatography tandem mass spectrometry (LC-MS/MS) to
assess lipid mediator release both from isolated vessels and in
the circulation in vivo, profiling the effect of global Cox2 gene
deletion on a range of prostanoid metabolites. Secondly, we
employed a reporter mouse in which the luciferase coding
region is knocked into the Cox2 gene, and is thus under Cox2
gene regulatory control [27], to directly visualize, quantitate and
compare expression from the Cox2 gene in the regions of the
vasculature as well as a panel of other tissues. Use of Cox2
promoter driven luciferase expression eliminates the
requirement for antibody evaluation of expression from the
Cox2 gene. Together these studies support our previous
observations that COX-1, not COX-2, drives prostacyclin
release in the vasculature, and provide much needed new
targets for understanding how COX-2 inhibition might regulate
cardiovascular function.

Materials and Methods

Mice
Cox1-/- [28], Cox2-/- [28] and Cox2fLuc/+ mice [27] were

generated as previously described, and back-crossed onto a
C57Bl/6J background. Wild-type mice were generated by inter-
crossing C57Bl/6 back-crossed Cox1+/- and Cox2+/- mice. All
mice used in the study were genotyped before use.
Experiments were performed on male and female mice at
10-12 weeks old. Animal procedures were conducted in strict
accordance with Animals (Scientific Procedures) Act 1986 and
the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
Protocols were subject to local ethical review and approval by
the Imperial College Ethical Review Panel (PPL No. 70/7013)
or the UCLA Animal Research Committee (Protocol. No.
1999-066-43; luciferase imaging experiments only). All surgical
procedures and luciferin treatments were performed under
isoflurane anesthesia, taking all appropriate measures to
minimize suffering. Ex vivo and in vitro experiments were
performed on tissue removed from humanely euthanized
animals (see details below).

In vitro COX activity bioassays
Wild-type, Cox1-/- and Cox2-/- were euthanized by CO2

narcosis and the vasculature perfused with PBS. Aortic tissue
and various solid tissues were carefully dissected into small
pieces (~2mm rings for aortic tissue, ~25mm3 for solid organs)
and immediately placed into individual wells of 48 or 96 well
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microtitre plates containing Ca2+ ionophore A23187 (50µM;
Sigma, UK) in DMEM (+200mM L-Glutamine; Sigma, UK).
Tissues were incubated for 30 mins at 37°C, before collection
of the supernatant to measure prostanoid release by
immunoassay or LC-MS/MS. For studies of relative release by
different tissues, prostanoid release was normalized to tissue
wet weight.

Circulating prostanoid measurement in vivo
Under isoflurane anesthesia, the right jugular vein and left

carotid artery of wild-type, Cox1-/- and Cox2-/- mice were
cannulated. After a 20 min stabilization period, bradykinin
(100nmol/kg; Tocris Bioscience, UK) was administered
intravenously and 0.8ml arterial blood collected 5 mins later in
to heparin (10U/ml final; Leo Laboratories, UK). After blood
collection, animals were immediately euthanized by cervical
dislocation without being allowed to recover from anaesthetic.
Plasma was separated from blood by centrifugation and the
levels of prostanoids measured by LC-MS/MS.

Bioluminescent imaging
Cox2fLuc/+ mice were injected intraperitoneally with D-luciferin

(125 mg/kg, Xenogen, USA) under light isoflurane anesthesia
and 15 mins later euthanized by overdose the same anesthetic.
Tissues were rapidly dissected and placed in culture dishes.
Bioluminescent emission was recorded over 3 mins, using the
IVIS imaging system (Xenogen, USA). Collected photon
number and images were analyzed using Living Image
software (Xenogen, USA) and quantified as the peak photon
release/pixel detected from each tissue.

Luciferase activity
After bioluminescent imaging, tissues were snap frozen for

biochemical measurement of luciferase activity using the
Luciferase Assay System (Promega, UK). Tissues were
dissociated using a Precellys24 bead homogenizer in passive
lysis buffer (Promega, UK) and loaded into white 96 well
microtitre plates. The time-integrated (10 sec) luminescence of
each well was then read, 15 secs after injection of 10X volume
of Luciferase Assay Reagent (Promega, UK). Protein
concentration of homogenates was determined using the
bicinchoninic acid method (Perbio, UK) and used to normalize
luciferase activity data.

Prostanoid immunoassays
In some experiments, the stable prostacyclin breakdown

product 6-keto-PGF1α was measured using either a competitive
immunoassay kit (Cayman Chemical, USA), or where noted
and in separate biological samples, by radioimmunoassay
using 6-keto-PGF1α antisera (Sigma, UK) and [3H] 6-keto-PGF1α

(Amersham Biosciences, UK). PGE2 was measured using a
commercially available homogenous time-resolved
fluorescence-based immunoassay (Cisbio, France).

Prostanoid measurement by LC-MS/MS
Prostanoids were extracted and analyzed as previously

described [29]. Briefly, 400-500 �l sample was mixed with 3ml

ice-cold 15% methanol (v/v) and PGB2-d4 (40 ng) was added
as internal standard. The samples were then acidified to pH 3.0
and the prostanoids were semi-purified using solid phase
extraction (Phenomenex, UK). LC-MS/MS of the lipid extract
was performed on a triple quadrupole mass spectrometer
equipped with an electrospray probe and coupled to liquid
chromatography (Waters, UK). Analysis of prostanoids was
based on MRM assays using the following transitions: 6-keto
PGF1α m/z 369>163; PGE2 m/z 351>271; 13, 14-dihydro 15-
keto PGE2 m/z 351>333; PGD2: m/z 351>271; TXB2 m/z
369>169; PGF2α m/z 353>193; PGB2-d4: m/z 337>179. Results
are expressed as pg metabolite / ml plasma or culture medium,
using calibration lines constructed with commercially available
prostanoid standards (Cayman Chemicals, USA).

Results and Discussion

Role of COX-1 and/or COX-2 in prostacyclin release by
vessels in vitro; measurement of 6-keto-PGF1α with
immunoassays and mass spectrometry

Prostacyclin was discovered in the 1970s as a profoundly
active hormone released by the blood vessel wall and readily
detectable in experiments in which isolated blood vessels were
activated and then mixed with bioassay systems such as
platelets. After the structure of prostacyclin was elucidated, its
stable breakdown products, including 6-keto-PGF1α, were
identified. Antibodies to 6-keto-PGF1α were subsequently
raised, and immunoassays were developed [30]. 6-keto-PGF1α

immunoassays have since been widely used and have been
instrumental in developing and expanding the field of
prostacyclin biology. However, because they rely on antibody-
antigen reactions, results with immunoassays can be
confounded with artifacts, e.g., cross reactivity with related
antigens and matrix interactions [16]. Here we measure
vascular 6-keto-PGF1α production using two different
immunoassays, and validate these measurements with mass
spectrometry (Figure 1). In each case, 6-keto-PGF1α release by
isolated aorta was readily detectable in tissue from wild-type
and COX-2-deficient mice, but was undetectable (<0.2 ng/ml by
our LC-MS/MS assay) in tissue from COX-1-deficient mice
(Figure 1). Similarly, release of PGE2, 13,14-dihydro-15-keto-
PGE2, PGD2, TXB2 and PGF2α by aortic rings, measured by LC-
MS/MS was in each case driven by COX-1 (Table 1).

Using enzyme immunoassay, we performed additional
experiments to confirm that 6-keto-PGF1α production and
release was partially dependent upon an intact endothelium
and that the requirement of COX-1 for prostacyclin release was
consistent when vessels were stimulated with a range of
biological and experimental endothelium activators (Table S1).
These data are entirely consistent with what we [5] and others
[21] have recently published.

Although some recent studies have suggested a role for
COX-2 in prostacyclin production by vascular cells [14] or
vessels [15] in culture, it is important to point out that COX-2
activity is induced quite rapidly when these biological samples
are placed in culture [5]. For this reason it is essential that
experiments are carried out on fresh vessels and that
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observations showing COX-2 expression and activity, after
even brief culture periods, be interpreted with caution.

Role of COX isoforms in eicosanoid generation in vivo;
analysis of circulating 6-keto-PGF1α levels and
additional prostanoids by LC-MS/MS

Measuring markers of prostacyclin release from aortic
vessels in vitro cannot tell us definitively what happens in the
circulation in vivo. We previously demonstrated, using enzyme
immunoassay, that both basal and bradykinin stimulated 6-
keto-PGF1α plasma levels were unaffected by Cox2 gene
deletion, but were greatly reduced by Cox1 gene deletion [5].
Since experimental conditions could selectively influence the
formation of 6-keto-PGF1α [31], we have performed similar
experiments and measured a panel of prostanoids in plasma

Figure 1.  6-keto-PGF1α production in isolated mouse aorta;
measurement by enzyme immunoassay, radio
immunoassay, and liquid chromatography tandem mass
spectrometry (LC-MS/MS).  Prostacyclin release by isolated
rings of mouse aorta stimulated with Ca2+ ionophore A23187
(50µM), measured as the stable breakdown product 6-keto-
PGF1α, was not altered by Cox2 gene deletion, but was
reduced >10-fold by Cox1 gene deletion. The pattern and level
of 6-keto-PGF1α accumulation was similar whether measured
by (a) enzyme immunoassay, (b) radio immunoassay or (c) LC-
MS/MS. Representative LC-MS/MS chromatograms show the
presence or absence of 6-keto PGF1α in all sample types
(retention time 2.81 min; transition ion m/z 369>163). n=4-7. *,
p<0.05 by 1-way ANOVA with Bonferonni’s post-test.
doi: 10.1371/journal.pone.0069524.g001

by LC-MS/MS. Plasma levels of the prostanoids measured
displayed the following rank order: 13,14-dihydro-15-keto-PGE2

>> PGE2 ≈ 6-keto-PGF1α > TXB2 ≈ PGD2 in bradykinin-treated
mice (Figure 2). In each case, plasma prostanoid levels were
strongly reduced in Cox1-/- mice, but not altered in Cox2-/- mice.
Plasma 6-keto-PGF1α levels measured here by LC-MS/MS
(Figure 2) closely matched those we previously reported using
enzyme immunoassay measurement, a correlation recently
suggested as necessary [16] to provide critical validation for
our recent work [5].

Tissue mapping both of expression from the Cox2 gene
and of COX-2 bioactivity

Data in this paper, as well as previous work from our own [5]
and other laboratories [21] firmly establishes COX-1 as the
major COX isoform that drives vascular prostacyclin release in
a healthy cardiovascular system. Importantly, this is also true in
atherosclerosis; recent data from our group shows that COX-1
drives prostacyclin production even in segments of vessels
heavily burdened with atherosclerosis [32]. Nevertheless, whilst
COX-2 does not drive prostacyclin production, it clearly does
impact on cardiovascular homeostasis; either inhibition of
COX-2 activity or global Cox2 gene deletion exacerbate
atherosclerosis [13,32,33] and thrombosis [12,15] in mice, and
the risk of atherothrombotic events is increased in patients
taking drugs that inhibit COX-2 [34]. This conclusion leads to
two important questions; (1) ‘if not in the arterial endothelium,
where is COX-2 constitutively expressed?’ and (2) ‘how does
COX-2 at sites remote from the vascular wall protect the
cardiovascular system?’ Looking for COX-2 levels in organs
and tissues using traditional immunohistochemical approaches
relies on specificity and sensitivity of antibodies, with all the
caveats and objections raised previously [16]. Comparison of
COX-2 mRNA levels suffers from complications due to
variability in extraction procedures, differences in mRNA
stability in extracts, and clearly documented differences in
transcription/translation coupling across cell types that results
in COX-2 mRNA levels that do not reflect COX-2 enzyme

Table 1. Prostanoid release by isolated aortic rings,
measured by LC-MS/MS.

Mediator Wild-type Cox1-/- Cox2-/-

 pg/ml pg/ml pg/ml
6-keto-PGF1α 12110 ± 1623 not detectable 10870 ± 1614
PGE2 1217 ± 168 not detectable 1011 ± 200
13,14-dihydro-15-keto-PGE2 40 ± 14 not detectable 39 ± 14
PGD2 385 ± 52 not detectable 316 ± 65
TXB2 443 ± 111 not detectable 406 ± 61
PGF2α 395 ± 62 not detectable 397 ± 63

Prostanoid release from Ca2+ ionophore A23187 (50µM)-stimulated aortic rings,
measured by liquid chromatography tandem mass spectrometry, was almost
abolished by Cox1 gene deletion, but not substantially altered by Cox2 gene
deletion. Both the pattern and numerical values of 6-keto-PGF1α levels measured
by this method correlate closely with our previous data obtained using enzyme
immunoassay. n=4
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activity. Here we have used a luciferase COX-2 reporter mouse
(Cox2fLuc/+) in which the firefly luciferase coding sequence is
knocked into the Cox2 gene at the start of site of translation of
the endogenous COX-2 protein. Measuring luciferase
expression allows rapid and reproducible visualization and
quantitation of expression from the Cox2 gene in vivo and ex
vivo [27,35,36].

Figure 2.  Bradykinin-stimulated prostanoid accumulation
in the circulation in vivo in wild-type, Cox1-/-, and Cox2-/-
mice.  Accumulation of the stable prostacyclin breakdown
product, 6-keto-PGF1α in plasma after bradykinin administration
(100nmol/kg i.v.) is dependent on COX-1 but not COX-2 when
measured by LC-MS/MS (a). Representative LC-MS/MS
chromatograms show the presence or absence of 6-keto PGF1α

in all sample types (retention time 2.81 min; transition ion m/z
369>163). Similar data were obtained for plasma levels of
PGE2 (b), 13,14-dihydro-15-keto-PGE2 (c), PGD2 (d), TXB2 (e)
and (f) PGF2α. Plasma 6-keto-PGF1α levels in all genotypes
compare well with those previously published using enzyme
immunoassay measurements. n=6. *, p<0.05 by 1-way ANOVA
with Bonferonni’s post-hoc test.
doi: 10.1371/journal.pone.0069524.g002

Using bioluminescent imaging of tissue dissected from
Cox2fLuc/+ mice, we first performed a systematic analysis of
expression in tissues of the cardiovascular system. We imaged
arterial expression in the entire aortic tree, as well as venous
expression in the vena cava (Figure 3). As expected from our
previous experiments, where COX-2 protein was measured
using traditional antibody approaches [5], we found that the
aorta was essentially devoid of Cox2 gene expression (Figure
3) when compared to brain as a reference tissue [27]. The
exception to this conclusion was the aortic arch and its
branches, where low but detectable Cox2 gene expression was
found. Whilst this is consistent with the ‘priming’ of NFκB
activity [37] and associated genes in this region of the aorta
[38], it is important to put into context what this amount of Cox2
gene expression actually means in terms of prostacyclin
generation. Work from our previous study showed that
prostacyclin release by mouse aortic arch was driven by
COX-1, since activity was lost in arch tissue from Cox1-/- mice
but was unaffected in arch tissue from Cox2-/- mice [5].

In addition to our observations on arterial and venous
luciferase expression in Cox2fLuc/+ mice, we performed specific
sub-structural analysis of Cox2 gene driven luciferase
expression for each chamber of the heart (Figure 3), since
conflicting results have been reported for the requirement for
cardiomyocyte COX-2 expression in cardiac function [39,40].
Cox2 gene expression was also essentially absent in each of
the four chambers of the heart (Figure 3). These data on Cox2
gene driven luciferase expression in the vasculature and heart
confirm the sparse expression of the Cox2 gene in the major

Figure 3.  Distribution of luciferin-dependent
bioluminescence in cardiovascular tissue from Cox2fLuc/+
mice.  (a) Quantification of basal expression from the aortic
tree, vena cava, chambers of the heart and, for comparison,
brain from Cox2fLuc/+ mice and (b) and representative images of
bioluminescence. Arteries, veins and chambers of the heart
were essentially devoid of expression from the Cox2 gene, in
comparison with the brain as a reference tissue. The only
exception to this was weak, but detectable, expression in the
region of the aortic arch. n=3.
doi: 10.1371/journal.pone.0069524.g003
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structures of the cardiovascular system and fit precisely with
immunohistochemistry and COX activity data both in this study
and published recently by our group [5].

With the very low to undetectable levels of Cox2 gene
expression in the heart and large vasculature confirmed, we
next determined which organs do demonstrate substantial
Cox2 gene expression under normal homeostatic conditions.
To do this we examined luciferase expression across a bank of
organs from Cox2fLuc/+ mice (Figures 4 and 5) and compared
results with those from the aorta. The highest expression level
from the Cox2 gene occurred in the vas deferens (Figure 4), a
result consistent with observations made by antibody-based
methods for COX-2 protein quantification [27]. Substantial
luciferase expression from the Cox2 gene was also observed in
the cerebral cortex, throughout the gastrointestinal tract, the
thymus, and the renal medulla (Figures 4 and 5). Note that

expression in each of these tissues was at least 10-fold greater
than that in the aorta.

“Quantification” of luciferase activity by optical imaging of
excised organs is only semiquantitative, because of light
absorption by tissue, light scatter, and variability of luciferin
substrate availability in vivo. However, precise quantification
can be obtained by preparing tissue extracts and measuring
light emission in saturating amounts of luciferin substrate.
Quantification of luciferase activity in tissue homogenates from
the Cox2fLuc/+ mouse evaluated in Figure 4 reflected the same
general pattern and activity of luciferase expression observed
by optical imaging (Figure S1). Once again, in the context of
this report, luciferase expression from the Cox2 gene was
essentially undetectable in the aorta.

In separate experiments we compared levels of Ca2+

ionophore-stimulated PGE2 release from tissue segments of
Cox1-/- mice, using PGE2 release as a first approximation of the

Figure 4.  Distribution of luciferin-dependent bioluminescence in tissues from Cox2fLuc/+ mice.  (a) Basal expression from
organs of the Cox2fLuc/+ mice was visualized by bioluminescent imaging of tissues dissected from Cox2fLuc/+ reporter mice after
injection of D-luciferin in vivo (125mg/kg i.p.). (b) Imaging data are expressed as maximum luminescent emission from each tissue.
Basal Cox2 gene driven luciferase expression was present in many tissues including the vas deferens, brain, intestine, and thymus
but was notably low to absent in the aorta (highlighted with red circles). Sub-division of the (c) brain, (d) intestine, (e) kidney and (f)
stomach revealed regional expression patterns within each tissue. n=5.
doi: 10.1371/journal.pone.0069524.g004
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relative COX-2 enzymatic activities in these tissues (Figure 5).
COX-2-dependent PGE2 formation closely correlated with the
pattern of luciferase expression in tissues from Cox2fLuc/+ mice.
COX-2 activity was highest in the thymus, gut, brain and vas
deferens. However, consistent with the data in Figure 1, PGE2

was almost completely absent in the aorta. Comparison data
for PGE2 production in tissues from wild-type and Cox2-/- mice
are shown in Figure S2. Readers should note the difference in
the scales for PGE2 values in Figure 5 versus Figure S2.

Summary and Conclusions
Circulating prostacyclin (6-keto-PGF1α) and other prostanoids

can be detected in mouse plasma using LC-MS/MS after
bradykinin activation of the endothelium. The production of
prostanoids found in the systemic circulation is driven
overwhelmingly by COX-1 and not COX-2. The levels of 6-
keto-PGF1α measured by LC-MS/MS directly correlate with
those we have previously observed by immunoassay,
validating our previous observations and providing additional
evidence for the absence of extensive COX-2-dependent
prostacyclin formation in the circulation in vivo. In agreement,
studies using Cox2fLuc/+ reporter mice clearly demonstrate the
absence of Cox2 gene expression in blood vessels, but provide
evidence for relatively high levels of constitutive COX-2
expression elsewhere, such as the thymus, brain, kidney and
gastrointestinal tract. Taken together, these data not only
provide additional confirmation for the absence of COX-2
expression and activity in the vasculature, but provide a
systematic analysis of the distribution of Cox2 gene expression
throughout the body. We should now look more closely into the
role of COX-2 expressed outside major blood vessels in
explaining the adverse cardiovascular effects of COX-2
inhibition. This will allow us to move forward the development
of novel prostaglandin-targeted therapies both for existing
indications such as treatment of arthritis in patients with
gastrointestinal compromise, as well as for emerging
indications including cancer chemoprevention.

Supporting Information

Figure S1.  Distribution of luciferase activity in tissue
homogenates from Cox2fLuc/+ mice.  Luciferase activity was
determined quantitatively in homogenates of organs from
Cox2fLuc/+ reporter mice. As with bioluminescent imaging data,
luciferase assays of homogenates in the presence of excess
luciferin substrate confirmed the aorta (highlighted in red) to be
essentially devoid of Cox2 gene driven expression, whereas
relatively high expression levels were present in brain, intestine
and thymus. n=5. Luciferase activity was not determined (nd) in
blood or vas deferens.
(PDF)

Figure S2.  Total and COX-1-dependent prostanoid
production by aorta versus other mouse tissues in wild
type and Cox2-/- mice.  PGE2 formation, normalized to tissue
mass, was measured by immunoassay in supernatants of Ca2+

ionophore A23187 (50µM)-stimulated tissue segments from
wild-type (a) and Cox2-/- mice (b). Prostanoid production
patterns in each genotype illustrate that although tissues
possess a variable amount of COX-2 activity, with the
exception of the vas deferens, COX-1 is the dominant activity
present. n=6.
(PDF)

Table S1.  COX-1 and COX-2-dependent prostacyclin
release both by endothelium-intact aorta and by
endothelium-denuded aorta stimulated with a range of
activators.  Prostacyclin release, measured by enzyme
immunoassay as 6-keto-PGF1α, was nearly abolished by Cox1
gene deletion, but not by Cox2 gene deletion, both in (a)
endothelium-intact and (b) endothelium-denuded aortic rings.
Reduction in 6-keto-PGF1α production occurs both for basal
release and for release stimulated by a range of endothelial
activators. Prostacyclin release was attenuated by mechanical
removal of the endothelium. n=6.

Figure 5.  COX-2-dependent prostanoid production by aorta versus other mouse tissues in Cox1-/- mice.  (a) PGE2 formation,
normalized to tissue mass, was measured by immunoassay in supernatants of Ca2+ ionophore A23187 (50µM)-stimulated tissue
segments from Cox1-/- mice. Cox1-/- tissues released a variable amount of PGE2 with low levels in the aorta (highlighted in red), and
substantially higher levels in the thymus, intestines, renal medulla, brain and vas deferens. This distribution correlates well with
luciferase expression in organs of the Cox2fLuc/+ mouse, as described in Figures 3 and 4. n=6.
doi: 10.1371/journal.pone.0069524.g005
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