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Abstract

Let V be a commutative valuation domain of arbitrary Krull-dimension, with quotient field
F , and let K be a finite Galois extension of F with group G, and S the integral closure of V in
K. Suppose one has a 2-cocycle on G which takes values in the group of units of S. Then one can
form the crossed product of G over S, S ∗ G, which is a V -order in the central simple F -algebra
K ∗ G. If we assume S ∗ G is a Dubrovin valuation ring of K ∗ G, then the main result of this
paper is that, given a suitable definition of tameness for central simple algebras, K ∗G is tamely
ramified and defectless over F if and only if K is tamely ramified and defectless over F . We also
study the residue structure of S ∗G, as well as its behaviour upon passage to Henselization.

Introduction

This paper is a sequel to [8], whose results we shall use freely. If R is a ring,
then R will denote its quotient modulo the Jacobson radical, Z(R) its centre and,
if X is a subset of R, then CR(X) will denote the centraliser of X in R. In the
case of fields, all valuation-theoretic notions and terminology are as defined in [2].
The rest of the terminology used, if not defined, has been described in [8]. Let V
be a commutative valuation domain with quotient field F , and let K be a finite
Galois extension of F with group G. Let S be the integral closure of V in K. Given
a two-cocycle which takes values in the group of units of S, we can always form
the crossed product S ∗ G =

∑
σ∈G Sxσ, which is a V -order in the central simple

F -algebra K ∗ G =
∑

σ∈G Kxσ. This object has been studied in [5, 13], among
other places, assuming that V is a DVR. Recently it has been studied in [8], for an
arbitrary valuation ring V .

Let Q be a central simple F -algebra, and let B be a subring of Q. Then B
is called a Dubrovin valuation ring of Q if it is a semihereditary order in Q and
B is a simple Artinian ring. For properties of such rings, the reader may consult
[1, 3, 4, 10, 12]. Suppose B is a Dubrovin valuation ring of Q with centre V .
Associated with the pair (B, V ), we have, according to [12], the value group of
B, ΓB = st(B)/U(B), where st(B) = {x ∈ U(Q) | xBx−1 = B} and U(·) is the
group of multiplicative units of a given ring; the ramification index of B over V ,
e(B | V ) = [ΓB : ΓV ], where ΓV is the value group of V ; and the residue degree
of B over V , f(B | V ) = [B : V ]. If p is the characteristic exponent of V , that is,
p = max {char(V ), 1}, it was shown in [12, Theorem C] that [Q : F ] = e(B |V )f(B |
V )η2pa for some positive integer η and non-negative integer a. We say that (Q,B)
is defectless over (F, V ) when [Q : F ] = e(B | V )f(B | V ). The number η is called
the extension number of V to Q, described in [3]. By [12, Theorem F], B is integral
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over V if and only if η = 1. We observe that, if S ∗G is a Dubrovin valuation ring,
which is the assumption for a greater part of this paper, then it is integral over V .

In the commutative case, we have the following situation. We fix once and for
all an extension W of V to K. Let n = [K : F ] =| G |; ΓW the value group of
W ; e = [ΓW : ΓV ], the ramification index of W over F ; f = [W : V ], the residue
degree of W over F ; and g be the number of extensions of V to K. It is known
that n = efgpd in this case, where d is a non-negative integer. Following [2], we say
that (K,W ) is defectless over (F, V ) if n = efg, and we say that (K,W ) is tamely
ramified over (F, V ) if char(V ) does not divide e and W is separable over V .

When B is a Dubrovin valuation ring of a central simple F -algebra Q, we will
therefore say that (Q,B) is tamely ramified over (F, V ) if Z(B) is separable over
V and char(V ) does not divide e(B | V ). We do not assume that p is co-prime to
[Q : F ]. However, our definition of tameness is in some sense stronger than that
of [6], which was applied only to division algebras with invariant valuation rings.
The main result of this paper justifies our choice of the definition of tameness. We
readily see that any Azumaya algebra over a valuation ring is tamely ramified and
defectless, by [10, Proposition 3.2] and [12, Corollary 3.4].

In section 1, we prove the main result of the paper, which states that, assuming
S ∗ G is a Dubrovin valuation ring, then K ∗ G is tamely ramified and defectless
over F if and only if K/F is tamely ramified and defectless. If we assume that K/F
is tamely ramified and defectless then, by [8, Theorem 2], J(S ∗G) = J(S) ∗G and
therefore S ∗G ∼= Mg(W ∗ GZ) by [8, Lemma 2], where GZ is the decomposition
group of W over F . Let GT be the inertia group of W over F . In section 2, it is
shown that when S ∗ G is a Dubrovin valuation ring and K/F is tamely ramified
and defectless, then W ∗GZ is a generalized crossed product of GZ/GT over W ∗GT .
A necessary and sufficient condition is given for the generalized crossed product to
become a classical crossed product algebra. In section 3, we show that, if (Kh,Wh)
is a Henselization of (K,W ), and (Fh, Vh) a Henselization of (F, V ), then (S ∗
G)⊗V Vh

∼= Mg(Wh ∗GZ). The value function associated with an integral Dubrovin
valuation ring described in [10] easily materializes in (K ∗G)⊗F Fh whenever K/F
is tamely ramified and defectless and S ∗G is a Dubrovin valuation ring.

1. Tamely Ramified Dubrovin Crossed Products

In this section, we prove the main result of this paper.

Lemma 1. Let C = Z(W ∗GZ). Then
(i) CW∗GZ (W ) = W ∗GT ,

(ii) WC ⊆ Z(W ∗GT ),
(iii) CW∗GZ (WC) = W ∗GT ,

(iv) W ∗ GZ is a simple ring if and only if W ∗ GT is a simple ring. When
this happens, Z(W ∗GT ) = WC and S ∗G is a Dubrovin valuation ring of
K ∗G.

Proof. (i). It is clear that W ∗ GT ⊆ CW∗GZ (W ). Now, let z ∈ CW∗GZ (W ).

One can write z =
∑

σ∈GZ wσxσ. Fix τ ∈ GZ . Since zw = wz ∀w ∈ W , we must

have wττ(w) = wτw ∀w ∈ W . Thus either wτ = 0 or τ ∈ GT . This shows that
z ∈ W ∗GT .
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(ii). We know C ⊆ CW∗GZ (W ) = W ∗GT . Therefore, WC ⊆ W ∗GT . Clearly,

we have WC ⊆ Z(W ∗GT ), since W ⊆ Z(W ∗GT ).

(iii). Since WC ⊆ Z(W ∗GT ), we have CW∗GZ (WC) ⊇ W ∗GT . On the other

hand, CW∗GZ (WC) ⊆ CW∗GZ (W ) = W ∗GT . So CW∗GZ (WC) = W ∗GT .

(iv). Suppose W ∗GZ is a simple ring. Since CW∗GZ (WC) = W ∗GT , W ∗GT

must be a simple ring. On the other hand, suppose W ∗ GT is a simple ring. We
will use a minimal length argument to show that W ∗GZ is a simple ring. Observe
that, since GT � GZ , W ∗ GZ ∼= (W ∗ GT ) ∗ (GZ/GT ). Let I be a two-sided ideal
of (W ∗ GT ) ∗ (GZ/GT ), I ̸= (W ∗ GT ) ∗ (GZ/GT ). Hence I ∩ (W ∗ GT ) = {0},
since W ∗ GT is simple. Let x = aσ1

xσ1
+ · · · + aσr

xσr
∈ I, with r minimal.

Since GZ/GT ∼= AutV (W ) by [2, Theorem 19.6], if r > 1, ∃ w ∈ W such that

σ1(w) ̸= σ2(w). Since W ⊆ Z(W ∗GT ), σ1(w), σ2(w) are central units of W ∗GT ,
and hence x− σ1(w)

−1xw is a shorter length element of I. This is impossible, and
hence r = 1 and x = aσ1

xσ1
. But then, xx−1

σ1
= aσ1

∈ I ∩ (W ∗GT ) = {0}. So x = 0

and hence I = {0}. Therefore W ∗GZ is a simple ring.
Since CW∗GZ (WC) = W ∗ GT , by the double centralizer property, WC =

CW∗GZ (W ∗GT ) ⊇ Z(W ∗GT ). Hence we have equality WC = Z(W ∗GT ). When

W ∗GZ is a simple ring, then S ∗G is a Dubrovin valuation ring by [8, Lemma 2].

Let GV be the ramification group of W over F . It is known that GV is the only
p-Sylow subgroup of GT , and a normal subgroup of GZ . Let f = f0p

s, where f0
is the degree over V of the maximal separable extension of V in W . Let e = e0p

t,
with p co-prime to e0. Since | GT |= epspd, we have | GV |= pt+s+d. We also know
that | GZ |= efpd.

Theorem 1. Suppose S ∗G is a Dubrovin valuation ring. Then (K ∗G,S ∗G)
is tamely ramified and defectless over (F, V ) if and only if (K,W ) is tamely ramified
and defectless over (F, V ). When this happens, f(S ∗G |V ) = ef2g2, and
e(S ∗G |V ) = e.

Proof. SupposeK∗G is tamely ramified and defectless over F . When char(V ) =
0, then K/F is tamely ramified and defectless. So we will assume p > 1. We will
first show that J(S ∗G) = J(S) ∗G.

Since by [11, Theorem 4.2] J(W ) ∗ GV ⊆ J(W ∗ GV ), we have W ∗GV =

W ∗GV , and hence W ∗GV is a purely inseparable field extension of W , by [11,

Lemma 16.3]. But the canonical ring epimorphism W ∗GV 7→ W ∗GV is W -linear.
Hence

dimW (W ∗GV ) 6 dimW (W ∗GV ) =| GV |= pt+s+d,

and thus [W ∗GV : W ] = pr, for some 0 6 r 6 s+ t+ d.
SinceGT�GZ , J(W∗GT )∗(GZ/GT ) is an ideal of (W∗GT )∗(GZ/GT ) = W∗GZ .

Further,

W ∗GZ

J(W ∗GT ) ∗ (GZ/GT )
∼= (W ∗GT ) ∗ (GZ/GT )

J(W ∗GT ) ∗ (GZ/GT )
∼=

(W ∗GT ) ∗ (GZ/GT ) ∼= (R1 ⊕ · · · ⊕ Rk) ∗ (GZ/GT ),
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where R1 ⊕ · · · ⊕ Rk is a finite direct sum of finite dimensional simple rings. Note
that W ⊆ Z(Ri) for all i, since GT acts trivially on W . Let Hi = {σ ∈ GZ/GT |
Rσ

i = Ri and σ is inner on Ri}. Let Ni be a Sylow p-subgroup of Hi. Using
a minimal length argument like the one employed in the proof of Lemma 1(iv)
above, we can show that Ri ∗ Ni is simple Artinian for i = 1, . . . , k. This shows

that (W ∗GT )∗ (GZ/GT ) is semisimple, by [14, Theorem 2.4(i)]. This implies that
J(W ∗GZ) = J((W ∗GT ) ∗ (GZ/GT )) = J(W ∗GT ) ∗ (GZ/GT ).

Since GV �GT and | GT /GV |−1∈ W ∗GV , we have J(W ∗GT ) =
J((W ∗ GV ) ∗ (GT /GV )) = J(W ∗ GV ) ∗ (GT /GV ) by [11, Theorem 4.2], and so
J(W ∗GZ) = J(W ∗GT ) ∗ (GZ/GT ) = J(W ∗GV ) ∗ (GZ/GV ), since GV �GZ .

Therefore,

W ∗GZ = (W ∗GV ) ∗ (GZ/GV ).

Since S ∗G/(J(S) ∗G) ∼= Mg(W ∗GZ) by [8, Lemma 2] and J(S) ∗G ⊆ J(S ∗G),

we have S ∗G ∼= Mg(W ∗GZ) ∼= Mg(W ∗GZ), which implies that

f(S ∗G | V) = [W ∗GV : W ][W : V ] | GZ/GV | g2 =

(pr)(f)(e0f0)g
2 =

prfe0p
tf0p

sg2

ptps
=

ef2prg2

ptps
.

Since K ∗G is defectless, e(S ∗G |V )f(S ∗G |V ) = n2. Therefore,

e(S ∗G |V )
ef2prg2

ptps
= e2f2g2p2d, and so we have e(S ∗G |V )pr = epdpt+s+d. Since

r 6 t + s + d, we can write e(S ∗ G | V ) = epdpt+s+d−r, where all exponents of p
are non-negative. But p is co-prime to e(S ∗G |V ), by assumption. Thus d = 0 and
r = t+ s. Therefore,

f(S ∗G | V) = ef2prg2

ptps
= ef2g2.

Now consider the canonical ring epimorphism

S ∗G
J(S) ∗G

= Mg(W ∗GZ) 7→ S ∗G.

This is V -linear. Since [ S ∗G
J(S) ∗G : V ] = ef2g2pd = ef2g2 = [S ∗G : V ], the map

must be a bijection. Hence S ∗G
J(S) ∗G is semisimple, and so J(S ∗G) = J(S) ∗G.

Thus by [8, Lemma 2], S ∗G = Mg(W ∗ GZ), which is a finite dimensional
simple algebra, since S ∗ G is a Dubrovin valuation ring of the finite dimensional
simple algebra K ∗G. Hence W ∗GZ is also a finite dimensional simple algebra with
the same center, say C. By Lemma 1, W ∗GT is a central-simple WC-algebra. But
C is Galois over V , by [12, Corollary B]. Hence, by Galois theory, WC is Galois
over W , and thus W ∗GT is a separable W -algebra. By [5, Lemma 4], this means
(|GT |, p) = 1. Hence K/F is tamely ramified and defectless, by [8, Lemma 1].

Now assume that K/F is tamely ramified and defectless. We have (p, |GT |) = 1,
by [8, Lemma 1]. Let C = Z(S ∗G). By [8, Theorem 2(a) & Lemma 2], S ∗G =
Mg(W ∗GZ), and so we have that C = Z(W ∗ GZ) and f(S ∗G |V ) = ef2g2. By
Lemma 1, C ⊆ Z(W ∗ GT ). But in this case W ∗ GT is separable over W by [13,
Theorem 1.1], and in turn W is separable over V . Therefore C is separable over V .

Since the Dubrovin valuation ring S∗G is integral over V , the extension number
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of V to Q is 1. Therefore by [12, Theorem C], n2 = e(S ∗ G | V )f(S ∗ G | V )pa,
where a is some non-negative integer. Since we know that f(S ∗G |V ) = ef2g2, we
see that e = e(S ∗ G |V )pa. But (p, e) = 1 by assumption. Therefore pa = 1, that
is, S ∗ G is defectless over V . Further, (p, e(S ∗ G |V )) = 1. The first statement is
therefore proved.

The other assertions are now self-evident from the proof.

We will see later in Section 3 that, with the assumption contained in Theorem
1, we have, in addition, the result that ΓS∗G ∼= ΓW .

Remark. The analogue of Theorem 1 does not hold for Dubrovin valuation
rings in general. For let K/F be a Galois extension that is not tamely ramified and
defectless, for example, the ones in Examples 1 and 2 of [8]. Consider a crossed
product algebra K ∗G, where the 2-cocycle is trivial. Although K/F is not tamely
ramified and defectless, any Dubrovin valuation ring B of K ∗ G lying over V is
Azumaya over V , asK∗G is split, and hence B is tamely ramified and defectless over
F by [10, Proposition 3.2] and [12, Corollary 3.4]. But then, B cannot be isomorphic
to S ∗ G in this case, by Theorem 1 or [8, Theorem 3]. Thus the requirement in
Theorem 1 that S ∗G be a Dubrovin valuation ring of K ∗G cannot be dropped.

Examples of tamely ramified and defectless Dubrovin crossed products can eas-
ily be constructed using [8, Theorem 3]. In Examples 1 and 2 of [8], we encounter
Dubrovin crossed products that are not tamely ramified, although they are defect-
less.

Proposition 1. Suppose K/F is tamely ramified and defectless. Then the
following are equivalent:

(i) S ∗G is a Dubrovin valuation ring of K ∗G.

(ii) W ∗GZ is a Dubrovin valuation ring of K ∗GZ .

(iii) W ∗GT is a Dubrovin valuation ring of K ∗GT .

(iv) W ∗GZ is a simple ring.

(v) W ∗GT is a simple ring.

Proof. Since K/F is tamely ramified and defectless, then, by [8, Theorem 2],
S ∗G is semihereditary and S ∗G = Mg(W ∗GZ). Thus S ∗G is Dubrovin valuation
ring if and only if W ∗GZ is a simple ring and, by Lemma 1, this is true if and only
if W ∗GT is a simple ring.

Now let FT (resp. FZ) be the inertia (resp. decomposition) field of W over F .
Both K/FT and K/FZ are tamely ramified and defectless, by [2, 22.1 & 22.3], since
K/F is. Further, we know that both W ∩FT and W ∩FZ are indecomposed in K,
by [2, Theorem 15.7]. Hence, by [8, Theorem 2(a)], both W ∗GT and W ∗GZ are
semihereditary, and J(W ∗GT ) = J(W )∗GT , J(W ∗GZ) = J(W )∗GZ . Therefore,
W ∗GT is a Dubrovin valuation ring if and only if W ∗GT is a simple ring, if and
only if W ∗GZ is a simple ring by Lemma 1(iv), if and only if W ∗GZ is a Dubrovin
valuation ring. The proposition is thus proved.

Another condition equivalent to S ∗G being a Dubrovin valuation ring will be
given in Theorem 3(ii).
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2. The Residue Structure of S ∗G

If S∗G is a tamely ramified and defectless Dubrovin valuation ring, then S ∗G ∼=
Mg(W ∗ GZ), and hence, to study the structure of S ∗G, one need only consider
W ∗GZ .

Let Q be a central simple F -algebra. It is not always possible to find a maximal
subfield of Q which is a Galois extension of F , that is, Q need not be a “classical”
crossed product algebra. What is often the case is that there exists a subfield L
of Q which is Galois over F but [L : F ]2 < [Q : F ]. If A is the centralizer of L
in Q, and H is the Galois group of L over F , then Q is said to be a generalized
crossed-product of H over A. In case L is a maximal subfield of Q, we will say that
Q is a classical crossed product algebra. Recall that if B is a Dubrovin valuation
ring of Q with center V , then each a ∈ st(B) induces a ring automorphism of B via
conjugation. In fact, Wadsworth [12, Corollary B] showed that this map induces a
surjection ω : ΓB/ΓV 7→ AutV (Z(B)) (see also [3, Corollary 4.4(i)]). When K/F is
tamely ramified and defectless and S ∗G is a Dubrovin valuation ring, then S ∗G
is tamely ramified and defectless, by Theorem 1, and hence Z(S ∗G) is Galois over
V , by [12, Corollary B].

Theorem 2. Suppose S ∗G is a tamely ramified and defectless Dubrovin val-
uation ring of K ∗G. Let C = Z(W ∗GZ). Then:

(i) a. We have that WC = Z(W ∗GT ),
b. further, WC is Galois over both W and C,
c. Gal(WC/C) ∼= Gal(W/V ) ∼= GZ/GT and Gal(WC/W ) ∼= Gal(C/V ),
d. W ∗GZ is a generalized crossed product of GZ/GT over W ∗GT .

We have the following diagram:

V = W ∩ C
@

@@

�
��

W C = Z(W ∗GZ)

�
��

@
@@

WC = Z(W ∗GT )

W ∗GT

W ∗GZ

(ii) The Wadsworth map, ω, is a bijection if and only if W ∗GT is commutative.
When this happens, W ∗GT is a maximal subfield of W ∗GZ , it is Galois
over C, and W ∗GZ is a classical crossed product algebra of GZ/GT over
W ∗GT .

Proof. By Lemma 1, WC = Z(W ∗GT ). Now, we know that W is Galois over
V , with group GZ/GT , since K/F is tamely ramified. Also, as we noted before the
theorem, C is Galois over V . We claim that W ∩ C = V . To see this, note that if
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w ∈ W ∩ C, then wxσ = xσw ∀ σ ∈ GZ ⇒ σ(w) = w ∀ σ ∈ GZ/GT . This means
w ∈ V , since W/V is Galois with group GZ/GT . The first part of the theorem now
follows from Galois theory and Lemma 1(iii).

As for second part, note that

e = [W ∗GT : WC][WC : W ] = [W ∗GT : WC][C : V ].

From Theorem 1, we know that [ΓS∗G : ΓV ] = e. Thus ω is a bijection if and only if
[C : V ] = e, if and only if [W ∗GT : WC] = 1, if and only if W ∗GT is commutative.
When this happens, W ∗GT is a field. Further, we now also have

[W ∗GT : C]2 = [WC : C]2 = [W : V ]2 = f2

= [W ∗GZ : W ∗GT ][WC : C] = [W ∗GZ : C].

Therefore, W ∗ GT is a maximal subfield of W ∗ GZ , and a Galois extension of C
by the first part of the theorem. The proof is now complete.

Remark. From a purely ring-theoretic point of view, the distinction between
generalized crossed products and classical crossed products is superfluous in this
case: since GT �GZ , W ∗GZ ∼= (W ∗GT ) ∗ (GZ/GT ), and hence W ∗GZ is always
a crossed product of GZ/GT over W ∗GT .

The following corollary now follows easily from Theorem 1 and its proof, and
from Proposition 1 and Theorem 2.

Corollary 1. The order S ∗G is a tamely ramified and defectless Dubrovin
valuation ring if and only if W ∗GT is a simple separable W -algebra; it is a tamely
ramified and defectless Dubrovin valuation ring and the Wadsworth map is a bijec-
tion if and only if W ∗GT is a separable field extension of W .

When K/F is tamely ramified and defectless, then (|GT |, p) = 1, by [8, Lemma
1]. Therefore, by [2, Corollary 20.10(b), Corollary 20.12, & 20.2], GT ∼= ΓW /ΓV ,
and so GT is abelian. Thus, if f is the 2-cocycle (not to be confused with the
residue degree of W over F ), then W ∗GT is commutative if and only if f(σ, τ)−
f(τ, σ) ∈ J(W ) ∀σ, τ ∈ GT . But this characterization of the commutativity of
W∗GT is hardly illuminating; indeed, an example of a tamely ramified and defectless
Dubrovin valuation ring S ∗ G with W ∗ GT non-commutative is unknown to us,
and may well not exist! However, when V is a DVR or, more generally, when GT is
cyclic, then W ∗GT is commutative. This is the essence of the following proposition.

Recall that the initial index of W over F , ϵ(W |F ), or just ϵ when the context is
clear, is the number of elements in the set {δ ∈ ΓW | 0 6 δ < γ for all positive γ ∈
ΓV}. It is known that ϵ 6 e.

Lemma 2. The ring S∗G is finitely generated over V if and only if S is finitely
generated over V, if and only if K/F is defectless and ϵ = e.

Proof. Suppose S∗G is finitely generated over V , with a generating set {yi}li=1,

say. Write yi =
∑

σ∈G s
(i)
σ xσ. Then {s(i)1 }li=1 is a generating set for S over V . The

converse is obvious.
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On the other hand, S is finitely generated over V if and only if K/F is defectless
and ϵ = e, by [2, Theorem 18.6]

Proposition 2. Suppose S ∗ G is a tamely ramified and defectless Dubrovin
valuation ring of K ∗ G. When e(B | V ) is square-free, or when S ∗ G is finitely
generated over V , then the Wadsworth map is a bijection.

Proof. We will show that, in either case, GT is cyclic. We know that K/F
is tamely ramified and defectless, and hence GT ∼= ΓW /ΓV , as we already noted
above. Since | GT |= e = e(B |V ), if e(B |V ) is square free then GT is cyclic, since
it is abelian.

Now suppose S ∗G is a finitely generated Dubrovin valuation ring. We will show
that GT is again cyclic. Let E = {δ ∈ ΓW | 0 6 δ < γ for all positive γ ∈ ΓV}.
Then E = {δ0, δ1, . . . , δϵ−1}, where 0 = δ0 < δ1 < δ2 < · · · < δϵ−1. We claim that
δi = iδ1, 0 6 i 6 ϵ−1. This clearly holds for i = 0, 1. Assume δj = jδ1 for all 0 6 j <
k 6 ϵ− 1, for some k. If δk > kδ1, then δk−1 = (k − 1)δ1 < kδ1 < δk, contradicting
the fact that, by definition of E, kδ1 ∈ E. On the other hand, if δk < kδ1, then
we have (k − 1)δ1 = δk−1 < δk < kδ1 ⇒ 0 < δk − δk−1 < kδ1 − (k − 1)δ1 = δ1,
again contradicting the fact that δk − δk−1 ∈ E. So we must have δi = iδ1 for all
0 6 i 6 ϵ− 1. But by Lemma 2, we have that e = ϵ. Hence ΓW /ΓV , and therefore
GT , is a cyclic group, by the foregoing argument.

Since GT is a cyclic group, and it acts trivially on W , W ∗GT must be commu-
tative. The result now follows from Theorem 2.

Remarks. It appears that the inertia group, GT , plays a critical role in the
behaviour of S ∗ G. To start with, when W ∗ GT is a simple ring, then S ∗ G is a
Dubrovin valuation ring. The converse is false: in both Examples 1 and 2 of [8],
G = GT and J(S ∗G) ⊃ J(S) ∗G and hence W ∗GT (= S ∗G = S ∗G/(J(S) ∗G))
is not a simple ring.

Further, when W ∗ GT is W -separable, then S ∗ G is semihereditary, from the
proof of [8, Theorem 2]. When W ∗GT is a simple separable W -algebra, then S∗G is
a tamely ramified and defectless Dubrovin valuation ring and conversely. If S ∗G is
a tamely ramified and defectless Dubrovin valuation ring and GT is cyclic or, more
generally, when W ∗ GT is a separable field extension of W , then the Wadsworth
map is a bijection.

3. The Henselization of S ∗G

Let B be an integral Dubrovin valuation ring of a central simple F -algebra Q.
In [10], we encounter a value function Φ : Q 7→ ΓB ∪{∞} associated with B, which
is a surjection, and has the following defining properties: for all x, y ∈ Q, we have

(i) Φ(x) = ∞ if and only if x = 0,
(ii) Φ(x+ y) > min {Φ(x),Φ(y)},
(iii) Φ(xy) > Φ(x) +Φ(y),
(iv) B = {x ∈ Q | Φ(x) > 0} and J(B) = {x ∈ Q | Φ(x) > 0},
(v) Φ(Q) = Φ(st(Φ)) ∪ {∞}, where st(Φ) = {x ∈ U(Q) | Φ(x−1) = −Φ(x)}.
Let (Kh,Wh) be a Henselization of (K,W ) (see [2, §17] for definition). Their

value groups are the same, that is, ΓWh
= ΓW . We let v be a valuation on Kh

corresponding to Wh. Let (Fh, Vh) be the unique Henselization of (F, V ) contained
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in (Kh,Wh) [2, Theorem 17.11]. By [2, 17.16 & Theorem 17.11], we see that Kh =
KFh. Note that W ∩ (K ∩ Fh) is indecomposed in K, since Vh is indecomposed
in Kh. Hence, by [2, Theorem 15.7], we have FZ ⊆ K ∩ Fh, where FZ is the
decomposition field of W over F . But since K/F is a finite Galois extension, [2,
Theorem 17.7] implies [K : F ] = [Kh : Fh]g, hence [K ∩ Fh : F ] = g, and so we
must have FZ = K ∩ Fh. The Galois extension Kh/Fh has therefore group GZ .
Also, a routine argument verifies that (K,W ) is tamely ramified and defectless
over (FZ ,W ∩FZ) precisely when (Kh,Wh) is tamely ramified and defectless over
(Fh, Vh).

Any σ ∈ G can be considered as a ring automorphism on K⊗F Fh via the action
σ(k⊗ u) = σ(k)⊗ u, for k ∈ K,u ∈ Fh. Also, if f is the 2-cocycle, then f(σ, τ) can
be identified with f(σ, τ) ⊗ 1 ∈ U(S ⊗V Vh), for all σ, τ ∈ G. The restriction of σ
to S ⊗V Vh is again an automorphism. Therefore there is a canonical Fh-algebra
isomorphism from (K ∗G)⊗F Fh to (K ⊗F Fh) ∗G mapping kxσ ⊗ u to (k⊗ u)xσ,
which restricts to an isomorphism between (S ∗G)⊗V Vh and (S ⊗V Vh) ∗G.

Theorem 3. We have
(i) (K ∗G)⊗F Fh

∼= Mg(Kh ∗GZ) and (S ∗G)⊗V Vh
∼= Mg(Wh ∗GZ),

(ii) the order S ∗G is a Dubrovin valuation ring of K ∗G if and only if Wh ∗GZ

is a Dubrovin valuation ring of the central simple Fh-algebra Kh ∗GZ ,
(iii) if S∗G is a tamely ramified and defectless Dubrovin valuation ring of K∗G,

then the map ϕ from Kh ∗ GZ to ΓW ∪ {∞} given by ϕ(
∑

σ∈GZ kσxσ) =
minσ∈ GZ{v(kσ)} is a value function corresponding to the Dubrovin valu-
ation ring Wh ∗GZ .

Proof. Since K ⊗F Fh
∼= ⊕g

i=1Kh and, by [4, Proposition 11], S ⊗V Vh
∼=

⊕g
i=1Wh, we see that (K ∗ G) ⊗F Fh

∼= (K ⊗F Fh) ∗ G ∼= (⊕g
i=1Kh) ∗ G and

(S ∗ G) ⊗V Vh
∼= (S ⊗V Vh) ∗ G ∼= (⊕g

i=1Wh) ∗ G. The first statement now follows
from [14, Proposition 2.3].

We know that S∗G is semihereditary if and only if (S∗G)⊗V Vh is semihereditary
by [7, Theorem 3.4] or [9, Theorem 2.7]. Moreover, S ∗G is a simple ring if and only
if (S ∗G)⊗V Vh is a simple ring by [7, Lemma 3.1(5)]. Therefore, the order S ∗G
is a Dubrovin valuation ring if and only if (S ∗ G) ⊗V Vh is a Dubrovin valuation
ring and, by [1, Theorem 7, §1], (S ∗G)⊗V Vh is a Dubrovin valuation ring if and
only if the Morita-equivalent ring, Wh ∗GZ , is a Dubrovin valuation ring.

By Theorem 1, K/F is tamely ramified and defectless hence, as in the proof
of Proposition 1, we have that K/FZ is tamely ramified and defectless. Therefore
Kh/Fh is also tamely ramified and defectless, and so J(Wh ∗ GZ) = J(Wh) ∗ GZ

by [8, Theorem 2(a)] . Hence condition (iv) for a value function holds. The other
conditions are easily seen to hold as well. The last statement is thus proven.

Corollary 2. Suppose S ∗ G is a tamely ramified and defectless Dubrovin
valuation ring of K ∗G. Then we have

(i) ΓS∗G ∼= ΓW ,
(ii) the Wadsworth map is a bijection if and only if Gal(Z(S ∗G)/V ) ∼= GT .

Proof. The map Φ from Mg(Kh ∗ GZ) to ΓW ∪ {∞} given by Φ((xij)) =
mini,j{ϕ(xij)} is a value function corresponding to the Dubrovin valuation ring
Mg(Wh ∗GZ). Hence Γ(S∗G)⊗V Vh

∼= ΓW , by [10, Theorem 2.3]. Since (S ∗G)⊗V Vh
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is an immediate extension of S ∗G by [12, §4], the first result follows. We conclude
from the proof of [10, Lemma 2.2], and from [10, Theorem 2.3], that there is a
surjective homomorphism from st(S ∗G) to ΓW /ΓV whose kernel is U(S ∗G) ·U(F ),
and so we have ΓS∗G/ΓV

∼= ΓW /ΓV . Therefore, if the Wadsworth map is a bijection,
then Gal(Z(S ∗G)/V ) ∼= GT . On the other hand, if Gal(Z(S ∗G)/V ) ∼= GT then
| ΓS∗G/ΓV |=| Gal(Z(S ∗G)/V ) | by Theorem 1, and it immediately follows that
the Wadsworth map is a bijection.

Remark. Recall that W is said to be unramified over F if e = 1 and W is
separable over V . We now can obtain a different proof of the fact that, if S ∗ G
is Azumaya over V , then K/F is unramified and defectless [8, Theorem 3]: since
S ∗G is Azumaya over V , it is a tamely ramified and defectless Dubrovin valuation
ring, and hence K/F is tamely ramified and defectless by Theorem 1. In addition,
from [12, Corollary 3.4] we have that ΓS∗G = ΓV . It follows from Corollary 2 that
ΓW = ΓV , hence e = 1 and K/F is unramified and defectless. The converse of [8,
Theorem 3] is well known.

Just as we have been able to define tame central simple algebras, we now define
inertial central simple algebras. In the commutative case, W is said to be inertial
over F if [K : F ] = f and W is separable over V . Therefore, given an arbitrary
Dubrovin valuation ring B of Q, we will say that (Q,B) is inertial over (F, V ) if
[Q : F ] = f(B |V ) and Z(B) is separable over V , following the terminology used if
Q were a division algebra with B as an invariant valuation ring.

In the case when V is Henselian and Q is a division ring with B as an invariant
valuation ring, it was shown in [6, §2] that B is inertial over F if and only if it is
Azumaya over V . We now easily generalize this result. We hasten to point out that
[6] is a far-reaching account of division algebras over Henselian fields.

Proposition 3. A Dubrovin valuation ring B of Q is inertial over F if and
only if it is Azumaya over V .

Proof. Suppose B is inertial over F . First, assume V is Henselian. Then B ∼=
Ml(∆), where ∆ is an invariant valuation ring of the underlying division algebra
part of Q. Clearly, ∆ is also inertial over V , and hence it is Azumaya over V , by
[6, Lemma 2.2]. Therefore B is Azumaya over V .

For an arbitrary V , first note that by [10, Proposition 3.2], B has to be integral
over V , as well as finitely generated. Hence B ⊗V Vh is also a Dubrovin valuation
ring, since B is integral. Since B ⊗V Vh is an immediate extension of B, B ⊗V Vh

is inertial over Fh. Thus B ⊗V Vh is Azumaya over Vh, and hence Z(B ⊗V Vh) =
Vh = V . But all this means that B is a finitely generated Dubrovin valuation ring,
and B is a central simple V -algebra, hence B is Azumaya over V .

Suppose B is Azumaya over V . Then it is finitely generated and hence by [10,
Proposition 3.2], it is defectless. But e(B | V ) = 1, by [12, Corollary 3.4]. Thus
[Q : F ] = f(B |V ) and, since Z(B) = V , B is inertial over F .

By [8, Theorem 3], we immediately have the following.

Corollary 3. Let K/F be an arbitrary Galois extension.
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(i) The V -order S ∗G is a Dubrovin valuation ring inertial over F if and only
if K/F is unramified and defectless.

(ii) If V is Henselian, then S ∗G is a Dubrovin valuation ring inertial over F
if and only if K/F is an inertial extension.
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