
Managing Receiver-Based Message Logging
Overheads in Parallel Applications

Hugo Meyer?, Dolores Rexachs, and Emilio Luque

Computer Architecture and Operating Systems Department,
University Autonoma of Barcelona, Barcelona, Spain

{hugo.meyer}@caos.uab.es

{dolores.rexachs,emilio.luque}@uab.es

http://www.uab.es

Abstract. Using rollback-recovery based fault tolerance (FT) techniques
in applications executed on Multicore Clusters is still a challenge, be-
cause the overheads added depend on the applications’ behavior and
resource utilization. Many FT mechanisms have been developed in re-
cent years, but analysis is lacking concerning how parallel applications
are affected when applying such mechanisms. In this work we address
the combination of process mapping and FT tasks mapping on multi-
core environments. Our main goal is to determine the configuration of
a pessimistic receiver-based message logging approach which generates
the least disturbance to the parallel application. We propose to charac-
terize the parallel application in combination with the message logging
approach in order to determine the most significant aspects of the ap-
plication such as computation-communication ratio and then, according
to the values obtained, we suggest a configuration that can minimize the
added overhead for each specific scenario. In this work we show that in
some situations is better to save some resources for the FT tasks in order
to lower the disturbance in parallel executions and also to save memory
for these FT tasks. Initial results have demonstrated that when saving
resources for the FT tasks we can achieve 25% overhead reduction when
using a pessimistic message logging aproach as FT support.

Keywords: Fault Tolerance, Mapping, Message Logging, Multicore, Over-
heads.

1 Introduction

Current High Performance Computing (HPC) systems are composed of nodes
containing many processing units in order to execute more work in a short
amount of time [1]. In order to take full advantage of the parallel environment,

? This research has been supported by the MICINN Spain under contract TIN2007-
64974, the MINECO (MICINN) Spain under contract TIN2011-24384, the European
ITEA2 project H4H, No 09011 and the Avanza Competitividad I+D+I program
under contract TSI-020400-2010-120.

204

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/18303781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Hugo Meyer et al.

a good process mapping is essential. It is also important to consider that when
executing parallel applications the fundamental objectives are: speedup as close
as possible to the ideal (scalability) and efficient resource utilization.

Considering that applications are mapped into parallel environments in order
to fulfill the above mentioned objectives, any disturbance may render all the
mapping work useless. Currently, it is increasingly relevant to consider node
failure probability since the mean time between failure in computer clusters has
become lower [2] and this may cause loss of significant computation time in
long-running applications. Indeed, successful completion of executions should be
added to the list of fundamental objectives. In this vein FT techniques are gaining
importance when running parallel applications. Nevertheless, FT mechanisms
introduce disturbance to parallel applications in the form of overheads, which if
not managed can result in large performance degradations, thus FT mechanisms
that do no endanger scalability (uncoordinated approaches) are preferred.

Many recent works focus on finding the best checkpoint interval, or deter-
mining the best checkpoint or message logging approach for parallel applications
[3][4] but few works address assigning resources for fault tolerance tasks consid-
ering applications’ behavior [5].

When single-core clusters were the only option to execute parallel applica-
tions, there was not too many choices when talking about sharing resources. As
there was only one computational core available, parallel applications share this
resource (as well as the memory and cache levels) with the FT tasks if there was
not dedicated resources. Considering that current clusters have more cores and
memory levels, there is a need to develop mapping policies that allow parallel
applications to coexist with the FT tasks in order to reduce the disturbance
caused by these tasks. There is also important to consider that the number of
cores has been multiplied by 8, 16, 32, 64 and usually the networks used in these
clusters have not increase their speed to the same extent.

The main objective of this work is to determine the configuration of parallel
applications in combination with a pessimistic receiver-based logging approach
that minimizes the added overhead. We analyze parallel applications and obtain
information that allows us to configure properly the FT tasks, specifically we
determine if the best option is to share (compete for) resources with application
processes or save resources for the FT tasks in order to reduce the introduced
disturbance. In order to provide the configurations we consider the balance be-
tween computation and communication, message sizes and per-process memory
consumption among other values.

The rest of the paper is organized as follows: Section 2 describes related
work. Section 3 presents an analysis of the possible scenarios when executing a
parallel application. Section 4 describes how to analyze a parallel application in
order to find the most suitable message logging configuration. Section 5 shows
the experimental validation and finally section 6 draws the main conclusions and
mentions future works.

205



Managing Message Logging Overheads in Parallel Apps. 3

Fig. 1. Parallel Executions Scenarios in a SPMD App. a)Communication Bound. b)
Computation and Communication overlapped. c) Computation Bound.

2 Related Work

In order to provide fault tolerance to parallel applications many strategies have
been designed using message logging approaches [2][4][3]. Message logging ap-
proaches can sustain a much more adverse failure pattern, mainly due to a
faster failure recovery. The main disadvantage of message log schemes is that
they suffer from high overhead during failure-free executions [6], but they are
an scalable solution since only failed processes must rollback, unless the domino
effect is not addressed. Usually message logging techniques are used in combina-
tion with uncoordinated checkpoint approaches. Uncoordinated approaches are
a good solution because there is not need for coordination between processes
and there is no dependency on global components that could cause bottlenecks
and compromise applications’ scalability.

Following these lines, to develop this work we have used the RADIC (Redun-
dant Array of Distributed and Independent Controllers) architecture [7], which
uses a pessimistic receiver-based message logging technique in combination with
an uncoordinated checkpoint approach in order to give application-transparent
and scalable FT support for message passing applications.

In [3] a comparison between a pessimistic and optimistic sender-based logging
approaches is presented where both seem to have a comparable performance.
Nevertheless, when using sender-based approaches we should consider that in
the presence of failures, processes that were not involved in the failure may
need to re-send messages to restarted processes, and also garbage collection is
complex. The pessimistic receiver based message logging approach of RADIC
may be more costly than a sender based approach, but it guarantees that only
failed processes will rollback to a previous state, without needing the intervention
of other processes during re-execution.

In [8] was proposed a mechanism to reduce the overhead added using the
pessimistic receiver-based message logging of RADIC. The technique consists in
dividing messages into smaller pieces, so receptors can overlap receiving pieces

206



4 Hugo Meyer et al.

with the message logging mechanism. This technique and all the RADIC Archi-
tecture has been introduced into Open MPI in order to support message passing
applications.

In [9] was presented an algorithm for distributing processes of parallel appli-
cations across processing resources paying attention to on-node hardware topolo-
gies and memory locales. When it comes to combine the mapping of FT tasks,
specifically message logging tasks, with application process mapping, to date, no
works have been published to the best of our knowledge.

3 Analyzing Parallel Applications Behavior

Current HPC parallel applications are executed on multicore systems, and the
executions usually aim for almost lineal speedup and efficient resource utiliza-
tion. In Figure 1 we present the three main scenarios possible when mapping
applications in multicore systems. It is important to highlight that in this figure
we are considering one iteration of a SPMD application. In Figure 1 we decom-
pose the Single Stream in communications and computations operations. The
main scenarios are:

1. Communication bound: Applications in which the processes are waiting
because the communications take more time than the computations belong to
this scenario. In Figure 1a we show how a communication bound application
behaves (we are using as an example a SPMD application, where all processes
do the same thing and each message goes from one process to another in
a different core). In this figure we focus on showing how reception times
(non-blocking send operations do not delay considerably the execution) can
influence highly the execution time of a parallel application.

2. Balanced Application: This scenario is the best regarding efficient re-
source utilization, because the computational elements are working while
the communication takes place. However, this behavior is very difficult to
obtain because a previous study of the application is needed in order to
completely overlap computations and communications (Figure 1b).

3. Computation Bound: When operators try to make a good use of the
parallel environment they try to maintain the CPU efficiency high. Then
in order to avoid the communication bound scenario it is recommended to
give more workload per process which usually leads to a computation bound
scenario. Figure 1c illustrates this scenario.

When characterizing a parallel application, it is also important to consider
the number of processes that will be used, the number of nodes and the mem-
ory consumption of each process. This analysis should be done in combination
with the analysis of the parallel environment in order to determine resource
utilization. In this paper, we have characterized the parallel environment using
application kernels and we consider the application phases (repetitive pieces of
the parallel execution) that have the biggest weights during application execu-
tion.

207



Managing Message Logging Overheads in Parallel Apps. 5

Fig. 2. Parallel Executions Scenarios with Message Logging. a)A communication bound
application. b) A balanced application becomes comm. bound. c) A computation bound
application stays as it was. d) A computation bound application becomes balanced.

In order to find the most appropriate configuration of the message logging
approach, we should analyze how the parallel application and the logging ap-
proach coexist in the parallel machine. There will be two parallel applications
that will compete for resources, thus it is critical to analyze the influence of FT
in application behavior.

4 Analyzing Message Logging Processes Mapping

Most of the impact of a pessimistic receiver-based message logging protocol
concentrates on communications and storage (memory or hard disks), but there
is also a small impact on computations because FT tasks also need some CPU
cycles in order to carry on their work.

For the analysis in this paper we have considered the pessimistic receiver-
based message logging protocol used in RADIC. RADIC main components are
shown on Figure 3, Protectors’ main functions during the protection stage are:
establish a heartbeat/watchdog mechanism between nodes (low CPU consump-
tion operation, do not depend on application behavior) and to receive and man-
age message logs (CPU consumption depends on application) and checkpoints
from observers (infrequent operation). All communications between processes go
through Observers and each received message is sent to a corresponding logger
thread (usually the protector of RADIC is drawn as an equilateral triangle, but in
this case we have split it two right triangles to distinguish the main operations).

In order to reduce the impact of the pessimistic receiver-based logging pro-
tocol of RADIC we propose to save computational cores for the logger threads
(Namely, threads that are in charge of receiving and logging messages of other
processes), thus avoiding the competition for CPU between application processes

208



6 Hugo Meyer et al.

Fig. 3. RADIC Processes Mapping. a)Logging threads equitably distributed among
cores. b) Protector with own resources.

and logger threads. According to this protocol every message should be logged
in a different computing node (there are no dedicated nodes, but the usage of
Spare Nodes is considered in [7]), then there is a considerable increase in the
transmission time of each message when RADIC protection is activated. Thus,
when executing a parallel application with RADIC the previous scenarios change
(Figure 1), because the processes will be waiting a longer time for each message
and the computation will be affected by the logger threads.

In order to reduce the overheads of the message logging approach, we ana-
lyzed how the application will be affected when introducing this logging tech-
nique. In Figure 2a we can observe how in a communication bound application,
the difference between communications and computations becomes higher, and
the overhead added in computations does not affect the iteration time. A bal-
anced application without message logging will become communication bound
when message logging is used (Figure 2b).

In these two scenarios the message logging overheads cannot be hidden, but
when it comes to computation bound applications we can manage the mapping of
the logger threads so as to distribute the overheads equally among the processes
(Figure 2c). Alternatively, we can choose to save some computational cores in
each node in order to avoid context switch between application processes and
logger threads (Figure 2d).

Considering that many parallel applications are executed with balanced per-
core workload, our default proposal is to distribute the overhead in computation
produced by the logger threads among application processes residing in a node (
Figure 3a). Moreover, we characterize the parallel application in order to find the
computation-communication ratio, and if the application is computation bound,
we analyze the overheads produced in computations. If these overheads make the
application behave as in Figure 2c, we propose saving cores in each node in order
to assign them to the logger threads, obtaining the behavior showed in Figure
2d. Figure 3b shows how we assign the logger threads and other proctectors’
functionalities when using own resources for them.

As saving cores may make the initial mapping change, we also analyze if
the new mapping does not negatively affect the execution, resulting in a worse
performance than the default option.

209



Managing Message Logging Overheads in Parallel Apps. 7

Another important aspect that we analyze is the per-process memory con-
sumption. This is significant because we have the option of storing the message
log in memory instead of hard disks as this allows us to avoid bigger delays
when storing messages. When we put less processes per node, we can save more
memory for the message log, thus there is more time to overlap the flush-to-disk
operation with receptions of new messages to log. Also, we can use longer check-
point intervals if we consider an event-triggered checkpoint mechanism where a
full message log buffer triggers a checkpoint.

5 Experimental Validation

The main approach presented in this paper focus on resource assignation to
decrease logging overheads and save memory for FT tasks. In this section we
present experimental evaluation that has been carried out in order to probe our
hypothesis.

The experiments and characterizations have been made using a Dell Pow-
erEdge M600 with 8 nodes, each node with 2 quad-core Intel R© Xeon R© E5430
running at 2.66 GHz. Each node has 16 GB of main memory and a dual em-
bedded Broadcom R© NetXtreme IITM 5708 Gigabit Ethernet. RADIC features
have been integrated into Open MPI 1.7.

Most of the overhead added by a logging protocol affects communications. In
order to lower the impact of a message logging technique we can assign more work
per process which allow us to hide the overheads in communications (Figure 2c).
However, if there are no available computational resources for the fault tolerance
tasks, the overheads in computations could become relevant. Moreover, if we are
executing a parallel application where memory consumption per process is high,
there will be no room for the FT mechanisms.

When executing a parallel application with FT support is desirable to store
checkpoints and message logs in main memory avoiding the file system, thus
allowing FT mechanisms to execute faster. Also, if we consider an event triggered
checkpoint mechanism where checkpoints take place when a message-log-buffer
in memory is full and we save memory by executing less application processes
per node we can use a bigger message-log-buffer, thus the checkpoint interval
could be bigger.

Our testbed here is composed by two SPMD applications: a Heat Transfer
application and a Laplace Solver. Both applications allow overlapping between
the computation steps and the communication steps as was shown in Figure
2 and are written using non-blocking communications. The computation and
communication times per iteration showed in bars in Figure 4 and Figure 5 are
obtained by executing a few iterations of the parallel applications observing all
processes and then selecting the slowest one for each number of processes. The
execution times have been obtained using 10000 iterations.

In this experiments we have only considered the overlapped times (commu-
nication and computations) because they represent the higher portion of both
applications. We have discarded the delays caused by desynchronization and

210



8 Hugo Meyer et al.

Fig. 4. Characterization results and Overhead Analysis of the Heat Transfer Applica-
tion.

the computation time spent in computing the edges of each sub-matrix before
sending it to the neighbors.

For both applications we have measure communication and computation
times with the following options:

1. Without using message logging (Comm-NoLog and Comp-NoLog).

2. With message logging using all available cores in each node and giving affinity
to each logger thread in order to ensure an equally distributed overhead in
computation among all application processes (Comm-LogShResources and
Comp-LogShResources).

3. With message logging using all available cores in each node without giv-
ing affinity to each logger thread (Comm-LogShResources-NoAF and Comp-
LogShResources-NoAF).

4. With message logging saving one core per node and assigning all logger
threads to the core not used by application processes
(Comm-LogProperResources and Comp-LogProperResources).

With the purpose of measuring the communication and computation times
of each application, we have inserted a barrier (MPI Barrier) that allow us to
properly measure them. The tables of Figure 4 and Figure 5 show the overhead
in percentage introduced by each message logging approach with the barriers and
also without them. The executions without barriers are faster than the execution
with barriers and we present both overheads in order to prove that the measures
taken are consistent when removing them and executing the original versions.

211



Managing Message Logging Overheads in Parallel Apps. 9

Fig. 5. Characterization results and Overhead Analysis of the Laplace Solver.

In Figure 4 we can observe how the computation times when using the version
with own resources is lower. Even when the application becomes communication
bound (56 processes) the logging version with own resources behaves better than
the other versions. We do not show results of the version with own resources with
64 processes because our test environment has 64 cores, and we have to save 8
cores (1 per node) for the logger threads.

The tables of Figure 4 reflect what we have observed when characterizing
the application, using message logging with own resources for the logger threads
introduces less overhead in almost all cases (except with 16 cores without barri-
ers). At best, we have reduced 25% overhead when comparing the own resources
version with the version with shared resources and affinity. We can also observe
that when increasing the number of processes without increasing the problem
size, the overhead added becomes bigger.

Figure 5 shows the execution of the Laplace Solver. As was in the previous
experiment, here we can observer how the computation times are lower when
using the version with own resources.

The tables of Figure 5 reflect again what we have observed when character-
izing the application, using message logging with own resources for the logger
threads introduces less overhead in almost all cases (except with 16 cores with-
out barriers).At best, we have reduced 20% overhead when comparing the own
resources version with the version with shared resources and affinity.

As we have observed, in both applications the computation time of the ver-
sions with FT with own resources is lower than the versions with shared re-
sources, but is not equal to the version without message logging. This is because

212



10 Hugo Meyer et al.

when logging is activated and a process call MPI Irecv, this process should save
the request, re-send the message to its logger thread and free the request when
the message was totally received, thus there is an slight increase in computation.

6 Conclusions

The main contribution of this paper consists on analyzing possible configurations
of the pessimistic receiver-based logging approach in order to find the most
suitable according to application behavior. This is done by characterizing the
parallel application (or a small kernel of it) obtaining the computation and
communication times and the disturbance caused by the logging approaches.
Our initial results have demonstrated that saving resources for the FT tasks
reduces overheads and also allows us to save memory for a message log buffer. In
our experimental validation we have obtained 25% overhead reduction at best.

Future work will extend the analysis made in this paper to a bigger set of
applications. We will focus on obtaining traces of parallel applications and use
them to find the FT configuration that will be more suitable to them. We will
also analyze the relationship between message sizes and logging overheads, in
order to determine the number of resources that should be save for FT tasks,
because with bigger message sizes delays could increase.

References

1. Nielsen, I., Janssen, C.L.: Multicore challenges and benefits for high performance
scientific computing. Sci. Program. (2008) 277–285

2. Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Correlated set coordination
in fault tolerant message logging protocols. (2011) 51–64

3. Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.: Reasons for a
Pessimistic or Optimistic Message Logging Protocol in MPI Uncoordinated Failure
Recovery. (2009) 229–236

4. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. Concurr. Comput. : Pract. Exper. (2010) 2196–2211

5. Fialho, L., Rexachs, D., Luque, E.: What is missing in current checkpoint inter-
val models? 2012 IEEE 32nd International Conference on Distributed Computing
Systems (2011) 322–332

6. Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., Cappello, F.: Improved
message logging versus improved coordinated checkpointing for fault tolerant mpi.
2012 IEEE International Conference on Cluster Computing (2004) 115–124

7. Meyer, H., Rexachs, D., Luque, E.: Radic: A fault tolerant middleware with auto-
matic management of spare nodes. The 2012 International Conference on Parallel
and Distributed Processing Techniques and Applications, July 16-19, Las Vegas,
USA (2012) 17–23

8. Santos, G., Fialho, L., Rexachs, D., Luque, E.: Increasing the availability provided
by radic with low overhead. IEEE International Conference on Cluster Computing
and Workshops, 2009. CLUSTER ’09. (2009) 1–8

9. Hursey, J., Squyres, J., Dontje, T.: Locality-aware parallel process mapping for
multi-core hpc systems. IEEE International Conference on Cluster Computing
(2011) 527–531

213




