
Efficiency analysis of a physical problem: Different
parallel computational approaches for a dynamical

integrator evolution.

Adriana Gaudiani1, Alejandro Soba2,3, and M. Florencia Carusela1,3

1 Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Argentina
agaudi@ungs.edu.ar

2 Comisión Nacional de Energı́a Atómica
Buenos Aires, Argentina

3 Conicet, Argentina

Abstract. A great challenge for scientists is to execute their computational ap-
plications efficiently. Nowadays, parallel programming has become a fundamen-
tal key to achieve this goal. High-performance computing provides a solution to
exploit parallel architectures in order to get optimal performance. Both parallel
programming model and the system architecture will maximize the benefits if
both together are suitable to the inherent parallelism of the problem.
We compared three parallelized versions of our algorithm when applied to the
study of the heat transport phenomenon in a low dimensional system. We quali-
tatively analyze the obtained performance data based on the own characteristics
of multicore architecture, shared memory and NVIDIA graphical multiprocesors
related to the traditional programing models provided by MPI and OpenMP, and
Cuda programming environment.
We conclude that GPUs parallel computing architecture is the most suitable pro-
graming model to achieve a better performance of our algorithm. We obtained
an improvement of 15X, quite good for a program whose efficiency is strongly
degraded by an integration process that essentially must be carried out in a serial
way due to the dependence of the data.

1 Introduction

To analyze the dynamic evolution of a real system requires the development
of a model that should include among other things the characteristic times of
the phenomenon under study. Generally, these models are expressed as differ-
ential equations. Depending on the type, these equations are integrated using
different numerical integration methods. This requires discretizing the equa-
tions, where the length of the integration step δT must be directly related to
relevant timescales of the real physical problem, and the total time t = δT.T
(T total number of integration steps) must correspond to times longer than the
typical duration of the phenomenon under study. This is a necessary condition
to achieve an adequate insight of the problem. However, t has not necessarily

275

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/18303797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a direct correlation with the real time of the simulation, which depends on the
characteristics of the algorithm implemented.

In particular, parallel algorithms discussed in this paper are applied to study
the phenomenon of heat transport in one-dimensional devices immersed in ther-
mal environments. A serial execution of this algorithm is executed in times mea-
sured in days. Thus in order to optimize the computational resources and to
reduce the large execution times required in the case of a simple serial integra-
tion, we propose different parallel implementations. We present schematically
the main idea in Figure 1

Fig. 1. The major steps from problem to a parallel computational solution.

In this paper, we describe the performance results that we obtained of our
parallel algorithm implementation, using three parallel programming models
and giving an overview of the heat algorithm behavior in each of our parallel im-
plementations. They are message passing model with MPI on distributed mem-
ory systems, shared memory with OpenMP on multicore systems and finally,
data parallelism on graphic processing units (GPUs) in a single instruction-
multiple thread (SIMT) architecture.

Organization: This paper is organized as follows. In section 2 is given an
overview of heat transport algorithm and parallel programming models used to
improve the algorithm, along with the desired features on applications that will
benefit from these High Performance Computing Systems (HPCS). In section
3 we discuss the performance of our parallel implementations and compare the

276



programming effort and resulting performance. In section 4 and 5 we present
the experimental results and conclusions of our work respectively.

2 Background

In this section we first present the general features of the heat transport algo-
rithm, then we highlight those desired aspects for efficient execution of parallel
algorithms as a function of the target architecture.

2.1 The heat transport algorithm

The device is modeled with two chains of N/2 atoms with harmonical nearest
neighbors interactions with a strengh constant ki, i = 1, N + 1. xi denotes the
displacement from the equilibrium position of each particle. The system prop-
erties are obtained in the stationary regime, that is when the system thermalize.
If the integration is made with the stochastic Runge-Kutta (SRK) [3] algorithm
and for the chosen time step (discussed below), the last condition is fulfilled for
T > 108 integration steps [1]. Moreover, we are also interested in the effect that
the size system N has on the thermal properties of the physical system. But, as
the thermalization time also depends on the number of atoms N , the size study
requires to increase the integration time and the memory resources.

The dynamical equations can be written in a non dimensional form as:

ẍi = F (xi) + ki(xi+1 + xi−1 − 2xi); i = 2...N − 1
ẍi = F (xi) + ki(xi+1 + xi−1 − 2xi)− γẋi +

√
(2γKBTL,R)ξi(t); i = L,R

(1)
ẋi, ẍi are the velocity and acceleration of the atom i respectively, F (xi) is a

periodic on-site potential that model a substratum and the last term corresponds
to the harmonic interaction.

The system is driven out of equilibrium by two mechanisms:
a) The ends of the segments are in contact with Langevin type thermal reser-

voirs with zero mean and variance < ξL/R(t), ξL/R(t
′) > = 2γKBTL,Rδ(t −

t′), where γ is the strengh of the coupling between the system and the baths.
The temperatures of the L/R (left/right) thermal baths are simultaneously mod-
ulated in time with frequency ωtemp: TL,R(t) = T0,i(1 +∆sgn(sin(ωtempt)),
i = L,R, where T0,i is the reference temperature of each reservoir and T0,i∆ is
the amplitude of the modulation. Only the atoms at the ends are inmersed in the
thermal reservoirs.

b)The modulation of the coupling between the two segments is given by
kN/2(t) = K0(1 + sin(ωKt)), with frequency ωK .

277



The dynamical evolution is obtained integrating the system given in Eq.1
with a stochastic Runge-Kutta algorithm (SRK), with an integration steps δT =
0.005. This time step corresponds to a physical time greater than the relaxation
time of the reservoirs.

The thermal properties of the system are obtained in the stationary regime,
that is when the system thermalize. This condition is fulfilled if the integration
with the SRK method and the chosen time step is made for T > 108 integration
steps. More over, we are also interested in the size effect (N ) on the thermal
properties. However as the thermalization time also depends on the number of
oscillators N , this study requires an increase of the integration time and the
memory resources.

We tailor the heat transport algorithm for the different parallel computing
architectures, taking into account that for every time stage of the numerical
method, the data for the xi element depends on xi−1 and xi+1 at the same time.
These interactions are first neighbors type and they are schematically shown in
Figure 2

Fig. 2. Schematic diagram of the physical model

For the purpose of study the system behavior we must run several scenar-
ios by combining different values of frequency (ωK) and temperature (ωtemp)
parameters. This means investing a longer execution time than for a single pair
(ωK , ωtemp) of parameters. We must consider that the complexity order of the
heat algorithm for a single pair is O(T ∗ 2N ), as shown by the author of this
paper [4]. Notwithstanding we use chains of N=256 to N=2048 oscillators for
this work, we need to increase these values in the physical problem.

2.2 Parallel Programming Overview

Developing a parallel application is strongly conditioned by the system on which
this will be deployed and the programming model chosen. But the choice of the
model is made in terms of the available parallel computational resources and the
type of parallelism inherent in the problem. In parallel computation the most

278



common alternatives today are message passing, data parallelism and shared
memory. In the following, we describe some features of the three standard par-
allel programming models[2].

MPI is a standard for parallel programming on distributed memory systems,
as are clusters. MPI communication libraries provide an interface for writing
message passing programs. The most important goals of this model are: achiev-
able performance, portability and network transparency. However, some MPI
applications do not scale when the problem size is fixed and the number of core
is increased, also they perform poorly when require large shared memory. Our
MPI program uses message passing for communications and it was designed
in a Single Program Multiple Data (SPMD) way as parallel paradigm. SPMD
applications compute a set of tasks and then communicate the results to their
neighbors. Just as in our application, tasks need information of their neighbors
before proceeding with the next iteration.

The two major hardware trends impacting the parallel programming today
are: the rise of many-core CPU architectures and the inclusion of powerful
graphics processing units (GPUs) in every desktop computer [6].

OpenMP is a portable approach for parallel programming on shared memory
systems that offer a global view of application memory address space, helping
to facilitate the development of parallel programs. OpenMP on shared memory
systems has become a solution to solve a wide range of large-scale scientific
problems which can be solved in parallel to decrease the execution time [8].

GPUs are an inexpensive commodity technology that is already ubiquitous.
These technology is highlighted by massively many-core multiprocessors and
data level concurrency. It provides a general purpose parallel computing archi-
tecture, in the case of modern NVIDIA GPUs it is called Compute Unified De-
vice Architecture (CUDA). In general purpose computing the GPU is used as
CPU co-processor in order to accelerate a specific computation. CUDA enables
to divide the parallel program execution in tasks that can run across thousands of
concurrent threads mapped to hundreds of processor cores. The application ben-
efit with GPUs parallelism when code is written in a Single Instruction Multiple
Data (SIMD) mode, this means many elements can be processed in lockstep
running the exact same code [9].

3 Parallel Implementations

Our experiences were carried out in a 56 nodes multicluster Intel(R) Dual Core
Xeon(TM) 5030 of 2.66GHz processors with a infiniband switch, a multicluster
32 cores Intel Xeon(R) E5-2680 of 2.70GHz and 20MB L2 cache and 64 GB

279



of RAM memory and a GPU Geforce GTX 560TI Fermi GF114 with capability
2.1 and 1Gb de RAM.

The main computation in the heat transport problem is the SRK algorithm.
The numerical method simulates the system evolution over time and it computes
each oscillator status at each iteration. This type of computational approach
forces a serial integration with no possibility of distributing task between sev-
eral processes. As we need T > 108 time steps and oscillator chains with more
than 2000 elements, it becomes crucial to minimize the SRK execution time.
We address this problem by writing the three versions of our algorithm and then
evaluate the performance achieved.

Our first approach was a MPI parallelization when we had to deal with
inter-process communication to reduce the overhead. The SPMD implementa-
tion works with a simple mapping method by assigning identical amount of data
- chain elements - for each process. The features inherent to the problem are the
cause of a compulsory data transfer between the neighbours in the chain, be-
cause in each integration steps we need data of the last step. This fact is respon-
sable of the bad performance of the MPI implementations (not showed here),
where a severe degradation of the speed-up even with two process are obtained,
no matters the increment up to N=2000 and despite of the low latency of the
network (¡180ns). Expected result, because the kind of algorithms used and to
the large number of explicit time steps needed, is neccesary mention that the
amount of time needed to perform a complete integration for the whole set is
aproximately 0.3 ms.

The next stage was to develop a parallel program for a shared memory ar-
chitecture with OpenMP. It was a fairly simple task taking advantage that data
are read from memory shared by all processes. By avoiding inter-processes mes-
sage passing we reduced the overhead and got a good performance, as explained
in the next section. The pseudocode is shown in Figure 3. The difficulty with
OpenMP is that it is often hard to get decent performance, especially at large
scale[5].

Finally we present our GPU implementation for the integrator SRK algo-
rithm. We wrote a CUDA kernel to carry out the parallel version taking into
account the data dependencies inherent to the problem. The thread tasks are
represented by the kernel code and kernels are mapped over a structured grid of
threads. The program structure is sketched in Figure 4.

The whole SRK operations performed on each chain element are carried
out concurrently by the kernel code launched on every thread. The threads are
mapped to processors depending on the grid configuration, that is how many
blocks and threads per block are specified when invoking the kernel. It should
be noted that the results of the intermediate steps need to be copied to host

280



Fig. 3. OpenMP pseudocode program

memory. This copy is performed in ocassion to store partial results, and it is
an overhead source. We used Occupancy Calculator spreadsheet to select the
best data layout and to maximize Stream Multiprocessors occupancy [7]. In our
program, we achieve the best performance when each block has 256 threads.

4 Performance Evaluation

In this section we evaluate the computational performance of heat transport al-
gorithm on the three platforms.

1. MPI parallel algorithm: we analize the system behavior for a number of os-
cillators between 256 up to 2000. As we mentioned in the earlier section a
dramatic performance degradation with the increase in number of processors
is visible. Due to the domain division and the requirement in the integration
process of interchange the information related to first neighbors in the chain,
the amount of communications increases as a result of continually updating
the state of those elements. As a consequence of this the performance is not
better even in case of add more particles in the chain, because the bottle
neck in the code still are the neighbors communications and this number

281



Fig. 4. High Level Structure of CUDA program.

increases with the numbers of domains used. The numerical integrator SRK
does not allow the possibility of parallelize the main loop, that is why the
performance of this technique is limited to only a few processors. Compar-
ing the estimated latency time (aprox. 180 ns) and the integration of a one
single time step of the whole set (aprox. 0.3ms) we are sure than the intro-
duced overhead in the comunication is responsable of this degradation in the
speed-up.

2. OpemMp parallel algorithm: We used two multicores cluster, a 32-Core In-
telXeon and a 8-Core Xeon. Figure 5 displays the speed-up achieved in
both systems for 256 and 1024 chain elements. In this approach, data struc-
tures are allocated in shared memory and stay there for every loop during
the execution, so we launched a team of threads to parallelize the SRK algo-
rithm. We parallelized those loops in which computation is independently
of one another, but still endures the overhead imposed by the serialization
of the integration process. The process of updating oscillators states at each
iteration was benefited with this programming model. We get a maximum
efficiency of 41% for 8 processors and 256 chain oscillators and 66% for
1024 oscillators. The scheduling scheme was delegated to the compiler and
runtime system, the results were similar to static and dynamic scheduling.

282



Figure 5

Fig. 5. OpenMP implementation results. The percentages represent the quality of the result with
respect to the ideal case i.e. the amount of resources used.

3. As can be seen in Figure 4, its central part, CUDA SRK kernel is invoked
within the main loop, running in CPU, and mapped on threads configuration.
This main loop is governed by the number of integration steps. It means, 108

times or more. We were able to achieve a significant improvement in overall
system performance. The timed computation is represented in the central
part of the figure, including both CPU main loop and memory transfer over-
head between memory RAM and GPU device. Chain oscillator interactions
as we see in Figure 2 represent a problem to solve. So, we used shared
memory into kernel code when accessing data structures to improve perfor-
mance. The maximum speedup achieved is 15X for 8192 oscillators, and it
was measured as the ratio between serial and parallel time. Serial run was
done on a CPU Intel 8 Core i7-2600 - 3.4 GHz. Kernels execution time re-
main constant between 16 to 256 oscillators, then between 1024 and 8192
oscillators.The warps threads don’t diverge and they keep maximum GPUs

283



occupancy. In Figure 6, we show this results when the kernel is launched
with 256 threads per block. As can be seen, we increase the load, but time
does not increase, and we can process 8192 oscillators at the same time as
2048!, meanwhile CPU execution time grows exponentially with load. For
this reason, GPU approach is a very good choice.

Fig. 6. GPU and Serial runtimes. Results represent execution time, using Time Steps=8000000
and Threads per Block=256.

5 Conclusions and Future Work

This work has applicability in the modelling of many low-dimensional physi-
cal systems and technological applications in different scales. In particular our
proposal is the study of the heat transport phenomenon along one-dimensional
nanodevices. Despite the model studied here is rather simple, it is usually a good
first approach to achieve a qualitative and quantitative physical insight of the
phenomenon of energy transfer. On the other hand, the computational model of
this problem consumes a high runtime, prompting the use of parallel computing
resources.

284



We have shown the suitability of commodity GPUs and a parallel CUDA-
based algorithm for solving this problem, in particular when long chains are
considered. The MPI implementation is inefficient in this case. We are working
to further improve these results taking advantage of the availability of hibrid
computers for high performance computing.

6 Acknowledgment

The authors thank to CECAR - FCEN - UBA and III-LIDI- Facultad de In-
formtica - UNLP for the opportunity to have access to a 32-Core IntelXeon and
a 8-Core Xeon in CECAR and a BLADE multicore Xeon(TM) 5030 and a GPU
Geforce GTX 560TI in III-LIDI.

References

1. Beraha N., Barreto R., Soba A., Carusela M.F. in preparation.
2. Dongarra J., Sterling T., Simon H., Strohmaier E., High-performance computing: clusters,

constellations, MPPs, and future directions. Journal of Computing in Science & Engineering,
7 (2005) 51–59

3. Honeycutt, Rebecca L., Physical Review A (Atomic, Molecular, and Optical Physics), Volume
45, Issue 2, January 15, (1992), pp.600-603

4. Januyszewski M., Kostur M., Accelerating numerical solution of stochastic differential equa-
tions with CUDA. Computer Physics Communictions. Elsevier. 181 (2010) 183–188

5. Jin H., Jespersen D., Mehrotra P., Biswas R., Chapman B. High performance computing using
MPI and OpenMP on multi-core parallel systems. Parallel Computing. Elsevier. 37 (2011) 562-
575

6. Lobachev O., Guthe M., Loogen R. Estimating parallel performance. Journal of Parallel and
Distributed Computing. Elsevier. 73 (2013) 876-887

7. Nickolls J., Dally W.: The GPU Computing Era. IEEE Micro. (2010) 56–69
8. Muresano R., Rexachs D., Luque E. How SPMD applications could be efficiently executed

on multicore environments?. IEEE International Conference on Cluster Computing and Work-
shops. (2009)

9. Schenk O., Christen M., Burkhart H.: Algorithmic performance studies on graphics process-
ing units. Parallel Distributed Computing. Elsevier. 68 (2008) 1360–1369

285




